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Abstract 

There are two significant challenges for analysts conducting economic evaluations of 

advanced therapy medicinal products (ATMPs): (i) estimating long-term treatment effects in 

the absence of mature clinical data, and (ii) capturing potentially complex hazard functions. 

This review identifies and critiques a variety of methods that can be used to overcome these 

challenges. The narrative review is informed by a rapid literature review of methods used 

for the extrapolation of survival analyses in the economic evaluation of ATMPs. There are 

several methods that are more suitable than traditional parametric survival modelling 

approaches for capturing complex hazard functions, including, cure-mixture models and 

restricted cubic spline models. In the absence of mature clinical data, analysts may augment 

clinical trial data with data from other sources to aid extrapolation, however, the relative 

merits of employing methods for including data from different sources is not well 

understood. Given the high and potentially irrecoverable costs of making incorrect decisions 

concerning the reimbursement or commissioning of ATMPs, it is important that economic 

evaluations are correctly specified, and that both parameter and structural uncertainty 

associated with survival extrapolations are considered. Value of information analyses allow 

for this uncertainty to be expressed explicitly, and in monetary terms.   
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1 Introduction 

Advanced therapy medicinal products (ATMPs) are a relatively new, and rapidly expanding, 

category of medicinal products.1,2  They include, somatic-cell therapy medicines, such as 

chimeric antigen receptor T-cell (CAR-T) therapies; tissue-engineered medicines; and gene 

therapies.3 Medicines that are ATMPs are among the most expensive in the world, with 

some exceeding £1 million per patient.4 Evidence on their value is therefore important to 

justify reimbursement and patent access. 

Health technology assessment (HTA) organisations typically assess value based on economic 

evaluations, which estimate the incremental cost per unit improvement in health outcome – 

often combining quantity and quality of life. Evaluations require an analytic time horizon 

that is sufficiently long to capture all plausible differences in costs and effects between an 

ATMP and comparator treatments (including best supportive care).5 For ATMPs that are 

expected to increase survival, a lifetime horizon must be applied to avoid time-horizon bias. 

Mature clinical evidence could be used to inform a lifetime horizon; however, this is rarely 

available at the point of marketing authorisation and reimbursement decisions.4 Instead, 

survival analyses are necessary to extrapolate estimates of long-term survival from clinical 

trial data.6 Such methods underpin the economic models used in the health technology 

assessment of ATMPs but present analysts with two significant challenges: (i) estimating 

treatment effects (i.e., survival) beyond the end of the trial and (ii) capturing potentially 

complex hazard functions. 

There are several reasons why a hazard function may be complex. One example of a 

mechanism that would generate a complex hazard function is a treatment that cures a 

proportion of patients, resulting in a plateau in long-term survival. Hazard functions may 

also be complex by virtue of their non-linearity, for example, mortality may be high 

immediately after treatment but reduce over time. Traditional parametric survival analyses 

often fail to capture such complex hazard functions adequately.7,8 

Issues surrounding the extrapolation of survival analyses for cost-effectiveness evaluations 

are well known.9–12  These are particularly important in the case of ATMPs where data are 

often collected in single-arm trials with surrogate end points, leading to uncertainty in long-

term treatment effects.4,13–15 A review of the health economic literature concerning ATMPs 

highlighted the lack of long-term clinical trial data as a methodological problem for many 
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studies, often forcing researchers to rely on additional assumptions, resulting in curative 

claims being made with insufficient evidence.3 A recent empirical study compared four 

different economic evaluations of a gene-therapy and found that treatment effect duration 

was the parameter with the greatest influence on the cost-effectiveness outcome in all four 

economic evaluations.15 There is therefore a clear need improve the reliability and precision 

for extrapolations of survival in ATMPs. 

This paper aims to review and critique methods for estimating survival in the absence of 

mature clinical data in the economic evaluations of ATMPs as well as making 

recommendations for using these methods for the HTA of ATMPs.   
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2 Methods 

Recognising that an increasing number of ATMPs are under development and will be 

seeking market authorisation in the near future,2 we conducted a rapid review16 using 

electronic databases (PubMed, Google Scholar), manual searches of recent issues of key 

journals, and using “pearl-growing” search methods,17 to identify methods relevant for the 

extrapolation of survival analyses in the economic evaluation of ATMPs.  

