Bangor University

DOCTOR OF PHILOSOPHY

Cognitive learning strategies to mimic knowledge of results manipulation

Kirazci, Sadettin

Award date:
1998

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Cognitive Learning Strategies to Mimic Knowledge of Results Manipulations

Sadettin Kirazci
Division of Health and Human Performance
University of Wales, Bangor

April, 98

This dissertation is submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy at the University of Wales, Bangor.

Dedicated to my Mom and Dad
and for a Peaceful World

ACKNOWLEDGEMENT

To all those who have helped me I would like to say thank you. Particularly, I would like to thank my supervisors, Peter and John, for their trust and enthusiasm (What would I do without you?), Lew, for his encouragement and continuous support. To the Fazey family (John, Della, Gian \& Ioan) for their friendship, encouragement and hospitality for many lovely Christmas days and the "Fazey bonfires" (I will never forget those days). To Joe for delivering the robust and accurate "wonder slide" (Ooh, that's my baby). To SHAPE, for providing the wonderful research atmosphere and accepting me as a colleague, and my sponsor, METU, for providing the funds for my study - I am grateful (sorry it took a bit long!). To my dearest Mom and Dad, for just being there when I needed help and to my wife, Muge, for her unshakeable faith in me and being a "Boncuk" all the time.

To all of you, simply, Thank you!

TABLE OF CONTENTS

Introduction 1
Manipulating Learning Variables to Facilitate Autonomy within of Motor Skill Acquisition 1
Information Feedback Research - A Brief Introduction 2
Review of Literature 6
Statement of the Problem 19
Hypotheses 20
Bandwidth Experiment 21
Introduction 21
Hypotheses 21
Method 23
Subjects 23
Apparatus and Task 23
Procedure and Design 24
Results 27
Acquisition 27
Immediate No-KR Phase 28
Retention Phase 29
Discussion 32
Relative Frequency Experiment One 35
Introduction 35
Hypotheses 35
Method 36
Subjects 36
Apparatus, Task, Procedure and Design 36
Results 38
Acquisition 38
Immediate No-KR Phase 39
Retention Phase 40
Discussion 43
Relative Frequency Experiment Two 45
Introduction 45
Hypotheses 46
Method 47
Subjects 47
Apparatus and Task 47
Procedure and Design 47
Results 48
Acquisition 48
Immediate No-KR Phase 48
Retention Phase 49
Discussion 52
Summary KR Experiment One 55
Introduction 55
Method 58
Subjects 58
Apparatus and Task 58
Procedure and Design 60
Results 64
Acquisition 64
Immediate Retention 66
Delayed Retention 67
Cross-Roads 74
Reasons for the failure of the experiments: 75
Apparatus: 75
Subjects 76
Use of strategy 78
Feedback presentation: 78
What next? 79
Summary KR Experiment Two 82
Introduction 82
Hypotheses 82
Method 84
Subjects 84
Procedure and Design 84
Results 88
Acquisition 88
Retention 90
Discussion 93
General Discussion 98
Bandwidth Experiment 98
Relative Frequency Experiments 98
Summary KR Experiments 99
REFERENCES 105
APPENDIX A 113
Listing Of Experimental Programs And Spreadsheet Macros Used
In The Summary Kr Experiments 113
APPENDIX B 122
Summarised Anova Result Tables 122
APPENDIX C 149
Raw Data 149
APPENDIX D 173
Instructions To Subjects 173
APPENDIX E 182
Scoring Table And Post Test Questions 182
APPENDIX F 185
Conference Communications 185

List of Figures

Figure 1. Illustration of the apparatus and the direction of the arm movement in bandwidth and relative frequency experiments 23
Figure 2. Illustration of KR presentation to subjects in bandwidth experiment for CON, BW and STR groups respectively. 25
Figure 3. Absolute Constant Error ($|\mathrm{CE}|$) scores in milliseconds for acquisition and retention trial blocks (BW Experiment) 28
Figure 4. Variable error (VE) scores in milliseconds for acquisition and retention trial blocks (BW Experiment) 29
Figure 5. Illustration of KR presentation to subjects in relative experiment for CON, 20\% RF and STR groups respectively. 37
Figure 6. Absolute Constant Error (|CE|) scores in milliseconds for acquisition and retention trial blocks (Relative Frequency Experiment 1) 39
Figure 7. Variable Error (VE) scores in milliseconds for acquisition and retention trial blocks (Relative Frequency Experiment 1) 40
Figure 8. Absolute Constant Error ($|\mathrm{CE}|$) scores in milliseconds for acquisition and retention trial blocks (Relative Frequency Experiment 2) 49
Figure 9. Variable Error (VE) scores in milliseconds for acquisition and retention trial blocks (Relative Frequency Experiment 2) 50
Figure 10. Illustration of the apparatus used in the summary KR experiment (including the counter and the timer) 59
Figure 11. Illustration of a correct arm movement in summary KR experiment. 60
Figure 12. Illustration of the PC screen showing feedback graph in summary KRexperiment.61
Figure 13. Absolute Constant Error (|CE|) scores in milliseconds for acquisition and retention trial blocks (Summary KR Experiment 1) 65
Figure 14. Variable Error (VE) scores in milliseconds for acquisition and retention trial blocks (Summary KR Experiment 1) 66

Figure 15. Illustration of the PC screen showing a typical feedback graph for either the STR or SUMKR15 groups in summary KR experiment two.. 85
Figure 16. Absolute Constant Error (|CE|) scores in milliseconds for acquisition and retention trial blocks (Summary KR Experiment 2)..... 89
Figure 17. Variable Error (VE) scores in milliseconds for acquisition and retention trial blocks (Summary KR Experiment 2)

List of TABLES

Table 1. Statistical Design for Bandwidth Experiment 26
Table 2. Means and Standard Deviations of $|C E|$ (in milliseconds) for Acquisition and Retention tests in Bandwidth Experiment. 30
Table 3. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Bandwidth Experiment. 31
Table 4. Mean (M) and Standard Deviations (SD) of groups in Delayed
Retention in Bandwidth Experiment 33
Table 5. Means and Standard Deviations of $|C E|$ (in milliseconds) for Acquisition and Retention tests in Relative Frequency Experiment One. 41
Table 6. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Relative Frequency Experiment One. 42
Table 7. Means and Standard Deviations of $|C E|$ (in milliseconds) for Acquisition and Retention tests in Relative Frequency Experiment Two. 51
Table 8. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Relative Frequency Experiment Two. 51
Table 9. Statistical Design for Summary KR Experiment One 63
Table 10. Means and Standard Deviations of $|\mathrm{CE}|$ (in milliseconds) for
Acquisition and Retention tests in Summary KR Experiment One. 68
Table 11. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Summary KR Experiment One. 69
Table 12: A summary of the factors effecting each experiment. 81
Table 13. Statistical Design for Summary KR Experiment Two 87
Table 14. Means and Standard Deviations of $|C E|$ (in milliseconds) for Acquisition and Retention tests in Summary KR Experiment Two 92
Table 15. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Summary KR Experiment Two. 92
Table 16. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (BW, |CE|) 138
Table 17. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (BW, VE) 139
Table 18. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (RF1, |CE|) 140
Table 19. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (RF1, VE) 141
Table 20. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (RF2, |CE|) 142
Table 21. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (RF2, VE) 143
Table 22. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (SKR1, |CE|) 144
Table 23. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (SKR1, VE) 145
Table 24. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Group Means (SKR2, |CE|) 146
Table 25. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (SKR2, |CE|) 147
Table 26. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (SKR2, VE) 148

ABSTRACT

This thesis compared the effectiveness of traditional KR manipulations to another condition where the subject assumed an active role in the learning process. It was expected that increasing the participants' autonomy would enable them to develop transferable knowledge regarding the provision of feedback within learning, which would enhance their transfer of learning from one motor task to another.

Some recent studies have indicated that reduced frequencies of KR seem to facilitate motor learning by helping subjects to develop their own error detection capabilities (Winstein \& Schmidt, 1990). This thesis takes the view that both the development of error detection capabilities and the timing of feedback provision could be optimised by focusing more closely on the role of the learner, and seeking ways to enhance their cognitive involvement in the feedback process. The hypothesis of the experiments was that the expected superiority in retention of a reduced frequency KR group, in relation to a $100 \% \mathrm{KR}$ control group, could be matched by a cognitive strategy group.

The reduced frequency $K R$ groups (bandwidth, relative frequency and summary KR) in the first four experiments failed to support the experimental hypotheses. The fifth experiment was designed to rectify the shortcomings of these experiments. Three summary KR conditions (1-trial, 15 -trial, \& strategy groups) performed a linear slide task. In retention, the 3 group one-way ANOVAs for $|C E|$ and VE were significant, revealing that the 1-trial summary group's scores were poorer than either the 15 -trial summary and strategy groups.

In conclusion, these findings provide some evidence that informing subjects of the importance of problem solving activities during practice can reduce the need for supervision of feedback provision, without risking impaired retention. This
research is a first step towards demonstrating that cognitive factors involved in learning motor skills can be incorporated in the learning session to increase the autonomy of the subject.

CHAPTER ONE

Introduction

Manipulating Learning Variables to Facilitate Autonomy within of Motor Skill Acquisition

Imagine a classroom full of children trying to learn and acquire new knowledge and skill, and a teacher trying to teach a physical education class. In this day and age, where the size of the classes is increasing year after year, one can see the frustration of the teacher wishing that there were fewer students to deal with so that $\mathrm{s} /$ he could afford to pay the necessary attention to each student.

As having less students per class may not be a reality in near future, it would seem appropriate to try to develop "skilful learners", who share in the control of the learning environment in some way. It would certainly be useful if the learner could be made more active in the learning process so that the demand on the instructors could be minimised.

In attempting to facilitate such a learning situation, a good starting point would seem to be to search for controllable factors that influence the learning process. Perhaps the most widely studied and influential learning variable is that of information feedback. This area will form the primary focus of this thesis. Specifically, the goal of the thesis will be to show that the passive approach to learning adopted within the information feedback literature can be replaced with more active learning strategies. These learning strategies should be at least as effective as those currently used, and may be expected to be more effective in the transfer of skill acquisition.

Information Feedback Research - A Brief Introduction

In recent years, there has been an upsurge of interest in the study of information feedback, which has been found to facilitate error correction, reinforcement and motivation. Generally, the primary focus of the information feedback research has been on the error correction properties of feedback helping the learner to change behaviour to reduce error in performance. The way this study area has tackled the problem has been to ask how frequently should information feedback be provided to enhance the learner's error detection mechanism. A general finding of the research is that withdrawing feedback on some trials, although depressing immediate performance, ultimately enhances learning (Winstein, 1988). This general finding has promoted a number of avenues of research, seeking ways to maximise learning through manipulating feedback scheduling. A simple conclusion from this research is that the trials without feedback are as important as the trials with feedback in developing the performer's error detection capabilities.

The focus of these studies has shifted towards ever more specific and smaller changes that may be made to the practise experiences of the subjects so as to optimise the benefit of trials without feedback. This has led to some curious and non-theory driven findings. One such example is provided in the comparison between Schmidt, Young, Swinnen and Shapiro (1989) and Sidaway, Moore and Zohdi (1991). The findings of these two papers contradict each other despite the only difference between the two studies being movement time ($550 \mathrm{~ms} \& 750 \mathrm{~ms}$ respectively). In explaining the reasons for the differences in the findings, Sidaway et al. (1991) suggested that "Summary KR may operate differently when subjects are required to move as fast as possible than when a more leisurely pace of movement is required." (p.31). Such a conclusion, although offering a potential explanation for the difference between the two studies, cast serious doubts over the generalizability of KR theory beyond the simple laboratory tasks on which it was founded. Findings such as these call into
question the merits of these research papers, and perhaps the direction of the research area as a whole. Motor learning research should seek to establish general principles, the generalisation of which is well founded in theory.

One way of expanding the scope of KR research is suggested by recent interest in the role of cognition in the learning process, which has highlighted the value of allowing the learner to engage in problem-solving activities (Lee, Swinnen \& Serrien, 1994; Pollock \& Lee, 1992). Cognitive activities such as problem solving allow the learner to be more active than passive in their learning, a difference that is now being perceived as valuable for motor skills.

In explaining the difference in cognitive styles of novice and skilled performers, Kremer and Scully (1994) point out that "...the differences between the novices and the expert lie in how the individual uses the information available to him/her rather than in terms of some underlying differences in the 'hardware' of the central nervous system." (p. 48). Generally, novice motor skill performers interpret their early skill performance as being indicative of general ability levels; an interpretation which often leads to learned helplessness and is normally invalid (Magill, 1993). If novices were taught how to use the available information more appropriately then this negative attribution may be diminished. As Lee et al. (1994) have hinted, when the learner engages in cognitive practices such as problem solving activities, it is beneficial to learning in general.

A recognisable attribute of almost all the KR research is that it has not followed the trait of making the learner more active. Yet, one could still interpret the KR findings with respect to this trait, because KR scheduling is all about denying the learner the information feedback after every trial. What this means is that the learner is being forced to think about their movement and to estimate their own error. Thus, when the number of no-KR trial is increased and the number of KR
trials is decreased, the resulting increase in skill retention could be due to an increase in the problem-solving activities being engaged in by the learner.

The same interpretation can be applied to bandwidth KR scheduling where a learner receives information feedback only if the error is outside a predetermined range of correctness. This type of KR schedule maximised the development of learners' error correction capabilities and provided extra motivational incentive to engage in the learning process for themselves. The reason for this is that $K R$ scheduling such as bandwidth $K R$ is sensitive to each individual's particular feedback needs (Lee \& Carnahan, 1990). It enables the learners to receive KR when it is most urgently needed for the purpose of error correction. KR scheduling such as relative frequency does not share this sensitivity, as feedback is withheld for some trials (that is every 5 or 10 trial) without regard to the learner's performance. As such, it does not contain the reward element inherent in bandwidth KR .

However sensitive bandwidth KR is to the needs of the learner, still certain choices are being enforced and subjects are being limited in some way (i.e. the determined range of correctness). To maximise the subjects' problem solving activities all choice should be handed over to the learner. To achieve this, the learner could be allowed KR whenever they request it according to their own particular needs and progress.

Although this notion of handing over all the control to the performer during learning seems to promote full and active engagement in learning on the performer's behalf, it has its limitations and assumptions. The limitation is the presumption that the learners already know how to use information feedback once all the control is handed over to them. For expert performers, this assumption might be valid but for novice learners this is not the case. Often novices do not know what to do or how to learn a motor skill. In a classroom situation where the teacher's concern is to get the most out of the students, it is
impossible for the teacher to expect all the students to know when to ask for the feedback. Nevertheless, it is possible for the teacher to respect the needs and wishes of the students. One way of achieving this is to allow the students to have as much choice as possible and allowing them to have information when they want it, which in turn will motivate them to learn.

It is fair to say that KR research has become somewhat more mature and the time has come to apply the research to a broader base. The implication of the problem solving studies is that the more active the learner the better the learning will be. The general question that needs to be asked at this point is whether the benefit of the learning episode can be transferred to a new episode or to a new task or possibly both? It is clear that to achieve this the learner's role as a problem-solver needs to be maximised. Then what should be done is to hand over the control to the learner in a guided sense. While maintaining the knowledge derived from KR research, the learner can be made more of a problem-solver by progressively handing over control.

The hope is that this transfer of control to the learner will lead to far greater transferable skills and/or knowledge for efficient learning of motor skills. This in turn should be of greater use to the learners and teachers in general because at the end there will not be just a learning of one task within a learning event but there will be some knowledge taken from each event for later use.

CHAPTER TWO

Review of Literature

This chapter will address the research literature related to information feedback and cognitive strategies in motor learning. Specifically, it will discuss the research related to the optimal scheduling of feedback for motor learning, incorporating bandwidth, relative frequency and summary KR. The strategy experiments, particularly those conducted by Singer $(1984,1985)$ will be discussed with reference to the role of learning strategies in facilitating motor learning. Finally references will be drawn from both KR and strategy experiments to suggest that cognitive strategy may be usefully applied to $K R$ scheduling.

Knowledge of Results in Motor Learning

In the existing theories of human motor control and learning there is a general acceptance of the need to provide the learner with mechanisms to handle both the organisation of outgoing signals and stored information against which any feedback is to be compared. Much of the theory regarding the function of comparison mechanisms in learning is derived from research which has typically focused on those elements of feedback which can be conveniently manipulated by the experimenter. This mechanism has been investigated periodically since Thorndike (1927) first drew attention to the central role of the KR in human learning (Adams, 1987). Thorndike's view on the information feedback was that

[^0]naturally gave rise to the general idea that feedback should be presented as often as possible..."(Schmidt, 1991. p. 244)

Hence, if Thorndike's law of effect was to be accepted, feedback should be varied to provide immediate, precise and frequent information during acquisition if learning is to benefit.

KR has been widely accepted as the most important variable for determining learning (apart from practice) (Wulf \& Schmidt, 1989; Schmidt, 1988). Because of its importance, many studies have been conducted in order to understand the ways in which KR affects learning. Both Adams's (1987) and Salmoni, Schmidt and Walters' (1984) reviews emphasise the extent to which KR has been studied. One of the major considerations in KR research has been the relative importance of trials with KR versus trials without KR in facilitating learning. In answering such questions, two primary variables have been driven from this research (Salmoni et al., 1984; Schmidt, 1988). One of these is the "absolute frequency of $K R$ ", which is the absolute number of times a person receives KR in a series of trials and the second is the "relative frequency of KR " which is the proportion of trials on which $K R$ is received (or the absolute frequency of $K R$ divided by the total number of trials), and is normally expressed as percentage.

Early research by Bilodeau and Bilodeau (1958) indicated that the relative frequency of KR was irrelevant for learning, while the absolute frequency was the critical determinant factor. According to Bilodeau and Bilodeau (1958) "Absence of KR does not usually signify anything at all" p.379. The same view was iterated earlier by Trowbridge and Cason (1932). They stressed that absolute frequency of $K R$ had a powerful performance effect during acquisition. It was also found that this effect remained during a no-KR transfer test. However, one problem with the Bilodeau and Bilodeau (1958) study was the lack of transfer design to separate the transient effect of feedback from the learning effects, thus making it difficult to know whether varying relative frequency affected learning. Some more recent studies by Ho and Shea (1978),
and Johnson, Wicks and Ben-Sira (1981) used transfer procedures in their experiments that were similar in design to the Bilodeau and Bilodeau (1958) study. Results have consistently shown that an increase in the relative frequency of KR produces improvement in performance during acquisition. However, the results are equally consistent in showing reversal of the order during no-KR transfer tests (Sparrow \& Summers, 1992). The results of Ho and Shea (1978), and Johnson et al., (1981) studies contradicted the previous findings by suggesting that both absolute and relative frequencies were important for learning. These findings were suprising to many, because they suggested that rather than being useless for learning as was the case in the Bilodeau and Bilodeau (1958) study, the no-KR trials appeared to be as beneficial in some way to learning.

Salmoni, Schmidt and Walter (1984) have introduced the "guidance hypothesis" term as a possible explanation as to the reason why practising less frequent and less immediate KR is more detrimental for performing but more beneficial for retention. The guidance hypothesis assumes that early in training KR provides information on how to achieve the movement. Thus frequent KR provides a strong guiding role and makes performance very effective during training. However, when it is not available it leads to worsening in performance, as there is no reference to check. The guidance hypothesis goes on to suggest that if the guidance is frequent (i.e., after every trial) and immediate it may force the subject to rely too much on KR and not engage in subjective error correction. The end result would be degraded performance due to the dependency on KR when feedback is unavailable or withdrawn. Due to this detrimental effect of KR , the question of how frequent KR should be giving has been studied extensively.

Knowledge of Results Scheduling

One important outcome of the absolute frequency and relative frequency debate was that scheduling the information feedback was discovered to be an important variable. A recent experiment by Winstein and Schmidt (1990) further supported this view. Winstein and Schmidt (1990) showed that providing reduced relative frequency of $\operatorname{KR}(50 \%)$ during training resulted in improved performance in the retention phase.

Several feedback scheduling methods has been proposed and extensively studied since the absolute and relative frequency distinction. These scheduling methods are relative frequency, bandwidth, faded and summary KR feedback schedules. In the following section relative frequency $K R$, bandwidth $K R$ and summary $K R$ feedback schedules will be discussed in detail.

Relative Frequency Knowledge of Results

The role of relative frequency and absolute frequency of KR has been examined extensively in human motor learning. One of the recent interests in this area was whether reducing relative frequency could be shown to improve performance in a no-KR retention test. However, early research like Bilodeau and Bilodeau (1958) was only interested in finding the effect of absolute and relative frequency of KR. Bilodeau and Bilodeau (1958) in their study have manipulated the relative frequency of $K R$ by using a simple linear-positioning task. Subjects ($\mathrm{N}=273$) were given 10 trials with varying no-KR trials between KR trials forming four conditions with $10 \%, 25 \%, 33 \%$ and 100% relative frequency. The conditions showed almost identical performance on Groups-byTrials analysis of variance when the performance accuracy on the trials immediately following KR (every trial for the 100% relative frequency, every four trial for 33% relative frequency groups, etc.) were compared. It was concluded that learning was independent of relative frequency and positively related to absolute frequency. However, as the study lacked a retention test, it was
arguable whether the effects of relative frequency were permanent or only temporary.

Ho and Shea's (1978) study was an extension of Bilodeau and Bilodeau's (1958) study with no-KR retention tests. A simple linear positioning task was used where the criterion position was 250 mm from the starting position. The absolute frequency of KR was held constant at 10 KR presentations, and the relative frequency was varied by altering the total number of trials forming 10%, 30% and 100% relative frequency conditions. In acquisition, subjects' overall accuracy (AE) was found to be same for the 10 trials immediately following the presentation of KR. However, in retention tests (5 min), the 10% group retained its performance relatively well compared to the 100% group, which suffered reduction in performance. Although, the analyses of variance did not show a significant difference between groups, the accuracy on the retention was directly related to the relative frequency in acquisition, with the 100% conditions having greatest error, and the 10% conditions having the smallest. The outcome of the Bilodeau and Bilodeau (1958) and Ho and Shea (1978) study raised the question of how relative frequency during practice could depress performance initially and yet increase learning retention.

Schmidt, Shapiro, Winstein, Young and Swinnen (1987) conducted an experiment to find the long-term retention effect of relative frequency $K R$ while controlling the amount of practice and varying the relative frequency condition. The task in this experiment was a simple ballistic-timing task involving reversal (left-right-left) movement of a slide along a trackway with 550 ms goal movement time. Two treatment groups ($\mathrm{n}=16$) performed 102 trials in acquisition where they differed in relative frequency of KR. First group received KR on every trial (100%) and second group received KR on every third trial (33\%). Additionally, a third group was also used to control the absolute frequency by only performing 34 acquisition trials (34/1) and had 100% relative frequency. Schmidt et al.'s (1978) argument was that if the absolute frequency
was the only determinant of learning, then $34 / 1$ group and 33% relative frequency group (both having the same absolute frequency) should be similar in retention. Analyses of variable error (VE) and absolute constant error (|CE|) in acquisition revealed that decreased relative frequency resulted in larger errors and slower improvement with practice. Specifically, the two 100% relative frequency groups being treated identically for the first four trial blocks (first 32 trials) showed smaller error and faster improvements than 33% relative frequency group. In immediate (10 min) no-KR transfer test $34 / 1$ group showed greater $|C E|$, however, not significant, but significant inconsistency (VE) than both 100% and 33% groups. Also, relative frequency variations in acquisition appeared not to have a differential effect on consistency and accuracy of delayed (2-day) no-KR transfer performances.

Winstein and Schmidt (1990) also examined the effect of variations on acquisition $K R$ relative frequency in a series of experiments. In three experiments, the task was to produce a goal movement pattern using a lever in 800 ms criterion time. In first experiment, specificity hypothesis was tested with two KR relative frequency conditions (100% \& 33%). In addition, four retention test conditions were employed with a varying KR relative frequency (i.e. 0%, $33 \%, 66 \%, \& 100 \%$) thus totally eight separate acquisition-retention test groups (two acquisition conditions x four retention conditions). Although relative frequency variations were not significant, compared to a $100 \% \mathrm{KR}$ practice condition, the reduced $K R$ relative frequency conditions were found to be as effective for learning as measured in various retention tests (10-min after the second day of practice). The interesting findings which were the base of the further experiments were (a) specificity hypothesis was not supported as predicted by the interaction of the acquisition-retention condition, (b) low KR relative frequency practice conditions suspected to be not detrimental to learning but no evidence for this was provided. In the second and third experiments a variable-ration schedule (starting from 100% to 25% relative frequency) with an average of 50% relative frequency was employed. The
reduced averaged relative frequency of 50% was found to enhance learning in a delayed no- $K R$ retention test (experiment two) and in a $K R$ provided retention test (experiment three). The result of the Winstein and Schmidt (1990) together with Sherwood's (1988) study have suggested that lower KR relative frequencies promote consistency and reduce trial to trial variability. With their study Winstein and Schmidt (1990) claimed to have an empirical support for the KR "guidance hypothesis" (Salmoni, Schmidt \& Walter, 1984; Schmidt, 1991). Wulf (1992) explains this hypothesis as "...KR has a powerful informational content in that it guides the learner toward the correct response and facilitates performance". KR especially in the stages of learning guides the learner toward the appropriate movement pattern. It is argued however that the guidance properties of $K R$ can have a negative effect upon learning when given too much. Guidance properties of feedback given during acquisition may generate an overreliance to produce the next responses, which leads to a reduction in performance when KR is removed during transfer trials.

Bandwidth Knowledge of Results

Bandwidth (BW) feedback scheduling has been proposed as a method for avoiding the effect of frequent feedback, which produces the dependency on outside sources of information. In BW KR scheduling "KR is only given if gross error in performance occurs" (Sherwood, 1988. p. 536). In Sherwood's experiment, information about the performance was only provided if the subject's response fell outside a particular performance bandwidth. The task was a rapid elbow flexion task with a goal to complete the movement in 200 ms . The 0% bandwidth group received KR after every trial regardless the amount of error. The two other groups received KR only when their error about their movement time exceeded bandwidths of 5\% and 10% of the 200 ms target movement time (hence errors of greater than $10 \mathrm{~ms} \& 20 \mathrm{~ms}$ respectively). In acquisition the 5% group received KR on more trials than the 10% group (54.5% vs. 31.4%, respectively). The performance accuracy ($|\mathrm{CE}|$) of the groups were
not significant in both acquisition and retention. The 10\% bandwidth condition achieved greater consistency in a retention tests than did the 0% bandwidth condition. This result, which is also replicated by Lee, White and Carnahan (1990), supported the point made earlier that information about movement error was not always needed to learn a motor skill. Furthermore, it shows that in some cases it may negatively influence learning. However, Sherwood's results may be attributed to the relative frequency effect found by (Winstein \& Schmidt, 1990 and others), as increased BW size automatically decreases RF of KR. To resolve this issue, Lee and Carnahan (1990) contrasted the effect of varying the relative frequency of KR as in Winstein's (1988) work with conditions created by delivering KR when the error falls outside some arbitrary limits of tolerance as in Sherwood's (1988) bandwidth KR experiment. In Lee and Carnahan's (1990) study, subjects in 5% and 10% bandwidth groups were matched (yoked) with a subject who received KR on the same trials on which the bandwidth subjects received KR. This arrangement allowed the effect of bandwidth $K R$ to be separated from that of reduced relative frequency $K R$ (i.e., if the bandwidth effect was a frequency effect, then subjects in both conditions should perform similarly). Subjects practised an arm movement task for 60 trials, where the target time was 500 ms . The yoked frequency KR group were less consistent in retention than the bandwidth KR group, which suggested that the facilitation of retention via bandwidth KR was not simply a relative frequency effect. Bandwidth KR scheduling seems to allow the control system to adapt to the demands of the task and develop appropriate error correction processes needed to perform the skill correctly. As Lee and Carnahan (1990) stated
"...Bandwidth procedures have the advantage of being sensitive to the needs of the subjects...Since the delivery of KR is determined by the subject's performance, bandwidth procedures also provide for frequency schedules that are sensitive to individual differences in both the amount and the rate of improvement in performance over acquisition trials." (p. 788-789)

Lee and Carnahan's findings extend those of the relative frequency research by showing that subjects' generation of their own error correction capabilities may be further facilitated by providing KR only when subjects' error indicate its need.

Summary Knowledge of Results

The term summary $K R$ is used to describe the $K R$ condition where the $K R$ is given after some predetermined trial, and provides information for each of the preceding trials within the block. Summary KR introduces a delay of some trials between each presentation of $K R$, but keeps the relative frequency of $K R$ at 100%. It was expected that the KR delay introduced by summary KR would serve the same purpose as the No-KR trials in the reduced relative frequency schedule, while maintaining the overall relative KR frequency at 100%.

An early experiment by Lavery (1962) investigated the learning implications of summary KR by administering different treatments to subjects performing a simple motor task. Lavery (1962) used a ball propulsion task, and the acquisition phase was completed over six days. In this experiment, one group received immediate $K R$ about every trial, a second group received $K R$ as a summary graph after every 20 trials (in effect a summary KR group). A third group received mixed forms of $K R$ scheduling (i.e., $K R$ after every trial and summary KR after every 20 trials). After the acquisition phase, performance in retention tests was measured after 4 days, 1 month and 3 months. The results showed that although the summary KR group had higher error scores than the other two groups during acquisition, it yielded the best performance in the retention phase.

Schmidt, Young, Swinnen and Shapiro (1989) employed a ballistic timing task to measure the performance of $1,5,10$ and 15 trial summary KR groups in an effort to replicate the results of Lavery (1962). The subjects practised a simple ballistic-timing task in which they had to move a lever back and forth along a
frictionless trackway in a fixed target time (550 ms). KR was presented to subjects via a graph on a piece of paper during the 90 acquisition trials. One group received the KR graph after every $\operatorname{trial}(100 \% \mathrm{KR})$, while the other three groups received summaries of their performance after 5, 10 or 15 trials respectively. Subjects' absolute constant error improved over trials during acquisition, and performance level was inversely related to summary length. There were little differences between the groups in a subsequent 10 -min retention test. However, in a delayed retention test after 2 days, there were significant differences between groups, with the quality of performance being inversely related to the number of trials being summarised during acquisition. Overall, the results supported Lavery's (1962) findings, where with 20 trials were summarised in the training phase.

Explanation of the summary KR effect are similar to those offered for the relative frequency effect, in that the No-KR trials are supposed to promote the subjects' generation of their own error-correction capabilities.

The benefit of the summary KR has been considered to be related to the factors similar to the frequency of KR benefit.

Cognitive Learning Strategies

The theoretical basis of strategy research in motor skills operates within the framework of information processing and cognitive psychology. This conceives of the individual as a structure for the reception, regulation and transmission of information in which hypothesised functional models are utilised to characterise the cognitive processes and corresponding mechanisms involved in the processing of information in skilled performance.

In analysing the components of motor skill learning, Singer (1980) criticises the traditional approach to skills teaching and coaching that he describes as
concentrating solely on the physical constituents of the task. It is, he continues, with the incorporation of the information processing conception of skill that a greater understanding of both the physical and psychological factors involved in skills, and greater efficiency is achieved.

