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Abstract—This paper proposes a exponential moving average
extended Kalman filter (EMAF-EKF) for the purpose of battery
state-of-charge (SOC) estimation. The proposed approach relies
on a second-order RC circuit model of the Lithium-ion battery. In
the proposed approach, first, exponential moving average filters
are applied to the various input signals that are battery current,
temperature and terminal voltage. Then, the filtered signals are
feed to the conventional extended Kalman filter for the state-of-
charge estimation. Unlike the convention extended Kalman filter,
the proposed EMAF-EKF is very robust to measurement noises
in the input signals. Moreover, compared to other noise robust
extended Kalman filter, our solution is very simple and easy
to implement. Experimental results with the Turnigy graphene
5000mAh 65C li-ion battery dataset are provided to show the
performance improvement in SOC estimation by the proposed
approach over the conventional counterpart.

Index Terms—Lithium-ion battery; extended Kalman filter;
state-of-charge; exponential moving average filter; robust esti-
mation.

I. INTRODUCTION

Energy storage systems are very useful to facilitate large-
scale deployment of renewable energy systems and electric
vehicle [1]–[4]. Fast and accurate monitoring of energy storage
system is very important in these applications. Monitoring
plays and important role in the modern energy management
systems. Out of various energy storage systems solution,
lithium-ion battery became very popular for electric vehicle
and grid-scale renewable energy powered energy storage sys-
tems.

Modern energy management systems typically require fast
and accurate state of charge (SOC), battery terminal voltage,
battery temperature etc. Out of these system parameters,
terminal voltage and temperature can easily be measured using
sensors. However, SOC can not be directly measured using
sensors. So, model-based solutions are often preferred that can
be used to measure the battery parameters with high-degree
of noise immunity. In this work, we focus on two important
battery parameters, which are SOC and terminal voltage.

In the case of terminal voltage, one can easily measure
it with voltage sensor. However, due to various external and

internal factors, the measured voltage can be very noisy. This
kind of noisy measurement can indirectly result in inaccurate
estimation of other parameters. In the case of SOC, the
conventional solution is to use the Coulomb counting method
[5] where the battery current is integrated over time and
subtracted from the initial SOC value. This method often
results in inaccurate estimation due to the measurement error
and/or unreliable initial SOC value. Another simple method to
estimate SOC is to obtain experimentally the SOC versus the
battery open-circuit voltage (OCV). Although this method is
relatively easy to implement, however, it is not very suitable
for dynamic applications and/or cases where the SOC-OCV
curve is very nonlinear. To overcome these issues, researchers
have combined various techniques such as coulomb counting,
SOC-OCV curve together with model-based approaches such
as extended Kalman filter (EKF) [6]–[13]. In the case of
EKF, mathematical model of the battery equivalent circuit is
required.

The literature on Kalman filter-based battery parameter
estimation is huge and it covers many types of batteries,
test conditions, application scenarios etc. For a detailed re-
view on this topic, interested readers can consult [14] and
the references therein. In this work, we are focusing on
improving the performance of extended Kalman filter in
the noisy environment. Although extended Kalman filter can
provide robust estimation, however, certain input parameters
can significantly affect the performance of EKF. To overcome
this issue, numerous modifications of the EKF structure are
proposed in the literature [6]. However, these solutions often
are very complicated, requires lot of real-time computationally
expensive computation that can be prohibitive for low-cost
energy management systems. Motivated by this fact, in this
work, we propose the application of moving average filter
[15]–[17] to the input signals. Out of various choices of
moving average filter , in this work, exponential moving
average is considered. The filtered signals are then feed to
the conventional Kalman filter. The resulting structure is very
simple to implement and can enhance the performance with
prohibitive computational costs. Experimental results using
real battery test data are provided to show the performance
improvement by the proposed solution.978-1-6654-8397-1/22/$31.00 ©2022 IEEE



The rest of this article is organized as follows: Sec. II
presents the battery mathematical model, development of the
Kalman filter and the proposed exponential moving average
Kalman filter are given in Sec. III, results and discussions are
given in Sec. IV, and finally, Sec. V concludes this article.

