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Abstract

Designing and developing autonomous robotics systems is quite a challenging

and time-consuming task. Besides that, current robotic systems are

expensive and mostly designed to perform a single task. Developing software

environments to aid the design of low-cost robotic systems will open up

development to people and parties which are less connected to the field of

robotics.

This thesis proposes a robotic system design environment that is user-friendly,

low-cost, and can be used to find solutions for several different tasks. The

robotic design system that has been developed controls a Lego Mindstorms

robot via a NetLogo model. It makes and enacts decisions by using robot

commands and real-time sensor feeds such as demonstrated in NetLogo

models (line-following and subsumption architecture roaming). The results

have shown that the robotic system design environment is capable of sending

commands to robots and getting real-time feed-backs from sensors.

This environment has also been modified to extend its capabilities to include

evolutionary techniques using Grammatical Evolution. The code for the

NetLogo application was evolved grammatically using simulated agents that

were embodied within a virtual environment for the task of maze exploration.

The approach was evaluated using a selection of mazes with a robot inserted

into these unknown environments without any internal memory mechanisms.

The solutions found during virtual experiments were extracted to a Lego

Mindstorms robot and validated in the real world.

The robotic system design environment was further developed to discover and

validate novel interesting behaviours. A combination of configurations and

grammar used for these experiments resulted in producing several unusual
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behaviours. The behaviours were evolved by using Grammatical Evolution

and a novel compression-based metric was used as a fitness function to

effectively discover interesting behaviour. These behaviours were validated

by real-world experiments by comparing them against the simulated results.

In summary, the research undertaken in this thesis developed a novel robotic

system design environment that is user-friendly, low-cost, and capable of

performing several different tasks involving complex robotic behaviours such

as maze exploration, and was able to discover and validate novel interesting

behaviour.
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Chapter 1

Introduction

1.1 Motivation

Autonomous robot systems perform tasks in situations where human control

is infeasible or not cost-effective. Robots use many different types of

sensors, actuators, and degrees of freedom to run autonomously and

provide sophisticated services. Robotic system environments allow you to

program robots to perform desired actions. Unfortunately, these robots are

tied to specific hardware, processing environments, and communication

infrastructures which often makes their services limited to that specific

application scenario only. The problem for robotics design is that the functions

and constraints related to the task and environments are hard-coded and

inaccessible which increases the complexity. This increased complexity of

design and cost of the autonomous system has led to an increase in demands

for modularity, productivity, re-usability, integration, and maintenance.

Designing and developing robotics environments is quite a challenging and

complex task. When it comes to robotics, there is still much research work left

to be done. A set of reliable software components integrated into a unified

environment can kick start a remarkable robotics project. However, currently

available environments are expensive and hard to design/customise. One of

the reasons is that a large share of the robotic project’s cost is spent on the

control software. For example, business automation projects may spend up to

80% of their budget on system integration such as software development and

customisation [146]. Educational institutions also need to customise their

learning environment frequently to introduce new opportunities to students.
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Thus, to reduce the cost of customisation, an important goal for any robotics

system environment is to simplify the job of robotics software engineers.

Currently, robotics design and operation requires advanced programming

skills for the end users which makes it complex and time-consuming.

Therefore, a robotics system environment that is easy to program, install, and

compile will open up development opportunities to the people and parties

less connected to the field of robotics. For example, a plug and play robotics

system environment and drag and drop user interface can take out the

complexity and save valuable time. If it takes less time to implement, then

more time can be spent investigating alternative designs.

Recently, as is the case in AI research in general, a large number of research

projects have explored issues related to robotics design, especially in the

evolutionary robotics sub-field [105], [102], [56], [81], [84], [24], [43], [129],

[85], [140], [42], [57], [10], [38], [82]. But we still have a long way to

go in the production of truly cost-effective and easy to use robotics design

environments. While current research has explored how agents can create

interesting behaviours and validate them in the real world, we now need

to explore other components of the robotics system design environments

to make them low-cost and easy to use. To do so, design issues must be

considered and a design should be implemented which can be applied to

multiple projects with very little customisation. The hope is that this will be

cost-effective in terms of time and money and will be useful for businesses

who wish to adopt automation in the future.

1.2 Problem Statement

Developing robot system environments with low-cost and easy to use features

is a challenge. It is a problem for AI to design a robotic system environment

that can be used for multiple projects and not specific to any single project.

Current robot systems are specific to certain types of hardware and software

and it is expensive to customise them according to new research. One of

the main reasons is design issues – currently, robot systems are developed
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according to the project requirements and are immensely dependent on a

certain type of hardware and software which is only usable for that specific

project. However, while there has been significant research undertaken in

designing robotics system environments for autonomous robots, low-cost and

easy to use environments have received relatively little attention. The main

communities that could benefit from this research are small businesses and

educational institutions.

Robotics has been used to perform many different tasks in recent years.

During some of those tasks, interesting behaviours of robotics were noticed.

Is it possible to develop a system which can automatically discover behaviour

that is interesting or not? Can we validate these newly discovered behaviours

in the real-world? These are very challenging issues while keeping the robotic

system environment low-cost and easy to use.

1.3 Research Questions

The specific research questions are as follows:

1. Can a low-cost robotic system design environment be developed that

is open-source and extendable for performing evolutionary robotics

experiments?

2. Is the new robotic system design environment capable of automatically

discovering novel interesting behaviours and validating these

behaviours in the real-world?

1.4 Objectives

The specific objectives are as follows:

1. To conduct an extensive literature review on the current state of the art

of robotic design and work related to the above research questions and

point out current issues, findings, and future directions (see Chapter 2).
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2. To develop an integrated low-cost robotic system design environment

for evolutionary robotics experiments (see Chapters 3 and 4).

3. To use the new robotic environment to discover novel interesting robotic

behaviours (see Chapter 5).

4. To use the new robotic environment to validate novel interesting robotic

behaviours in the real world (see Chapter 5).

1.5 Contributions

The work undertaken in this thesis has led to several contributions and

multiple publications which are detailed below:

A new low-cost robotic development environment The thesis proposes

and implements an up to date robotic system environment which links

NetLogo, an agent-oriented integrated development environment, with Lego

Mindstorms Robots. This middleware can receive commands from NetLogo

and pass signals to the robot, and receive feedback from the robot and pass

them back to the NetLogo.

The novel application of Grammatical Evolution for robotic design The

thesis applied the solution of Grammatical Evolution [136] to the problem of

evolving behaviours for the task of maze exploration. A series of experiments

were conducted, and results were evaluated. The results showed that the

newly developed environment is capable of finding novel solutions using

Grammatical Evolution efficiently. However, there were some shortcomings

due to the limitations of the Lego Mindstorms robot hardware.

The discovery of novel interesting behaviours The thesis proposes a

novel method for discovering interesting robotic behaviours that utilises the

new robotic system design environment. The model used for Grammatical

Evolution experiments was further developed to discover the novel interesting

robotic behaviours.
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The real-world validation of the novel interesting behaviours The new

robotic design environment was also used to validate the discovered novel

interesting behaviours in the real-world. Also, a new interface was developed

to send commands to the robot and receive feedback from the robot. Its

performance in the real-world was compared against the simulated results

and a detailed analysis is provided in chapter 5.

1.6 Publications

The following papers have been published or accepted for publication during

the course of this research:

1. Aslam, S.K, Faithful, W.J. and Teahan, W.J. "A Middleware to Link Lego

Mindstorms Robots with 4th Generation Language Software NetLogo".

In International Conference on Innovative Techniques and Applications

of Artificial Intelligence (pp. 416-430) 2018, Cambridge UK. Springer.

2. Aslam, S.K, Jones, L. and Teahan, W. J. "A Low-Cost Platform for the

Grammatical Evolution of Exploratory Agents". Abstract accepted and

talk presented at Artificial Intelligence International Conference (A2IC)

2020, Barcelona, Spain.

1.7 Thesis Outline

Chapter 2 reviews the background and related work to the field of robotic

system development environments, evolutionary robotics, and interesting

behaviours of robotics. The chapter begins with a survey of current robotic

system environments and provides a historical review of the field. The chapter

continues with the description of evolutionary robotics and outlines the

main challenges in the field. The chapter provides a detailed background of

interesting behaviours and some research to discover interesting behaviours

using robotics and ends with a summary and discussion. Current issues and

future directions are discussed as well. The chapter provides the past and

current research of the robotic system environments and evolutionary robotics
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with a focus on grammatical evolution and interesting robotic behaviours. The

chapter concludes with a summary of past and present research and briefly

describes related implementations and applications. The chapter closes

with the presentation of the issues and problems which can be mitigated to

improve robotic systems.

Chapter 3 presents the design of a middleware that uses a Java extension

to NetLogo and LeJOS Java control file. The chapter first discusses the prior

knowledge by reviewing the existing middlewares. Then the chapter presents

the middleware which can receive commands from NetLogo and pass signals

to the robot and receive feedback from the robot and pass them back to the

NetLogo. The chapter concludes with some examples of how middleware can

be used in NetLogo models and a discussion of some experimental results.

Chapter 4 reports on the experiments that were conducted on the use

of Grammatical Evolution applied to the problem of evolving behaviour for

the task of maze exploration. A series of NetLogo applications and a Lego

Mindstorms kit (to examine the performance in the real-world) was used to

investigate the application of Grammatical Evolution to exploratory robotics.

Chapter 5 investigates how to evolve interesting behaviours using the

novel robotic system development environment, developed earlier in this

thesis. The chapter discusses the discovery of novel interesting robotic

behaviours and their validation in the real-world by using the newly developed

environment. The chapter concludes with the evaluation of results and a

summary of the success and shortcomings of the new environment.

Chapter 6 discusses the success of the thesis by reviewing the aims and

objectives. Then the chapter summarises the findings and provides the

conclusions. Finally, the chapter discusses the limitations of the thesis before

suggesting future work.
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Chapter 2

Background and Related Work

This chapter provides background to the area of robotics and identifies design

issues for robotics by comparing currently available design environments for

robotics. Related work is discussed in detail and the issues which still need to

be resolved are identified. These will help us to design and upgrade our robotic

system development environment. Some popular areas in Evolutionary

Robotics research are discussed and grammatical solutions to the current

issues are provided in detail which is later used to test the performance of our

robotic system development environment. The notion of interestingness is

then discussed, with a focus on robotics design, followed by the current issues

and future directions. This has helped guide the development of solutions to

automatically finding interesting behaviours in chapter 5.

2.1 Robotic System Design Environments

This section and its subsections provide background and work related to

robotic design environments.

2.1.1 Introduction

The advancements in the field of computing, wireless communication, and

sensors technologies are revolutionising the emerging field of robotics which

is leading to an extraordinary opportunity to develop a variety of real-time

applications. These new applications include performing tasks in dangerous

and inaccessible terrains, search-and-rescue missions, assisting elders and

physically challenged people, and assisting surgeons in operating theatres. In

future, robots should be designed to facilitate rapid and easy implementation,
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be flexible, maintainable, customisable, self-configuring, self-optimising, and

have the ability to interact with other systems such as sensor networks and

enterprise information systems [95].

The capabilities of robots are increasing every day whereas the costs of

hardware and components are reducing rapidly at the same time. The current

situation and progress look optimistic; however, the growth of industry seems

delayed because of some factors such as the development environment.

Fragmentation of hardware is the most important factor to be considered [73].

Another important factor is the portability of code and development tools are

not up to standard [128]. Most robots are programmed to be used in unique

environments and can only be used in those specific environments. Because

of this reason, the process of robots’ adoption in different fields is slow. For

example, we can easily find a robot to sweep our home autonomously, and

some other special task robots can be found performing specific military tasks.

But those robots can only work in the specific environment they are designed

for and cannot be programmed to swap duties.

To be truly useful, robots must have a set of basic abilities to adapt and

tackle a variety of tasks in a wide range of environments. These abilities may

include navigation to a goal location, avoiding obstacles, object recognition,

and object manipulation [92]. To find out current issues and possible solutions

a detailed literature review related to robotics’ history, design and future are

presented below.

2.1.2 Popular approaches to Robotics

The history of robotics is as old as the histories of technology and science,

and attempts to reproduce an artificial, sentient being. The main reason

for interest in robotics is the need to perform those tasks which cannot

be performed by a human. Some reasons behind this can be that the

environment is hazardous (such as radioactive field, deep-sea level) or it

is too far away (such as space exploration). Therefore, researchers are trying

to develop new robots every day [27]. A brief history and popular approaches
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to robotics are provided below. A table summarising a selection of events that

popularised robotics is shown in table 2.1.

Robotics research is not something new. Some historians stated that in Greek

mythology Talos was a giant creature made of bronze given to Europe by

Zeus [89]. However, Karel Capek used the term “robot” for the first time in

his play called “Rossum’s Universal Robots (R.U.R)”. The story was simply

that a man created a robot and was later killed by his creation [96]. This may

be the reason behind human’s biggest fear that one day robots will take over

the world.

Westinghouse created ELECKTRO, a robot human-like robot which was

unveiled at the 1939 world’s fair. This robot could walk, talk, and smoke

[4]. It was in 1942 when Willard Pollard and Harold Roselund designed the

first “programmable” mechanism (a spray-painter) for the Devilbiss Company

[45]. In the late 1940s, Elmer and Elsie (turtle robots) were created by Walter,

robots that were capable of finding and returning to the charging station

whenever the battery ran low [154]. Similar research was conducted between

the 1960s and 1970s which led to one of the first mobile robots “Shakey”

[151] and the computer-controlled Stanford arm [139]. Shakey was built by

SRI which can be controlled by a computer and was equipped with a vision

system.

Another similar robot called “Stanford Cart” successfully crossed a room full

of obstacles (chairs were used as obstacles) without any assistance from

humans. This cart was equipped with a camera to take pictures from several

angles which were relayed to a computer. The computer then analysed the

pictures and figured out the distance from obstacles [148].

During the late 1980s, Brooks and his team at MIT created robots that defied

the cognitive approaches to AI, such as subsumption architecture couples

sensory information to choose action rather than using the guiding behaviour

by symbolic mental representations of the world. The robots created using

these approaches were capable of using sensed information and taking
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Table 2.1: A selection of robots that have popularised robotics development.

Robot Name Features
ELECKTRO [4] Capable of walking, talking, and smoking.
Paint-Sprayer [45] First “programmable” mechanism.
Turtle robots [154] Able to find their way back to the charging

station whenever battery power run low.
Shakey [151] First Mobile robot, equipped with a vision system
Stanford Cart [148] Crossed a room filled with chairs without any

human assistance.
Genghis [78] Able to follow a person based on the readings of an

infrared sensor.
LEGO [73] LEGO plastic bricks to design/invent robots.
Myrmix [11] Able to find and collect objects representing food.
iRobot [67] First robot vacuum cleaner.
Spirit & Mars exploration.
Sojourner [138]
HUBO [59] One of the smartest mobile robots in the world.
Robonaut2 [35] First-ever space robot.
Sophia [69] First ever robot to get citizenship.

action accordingly, such as Genghis could follow a person by utilising the

information provided by the infrared sensor [78]. Unlike previous robots,

Genghis showed that reactive behaviours could navigate complex, rugged

and open environments while being much cheaper than previous robots.

LEGO released Mindstorms NXT in 1998, which is a system for

designing/inventing robots using LEGO plastic bricks, to enable developers to

design an inexpensive robotic environment [73]. More on this approach will

be discussed in Chapter 3.

In 1999, the University of Zurich created a robot called “Myrmix” [11] with

three basic principles layered behaviours which are collect, avoid, and

safe-forward. The robot was supposed to avoid the objects which represent

obstacles while finding the objects representing food. The behaviours were

prioritised such as collecting an object, avoiding obstacles, and moving

forward respectively.

It was the 2000s when robotics started spreading everywhere and human’s

started using them in different aspects of regular life such as iRobot which

was the first generation of the Roomba robotic vacuum cleaners that was
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introduced in 2002 [67]. The year 2003 saw NASA launching twin robotic

rovers called Spirit and Sojourner as part of their Mars exploration mission

[138].

The Korean Institute of Science and Technology (KIST) created a robot called

“HUBO” and claims it is the world’s smartest mobile robot. The robot is

connected to a computer using high-speed wireless connecting and the

computer performs all the thinking for the robot [59]. In 2005 self-driving

cars made their first appearance; however, substantial improvements are

still needed before wide-spread deployment of fully autonomous vehicles is

possible.

Robonaut2, the latest generation of astronaut helpers, was launched to space

in 2011. Its main purpose, for now, is to teach engineers how dextrous robots

behave in space. However, it is expected that one day it could be helping

space-walkers in making repairs and additions to the international space

station [35].

At the Future Investment Summit in Riyadh 2017, a robot called Sophia

stunned the whole world by displaying human-like expressions and interacting

with people. It was also featured in many TV interviews and was also granted

Saudi Arabian citizenship, becoming the first-ever robot to have a nationality

[69].

In summary, over the years the approaches used for designing autonomous

systems evolved, however, these systems are either expensive or complex

to understand. Substantial time and/or money are required to learn and

develop the small selection of robotic systems described above. Therefore a

new approach is needed which is cost-effective and user-friendly without the

requirement of knowledge of advanced programming.

Background and Related Work 11



2.2 Issues with Robotics Design

Robotics is the design and study of robots. It has been long predicted that

robots will become mainstream public agents if they acquire basic intelligence.

To demonstrate basic intelligence, the robots should have capabilities of

navigating, communicating, and interacting in the real-world environment.

Generally, these requirements can be fulfilled by currently available robotics

hardware, however, this prediction is held back by the complexity of design

and implementation of thoughtful intelligence. To identify the issues with

robotics, first, it is important to answer the following question “what is a

robot"?

2.2.1 What is a Robot?

There are several robots available nowadays. Some of them walk around on

their two, four, six, or more legs while others fly. Some help physicians to do

surgery, others help workers in industries. These robots can be the size of a

coin or bigger than the size of a car. Some robots can make omelettes while

others can explore Mars. This diversity in size, design, and capabilities makes

it difficult to come up with a definition of what is a robot [51].

Despite this, there are various definitions provided by some scholars. For

example, Goris [50] defined that a robot is “a mechanical device which

performs automated tasks, either according to direct human supervision, a

predefined program or, a set of general guidelines, using artificial techniques”.

Weser [168] stated that “the term robot has quite a broad meaning. It can

refer to software that crawls web pages, has a manipulator arm, an artificial

insect, an autonomous aeroplane and many other technical systems that

somehow act more or less purposefully”. Furthermore, there is a common

apprehension that robots are to replace humans in almost every situation,

especially in monotonous, heavy, and hazardous processes.

Nowadays, their use in industries is common where robots perform several

tasks including welding, drilling, assembling, painting and packaging. These

robots perform a fixed sequence of actions and the surrounding space is
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designed to suit the robots. In contrast, mobile robots use different types

of sensors to interact with their surroundings which helps them to decide

their next action. Mobile robots need intelligent navigation systems to ensure

efficient and collision-free movement which is still being researched in several

projects [50].

In the context of this thesis, a robot is capable of displaying Brook’s [22]

definition of a behaviour based robot such as the robot does not need

an internal model to operate, it utilises the sensors and actuators to act

immediately upon real-world events including interaction, complex reaction,

and forward planning.

2.2.2 Design Issues for Robotics Design Environments

Some of the important design issues of robotics design environments are

discussed below.

2.2.2.1 Design, Fabrication and Programming

The length of time to design, fabricate, and program a new robot is one of

the major issues for robotics. The current robotic design process is lengthy

and it is also complex to make alterations in existing designs. Similarly, the

fabrication of these designs is a lengthy process as well. Developers may

need to wait days or months to get a custom part for their robot. These issues

can be exacerbated by the limited resources of robots such as computation,

mobility, manipulation capabilities, and size. Robots can only perform those

tasks for which they have components. For example, if a robot does not have a

colour sensor, it cannot recognise colour no matter how many commands you

run on the system. Besides that, programming the robot takes a significant

amount of time and sometimes after modification in the robot, it may require

to be re-programmed from scratch [16].

Some of these procedures can be simplified by using a middle layer of design

which should provide advanced developments with simple interfaces to be

used by the developers. Software extension and reusability should also be

increased by the middleware.
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2.2.2.2 Communication

Communication is one of the most complex issues faced by robotics. When

robots are working together, a reliable communication method is required for

coordination. Regardless of advances in wireless communication, there is still

no single reliable solution for robot-to-robot communication. The tricky part is

that in swarms, robots need to sense not only the environment but also each

robot in the swarm. Modelling and predicting communication is notoriously

hard and robots need new reliable approaches to communication [71].

2.2.2.3 Computation

Current robots have limited resources especially when it comes to battery

power and computation. Developers are trying to produce energy-inefficient

robots to improve the battery timings, which is an important issue, especially

for mobile robots and drones. An increase in the use of these systems has led

to new developments for battery technologies that are safe, cost-effective,

and lasts longer than before. However, still, they are not efficient for a robot

to perform tasks which require high computation [71]. For example, currently,

the robot cannot easily ask the question “Have I been here before?” because

to do so robots need to utilise previously collected data. It is difficult to have

data stored on the robot because it requires a large amount of battery power,

storage, and computation.

Besides that, different tasks require different computations and resources

utilisation. Robots are required to perform different tasks in real-time

including vision processing, mapping, and navigation. Therefore, the

components and resources should be utilised efficiently. Middleware can

be used to help the robots use these resources efficiently and according to

the requirements of different applications.

