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Abstract 

Organism-environment interactions take place through a multitude of processes that 

generate patterns across scales in space and time, but our understanding of pattern and 

processes is traditionally constrained by observational limitations. Contemporary 

technological advances in remote sensing, explored in this thesis, are extending the power 

and capability of ecological investigation. Three-dimensional (3D) ecosystem structure 

can now be analysed across scales from millimetres to kilometres and from minutes to 

decades, providing insight into scale-dependent patterns and their driving processes in 

complex and dynamic systems like temperate reefs. 

Remote sensing technologies are available for 3D mapping and recent years have seen a 

rapid expansion in their use in field ecology. In chapter 2, I reviewed the current state of 

the art in high-resolution 3D ecosystem mapping technologies and their applications, 

highlighting the emerging era of 3D spatial ecology and identifying potential barriers to 

widespread uptake. I addressed a paucity of information on the accuracy and practicality 

of emerging optical remote sensing tools in ecological contexts by testing structure-from-

motion photogrammetry and terrestrial laser scanning, in three coastal habitats, over 

three spatial scales. The accuracy of structure-from-motion photogrammetry, compared 

to terrestrial laser scanning models, was greatest at fine spatial scales (25 m2, < 1 cm 

resolution) on more stable substrates like rock, with mean ± sd absolute difference of 4 

mm ± 14 mm. Accuracy decreased with increasing spatial scale and in less stable 

vegetated scenes, with a maximum difference of 56 mm ± 111 mm in saltmarsh at a scale 

of 2500 m2 extent and <2 cm resolution. Structure-from-motion photogrammetry was 

more portable, faster, flexible and lower-cost than terrestrial laser scanning, but was 

more vulnerable to error propagation. 

Capturing sufficient ecologically relevant spatial and temporal variation in 3D structure 

is challenging in complex, dynamic habitats like intertidal temperate reefs. In chapter 3 I 

used the tools tested in chapter 2 to investigate spatial and temporal patterns in the 

structure of biogenic Sabellaria alveolata reef across scales. At a habitat scale (~35,000 

m2 extent, 10 cm horizontal resolution) most of the variation in reef structural change was 

explained by a combination of systematic trends with shore height and positive spatial 
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autocorrelation up to the scale of colonies (1.5 m) or patches (4 m). Plot-scale mapping 

(2500 m2 extent, 10 cm horizontal resolution) over five years (2014-2019, 6-month 

intervals) revealed previously undocumented temporal patterns in reef accretion and 

erosion. The system was highly dynamic at small spatial and temporal scales (<4 m, 6 

months), but reef accretion and erosion compensated each other, resulting in stable 

habitat structure over larger scales (>130 m, 5 years). This scale-dependent variability 

would have been impossible to capture with conventional methods like quadrat, transect 

or point-based survey using GPS or theodolite, demonstrating the value of modern 3D 

mapping technologies to enhance our understanding of ecosystem dynamics across 

scales. 

Subtidal temperate reefs hosting diverse communities are often found in high-energy 

waters, but these are understudied compared to lower energy seas, and knowledge of reef 

distribution is lacking. In chapter 4 I used multiscale 3D seafloor data and hydrodynamic 

information to predict the spatial distribution of geogenic reef and biogenic Sabellaria 

spinulosa reef habitats in a high tidal energy region. Random Forest models for reef 

substrate and S. spinulosa reef had balanced accuracy mean ± 95% CI of 80.7% ± 0.8% and 

77% ± 1% respectively. Mean bed shear stress was the most important variable in both 

models, highlighting the importance of including measures of hydrodynamic energy in 

predictive mapping of high-energy temperate reef habitats. 

My research demonstrates the increased power and insight that can be gained with 

contemporary 3D mapping and monitoring tools in field ecology. I showed that habitat 

structure in complex systems can be simultaneously highly dynamic and remarkably 

stable depending on the scale of observation, and that multiscale structural metrics are 

central to cost-effective mapping of subtidal temperate reef ecosystems. The collective 

works highlight the need for multiscale and multidisciplinary analysis and the value of 

embracing technological solutions for ecology in the age of big data. The emerging field of 

3D ecosystem mapping and high-resolution remote sensing will have far-reaching 

implications for research, management and public engagement. 
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1 General introduction 

1.1 Remote sensing in ecology 

Observing patterns in nature is central to developing and testing ecological theory 

(Weiner, 1995). Observations must be made across scales for a comprehensive 

understanding, but the possible scales of observation are constrained by the capabilities 

of available technology, maintaining a divide between theory and testable questions 

(Levin, 1992). Throughout the history of ecology, advances in observational technologies 

like telemetry, molecular techniques and remote sensing have been accompanied by step-

changes in our understanding of ecology and ecosystem functioning (Sagarin and 

Pauchard, 2010). Since the 1970s remote sensing data from satellites like Landsat have 

enabled advances in understanding patterns and processes in ecosystems through 

analysis of spatially continuous environmental information spanning regional and global 

extents (Cohen and Goward, 2004), and several decades (Pasquarella et al., 2016). With 

remote sensing, ecological theory could be tested in inaccessible ecosystems and at new 

spatial and temporal scales, providing evidence to support new and updated concepts, 

and to contextualise plot-scale observations (Kerr and Ostrovsky, 2003; Platt et al., 2003; 

Vierling et al., 2008). Remote sensing data from satellite, space shuttle and (crewed) 

aircraft platforms provides a suite of information about terrestrial systems, but for the 

remaining 70% of the globe covered by water, observational data at comparable 

resolution are sparse (Mayer et al., 2018). The interface between land and sea provides 

challenges for remote sensing, being too shallow for vessel-based surveys and 

periodically obscured from air- or space borne sensors with the tidal cycle, resulting in 

under-sampling of intertidal zones without expensive, dedicated satellite passes or 

aircraft flights (Leon et al., 2013; Westhead et al., 2015). In the subtidal marine realm, 

optical remote sensing from air or space is not possible beyond very shallow, clear waters. 

Here, acoustic remote sensing of the seabed with swath bathymetry technologies has been 

applied in similar ways to optical remote sensing in terrestrial systems to advance 

ecological understanding about species distribution, ecosystem pattern and organism-

environment interactions (Brown et al., 2011).  
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1.2 Three-dimensional ecosystem structure in marine 

systems 

Ecosystems are three-dimensional (3D) spaces but have traditionally been mapped, 

modelled and analysed as two-dimensional (2D) patch-mosaics or gradient models 

(Lepczyk et al., 2021). 2D models are easier to conceptualise and visualise, are less 

computationally demanding to analyse, and at spatial scales of kilometres or more are 

appropriate representations of the environment. However, when considering organism-

environment interactions and processes that operate over finer spatial scales, it becomes 

increasingly important to capture the three-dimensional nature of ecosystems to 

understand patterns and processes (Vierling et al., 2008). For instance, broad-scale depth 

gradients, substrate and oceanographic conditions mapped in 2D may predict species 

distribution and benthic community variation across regional or global extents (Davies 

and Guinotte, 2011), but across local extents with resolution of metres or less, 3D 

structural complexity plays a critical role in controlling organism distribution and 

behaviour (Lecours et al., 2015; Pittman and Brown, 2011; Wedding et al., 2019).  

1.2.1 Recording and measuring ecosystem structure 

Structural information at global scales is freely available for terrestrial ecosystems in 

products including Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne 

Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER 

GDEM), but with pixel resolution of tens of metres, these large extent products are 

mismatched from the finer scale of many ecological processes. Airborne light detection 

and ranging (LiDAR) data offer 3D information at decimetre resolution, sufficient to 

resolve larger structural units like trees, buildings and geological features. LiDAR data are 

valuable for many ecological investigations (Vierling et al., 2008) and are becoming 

increasingly available for free, but coverage is limited and LiDAR data are costly to collect 

for new sites. For many ecological processes and interactions, structural information on 

the scale of centimetres or finer is important, so high-resolution 3D data collection tools 

are needed (Anderson and Gaston, 2013). In recent years, tools capable of high-resolution 

3D mapping have been developed that offer the capability of analysing 3D ecosystem 

structure at scales relevant to many organisms and ecological processes (Lepczyk et al., 

2021). 
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1.3 Temperate reef systems 

For many the term “reef” conjures up images of tropical seascapes dominated by stony 

corals forming habitats hosting diverse fish, invertebrates and megafauna. But the 

definition of a reef, originally referring to a navigational hazard, also encompasses 

shallow or intertidal features that may be comprised of rock as well as material built by 

corals and other organisms, in any region of the globe. Temperate reefs can be defined as 

hard substrate marine habitats between the tropics and the poles (Bennett et al., 2016). 

These habitats include rocky shores, subtidal rocky or stony habitats, and habitats with 

hard substrate built by reef-building organisms from several phyla including corals, 

annelids and molluscs, that may be intertidal or subtidal. The term “habitat” can be 

generally defined as a physical space with set of environmental variables that support a 

given community (Whittaker et al., 1973), but several definitions have been used in the 

literature in different contexts. In this thesis we define marine benthic habitats as areas 

of seabed that are distinct from each other in terms of their visual, physical and 

environmental characteristics, such that they are assumed to support distinct 

communities. This definition aligns with the benthic habitat mapping and marine 

environmental management literature (Brown et al., 2011; Lecours et al., 2015; MESH 

project, 2008).       

Temperate reefs can support rich and diverse communities of sessile epibiota and mobile 

reef-associated species, representing hotspots of biodiversity, especially when 

surrounded by sedimentary habitats (Dubois et al., 2002). The habitats also provide 

valuable ecosystem services to humans, supporting commercial fisheries, tourism and 

shoreline protection (Bennett et al., 2016; Borsje et al., 2011). By building biogenic reefs, 

reef-building organisms modify resource availability for other organisms, making them 

ecosystem engineers (Jones et al., 1994). The resources that are modulated are diverse, 

and include those provided directly by the reef substrate, like spaces for refuge from 

predation and settlement space for propagules, as well indirect effects, like particulate 

food supply and water chemistry changing as boundary layer flows respond to substrate 

roughness (Fréchette et al., 1989).  
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1.3.1 Structure in reef systems 

Organisms may interact directly with the physical structure of an ecosystem, for example, 

by using it as substrate on which to grow or using crevices as refuge from larger predators, 

or indirectly through the influence of structure on a range of environmental conditions. 

Physical ecosystem structure has long been known to influence biodiversity (MacArthur 

and MacArthur, 1961) and is the ultimate driver of many environmental and biological 

stress gradients in marine habitats, influencing ecological processes across scales (Denny 

et al., 2004). In rocky shores, wave exposure, desiccation and thermal stress are 

controlled by shore aspect and gradient at broad scales of kilometres or more (Denny et 

al., 2004), while topographic heterogeneity over metres or less produces microrefugia 

from such stressors (Carington Bell and Denny, 1994; Guichard and Bourget, 1998; 

Helmuth and Denny, 2003; Meager et al., 2011). Settlement patterns of invertebrates are 

controlled both by regional transport influenced by bathymetry and hydrodynamics, as 

well as local topography (Chiba and Noda, 2000; Robins et al., 2013; Whitman and 

Reidenbach, 2012). Habitat structure has a strong influence on biodiversity and 

behaviour across reef systems including tropical reefs and rocky shores (Beck, 2000; 

Graham and Nash, 2013; Gratwicke and Speight, 2005; Kovalenko et al., 2012). In biogenic 

reefs, structure can provide information about the engineering species’ life history, 

productivity, health and resilience (Jones et al., 2018; Plicanti et al., 2016; Rodriguez et al., 

2014). Structural metrics can be useful to direct conservation and management resources. 

For example, member states are required to designate Natura 2000 sites to protect 

habitats listed in Annex 1 of the EC Habitats Directive, recognised for their ecological 

importance.  Reefs are listed as Annex 1 habitats and are defined by their structure as 

areas of hard substrate that are “topographically distinct from the surrounding seafloor” 

(European Commission, 2013). Thresholds of structural metrics including relative 

elevation have been proposed to improve quantification and consistency in the definition 

of Annex 1 reef, aiding efficiency in environmental management with limited resources 

(Hendrick and Foster-Smith, 2006; Irving, 2009).  

Ecosystems are dynamic across temporal scales. From organism behaviour over seconds 

to geological processes over millennia, the biological, chemical and physical structure of 

habitats and ecosystems are constantly changing and interacting. In temperate reefs, 

stochastic disturbance and changes in environmental conditions interact with biological 
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processes like competition and recruitment to maintain continuous variation in resource 

availability and biological and physical habitat structure (Connell and Sousa, 2015; Levin 

and Paine, 1974; Paine and Levin, 1981; Sousa, 1984). On rocky reefs, sedimentation can 

lead to changes in the physical structure of a habitat on hourly time scales, causing 

disturbance to biological communities though smothering and abrasion (Schiel et al., 

2006). In biogenic reefs, dynamics in physical structure mediated by reef-building 

organisms can result from combinations of physical, chemical and biological processes. 

For example temporal variation in reef-building  by polychaetes can result from increased 

anthropogenic nutrient input (Jaubet et al., 2013), and interaction between hydrodynamic 

regime and engineering species reproduction patterns (Ayata et al., 2009; Bush et al., 

2015; Dubois et al., 2007). 

As in other systems, technological and logistical limitations have traditionally hindered 

our ability to understand the influence of structure in reef systems (Helmuth and Denny, 

2003). Transects using theodolite or more recently, global navigation satellite systems 

(GNSS) provide 2D information about gradient and complexity across intertidal reefs over 

extents of tens of metres to kilometres, and profile gauges may be used for fine-scale 

transects of centimetres to metres (Frost et al., 2005). Methods have been developed to 

capture similar 2D information within the more challenging working environment of 

subtidal reefs (Dustan et al., 2013; McCormick, 1994). Commonly, 2D transects are used 

to estimate habitat complexity using the chain-and-tape method, where complexity is 

quantified as the ratio of the length of a flexible chain draped across a surface to the linear 

distance between the two chain ends (Risk, 1972). Variability in 2D transects can be high, 

resulting in limited repeatability and a need for many replicate samples. Critically, 

conventional approaches for measuring complexity in reefs are not generally scalable, 

requiring integration with other methods, technologies or data sources to examine scaling 

in ecological processes (Denny et al., 2004; Marvin et al., 2016). This thesis focuses on the 

use of contemporary remote sensing tools and analysis approaches to enable collection of 

detailed 3D ecosystem structural information across scales, and examine scale dependent 

patterns in marine ecology. 

  



6 

 

1.4 Thesis aims and structure 

In this thesis, I explore the state-of-the-art in 3D mapping tools and analysis in ecology, 

with a focus on temperate reef systems. The aims and objectives were: 

Aim 1:  

Assess the performance and potential applications of contemporary and emerging tools 

for investigating 3D ecosystem structure to advance understanding of patterns and 

processes in marine and coastal ecology. 

 Objectives: 

• Review the 3D mapping technologies of structure-from-motion 
photogrammetry and terrestrial laser scanning and their applications in 
marine and coastal ecology. 

• Identify barriers to entry for the use of these technologies in marine and coastal 
ecology. 

• Test the accuracy of 3D models generated by structure-from-motion 
photogrammetry compared to terrestrial laser scanning in environments and 
at scales relevant to marine and coastal ecology. 

Aim 2: 

Characterise patterns of spatial and temporal variation in the 3D structure of temperate 

intertidal biogenic reef built by Sabellaria alveolata.  

Objectives: 

• Quantify temporal patterns in Sabellaria alveolata reef accretion and erosion 
by mapping the 3D structure of reef at sub-metre resolution over several years.  

• Quantify characteristic spatial scales of variation in reef structure and 
structural dynamics by mapping the 3D reef structure at a habitat-scale extent 
and sub-metre resolution. 

Aim 3: 

Predict the spatial distribution of temperate reef habitats in a high energy marine area, 

using information about 3D ecosystem structure. 

Objectives: 

• Characterise the range of reef habitats in a high energy marine site. 
• Integrate observation data with high resolution bathymetry mapping and 

simulated hydrodynamic information to predict the distribution of geogenic 
and biogenic reef habitats in the area. 
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In chapter 2, published in Proceedings of the Royal Society B in 2020, I review the field of 

3D mapping in ecology and provide an accessible introduction to two of the most 

accessible and powerful tools for fine-scale 3D mapping in field ecology. I identify barriers 

to widespread adoption of these tools, given that their uptake in ecology has lagged 

behind other fields. I then address a key barrier to entry identified by testing the accuracy 

and practicality of the tools in a range of contexts, in three habitats and at three scales. In 

chapter 3, published in Remote Sensing in Ecology and Conservation in 2021, I apply the 

tools tested in chapter 2 to examine spatial and temporal dynamics in the structure of an 

ecologically important but understudied intertidal biogenic reef habitat. The state-of-the-

art remote sensing tools enabled observation at unprecedented scales. My findings 

revealed scale-dependent and previously undocumented patterns in structural dynamics 

in the habitat, providing insight into ecological processes and having implications for 

ecosystem management. In chapter 4, at the time of writing in review with Estuarine, 

Coastal and Shelf Science, I examine structural patterns in subtidal temperate reef habitats 

using acoustic rather than optical remote sensing. I use 3D bathymetry mapping to predict 

the spatial distribution of biogenic and temperate reef habitats in a challenging, high-

energy environment. I use a machine learning approach and incorporate simulated 

hydrodynamic energy as predictor in the model, revealing this as a key variable for 

mapping reef habitat distribution in this context. 

The chapters of this thesis comprise studies that are each collaborative pieces of work 

with several co-authors. I am the lead author of all chapters having conceptualised, 

designed, implemented, and written each study. Contributions from co-authors mostly 

comprised facilitation of the studies including providing access to resources and existing 

data, assistance with data collection, comments on writing and framing of the work to 

publication standards, and general support and guidance. Co-author contributions are 

listed at the start of each chapter. 
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2 Three-dimensional digital mapping of 

ecosystems: a new era in spatial ecology 

2.1 Abstract 

Ecological processes occur over multiple spatial, temporal and thematic scales in three-

dimensional ecosystems. Characterising and monitoring change in 3D structure at 

multiple scales is challenging within the practical constraints of conventional ecological 

tools. Remote sensing from satellites and crewed aircraft has revolutionised broad-scale 

spatial ecology, but fine-scale patterns and processes operating at sub-metre resolution 

have remained understudied over continuous extents. We introduce two high-resolution 

remote sensing tools for rapid and accurate 3D mapping in ecology – terrestrial laser 

scanning and structure-from-motion photogrammetry. These technologies are likely to 

become standard sampling tools for mapping and monitoring 3D ecosystem structure 

across currently under-sampled scales. We present practical guidance in the use of the 

tools and address barriers to widespread adoption, including testing the accuracy of 

structure-from-motion models for ecologists. We aim to highlight a new era in spatial 

ecology that uses high-resolution remote sensing to interrogate 3D digital ecosystems. 
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2.2 Introduction 

Understanding how ecosystems vary in space and time underpins land- and seascape 

management, but to be effective, accurate and comprehensive information must be 

captured across multiple scales. Our knowledge of ecosystems represents decades of 

observations by ecologists using field equipment like quadrats, to capture biological 

information, and theodolites or satellite positioning systems (e.g. GPS) to record habitat 

topography. Direct observation field techniques capture detailed habitat information but 

are labour and resource intensive, resulting in trade-offs between three types of scale: 

spatial, temporal and thematic, and their components of resolution and extent (Lecours 

et al., 2015; Rhodes et al., 2015). For example, an abundance survey of all macro-

organisms to species level (high thematic resolution and extent) with sampling at 1 m 

intervals (high spatial resolution) cannot feasibly cover an extent of 1 km2 (limited spatial 

extent) or if it does, would take a very long time (limited temporal resolution). The 

impracticality of conventional methods for spatially or temporally continuous sampling 

has led to an average difference of 5.6 orders of magnitude between the extent 

represented and extent actually sampled in ecological studies, necessitating interpolation 

or extrapolation with the risk of over-leveraging data (Estes et al., 2018). 

Remote sensing technologies to rapidly record detailed, spatially-referenced biological 

and physical information are now accessible to the field ecologist. These techniques 

overcome some of the logistical challenges and trade-offs of direct observation field 

sampling and extend the scales of remote sensing capability. This review considers tools 

able to capture three-dimensional (3D) ecosystem data at finer scales than can be 

achieved with remote sensing from satellites or crewed aircraft. We present an 

introduction to two of the most accessible high-resolution 3D mapping techniques, which 

hold enormous potential for the rapid collection of ecologically relevant, spatially 

continuous data at multiple scales: terrestrial laser scanning and structure-from-motion 

photogrammetry (Figure 2.1). Uptake of these new technologies varies widely across 

disciplines and user groups, and there is a strong case for their increased adoption in 

ecology. Our primary audiences are ecologists, environmental managers and other 

interested parties who have limited or no experience with these high-resolution remote 

sensing tools. We direct more experienced users to our analysis of the accuracy of 

structure-from-motion photogrammetry models at scales and contexts relevant to 
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ecological studies, addressing a key barrier to uptake (Section 2.5). Our aim is to shed light 

on powerful and increasingly user-friendly tools, encourage innovative and novel 

analytical approaches, and highlight the new era of 3D digital spatial ecology. 

2.3 Remote sensing in ecology  

Remote sensing from satellite and crewed aircraft has revolutionised spatial ecology with 

diverse applications that continue to grow as technology advances in capability, 

accessibility and familiarity. Passive earth observation from satellites has enabled global-

scale mapping and monitoring of land cover, ecosystem function and climatic variables 

(Kerr and Ostrovsky, 2003), and now offers metre and sub-metre resolution daily imagery 

of anywhere on the globe, presenting new opportunities for ecology, conservation and 

management (Asner et al., 2017). Active spaceborne sensors have facilitated the study of 

broad-scale (km to global) ecosystem structure (Turner et al., 2003), enabling estimation 

of global ocean bathymetry (Smith and Sandwell, 1997) and continuous global 

topography (Farr et al., 2007). The ICESat-2 laser altimetry mission has ecosystem 

characterisation applications through mapping heights of ice, vegetation canopy and 

freshwater bodies (Seidleck, 2018), as well as unanticipated potential for nearshore 

bathymetric mapping (Parrish et al., 2019). 