II. STATE-SPACE BATTERY MODEL

SOC is a critical factor that determines how much capacity
is left in the battery. This is very useful for battery users as it
helps them to determine when to recharge the battery. A very
simple way to estimate the SOC is by using the Coulomb
counting method [5] which is given below:

S = S (0)− ξ

∫ τ

0

i(t)dt, (1)

where SOC is denoted by S, initial SOC is given by S (0), the
charging/discharging current is given by i, and the constant
ξ = 1/ (3600Cbat) with Cbat being the battery capacity
in Ampere-hours (Ah). Although eq. (1) is very simple to
calculate the SOC but it has two limiting factors. Firstly, the
initial SOC, i.e., S (0) may not be known. Secondly, accurate
integration of the measured current may not be possible due
to measurement noise and/or error. In a practical setting,
measurement noise is often inevitable. Accumulation of the
measurement noise through numerical integration by eq. (1)
will produce inaccurate results. This motivated researchers
to develop advanced SOC estimation methods where a large
majority of them rely on model-based approach.

Fig. 1. Second-order equivalent battery model.

In model-based SOC estimation approach, mathematical
model plays a very important role. Different types of models
are already proposed in the literature. However, RC circuit-
based models have gained serious traction in recent times. In
this work, we are considering the second-order RC circuit-
based equivalent model to study the battery. The considered
model is given in Fig. 1 and this can also be found in [6],
[18]. In this kind of modeling approach, open circuit voltage
of the battery is denoted by Voc while the terminal voltage that
is available to measure is denoted by Vt, internal resistance is
denoted by R0. Finally, the RC circuit parameters are denoted
by R1, C1, and R2, C2. Let us denote the voltage drop across

the first and second RC circuit as V1 and V2. Then, by applying
Kirchhoff’s circuit laws to Fig. 1, one can obtain that:

Vt = Voc − V1 − V2 − iR0, (2)

i =
V1

R1
+ C1

dV1

dt
, (3)

=
V2

R2
+ C2

dV2

dt
. (4)

Let us consider V1, V2, and S as the state variables. Evolution
of the state variables from eq. (1), (3), and (4) are then can
be written as:

dV1

dt
= − 1

R1C1
V1 +

1

C1
i, (5)

dV2

dt
= − 1

R2C2
V2 +

1

C2
i, (6)

dS
dt

= −ξi. (7)

For notional simplicity, let us denote the time constants of in-
dividual RC circuits as τ1 = 1/ (R1C1) and τ2 = 1/ (R2C2).
In state-space, eq. (5)-(7) can be written as:

d

dt

 V1

V2

S


︸ ︷︷ ︸

ζ

=

 −τ1 0 0
0 −τ2 0
0 0 0


︸ ︷︷ ︸

A

 V1

V2

S


︸ ︷︷ ︸

ζ

+

 1
C1
1
C2

−ξ


︸ ︷︷ ︸

ζ

i︸︷︷︸
u

.

(8)
Model (8) is in continuous-time while the measurements are
available in discrete-time. As such, discretization of model
(8) is required. For this purpose, let us consider that the
discretization step or the sampling time is given by Ts. Exact-
discretized version of model (8) is given below:

 V1

V2

S


︸ ︷︷ ︸

ζ

(k + 1) =

 e−τ1 0 0
0 e−τ2 0
0 0 1


︸ ︷︷ ︸

Ad

 V1

V2

S


︸ ︷︷ ︸

ζ

(k) +

 1
C1
1
C2

−ξ


︸ ︷︷ ︸

ζ

i︸︷︷︸
u

(k), (9)

where k is the current sample time. From eq. (9), one can
easily calculate the SOC if the initial value of the SOC is
known and the current signal is sufficiently noise-free. If the
initial SOC is unknown, then, this can be calculated through
calculating the the open circuit voltage by using eq. (2) as
given below:

Voc = Vt − V1 − V2 − iR0. (10)

Note that here in addition to the current i, voltage drops across
the RC circuits are also needed which are not available to



measure. These signals can be estimated using appropriate
filtering/estimation techniques and will be detailed in Sec. III.
It is well known that Voc is a function of S and temperature
(temp.):

Voc = f (S, temp.) . (11)

By a priori testing of the battery using the recommended
charging/discharging profile, a look-up table or something
similar can be made that will establish the relationship between
the open-circuit voltage, temperature, and the SOC. From this
table, Voc can be estimated as a function of S.