2.2.2.4 Biohybrid and Bioinspired robots

Recently, nature-inspired robots are becoming more common in robotics

labs. The idea is to develop robots which perform tasks the same as efficient

systems found in nature. However, studies show that the issues involved
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in this area are far too great to be solved any time soon. For example, a

battery to perform highspeed conversion, powerful actuators, self-healing

material, perception like humans, computation and reasoning are required to

develop biohybrid robots. These robots could provide useful features such as

body support for elderly or physically challenged people, weight reduction for

labour, impact protection, high speed computation, and mobility [170].

2.2.2.5 Battery Power

Robotics has seen many advances in recent years. Computer processing and

sensors have become cheaper and miniaturised which has helped with the

development of energy-efficient and computationally more powerful robots.

However, the life span of batteries has limited the infiltration of robotics

into daily life because current batteries are woefully inefficient and slow to

recharge. This is the reason that researchers are developing new batteries

which are affordable, safer and longer-lasting. A possible solution for the

robot to extract energy from light, vibration, and mechanical movement is

also under consideration [170].

2.2.2.6 Navigation and Exploration

One of the most common and important uses of robots is the exploration

of unknown terrain or environments. A large amount of work has already

been done in this area. To navigate through the environment and to sense

its surrounding, the robot needs different types of sensors and components

which need to be fixed at a suitable position. For example, if the collision

detection sensor is too high it won’t be able to detect obstacles that are lower

than the sensor.

Furthermore, these types of robots are mostly used in places where it is not

easy to access them frequently. Therefore, these robots should be able to

handle failure and able to adapt, learn, and recover for successful navigation

of the environment. For exploration, it should be able to differentiate between

old and new discoveries [170].
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2.2.2.7 Providing heterogeneity abstractions

Nowadays, robots are multitasking which requires the use of heterogeneous

hardware and software components. Therefore, it is important to have reliable

communication so that these components can work together. Usually, a

middleware provides this type of functionalities by acting as a collaborative

layer between all the modules involved, reducing the impact of poor

communication and the heterogeneity of the modules [1].

2.2.2.8 Offering often-needed robot services

Re-implementations of current algorithms, and control services for robots

may need to be repeated several times, which takes a great deal of time and

effort. It can be due to the changes in hardware, changes in technical staff,

implementation of new applications, operating system updates, or just when

you want to add new functionalities. The middleware should facilitate these

types of changes and services so that modules can be reused by offering

these functionalities.

2.2.2.9 Limitation of component resources

Often robots are equipped with components that have limitations. These

limitations include limited battery power, low storage memory, slow

computation, and low-level connectivity. The functionalities provided by

middleware can be used to manage these devices efficiently when needed.

For example, if an equipped device is not in use, it should be in standby mode

to save battery power [170].

2.3 Design Environments for Robotics

There are many surveys covering diverse topics in Robotics such as

space robotics [18], evaluations and characteristics of robotic programming

environments, [76], vision for mobile robot navigation [33], and robotic

mapping techniques [152]. Also, there are some surveys regarding the use of

middleware for rapidly growing technologies including ad hoc networks [53]

and wireless sensor networks (WSN) [54]. However, the research concerning
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robotic design environments are less frequent in comparison to the research

mentioned above. In this section, some of the important projects regarding

middleware for robotic design systems are explored and discussed.

Figure 2.1: A generic approach to the use of middleware for robotic systems [39].

The middleware sits in-between the software application used by the user to

program the robot and the operation used by the robot’s hardware to receive

commands from the application (see figure 2.1). There are many reasons

behind the use of middleware in robotic design systems, such as it can be

used to improve the quality of the software application, make the software

design process simple, reduce the cost of development, and manage the

heterogeneity of the hardware. To develop a middleware, the developers

need to develop an algorithm that can be integrated with other components

within the robotic design system. Furthermore, if they need to make any

improvements, they only need to replace old components with new ones.

Some problems faced during the development of middleware are outlined

by Smart [144]. Kramer and Scheutz [76] performed a survey regarding

robot development environments (RDEs) in which they described, compared,

and evaluated nine open-source, free of cost RDEs for robots. Mohammad

et al. [95] explored research projects regarding middleware for robotics

and provided a short overview of a few middlewares and their objectives. A

year later, a survey of networked robots middlewares and their evaluation

was provided by the same team [99]. Furthermore, Namoshee et al. [100],

discussed some of the freely available middleware environments for robotics,

including these environments, applications within the field of robotic systems.
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In the past, robots were designed for specific tasks and will only perform

that task, whereas, modern robots are autonomous and ubiquitous because

of their design and implementation. New robot hardware components are

heterogeneously interconnected. These components usually can be controlled

using software modules developed in different programming languages by

different manufacturers. These software modules can process the information

received from sensors and send control commands to actuators to perform

required tasks, including planning, navigation, and user interaction.

Despite the advantages provided by the module design, it still faces

integration issues that can be mitigated by using middleware. These issues

include communication, interoperability, and configuration [95].

Elkady and Sobh [39] suggested that to fulfil the modular design requirement,

the middleware needs to have the following capabilities. It should not be

limited to a specific device or software application. It should be easy to use,

upgradeable, scalable, robust, flexible, maintainable, and reliable. Besides

that, it should also be secure to use such as secure communication and

authentication.

Some of the popular middleware projects proposed and implemented by

researchers are presented below.

2.3.1 Player/Stage System

Player/Stage system [77] was developed, at the University of Southern

California, to serve as an interface to robotic devices. It supports many

types of robot devices and provides drivers, infrastructure, and algorithms for

robotic applications. As alluded to its name, it consists of two parts: Player

and Stage. The Player is a device repository server for robotic devices such

as sensors, actuators, and robots, where all devices are assigned a drive and

an interface. To receive, process, and send data, these drives implement

algorithms. On the other hand, the Stage is a graphical simulator where

users can model devices in an environment. This middleware is designed as

a three-layer architecture:
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1. Clients

2. Interfaces

3. Devices

The client represents software developed for specific robotic applications,

interfaces represent robot devices and services, and actual devices are

actuators, sensors, and robots. There are several client-side libraries

written in programming languages (C, C++, and Python) that can provide

access to the services offered by this middleware. These services include

accessing data from devices, sending commands to a device, and changing

configurations of an existing device.

2.3.2 Orca

Orca [88] is an open-source development tool for component-based robotics.

It is used in several different applications including a single vehicle to

distributed sensor networks. This middleware encourages the user to reuse

the robotics software by allowing the users to implement a distributed

component-based robotic system where the user can define interfaces and

communication mechanisms. At the start, ORCA was implemented using

CORBA. However, because of some complex problems, Ice [62] was developed.

This new approach added the capabilities of smaller and more consistent API,

better services, and improved performance.

2.3.3 Robot Operating System (ROS)

ROS was developed by Stanford University, which is an open-source software

where many tools, libraries, and conventions work together to write robotic

software. The functionalities provided by these libraries and tools include

receiving, writing, compiling, and running codes across multiple computers.

The services provided by ROS include designing hardware, controlling devices,

implementing functionalities, sending, and receiving messages/commands,

and package management. The main advantages of ROS are integration and
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language independence. It allows you to use code written in other software

frameworks and code can be in any modern programming language [132].

2.3.4 Webots™

Webots™[93] is a mobile robotic simulation software developed by

Cyberbotics Ltd. It can quickly generate prototyping environments for

modelling, programming, and simulating mobile robots. Besides, several

commercially available robots can be controlled by generating a control

program in Webots™. It allows the user to define, set up, and modify several

robots by using the same environment, and the robots can be equipped with

most of the available sensors and actuators. These robots are programmed

in C, C++, and Java, simulate them and can also transfer them to your real

robot. However, the software is commercial and not free-to-use. Also, users

have to have high-level programming knowledge to use the software.

2.3.5 Open Robot Interface for the Network (ORiN)

ORiN [94] is an interface which was developed by the Japan Robot Association

to access and control computer-based robotic applications. ORiN is written

in web languages such as HTTP, XML, and SOAP. It mainly targeted industrial

robots and separated specifications and implementation, which encouraged

third parties to develop computer-based robotic applications. Hence it is

possible to create low-cost multi-vendor systems. It can be used on any

network and with any programming language because of its distributed

object model design. It supports several types of specifications, and vendors

can use XML to define specific options.

2.3.6 Sensory Data Processing Middleware

University of Tsukuba (Japan) developed Sensory Data Processing Middleware

(SDPM) [157] to support service mobile robots by providing access to sensory

information. Services provided by this middleware are:
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• Services to provide information about obstacles.

• Services to determine the robot’s position.

These services are provided by utilising the landmark information sensed by

several external sensors. Its functionalities provide a single model with

different configurations for external sensors on a service mobile robot. This

module can be used with or without any changes for any service mobile

robot.

2.3.7 Data-Centric Middleware

This environment [49] is a data-centric middleware to integrate wireless

sensor networks and mobile robots. The universities of Seville, Spain and

Stuttgart, Germany, developed it for the European project AWARE (platform

for Autonomous self-deploying and operation of Wireless sensor-actuators

networks cooperation with AeRial objEcts). The middleware provides

simplified mechanisms to integrate the information gathered using different

types of sensors. Such processes are required for applications that use

robots to obtain data (temperature, light level, or high humidity) from their

environments and feedback using a wireless network connection.

2.3.8 LEaRN – LEgo Robot and Netlogo

LEaRN was an attempt to improve students’ classroom experience by the

University of Split, Croatia. It is a combination of a simulated environment

and a real physical robot. The main purpose of this environment is to make

use of the advantages of a simulated environment with the possibility to

demonstrate agent behaviour by using a physical robot. LEaRN allows two-

way communication between simulation and robot. You can transfer data

from the simulation to the robot and from the robot to the simulation.
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Table 2.2: A comparison of robotic environments’ features.

Player/
Stage

ORCA ROS LEaRN

OS
Linux,
Mac,
Win

Linux,
Mac,
Win

Linux,
Mac,
Win

Linux,
Mac,
Win

Simulator Type 2-D 2-D, 3-D 2-D, 3-D 2-D, 3-D

Programming
Language

Player(any)
Stage

(C, C++,
Python,

Java)

C++, Java,
Python,

PHP,
Matlab

C, C++,
Python,
Octave,

LISP, Java

C#, .NET,
NetLogo

Documentation Low-Level High-Level High-Level Low-Level
Tutorial Yes Yes Yes No

Portability Yes Yes Yes Yes

Sensor
Odometry,

range

Odometry,
range,
camera

Odometry,
range,
camera

colour,
ultrasonic,

bump
Debugging/

Logging
Yes Yes No No

GUI No Yes No Yes

This environment consists of three parts – the simulated environment, a

communications channel, and the physical environment. NetLogo [158]

has been used as a tool for depicting the simulated environment of the

robot. There are several reasons that it was chosen such as its simplicity

for beginners and fewer code requirements. The communication channel

to exchange information between NetLogo and the robot was a special

application developed using .NET and C# programming languages. The

robot was programmed using the NXC programming language to receive the

commands from NetLogo [171]. In a case study, students were asked to use

this framework in some selected assignments and some excellent results

were achieved. However, there is no evidence of the experiments conducted.

The next section and its subsections provide the background of Evolutionary

Robotics, more specifically Grammatical Evolution which is used in this thesis

to evolve robotic behaviours using a fitness function. It also discusses the

existing robotic environments which use Grammatical Evolution.
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2.4 Evolutionary Robotics

This section provides a brief introduction to the field of evolutionary robotics

and its algorithms, followed by a detailed background and description of

Grammatical Evolution. It then continues to provide the outline, applications,

implementation and evaluation of grammatical evolution.

Evolutionary Robotics is useful for exploring biological mechanisms and

investigating robotic applications’ design space and testing for scientific

hypotheses [105]. Evolutionary Robotics (ER) is a sub-field of Behavioural

Robotics (BR) that develops evolutionary computing applications for

autonomous robotic systems. One of the main aims of ER is to develop

automated applications that can evolve complex robotic behaviours.

Therefore, recent ER research is mainly focused on mobile robots and robot

colonies [102].

Evolutionary robotics utilise sensory-motor coordination to allow robots with

limited resources (sensors, battery, computation) to solve complex problems

[140]. Evolutionary computation is used by ER to design robots and control

software automatically [42]. The ER field is divided into two main parts:

methods for cognitive science [57] and biology [10], [38], [82], and methods

for engineering purposes. This thesis mainly focuses on the second category

along with first category add-ons to automatically design and maintain an

efficient robotic design system [36]. Specifically, robotic behaviours will

be governed and evolved by the new developed robotic design system. In

order to attain the desired results, it is necessary to replace pre-programmed

approaches with evolutionary principles where a robot is only provided with

the specification of the task; see [56], [81], [84], [24], [43], [129], [85] for

examples.

ER aims to design such a robot that can adapt to the changing environment

and evolve the solution of a specific task. Evolutionary Algorithms (EA) have

demonstrated that they can accomplish such goals [5]. Furthermore, these

techniques have shown the potential to design autonomous adaptive robots
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and generate modular robotic behaviours such as self-assembly of robots,

self-reconfiguration after detecting a change in the environment, and self-

repair after collusion. These behaviours allow the robots to explore dangerous

and difficult to access terrains.

The next section briefly describes evolutionary algorithms and their

applications. The purpose is to identify the most promising methods to

design autonomous adaptive robots.

2.4.1 Evolutionary Algorithms

Evolutionary Algorithm (EA) is an optimisation algorithm that imitates

the biological mechanisms behind natural evolution such as mutation,

recombination, and natural selection in order to find an optimal design within

specific constraints [12]. The number of robotic system design environments

have increased along with the requirement for more automated processes in

real-world optimization problems and require high efficiency and robustness

while designing the algorithms. These applications include computer vision

[104], robotics, big data analytics, and bioinformatics [70]. In order to fulfil

these requirements, the current trend is to design optimisation processes by

machine learning and search methodologies [12].

Evolutionary algorithms are classed as general, randomised search heuristics

that can be used to perform many different tasks. A number of different

parameters are required to perform each task which are very crucial for the

success and efficiency of the search. Even though it is based on empirical

experience mainly, however, finding the appropriate settings is still a difficult

task.

In the evolutionary algorithm domain, the following main algorithms can be

mentioned: genetic algorithms (GA) [52]; genetic programming (GP) [126];

and grammatical evolution (GE) [136]. Each of these algorithms has many

different variants and are being used in several different industries.
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2.4.2 Genetic Algorithms

Genetic algorithms are part of a large class of evolutionary algorithms which

takes inspiration from natural evolution to generate solutions to optimisation

problems [30], [127]. A genetic algorithm evolves a population set over

and over to direct itself towards optimal solutions. That population is

termed as candidate-solutions of an optimisation problem. Initially, the

candidates are encoded in a specified format according to their real or binary

genetic representation. In the case of binary encoding, a candidate-solution’s

properties are represented by a bit string consisting of 1s or 0s locations.

The genetic algorithms evolve the population for subsequent generations by

using three operators which are called reproduction, crossover and mutation

(as shown in fig 2.2).

Figure 2.2: Flowchart of Genetic Algorithm [52].

A fitness function is used to measure the fitness of each candidate. The

reproduction operator uses a probability-based technique to help in the

selection of the best candidates in each generation. A mating pool is formed

after the selection of the best candidates. These mating pools are used

by crossover operators which randomly select a site at which crossover

operations are carried out (as shown in fig 2.3a). Crossover operators are

followed by the mutation operators which may change randomly selected

features in the offspring. This operator flips the value of a binary digit in a

string that represents the genome of the candidate-solution as shown in figure
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2.3b, at a random location selected with a small probability. This may help the

population to emerge out of a local minima during the search optimisation

process.

Figure 2.3: (a) Crossover Operator, (b) Mutation Operator [52].

2.4.3 Genetic Programming

Genetic Programming is an Evolutionary Algorithm which usually uses syntax

trees to encode individuals. There are several research studies proposing

various other forms of encoding genetic programming since the original tree-

based genetic programming was invented by Koza [126]. The generational

process of genetic programming is as follows: it randomly creates an initial

population of genetic programming individuals using a tree generation

method. A predefined fitness function is used to evaluate the fitness of every

individual of that population. Koza [74] proposed three separate methods to

generate the initial population which are full, grow, and ramped (half-and-half)

methods.

After the first run, if the required results are not achieved, the individuals

of the current population with high fitness value (parents) are selected to

generate the new population (offspring). The process is repeated until the

required results are achieved [40]. To generate offspring, the parents are

modified using genetic operators called crossover and mutation. Crossover

operates by exchanging sub-trees which are randomly selected from each of

the two selected parents. For mutation randomly selected trees replace

each other on the selected parent. The offspring replaces the initial

population during each generation. Genetic Programming keeps repeating

this process continuously until an individual achieves the required fitness

level to terminate the process. A predefined set of functions and terminals is

used by Genetic Programming to construct individuals.
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2.4.4 Grammatical Evolution

Grammatical Evolution is a grammar-based form of genetic programming

which evolves programs or rules in any language [108], [31], [135], [61], [21],

[7], [85], [125]. Grammatical evolution is similar to genetic programming as

it also generates variable-length computer programs by using the evolution

process. However, the difference between the two is that grammatical

evolution implements linear genotype population (binary or integer strings).

A genotype-to-phenotype mapping process is used to transform these strings

into functional phenotype programs. The whole process is observed by using a

BNF grammar which is used to generate the produced solution code. Because

grammatical evolution uses grammar to describe generated structures, a user

can simply write or modify a grammar in a text file to manipulate the output

structure. This provides ease of application and attractive flexibility which is

not available in the standard approach to genetic programming. Furthermore,

the solutions can be generated in a number of languages including but not

limited to Java, C/C++, Lisp, Postscript, and English [32].

Grammatical evolution was introduced by Ryan et al. [136] as a new

approach for evolving computer programs. In this method, a variable-length

linear genome was used which governs the mapping of a Backus-Naur-Form

grammar into a solution code (see figure 2.4) which can be executed to solve

complex problems. The result is that expressions and programs of arbitrary

complexity may be evolved. They successfully applied this newly proposed

method to the symbolic regression problem.

There are three different aspects of grammatical evolution [114]:

1. Grammars

2. Grounded in molecular biology

3. Evolutionary automatic programming
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They further explained that grammatical evolution is a form of genetic

programming [74], but it is different to the traditional approach in three

ways:

1. It employs linear genomes.

2. It uses a genotype to phenotype mapping.

3. Legal structures in phenotypic space are dictated by the use of grammar.

Furthermore, O’Neil and Ryan argued that grammatical evolution is different

from genetic programming as it is closer to the process of natural evolution

[116], [111].

O’Neil and Ryan noted that grammars provide a simple mechanism to describe

any complex structure such as languages, graphs, mathematical expressions,

molecules, and more. This makes grammatical evolution a powerful tool for

the evolution of any arbitrary structure as long as context-free grammar can

describe that structure.

Figure 2.4: Modular components of grammatical evolution [110].

Different types of grammars are used with grammatical evolution including

attributes grammars [28], Christiansen grammars [118], shape grammars

[113], and tree-adjunct grammars [98]. The grammar used for experiments

performed in this thesis is Backus-Naur-Form (BNF), which is briefly described

in the next section.
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2.4.4.1 Backus-Naur-Form (BNF)

The grammar notation most commonly used in Grammatical Evolution is

Backus-Naur-Form (BNF). BNF expresses the grammar of a language as a set

of production rules. It consists of three sets which are:

• A set of terminal symbols (items which appear in language, eg, + or -).

• A set of non-terminal symbols (can be expanded into one or more

terminals).

• A set of production rules of the form (Left-Hand-Side ::= Right-Hand-

Side).

According to the production rule, the left-hand side (non-terminal) can be

replaced by the expression on the right-hand side (terminals or non-terminals)

[29].

A BNF grammar G can be represented by a four-tuple < N, T, P, S >, where N

represents a set of non-terminals, T a set of terminals, P a set of production

rules that map the elements of N to T and S (a member of N) represents the

start symbol.

2.4.4.2 Mapping Function

Grammatical evolution draws inspiration from molecular biology where

characteristics of phenotypes are defined by using a sequence of genetic

material called deoxyribonucleic acid (DNA), also known as genotype. Ryan

et al. [135] provided a detailed comparison of grammatical evolution and

the biological process. In grammatical evolution, a binary string is used to

translate an individual to a chromosome, where each gene of the chromosome

is referred as a codon and contain on 8-bit binary string. The following

mapping function is used to convert each codon to its decimal value from

which a suitable set of production rules is selected [107]:

Rule = (codon decimal value) % (No of production rules). (2.1)
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Grammatical evolution has provided solutions for a variety of problems and

to several different fields since its invention. The research related to robotics

is reviewed in the next section 2.4.5 and some related implementations have

been explored in section 2.4.6.

2.4.5 Current and Past Research

This section will focus on applications of GE that are related to the applications

discussed later and specifically robot-related applications. In 1999, O’Neil

and Ryan introduced grammatical evolution to solve a real-world problem

by evolving caching algorithms because the solutions generated by genetic

programming were not good enough to outperform the solutions designed by

humans [115], [117]. O’Neil and Ryan created a caching algorithm in the C

programming language which showed a significant increase in performance

when applied to a large cache size. The solutions produced by grammatical

evolution were powerful enough to solve complex problems.