Remote sensing from crewed aircraft provides similar data products to satellite sources 

at higher resolution over smaller extents. Airborne laser scanning has become a widely 

used tool for characterising 3D habitat structural complexity and exploring organism-

habitat relationships (Davies and Asner, 2014; Wedding et al., 2008). Remote sensing at 

higher temporal and spatial resolutions can provide information about ecosystems at 

scales relevant to mobile organism behaviour over days, months and years, and resulting 

ecological connectivity (Marvin et al., 2016; Pimm et al., 2015). In addition, technologies 

like laser scanning can provide structural information in 3D, rather than “2.5D”. In raster 

format 2.5D data, appropriate for mapping at broad spatial scales, each XY position on a 

regular grid has a single Z value. In 3D data formats, usually point clouds, data points each 

have an XYZ position, better representing 3D features (Figure 2.1). This increased density 

of information is valuable for examining multi-layered ecosystems but comes with 

additional processing and analysis challenges and so 3D information are often translated 

to 2.5D for analysis and visualisation (Figure 2.1). Bespoke or repeat airborne laser 

scanning surveys are uncommon in academic research due to high operating costs of 
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crewed aircraft, and compatibility issues pose challenges for the analysis of existing 

available data (Eitel et al., 2016). 

Satellite and crewed aircraft remote sensing is irreplaceable for continuous mapping at 

spatial resolutions of several metres at up to global extent. However, the technique 

becomes logistically inappropriate when detailed information is required across smaller 

spatial extents (metres to hectares) or shorter time periods (hours to weeks) due to limits 

of data resolution, accuracy or cost. For 3D mapping at these scales, recent technological 

advances have led to the emergence of high-resolution (millimetre to centimetre), rapidly 

deployable remote sensing tools that include terrestrial laser scanning and structure-

from-motion photogrammetry (Figure 2.1) (Anderson and Gaston, 2013; Danson et al., 

2018; Kalacska et al., 2017). Advancement in sampling technology drives an ever-

expanding range of questions we can ask about the natural world, and the ability to 

accurately map ecosystems in three or more dimensions is changing the way we study 

their ecology and management (Davies and Asner, 2014; Eitel et al., 2016; Vierling et al., 

2008). 
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Figure 2.1 An overview of high-resolution three-dimensional ecosystem mapping tools, data formats and 
scales. Tools include terrestrial laser scanning and structure-from-motion photogrammetry. Point cloud 
data can be processed into mesh formats by interpolating between points, and raster formats to produce 
digital elevation models (DEMs) by averaging point elevations in a regular 2D grid. 3D information can be 
analysed at multiple spatial scales from organism to ecosystem. These tools enable investigation at spatial 
scales (resolution and extent) that are understudied in ecology. Plot shading (adapted from [Estes et al., 
2018]) indicates number of ecological studies at specific scales, dashed areas represent the approximate 
sampling scales for terrestrial laser scanning and structure-from-motion (using drone-mounted and 
handheld cameras). Grey areas have no data in the original study. 

  



15 

 

2.4 High-resolution remote sensing tools for spatial 

ecology 

Terrestrial laser scanning and structure-from-motion photogrammetry both generate 

accurate, high-resolution digital 3D models of the environment in the form of a point cloud 

(Figure 2.1). A point cloud is simply a collection of individual points with X, Y and Z 

coordinates describing their 3D position. Additional attributes can be added to each point 

to provide information such as colour or other local statistic. From point clouds, other 

topographic data products like mesh models and rasters can be generated for additional 

analyses (Figure 2.1). Although their outputs appear similar, terrestrial laser scanning 

and structure-from-motion photogrammetry generate point clouds in different ways, 

resulting in differences in the point cloud characteristics. For an overview of data 

collection steps using these two techniques see Figure 2.2.  

 

 

Figure 2.2 Major steps for capturing data with terrestrial laser scanning and structure-from-motion using 
handheld and drone-mounted cameras. A) Identify features of interest and estimate scanning positions or 
camera angles. B) Set out reference targets for terrestrial laser scanning, or ground control points, check 
points and scaling objects for structure-from-motion. For laser scanning, targets are used to align data from 
different stations, although scene geometry can sometimes be used for alignment instead of, or in addition 
to targets. For structure-from-motion, reference points are used for aligning images and constraining the 
modelling process, and for accuracy assessment and scaling. C) Terrestrial laser scanning collects data from 
a number of discrete stations, to be combined during processing. For structure-from-motion, many 
overlapping photographs are taken, from which a 3D model is generated during processing. D) 
Georeferencing, typically using a commercial grade Global Navigation Satellite System, is required to 
position the resulting 3D models in real-world space, and for scaling in large structure-from-motion models. 

 

 



16 

 

2.4.1 Terrestrial laser scanning 

Using the same principles as airborne laser scanning, terrestrial laser scanning is a high-

precision ground-based survey technique used extensively in civil engineering. It is an 

active remote sensing approach that builds an accurate model of the surroundings by 

emitting millions of laser pulses in different directions and analysing the reflected 

signals (Heritage and Large, 2009). Data collected using calibrated laser scanning 

equipment have intrinsic precision and real-word scale.  

Terrestrial laser scanning is conducted from a set of discrete stations using a tripod-

mounted instrument, collecting data radially from a low elevation (generally < 2 m). This 

results in a reduction in both point density and angle of incidence to the ground with 

increasing distance from the scanner, and sectors of missing data behind obstructions like 

trees. Regions with low point density are filled by merging data from multiple scanning 

stations (Figure 2.2), introducing a low level of quantifiable error. Data extent, resolution 

and coverage must be balanced with the survey time needed, especially in complex 

ecosystems like forests where many stations are required for comprehensive coverage of 

a large extent. Terrestrial laser scanning typically penetrates through fine-scale features 

like vegetation to record points on internal surfaces (e.g. branches) and the ground, as the 

independent laser pulses can travel through small gaps. Compared to crewed airborne 

systems, terrestrial laser scanning offers higher resolution, more accurate data from a 

near-ground perspective, with lower operating costs and responsive deployment 

capability, but across a more limited survey extent. 

Falling costs and improved portability have increased the accessibility of terrestrial laser 

scanning to a wide variety of users (Danson et al., 2018; Heritage and Large, 2009). 

Custom built versions have lowered costs even further (Eitel et al., 2013), although the 

equipment and software required is still expensive compared to structure-from-motion 

photogrammetry, and may be prohibitively so for some users. Early adoption of terrestrial 

laser scanning for natural sciences was concentrated in the fields of geography and 

geoscience (Buckley et al., 2008; Heritage and Large, 2009). More recently it has seen 

application in ecology (Eitel et al., 2016), particularly in forest ecology where the below-

canopy perspective complements airborne data collection. Applications include 

quantifying biomass, growth and 3D structure of forest vegetation (Danson et al., 2018; 

Dassot et al., 2011; Maas et al., 2008; Orwig et al., 2018; Watt and Donoghue, 2005), non-
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destructive estimation of above ground grass and mangrove biomass (Cooper et al., 2017; 

Feliciano et al., 2014), assessing vegetation water content (Elsherif et al., 2018), studying 

cave-dwelling bat and bird colonies (Azmy et al., 2012; McFarlane et al., 2015), mapping 

freshwater habitats (Milan et al., 2010) and exploring the relationships between 

organisms and fine-scale topography (Hannam and Moskal, 2015; Hollenbeck et al., 

2014).  

2.4.2 Structure-from-motion photogrammetry 

Structure-from-motion photogrammetry is a low-cost machine vision technique that 

enables the reconstruction of a detailed 3D model from a set of overlapping two-

dimensional digital photographs (Westoby et al., 2012). The camera may be handheld or 

pole-mounted for small scenes, while drone-mounted cameras are commonly used to 

capture larger extents (Cunliffe et al., 2016). Commercial adoption of structure-from-

motion is increasing as a low-cost, flexible survey tool, but questions remain over best 

practices for producing repeatable and high-quality outputs. 

With structure-from-motion photogrammetry, the geometry of a scene is reconstructed 

from the relative positions of thousands of common features detected in multiple 

photographs taken from different vantages. Structure-from-motion is a passive remote 

sensing technique because photographs capture reflected light from an external source 

like the sun. While a basic model can be generated entirely automatically, manual input 

into the processing stage is required for accurate outputs. Structure-from-motion models 

have no inherent real-world scale, so known coordinates or distances must be 

incorporated to generate scale. There is greater opportunity for error introduction with 

structure-from-motion compared to terrestrial laser scanning, and uncertainty in data 

outputs varies widely and unpredictably within (James et al., 2017b) and among studies 

(Eltner et al., 2016). For example, error can be introduced through camera lens distortion, 

poorly focused images, movement of features in the scene, and imprecision in manual 

processing stages. Care must be taken to minimise the propagation of error through the 

model construction pipeline (Eltner et al., 2016). Structure-from-motion generates more 

homogenous and comprehensive data coverage compared to terrestrial laser scanning in 

less time, because the camera is moved around the scene, often using an aerial platform. 

However, multiple images of a point on a feature are needed to calculate a position, so 

internal surfaces of complex features (e.g. branches of a dense bush or coral), shaded 
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surfaces and moving features (e.g. blades of grass in the wind) are less likely to be 

captured or positioned accurately. Structure-from-motion tends to return a generalised 

outer surface of such features, lacking finer details. 

The algorithms used for structure-from-motion are computationally demanding but 

falling costs of computer processing power and affordable, user-friendly software are 

making this technique increasingly accessible (see (Eltner et al., 2016) for popular 

software options). As with terrestrial laser scanning, structure-from-motion saw early 

adoption in geography and geoscience (Westoby et al., 2012). Ecological applications 

include modelling forest and vegetation structure and biomass (Cooper et al., 2017; 

Cunliffe et al., 2016; Iglhaut et al., 2019; Wallace et al., 2016), and quantifying fine-scale 

habitat topography and structure (Kalacska et al., 2018, 2017; Olsoy et al., 2018; Woodget 

et al., 2015). Recently there has been particular interest in underwater structure-from-

motion for measuring and mapping 3D habitat complexity in coral reef systems (Bayley 

et al., 2019; Leon et al., 2015; Storlazzi et al., 2016).  

2.4.3 Georeferencing 

Georeferencing is required to position 3D data generated using terrestrial laser scanning 

and structure-from-motion in real-world space. Positions of equipment (e.g. laser 

scanner, drone) or identifiable features (e.g. targets) are typically recorded using a survey 

grade Global Navigation Satellite System (GNSS) with an accuracy of 1-3 cm. This stage 

can represent one of the largest sources of error in the 3D modelling processing pipeline. 

The influence of georeferencing error on terrestrial laser scanning and small-extent 

structure-from-motion data (e.g. < 100 m2) can be minimised by incorporating it at a late 

stage in processing, and with low weighting. However, with large scenes modelled with 

structure-from-motion using drones, georeferencing using well-distributed ground 

control points must be incorporated into the process at an earlier stage to provide 

scale, and prevent warping of geometry (Nex and Remondino, 2014). With sub-

centimetre-resolution 3D data, georeferencing error can be a limiting factor for detection 

of fine-scale change in topography through time (Hannam and Moskal, 2015), and for 

estimating the accuracy of survey techniques (Mancini et al., 2013), demanding 

positioning technology with sub-centimetre accuracy (e.g. Total Station). 
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2.5 Accuracy of structure-from-motion models in 

ecological settings 

Structure-from-motion photogrammetry can achieve impressive accuracy, but the 

flexibility of the technique makes it vulnerable to the introduction of error that is method 

and context specific. Most assessments of accuracy in natural settings have been in the 

field of geoscience, with measurement error varying from < 1 mm to over 3 m and 

somewhat dependent on the distance between camera and surface (Eltner et al., 2016). 

The appropriate scale of ecological study is driven by the research question, and the scale 

of patterns and processes relevant to that question. The spatial scales of ecological 

patterns often include the very fine (< 10 cm), so an estimate of the realistic achievable 

accuracy of structure-from-motion photogrammetry at this order of magnitude of scale is 

crucial to assess its usefulness to ecologists and environmental managers.  

2.5.1 Methods 

We tested error in structure-from-motion photogrammetry models against terrestrial 

laser scanner baseline data in three common and ecologically important habitats (rocky 

shore, honeycomb worm (Sabellaria alveolata) biogenic reef and saltmarsh) that together 

cover approximately 72% of UK intertidal land (Rowland et al., 2017). Rocky shores are a 

classic model for investigating relationships between biodiversity and habitat structural 

complexity (Kovalenko et al., 2012). Saltmarshes are vegetated habitats with both 

terrestrial and marine features where fine-scale variation in topography can result in 

substantial biological and physical responses (Langlois et al., 2003). Honeycomb worm 

(Sabellaria alveolata) reef is a habitat of conservation importance listed in national and 

international environmental legislation, making up the most 

significant intertidal bioconstructions in Europe (Desroy et al., 2011). Study sites were 

located along the North Wales coast (UK) with fieldwork conducted on spring low tides 

during summer and autumn 2017.  

We conducted terrestrial laser scanning and structure-from-motion surveys for each 

plot simultaneously for direct comparison of outputs. Weather conditions were optimal 

for both survey techniques, with data collected on days with sunshine, low wind speed 

and no precipitation. We conducted tests at three spatial scales to maximise 

the relevance of results to a wide range of ecological study designs: three 25 
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m2 quadrats per habitat with a target spatial resolution of < 1 cm (fine-scale), a single 

2500 m2 area per habitat with < 2 cm resolution (medium-scale) and the same 2500 

m2 area with 5 cm resolution (broad-scale). Fine-scale plots represented quadrat scale 

field sampling, medium-scale plots tested the level of detail and accuracy achievable at a 

habitat scale and broad-scale sampling was based on a typical design for a large extent 

drone survey that could be used for ecosystem scale studies. 

We used the same tripod-mounted terrestrial laser scanning equipment (Leica 

Geosystems ScanStation C10) at all scales. We used terrestrial laser scanning as the 

baseline because it is a commercially recognised technique with known standards and 

precision (6 mm at 50 m range for the model we used), and the most accurate 3D mapping 

technique available to us at the time. For all surveys we used full field-of-view (360° 

horizontal, 270° vertical), medium resolution scans (point spacing of 10 cm at 100 m 

range) with no photographs due to tidal time constraints. For fine-scale plots we used four 

scanning stations whereas for medium- and broad-scale plots we used 7−8 stations 

(Figure 2.3). 3D mapping using structure-from-motion simply requires a set of 

overlapping photographs of a scene as input. We took photographs for structure-from-

motion using a pole mounted camera (18 MP Canon EOS M with 22mm prime lens) for 

fine scale plots, and a quadcopter drone (DJI Phantom 3 Pro with 12 MP camera) for 

medium- and broad-scale plots, flying at 25 m and 90 m altitude respectively to simulate 

typical survey designs and achieve the desired ground sampling distances, the real-world 

size of each image pixel (Figure 2.3). The drone was flown on an automated parallel track 

flight path by a professional drone pilot (OcuAir Ltd.). We used shared reference targets 

(flat, black and white quadrant targets) were used for terrestrial laser scanning and 

structure-from-motion so that data from the two techniques could be aligned without 

introducing GNSS georeferencing error (Figure 2.3). Fine-scale plots included scaling 

objects that provided scale reference along X, Y and Z axes. Medium- and broad-scale plots 

included reference objects of known size and shape for comparison of results. 
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Figure 2.3 Survey methods for comparison of terrestrial laser scanner and structure-from-motion 
photogrammetry 3D ecosystem mapping data at three scales. Shared targets were used to align data from 
the two techniques without introducing georeferencing error. Scaling objects were used to scale fine-scale 
structure-from-motion models. Reference objects enabled comparison of shape reconstruction by the two 
techniques. 
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After data collection, both terrestrial laser scanning and structure-from-motion require a 

series of data processing steps to ensure high quality outputs. With calibrated equipment, 

data from each terrestrial laser scanning station are correctly scaled, levelled, and have 

known precision (6 mm individual measurement precision at a range of 50 m for the 

equipment we used). We conducted data processing using Leica Geosystems Cyclone 

software, which involved aligning data from multiple stations using reference target 

positions or regions of overlapping geometry. We combined individual station data to 

produce a single complete dataset per plot with maximum 3D errors in target positions 

between individual stations of 6 mm. We manually cleaned each complete point cloud 

dataset of unwanted objects (e.g. people), artefacts (e.g. reflections in water surfaces) and 

noise (erroneous points). 

We conducted data processing for structure-from-motion using the popular software 

Agisoft Photoscan Professional, chosen because it provides a good balance between 

quality of outputs, control over settings, user-friendliness and cost (Eltner et al., 2016). 

The workflow for processing structure-from-motion data using Photoscan is similar to 

other software options. First, we checked images for sharpness and exposure, discarded 

blurred images and corrected exposure where necessary. We masked background and 

moving features like shadows from images. We automatically aligned images using “High” 

accuracy and 40,000 tie points to generate a sparse point cloud. We manually placed 

markers at the centre of each reference target in each image. For fine-scale image sets, we 

placed 15-19 pairs of scale markers at various separations from 1 cm to 1 m. For shared 

reference markers we assigned coordinates from the relevant terrestrial laser scanning 

dataset. Image alignment was iteratively optimised after marker placement using the 

gradual selection tool to delete low quality tie points using a workflow adapted from USGS 

(2017). We then generated a dense cloud using “High” quality setting and “Mild” depth 

filtering to retain fine topographic features while removing noise. We exported the 

resulting point cloud for analysis.  

We cropped pairs of aligned terrestrial laser scanning and structure-from-motion point 

cloud models to common extents, subsampled to similar point densities (Table 2.1) and 

further cleaned point clouds using the statistical outlier removal tool in the open-source 

software CloudCompare. We generated broad-scale terrestrial laser scanning data by 
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subsampling medium-scale data to a density similar to broad-scale drone data (5 cm point 

spacing)(Table 2.1). 

We measured the distance between each pair of models at 100,000 random positions 

using the multiscale model-to-model cloud comparison algorithm (M3C2), a robust 

method developed specifically for comparison of point cloud data from natural 

environments that contain multiscale complexity, implemented in CloudCompare (Lague 

et al., 2013). In brief, the algorithm calculates the distance between point clouds along the 

direction of the local surface orientation, known as the normal, at each measured point. 

This is an improvement over nearest neighbour methods or measuring distance along a 

single axis, typically vertically (Lague et al., 2013). 

We used the mean of absolute distances between point clouds to quantify the accuracy of 

the structure-from-motion model relative to the terrestrial laser scanning model, as mean 

absolute error (MAE) (Figure 2.4). While another metric, root mean square error (RMSE) 

is commonly used for model comparisons, this can be heavily influenced by a small 

number of large errors which were likely to be present in our data due to some noise 

remaining after data cleaning. By comparing point cloud data we avoided the introduction 

of error by the more common approach of interpolating and averaging data to a raster 

format digital elevation model (DEM) (Mancini et al., 2013). We visually analysed point 

cloud models and cross sections to assess the key differences between outputs from two 

different techniques (Figure 2.5).  
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Table 2.1 Characteristics of point cloud datasets derived from terrestrial laser scanning (TLS) and structure-
from-motion photogrammetry (SfM) analysed at multiple scales and habitats. Raw point counts are after 
cropping to the study area. Processed point counts are after cleaning and subsampling. Median and 
interquartile range (IQR) point density are of the processed point clouds. 

 
Habitat Quadrat Technique 

Raw point 
count (M) 

Processed point 
count (M) 

Median point density 
(n m-2) 

IQR of point 
density (n m-2) 

Fi
ne

 s
ca

le
 

Rocky 
shore 

1 
TLS 2.49 0.88 29,200 10,000 

SfM 24.34 0.75 24,000 4,400 

2 
TLS 28.25 0.93 23,200 5,600 

SfM 3.17 0.92 21,600 2,400 

3 
TLS 2.65 1.17 31,600 12,800 

SfM 32.08 1.27 24,800 6,800 

Biogenic 
reef 

1 
TLS 2.93 1.16 24,400 8,800 

SfM 46.56 1.48 24,800 6,400 

2 
TLS 2.37 0.80 26,000 6,800 

SfM 31.78 0.80 23,600 4,000 

3 
TLS 3.01 0.94 28,400 9,200 

SfM 31.71 0.81 22,800 4,000 

Saltmarsh 

1 
TLS 2.04 1.37 40,000 24,400 

SfM 22.78 1.35 33,600 27,600 

2 
TLS 1.47 0.99 26,000 9,600 

SfM 21.71 1.00 25,600 6,000 

3 
TLS 2.10 1.40 26,800 26,000 

SfM 23.70 1.33 23,200 25,200 

M
ed

iu
m

 s
ca

le
 (l

ow
 a

lti
tu

de
 

U
AV

) 

Rocky 
shore  

TLS 19.07 6.77 900 400 

SfM 2.74 2.61 1,600 700 

Biogenic 
reef  

TLS 13.94 5.06 400 400 

SfM 1.27 1.23 1,000 500 

Saltmarsh  
TLS 20.02 9.75 700 400 

SfM 1.92 1.87 600 300 

Br
oa

d 
sc

al
e 

(h
ig

h 
al

ti
tu

de
 

U
AV

) 

Rocky 
shore  

TLS 19.07 0.61 200 200 

SfM 0.26 0.22 100 100 

Biogenic 
reef  

TLS 13.94 0.44 200 200 

SfM 0.11 0.11 <100 100 

Saltmarsh  
TLS 20.02 0.96 500 400 

SfM 0.30 0.23 100 100 
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2.5.2 Results and discussion 

We found mean absolute distance (± 1 standard deviation) between structure-from-

motion and terrestrial laser scanner data ranged from 4 mm ± 14 mm (fine-scale, rocky 

shore) to 56 mm ± 111 mm (medium-scale, saltmarsh) (Figure 2.4). In all cases, distances 

between the point clouds clustered close to zero, indicating good average agreement, with 

positive and negative errors compensating each other. The spread of measured distances 

varied, with fine-scale and stable substrate scenes showing the least variation, while 

broad-scale and vegetated scenes showed the most (Figure 2.4). Visual inspection of 

model difference maps and cross-sections revealed that on average structure-from-

motion models were accurate, but as resolution decreased, sharp features became 

smoothed, with cuboid reference objects being represented as mounds (Figure 2.5). 