The method Singer and his colleagues (Singer, 1980; Singer \& Gerson, 1981; Singer \& Cauraugh, 1984) advocate therefore involves an analysis of the processing demands of the task formulating a model of the functional components or mechanisms of the skill. This thereby identifies the important cognitive processes performed by these mechanisms in the production of the skill. In doing so, Singer then proposes that by enhancing the processing of information at these critical stages, with the successful application of pertinent strategies, the level of learning and performance is increased. A strategy therefore is defined as the specific, though transient organisation of mechanisms for the utilisation of specific cognitive processes in the performance of a task.

This methodology has been successfully applied in verbal skills with for example mnemonics and encoding techniques in verbal memory (Bemont \& Butterfield, 1971; Craik \& Lockhart, 1972) but prior to Singer's (1980) inquiries had not been successfully applied to motor skills. In accordance with the hypothesis that successful application of strategies is dependant on the identification of the task demands (cognitive processes inherent in the performance of a task), Singer and Cauraugh (1984) proposed a task classification scheme for motor skills to assist this identification. This was a modification of an original proposal (Singer \& Gerson, 1981). The scheme involved analysing motor skills in terms of "informational analysis" (the processing of information prior to the response) "response generation and organisation" (processing during and in preparation for the response) and "utilisation of feedback".

Singer and Gerson (1984) suggest that the most effective enhancement of performance is achieved by application of a relevant strategy to each of the three
main processing stages. Recent research has successfully applied this methodology to various motor skills under laboratory conditions. Singer and Cauraugh (1984) achieved significantly less error with a strategy compared to non-strategy group in terms of time off target on a pursuit rotor task with an anticipatory strategy encouraging awareness of stimulus change, a rhythmic strategy for controlled response movement and a strategy to encourage the utilisation of the auditory feedback produced with stylus movement.

In addition Singer, Cauraugh, Lucariello, and Brown (1985) demonstrated the generalizability of strategies with a significant performance effect on both a primary and a related task with imagery, rhythmic and feedback utilisation strategy group compared with a non-strategy group on a maze traversal task. A further paper published by Brown, Singer, Cauraugh, and Lucariello (1985) investigated the relationship between specific cognitive styles of impulsives and reflectives and effectiveness of strategies on performance of motor skills. Four groups were used. Two strategy groups of impulsive and reflective types and two control groups of impulsive and reflective types. Two methods of performance assessment were utilised which were error scores in terms of time off target and the overall completion time for a maze traversal task. Singer hypothesised that the impulsive groups would perform with significantly less overall time than the reflectives, whereas the reflectives would perform with significantly fewer errors. Error scores and overall completion time for the maze task were significantly less for both strategy groups of reflective and impulsive types compared to the control group. However, no significant differences were found between cognitive types. Contrary to the hypothesis, strategy reflectives did not perform with significantly less error than strategy impulsives nor did the strategy impulsives perform with significantly less overall time than the reflectives.

Further evidence for the effectiveness of strategy application in the performance of motor skills is found in another paper published by Singer and Suwanthada (1986) which assess the effectiveness of a previously devised five step global
strategy (Singer \& Cauraugh, 1985). This strategy is applicable to closed motor tasks that are environmentally independent in which individuals can maximise control over their performance as opposed to open motor skills that incorporate environmental variables affecting performance. In this study, a significant performance effect was obtained for the group utilising the strategy that involved steps of readying, imagining, focusing, executing and evaluating on a primary and related task.

To describe the theoretical basis of strategy research, Rigney (1978) introduced a distinction between two types of strategy. Though not utilised by Singer, this may offer a valid insight into the operation of strategies and their relationship to performance of psychomotor tasks. The distinction Rigney proposes is between embedded and detached strategies. An embedded strategy is defined specifically in relation to the necessary components or constituent elements of the task and is therefore implicit in the performance of the task. A detached strategy on the other hand, is one that is independent and additional to the subject matter of the task and therefore explicit to performance. An example of a detached strategy would be a relaxation strategy designed to prepare a nervous competitor for an important event, whereas an example of an embedded strategy would be a cricketer's awareness of different hand movement in a bowler's delivery to predict the movement of the ball.

Singer does use both embedded strategies (feedback utilisation \& concentration strategies) and detached strategies (preparation \& rehearsal strategies).

However, he fails to differentiate between them, only classifying them according to the processing stage to which they are applicable.

Cognitive Learning Strategies and Knowledge of Results Manipulations

An alternative approach to examine the KR effects is concerned with how and when concurrent feedback influences the performance of a task. Carlton (1983)
showed that feedback has to exceed a threshold before any correction takes place or disturbance occurs as a result of the disturbance in the performance conditions. Such observation suggests that disrupting or distorting feedback instead of withholding it should be a way of examining the function of error detection. On the basis of this suggestion Fazey (1986) has established that by distorting outcome information, subjects on a movement time task and in a throwing task ignore externally provided KR that exceeded ± 2 standard deviation of their current level of performance away from target.

Feedback disruption and distortion experiments underline one thing which is that subjects seem to employ their own strategies when information is available whatever the experimenter may do to manipulate KR provisions. Clearly the strategies that subjects employ seem to allow them to overcome the problem of making gross corrections that usually occur early in practice, when it might be assumed that the translation of intention into action is controlled by conscious mechanisms (Schneider \& Shiffrin, 1977). Furthermore subject employed strategies seem to allow them to refrain themselves from attending to and trying to correct small deviations from a correct performance in later performance thereby benefiting a sort of automatic translation of intention of action (Schneider \& Fisk, 1983).

The observation that the use of feedback might be under some sort of strategic control suggests the need for an examination of the KR and provisions of information from the perspective of how learners can control a given learning situation rather than how KR (by experimenter's manipulation) controls their learning.

Statement of the Problem

The following study investigates the application of an imposed cognitive learning strategy to simple laboratory motor tasks to find out whether subjects are
capable of applying learning strategies in situations where KR is available all the time. The goal of this research was to investigate the effect of reduced frequency KR conditions and strategy conditions (also reduced frequency KR conditions) to a control condition ($100 \% \mathrm{KR}$) across acquisition and retention trials.

Two tasks were chosen for the experiments first of which was the barrier-knock down task of Lee and Carnahan (1990) and the second one a double reversal linear slide task of Schmidt et al., (1989).

Hypotheses

It was hypothesised that the improved learning scores in the reduced frequency KR condition (experimenter controlled) could be matched by having the learner chose when to receive or attend to the information (reduced frequency KR subjects controlled). It was also hypothesised that all reduced frequency KR conditions would perform better than the control condition ($100 \% \mathrm{KR}$) in retention.

CHAPTER THREE

Bandwidth Experiment

Introduction

The experiments reported in this and subsequent chapters were designed to compare the traditional experimenter controlled information feedback manipulations with conditions where subjects were given a learning strategy which was designed to mimic the experimenter's manipulation of feedback. The purpose of the experiments were to show that passing control to subjects (i.e., choosing when to receive feedback) would not inhibit learning relative to a KR condition that is controlled exclusively by an experimenter. This forms part of a wider perspective within which the purpose is to demonstrate that increasing the level of autonomy given to the subjects in deciding on when to receive feedback will promote the development of learning skills which are transferable to novel learning situations.

To investigate the extent to which subjects' control or autonomy might be duplicated in a KR condition, two KR scheduling methods were selected from among those available. These two KR scheduling methods were bandwidth and the relative frequency KR . These procedures were selected as they were representative of the success of certain KR schedules in facilitating retention relative to a $100 \% \mathrm{KR}$ condition.

Because of the wish to test the strategy manipulation against each schedule, two experiments were initially run concurrently, one on each of the two schedules.

The hypothesis of the first experiment was that KR presented only when the trial error exceeded $\pm 5 \%(50 \mathrm{~ms})$ of the target time (1000 ms) would lead to enhanced retention performance compared to a control group ($100 \% \mathrm{KR}$). It was also hypothesised that a similar enhancement of retention performance would be obtained by giving subjects a strategy of ignoring KR that lay between 950 and $1050 \mathrm{~ms}(\pm 5 \%)$.

Method

Subjects

The subjects were 18 right-handed students (12 male \& 6 female) from University of Wales, Bangor. Subjects' age ranged from 20 to 38 years ($M=$ 28.3, $S D=5.6$). All the subjects volunteered to participate in the experiment and were unaware of its purpose. Four subjects who failed to participate in the retention test were not included in the statistical analyses.

Apparatus and Task

The apparatus and task were adapted from those used by Lee, Magill, and Weeks (1985). The apparatus consisted of two micro switches and two 8×11 cm hinged plastic barriers (see Figure 1).

Figure 1. Illustration of the apparatus and the direction of the arm movement in bandwidth and relative frequency experiments.

Movement times were recorded by using a 380Z Research Machine computer, which was interfaced with two micro switches. The first micro-switch was the
"home" button, which initiated the clock when subjects left it. The second micro switch was placed underneath the second barrier ("finish") and stopped the timer when the barrier was knocked down. A compiled BASIC program was used to control how the information appeared on the screen (see Appendix A for a listing of the experimental program).

The task was to move from the "home" button to "finish" by knocking down the two hinged barriers in 1000 ms .

Procedure and Design

The 18 subjects were assigned to one of three KR conditions that differed in terms of the amount of KR received during the acquisition phase. These groups were (a) 100% KR control group (CON), (b) 10% bandwidth group (BW 10\%) and (c) 100% KR strategy group (STR). Subjects in the CON group and STR group received $K R$ after each trial but the BW group received $K R$ only after trials in which subjects erred by more than $\pm 5 \%$ from the target time. In addition to this subjects in the STR group were given a strategy of ignoring KR that was within $\pm 5 \%$ of the target time.

Prior to the experiment, each subject received information about the task and feedback they were going to receive. They were allowed to practice the correct movement five times. Each subject was given 60 trials during the acquisition phase of the experiment. Ten no KR trials were performed immediately after the acquisition phase. Following a 5 -minute rest, twenty more trials were performed in a retention phase. During the experiment KR regarding subjects' movement time was presented in ms (e.g., 950) to each subject on a 30.5 cm (12 inch) monochrome screen positioned at eye level behind the apparatus (see Figure 2). For the CON and STR groups, the movement times were presented in a row across the centre of the screen. Each movement time was laterally displaced from the centre of the screen by an amount proportional to the trial error. The
exception to this was that movement times which fell within the bandwidth of \pm 5% of the target time (i.e., between $950 \& 1050 \mathrm{~ms}$), which always appeared in the centre of a column drawn down the centre of the screen after every trial. When the subject began the next trial, the screen went blank.

Figure 2. Illustration of KR presentation to subjects in bandwidth experiment for CON, BW and STR groups respectively.

The subjects in the strategy group were given additional instruction that was intended to mimic the bandwidth condition. These subjects were instructed to use the feedback presented only when it appeared outside of the central column drawn on the screen. The bandwidth group received KR on the very first trial and thereafter KR was given only after trials in which the bandwidth was exceeded. The movement time for these trials was presented in the same location to that used for similar scores for the CON and STR groups.

At the beginning of the experiment, the preparation of the barriers and the required movement pattern were demonstrated by the experimenter. The instructions given to all subjects were to lift their finger from the home button and knock down the two barriers in the appropriate manner and in a time as close to 1000 ms as possible. The subjects were instructed to raise the barriers and place a finger on the home button to begin a trial. The controlling program checked and prompted for the appropriate barrier arrangement and displayed a "Go When Ready" message on the screen in front of them. The inter-trial interval was kept relatively constant for all groups (approx. 10 sec .).

A schematic representation of the statistical design is given in Table 1. A significance level of $p<.05$ was set for all statistical tests.

Table 1. Statistical Design for Bandwidth Experiment

Results

Subjects' performances during the experiment were analysed in blocks of 10 trials. The dependent variables across acquisition and retention analyses were absolute constant error ($|\mathrm{CE}|$) and variable error (VE).

A Groups by Blocks (3×6) analysis of variance (ANOVA) with repeated measures on the block factor was used to examine the group differences in each of the dependent variables across acquisition trials. A 3 group one-way ANOVA was used to examine the group differences in immediate retention. A Groups by Blocks (3×2) analysis of variance was also used to examine the group differences in each of the dependent variables across retention trials (see Appendix B for copies of the ANOVA tables and Tukey's HSD test, and Appendix C for a complete listing of the raw data).

Acquisition

Absolute Constant Error.

The two way ANOVA for $|C E|$ revealed a significant main effect only for blocks, $F(5,75)=3.13, p<.05$. Follow-up tests revealed an improvement in the performance by groups as they progressed through the acquisition trials. The main effect for groups and groups by blocks interaction failed statistical significance $F(2,15)=.66, p=.53$ and $F(10,75)=.65, p=.77$, respectively. The $|C E|$ scores for each group over 6 blocks of ten trials are shown in Figure 3.

Variable Error.

The analyses of VE revealed similar results to that of $|C E|$. Figure 4 shows the VE for blocks of ten trials. The main effect for groups and the groups by blocks
interaction failed statistical significance, $F(2,15)=.59, p=.57$ and $F(10,75)=$ $.45, p=.919$ respectively. There was a main effect of blocks, $F(5,75)=10.14, p$ $<.001$, showing a decrease in the VE score across the blocks. Follow-up tests indicated that the subjects were improving in consistency throughout the acquisition phase.

Immediate No-KR Phase

Absolute Constant Error.

The one-way ANOVA on groups in immediate retention revealed no significant effect for $|C E|$ scores, $F(2,17)=.42, p=.67$. Figure 3 shows one block of 10 trial immediate retention for $|C E|$.

Figure 3. Absolute Constant Error ($|\mathrm{CE}|$) scores in milliseconds for acquisition and retention trial blocks (BW Experiment).

Variable Error.

The one-way ANOVA on groups also revealed no significant results, $F(2,17)=$ $.06, p=.94$. Figure 4 shows one block of 10 trial immediate retention for VE.

Figure 4. Variable error (VE) scores in milliseconds for acquisition and retention trial blocks (BW Experiment)

Retention Phase

Absolute Constant Error.

The $|C E|$ scores for the three groups across the two 10 -trial blocks in the retention phase are shown in Figure 3. A 3 (Group) by 2 (Block) ANOVA revealed neither a significant group nor a significant block main effect, $F(2,15)$ $=.59, p=.57$ and $F(1,15)=.67, p=.43$ respectively. The interaction was also insignificant, $F(2,15)=.58, p=.57$.

Variable Error.

The results of the VE analysis was same as that of $|\mathrm{CE}|$. The Group main effect $F(2,15)=1.11, p=.36$, block main effect $F(1,15)=.01, p=.95$ and the group by block interaction $F(2,15)=.24, p=.79$ all failed statistical significance.

Table 2. Means and Standard Deviations of $|C E|$ (in milliseconds) for Acquisition and Retention tests in Bandwidth Experiment.

Groups$(\mathrm{n}=6)$		BLOCKS								
		$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	IR	$1{ }^{\text {st }} \mathrm{DR}$	$2^{\text {nd }} \mathrm{DR}$
		Acq	Acq	Acq	Acq	Acq	Acq	Block	Block	Block
		Block	Block	Block	Block	Block	Block			
Control	M	76.44	66.40	44.64	38.27	32.54	25.85	55.64	77.67	112.33
	SD	31.14	89.79	56.85	17.00	31.47	17.66	31.57	72.56	63.88
BW 10\%	M	90.13	56.28	28.07	37.63	40.80	21.16	42.93	91.00	87.00
	SD	65.82	41.85	15.73	30.24	22.10	19.96	23.32	71.69	82.78
Strategy	M	43.71	33.18	38.30	27.11	41.45	30.08	40.52	58.67	65.17
	SD	57.14	18.91	22.88	25.96	30.57	17.47	36.53	47.62	38.41

Note. Each block represents average mean of 10 trials. Acq $=$ acquisition; IR $=$ immediate retention; $\mathrm{DR}=$ delayed retention.

Table 3. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Bandwidth Experiment.

Groups$(\mathrm{n}=6)$	BLOCKS									
		$1^{\text {st }} \mathrm{Acq}$ Block	$2^{\text {nd }}$ Acq Block	$3^{\text {rd }}$ Acq Block	$4^{\text {th }}$ Acq Block	$5^{\text {th }}$ Acq Block	$6^{\text {th }}$ Acq Block	IR Block	$1^{\text {st }} \mathrm{DR}$ Block	$2^{\text {nd }} \mathrm{DR}$ Block
Control	M	125.54	62.47	73.13	85.07	73.06	67.54	69.89	70.15	63.03
	SD	74.16	16.87	22.48	54.27	20.34	39.83	34.35	8.80	48.13
BW 10\%	M	116.43	55.21	60.51	81.81	51.14	53.32	64.86	61.38	64.14
	SD	40.96	15.26	9.84	35.89	17.34	15.41	24.01	30.72	23.36
Strategy	M	111.01	77.60	71.95	71.30	70.69	68.32	65.37	46.50	49.79
	SD	28.53	24.38	21.85	15.34	23.65	25.14	24.09	15.26	18.64

Note. Each block represents average mean of 10 trials. Acq = acquisition; IR
$=$ immediate retention; $\mathrm{DR}=$ delayed retention.

Discussion

This study examined the effect of using a strategy on the retention of a simple barrier knockdown task in comparison to bandwidth KR and control conditions. The hypotheses of the experiment were that KR presented only when the trial error exceeded $\pm 5 \%$ (50 ms) of target time (1000 ms) would lead to enhanced retention performance compared to a control group ($100 \% \mathrm{KR}$), and that a similar enhancement of retention performance would be obtained by giving subjects a strategy of ignoring KR that lay between 950 and $1050 \mathrm{~ms}(\pm 5 \%)$.

The results failed to support either of the hypotheses. In particular no group differences were observed for either VE and $|\mathrm{CE}|$ across retention trials. Neither the bandwidth KR (10\%) nor the strategy conditions facilitated retention performance relative to the control group.

A close look at the data showed that the standard deviation in most of the cases were very high. This indicated that the range of movement times was variable within all the groups, especially the control group (see Table 4). The standard deviations for VE did not appear to be as high as those for $|C E|$ but still the BW 10% and the STR groups were not statistically different from the CON group. The data suggested a trend that the consistency and response bias of the strategy group was lower than the other groups but this effect was also not significant (p 's>.5).

In general, the outcome of the present experiment ran contrary to the current literature on the effect of bandwidth KR on motor learning. Many recent studies have shown superior performance of a bandwidth group over a 100% relative frequency KR condition (Butler \& Fischman, 1996; Lee \& Carnahan, 1990; Lee \& Maraj, 1994). The most successful current explanation of the effect is that the constant provision of KR after performance in the $100 \% \mathrm{RF}$ condition prevents subjects focusing on intrinsic sources of information feedback, which
are supposed to be important for retention performance (Lee \& Maraj, 1994; Schmidt, 1991). The bandwidth effect seems to be successful because it allows the performer to focus on these intrinsic sources of information feedback, at times when performance is successful (Lee \& Maraj, 1994). This rationale is supported elsewhere in the literature, where both the instant provision of KR (Swinnen, Schmidt, Nicholson, \& Shapiro, 1990) and the performance of distracter tasks in the KR delay interval (Swinnen ,1991) have been shown to be detrimental to retention performance. This finding may be related to the guidance hypothesis, in that the guidance hypothesis suggests a reliance on extrinsic sources of $K R$ fostered by a high relative frequency of $K R$ during acquisition. However, it does go further than the guidance hypothesis in that it suggests that the withdrawal of KR in retention is detrimental to performance not only because of a reliance on extrinsic feedback, but also the failure to have developed an awareness or understanding of internal sources of information (Swinnen, 1990).

Table 4. Mean (M) and Standard Deviations (SD) of groups in Delayed Retention in Bandwidth Experiment

	DR Block 1		DR Block 2	
Groups $(\mathrm{n}=6)$	M	$S D$	M	$S D$
Control	77.667	72.561	112.333	63.877
BW 10\%	58.667	47.622	65.167	38.411
STR	91.000	71.691	87.000	82.779

Note. $\mathrm{DR}=$ delayed retention. Block $=$ represents 10 trials.

Given the recent strength of support for bandwidth procedures, the lack of statistical support obtained here is puzzling. It would seem that a comparison of the design and task used in previous studies to that used in the present study would be useful. The studies by Lee \& Carnahan (1990) and Lee \& Maraj (1994) both used the same apparatus as was used here, and so seem to provide
an appropriate comparison. Lee \& Carnahan (1990) used 60 acquisition trials, a $5-\mathrm{min}$ retention interval, and 20 retention trials. Lee \& Maraj used 100 acquisition trials, a $10-\mathrm{min}$ retention interval, and 20 retention trials. This compares to 60 acquisition trials, 10 immediate no-KR trials, a $5-\mathrm{min}$ retention interval and 20 retention trials in the present experiment. In terms of expected results, Lee \& Carnahan (1990) found significant bandwidth effects in VE but not in $|C E|$, whereas Lee \& Maraj (1994) found the opposite pattern of results. On balance, in other studies $|C E|$ has been the most sensitive to BW effects (Butler \& Fischman, 1996; Butler, Reeve \& Fischman, 1996; Cauraugh, Chen \& Radlo, 1993; Goodwin \& Meeuwsen, 1995).

From this set of comparisons, it does not appear that there is any drastic difference between the design of this experiment and those which have elicited bandwidth effects. Also, a visual inspection of Figure 3 suggests that the $|C E|$ results were at least in the predicted direction. Under these circumstances, and given the apparent success of the BW paradigm elsewhere, the non-significance of the results obtained here were attributed to methodological factors which are listed below, rather than to a fault in the design of the experiment or a the weakness of the bandwidth effect itself. The methodological factors which follow are discussed in detail in the 'Cross-roads' chapter later in the thesis, when the full impact of these factors on the results was realised.

The subjects used in the experiment
the number of subjects used in the experiment
the subjects' heterogeneity in age and sport related experience the subjects' level of concentration
the subjects' level of motivation
The validity of the experimental treatment used in the experiment The subjects' lack of understanding of the procedures of the task The environment in which the data were collected

CHAPTER FOUR

Relative Frequency Experiment One

Introduction

The first experiment was an attempt to show that giving more control to subjects would not inhibit learning relative to a BW KR condition. This experiment was designed to show the same the same effect under a reduced relative frequency (RF) KR condition. RF KR scheduling was chosen because of its applicability to strategic manipulation from the view of subject's control and autonomy.

A recent review of the role of KR (Salmoni et al., 1984) and some experiments (Winstein \& Schmidt, 1990) have shown that low relative frequency KR enhances learning despite impairing acquisition performance. This view has been interpreted in terms of "guidance hypothesis" for the role of KR (Salmoni et al., 1984). According to the guidance hypothesis, less frequent KR may lead to a dependency on the extrinsic feedback, which prevents the processing of other sources of information intrinsic to the task.

Hypotheses

The hypotheses of the experiment were that reduced frequency KR (20\%) during training would lead to enhanced retention performance relative to a control group (100\%) and that similar enhancement of retention performance would be obtained by giving subjects a strategy of ignoring four out of every five KR presentations (effectively 20\% of KR).

Method

Subjects

The subjects were 18 right-handed students (12 male \& 6 female) from University College of North Wales, Bangor. Subjects' age ranged from 20 to 39 years $(M=28.8, S D=5.6)$. All the subjects volunteered to participate in the experiment and were unaware of its purpose. Each subject received information about the task and the $K R$ they were to receive prior to the experiment.

Apparatus, Task, Procedure and Design

The apparatus, movement task, and procedures were the same as those described for bandwidth experiment, with a few exceptions outlined below.

The 18 subjects were assigned to one of three different KR conditions that differed in terms of the amount of KR received during the acquisition phase. These groups were (a) 100% KR control group (CON), (b) 100% KR strategy group (STR) and (c) 20\% relative frequency group (RF 20\%).

For the CON and the STR groups the movement times were presented in a column centred on the screen (see Figure 5). For every five trials, the KR for a trial was presented below that of the previous trial. Hence the first score in a 5 trial block appeared at the top of the screen, and the fifth appeared at the bottom of the screen in a box. When the subject performed the next trial the screen went blank and the cycle repeated.

The subjects in the strategy group were given additional instruction that was intended to mimic the experimenter's manipulation of KR . These subjects were instructed to ignore all the feedback presented except when it appeared in the box at the bottom of the screen. The RF 20\% group received KR on the very
first trial and thereafter KR was given only after every fifth trial. The movement time for these trials was presented in the same manner, in the same location and in a similar box to that used for every fifth trial for the CON and STR groups.

Figure 5. Illustration of KR presentation to subjects in relative experiment for CON, $20 \% \mathrm{RF}$ and STR groups respectively.

Blocks of 10 trials were used to calculate measures of performance accuracy and consistency (following Lee \& Carnahan, 1990). Performance accuracy was assessed by absolute constant error ($|\mathrm{CE}|$) and performance consistency by variable error (VE). Statistical analyses were performed for $|C E|$ and VE. A schematic representation of the statistical design is given in (Table 1).

Results

Subjects' performance during the experiment was analysed in blocks of 10 trials. The dependent variables for each subject and condition were absolute constant error ($|\mathrm{CE}|$) and variable error (VE).

A Groups by Blocks (3×6) analysis of variance (ANOVA) with repeated measures on the block factor was used to examine the group changes in each of the dependent variables across acquisition trials. A 3 group one-way ANOVA was used to examine the group differences in immediate retention. A Groups by Blocks (3×2) analysis of variance was used to examine the group changes in each of the dependent variables across retention tests (see Appendix B for copies of the ANOVA tables and Tukey's HSD test, and Appendix C for a complete listing of the raw data).

Acquisition

Absolute Constant Error.

The two way ANOVA for $|C E|$ revealed a significant main effect for blocks, $F(5,75)=6.49, p<.001$. Tukey's follow-up test revealed an improvement in the performance of all groups as they progressed through the acquisition trials. The main effect for groups and groups by blocks interaction failed statistical significance $F(2,15)=.11, p=.94$ and $F(10,75)=.13, p=.999$ respectively. The $|C E|$ scores for each group over 6 blocks of ten trials are shown in Figure 6.

Variable Error.

The analyses of VE revealed similar results to that of $|\mathrm{CE}|$. Figure 7 shows the VE score graph for blocks of ten trials. The main effect for groups and the
groups by blocks interaction failed statistical significance, $F(2,15)=.99, p=$.396 and $F(10,75)=1.17, p=.342$ respectively. There was a main effect of blocks, $F(5,75)=2.45, p<.05$, for which follow-up tests indicated that the subjects were improving in consistency throughout the acquisition phase.

Immediate No-KR Phase

Absolute Constant Error.

The one-way ANOVA on groups in immediate retention revealed no significant effect for $|C E|$ scores, $F(2,15)=.113, p=.89$.

Figure 6. Absolute Constant Error (|CE|) scores in milliseconds for acquisition and retention trial blocks (Relative Frequency Experiment 1).

Variable Error.

The one-way ANOVA on groups also revealed no significant results for VE, $F(2,15)=.169, p=.947$. Figure 7 depicts one block of 10 trials immediate retention for VE.

Figure 7. Variable Error (VE) scores in milliseconds for acquisition and retention trial blocks (Relative Frequency Experiment 1).

Retention Phase

Absolute Constant Error.

The $|C E|$ scores for the three groups across the two 10 -trial blocks in the retention phase are shown in Figure 6. A 3 (Group) by 2 (Block) ANOVA revealed neither a significant group nor a significant block effect, $F(2,15)=$ $0.58, p=.572$ and $F(1,15)=2.82, p=.11$. The analyses of variance also yielded no significant group by block interaction, $F(2,15)=0.14, p=.87$.

Variable Error.

The VE analysis also failed to produce significant results. The group main effect $F(2,15)=0.21, p=.816$, block main effect $F(1,15)=2.20, p=.159$ and the group by block interaction $F(2,15)=2.90, p=.086$ all failed statistical significance.

Table 5. Means and Standard Deviations of $|C E|$ (in milliseconds) for Acquisition and Retention tests in Relative Frequency Experiment One.

Note. Each block represents average mean of 10 trials. Acq = acquisition; IR $=$ immediate retention; $\mathrm{DR}=$ delayed retention.

Table 6. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Relative Frequency Experiment One.

Groups$(\mathrm{n}=6)$		BLOCKS								
		$1^{\text {st }} \text { Acq }$ Block	$2^{\text {nd }}$ Acq Block	$3^{\text {rd }}$ Acq Block	$4^{\text {th }}$ Acq Block	$5^{\text {th }}$ Acq Block	$6^{\text {th }}$ Acq Block	IR Block	$1^{\text {st }} \mathrm{DR}$ Block	$2^{\text {nd }} \mathrm{DR}$ Block
Control	M	155.62	142.85	84.73	72.42	89.59	85.56	69.02	82.32	58.40
	SD	114.07	150.20	36.18	21.45	28.61	26.09	13.17	25.99	25.13
RF 20\%	M	91.57	59.42	80.17	70.31	63.70	59.82	70.08	64.83	71.06
	SD	36.10	11.04	32.22	22.28	17.24	26.54	31.94	11.38	36.22
Strategy	M	114.36	104.23	116.50	99.49	96.67	95.79	75.87	77.86	72.56
	SD	71.70	61.44	73.87	59.80	75.38	55.99	16.22	17.43	7.76

Note. Each block represents average mean of 10 trials. Acq $=$ acquisition; IR $=$ immediate retention; $\mathrm{DR}=$ delayed retention.

Discussion

This study examined the effect of using a strategy over retention of a simple barrier knockdown task in comparison to relative frequency and control conditions. The hypotheses of the experiment were that reduced frequency of $\mathrm{KR}(20 \%)$ during training would lead to enhanced retention performance relative to a control group (100%) and a similar enhancement of retention performance would be obtained by giving subjects a strategy of ignoring four out of every five $K R$ presentations in an attempt to give more control to subjects and mimic the experimenter's manipulation of KR .

The results of this RF experiment failed to support the hypotheses outlined in the original experimental design. First of all the results failed to show that less frequent KR during training would lead to enhancement of motor learning. Secondly, it also failed to show that giving a strategy to subjects would produce similar benefits to those of RF 20% group whose feedback was manipulated by the experimenter.

The results indicated that the performance of the RF 20\% and the STR groups were not different from the CON group in retention indicating that receiving less frequent feedback had no effect on the long term retention on this task. The 'classical' pattern of results for reduced RF KR in comparison to 100% RF KR, according to Salmoni et al. (1984), is that the 100% RF KR condition elicits superior performance throughout acquisition, but inferior retention in comparison to the lower RF conditions. As mentioned above, the strategy group was expected to show the same pattern of results as the $20 \% \mathrm{RF} \mathrm{KR}$ group. Neither the acquisition nor the retention findings for either of the two dependent variables supported this contention. Even in terms of the ordering of the means, the RF 20\% and the CON group were only in the expected order for the $|C E|$ of delayed retention. Where the meaningfulness of the results rested on the replication of the relative frequency effect, this was a discouraging
finding. Finally, the ordering of the means of the STR group with respect to the other two groups suggested, if anything, that their retention performance was more similar to the CON group than the RF 20\% group.

As was the case for the BW experiment, the failure was attributed to two possible causes. The first of these was related to the strategy that was used in the experiment and the second was related to methodological factors.