Specifically, PubMed, EMBASE, and Google Scholar were searched for articles published to 

31st July 2021 using the following terms combined with appropriate Boolean operators: 

ATMPs, Advanced therapies, cell therapy, gene therapies, expert elicitation, survival 

modelling and extrapolation. Studies were considered eligible for inclusion if they made 

reference to the application of methods that would aid analysts in generating plausible 

estimates of survival and associated uncertainty. The reference lists of included studies 

were scanned for further relevant articles. Additionally, given the speed of development in 

this area, we also monitored new publications in the journals Value in Health, 

PharmacoEconomics and Medical Decision Making up to October 2021. 

Three-hundred and seventeen articles were identified via electronic databases, to which 32 

articles were added via pearl growing, and a further 8 from more recent scanning of 

selected, key journals.  Of these, 83 were considered eligible for inclusion and deemed 

relevant to inform the present review. 

Identified methods were grouped based on whether they address: (i) extrapolation 

uncertainty (parameter or structural), (ii) modelling complex hazard functions, or (iii) 

extrapolation in the absence of mature clinical data. A narrative review of the methods and 

applications is provided. 

3 Addressing Uncertainty 

The results of survival analyses and their extrapolations are one source of both parameter 

uncertainty and structural uncertainty. Parameter uncertainty is the uncertainty in the 

values assigned to parameters and is commonly handled using probabilistic sensitivity 

analysis.5,18,19 Structural uncertainty arises as decision modelling aims to simplify complex 

problems, however, as there is often more than one plausible modelling approach, 

uncertainty is thereby introduced into the decision modelling process.20–22 Two important 
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sources of structural uncertainty in the extrapolation of survival analyses are the choice of 

statistical model and the data used. 

A decision based on an analysis of uncertain evidence will also be uncertain, risking the 

possibility of an incorrect (or sub-optimal) decision. This will have both sunk costs associated 

with changing clinical practice (e.g., in relation to the provision of ATMPs, staff training, 

equipment procurement) and opportunity costs in terms of reduced net benefit to 

population health. Uncertainty in decision models can be characterised using value of 

information (VOI) techniques.23,24 It is important, from a policy perspective, that decision 

uncertainty is explored and reported, as it may be better to delay a decision until 

uncertainty is reduced through further research.18,23,24 

3.1 Deterministic/scenario analysis 

Deterministic and scenario analyses are used to understand the sensitivity of decision 

models to specific parameters.25 Some of the modelling methods (described in section 4) 

may be particularly sensitive to single parameters. “Even if”/threshold deterministic 

sensitivity analyses could be used to assess the sensitivity of the decision to such 

parameters.24 Deterministic sensitivity and threshold analyses can be well suited in the 

context of highly uncertain evidence, such as that encountered in the analysis of ATMP trial 

data. However, they also have limitations, as the range of values chosen is often arbitrary, 

they do not account for correlation among parameters or for non-linear relationships, and 

the outputs of deterministic sensitivity analyses may not adequately address the needs of 

decision makers.26 

3.2 Structural uncertainty 

Different modelling choices can lead to high levels of uncertainty. For example, mean 

survival estimates for patients treated with a CAR-T therapy in a study comparing non-cure 

and cure versions of Weibull and generalised gamma models ranged from 2.0 and 3.0 years 

for each of the non-cure models, to 15.7 and 17.5 years for the cure models.27 Despite the 

obvious importance of addressing structural uncertainty, it is often not assessed with the 

same rigour as parameter uncertainty.21,24,28,29 Indeed, choosing a single model implies that 

no others are reasonable and is unlikely to be suitable for capturing the structural 
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uncertainties associated with survival model extrapolation.21,30 Model averaging and model 

parameterisation are two methods for addressing structural uncertainty. 

3.2.1 Model averaging 

Model averaging is a technique for combining the results of multiple plausible models, and 

for characterising statistical structural uncertainty. Model averaging takes the average of a 

set of candidate models and may be weighted by a measure of goodness-of-fit or prior 

probability.20,21,30,31 Selecting models for the candidate set to be averaged should not be 

based solely on goodness-of-fit criteria (e.g., Akaike Information Criterion, AIC) but should 

also consider plausibility, given that goodness-of-fit to the observed data provides no 

information about the accuracy of extrapolation.32–35  

Structural uncertainty is especially important when making long-term extrapolations when 

equally plausible modelling approaches are possible, and where model averaging provides a 

more accurate mean effect and a more reliable estimate of precision.30 The uncertainty 

estimates from model averaging can then be used in probabilistic sensitivity analyses and 