Similar results are reported in other studies, with high agreement between structure-

from-motion and terrestrial laser scanning at fine-scales of up to 1 m2 (Cooper et al., 2017; 

Hillman et al., 2019) and centimetre-level accuracy at broad scales (hectares) (Cook, 

2017; Mancini et al., 2013). 
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Figure 2.4 Accuracy of a structure-from-motion point cloud quantified as the point-by-point distance to a 
reference terrestrial laser scanning point cloud in three habitats (rocky shore, biogenic reef and saltmarsh) 
and at three scales (fine: 25 m2 with < 1 cm resolution, medium: 2,500 m2 with < 2 cm resolution and broad: 
2,500 m2 with 5 cm resolution). Distances were measured at 100,000 points and plotted as density curves, 
with the area under each curve being equal. Curve tails beyond 0 ± 0.1 m are not shown. Mean absolute 
error (MAE) ± 1 standard deviation (m) distance is reported. 
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Figure 2.5 Differences in 3D point cloud models generated by terrestrial laser scanning (TLS, black points) 
and structure-from-motion photogrammetry (SfM, red points) at three spatial scales and three habitats. 
Models agree closely at fine scales (25 m2 extent, <1 cm resolution) in areas of solid substrate or short 
vegetation. In tall and dense vegetation the models differ, with points captured from further into the feature 
by terrestrial laser scanning. At medium-scales (2500 m2 extent, <2 cm resolution) on solid substrate 
average difference in models is low, but fine details are generalised by structure-from-motion. Terrestrial 
laser scanning data have gaps due to some areas being out of line-of-sight from any scanning position. At 
broad-scales (2500 m2 extent, 5 cm resolution), SfM models the general form of the scene well but detailed 
topographic morphology is more accurate in terrestrial laser scanner data. As scale increases detailed 
features become smoothed by structure-from-motion, as demonstrated by models of reference objects with 
known shape and size. 
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2.6 A case for increased adoption of 3D mapping 

techniques in ecology 

Terrestrial laser scanning and structure-from-motion photogrammetry offer rapid, 

detailed, continuous extent 3D mapping of ecosystems. Relieving scale-dependence of 

sampling and easing trade-offs in scale presents opportunities to ask new questions of the 

natural world and revisit classical paradigms at new scales. The potential applications for 

high-resolution 3D mapping techniques are vast, and like satellite remote sensing and 

airborne laser scanning, much of their value will likely only emerge once techniques are 

firmly established as standard ecological tools. Unique insights are already being 

generated, particularly in forest and coral reef ecosystems (Calders et al., 2020), whereas 

adoption has been slower in other systems such as intertidal habitats. Multiscale 

topography plays a critical structuring role in the intertidal zone by controlling 

environmental conditions and field time is constrained by tidal cycles, making rapid 3D 

mapping tools valuable to intertidal field ecologists. In this section we identify and discuss 

several themes of study in which emerging techniques have either already found 

innovative and transformative applications or are likely to have high impact in the near 

future (Figure 2.6). 

2.6.1 Understanding relationships between organisms and 

habitat structure 

Analyses of organism-habitat relationships can be hampered by our ability to 

quantitatively capture the environment at ecologically meaningful spatial and temporal 

scales. This has resulted in a diversity of definitions, metrics and methods employed to 

understand the mechanisms behind system-independent phenomena like habitat 

complexity-biodiversity relationships (Kovalenko et al., 2012). The analysis of digital 

representations of 3D habitat structure to derive system- and scale-independent metrics, 

like fractal dimension (Reichert et al., 2017), or novel organism-centric metrics (Meager 

and Schlacher, 2013), could lead to improved understanding by reducing the need to 

simplify 3D habitat structure (e.g. to 2D profiles) to facilitate analysis (Bayley et al., 2019; 

Dustan et al., 2013; Gratwicke and Speight, 2005; Kovalenko et al., 2012; Storlazzi et al., 

2016).  
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Spatial patterning and the patchiness of species across a landscape can depend on 

topography at multiple scales. The methods used to observe and analyse topography 

across scales have important influence on the understanding generated (Lucieer et al., 

2018a). As technologies for data collection advance, so too do methods for analysis 

increasingly detailed information about landscape pattern and ecosystem structure 

(Kedron et al., 2019; Kedron and Frazier, 2019; McGarigal et al., 2009). In tidal flats and 

flood plains, elevation changes in the order of centimetres can control species 

distributions, interactions and ecosystem services (Kalacska et al., 2017). Understanding 

fine-scale relationships can improve species distribution and habitat suitability modelling 

and lead to advances in organism-perspective landscape analysis. Terrestrial laser 

scanning was used to estimate topographically-controlled foraging habitat suitability for 

the black oystercatcher (Haematopus bachmani) and model how it may change under 

future sea-level rise (Hollenbeck et al., 2014). Fine-scale topography and 3D structure can 

control other variables that can be modelled in finer scales than ever before, like 

microclimate (Milling et al., 2018), soil pH (Baltensweiler et al., 2017) and hydrodynamic 

forces (Helmuth and Denny, 2003). This can enable quantification of environmental 

variables as continuous rather than categorical factors, which may lead to alternative or 

improved interpretations of organism-environment relationships (Caryl et al., 2014; 

Lindegarth and Gamfeldt, 2005).  

2.6.2 Measuring and monitoring small, slow and complicated 

variation in 3D form 

Improved morphological descriptions of complex natural shapes can be made with 

comprehensive 3D data, and variation in such shapes can be monitored through space and 

time at an organism-relevant resolution. Using terrestrial laser scanning, researchers 

found that oysters, an ecosystem engineer, can accrete reef structure at a faster rate than 

current sea-level rise, with important management and conservation implications 

(Rodriguez et al., 2014). Coral reef structure is difficult to quantify and previous methods 

known to poorly capture detailed topography, like the chain-and-tape method, can now 

be replaced with more repeatable structure-from-motion surveys with similar in-water 

effort (Bayley et al., 2019; Storlazzi et al., 2016). Through accurate feature modelling, 

terrestrial laser scanning can improve on traditional allometric equation methods to 

estimate above ground biomass in trees (9.68% overestimation compared to 36.57–
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29.85% underestimation) (Calders et al., 2015). The low cost of operation and rapid 

deployment capability of terrestrial laser scanning and structure-from-motion make 

them suitable for opportunistic pre- and post-event change detection (Honkavaara et al., 

2013) and environmental impact assessment monitoring. 

2.6.3 Virtual sampling, digital archiving and addressing 

problems of scale in ecology 

With sampling now achievable at sub-centimetre resolutions, ecosystems can be digitally 

represented to a degree that in some instances exceeds the resolution possible using in 

situ human observation. There are, however, still limitations of completely removing the 

human observer element.  Macroalgal canopy cover estimates on rocky shores are 

indistinguishable between “virtual quadrats” from drone-derived image mosaics and in 

situ human observers using field quadrats, but understory turfing algal species are under-

sampled in virtual quadrats (Murfitt et al., 2017). Sampling of cryptic species and multi-

layered features will remain challenging to sample using remote sensing. Despite some 

limitations, the potential advantages of sub-centimetre digital mapping of ecosystems are 

hugely exciting, including automated species detection and identification using computer 

vision and machine learning (Guan et al., 2015), entire extent sampling that removes 

interpolation issues when scaling up from replicate samples (Estes et al., 2018), and 

simultaneous biological and environmental sampling (Murfitt et al., 2017) (Figure 2.6). 

Capturing and archiving detailed digital snapshots of ecosystems in a rapidly changing 

world is likely to prove invaluable for future, currently unknowable analytical 

approaches. 

Organisms interact with their environment at a range of scales, but understanding scale-

dependent patterns and processes is a long-standing challenge in ecology (Levin, 1992; 

Wheatley and Johnson, 2009). Observation of organisms and their environment is often 

conducted at spatial, temporal and thematic scales that are human-centric and chosen 

arbitrarily or logistically, rather than guided by the ecological processes being studied 

(Lecours et al., 2015; Levin, 1992; Meentemeyer, 1989; Wheatley and Johnson, 2009; 

Wiens, 1989). Due to the versatility of high-resolution remote sensing methods like 

terrestrial laser scanning and structure-from-motion, studies can now be conducted at 

scales that have previously been underexplored in ecology (Figure 2.1) (Estes et al., 2018). 
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One of the difficulties in multiscale analysis is the time and resource constraints of 

sampling the same extent at different resolutions (Lecours et al., 2015). With the ability 

to rapidly sample large extents at high-resolution, multiscale data can be digitally 

generated by resampling. We have increasing flexibility to move away from arbitrarily 

chosen sampling scales and observe ecosystems at ecologically relevant and mechanistic 

scales. 

2.6.4 Value to managers, policy makers and the public 

In a rapidly changing world, tools to efficiently record accurate, detailed snapshots of the 

environment and monitor ecosystem health are extremely valuable to environmental 

managers and policy makers. Policy makers require high quality environmental 

information to make evidence-based decisions aimed at limiting environmental impact, 

conserving ecosystems and maintaining ecosystem services, to the benefit of the public. 

Often availability of technology to environmental managers is not limiting, but without 

practical information on how to efficiently utilise tools, and analyse and interpret new 

data types with confidence, there may be a lag in adoption of emerging technologies in 

favour of more familiar methods, despite their known limitations (Ramirez-Reyes et al., 

2019; Vanden Borre et al., 2011). Better information about ecosystem structure across 

scales may lead to improvements in predicting habitat suitability for, and monitoring 

performance of restoration actions for coastal habitats like mangrove forests, oyster reefs 

and saltmarshes where elevation and inundation cycles are crucial factors. Investigating 

the ecological mechanisms and consequences of patch dynamics and monitoring 

ecosystem change, including climate-driven change, is an area of landscape ecology that 

will benefit from increasingly widespread adoption of high resolution 3D mapping 

(Jackson et al., 2018). A benefit of high-resolution 3D mapping technologies for public 

facing research groups and environmental bodies is the easily interpreted visual data 

products generated. Photo-realistic 3D models of ecosystems aid explanation of ecological 

processes and issues, improving public communication and education through digitally 

annotated still images, animations or virtual reality systems. 
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Figure 2.6 Examples in ecology and environmental management with existing or potential applications for 
3D ecosystem mapping. 1) Multiscale experimental design with high-resolution 3D mapping across large 
extents. 2) Mapping fine-scale variation in topography across tidal flats and wetlands. 3) Automated species 
identification and biometric measurement in forests. 4) Comparing topographic variation in natural and 
artificial hard coastal substrates. 5) Digital archiving of 3D habitat structure in inaccessible ecosystems. 6) 
Monitoring variation in reef topography in space and time. 7) Modelling growth in complex 3D organisms 
like mangrove trees. 8) Mapping 3D structure in habitats with canopy cover and overhangs. 

 

2.7 Barriers to wider uptake in ecology 

While some sub-disciplines of ecology are making headway in using high-resolution 

remote sensing methods to answer questions and test ecological paradigms across scales 

(Calders et al., 2020), in general the methods remain underutilised across the discipline 

(Lepczyk et al., 2021). A Web of Science search conducted in December 2019 found that 

just 1.4% (59 out of 4348) of articles about terrestrial laser scanning or structure-from-
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motion were categorised as “ecology” compared to 23.7% (1031) categorised as 

“geosciences multidisciplinary”. Further, 67.8% of these articles were published in the 

preceding three years (2017−2019), highlighting the emerging adoption of these 

techniques. Here we identify four perceived barriers to wider uptake in ecology. 

Firstly, potential users may be unaware that such techniques exist, so a major aim of this 

article is to introduce ecologists and environmental managers to two of the most common 

and powerful techniques in an accessible manner. Second, potential users may be 

somewhat aware of the techniques discussed, but perceive them to be specialised tools 

and inaccessible due to high expertise, cost or time requirements. Technological advances 

in hardware and user-friendly software mean non-specialists can now be using these 

techniques in a basic form within a day with a small amount of training or self-learning. 

Equipment, software and training costs can still be significant, especially for terrestrial 

laser scanning, with further costs incurred for maintenance and insurance. However, the 

multidisciplinary applications of the techniques mean many institutions will already have 

access to suitable equipment and software, or can gain access to shared resources. 

Structure-from-motion costs can be comparable to many other field techniques, 

especially if using a handheld camera and open-source software. Practical field time 

requirements are context dependent. In coastal habitats we found that terrestrial laser 

scanning took 15 – 20 min between stations for a typical medium resolution (10 cm point 

spacing at 100 m range) survey. Structure-from-motion time requirements ranged from 

approximately 20 minutes for a 25 m2 area surveyed using a pole mounted camera, to 2 

hr for a 10 ha area surveyed at 2-cm resolution using a multi-rotor drone (45 m altitude). 

As a photographic technique, structure-from-motion is slowed or halted in low-light, 

while terrestrial laser scanning can be conducted in darkness. Processing of terrestrial 

laser scanning data is rapid (1 – 2 hr) and can even be conducted on a laptop in the field 

directly after surveying. Processing a basic structure-from-motion model can be achieved 

in a similar amount of time, but an accurate, detailed model typically takes a day or more 

to process depending on processing power and number of images. For a comparison of 

practical considerations for terrestrial laser scanning and structure-from-motion for 

geoscience see (Wilkinson et al., 2016). 

A third possible barrier to uptake in ecology is that potential users are aware of 3D 

mapping tools and understand how they are conducted but do not see value in their use, 
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or are resistant to exploring technology-based alternatives to traditional field methods. 

Technology is unlikely to ever completely replace a human ecologist in the field for direct 

observation and interpretation, but can augment data collection and improve efficiency 

and quantification of specific variables if used appropriately (Edwards et al., 2017). By 

separating tasks that require human engagement from those that are more efficiently 

performed using technology, field time can be optimised (Murfitt et al., 2017). These 

technologies allow us to test existing ecological concepts at novel scales and inspire new 

questions that could result in novel paradigms and understanding.  

Finally, potential users may be aware of the techniques and understand how they are 

conducted but are sceptical about the accuracy of the outputs at their spatial scales of 

interest; this is especially relevant for structure-from-motion photogrammetry. To 

address this, in this paper we have presented results from an assessment specifically to 

test the realistic accuracy and characteristics of structure-from-motion models in 

contexts and at spatial scales relevant to ecologists and environmental managers (Figure 

2.4Error! Reference source not found.). Our results demonstrate that millimetre to 

centimetre scale variation in topography can be measured in space and time using high-

resolution 3D mapping techniques in the field, making them valuable for numerous 

ecological applications (Figure 2.6). 

The perceived barriers to adoption of 3D mapping techniques for ecological data 

collection are now low. However, system-specific challenges remain in survey design, 

data processing and interpretation. With terrestrial laser scanning in complex 

environments, line-of-sight obstructions and moving vegetation combined with the 

spatial characteristics of the point cloud data generates challenges for interpretation and 

analysis (Ashcroft et al., 2013; Hillman et al., 2019; Richardson et al., 2014). While the 

moving vantage aspect of structure-from-motion data capture means more homogenous 

data coverage, repeatability of coral reef rugosity measurements were impacted by high 

habitat complexity, environmental conditions and variation in methods (Bryson et al., 

2017). The use of drone-mounted sensors for field ecology comes with an additional suite 

of considerations for training, permissions and constantly evolving regulations that 

govern their safe and legal usage (Duffy et al., 2018). Data processing still requires manual 

input at various stages, and automated workflows can be computationally demanding, 

especially for structure-from-motion. Various algorithms and software packages are 
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being developed for 3D point cloud processing, including open source projects like 

CloudCompare (CloudCompare, 2019). After the initial processing stages required to 

generate a 3D model, further processing and analysis currently requires non-trivial 

technical skill or novel approaches specific to the task. As 3D methods become more 

common in ecology, an increase in demand and funding for user-friendly and powerful 

processing techniques, including packages for open-source platforms like Python and R, 

can be expected. 

2.8 Conclusion 

Technology is available and accessible to non-specialist ecologists that enables the 

detailed mapping of habitats and organisms accurately in 3D. These techniques unlock a 

wealth of new spatial and temporal ecological questions that were logistically impossible 

to ask only a few years ago. As with any sampling method the limitations should be 

understood as uncertainty may not be readily detected, and there is a need for 

standardisation of protocols. The power of these techniques mean they are rapidly 

becoming standard and essential tools in various disciplines. By embracing emerging 

technologies, modern ecologists can overcome longstanding challenges in studying scale-

dependent organism-environment relationships. Digital ecosystem analysis and 

multiscale 3D spatial ecology is continuing to evolve, and high-resolution remote sensing 

techniques are becoming instrumental as part of the modern spatial ecologist’s tool kit. 
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3 Three-dimensional mapping reveals scale-

dependent dynamics in biogenic reef habitat 

structure 

3.1 Abstract 

Habitat structure influences a broad range of ecological interactions and ecosystem 

functions across biomes. To understand and effectively manage dynamic ecosystems, we 

need detailed information about habitat properties and how they vary across spatial and 

temporal scales. Measuring and monitoring variation in three-dimensional (3D) habitat 

structure has traditionally been challenging, despite recognition of its importance to 

ecological processes. Modern 3D mapping technologies present opportunities to 

characterise spatial and temporal variation in habitat structure at a range of ecologically 

relevant scales. Biogenic reefs are structurally complex and dynamic habitats, in which 

structure has a pivotal influence on ecosystem biodiversity, function and resilience. For 

the first time, we characterised spatial and temporal dynamics in the 3D structure of 

intertidal Sabellaria alveolata biogenic reef across scales. We used drone-derived 

structure-from-motion photogrammetry and terrestrial laser scanning to characterise 

reef structural variation at mm to cm resolutions at a habitat scale (~35,000 m2) over one 

year, and at a plot scale (2,500 m2) over five years (2014-2019, 6-month intervals). We 

found that most of the variation in reef emergence above the substrate, accretion rate and 

erosion rate was explained by a combination of systematic trends with shore height and 

positive spatial autocorrelation up to the scale of colonies (1.5 m) or small patches (up to 

4 m). We identified previously undocumented temporal patterns in intertidal S. alveolata 

reef accretion and erosion, specifically groups of rapidly accreting, short-lived colonies 

and slow accreting, long-lived colonies. We showed that these highly dynamic colony-

scale structural changes compensate for each other, resulting in seemingly stable reef 

habitat structure over larger spatial and temporal scales. These patterns could only be 

detected with the use of modern 3D mapping technologies, demonstrating their potential 

to enhance our understanding of ecosystem dynamics across scales. 
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3.2 Introduction 

Ecosystems are dynamic (Odum, 1969). Gradients in biophysical and human 

socioeconomic drivers create complex mosaics in ecosystem properties (Legendre and 

Fortin, 1989; Perry, 2002; Williams et al., 2019), with the patterns we observe determined 

by the scale of our observations (Levin, 1992; Wiens, 1989). Because ecosystem patterns 

and processes are intrinsically linked, we can gain a deeper understanding about 

ecological processes and their drivers by quantifying these underlying patterns across 

scales (Horne and Schneider, 1995; Underwood et al., 2000). Quantifying patterns in 

ecosystem properties not only advances ecological insight, but also facilitates evidence-

based management by enabling us to detect change in ecosystem characteristics like 

habitat structure in response to disturbance (Landres et al., 1999). 

Physical habitat structure can be abiotic like rocks on a shoreline, or biogenic like the trees 

of a forest. These features determine habitat structural complexity and influence the 

biodiversity and community composition of associated ecological communities through 

myriad processes. These include buffering organisms from extreme environmental 

conditions (Scheffers et al., 2014), mediating resource availability (Safriel and Ben-Eliahu, 

1991), and providing shelter for prey species from predation (Stevenson et al., 2015; 

Warfe et al., 2008). Biogenic reefs are complex habitats in which substrate and structure 

is generated and amplified by engineering organisms (Jones et al., 1994). Biogenic reefs 

represent global biodiversity hotspots and provide a range of ecosystem services to 

humanity (Bruschetti, 2019; Connell, 1978; Dubois et al., 2002; Woodhead et al., 2019). 

Reef systems experience continuous disturbance and variation in environmental 

conditions across spatial and temporal scales, maintaining variation in their physical, 

chemical and biological structure (Connell, 1978; Gruet, 1986; Pickett et al., 1989). 

Spatially and temporally dynamic three-dimensional (3D) structure is critical to the 

biodiversity, ecological functioning and conservation value of biogenic reefs (Graham and 

Nash, 2013; Holt et al., 1998). Metrics of reef structure can also be an indicator of the 

health of the engineering species (Curd et al., 2019) and reef recovery potential following 

acute disturbance (Graham et al., 2015). To understand organism-habitat interactions 

within biogenic reef systems, we must first identify the patterns and scales of variation 

inherent within their structures (Holt et al., 1998; Jenkins et al., 2018). 
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The study of spatial patterns in ecosystems has greatly benefitted from remote sensing, 

providing high-resolution, spatially continuous data for a variety of properties including 

3D habitat structure (Chambers et al., 2007; Vierling et al., 2008). Remote sensing of 3D 

structure in the marine environment from satellite or crewed aircraft improves ecological 

insight in clear, shallow waters (Wedding et al., 2019), but similar information is 

challenging and expensive to capture in deep or turbid waters (Lecours et al., 2015). 