The strategy used to mimic experimenter's manipulation of the KR was to 'ignore' four out of every five-feedback presentations. This way it was hoped to duplicate the experimenter's manipulation of KR in the RF group, where subjects were only shown feedback every fifth trial. At the end of the experiment, it was observed that the subjects either intentionally failed to ignore or simply could not ignore the feedback when required to do so. If this observation was correct, this would explain why the strategy group performed similarly to the CON group. Still, the problem with the strategy effectiveness does not explain why the RF 20% did not perform significantly better than the control group. As with the bandwidth experiment, this latter outcome was attributed to methodological weaknesses.

The methodological weaknesses of the experiment might have been the number of subjects used in the experiment, which had a bearing on the power of the study (Cohen, 1988) and possible causes related with the subjects like, their heterogeneity (age difference \& background) and the environment where the data was collected (these factors are discussed in more detail in later in the thesis), each of which may have contributed to a large standard deviation in scores within the group, which with a small group might swamp between group differences. These problems might in turn have affected the internal and external validity of the experiment, thereby affecting its possible outcome. It was proposed that a further experiment was needed to find the real causes of the failure of this study.

CHAPTER FIVE

Relative Frequency Experiment Two

Introduction

This second relative frequency experiment was in effect a replication of the first RF experiment. Because of the failure of the first experiment to support the experimental hypotheses was attributed to methodological weaknesses, this second study was conducted after some methodological changes were made.

The changes made to the design of this experiment were

1. an increase in the number of the subjects
2. employment of a more homogeneous group of subjects
3. a greater control over the experimental environment.

At the end of the first experiment, it was also felt that a post-experimental interview with the subjects to find out whether they were able to employ the given strategy would be of great value. This will be further discussed and explained in the discussion section of this chapter.

The number of subjects in this second replication RF experiment was increased from 18 to 24 with an increase of two subjects per group making 8 subjects in each group.

To ensure a more homogeneous group of subjects only second year right handed male physical education students of University of Wales Bangor served as the
subjects. In the first experiment, both male and female adults with different backgrounds had participated to the experiment.

It was also felt that the environment in which the experiment was conducted might have had an effect on the subjects' concentration and motivation.

Therefore, the experimental room where the first experiment was conducted was changed to another room to ensure that outside distractions would be minimal. The experimental room was also arranged in a way that the subjects' motivation would not be negatively effected.

Hypotheses

The hypotheses of the experiment were that reduced frequency of $\mathrm{KR}(20 \%)$ during training would lead to enhanced retention performance relative to a control group (100%) and that similar enhancement of retention performance would be obtained by giving subjects a strategy of ignoring four out of every five KR presentations (effectively receiving 20% of KR) in an attempt to RF group.

Method

Except where described below, the methodology and procedure of this experiment replicated that of the first relative frequency experiment.

Subjects

The subjects were 24 right-handed male physical education students from University College of North Wales, Bangor. Subjects' age ranged from 19 to 26 years $(M=23.3, S D=2.0)$. All the subjects volunteered to participate in the experiment and were naive as to the purpose of it. Each subject received information about the task and the KR they were to receive before the experiment (see Appendix D for a copy of the instructions given to the subjects).

Apparatus and Task

The apparatus and the task used in this experiment were identical to that used in the first Relative Frequency experiment.

Procedure and Design

For this reason three groups of eight subjects were randomly allocated to each of the experimental groups (CON, STR \& RF 20\%). At the completion of the experiment, subjects in CON and RF 20% groups were asked whether they would be able to follow the instructions and apply the strategy that the subjects in the STR group were asked to use (see Appendix E).

Blocks of 10 trials were used to calculate measures of performance accuracy and consistency. Performance accuracy was assessed by absolute constant error ($|\mathrm{CE}|$) and performance consistency by variable error (VE). Statistical analyses were performed for $|C E|$ and VE.

Results

In this experiment the same statistical analyses and same procedures were followed as in the first experiment. In summary, the dependent variables of $|C E|$ and VE were analysed using groups by blocks ANOVAs with repeated measures on the block factor (see Appendix B for copies of the ANOVA tables and Tukey's HSD test, and Appendix C for a complete listing of the raw data).

Acquisition

Absolute Constant Error.

A similar pattern of results was observed in this second experiment. The twoway ANOVA for $|C E|$ yielded only a significant block main effect, $F(5,105)=$ $11.38, p<.001$. Follow-up test revealed an improvement in the performance by groups as they progressed through the acquisition trials. The group main effect $F(2,21)=0.57, p=.574$ and group by block interaction $F(10,105)=0.31, p=$.977 were not significant. The |CE| scores for groups are shown in Figure 8.

Variable Error.

Figure 9 shows the VE scores for blocks of ten trials. The ANOVA revealed only a significant main effect for blocks, $\mathrm{F}(5,105)=6.39, \mathrm{p}<.001$, showing a decrease in the VE score across the blocks. Follow-up tests indicated that the subjects were improving in consistency throughout the acquisition phase. The main effect for groups and the groups by blocks interaction failed statistical significance, $\mathrm{F}(2,21)=2.77, \mathrm{p}=.085$ and $\mathrm{F}(10,105)=1.21, \mathrm{p}=0.294$ respectively.

Immediate No-KR Phase

Absolute Constant Error.

The one-way ANOVA on groups revealed no significant effect for |CE|, $F(2,23$ $=1.477, p=.25$. Figure 8 shows the $|C E|$ data graphically.

Figure 8. Absolute Constant Error ($|\mathrm{CE}|$) scores in milliseconds for acquisition and retention trial blocks (Relative Frequency Experiment 2).

Variable Error.

The one-way ANOVA on groups also revealed no significant result, $F(2,23)=$ $3.20, p=.061$. Figure 9 represents the VE data graphically.

Retention Phase

Absolute Constant Error.

The $|C E|$ scores for this second experiment also failed to produce any significant effects. The group $F(2,21)=0.58, p=.570)$ and block $F(1,21)=$
$0.73, p=.404)$ main effects and the group by block interaction, $F(2,21)=1.18$, $p=.327$ all failed statistical significance. These data are graphically presented in Figure 8.

Figure 9. Variable Error (VE) scores in milliseconds for acquisition and retention trial blocks (Relative Frequency Experiment 2).

Variable Error.

The statistical analyses of VE in retention also produced non-significant results. The group main effect $F(2,21)=1.69, p=.208$, block main effect $F(1,21)=$ $0.53, p=.474$ and group by block interaction $F(2,21)=0.46, p=.636$ all failed statistical significance. Figure 9 presents the VE data graphically.

Table 7. Means and Standard Deviations of $|C E|$ (in milliseconds) for Acquisition and Retention tests in Relative Frequency Experiment Two.

Table 8. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Relative Frequency Experiment Two.

Groups$(\mathrm{n}=8)$	$1^{\text {st }} \mathrm{Acq}$ Block									
			$2^{\text {nd }}$ Acq Block	$3^{\text {rd }}$ Acq Block	$4^{\text {th }}$ Acq Block	$5^{\text {th }}$ Acq Block	$6^{\text {th }}$ Acq Block	IR Block	$1^{\text {st }} \mathrm{DR} 2^{\text {nd }} \mathrm{DR}$ Block Block	
Control	X	136.66	85.51	83.14	84.74	70.31	60.53	71.42	74.10	67.45
	SD	54.60	41.15	29.87	24.99	21.07	15.79	24.37	29.97	28.12
RF 20\%	X	119.14	101.00	76.34	63.27	69.90	77.03	49.41	53.80	48.16
	SD	64.04	50.70	28.79	28.66	28.78	32.56	15.29	18.02	14.59
Strategy	X	76.19	75.99	75.47	58.50	67.33	54.63	73.84	64.11	66.84
	SD	35.45	32.68	28.98	29.03	31.24	15.43	23.07	29.09	24.30

Note. Each block represents average mean of 10 trials. Acq = acquisition; IR $=$ immediate retention; $\mathrm{DR}=$ delayed retention.

Discussion

This second RF study which was a replication of the first RF study due to the failure of the first, almost confirmed the findings of the first one. No statistically significant result was found in this study in support of the hypotheses of the experiment. This lead to the rejection of the hypothesis that reduced frequency of $\mathrm{KR}(20 \%)$ during training would enhance retention performance relative to a control group (100%). The performance pattern of the CON and RF 20% group did not change between the first and second RF experiments, although within this experiment there was a trend for the RF group to be more consistent than either of the other two groups during immediate retention ($p=.06$). Also, the ordering of the means was as predicted for both $|\mathrm{CE}|$ and VE within delayed retention, and for $|\mathrm{CE}|$ within acquisition. Although slightly more encouraging than the first relative frequency experiment, these effects were still not significant, so the results as a whole still contradicted Salmoni et al.'s (1984) proposition that reduced frequency of KR leads to poorer acquisition but better retention performance than 100% RF KR.

The second hypothesis of the experiment, that the STR group would also perform better than the CON group in retention, was also rejected. With these studies, it was intended to find out whether subjects could use strategies as a way of processing and controlling the information available to enhance their learning during motor activities. It seems both from the results of both relative frequency experiments and the outcome of the informal questioning of subjects regarding their ability to conform to the requirements of the strategy that the strategy was not effective within the relative frequency paradigm.

The importance of finding the reason(s) for failing even to replicate the findings that many papers report regarding the use and benefits of reduced frequency of KR in motor learning was obvious. The reason for this second RF experiment was to replicate the first RF study as it was felt that some methodological factors
relating to the power of the study and the internal and external validity of the first experiment might have been compromised. The changes that were felt necessary were:

1. to increase the number of the subjects from 6 per group to 8 per group between the two RF experiments to increase the power of the study
2. to conduct the experiment with a more homogeneous group of subjects as their experience prior to the experiment may have confounded the data.

As the findings of this second experiment were also not significant, some other possible causes of the failure of the study were sought. First of all, as for the bandwidth experiment, it is worth examining the research to ascertain the reliability of the relative frequency effect. Salmoni et al. (1984) cite four studies to have supported the relative frequency effect. Three of these used positioning tasks (Baird \& Hughes, 1972; Ho \& Shea, 1978; Johnson, Wicks, \& Ben-Sira, 1981) and the other used a key-pressing task (Taylor \& Noble, 1962). Yet even with this evidence, Salmoni et al. (1984) recommended caution, as an attempt to replicate the Johnson et al. (1981) experiment failed. Subsequent research has found mixed results. Winstein \& Schmidt (1990), in the first of three experiments, did not find any difference between a 33% RF KR group and a 100% RF KR group with a (relatively) complex lever positioning task involving several movement reversals. Subsequent experiments achieved greater support for the reduction of relative frequencies of KR , but only within a fading paradigm, where KR was reduced from $100 \% \mathrm{RF}$ to $10 \% \mathrm{RF}$ over the course of acquisition. Sparrow \& Summers (1992) failed to find support for the effect using a simple positioning task, and found extremely limited support (a trend of decreasing error in one of three reduced relative frequency groups in the second of two retention tests in only one of three error scores) in a movement distance task. Wulf, Lee \& Schmidt (1994), in extending the relative frequency effect to examine generalised motor programme learning, did obtain a relative frequency effect when comparing a $100 \% \mathrm{RF}$ condition to a $50 \% \mathrm{RF}$ condition, using a
similar task to that of Winstein \& Schmidt (1990). Only one paper could be found that used a task similar to that used here, and that failed to find any group differences despite the use of a faded relative frequency paradigm (Wishart \& Lee, 1997).

In summary the level of support for a pure relative frequency effect, where a $100 \% \mathrm{RF} \mathrm{KR}$ condition is compared to a reduced relative frequency condition is equivocal at best. Of the studies reported here, only Taylor \& Noble (1962) seems to offer clear support of the purported effect. Considering also that no study could be found which offered support for the effect with the task used here, it may be that the results obtained in the present experiment are less surprising than first thought.

The only other possible factor left that might have had a profound effect on the data was the apparatus used during data collection. A test was conducted to find out whether the 380 Z Research Machine that was designed to record the trial duration was working correctly. The test revealed that there was an error within the Research Machine's timer that decreased the clock's accuracy from \pm 3 ms to $\pm 20 \mathrm{~ms}$. This would have drastically reduced the timer's reliability, such that differences of the order of $30-40 \mathrm{~ms}$ (such as those found in Lee \& Carnahan, 1990) may have been lost.

In conclusion, a further examination of the literature seems to lead to the recommendation that a new task be chosen for the next study, within a more reliable KR paradigm. Neither the equipment, nor the relative frequency effect, nor the application of the strategy were found to be reliable within the present experiment.

CHAPTER SIX

Summary KR Experiment One ${ }^{1}$

Introduction

The experiments reported in the previous chapters failed to provide support for the possibility of the subjects' mimicking the experimenter's manipulation of information feedback by a cognitive learning strategy. These experiments were designed to increase the subjects' involvement in the control of feedback in an effort to show that passing control to subjects would yield similar results relative to a feedback condition that was controlled by the experimenter.

Although the support for subjects' control of the information feedback variable did not materialise in the previous experiments, it also failed to replicate the findings of the similar research in the KR area. For example in the BW KR experiment, $10 \% \mathrm{BW}$ KR was not significantly better than the control group in retention. This was contradictory to Sherwood (1988), where it was found that a 10% BW condition achieved less within-subject variability than the CON group.

The result of the BW and the two RF KR experiments having failed to support the KR effects suggested that it was not only the STR group that failed to support the hypotheses but reduced frequency KR group also failed as well. For this reason, the search for reasons for the failure was turned toward the general methodology rather than the STR group itself. At the end of the experiments conducted so far, it was suggested that some methodological factors such as (a)

[^1]the number of subjects used in a treatment group and the heterogeneity of the subjects, (b) the nature of the strategy used, and (c) the apparatus used in the experiments might have contributed to the failure of the experiments.

Changing the perspective

In this chapter a new KR scheduling experiment was proposed that was designed on the basis of power, ease of application of the cognitive learning strategy, and the reliability of the apparatus used. The KR scheduling chosen for this experiment was summary KR . In summary KR scheduling the information feedback is presented via a graph of error scores over a pre-set number of trials (Schmidt et al., 1989). Thus, subjects are presented with a summary of their previous performance. In this scheduling, although the absolute frequency of KR is constant (at 100%) the summary presentation of the feedback is being manipulated by the experimenter. Hence, this type of manipulation was considered susceptible to subjects' manipulation of the KR. As the controlling factor by the experimenter is the manipulation of the amount of trials to be summarised, it should to possible for the subjects' to mimic this manipulation and receive 100% absolute frequency of KR but control the amount of trials to be summarised by a learning strategy.

Perhaps among the methodological factors that were identified as possible source of weakness in the previous experiments, the power of the experiment is a very important factor that affects the outcome of an experiment (Cohen, 1988). For this reason in order to increase the power of the experiment, it was decided to increase the number of subjects used from 6-8 to 10 subjects per group. Furthermore, the apparatus used in the experiment was chosen and designed to increase the validity of the measurement taken during data collection.

In the light of these changes made this study was designed to examine the effect of using a learning strategy given over acquisition and retention of a simple ballistic timing task in comparison to summary-KR and control conditions.

The purpose of the present study was to investigate the effect of a 10 -trial summary-KR condition, a summary-KR strategy condition and a summary-KR yoked strategy condition in comparison to a 1 trial summary-KR control condition across acquisition and retention trials.

Hypotheses

It was hypothesised that 10 trial summary-KR group would perform better than the 1 trial summary-KR control group in retention. It was also hypothesised that both summary-KR strategy groups would perform as well as the 10 -trial summary-KR group in retention.

Method

The task and all procedures of this experiment closely followed those of Schmidt et al. (1989). Four groups were given acquisition and two retention tests on a double reversal linear slide task. In all conditions subjects performed the same amount of trials and participated in the same Immediate Retention (IR) trials and 2-day no-KR delayed Retention (DR) tests.

Subjects

The subjects of this experiment were 46 students (28 male \& 18 female) from University of Wales, Bangor. Subjects' age ranged from 20 to 38 years ($M=$ 27.33, $S D=4.76$). All the subjects volunteered to participate in the experiment and were unaware of its purpose. They had no prior experience with the task. Of these 46 subjects, 6 were unable to participate in the retention test and were not included in the final data analyses.

Apparatus and Task

The task and apparatus closely followed that of Schmidt et al. (1989). The apparatus consisted of a horizontal stainless-steel bearing (100 cm) mounted on a table in front of the subjects. A vertical handle sat on a metal block containing ball bearings. This arrangement allowed the handle to slide almost frictionlessly along the steel track. Two optical switches were mounted on the apparatus to start and stop a digital millisecond timer. The first switch was placed at the right end of the track and started the timer when the slide moved from away it. The second switch was placed 40 cm to the left of the first and stopped the timer when the slide passed it. Two other optical switches were used to trigger an electronic counter that ensured that the subjects reversed at the correct place All switches, including both start and stop, were connected to the electronic counter, which counted the number of times the slide passed through a switch
during each trial. The count of 8 signified a correct movement. The counter was reset before each trial.

Figure 10. Illustration of the apparatus used in the summary KR experiment (including the counter and the timer).

Two $5-\mathrm{cm}$ wide target zones were located under the track 15 and 30 cm to the left of the right end of the start switch. The $5-\mathrm{cm}$ target zone located at 15 cm was marked as 'Zone One' and second target zone at 30 cm was marked as 'Zone Two'.

The subject's task was to grasp the handle, which was positioned at the right end of the track (at the start line), and to move the slide 30 cm leftward to 'Zone Two', then reverse 15 cm right to 'Zone One' and then again reverse the direction to move through the 40 cm finish line until the slide passed the optical switch with a follow through. Each subject's goal was to complete the task in as close to 550 ms as possible in every trial. Time was recorded with the digital millisecond timer, but spatial accuracy at the intermediate targets was only observed, not recorded. An early reversal of the movement was considered an incomplete movement and was replaced with a subsequent complete correct trial. The subjects were instructed to begin each trial after a verbal 'go' signal.

The initiation time of the movement was neither stressed nor recorded during the whole experiment.

Figure 11. Illustration of a correct arm movement in summary KR experiment.

The data were inserted to an IBM compatible Personal Computer by using a spreadsheet package program (Microsoft Excel for Windows version 4.0c). The same program was used to display the feedback graph on the screen by using a macros (see Appendix A for a listing of the macros used in the experiment)

Procedure and Design

The 40 subjects were randomly assigned to one of four summary-KR conditions that differed in terms of summary-KR length. The four conditions were (a) 1 trial summary-KR control group (CON), (b) 10 trial summary-KR group (SUMKR10), (c) 10% summary-KR strategy group (STR) and (d) 10% summaryKR yoked strategy group (Y-STR). Prior to the experiment subjects were all
introduced to the task and received information about the KR presentation they were to receive. In this experiment, only right-handed subjects were used all were allowed to perform a couple of trials, without any feedback, to ensure that they understood the movement before starting the experiment. After each trial (or set of trials), a graph was presented on a 36 cm (14 inch) computer screen depicting performance accuracy over trials. In each condition the subjects' constant error (with respect to sign, e.g., +25) was presented on a positive x -axis (representing trial number) and a positive/negative y-axis (representing error in milliseconds).

Figure 12. Illustration of the PC screen showing feedback graph in summary KR experiment.

The control group received information after every trial, with one $K R$ point being displayed at any one time. In the SUMKR10 and Y-STR groups, the graph was shown only after completion of the appropriate number of trials for that summary-KR condition. In the strategy (STR) group, the graph was shown only when subjects asked to see it. The STR group was instructed that they would only be able to see the graph after 9 trials out of 90 (10% of their trials) and that only they would decide at which intervals to receive the feedback. They were therefore encouraged to actively develop a strategy for deciding when the
information might be most useful. Each subject in the Y-STR group was matched with a subject in the STR group, and was given feedback according to the schedule selected by their individual counterpart. The data points in all summary-KR groups except the CON group were connected by line segments. No Verbal KR was given throughout the experiment.

All groups performed 90 acquisition trials, after which they rested outside the testing station for 10 minutes. Then subjects were given 30 trials without KR for the immediate retention test. Two days later, they performed 30 more trials, also without $K R$, for the delayed retention test.

Blocks of 15 trials were used to calculate measures of performance accuracy and consistency. Performance accuracy was assessed by absolute constant error ($|\mathrm{CE}|$) and performance consistency by variable error (VE). Statistical analyses were performed for $|C E|$ and VE. A schematic representation of the statistical design is given in Table 1.

Table 9. Statistical Design for Summary KR Experiment One

Note. Each acquisition block represents average mean of 15 trials and each retention block represents average mean of 30 trials. Acq $=$ acquisition; $\mathrm{IR}=$ immediate retention; $\mathrm{DR}=$ delayed retention.

Results

Subjects' performances during the 90 trials acquisition phase were analysed in blocks of 15 trials, but performances during the two retention tests were analysed in blocks of 30 trials (following Schmidt et al. 1989). The dependent variables were absolute constant error (|CE|) and variable error (VE).

A groups by blocks (4×6) analysis of variance (ANOVA) with repeated measures on the block factor was used to examine the group changes in each of the dependent variables across acquisition trial blocks. A 4 group one-way ANOVA was used to examine the group changes in retention. Tukey's follow-up test was then used following significant group effects in retention (see Appendix B for copies of the ANOVA tables and Tukey's HSD test, and Appendix C for a complete listing of the raw data).

Acquisition

Absolute Constant Error

The 2 way ANOVA revealed a significant main effect for blocks, $F(5,180)=$ $39.67, p<.001$. Follow-up test revealed an improvement in $|\mathrm{CE}|$ as all groups progressed through the acquisition trials. There was no significant main effect for groups, $F(3,36)=2.25, p=.099$. Although the Y-STR group performed poorly in acquisition and had almost twice as much error as the STR group at the sixth block, this effect was not significant. In addition to this there was also no significant group by block interaction, $F(15,180)=1.61, p=.076$. The $|C E|$ scores for the groups during acquisition test are shown in Figure 13.

Variable Error

The result of the VE scores in acquisition was similar to that of the $|C E|$ scores. The main effect for block was significant $F(5,180)=38.07, p<.001$, showing a decrease in the VE score across the blocks. Follow-up tests indicated that the subjects in all the groups were improving in consistency throughout the acquisition phase. The main effect for group and group by block interaction were not significant, $F(3,36)=1.27, p=.301$ and $F(15,180)=1.37, p=.165$ respectively. The STR group appeared to have low VE scores in $1^{\text {st }}$ and $2^{\text {nd }}$ acquisition blocks but this effect was not significant. The VE scores during the acquisition test are shown in Figure 14.

Figure 13. Absolute Constant Error ($|C E|$) scores in milliseconds for acquisition and retention trial blocks (Summary KR Experiment 1).

Immediate Retention

Absolute Constant Error

The $|C E|$ scores for the groups in IR test after 10 min are shown in Figure 13.
A one-way ANOVA revealed no significant group effect, $F(3,36)=1.10, p>.05$ (see Figure 13).

Variable Error

The one-way ANOVA for VE scores across conditions revealed no significant group effect, $F(3,36)=1.10, p>.05$ (see Figure 14).

Figure 14. Variable Error (VE) scores in milliseconds for acquisition and retention trial blocks (Summary KR Experiment 1).

Delayed Retention

Absolute Constant Error

The $|C E|$ scores for each group in the DR tests are shown at the right side of the Figure 13. The ANOVA test revealed no significant differences between groups in $\mathrm{DR}, F(3.36)=.326, p=.806$. The standard deviation of the groups indicated that the range of movement times were variable within all groups. The mean and standard deviation of the |CE| scores for the CON, SUMKR10, STR and Y-STR groups for $D R$ were $M=53.73, S D=36.18 ; M=38.34, S D=$ 29.10; $M=40.49, S D=21.92$ and $M=43.69, S D=55.23$ respectively.

Variable Error

The group effect for VE was significant, $F(3,36)=5.30, p<.05$. The follow-up Tukey's test revealed that the CON group had significantly higher VE score than STR group and there were no significant differences among other groups. The mean and standard deviation of the VE scores for the CON, SUMKR10, STR and Y-STR groups for $D R$ were $M=41.77, S D=15.69 ; M=31.16, S D=$ $12.26 ; M=21.53, S D=6.10$ and $M=29.23, S D=9.55$ respectively.

Table 10. Means and Standard Deviations of $|\mathrm{CE}|$ (in milliseconds) for Acquisition and Retention tests in Summary KR Experiment One.

	BLOCKS									
Groups $(\mathrm{n}=10)$	$1^{\text {st }}$ Acq	$2^{\text {nd }}$ Acq	$3^{\text {rd }}$ Acq	$4^{\text {th }}$ Acq	$5^{\text {th }}$ Acq	$6^{\text {th }}$ Acq	IR	DR		
Control	M	179.42	32.41	30.88	18.57	20.29	16.40	26.34	53.74	
	SD	133.54	38.43	29.71	18.86	20.90	9.20	18.54	36.18	
SUMKR10	M	237.77	60.85	32.63	25.09	18.85	15.11	25.16	38.34	
	SD	165.20	71.08	29.45	29.88	17.11	17.24	22.33	29.10	
Strategy	M	106.69	55.76	49.06	26.43	22.23	19.60	26.65	40.49	
	$S D$	106.12	65.86	58.66	40.32	30.45	25.19	17.88	21.92	
Yoked	M	259.37	135.70	99.82	67.53	57.12	52.31	47.47	43.69	
Strategy	SD	237.88	153.78	100.77	78.36	58.43	61.30	44.96	55.23	

Note. Each acquisition block represents average mean of 15 trials and each retention block represents average mean of 30 trials. Acq $=$ acquisition; $I R=$ immediate retention; $\mathrm{DR}=$ delayed retention.

Table 11. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Summary KR Experiment One.

		BLOCKS								
Groups $(\mathrm{n}=10)$	$1^{\text {st }}$ Acq	$2^{\text {nd }}$ Acq	$3^{\text {rd }}$ Acq	$4^{\text {th }}$ Acq	$5^{\text {th }}$ Acq	$6^{\text {th }}$ Acq	IR	DR		
Control	M	105.60	141.16	48.04	38.75	31.39	33.05	32.61	31.78	
	SD	3.20	79.74	40.09	20.37	15.54	16.60	12.25	13.45	
SUMKR10	M	206.80	126.18	51.19	32.67	32.40	30.73	31.98	34.93	
	SD	3.65	91.00	27.44	11.01	19.61	12.82	13.65	8.22	
Strategy	M	305.80	73.15	37.37	32.11	30.80	32.79	23.18	27.14	
	SD	3.43	62.75	20.07	7.20	12.02	11.64	8.52	6.57	
Yoked	M	405.50	102.85	48.06	47.21	35.10	33.93	31.19	29.60	
Strategy	SD	3.03	63.74	28.24	21.97	12.80	14.88	13.01	8.71	

Note. Each acquisition block represents average mean of 15 trials and each retention block represents average mean of 30 trials. Acq $=$ acquisition; $\mathrm{IR}=$ immediate retention; $\mathrm{DR}=$ delayed retention..

Discussion

This study examined the effect of using a given learning strategy over acquisition and retention of a simple ballistic timing task in comparison to summary-KR and control conditions. Specifically, the purpose of the study was to investigate the effect of a 10 -trial summary-KR condition, summary-KR strategy condition and a summary-KR yoked strategy condition in comparison to a 1 trial summary-KR control condition across acquisition and retention trials.

The hypothesis of the experiment was that the summary-KR strategy group would perform as well as the 10 -trial summary-KR group in retention, and that all reduced frequency summary-KR groups (SUMKR10, STR \& Y-STR) would perform better than the 1 trial summary-KR control group in retention. The YSTR group was expected to perform somewhere between the CON group and the two other groups, as it benefited from reduced relative frequency $K R$, but did not benefit from the freedom of choice of the STR group in determining when to receive their summary KR. Finally, it was also expected that the acquisition pattern of results found by Schmidt et al. (1989) would be supported in that the CON group would display smaller error scores throughout acquisition than any of the other three groups.

The effect of group in the delayed retention test using VE as the dependent variable offered partial support for the main experimental hypothesis. The STR group was more consistent than the control group supporting the use of the selfgoverned strategic use of feedback as an aid to motor learning. However, the consistency of the SUMKR10 and Y-STR groups was not significantly better than the control group. Considering that the Y-STR group received the same number of trials and received feedback at same intervals as the STR group, their consistency was not as good as STR group who had the chance to control the way KR was given to them. Because of this result, it was hypothesised that
merely giving control to the subjects over their own feedback requirements was sufficient to facilitate consistency.

To relate this finding to previous research on summary KR effects, the arguments offered in support of the summary KR effect by Schmidt et al. (1989) are useful. They suggest that the long periods of no-KR undergone by summary KR groups during acquisition fosters an awareness in the subject of the utility of response produced feedback as a substitute for the absent KR. Prolonged practice with this subjective reinforcement has been proposed elsewhere to lead to a greater sensitivity to the nature of the errors (Adams, 1971; Schmidt, 1975). This kind of explanation would seem to be especially pertinent here, as the effect emerged only in VE and in delayed retention, which provides a test of the subject's capability to maintain consistent performance two days after acquisition, in the absence of any guidance from $K R$. Where the effect suggests that the STR group performs better in relation to the CON group than either of the other two SUMKR groups, it offers some support for the notion that merely allowing subjects to specify where they wish to 'inject' the KR throughout acquisition in some way increases the utility of this attention. This can be accounted for in much the same way that bandwidth effects have been explained (Lee \& Carnahan, 1990); allowing the subject more freedom to receive feedback when they feel they need it, while ensuring that a maximum number of KR trials is not exceeded, may in turn allow the feedback to be injected into the acquisition phase at junctures that are more appropriate for the learner's needs. If learning is not progressing well over the first few trials then early feedback may be beneficial. If the task is found relatively easy, then feedback may be used in a more precise way later to monitor small adjustments in performance. In any event, where summary KR can be seen to function as a consequence of subject's increased sensitivity to their own error, it seems sensible to offer them a chance to exploit that sensitivity in some way. The evidence produced here offers some support for the contention that this extra flexibility is of some use.

Notwithstanding the arguments offered above, the finding of an effect for VE in delayed retention was surprising, especially given the lack of effects in $|C E|$. Previous research that had used the linear slide had found summary KR effects in $|C E|$ rather than VE (Guay, Salmoni \& McIlwain, 1992; Schmidt et al., 1989). This pattern of results has been generally supported in the literature, with most summary KR studies finding effects in |CE| (Carnahan, Vandervoort, \& Swanson, 1996; Gable, Shea \& Wright, 1991; Guay et al., 1992; Schmidt et al., 1989; Weeks \& Sherwood, 1994 (10min retention interval); Wright, Snowden, \& Willoughby, 1990). However, some have reported the opposite trend (Guay, Salmoni, \& Lajoie, 1997; Weeks \& Sherwood, 1994 (2 day retention interval)), while still other studies either do not analyse components of response bias and consistency separately (Guadagnoli, Dornier, \& Tandy, 1996 [used RMSE error]; Schmidt, Lange \& Young, 1990 [used raw performance scores]) or do not obtain any support for the summary KR effect (Sidaway et al. 1991; Sidaway, Fairweather, Powell, \& Hall, 1992). The unusual nature of this effect could be taken as further evidence of its separability from traditional summary KR effects, and its similarity to bandwidth-type effects, which have been quite common with the VE measure (Lee \& Carnahan, 1990; Sherwood, 1988). Changes in VE are thought to reflect the effectiveness of the underlying motor program for the movement (Schmidt, 1975; Schmidt et al., 1989), whereas changes in $|C E|$ are purported to reflect the effectiveness of the program's parameterisation (Schmidt et al. 1989). This is of course, a tenuous supposition, but worthy of further investigation.