VOI analyses.20,21,30 However, the VOI analysis will only inform the value of reducing the 

parameter uncertainty and not the structural uncertainty.21  

3.2.2 Model parameterisation (model expansion) 

Structural uncertainty may be considered explicitly by expanding the model to encompass 

the set of plausible methods identified by the analyst as additional uncertain parameters.21 

Use of generalised distributions is one way of parameterising a model. For example, using 

the three-parameter generalised gamma distribution instead of distributions that are special 

cases of the generalised gamma (e.g., Weibull, Gompertz, and lognormal). A second option, 

which allows models that do not share a generalised form, or are based on different 

assumptions to be considered in a single model, is adding a parameter to the decision 

(rather than statistical) model. Bojke and colleagues20 demonstrate one method of including 

structural uncertainty in decision models, by introducing an “uncertain parameter” with a 

beta distribution to the represent the choice between a Weibull and Gompertz distribution. 

Model parameterisation may be preferable to model averaging, as it is possible to estimate 

the structural uncertainty separately from the parameter uncertainty and therefore, the VOI 

can be estimated separately.20,21  
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3.3 Value of information 

Value of information refers to a set of methods that can be used to quantify the value of 

research in reducing decision uncertainty.36 In this section, two specific VOI methods that 

are particularly relevant to addressing uncertainty in the extrapolation of survival analyses, 

are discussed. 

The first of these methods is the expected value of perfect information (EVPI), which is the 

expected cost making the “wrong” decision, or more specifically, the probability of making 

the wrong decision multiplied by the average cost of making the wrong decision. 

Consequently, it is the upper bound for the value that additional evidence can provide by 

reducing uncertainty in a decision problem and is often used as a measure of 

uncertainty.18,23–25,37  

The second relevant VOI method is the expected value of perfect parameter information 

(EVPPI),18,38 which is similar to EVPI, but rather than expressing uncertainty for the entire 

decision problem, it is used to express uncertainty in individual parameters or groups of 

parameters. EVPPI can (and should) be used to understand the sensitivity of the decision 

problem to the uncertainty of the long-term treatment effects (as well as other 

parameters). EVPPI can be applied specifically to the uncertainty associated with structural 

uncertainty when model parameterisation (expansion) has been used to account by 

calculating the EVPPI for the uncertain parameter described in section 3.2.2. 

The nature and maturity of the clinical evidence for many ATMPs means that it is likely there 

will be significant uncertainty surrounding their long-term effects. In situations where the 

expected VOI exceeds the expected net benefits of the medicine, HTA organisations might 

withhold approval and recommend that further research is conducted.23 

4 Modelling complex hazard functions 

There are a variety of survival models that can be used to model complex hazard functions, 

some of which are already being applied to ATMPs. For example, a systematic review of 

cost-effectiveness models for CAR-T therapies which use survival analyses to extrapolate 

long-term survival, identified 20 relevant cost-effectiveness models.39 Of these, 10 used 

mixture cure models, three used spline-based models to account for the “curative intent” of 

CAR-T therapies, three used traditional parametric distributions, and the remaining four 
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used microsimulation or optimisation to estimate the proportion of patients in each health 

state. The National Institute for Health and Care Excellence (NICE) Decision Support Unit 

(DSU) in the UK has provided an overview of several of these survival model approaches;32 

however, the appropriateness of models for complex hazard functions is not yet fully 

understood and is a rapidly evolving area of research. Below, we provide an overview of 

such models and consider their utility for modelling survival in the economic evaluation of 

ATMPs. 

4.1 Mixture models 

Mixture models are useful when a single parametric distribution would fail to capture the 

complexity of the hazard function, but a mixture of distributions would.40 Mixture models 

can account for complex hazard functions better than standard parametric models,41 

however, the different hazard distributions for each component should be biologically or 

actuarially plausible.8,42,43  

4.2 Cure models 

Curative treatments can result in complex hazard functions as survival rates are 

heterogenous. Kearns et al.33 for instance, presented a scenario in which cured patients 

were assumed to have general population mortality, whilst uncured patients were assumed 

to experience disease-specific death in a relatively short timeframe. Based on their example, 

Figure 1 shows that the hazard function is complex when the cure proportion is neither 0% 

nor 100%, meaning it is unlikely that standard parametric models would be suitable.  

Cure models have been used for some time and assume that a proportion of the population 

will never experience the event of interest (e.g., disease-specific mortality).44,45 Methods 

that account for the cured proportion can produce more reliable extrapolations than when 

the cure fraction exists but is not taken into account.27,32,33,42,46 Accordingly, cure models 

may be attractive when evaluating ATMPs with curative claims. 