Tsoulos, Gavrilis and Glavas (2005) constructed artificial neural networks

(ANN) by using a grammatical evolution based technique [160]. The proposed

method was able to construct both types of neural networks: neural networks

with an arbitrary number of hidden layers, and recurrent neural networks.

A series of classification and regression problems was used to test the

performance where the results were compared against the performance

of a traditional Multilevel Perception.

Tavares and Pereira (2012) introduced a GE based technique to evolve

configurations for Ant Colony Optimisation (ACO). To get better results,

they used the features of crossover, mutation, and tournament selection

to find the fittest individual. The performance of the system was evaluated

against a human-designed ACO method, where the results showed that the

automatically generated method by the presented approach outperformed

the methods manually designed by humans [155].

Lourenço, Pereira, and Costa (2013) evolved solutions for knapsack problems

by using a grammatical evolution based hyper-heuristic framework. The

Background and Related Work 30



features of this framework included single point crossover, mutation, and

tournament selection to find the best solution. The solutions generated

using this method outperformed the solutions generated by other traditional

methods [86].

Peabody and Seitzer (2015) introduced a novel approach of grammatical

evolution called Grammatical Evolution for the Finch (GEF). This approach

provided a program written in Java programming language to control the

robot. To handle contingencies, the robot was able to perceive, decide, and

act whenever unplanned events and dynamic changes in the environment

were detected. For example, the robot was able to change its marked location

if the priorities marked location was not available, send an alert about the

problem detected, and automatically download the new instructions wirelessly

[122].

Lourenço, Pereira and Costa, applied novel Structured Grammatical Evolution

(SGE) to three problems (symbolic regression, path-finding, and predictive

modelling). The results showed the effectiveness of SGE against the standard

grammatical evolution techniques [85].

Perez and Nicolau (2018) evolved behaviour trees to control a video game

(the Mario Al Benchmark) by applying grammatical evolution. The results

showed that these controllers performed well when manoeuvring to avoid

challenging obstacles, and reactive behaviour capabilities to shoot enemies

[125].

The next section provides some of the related implementations of

grammatical evolution for robotics design systems.

2.4.6 Implementations of Grammatical Evolution

Grammatical evolution is implemented for numerous purposes in a variety of

languages which PonyGE2 [41], PyNeurGen [145], GERET [121], GEM [162],

gramEvol [106], GEVA [110], libGE [103], jGE [47]. Some of these which are

related to this research are described briefly below:
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2.4.6.1 Grammatical Evolution in Java (GEVA)

GEVA is implemented in the JAVA programming as an open-source library

developed by UCD’s Natural Computing Research & Application group

[161]. GEVA provides features of implementing the mapping process of

genotype-to-phenotype, a graphical user interface (GUI), and an evolutionary

algorithm to convert a variable-length integer, which makes it a complete

implementation of a grammatical evolution system. Also, it is capable

of providing implementation of demonstration problems such as symbolic

regression, the max problem, the royal tree problem, and the artificial ant

problem (Santa Fe Trail, Los Altos, and San Mateo).

This software contains two parts: GUI and GEVA [110]. The GUI allows the

user to configure and execute the demonstration of the problem (see figure

2.5), whereas, GEVA provides scripting features by providing a command-line

interface (see figure 2.5).

Figure 2.5: The components of GEVA v2.0 [110].

2.4.6.2 libGE

The libGE library is open-source software development of grammatical

evolution systems that is one of the first GE software which was available

to the general public. It is developed for the Linux operating system and

written in the C++ programming language. The last version (0.26) of libGE
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was released in September 2006 [47]. Any compatible evolutionary algorithm

system can use libGE to implement the mapping process. The process of

mapping genotype to phenotype is implemented by libGE where genotype

is the result of the search algorithm and the phenotype is the solution to be

evaluated. Nicolau stated in libGE documentation that it can take a string from

a variable length-genetic algorithm and map it onto a syntactically correct

program whose language is specified by the context-free grammar using BNF

[103].

For example, binary strings are provided by a chosen Search Engine to libGE.

These strings are mapped into programs by using a specified grammatical

language such as BNF grammar. Then, the Evaluator (an interpreter or

compiler) implements the problem specification by evaluating the resulting

programs. And these evaluated results (based on the fitness score) are

returned back to the Search Engine to create offspring and to set up new

individuals (binary strings) for libGE [103].

Initially, libGE was designed for work related to Context-Free Grammars (CFG).

Therefore, a specific set of codon values will only produce specific production

rules for a non-terminal symbol [47]. To improve the control over the mapping

process, libGE introduced a set of commands that can work together with

grammar.

2.4.6.3 Java Grammatical Evolution (jGE)

The jGE [47] library was the first implementation of grammatical evolution

for the Java programming language (Java SE versions 5 and 6) that was

published and was available for free. Until recently, artificial intelligence

and intelligent agent research groups at the School of Computer Science

of Bangor University used jGE as a core component but this was no longer

possible due to incompatibilities as a result of frequent software upgrades. A

major effort was required to update the software in order to use it for various

applications as described later in this dissertation.
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The main aim of jGE is to implement a framework of an open Evolutionary

Algorithm (EA), to facilitate further research into evolutionary algorithms,

especially Grammatical Evolution (GE) because grammatical evolution

facilitates the use of BNF grammar, arbitrary structures, and programming

languages [46]. The main objectives of jGE were: to provide an open and

extendable framework; to create an agent-based evolutionary system; to

facilitate further research of nature and biological principles; and to evolve

competent robot designs which are better than the robots designed by

humans.

2.4.7 Performance Evaluation of Grammatical Evolution

Grammatical evolution has performed better than other grammatical

algorithms in a series of benchmark problems including symbolic regression

problems [149], [112], symbolic integration problems [74], [106], artificial

ant problems [74], [75], [109], [112], and maze searching problems [147],

[48]. Some of these performances are discussed below.

2.4.7.1 Artificial Ant Problems

This problem was created by Jefferson and his team [66] by using the tracker

system which was built by the UCLA Artificial Life group. The aim of the

problem was to design complex behaviours using evolutionary algorithms.

The trail used in the original system was called the John Muir Trail [66], [80],

[150]. The objective of this problem is to control an artificial ant by using a

computer program so that it can find all the pieces of food lying along the trail

within a reasonable amount of time [150]. The artificial ant could perform

one of the three available actions (move, turn-right, and turn-left) where

the first action moves the ant one square forward and the other two actions

turn the ant 90 degrees right or left respectively. The artificial ant also uses a

sensing operation called food-ahead to check if the square the ant is facing

contains food or not.

Two instances of the artificial ant problems are discussed below in detail, the

Santa Fe Trail and the Los Altos Hills:
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Santa Fe Trail The Santa Fe Trail (see figure 2.6) is defined as a standard

problem to be used for benchmarking in genetic programming [74], [75], and

grammatical evolution [109], [112], [163].

Figure 2.6: The Santa Fe trail problem where green squares represent food and
brown squares represent gaps [74].

The objective of the Santa Fe Trail is to control an artificial ant using a

computer program to find the 89 pieces of food laid on the trail, represented

using green squares and gaps in the trail, represented using brown squares.

The artificial ant starts exploring from the top left square of the grid (0, 0) in a

square 32 by 32 toroidal grids. There are 144 squares in the trail with 21 turns

and 89 pieces of food distributed randomly along with it. The grid contains

the following irregularities [163]: single gaps in the food trail, double gaps

in the food trail, single gaps at corners of the food trail, double gaps at the

corner of the food trail, and triple gaps at the corner of the food trails. These

gaps in the trail represent different situations to evaluate the performance

of grammatical algorithms such as double gaps at the corners that require a

chess’ short knight move and triple gaps require long knight moves.

This problem was designed by Christopher Langton [74], [163], and is a more

difficult problem than the original artificial ant problem “John Muir Trail” used
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by Jefferson et. al. [66], [80]. The interesting features of this problem made

it popular as a benchmark and it is still being used repeatedly in the field

of grammatical programming [163]. Langdon and Poli [79] showed that the

performance of genetic programming is not good enough for the Santa Fe Trail

because of its multiple level deceptions. Similarly, Hugosson and his team

[64] argued that Santa Fe Trail problem is a complex problem to solve which

requires planning because it contains several local optima. Furthermore, they

added that a limited genetic programming schema analysis showed that the

problem is deceptive at all levels and there are no beneficial blocks to choose

randomly. Therefore, it is a challenging task for an evolutionary algorithm to

solve Santa Fe Trail problem.

Los Altos Hills The Los Altos Hills problem (see figure 2.7) is more

challenging than the Santa Fe Trails problem as it contains 157 pieces of

food, represented by green squares, located on a 100 by 100 toroidal grid

[74], [85]. The artificial ant starts exploring from the top left square of the

grid (0, 0) and explores through 221 squares with 29 turns and 157 pieces of

food distributed randomly along the trail (see figure 2.7).

Figure 2.7: The grids of the Los Altos Hills trail problem [74].

This problem has a larger grid than the Santa Fe Trail problem which makes it

more difficult. The trail begins in a similar fashion as the Santa Fe Trail such
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as single gaps in the trail and corners, double gaps in the trail and corner, and

triple gaps in the corners [90]. However, it introduces two novel irregularities

towards the end of the trail. The first one appears at grid 116 as shown in the

figure (see Figure 2.7) where the artificial ant is required to take two steps

to the right or left of the existing food grid. The second one is difficult as it

requires moving one step forward and then two steps to the left or right of

the existing food grid as shown in grid 136 (see Figure 2.7).

2.4.7.2 Maze Searching Problems

A type of maze problem is a two-dimensional board where the agent (solver)

needs to find a suitable path, from a series of confusing and difficult paths,

from the starting point to the finish point. It consists of fixed walls and

pathways where the agent can walk on pathways but can’t see through walls.

One of the oldest mazes is the Cretan labyrinth [37]. Planning and making

a strategy to reach the endpoint of a maze is a challenging problem in

artificial intelligence. Different strategies are suggested for different mazes,

for example, the “hand on the wall” solution [169] where the agent maintains

its hand on one side of the wall and keeps exploring the maze until it reaches

the goal.

If maze paths are divided into squares, it makes it easier to find the exit

point. Developing a computer program which can control an artificial agent

(solver) to help it find the exit point is the main objective of a maze searching

problem. In a maze searching problem, an agent starts at the entry point

facing towards the maze and can take only three actions (move, turn right,

and turn left), same as the artificial ant problem. These actions take one-

time unit each, however, no time units are taken by a sensing function of

the agents such as wall ahead, wall left, and wall right [147]. These

sensing functions check all three sides of the agent respectively and return

the value true if there is a wall or false if there is a path.

It is a challenging task for evolutionary algorithms to solve maze searching

problems because mazes contain local optima and obstacles block the way
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towards the target regularly. Furthermore, walls are similar to each other

which makes it confusing for the agent to find a way around them to reach

the target.

Hampton Court Maze The Hampton court maze represents the Hampton

court palace maze in the UK and its grid size is 39 by 23 as shown in figure 2.8

below [60]. The agent enters the maze at the middle bottom (at the location

marked by the green cell) and its target is to reach the centre of the maze

(marked by the red cell).

Figure 2.8: The Hampton Court Maze, green dot represent the starting point and
red dot represent the finishing point. [60].

As shown in figure 2.8, the Hampton Court maze is a simply connected maze

and a human can always reach the target by simply adopting the behaviour

of keeping its left or right hand on the wall. Although the maze can be solved

with this one simple technique, Teahan [156] stated that the presence of

several local optima in the Hampton Court maze make it a challenging task.

Chevening House Maze The Chevening House maze (see figure 2.9) is a

multiply-connected maze of grid size 47 by 47. Teahan [169] stated that the

Chevening House maze was built in the 1820s and was one of the first multiply-

connected mazes. These multiply-connected mazes are represented by one

or more “islands” which are separated and disconnected from outer walls.

An important difference between the Hampton Court Maze and Chevening
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Figure 2.9: The Chevening House Maze [169].

House Maze is the design of the later doesn’t allow the “hand on the wall”

behaviour to solve the maze [169], [60].

The next section and its subsections provide the background of

interestingness in robotics. It also discusses the current and past research to

discover interesting robotic behaviours. Further related work will be discussed

before summarising the chapter.

2.5 Discovery and Validation of Interesting

Robotic Behaviours

This section and its subsections provide background and related work about

the discovery of interesting robotic behaviours which will be evolved using the

grammatical evolution approach. This relates to third and fourth objectives

of this thesis which concern the use of new robotic system environment to

discover novel interesting robotic behaviours which will be validated in the

real-world.
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The next section explores Behaviour-based Robotics in general, and then

examines the concept of Interestingness concerning Robotics-based research,

and then discusses how interesting robotic behaviours may be discovered.

2.5.1 Behaviour-based Robotics

Behaviour-based robotics is a biologically inspired technique for designing

autonomous robots, where a collection of behaviours is implemented and acts

in parallel to achieve goals using inputs and outputs. Most behaviours have a

basic structure where input is taken from sensors and out is sent to actuators

(see figure 2.10). A coordinator is required to make sure only one command is

sent at a time. Sometimes, the internal structure of the behaviour can include

different modules with various other modules interconnected by sensors and

coordinators [22]. However, these behaviours must not depend on each

other and can be implemented in parallel so that a real-time response can be

sent back while using the least amount of computation. This methodology

can be used to build low-cost autonomous robots. Behaviour-based robotics

has reliably performed standard robotic activities including navigating an

environment, avoiding obstacles, exploring, and learning maps [124].

Figure 2.10: Structure of robotic behaviours [124].

Since Brooks subsumption architecture in 1986, several research proposals

and reports have appeared in the field of behaviour-based robotics. A

number of scientists classified these approaches into two sets according

to their adaptability [173], [87]. At the start, non-adaptive approaches, also

called engineering approaches, were popular as they were manually tuned to
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implement a sophisticated action selection mechanism. Later on, adaptive

approaches became more popular because of their simplicity of selecting

action mechanism and learning techniques. These adaptive approaches

include reinforcement learning and evolutionary techniques [124].

This thesis concentrates on adaptive approaches where robots are left

in environments without any prior knowledge and robots adapt to the

environment and change their behaviour according to the changing

environments. Robots send this information back to the user where the

user analyse the information to separate the interesting information. This

process requires high bandwidth and computation by the robots. However,

if robots are able to decide if their information is interesting or not and only

sends back the information which is interesting, this would reduce the cost of

computation and user involvement to make the robots more autonomous. For

example, when an exploratory robot is exploring Mars and has the ability to

decide if the information it has detected is interesting or not. This way it needs

to send only relevant data and avoid sending unnecessary data. This can

increase its life and exploration time by reducing unnecessary communication

and computation.

Different research will have different requirements concerning what is

deemed to be interesting or not; therefore, it is necessary to provide a

definition of interestingness for our research.

2.5.2 Interestingness

Researchers have studied “interestingness” in the light of its use in data

mining and knowledge discovery. This concept has been divided into two

magnitudes of measurements which are: subjective (influenced by humans)

and objective (based on quantitative data) [25]. Subjective measures

correlate the current pattern of human behaviour with the previous scenario

to notice any persisting change. However, objective measures, on the

other hand, are a more generic and human biased free approach as it

scales its measure on the data available and quantifies statistical analysis

describing emerging trends in their behaviour. Surprisingly, the field of data
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mining and knowledge discovery acknowledges the concepts and literature

of “interestingness” but there has been a general lack in the study of its use

for robotic systems.

According to Carvalho et al. [25], a behaviour can be considered interesting

if it stands out from the previously observed behaviours. Such behaviour

can often be classed as something novel or surprising; that is, one can say

that “interesting discoveries are surprising” [44]. However, according to data

mining and knowledge discovery requirements, an interesting discovery has

to be useful. Otherwise, McGarry [91] points that unexpected behaviours

could be considered as outliers or “noise” and may not be useful at all.

Therefore, interesting discoveries can only be to one’s advantage if it’s

useful. The relevancy of the behaviours is only considered useful if the

interestingness measures are designed to eliminate non-relevant behaviours

that need to be checked when data mining [63]. This endorses that measures

of “interestingness” exploited by the data mining community may not be

good enough to predict interestingness for robotic systems.

As mentioned above, some definitions of “interestingness” use an impression

of surprise. Sometimes, a course of action predicts an outcome with high

confidence, yet it fails to deliver its benchmark results which often underlines

the scenario of large surprise due to different unpredicted results [15].

Hall and Mortan also conclude the key role of entropy estimators to construct

measures of “interestingness” [55]. In fact, Blanchard et al. acknowledged

Shannon’s conditional entropy as the most commonly used measure to

calculate “interestingness” [20]. Moreover, Hussain et al. [65] adopts a

relative entropy approach for “interestingness” using observations which

examine the frequency of elements appearing in the data set along with

comparison of unusual data sets compared with the preceding observations

[91].

In contrast, Schmidhuber has a different outlook on the idea of what

constitutes “interestingness” [141]. To examine the beautiful dimensions
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of a face, he uses a prototype face which defines the standards of beauty.

The more deviations are between prototypes, the less likely the face will

be classed as beautiful. If one’s dimensions are closer to its prototype, it is

considered more beautiful than the one which results in higher deviations

in comparison. He states that the value of a beautiful item can lose its

“interestingness” over time when the items have been previously observed

as new and beautiful [141].

A similar idea has been employed by Wang, C. et al. [165] where they

explored the problem of predicting interesting scenes for mobile robots

which is critical for several applications including autonomous exploration

and decision making. A three-tier learning architecture (long-term, short-

term, and online learning) was designed by them to enable their system

to have human-like capabilities including experiencing the environment,

adapting to the environment, and environmental knowledge. Their approach

achieved better results than previous results of related experiments. One

of the main reasons was that their approach was able to lose interest in

repetitive scenes as well as identifying new interesting scenes whereas prior

approaches struggled to do that.

The research presented above proves that it is possible to design a fully

autonomous robotic system environment which can create and identify novel

interesting behaviours. The following section discusses some research related

to the problem of discovering interesting robotic behaviours.

2.5.3 Discovering Interesting Robotic Behaviours

There are several research and studies in the field of robotics where an

attempt to discover interesting robotic behaviours have been made. For

example, Ahmed (2020) [2] used Braitenberg vehicles and PPM to discover

interesting behaviours. Wang et al, (2020) [165] designed a robot which

can identify the interestingness of the scene by utilising visual memory and

unsupervised online learning. Some of the recent and related applications

which relied on the discovery of interesting robotic behaviours are reviewed

in more detail below.
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2.5.3.1 Visual Memorability for Robotic Interestingness

Wang, C. et al. (2020) [165] explored the problem of predicting interesting

scenes for mobile robots which is critical for several applications including

autonomous exploration and decision making. For example, when the robot

finds the door shown in figure 2.11(f) this can affect future planning. Similarly,

more attention can be attracted by that hole on the wall in figure 2.11(h). To

recall and identify the interesting scenes, they proposed a new translation-

invariant visual memory.

Figure 2.11: A selection of interesting and uninteresting scenes [165].

A three-tier learning architecture (long-term, short-term, and online learning)

was designed by them to enable their system to have human-like capabilities

including experiencing the environment, adapting the environment, and

environmental knowledge. Their technique achieved better results than

previous results of related experiments.

Figure 2.12: Visual interestingness of footage and loss of interest in repetitive
scenes is indicated by the arrows during online learning [165].

One of the main reasons was because their approach was able to lose interest

in repetitive scenes as well as identifying new interesting scenes in contrast
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to prior approaches which did not focus on the more interesting scenes.

For example, in Figure 2.12 when a truck appeared, it has a high level of

interest, but it lost interest when it appeared repeatedly. To achieve this,

they proposed a novel online learning approach to find interesting scenes

for the robot exploration task whereas previous approaches depended on

computationally expensive training via the back-propagation algorithm [134].

To solve the problem of autonomous exploration, they introduced a novel

translation-invariant 4-D visual memory in order to find and recall interesting

scenes. Human beings are considered to have an excellent capacity to direct

visual attention and determine the interestingness of the scene. To replicate

that in mobile robots, the following properties are necessary.

Table 2.3: Properties required by mobile robots to judge the interestingness of
scenes [165].

Properties Description
Unsupervised Autonomous mobile robot.
Task-dependent Task related knowledge.
Long-term learning To acquire human-like experience.
Short-term Learning for quick robot deployment.
Online learning Environment adaption and real-time response.

2.5.3.2 Discovering Interesting Behaviours in Complex Systems

Ahmed (2020) [2] proposed a modified variant of Braitenberg vehicles to

discover novel interesting behaviours in complex systems. In his modified

version, proximity sensors were added to provide subsumption architecture

functionalities. Subsumption architecture was used to avoid collisions with

walls or other objects present in the environment. During his experiments, a

large number of behaviours, from lack of movement to create simple patterns,

were created by simply changing the location of light sensors. The visual

output data produced by these experiments was compressed using the PPM

compression scheme [3] in order to find when the output had noticeably

changed during the simulation. These behaviours were later divided into four

groups by using a k-means clustering algorithm using the PPM compression

data. An example of the four different interesting behaviours that were

automatically discovered is shown below in figure 2.13.
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Figure 2.13: A variety of interesting behaviours was produced by Ahmed’s new
variant of the Braitenberg Vehicle [2].

The results were gathered together after running 10,080 simulations. Many

different possible combinations of configurations exhibited a large variety of

behaviours. During these experiments, the k-means clustering produced a

Davies-Bouldin index of 1.4533. These results show that this method was

quite effective at automatically identifying the interesting behaviours out of a

medium-sized data-set which would be extremely difficult for an individual

person to have to classify manually. Real-word validation of these behaviours

was left for future work.