Regardless of the reasons for the VE finding in delayed retention, the experiment still failed to provide an adequate comparison of the strategy condition to traditional summary $K R$ manipulations. For this the traditional summary KR effect had to be obtained. Unlike the relative frequency effect, the summary KR effect found by Schmidt et al. (1989) has been successfully replicated (Guay et al., 1992), and has generalised well to other tasks such as force production (Gable et al., 1990; Guadagnoli et al., 1996) and lever
positioning (Guay et al., 1997; Schmidt et al., 1990). Thus, it is hard to account for the lack of such a finding in the present experiment without returning once again to the methodological problems mentioned in earlier chapters. It is also hard to conclude that these methodological problems are anything but such things as the attentional focus of the subjects, or indeed the number of subject's used in the experiment (Schmidt et al., 1989, used 18 subjects per group to the 10 used in the current experiment). Such variables have a strong impact on such related factors as effect size and the power of the statistical tests used. Such problems may explain why the frequently 'correct' ordering of means within the experiments discussed thus far has failed to result in the expected significance. For example, in the current experiment the ordering of the means in the $|C E|$ acquisition analysis looks like a perfect replication of Schmidt et al. (1989), yet only a trend was apparent in the analysis ($p=.076$).

In conclusion, it is suggested that a complete revision of the experimental protocols is required prior to another attempt to generate the traditional KR effect against which to compare the strategy condition. This revision is discussed in detail in the next chapter.

CHAPTER SEVEN

Cross-Roads

A series of studies has been conducted to find out whether subjects can take control of their KR requirement and in doing so can mimic the KR manipulations of the experimenter as in many traditional experiments. It was hypothesised that subjects in a strategy group and subjects in KR scheduling groups would perform better in retention than subjects in a control group who received feedback after very trial. To confirm this hypothesis, a combination of two group effects was necessary. Firstly, the much-cited benefit of a reduction in the frequency of KR promoting greater retention of skill needed to be replicated. Secondly, this facilitative effect had to be matched by the strategy group.

In total four experiments have been conducted; within which the sample size and the method of $K R$ scheduling have varied. The KR schedule in the first experiment was bandwidth $K R$, in the second and the third experiment, it was relative frequency $K R$, and in the fourth experiment, it was summary-KR. None of these four experiments totally supported the original hypotheses, which would normally result in the experimental hypotheses being rejected on the bases of the results of the studies. However, it was felt within each of the studies that other factors relating to experimental control and statistical power contributed to their failure to confirm the experimental hypotheses. This suspicion was in part due to the apparent strength of the relative frequency effect of KR across a number of KR schedules, which none of the four experiment's had managed to replicate. Some attempts to rectify these problems were made in the third and the fourth experiments, but neither set of changes was particularly effective. Consequently, it was decided to analyse these problems in detail, so that they might be more appropriately dealt with in the next experiment.

This chapter will address the possible reasons for the equivocal results in each of the experiments. On the basis of this analyses a further experiment will be suggested which will take into account all the possible causes of the previous equivocality, and attempt to eliminate them.

Reasons for the failure of the experiments:

Some elements of the following discussion have been addressed in previous chapters. However, for the sake of completion it was felt necessary to cover all the issues together in this summary.

The equivocal results of the experiments were attributed to the following possible causes, each of which might have affected the internal and/or external validity of the findings:

1. The apparatus used in the first three experiments
2. The subjects used in the experiments
a) The number of subjects used in the experiments
b) The subjects' heterogeneity in age and sport related experience
c) The subjects' level of concentration
d) The subjects' level of motivation
3. The subjects' lack of understanding of the procedures of the task
4. The validity of the experimental treatment used in the first three experiments
5. The environment in which the data were collected
6. The way feedback was given to the subjects in first summary-KR experiment

Each of these factors is discussed below, under the relevant sub-headings. A summary of the factors affecting each experiment is presented in Table 12.

Apparatus:

In each experiment, time was the dependent variable. It was therefore imperative that the apparatus used in each experiment should be capable of performing to within two or three ms error. At the end of the bandwidth and relative frequency experiments, it was observed that there was a fault in the apparatus that generated some random error. Upon inspection, it was found that the central timing operation of the computer (380Z Research Machine) was faulty. The error of $\pm 20 \mathrm{~ms}$ difference was calculated which obviously would have had a profound effect on the internal validity of these experiments. One possible effect of this machine error might explain the within-subject variability where the standard deviation of the subjects' scores was observed as high.

Subjects:

i. Numbers

It was recognised that a limitation in the experiments was the small number of subjects ($n=6-8$). Such a small sample size obviously reduced the probability of obtaining statistically significant differences in order to maintain an appropriately powerful experimental design (Cohen, 1977). To raise the power of the test to an acceptable level, Cohen (1977) recommends a sample size of close to 20 subjects per group.

ii. Homogeneity

Another factor, which could have compounded the effect of a small sample size, was the heterogeneity of the subject pool in terms of their experience with physical activity in general. The vast majority of research into Knowledge of Results, and other topics within motor learning, uses undergraduate Physical Education students as subjects (Wulf \& Schmidt, 1989; Schmidt et al., 1990; Winstein \& Schmidt, 1990; Gable et al. 1991; Goodwin \& Meeuwsen, 1995). These students are all likely to share some level of sport-related experience.

The level of sport-related experience in the subject's used for the experiments reported here has to this point been variable, with some subjects being Physical Education students while others have been drawn at random from the undergraduate population of Bangor University. Such a marked variation in the physical skills of the subjects could have inflated the within-subject variation for all groups. This could have reduced the effect size between the groups (Cohen, 1977) and hence further reduce the power of the statistical tests.

iii. Concentration and motivation

Although the apparatus and experimental procedure of the summary-KR experiment replicated that of Schmidt et al. (1989), it failed to replicate their results. A possible contributory factor might have been that unlike Schmidt et al. (1989) subjects in this study were not participating in the experiment for course credit. During the studies, it was noted that a lack of interest or motivation was quite visible in the attitude of some of the participants. This observation was reinforced by the post-experimental comments that some of the subjects were invited to make. Some of the comments were; "I was not very interested with the experiment". "I could have done more to achieve the target but I found the task boring". It is recognised that subjects in Schmidt et al.'s (1989) study were naive as to the purpose of the experiment, however it is
nevertheless, reasonable to suppose that students participating in an experiment for course credit might be more suitable as subjects, because of their extrinsic motivation. Although random allocation of groups should be sufficient to control any within-subject differences in motivation that might exist, members of the strategy and less frequent KR groups are inevitably more susceptible to losses of concentration as these subjects were required to practice the same simple arm movement without any feedback for longer times. For this reason, the subject's level of motivation and concentration must also be considered in any further study.

Use of strategy:

Another possible reason why the subjects in the strategy group in the bandwidth and relative frequency experiments did not perform as expected was highlighted by information gathered during debriefing at the end of the second relative frequency experiment. Half of the subjects interviewed pointed out that they would not be able to ignore the feedback they would receive and that they would register it and possibly use it in later trials. In addition, this one subject also answered saying that it would be difficult to ignore the score given on the screen.

Feedback presentation:

In the first summary-KR experiment, one of the procedural problems was related to the way the graph used to present feedback handled errors outside the ± 100 ms range of its y -axis. During the pilot test of this experiment, there were very few occasions where the subject's score was outside the graph's visible range and at the time it was not considered a major problem. In order to rectify this subjects were told that if they saw no data points or lines on the graph they should interpret it as either too fast or too slow movement and it would be highly likely that it was a slow movement. In line with the other studies, it was
thought that verbal feedback relating to the subjects' movement time should not be given during the experiment. This procedural error may have led to some subjects in the control group receiving no precise KR at all at the beginning of the experiment, hence seriously affecting their performance. This may be seen from Figure 13, as the performance of control group subjects in the Summary KR One experiment seems to be impaired during the first 10-15 trials.

What next?

Having identified all of the above problems, the next step was to make the changes necessary to eliminate them from the final study. These changes are outlined below.

To investigate the extent to which subjects can mimic a KR manipulation, it was obviously necessary to select a task that had demonstrated its susceptibility to such effects. Initially an obvious choice was Lee, Magill and Weeks' (1985), and Lee and Carnahan's (1990) barrier knockdown task. As the problem with the timing mechanism of the apparatus used in the bandwidth and relative frequency experiments surfaced, another task had to be found. Schmidt et al.'s (1989) linear slide task was then the obvious choice. Indeed, the result of the first summary-KR experiment partially supported the experimental hypotheses but failed to replicate the Schmidt et al.'s (1989) findings.

Before we set out to find possibly a new task and/or new KR schedule some criteria were laid down because of the basic experimental design used in the study. The criteria were as follows:

1. The experimental design restricted the type of KR schedule used in this experiment because it had to allow the subjects to be able to mimic experimenters' KR manipulation.
2. The task had to be a simple and easy to perform motor task. It also had to be a novel movement in order to minimise within-subjects variability, as prior experience or familiarity with the movement would have a profound effect on the outcome of the experiment.
3. The experiment to be replicated had to show that the $K R$ treatment was significantly better for learning a motor task than a control group. This was a limitation as one the hypotheses of our experiment was to show that subjects manipulating the provision of their own KR would perform as well as the subjects whose KR provisions were manipulated by the experimenter for them.
4. The experiment to be conducted had to be applicable within our laboratory and time limitations.

After a thorough review of related studies on KR scheduling (Salmoni et al., 1984; Schmidt et al., 1989; Lee \& Carnahan, 1990; Winstein \& Schmidt, 1990; Sidaway et al., 1991, 1992) it was finally decided to re-run the summary-KR experiment as it fulfilled all of the criteria laid down.

In order to limit the effects of the previously discussed factors on the next experiment, the following list of recommendations was drawn up:

1. Increase the number of the subjects from $6-8$ to over 16 subjects per group.
2. Select a subject pool from the undergraduate population students of the Division of Health and Human Performance of University of Wales, Bangor.
3. Introduce a point scoring system to maximise the subjects' motivation to learn. Subjects would be awarded a number of points depending on the accuracy of their performance. These points would be displayed as a cumulative score after each trial or blocks of trials depending on the practice group.
4. Award course credits to maximise the subjects' motivation to participate in the experiment.
5. Increase the range of the feedback graph from $\pm 100 \mathrm{~ms}$ to $\pm 150 \mathrm{~ms}$, and provide verbal feedback where necessary.

Table 12: A summary of the factors effecting each experiment

Factors	Experiment			
	Bandwidth	RF One	RF Two	Summary KR
Apparatus	Fault in apparatus	Fault in apparatus	Fault in apparatus	
Subjects	Low number of subjects ${ }^{\text {a }}$ Heterogeneity of the subjects Low motivation \& concentration	Low number of subjects ${ }^{\text {b }}$ Heterogeneity of the subjects Low motivation \& concentration	Low number of subjects ${ }^{\text {c }}$ Low motivation \& concentration	Low number of subjects ${ }^{\text {d }}$ Heterogeneity of the subjects Low motivation \& concentration
Strategy	Weakness in strategy	Weakness in strategy	Weakness in strategy	
Feedback				Graph's limited
Presentation				y-axis range

Note. RF = relative frequency. Numbers of subjects per group who completed retention tests in each experiment ${ }^{\mathrm{a}} n=6 ;{ }^{\mathrm{b}} n=6 ;{ }^{\mathrm{c}} n=8 ;{ }^{\mathrm{d}} n=10$.

CHAPTER EIGHT

Summary KR Experiment Two ${ }^{2}$

Introduction

After a thorough analysis of the outcome of the first summary KR experiment, it was felt that the failure to support the experiment's hypotheses was due to methodological weaknesses. This experiment was conducted to overcome those methodological weaknesses, and therefore provide a true test of experiment's hypotheses.

The major changes made before this second test were;

1. An increase in the number of subjects.
2. The use of a more homogeneous group of subjects with respect to their understanding and approach to research projects from the first experiment.
3. A greater control over the testing environment.
4. The way the feedback was given to the subjects when their constant error score exceeded the graph's range of $\pm 150 \mathrm{~ms}$.
5. Finally, a point scale was introduced to maximise the subjects' motivation to learn (see the Appendix E for full copy of the scale).

Hypotheses

[^2]The purpose of the present study was to investigate the effect of a 15 -trial summary-KR condition and summary-KR strategy conditions in comparison to a 1 trial summary-KR control condition ($100 \% \mathrm{KR}$) across acquisition and retention trials. Providing information feedback in summary form after the completion of a set of trials (e.g. every 10 or 15 trials) has shown to promote greater learning of a simple motor skill than providing it after every trial (Schmidt et al., 1989). It was hypothesised here that the improved learning scores in the summary condition could be matched by having the learner choose when to receive the information.

Specifically it was hypothesised that the summary-KR strategy group would perform as well as the 15 -trial summary-KR group in retention. It was also hypothesised that both reduced frequency summary-KR groups would perform better than the one trial summary-KR control group in retention.

Method

The task and all procedures of this experiment closely followed those of Schmidt et al. (1989) and the first summary KR experiment. Three groups were trained on a double reversal linear slide task. In all conditions subjects performed the same amount of trials and participated in the same 2-day no-KR Delayed Retention (DR) test.

Subjects

The subjects of this experiment were 54 students (30 male \& 24 female) from the University of Wales, Bangor. Subjects' age ranged from 19 to 37 years $(M=$ 23.44, $S D=3.83$). All the subjects volunteered to participate in the experiment in exchange for course credits and were unaware of its purpose. They had no prior experience with the task. In addition to 54 subjects 5 subjects who failed to participate to retention tests were not included in the statistical analysis.

Procedure and Design

The 54 subjects were randomly assigned to one of three summary-KR conditions with the restriction that an equal number of females and males were in each group. These summary KR conditions were (a) 1 trial summary-KR control group (CON), (b) 15 trial summary-KR group (SUMKR15) and (c) summary-KR strategy group (STR). On arrival at the laboratory, each subject entered an isolated testing room and sat in front of the desk, upon which was the apparatus. Prior to the experiment, details of the task and the nature of their particular feedback condition were given to all subjects. They all read general and specific instructions from the 'Instructions to Subjects' sheet (see Appendix D for a copy of the instructions given to the subjects). In this experiment, all subjects were allowed to perform ten trials, without any feedback, to ensure that they understood the movement before starting the experiment. Once the formal
practice session began, after each trial (or sets of trials), a graph was presented on a 36 cm (14 inch) computer screen, which depicted performance accuracy over trials (see Figure 15).

Figure 15. Illustration of the PC screen showing a typical feedback graph for either the STR or SUMKR15 groups in summary KR experiment two.

The control group received information after every trial, with one KR point being displayed at any one time. In the SUMKR15 group, the graph was shown after each block of fifteen trials. In the strategy (STR) group, the graph was shown only when subjects asked to see it. The STR group was instructed that they would only be able to see the graph 6 times during the 90 trials and that only they would decide at which intervals to receive the feedback. Furthermore, they were directed not to see the six graphs too early in the training, as this may have a negative effect on their accuracy. They were therefore encouraged to actively decide when the information might be most useful. The data points in all summary-KR groups except the CON group were connected by line segments. Verbal KR was only given when the data point(s) were outside graph's error range of $\pm 150 \mathrm{~ms}$.

Following the first summary KR experiment, it was felt necessary to introduce a point scale (see Appendix E) to ensure that subject's attention and motivation stayed high throughout acquisition and retention. The number of points awarded was linked directly to performance accuracy, and was presented after each presentation of the feedback graph.

All groups performed 90 acquisition trials. Two days later, they performed 30 more trials, without any KR , as a retention test. At the end of the second day test subjects were given four open ended post test questions (see Appendix E for an exact list of the question asked to subjects), which served as a check on whether subjects had applied the information given to them by the instructor. A schematic representation of the statistical design is given in Table 13.

Table 13. Statistical Design for Summary KR Experiment Two

		BLOCKS						
Groups $(\mathrm{n}=18)$		$1^{\text {st }} \mathrm{Acq}$ Block	$2^{\text {nd }} \mathrm{Acq}$ Block	$3^{\text {rd }} \mathrm{Acq}$ Block	$4^{\text {th }} \mathrm{Acq}$ Block	$5^{\text {th }} \mathrm{Acq}$ Block	$6^{\text {th }} \text { Acq }$ Block	Retentio n Block
Control	S1 - S1 8							
SUMKR15	S1							
Strategy	S1							

Note. Acq $=$ Acquisition. Each acquisition block represents average mean of 15 trials and each retention block represents average mean of 30 trials.

Results

Subjects' performances during the 90 acquisition trials were analysed in blocks of 15 trials, but performances during retention test were analysed in one block of 30 trials (following Schmidt et al., 1989). The dependant variables for each subject and condition were absolute constant error ($|\mathrm{CE}|)$ and variable error (VE).

A groups by blocks (3×6) analysis of variance (ANOVA) with repeated measures on the block factor was used to examine changes in each of the dependant variables across acquisition trial blocks. One-way analysis of variance was used to examine simple main effects following a significant group by block interaction. A three group one-way analysis of variance (ANOVA) was used to examine group differences in each of the dependant variables in the retention test. Tukey's follow-up test was used to identify the locus of significant group differences in retention (see Appendix B for copies of the ANOVA tables and Tukey's HSD test, and Appendix C for a complete listing of the raw data).

Acquisition

Absolute Constant Error

The groups (3) x blocks (6) ANOVA with repeated measures on the second factor revealed a significant main effect for groups, $F(2,51)=4.7, p<.05$, a significant main effect for block, $F(5,255)=27.20, p<.001$ and a significant group by block interaction, $F(10,180)=2.30, p<.05$ (see Figure 16). Followup one-way ANOVAs examined group differences at each block, finding significant differences at the fourth, fifth and sixth blocks, $F(2,51)=5.81, p<$ $.05 ; F(2,51)=6.39, p<.05$ and $F(2,51)=3.92, p<.05$ respectively. However, in block 1 to block3, there were no significant differences between groups despite the CON group performing twice as accurately as the STR and

SUMKR15 groups. In order to further examine the locus of group differences Tukey's follow-up tests were performed which showed that the CON group was performing better than the SUMKR15 group at the fourth, fifth and sixth blocks. Repeated measures one-way ANOVAs for $|C E|$ examined each group's change across the six trial blocks, obtaining significant differences for CON group $F(5,85)=9.25, p<.001$; the SUMKR15 group $F(5,85)=12.06, p<$.001 ; and the STR group $F(5,85)=9.6, p<.001$. These significant differences in group mean scores between trial block 1 and block 6 represented improvement in performance for each group. Hence, the cause of the interaction was a gradual separation of the group's performances as practice proceeded, resulting in better performance by the CON group than the SUMKR15 group over the fourth to sixth blocks.

Figure 16. Absolute Constant Error (|CE|) scores in milliseconds for acquisition and retention trial blocks (Summary KR Experiment 2).

Variable Error

The result of the VE scores in acquisition was similar to that of the $|C E|$ scores. The main effect for block and the group by block interaction was significant $F(5,255)=55.40, p<.001$ and $F(10,255)=2.70, p<.05$, respectively. The interaction is graphically depicted in Figure 17. The main effect for group was not significant, $F(2,51)=1.50, p>.05$. Follow-up one-way ANOVAs examined group differences at each block, finding no significant differences between the groups. Repeated measure one-way ANOVAs examined each group's change across the six trial blocks, obtaining significant differences for CON group $F(5,85)=30.0, p<.001$; the SUMKR15 group $F(5,85)=16.12, p<.001$; and the STR group $F(5,85)=13.92, p<.001$. These significant differences in group mean score between trial block 1 and block 6 represented improvement in performance for all the groups.

Retention

Absolute Constant Error

The $|C E|$ score for each group in retention is shown at the right side of Figure 16. The one-way ANOVA among groups was significant, $F(2,51)=6.6, p<$.001. The follow-up Tukey's test revealed that the CON group had significantly higher $|C E|$ than both STR and SUMKR15 groups. The mean and standard deviation of the |CE| scores of CON, SUMKR15 and STR groups for DR were $M=85.1, S D=68.7 ; M=41.4, S D=29.4$ and $M=36.9, S D=26.7$ respectively.

Variable Error

The one-way ANOVA on groups also revealed a significant effect for VE scores, $F(2,51)=5.4, p<.001$. Figure 17 depicts this significant difference graphically. The follow-up Tukey's test revealed that the CON group had significantly higher

VE than both the SUMKR15 and the STR groups ($M=35.6, S D=15.9 ; M=$ $26.8, S D=6.74$ and $M=24.2, S D=7.4$, respectively.

Figure 17. Variable Error (VE) scores in milliseconds for acquisition and retention trial blocks (Summary KR Experiment 2).

Table 14. Means and Standard Deviations of $|C E|$ (in milliseconds) for Acquisition and Retention tests in Summary KR Experiment Two.

Groups$(\mathrm{n}=18)$		BLOCKS						
		$1^{\text {st }}$ Acq Block	$2^{\text {nd }} \mathrm{Acq}$ Block	$\begin{gathered} 3^{\text {rd } A c q} \\ \text { Block } \end{gathered}$	$\begin{aligned} & 4^{\mathrm{th}} \mathrm{Acq} \\ & \text { Block } \end{aligned}$	$\begin{gathered} 5^{\text {th }} \text { Acq } \\ \text { Block } \end{gathered}$	$6^{\text {th } A c q}$ Block	$\begin{gathered} \mathrm{R} \\ \text { Block } \end{gathered}$
Control	M	95.14	36.04	25.55	19.62	14.19	13.60	85.04
	SD	102.44	25.58	23.06	17.85	13.61	13.59	68.72
SUMKR15	M	286.65	139.59	72.98	61.97	50.60	46.15	41.44
	SD	273.94	137.55	80.95	45.49	42.46	53.34	29.38
Strategy	M	274.64	118.47	57.51	37.85	36.54	28.98	36.85
	SD	323.80	174.30	90.99	42.26	29.43	24.84	26.74

Note. Each acquisition block represents average mean of 15 trials and each retention block represents average mean of 30 trials. Acq $=$ acquisition; $\mathrm{R}=$ retention.

Table 15. Means and Standard Deviations of VE (in milliseconds) for Acquisition and Retention tests in Summary KR Experiment Two.

Groups$(\mathrm{n}=18)$		BLOCKS						
		$\begin{aligned} & 1^{\text {st }} \text { Acq } \\ & \text { Block } \end{aligned}$	$2^{\text {nd } A c q}$ Block	$\begin{gathered} 3^{\text {rd }} \text { Acq } \\ \text { Block } \end{gathered}$	$4^{\text {th } \mathrm{Acq}}$ Block	$\begin{gathered} 5^{\text {th } \mathrm{Acq}} \\ \text { Block } \end{gathered}$	$6^{\text {th }}$ Acq Block	R Block
Control	M	123.44	37.14	30.58	36.19	32.26	28.96	35.61
	SD	66.07	17.39	11.46	19.98	13.11	9.64	15.86
SUMKR15	M	77.85	38.36	36.55	29.99	31.02	32.03	26.95
	SD	41.46	15.81	21.74	13.32	15.36	20.46	6.69
Strategy	M	105.43	56.70	42.37	34.94	37.75	29.22	24.25
	SD	64.36	36.71	31.75	24.84	24.36	16.39	7.51

Note. Each acquisition block represents average mean of 15 trials and each retention block represents average mean of 30 trials. Acq $=$ acquisition; $\mathrm{R}=$ retention.

Discussion

In this study, the effect of using a learning strategy in comparison to summary KR and control conditions was examined. The purpose of the study was to investigate whether the beneficial effect upon learning of 15 trial summary $K R$ in relation to a KR on every trial condition could be matched by a strategy condition in which subjects were able to choose when to receive feedback. The hypothesis of the experiment was that the strategy group would perform as well as the 15 -trial summary KR group in retention and that both these groups would perform better than the 1 -trial summary KR control group in retention.

The findings supported the experimental hypothesis. Both the consistency (VE) and accuracy ($|\mathrm{CE}|$) of the control group was worse during retention than that of either that STR or SUMKR15 groups, and the SUMKR15 and STR groups were not different from each other.

The acquisition results of the experiment are consistent with the findings of Schmidt et al. $(1989,1990)$, with the exception that significant group interactions were found for VE, which were absent from Schmidt et al.'s (1989) study. While all the experimental groups improved over acquisition blocks, the rate of acquisition was slower for the STR and SUMKR15 groups. This suggested that increasing the summary length resulted in poorer performance. The main reason for this was the fact that the STR and SUMKR15 groups had received feedback in blocks after performing some trials on their own. Therefore, the score of summary KR groups was higher and the rate of decrease in the score was slower than the CON group across acquisition. As the hypothesis of this experiment was not primarily related to the acquisition performance of the groups, it will not be discussed in detail. One observation was made regarding the early acquisition phase. In block one to block 3 although the CON group was performing better than the STR and SUMKR15 groups there was no significant group difference. An examination of the data
revealed that the groups' standard deviations were very high which would have contributed to the lack of significance (see Figure 1).

Figure 1. Absolute Constant error ($|C E|$) scores in milliseconds with error bars for acquisition trial blocks (Summary KR Experiment 2).

The groups' retention performance was inversely related to their acquisition performance. The accuracy of the control group as measured by $|C E|$ had become worse than both the reduced frequency summary KR groups. The mean score of the control group from the last acquisition block to the retention block had increased six-fold. On the other hand |CE| scores of the SUMKR15 and the STR groups stayed roughly similar. This increase in the CON group's $|C E|$ in retention resulted in a significant difference between CON, and SUMKR15 and STR. The larger error scores of the CON group could be attributed to the fact that they received feedback after every trial, which has been shown to result in a dependence on the $K R$ to maintain performance. This in turn has been
attributed to the failure of trial-to-trial feedback in promoting subjects' ability to analyse their own response-produced feedback, which is necessary if subjects are to learn to detect their own errors (Schmidt et al., 1989; Winstein \& Schmidt, 1990). The SUMKR15 and STR groups had to perform some trials before receiving feedback, and were thus encouraged to analyse their own response produced feedback, and so become less dependent on extrinsic KR.

The findings for $|C E|$ amount to no more than a replication of Schmidt et al. (1989). However, the results for VE go beyond those obtained by Schmidt and colleagues. The VE scores in this experiment followed a similar pattern to $|\mathrm{CE}|$ scores. Although all groups had roughly similar VE at the end of the acquisition trials, the CON group was significantly less consistent than the SUMKR15 and STR groups in retention.

As noted for summary $K R$ experiment one, this finding runs contrary to the majority of summary KR research (Carnahan et al., 1996; Gable et al., 1990; Guay et al., 1992; Schmidt et al., 1989; Weeks \& Sherwood, 1994 (10min retention interval); Wright et al., 1990). Although some studies have found summary effects in VE (Guay et al., 1997; Weeks \& Sherwood, 1994 (2 day retention interval); Yao et al., 1994), none of them have offered anything but the most cursory explanation of the result, passing it off as a consequence of a multitude of differences in experimental design between their studies and those to find support from $|C E|$. In the previous experiment a suggestion of Schmidt's was mentioned in which differences in $|C E|$ might be attributable to parameterisation of a motor programme, whereas differences in VE might be attributable to the central programme itself (Schmidt et al., 1989). It is not immediately obvious why, in relation to the current set of results, improvement in the central programme underlying control of the movement should be improved when other experiments (in particular that of Schmidt et al. 1989) fail to support such a contention. A more successful explanation may be suggested from Yao et al.'s (1994) study. They hypothesised that within summary KR
conditions it is important to maintain consistent performance during acquisition in order to benefit optimally from the summary feedback. This is because, as performance variability increases within a summary episode, the general trend in performance conveyed by the summary feedback becomes less obvious (Schmidt et al., 1990). Indeed, for highly variable performance, there may be no trend in performance and so no useful information to pick up. Yao et al. (1994) proceeded to find that subjects exhibiting low variability within summary episodes in acquisition performed better in retention than subjects exhibiting high variability within those same summary episodes. Also, only the shorter summary condition (5 trials as opposed to 15) elicited a summary $K R$ effect in VE in their experiment. This tends to suggest that the lack of effect in the summary 15 condition may have been due to inordinately high variability in performance by the majority of the subjects in that group, which prevented them making good use of the summary information. In the present study, it is possible that the very careful focus on subjects' motivation to succeed at the task resulted in high levels of concentration from the physical education students who served as subjects. This in turn may have resulted in low variability in performance, the optimal use of summary KR within each summary episode, and a more stable representation of the task resistant both to drift (|CE|) and inconsistency (VE).

The result of this experiment as measure by $|C E|$ and VE clearly showed that the STR group developed the same pattern of performance and learning as the SUMKR15 group. This showed that giving the additional choice to subjects of when they might receive feedback did not affect acquisition or retention detrimentally. It did not support the contention expressed in the previous experiment that the strategy condition brought some other property to the learning experience in which the strategy's enhanced sensitivity to the subject's needs facilitated retention. Rather, it appears that the lack of a summary KR result in the previous experiment was due to a lack of methodological rigour. However, it is unfortunate that the present experiment did not include a yoked group, as this would shed further light on this point.

In summary, this experiment provides grounds for further research exploring the role of subjects' choice in learning and ultimately transfer of learning. It is expected that the ultimate benefit of the approach taken here lies in the increased transferability of the strategies learned to subsequent novel learning situations. This will be discussed in more detail in the final discussion section of the thesis.

CHAPTER NINE

General Discussion

In this chapter the general experimental hypotheses will be presented and the statistical results will be discussed. First only a superficial description of the findings will be given. Then findings related to strategic use of KR will be discussed within the context of theories of $K R$ and use of cognitive strategies to enhance motor learning.

The series of experiments conducted tried to investigate the merits of applying a cognitive strategy to a simple motor task. The primary hypotheses of the studies were that a) the strategy groups and the less frequent $K R$ groups (either in bandwidth, relative frequency or summary KR form) would perform better than a control group (which received KR on every trial) in retention, and b) the strategy group would perform as well as each of the KR treatment groups.

Bandwidth Experiment

The results of the bandwidth experiment failed to support the hypotheses by the Group by Blocks (3 x 2) ANOVA using $|\mathrm{CE}|$ and VE as the dependant variable and treatment groups as independent variable in retention.

Relative Frequency Experiments

The results of the first and second relative frequency experiments also failed to support the hypotheses by the Group by Blocks (3×2) ANOVA using $|C E|$ and VE as the dependant variable and treatment groups as independent variable in retention.

Summary KR Experiments

The results of the first summary $K R$ experiment partially support the hypotheses by the 4 group one-way ANOVA using VE as the dependant variable and treatment groups as independent variable. The results revealed that the strategy group was more consistent than the control group. This was a somewhat surprising finding, in that previous studies involving summary KR had not in general found that summary KR affected VE. However as the consistency of the summary KR group was not significantly better than the control group, and more importantly, the findings for $|C E|$ were insignificant, it was felt that a further experiment was necessary to examine the strategy group's performance in comparison to a 'normal' summary feedback effect.

The results of the second summary KR experiment supported all the hypotheses by the one-way ANOVA using $|\mathrm{CE}|$ and VE as the dependant variable and treatment groups as independent variable. The results revealed that both the strategy group and the summary-KR groups were more consistent and accurate than the control group in retention. This went beyond what was expected of a replication of Schmidt et al. (1989). It was tenuously suggested that the VE findings were a consequence of the attention given to motivational level of the subjects, resulting in more consistent performance under no-KR conditions (between summary presentations) in acquisition, and therefore the optimal use of the summary information when it was available. It was also observed that there was no difference between the strategy group and the KR treatment group, suggesting that subjects' use of the strategy yielded the same results as the subjects whose KR was manipulated by the experimenter.