Recent developments in high-resolution 3D mapping technologies including structure-

from-motion photogrammetry and laser scanning offer the potential to study patterns in 

3D structure from organism to habitat scales, and are practical for investigation of scale-

dependent properties in marine and coastal habitats (Calders et al., 2020; Urbina-Barreto 

et al., 2021). This creates opportunities to apply conceptual and analytical frameworks 

from landscape ecology, such as identification of dominant spatial scales of variation 

(Legendre and Fortin, 1989), at new scales and in new systems. The ability to record 

spatially continuous 3D habitat structure across km-extents at mm resolution, with rapid 

repeats and low operating costs is sparking a revolution in the scope and scale of 

ecological investigations (D’Urban Jackson et al., 2020). 

Here we use intertidal habitat structure built by Sabellaria alveolata, a reef-building 

annelid, as a model system to characterise scale-dependent structural dynamics in 

complex biogenic reef habitats using high-resolution 3D mapping. S. alveolata reef 

comprises colonies of sediment tubes biocemented together, creating extensive reefs on 

northeast Atlantic and Mediterranean coasts (Bruschetti, 2019; Godet et al., 2011; La 

Porta and Nicoletti, 2009). The reef habitat is protected under national and international 

conservation legislation including the Environment (Wales) Act 2016 and the European 

Commission Habitats Directive. Similar reefs built by other species in the Sabellariidae 

family are found globally (Capa et al., 2012). Our current understanding of the scale-

dependent structural dynamics in biogenic reefs is hampered by a lack of spatio-temporal 

information about habitat structure across scales. To explore this, we quantify spatial and 

temporal patterns in reef structure at mm to cm resolution, at plot- (2,500 m2) to habitat-

scale (~35,000 m2) extents and over temporal scales of 1-5 years. Our findings reveal 

previously undescribed patterns of structural variation in intertidal biogenic reefs and 

demonstrate the enhanced ecological insight gained from the application of modern 

remote sensing technologies for 3D ecosystem mapping in structurally complex habitats.  



41 

 

3.3 Methods 

3.3.1 Data collection 

3.3.1.1 Study site 

To characterise variation in biogenic reef habitat structure across scales we conducted 

high-resolution 3D mapping at a Sabellaria alveolata reef habitat at Llanddulas, Wales, UK 

(53.294 N, 3.632 W) using two techniques between 2014 and 2019 (Figure 3.1). The reef 

at Llanddulas occupies the low shore for at least one kilometre along a moderately 

exposed, unconsolidated cobble beach with a gentle slope gradient of 3%. 

 

 

Figure 3.1 A) Sabellaria alveolata biogenic reef habitat comprises aggregations of sediment tubes in colonies 
that emerge above a hard, non-reef substrate. B) Close-up image of a prograding colony surface showing 
dense tube openings of ~5 mm diameter. C) Cross section of 3D terrestrial laser scan point cloud data from 
3 years, demonstrating the detailed information about spatial and temporal dynamics in habitat structure 
that can be captured using modern 3D mapping technology. Reef colonies accrete upwards and outwards 
from the non-reef substrate in characteristic mushroom-like hummocks that coalesce into platforms. 
Erosion of reef colonies is often rapid and catastrophic. 

 

3.3.1.2 Plot-scale (2,500 m2) 3D mapping 

We collected data to investigate multi-annual temporal patterns in S. alveolata reef 

structure using terrestrial laser scanning (HDS ScanStation C10, Leica Geosystems, 

Switzerland) of a permanent 2,500 m2 reef plot at approximately 6-month intervals 

(autumn and spring) over 5 years from September 2014 to October 2019. Terrestrial laser 

scanning generates high-resolution (thousands of points per m2) data with mm precision 

and was the most advanced 3D mapping technology available for field sampling at the 

start of the study in 2014. We conducted medium resolution (0.1 m point spacing at 100 
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m range) scans of the plot from several stationary positions per time point, ensuring 

similar data coverage among time points. We used retroreflective sphere reference 

targets to align scan datasets within a time point. Aligning datasets from different time 

points typically uses global navigation satellite system (GNSS) georeferencing or 

permanent reference targets. Our plot was intertidal with an unconsolidated substrate, so 

permanent targets could not be left and expected not to move, and alignment by GNSS 

georeferencing would have introduced error on the same scale (cm) as the changes we 

expected to detect, limiting their reliable detection and interpretation. Therefore, to 

enable accurate alignment of repeat surveys we increased the laser scanning data 

coverage to include permanent nearby features (rock groynes, cycle path and buildings), 

enabling us to align the datasets using the geometry of these stable features, without 

constraining the data across the dynamic foreshore.  

We quality checked, aligned, georeferenced and manually cleaned the laser scanning point 

cloud data in Cyclone v9 software (Leica Geosystems, Switzerland). Within a time point, 

we aligned datasets from different scanner positions to 6 mm accuracy using target 

positions. We then aligned complete datasets from different time points to 6 mm accuracy 

using the geometry of permanent features. We made a final adjustment to the vertical 

alignment within the plot based on stable regions of non-reef substrate. We standardised 

datasets from different time points by cropping to the plot extent, subsampling point 

clouds to a minimum point spacing of 5 mm, and removing isolated points using the 

statistical outlier removal tool in the open source software CloudCompare v2.11 

(CloudCompare, 2019). 

3.3.1.3 Habitat-scale (~35,000 m2) 3D mapping 

Terrestrial laser scanning was impractical for the larger extent of habitat-scale sampling 

within short low-tide windows. Therefore, to investigate spatial and temporal patterns in 

S. alveolata reef structure at a habitat scale (~35,000 m2) we used structure-from-motion 

photogrammetry derived from drone aerial imagery, in April 2018 and April 2019. Drone-

derived structure-from-motion photogrammetry generates continuous 3D information 

across large extents, with comparable accuracy to terrestrial laser scanning in complex 

habitats like S. alveolata reef (D’Urban Jackson et al., 2020). We commissioned the drone 

surveys from a commercial survey company (OcuAir Ltd) which we specified and 

supervised to ensure data were collected to a high standard. Drone surveys used a 
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Phantom 4 Pro (DJI) with a 20 MP camera flying at 46 m altitude to capture images with 

14 mm XY ground resolution (exceeding the target of 2 cm), covering approximately 

150,000 m2 of the coastline. The flight pattern was pre-determined and flying was 

automated using software (Maps Made Easy) to ensure the same survey pattern was 

flown in both years. To optimise the 3D modelling process, we used a high image overlap, 

so that every XY position in the area of interest was captured in at least 5 images. 3D 

models for each survey were generated by the survey company using the industry 

standard software Pix4Dmapper Pro v4. Unlike terrestrial laser scanning, for structure-

from-motion photogrammetry we required georeferenced ground control points to scale, 

constrain and align the 3D models. We used 11 (2018) and 19 (2019) control points 

surveyed with commercial GNSS equipment (system 1200, Leica Geosystems, 

Switzerland). We designed the number and distribution of control points to be sufficient 

to adequately constrain the modelling process (James et al., 2017a), while being 

achievable to survey within the low tide window, incorporating redundancy as some 

targets were compromised by the incoming tide. Estimation of ground control point 

accuracy gave root mean square errors of 9 mm and 32 mm for 2018 and 2019 

respectively. Because there were no permanent features within the study area, we 

verified vertical alignment accuracy by calculating elevation difference at 100 random 

points along a cycle path adjacent to the study area, giving a median difference of 23 mm 

and root mean square error of 26 mm. This represents a worst-case estimate because the 

cycle path was outside the area constrained by control points. From the 3D models and 

aerial images, we generated digital surface models (DSMs, 0.1 m XY resolution) and 

orthomosaics (0.02 m XY resolution) for 2018 and 2019.  

3.3.2 Data analysis 

3.3.2.1 Analysis of spatial patterns and scales of variation using 

variography  

To identify spatial patterns and scales of spatial autocorrelation in reef emergence, 

accretion rate and erosion rate, we examined horizontal trends and used variography 

(Gringarten and Deutsch, 2001; Perry et al., 2002; Rossi et al., 1992). Variography 

quantifies spatial autocorrelation in a variable by fitting parametric variogram models to 

an experimental variogram. An experimental variogram is a plot of the variance between 

point samples of a spatial variable separated by a given distance (lag), against that lag 
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(Figure 3.2). In a typical simple scenario, samples that are close together are more similar 

than samples spaced further apart. Therefore, at small lags variance is low and positive 

spatial autocorrelation is high. As lag increases, variance increases until it plateaus at a 

lag known as the range, beyond which increasing lag has no effect on variance and data 

are no longer spatially autocorrelated. The variance value of the plateau is known as the 

sill, and in a simple scenario it is equal to the total variance in the spatial variable. To 

quantify the shape of the distribution of plotted points in an experimental variogram, a 

variogram model can be fitted. A variogram model describes the relationship between the 

lag and variance, with parameters including range and sill. The range of a variogram 

model is informative for characterising dominant scales of variation in spatial variables 

and interpreting their structuring processes. A short-range variogram model provides a 

good fit to an experimental variogram generated from a spatial variable with small-scale 

autocorrelation, where most of the variation is captured within short separation 

distances. A long-range variogram provides a good fit to an experimental variogram 

generated from a spatial variable with large-scale autocorrelation, where variation is 

spread over larger separation distances (Figure 3.2). 

In natural systems a spatial variable is often structured by multiple processes at once, 

generating nested patterns of autocorrelation and systematic trends, collectively termed 

spatial structures, that can be identified using variogram analysis (Figure 3.2). First, 

trends in the spatial data are modelled using regression methods, and an experimental 

variogram is plotted from the residuals. Then, to identify spatial autocorrelation patterns, 

multiple variogram models can be fitted additively to the experimental variogram of 

residuals. Commonly, not all the variation in data from natural systems can be described 

with parametric variogram models. Interpretation of the data distribution at large lags 

relative to the study spatial extent should therefore be treated with caution and more 

emphasis is placed on modelling the dominant patterns at smaller lags. Another typical 

feature of natural spatial variables is anisotropy. An anisotropic variable exhibits different 

patterns and scales of variation depending on the orientation in which it is sampled. For 

example, sampling the abundance of barnacles using a transect oriented along a shore 

might be expected to generate a larger scale of variation compared to a transect oriented 

down the shore. To characterise variation in anisotropic variables, directional variogram 

analysis is conducted by sampling along specific axes, typically the axis with largest range 

(major axis) and its perpendicular axis (minor axis). 
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Figure 3.2 Interpreting spatial patterns in processes that generate spatial variables using variography. 
Variograms visualise spatial self-similarity, or autocorrelation, in a variable by plotting semivariance (γ) 
against lag, the distance between two samples. As lag increases samples become less similar (higher γ) until 
a plateau (sill) is reached at a distance (range), beyond which sample values are not autocorrelated. Here 
we show three simulated examples of a variable generated with different processes, and their respective 
variograms. Top: a fine-scale process generates a variable that is autocorrelated only over short distances, 
so the range (point and dashed line) is small. Bottom: a broad-scale process generates a variable that is 
autocorrelated over longer distances, producing a variogram with a larger range. Middle: the fine- and 
broad- scale processes have been added together, producing a variable with both short- and long-distance 
autocorrelation, generating a nested variogram with two ranges. 

 

3.3.2.2 Habitat-scale (~35,000 m2) spatial patterns in S. alveolata reef 

emergence, accretion rate and erosion rate 

To study habitat-scale spatial patterns of variation in S. alveolata reef structure we 

conducted variography using the drone-derived digital surface models (DSMs) from 2018 

and 2019. To investigate reef structure independently from trends in the underlying non-

reef substrate, we calculated reef emergence, defined as the height of the DSM surfaces 

above a standardised digital elevation model (DEM) representing the lowest levels in the 

non-reef substrate (Figure 3.3). We used a threshold of emergence to classify DSM pixels 

as reef (≥ 0.15 m) or non-reef substrate (< 0.15 m) within a reef area polygon (36,363 m2) 

digitised from the 2018 orthomosaic. We validated the classification by manually 
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classifying 500 random points on the orthomosaic and interpreting a confusion matrix of 

predicted against observed classes. To study spatial patterns in accretion (positive 

change) and erosion (negative change) of S. alveolata reef we calculated the vertical 

difference between the DSMs from April 2018 and April 2019, to provide accretion and 

erosion rates as positive and negative vertical change per year. 

To characterise spatial variation in habitat-scale S. alveolata reef structure, we modelled 

trends and conducted variography using emergence, accretion rate and erosion rate 

values of the 9140 reef pixels in a random sample of 100,000 pixels in the reef area. Our 

data exploration indicated that emergence, accretion rate and erosion rate had trends 

with shore height and along-shore distance, and were anisotropic with a major axis along 

the shore and minor axis down the shore. To meet the gaussian distribution requirements 

of linear modelling and variography, we transformed the data using ordered quantile 

transformation (Peterson and Cavanaugh, 2020), then modelled trends using ordinary 

least squares linear regression. We conducted variography on the linear model residuals 

along two axes: along the shore (120° from north) and down the shore (30° from north), 

with maximum lags of 250 m and 50 m respectively, approximately two thirds of the 

maximum reef area dimensions, using the gstat package in R (Graler et al., 2016; Pebesma, 

2004; R Core Team, 2020). We fitted an initial variogram model to each experimental 

variogram automatically, then improved the fit by adjusting the model parameters and 

adding a secondary variogram model where appropriate, until a visual good fit was found 

to the experimental variogram (Gringarten and Deutsch, 2001). To investigate whether 

patterns in reef structure were related directly to patterns in the underlying non-reef 

substrate topography we conducted variography using emergence data from 10,000 

random non-reef substrate DSM pixels. 

The trend in mean emergence with shore height explained only a small amount of the 

variation (R2 = 0.043, Table 3.1). Our data exploration showed that the reef comprised 

colonies at all stages of emergence, from the classification threshold of 0.15 m up to an 

emergence limit that was related to shore height. Therefore, shore height appeared to 

represent a limiting factor and so maximum emergence was a better metric for 

characterising habitat structure than a measure of central tendency (Kaiser et al., 1994). 

To examine the relationship between maximum reef emergence and shore height we used 

a sample of 2,000 reef pixels with a minimum point spacing of 1.5 m derived from the 
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variography results, 1.5 m being the dominant range of spatial autocorrelation. We 

modelled the relationship between maximum (99th percentile) reef emergence and DEM 

elevation with linear quantile regression, using the quantreg package in R (Koenker, 

2020). 
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Figure 3.3 Data processing method used to classify habitat-scale digital surface models (DSMs) as reef or 
non-reef substrate. We generated 0.1 m XY resolution DSMs using drone aerial imagery and structure-from-
motion photogrammetry. From the DSM we generated a digital elevation model (DEM) representing the 
ground level at the same resolution by interpolating between the lowest point in each square of a 2 m grid. 
We calculated emergence by subtracting the DEM from the DSM elevation. Finally, within the known reef 
area (Figure 3.5A) we used a binary classification of reef (≥0.15 m emergence) and non-reef substrate 
(<0.15 m emergence). 
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3.3.2.3 Plot-scale (2,500 m2) temporal patterns in reef structure 

To characterise multi-annual structural changes in S. alveolata reef structure, we used 

terrestrial laser scanning to survey a 2,500 m2 plot each autumn and spring from 

September 2014 to October 2019. To track vertical changes in reef emergence through 

time we digitally sampled locations within the plot (n = 454) that had reef presence in at 

least one time point, avoided reef colony edges where lateral accretion and erosion would 

confuse interpretation, and were spatially independent (Figure 3.4). For each time point, 

we first generated a digital elevation model (DEM) representing the lowest levels of the 

non-reef substrate from the 3D point cloud data using a cloth simulation filter 

implemented in CloudCompare (Zhang et al., 2016). The cloth simulation filter is a tool 

developed to distinguish a ground surface from vertical features like trees and buildings 

in airborne laser scanning data (Zhang et al., 2016). To ensure we sampled upper reef 

surfaces and not sides or overhangs, we extracted all points more than 0.2 m above the 

DEM. To improve confidence in elevation measurements we gridded the density of those 

points at 0.1 m XY resolution, retained only the pixels containing at least 3 points, and 

from these points we calculated mean elevation to produce a reef digital surface model 

(DSM). To limit our sampling to central regions of reef colonies and avoid their edges, the 

reef pixels were clustered into contiguous patches with a minimum of 5 pixels and 

buffered inwards by 0.1 m. This gave a final reef mask raster of 0.1 m XY resolution for 

each time point, representing pixels suitable for sampling reef elevation.  

To analyse emergence timeseries’ for individual, independent reef locations, we took a 

stratified random sample of classified reef pixels within the plot with a minimum spacing 

of 1.5 m, based on the results of the habitat-scale spatial analysis. First, we combined the 

reef masks from all time points, giving a single raster of locations with reef presence in at 

least one time point. Next, to ensure spatially stratified sampling, we divided the plot with 

a 2 m XY grid and sampled 5 random reef pixels within each grid cell. We then subsampled 

the reef pixels randomly to one pixel per 2 m grid cell, specifying a minimum spacing of 

1.5 m, producing a sample of 454 independent, spatially stratified pixels that contained 

reef in at least one of the 11 time points over 5 years (Figure 3.4). We generated a common 

DEM interpolated from a 2 m XY resolution minimum elevation grid of the combined 

ground surfaces, and at each sample location and for each time point we calculated 
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emergence as DSM elevation above the common DEM. These emergence values were used 

to plot timeseries’ for each sample location (Figure 3.7). 

To examine common characteristics in temporal changes in reef emergence, we derived 

accretion and emergence metrics from each sample timeseries. We calculated mean and 

maximum annual accretion rate, maximum emergence, and time spent within 80% of 

maximum emergence, which we termed persistence. We then used partitioning around 

medoids (PAM) clustering, a common data clustering method that is robust to outliers 

(Kaufman and Rousseeuw, 1990), to classify sample timeseries’ into two groups with 

similar within-group accretion and emergence metrics using the cluster package in R 

(Maechler et al., 2019).  

Following evidence of multiannual cycles of habitat-scale accretion and erosion (Gruet, 

1986), we expected to observe plot-scale variation in reef emergence over the 5 year 

study period. We hypothesised that due to higher productivity in summer and lower 

growth rates coupled with more destructive wave action in winter, plot-scale emergence 

would be higher in autumn than in spring. We tested this hypothesis using a two fixed-

factor (year and season) permutational analysis of variance (Anderson, 2001) with reef 

emergence as a univariate response. The permutational nature of the test removes the 

need to satisfy normality in the response variable as the routine permutes the raw data 

to generate the null distribution (Anderson, 2001). To ensure a balanced design with no 

missing data and no repeat sampling, we first divided reef sample locations (n = 454) 

randomly and equally among season (2 levels: autumn and spring) and year (5 levels: 

2015-2019) combinations (10 combinations, n = 45). Some reef sample locations 

contained missing data for certain season and year combinations, so we iteratively 

exchanged these reef sample locations among groups until no missing data remained. 

Homogeneity of variance between factor levels was confirmed with Levene’s test (P > 

0.05). Our permutational analysis of variance was based on a Euclidean distance 

similarity matrix of the raw reef emergence data, with 9999 random permutations under 

a reduced model and Type III (partial) sums of squares. Where there was global model 

significance, permutational pairwise tests were used to determine where the differences 

occurred between factor levels.  
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Figure 3.4 Data processing method used to sample reef emergence through time at independent reef 
locations within a 50 x 50 m plot mapped using terrestrial laser scanning at 6-month intervals over 5 years 
(Appendix B2). 1) Example section of 3D point cloud data. 2) We used a cloth simulation filter to generate a 
digital elevation model (DEM) for each time point and retained only points ≥0.2 m above the DEM. 3) We 
generated a digital surface model (DSM, 0.1 m XY resolution) of mean point elevation, then used the DSM to 
generate a mask that removed low point density pixels, isolated pixels, and colony edges. 4) We combined 
the masks from all time points. 5) We used a 2 m grid to generate spatially stratified random points (5 points 
per strata). 6) We randomly selected one point per strata with a minimum spacing of 1.5 m to generate our 
sample point locations. 7) At each sample location we calculated a timeseries of emergence by subtracting 
the elevation of a common digital elevation model representing the ground level from the DSM for each time 
point (Figure 3.7). 
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3.4 Results 

3.4.1 Habitat-scale (~35,000 m2) spatial patterns in S. alveolata 

reef emergence, accretion rate and erosion rate 

We estimated the percentage cover of S. alveolata reef within the 36,363 m2 reef area as 

26.8% or a total coverage of 9,745 m2 based on our binary classification of the 0.1 m XY 

resolution emergence raster into reef or non-reef substrate (Figure 3.5A). We validated 

our classification method at 500 locations and found overall accuracy (correct predictions 

out of total predictions) was 81.2%, and precision (true positives out of total positive 

predictions) was 91.7% and 80.1% for reef and non-reef substrate, respectively.  

Maximum reef emergence (99th percentile) increased down the shore from approximately 

0.2 m at 0 m ordnance datum Newlyn (ODN) to a maximum of 0.5 m above the substrate 

at 2.8 m below ODN (Figure 3.5B). The relationship was described by: 

 

log(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚) =  −0.308(𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡) − 1.551   (1) 

 

Reef emergence was positively spatially autocorrelated up to 1.5 m in both along shore 

and down shore directions, represented by a spatial structure that described 65-70% of 

the variance (Figure 3.5C, Table 3.1). There was a smaller amount of residual positive 

autocorrelation in reef emergence over larger distances along the shore (up to 110 m) 

and down the shore (up to 20 m) (Figure 3.5C, Table 3.1). At larger distances still, the 

variogram indicated additional patterns in spatial dependence of reef emergence 

including cyclicity, but these were not quantified because variogram model fitting 

becomes less reliable at larger distances relative to the study extent. The variogram of 

non-reef substrate emergence showed that the dominant autocorrelation pattern mostly 

occurred over a larger distance of 4.5 m and explained a higher proportion (90%) of the 

variation compared to reef emergence (Table 3.1). A small amount of spatial 

autocorrelation in non-reef substrate emergence was also evident over larger distances 

(up to 50 – 90 m).  