Mixture models include mixture cure models and the promotion time cure models.32,46,47 

While both types rely on estimating a cured proportion, they are sensitive to 

misspecification, and require mature data to accurately estimate the cure proportion.8,33 

Cure models with weak structural assumptions are preferred as they are less sensitive to 

misspecification.33 
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There are longstanding concerns regarding the use of cure models in survival analysis, in 

particular the uncertainty surrounding estimates of cure proportions, especially in small 

samples.32–34,48,49 These concerns are particularly pertinent in the case of ATMPs. A review 

of economic evaluations of ATMPs highlighted the dearth of suitable clinical evidence 

supporting long-term curative assumptions as a major limitation.3 Therefore, it may only be 

reasonable to assume that a cured proportion exists once mature clinical evidence has been 

collected or surrogate measures of survival have been validated. Kearns et al.33 specifically 

caution that, “with short follow-up, there is a danger that no model will provide useful 

predictions of the future.” 

The Institute for Clinical and Economic Review has recommended that cure models are used 

as standard in the economic evaluation of “single or short-term transformative therapies” 

(including ATMPs).50 However, as this recommendation is based on a single comparison of a 

cure model with a flexible parametric curve, and a standard parametric survival analysis 

without cure proportion or flexible parametric curve,51 it is not possible to attribute the 

improved performance to the cure proportion, the flexible parametric curve, or even the 

combination of the two in the model. In a review of flexible models, NICE suggests that cure 

models could be useful when the assumption of cure is reasonable, but stated that cure 

models offered few advantages over flexible parametric models that include background 

mortality in a relative survival or excess mortality framework.32 

For cure models to be valid in the evaluation of ATMPs, it is important that the assumption 

of a cure can be supported by evidence and that a reasonable estimate of the cure 

proportion can be made. This may be based on expert opinion, biological information, data 

from earlier phase trials with longer follow-up.33,49 In most instances, regulatory trial data 

alone are unlikely to provide sufficient information to estimate cure fractions for health 

technology assessments49 because the time required to observe a cure is often far greater 

than the follow-up of clinical trials.52 

Model choice and the source of data may impact estimates of cure proportions.53 Therefore, 

tt is also important to estimate uncertainty in the estimate of the cure proportion, so that 

appropriate sensitivity and VOI analyses can be undertaken (section 3.3). For example, the 

sensitivity of results to the assumption of a cure can be assessed by comparing non-cure 

mixture models to the equivalent cure mixture model. This could be a deterministic 



 11 

sensitivity analysis, or model parameterisation to estimate the structural uncertainty 

resulting from the assumption of a cure. This may appear to be statistical minutiae, however 

even when cure and non-cure mixture models estimate similar cure/low-mortality 

proportions, there may be substantive differences in mean survival estimates.8 

Consequently, it would be reasonable to expect substantive differences in estimates of 

health outcomes. 

4.3 Generalised linear model framework 

A variety of models in the generalised linear model (GLM) framework can be used to model 

survival.35 Restricted cubic spline models, a type of piecewise polynomial, are one extension 

of the GLM and have been recommended as appropriate for modelling complex hazard 

functions.54 It has been suggested that piecewise models are more efficient than mixture 

models for complex hazard functions that result from a cure proportion.32 

In the context of survival analysis, restricted cubic spline functions split time at a given 

number of knots (k), where the first and second derivatives of the function must agree at 

each of the knots and the tails are constrained to be linear.54–57 Such models are able to 

describe complex functions, with five knots providing sufficient flexibility in most cases58 – 

though analysts should aim to keep the number of knots small.59 Figure 2 shows three 

different specifications of a restricted cubic spline model (k = 3-5) fitted to the 50% cure 

hazard function from Figure 1. 

The linear constraints imposed on the tails of these functions mean that extrapolation will 

be linear (on the scale modelled), which may not be actuarially plausible and therefore, 

should not be naïvely accepted. Using external data would be one way to inform this 

decision. In one comparison of traditional parametric methods (Weibull, exponential, 

Gompertz, log-logistic, log-normal) and restricted cubic spline models for modelling 

progression free survival in immuno-oncology, the restricted cubic spline models provided a 

better fit to Kaplan-Meier curves, particularly when the survival function reached a plateau, 

and provided more realistic extrapolations.7 Further, it has been suggested that spline based 

models may produce more credible estimates, by being closer to what is biologically 

plausible and aligned with expert opinion, than standard parametric models.60 
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A recent case study35 applied the following raft of models to data from a breast cancer 

study: fractional polynomials, spline models, generalised linear mixed models, general 

additive models, and dynamic GLMs (known as dynamic survival models when applied to 

survival data). The authors suggest that if concerned with extrapolations, dynamic survival 

models should be preferred on a theoretical basis as parameter estimation is based on 

minimising forecasting error. The results of the case study did not suggest that any of the 

GLMs improved extrapolation accuracy, however, the extrapolation of the fractional 

polynomials, general additive models, and dynamic survival model were plausible given 

external evidence, whilst none of the extrapolations of the traditional parametric models 

were considered valid. 