The results of the last two experiments have resulted in a detailed analysis of the contribution of summary feedback to both response bias and response consistency. It was noted that there appeared to be a pattern in the literature that summary feedback was more effective for reducing response bias as
opposed to response consistency (Carnahan et al., 1996; Gable et al., 1990; Guay et al., 1992; Schmidt et al., 1989; Weeks \& Sherwood, 1994 (10min retention interval); Wright et al., 1990), although there were some exceptions (Guay et al., 1997; Weeks \& Sherwood, 1994 (2 day retention interval); Yao et al., 1994). It was further noted that there was no satisfactory explanation for this phenomena within the literature, rather that it was just accepted as the status quo. Having attempted to offer a resolution of this problem in the discussion to the last experiment, it is intended to move on from that point now to consider how the summary KR phenomena itself is thought to function, and how the strategy manipulation may fit into such thoughts.

Most current theorising regarding summary KR (and indeed relative frequency KR and bandwidth KR) has not progressed much since about 1990. From 1989 to 1992 several leading reviews and experimental studies were published which considered the processes underlying the various KR effects (Lee \& Carnahan, 1990; Schmidt, 1991; Schmidt et al. 1989; Swinnen et al. 1990; Winstein \& Schmidt, 1990; Young \& Schmidt, 1992). These papers, although influential, were largely repetitive. Three main explanations were offered for KR effects as a whole. Each of these are seen as sub-components of the guidance hypothesis, which simply states that too much KR during acquisition leads to a dependence on KR which is detrimental to learning. The processes underlying the guidance phenomenon are not clear. The first of the three possibilities is that KR on every trial requires the subject to attempt to alter their performance on every trial. On some occasions, this may result in subjects attempting to correct errors that are simply a consequence of noise in the motor system; the movement is essentially correct, as far as the subject can manage, yet because the KR is precise, an error is still signalled. On the subsequent trial, the subject inadequate response results in a larger error in the opposite direction, which itself needs correcting, and so on. This process has been referred to as 'maladaptive short-term corrections' (Schmidt \& Bjork, 1993).

The second possibility is the flip-side of the first; that the effect is less to do with the detrimental effect of KR on every trial, but is a benefit of practising without KR. Practice without KR provides less stimulus for change on a trial to trial basis, so there is a greater opportunity to develop stable task performance. This allows the learner to relate the KR to a more stable representation of task requirements, thus maximising the utility of the KR (e.g. Yao et al., 1994). Alternatively, Winstein (1988) has suggested that the no-KR trials result in drift from the correct performance, which in turn leads to larger errors for KR to correct and a clearer implication to the subject of how to use the KR. Sidaway et al. (1992) produced some evidence against this notion, by showing that blocks of trials within one summary episode did not deteriorate in performance as Winstein predicted.

Finally, there is the explanation that was presented in the previous chapters, that KR prevents the subjects' focus on their own response produced feedback, and therefore inhibits the subjects ability to learn aspects of the task that will be beneficial for retention. This viewpoint has been directly supported by Lee \& Maraj (1994) for bandwidth KR effects, who termed it the blocking hypothesis as it specifies that response produced feedback is blocked. It also seems to be gaining some acceptance within summary KR papers (Weeks \& Sherwood, 1994; Yao et al., 1994), though there does not seem to be sufficient evidence to justify any decisions as yet.

In summary, the research has not progressed a great deal in terms of distinguishing between the three or four proposed processes underlying the guidance effect, though what evidence there is supports the blocking hypothesis (Lee \& Maraj, 1994). Fortunately, it was not the purpose of this thesis to distinguish between these three processes, but to extend the KR paradigm by introducing a component of subject choice in determining when they were to receive feedback. It was intended that subjects would be trained within specific KR schedules, where the provision of KR was to a certain extent handed over to
the subjects. Following this experiments were to be run which would examine whether these subjects, through their involvement in such training, might develop an appreciation for the 'laws of KR ', which might in turn facilitate their learning skills on subsequent tasks. The final question to be answered within this line of reasoning was whether such strategic knowledge on the part of the subject might lead to performance benefits over and above those of traditional KR manipulations, as a result of the subjects' incorporation of their knowledge of their own performance requirements into their KR demands.

Unfortunately, as a result of the methodological problems encountered throughout the early part of the thesis, it was not possible to fulfil the proposed sequence of experiments within the time constraints of the thesis. However, the final experiment does offer limited hope for further study.

The hope for further study is in the fact that the strategy did facilitate retention relative to the CON group as well as the summary KR group. The limit to this hope is derived from the constraints that were imposed on subjects in the strategy group so that they would at least receive a reduced relative frequency of KR. This might be interpreted as simply ensuring that the strategy group was no more than another summary KR group, and thus it is not surprising that they obtained similar performance. To provide evidence that is contrary to this line of reasoning it would have been necessary to have included a yoked group in the current experiment, which may have been expected to have produced performance levels between those of the CON and STR groups. There is some tenuous support for this contention in the summary KR one experiment, in as much as the STR group perform better than the CON group in retention and the Y-STR group do not. However, there was no significant difference between the STR and Y-STR groups either, so this support is also marginal. The truth of the matter is that this experiment is unlikely to show the required level of support for the ideas presented above. It was designed more as a means of training
subjects to become aware of the way in which KR could benefit learning, rather than as the ultimate test of the strategy.

The true test of the strategy would be to take the subjects to have been exposed to this level of strategy and provide them with more freedom in a second experiment, so that differences between them and a traditional KR group were more apparent. The benefits of each subjects' knowledge of their own feedback requirements would have to be examined once again through the use of a yoked group, and as the subjects are allowed more freedom the differences between the Y-STR and STR groups may emerge.

It only remains to justify the expectations for this line of experimentation in terms of the literature. First of all, among the most beneficial KR manipulations have been those of faded feedback (Dunham \& Mueller, 1993; Winstein, Pohl, \& Lewthwaite, 1994; Winstein \& Schmidt, 1990) and bandwidth feedback (Goodwin \& Meeuwsen, 1995; Lee \& Carnahan, 1990; Lee \& Maraj, 1994). These KR manipulations both begin with large proportions of trials on which there is feedback, and slowly reduce the amount of feedback per trial block as learning progresses. Indeed, one of the supporting arguments for bandwidth feedback was that it achieved a faded feedback scheduling naturally, through its sensitivity to the subjects' errors. Thus it seems a larger proportion of feedback is useful early in learning, when the subject is obtaining a rough idea of the task demands. Secondly, Yao et al. (1994) suggest that performance variability must be low in order to maximise the benefit from sustained periods of no-KR practice, an observation supported by Schmidt et al. (1989). Though bandwidth feedback schedules come close to meeting both of these needs, the artificially imposed bandwidth does not take into account individual differences in performance accuracy, nor the change in performance accuracy as the subjects learn the task. Ways of achieving these last two alterations have only recently been recommended by Lee \& Maraj (1994) as the next step forward in improving bandwidth effects. One way in which all these requirements might be
incorporated into the same learning episode, and one way to maximise the sensitivity of the feedback scheduling to the needs of the learner as recommended by Lee \& Maraj (1994), is to follow just such a training process as outlined in this thesis. Hence, some support for the line of research proposed above can be gleaned from the literature.

REFERENCES

Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behaviour, 3, 111-149

Adams, J. A. (1987). Historical review and appraisal of research on the learning, retention and transfer of human motor skills. Psychological Bulletin, 101 (1), 41-74.

Belmont, J. M., \& Butterfield, E. C. (1971). Learning strategies as determinants of memory deficiencies. Cognitive Psychology, 2, 411-420.

Bilodeau, E. A., \& Bilodeau, I. M. (1958). Variable frequency of knowledge of results and the learning of a simple skill. Journal of Experimental Psychology, 55 (4), 379-383.

Brown, H. J., Singer, R. N., Cauraugh, J. H., \& Lucariello, G. L. (1985). Cognitive style and learner strategy interaction in the performance of primary and related maze tasks. Research Quarterly for Exercise and Sport, 56 (1), 10-14.

Butler, M. S., \& Fischman, M. G. (1996). Effects of bandwidth feedback on delayed retention of a movement timing task. Perceptual and Motor Skills, 82, 527-530.

Butler, M. S., Reeve, T. G., \& Fischman, M. G. (1996). Effects of the instructional set in the bandwidth feedback paradigm on motor skill acquisition. Research Quarterly for Exercise and Sport, 67, 3, 355-359

Carlton, M.J. (1983). Amending movements - The relationship between degree of mechanical disturbance and outcome accuracy. Journal of Motor Behavior, 15(1), 39-62.

Carnahan, H., Vandervoort, A. A., \& Swanson, L. R. (1996). The influence of summary knowledge of results and aging on motor learning. Research Quarterly for Exercise and Sport, 67 (3), 280-287

Cauraugh, J. H., Chen, D., and Radlo, S. J. (1993). Effects of traditional and reversed bandwidth knowledge of results on motor learning. Research Quarterly for Exercise and Sport, 64, 4, 413-417

Cohen, J. (1977). Statistical power analysis for behavioral science. New York, New York: Academic Press.

Cohen, J. (1988). Statistical power analysis for bebavioral sciences (2nd ed.). Hillsdale, New Jersey: Lawrence Erlbaum Association.

Craik, F. I. M., \& Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behaviour, 11, 671684.

Fazey, J. A. (1986). Schema theory and the development of a functional model of motor skill. Unpublished Doctoral Dissertation, University of Wales, Bangor.

Gable, C. D., Shea, C. H., \& Wright, D. L. (1991). Summary knowledge of results. Research Quarterly for Exercise and Sport, 62 (3), 285-292.

Goodwin, J. E., \& Meeuwsen, H. J. (1995). Using bandwidth knowledge of results to alter relative frequencies during motor skill acquisition. Research Quarterly for Exercise and Sport, 66 (2), 99-104.

Guadagnoli, M. A., Dornier, L. A., \& Tandy, R. D. (1996). Optimal length for summary knowledge of results: The influence of task-related experience and complexity. Research Quarterly for Exercise and Sport, 67 (2), 239-248

Guay, M., Salmoni, A., \& Lajoie, Y. (1997). Summary knowledge of results and task processing load. Research Quarterly for Exercise and Sport, 68 (2), 167171

Guay, M., Salmoni, A., \& McIlwain, J. (1992). Summary knowledge of results for skill acquisition: Beyond Lavery and Schmidt. Human Movement Science, 11, 653-673

Ho, L., \& Shea, J. B. (1978). Effects of relative frequency of knowledge of results on retention of a motor skill. Perceptual and Motor Skills, 46, 859866.

Johnson, R. W., Wicks, G. G., \& Ben-Sira, D. (1981). Practice in the absence of knowledge of results: Motor skill retention. Unpublished manuscript. University of Minnesota. Cited in Winstein, C., \& Schmidt, R. A. (1990).

Kremer, J., \& Scully, D. (1994). Psychology in Sport. London: Taylor \& Francis.

Lavery, J. J. (1962). Retention of simple motor skills as a function of type of knowledge of results. Canadian Journal of Psychology, 16 (4), 300-311.

Lee, T. D., \& Carnahan, H. (1990). Bandwidth knowledge of results and motor learning: More than just a relative frequency effect. The Quarterly Journal of Experimental Psychology, 42A (4), 777-789.

Lee, T. D., \& Maraj, B. K. V. (1994). Effects of bandwidth goals and bandwidth knowledge of results on motor learning. Research Quarterly for Exercise and Sport, 65 (3), 244-249.

Lee, T. D., Magill, R. A., \& Carnahan, H. (1990). On the role of knowledge of results in motor learning: Exploring the guidance hypothesis. Journal of Motor Behavior, 22, 191-208. Cited in Lee, T. D., \& Carnahan, H. (1990).

Lee, T. D., Magill, R. A., \& Weeks, D. J. (1985). Influence of practice schedule on testing schema theory predictions in adults. Journal of Motor Behavior, 17 (3), 283-299.

Lee, T. D., Swinnen, S. D., \& Serrien, D. J. (1994). Cognitive effort and motor learning. Quest, 46, 328-344.

Magill, R. A. (1993). Motor learning concepts and applications (4th ed.). Madison, Wisconsin: Wm. C. Brown.

Perry P., \& Downs, S. (1986). Skills, strategies and ways of learning: Can we help people learn how to learn? Plet, 22 (2), 177-181.

Poleck, B. J., \& Lee, T. D. (1992). Effects of the model's skill level on observational motor learning. Research Quarterly for Exercise and Sport, 63 (1), 25-29.

Rigney, J. W. (1978). Learning strategies: a theoretical perspective, In H. F. O’Neil Jr. (Ed.) Learning Strategies I. Academic Press: New York.

Salmoni, A. W., Schmidt, R. A., \& Walter, C. B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. Psychological Bulletin, 95 (3), 355-386.

Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225-260

Schmidt, R. A. (1988). Motor control and learning (2nd ed.). Champaign, Illinois: Human Kinetics.

Schmidt, R. A. (1991) Motor learning and performance. Champaign, Illinois: Human Kinetics.

Schmidt, R. A. (1991). Frequent augmented feedback can degrade learning: Evidence and interpretations. In J. Requin \& G. E. Stelmach (Eds.). Tutorials in Motor Neuroscience (pp. 59-75). Netherlands: Kluwer Academic.

Schmidt, R. A., \& Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3, 4, 207-217

Schmidt, R. A., Lange, C., \& Young, D. A. (1990). Optimising summary knowledge of results of skill learning. Human Movement Science, 9, 325348.

Schmidt, R. A., Shapiro, D. C., Winstein, C. J., Young, D. E., \& Swinnen, S. (1987). Feedback and motor skill training: Relative frequency of $K R$ and summary KR. (Technical Report Contract No. MDA 903-85-K-0225). Alexandria, Virginia: U. S. Army Research Institute.

Schmidt, R. A., Young, D. E., Swinnen, S., \& Shapiro, D. C. (1989). Summary knowledge of results for skill acquisition: Support for the guidance hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15 (2), 352-359.

Schneider W. \& Fisk A.D. (1983). Attention theory and mechanisms for skilled performance. In R.A. Magill (Ed.), Memory and Control Action. (p. 119143) Amsterdam: North-Holland.

Schneider W. \& Shiffrin R. (1977). Controlled and automatic human information processing: Detection, search, and attention. Psychological Review, 84 (1), 1-66.

Sherwood, D. E. (1988). Effect of bandwidth knowledge of results on movement consistency. Perceptual and Motor Skills, 66, 535-542.

Sidaway, B., Fairweather, M., Powell, J., \& Hall, G. (1992). The acquisition and retention of a timing task: Effects of summary KR and movement time. Research Quarterly for Exercise and Sport, 63 (3), 328-334.

Sidaway, B., Moore, B., \& Zohdi, B. S. (1991). Summary and frequency of KR presentation effects on retention of a motor skill. Research Quarterly for Exercise and Sport, 62 (1), 27-32.

Singer, R. N. (1980). Motor behaviour and the role of cognitive processes and learner strategies. In G. E. Stelmach \& J. Requin (Eds.), Tutorials in Motor Behaviour, (pp. 591-603). Amsterdam: North-Holland.

Singer, R. N., \& Cauraugh, J. H. (1984). Generalisation of psychomotor learning strategies to related psychomotor tasks. Human Learning, 3, 215-225.

Singer, R. N., \& Cauraugh, J. H. (1985). The generalizability effect of learning strategies for categories of psychomotor skills. Quest, 37, 103-119.

Singer, R. N., \& Suwanthada, S. (1986). The generalizability effectiveness of a learning strategy on achievement in related closed motor skills. Research Quarterly for Exercise and Sport, 57 (3), 205-214.

Singer, R. N., \&. Gerson, R. F. (1981). Task classification and strategy utilisation in motor skills. Research Quarterly for Exercise and Sport, 52 (1), 100-116.

Singer, R. N., Cauraugh, J. H., Lucariello, G., \& Brown, H. J. (1985). Achievement in related psychomotor tasks as influenced by learner strategies. Perceptual and Motor Skills, 60, 843-846.

Sparrow, W. A., \& Summers, J. J. (1992). Performance on trials without knowledge of results (KR) in reduced relative frequency presentations of KR. Journal of Motor Behavior, 24 (2), 197-209.

Swinnen, S. P. (1990). Interpolated activities during the knowledge-of-results delay and post knowledge-of-results interval effects on performance and learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16 (4), 692-705

Swinnen, S. P., Schmidt, R. A., Nicholson, D. E., and Shapiro, D. C. (1990). Information feedback for skill acquisition: Instantaneous knowledge of results degrades learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 4, 706-716

Taylor, A., \& Noble, C. E. (1962). Acquisition and extinction phenomena in human trial-and-error learning under different schedules of reinforcing feedback. Perceptual and Motor Skills, 15, 31-44

Thorndike, E. L. (1927). The law of effect. American Journal of Psychology, 39, 212-222. Cited in Schmidt, R. A. (1991).

Trowbridge, M. H., \& Cason, H. (1932). An experimental study of Thorndike's theory of learning. Journal of General Psychology, 7, 245-258. Cited in Winstein, C., \& Schmidt, R. A. (1990).

Weeks, D. L., \& Sherwood, D. E. (1994). A comparison of knowledge of results scheduling methods for promoting motor skill acquisition and retention. Research Quarterly for Exercise and Sport, 65 (2), 136-142

Winstein, C. J. (1988). Relative frequency of information feedback in motor performance and learning. Unpublished Doctoral Dissertation. University Of California, Los Angeles. Cited in Lee, T. D., \& Carnahan, H. (1990).

Winstein, C. J., \& Schmidt, R. A. (1990). Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16 (4), 677-691.

Wright, D. L., Snowden, S., \& Willoughby, D. (1990). Summary KR: How much information is used from the summary? Journal of Human Movement Studies, 19, 119-128

Wishart, L. R., \& Lee, T. D. (1997). Effects of aging and reduced relative frequency of knowledge of results on learning a motor skill. Perceptual and Motor Skills, 84, 1107-1122.

Wulf, G. (1992). Reducing knowledge of results can produce context effect in movements of the same class. Journal of Human Movement Studies, 22, 7184.

Wulf, G., Lee, T. D., \& Schmidt, R. A. (1994). Reducing knowledge of results about relative versus absolute timing: Differential effects on learning. Journal of Motor Behavior, 26 (4), 362-369

Wulf, G., \& Schmidt, R. A. (1989). The learning of generalised motor programs: Reducing the relative frequency of knowledge of results enhances memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15 (4), 748-757.

Yao, W., Fischman, M. G., \& Wang, Y. T. (1994). Motor skill acquisition and retention as a function of average feedback, summary feedback, and performance variability. Journal of Motor Behavior, 26, 3, 273-282.

APPENDIX A

Listing Of Experimental Programs And Spreadsheet Macros Used In The Summary Kr Experiments

1 REM ***** Bandwidth programmes updated for Sadettin April 92 *****
$2 \mathrm{~N}=0$
4 INPUT "Do you want to test the programme ";T\$
5 PRINTER 4,4
6 T=800
10 PRINT "TEST SWITCHES? (Y IF YES, N IF NO)":LET ZZ=GET()
20 IF ZZ=ASC("N") OR ZZ=ASC("n") THEN GOTO 210
30 CALL "CLOPAD",7
40 CALL "CLOPAD",8,VARADR(A):CR=0
50 IF A=0 THEN PRINT "ALL BARRIERS DOWN":CR=1
60 IF A $=2$ THEN PRINT "ALL BARRIERS DOWN, BUTTON 1 DEPRESSED":CR=1
70 IF A $=8$ THEN PRINT "ALL BARRIERS DOWN, BUTTON 2 DEPRESSED":CR=1
80 IF A=16 THEN PRINT "BARRIER 1 UP":CR=1
90 IF A=32 THEN PRINT "BARRIER 2 UP":CR=1
100 IF A=64 THEN PRINT "BARRIER 3 IS UP":CR=1
110 IF A $=48$ THEN PRINT "BARRIERS 1 AND 2 ARE UP":CR=1
120 IF A = 80 THEN PRINT "BARRIERS 1 AND 3 ARE UP":CR=1
130 IF A $=96$ THEN PRINT "BARRIERS 2 AND 3 ARE UP":CR=1
140 IF A=112 THEN PRINT "ALL BARRIERS UP":CR=1
150 IF A=56 THEN PRINT "BARRIERS 1 AND 2 UP, BUTTON 2 DEPRESSED":CR=1
160 IF A $=82$ THEN PRINT "BARRIERS 1 AND 3 UP, BUTTON 1 DEPRESSED":CR=1
170 IF A $=88$ THEN PRINT "BARRIERS 1 AND 3 UP, BUTTON 2 DEPRESSED":CR=1
180 IF A=10 THEN GOTO 210
190 IF CR=0 THEN PRINT "STOP MUCKING ABOUT"
200 GOTO 40
210 REM BANDWIDTH EXPERIMENTS - 11/6/90.
220 DIM X $(18,5): W \mathrm{~F}=0$
$230 \mathrm{UL}=1050: \mathrm{LL}=950$
235 INPUT "Drive Letter for data file record ";D\$
240 INPUT "SUBJECT ID? ",S\$
$249 \mathrm{EC}=2$:GOTO 260
250 INPUT "EXPT.1, EXPT. 2 OR EXPT. 3 ? (TYPE NUMBER) ",EC
260 IF EC $=2$ THEN GOTO 280
270 INPUT "FEEDBACK CONDITION (1 OR 2)? ",FC:GOTO 290
280 INPUT "FEEDBACK CONDITION (1, 2 OR 3)? ",FC:FC=FC+2
290 IF EC $=3$ THEN $\mathrm{FC}=\mathrm{FC}+5$
291 GOSUB 400
300 FOR BL=1 TO 18
310 FOR TR=1 TO 5
320 LET X $(\mathrm{BL}, \mathrm{TR})=0$
330 NEXT TR:NEXT BL
340 FOR BL= 1 TO 18
345 IF BL $=15$ THEN GOSUB 2000:REM 5-MINUTE WAIT
350 FOR TR=1 TO 5
$355 \mathrm{~N}=\mathrm{N}+1$
360 GOSUB 880:REM A TRIAL
365 IF BL > 12 THEN GOTO 380
370 GOSUB 630:REM FEEDBACK
380 NEXT TR:NEXT BL
381 GOSUB 429
385 END
390 REM PRINT DATA TO FILE(S)
400 LET FC $\$=$ STR $\$(\mathrm{FC}):$ LET FC $\$=$ RIGHT $\$(\mathrm{FC} \$, 1)$
410 LET F\$ = D $\$+$ ":b10" + S $\$+$ FC $\$+$ ".DTA"
420 CREATE \# 10,F\$
421 PRINT \# 10,FC\$

422 RETURN
429 REM store data
430 FOR BL=1 TO 18:FOR TR=1 TO 5
440 PRINT \# 10,X(BL,TR);
450 NEXT TR
460 PRINT \#10," "
470 NEXT BL
480 CLOSE \# 10
570 PUT 12:TEXT
580 PRINT "THANK YOU VERY MUCH FOR YOUR HELP"
590 PRINT "THIS SUBJECT HAD ";WR;" REPEATED TRIALS"
595 LPRINT F\$:LPRINT
600 LPRINT "BLOCK";TAB(16);"VE";TAB(26);"CE";TAB(36);"AE"
610 GOSUB 1050:REM VE SCORES
620 RETURN
630 GRAPH 1
640 GRAPH 0:GRAPH 1
650 CALL "RESOLUTION",0,2
660 CALL "PLOT",123,0,2
670 CALL "LINE",123,165,2
680 CALL "PLOT",166,165,2
690 CALL "LINE",166,0,2
700 REM SUBR TO DISPLAY FEEDBACK IN BANDWIDTH EXPTS
710 IF $\mathrm{FC}=2$ AND X $(\mathrm{BL}, \mathrm{TR})>$ LL AND X $(\mathrm{BL}, \mathrm{TR})<\mathrm{UL}$ THEN GOTO 830
720 IF FC $=1$ OR FC $=2$ THEN GOTO 840
730 IF FC= 3 OR FC $=4$ OR FC $=6$ THEN K $=\mathrm{INT}(\mathrm{X}(\mathrm{BL}, \mathrm{TR}) / 5-130)$
740 IF K > 5150 THEN K=150
750 IF K<1 THEN K=1
760 IF FC=3 OR FC $=4$ THEN GOTO 850
770 IF FC=6 THEN GOTO 860
780 IF FC $=5$ OR FC $=7$ THEN GOSUB 1020
790 IF K >5150 THEN K=150
800 IF $\mathrm{K}<1$ THEN K=1
810 IF CC= 1 THEN CC=0:IF FC=4 THEN GOTO 840 ELSE GOTO 830
820 IF CC $=2$ THEN CC=0:IF FC=7 THEN GOTO 860 ELSE GOTO 850
830 PLOT 77,12,"*":K=77:GOTO 870
840 PLOT 70,12,STR\$(X(BL,TR)):K=70:GOTO 870
850 PLOT K,12,STR\$(X(BL,TR)):GOTO 870
860 PLOT K+7,12,"*"
870 RETURN
880 REM RUN A TRIAL
883 IF T\$="y" THEN T=T+5:GOTO 980
884 IF T\$="y" OR T\$="Y" THEN T=1000-INT((200+200)*RND(1)-200):PRINT N:GOTO 980
890 CALL "CLOPAD",7
900 CALL "CLOPAD",8,VARADR(A):IF A<>82 THEN PRINT "GET READY";N:GOTO 900
910 PUT 12
920 PLOT K,12," "
930 PRINT "GO WHEN READY"
940 CALL "CLOPAD",8,VARADR(A):IF A=82 THEN GOTO 930
950 CALL "CLOPAD",0
960 CALL "CLOPAD",8,VARADR(A):IF A>0 THEN GOTO 960
970 CALL "CLOPAD",1,VARADR(T)
980 IF T<500 OR T>1500 THEN PLOT 40,30,"LARGE ERROR -TRY
AGAIN":WR=WR+1:GOTO 900

```
990 PLOT 40,30,"
1000 LET X (BL,TR)=T
1010 RETURN
1020 IF X(BL,TR)>LL AND X(BL,TR) <UL THEN CC=1:RETURN
1021 IF X(BL,TR) =LL OR X(BL,TR) = UL THEN CC=1:RETURN
1030 IF X(BL,TR)<LL THEN K=INT(X(BL,TR)/5-130):CC=2:RETURN
1040 IF X (BL,TR) > UL THEN K=INT(X (BL,TR)/5-128):CC=2:RETURN
1050 FOR BL=1 TO 18
1060 CX=0:XX=0:ES=0:EX=0:VE=0:AE=0:CE=0
1070 FOR TR=1 TO 5
1080 CX=CX + X(BL,TR)
1085 CE=CE +X(BL,TR)-1000:AE=AE +ABS(X(BL,TR)-1000)
1090 XX = XX + (X(BL,TR)*X(BL,TR))
1100 NEXT TR
1105 CE=CE/5:AE=AE/5
1110 LET EX=CX/5:LET ES = XX/5
1120 VE=SQR(ES-(EX*EX))
1130 PRINT BL;TAB(16);VE;TAB(26);CE;TAB(36);AE
1131 LPRINT BL;TAB(16);VE;TAB(26);CE;TAB(36);AE
1135 NEXT BL
1140 RETURN
2000 REM 5-MINUTE BREAK
2005 CALL "CLEAR":PUT 12
2010 PLOT 40,30,"THERE IS NOW A 5-MINUTE BREAK":BT=5
2020 FOR I=1 TO 20
2030 PLOT 40,25,STR$(BT) +" TO GO "
2040 LET ZZ=GET(1500):BT=BT-.25:NEXT I
2050 PLOT 40,30,"
2060 PLOT 40,25," "
2070 RETURN
```

```
1 REM ** Relative Frequency programmes updated for Sadettin April 92 **
2 N=0
5 PRINTER 4,4
10 INPUT "Test the programme.... y or n ";T$
20 DIM X (18,5)
25 INPUT "Drive letter for record of data ";D$
30 INPUT "Subject ID ",ID$
40 INPUT "Feedback control 1, 2 or 3 ",FC
50 FOR BL= 1 TO 16
60 FOR TR= 1 TO 5
70 LET X(BL,TR)=0
80 NEXT TR:NEXT BL
90 FOR BL=1 TO 18
100 IF BL=15 THEN GOSUB }314
120 FOR TR=1 TO 5
121 N= N+1
130 GOSUB 470:REM A TRIAL
140 GOSUB 290
150 NEXT TR:NEXT BL
160 REM PRINT DATA TO FILE
170 LET FC$=STR$(FC)
175 LET FC$=RIGHT$(FC$,1)
180 LET F$=D$+":RF20" +ID$+FC$+".dta"
181 PRINT " SAVING FILE ";F$
190 CREATE # 10, F$
195 PRINT # 10,FC
200 FOR BL= 1 TO 18
205 FOR TR=1 TO 5
210 PRINT # 10,X(BL,TR);
220 NEXT TR
230 PRINT # 10," "
240 NEXT BL
250 CLOSE #10
260 PUT 12
270 PRINT "THANK YOU VERY MUCH FOR YOUR HELP....."
271 GOSUB 2998
280 END
285 REM ****************** Trial subroutine ********
290 GRAPH 1
3 0 0 \text { GRAPH 0:GRAPH 1}
310 CALL "RESOLUTION",0,2
320 CALL "FILL",125,25,163,48,3
3 3 0 \text { CALL "FILL",127,27,161,46,0}
340 REM SUBR TO DISPLAY FEEDBACK IN FREQUENCY EXPT.
350 IF BL=1 AND TR=1 GOTO 370
360 IF FC=3 AND TR<5 THEN 420
370 J=52-(TR-1)*10
380 IF BL>12 THEN RETURN
390 IF X(BL,TR)=0 THEN X$=" ":GOTO 410
400 X$=STR$(X(BL,TR))
410 PLOT 70,J,X$
4 2 0 ~ R E T U R N
4 3 0 ~ R E M ~ t e s t ~ r o u t i n e ~ f o r ~ b o a r d ~
4 4 0 \text { CALL "CLOPAD",7}
450 CALL "CLOPAD",8, VARADR(A)
460 PRINT A:GOTO 440
```

```
470 REM RUN A TRIAL
471 IF T$="y" OR T$="Y" THEN T=1000-INT((200+200)*RND(1)-200):PRINT N:GOTO
    560
472 PUT 12
4 7 3 \text { PRINT N}
4 8 0 \text { CALL "CLOPAD",7}
4 9 0 \text { CALL "CLOPAD",8,VARADR(A):IF A < > 82 THEN PRINT "GET READY",N:GOTO}
    4 9 0
5 0 0 ~ P U T ~ 1 2 ~
5 1 0 ~ P R I N T ~ " G O ~ W H E N ~ R E A D Y " ~
520 CALL "CLOPAD",8,VARADR(A):IF A=82 THEN }51
5 3 0 \text { CALL "CLOPAD",0}
540 CALL "CLOPAD",8,VARADR(A):IF A>0 THEN }54
550 CALL "CLOPAD",1,VARADR(T)
560 LET X(BL,TR)=T
5 7 0 \text { RETURN}
2998 LPRINT F$:LPRINT
2999 LPRINT "Block";TAB(16);"VE";TAB(26);"CE";TAB(36);AE
3000 FOR BL=1 TO 18
3010 CX=0:XX=0:ES=0:EX=0:VE=0:AE=0:CE=0
3020 FOR TR=1 TO 5
3030 CX=CX+X(BL,TR)
3040CE=CE+X(BL,TR)-1000:AE=AE+ABS(X(BL,TR)-1000)
3050 XX = XX + (X(BL,TR)*X(BL,TR))
3 0 6 0 ~ N E X T ~ T R ~
3070 CE=CE/5:AE=AE/5
3080 LET EX=CX/5:LET ES=XX/5
3090 VE=SQR(ES-(EX*EX))
3 0 9 9 ~ P R I N T ~ " B l o c k " ; T A B ( 1 6 ) ; " V E " ; T A B ( 2 6 ) ; " C E " ; T A B ( 3 6 ) ; " A E " ~
3100 PRINT BL;TAB(16);VE;TAB(26);CE;TAB(36);AE
3110 LPRINT BL;TAB(16);VE;TAB(26);CE;TAB(36);AE
3 1 2 0 ~ N E X T ~ B L ~
3121 LPRINT:LPRINT
3130 RETURN
3140 REM 5-MINUTE BREAK
3150 CALL "CLEAR":PUT 12
3160 PLOT 40,30,"THERE IS NOW A 5-MINUTE BREAK":BT=5
3170 FOR I=1 TO 20
3175 PLOT 40,25,STR$(BT)+ " TO GO "
3180 PLOT 40,25,STR$(BT) +" TO GO "
3190 LET ZZ=GET(1500):BT=BT-.25:NEXT I
3 2 0 0 ~ R E T U R N
3210 PLOT 40,25,"
3 2 2 0 ~ R E T U R N
```