 



54 

 

 

Figure 3.5 A) The foreshore at Llanddulas, Wales, UK. Habitat-scale 3D structure data were analysed within 
a ~35,000 m2 reef area polygon digitised from an aerial imagery orthomosaic. Presence of emergent reef is 
shown at 1 m XY resolution. B) Maximum reef colony emergence increases lower down the shore. The reef 
colonies that we analysed had a minimum emergence of 0.15 m. C) Reef colony emergence was spatially 
autocorrelated over short distances (1.5 m) both along the shore (purple) and down the shore (orange), 
ranges indicated by left-most vertical lines and arrows. There was a secondary autocorrelation structure 
that had a longer range (110 m) in the along shore direction compared to down the shore (20 m), ranges 
shown by right-most vertical lines and arrows. 
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Table 3.1 Spatial structure parameters of reef and non-reef substrate emergence within the ~35,000 m2 reef area, derived from variography. 

Variable  
Trend 

model*  R2  
Direction 

(°)  

  Model 1  Model 2  

Nugget  Model **  
Partial 

Sill  
Practical 

Range (m)  Model **  
Partial 

Sill  
Practical 

Range (m)  

Reef 
emergence  x ~ h  0.043  120  0  Exp  0.7  1.5  Sph  0.3  110  

      30  0  Exp  0.65  1.5  Sph  0.27  20  

                      

Non-reef 
substrate 
emergence  

NA    120  0  Exp  0.9  4.5  Sph  0.1  90  

      30  0  Exp  0.9  4.5  Sph  0.1  50  

  

* x = variable, h = shore height  

** Exp: exponential model, Sph: spherical model  
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At the habitat scale (~35,000 m2), the elevation of S. alveolata reef colonies changed by 

19 ± 82 mm (mean ± 1 sd) between April 2018 and April 2019 (Figure 3.6A). The small 

magnitude of mean elevation change across the total reef area was the result of a balance 

between variable positive and negative changes of individual samples (0.1 m XY 

resolution pixels). A high proportion of reef samples (80%) showed a small positive 

elevation change (accretion, 49 ± 30 mm), with the remaining samples (20%) showing 

larger and more variable negative changes (erosion, -99 ± 113 mm). Both accretion and 

erosion maxima increased towards the lower shore (Figure 3.6A) and showed different 

spatial autocorrelation patterns. Positive spatial autocorrelation in accretion mostly 

occurred within short distances (up to 0.75 – 1.05 m), with a small proportion of positive 

autocorrelation extending over larger distances up to 40-130 m (Figure 3.6B, Table 3.2). 

In contrast, erosion of reef material was only positively spatially autocorrelated up to 

distances of 2.9 – 3.8 m, beyond which the variogram indicated spatial randomness 

(Figure 3.6C, Table 3.2). 
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Figure 3.6 Spatial variation in S. alveolata reef elevation changes from April 2018 to April 2019 within the 
reef area (Figure 3.5A). A) Both positive and negative elevation changes increased towards the lower shore. 
Samples showing positive changes (blue) were greater in number than those with negative change (red), 
but the larger average magnitude of negative changes resulted in little change in overall elevation, shown 
by the boxplot of all samples crossing 0. Grey points represent samples with changes within the alignment 
uncertainty estimate of ±0.03 m. B) Variogram showing spatial autocorrelation scales of positive elevation 
changes (accretion) after accounting for trend (Table 3.2). The majority of spatial autocorrelation is 
explained by a short range (0.75 – 1.05 m) structure (left-most vertical lines and arrows), with a secondary 
structure showing a longer range (130 m) in the alongshore orientation compared to down the shore (30 
m). C) Variogram showing spatial scales of negative elevation changes (erosion) after accounting for trend 
(Table 3.2). Spatial autocorrelation only occurs up to a short range (2.9 – 3.84 m, vertical lines and arrows).
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Table 3.2 Spatial structure parameters of reef accretion (positive elevation change) and erosion (negative elevation change) within the ~35,000 m2 reef area over one year, 
derived from variography 

Variable  Trend model*  R2  Dir  

  Model 1  Model 2  

Nugget  Model **  PSill  
Practical 

Range (m)  Model **  PSill  
Practical 

Range (m)  

Accretion  
x ~ h + h2  

+ d  
0.328  120  0  Exp  0.55  1.05  Sph  0.27  130  

      30  0  Exp  0.55  0.75  Sph  0.06  40  

                      

Erosion  

x ~ h + h2  

+ h3  

  

0.207  120  0  Exp  0.84  3.84  NA      

      30  0  Exp  0.72  2.9  NA      

* x: variable, h: shore height, d: distance along shore  

** Exp: exponential model, Sph: spherical model  
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3.4.2 Plot-scale (2,500 m2) temporal patterns in reef structure 

We validated our sampling strategy for selecting sampling locations for reef emergence 

by checking 100 random pixels classified as reef in each of 3 datasets (total n = 300) with 

corresponding drone aerial imagery (September 2017, April 2018 and April 2019), giving 

a precision for reef of 95%. Within the 2,500 m2 plot, overall reef emergence across all 11 

time points over 5 years was 0.22 ± 0.13 m (mean ± 1 sd). We found scale dependent 

variation, with high variation in emergence at each sample location (colony-scale, n = 454) 

through time and high variation among samples at each time point, but low variation in 

plot-scale emergence through time. The coefficient of variation (mean ± 1 sd) in sample 

location emergence through time was 52 ± 32.3, and per time point was 56.5 ± 3.7, 

whereas the coefficient of variation in plot-scale mean emergence through time was 8.8. 

Timeseries’ of emergence at reef sample locations revealed diverse temporal patterns in 

emergence, accretion, and erosion metrics of colonies, that we classified into two groups 

called fast and slow colonies (Figure 3.7). These two groups clustered moderately well, 

indicated by an average silhouette width of 0.35 on a scale from 0 (poorly clustered) to 1 

(perfectly clustered) (Kaufman and Rousseeuw, 1990). Fast colonies were characterised 

by higher maximum and mean annual accretion, higher maximum emergence and shorter 

persistence (time spent within 80% of their maximum emergence) than slow colonies 

(Figure 3.7, Table 3.3). Visual assessment showed that slow colonies were evenly 

distributed throughout the plot, whereas fast colonies were concentrated in the northern, 

lower-shore half of the plot (Figure 3.8). We found that erosion of reef colonies often 

occurred rapidly in both groups; it was common for emergence to drop to the level of the 

non-reef substrate within 6 months to a year (Figure 3.7).  

There was a significant interaction between ‘year’ and ‘season’ on plot-scale reef 

emergence (F4,440 = 3.48, P = 0.009, Table 3.4) driven entirely by emergence being higher 

in autumn than spring in 2015 (P = 0.001). Across season, there were no differences 

among years in spring emergence, but there were significant differences in autumn, with 

2015, 2016 and 2019 having higher emergence than 2017 and 2018 (P < 0.05, Figure 3.9, 

Table 3.4). 
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Figure 3.7 Colony-scale variation balances out to produce plot-scale stability in S. alveolata reef habitat 
structure over several years. Emergence was measured at 454 stratified random, spatially independent 
sample locations in a 2,500 m2 plot in autumn and spring each year from September 2014 (month 0) to 
October 2019 (month 61). Thin blue lines show individual sample timeseries. Bold blue line and dashed 
lines show the mean ± 1 sd emergence of all samples. Six example sample timeseries’ are highlighted to 
show the diversity of fine-scale dynamics in reef accretion and loss over time, clustered into two groups: 
fast colonies with rapid accretion and short persistence (orange) and slow colonies with slower accretion 
and longer persistence (red). 

 

 

Table 3.3 Average accretion and erosion metrics for two groups of reef colonies identified within the 2,500 
m2 plot 

Colony 

group 

N Maximum 

accretion rate 

(m yr-1) 

Mean accretion 

rate (m yr-1) 

Maximum 

emergence (m) 

Persistence at 80% of 

maximum (yr) 

Fast 128 0.215 0.109 0.438 1.16 

Slow 329 0.089 0.046 0.343 1.54 
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Figure 3.8 2,500 m2 plot showing 0.01 m2 pixels containing S. alveolata reef in at least one of 11 surveys 
over 5 years (grey) and stratified random, spatially independent samples (crosses). Cluster analysis 
identified two groups of colonies based on patterns of topographic change through time. Fast colonies (blue) 
have rapid accretion and short persistence at their maximum emergence above the non-reef substrate, and 
are more prevalent towards the lower shore. Slow colonies (red) have slower accretion and longer 
persistence at their maximum emergence, and are distributed evenly throughout the plot. 

 

 

Figure 3.9 Boxplot of emergence within the 2,500 m2 plot surveyed using terrestrial laser scanning at 
approximately 6 month intervals over 5 years, with median (bar) and mean (open circles) displayed. We 
used the data shown to test for effects of year, season and their interaction on emergence using 
permutational analysis of variance (Table 3.4). The data are balanced samples (n=45) of independent reef 
locations within the plot, with no missing data and no repeat sampling. To maintain a balanced design, we 
did not include data from autumn 2014 in this analysis. 
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Table 3.4 Results of permutational analysis of variance, testing for the effects of year, season and their 
interaction on emergence within the 2,500 m2 plot. Number of permutations = 9999. Significant results (P 
< 0.05) are highlighted in bold. 

Main test with year (5 levels: 2015-2019) and season (2 levels: spring, autumn) as fixed factors 

Source df MS F P 

Year 4 0.035 2.08 0.084 

Season 1 0.071 4.30 0.040 

Year x Season 4 0.058 3.48 0.009 

Residual 440 0.017   

Total 449    

 
 
Pairwise tests of differences in season within year 
 

Year P 

2015 0.001 

2016 0.457 

2017 0.072 

2018 0.695 

2019 0.051 

 
 
Pairwise tests of differences in year within season 
 

   Spring Autumn 

 Year pair P P 

2015  2016 0.162 0.433 

2015  2017 0.121 0.001 

2015  2018 0.935 0.004 

2015  2019 0.774 0.550 

2016  2017 0.951 0.010 

2016  2018 0.128 0.040 

2016  2019 0.256 0.911 

2017  2018 0.093 0.572 

2017  2019 0.202 0.014 

2018  2019 0.707 0.048 
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3.5 Discussion 

Habitat structure strongly dictates ecological function in complex 3D ecosystems. 

Quantifying how 3D habitat structure varies across space and time is therefore a crucial 

step in understanding ecosystem dynamics and guiding their effective management. Here, 

for the first time, we quantified patterns of spatial and temporal variation in 3D habitat 

structure across scales in an ecologically important but understudied Sabellaria alveolata 

biogenic reef habitat. Our results reveal that patterns in reef emergence, accretion rate 

and erosion rate are spatially autocorrelated and highly scale-dependent. In this system, 

reef colonies formed groups of rapidly accreting short-lived colonies and slow accreting 

long-lived colonies, creating dynamic structure at fine spatial (m) and temporal (6 month) 

scales. However, these colony-scale dynamics cancel each other out at larger spatial (50m 

– 1 km) and temporal (5 year) scales, resulting in seemingly stable reef habitat (Figure 

3.7). This habitat steady-state despite the mosaic of small-scale dynamics is akin to other 

biogenic systems where scale-dependent patterns in ecosystem properties have been 

better studied using remote sensing. In tropical forests, disturbance events with varying 

size distribution and return frequency generate a dynamic mosaic of patches at different 

successional stages that balance out to exhibit a stable system at broad spatial and 

temporal scales  (Chambers et al., 2013). Using modern 3D mapping we have quantified 

spatially continuous, cross-scale habitat structure in a biogenic reef, revealing scale-

dependent patterns that indicate parallels in structural dynamics between terrestrial and 

marine biogenic habitats.  

3.5.1 Spatial patterns in biogenic reef structure 

We identified predictable trends in maximum reef emergence, accretion rate and erosion 

rate, that all increased towards the lower shore. Shore height trends are ubiquitous in 

intertidal ecosystems like rocky shores and saltmarshes because numerous biological, 

chemical and physical structuring processes correlate with vertical position (Chappuis et 

al., 2014; Connell, 1972; Pennings and Callaway, 1992). The trends in our data can be 

explained by spatially varying hydrodynamic forces, proposed as the most important 

abiotic structuring factor of S. alveolata reef habitat (Collin et al., 2018; Gruet, 1986; 

Wilson, 1971). Wave forces are predicted to be greatest at the lower shore, with energy 

attenuated as waves travel across the rough reef surface (Bouma et al., 2014; Lowe et al., 
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2005). We suggest that higher wave energy at the lower shore results in more coarse 

sediment being resuspended higher in the water column, enabling faster reef colony 

accretion and higher maximum emergence. Wave energy can also be destructive, 

increasing reef erosion rate towards the lower shore. In addition, longer periods of 

immersion experienced lower on the shore give more time for both reef accretion and 

erosion. 

Interactions between individuals can produce spatially coherent self-organised patterns 

that influence ecosystem-scale processes in many natural systems, including mussel reefs 

(Van De Koppel et al., 2008) and arid vegetation (Klausmeier, 1999). We found evidence 

for self-organisation in S. alveolata reef emergence and accretion rate, that were spatially 

clustered (positively autocorrelated) up to colony scales (1.5 m). Prograding S. alveolata 

reef colonies have characteristic smooth surfaces comprising the openings of dense, 

parallel tubes (Figure 3.1) (Curd et al., 2019; Ventura et al., 2020). To maintain this 

morphology as the colony grows, within-colony accretion rate and emergence must be 

similar among worms. Self-organisation enhances habitat resilience (Guichard et al., 

2003; Q.-X. Liu et al., 2014), and in this system the colony morphology may contribute to 

the remarkable wave-resistance in the friable intertidal structures (Le Cam et al., 2011), 

analogous to massive stony coral morphologies that can dominate wave-exposed subtidal 

tropical reefs (Chappell, 1980).  

Spatial patterns in biogenic reef properties provide insight into the biotic and abiotic 

drivers of ecosystem structuring processes (Aston et al., 2019; Edwards et al., 2017; Ford 

et al., 2020). In our system, reef emergence and accretion rates showed secondary spatial 

clustering at habitat scales (20-40 m down the shore, 110-130 m along the shore), 

whereas erosion rates showed spatial randomness beyond 4 m. Habitat-scale spatial 

clustering in reef emergence and accretion rate may be due to spatial variation in 

resources (e.g., sediment or food quality), environmental conditions (e.g., salinity), biotic 

factors (e.g., recruitment density) or anthropogenic influence (e.g., trampling). 

Interactions between myriad drivers are likely to influence reef structure at various scales 

(Collin et al., 2018). Identification of the relative importance of these factors and how they 

vary in time and space warrants further investigation, and may help explain why S. 

alveolata reef structure is highly variable among sites (Stone et al., 2019). Spatial 
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clustering of erosion rates up to 4 m indicates that erosion mostly occurs as the 

catastrophic collapse of entire S. alveolata colonies and platform sections. The lack of 

larger scale spatial autocorrelation in erosion rates shows that colony collapse is random 

after accounting for shore height trends, suggesting that destructive processes are similar 

horizontally along the shore.  

Modern remote sensing technologies are advancing our ability to describe and 

interrogate spatial patterns in marine reef systems. In intertidal habitats like S. alveolata 

reef, aerial methods can capture a range of ecologically relevant information at high 

resolution across large extents of several km2 (Bajjouk et al., 2020; Collin et al., 2019, 

2018). The importance of 3D ecosystem structure in ecological investigations is 

recognised, and tools to capture and analyse 3D structure in diverse systems including 

subtidal reefs are becoming increasingly powerful and accessible (D’Urban Jackson et al., 

2020; Lepczyk et al., 2021). 

3.5.2 Temporal patterns in biogenic reef structure 

Identifying key scales of variation and their forcing processes has been a persistent 

challenge in ecology (Chave, 2013; Denny et al., 2004; Levin, 1992), especially in marine 

systems beyond the observation capabilities of traditional remote sensing (Lecours et al., 

2015; Wedding et al., 2011). Our study reveals previously undescribed patterns of scale-

dependent spatio-temporal variation in S. alveolata reef structure. We found that 

individual S. alveolata colonies on the scale of metres undergo independent and 

compensatory accretion and erosion cycles, resulting in stability at larger spatial (2,500 

m2) and temporal (5 year) scales. Previous characterisation of S. alveolata reef structural 

dynamics have described multiannual accretion and erosion cycles operating over large 

areas of reef (10s – 100s m) at some sites, and multiannual stability at others (Gruet, 1986; 

Lecornu et al., 2016). While we recorded stability in reef structure over a period of 5 years, 

at decadal time scales the habitat can be transient (Firth et al., 2015). Scale-dependent 

structural dynamism is a feature of other systems like terrestrial forests (Chambers et al., 

2013), and our results indicate that conceptual frameworks from terrestrial landscape 

ecology can be applied to biogenic reef systems. For instance, the stability of a forest 

ecosystem can be modelled as a product of the spatial and temporal scales of disturbance 

events that it experiences (Turner et al., 1993). Applying this concept to our study system, 
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disturbance events (colony collapse) were small in size (up to 4 m) relative to the habitat 

size (~35,000 m2) and disturbance (collapse) intervals were generally longer than 

recovery (accretion to maximum emergence) intervals. As predicted by the conceptual 

model (Turner et al., 1993), we observed stability in the system at the habitat scale. 

We identified two distinct types of reef colonies: “fast” colonies with rapid accretion, high 

maximum emergence, and short lifespan, and “slow” colonies with slower accretion, 

lower maximum emergence and longer lifespan. Accretion rates of “fast” S. alveolata 

colonies in our study (mean 0.109 m yr-1, max 0.215 m yr-1) were comparable to upper 

estimates of 0.105 m yr-1 in Cornwall, UK, and >0.5 m yr-1 in Normandy, France (Gruet, 

1986; Wilson, 1971). These studies documented faster accretion rates in new, small 

colonies and a similar general pattern could be seen in our timeseries’, although variation 

was high and many colonies had incomplete structural cycles within our study period. We 

found new, low emergent colonies accreted rapidly and then accretion slowed as they 

approached a maximum emergence, followed by a period of persistence at the maximum 

emergence and eventual rapid collapse. A similar accretion pattern has been documented 

in oyster (Crassostrea virginica) reefs, with rapid accretion in deeper edges of a reef (8 m 

diameter) while no change was recorded in the shallowest central portions just 2 m away, 

indicating that reef accretion could outpace sea level rise (Rodriguez et al., 2014). This 

fine-scale spatial variation in structural characteristics would be lost at larger 

observational scales, highlighting the need for a multiscale approach when assessing the 

resilience of biogenic reefs to pressures like sea level rise.  

Seasonal patterns of accretion and erosion in S. alveolata reef and their driving processes 

are not well understood. We did not find evidence for a consistent seasonal pattern in reef 

emergence, and while reef emergence measured in autumn showed some variation, 

spring observations were stable over 5 years (Figure 3.9, Table 3.4). However, we did find 

a seasonal difference in one survey year (2015). Temperature and wave energy are two 

dominant seasonally varying factors in intertidal habitats. The habitat is vulnerable to 

severe winter temperatures and damage from winter storms (Crisp, 1964; Firth et al., 

2015). In summer, higher temperatures and increased food availability in summer may 

promote worm productivity that translates to increased accretion rate, but the availability 

of resuspended sediment with low summer wave action may limit accretion rate. 
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Hydrodynamic energy promotes both S. alveolata reef accretion and erosion, so the effects 

of seasonal variation in wave energy are difficult to predict. Higher emergence in the 

autumn of 2015 compared to the spring appeared to be a result of heavy recruitment 

during the summer of that year (TJ-B, pers. obs.), resulting in many new, rapidly accreting 

colonies. Recruitment of pelagic larvae to S. alveolata reefs is through a combination of 

continuous low-level settlement and stochastic heavy settlement events when 

hydrodynamic conditions are favourable (Ayata et al., 2009; Bush et al., 2015; Dubois et 

al., 2007). Sabellariid worms respond to storm damage with increased reproductive 

output in a similar way that some plants respond to fire (Barry, 1989) and S. alveolata 

larvae show high levels of retention within local geographic areas (Bush et al., 2015; 

Dubois et al., 2007). These factors likely result in compensatory self-recruitment to a 

damaged reef, contributing to long term reef persistence.  

3.5.3 Conclusion 

Our findings represent the most comprehensive characterisation of S. alveolata biogenic 

reef habitat structure across spatial and temporal scales to date, expanding our 

understanding of scale-dependent structural dynamics in this complex 3D habitat. We 

found that S. alveolata reef structure is characterised by a mosaic of different colony 

successional states leading to a dynamic landscape at smaller scales (m), while displaying 

relative stability (a steady state) at larger spatial and temporal scales. This phenomenon 

is characteristic of other structurally complex ecosystems like forests and we hypothesise 

could be true for other colonial reef systems, such as subtidal tropical coral reefs. We also 

identified previously undocumented temporal patterns in reef structure, specifically 

distinct groups of “fast and “slow” colonies. The patterns we documented could only be 

detected with high-resolution 3D mapping, demonstrating the enhanced ecological 

insight gained from the adoption of contemporary technologies in modern ecology. Scale-

dependent ecosystem patterns have historically been challenging to study due to 

necessary trade-offs in observation scale, especially in marine systems. By embracing 

modern mapping technologies in ecology, these long-standing constraints can be 

overcome, leading to an improved understanding of ecosystem dynamics in complex 3D 

habitats. 
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4 Mapping temperate reef habitats in high 

energy waters 

4.1 Abstract 

High energy marine regions are understudied and less anthropogenically developed than 

lower energy waters, but host ecologically important habitats including temperate reefs. 