A robotic system environment for predicting interesting behaviour has not

been achieved, therefore the design of a new approach is an important

contribution of the present work in order to detect interestingness, saliency,

anomaly, and novelty.

2.6 Summary and Discussion

This chapter has discussed the background and related work that is relevant

to this research. This includes a discussion of robotics, evolutionary robotics,

grammatical evolution, interesting robotic behaviours and interestingness

prediction by robots. This chapter is divided into three main sections:

1. Robotics design system.

2. Evolving behaviours using Grammatical Evolution.

3. Discovering and validating novel interesting robotic behaviours.
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Robotics has a history as old as the history of science, technology and

the basic principle of progress. Robotic systems are rapidly becoming an

important part of our daily lives such as vacuum cleaners, medical/surgical

robots, human assistance, exploratory robots. Potentially, robots may end up

being one of the greatest accomplishments of human beings of creating an

artificial sentient being. The main reason for interest in robotics is to design

such robots which can be used to perform and make those tasks easy which

humans cannot perform. This is especially true for those tasks which need

to be performed in dangerous environments including radioactive places,

deep-sea exploration, inaccessible terrains, or places too far away in distance

and time (space exploration).

However, current robotic system environments are still task specific and

require knowledge of programming languages to control them. Future

robotics systems environments should be capable of quick and easy

implementation, be flexible when performing different tasks, customisable

to add functionalities, and interactive towards other systems such as sensor

networks and enterprise information systems.

It has been long predicted that robots will become mainstream public

agents often only requiring “basic intelligence”. Robots only need to be

able to communicate, navigate and interact in the real-world environments.

Currently, robotics hardware is advanced enough to fulfil these requirements.

However, this prediction is held back by the complexity of design and

implementation of thoughtful intelligence. Designing a robotic system

environment is a challenging task which requires knowledge of robots (so

that a suitable design can be chosen), and environments where robots are

going to perform tasks (so that robots can be configured and programmed

accordingly). One of the main reasons is the lack of research on the design

and development of a design environment for robotics.

Some of the design issues currently present in the existing robotic system

environments are identified and an effort to mitigate these issues is made

by developing a low-cost robotics system environment. These issues include
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design, fabrication, programming, communication, computation, battery

power, navigation, flexibility, and multi-platform compatibility. These design

issues were identified by reviewing the performance of currently available

robotic system environments including Sensory Data Processing Middleware,

Player/Stage Systems, Ocra, Robot Operating System (ROS), and Webots™.

After designing the robotic design system, it should be tested to check

its capabilities. Evolutionary robotics is a useful method for investigating

robotic applications as it allows the robots to perform complex tasks with

limited resources by simple coordination of sensors and motors. It aims to

automatically design adaptive robots which can evolve solutions to complete

a task and adapt to the environment at the same time. However, it was

challenging to design such robots which can adapt to the environment

to complete the task. Evolutionary algorithms have demonstrated the

feasibility to accomplish such goals. A detailed review of current research on

evolutionary algorithms and their applications was conducted. Grammatical

Evolution, which is a grammar-based form of genetic programming was

selected to test the abilities of the new robotic design system after analysing

its implementations in a variety of programming languages for various

purposes.

Its applications related to our research were analysed deeply including

PonyGE2, PyNeurGen, GERET, GEM, gramEvol, GEVA, libGE, jGE which

were later used to compare the results achieved from our robotic system

environment. The idea was to identify the most promising method to develop

an autonomous adaptive robotic system. This novel robotic system should

require minimum information on the designer side so that the robotic system

environment can be made as user friendly as possible.

This thesis has concentrated on adaptive approaches because in this type

of approach, robots enter an environment without any prior information and

adapt to the environment and change their behaviour accordingly. Because

these behaviours are sent back to the user to find useful information which

requires high bandwidth and computation, however, sending back useful
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information can reduce the cost of computation and user involvement to

make the robots more autonomous. Thus, a detailed look into the ideas

of interestingness for robotics has been explored and a variety of research

related to finding interestingness is analysed.

The knowledge gained in this chapter, related to the identified issues and

suggested solutions to mitigate these issues, will be applied in the next three

chapters.
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Chapter 3

NXTLogo – A new Robotic Design

Environment

This chapter describes the development of middleware named NXTLogo where

an agent-oriented 4th generation language is used to control NXT 2.0 robots

which can provide additional functionalities along with the functionalities of

3rd generation middleware extensions/libraries. In addition, the developer

has access to simulation and modelling facilities provided by NetLogo, and

an ability to design using what Papert1 called a ‘body-syntronic’ or first-

person perspective—the developer designs the agent (imagined as a robotic

‘turtle’) to move using a perspective similar to their perspective. A couple of

examples of NetLogo models to demonstrate the capabilities of this system

(line-following ability and subsumption architecture roaming) have been

developed and are described in this chapter.

This chapter is based on Paper 1 mentioned in the publications section of

this thesis (section 1.6). Its purpose is to fulfil objective 2 of this thesis,

developing an integrated low-cost robotic environment which is open-source

and extendable. This is so that the research question 1 "Can a low-cost

robotic system design environment be developed that is open and extendable

for easily performing evolutionary robotics experiments?" can be answered

partly.

1Papert was the original designer of NetLogo’s parent language, Logo.
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3.1 Introduction

Robotics research has been conducted since the 1950s. The first industrial

robot was introduced in 1961 which was used by GM for welding die casts onto

car bodies [13]. Further research led to the development of many new and

modern robots with more functionalities and features such as the computer

controlled Stanford arm [139], first mobile robot Shakey [151], Genghis was

capable of following a person based on the readings of an infrared sensor [68],

Myrmex [11] was created with three principle layered behaviours: collect,

avoid and safe-forward; and the winner of the 2005 DARPA Grand Challenge,

Stanley [142] which was able to autonomously navigate a 175 mile off road

course in under 10 hours.

The release of LEGO Mindstorms robots in 1998 increased amateur interests

in the development of intelligent mobile robots. Nowadays, the LEGO

kit is an essential part of educational institutions with many extensions

created by the community provide additional functionalities. However, these

extensions/libraries require the users to have internal knowledge of the

system and of 3rd generation languages such as Java.

Lego Mindstorms has delivered low-cost amateur robotics to the public,

where anyone can easily modify and develop new systems and extensions

to extend its capabilities. Using the NXTLogo middleware, the robot can be

controlled and linked directly to simulators in the agent-oriented programming

language software, NetLogo. The technologies that the robotic system design

environment relies on are heterogeneous since it is built in Java which runs

on the JVM on all platforms as does NetLogo, being free to download and

able to run on any platform. Also, the front end of the system is written in

NetLogo, which is known for its simplicity of code and provides body-syntonic

capabilities for real-time sensor feeds and robot commands to make and enact

decisions. The robotic design environment does not require any programming

skills from the end-user in order to implement behaviours (developed in

NetLogo) on the robot. Significant results can be achieved by using the drag

and drop feature and a modest amount of code. These features, design,
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and cost of this robotic system environment fulfil the second objective of

this thesis "To develop an integrated low-cost robotic environment which

is open-source and extendable" in order to help answer the first research

question "Can a low-cost robotic system be developed which is open-source

and extendable?". The next section provides background to this chapter.

3.2 Background

Robots have long been predicted to become mainstream public agents which

will require (at least) basic intelligence (an ability to navigate, communicate

and interact in the real-world environment). Generally, robotics hardware is

advanced enough to fulfil these objectives; however, complexity of design and

implementation of thoughtful intelligence are holding back this prediction.

Rodney Brooks outlined the idea of subsumption [22] in which architecture

breaks down complicated behaviour to be the sum of several behaviour

layers and each layer is subsumed in priority by the one above it. Sensor-

based robots are characterised by four key phases, according to Brooks [97]:

situatedness; embodiment; intelligence; and emergence.

To understand the Brooks approach, we need to understand cognitive and

reactive behaviours. Cognitive behaviour for navigation maintains an internal

model of an environment and comprehends relative position within it. In

contrast, reactive behaviour does not maintain this relative position or internal

model, it simply responds to stimuli. Wang [166] describes cognitive agents

as being driven by intention and having a representation of their environment

from which they can predict the future. For example, a robot vacuum cleaner

can respond to simple stimuli to accomplish its tasks such as “Is this patch of

floor dirty?”, “Is there a wall in front of me?”, or “Am I moving?” and this can

be paired with appropriate instinctive responses.

The approach to designing autonomous systems has evolved over the years

from being exclusively cognitive before the late 1980s to agents with more
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reactive elements and behaviour. Reactive approaches to robotics provide a

simple and effective means of realising complicated behaviours.

In the context of this chapter, a robot is capable of displaying aspects of

Brook’s behavioural approach if it can act immediately upon real-world events

by utilising sensors and actuators and does not need an internal model to

operate. Complex reaction, interaction and forward planning is all within

scope. However, for our work, these capabilities are available if the robot is

treated as a NetLogo turtle. NetLogo provides programming constructs using

agents in the form of turtles, patches, links and the observer.

3.2.1 Related Work

NetLogo’s API for Java extensions provides a wide range of possibilities

especially for linking two independent systems such as NetLogo and MATLAB

[131]. The approach for writing a NetLogo extension is seamless, with data

passed from NetLogo, where it is acted upon in the secondary system and then

passing back as a result. This is done in a way that the developer essentially

has access to further NetLogo-like language commands without the need

to be aware of the underlying implementation. Many other middleware

extensions/libraries for Mindstorms NXT have been developed such as RWTH

[14], cliRobust [167], and JCSPre [72].

RWTH -– Mindstorms NXT toolbox for MATLAB is one of the few available

4th generation language extensions for Lego Mindstorms. RWTH is similar to

having an application in which LeJOS commands can be written and run

without compilation, whereas this project uses the capabilities of LeJOS

to provide an abstraction of a robot in NetLogo instead of recycling LeJOS

commands into another language [14].

cljRobust -– Clojure Programming API for Lego Mindstorms NXT [167] – has

been designed around clojure, which is a modern, concurrent dialect of LISP.

The purpose of this extension is to allow control applications to be written

in clojure. Extensions/libraries such as these have been designed to allow

parallel programming elements to be used to control Mindstorms robots.
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JCSPre – JCSPre [72] bears more resemblance to this project as it is also

based on LeJOS firmware for NXT robots, but it links the robot and its LeJOS

abstraction to a reduced version of the parallel programming environment

JCSP (Communicating Sequential Processes for Java). Similar to cljRobust, this

has been designed to provide a port for LeJOS functionality directly into the

JCSP language.

3.2.2 Lego Mindstorms Robotics

The first version of the Lego Mindstorms kit was released in 1998, with

subsequent versions released in 2006, 2009 and 2013. Lego Mindstorms

comes with pre-installed firmware. However, a custom firmware can be

installed to achieve the required functionalities. Because of its availability to

the public and its relatively cheap price for a robotics kit, several interesting

robots have been developed by the community. Two well-known ones are a

Rubik’s cube solver and a Sudoko solver. These puzzle solvers demonstrate an

application of the cognitive approach to AI and also demonstrate the flexibility

of the Lego Mindstorms kit, and the capabilities of the sensors included with

it. The fact that a robot with a light sensor on a sweeping arm can accurately

scan and read numbers on a piece of paper opens up many possibilities for

completely autonomous input, even if it is a relatively slow process.

3.2.3 NetLogo

NetLogo is a programmable multi-agent modelling and simulation language

with a wide range of practical uses [158]. It is free to download and provides

a large number of example models which demonstrate the level of processes

and behaviours that can be simulated. Its drag and drop interface makes it

easy to use, create and monitor programs (called ‘models’) in real-time. Being

an agent-oriented programming language makes it a uniquely interesting

port destination for a robotics kit.

3.2.4 LeJOS

LeJOS is the custom firmware and API used in this project to program the

control file on the robot and the communication in the extension. LeJOS is
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a lightweight Java replacement firmware for Lego Mindstorms NXT and RCX

robots. LeJOS has its own JVM (Java Virtual Machine) which allows robots to

be programmed in Java. The advantages of using Java are twofold:

• Java provides cross-platform system portability and NetLogo is also free

and portable.

• NetLogo is written in Java, meaning that NetLogo and LeJOS can be

linked with relative simplicity.

LeJOS flexibility and scope has already been used widely. For example, a team

from Portugal [19] successfully used LeJOS to implement subsumption based

roaming and environment mapping on a Lego Mindstorms robot. They linked

the control file (Robot) and Java program (Laptop) via Bluetooth.

The next section describes the design and implementation of the system and

the files and commands which make up the extension.

3.3 NXTLogo: Design and implementation

The purpose of this middleware is to make the system heterogeneous, so

that it works on all platforms and with all robot configurations, and to make

the front end intuitive and easy to develop, without the user needing internal

knowledge of the system or the processes involved. In order to achieve

that, a great number of challenges need to be tackled through system

design. The system needs to be efficient, configurable, dynamic and reliable

while at the same time maintaining a simple, user-friendly front end. There

needs to be an emphasis on the usability of LEGO Mindstorms extensions to

enthusiasts without specific 3rd generation programming skills. Doing away

with complicated programming, installations, and compiling should open up

development to people and parties less directly connected to the field.

The design of the Middleware (see Figure 3.1) is divided into two parts:

the Java extension to NetLogo; and the LeJOS Java control file which runs

on the NXT. The extension handles the channelling and conversion of
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Figure 3.1: The design for the middleware based on some sample classes in the
extension.

data both to the NXT over Bluetooth and to the extension via NetLogo

reporters, and does no explicit processing of the data itself. The

control file is the other end of the Bluetooth connection created in the

extension, and runs on the LeJOS firmware on the NXT. It listens for

incoming commands (forward, backward, turn-right, turn-right, and

stop), executes these commands and returns feedback from all sensors

(Ultrasonic sensor, Bump Sensor, colour sensor).

3.3.1 The Control File

There are many challenges in designing an efficient control file such as

returning sensor data frequently, non-blocking, and data transfer. LeJOS used

to run on a NXT robot via a control file. However, several steps are required

in order to compile a program to run on the NXT.

Firstly, the written program needs to be compiled into a .class file by the LeJOS

NXJ compiler, nxjc, and then needs to be converted into a binary .nxj program
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to run on the robot. To achieve this, the program needs to be independent

of its references and the wholly independent unit needs to be compiled into

a .nxj binary instruction file using the nxjlink utility. Afterwards, the file is

uploaded to the robot via Bluetooth or USB and executed as instructed.

The control file implements the LeJOS abstractions of robot peripherals and

sits between the extension and the peripherals. For example, a pilot (NXT

Brick) is used to control two motors, a colour sensor, an ultrasonic sensor,

and two touch sensors. The sensors return their abstractions (boolean for the

bump sensor, distance from 0-255 for the ultrasonic sensor, and three integer

RGB tuple for the colour sensor) and the pilot sends back a boolean indicating

if the robot is moving, the associated tachos count, and the approximate

real turn angle after any given manoeuvre, and resets itself. The provided

information is enough to allow simulation corrections in NetLogo which means

we can move a turtle representation of the robot in the NetLogo simulation in

a similar manner as the robot has moved itself.

The main polling loop of the control file is shown in Algorithm 1. In order to

send back the sensor data, every polling loop ensures a constant data stream

besides making sure that sending and receiving is synchronised at both ends

which is a difficult task. Synchronisation is one of the biggest issues that

needs to be overcome in order for the robot to be able to generate a relative

map of its environment upon which it can later rely. A switch statement is

used to process the signal in case anything other than NO-ACTION is received,

but everything else is designed using LeJOS’s instant return arguments in

motor calls which avoids using while loops or hanging the program. This

allows the sending of sensor data even while the robot is moving forward.

This architecture allows the sending of data at the end of every iteration of

the main while loop without blocking, hanging, or pausing the robot. This

fast and regular return of the data is necessary for visualising the sensors

as event streams, otherwise, events can be reacted too slowly or missed

completely.
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Algorithm 1: Main Loop of the Control File

1 while signal != terminate do
2 switch signal do
3 case stop do
4 stop robot;
5 setsignal = NO-ACTION;

6 case foward-constant do
7 robot keep going forward;
8 setsignal = NO-ACTION;

9 send sensor data;

In an ideal world, sensor data would be placed in an array; however, available

I/O streams (OutputStream and DataOutputStream) in LeJOS only support

primitives which means output has to be sequential for each sensor. The

former is able to send bytes of data (integers) one at a time which is not

particularly useful because tachometer and motor turn-angle estimations

are floating-point numbers. Although the later supports all the primitives

(boolean, integer, float, double), it does not support an array. This leaves us

with two choices:

1. Send back the numbers from each sensor individually and deal with

them sequentially at the extension.

2. Write a serialising method to run on the robot which has limited power

and memory.

Our current solution is sequential. However, this may complicate things if we

want to extend the project to involve multiple robots. It is important to have

separate input and output for each robot so that the source of the data can

be determined.

3.3.2 The NetLogo Extension File, NXTLogo

The variables in the extension called NXTLogo are in the connection class and

in the reporters. In the connection class, two methods are used to set the

signal, buffered and checked. In buffered, if two different signals are sent at

the same time, the second to arrive is placed in the buffer to be executed
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Figure 3.2: The Control File Instruction Buffer.

next. The buffer size is variable but two seems to operate best where the

second signal is discarded if identical to the first one. In order to update the

sensor streams frequently, the NetLogo simulation needs to keep executing

which generates unwanted repeat instructions. Without discarding, the buffer

would fill up quickly and the robot would not move as expected. Once the

instruction is executed and removed from the buffer, a new one can take its

place. In this way, repeat instructions can still work if required. However,

they will not stack up into a backlog (see Figure 3.2). The checked method

can accept integers from 1 to 359, and sets a variable as such which tells the

robot how far it is expected to turn when given a turning command.

Instructions are each defined by a class and linked to an appropriate command

in NetLogo. When an instruction is given in NetLogo, its defined class in the

extension passes a representative integer to the signal setting method which

checks the instruction duly and places it in the queue to be executed if

accepted. Whenever the main program loop is repeated, the signal buffer is

peeked (first element is investigated but not removed). If peek is null, the

NO-ACTION signal is sent, otherwise, if peek is not null, the head of the queue

is removed and sent to the robot along with the current turning angle.
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These systems are synchronized by blocking each other. For example, the

extension sends a signal and waits to hear a response from the robot to make

sure the signal has been executed and the loop has been passed and the

robot sends a response after executing and waits for the next signal. The

steps between a command being sent and executed are shown in Figure 3.1.

3.3.3 Implementation and Class Breakdown

The extension consists of 15 Java classes with most of them using standard

practice when writing a NetLogo extension where every extension command

to be called in NetLogo needs its own class. All of these command classes are

referenced by the extension class manager file, which tells NetLogo which

command is linked with which class. Commands and Reporters are two types

of classes called by NetLogo. Commands do not return any information and

are only capable of executing codes whereas reporters return data when

called. The currently available commands in NXTLogo are listed and briefly

summarized in Table 3.1.

Each of the available NetLogo commands in Table 3.1 has a respective class

in the NXTLogo extension. Most of the commands just pass data to or from

the robot whereas the get-errors command and its associated java class

make debugging much easier. Errors are stored in a buffer upon detection

and can be accessed one-by-one from NetLogo with the get-errors

command.

This extension architecture is sufficient for delivering the basic functionality

required of the system. The control file and extension as described can

perform connection and two-way Bluetooth communication between the

external systems: NetLogo and Lego Mindstorms Robots. The robot can be

completely controlled by NetLogo and it streams back real-time information

not only from the sensors, but feedback from the actuators as well.
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Table 3.1: Commands currently available in NXTLogo.

nxtlogo:connect <String robot-name> Connects to the specified NXT.
nxtlogo:forward Moves forward an arbitrary unit

of distance.
nxtlogo:forward-until-bump Moves forward until told to stop

or bump sensor hit.
nxtlogo:backward Move backward an arbitrary

unit of distance.
nxtlogo:turn-left <int angle> Turns left the specified angle.
nxtlogo:turn-right <int angle> Turns right the specified angle.
nxtlogo:stop Stops the NXT’s current action.
nxtlogo:bump-data Reporter for the touch sensor.
nxtlogo:colour-data Reporter for the colour sensor.
nxtlogo:ultrasonic-data Reporter for ultrasonic sensor.
nxtlogo:angle-data Reporter for the approx.

angle turned last manoeuvre.
nxtlogo:tacho-data Reporter for the wheel turns last

manoeuvre.
nxtlogo:moving Reporter for whether the NXT is

moving.
nxtlogo:get-errors Reporter pops the top error off

the stack trace, if any.
nxtlogo:terminate Terminates the connection.

3.4 Sample NetLogo Models

In this section and its subsections, sample NetLogo models are designed and

implemented using the new NXTLogo extension. The sample models are

NetLogo simulations using a single robot in order to show some of the scopes

of the system.

3.4.1 Line Following

Line following is a complicated problem as it requires analysis of the colour

sensor data to detect the change from the background colour. Line following

with one colour sensor is not an optimal solution and it is best implemented

with two sensors, one on each side of the line [164]. It is assumed that we

are following a looped path which means we can turn in one direction. The

sample program can also be used to keep the robot in a specific colour area.
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It is assumed that the robot is set up with a downward-facing colour sensor to

measure in RGB 0-255 integers the colour of the floor and the line. The

model is set up by running a control file on the robot and connecting to it in

NetLogo. The robot should be placed with the colour sensor exactly over the

line before the robot can follow the line and a button on the interface is

pressed to learn the colour of the line. After deciding the line to be followed,

the turn-angle (according to directions) and tolerance to the colour change

settings (according to light settings) are adjusted before pressing the go

button in the interface to run the NetLogo program.