MS Excel for Windows (v4.0c) macros used to create feedback graphs in first Summary KR Experiment

Create_Chart for_Control_Group (Select Only One Trial)
SELECT("R[13]C")
COPY()
CREATE.OBJECT(5,"R3C3",0,0,"R26C21",0,0,1,TRUE,4,1)
GALLERY.LINE(1,TRUE)
UNHIDE()
WINDOW.MAXIMIZE()
SELECT("Axis 1")
SCALE(-150,150,50,25,TRUE,FALSE,FALSE,FALSE)
PATTERNS(1,1,1,1,4,3,4)
SELECT("Axis 2")
SCALE (1,1,1,TRUE,FALSE,FALSE)
SELECT("S1")
PATTERNS($0,1,1,3,1,1,1,3$, FALSE)
SELECT("")
RETURN()
Delete_Inserted_Chart (and Move One Cell Down)
ACTIVATE.NEXT()
CLEAR()
SELECT("RC")
SELECT.SPECIAL $(9,1)$
SELECT("RC[1]")
RETURN()
Create_Chart_for_SumKR10_Group (Select Ten Trials)
SELECT("R[13]C[-9]:R[13]C")
COPY()
CREATE.OBJECT(5,"R3C3",0,0,"R26C21", $0,0,1$, TRUE, 4,1)
GALLERY.LINE(1,TRUE)
UNHIDE()
WINDOW.MAXIMIZE()
SELECT("Axis 1")
SCALE(-150,150,50,25,TRUE,FALSE,FALSE,FALSE)
PATTERNS (1,1,1,1,4,3,4)
SELECT("Axis 2")
SCALE ($1,1,1$, TRUE,FALSE,FALSE)
SELECT("S1")
PATTERNS $(0,1,1,3,1,1,1,3$, FALSE $)$
SELECT("")
RETURN()
Delete_Inserted_Chart_and (Move One Cell Right)
ACTIVATE.NEXT()
CLEAR()
SELECT("RC")
SELECT.SPECIAL $(9,, 1)$
SELECT("R[1]C")

RETURN()
Create_Chart for_Strategy_Group (Select Highlighted Cells)
SELECT()
COPY()
CREATE.OBJECT(5,"R3C3",0,0,"R26C21",0,0,1,TRUE,4,1)
GALLERY.LINE(1,TRUE)
UNHIDE()
WINDOW.MAXIMIZE()
SELECT("Axis 1")
SCALE(-150,150,50,25,TRUE,FALSE,FALSE,FALSE)
PATTERNS (1,1,1,1,4,3,4)
SELECT("Axis 2")
SCALE(1,1,1,TRUE,FALSE,FALSE)
SELECT("S1")
PATTERNS(0,1,1,3,1,1,1,3,FALSE)
SELECT("")
RETURN()
Delete_Inserted_Chart (and Move One Cell Down)
ACTIVATE.NEXT()
CLEAR()
SELECT("RC")
SELECT.SPECIAL $(9,, 1)$
SELECT("R[1]C")
RETURN()

MS Excel for Windows (v5.0a) macros used to create feedback graphs in second Summary KR Experiment

Control Group 1 Trial Data Range
SELECT("R[10]C")
WORKBOOK.INSERT(2)
CHART.WIZARD(TRUE,,,,1,,,2,,"Trial(s)","Time (ms)",,0,0)
WAIT(NOW() + "00:00:5")
ERROR(FALSE)
WORKBOOK.DELETE()
SELECT("R[-10]C[1]")
RETURN()
Summary KR15 Group 1 Block (15 trials) Data Range
SELECT("R[10]C[-14]:R[10]C")
WORKBOOK.INSERT(2)
CHART.WIZARD(TRUE,,,,1,,,2,,"Trial(s)","Time (ms)",,0,0)
WAIT(NOW() + 00:00:10")
ERROR(FALSE)
WORKBOOK.DELETE()
SELECT("R[-9]C")
RETURN()

Strategy Group Highlighted Data Range
SELECT()
WORKBOOK.INSERT(2)
CHART.WIZARD(TRUE,,,,,1,,,2,,"Trial(s)","Time (ms)",,0,0)
WAIT(NOW()+"00:00:10")
ERROR(FALSE)
WORKBOOK.DELETE()
SELECT("R9C4")
RETURN()

APPENDIX B

Summarised Anova Result Tables

ANOVA TABLES

Bandwidth Experiment

|CE
Acquisition
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F
Between Subjects					
Groups	2870.95	2	1435.48	.66	.529
Error Between	32423.05	15	2161.54		
Within Subjects					
Blocks	22488.82	5	4497.76	3.13	$.013^{*}$
Groups by Blocks	9338.73	10	933.87	.65	.766
Error Within	107729.34	75	1436.39		

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

Immediate Retention
One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		2	800.33	400.17	.418
Between Groups	2	14377.67	958.51		
Within Groups	15	1566			
Total	17	15178.00			

Dependent Variable: Performance Time (Actual Time - Target Time).

Delayed Retention
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F	
	Between Subjects					
Groups	7456.06	2	3728.03	.59	.566	
Error Between	94628.42	15	6308.56			
	Within Subjects					
Blocks	1381.36	1	1381.36	.67	.425	
Groups by Blocks	2398.72	2	1199.36	.58	.570	
Error Within	30774.42	15	2051.63			

Dependent Variable: Performance Time (Actual Time - Target Time).

> VE
> Acquisition
> Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F	
	Between Subjects					
Groups	2564.13	2	1282.06	.59	.569	
Error Between	32827.28	15	2191.15			
Within Subjects						
Blocks	39948.52	5	7989.70	10.14	$.000^{*}$	
Groups by Blocks	3515.43	10	351.54	.45	.919	
Error Within						

[^3]Immediate Retention
One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		Squ			
Between Groups	2	105.44	52.72	.068	.935
Within Groups	15	11675.67	778.38		
Total	17	11781.11			

Dependent Variable: Performance Time (Actual Time - Target Time).

Delayed Retention
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F
Between Subjects					
Groups	2295.50	2	1147.75	1.11	.355
Error Between	15519.75	15	1034.65		
Within Subjects					
Blocks	2.25	1			
Groups by Blocks	211.17	2	105.58	.24	.792
Error Within	6676.08	15	445.07		

Dependent Variable: Performance Time (Actual Time - Target Time).

Relative Frequency Experiment One
 |CE|

Acquisition
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F
Between Subjects					
Groups	7614.23	2	3807.12	.11	.894
Error Between	506311.67	15	33754.11		
Within Subjects					
Blocks	286335.42	5	57267.08	6.49	$.000^{*}$
Groups by Blocks	11794.00	10	1179.40	.13	.999
Error Within	661859.72	75	8824.80		

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

Immediate Retention
One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		Squ			
Between Groups	2	1019.00	509.50	.113	.894.
Within Groups	15	67606.12	4507.08		
Total	17	6860			

Dependent Variable: Performance Time (Actual Time - Target Time).

Delayed Retention Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	$M S$	F	Sig of F
Between Subjects					
Groups	13733.74	2	6866.87	.58	.572
Error Between	177386.51	15	11825.77		
Within Subjects					
Blocks	5880.33	1	5880.33	2.82	.114
Groups by Blocks	572.71	2	286.35	.14	.873
Error Within	31268.14	15	2084.54		

Dependent Variable: Performance Time (Actual Time - Target Time).

VE
Acquisition
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F
	Between Subjects				
Groups	27717.04	2	13858.52	.99	.396
Error Between	210790.84	15	14052.72		
Within Subjects					
Blocks	22379.53	5	4475.91	2.45	$.041^{*}$
Groups by Blocks	21445.85	10	2144.59	1.17	.322
Error Within	136980.75	75	1826.41		

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

Immediate Retention
One-Way ANOVA

Source of Variation	df	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		Squ			
Between Groups	2	163.54	81.77	.169	.847
Within Groups	15	7277.94	485.20		
Total	17	7441.48			

Dependent Variable: Performance Time (Actual Time - Target Time).

Delayed Retention
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F	
	Between Subjects					
Groups	327.86	2	163.93	.21	.816	
Error Between	11961.18	15	797.41			
	Within Subjects					
Blocks	528.23	1	528.23	2.20	.159	
Groups by Blocks	1390.48	2	695.24	2.90	.086	
Error Within	3598.11	15	239.87			

Dependent Variable: Performance Time (Actual Time - Target Time).

Relative Frequency Experiment Two

|CE
Acquisition
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F
Between Subjects					
Groups	9869.90	2	4934.95	.57	.574
Error Between	181753.12	21	8654.91		
Within Subjects					
Blocks	325634.56	5	65126.91	11.38	$.000^{*}$
Groups by Blocks	17831.45	10	1783.15	.31	.977
Error Within	600920.41	105	5723.05		

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

Immediate Retention
One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		2	8333.57	4166.79	1.477
Between Groups	21	59241.01	2821.00		
Within Groups	23	67600			
Total					

Dependent Variable: Performance Time (Actual Time - Target Time).

Delayed Retention Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F
Between Subjects					
Groups	21899.16	2	10949.58	.58	.570
Error Between	397698.74	21	18938.04		
Within Subjects					
Blocks	1549.28	1	1549.28	.73	.404
Groups by Blocks	5044.29	2	2522.15	1.18	.327
Error Within	44858.98	21	2136.14		

Dependent Variable: Performance Time (Actual Time - Target Time).

> VE
> Acquisition
> Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F				
	Between Subjects								
Groups	10060.37	2	5030.18	2.77	.085				
Error Between	38116.87	21	1815.09						
	Within Subjects								
Blocks	35885.90	5	7177.18	6.38	$.000^{*}$				
Groups by Blocks	13588.46	10	1358.85	1.21	.294				
Error Within	118081.98	105	1124.59						

[^4]Dependent Variable: Performance Time (Actual Time - Target Time).

Immediate Retention
One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		2	2898.54	1449.27	3.196
Between Groups	21	9522.46	453.45		
Within Groups	23	1242			
Total					

Dependent Variable: Performance Time (Actual Time - Target Time).

Delayed Retention
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	$M S$	F	Sig of F
	Between Subjects				
Groups	3355.62	2	1677.81	1.69	.209
Error Between	20844.90	21	992.61		
Within Subjects					
Blocks	121.60	1	121.60	.53	.474
Groups by Blocks	211.45	2	105.73	.46	.636
Error Within	4795.10	21	228.34		

Dependent Variable: Performance Time (Actual Time - Target Time).

Summary KR Experiment One

|CE
Acquisition
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F
Between Subjects					
Groups	164104.85	3	54701.62	2.25	.099
Error Between	875017.96	36	24306.05		
Within Subjects					
Blocks	837800.52	5	167560.10	39.67	$.000^{*}$
Groups by Blocks	101796.69	15	6786.45	1.61	.760
Error Within	760208.64	180	4223.38		

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

Immediate Retention
One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		Squ			
Between Groups	3	3452.12	1150.71	1.446	.246
Within Groups	36	28650.18	795.84		
Total	39	32102			

Dependent Variable: Performance Time (Actual Time - Target Time).

Delayed Retention
One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		Squ			
Between Groups	3	1392.26	464.09	.326	.806
Within Groups	36	51178.47	1421.62		
Total	39	52570			

Dependent Variable: Performance Time (Actual Time - Target Time).

VE
Acquisition
Two-Way ANOVA with Repeated Measures

Source of Variation	SS						$d f$	MS	F	Sig of F
Between Subjects										
Groups	8656.14	3	2885.38	1.27	.301					
Error Between	82050.64	36	2279.18							
Within Subjects										
Blocks	194786.90	5	38957.38	38.07	$.000^{*}$					
Groups by Blocks	21057.59	15	1403.84	1.37	.165					
Error Within	184185.68	180	1023.25							

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

Immediate Retention
One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		Squ			
Between Groups	3	328.55	109.52	1.192	.327
Within Groups	36	3307.94	91.89		
Total	39	3636.49			

* Denotes significant difference at the 0.05 level of significance.

Delayed Retention
One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		3	2087.76	695.92	5.303

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

Summary KR Experiment Two

$|C E|$

Acquisition
Two-Way ANOVA with Repeated Measures

Source of Variation	SS	$d f$	MS	F	Sig of F
Between Subjects					
Groups	338752.41	2	169376.21	4.37	.013*
Error Between	1826448.87	51	35812.72		
Within Subjects					
Blocks	1440061.32	5	288012.26	27.18	.000*
Groups by Blocks	241913.66	10	24191.37	2.28	.014*
Error Within					

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

> Retention
> One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		2	25482.33	12741.17	6.064
Between Groups	51	107161.00	2101.20		
Within Groups	53	133000			
Total					

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

VE
Acquisition
Two-Way ANOVA with Repeated Measures

Source of Variation	SS		$d f$	$M S$	F
Between Subjects					
Groups	5839.67	2	2919.84	1.57	.217
Error Between	94577.94	51	1854.47		
Within Subjects					
Blocks	205761.84	5	41152.37	55.40	$.000^{*}$
Groups by Blocks	19597.44	10	1959.74	2.64	$.004^{*}$
Error Within	189427.72	255	742.85		

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

Retention

One-Way ANOVA

Source of Variation	$d f$	Sum of Squares (SS)	Mean Squares $(M S)$	F Ratio	F Prob
		2	1268.04	634.02	5.404
Between Groups	51	5984.06	117.33		
Within Groups	53	7252.09			
Total					

* Denotes significant difference at the 0.05 level of significance.

Dependent Variable: Performance Time (Actual Time - Target Time).

Tukey's Multiple Comparison Tests

The following formula (Equation 1) is used to calculate the Tukey's honestly significant difference (HSD) comparison between pairs of treatment means when a significant main effect was found in an experiment:

$$
M_{1}-M_{\mathrm{s}}=q_{.05}\left(r, d f_{\text {error }}\right) \sqrt{\frac{M S_{\text {error }}}{n}} \quad \quad \text { Equation } 1
$$

Where:
$M_{1}-M_{\mathrm{s}} \quad=$ the difference between the largest $\left(M_{\text {largest }}\right)$ and smallest
($M_{\text {smallest }}$) treatment means
$q_{.05}\left(r, d f_{\text {error }}\right) \quad=$ is the table critical value
$r \quad=$ total number of means in the set
$d f \quad=$ degrees of freedom associated with the $M S_{\text {error }}$
$M S_{\text {error }} \quad=$ the square root of the $M S$ experimental error
$n \quad=$ number of observations.

From the calculation, a difference in means equal to or greater than the result value (the critical difference for comparison of means) would be judged significant, whereas a smaller difference would not.

Bandwidth Experiment

Absolute Constant Error (|CE|)
 Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect:
Blocks

- Degrees of Freedom (ANOVA) $=5,75$
- Error Mean Square $($ ANOVA $)=1436.39$
- n (Number of Observations) $=18$

Calculations: for $r=6$ and $d f_{\text {error }}=75, q_{.05}=4.16$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.16 \sqrt{\frac{1436.39}{18}} \\
& M_{1}-M_{\mathrm{s}}=37.16
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=37.16$

Table 16. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (BW, |CE|)

	Ordered Blocks							
Means		1	2	5	3		4	
70.19	1	-	18.20	31.80	33.17	35.88	44.41_{a}	
51.99	2		-	13.61	14.98	17.69	26.22	
38.39	5			-	1.37	4.08	12.61	
37.02	3				-	2.71	11.24	
34.31	4					-	8.53	
25.78	6						-	

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Bandwidth Experiment

Variable Error (VE)
Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect:
Blocks

- Degrees of Freedom (ANOVA) $=5,75$
- Error Mean Square (ANOVA) $=788.25$
- $n \cdot($ Number of Observations $)=18$

Calculations: for $r=6$ and $d f_{\text {crror }}=75, q_{.05}=4.16$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.16 \sqrt{\frac{788.25}{18}} \\
& M_{1}-M_{\mathrm{s}}=27.53
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=27.53$

Table 17. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (BW, VE)

	Ordered Blocks							
Means		1	4	3	2	5	6	
117.72	1	-	38.39_{a}	49.33_{a}	52.78_{a}	52.78_{a}	54.61_{a}	
79.33	4		-	10.94	14.39	14.39	16.22	
68.39	3			-	3.44	3.44	5.28	
64.94	2				-	0.00	1.83	
64.94	5					-	1.83	
63.11	6						-	

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Relative Frequency Experiment One

Absolute Constant Error (|CE|)

Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect:
Blocks

- Degrees of Freedom (ANOVA) $=5,75$
- Error Mean Square $($ ANOVA $)=8824.8$
- $n \cdot($ Number of Observations $)=18$

Calculations: for $r=6$ and $d f_{\text {error }}=75, q_{.05}=4.16$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.16 \sqrt{\frac{88.24}{18}} \\
& M_{1}-M_{\mathrm{s}}=92.11
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=92.11$

Table 18. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (RF1, |CE|)

	Ordered Blocks							
Means		1	2		3		4	
5	6							
186.66	1	-	55.36	111.22_{a}	122.44_{a}	138.55_{a}	143.97_{a}	
131.31	2		-	55.87	67.09	83.20	88.62	
75.44	3			-	11.22	27.33	32.75	
64.22	4				-	16.11	21.53	
48.11	5					-	5.42	
42.69	6						-	

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Relative Frequency Experiment One
 Variable Efrror (VE)
 Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect:
Blocks

- Degrees of Freedom (ANOVA) $=5,75$
- Error Mean Square (ANOVA) $=1826.41$
- $n \cdot($ Number of Observations $)=18$

Calculations: for $r=6$ and $d f_{\text {error }}=75, q_{.05}=4.16$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.16 \sqrt{\frac{1826.41}{18}} \\
& M_{1}-M_{\mathrm{s}}=41.90
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=41.90$

Table 19. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (RF1, VE)

	Ordered Blocks							
Means		1	2	3	5	4		
120.52	1	-	18.36	26.73	37.20	39.77	40.13	
102.16	2		-	8.37	18.84	21.41	21.78	
93.79	3			-	10.47	13.04	13.41	
83.32	5				-	2.57	2.93	
80.75	4					-	0.37	
80.38	6						-	

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Relative Frequency Experiment Two

Absolute Constant Error (|CE|)
Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect: Blocks

- Degrees of Freedom (ANOVA) $=5,105$
- Error Mean Square $($ ANOVA $)=5723.05$
- $n \cdot($ Number of Observations $)=24$

Calculations: for $r=6$ and $d f_{\text {crror }}=105, q_{.05}=4.12$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.12 \sqrt{\frac{57.23 .05}{24}} \\
& M_{1}-M_{\mathrm{s}}=63.62
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=63.62$

Table 20. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (RF2, |CE|)

	Ordered Blocks							
Means		1	2		4	3	5	
178.16	1	-	110.82_{a}	129.75_{a}	128.33_{a}	130.22_{a}	131.78_{a}	
67.34	2		-	18.93	17.51	19.41	20.96	
49.83	4			-	-1.42	1.90	2.03	
48.41	3				-	0.48	3.45	
47.94	5					-	1.55	
46.38	6						-	

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Relative Frequency Experiment Two

Variable Error (VE)
Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect: Blocks

- Degrees of Freedom (ANOVA) $=5,105$
- Error Mean Square $($ ANOVA $)=1124.59$
- $n \cdot($ Number of Observations $)=24$

Calculations: for $r=6$ and $d f_{\text {error }}=105, q_{.05}=4.12$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.12 \sqrt{\frac{1124.59}{24}} \\
& M_{1}-M_{\mathrm{s}}=28.20
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=28.20$

Table 21. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (RF2, VE)

	Ordered Blocks							
Means		1	2		3	5	4	
110.68	1	-	23.17	32.36_{a}	41.48_{a}	41.85_{a}	46.61_{a}	
87.50	2		-	9.19	18.31	18.68	23.44	
78.32	3			-	9.13	9.49	14.25	
69.19	5				-	0.36	5.13	
68.83	4					-	4.76	
64.07	6						-	

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Summary KR Experiment One

Absolute Constant Error (|CE|)
Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect:
Blocks

- Degrees of Freedom $($ ANOVA $)=5,180$
- Error Mean Square $($ ANOVA $)=4223.38$
- $n \cdot($ Number of Observations $)=40$

Calculations: for $r=6$ and $d f_{\text {crror }}=180, q_{.05}=4.10$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.10 \sqrt{\frac{4223.38}{40}} \\
& M_{1}-M_{\mathrm{s}}=42.13
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=42.13$

Table 22. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (SKR1, |CE|)

	Ordered Blocks						
Means		1	2		3	4	5
195.81	1	-	124.63_{a}	142.71_{a}	161.41_{a}	166.19_{a}	169.96_{a}
71.18	2		-	18.08	36.78	41.56	45.33_{b}
53.10	3			-	18.69	23.48	27.24
34.41	4				-	4.78	8.55
29.62	5					-	3.77
25.85	6						-

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Summary KR Experiment One
 Variable Error (VE)
 Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect:
Blocks

- Degrees of Freedom $(\mathrm{ANOVA})=5,180$
- Error Mean Square $($ ANOVA $)=1023.25$
- $n \cdot($ Number of Observations $)=40$

Calculations: for $r=6$ and $d f_{\text {error }}=180, q_{.05}=4.10$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.10 \sqrt{\frac{1023.25}{40}} \\
& M_{1}-M_{\mathrm{s}}=20.74
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=20.74$

Table 23. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (SKR1, VE)

	Ordered Blocks							
Means		1	2		3	5	4	
110.83	1	-	64.67_{a}	73.14_{a}	78.20_{a}	78.41_{a}	81.09_{a}	
46.17	2		-	8.48	13.54	13.74	16.43	
37.69	3			-	5.06	5.27	7.95	
32.63	5				-	0.21	2.89	
32.42	4					-	2.69	
29.74	6						-	

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Summary KR Experiment Two

Absolute Constant Error (|CE|)
Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect:
Groups

- Degrees of Freedom (ANOVA) $=2,51$
- Error Mean Square (ANOVA) $=35812.72$
- $n \cdot($ Number of Observations $)=108$

Calculations: for $r=3$ and $d f_{\text {error }}=51, q_{.05}=3.44$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=3.44 \sqrt{\frac{35812.72}{108}} \\
& M_{1}-M_{\mathrm{s}}=62.64
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=62.64$

Table 24. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Group Means (SKR2, |CE|)

	Ordered Groups			
Means		SumKR	Strategy	Control
109.64	SumKR	-	47.35	75.60 a
92.29	Strategy		-	58.25
34.04	Control			-

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Summary KR Experiment Two

Absolute Constant Error (|CE|)
Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms) Main Effect: Blocks

- Degrees of Freedom (ANOVA) $=5,275$
- Error Mean Square $(A N O V A)=10597.17$
- $n \cdot($ Number of Observations $)=54$

Calculations: for $r=6$ and $d f_{\text {error }}=255, q_{.05}=4.10$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.10 \sqrt{\frac{10597.17}{54}} \\
& M_{1}-M_{\mathrm{s}}=57.44
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=57.44$
Table 25. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (SKR2, |CE|)

	Ordered Blocks							
Means		1	2		3	4	5	
218.82	1	-	120.80_{a}	166.83_{a}	179.00_{a}	185.07_{a}	189.26_{a}	
98.02	2		-	46.04	58.20_{b}	64.28_{b}	68.46_{b}	
51.98	3			-	12.17	18.24	22.43	
39.82	4				-	6.07	10.26	
33.74	5					-	4.19	
29.56	6						-	

Note. Means in the same row that have a subscripts differ at $\mathrm{p}<.05$ in Tukey HSD comparison.

Summary KR Experiment Two

Variable Error (|CE|)
Tukey's Multiple Comparison Test

Dependent Variable: Actual movement time minus Target time (ms)
Main Effect: Blocks

- Degrees of Freedom (ANOVA) $=5,275$
- Error Mean Square $($ ANOVA $)=742.85$
- $n \cdot($ Number of Observations $)=54$

Calculations: for $r=6$ and $d f_{\text {error }}=255, q_{.05}=4.10$. Then

$$
\begin{aligned}
& M_{1}-M_{\mathrm{s}}=4.10 \sqrt{\frac{742.85}{54}} \\
& M_{1}-M_{\mathrm{s}}=15.21
\end{aligned}
$$

Thus, the Critical Difference for Comparison of Means $=15.21$
Table 26. Tukey HSD Test Applied to the Differences Between Pairs of Ordered Block Means (SKR2, VE)

	Ordered Blocks							
Means		1	2		3	4	5	
102.20	1	-	58.15_{a}	65.70_{a}	68.52_{a}	$68.63{ }_{\mathrm{a}}$	72.15_{a}	
44.06	2		-	7.56	10.37	10.48	14.00	
36.50	3			-	2.82	2.93	6.44	
33.69	4				-	0.11	3.63	
33.57	5					-	3.52	
30.06	6						-	

Note. Means in the same row that have a subscripts differ at p < . 05 in Tukey HSD comparison.

APPENDIX C

Raw Data

Bandwidth Experiment

The data are stored according to the following format:
The code left of the subject data refers to group number, gender and subject number.

The codes are:
1 = Control; 2 = Strategy; 3 = Bandwidth. $\mathrm{M}=$ Male; $\mathrm{F}=$ Female.
1F F 111501179119310491064100610649921136104990610211021122210931049 9349349068481035110710781035109394992010491107934104911501064963 1164115089110219639491466112199211071121963100611211193877963877 1021110710069491193103599297894992010218638348918778638919631035 87711071136891949949978949920791920863848863776748819906934
1F2 1066795840945780675103696082594510369151006915915111110811006 106610361471109610511051103610219609609901021990105111119151126 1366117110661036105110669751006990960100610069901036111110811066 10361111103610211021102110369601006105110511126109699010361081 1021100610061036100610361036105110811156111111861156138112311216 120112011171126113211186
1 M 3112499210789491236104911648771064949125196311079061107949963877 10219349929201049877104999299294911361035102110061064100610641021 9061006992102199297892090697810491093102110491035978963992920 10069781006100693410069491035103511211064106411071222115012221150 1222120711501136110713221208123610781121100611361093110711071193 107811791078
1 M 4664618978848106411649631049978103596310641021103597811361049963 963116499297893411071179992949117983499290690614958639498481121 92087783492080510068639781093978819891805848106410649639491078 13809929491021102181911361236123693489110641107963978891791791 86380586371994983497896310781322762891748992949834
1 M 5851920863934863992834920848906963920934992906949992906963891 9068918779349069631035107893410219499639789061049949834978920992 94992092094910931035103510351164100610649781021963106410061021949 9639929781006949949949102192010939499789209201035100610359921035 1121106410931035110711071064110711071121110710931265
1 M 61486147199099082510818101276810780795705750690615750690675645 72072064581075078081082597591585587094510069751051945960825990 9458701036114110969609909901051112610211036990960840885795930 10511006100610061006930108193093091587014261006915855100610361051 106610661051112610061036106610811006102111261081100610661036
2 M 7105112011261115610511081106696096097594597510361036103610511126 97510511141111110811051108194591594510219451006102110811081900945 10511036100610511126109610661066990100697510511006945105110361051 1111108110211006975100610361006103699010219909909601036900990975 915900915915885855870870855900825855930915930945885870915900
2 F 88859308859901066960100611111051105111261081108110061036960930 1036103610211021960990108110061021105110811156100611869901111975 12019751036109610661126106611261216118699010961036118610211006 10819909601141108196097510661096109697599010211021100691510661096

9609009751021111110061066975103610219609459759901051109610511021 1021106610961081

2 M 9795915106610969301471111111711036960975900930106688512911126 11267651096750100610068401066915975975750100610369459151141900 1066840960885109610061081108178096010219607659008107508559451021 112693010511066930960885990100610811231100611411006960915930885 7508709308408109609159309008107359751156990960885900780

2 F 10115393490694912087911093834863104999280590610939208638481049 99286310069929209639499929498489781021103592087710939209781107 109310351049963978978963100610931064103510781107978110711211049 97892092092099292011791021112111211049109311071006106410069921006 949949949906891920934102110211064103510491021107896310061078891

2 M 1173566058582579594510219001066100690099093010519309301051990 10817951111945106693090010661216106610061066990103610218709451051 10669759751051945100611261051945111110211051975885105111269151141 1021945900900100691593097594599082587090088590084090090010811021 102199010061096990106610511066105110211021106610361096975990

2 M 12115611119008259751036109610219609451051100610211081111110661066 11418559301006975945112610511081108181011111126106610811006900 1021106610811456990990960960102199010811126810102197511261081990 10211066109610661096975132181011561081915945117190097510361081 10819159159459759158859159909751021109699010361036105110061126 114111111081

3 F 138669638919208919788481236110710351021116410491021102110781064 1121110710789781049116411369631049104914819921064992115010211064 1164891103510641121949992978891104997810649201035992992963978934 89194994994996310781481963920106496390697812081021112111641006 90696396310499349498639069929639349209209208779631035920805

3 F 1411261396135114561096109696010961201975117111111111105112011201 1081112611261036990960100610961216114194599010211036103610061006 103611111126106694597597597594596010369459159459609309601006990 96097588591593093093011868709609009601021990900103691511411111 11411096105110211021108110511036109610369901021900100693011561036 10211036

3 M 159237626338198348777768639208778919498778919069499929491006978 1049100610061164102196399297894992087710931121139492010499491006 10061006963934963963906949934934906848978963834100697810211049 97811369069349631035949120810641078103510359781006110711211294 1193132212361294139413371394138013081164119313511136119310931121

3 M 1612111121920906819762604920963992934906992992102193410061021 11211006113697899293410219921078103510061049106499210359639921021 97899286310069348058341049992949100699294994989110359069631093 10351035949963106412651035109311501035109311641093112110211251 1236140913371164119312221222113611791251127911641121122212361193 126513511279

3 M 17870930990855975945900825102111711036105110511021117111111111 1186885990945915103610811021100610661021103610811111100610511126 10361171115610661276109699010061021109610961051102193010069751036 93097597510219901066100697594510211036975106610361081106610511051 9907509609009759158859158709001006810915855900930855915945885 885

3 F 188701111960960960915885900900105110211096975103610511036915990 10369901066105193094510361021117110061051103610069159609301216 10661126112687088511111066103699010511141115610369309609759301051 9459901081109694510061036975930900930975915900103611711066885975 9609159759601081960102199014561021102110669451081900975990960

Relative Frequency Experiment One

The data are stored according to the following format:
The code left of the subject data refers to group number, gender and subject number.