In the marine environment the spatial scale of direct habitat observation is limited, and 

high energy waters present additional logistical challenges and constraints. Semi-

automated predictive habitat mapping is a cost-effective tool to map benthic habitats 

across large extents, but performance is context specific. High resolution environmental 

data used for predictive mapping are often limited to bathymetry, acoustic backscatter 

and their derivatives. However, hydrodynamic energy at the seabed is a critical 

structuring factor within high energy habitats and likely an important predictor of habitat 

composition and spatial patterning. Here, we used a machine learning classification 

approach to map reef substrate and biogenic reef habitat in a tidal energy development 

area, incorporating multiscale bathymetric derivatives and simulated tidally-induced 

seabed shear stress. We mapped reef substrate (four classes: sediment [not reef], stony 

reef [low resemblance], stony reef [medium – high resemblance] and bedrock reef) with 

an overall balanced accuracy (mean ± 95% confidence interval) of 80.7% ± 0.8% and 

potential biogenic Sabellaria spinulosa reef with a balanced accuracy of 77% ± 1%. We 

found that tidally induced mean bed shear stress was the most important predictor 

variable for both models, followed by multiscale ruggedness for the reef substrate model. 

We tested the influence of backscatter derivatives across a subsection of the study area, 

finding low influence for both models. We identify previously unresolved relationships 

between temperate reef spatial distribution, hydrodynamic energy and seabed three-

dimensional structure in energetic waters. Our findings contribute to a better 

understanding of the spatial ecology of high energy marine ecosystems and will inform 

evidence-based decision making for sustainable development, particularly within the 

emerging tidal energy sector.  
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4.2 Introduction 

To understand ecological pattern and process, reliable information about the spatial 

distribution of habitats is essential (Brown et al., 2011; Cogan et al., 2009; Turner, 1989). 

Aerial and satellite remote sensing has revolutionised spatial ecology, providing spatially 

continuous data on a variety of ecologically relevant variables at high resolution across 

broad extents (Kerr and Ostrovsky, 2003; McDermid et al., 2005). Similar information is 

more challenging to collect for the seabed beyond the shallow, clear waters that can be 

observed with optical remote sensing (Lecours et al., 2015). Advances in acoustic remote 

sensing now enable collection of high-resolution (< 1m), spatially continuous seabed 

bathymetry and acoustic reflectivity (commonly referred to as backscatter). However, 

detailed seabed mapping is still costly and inefficient compared to terrestrial remote 

sensing, such that less than 18% of the oceans has depth measurements at 1 km resolution 

or better (Mayer et al., 2018). Other seabed properties, including benthic habitat 

characteristics, are even more challenging to map. Methods for observing seafloor 

habitats and organismal communities are limited to fine to moderate spatial scales (0.01 

m – 1 km) using diver, camera, crewed/uncrewed vehicle, acoustic or physical sampling 

(van Rein et al., 2009). To generate spatially continuous benthic habitat maps over large 

extents, practitioners use statistical approaches to  identify relationships between 

discrete habitat observations and spatially continuous environmental data and 

extrapolate into unobserved locations (Brown et al., 2011; Pittman et al., 2009, 2007; 

Pittman and Brown, 2011; Wilson et al., 2007). 

Temperate reefs are hard-bottom marine habitats between the tropics and the poles, and 

include biodiverse ecosystems that provide billions of dollars in ecosystem goods and 

services (Bennett et al., 2016; Taylor, 1998). Temperate reef substrate may be bedrock or 

stony (geogenic) or derived from organisms (biogenic), both hosting communities of 

sessile and mobile reef-associated species (Bué et al., 2020; Diesing et al., 2009; Holbrook 

et al., 1990). Due to their ecological importance reef habitats are listed in various national 

and international conservation legislation, including Annex 1 of the European 

Commission Habitats Directive (European Commission, 2013). However, a lack of 

information about the distribution and characteristics of reef habitats hampers effective 

ecosystem management (Diesing et al., 2009). Temperate reef habitats are often found in 
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high energy marine waters (Warwick and Uncles, 1980), areas that are challenging and 

costly to operate within compared to lower energy seas and as such they are less 

anthropogenically developed and less well studied (Shields et al., 2011). In response to 

the global demand for low carbon energy, these areas are now of commercial interest to 

the nascent marine renewable energy industry (Roche et al., 2016). To ensure sustainable 

development, there is a growing need for baseline ecosystem information about energetic 

waters. While previous attempts at mapping temperate reefs have shown some success, 

it has proved challenging to distinguish between specific reef types like bedrock and stony 

reef, and between reef and non-reef ground without considerable manual input (Dalkin, 

2008; Eggleton and Meadows, 2013; Plets et al., 2012; Vanstaen and Eggleton, 2011). 

Biogenic temperate reefs are similarly challenging to map, typically requiring manual 

interpretation and digitisation of acoustic information (Jenkins et al., 2018; Lindenbaum 

et al., 2008; Pearce et al., 2014). There is a growing need for repeatable, cost-effective 

habitat mapping in high energy waters, to understand the spatial ecology of these 

understudied ecosystems and to support sustainable management in an evolving 

seascape of offshore activity (Dannheim et al., 2020; Jouffray et al., 2020; Wilding et al., 

2017). 

Bathymetry, backscatter intensity and their derivatives are typically the main, or only 

environmental predictor variables in benthic habitat models beyond shallow, clear 

waters, as few other variables can be recorded at similar level of detail. However, other 

variables can be important in structuring benthic habitats. For example, water chemistry 

and temperature, when modelled at appropriate spatial scales, can be important 

predictors of benthic habitats (Davies and Guinotte, 2011). Hydrodynamic energy at the 

seabed is an important structuring factor for benthic habitats and communities. As well 

as imparting mechanical stress (Gove et al., 2015; Koehl, 1999), water flow controls water 

chemistry (Gutiérrez et al., 2008), particulate food supply (Rosenberg, 1995; Sebens et al., 

1998) and larval dispersal (Cowen and Sponaugle, 2009). Alteration of flow regimes 

affects feeding efficiency, growth rates  and settlement of benthic species that are adapted 

to specific flow conditions (Eckman and Duggins, 1993). Critically, hydrodynamic energy 

affects substrate composition through sediment transport (Shields, 1936), which in turn 

controls benthic community composition and imparts temporal variation within the 

system (Coggan et al., 2012; Warwick and Uncles, 1980). Hydrodynamic energy has 
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proved be an important variable for mapping benthic habitat spatial distribution at 

regional and national scales with resolution of kilometres (Huang et al., 2011; Robinson 

et al., 2011), but it is often overlooked or unavailable for predictive mapping at finer scales 

(Brown et al., 2011; Pearman et al., 2020). The inclusion of simulated wave induced 

seabed energy improved predictive habitat mapping for a wave exposed region in 

temperate southern Australia (Rattray et al., 2015), and it follows that tidally induced 

seabed energy is likely to be an important predictor of high energy habitats in regions 

with fast tidal currents. However, to our knowledge no study has incorporated tidally 

induced energy at the seabed with high-resolution bathymetry for predictive habitat 

mapping in temperate, high tidal energy waters. 

Tidally induced hydrodynamic energy is likely to influence the distribution of geogenic 

and biogenic reefs in different ways. Strong tidal currents erode and transport sediment, 

leaving stable substrates that may be colonised by epibiota to form geogenic reefs. For 

biogenic reefs, the effects of hydrodynamic energy depend on the reef-forming organism.  

Sabellaria spinulosa is a reef-forming annelid that builds aggregations of tubes from 

suspended coarse sediment that support diverse associated communities (Pearce, 2017). 

S. spinulosa reef distribution is likely to be influenced by the availability of resuspended 

sediment as tube-building material, in turn driven by hydrodynamic energy (Davies et al., 

2009; Holt et al., 1998). We used semi-automated predictive mapping, parameterized 

with multibeam derived variables and incorporating simulated hydrodynamic energy 

data, to map previously unresolved potential reef habitats in a marine area of interest for 

tidal energy development. We show that tidally induced bed shear stress is a highly 

important variable for predicting high energy reef habitats. Our findings provide a deeper 

understanding of the relationships between hydrodynamic conditions, seabed 

morphology and reef habitats, with implications for sustainable development of 

understudied, high tidal energy waters.  
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4.3 Method 

4.3.1 Study site 

We mapped potential reef habitats in a 49 km2 area to the west of Sir Ynys Môn (Isle of 

Anglesey), Wales, UK (Figure 4.1B). Our study area included a 35 km2 area leased for tidal 

energy device demonstration, and a surrounding 500 m buffer. Tidal current speeds reach 

3.7 m s-1 and annual mean significant wave height is 1.26 to 1.5 m (Royal Haskoning DHV, 

2019). Water depth within the study area ranges from 3-79 m (Figure 4.1B) and the 

seabed comprises a range of benthic habitats from mobile sediment to stable cobble and 

bedrock colonised by slow growing epifauna (Whitton, 2014). The site is known to 

contain potential reef, but the spatial distribution of different reef types in the area is 

unresolved (MarineSpace, 2019). 

 

 

Figure 4.1 A & B) Location of the study site in north west Wales, UK. C) Bathymetry of the study area showing 
point and transect drop-down video sampling locations, extent of backscatter data and the leased area 
boundary (white). D) Modelled tidally induced mean bed shear stress across the study site. 
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4.3.2 Habitat observations 

We collected seabed video samples within the study site in June and July 2019 using the 

RV Prince Madog (Figure 4.1C, transects), with further samples obtained from a 

commercial ecological survey of the study site (Figure 4.1C, points). Sampling locations 

were spatially well-distributed, captured a range of energy conditions, and targeted areas 

of the study site with visually different bathymetric features. For transect video samples 

we used high-resolution (1080p, 60 frames per second) video with a forward facing (45° 

to the seabed), mechanically stabilised camera (FDR X3000, Sony), with dive lights for 

illumination and parallel lasers for scaling. To record sampling positions, we used an 

ultra-short baseline (USBL) system (EasyTrak Nexus Lite, Applied Acoustics) calibrated 

to a horizontal accuracy of 8 m. We sampled transects by drifting for 1 hour or 1 km within 

an hour either side of slack water, in current speeds of less than 1 kt.  

To extract discrete observation data without introducing multiple operator errors, a 

single operator reviewed and classified the transect video footage. Starting from 1 min 

after the frame started moving steadily on the seabed, we assigned a class for reef 

substrate and a class for potential S. spinulosa reef (Table 4.1) for each 30 s section, with 

classes derived from the Habitats Directive Annex 1 definitions (European Commission, 

2013). We only recorded observations for sections in which the seabed was visible at 

close enough range to confidently assess particle size using the parallel lasers for at least 

50% of the section. We classified reef substrate as sediment (not reef), stony reef (low 

resemblance), stony reef (mid-high resemblance) or bedrock reef (Irving, 2009). While 

we initially classified stony reef into three resemblance classes, there were few high 

resemblance observations, so we combined mid and high resemblance records (Table 

4.1). We classified potential biogenic (Sabellaria spinulosa) reef separately to substrate 

because S. spinulosa can colonise a range of substrates, and initial data exploration 

indicated that the predictor variables we used, mainly geomorphological descriptors, 

were unlikely to distinguish between, stony reef and stony reef colonised by S. spinulosa. 

We classified S. spinulosa observations as not seen, present, or potential reef based on 

percent cover of worm tubes and tube height (Hendrick and Foster-Smith, 2006). As there 

were few observations of potential S. spinulosa reef, low, medium and high resemblance 

observations were combined (Table 4.1). We extracted positions of the video 

observations to within 8 m horizontal accuracy by matching the video timestamps to the 
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USBL timestamps. Data from one transect were discarded due to low positional accuracy. 

We reclassified an additional point video sample dataset obtained from a commercial 

ecological survey of the study site to our classification system based on the percent cover 

of substrates and S. spinulosa reef recorded. These data were derived from drop down 

video sampling of the study area in 2018 and had been analysed for biotope mapping with 

percent cover of species and substrates quantified. We gridded the combined transect and 

point video observations on a 10 m resolution grid, assigning the class with the highest 

rank (Table 4.1) where there were multiple observations in a grid cell, giving a total of 

675 observations (Figure 4.1C). 
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Table 4.1 Classification system for video samples. Each 30 second section of video was assigned a class for 
reef substrate and potential biogenic reef. Distance between laser points = 50 mm 

CLASS QUALIFIER RANK EXAMPLE 
REEF 
SUBSTRATE 

   

SEDIMENT 
(NOT REEF) 

Less than 10% particles of 
64 mm or more. 

1 

 
STONY REEF 
(LOW 
RESEMBLANCE) 

10 – 40% particles of 64 
mm or more. 
Epifauna present. 

2 

 
STONY REEF 
(MID-HIGH 
RESEMBLANCE) 

Over 40 % particles of 64 
mm or more. 
Epifauna present. 

3 

 
BEDROCK REEF Bedrock present 4 

 
POTENTIAL 
BIOGENIC 
REEF 

   

S. SPINULOSA 
NOT SEEN 

No S. spinulosa tubes seen 1 NA 

S. SPINULOSA 
PRESENT 

S. spinulosa tubes present 2 

 
POTENTIAL S. 
SPINULOSA 
REEF 

S. spinulosa colonies of over 
2 cm height or with over 
10% cover 

3 
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4.3.3 Environmental predictor variables 

To predict the spatial distribution of potential reef habitats we used geomorphological 

derivatives from bathymetry data and a measure of seabed energy as environmental 

predictor variables. Bathymetry data (1 m horizontal resolution) were collected using a 

multibeam echo sounder (MBES) for the study site in 2018 during a commercial survey 

(Royal Haskoning DHV, 2019) (Figure 4.1C). We generated geomorphological derivatives 

from the bathymetry data using ArcGIS 10.6 (ESRI) and the Benthic Terrain Modeller v3.0 

plugin (Table 4.2) (Walbridge et al., 2018; Wright et al., 2005). We selected derivatives 

based on their demonstrated predictive power in the literature, and their hypothesised 

predictive power within the context of this study (Lecours et al., 2017b). 

Geomorphological derivatives are typically calculated using a square window with an 

edge length of 3 pixels, but the scale at which they are generated can influence their 

predictive power (Porskamp et al., 2018). Therefore, we generated vector ruggedness 

measure at scales (square window width) of 3, 27 and 81 m, representing uncorrelated 

intervals, and bathymetric position index at scales (circular window diameter) of 50 and 

500 m (Table 4.2). Derivatives were generated from the 1 m resolution bathymetry data 

and then resampled (using mean-aggregation) to 10 m horizontal resolution to match the 

spatial accuracy of the observation data. Multi-collinearity in predictor variables was 

tested and resolved by removing highly colinear derivatives until the variance inflation 

factor for all predictors was below 10 (Dormann et al., 2013; Naimi et al., 2014) (Figure 

4.2). All derivative data were generated across the full extent of the bathymetry data at 

10 m resolution and then cropped to the study area. 
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Table 4.2 Bathymetric and backscatter derivatives used as predictor variables following removal of colinear 
variables. Scale mostly indicates the edge length of a square observation window. For BPI, scale indicates 
the diameter of a focal circle. Derivatives are calculated by operations on matrix or raster format data, for 
details see references in the methods column. 

Derivative Scale (m) Method 

Slope 3 
Planar method 
ArcGIS 10 
https://pro.arcgis.com/en/pro-app/2.8/tool-
reference/3d-analyst/how-slope-works.htm 

Curvature 3 
Standard curvature  
ArcGIS 10  
https://pro.arcgis.com/en/pro-app/2.8/tool-
reference/3d-analyst/how-curvature-works.htm 

Northness 3 

cos(aspect) 
ArcGIS 10 
For aspect see: https://pro.arcgis.com/en/pro-
app/latest/tool-reference/spatial-analyst/how-aspect-
works.htm 

Eastness 3 
sin(aspect) 

ArcGIS 10  

Vector ruggedness measure (VRM) 

3 

Benthic Terrain Modeler v3 for ArcGIS 10 (Sappington 

et al., 2007; Walbridge et al., 2018) 
27 

81 

Bathymetric position index (BPI) 
50 

Benthic Terrain Modeler v3 for ArcGIS 10 (Walbridge et 

al., 2018; Weiss, 2001) 
500 

Backscatter grey level co-occurrence 

matrix mean (GLCM) 
3 

glcm package in R (Haralick et al., 1973; R Core Team, 

2021; Zvoleff, 2020) 

Backscatter position index (BS BPI) 
20 

Benthic Terrain Modeler v3 for ArcGIS 10 (Walbridge et 

al., 2018; Weiss, 2001) 
200 
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Figure 4.2 Correlation matrix of variables included in the full extent predictive models. 

 

To generate a predictor variable of seabed energy, we used a 3D Regional Ocean Modelling 

System hydrodynamic model with a horizontal resolution of 150 m, covering the north-

west Wales region, derived from a well-validated Irish Sea scale model (Ward et al., 2015). 

We calculated mean tidally induced bed shear stress over a typical spring-neap tidal cycle 

(Figure 4.1D). Mean bed shear stress is a good predictor of substrate composition at 

regional scales (Ward et al., 2015) and is likely to have a mechanistic influence on 

substrate and benthic communities. Ocean boundary conditions were taken from the 

TOPEX/POSEIDON global tidal model (TPXO). The model validates well against the 

Holyhead tide gauge harmonic data (Figure 4.3). The 150 m resolution model data were 

resampled using nearest neighbour (no interpolation) to 10 m resolution. As the 

hydrodynamic model incorporated bathymetry, and raw bathymetry within the depth 

range of the study site was not expected to have a mechanistic effect on benthic substrate 

or biogenic reef distribution, raw bathymetry was not included as a predictor variable. 
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High quality backscatter data were not available for the entire study area, but to 

investigate whether the inclusion of backscatter could improve predictive models of high 

energy benthic habitats we conducted a dedicated backscatter survey (SeaBat 7125, 

Reson) for six discrete patches in the area sampled by the camera sled transects, covering 

9.8 km2, 20% of the study area (Figure 4.1C). We collected backscatter data at low vessel 

speed (< 4 kt) with high swath overlap ensuring the entire seabed within the patches was 

insonified at least twice from different angles, and with settings fixed within a patch 

(Lamarche and Lurton, 2018). Backscatter data were processed using industry standard 

software FMGT (QPS) to generate a 1 m horizontal resolution raster. Because 

environmental conditions differed among patches and raw backscatter response was not 

calibrated, local derivatives were generated to provide relative metrics that could be 

analysed across non-overlapping patches (Table 4.2). Backscatter derivatives were 

resampled to 10 m resolution and collinear variables were removed.  
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Figure 4.3 Our hydrodynamic model validates well against Holyhead tidal gauge harmonic data in A) 
amplitude, B) phase and C) elevation. Tidal elevation was processed in Python using ttide_py 
(https://github.com/moflaher/ttide_py) for tidal analysis and numpy to calculate r-squared values. 
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4.3.4 Classification model and predictive mapping 

For classification and predictive mapping of reef substrate and potential biogenic reef we 

used Random Forests, an ensemble machine learning algorithm based on bootstrap 

aggregated classification trees (Breiman, 2001; Cutler et al., 2007), that performs 

consistently well for benthic habitat mapping in a range of contexts (Mitchell et al., 2018; 

Wicaksono et al., 2019). The approach has no assumptions of data distribution, making it 

a suitable choice given the characteristics of our sampling design and data. We 

implemented the algorithm using the randomForest and caret packages in R (Kuhn, 2008; 

Liaw and Wiener, 2002; R Core Team, 2021). We investigated the alternative classifier 

XGBoost, a tree-based algorithm that employs gradient boosting (Chen et al., 2018), but 

found that it gave no performance improvement while being less interpretable and more 

computationally demanding as it requires extensive tuning of several hyperparameters. 

To assess model performance we used a repeated modelling and cross-validation 

approach (Mitchell et al., 2018). We generated 25 training and test sets (7:3 ratio) from 

bootstrap samples of our observation data with replacement. We used each set to train 

and test a random forest classification model with 1000 trees and 3 variables tested at 

each split, hyperparameters that were defined by a preliminary tuning stage. We 

calculated average estimated performance metrics from cross validation of each of the 

model runs. We used each model run to predict the spatial distribution of benthic classes 

in the study area and produced maps representing the most frequent class predicted for 

each pixel from all model runs. We mapped spatially explicit uncertainty as confidence 

maps. Confidence for each pixel was quantified by multiplying the proportion of the most 

common predicted class from all model runs with the average probability of the most 

common class (Mitchell et al., 2018). To assess the influence of backscatter derivatives on 

model performance, we ran models with and without backscatter derivatives as predictor 

variables for the extent of the backscatter data. 

To assess the performance of a predictive mapping model, an error matrix and a selection 

of metrics should be considered in the context of the aims of the model and the user’s 

interests (Foody, 2002; Olofsson et al., 2014). The error matrix documents the predicted 

and observed classes of the test samples, giving an estimate of the model performance for 

new, unknown observations. We generated a selection of standard and recommended 

performance metrics from the error matrix (Foody, 2002; Mitchell et al., 2018; Olofsson 
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et al., 2014; Pontius and Millones, 2011). No single measure can fully describe 

performance of a classification model, but here we present balanced accuracy as an 

overall measure that accounts for imbalance in class prevalence (Brodersen et al., 2010). 