4.4 Landmark models 

Landmark models assess patients’ response to treatment at a landmark time point and 

assign them to separate groups based on this before estimating separate survival models for 

each group.61–63 Any of the other approaches discussed may be used, separately, for each of 

the groups in the landmark model.  For example, those who respond to a treatment may 

have a decreasing hazard of disease-specific mortality, modelled using a mixture cure 

model; whereas those who do not respond to the treatment may have an increasing hazard, 

modelled with a restricted cubic spline model.  

A major limitation of the landmark method is that it omits events that occur before the 

landmark time62 and given that some clinical trials of ATMPs are based on small samples,13,64 

this may result in an unacceptable loss of power and data. In addition, the landmark method 

assumes that response to treatment is a surrogate for long-term survival and this may not 

be reasonable given available evidence. Finally, if a landmark model is used, the choice of 

landmark will influence the results, therefore it is important that this is adequately justified 

and sensitivity analyses conducted to consider multiple landmark times.63 

4.5 Poly-hazard models 

Poly-hazard models assume that there is an overall hazard function comprised of several 

additive hazards (e.g., a collection of cause-specific competing risks).65–67 Each component 

may have a different distribution; therefore, the overall hazard function has greater 

flexibility than a single traditional parametric model. An example of a complex overall 
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hazard modelled using this method would be modelling population mortality as a 

background risk with an additive hazard function for the mortality risk for the given 

treatment.32 

4.6 Relative survival models 

Relative survival (or excess hazard) models are a special case of poly-hazard models, 

comprising the disease specific mortality and the background mortality. Disease specific 

mortality is usually estimated as the difference between the mortality of the population of 

interest and a matched background mortality, often based on life table data.68 Disease-

specific mortality may also be estimated directly from clinical trial data.32 

There are several spline-based relative survival models, that may be useful for extrapolating 

survival in the economic evaluation of ATMPs, imposing different constraints beyond the 

final knot, reflecting different assumptions about the excess hazard.69–71 An advantage of 

relative survival models is that extrapolations will inherently incorporate external data (as 

the source of background mortality), thereby reducing the likelihood of producing 

implausible extrapolations. However, it is essential that data for a relevant population is 

available, to provide an appropriate background mortality rate, which may be more 

challenging in a clinical trial setting than in the population studies where relative survival 

models have typically been used.32 

4.7 Summary 

The modelling approaches described above provide analysts with several methods for 

capturing a complex hazard function when traditional parametric models would fail. 

However, this does not solve all the issues concerning extrapolation; in the absence of 

mature clinical data, analysts must decide which model(s) they believe are plausible and, 

therefore, will use to inform the economic evaluation. This choice introduces significant 

uncertainty and potential bias into the decision. 

It should be noted that following a simulation study to investigate the performance of the 

extrapolations of eight parametric models, Gallacher et al.34 concluded that typical trial 

follow up is rarely sufficient for extrapolations and that “the accuracy and reliability of 

extrapolations will only deteriorate as data come from more complex underlying hazard 
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behaviours, especially when the behaviour of the hazard rate is expected to differ beyond 

the observed period.” 

5 Extrapolation in the absence of mature clinical data 

An empirical model that fits the observed data well will not necessarily provide accurate, or 

even plausible extrapolations and it is widely recommended that external information (e.g., 

relevant long-term survival data, expert opinion) is used to inform extrapolations.6,19,34,41,49 

This is highlighted in a recent validation-based case study, which found that flexible models 

that captured the complex hazard function and incorporated external information 

extrapolated well, whilst models that did not incorporate external information extrapolated 

poorly.43 

There are various sources of external data and associated considerations to be made when 

using them. Usually, more is known about the natural history of diseases, the efficacy of 

existing treatments, and the current standard of care, than the efficacy of the new 

treatment. Below, we discuss three types of data and some important considerations when 

using them to inform modelled extrapolations of survival analyses to estimate long-term 

treatment effect: (i) expert opinion, (ii) existing quantitative data, and (iii) clinical trial 

simulation or model-based meta-analysis. 