The codes are:
$1=$ Control; $2=$ Strategy, $3=$ Relative Frequency. $\mathrm{M}=$ Male, $\mathrm{F}=$ Female.
1F11101199612941504177522421971213213681307245216021528146716511381 97412089258641147925139385183910249509259509629009991085999974 12339131073106111221048119610119259878029879501368170188810971036 876937937987802107398710489871011112211599501024987999900987999 90082785181410361024136898716028768889008279627777908391024

1F2731937106196210739871233999103691311101307925117196211101245876 102411341048114792511341024102412211097108510611196118411221257 1073925117110731171101111107901061950827117198793711101024876987 1245103611841134102499997487611599371110122110611221113410731085 10978761011104811101085107310731159112210851134962103612571196 11101110109710611036

1 M 36577167048147047659139009139741024827913962974925937925925937 98790193711109379879131085141810739878391011888950888900987950 98795010249009509621048987999913103610481073103699910249371085 9741024101191310489621085111010611073104811229878029139871134999 10619871036104811101097113411341122107311101097101111221073

1 M 47807168279509139131048150410241048103696210971024101110241024 112297411229379501048101196286487610611048925109710489139991024 99910119501036937999109710611036104890010481073102492510361011900 88810481159106111109879871196120811221048111010611073103611591134 122110111036117110611048104810361097101110481036102410249991011 1011974950962

1 M 5 756 6426176798889257907409741073851716864740790777679691925974 802740962876962925937790753839814888102410248028148889501036925 7908881134101190010481011962999851937112211591073888913950925950 11961073987962111081410611147999106110248768649501134864937962 95093793797498710249138889879509251011950
1 M 692813311011864974106110971024103698783910611122962937950925999 851130793788897410361011962102497492510111122106196210619991011 1061974950106197410489628641061119612579871097987987107311841479 102411711159124510851061113411341122111011101085111010611221999 1196102410611073117111961307141812821418145412571307138114051147 1307143013561393

2F7 203318581673163621251341114417228481747219914021858155011681525 11561685136514511513215913781599137811818971624885150111681562 1021114416361205110794713411033140295915871316123089714398481045 94798415629711045996103310089961415971173521781205139097112911119 105710211008861959959861824824824762700861910774700725737651762 713713799

2 F 8682654814777667802642556876753925864974827827120810489621036999 1036950103610979259371147111099992511969629879131024104810731245 86410361036108511478141011950106110971061987987950108588811591061

9139621184888107395098711221134103612808648769259139379251024 101110738519008769008769621208113498710119741085937925

2 M 9977827864925925925925777888925827864913790962851876913851864 790864876937987987106111349621307125710611184111098711101159851 1307101110611147103610488889259629379749749629019509879501097901 109711341085123315161294118412451393118411101085120810971085987 11591184108511341134106110489879879991036108510611221117110971097
2 M 10522470531864827925101192510119871011974106198795010611122888 10369871097114710111134114710369871085107310361257107310739371110 1097974117110361097987102410369741024999109797496293713568761184 1196111010731085104811101171117111221110117111341553120812571147 12459379131036102411591233117112821233129412331294122111591541 11341319134414051270
2 M 11990876925827913790827876790802777802102492583987611591122962 10241085119611471122987106111221122104812219011110102410971048 104897410119509741011962104896297495098798711591085101110611011 9741122999101110111024962107310489741024101110111134851901900962 106112081097120811591245125711101122101197411341048106111591245 113410611036
2 M 1214219871270962111086488811228029258641024900827999987864876925 82798790196211349501171925864876864925802925888900900900777962 9999131245851876876913753876839716851864777913101110979871024962 12571024108598710971233119611221516962106199999996295011591073 10971171101111221159999111099910731073104811341024962
3 F 13620482445433408556470544593617667667605704630839753740777704 9509379379741196864790765753704814777790925900876913888864777 87681486487683995010488641061950937987937109792510611134937962 11711011999117111591024987101110241048999101183997487611221061 1011144210731011107312331159118411229871541999876802

3 F 141137753679654753704765790716667839888777814704753888876876814 7656798887167049001097937104885111101073111012459999251048950 10971024139311471085156514301011101110859009259749131393974925937 98799992593786493710859991097120810619621011103610979131024962 9251011101199997410739629371011102410369501110108511101085
3 M 151101101197493795010119991024101199995010249621011103611101011 101110611024974103610481061111096299910481036107310241061974999 1036108510619871036102410119501011999937102411341061112210851048 106110111073104897410611048103610361122103611341110120811841061 102411471184121310249741110102410481024999102497498710489991061 111010361036102410731024

3 M 1685393612909611170110993694910841072998109611211133102211211158 107211331158115811331219117011951084128111331109101011951109998 92486210591121102210109981109105911331109144010591158102210591084 9861072936961838110998694998689910599739241010899986102210471084 1035102211959981059105911331404103510849861158112110351084986899 9249739361047
3 M 1710147778278518768519251085111010111085112212211196109710241073 10611073104810611011962974937962974104899911479991085106110481134 1085987999913864113410361122112211341122107312211171114710481073 10119999131110109710971011101110361073104811221085109710971085 1024108511591097103611101011102410361085118410851122118411341196 122111101147115911101061

3 M 1884279067990067976579082776576588891310618769741036913950790 925999108511479879621048111010119258649501122113410851073999962 112210119139001048106110851110974950937950987113410619621097974 937106110971442120813191036102411961122112211101319138112941171 1061108511341134115910611159120812701097129412331184119611841344 127012571196

Relative Frequency Experiment Two

The data are stored according to the following format:
The code left of the subject data refers to group number, gender and subject number.

The codes are:
$1=$ Control; $2=$ Strategy; $3=$ Relative Frequency. $M=$ Male; $F=$ Female.
1 M1 451483420617667704107391393798710369371011102495096210731036 11229629749501097999114796210241073109710111048103698793710241011 95010971011101111221147111010619501011107397499999913078271097987 102498710611257103698793711961467108511109621122102411841122888 999925102497495092593710118648768149871048950876974103610241110

1 M2 59653158061756847055664258070470499987610611085950962876999925 11228279741122101182710111011900937103610859009871122913999864 1024107392588811841134827999999888102490010119871319925987987974 95095083998798710111048113415281172900937876728851999888950937 12218397908399009378399629991048925925913901

1 M3 633704851728913102487695010611011108510611048102497410241036667 1110107311591073112292597410111097999114710361351974114710361011 937108511229741122113410241011974962109710611134111097410851171 98710481024999106110971024103610979621134107310361036120811101159 106112211085104811221011102499910481110109713991171106111961134 11221208113412211147

1 M4 6576676545934825444456421381704753753691790937900888962901913 97411719741036962900987104899910111184106110739007909008141122 10739019871036974107310619629991024107388810481011104890110481011 10979621085962101110249501233112212331196117112451159117111221171 1294117114051528177211341762163916271565127013311381157814671491 1368

1 M5 7569749749259131171101199910489741097107310111024118410111122 11221221937107310611011106199910361011113499988811599259991097 1110129493710851085107398710739999371036113410111085112210111061 925102411229621122106110361024114710979991011107310619999991061 101110611011974115810249259379749991097962962962987925962925974 1085987974

1 M6 5596178397288888511097987974109795097496210249999131036925999 97410611061114710111036103691397497490010971122901104810611011974 9139131073111092510249741036937937999900937106110739749748881011 10851073103610859131011113410859871208102411471147109710619501061 1073109710731085106111471122109711101134109710111134117110731097 1122

1 M7 460173611961479876163786483987610859871073925107310369871344876 92595095081490192512701344104810979509991085974107310851110900 11599999131196107310971011937123387610611159104898711961134999 1233111012331110950103610611073913925987999925106110241097913777 8029749379871073104893796293791393792595088810111036113410731061

1 M8 69480274095095093799979010851307101110859251368790127010361048 107310619379371110112210249009741061974115910971208104811341159 999987109797499910111061108511341011102417899749749871036999999

9749131024109710241085864937937101110119509251048987987999962987 9259629251036103610619991097106110489999251048111010119019741110

2 M9 1454108493798699892499811091023107210841500961110996110351146 1060104799810721035102310721232108494910471011998109711099981047 10111097103510239241097106010359981047101193710601011128110971097 1023108465496110479741060103510971084106099898610119741011974937 10471047104710479989981158104711951011139210721171115810471232 11711257128112321035

2 M10 830103695011341085999114711711257104810731073999104810361011 11711048962103610859879991208974900104811841061999112210971319937 10971085999111011591147113411961110974103699910971036108510851061 1036974103696299910481048962103610361085987962102410619621085925 876790999962925937101196297410249999139379379009009251024950925 974

2 M11 300273297347371445470457383396691851704765728654654667827679 48279083987610619625809259018649138519136541024900913876901593 9376915809139621073131910611036115910739509009879744089621048 104810361024999913112211599879749131011925777962999109710111048 99910738518888889371073118411349991122987913962

2 M12 73179097469163060570459358092511109629749871061888101111711171 151677716391381143010851134176910361048114710851208107310241245 15168761048999888913974937987108510249999991097104810971036999 93710859991048103611109871011113412571122108512331294150411471368 1097133112451282129413441307145414181528143012331208139313681442 1454143014181553

2 M13 15051048900987115997495099991392590010619741011101193710111110 9991011101191310978889749749501159900950101199996298710241048 1024864987114711599991110987103611101147962124512089749621061913 115911591085114711341110140512821122950101111109999999509741257 133113811011987112211479251048102410739259627779259001097999999 937

2 M14 9161061107310241036101191310851048987999974937104812338881061 106110361110107310111706925913999950102498711471024108510731134 11841036108511221073104899910851048974950962112210731024999999987 1134101197495010851011112211349871097112211471085109799910361048 11101024102490095091396210241061103610111024987999115910111048 102410619501024

2 M15 559556667654716716753876728716876900913851937913913851827839 913104890195097493796286490088897497497496296210119749629871110 962987974913925974950103697410119878769871036925102410241011987 90010971011107310851036950987962974901974103610369991036913974 1061104895010111011901937937974987962814864

2 M16 990876925827913790827876790802777802102492583987611591122962 10241085119611471122987106111221122104812219011110102410971048 104897410119509741011962104896297495098798711591085101110611011 9741122999101110111024962107310489741024101110111134851901900962 106112081097120811591245125711101122101197411341048106111591245 113410611036

3 M17 84297486483990097493793799910369749749131061101197411591011 1171109710241048119611961196104811221110118410859629509371011937 10119741036102410731036102410851048950102411471122123311341159 112211849991097999113499999998710241097119611471085114710971134

112210119621024104810851048107395096210731024937987987974950913 1061106110611097

3 M18 75610361024101190091398710731184103698710111073115913199621011 1048937925104812338141024876114781497488882792518009628519871110 98710481208120812081122124512701011101110111208109712089741024950 122198712701208119610851307112212081061111011711233123312081171 1171115913811110108598710851011104810731085101198710369999501097 1036999999962

3 M19 2512232602975076307778148147531208814108588886497410241061876 95093710248881085104811711073101195092597410119629999621048913 10361061106197410361233134499911101048102411349991024102410111171 1011101112211159107310111134115910851061117111841171115912701381 851728851950950987962864999950913999913962106110111011827864937

3 M20 6458767907905688768519131097974101188895079010241147999864962 937108510241024101111841011839839876962864104899910489998881073 99995010249008761048876104896281480290016767658888888398391171 962102413311627937901790913987937107310241011974900839851765790 7539629259139371024101193793790010241024937937888

3 M21 485679642531617580519482507531691802827827802839876876950950 8881110937974900974962101110361110974987111011591319103610241221 109712571159104893710481048107310111134117110611184109711591122 10241147112211719379991122103610481097108511221184114710241024925 999913900999950876864888108598710731061111011591110113411341171 1122

3 M22 36234748254460510731110115910739371061106112451147108511101122 10249999749741085974102410851085107310241036103697496210241085 113496210111036101110111097106110241073102410111085106110481073 9871011108510361036962108592510369991048102410361073103610361036 10611085109791395010971159114710361110111010971184107311341147 1048113411341048104810971036

3 M23 8547406675686797657408027048768028769879378641454135611471307 1233101111961159123310111110119611471110115912451270135613311233 11591270125713441319104812081184107310119251036102410368391073 113411221024925104811221036107399999910611073107310851778839987 10111800925987104899999910859871048103699991397410369871061987 10739879131036

3 M24 83010481184109710619991048124511109871073107397498711109251400 925106110119991085101110971097111010111073937974974913901962937 9139259629509999379138889879509509139259629251036987101110851073 103610361061104898791310851110109710611097101198710241036925987 95097410241036987962974974950999962101197499997498710111134

Summary KR Experiment One

The data are stored according to the following format:
The code left of the subject data refers to group number, gender and subject number.

The codes are:
1 = Control; 2 = Summary KR, $3=$ Strategy, $4=$ Yoked Strategy. $M=$ Male;
$\mathrm{F}=$ Female.
1F 113971049838896760804636616582723663657610579598566563565600526 544554554550590557552545535501509538494499590524538519515544526 549509524539547501520516536532514527528551523541545513502525557 630599562556584597589557575557543531574534573552578603589550595 540565603622586574578621608598597525573564580546564547542529502 563540534518542488533499523526508519510517516523204500472483497 455464446465449483437503487437501496482470481436452454417465453 443428406443

1 M 2480722645626641575551533579543551601565517516556534565520609 533567553554549558584543568554517551545570572603588573550563600 592594595560567608540548575653554592534581552580524589575510570 561563576516542550544570508455524554523564565524527561541524549 525527524549606549536534521544552530546530543568549543548556534 538544544540537587535559540555531539561529549503538555522552554 559582547557527534547539551531580559554530553528511512541529504 542534537531
1 M 3 157012379941105924900832839784720676624654679619611611590563 571582592608614560573518722569646644676706627664617648673691636 663629606675589614612673659644619631620570683602570561571587581 638584604606611622651641628610634680625682599556530566587584628 588616662554562548550575498557488540533515488547571524516622554 571592582548560598539486586536513534574540535511510750604673598 659719628684637672649684589574596631622635576635698596649685627 696636650640593
1 M 4 12411140114910971285950931738789668672623557543586559557563559 558548622555748484550552523552690584494599573603478568629581636 610606555551642615600489608616645584575615582550532607571535563 544536615561603584540649595561582562512599532461522483647517520 573568497575581520643574686565607617599575560607561610527643590 587574577553581592540553566488556530506546616562554614556589515 578608571555563534513514640538511488549565536587573571533644524 528548523565569

1 M 5 1075530104710581111952106580510889171027830851768785791783895 924924624539519601531568498565511518689508541665491478480539432 545497588633414705509554517763598537557506490517561532577664501 549554516558633793477529533548487565474557481484462649597581555 524593473516520450539492493658706592556548570583624697654693660 728606583537513560499516510524509552556668606565573628814693561 543621618617630531633578646696526557686600590564567581543560578 582551597543540612

1F611531027891829696762685645689741717643613635611743672634686597 629636645675671594597671624665596705680676638642648596565579586 547547590609567597581574556550526562559527535563537529572578549 550548564558511563557541574563541684520611531580620549589499574 578630576554548559543642583559602540589532554537552572602523538 572553573549545573539535610524538596535525484547573641561618575 552528576567562571530578584579643550567575530531579589561614591 541629659627

1F7750595566590548583548504650548585564534569530541562563592500 596506544560521576616539578604489579662494645567578548636525623 629561544582565541578527588574596506606546558522554572576608560 573537560614554581575574589509604536546587544599540508562539657 534543604527573543577531543534566547508539493513514545524513513 498477461538508518544481517512615518509529526503484516481507484 493554464443463453466458469483458459448458405507484393554546456 556448535472
1 M 8918748707730715636634584626586592552567589516577530532556522 570629553521524547555550610529570552518578515546576492539539532 536577556551542548546578598547570527521520548547561582521546543 540524506567566559532553514554539524552572562538516514535528555 560538513523494498517521535482521477506527512525535499496471513 513500491485490487496471469476468480473469464503669689705707524 708533708603672700702701707701574534530576624577503529667590563 547633673652

1F9483529504631520602516570574503475521488541527482551506608585 500504525549574595508540610528539535562506600494552566561533528 541570533506615476540510553586539545567523558556546543545583493 548508523570492516483577542543580561534526541571520518578559522 558501561547529558552514480480519493526496482505526543515529526 539540525517505538524488459521517528573551540524450424504464467 465456464432450414423462442452437463432447487450524535416426427 482432538497

1 M 10980955926813774679730657702677621681627651635618619618608556 570559538582568548566552550542543557552576530556571579618627588 599586584599569591585547585550563540564555603535553586563573584 576553617590581567578549566561550552570570542576549572576559552 557519579606606617571662654602603627608615597597615564583574550 601550601604650614572621619600581605588591582574630600545604598 587562611555568560585591564599557553577554611530533531524552535 558541555532

2 M 1112131190946942930808850817864965802813802805824703805741761 852756768705716705886746691657739618591580640592634567580592571 543559563549573530553504494529738764531602567551547517547531543 548525574597548569546796614536609574576568608570595548583627582 587592522664598624718624660579504529565526561626553601500525491 493485547527483453506478495516556474481497458436443677721613621 643545576587583608615568605680652697606564632633592615591624605 637661619660573

2 F 1210539491273968921823814761790797848681654653619609648597604581 614581665581561531572509530532473519503507510516498531569477521 588537560584546542535527544502498528524511550537559549496477506 527504479492494510498546469468464490459458490492468505547590537 562580560639662579586575592572586572588584587605598583592609591

554562552605663582570556560554538591609566598562686602639642593 506560498542530527582505509518485479547568549535500500490543559 489580531515

2 M 137471004113183098710331134144015301483641541472496463538530475 443585566604557590642539575570538550557592568601513558666506468 544519600560541544534483517492483532574579557516590592572554559 617556506565567537557576575543618597622688611542592637556589501 502552569526505615532493451593563507485466435480498485488459482 489517506486437458494463494467456410461467512515535488568568545 551501550539546478526530541534546529507527520532551545522520530 521527503546522519
2 M 141107116611771224117711551170119011071139835849895843844822834 879820837652641674660644661605600573629614577570557576605547556 511560618566561548566539521545541587555552532536558535535557540 524578572577555562546562539536542510484522548505521506495519561 567560583578571556589547560595724596607586597590558585568556586 586566554560561521522513521521524539506524517569541538513482509 520537512507544506498487508482471493486539461458445461483470475 466501520493461462468

2 M 151002101510199809799899879669621044776769806774705717736711712 714504558492514536486503516501547544646620591611587558641665515 621613637572584553512543512587568543550589551611598541553586541 573593588536545591536537548515548548533491528484550512526514494 496514510524473498504514567521585571530516570525577597572540510 484553587536568518544507512540523612582537538549569523506543484 490544551582505498504565484513576551492508435487568572440489523 541595536515517

2 M 16715711858713751733746747898863722726727675680653683617715667 643632687624730690693663799694653612653637670689654727675620660 664643647641616619698590610712663694725673636646622618596608614 570572584569573525522561540559573548550548549539565544565575563 523546550498524526507576575598612576578534557549557546549608557 558501542632559575600638574626531545601593613595565579576551541 561542553535535586571585574584576553556543564523537512561541578 584557564568

2 F 17697858704665653650646601635598582590533604588562564600607588 589564569584558556562571522577571538580539571574576549580555523 573557557568567570518564556567562527552546551558554515574573598 576570530561572540564565552566519567567591560529563546556577563 585541586554569524558746591557550556564562572508548557533546588 538549530548543538518523533543526526535531513568403408448466455 465472481482460452468480466482487465481458457466458467454460480 451497443416

2 M 18611611586627594598591520565539538514498544572520487530554554 583574660559545596552575561471535527525558549555549543594537517 530531523531568488513472465509538493514539527535499488513553576 504524629573549560584587581571559566548566605560507527555547580 557561532543562583564575531529560533488503492493470466464451432 446484490502508496482522460491465490440481476463484496506524477 514511507508501523521516499494534524493472471451470464451445443 454451506449

2 F 19716738709679652661643641687700594504577587538543552549580625 596561554524580616551568556586625541597618662583576595587624536

555494568510522513494473472571547555620612584558617541613582507 550577556545555561552568493579558571549546559570530490563577573 613593548570598542563515529519504514513525510496520513542518569 509567602532589528543483508518555567527568577532712616589611625 607618596616614659634507512536546570516533552528539555510569566 535537537534

2 F 20861765712750690621625572573607585518499498528548531490514516 576519527528508536518594518600524569575698599610548556564582568 573584598691584590583606591594611618611586593589618592605590593 551545580551566605585568571576571517490472531586534507544512556 558560572520555559534608580573562601555573575565534562515529574 527521535513534519495540528506514518504514513505528547525534539 510553554524562527523501518527481548540522550557577510539523512 531530502559

3 M 21758715778757840800659643675660662631617680663568582588634657 862587606646589590558586613578528524530570569576587555624600577 594584575584578623568532552573560567583551559576546584581591568 576597598621602597600631579509545561528570568570589583580585543 542527535547549535544570546599542588539533521529515537508508489 534493525481530548556518516515517466514519505535566580577552542 562543554536536587572586575585577554557544565524538513562542579 585558565569

3 F 22734608541543567533559524554574528545567519531519516497486550 533547488502566563582589535523549532527516564556564556558557620 637577589576573599536579548550542546517508542517491519538516510 511560507579544554573583608574630589575548560585575562545536508 509563540517527535526563596587536571580559511534557513550532593 571549511569506570612575556544533533549527534530551522505544525 536562542525508540518535546555548538518546535525547556541536533 559574578548

3 F 23798725746806747775812788751727717763773734751771762722724723 741752720694702706672656667652656644698658673670683683656645614 586573627638586610549541542573569515506535547510522555549561518 612544522547569534514532542548559516551523522535511497521494482 458476497516522483488522513493495505491493484478497496542506507 504514521513500543539514511531511509511503585543507490500495528 497499503515498506516508500497512488512496520529500466501505512 511513493491

3 M 24801888779726752839868734727775739810765751718707708761697730 709687739704730780705717796799870681715764747753787746776746740 712716706798638663813700616614736728756694698636731636629647681 686678667644638717676638621696575614635613639644653642622623597 635578646623648656634587588584570571605627598587632610672602546 591583621660581588614573583613545546535535591566525579522513499 483497516516502525491501489464495481495503513498518554519515509 501515498507

3 F 25622601560580508517518479499471477490450519540547592571560556 544559550541557527541531504502520563540541545540548529558502528 504470519555558536529580566602565600536542551527555507505560527 550519537525537525547511503507545585504554546550538530524556540 518530509512501523532554554557568555547541519573557546546557561 540522549554561536600562527519540483491524526520501525545525518

507504525496519557491490495522507462482468497483479496474522475 500464478466

3 M 26648648570571571522567508504512509503529551529541502545556531 566523518534542550553532539539548522520464565499482502481497504 492549546512506547529538520535577551511553549568521557572575532 544562563548512573550509547563582548554562556507583560563546531 529521529584546579530590560552591596561620617575632600605580585 600538568545556579568581594530551530543563559533611594605566596 588597598605566577579612616612587612591567574580581585572588568 562574636598

3 M 27679615637621674669677764687527569605564584537544534540552528 559537544512522553544553557574522588540587569610557552540528571 532554562534588553609566585552583580525538523553536552564540536 563554552543558610541552550566567554546557571534545574565551576 534565542538548557554557511503477489504508488506499527494468508 496517505493510512514508514495489498518499516513517484460470494 477494501468467486487474502491491507518505535500520507492518511 536510526497

3 M 28766720697670749538491544548510453482469435465419456451454507 498515473482522473492430446475484559507485497575557511497487503 527532515489512558517526534528500514489556483522529548565557643 565649613567562544547542514493490512491488520557555546563557565 541538523556515544561575515477521531537514526504501501472503508 509493511530543542558556556531532542551548522522599535540586590 591571587597574618585616584617642623606594605602606618623623613 577610629635

3 M 2911081141109511851254839754751756749730605585566533603642668541 592573726512541465533558530491470598598647661574577643585571527 534541572572525540568518579541565586710545537521518553613526562 524488535556575544591622595615670584585567655588543616547512536 550497597497570587512528494558507525506553521561516483447479498 509496538474470502471559455439427465456494487478479513480477468 460457457444435411486436476463479419461438464464468455458506491 498478480503507

3F 30635554581570578596598557615625623620624576577613613618523530 550502484520492494520532477495514473465454488513555525586572539 551521536566551618664565597570604613633573561569612588568590648 523578537524535506693585536594540584588587566535630578539554556 596571516574518551582587560578601632610578531505538496497530484 536526564555586550572507530560567550608601563609570538542550541 502530545574518552506556495535520504523585506503503647520491485 478497489528

4 M 3114531445148314501445157510911058109510219759671002919969672670 788699676703733743796774813753702727620619689596616643701553669 696706683543614632615616623635578670703675707645626612640649640 634592563591588560663548615619618572604593574587632618652593621 613619576617610609607591582602702605691623612601635614601610637 635597595595661658610587618608600625670595599595611620622565507 562555558538540586538547511529522596614553547483519494503529500 560609550597597475523
4F 32772705757689674681697675615642667661679633630688662609634615 552563596589547561514513563503612528531550493518498509515531549 473497530526562494511522546530581577504531527518495511486544556

530520568547527564578586557542578566559580550563555581555532499 515505513509500480481464475450462474438454441442450483423429428 451453472467447457454466444448479425433509395423525541562521560 527518538534584590526537536549548575542534547531550525514573527 529532522529

4F 339898849058268499678959179199628547527798508628879209481077971 709747789650812774753793714693624600772665613649623616654559704 658575577537612532547532575735594589690610601643659600675621731 734670606582599638712644502615581532555637678701545582507516516 522543618618648589523640627596575585583543552622579641575684670 600557559611534588536509517652579611690644580543662610614568567 577515450546549486518524541534554516565583599555615579541605550 603589599599

4 M 34134512331297123912491208129112211215127912681143108110611063 105811191188114411031088109797195398596695210051001104710491035 965878901924888924890837880822851852865869891831886821830845781 862797751740759722795712749758769835756758781766685709776718709 682748748778825772742807779730768824809756710780773676680741693 712729674621623648687730730697662657738707712707694706654699739 702677662651841751732803759792813707734672695718754735728746725 742704698718754707787731714743727752761
4 M 35849842887786642606594531602555538616593567536529522502505500 505532549475484505486551529582622564557508635512619612591650632 722656654640643564560640537545563523570534515544546501554528542 594500619531541535497496508512463455492536544557558537564519530 535497515524549568530541507542511488550519524493519493515477467 476458484506504491511448538519525465462494542487525517491520487 505516521541543527487503468505506507504515490507548494493484491 517461493492

4F 36823776788725791740816679658711644658653668724622656616581635 609613618609671617642666689644595653702672664617654672682706605 672665651708648668669648635657621657630654616666671649584601569 635588635639620561560614583544567630578509513542566564589594617 584595640573590543594537549579585563572548558561582579557560541 539566620536533533520523508544501584511544558519650581553514532 539553595541599527535502556540563541566535568606586534526543546 561500543506

4 M 37857739664550512480486487487507521517526548550535521578598549 539538496562571556584574609576607597595628541544611619645583559 613585611611609621621589614617607634561527528530527507504567537 548530527541551523521543548540568545577610567585584594589548554 602579562588579590572518508519499473536513528527499499528526520 534519526546532538523549538549571549518589558563616633612576583 594546563625630576589595594575566564580581586577586576599575575 582615614589

4 M 381524101210181047973848809781899831858860835692757730733721690 704717746751751749768770724880785890813800755825806865599624640 693646640648651677661646604631616634698670671645611657653621596 634643651697638606638655777621683707684678619623621672634600630 593572574559570599596576564631578594585576591575586562554585564 561543616571604576563548531582557542559601566569549596650615616 587596621565572547581602603628601591557566566544553590585569552 580550549598557

4 M 39858806821757812753704687666666660634622581552563580584562638 593654641604642555591589555584625585544582625559629600529608560 550582574601548588526543574516575515526578555505604562585559619 601661647638600620579586569607605645603616635628575585630581587 591630633525515611569598621547583644590581534566570537522576492 519497489492501553549529579530526505549494512494571581542629525 531500533582505492549483487476493520489486479543487481481481481 475469478470

4 F 40557539516522525576597650563624569590587518593579653575560580 581570536545551567557561572604559532566565545585604623611583550 562561596540532516565530532521519563542531525541554561574589565 583561502563563527539547575548542592586600588638566598584513555 543535573577587560584540569526515547559534568551539525538552546 524582513497513538534523493501507491527497518515512529504499495 490492468468493511482507497484465487541497501466499483477483488 498485493466

Summary KR Experiment Two

The data are stored according to the following format:
The code left of the subject data refers to group number, gender and subject number.