For consistency with other studies we also present overall accuracy as the proportion of 

correct predictions out of total predictions, and Cohen’s kappa coefficient (Cohen, 1960), 

although their use has been discouraged (Brodersen et al., 2010; Foody, 2020; Pontius 

and Millones, 2011). To give context to the overall accuracy value, the no information rate 

is provided, equal to the proportion of the most prevalent class and therefore being the 

accuracy value that would be achieved by predicting all observations as one class. User’s 

and producer’s accuracies provide class-wise insight. The user’s accuracy estimates the 

reliability of the map for a user, describing the proportion of the predictions of a class that 

were actually observed to be that class. The producer’s accuracy, also known as 

sensitivity, or true positive rate, estimates the ability of a model to correctly map the land- 

or seascape, describing the proportion of known observations of a particular class that 

were correctly predicted as that class. The complement of sensitivity is specificity. 

Specificity, or true negative rate, describes how many observations that were known to 

not be a class were correctly predicted to not be that class. Finally, we present quantity 

disagreement and allocation disagreement (Pontius and Millones, 2011). These measures 

provide information about the way in which the observations and predictions differ. High 

quantity disagreement indicates large differences in class prevalence while a high 

allocation disagreement indicates a large proportion of misclassifications. To examine 

whether inclusion of backscatter derivatives improved the substrate and S. spinulosa 

predictive models, we used Mann-Whitney U tests to test for differences in class-wise and 

overall balanced accuracy, sensitivity (producer’s accuracy), specificity and user’s 

accuracy of model runs (n = 25) with and without backscatter derivatives, using alpha of 

0.05.  
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Figure 4.4 A) Predicted reef substrate map with visually identified misclassified areas masked out. B) 
Confidence map for substrate, calculated by multiplying the frequency of the most commonly predicted 
class with the average probability of the most common class. C) Predicted Sabellaria spinulosa presence and 
potential reef with D) associated confidence map. 
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4.4 Results 

4.4.1 Reef substrate 

We predicted the spatial distribution of reef substrate in the study area by classifying the 

substrate into four classes: sediment (not reef), stony reef (low resemblance), stony reef 

(mid-high resemblance) and bedrock reef (Figure 4.4A). The model performed well, with 

most observations correctly predicted (Table 4.3), reflected in the overall balanced 

accuracy (mean ± 95% CI) of 80.7% ± 0.8% (Table 4.4). Producer’s and user’s accuracies 

were higher in sediment and stony reef (mid-high resemblance) compared to stony reef 

(low resemblance) and bedrock.  The observed and predicted classes differed due to 

misclassification (allocation disagreement = 23.7% ± 1.2%), more than due to differences 

in class prevalence (quantity disagreement = 4.6 % ± 0.9%). The error matrix showed that 

the majority of misclassifications were in the classes most similar to the target class 

(Table 4.3). For example, sediment was mostly misclassified as stony reef (low 

resemblance) and rarely as bedrock. We identified visually apparent misclassifications 

and masked these out on the final predictive map (Figure 4.4A).   

The most important variable for predicting reef substrate classes in the study area was 

mean bed shear stress, followed by vector ruggedness measure at multiple scales (Figure 

4.5A). Partial dependence plots of the three most important variables showed that areas 

with low mean bed shear stress (up to approximately 2.5 Nm-2) and low ruggedness at 

multiple scales were more likely to be classified as sediment or stony reef (low 

resemblance), and less likely to be classified as bedrock (Figure 4.5B-D). Areas with high 

bed shear stress and moderate to high fine-scale (3 m window) ruggedness were less 

likely to be classified as sediment. The confidence map showed that areas of sediment and 

stony reef (mid to high resemblance) were predicted with the most consistency among 

model runs (Figure 4.4B). Less consistency was seen at transition zones between different 

classes and areas where a mixture of classes was predicted in a small area. 
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Table 4.3 Error matrix of a model to predict reef susbtrates. Cross validation of each bootstrap model run 
(n = 25) was used to generate an error matrix normalised by the number of test observations in each class. 
The normalised values from all error matrices are summarised here as mean ± 95% confidence interval. 
True positives are highlighted in grey 

  Observed 

  Sediment Stony reef (l) Stony reef (m-h) Bedrock reef 

Pr
ed

ic
te

d 

Sediment 0.75 ± 0.026 0.174 ± 0.023 0.009 ± 0.006 0.004 ± 0.004 

Stony reef (l) 0.215 ± 0.023 0.66 ± 0.02 0.144 ± 0.021 0.145 ± 0.019 

Stony reef (m-h) 0.011 ± 0.005 0.103 ± 0.019 0.769 ± 0.023 0.189 ± 0.028 

Bedrock reef 0.025 ± 0.009 0.062 ± 0.011 0.077 ± 0.014 0.662 ± 0.03 

 

 

Table 4.4 Performance metrics for the reef substrate model. Values calculated from the error matrices from 
each bootstrap model run cross validation are summarised here as mean ± 95% confidence interval. 

 
Overall Sediment Stony reef (l) Stony reef (m-h) Bedrock reef 

Total observations 202 55 59 59 29 

User's accuracy 0.718 ± 0.012 0.794 ± 0.021 0.616 ± 0.018 0.791 ± 0.02 0.672 ± 0.023 

Producer's accuracy 
/ Sensitivity 0.71 ± 0.013 0.75 ± 0.026 0.66 ± 0.02 0.769 ± 0.023 0.662 ± 0.03 

Specificity 0.903 ± 0.004 0.925 ± 0.01 0.829 ± 0.013 0.915 ± 0.009 0.945 ± 0.006 

Quantity 
disagreement 0.046 ± 0.009 0.027 ± 0.008 0.029 ± 0.009 0.02 ± 0.006 0.017 ± 0.004 

Allocation 
disagreement 0.237 ± 0.012 0.095 ± 0.011 0.192 ± 0.009 0.108 ± 0.012 0.079 ± 0.006 

Balanced accuracy 0.807 ± 0.008 
    

Accuracy 0.717 ± 0.012 
    

Kappa 0.614 ± 0.017 
    

No information rate 0.292 ± 0 
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Figure 4.5 A) Relative importance of predictor variables in the reef substrate model. B) Partial dependence 
plots for the three variables with highest importance. The plots visualise the response of the model to an 
individual variable. The plots visualise the influence of each variable on the likelihood that an observation 
is predicted to be each of four classes. For example, observations with low mean bed shear stress are less 
likely to be classified as bedrock reef and more likely to be classified as sediment or stony reef (low 
resemblance). 

 

4.4.2 Potential Sabellaria spinulosa biogenic reef 

Our classification model predicted the spatial distribution of three classes for Sabellaria 

spinulosa: not seen, present, and potential reef (Figure 4.4C). The model predicted most 

observations correctly and had an overall balanced accuracy of 77% ± 1%, indicating good 

performance (Table 4.5, Table 4.6). The high accuracy reported appeared to be strongly 

influenced by the model’s ability to correctly predict the “not seen” class, which 

represented the highest proportion of observations. Our model accuracy was higher than 

the no information rate, indicating that it provided useful additional information (Table 

4.6). The “potential reef” class had a low producer’s accuracy (47.2% ± 3.4%) but higher 

user’s accuracy (67.6% ± 3.7%) (Table 4.6), indicating that while not all areas of potential 

reef were mapped, the areas that were mapped were likely to be correct. Potential reef 
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had a high specificity (95.1% ± 0.7%), indicating that most non-reef observations were 

correctly mapped (Table 4.6).  

Mean bed shear stress was the most important variable for predicting potential S. 

spinulosa reef, with the remaining variables having much lower importance (Figure 4.6A). 

The partial dependence plot for the effect of mean bed shear stress on class predictions 

showed that the potential S. spinulosa reef class was most likely to be predicted at very 

low (< 1.5 Nm-2) and moderate (approx. 2.4 and 2.9 Nm-2) mean bed shear stress, with 

low likelihood of prediction above 3 Nm-2 (Figure 4.6B). Inspection of the spatial 

prediction shows that S. spinulosa species presence observations were predicted to 

occupy a band approximately following the 2.5 Nm-2 mean bed shear stress contour, in an 

area predicted to be a mixture of stony reef and sediment substrates (Figure 4.4C). The 

model predicted a low likelihood of S. spinulosa reef in the highest energy areas in the 

centre of the study area with high confidence, an area that was dominated by bedrock and 

stony reef (mid-high resemblance) (Figure 4.4C & D). Potential reef was predicted to be 

found in the north west and south west of the study area, and in denser patches in the east 

and south east of the study area. However, we did not have any observations from the 

shallow eastern edge so these results should be considered with caution. 

 

Table 4.5 Error matrix of the model predicting S. spinulosa presence and potential reef. Cross validation of 
each bootstrap model run (n = 25) was used to generate an error matrix normalised by the number of test 
observations in each class. The normalised values from all error matrices are summarised here as mean ± 
95% confidence interval. True positives are highlighted in grey. 

 

  Observed 

  
Not reef Present Reef 

Pr
ed

ic
te

d Not reef 0.941 ± 0.007 0.257 ± 0.028 0.247 ± 0.023 

Present 0.043 ± 0.005 0.606 ± 0.023 0.281 ± 0.027 

Reef 0.015 ± 0.004 0.137 ± 0.018 0.472 ± 0.034 
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Table 4.6 Performance metrics for the potential S. spinulosa reef model. Values calculated from the error 
matrices from each bootstrap model run cross validation are summarised here as mean ± 95% confidence 
interval. 

 
Overall Not seen Present Potential reef 

Total observations 206 123 47 36 

User's accuracy 0.725 ± 0.017 0.847 ± 0.009 0.651 ± 0.022 0.676 ± 0.037 

Producer's accuracy / 
Sensitivity 0.673 ± 0.015 0.941 ± 0.007 0.606 ± 0.023 0.472 ± 0.034 

Specificity 0.867 ± 0.006 0.747 ± 0.018 0.903 ± 0.008 0.951 ± 0.007 

Quantity disagreement 0.07 ± 0.008 0.067 ± 0.008 0.02 ± 0.006 0.052 ± 0.008 

Allocation 
disagreement 0.148 ± 0.011 0.07 ± 0.008 0.144 ± 0.01 0.081 ± 0.011 

Balanced accuracy 0.77 ± 0.01 
   

Accuracy 0.783 ± 0.01 
   

Kappa 0.593 ± 0.02 
   

No information rate 0.597 ± 0 
   

 

 

Figure 4.6 A) Relative importance of predictor variables in the potential S. spinulosa reef model. B) Partial 
dependence plots for mean bed shear stress, the variable with highest importance. 
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4.4.3 The influence of backscatter 

To investigate the influence of backscatter derivatives on model performance we 

compared models with and without backscatter derivatives for the spatial extent of 

backscatter data (Figure 4.1C). We found a low influence of backscatter derivatives on 

model performance that varied with class and performance metric. For the model 

predicting reef substrate, backscatter derivatives had moderate to low importance 

(Figure 4.7). There were some significant differences in class-wise performance metric 

medians, but differences were limited to 3 percentage points (Table 4.7) and there was 

no significant difference in overall metrics. 

In the model predicting S. spinulosa distribution, backscatter grey level co-occurrence 

matrix (GLCM) mean had the second highest importance after mean bed shear stress 

(Figure 4.7). However, the only significant difference in model performance metrics 

between the models with and without backscatter derivates was in the sensitivity of the 

“present” class, in which the median of the model excluding backscatter derivatives was 

higher by 6.6 percentage points (Table 4.7). 
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Figure 4.7 Variable importance plots for models of reef substrate and Sabellaria spinulosa presence and potential reef, with and without backscatter derivatives 
(underlined) included 
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Table 4.7 Results of Mann-Whitney U tests comparing performance metrics of predictive models that excluded (BS -) and included backscatter derivatives (BS +). 
Significant differences are indicated in bold. 

Substrate                 

  Sediment Stony reef (l) Stony reef (m-h) Bedrock reef Overall 

Metric BS Median U P Median U P Median U P Median U P Median U P 

Sensitivity 
- 0.730 428.5 0.023 0.694 306 0.907 0.804 432.5 0.019 0.792 217 0.062 0.745 325 0.818 

+ 0.757   0.694   0.804   0.750   0.739   

Specificity 
- 0.930 304.5 0.884 0.846 413.5 0.049 0.918 287 0.626 0.965 393.5 0.113 0.911 369 0.280 

+ 0.938   0.855   0.918   0.972   0.913   

User’s 
accuracy 

- 0.757 331 0.727 0.640 415.5 0.047 0.831 295 0.741 0.769 358 0.382 0.753 361 0.352 

+ 0.788   0.661   0.825   0.792   0.758   

Balanced 
accuracy 

- 0.836 415.5 0.047 0.769 334.5 0.677 0.852 400 0.091 0.871 232 0.120 0.828 335 0.672 

+ 0.855   0.780   0.865   0.857   0.826   

                 
Sabellaria spinulosa               
  Not seen Present Potential reef Overall    

Metric BS Median U P Median U P Median U P Median U P    

Sensitivity 
- 0.922 363.5 0.323 0.733 160 0.003 0.516 298 0.784 0.717 244.5 0.190    
+ 0.933   0.667   0.484   0.706   

   

Specificity 
- 0.882 222 0.079 0.851 390.5 0.131 0.948 238 0.148 0.890 245 0.195    
+ 0.855   0.860   0.941   0.890   

   
User’s 

accuracy 
- 0.900 228 0.103 0.642 317 0.938 0.690 254.5 0.264 0.750 248 0.216    
+ 0.885   0.640   0.682   0.729   

   
Balanced 
accuracy 

- 0.896 272 0.438 0.791 215.5 0.061 0.737 282.5 0.567 0.807 241 0.170    
+ 0.888   0.767   0.717   0.798   
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4.5 Discussion 

We used a machine learning approach to predict the spatial distribution of previously 

unresolved potential temperate reef habitats in a high tidal energy marine region, finding 

that hydrodynamic energy at the seabed was the most important predictor of potential 

reef habitats. Multiscale bathymetric derivatives were also important for predicting reef 

substrate, whereas backscatter derivatives had low influence on model performance 

when included. 

Mean tidally induced bed shear stress was the most important variable in predictive 

models for both reef substrate and potential Sabellaria spinulosa biogenic reef. Our results 

support findings from wave exposed coastal regions (Porskamp et al., 2018; Rattray et al., 

2015), showing that hydrodynamic energy is an important predictor of reef habitats in 

high energy waters. After bed shear stress, ruggedness calculated at three scales (9 m, 27 

m and 81 m) were the next most important variables for predicting reef substrate. These 

results support an increasingly recognised need to include predictor variables across 

scales for benthic habitat mapping (Lecours et al., 2015; Porskamp et al., 2018). As with 

bathymetric indices, the ability of bed shear stress to structure and predict benthic 

habitats and communities is likely to differ across spatial scales. Variation in water flow 

influences species distribution by controlling proximal factors across scales. For instance, 

suspended food availability is influenced by topographically driven turbulence at the 

centimetre scale (Prado et al., 2020), and by oceanographic processes like upwelling at 

the kilometre scale (Navarrete et al., 2005). Hydrodynamic energy information with 

metre or finer resolution across regional extents would enhance the performance of fine-

scale habitat mapping and marine species distribution modelling to better understand 

patterns and processes at organism-centric scales. Unlike bathymetry and backscatter 

that are relatively stable through time, hydrodynamic conditions are highly variable, 

making simulating and validating them at fine spatial scales logistically and 

computationally challenging with current technology. 

Backscatter intensity derivatives had limited impact on model performance, likely for 

several reasons. First, the surficial substrates we observed by camera may represent 

veneers over different underlying substrates, adding variability to the acoustic reflectivity 

of substrates with similar appearance (Lucieer et al., 2013). Second, we were only able to 
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capture high quality backscatter data for discrete patches within the study area due to the 

added time and calmer sea conditions required for collection of high-quality backscatter 

data compared to a purely bathymetric survey (Lamarche and Lurton, 2018). Backscatter 

data can be valuable for seabed substrate discrimination, particularly for sediments 

(Lucieer et al., 2018b). However, a lack of standardisation in data collection and 

processing protocols limits repeatability in backscatter data (Lamarche and Lurton, 2018; 

Lucieer et al., 2018b), and presents challenges in combining data from different surveys 

(Lacharité et al., 2018; Misiuk et al., 2020). For our aims of predicting the spatial 

distribution of reef habitats, our results indicated that the lack of full-coverage, high 

quality backscatter data was not a substantial limitation on model performance. 

Accuracy metrics are useful for assessing the performance and usefulness of a model for 

a specific application but should not be used in isolation to compare different models and 

studies (Bennett et al., 2013; Mitchell et al., 2018). The performance of benthic habitat 

mapping varies with decisions made throughout planning, data collection and analysis, 

leading to a lack of standardisation (Strong, 2020). For instance, choices in model 

framework, scale and choice of environmental variables, the number of observation 

classes used and whether to use a geomorphic or biological basis to classes, all affect 

different aspects of the resulting map product (Ierodiaconou et al., 2018; Porskamp et al., 

2018; Smith et al., 2015). A predicted map should therefore be considered along with its 

error matrix, several performance metrics and spatially explicit uncertainty estimates in 

a case-by-case basis to determine its suitability for a particular user and purpose (Foody, 

2020, 2002). Our model performance (balanced accuracy of 81-84%) was sufficient to 

provide useful information about the spatial distribution of potential temperate reef 

habitats in our study site, and was comparable to other studies with similar contexts and 

model frameworks, having overall accuracies of 81-93% (Haggarty and Yamanaka, 2018), 

and 69.7% (Porskamp et al., 2018). Improvements could be made to the modelling 

approach we used. In particular, Random Forests are sensitive to class imbalance which 

was present in our data (Table 4.4, Table 4.6). Sampling methods including up-sampling 

minority classes, down-sampling majority classes or hybrid methods like synthetic 

minority over sampling (SMOTE) can be incorporated to conteract the influence of class 

imbalance (Chawla et al., 2002; Kuhn and Johnson, 2013). Alternatively, a different model 

algorithm that is more robust to class imbalance like gradient boosting may show better 



98 

 

performance (Lawrence et al., 2004), although preliminary tests with the XGBoost 

algorithm (Chen et al., 2018) did not improve our results. Our results demonstrate that 

predictive mapping using machine learning is a valuable tool to support mapping of stony 

and biogenic reef habitats in high tidal energy temperate seas.  

Misclassifications were identified both in the error matrices and through manual 

inspection of the generated predicted maps. Most misclassifications were in classes most 

similar to the target class, which is to be expected with a classification system that maps 

a continuously varying natural environment as discrete categories (Foody, 2002; Wang, 

1990). Misclassification of sediment wave bedforms as bedrock were visually identified 

and can largely be explained by a paucity of observations in these areas. As the 

classification algorithm can only learn from the training data, with no rugged sediment 

observations in the training data, rugged ground was most likely to be predicted as 

bedrock. This suggests that semi-automated and manual interpretation mapping methods 

are complementary and the use of multiple methods will ultimately improve the quality 

of benthic habitat maps (Diesing et al., 2014). Other sources of uncertainty included the 

limited field of view of video observations (approx. 1 x 1 m) relative to the pixel size of 

the final map (10 x 10 m), and the potential for the observed substrate (e.g., sediment) to 

be a veneer over another substrate (e.g., bedrock or biogenic reef). This is a particular 

concern in areas with strong tidal currents where high volumes of sediment are 

periodically transported and deposited during a tidal cycle and a single observation in 

time cannot capture such transience.  

Our predictive model for Sabellaria spinulosa distribution was largely driven by the 

singular important variable of bed shear stress. S. spinulosa presence and reef were not 

predicted to occur in the areas with highest energy, suggesting that bed shear stress was 

a limiting factor for the species above ~3 Nm-2. Higher flow rates may present barriers to 

larval settlement, tube building or feeding for the species, but there is little existing 

information on its environmental limits (Davies et al., 2009). Bathymetric and backscatter 

predictor variables had low importance, suggesting that they were insufficient to explain 

the spatial variation in S. spinulosa distribution. S. spinulosa is difficult to detect using 

multibeam bathymetry acoustic data and expert interpretation of higher resolution side 

scan sonar data is recommended to locate potential reefs (Limpenny et al., 2010). 
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Although our original acoustic data resolution was 1 m, it may have still been too coarse 

to distinguish S. spinulosa reef morphology in an area dominated by stony reef, especially 

with a relatively low number of positive observations of the species or reef presence to 

train the model. Sabellariid reefs are dynamic in both space and time in terms of their 

emergence, density and patchiness (Jackson-Bué et al., 2021; Jenkins et al., 2018; Pearce 

et al., 2014), and can survive periods of burial due to sediment transport (Hendrick et al., 

2016). This presents further challenges in both detecting reef habitats and identifying its 

environmental niche with a limited temporal resolution. Observations through time are 

needed for an improved understanding of the environmental conditions suitable for S. 

spinulosa reef habitat development. 

This study supports the use of predictive mapping as an efficient and repeatable tool for 

ecosystem management in logistically challenging environments like high tidal energy 

waters. These traditionally less anthropogenically developed and understudied regions 

are seeing novel industrial interest from the nascent marine renewable energy industry, 

generating demand for cost effective means to gather baseline ecosystem information 

(Shields et al., 2011; Wilding et al., 2017). We found that tidally-induced seabed shear 

stress was a powerful variable for predicting reef habitats in high tidal energy temperate 

seas, and highlighted the importance of multiscale bathymetric indices for benthic habitat 

mapping. Our results will contribute to a better understanding of the spatial ecology of 

temperate reef ecosystems and will inform evidence-based decision making for 

ecosystem management in high energy marine areas. 
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5 General discussion 

5.1 Overview 

We are entering a new era in spatial ecology. Contemporary advances in tools and 

techniques for observing ecosystems present unprecedented opportunities for 

investigating patterns and processes in new ways, across novel scales and in challenging 

environments. In this thesis, I examined some of the most powerful tools and applications 

for high-resolution three-dimensional (3D) ecosystem mapping currently available to 

ecologists, focussing their application within temperate reef habitats. In chapter 2 I 

reviewed and tested the potential of modern 3D mapping tools for field ecology in various 

systems and scales. In chapter 3 I applied those tools to examine cross-scale structural 

dynamics in a complex biogenic reef habitat. In chapter 4 I integrated acoustic 3D 

mapping with hydrodynamic information to predict previously unresolved spatial 

patterns in subtidal reef habitats. Through the course of these studies many lessons were 

learned about the practicalities, opportunities, and limitations of using modern remote 

sensing tools to ask ecological questions. 