This model contains just 50 lines of code which is reasonable for its

accomplishments: line following and staying within a specific colour area. In

order to illustrate the simplicity of the final NetLogo code used to control the

robot, an extract of this code is shown below.

Listing 3.1: Simplicity of NXTLogo Line-following Code.

1 to go

2 ask turt les

3 [

4 set color using nxtlogo : colour−data

5 i f color within tolerances

6 [

7 i f ( algorithm = ‘ le f t turn ’ )

8 [ le f t−turn ]

9 [ right−turn ]

10 ]

11 [

12 nxtlogo : forward−unti l−bump

13 ] ; go forward

14 ]

15 end

16
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17 to lef t−turn

18 nxtlogo : stop

19 nxtlogo : turn−l e f t turn−angle

20 end

21

22 to right−turn

23 nxtlogo : stop

24 nxtlogo : turn−r ight turn−angle

25 end

The code for this model has just six procedures (some of these are used

above) which are summarised in Table 3.2.

Table 3.2: Six procedures of the line following model.

connect Connects to the specified NXT robot.
set-line-colour Saves the current colour under the sensor as the colour

to follow.
check-colour Displays the current colour under the sensor without

moving the robot.
go Follows the line: moves forward by matching the current

colour with saved colour, and if not it turns in the stated
direction. Displays the current colour in the environment.

left-turn Turns the robot left the specified number of degrees.
right-turn Turns the robot right the specified number of degrees.

3.4.2 Subsumption Architecture Roaming

The purpose of this model is to show that the system is well suited to

different AI paradigms, in this case, the subsumption architecture [22]. To

control a robot, subsumption architecture employs a layered approach, with

behaviours of different priorities subsuming one another. In other control

systems for Lego Mindstorms Robots, this might be difficult to envision and

implement, but in NXTLogo and NetLogo, it is very straightforward. The main

loop of the program as defined in the go procedure is as follows:
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Table 3.3: Five procedures of the subsumption roaming model.

connect Connects to the specified NXT. Uses possible future
convention for multi-robot simulations by keeping a
record of the connected NXT in a hidden turtle.
Keeps track of connected robots via simulation.

go Executes layers of behaviours in order of
subsumption. Reflexive behaviour has priority.

avoid-obstacles Highest priority behaviour. Turns away from an
obstacle if the ultrasonic sensor value is below a
certain threshold.

stay-on-this-colour Second priority behaviour. Turns if the colour sensor
value is too far outside the tolerance.

explore Lowest priority behaviour. Moves the robot forward
unless the bump sensor is being pressed or
another manoeuvre is attempted.

Listing 3.2: Main loop of the Subsumption Achitecture Roaming NXTLogo Code.

1 to go

2 avoid−obstacles

3 i f not obstacle−detected?

4 [

5 stay−on−this−colour

6 i f not colour−change?

7 [

8 explore

9 ]

10 ]

11 end

This code is inspired by the Myrmix pseudocode for a basic subsumption

architecture robot [23]. The subsumption roaming model contains five

procedures. These are summarised in Table 3.3.

By defining procedures for each behaviour, the main loop of the model

becomes very easy to understand and can be implemented in close to natural

language. In this case, the robot will prioritise the avoidance of physical

obstacles, then try to remain on the same floor colour before it can move

forward. This simple layered approach to behaviour means that we can see
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that apparently complex environment-aware roaming behaviour is the sum of

three very simple behaviours, a hallmark of the subsumption architecture.

3.5 Results

In this section and its subsections, the performance of the new robotic system

environment is analysed and improvements are suggested. The different

environments are developed with specific goals to test the performance and

capabilities of the new robotic system environment.

3.5.1 Line Following

The line following program meets with mixed success based on a number of

factors including but not limited to:

• Lighting conditions

• Remaining battery power

• Colour tolerance

• Excessive turn angle

The turn angle was set to 11 and the tolerance to 20. Based on the low

light conditions, these settings were inadequate for line following in the

environment the robot was situated in. A lower turn angle of five degrees was

set to avoid overturning and higher tolerance of 42 was set to make the robot

turn earlier when it is not completely over the line. The adjustment of these

settings allowed for success as shown in figure 3.3.

A set of ten runs was conducted with the same settings as described above

and the criteria of success for the robot was to make a complete run without

any assistance. The model was successful in six out of ten runs.

Because of the factors which can affect the program’s success, it is difficult to

draw solid conclusions from these results, but certain trends are noticeable.
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Figure 3.3: Successful execution of the line following behaviour.

For one, this model relies upon one-way turning, so overturning is the most

common reason for a failed run. The problem can be overcome by setting a

lower turn angle which may slow down the robot in corners but will increase

accuracy. The introduction of turning while moving would benefit this model;

currently the system can only process one instruction at a time but future

versions may include this capability easily by varying motor speed on the

robot.

3.5.2 Subsumption Architecture Roaming

In the first attempt at running this simulation, the settings described in the

previous section were found to be inadequate for the conditions and needed

to be changed. The robot turned before reaching the black coloured section of

the floor in the test environment (see Figure 3.4) when there was no ultrasonic

obstacle any detectable distance in front of it, suggesting that the chosen

colour tolerance value was set too low. A colour tolerance of ±20 means

that if any of the three values (R, G and B) change by 20, the robot is told

to turn and correct itself. After increasing the colour-tolerance value to 30,
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Figure 3.4: The roaming ability of the robot is illustrated by it staying on the same
colour and avoiding obstacles which are represented by solid colours.

the robot could explore, turning when it detected the black coloured section

of the floor and the far wall as shown in Figure 3.4. This exploration is an

emergent property of the combination of the three very simple behaviours

implemented by the model.

Further experiments with different tolerance levels provided mixed results

where a higher tolerance of 45 could not even detect the black coloured

section of the floor. However, this didn’t falsely identify the wrong patch as a

black coloured section of the floor. The best results were achieved by using a

colour tolerance of 30.

It is worth noting that these runs were conducted on the carpet, which can

yield varying results for a colour sensor based on wear and light. If the

runs were conducted again on a smooth matte floor, better results would be

expected.

3.6 Conclusions

This chapter has described the design and implementation of a middleware

for Lego Mindstorms NXT robots where the robot can be controlled and linked
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directly to simulators in the agent-oriented programming language, NetLogo.

The technologies that the middleware relies on are heterogeneous since it’s

built in Java which runs on the JVM on all platforms as does NetLogo, being free

to download and able to run on any platform. Also, the front end of the system

is written in NetLogo, which is known for its simplicity of code. With regards

to the Lego Mindstorms NXT hardware, sensor streams are implemented for

all three native NXT sensors (touch, ultrasonic, colour). The middleware does

not require any third-generation programming from the end-user in order

to implement behaviours on the robot. Significant results can be achieved

through minimal code and drag-and-drop interface creation for the controlling

of simulations.

This chapter has also explored the feasibility and advantages of linking Lego

Mindstorms robots with an agent-oriented multi-agent simulation language.

Its significant contributions include the following:

• It has introduced a new and user-friendly way of implementing cognitive

and reactive behaviour on a mobile robot built from the Lego Mindstorms

NXT 2.0 kit.

• It has demonstrated that the capabilities of other Mindstorms

middleware extensions/libraries can be recreated in the system using

relatively modest amounts of code.

• And it has provided the means for some of the extensive NetLogo

capabilities to be adapted to feature real-world agents and therefore laid

the foundations for further research and development using NetLogo

and Lego Mindstorms robots.

While the basic functionality of the extension is satisfactory, there are areas in

which the work could be extended; for example, the extension of the system

to involve multiple robots. A series of control files based on multi-threading

can be implemented for the integrity and efficiency of the system. However,

its effect on Mindstorms NXT and efficiency needs to be investigated before

making further conclusions.
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Chapter 4

Evolving Robotic Behaviours using

Grammatical Evolution

This chapter is based on Paper 2 mentioned in the publication section of

this thesis (section 1.6). Its purpose is to fulfil objective 2 "To develop an

integrated low-cost robotic environment which is open-source and extendable

for evolutionary robotics experiments" in order to partly help answer the first

research question "Can a low-cost robotic system be developed which is open-

source and extendable for performing evolutionary robotics experiments?".

The next section provides background to this chapter. This chapter builds on

the work from the previous chapter and reports on experiments that were

conducted on the use of Grammatical Evolution [108], [31], [135], [61], [21],

[7], [85], [125] applied to the problem of evolving behaviour for the task of

maze exploration. The robotic system environment developed in the previous

chapter was used along with a series of NetLogo applications focusing on

evolving exploratory robotic behaviours using Grammatical Evolution (GE).

A low-cost platform in NetLogo for the evolution of behaviours for Lego

Mindstorms robots was created which can produce a solution for robots to

search for an abstract goal while navigating the environment.

The approach was evaluated using three different environments with a robot

inserted into these unknown environments without any internal memory

mechanisms. The performance of individual robot was evaluated using a

fitness function to determine the fittest individual. The fittest individual’s

phenotype was stored and extracted to a Lego Mindstorms robot in order to
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test them in the real world. The results showed that solutions developed for

the complex environment outperformed all other solutions.

4.1 Introduction

Exploratory robotics has become one of the most popular and interesting

areas in Robotics. One example project is the Mars “Curiosity” Rover, which

is helping with the exploration of Mars [172]. This chapter will investigate a

low-cost solution for rapid prototyping purposes for exploratory robotics by

developing a low-cost robot capable of searching for an abstract goal while

navigating the environment. This will be conducted along with a series of

NetLogo applications focusing on evolving exploratory robotic behaviours

using Grammatical Evolution (GE).

Several components were combined to achieve the following objectives:

1. Designing and constructing a Lego Mindstorms robot for experiments.

2. Developing NetLogo applications to evolve solutions for exploratory

robotic behaviours to be used in a variety of environments.

3. Developing an interface to facilitate the extraction of the evolved solution

to upload to the Lego Mindstorms robot.

Evolutionary robotics research has investigated addressing the issue of

generalisation. Instead of developing specific solutions for particular

problems, the purpose is to develop solutions that are useful to various

scenarios [101]. In this chapter, Grammatical Evolution (GE) is applied to the

problem of evolving behaviours for the task of maze exploration. A series of

experiments is performed to find a suitable solution which can solve several

navigational mazes.

GE was originally introduced by Ryan et al. in 1998 [135] and was improved

by the same group. GE evolves solutions for given problems by combining a

genetic algorithm and a context-free grammar [58].
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The next section (section 4.2) discusses the design of the Lego Mindstorms

robot. Section 4.3 discusses NXTLogo (NetLogo Extension). The NetLogo

evolutionary application, the fitness function and testing are discussed in

subsections of 4.3. Section 4.4 describes the additional NetLogo application

which is created to facilitate the easy and modular design. Section 4.5

briefly describes the Mindstorms Control File used to control the robot. A

real-world implementation and testing are described in section 4.6 followed

by evaluation in section 4.7 and conclusions in section 4.8.

4.2 Design of Lego Mindstorms Robot

One of the first thing developers need to think about is to decide the robot

to start with. Besides being expensive, domestic robots are very popular

as you can build your own unique design. Commercial robots can also

be used; however, it requires considerable work on libraries to use the

robot in certain areas and the design is not easy to customise [83]. Lego

Mindstorms programmable brick and Lego pieces allow you to design the

robot of your choice and it is easy to customise because of its Lego structure.

This provides an ideal system for advanced software development because

of its specifications such as Bluetooth communication that can provide

communications up to 30 feet, and the ability to send commands to actuators

and receive feedback from sensors [73]. Lego Mindstorms comes with pre-

installed firmware. However, custom firmware can be installed to achieve

the required functionality. Because of its availability to the public and its

relatively cheap price for a robotics kit, several interesting robots have been

developed by the community. The fact that a robot with a light sensor on a

sweeping arm can accurately scan and read numbers on a piece of paper

opens up many possibilities for completely autonomous input, even if it is a

relatively slow process [9].

In the real world, a robot can perform only those tasks which are allowed by its

physical construct regardless of evolved and robust codes [159]. Keeping this

in mind and with the aim of our project being that the robot will be inserted

into an unknown environment without any internal memory mechanism,
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several designs were studied. The most suitable for our task was chosen

which is the NXT bumper car design. The original design of this robot had a

motorised body and a bump sensor which was upgraded and equipped with

an extra ultrasonic sensor and an RGB colour sensor as shown in figure 4.1

below.

Figure 4.1: The upgraded design of the bumper car for our low-cost Lego Mindstorms
robot “Explorer”.

To justify the design, the details of the components are explained below.

4.2.1 Ultrasonic Sensor

When the robot is placed in an unknown environment, it may break down and

be left stranded. To reduce the risk of breakdown, it is necessary to minimise

the contact of the robot with obstacles [153]. Therefore, the robot uses an

ultrasonic sensor to sense the obstacles ahead and take preemptive action

to avoid that obstacle. It was a difficult task to set the threshold at which

a distant object becomes an obstacle; however, experimentation showed

that 10cm works well for the robot. The robot displayed the qualities of

self-preservation and increased reactiveness to obstacles which are highly

desired in a robotic system.

Evolving Robotic Behaviours using Grammatical Evolution 72



4.2.2 Bump Sensor

Unfortunately, it is not guaranteed that the ultrasonic sensor will protect

the robot 100% of the time as it does not detect obstacles which are higher

or lower than the position of the ultrasonic sensor [17]. Therefore, a bump

sensor was also added to the robot which responds to actual collisions. A long

barrier is hinged to the robot which triggers the sensor whenever the robot

hits the wall and protects the actual sensor from any damage while increasing

its width. The bump sensor width is only 2cm and without long barriers, so it

may not detect the collision when the robot hits the wall in corners.

4.2.3 RGB Colour Sensor

After making sure that the robot can navigate the environment safely, the next

important task was a mechanism for exploration to find specific objects (i.e.

goal-seeking behaviour). Throughout this project, the object being searched

for was a coloured shape that lay flat on the floor. By attaching an RGB colour

sensor to the robot, this allows it to constantly check for the coloured shape

and stop when it has been reached in order to avoid wasting any further

resources.

4.2.4 Motors

There are three different motors in the design, one for each wheel and the

third to react as the neck for the robot where the ultrasonic sensor is attached.

Motors power the robot to move forward and turn by working symmetrically

and allow zero-radius turns by making one wheel go forward and another

backward.

4.3 NetLogo Application for Evolving Solutions

It is a challenging task to evolve a robot’s behaviour when it is negotiating

within an environment [133], especially, when the device is power-hungry

and has limited resources. Therefore, a NetLogo application was developed to

debug and test the environment to evolve simulated solutions where agents
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are embodied within a virtual environment. Later the fittest evolved NetLogo

simulated behaviour will be used as the Mindstorms robot’s default behaviour.

Figure 4.2: The interface of the application used to evolve the codes.

4.3.1 Application Interface

The “Mindstorms-Explorer” application is an implementation of the

Grammatical Evolution algorithm which uses several components to allow

users to select the desired configuration via using the interface (see figure

4.2). These configurations decide the state of the evolutionary process and

evolve solutions accordingly. The application generates a population of agents

and evaluates their performance by using a fitness function to decide the

fittest individuals that produce the offspring for the next generation. Once

the desired runs and generations are completed, the application extracts the

fittest individual’s phenotype (evolved solution) to the robot so that it can be

tested in the real-world.

Most of the user interface controls consists of sliders which makes it easy

to use and configurations can be changed by moving the slider from side

Evolving Robotic Behaviours using Grammatical Evolution 74



to side. After choosing the desired configurations, the draw-trail switch

can be turned on to view the path taken by the robot. Then the user can

decide between three environments (Maze I, Maze II, Maze III) for the sample

application. Once the user has decided all the configurations, they can press

the Setup button (top left), followed by the Run button (next to it, top left).

Once the evolutionary process is complete, the fittest phenotype string will

be displayed in the output box by the application. To see this fittest behaviour,

the user simply needs to click the Setup Trial button and then click the Run

Solution button.

4.3.2 The environments

It is possible that the evolved behaviour may work exceptionally well for a

specific environment. Therefore, to monitor and mitigate the effects of this,

the application used three different environment layouts [6]. The purpose

is to check if solutions derived from one environment works in another. The

three maze layouts are listed below:

Figure 4.3: The design and layout of the three mazes environments (Maze I, Maze
II, and Maze III).

The basic rules are the same in all environments such as robots cannot cross

walls (represented by green patches) while exploring the environment to

search an abstract goal (represented by the yellow patch). The robots are

not allowed to go through the walls, however, their reaction (turn left or turn

right) is completely dependent on the evolutionary process.
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4.3.3 The fitness function

The fitness function evaluates the performance of all agents and selects the

fittest individuals to generate the offspring through crossover and mutation.

In any standard evolutionary algorithm, this is a very important consideration

that determines the final performance by evolving the solution (phenotype)

because a bad fitness function will evolve an inappropriate solution which

will lead to bad performance. Keeping this in mind, the fitness function

was designed according to the desired behaviour (where a less amount of

resources has been used in order to find the goal). The fitness function used

is shown below:

B =

 5000 if goal-found is true

0 if goal-found is false
(4.1)

f = (Ms − Cs)− (Oc × 5) +B − (T × 2) (4.2)

where Ms is the maximum step count (i.e. the maximum steps the robotic

agent can make), Cs is the number of steps the agent has taken, Oc is the

amount of times an obstacle was detected, B is a bonus value used for

rewarding the reaching of the goal state and T is the number of turns the

robot performed, but not the angles turned.

According to equation 4.2, the best fitness is represented by a higher value.

To reduce the effect from parameters on the fitness value, a bonus scheme

of B = 5000 is introduced whenever an individual reached the goal which

significantly exceeds all and values of (Cs, Oc and T ), therefore ensuring that

the goal-state will be deemed the highest fitness value.

4.3.4 BNF rules

The aim of the application is to evolve NetLogo code using grammar as per

the Grammatical Evolution process. Therefore, Backus-Naur-Form notation

[109] was used to define the possible syntax of the program code that could

be evolved, and what rules governed the syntax. The recursive grammar
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used in the application is shown below:

Listing 4.1: The grammar used to evolve robotic behaviours using Grammatical

Evolution.

1 <expr> ::= <line> | <expr> <line>

2 <line> ::= i fe lse ( robot : : obstacle−ahead?) [ <turn> ]

3 [ <move> ] | <turn> | <expr>

4 <turn> ::= robot : : l e f t | robot : : r ight | robot : : turn−around

5 <move> ::= robot : : forward

These rules mean that code can be generated for the robot that includes

avoiding obstacles and turning away (left or right) whenever an obstacle is

detected. If no obstacle is detected, it commands the robots to move forward.

The reason behind splitting move and turn into separate groups is that the

robot may choose to go forward while evolving commands. This will allow the

agents to go through the walls and produce solutions which are impossible in

the real-world. Therefore, splitting both of them can guarantee that only turn

commands will be selected by the evolutionary process.

4.3.5 Testing

To test the application, 12 tests were conducted (4 in each maze). The goal

was reached in all tests for each of the mazes. The results are provided

in table 4.1 and the best results for each environment are highlighted in

green. The columns of the table present the number of experiments, the

environment used for that experiment, steps taken to reach the goal, number

of turns taken while finding the goal, number of walls avoided while finding

the goal, and whether the robot reached the goal, respectively.

The configurations used for the best results in each environment are

provided below in table 4.2.
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Table 4.1: The results achieved from 12 test runs.

Experiment Environment Steps Turn
Count

Walls
Avoided

Reached
Goal?

1 Maze I 157 60 6 ✓

2 Maze I 212 108 2 ✓

3 Maze I 181 79 1 ✓

4 Maze I 244 101 4 ✓

5 Maze II 605 173 64 ✓

6 Maze II 571 113 42 ✓

7 Maze II 311 110 7 ✓

8 Maze II 509 267 13 ✓

9 Maze III 489 146 48 ✓

10 Maze III 547 154 63 ✓

11 Maze III 456 101 36 ✓

12 Maze III 318 81 41 ✓

Table 4.2: The configurations used for best results in each experiment.

Experiment Runs Gens Population Gap Crossover Mutation
1 (Maze I) 3 5 100 0.87 0.94 0.92
7 (Maze II) 10 9 300 0.87 0.14 0.11
12 (Maze III) 22 20 700 0.89 0.90 0.97

Figure 4.4 also shows the behavioural pattern of each solution by having each

agent draw the path it takes using the pen-down command in NetLogo.

Figure 4.4: The path taken by the best ‘Maze I, Maze II, and Maze III’ solutions.

An interesting result is that there does not seem to be any correlation between

parameters. We see that 22 runs were used in Maze III to select the fittest

individual, the highest number of runs used in our experiments. However, we

see that the fittest individual selected after three runs in Maze I beats the

performance of the fittest individual selected after 22 runs in Maze III.
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Something intriguing from paths taken in all environments as shown in figure

4.4, is how each solution is well-suited to the environment. The figure shows

that the paths each robot took are well-suited to the specific environment

which means the robot may not perform well in other environments using the

same solution. The resulting phenotypes are presented below.