The codes are:
1 = Control; 2 = Summary KR; 3 = Strategy. $\mathrm{M}=$ Male; $\mathrm{F}=$ Female.
1 M 01695643643643593560569539533486501488517512525485457476497453 443472424449598576595570562569588578518534529569533557539539549 539599540574553525539533550529548594509563538560565524525565512 606515551561507554569560571562564536535539519517574553558527556 520589558542555547555616690622669632630597661649621618615640615 608625617627644642663646640655637606637648617615

1 M 02615606576591532553538564596594614600609562498554539491547443 576525498605549583520503519547556580539518572534557584594540562 562524585553539516545577553554549550549599629569539529575582527 541569528557546527558596558530527508578550561580601511520586522 564560600558490604578826871829887880760884766759836833795876843 924910739612754772743704810706634713682634634751

1 M 0312851002829731604509661584590601529544516582538530577575581 485598518504562534513554584566507571586588508534534556538538517 571572548557637524637597599521636521572572622603591507573561592 544525557584499525529574547547538561577529549573600590531571548 484578604550570600576580884834850769827741804800806786770889777 823749774728747818757768789762789740743704775761784

1 M 04717486627565620580525548536508544585546555612587557588516542 561553556573550540574574535592617541579565555547558588522534585 543529613544601585587588592538533529529549559554557586564580505 575557547539555598623510566508563501613586554550555531567554560 552541534558537543530534521533529493471510500572525546479493510 513524494482504540516530474496502500511521509500
1 M 0512561076811712598555555593528530559492535576539512502559564 566589594546604603554566525607537624632652624621606619601566589 564588589686523537575568562676627543555600591548607577602612569 599593599536553594566596543624631617578588570602663589580634632 560629553580533545566592639595591614578613599586576594614651611 590597594568497584623580614647633597603654584601653
1 M 06154011841019979901891796789750686709697609701678608576649650 666620641652676562599584577587569564542575568620529572591635576 591537553591573553556542550621523554532550579579520498538563579 592589581578522577498558565596594572545532516578540539576590524 523594552554565566541558500493486487504492476506522496496562528 528516485509559528487554527521510564541537510531507
1 M 07831598613621556565560527539502531526518550526497495510489481 471456476463475457468471534547547519539533526551550566521524544 530556545560569525570571594545563581532525525542535557540549524 523489517514536516496547546516523534540527537531541543589588542 555513533574550567565650689690645602624582565573594577583525525 554595572557586546542538523517522562523522536517

1 M 08780565569625555523537509485489473498481492485500514468511492 620621570555636555657728613641704700684675695636610648603584639 583637623633683734829573522474659559609511450467658564499485542 480467479590512598599656583593548528458557454533423536431483515 604418499476502524600626674753676682691697716668734779774814759 676774636715867798733753777841743766859771768807

1 M 091139871714746603563534555687500461495518514487461501504469542 511492453491466512495517531512641501534520553511566611476491658 553508503522521560596531526513540565529524509506492593540537538 587593541504536544554589567546587538509499556534557558546515550 527531528541566564607548527505551492478498534496592569501498523 521604529522541465483475480450444476503516505474

1F 101020826723655717569553595591595605532595581596577546568585576 571582565594589553550570578553583580585607640591599608582595543 571581633588551570589586665595577609651608557638564598650566588 585596634562573569564569617621596590585572573618567564635624565 597559593576541550561591584600602605582591609608635639665645644 666659636584627646634663647689654637671669672691

1F11973808837794795784750757624613608615635551589592558566593600 543611571589540541526542551612520533554506495501522521504541502 507540509517574539585566576581549592521549531546545563559597551 541522538581503453468469510537548584555518547515532517498500553 548542489535521505539501511534551504535552529535519562536525512 498514559589506540526536531499516569509489532484

1F121030869632586528555483462481488444450429432451479467447435406 420393499479589541554562614542692569535578611525547547560533605 567559564545497605513513505540530520524529546529587572487629543 571508562595509521554518516514528516567529515675505556579555551 510527531567569535517487487465462488515473445481438478465476470 463498524515508501475504492474492485475530519492

1F131275 1056973902782855751725683666655635639638620559576614567584 591568577572625576591601639594575564587590566587556552605584568 577563567578575569584623563553531555549583569589554549523565566 616594561568533520574557571551570528577586599565557582549530543 537622570527556535523568578604597618567587620625656652672662672 701691670627649658662687648717682654680712708710

1F 14453474440430432440445517622615587611595595656801631603634573 629600626551646550632639562568596608582583687587518628640545517 526597576593532559689541557517550467543557551511521523548564546 546508672621486538551587561595490514523578548597493649507555545 551579541569523546543639669619617601553606664665652615664678637 625651642558580596595570584607551542615635593530

1F15784576636599836583551597655660651573655587654642590578607586 553571585585576552534615550570543529519591660577580615599601522 555573580653565565610611655564611664703625566670551594689563577 578593732571552572533595610611576603582574544573546548636617570 566566607620538534531544573609591632552583632641677665679679699 736724704671671670689712648745711671689755744729

1F16737614581572553504508523500498499487508477489503502524526502 513516501479572555551557550580545578570560595554566562572534541 572562561633510588589534580599561618580568527632551536594572577 553568538552554565564577515563542544569558516573634535570564555

521614556566545541554817665722694687723660660724672652623632598 665634585583606609587634585609598649584601636734

1 F 17762621618479590583524592558523673572569590585580556596576559 543528565573530588512538556565543555500604600552566536526562527 566528552534575540512574611534577541539553539556528577542563584 510574530527558521550521571530563537564531563513572540542510554 496538516550543498594498501516553499532511508556510516479518525 484509511488518546599563514510513553517525528495

1F 18150810771006870866845764819922800683756724713717685682673662 665728680752642592579608575588584600566521591660566603581558566 564705575584636505562569527596555575556509731555532588661616770 517544519575570535617614610582563554552558518545575555574579565 571533573582525563562522533581729509523532566542513500507410491 488484470557522466460780713528525523602528475474506

2 M 19826831747823736753751786829670672672656649668529457462500443 424426426454442413424452483457548546512486522457444463459487531 470509560506482509499490523538551554526540584544545556573537545 534558572563604578568553545594563592638674678676684637648624616 652704645672690666644604614584581516539584540499530523549586580 555567613587587622642585564576574534570617551570

2 M 20535506544538523533560518549526537530512524485554573600587563 571558545592588565592560598562534616555576576566564548555584570 564559592562562550574595599579594596583555581600616608600572560 548574608579583597557601638631594614581533577567574589556553528 547543532543573556552510500527548567530520531547522532514502522 530547538525528558578552547545529540533547554560

2 M 21817889809839761871915706680680743627614516597501507519542481 492502475461434430417460519471478412377419446453450548685654651 633568757648593633598605683682748680703749637677725730660585615 636737730586762724702773725607812807808688754680692874620678837 961750726578714750565494531500485513530542566521509523542528534 560573560534555595550514588534574536634582558561

2 M 22180817691719172015071381130013281405147714571398141813471399 109610481038104110531135113611611097110110971022979982962807749 763778828811798787784793773774777792844733711683714730700695750 704715681678734674675644606638612642614644627634651638589599591 571600591568589586574592609605592603580560592566680637633607628 581605605601597592580572590599580618615611583603572585602572564 626599613619

2 M 23519425646437401419438414417390426425410475376389394360436419 405427410436442437468475450453510543512528577575556544560564527 564583594610575563557577562598566593596566602585572573558520504 507511499501547505535519547538539537538565560556567559550568536 539553534572555611560567606571637594625581603595577566572605582 633610554545560563604591541564592569568586614603

2 M 24577587707551578499487564551527552531554523480526522457442481 487447460459475558490492490497426436402494501482488515561518475 489519446420484492431506492456522480499473446462456442439579550 571585537570565628590612607662607734637674647821672749735616691 709679667729668645691654639579586610632571607608587574578561606 554590635647573603590605565604667504529557624580

2 M 25160414651382139514651379140313841268129011941284123111751116853 891787832782789785833726717711700711711709648655604684617636630 665610606612642600617528492502498491557511512500499511501520502 452490484516560554556522536539545558565549536564510539542562551 539543542595518520539571514557525587594526519500522512509510514 489489482494515510477492469466476488478446483464470492466459

2 M 26521522502490444499503512499500498457487498501534540516519523 494512467507557525504546540535519544507529531552603522550586558 580591553547528629605596599584593615585585603598577581628603589 588615639601609620622628654589641645634504556599561554556576531 501528511506562542556521530549561614572646627610622579582582605 587646622628616667609626591644576637614661634644

2 M 2710568928621080782784814758766743742764800762704607551608551 562536533509541533540514524495502553533520539523489480490471473 450459486508470486447453458521482497489471490507478477515453517 490479472462456484479487492458444423429456472472442454458491464 464455454474440428388412464457461463468460424431419450439426427 426417445415462473431428448498462434381406439451424
2 F 289319588838139839467041010891797822875781752787695662648676660 715734753737742775714761738697589572582593583589687590645618648 646607562551563561569563587599597581582583594607580569595567546 539574597576591581571614578561578603574500503552538557551595559 606621621580567599582594574594550590544570590574558546514515529 523575562573598519594609592568553589631545555548

2 F 29856822725780704643710658683661668613697650634629636678641479 658589589537522588550563611572594580577579579570594539590564574 577600601551565529544517514507621625668591590585606603564598588 547555564536591537514539556554551572668607564535541594532532644 564588528535581576652526501510520470511519491522517488477499465 535500539495524480501492486519543512490492526531
2 F 309031065741739784718730725841793757728839815781745662656579855 690752738724723731753697769670600675664669640657693669639660609 627647660721581564542593617649600580560543550600585577573544614 508597546526554544576530569540531514546509523582608572558555546 600556542536515571503840644609641634627608632637652604659648658 677597609576577565575615603602517600571565571535
2 F 31109910801076113111401193114110971110117511911122115911061109889 843886861853830855859810820817842828805780748768746802776829819 721772745744760807769734758720706718750715688760703733669643671 652658680692659635636745664662850657671655667641671623622649625 654668599613632616609625667664594677699679602647624625576600630 682594564589567568603595567578574577597608585558597568620594
2 F 3213601138117311641005100810271030104710121010939927950937910945 849866850805867820858869857862815804818865787763784792800829820 899831794754732793813784706660641679634628652627661645631650703 734634556601567553582564544576536561581615561646629597585571581 550578598584573543580572568583686567586490547559532486481474532 555503519499516498477493496501563556487497472451506460513
2 F 33643580600564560585559524553566539547532523555565536543521501 520565529479512525542515514525618609555520535521528501523487522 528510507545552511500517506515529504521487513627489483508494495 475500490501504520512504616511536527532558533566520542536522569

566564568566573558512470502465472431440419432427451440449465454 457459438451450455489433420441467411447446454485

2 F 34829701620618681623576587618593731710739655650572577557617599 591557596563580595557538539587551492584587535550528533528530542 531517494497484488518512498461478471494504496490503503482453440 427440468481483473450446463477471439429542594563572562611623610 643634591632604611730587571553531546635550521552519534578573562 512502593520535540540538543533567561562544487515

2 F 35676646667740709716769775753747697640605684705575582545558556 624615606629640601552685681590574570578630615604615619559574569 578577543636576626619570543565606612679644611591587644594552559 545593552542555581565566550550597596606535547569571561509543552 528587516536548547561553525553543556569563606581557600541562549 581572576597541531535565533519583576545531497575

2 F 3611761296101812241000117511211233117611401029955958886860772849 9288748609308501000908835854850771773717740633656622715639581 565610532566558598589553479456450630625546578563636570569653567 620549589536524607558634565613583593618599630632555571588575618 582609697598574585556554501534505522577526597597519522519547562 498510522538523523520524500588540559522514541545518544534566
3 M 37933851879853800750743629608575636640643606599613619640633616 618629676644600588594616603593607651613621624635618606630624626 594650628631633605575591639627599615659666660634680632658638632 653630630626659642647602623623625636628660615575593574564585581 615607604605620608622568587602608603559603567578577606614581579 581611617604605607589568600612608601590562576587
3 M 38176516111702156015551474151415121573152411511056103011011126 10741110118210941136107710451099862836786822825821802750769772 658650643615607610631604671606605574585563510541542551546551571 536548583539547577518512599525513523527569536548559543517499550 511516556541555484496515481516547541536547499535507484586464472 506492494465462472451453455471444464473502479476487489468495471 440463483

3 M 391166112211851116924899867839848842818833823871733749755750740 650650655591597573618598626537540587564591553599555598540528591 522537531530528531535554519514495483503503514496521544540527532 581522589539546559539569567523537542538530569588553555525531531 552562543526524546543536553601555527527519525558499517525520543 547544552499542564492533568545493548543483517520524

3 M 40909824739737700716689705696690640590623635592661596612580618 617539589606588567581617690622612590584611598573568579548556564 570564540532537542556546534539528544553545544558551559573603572 592547554569559561570617548561548535604536532541562538551547555 563558561576579566589670622625602632619603616610614590610592616 618647646598610620611624610590594597611609608607

3 M 41621589568540643508470519455505737451424450511509504745536545 721511639635563502579557498534575617591635565653615555571562643 661872594683429504471502631524513567555526579696657571614703595 689671353419370451382397391408444510397490485514568602588535499 589544504598508527530522524529526535542585618514571580543518554 516528552592524509541537586533573578576496490471

3 M 421072110610541113113311361154125611731131914711666865817705859 924647838755620622607563576607593619573583677552568527601486549 551459518506566505544521486580574472599577528552520557583545606 632530479577509469523474624529567487410445492426527460497540562 470553438533499540512482482538518514553550544553513521538513529 519519506514516535535572573540563551548566528550543541554
3 M 43837777653647665543562524454521479551474499484507533605608537 526516550465552587510495594547516535548522577526468585560560511 540591577568606567539580532555557555617528567572554536548516535 548526578566589571568575650607642589555580537537532494492498524 568515527544519526540550543543497484540539575470515516481433479 461503532477465507536528467543561479506579502470

3 M 44169818061923179418101791158117691622163215701684162616801560 1488128511651173113111601187123712771226127411741274127812931249 1300931891912838793832850850939900924713932927826823785738655 664570629672634569592555536590647558560678550618577620621556667 632624657674684639662623674604538598582578531560553540623640602 598608621606547568619576600627621596578541592535564537593569577 563549578568524601

3 M 45109411241019903819814738705646625598675604619588591578587564 595543564619519614595520519542549549534552528528489504499506545 592558554548563572605593584566571572613587594623597576566598588 640533529520517525494513510499494510498481522511495481451552536 544563534467543549577543502480508481488485464545460391524498462 496485484475457431450453444434437454421463501425443

3F 46601583609652619608612637591608598585528508528512540560526564 510546508532496520564517530512525531520586496501529507501500490 489502518524532499500557580532554536519514560506556530550502570 544575542556522570550558555534564534562530545556535529548535526 539549527560541536533506551529565530557508514564545540520543551 560545550526567562544570539553534543533554579581

3F 47752740773616619672682706644636602576542527574522520528485508 528497521527518577471488488465477490502435498493481454442447419 390443454463441415420467464500438477486484489461492447447475406 545556547584567605589573609611622583630670688617665643620701600 583675597583619609610606606656617678623612637673601652639611638 567585594585619604607617598600641690673654672634

3 F 48810730729668672714677733664720688671674629661648602773654620 655583625594607664582653633559563583522563615516522597492510520 613500533513497529513545531547500468563504508591498485476504511 501518448570494467534572495575485509506509467479494488514564530 481543523736580596652488509511467491493493495539541520463542495 484517516516491499524526534533528520505523535515

3 F 49709680660663671779708678701687574524587515541509550505487482 519454463509495456481492446468477519472506473581616587606652569 515571599558539521539562589601554603570538563682598612587612587 581607587593607619754550590609581586626604589607607597622590547 597571560603588567590560575640607618601598588568578600612628593 582567567584579569590585616587541566542525539509

3 F 5015071580152413861348151613301207123912921080962968927906905856 922909859844735674716667654645712701792696740725715751691738767 670671726690747685698736732703676691714741703646674671732609633

655691679681687613662681597667655708608662607536589595578536577 562549608538564582599596564551558506520537547500481533479494522 602528574578552475575539506562606499531547583524492538508

3 F 51588590548568552557503528588559583578585574554532566555620556 560592555561575564547551553549555554568527544533559553538529556 554548564571547551568586589593563570552568550551579566557570549 550578512519517513544549561554583528537549536540546538549544550 577556594560562571568532549535551546545558543539570578566560532 553547534571577556567569546579571556570571562570

3F52734675644655624679589619652595626647651681570608580648702624 601602517614704587607565594569539567561585544555555566566666505 510505528495614492467530603501575553455439483619470471597476506 466474583539447446509433471493504431544536508539479530467424488 466424388380442528408464451496461435413477473484450425450427433 513481505530506455512472435517510567543417421431

3F53845753781749752671623669585538544529571582536518507557503542 567567555536553562542537511507542534510523525514517508496501493 470485498517502508530541549543553530546575576574546543547528561 565569576551551573548537570560565560580550605584559583596585604 553578562547570571553506504523557550561572576586508559561522521 535503536550536568572545551536564552538532525530

3F54805830798782806814726696726740805790714696718732768717740709 742761693761728572537526551570586566601587602589493513461486490 474521504500520507504527507530497524481510510546536571585566538 549570578597559608566581584607592575508514557530553556557543544 545544532556546543533610585603617555554556592568595580595581585 566583580604569629583576570574592548538578579590

APPENDIX D

Instructions To Subjects

Subject Instructions used in Relative Frequency Experiment Two

For the Control and the Strategy Groups
Please read the following instruction very carefully and fell free to ask any question if it is not clear.

As a subjects you are asked to move your right arm to left from the micro switch to knock over the first barrier and then to move right to knock over the second barrier in 1000 ms .

You will receive feedback after every trial on a 12 inch monitor in front of you. The total movement time (feedback) will only be given for the first 60 trials and for the rest it will be withdrawn.

Then (right after that) there will be ten more trials without feedback on the screen. Five minutes later 20 trails will be performed without feedback in the same manner as before.

For Relative Frequency Group
Please read the following instruction very carefully and fell free to ask any question if it is not clear.

As a subjects you are asked to move your right arm to left from the micro switch to knock over the first barrier and then to move right to knock over the second barrier in 1000 ms .

You will receive feedback on the first and than on every fifth trial (i.e. $5^{\text {th }}, 10^{\text {th }}$, $15^{\text {th }}$ and so on) until the $60^{\text {th }}$ trial on a 12 inch monitor in front of you. The total movement time (feedback) will only be given for the first 60 trials and for the rest it will be withdrawn.

Then (right after that) there will be ten more trials without feedback on the screen. Five minutes later 20 trails will be performed without feedback in the same manner as before.

Subject Instructions used in Summary KR Experiment Two

For the Control Group

The aim of this experiment is to investigate the effect of various feedback manipulations upon the learning of a simple motor skill.

General explanation of the task: The motor task you are about to perform involves moving the handle in front of you from the start line to the finish line, reversing direction at Zones 2 and 1 respectively. So you will have to reverse movement direction 2 times before reaching the finish line. For this first day you will be required to complete 90 trials and on the second day you will perform 30 more trials.

1. Grasp the handle, which is positioned at the at the start line,
2. Move the slide leftward to 'Zone Two', then reverse right to 'Zone One',
3. Reverse direction again to move to past the finish line.
4. Your goal is to pass the finish line in as close to 550 ms as possible in every trial.
5. You will receive feedback from a graph which will show your error, in milliseconds, from the target time. You should seek to reduce this error to zero. There will be one point on the graph for every attempt at the movement you make.
a) You will perform 90 trials today and you will receive feedback after every trial.
6. An early reversal of the movement will be considered as an incomplete movement and will be repeated with a subsequent correct trial.
7. Once you complete one trial, bring the slide to the start line with your other arm and be prepared for the next trial (or the feedback).
8. You should begin the next trial when the experimenter says "ready". Make sure that you are fully prepared before you start each trial.

If you have an questions, please do not hesitate to ask! Good Luck.

Subject Instructions used in Summary KR Experiment Two

For Summary KR Group

The aim of this experiment is to investigate the effect of various feedback manipulations upon the learning of a simple motor skill.

General explanation of the task: The motor task you are about to perform involves moving the handle in front of you from the start line to the finish line, reversing direction at Zones 2 and 1 respectively. So you will have to reverse movement direction 2 times before reaching the finish line. For this first day you will be required to complete 90 trials and on the second day you will perform 30 more trials.

1. Grasp the handle, which is positioned at the at the start line,
2. Move the slide leftward to 'Zone Two', then reverse right to 'Zone One',
3. Reverse direction again to move to past the finish line.
4. Your goal is to pass the finish line in as close to 550 ms as possible in every trial.
5. You will receive feedback from a graph which will show your error, in milliseconds, from the target time. You should seek to reduce this error to zero. There will be one point on the graph for every attempt at the movement you make.
a) You will perform 90 trials today. You will receive feedback only six times out of these 90 trials. You will be shown a graph of your timing errors once after every 15 trials you perform.
6. An early reversal of the movement will be considered as an incomplete movement and will be repeated with a subsequent correct trial.
7. Once you complete one trial, bring the slide to the start line with your other arm and be prepared for the next trial (or the feedback).
8. You should begin the next trial when the experimenter says "ready". Make sure that you are fully prepared before you start each trial.

If you have an questions, please do not hesitate to ask! Good Luck!

Subject Instructions used in Summary KR Experiment Two

For Strategy Group

The aim of this experiment is to investigate the effect of various feedback manipulations upon the learning of a simple motor skill.

General explanation of the task: The motor task you are about to perform involves moving the handle in front of you from the start line to the finish line, reversing direction at Zones 2 and 1 respectively. So you will have to reverse movement direction 2 times before reaching the finish line. For this first day you will be required to complete 90 trials and on the second day you will perform 30 more trials.

1. Grasp the handle, which is positioned at the at the start line,
2. Move the slide leftward to 'Zone Two', then reverse right to 'Zone One',
3. Reverse direction again to move to past the finish line.
4. Your goal is to pass the finish line in as close to 550 ms as possible in every trial.
5. You will receive feedback from a graph which will show your error, in milliseconds, from the target time. You should seek to reduce this error to zero. There will be one point on the graph for every attempt at the movement you make.
a) You will perform 90 trials today but you can only ask for feedback on your performance accuracy. You must decide when it is best to ask for feedback. Tomorrow you will have to perform this task without feedback, so you should try to learn to perform this task without feedback today. Please make sure you don't ask to see the 6 graphs too soon, because you don't have any feedback for the rest of the session, and your accuracy will suffer as a result. Remember you can only ask to see your results $\underline{6}$ times.
6. An early reversal of the movement will be considered as an incomplete movement and will be repeated with a subsequent correct trial.
7. Once you complete one trial, bring the slide to the start line with your other arm and be prepared for the next trial (or the feedback).
8. You should begin the next trial when the experimenter says "ready", Make sure that you are fully prepared before you start each trial.

If you have an questions, please do not hesitate to ask! Good Luck

APPENDIX E

Scoring Table And Post Test Questions

Point Scale used in Summary KR Experiment Two

POINT SCALE

Through out the 90 trials you will be shown the following point scale. Your total points will be compared to those of other subjects, and the subject with the best points will win a small prize. The scale awards an increasing number of points the closer you get to the target time of $<50 \mathrm{~ms}$.

The small faces at the right hand side will also indicate the mood of the experimenter while you are performing!

TIME (ms)

$\pm 0 \mathrm{~ms}$
$\pm 10 \mathrm{~ms}$
$\pm 25 \mathrm{~ms}$
$\pm 50 \mathrm{~ms}$
$\pm 100 \mathrm{~ms}$
$\pm 100+\mathrm{ms}$

POINTS

$5 * * * * *$
4 ****
$3 * * *$
2 **
1 *
0

Post Test Questions used in Relative Frequency Experiment Two

Let's assume that as a subject you were instructed to ignore the feedback give to you if it was outside the square at the end of the screen.

Would you be able to ignore the feedback that were outside the square and use only the ones given in the square if you were instructed to do so?

Please comment on this question!
Thank you for answering the question and participating to the experiment.

Post Test Questions used in Summary KR Experiment Two

For Control and Summary KR Groups

1. What were you trying to do in the test?
a) What was the target time?
b) What sequence of movements were you trying to reproduce?
c) Did you use the feedback?
2. What kind of technique did you use to perform the task?
3. Did you use the experimenter's instructions to help you perform the task?
4. In what percentage of trials do you think you applied the above technique or instructions?

For Strategy Group

1. What were you trying to do in the test?
a) What was the target time?
b) What sequence of movements were you trying to reproduce?
c) Did you use the feedback?
2. What strategy did you use in choosing when to see your graphs?
3. Did you find your strategy useful?
4. Did you estimate your errors in trials on which you got no feedback? If yes, on what percentage of trials did you estimate your error?

APPENDIX F

Conference Communications

Conference Communication at the 1994 annual conference of the British Association of Sport and Exercise Sciences, Aberdeen, UK.

Journal of Sports Sciences, 13 (1), 62-63

Cognitive Strategies Underlying Optimal Use Of Feedback

 SchedulingS. Kirazci, P. J. K. Smith and J. A. Fazey.

Division of Health and Human Performance, University of Wales, Ffriddoedd Building, Victoria Drive, Bangor, Gwynedd LL57 2EN, UK.

The present study investigates the effect of summary knowledge of results (summary-KR) in conjunction with a supporting strategy on the acquisition and retention of a simple ballistic motor timing task, in comparison to a control group (1 trial summary-KR). Some recent studies (Schmidt et al., 1985, Journal of Experimental Psychology, 15, 352-359; Sidaway et al., 1991, Research Quarterly for Exercise and Sport, 62, 27-32) have indicated that a summary-KR condition seemed to facilitate performance in retention tests but was detrimental to acquisition performance. On-going studies in the Human Performance Laboratory at University of Wales, Bangor indicate that use of a strategy has the same effect as the summary-KR conditions over the transfer trials (Kirazci and Fazey, 1992, Journal of Sports Sciences, 10, 601-602). The strategy group received instructions stating that they would receive feedback only on 10% of their trials (9 trials out of 90) and that their strategy was to decide at which intervals to receive the feedback during acquisition trials. In this study the effect of 10 -trial summary-KR (in effect $K R$ presentation frequency of 10% over 90 trials) was compared with 10% summary-KR supported strategy condition, a 10% yoked summary-KR strategy condition, and a 1 trial summary-KR control group (100% $K R$) across acquisition and retention. The hypothesis of the experiment was that
the strategy groups would perform as well as the 10% summary-KR group in Delayed Retention trials, and all 3 would perform better than the control group.

The ballistic-timing task and the apparatus used in this experiment was an adaptation of that used by Schmidt et al., (1985, Journal of Experimental Psychology, 15, 352-359). Four groups of ten right-handed subjects were randomly assigned to four different KR conditions. In each condition the subjects were asked to move the slide left 30 cm from the starting position then right 15 cm , and then left again until the slide passed finish line 40 cm left of the starting position. They were instructed to complete the whole movement in a target time of 550 ms . KR was only given for the first 90 trials. For the remaining 30 trails in Immediate Retention (10 minutes) and Delayed Retention (2 days later) KR was withdrawn. Each subject in the control group received feedback after every trial and the 10 trial summary-KR group after every 10 trials on a 36cm monitor in front of them. The subjects in 10% yoked summary-KR strategy group received feedback on the same trial and intervals as their counter-parts in 10% supporting strategy group. After each trial temporal accuracy at the $40-\mathrm{cm}$ line was recorded and subjects' constant error for that trial or block was presented on a graph of accuracy against trial.

The 4×1 (Groups by Block) ANOVA of the variable error (VE) scores in the Delayed Retention test showed a significant interaction $\left(F_{3,36}=3.5537\right.$, $P<0.05$). The follow up Tukey test showed this as a significant loss of consistency for the control group when the KR was withheld. The strategy group suffered no loss of consistency in their performance whilst the control, 10 trial summary-KR and 10% yoked strategy groups' performance became significantly more variable than during acquisition. The means of each group in Delayed Retention were $\mathrm{M}=21.6, \mathrm{SD}=6.08 ; \mathrm{M}=38.4, \mathrm{SD}=16.63 ; \mathrm{M}=31.0, \mathrm{SD}=11.52$ and $\mathrm{M}=29.2, \mathrm{SD}=9.53$ respectively. The order of the block means in Delayed Retention trials support the use of self-governed strategic use of feedback as an aid to motor learning. Because this difference was obtained despite keeping the
nature of trials and feedback intervals constant, it was hypothesised that merely giving control to the subjects over their own feedback requirements was sufficient to facilitate consistency. This result therefore supports the idea that cognitive styles and cognitive strategies influence optimum learning of motor skills.

Conference Communication at the 1995 annual conference of the British Association of Sport and Exercise Sciences, Belfast, UK.

Subjects' Manipulation Of Kr Can Mimic The Summary Kr Effect
S. Kirazci, P. J. K. Smith and J. A. Fazey.

Division of Health and Human Performance, University of Wales, Ffriddoedd Building, Victoria Drive, Bangor, Gwynedd LL57 2EN, UK.

Providing information feedback in summary form facilitates learning for a simple ballistic motor task relative to feedback after every trial (Schmidt, Young, Swinnen and Shapiro, 1989, Journal of Experimental Psychology: Learning, Memory, \& Cognition, 15, 352-359). Preliminary research has suggested a supporting strategy has the same effect as the summary-KR conditions over the transfer trials (Kirazci, Smith, and Fazey, 1995, Journal of Sports Sciences, 13, 1, 62-63), but several methodological weaknesses prevented an accurate comparison being drawn to previous KR research. The present study was designed to overcome these problems through major changes in the number of subjects, the homogeneity of the subject pool and their level of motivation. The strategy group in this experiment were instructed they would receive feedback 6 times out of 90 trials (7% of trials). They were to decide at which intervals to receive feedback during acquisition. The effect of 15 -trial summary-KR (a KR frequency of 7% over 90 trials) was compared with a supported strategy and a 1 trial summary-KR control group ($100 \% \mathrm{KR}$). It was hypothesised that the strategy group would perform at least as well as the summary-KR group in retention, owing to their involvement in similar problem solving activity during the no-KR trials, and that both would perform better than the control group.

Three groups of 18 subjects (30 male and 24 female) were randomly assigned to the three $K R$ conditions. The ballistic-timing task and the apparatus used in this
experiment was adapted from Schmidt et al. (1989). In each condition the subjects were asked to perform a linear slide task in as close to 550 ms as possible. KR was given for the first 90 trials; for the remaining 30 retention trials (2 days later) KR was withdrawn. Temporal accuracy was recorded on an IBM compatible PC and subjects' constant error for the trial or block of trials was presented on a graph on a $36-\mathrm{cm}$ monitor. Retention data were analysed using absolute constant error ($|\mathrm{CE}|$) and variable error (VE) to provide direct comparison with previous research. The one-way ANOVA for $|C E|$ elicited a significant effect for groups, $F_{2,51}=6.6, p<0.01$. Follow-up Tukey's tests revealed the control group had significantly higher $|C E|$ than both the summary-KR and strategy groups ($\underline{M}=85.1, \underline{S D} \pm 68.7 ; \underline{M}=41.4, \underline{S D} \pm 29.4$; $\underline{M}=36.9, \underline{S D} \pm 26.7$, respectively). The one-way ANOVA among groups for VE was also significant, $F_{2,51}=5.4, p<0.01$. The follow-up Tukey's test revealed that the control group's VE score was significantly higher than both summary-KR and strategy groups $(\underline{M}=35.6, \underline{S D} \pm 15.9 ; \quad \underline{M}=26.8, \quad \underline{S D} \pm 6.74 ; \quad \underline{M}=24.2$, $\underline{\mathrm{SD}} \pm 7.4$, respectively). The summary KR result supports other studies (e.g. Schmidt et al., 1989) which conclude that summary-KR promotes consistency in retention performance. Furthermore findings support the use of self-governed use of feedback as an aid to motor learning.

This findings provide evidence that informing subjects of the importance of the problem solving process during practice can reduce the need for supervision of feedback provision, without risking impaired retention. This research is a first step towards demonstrating that cognitive factors involved in learning motor skills can be incorporated in the learning session to increase the autonomy of the subject.

[^0]: "Feedback strengthens association between stimulus events and particular movements, thus forming the basis of learning. Factors that increase the amount or frequency of such feedback presentations strengthen these bonds to an increased degree, further increasing learning. This basic notion

[^1]: ${ }^{1}$ Part of this chapter has been presented at the 1994 annual conference of the British Association of Sport and Exercise Science, Aberdeen, UK, and appeared in the Journal of Sports Sciences, 13 (1), 62-63 (see Appendix F).

[^2]: ${ }^{2}$ Part of this chapter has been presented at the 1995 annual conference of the British Association of Sport and Exercise Science, Belfast, UK, and will appear in the Journal of Sports Sciences (see Appendix F).

[^3]: * Denotes significant difference at the 0.05 level of significance.

 Dependent Variable: Performance Time (Actual Time - Target Time).

[^4]: * Denotes significant difference at the 0.05 level of significance.