Before developing the estimator, battery RC circuit param-
eters and the function (11) need to be estimated. In this work,
we are considering the Turnigy graphene 5000mAh 65C li-
ion battery dataset as given in [19]. Authors in [19] have
reported the results of hybrid pulse power characterization
(HPPC) for this particular battery. Results are conducted
at different battery temperature values. Tested temperatures
are: −10◦, 0◦, 10◦,25◦, and 40◦. Then, by using parameter
optimization approach in Matlab [6], battery parameters are
obtained at different SOC levels and temperatures. Then, using
interpolation, temperature and SOC dependent RC circuit
parameters are obtained and used for calculation of the system
and input matrices.
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Fig. 2. Open-circuit voltage vs. SOC curve at different temperatures.

To obtain the function (11), battery SOC and Voc are
obtained at different temperatures as shown in Fig. 2. Then,
by using least-square method, an 11th−order polynomial is
constructed to model the Voc as a function of S and is given
below:

Voc = α1S11 + α2S10 + α3S9 + α4S8 + α5S7 + α6S6

+ α7S5 + α8S4 + α9S3 + α10S2 + α11S + α12, (12)

where α1 − α12 are the coefficients and given in Table I.
Model (8) or (9) provides the evolution of state variables

of the battery equivalent circuit. However, the output or the
value that is typically measured is the terminal voltage of the
battery which is given by eq. (2). Then, with respect to the
state-variables, the output can be written as:

Vt(k) =
[
−1 −1 ∂Voc

∂S
]︸ ︷︷ ︸

C

 V1

V2

S


︸ ︷︷ ︸

ζ

(k)+[−R0]︸ ︷︷ ︸
C

i︸︷︷︸
u

. (13)

Model (9) and (13) in familiar discrete-time state-space nota-
tion are given by:

ξ (k + 1) = Adξ(k) + Cu (k) , (14)
Vt (k) = Cξ (k) +Du (k) . (15)

This model will be used for the estimator in Sec. III

TABLE I
COEFFICIENT VALUES OF EQ. (12).

Coeff. Value Coeff. Value
α1 0.19 α2 −1.1631
α3 3.1556 α4 −4.9993
α5 5.13 α6 −3.5732
α7 1.72 α8 −0.5707
α9 0.1275 α10 −0.0182
α11 0.0015 α12 −1.6701

III. EXPONENTIAL MOVING AVERAGE EXTENDED
KALMAN FILTER

As highlighted in the previous Section, measurement noise
and unavailability of the initial SOC make it difficult to apply
Coulomb counting method in practice. Extended Kalman filter
(EKF) [6]–[9] is a popular choice in the literature to overcome
these issues. EKF can easily be applied to the nonlinear system
(14) and (15) and based on the estimated states, battery SOC
and filtered version of the terminal voltage can be obtained. To
develop EKF for the battery model, let us assume that the state
equation (14) is corrupted with the process noise w(k) while
the output equation (15) is corrupted with the measurement
noise v(k) with the properties w (k) ∼ N (0,Q(k)) and
v (k) ∼ N (0,R(k)). It is assumed that the noises are
Gaussian and independent. Process and measurement noise
covariance matrices are denoted by Q and R. Then, for the
second-order RC equivalent battery model, development of the
EKF is given below where ˆ indicates estimated value, index
|k − 1 and |k denote the a priori and post priori estimates
[6]–[9]:

Prediction Step: In this EKF calculates the one-step ahead
preiction value with respect to the available estimated state
variables and the input

• One-step ahead prediction using the current value:

ξ̂ (k|k − 1) = Adξ (k − 1|k − 1) + Bu (k − 1) . (16)

• One-step ahead prediction of the error covariance matrix
P:

P (k|k − 1) = AP (k − 1|k − 1)AT +Q. (17)



Fig. 3. Proposed solution vs. the literature.

Correction Step: In predicting the one-step ahead values,
no information of the available output is used. In the step, this
output will be used to refine/correct the prediction.