5.1 Expert opinion 

Formally elicited expert opinion has been used widely to estimate parameters in economic 

evaluations where data (especially in relation to healthcare resource use) are unsuitable or 

unavailable.73–81 There have been numerous calls to include expert opinion in extrapolation 

of survival analyses.6,82 Indeed, including expert opinion may help to provide more realistic 

estimates of uncertainty.83,84 However, reviews of applied studies using expert elicitation 

have found heterogeneity in the methodology used and a lack of consideration for any 

existing guidance on the topic.74,76,85–87 

There are several methods for eliciting expert opinion.88–91 Whilst these are generic 

methods for elicitation, rather than being specific for eliciting information to be used in the 

extrapolation of survival analyses, they may, nonetheless, prove useful when trying to 

improve the accuracy of extrapolations and can be included with varying degrees of 

formality. Examples include but are not limited to: the Delphi method,92 The Sheffield 
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elicitation framework (SHELF),93 the “bins and chips” graphical method,94 probability 

boxes,95 and the Expert Elicitation Tool (EXPLICIT).96 The Delphi method is designed to elicit 

a consensus, which in the context of economic evaluations, is less useful than the other 

methods listed, which aim to provide the analyst with both a point estimate of a parameter 

as well as a distribution.89 The distribution reflects experts’ (un)certainty in the point 

estimate and is consistent with the Bayesian framework in establishing prior probability 

distributions. 

Given the lack of consistency in the application of elicitation methods, a reference case has 

been developed to aid analysts and decision makers using expert elicitation in health care 

decision making.89,97 The reference case is flexible and provides methods for transparently 

eliciting a single quantitative distribution for decision problem parameters that reflect the 

individual beliefs of several experts, the uncertainty of these beliefs, and recommends 

investigating the reasons for the uncertainty. 

Another way of using expert opinion, is to present different extrapolations (scenarios) to 

clinical experts for feedback on their plausibility. Whilst ideally one would want to elicit 

expert beliefs a priori, it has been suggested that it is more common for clinicians to be 

consulted post hoc to select the most plausible model from a candidate set that is presented 

to them.82 This may be a result of constraints on the project (e.g., time). 

5.2 Existing quantitative data 

Jackson et al.6 reviewed methods for extrapolating survival from randomised trials using 

external data (e.g., registries, cohort studies, previous trials, expert opinion) and developed 

a framework for model choices. Their review highlights several considerations that must be 

made when using existing quantitative data. Further, they discuss various modelling options 

for survival extrapolation under the assumption of systematic differences between the trial 

data and external data (e.g., proportional or additive hazards) and methods for adjusting the 

external data to represent the population of interest. 

The framework6 assumes three populations: a control group, a treatment group, and an 

external population. If the control (or treatment) population are assumed to have the same 

hazard as the external population for a given portion of time (e.g., in the short-term, in the 

long-term, or both) then the control (or treatment) population can be estimated directly 
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from the external population for that portion of time. Where the hazard is assumed to be 

systematically different in both the short- and long-term, then the external population must 

be adjusted to represent the control (or treatment) population. 

Firstly, it is important to consider how the external data relates to the study population. 

Disease registry data may allow the control arm to be extrapolated with few adjustments 

(e.g., age, sex). Whereas, general population data may be adjusted using 

proportional/additive hazard models based on understanding of natural history.6 Secondly, 

is the consideration of the expected treatment effect. One potential treatment effect of 

ATMPs would be an initially higher hazard than the general population (it is unlikely to be 

lower) and at a given point in time, the hazard may be expected to converge with that of the 

general population (as in Figure 1). After the convergence point, survival of the cured 

proportion can be estimated from external (matched) population. Alternatively, if the 

treatment effect is expected to persist and non-time varying proportional/additive hazards 

can be assumed, then survival for the treatment arm can be estimated from the external 

data by applying an appropriate proportional/additive hazards model. For example, elicited 

expert opinion may suggest that there is a long-term hazard ratio (β) for those treated by 

the ATMP when compared with the control group, therefore, the hazard for the treatment 

group could be estimated as 

ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  𝛽𝛽ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) 

NICE recommends that alternate extrapolation scenarios are considered and provide an 

example of three scenarios to be considered:19 (i) the treatment effect is nil, (ii) the 

treatment effect (γ) remains the same, and (iii) the treatment effect reduces in the long-

term. Table 2 provides example functions for estimating the hazard for the treatment group 

from the control group for each of the three scenarios provided by NICE. 