Maze I Solution:

ROBOT: :RIGHT ROBOT: :TURN−AROUND

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :RIGHT] [ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: : LEFT ] [ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :TURN−AROUND]

[ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :RIGHT] [ROBOT: :FORWARD]

ROBOT: :TURN−AROUND ROBOT: :TURN−AROUND

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :RIGHT] [ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: : LEFT] [ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :TURN−AROUND]

[ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :RIGHT] [ROBOT: :FORWARD]

ROBOT: :TURN−AROUND ROBOT: :TURN−AROUND

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :RIGHT] [ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: : LEFT] [ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :TURN−AROUND]

[ ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :RIGHT] [ROBOT: :FORWARD]

Maze II Solution:

i fe l se (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :RIGHT] [ROBOT: :FORWARD]

ROBOT: :RIGHT

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: : LEFT] [ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: :RIGHT] [ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: : LEFT] [ROBOT: :FORWARD]

ROBOT: : LEFT
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Maze III Solution:

i fe l se (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: : LEFT] [ROBOT: :FORWARD]

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: : LEFT] [ROBOT: :FORWARD]

ROBOT: : LEFT

i fe lse (ROBOT: :OBSTACLE−AHEAD?) [ROBOT: : LEFT] [ROBOT: :FORWARD]

ROBOT: :RIGHT

An interesting characteristic of these solutions is that the longer the

evolutionary process continues, the more refined the phenotype becomes,

which is possibly over-fitted. However analysing the syntax, the code is

adapted to a range of environments whereas the solution for the slightly

easier maze (Maze I) which was generated after a couple of runs looks well-

suited for the Maze I environment. This is interesting because phenotypes

from early runs are expected to be more general and refined by evolving over

and over.

These evolved solutions will be used to evaluate the real-world performance

of the robots later in this chapter.

4.4 An Interface between NetLogo and NXT

An additional NetLogo application was designed to facilitate the execution of

the evolved code between the NetLogo application and the Lego Mindstorms

brick. Using the NXTLogo API described in the previous chapter, this program

can connect to any Mindstorms robot and run any program generated through

the first application. The interface of the additional application is shown below

in figure 4.5.

This additional application provides an easy and modular design with several

functionalities such as connection to the robot (second column second row

first button), execution of commands, running behaviours (second column

bottom button), termination of connection (second column second row second

button), print state (button top left), and reset settings (button next to it, top

left). Monitors on the right show the state of the robot, such as whether the
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Figure 4.5: The UI of the application that connects between NetLogo and NXT.

robot has bumped a wall, the distance from the wall, the colour of the floor the

robot is currently moving over, whether the robot is moving, whether the robot

has reached its goal, the number of turns the robot has taken, and the number

of times the robot has bumped into the wall. The execution-commands input

box lets you enter the behaviour of the fittest individual generated earlier

in the Mindstorms Explorer in order to investigate whether the robot can

reproduce the same behaviour in the real-world. The logging output area

shows the connection process and after that the current state of the robot.

It also shows the statistic when you click the Print State button on the top

right.

4.5 Mindstorms Control File

In order to execute the commands on the Lego Mindstorms robot and to

receive feedback from the sensors, the ControlFile used in chapter 3 was

adopted and upgraded.

How this program works is displayed below in figure 4.6. “Start” represents

the opening of connection and flow of data stream between the NetLogo and

the robot. This data is translated into commands which are executed by the

robot. Whenever the robot changes its position, it sends data back to the

application which usually contains information regarding whether the robot

is moving, whether the robot bumped into anything, the distance from an

obstacle, the colours that have been sensed, the distance travelled, and the

total angle turned etc.
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Figure 4.6: Basic Control flow for the NXT control file.

The NXT control file receives signals via the NetLogo extension and takes

action according to the command signal sent. If it is terminate then it stops

the robot, or if it is forward then it moves the robot forward, or if it is left

then it turns the robot to the left or if it is right then it turns the robot to the

right. Once the action is taken according to the command, the state the robot

is in is updated and feedback is sent back via the NetLogo extension.

4.6 Real-World Implementation

In this section and its subsections, we will cover the real-world implementation

of the robot and observations.

4.6.1 The Environment

The real-world implementation involved constructing one of the three

environments. For our experiments, the Maze I environment was implemented

in the real world (see figure 4.7). The reason behind choosing this

environment is its simplicity.
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Figure 4.7: The real-world reconstruction of the Maze I environment.

The basic rules were the same for all experiments that the robot will start

from the starting point highlighted in figure 4.7 and will finish at the goal

location marked by placing a card on the floor. Even though the robot is in

line with the goal location, it can not glide there straight as it is separated by

obstacles and walls.

4.6.2 Three Experiments

The evolved solutions from each Maze environment were extracted to the

robot respectively to test their performance in the real-world environment as

described above. The results are as below.

Performance evaluation of ‘Maze I’ Solution

The Maze I environment solution (developed by the Mindstorms-Explorer

application) was expected to perform best in this identical environment.

However, its performance was opposite to what was expected. Sometimes

the robot was unable to find the goal and it was not able to go past the first

obstacle as it kept getting stuck in the corner where it started. However, most
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of the time the robot reached the goal with the best time of 5.11 minutes.

It is hard to know why the real-world experience did not reflect the virtual

simulation to solve the maze quickly. The observed behaviour was not even

close to the pattern reflected in the simulations (see figure 4.4) which proved

that accuracy of reconstruction of the environment in the real-world had very

little effect on the results.

Performance evaluation of ‘Maze II’ solution

Some good results were achieved using the solution generated to solve

the Maze II as the robot was able to find the goal on all occasions within a

reasonable time of under 5 minutes every time with the best time of 3.01

minutes. Considering that the program solution was developed for quite

a different environment, this shows that evolving more general-purpose

solutions have the ability to be better suited to overcome issues caused by a

mismatch between simulations and real-world implementations.

Performance evaluation of ‘Maze III’ solution

The fittest program generated from the Maze III environment outperformed

both the other solutions by quite a large margin as it only took 1 min

59 seconds for this program to lead the robot to the goal. The gradual

performance increase from each experimental setup indicates as stated

that a more general solution may be better suited to cope with different

environments in the real-world. The Maze III solution was not expected to

perform well in the Maze I environment because the evolved solution was

generic, and the robot could have lost hours searching for a goal. However,

the results showed the opposite as the Maze III solution performed best in the

real-world test environment.

4.6.3 Summary

As discussed above and results presented in table 4.3 below, we can see

that the best results were produced by the Maze III environment solution.

One point to notice here is that the Maze III solution was generated after a
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higher number of runs and generations than the other two solutions. There

is a possibility that the performance of other solutions can be improved by

using a higher number of runs and generations when evolving the solutions.

Another factor which needs to be looked at is the effect of evolving in complex

environments compared to the simple ones.

Table 4.3: The performance summary of evolved solutions in real-world
experiments.

Solution Found
Goal?

Time

Maze I 40% 5.11 minutes
Maze II 100% 3.01 minutes
Maze III 100% 1.59 minutes

4.7 Evaluation

In this section and its subsections, we will further discuss how the evolved

robots behaved because so far, we have discussed the results achieved from

the simulations and real-world test environments.

4.7.1 Evolution & grammar

During all the real-world experiments, regardless of which solution is used

out of the three, the robot hardly followed the patterns created in simulations.

The Maze I solution couldn’t even get near the marked location. The Maze II

and Maze III solutions showed some better results, however, several times

when the robot was heading straight to the marked location, it turned away

and took longer to reach the goal location. Instead, if it had gone straight,

the results would have looked extremely positive. The reason behind this

could be that the simulations had tight paths with several turns. Also, it

can be said that solutions generated in complex environments can perform

better than solutions generated in simple environments, as is witnessed in

the performance of the Maze I solution. Besides, the solution for Maze I

was generated from a very low number of runs and generations, however, it

performed best in simulations. This raises the question – What if we generate

the Maze I solution by setting the configurations to a high number of runs and

generations? Will it perform any better?
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4.7.2 Experimental Observations

This section discusses further observations concerning the robot itself when

compared to the observed behaviour and evolved solutions. For example,

the robot could not detect the wall and ran right into it (see figure 4.8). The

observations were even worst as the robot didn’t stop and turned away, but it

kept spinning motors a couple of times, even when it hit the wall.

Figure 4.8: A robot bump despite the use of the ultrasonic sensor.

Another problem noticed was when the robot reached the marked goal colour,

it kept moving forward (see figure 4.9) even after registering the goal state.

Lastly, in the simulated code, only 90 or 180 degree turn angles were allowed,

however, different turn angles were observed during real-world experiments.

Figure 4.9: A delay between detecting the goal and acknowledging a goal.

Several issues can cause these problems including quality of hardware (Lego

Mindstorms) and Bluetooth communication delay. Some of these problems
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can be mitigated by using better hardware. The issue of the robot travelling

into a wall was further investigated and the performance of the ultrasonic

sensor was monitored by placing it against a solid object. The value changed

whenever the object was moved closer or away from the object, however,

jitter was noticed when moving the sensor in speed. The jitter combined with

the delay of communication could be the cause that it kept going forward

to a hit wall. Therefore, a bump sensor was added to avoid the robot being

stuck against the obstacles. This also provides an explanation of the scenario

detailed in figure 4.9 that after sending the acknowledgement back to the

software, the robot kept moving forward until it received the next command

from the software.

However, the main issue detected was turn angles being inaccurate. There

can be several factors which can contribute to the problem such as the surface

in the test environment, the power available for the motors, the design of the

robot, and conflicting commands. An attempt to mitigate these issues will be

made in the next chapter by utilising the knowledge and experience gained

during these experiments.

4.7.3 Robot’s Design Improvements

During the experiments, ultrasonic sensor was placed on top of the robot

to facilitate the design and to avoid it from damage by hitting obstacles.

However, it was observed that placing the ultrasonic sensor lower would

detect smaller obstacles and robot won’t get stuck.

4.8 Summary and Conclusion

This chapter reported the experiments that were conducted on the use of

grammatical evolution applied to the problem of evolving behaviours for the

task of maze exploration. The accomplishments of this chapter include the

design and construction of a Lego Mindstorms robot; updating of a NetLogo

extension; the creation of a NetLogo application to evolve solutions; and the

creation of a NetLogo application to interface between the first application

and the NXT Lego Mindstorms brick. The robot was designed and constructed
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to examine the performance of behaviours in the real-world. The low-cost

platform NXTLogo was updated to be compatible with NetLogo 6.1 API, in order

to make use of NetLogo for the evolution of behaviours for Lego Mindstorms

robots which can guide the robots to navigate an environment in search of an

abstract goal. A series of NetLogo applications (focused on evolving NetLogo

source code) was also used to investigate the use of Grammatical Evolution

for exploratory robotics. For example, a NetLogo application was developed

to grammatically evolve the codes for simulated agents embodied within a

virtual environment.

The approach was evaluated using three different simulated environments

and the robot was inserted into these unknown environments without any

internal memory mechanisms. The application evaluated each individual of

those robots with a fitness function to determine the fittest individual and

stored the fittest individual’s phenotype. Another NetLogo application was

created as an interface to deploy the fittest individual’s phenotype into a

Lego Mindstorms robot in order to test it in the real-world. The results showed

that solutions developed for complex environments outperformed all other

solutions. Although the test environment in the real-world was like the simple

simulated environment, the simple environment solution’s performance was

not good enough in comparison to the other environments’ solutions. There

is a possibility that the performance of other solutions can be improved by

using a higher number of runs and generations when evolving the solutions.

Evolving Robotic Behaviours using Grammatical Evolution 88



Chapter 5

Discovery and Validation of Novel

Interesting Behaviours

The purpose of this chapter is to address objective 3 "To use the new

environment to discover novel interesting robotic behaviours" and objective

4 "To use the new platform to validate novel interesting robotic behaviours in

the real world" of this thesis in order to help answer research question 2 "Is the

new robotic system design environment capable of automatically discovering

novel interesting behaviours and validating these behaviours in the real-

world?". The first half of the chapter is about the discovery of interesting

behaviours and the second half of the chapter is about the validation of these

novel interesting behaviours in the real-world. The first half also provides

details of the robot design and the environment design to run the model, in

order to discover interesting behaviours. These behaviours are also evolved,

and a fitness function is used to find the most interesting behaviour. After

discovering the interesting behaviour, it is also validated in a real-world

environment. The results are discussed at the end of this chapter, followed

by a summary.

5.1 Introduction

This thesis proposes an unsupervised method of discovering interesting

robotic behaviours. Undoubtedly, a large number of simulations would be

required to test this robotic system environment to check its accuracy of

interestingness detection. A robotic system like this would save a large

amount of time and labour cost, as it is nearly impossible for a human to
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go through thousands of behaviours and find those behaviours that are

interesting. Where a human might take several days to complete such a

task, the goal is to develop a robotic system capable of finding interesting

behaviour within a few minutes.

Discovering interesting behaviours is an emerging area of research for

robotics. Currently, as stated in the literature review in section 2.7, this

field is underexplored, but it can have a significant impact on decision

making and autonomous exploration [119]. However, in the last few years,

there have been various research concerning interestingness in different

areas of robotics. Ahmed used Braitenberg vehicles to discover interesting

behaviours by using clustering and compression [2]. Dhar et al. approximated

the aesthetics and interestingness of images by using three hand-crafted

rules, which are composition, content, and sky-illumination [34]. Wang et al.

explored the problem of predicting interesting scenes for mobile robots, which

is crucial for several practical applications such as autonomous exploration

and decision making [165].

The next section and its subsections provide the design of the robot and

environmental setup of the simulation experiments, which are followed by

a discussion of results. The following section and its subsection provide the

real-world environmental setup, experiments and results used for validation.

The chapter concludes with a discussion of the results achieved, and future

work is identified.

5.2 Experimental Setup for Discovering

Interesting Behaviours

The discovery of interesting behaviours requires a large number of simulations

with several different configurations and a design of a robot which can

be remodelled in the real-world. A detailed design of the robot and the

environment used for the virtual experiments are discussed below.
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5.2.1 Design of Robot

To achieve the best results for these experiments, it is necessary to faithfully

design the robot with functions which can be remodelled in the real-world.

While designing the robot, it is important to keep in mind that the robot will

be inserted in an unknown environment without any previous knowledge or

training. Therefore, a robust design was required, which can be modified or

upgraded easily while making sure the robot does not break down due to

collisions.

Figure 5.1: Five Minute Bot design from Lego Projects [120].

Several designs were studied from the Lego Mindstorms website, including

bumper car, line following, Segway, mini rover, hammer car, explorer, and

five minute bot [120]. It was decided to use the five minute bot design

(shown in figure 5.1) and modify it according to our needs because the design

is flexible for making changes such as adding another sensor, or moving

sensors around.

The robot that was developed is named "iFinder" (see figure 5.2) and equipped

with the following sensors to perform different tasks.
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Figure 5.2: The adapted "Five Minute Bot" design used for the final experiments.

5.2.1.1 Colour Sensor

In these experiments, the robot reacts to the colour of the floor and chooses

an action (left, right, forward, and turn-around) according to the floor

colour. An RGB sensor is attached to the robot, which detects the floor colour

continuously and then behaves according to the colour detected.

5.2.1.2 Motors

The design of the robot uses two motors (one for each wheel) to help the

robot to move forward, take a right turn by slowing one motor, take a left turn

by slowing the other motor, or turn around by making one wheel go forward

and the other backward. Also, chains were not used in this design because

they increase the weight on motors and will use extra battery power.

5.2.1.3 Ultrasonic Sensor

When the robot is placed in an unknown environment, especially one which is

dangerous or inaccessible for humans, it is important to minimise the robot’s

contact with obstacles so that the risk of the robot breaking down can be

reduced [153]. Therefore, the robot uses an ultrasonic sensor to sense the

obstacles ahead and takes preemptive action to avoid those obstacles. It

was previously observed in the Chapter 4 experiments that this can increase
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the reaction time of the robot and also increases self-preservation which is

a highly desired quality. Therefore, the ultrasonic sensor is employed in this

new robot’s design as well.

5.2.1.4 Bump Sensors

Unfortunately, it is not guaranteed that the ultrasonic sensor will definitely

protect the robot all the time as it does not detect obstacles which are higher

or lower than the position of the ultrasonic sensor [17]. Therefore, a bump

sensor was also added to the robot, which responds to actual collisions. An

anti-collision bar is added all around the robot, which also triggers the sensor

whenever the robot hits the wall and protects the actual sensor and robot

from any damage.

5.2.2 The Environment

The virtual environment created in NetLogo contains overlapping rectangles

of different colours. The environment is surrounded by a boundary wall

which is represented by the red colour in NetLogo. The vehicle shape is

designed as close as possible to the robot design described above in section

5.2.1. The world wrapping option is disabled in NetLogo settings so that a

realistic environment can be created in order to avoid issues during real-world

experiments. The patches store the number of times the robot visits them and

this information is used by the entropy calculation measure (described below

in section 5.2.4) as a fitness function when evolving the most interesting

behaviour. After setting up the environment, the next step is to choose

the appropriate settings and grammar (see next section) that is used to

evolve several different behaviours. A large number of simulations need

to be compared in order to discover interesting behaviour. Initially, the

environment was designed with different shades of grey colour to represent

the real-world scenario where a light was placed in the centre with darker

patches representing low light conditions. However during experiments, it

was difficult to distinguish colours accurately, therefore more prominent

colours were used in the environment (see figure 5.10).
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5.2.3 The BNF Grammar

The purpose of these experiments is to find the most interesting behaviour

using Grammatical Evolution. The possible syntax of the program code that

could be evolved, was defined by using the Backus-Naur Form notation [109].

The following grammar was initially used in the application.

Listing 5.1: The initial grammar used to discover interesting robotic behaviours.

1

2 <expr> ::= <actions> | <expr> <actions>

3 <actions> ::= <sensingaction1> | <sensingaction2> |

4 <sensingaction3> | <sensingaction4> | <sensingaction5>

5 | <turn1> | <turn2> | <move>

6 <sensingaction1> ::= i fe lse (ROBOT: :OBSTACLE−AHEAD?)

7 [<turn1>] [<move>]

8 <sensingaction2> ::= i fe lse (ROBOT: :COLOUR−AHEAD−WHITE?)

9 [ <turn1>] [ <move>]

10 <sensingaction3> ::= i fe lse (ROBOT: :COLOUR−AHEAD−YELLOW?)

11 [ <turn1>] [ <move>]

12 <sensingaction4> ::= i fe lse (ROBOT: :COLOUR−AHEAD−BLUE?)

13 [ <turn1>] [ <move>]

14 <sensingaction5> ::= i fe lse (ROBOT: :COLOUR−AHEAD−GREEN?)

15 [ <turn2>] [ <move>]

16 <turn1> ::= ROBOT: :RIGHT

17 <turn2> ::= ROBOT: : LEFT

18 <move> ::= ROBOT: :FORWARD

This grammar provides robots with capabilities of avoiding obstacles, sensing

colours, and tanking turns (left, right, turn-around). Whenever a colour

is detected via a sensing action, the robot will make a turn according to

that specific colour and moves forward. Actions are divided into different

sub-actions (sensing action). It is worth mentioning here that if a colour is

sensed during a sensing action, the robot will “turn” but not move. This is to

avoid the robot potentially crashing. Also, it will avoid virtual agents travelling
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through the boundary wall which is not a desirable situation as in real-world

experiments that behaviour cannot be replicated.

5.2.4 Fitness Function

A fitness function is used to find the individual with the most interesting

behaviour from a population across generations through crossover and

mutation. The easiest way was to assume that the behaviour with the highest

entropy value is the most interesting behaviour (a similar approach was used

by Ahmed and Teahan [3]). Keeping this in mind, the entropy was estimated

using a compression-based codelength calculation for each simulation.

As stated, we can use a straightforward entropy-based metric for measuring

Interestingness. The metric that has been devised uses a Markov model

approach in order to predict the visit counts for the patches in the environment

that is produced at the end of each simulation (after the simulation has run

for a set number of ticks).

One of the simplest Markov models that we can investigate is to use order 0

probability estimations. (This is in contrast with the approach by Ahmed &

Teahan [3] which used higher order models). The order 0 approach we have

devised is where the probability estimation is based simply on the distribution

of the visit counts without taking into account any prior context i.e. the visit

counts of the preceding patches are ignored.

Formally, we can adapt the standard entropy-based formula devised by

Shannon [143] that is well founded in Information Theory, to propose the

following novel metric for measuring the ‘Interestingness’ I that is related to

the compression codelength of encoding all the visit-counts in the patches of

the simulation environment:

I = −
∑

ρ∈patches

log2 Pρ (5.1)

where ρ is a patch in the environment and Pρ is the probability that the patch

has the specific visit-count associated with it.
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The key to the success of this metric is the way the probabilities are estimated.

The probability for patch ρ having a specific visit-count is estimated from the

frequency of the visit-count for that patch:

Pρ =
(ω × Cρ) + 1∑

u∈patches(ω × Cu) + 1
(5.2)

where Cρ is the visit count associated with patch ρ and ω is a constant used

for weighting non-zero frequency counts more heavily. (That is, a higher value

for the ω constant will assign a greater weight to the non-zero counts).

Essentially, an order 0 model is being used to predict the specific visit count

for each patch in the environment. Then, I provides a theoretically minimum

estimate for the cost of encoding the visit counts for the whole environment.

If the visit-counts were being physically encoded to a file on disk, an encoding

close to the theoretical minimum can be achieved using arithmetic coding

[130], [137].