• Kalman innovating gain calculation which is necessary to
refine/correct the prediction:

K (k) = P (k|k − 1) CT
(
CP (k|k − 1) CT +R

)−1
. (18)

• Correction of the state variables prediction using the
Kalman innovation gain and the available measurement:

ξ̂ (k|k) = ξ̂ (k|k − 1)

+K (k)
(
vt (k)− Cξ̂ (k|k − 1)− i (k)R0

)
. (19)

• Update the process covariance matrix using the Kalman
innovation gain:

P (k|k) = (I −K (k) C)P (k|k − 1) . (20)

EKF as described above works with linearized state and
output matrices. In our case, A,B, and D are already linear.
Matrix Cin eq. (13) is nonlinear and needs to be evaluated
with respect to the current estimate of the S to obtain the
linear value. In developing the EKF, it was assumed that the
noise covariance matrices Q and R are constant.

EKF as described above can provide good estimate of the
state variables and the output. However, there are several issues
that can effect the performance of the EKF. Firstly, constant
Q and R can be restrictive in practice as these matrices may
change as the battery ages. Moreover, various measured values
such as temperature, terminal voltage, and current can be
very noisy due to various external factors. To overcome these

issues, various advanced EKF are proposed in the literature.
One such solution as reported in [6] involves real-time adap-
tation of the process covariance matrix Q through using the
Kalman innovation gain K. However, those solutions are very
computationally expensive and require real-time adaptation,
matrix inverse etc. To overcome these issues, in this work, we
propose the application of exponential moving average filter to
the various measured signals. These filtered measured signals
are then applied to the EKF given in eq. (16)-(20). This is
a practical solution to enhance the performance of EKF in
a noisy environment. An overview of our solution over the
literature is given in Fig. 3.

To provide details of the exponential moving average filter
(EMAF), let us first consider the moving average filter. Simple
moving average (SMA) filter is given as:

x̄(k) =
1

N

N−1∑
n=0

x (k − n) , (21)

where N is the window length, x̄ is the filtered signal and x
is the input signal. SMA filter gives equal weight to the all
the data points in the averaging window. This do not take into
account the system dynamics. In practice, giving more weights
to recent data points while less to older data points may be
beneficial. One such solution is known as exponential moving
average filter (EMAF). EMAF filter is given by:

x̄ (k) = αx (k) + (1− α) x̄ (k) , (22)

where α ∈ (0, 1) is the weighting factor. Higher value of
α means more weight to the recent data and vice-versa. For



dynamically changing data such as battery signals, EMAF can
be a very suitable to enhance the performance of EKF in noisy
environment

IV. RESULTS AND DISCUSSION
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Fig. 4. Battery inputs signals.

In this Section, the proposed method will be validated using
experimental data set given in [19]. As comparison method, we
have considered the conventional EKF as given in [6]. Matrices
Q and R are selected as: Q = diag

(
10−5, 10−5, 10−6

)
and

R =2 × 10−5. Process covariance matrix P is initialized as:
P = diag (0.01, 0.01, 0.025). EMAF parameter is selected as
α = 9× 10−1. Input signals are given in Fig. 4. Input signals
show that the measured voltage, current, and temperature
signals are very noisy. This makes the estimation challenging

Estimation results and the estimation error for terminal volt-
age and SOC are given in Fig. 5 and 6. Both results show that
the proposed EMAF-EKF outperformed the conventional EKF

in both cases. To further verify the results, two further tests
are performed by considering ±0.1A offset in the measured
current. Root mean square error (RMSE) in all three cases
are given in Fig. 7. Results in Fig. 7 show that the proposed
solution outperformed the conventional technique in all three
cases in terms of root mean square estimation error. In all
cases, the performance has been improved by at least 10% or
higher. for the terminal voltage estimation. In case of SOC
estimation, the performance improvement is at least 15% or
higher. These numbers demonstrate the effectiveness of the
proposed approach over the conventional EKF.
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Fig. 5. Terminal voltage estimation results. (a) Actual and estimated terminal
voltages and (b) estimation error.

V. CONCLUSION

Battery state-of-charge estimation in a noisy environment is
a challenging problem. In this paper, this problem has been
solved by applying exponential moving average filter as a pre-
filter to various input signals. The pre-filtered signals are then
fed to the conventional extended Kalman filter. The resulting
structure is very robust to measurement noise and can provide
better estimate of various battery parameters compared to the
conventional counterpart. Experimental validations highlighted
the performance improvement by our method. The proposed
method showed lower root mean square estimation errors
compared to conventional extended Kalman filter. Further
research into various pre-filtering methods will be considered
in a future work.
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