Hwang and Wang98 proposed a method that can be used to extrapolate survival beyond the 

end of follow up (Tf) using a combination of clinical trial data that includes both survival data 

and relevant covariate data (e.g., age, sex, socioeconomic status) for a treatment population 

with life table data or any other source of hazard data. This method relies on the following 

assumptions: (i) the ratio of survival is relatively stable after an initial period of stabilisation 

(Ts), (ii) the hazard for the treatment population is worse than for the reference population, 

and (iii) Tf > Ts.  
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If these assumptions are reasonable, then three steps can be used to estimate survival for 

the treatment population beyond Tf. Firstly, using the as much of the covariate data as 

practicable, a matched reference population can be simulated from life tables using Monte 

Carlo methods. Secondly, after applying a logit transformation to the ratio for survival 

between the treatment and simulated reference population, a linear regression model can 

be fitted for T > Ts. Finally, this regression model can be used to predict survival for the 

treatment population for T > Tf. This method has validated with both simulation and real 

data and also extended using a rolling extrapolation algorithm to remove the assumption of 

constant hazard.99 

5.3 Expert opinion or data from other relevant trials (e.g., of comparable treatments with 

longer follow-ups) may be used to evaluate the appropriateness of assumptions of 

systematic differences. Guyot et al. present a method for formally including elicited 

beliefs and registry data in extrapolations of survival along, with an example.100 

Pharmacometric model-based analyses 

The effect of a drug on disease progression is routinely investigated in drug development 

using mechanism-based modelling (pharmacometrics), that considers the relationship 

between drug exposure (pharmacokinetics), response (pharmacodynamics), and the 

associated uncertainties.101 Pharmacometric models can then be used to simulate clinical 

trial results, accounting for subject-specific covariates, imperfect adherence, and different 

doses.102 A recent review highlights some of the opportunities and challenges of applying 

pharmacometric models to the development of gene-therapies (a type of ATMP).103 

Pharmacometric model-based clinical trial simulation can be used to generate distributions 

of treatment effects for a range of populations and trial designs104 which could be 

incorporated as a source of external data for the extrapolation of a survival analysis. 

Alternatively, the pharmacometric model could be applied to an ATMP trial population to 

estimate plausible treatment effects for that specific trial, with a longer follow-up than the 

actual trial to allow the estimation of long-term treatment effects. Several studies have 

combined pharmacometric modelling with economic models.104–107 

Model-based meta-analyses108 combine pharmacometrics with traditional meta-analytic 

techniques to generate mechanism-informed projections of the relative effects of 

treatments. One of the key advantages is that model-based meta-analyses can be used to 
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synthesise indirect comparisons based on quantitatively established relationships between 

biomarkers to long-term outcomes, including survival.109–111 These can serve as priors to 

quantify how a drug with limited evidence compares to the current standard of care. 

5.4 Bayesian methods 

Bayesian methods allow researchers to formally incorporate prior knowledge or 

expectations in their analyses using prior probability distributions, allowing a corpus of 

evidence to be updated with new information.112 Information from various sources can be 

used to build prior distributions (e.g., previous trials, expert opinion, external data, 

pharmacometric modelling).104,113 Priors such as these are often described as informative 

priors, as they inform the posterior distribution. However, in a review of clinical trials that 

used Bayesian survival analyses, Brard et al.114 found that few trials employed Bayesian 

survival analyses, and none of the articles reviewed reported using informative priors on the 

parameters of interest; although more recently a study showed that using previous trial 

data to inform the prior distribution for the hazard function could improve the extrapolation 

performance.113 

Guyot et al.100 used Bayesian multiple parameter evidence synthesis to combine data from: 

a randomised control trial, information about general population survival, conditional 

survival from a cancer registry, and expert opinion in a restricted cubic spline model. The 

authors of the study concluded that their model outperformed various standard parametric 

models, some of which produced extrapolations which were deemed implausible. The 

authors also noted that in data sparse situations, incremental model building was 

sometimes faced with technical difficulties, however these were overcome when including 

external data. 

The NICE DSU discuss some uses of Bayesian survival analysis, but also notes that its use 

thus far has been limited and there is potential for it to be used further and for additional 

research into these methods to be conducted.32 

6 Concluding remarks and future directions 

There is often very little mature survival data for ATMPs; to avoid time horizon bias in 

economic evaluations, analysts must make extrapolations of trial data, to capture any long-

term differences between treatment and comparator in costs and consequences. In the 
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absence of mature survival data, there are a several sources of information that analysts 

may use to guide their extrapolations (e.g., existing quantitative data, expert opinion, 

pharmacometric modelling). 