The standard add-one smoothing [123], [26] is adopted here where +1 is

added to the frequency count to ensure non-zero probability estimates in all

cases (i.e. for all patches). This is required because a majority of the patches

in the simulations being generated have zero visit-counts i.e. the simulated

robots for the more interesting configurations will only visit a small number

of patches in the environment.

The denominator, which sums across all the different possible visit counts,

normalises the probabilities across the probability distribution so that they

add up to 1.

However, in the experiments described below, this codelength calculation was

not satisfactory enough to find the interesting behaviours as the model started

returning similar behaviours. In any standard evolutionary algorithm, this is

a very important consideration that determines the final performance when

evolving the solution (phenotype) because a poorly designed fitness function

will evolve inappropriate or undesirable solutions with poor performance.

Keeping this in mind, the fitness function was modified and a bonus amount
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of 500,000 was added to separate the small and large values of codelength

(entropy based fitness measure). The behaviours displayed by the vehicles

were processed by using codelength value as file name, so that when the

images are sorted by name, the export-view of the behaviours will be sorted

by most interesting at the top.

5.3 The Experiments

This section contains two main parts: part one describes the process

of discovering interesting robotic behaviours; and part two presents the

validation of these novel interesting behaviours in the real-world. Table

5.1 shows a summary of NetLogo models that were developed for the

experiments.

Table 5.1: The summary and details of the experiments.

Name of Model Description of Model
Virtual Experiments

Robotic-Behaviours
Developed robot actions to create behaviours in
the new environment.

Interesting-Behaviours
Used entropy based calculation to find
interesting behaviours.

iFinder-Discovery
Grammatical Evolution applied to discover
interesting robotic behaviours.

Real-World Experiments

Colour-Sensing
Adjustment of colour sensor values and
tolerance for accurate colour detection.

Turn-Angles
Adjusts Angles when the robot makes a turn so
that behaviours can be recreated as close to the
simulations as possible.

iFinder-Validation
Real-world validation of evolved interesting
behaviours.

The code of these models have been made freely available in the project’s

Github repository [8].

5.3.1 Virtual Experiments

This section and its subsections present the design and results of the

virtual experiments. There are three experiments in this section to examine

different hand-crafted behaviours, identify interesting behaviours, and evolve

interesting behaviours.
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5.3.1.1 Robotic Behaviours

A NetLogo model (Robotic-Behaviours) was created as an initial experiment

to simulate the behaviour of the robot. The objectives of this experiment are:

• Designing a simulated robot and environment with different colours so

that the robot can react in a non-trivial and potentially interesting way

according to the colour detected.

• Observing the robot’s behaviour by experimenting with different sets of

commands in NetLogo.

The model (see figure 5.3) was used as an initial setup for the main

experiments. The model visualises the actions taken by the robot during

the simulation by drawing its path in red in NetLogo’s environment (shown

in the middle of figure 5.3). The patch visit counts are also shown in white.

These are used later by the compression codelength fitness function in the

next model (Interesting-Behaviours) to help evolve the interesting behaviours.

It is important to confirm that the set of commands sent to the robot are

able to produce interesting behaviours (validated in the real world). Several

combinations of configurations were tried, and one of these produced the

behaviour shown in figure 5.3. This behaviour is quite similar to one of

the interesting behaviours produced by Ahmed’s model. The behaviour

commands executed by the robot is shown on the left of the figure.

The following guidelines show how these simple commands, and a variety of

configurations, can be used to produce interesting behaviours.

How to Use the Model

The model’s speed needs to reset to normal, so that the environment can

be redrawn quickly. Then the experiment is initiated by pressing the “Setup”

button. When this is pressed, the environment will appear in the 2D view

of the NetLogo interface. The set of commands will also appear on the

left side in multi-line input box “Robot-Actions” which is editable making
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Figure 5.3: A behaviour hand-crafted for the model Robotic-Behaviours.

it possible to change any of the commands. Listing 5.2 shows the code

(NetLogo commands) used to control the robot to turn right or turn left via the

turn-right and turn-left commands (at the angle chosen in configuration)

if there is detected the specific colour ahead (via the colour-ahead command)

which will then result in the robot moving forward one patch.

Listing 5.2: Robot actions and control program in the NetLogo model Robotic-

Behaviours.

1 NetLogo Robot Commands:

2 move, turn−right , turn−l e f t

3 NetLogo Robot Reporter :

4 color−ahead

5 Sample Robot Actions :

6 i fe lse color−ahead [ colour ]

7 [ turn−r ight ] [ turn−angle−1]

8 [move]

9 i fe lse color−ahead [ colour ]

10 [ turn−l e f t ] [ turn−angle−2]

11 [move]
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Before starting the simulation, the “Max-Steps” (ticks) slider must be set

to the desired number of steps the user wants the robot to take. Also, the

turning angles (turn-angle-1 and turn-angle-2) must be set to the desired

settings as well. To follow the robot’s behaviour, we need to monitor the

robot’s path by setting “Show-Paths?” switch to on. Once the model is ready,

the “Go” button needs to be pressed in order to execute the “Robot-Action”

commands. The model’s speed must be set to very slow (by adjusting the

speed slider) so that the robot’s behaviour can be observed easily. If the

model’s speed is not set to very slow, the robot will run so fast that only the

final behaviour can be seen.

5.3.1.2 Interesting Behaviours

A further NetLogo model (Interesting-Behaviours) was developed that

improves the first model (Robotic-Behaviours) by adding capabilities to select

random configurations of the interface settings when running the model. The

model can be used to find the configuration of settings and internal robot code

that produces the highest compression codelength via the fitness function

described above in section 5.2.4.

The objectives of this experiment are:

• Designing a model capable of selecting random configurations to

generate the behaviour and to be capable of repeating that behaviour

as many times as required.

• Analysing all the behaviours generated by the different simulated robots,

in order to manually determine whether interesting behaviours can be

generated for this robot and environment.

Most of the interface configurations of the model “Interesting-Behaviours”

are the same as the model “Robotic-Behaviours” including “Robot-Actions”,

“Setup”, “Max-Steps” and “Show-Paths?”. This model generates different

turn angles unlike the Robotic-Behaviours model which were set manually via

the interface between 1-360. To run the model several times, a repeat button
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Figure 5.4: Interface of the model Interesting-Behaviours.

is added in the interface and the number of repeats can be decided by using

the “noRepeats” slider. By using these random configurations and repeating

capabilities, it is possible to create 129,600 different behaviours (due to the

possible variations in the different parameter settings). However, running

the simulation for this amount of times was deemed too time consuming and

also would have required an enormous amount of storage to store the results.

Therefore, results for these initial experiments were gathered by conducting

10,000 simulations with randomly generated configurations.

The next step was to identify the interesting behaviours, which was achieved

by using the compression codelenth calculation (explained in detail in section

5.2.4). The output box in the interface shows the parameters for each run

which are generated randomly. A view of the environment depicted in the

interface is exported at the end of every run as shown in figure 5.4 above.

The NetLogo code that performs the calculation of the compression

codelength entropy-based metric to find the interesting robotic behaviour is

as follows:
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Listing 5.3: Calculation of Entropy to find the interesting robotic behaviour

1 to−report calculate

2

3 let counts [counter ] of patches

4

5 let calc 0.0

6 let total 0

7 let adjusted−count 0

8 let prob 0.0

9 let neglogprob 0.0

10 let probfactor ProbFactor

11

12 foreach counts

13 [ my−count −>

14 set total total + my−count * probfactor + 1

15 ] ; +1 to ensure non−zero probabil ity

16

17 foreach counts ; codelength calculation on a l l the counts

18 [ my−count −>

19 set adjusted−count my−count * probfactor + 1

20 set prob (adjusted−count / total )

21 set neglogprob (− log prob 2)

22 set calc calc + adjusted−count * neglogprob

23 ]

24 report calc

25 end

The results achieved are shown in figure 5.5 below and are taken from a

selection of the robot behaviours with the lowest ranked deemed to be the

Least-Interesting, and the higher ranked deemed to be Interesting and Most-

Interesting respectively. Visual analysis of the latter clearly shows more

complex and surprising behaviours than the former. The results confirm that

this task-environment setup can produce interesting and unusual behaviours.
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Figure 5.5: Some of the different behaviours randomly produced by the
model "Interesting-Behaviours" as ranked in ascending order by the compression
Codelength metric.

How to Use the Model

The model’s speed must be set to fastest by adjusting the speed slider in

the toolbar in order to complete 10,000 runs in a reasonable time, otherwise,

it can take hours or days to run that many simulations at normal or slow

speed. The experiment is initiated by pressing the “Setup” button. When this
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button is pressed, the environment will appear in the 2D view of the NetLogo

interface. A set of commands will appear on the left side in the multi-line input

box “Robot-Actions” which is editable and provides the user with the ability

to change any of the commands the robot executes. Listing 5.2 shows the

valid actions of the simulated robot and a sample robot control program which

dictates the robot to turn-right or turn-left if there is a specific colour

ahead via colour-ahead and moves forward one patch otherwise. Before

starting the simulation, the “Max-Steps” (ticks) slider must be set to the

desired number of steps the user wants the robot to take.

To follow the robot’s behaviour, the user can monitor the robot’s path by

setting the “Show-Paths?” switch to on position. Once the model has been

set up with the desired configuration, the “Go” button is pressed in order

to execute the “Robot-Actions” commands. Once the model has stopped,

further simulation runs can be produced by pressing the "Repeat” button.

The results are saved to files for later analysis.

5.3.1.3 iFinder Discovery

This section provides an overview of the main experimental model named

“iFinder-Discovery” (see figure 5.6), followed by an explanation of how to

use the model. The experimental setup and results are also discussed. This

is the final model of these virtual experiments which further develops the

above mentioned models by using Grammatical Evolution, for the discovery

of interesting robotic behaviours.

The model uses the newly developed system environment (described in

Chapter 4) for the grammatical evolution genotype-to-phenotype mapping

process, which involves a genetic algorithm as search engines, a roulette

wheel for the selection of the parents, and the creation of the offspring

population via a steady-state replacement strategy. Several buttons and

sliders are used for the configuration of the grammatical evolution algorithm

and for setting up the experiment.
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Figure 5.6: The “iFinder-Discovery" application to evolve interesting behaviours.

The execution of the simulation is on the top left and a live running result of

the simulation can be seen in the window on the left side. The objectives of

this experiment are:

• Developing and discovering interesting robotic behaviours using the

new developed robotic system environment.

This “iFinder-Discovery” application provides the users with several

configurations that can affect the process of evolution. During this simulation

evolution process, the application creates a robotic population which is

evaluated one by one by using the codelength fitness function. The fittest

individuals generate the new offspring, and this process is repeated until a

suitable solution is found. At the end of the process, it stores the phenotype

of the fittest individual which can be extracted to a Lego Mindstorms control

unit by the user as discussed previously in section 4.4.

The following guidelines show how this easy-to-use process can be used to

produce interesting behaviours.
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How to use the Model

The majority of this model’s features are sliders which make it easy to use.

The user can select required configurations by moving the sliders from side to

side. The model’s speed must be set to fastest by adjusting the speed slider

in toolbars so that selected number of runs and generations can be completed

as soon as possible, otherwise, it can take days to run that many simulations

at normal or slow speed. The user can also choose if they want to view the

path taken by the robot during simulations by using the “draw-trail” switch.

After selecting the desired configuration settings, when the user clicks the

“Setup” button followed by the “Run” button, this initiates the evolutionary

process. The application creates a robotic population which is evaluated

by the fitness function. The fittest individuals generate the new offspring,

and this process is repeated until a suitable solution (phenotype) is found.

This solution is displayed in the output box and later extracted to the robot.

Usually, this process will indicate the most interesting robotic behaviour

produced during that set of simulations. However, we will also be analysing

the top 20 interesting behaviours (examples shown in figure 5.5 above) to

make sure we do not miss the more interesting ones.

When the generated solution code displays in the output box, it can be

executed again for study and analysis by pressing the “Setup Trail” and

“Run Solution” buttons respectively. The solution can be re-executed as

many times as the user wants, or until the user presses the “Setup” button

again to initiate a new experiment. During the study and analysis of the found

solution, the speed slider can be adjusted to slow the speed of the robot for

better observation and understanding of the behaviour.

5.3.1.4 Experimental Setup and Results of Experiments

A series of experiments have been conducted to determine how successful

this design framework is for discovering interesting robotic behaviours. The

details of two examples are discussed below.
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The model “iFinder-Discovery” contains various controls and statistics,

evolutionary parameters, custom-codes, and the test environment viewing

box. The controls let the user set up the experiment, choose the desired

test environment, choose the desired BNF grammar, run the experiment, and

setup trial and run the solution to study the best solution produced. The

statistics show the number of steps the robot has taken, the current number

of the run, and the current number of the generation. It also shows the best

fitness value achieved so far. The parameters let you decide the number of

runs, number of generations, number of steps, size of population, generation-

gap, maximum-wrap, crossover, mutation, codon size, minimum codon value,

and maximum codon value. The custom setup lets you run the best code

generated from any run or generation, or you can create your own code for

further testing. The test environment viewing box shows you the output

(behaviour) of the robot.

The time it takes to generate solution code depends on configurations used

for that experiment and the speed selected using the speed slider. Some

examples with different combinations of configurations (with highest speed

possible) are provided in table 5.2 where the columns provide the number of

runs, the number of generations, population size, and the time it took to run

that experiment respectively.

Table 5.2: The time taken to generate solution code with different configurations.

No. Runs Generations Population Size Time (sec)
1 5 10 100 24.63
2 5 20 100 42.37
3 10 10 200 107.36
4 10 20 200 215.51
5 15 25 250 516.74

The results show that only relatively modest resources are required in terms

of execution speed to run the experiments such as experiment no 1 in table

5.2 produced 5000 (5× 10× 100) behaviours in just 24.63 seconds.

To demonstrate the variety of results that are possible, two different

grammars are used to produce solution code. The grammar used to generate

Code for Example 1 is shown in listing 5.4.
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Listing 5.4: The grammar used for Example 1.

1 <expr> ::= <actions> | <expr> <actions>

2 <actions> ::= <sensingaction1> | <sensingaction2> |

3 <sensingaction3> | <sensingaction4> | <sensingaction5> |

4 ROBOT: :RIGHT <angle> | ROBOT: : LEFT <angle>

5 | ROBOT: :TURN−AROUND | ROBOT: :FORWARD

6 <sensingaction1> ::= i fe lse (ROBOT: :COLOUR−AHEAD−WHITE?)

7 [ ROBOT: :RIGHT <angle> ] [ ROBOT: :FORWARD ]

8 <sensingaction2> ::= i fe lse (ROBOT: :COLOUR−AHEAD−YELLOW?)

9 [ ROBOT: :RIGHT <angle> ] [ ROBOT: :FORWARD ]

10 <sensingaction3> ::= i fe lse (ROBOT: :COLOUR−AHEAD−BLUE?)

11 [ ROBOT: :RIGHT <angle> ] [ ROBOT: :FORWARD ]

12 <sensingaction4> ::= i fe lse (ROBOT: :COLOUR−AHEAD−GREEN?)

13 [ ROBOT: : LEFT <angle> ] [ ROBOT: :FORWARD ]

14 <sensingaction5> ::= i fe lse (ROBOT: :COLOUR−AHEAD−RED?)

15 [ ROBOT: : LEFT <angle> ] [ ROBOT: :FORWARD ]

16 <angle> ::= 30 | 60 | 90 | 120

The number of “max-steps” is kept to 300 so that when testing in the

real-world, it does not take long because the NXT brick is power-hungry, and

may drain the battery before completing the whole run. The number of

“maximum-runs”, “maximum-generations”, and “population-size” is kept

high to get the best results possible. The best results (highest fitness)

achieved using this grammar is shown below in figure 5.7.

After analysing these results, it was decided that an interesting robotic

behaviour to examine further was 5.7(a) because it also had the highest

fitness value and the solution code (see listing 5.5) produced for that

behaviour will be loaded to the real-world robot.
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(a) 1.065E+09 abc (b) 1.061E+09 abcd (c) 1.060E+09 abc (d) 1.059E+09

(e) 1.051E+09 abc (f) 1.047E+09 abc (g) 1.039E+09 abc (h) 1.033E+09

Figure 5.7: The results achieved for Example 1. Below each simulation output is
the codelength fitness value.

Listing 5.5: The solution code for the behaviour with highest fitness value for

Example 1.

1 i fe lse (ROBOT: :COLOUR−AHEAD−GREEN?)

2 [ ROBOT: : LEFT 90 ] [ ROBOT: :FORWARD ]

3 i fe lse (ROBOT: :COLOUR−AHEAD−WHITE?)

4 [ ROBOT: :RIGHT 90 ] [ ROBOT: :FORWARD ]

For Example 2, similar configurations were adopted but using a different

grammar. The grammar is shown in listing 5.6.

Listing 5.6: The grammar used for Example 2.

1 <expr> ::= <actions> | <expr> <actions>

2 <actions> ::= <sensingaction1> | <turn> | <move>

3 <sensingaction1> ::= i fe lse (ROBOT: :COLOUR−AHEAD? <colours>)

4 [ <turn> ][ <move> ]

5 <colours> ::= 5 | 15 | 35 | 55 | 95

6 <turn> ::= ROBOT: :RIGHT <angle> | ROBOT: : LEFT <angle>

7 <move> ::= ROBOT: :FORWARD

8 <angle> ::= 05 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |

9 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90
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The purpose for the grammar used for Example 1 was to allow the generation

of behaviour involving basic robot actions (similar to initial experiments)

where the robot is taking a right turn for white, yellow, and blue colours and

a left turn for green and red colours which is followed by a step forward by

the robot. Whereas the grammar for Example 2 provides freedom of turning

left or right after detecting any colour followed by any type of action. Also, a

wider range of turn angles is available. Essentially, the difference between

both grammars is the way the robot reacts after detecting colours.

The results were analysed, and the interesting behaviour was discovered

through the evolutionary process (see figure 5.8). The code (see listing 5.7)

for the behaviour with the highest fitness value is as below:

(a) 1.054E+09 abcdefgh (b) 1.0467E+09 abcdefgh (c) 1.0465E+09

(d) 1.044E+09 abcdefgh (e) 1.043E+09 abcdefgh (f) 9.776E+08

Figure 5.8: The results achieved for Example 2.

Listing 5.7: The solution code for highest valued behaviour for Example 2.

1 ROBOT: :FORWARD i fe lse (ROBOT: :COLOUR−AHEAD? 5 )

2 [ ROBOT: :RIGHT 25 ] [ ROBOT: :FORWARD ]

3 i fe lse (ROBOT: :COLOUR−AHEAD? 55 ) [ ROBOT: : LEFT 75 ]

4 [ ROBOT: :FORWARD ] ROBOT: :FORWARD
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Both grammars produced some interesting results. However, the grammar

and configurations used to generate these results are basic which shows the

possibilities that can be achieved with this robotic environment. More complex

grammar (such as choice of turn angles can be increased) and advanced

configurations (higher number of runs, generations, and population size) can

be used in future experiments to generate more complex results.

5.3.2 Real-World Experiments

This section and its subsections present the real-world validation of the above

mentioned experiments. Note that, it is important to mitigate the issues

(colour sensing and turning angles) detected in previous chapters in order

to achieve more faithful reproduction of the behaviour for validation of the

results.

5.3.2.1 Colour Sensing

In real-world experiments involving colour sensing, the results produced

by the robot were different than expected. The robot was able to follow

simple actions (Forward, Left-Turn, and Right-Turn); however, sensing

via the colour-ahead command proved problematic due to issues involved

with matching real colours.

Interface for Colour Sensing

A new NetLogo model called Colour-Sensing was designed to send commands

to the robot and to receive and show results of the robot’s colour sensor. The

user interface of the new application is shown below in figure 5.9.

This new interface application provides the following functionalities.

Connect to the robot – Using the input box “Insert-Robot-Name”, the user

can insert the name of its robot as it shows on the NXT brick. The application

attempts to connect to a Mindstorms robot of that name via a Bluetooth

connection.
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Figure 5.9: The user interface of the Colour Sensing application.

Terminate Connection – By pressing the “Terminate Connection” button,

the user can stop sending commands to the robot and stops receiving

feedback from the robot. All open channels and resources are closed when

the user presses this button.

Forward – By pressing the “Forward” button, a command is sent to the robot

and the robot moves one step forward.

Right Turn – The robot turns towards the right.

Left Turn – The robot turns towards the left.

Check Colour – The “Check Colour” button converts RGB values into

NetLogo colour and prints out the colour detected by the robot.
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5.3.2.2 Results and Discussion

The experimental results of chapters 3 and 4 identified the problem of colour

detection based on a number of factors including but not limited to:

• condition of lighting in the room.

• colour tolerance.

By analysing the experiments performed in the last two chapters, it was

decided to use a threshold for matching colours. However, based on the

numerical values of the colours not exactly matching, we found that settings

used in previous experiments were inadequate for the present real-life

environment because of low light conditions. Therefore, the colours used in

the test environment were changed to bright colours so that the boundaries

between them could be distinguished more easily. The new test environment

is shown in figure 5.10.

Figure 5.10: The colour setup used for the new test environment.

After some trial and error with this Colour Sensing model, a setup was

found where the colours were correctly sensed and matched. The variable

colour-to-sense is the target colour, and the colour-threshold sets the
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threshold being used to determine if there has been a successful match. Both

of these variables are specified via the interface. Matching was done between

the sensed colour and the target NetLogo colour by using the following metric

(see listing 5.8) between the RGB values sent by the colour sensor (see left

monitor in figure 5.9).

Listing 5.8: Matching colours between sensed colours and the target NetLogo

colours.

1 to−report ROBOT: :COLOUR−AHEAD−WHITE?

2 let colour nxtlogo : colour−data

3 let r item 0 colour

4 let g item 1 colour

5 let b item 2 colour

6 let this−approx−colour approximate−rgb r g b

7 report (abs( this−approx−colour − White−Colour−Value) <

8 colour−threshold )

9 end

The success criteria for the robot was to complete two rounds of the

environment while detecting and returning the exact colour. The model

produced successful results, for example, by the blue colour matching

as shown in figures 5.9 and 5.10. The video of these experiments can

be seen on a YouTube channel (see Appendix A) using the following link

https://www.youtube.com/channel/UCbqDprtdpk3WItHZJ7f1hVg.

It is difficult to draw solid conclusions from the results presented above

because of various factors. For example, it can be seen in the video that

colour values detected were slightly different in the areas covered by a

shadow from a neighbouring table. The problem can be overcome by setting

the test environment in a room without furniture. The results can be further

improved by avoiding sunlight and using only room lights as a change in the

sunlight also affected the results was also noticed during experiments.
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5.3.2.3 Turn Angles

The Colour-Sensing application was further developed to fulfil the needs of the

robot’s turn angles real-world validation. The experimental results showed

that, once again, the robot was behaving differently than expected. The

robot was able to recognise colours and react accordingly (turn left, turn

right, or turn around); however, the turn angle was different to what it

was supposed to perform. To sort out this issue, a new test environment with

more clearly defined angles was created (see figure 5.11(a)), and the robot

was tested using a simple behaviour shown in figure 5.11(b).

(a) spacing,spacing,spacing,spacing (b)

Figure 5.11: Test Environment for the robot’s turn angles and new behaviour to test
robot’s performance after correcting turn angles.

Interface for Turn Angles

The NetLogo interface application designed above was modified to send

commands to the robot and to allow the turn angle to be specified via an

interface slider. The user interface of the modified application is shown below

in figure 5.12.

This modified interface application provides the following extra functionalities.

Run Behaviour – Using the input box “execution-commands”, users can

insert the code they wish to run on the robot. Usually, this box is used to

place the default code from the “iFinder-Discovery” application (see section

5.3.1.3) to test the behaviours in the real-world. This button passes that code

to the robot which keeps running the code until this button is pressed again.
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Figure 5.12: User interface of the Turn-Angles application.

Right Turn Angle – This slider lets the user decide the degrees of the angle

they want their robot to turn towards the right.

Left Turn Angle – This slider lets the user decide the degrees of the angle

they want their robot to turn towards the left.

5.3.2.4 Results and Discussion

As stated, the purpose of Turn-Angles model was to adjust the turn angles

and successfully implement a simple behaviour in the real-world. The main

reason behind this was excessive turning being performed by the robot.

When the initial experimental model was recreated in the real world, the robot

could not recreate the same behaviour mainly because of the excessive turn

angles made by the robot. For these modified experiments, a new robot was

designed in section 5.2.1 which does not use chains-based tyres as used in the

previous two chapters. Therefore, it was necessary to adjust the turn angles

accordingly in the ControlFile loaded onto the NXT brick. After several test

runs using trial and error, accurate turn angles were found. The updated code

in the ControlFile was as follows:
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Listing 5.9: Motors adjustment to get accurate turn angles.

1 Old Settings :

2 Di f ferent ia lP i lo t p i lo t =

3 new Di f ferent ia lP i lo t (30 , 160, Motor .A, Motor .C, false ) ;

4

5 New Settings :

6 Di f ferent ia lP i lo t p i lo t =

7 new Di f ferent ia lP i lo t (40 , 155, Motor .A, Motor .C, false ) ;

In listing 5.9, line number 3 provides the values used previously for the left

and right motors turn ratio, and line number 7 presents the new values found

to produce more accurate turn angles for the newly designed robot.

The success criteria for the robot were to make a turn (right or left) in real life

according to the degrees of angles decided in the turn angle sliders. Once

this was done, the simple behaviour presented above in figure 5.11(b) was

successfully reproduced in the real world experiment as shown below in figure

5.13. The videos of these experiments can be seen via a YouTube channel

(see Appendix A) using the following link https://www.youtube.com/channel/

UCbqDprtdpk3WItHZJ7f1hVg.

Figure 5.13: Turn Angle robot behaviour successfully recreated in the real-world.
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Although the robot met the criteria for success, however, there is still room for

improvement. For example, it can be seen in figure 5.14 below that the robot

was stuck under the paper while making a turn which affected the degrees of

turn. The problem can be resolved by not printing the test environment on A4

papers which are currently joined with sellotape.

Figure 5.14: The robot becoming stuck while taking a turn.

5.3.2.5 iFinder Validation

This section continues the work done in section 5.3.1.4. A new NetLogo

application was created for the real-world experiments and the grammar of

the most interesting robotic behaviour is extracted to the “iFinder” control

unit to test it in the real world.

iFinder Validation Interface

To extract the evolved code to the robot “iFinder”, a new NetLogo application

was designed which is called “iFinder-Validation”. This new application can

connect to any Lego Mindstorms’ robot and run any code generated via the

“iFinder-Discovery” application. The user interface of the new application

is shown below in figure 5.15.

This new interface application provides the following functionalities.

Connect to the robot – Using the input box “Insert-Robot-Name”, the user

can insert the name of its robot as it shows on the NXT brick. The application

attempts to connect to a Mindstorms robot of that name via a Bluetooth

connection.
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Figure 5.15: The user interface of the "iFinder-Validation" application.

Terminate Connection – By pressing the “Terminate Connection” button,

the user can stop sending the commands to the robot and stop receiving

feedback from the robot. All open channels and resources are closed when

the user presses this button.

Run Behaviour – Using the input box “execution-commands”, users can

place the code they wish to run on the robot. Usually, this box is used to place

the code that was generated by the “iFinder-Discovery” application to test

the behaviours in the real world. This button passes this code to the robot

which keeps running it until the user presses this button again.

Colour Parameters – The colour parameters lets the user decide the colour

they want to detect and also let them decide the colour threshold limit for

matching purposes. These parameters save the user from the hassle of

changing code every time and simply allows the user to change the colour

value by moving the slider to the left or right.

Monitors – The monitors display data sent back from the robot sensors and

displays the current state of the robot.
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Print state – This button lets the user print out the data displayed on the

left-hand side monitors. These printed values can be used later for analysis.

Logging – The logging box displays the data printed by the “Print State”

button.

Reset – This button resets all states and global variables, useful if the user

wants to start over with the experiment.

5.3.2.6 Results and Discussion

This section will discuss the results obtained and what was observed during

the real world experiments. A real world test environment was designed as

close as possible to the simulation test environment (see section 5.2.2). The

success criteria for these experiments was whether the robot behaved the

same as it behaved in the simulations by using the solution code generated

previously loaded onto the robot. The simulation results are reproduced below

in figure 5.16:

Figure 5.16: The simulation results achieved for Example 1 and Example 2.

The robot performed better than the previous two experiments by successfully

recreating the interesting behaviours generated by the simulations. During

the experiments, it was observed that the robot was able to recognise colours

and take actions accordingly. The turn angles were accurate as well. A

video implementation of these real-world experiments can be seen on a

YouTube channel (see Appendix A) using the following link https://www.

youtube.com/channel/UCbqDprtdpk3WItHZJ7f1hVg. These results prove that
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the new robotic system environment can discover novel interesting robotic

behaviours and validate them in the real-world.

Even though the robot performed well in these experiments and met the

success criteria, there are a few other observations which need to be

mentioned here. These observations include but not limited to issues

concerning:

• Battery Power

• Colour Mismatches

• Test Environment Issues

One of the major problems faced during these experiments was the power-

hungry unit of Lego Mindstorms. It was noticed that as soon as the charge in

the batteries was less than a certain level, the robot slowed down and this

affected the turn angles as well. Therefore, new batteries were used every

time before running the experiment. It was also observed that sometimes

when the colour reading was exactly in-between two target colours, it would

misread the colour and produce values that were different than expected

thereby matching one of the other colours that were present in the test

environment. These false values could mislead the robot and make it turn in

the wrong direction. As mentioned above in the Turn-Angle experiments, the

test environment was printed on A4 sized papers that were joined together.

The edges of these papers were cut using a paper-cutter, so there was

no guarantee that all the papers were the same size which led to colours

overlapping. Also, some papers were stuck on top of each other while applying

Sellotape which produced a darker shade of the colour that could mislead

the robot. A possible solution to avoid this is to re-conduct the experiments

using a smooth matte floor. However, this could not be achieved during these

experiments because of Covid-19 restrictions.
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5.4 Summary

In this chapter, the experiments that were conducted to discover and validate

interesting robotic behaviours were reported. The contributions of this chapter

include: the design and construction of a new Lego Mindstorms robot; the

creation of a NetLogo application to identify interesting robotic behaviours;

updating of the Lego Mindstorm’s ControlFile; and a new NetLogo application

for controlling the final robot that was designed. The robot was constructed

to recreate the interesting robotic behaviours in the real world so that its

performance in a physical robotic system environment could be examined. A

new test environment was designed for real world experiments that matched

the environment used in the simulations. The NetLogo application was

updated to use a new entropy-based metric using compression codelength to

rate the robotic behaviours where interesting robotic behaviours were rated

higher than others. A new NetLogo application was designed to facilitate the

control of the new robot designed earlier in this chapter (see section 5.2.1).

An update to the ControlFile was made to adjust the parameters (turn angles)

according to the new robot design.

Various initial experiments were conducted to see if all the robot components

were working as required. For example, an initial experiment helped to

evaluate the performance of the colour sensor where it was determined that

the colour tolerance threshold required was much lower than the experiments

in previous two chapters. Another initial experiment mitigated the problem of

excessive turn angles being made by the robot which was elevated because of

the robot vehicle using wheels instead of chains. A third experiment extracted

the evolved code deemed as the most interesting robotic behaviour and

this was uploaded to the Lego Mindstorms robot and in order to observe its

performance in the real world.

The results showed that the new robotic system design framework can

discover novel interesting robotic behaviours and those behaviours can be

validated in the real-world.
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Although, the results help to answer the questions asked in this thesis,

however, there is room for improvement. This is especially true for the

test environment which can be constructed using a smooth matte floor where

the colours are not overlapping, and lighting conditions are always the same.

The battery power of Lego Mindstorms can also be improved to use a constant

level of power for best performance.

Further experimentation could also be conducted using different (e.g more

complex) grammars and different metrics for the compression codelength

fitness calculation. However, the purpose of the experiments that were

conducted was to demonstrate that the automatic discovery of interesting

behaviour was possible and this has been achieved even when using very

simple grammars and a very simple fitness calculation. The effect of using

more complex grammars and a more sophisticated fitness calculation (such

as used by Ahmed [3]) is left for future work.
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Chapter 6

Conclusion and Future Work

This thesis has described the design and implementation of a novel low-

cost system for the design of robots. The novel applications of Grammatical

Evolution for robotic design were developed to extend the capabilities of

the robotic design system. The scope of the robotic design system was

demonstrated by developing applications to discover interesting robotic

behaviours. The robotic design system was further tested to validate these

novel behaviours in the real-world.

In this final chapter, the original objectives will be revisited to conclude the

thesis while summarising the thesis findings at the same time and identifying

its limitations. The chapter concludes the final thoughts about this newly

developed robotic design environment, and future work for further research

is identified if there is any.

6.1 Revisiting the Research Questions

In this section, the questions asked in section 1.3 will be revisited to check if

the thesis has answered these questions.

• Can a low-cost robotic system design environment be developed that

is open and extendable for easily performing evolutionary robotics

experiments?

This thesis has successfully developed the low-cost robotic design system

as required in question 1. Most of the components are free, and the Lego

Mindstorms NXT brick costs only £295. Chapter 4 answered the second part
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of the question by performing evolutionary robotics experiments. The robotic

design system is written in Java, and anyone who knows Java can extend the

robotic design system as it was extended in this thesis to perform grammatical

evolution experiments. Therefore, the thesis has shown how to develop a

low-cost robotic design system that is open and extendable for performing

evolutionary robotics experiments.

• Is the new robotic system design environment capable of automatically

discovering novel interesting behaviours and validating these

behaviours in the real-world?

The robotic design system has successfully discovered interesting robotic

behaviours by using the novel application in chapter 5. These behaviours were

also reproduced successfully in real-world experiments using the new robotic

design system. This shows that the new robotic design system environment

can discover novel interesting robotic behaviours and validate them in the

real-world experiments.

6.2 Revisiting the Thesis Objectives

The thesis was introduced with the following objectives:

1. To conduct an extensive literature review on the current state of the art

of robotic design and work related to the above research questions and

point out current issues, findings, and future directions.

2. To develop an integrated low-cost environment for evolutionary robotics

experiments.

3. To use the new environment to discover novel interesting robotic

behaviours.

4. To use the new platform to validate novel interesting robotic behaviours

in the real world.
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6.2.1 First Objective

The first objective was completed in chapter 2. The literature review

presented in chapter 2 provided a detailed review of the current state of

art for robotic design environments, grammatical evolution, and interesting

behaviours for robotics. The chapter also highlighted a number of specific

issues for robotic design, which were subsequently addressed in chapters 3,

4, and 5.

6.2.2 Second objective

The second objective was explored in chapter 3 and chapter 4. Chapter 3 has

described the design and implementation of a robotic design environment for

Lego Mindstorms NXT robots called NXTLogo where the robot can be controlled

and linked directly to simulators in the agent-oriented programming language

software, NetLogo. The technologies that the robotic design environment

relies on are heterogeneous since it is built in Java which runs on the JVM on

all platforms as does NetLogo, being free to download and able to run on any

platform. Also, the front end of the system is written in NetLogo, which is

known for its simplicity of code. The robotic design environment does not

require fewer programming skills from the end-user in order to implement

behaviours (developed in NetLogo) on the robot. Significant results can be

achieved through minimal code and drag-and-drop interface creation for the

controlling of simulations. This chapter was submitted and accepted as a

conference paper.

Chapter 4 reported the experiments that were conducted on the use of

grammatical evolution applied to the problem of evolving behaviours for the

task of maze exploration. The accomplishments of this chapter included: the

design and construction of a Lego Mindstorms robot; updating of a NetLogo

extension; the creation of a NetLogo application to evolve solutions; and the

creation of a NetLogo application to interface between the first application

and the NXT Lego Mindstorms brick. The robot was designed and constructed

to examine the performance of behaviours in the real-world. The low-cost

platform NXTLogo was updated to be compatible with NetLogo 6.1 API, in order
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to make use of NetLogo for the evolution of behaviours for Lego Mindstorms

robots which can guide the robots to navigate an environment in search of an

abstract goal.

A NetLogo application was developed to grammatically evolve the codes for

simulated agents embodied within a virtual environment. The approach was

evaluated using three different simulated Maze environments and the robot

was inserted into these unknown environments without any internal memory

mechanisms. The application evaluated each individual of those robots with

a fitness function to determine the fittest individual and stored the fittest

individual’s phenotype. A NetLogo application was used as an interface to

deploy the fittest individual’s phenotype into a Lego Mindstorms robot in order

to test it in the real-world. The results showed that the more generalised

solutions developed for Maze III outperformed all other solutions.

6.2.3 Third objective

Chapter 5 explored the third objective. To discover the novel interesting

robotic behaviours, the robotic system environment was customised and

upgraded. A new grammar to run behaviours was created after analysing

the new test-environment which was developed in chapter 5 as well. The

fitness function was modified as well, and an entropy-based measure was

used as the fitness function to identify interesting robotic behaviours. The

grammar of these identified robotic behaviours was extracted for validation

in the real-world.

6.2.4 Fourth objective

The fourth objective was also explored in chapter 5. A new robot was designed

and equipped with sensors and motors according to the requirements of

the design and test-environment. A new interface application was also

developed to facilitate the new features of the robotic system environment.

This was followed by a series of applications for troubleshooting purposes.

The grammar was successfully extracted to the robot and its behaviour in the

real-world was observed to validate the novel interesting robotic behaviours.

Conclusion and Future Work 127



The results proved that the robotic system environment can discover and

validating novel interesting robotic behaviours.

6.3 Limitations

It is important to consider the problems encountered in the real-life

experiments using the Lego Mindstorms NXT devices for the robotic design

system and potential limitations. There are some limitations encountered

which affect a single model, however, the issues which have more to do with

the system and can affect multiple applications will be discussed here.

Chapter 3 showed that the basic functionality of the robotic design

environment fulfils objective 2 "To develop an integrated low-cost

environment for evolutionary robotics experiments". However, some

improvements can be made such as the extending the system to work with

a swarm of robots which can lead to a whole new range of experiments. A

series of control files based on multithreading can be implemented for the

integrity and efficiency of the system. However, its effect on Mindstorms NXT

and efficiency needs to be investigated before making further conclusions.

During the subsumption architecture roaming experiments, a calibration

problem was noted which refers to the factors that can affect the accuracy

of colour detection. These factors include the texture of the experiment

floor, conditions of light, and colour shade. The performance of the model

depends on these factors because the robot cannot tell if the detection has

been made correctly or not. For these purposes, we need NetLogo to monitor

its detections in real-time.

Chapter 4 produced some interesting results in relation to the maze

exploration. The results showed that generalised solutions developed for more

complex environments outperformed all other solutions. More experiments

need to be conducted to see if this effect is mainly due to the length of the

evolutionary runs used for the different environments that were investigated
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or is more due to general solutions being better suited to a wider range of

environments.

Another common problem found in such devices is jitters which can reduce

the quality of results. Especially when jitter is combined with the problem of

delay, it is possible that the robot can keep going forward even after detecting

an obstacle because data is yet to be communicated and the robot may end

up hitting the obstacle. To resolve the issue, a backup sensor (bump sensor)

was added to the robot which affected the battery life and increased the

computation cost.

Chapter 5 further presented the capabilities of the robotic design system

such as it is easy to modify, easy to extend, and capable of discovering

and validating interesting robotic behaviours. However, there were some

limitations in matching the simulation results to the real-life test environment.

These include the roughness of the floor in the test-environment, colours

overlapping, misreading of colours, the robot being stuck under the paper

and the effect that the lighting condition has on the level of colour detection

accuracy.

The main problems noted during these experiments was excessive turn angles

and battery drainage. The turn angles problem resulted after a change in

the robot design. This was solved easily by just making a change in the turn

angles settings of the robot. However, the validation of these experiments

depended on the correct simulation of the turn the robot takes, therefore, it

was an important problem to mitigate any mismatch to get better results. An

alternative battery source to improve energy usage during the experiments

would provide better results.

Although the new robotic design system has some limitations, it can be used

to rapidly design new robotic test configurations, simulating and validating

robotic behaviours, identifying interesting robotic behaviours while being

low-cost and easy to customise. Some ideas to extend and implement in this

robotic design system are presented in the next section.
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6.4 Future Work

The results of experiments performed in this thesis have proved that it is

possible to develop an integrated low-cost agent-based robotic design system

for simulating and validating the design of interesting robotic behaviours.

While objectives 2, 3, and 4 has been met, there are areas in which the

work could be extended, for example, the extension of the system to involve

multiple robots. A series of control files based on multi-threading can be

implemented for the integrity and efficiency of the system. However, its effect

and efficiency need to be investigated before making further conclusions.

A further upgrade to the software is required to make it work with EV3 the

latest robot introduced by Lego Mindstorms. This upgrade should be simple

and straight-forward but could not be performed in this thesis due to funding

issues and time constraints.

The new robotic system can discover novel interesting robotic behaviours

and validate those behaviours in the real-world. Although, the results help

to answer the research questions asked in this thesis, however, further

experiments are needed to be conducted in more complex environments

to confirm the findings. The experiments performed in this thesis do

demonstrate the capabilities of this robotic design system and its easy to

customise design, however, it would be interesting to see if this system could

be adapted to design aerial vehicles, for example for the use of search and

rescue purposes. There are many possibilities which can be explored using

this robotic design system. Due to its low-cost, this makes it more accessible

to educational institutions where students can easily come up with many new

ideas without great expense in terms of both money and time. The students

will benefit from performing their experiments in the real-world as well as in

simulations at the same time.
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Appendix A

Videos of Experiments

The videos of experiments are uploaded to YouTube channel and a brief

explanation is provided in the following table.

Link to YouTube Channel:

https://www.youtube.com/channel/UCbqDprtdpk3WItHZJ7f1hVg
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Table A.1: The description of the experiments’ videos uploaded to YouTube.

Description Thumbnail

Title: Colour Sensing
Description: This video contains the experiments
involving colour sensor adjustment and
colour-threshold tolerance determination.

Title: Turn Angles
Description: This video contains the experiments
involving Turn Angles where the robot performed
turns at different degrees of angles towards
left and right.

Title: Simple Behaviour
Description: This video contains the experiments
involving a simple behaviour created by the robot
to initially test the performance of the robot in
the real world.

Title: Example 1
Description: This video contains the experiments
involving the validation of interesting behaviour
created by the iFinder-Discovery model for
Example 1.

Title: Example 2
Description: This video contains the experiments
involving the validation of interesting behaviour
created by the iFinder-Discovery model for
Example 2.
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