Claims of ATMPs having curative effects must be supported by sufficient evidence if a cure 

model is to be used; it is also important that the chosen modelling approach is suitable for 

capturing a complex hazard function. Mixture models (including mixture cure models) and 

restricted cubic spline models are likely to be more suitable for modelling complex hazard 

function than conventional parametric approaches. Alternative methods include landmark 

and poly-hazard models.  

For all extrapolations used in economic evaluations, both the structural and parameter 

uncertainty should be considered formally using probabilistic sensitivity analysis. The results 

of VOI analyses can help decision makers understand the potential costs of a decision (given 

current evidence) and the opportunity to reduce this cost through further research.  

While there are several options for improving extrapolations in the absence of mature 

clinical data, the relative costs and benefits of each method are not well understood. It 

would be prudent, therefore, for future research to compare the performance of each 

option before recommending any one method above others. Bayesian multi-parameter 

evidence synthesis, however, provides a formal method for combing evidence from a range 

of sources and estimating the associated uncertainty.  
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Tables 1 

Table 1. Overview of methods for modelling complex hazard functions and considerations for applying them to ATMPs 2 

Model type Features Advantages Disadvantages 

Cure - Assumes that a proportion of 

patients will be cured and have the 

same mortality as a reference 

population 

- Performs better than non-cure 

models when a cure 

proportion exists 

- It may be difficult to test the assumption of a 

cure in the absence of mature clinical evidence 

- When there are few patients at risk in the tail, 

the estimate of the cure fraction will be highly 

uncertain 

Generalised 

linear models 

- Models hazard functions with 

GLMs and extensions of them 

- Can describe arbitrarily 

complex hazard functions 

- Tails are (usually) restricted to being linear and, 

therefore, may produce unrealistic 

extrapolations 

Mixture model - Overall hazard is modelled by a 

mixture of distributions 

- Can model subpopulations 

(which may or may not be 

observable) 

- Can model complex overall 

hazard functions 

- User must specify the number of mixtures and a 

distribution for each mixture 

- GLMs may be a more efficient way of modelling 

complex hazard functions 

Poly-hazard 

model 

- Overall hazard is modelled by 

several additive hazards 

- Can model complex hazard 

functions 

- Requires the analyst to specify distributions for 

each hazard, if there are several plausible options 
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for each, this may lead to increased structural 

uncertainty and complexity in the analysis 

Landmark 

model 

- Models hazard for those who 

respond to a treatment by a given 

point in time separately to those 

who have not responded 

- Allows the hazard of the 

responders and non-

responders to have different 

hazard functions 

- Assumes all responders will have responded by a 

given time point 

- Assumes that response is a surrogate for survival 

- Sensitive to the choice of landmark time 

- Reduced power as events that occur prior to the 

landmark time are not included in the analysis 

 3 

  4 
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Table 2. Example functions for modelling the treatment group hazard function from the control group hazard function under alternate 5 

extrapolation scenarios recommended by NICE. 6 

Scenario Systematic difference Example functions for modelling treatment hazard function 

Treatment effect is nil None ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) 

Treatment effect remains the same Additive hazard (AH) ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛾𝛾 

Proportional hazard (PH) ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  𝛽𝛽ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) 

Treatment effect reduces in the long term AH asymptotic reduction ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛾𝛾𝜃𝜃(𝑡𝑡) 

AH constant reduction ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝜉𝜉𝛾𝛾 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 <  𝑡𝑡𝑥𝑥 

ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ≥  𝑡𝑡𝑥𝑥  

PH asymptotic reduction ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  𝛽𝛽𝜃𝜃(𝑡𝑡)ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) 

PH constant reduction ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  𝜉𝜉𝛽𝛽ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 <  𝑡𝑡𝑥𝑥 

ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  ℎ𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ≥  𝑡𝑡𝑥𝑥 

Notes: 

θ < 0, 𝜉𝜉 = rate of constant decrease, tx = time where treatment effect is expected to stop reducing or equal 0. 

7 
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Figure 1. Hazard and survival rates for hypothetical cure scenarios. Adapted with permission 

from Kearns et al. 2021.33 
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Figure 2. Restricted cubic spline (RCS) models with 3-6 knots (k) fitted to the hazard function 

of the 25% cure scenario from Figure 1. Grey vertical lines represent the 5th and 95th 

percentile of time, where the outermost knots are places in the RCS and beyond which the 

function is linear on the hazard scale. 
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