The aims and objectives of the thesis were mostly met, although challenges were 

encountered and further work would be needed to explore questions that arose though 

the course of the study. My first aim was to assess the performance and potential 

applications of contemporary and emerging tools for investigating 3D ecosystem 

structure to advance understanding of patterns and processes in marine and coastal 

ecology. I reviewed state-of-the-art technological solutions for 3D mapping in ecology. My 

review was timely and novel as the technologies examined had only recently emerged as 

accessible field methods for non-specialists. Due to the extremely rapid pace of innovation 

in the 3D reality capture and geospatial technology sectors, the technologies I focussed on 

could now be considered established rather than emerging, and some of the barriers I 

identified like a lack of awareness of methods are already being overcome. An updated 

review of the field will be necessary in the next few years to help field ecologists stay up 

to date with technology. As methods and technologies advance, it is critical to maintain 

rigorous testing of their capabilities and limitations, and the uncertainty in the data they 
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generate in specific contexts. The findings from my tests of the accuracy of 3D models 

generated by different technologies will therefore remain relevant and informative going 

forward. My second aim was to characterise patterns of spatial and temporal variation in 

the 3D structure of temperate intertidal biogenic reef built by Sabellaria alveolata. 

Achieving this aim benefitted from having a relatively long period of data collection (5 

yrs) and having access to state-of-the-art 3D mapping technologies. My findings indicated 

that a still longer timeseries of high-resolution 3D data could provide a more complete 

understanding of S. alveolata reef structural dynamics by capturing more complete cycles 

of colony initiation, accretion and erosion. Further work would also be needed to identify 

the environmental and biological drivers behind structural variation in the habitat. My 

third aim was to predict the spatial distribution of temperate reef habitats in a high energy 

marine area, using information about 3D ecosystem structure. I had success in predicting 

potential geogenic reef substrates, but potential biogenic reef distribution was more 

challenging to predict. I discussed limitations of the study and suggested methodological 

improvements that could be incorporated into further work to improve both the 

performance of the models and the confidence in the model predictions. 

The scope and scale of spatio-temporal ecological investigation is rapidly expanding with 

the emergence of new capabilities in observation and analysis, paving the way for step 

changes in our understanding of natural systems. This thesis highlights the huge potential 

for 3D mapping in ecological investigation and provides an accessible demonstration of 

the advanced insights that can be gained from its adoption as part of the modern 

ecologist’s toolbox. In this section I discuss the relevance of my findings in the context of 

key themes that emerge from the collective works. I highlight important limitations of the 

methods used and consider improvements and extensions to the work completed. Finally, 

I discuss future research priorities, opportunities and challenges for the use of 3D 

ecosystem mapping in ecology and environmental management. 

5.2 New insight from 3D mapping of ecosystems 

The findings of the individual chapters of this thesis are relevant to diverse research 

avenues, but two major themes run through the collective works. First, the work 

demonstrates that emerging remote sensing tools are making recording and analysing 3D 

structure practical and accessible for field ecologists. The data products have a broad 
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range of applications, from enhanced observation to overcoming long-standing 

technological barriers to examining fundamental ecological questions. Second, my 

findings highlight that the scale of observations and analyses have important effects on 

the patterns detected, with knock-on implications for interpretation of results and 

subsequent evidence-based decision making. Cross-scale data collection and analysis 

mitigates bias in observation scale and advances our understanding of scale-dependent 

patterns and processes in ecosystems. 

5.2.1 Recording and analysing 3D structure 

Organisms are 3D entities that inhabit 3D ecosystem space. An organism’s physical 

structure, or morphology, provides information about its evolutionary and 

developmental history, while habitat structure provides information about 

environmental conditions, resource availability and organism-environment interactions. 

Recording and analysing structure, therefore, forms an important component of many 

studies in ecology and evolution. However, measuring and analysing complex 3D 

structure has traditionally been challenging, and is commonly simplified to metrics that 

can be more easily handled (Reichert et al., 2017). For example, a typical model system 

may include organisms with size represented by length, inhabiting a landscape 

represented as a 2D patch-mosaic. This simplification of organisms and ecosystem 

structure is necessary for analysis within established frameworks, but may be limiting 

our understanding of ecosystem functioning and interactions (Lepczyk et al., 2021). With 

the ability to measure and record organisms and ecosystems in 3D, novel analyses can be 

explored, potentially revealing new or advanced insight (Kedron et al., 2019). 

In chapter 2 I found that 3D mapping could generate digital 3D ecosystem reconstructions 

with millimetre-scale resolution and accuracy. By testing tools in various habitats and 

quantifying their performance, the findings help to address a key barrier to widespread 

adoption of 3D mapping in field ecology, the question of quantifying the accuracy of 

models generated using structure-from-motion photogrammetry. The algorithms used 

for structure-from-motion photogrammetry are complex, and uncertainty can propagate 

through the data collection and processing pipeline (Clapuyt et al., 2016). It is important, 

therefore, to test and validate the method in a variety of situations relevant to the field. 

My findings complement those of other researchers testing 3D mapping methods in 
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different contexts. My results of structure-from-motion accuracies of 4-56 mm agree with 

previous studies testing in-air structure-from-motion reporting a range of accuracies 

from millimetres to decimetres, although context differences prevent direct comparison. 

Accuracy in these models is influenced by methodological factors including equipment 

specification (Clapuyt et al., 2016), observation distance (James and Robson, 2012), 

ground control point configuration and quality (Sanz-Ablanedo et al., 2018) and 

processing decisions (James et al., 2017a). Capturing underwater ecosystem structure 

using structure-from-motion photogrammetry comes with additional sources of error 

including varying optical and ambient light conditions, refraction at the air-glass-water 

interface of camera lenses, and a lack of high-precision ground control points (Bayley et 

al., 2019; Bryson et al., 2017). 

Understanding direct and indirect effects of 3D ecosystem structure on organisms is 

central to understanding organism-environment interactions (Davies and Asner, 2014). 

One area of research that will benefit from tools that can rapidly and accurately record 3D 

morphology is in the study of habitat complexity and its influence on communities. There 

is a long history of researchers attempting to determine the causes driving the common 

observation that organismal diversity and abundance are enhanced in more complex 

habitats, but system and scale-independent mechanisms have proved elusive (Kovalenko 

et al., 2012). The difficulties partly stem from challenges in defining habitat complexity 

consistently as a measurable metric and measuring it at appropriate scales. Habitat 

complexity has been defined in many ways in the literature (Kovalenko et al., 2012; 

Lazarus and Belmaker, 2021). One metric that has become attractive for system-

independent analysis is fractal dimension (D). Fractal dimension can be measured using 

diverse methods to suit a system, incorporates information across scales into a single 

value, and can be measured for 1, 2 and 3D features (Halley et al 2004). Several studies 

have calculated fractal dimension of 2D transects or cross-sections to quantify surface 

complexity of habitats, for example in rocky shores (Kostylev et al., 2005), mussel beds 

(Commito and Rusignuolo, 2000) and coral reefs (Nash et al., 2013). Before 3D methods 

were widely available, sampling a 3D surface using 2D transects was appropriate, but 

variation among replicates could be high and values from the same surface measured 

using different methods varied (Frost et al., 2005). With the ability to capture a 3D digital 

snapshot of a site, 2D fractal dimension can be estimated efficiently by digitally sampling 
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any number of transects, and 3D fractal dimension can be calculated, which cannot be 

measured in the field (Reichert et al., 2017). Fractal dimension is just one of several 

metrics that can be derived from 3D models to evaluate complexity. New metrics are being 

explored and general relationships with biodiversity are emerging (Meager and 

Schlacher, 2013; Torres-Pulliza et al., 2020). However habitat complexity is defined, 

digital ecosystem reconstructions with validated accuracy enable interrogation, 

measurement, and characterisation of a scene in more detail than is possible with field 

measurements. 

 Efficient and reliable means for recording structure are particularly valuable for ecology 

and conservation in reef systems, whether geogenic or biogenic, intertidal or subtidal, 

temperate or tropical. Structure-from-motion photogrammetry is showing huge potential 

in subtidal reef ecology, for rapid recording of highly complex scenes within limited dive 

time and often with limited resources (Bayley and Mogg, 2020; Young et al., 2017). High 

resolution remote sensing also enables detailed sampling of large extents within low tide 

windows for sampling intertidal reefs (This thesis chapters 2 and 3, Collin et al., 2018; 

Hollenbeck et al., 2014). 

5.2.2 Scale-dependence in ecological patterns and processes  

A recurring theme in ecology and one that has seen growing interest in recent decades is 

in examining the scales at which processes operate and how scale of observation and 

analysis shapes our interpretation and conclusions (Chave, 2013; Levin, 1992). Studying 

scale dependence in ecological phenomena requires comparable measurement of a 

variable of interest at several scales in time or space, needing versatile, efficient, scalable 

methods (Schneider, 2001). Historically, study designs had to incorporate trade-offs in 

observation scale to record the necessary information to test a hypothesis or characterise 

a phenomenon within a sensible timeframe. With modern and emerging techniques, these 

trade-offs are eased, enabling higher resolution information to be collected across large 

extents, both in time and space (Estes et al., 2018). The availability of such data presents 

opportunities to examine the scale dependence of patterns and interactions in 

ecosystems. In terrestrial landscape ecology, with the benefit of airborne and satellite 

remote sensing, studying scale-dependent patterns provides insight into structuring 

processes (Lausch et al., 2015). Marine systems are more challenging to observe across 
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scales, but contemporary approaches have revealed scale-dependent patterns here too 

(Aston et al., 2019; Ford et al., 2020; Pittman and Brown, 2011; Wedding et al., 2011). 

The findings of this thesis contribute to a deeper understanding of scale-dependent 

patterns in reef systems, using modern mapping techniques to overcome traditional 

sampling constraints. For example, Gruet (1986) observed spatial and temporal changes 

in Sabellaria alveolata reef structure, taking high resolution (mm) vertical measurements. 

To achieve such measurements within low-tide windows in the intertidal habitat, the 

extent of the study was limited to two transects of approximately 60 m. Using 3D mapping 

tools, I demonstrated that measurements of the same resolution can be recorded in the 

same habitat but across a much larger, spatially continuous extent. Gruet (1986) 

concluded that the reef structure showed cyclical growth and decay over a decadal cycle, 

whereas I concluded that cyclical changes occurring in small patches were balanced out 

across the extent of the habitat, which showed broad-scale stability over 5 years. It may, 

of course be that both conclusions are correct, and that the reefs studied at different sites 

and times had differing patterns in their structural dynamics. However, while 

measurement of further transects in the French reef study may have led to different 

conclusions, by mapping at high-resolution across large, continuous extents we can have 

more confidence that we are seeing the whole picture within a site. 

Understanding spatial and temporal dynamics in habitat structure is important to 

understand the resilience of systems to disturbance (Landres et al., 1999; Q. X. Liu et al., 

2014; Turner, 2010; Wedding et al., 2019). Disturbance and recovery patterns and 

processes have been studied in-depth in terrestrial forests, with the use of earth 

observation datasets that span large spatial and temporal extents. In some forest systems, 

stability over different time scales can be predicted by from the intensity and lag between 

disturbance events (Turner et al., 1993), and the landscape patterns that emerge 

following disturbance subsequently influence properties of future disturbance events 

(Turner, 1989). We can expect a similar feedback system of landscape pattern and process 

to exist in biogenic reefs, which may respond to damage in a similar way to vegetation 

responding to fire (Barry, 1989). The structure of reef systems is changing in response to 

climate change, as a result of both persistent change in conditions and increasingly 

frequent and severe disturbance events (Agostini et al., 2021; Alvarez-Filip et al., 2009) 
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with associated threats to biodiversity and ecosystem services (Rogers et al., 2014). 3D 

mapping enables recording and analysis of long term and post-event changes in 

ecosystem structure (Cook, 2017), helping make predictions about future functioning in 

chronically perturbed ecosystems (Perry and Alvarez-Filip, 2019). 

Ecological processes commonly operate and interact across scales, generating scale-

dependent patterns in ecosystems. By identifying key scales in patterns, insight can be 

gained about their generating processes (Legendre and Fortin, 1989). Identification of 

scale-dependent patterns requires scalable observation and analysis methods, like those 

demonstrated in this thesis. The results of chapter 4 revealed that multiscale structural 

metrics provided uncorrelated predictor information for mapping reef habitats. In 

chapter 2 I used the geostatistical method of variography to identify key scales of 

variation in reef structure. A range of other analytical methods can be exploited to 

investigate scale-dependence phenomena when high resolution, spatially continuous data 

are available (Perry et al., 2002). Correlograms can be used in a similar way to 

variography to test for statistically significant autocorrelation patterns and clustering in 

spatially varying ecosystem properties (Ford et al., 2020). Wavelet analysis can be used 

to identify scale- and location-specific variation in 1D or 2D data (Dale and Mah, 1998; 

James et al., 2011). Lacunarity analysis can provide information about dominant textural 

scales in a spatial variable (Plotnick et al., 1993). The combination of several of these 

analytical procedures provides complementary information to build a detailed 

understanding of ecological pattern and structuring processes in ecosystems (Saunders 

et al., 2005). The high quality, cross-scale data produced by modern remote sensing tools 

are versatile and well-suited to interrogation by multifaceted analysis (Lecours et al., 

2015).  

5.3 Limitations 

Several advances and novel insights emerged from this thesis, but it is important to 

acknowledge the limitations. Some limitations were inherent to the technologies used and 

were unavoidable with the equipment available, while others were due to constraints on 

time, budget person power or environmental conditions. Here I will discuss technical and 

methodological limitations discovered during my research and how these can be 
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addressed with future studies. I will also consider limitations of my conclusions and 

questions that emerged along the way that require further research to address. 

5.3.1 Limitations of technologies used 

The modern remote sensing tools tested and employed during this research generate 

visually and technically impressive data products. With the capability to produce high-

resolution, photorealistic digital ecosystem reconstructions it is easy to assume that these 

models are accurate replications of a field site. It is true that analysis of digital models can 

mimic and even surpass what is possible in field measurements. However, no technology 

can record a perfect reconstruction of the environment, and it is important to have some 

understanding of the data collection technology to correctly interpret how the digital 

model represents, or misrepresents, the environment. The three remote sensing tools 

used in this thesis: terrestrial laser scanning, structure-from-motion photogrammetry 

and multibeam echo sounder, all reconstruct the environment using different technology 

and have their own limitations. 

Laser scanning is an active remote sensing technology, emitting laser pulses and analysing 

their reflections to build up a model of the environment comprising millions of measured 

points. Terrestrial laser scanning, used in this thesis, involves scanning from several 

stationary positions using a tripod-mounted instrument, followed by combining data 

from several scans to construct a more complete model of the scene. Due to the stationary 

vantage points and radial emission of laser pulses, an important limitation of terrestrial 

laser scan data is systematic spatial variation in data density. Regions of the scene close 

to a scanning station have higher point density than those further away. For surfaces 

perpendicular to the line-of-sight data density decreases linearly, such that if a surface 10 

m away is recorded with a point spacing of 1 cm, a surface 100 m away will have a point 

spacing of 10 cm. The fixed vantage point, typically no more than 2 m above the ground, 

means that the angle of incidence of a laser pulse becomes more acute with distance from 

the scanner, so that data penetration into depressions is limited and “shadows” become 

larger. Data from a single scanning station therefore, has characteristically lower density 

and less vertical sampling with range (Gruszczyński et al., 2017). By combining data from 

several scanning stations and subsampling by point spacing, variation in data density 

across the scene can be reduced, but spatial artefacts will still be evident. Depending on 
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the questions being asked and the analysis conducted, being aware of systematic variation 

in sampling density may be important. For example, if the data are used to measure 

rugosity on a rocky shore as the standard deviation of elevation, rugosity will be 

artificially lower in regions at a greater distance from any scanning station. This limitation 

can be accounted for by careful study design, and mitigated during analysis but requires 

some understanding of the technology and data characteristics (Muir et al., 2017). To 

demonstrate how this limitation can be mitigated, in my study of temporal dynamics in 

Sabellaria alveolata I used a high density of scanning stations to capture a relatively small 

area of reef (up to 8 stations in 2500 m2) and limited my analysis of reef structure change 

to data from the upper reef surfaces, that were visible from the scanner positions. An 

improvement to the study design would have been to use the same scanning positions for 

each survey to limit variation in data density among surveys. This would have also 

enabled analysis of lateral accretion in colonies as the same colony sides would be visible 

in each survey. Mobile laser scanning platforms, including wearable, vehicle-mounted and 

drone-mounted devices are now available that can overcome some of these issues by 

using a moving vantage point, but at the cost of some precision and range (Cabo et al., 

2018).  

Structure-from-motion photogrammetry is a passive remote sensing technology that 

relies on reflected light from an external source, typically sunlight in outdoor scenes. The 

method reconstructs a 3D model from overlapping photographs taken with any digital 

camera, from any platform, making it a very versatile, but unstandardised technique. The 

visually impressive outputs can have serious systematic error, artefacts and spatially 

variable uncertainty that can be hard to constrain and quantify. To confound the problem, 

software packages used to process the data and generate outputs use closed-source 

algorithms and provide misleading error quantification metrics (Sanz-Ablanedo et al., 

2018). The result is that the accuracy of a model generated using structure-from-motion 

is hard to determine, making change detection challenging (James et al., 2017b). 

Structure-from-motion photogrammetry also suffers from systematic variation in data 

density, but in different ways to terrestrial laser scanning. Typically using a moving 

vantage point like a drone or diver, data density across a scene is more homogenous than 

terrestrial laser scanning. However, as data density is related to the pixel size and 

sharpness of the original images, density is reduced with a greater range from the scene 
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and varies with light conditions and image quality (Bryson et al., 2017). A key difference 

between structure-from-motion photogrammetry and terrestrial laser scanning outputs 

is that the data point positions in the former are estimated using comparative geometry 

of features in several images, rather than directly measured. This can result in a model 

with interpolated surfaces that span real-life gaps and smooth complex features, as 

demonstrated in chapter 2. For example, if using downward-facing images over a coral 

reef, empty space under overhanging features like table corals and between branches of 

corals may be filled and be represented as solid blocks, especially when using a broad-

scale protocol (Bayley and Mogg, 2020). Again, these data characteristics may or may not 

be a problem depending on the questions being asked and can be mitigated during study 

design and analysis. Continuing with the coral reef example, a comparison of complexity 

of two reef areas using structure-from-motion photogrammetry would need to ensure 

that images were collected with the same specification camera and lens, in similar light 

conditions, from the same range and viewing angle, and interpretation of the results 

would need to acknowledge the potential missing complexity information from 

underneath and between fine-scale features. 

Gathering data from surfaces below water is a challenge for both terrestrial laser scanning 

and structure-from-motion photogrammetry due to refraction at the air-water interface. 

Methods to correct for refraction in both terrestrial laser scanning and structure-from-

motion photogrammetry models exist but are not routinely applied within processing 

software (Skarlatos and Agrafiotis, 2018; Smith et al., 2012). No attempt was made to 

correct data in my studies because below-water surfaces were not of primary interest. 

In chapter 4 I used multibeam echo sounder technology to capture the 3D structure of the 

subtidal seabed. Multibeam echo sounders are acoustic swath remote sensing 

instruments that emit sound pulses and analyse their reflections to build up a map of the 

seafloor bathymetry. As with other remote sensing technologies, post processing is 

required to obtain useful data products from the raw data, including making tidal 

corrections, manually cleaning the data of spurious points and interpolating the data to a 

regular grid. Through data collection and processing, care must be taken to minimise 

error propagation (Calder and Mayer, 2003). For example, adverse sea conditions can 

produce artefacts that can be difficult to distinguish from real bedforms, and details of 
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bed morphology can be lost through interpolation and cleaning, impacting further 

analysis (Erikstad et al., 2013; Lecours et al., 2017a).  Multibeam echo sounder is widely 

used in industry so there are well-developed standardised workflows to achieve accurate 

bathymetry data. In addition to bathymetry, multibeam echo sounders can collect 

backscatter information, a measure of the reflectivity of the seabed which can give some 

insight into the composition and texture of the substrate. Unlike bathymetry, backscatter 

data generation is not currently standardised so it can be challenging or impossible to 

compare data from non-overlapping areas or times (Lacharité et al., 2018). Although 

backscatter can be a powerful explanatory variable in some studies, standardisation and 

a better understanding of seabed acoustic mechanics is needed before its potential can be 

fully exploited (Lamarche and Lurton, 2018). 

5.3.2 Study limitations and extensions 

In chapter 2 I identified barriers to widespread adoption of 3D mapping in field ecology 

and assessed the accuracy and practicality of two of the most accessible 3D mapping tools 

available. My assessment of barriers to uptake was based on a review of the literature and 

discussion with academic and industry colleagues over several years, which may have 

resulted in a biased opinion. A more thorough way to address this question would be to 

conduct a well-designed survey of opinions from a cross-section of academic and industry 

practitioners, from all career stages, and global regions. 

In testing the accuracy and practicality of structure-from-motion photogrammetry and 

terrestrial laser scanning for field ecology, I focussed on three intertidal habitats where 

fine-scale 3D structure plays an important role in controlling environmental conditions 

and structuring communities. Since the study was conducted, further advances have been 

made in 3D mapping technologies. Further work should continue to test new technologies 

like drone-mounted (Lin et al., 2019) or wearable laser scanning (Cabo et al., 2018) and 

structure-from-motion photogrammetry using aerial images from drones equipped with 

real time kinematic global navigation satellite systems (Forlani et al., 2018), in real-world 

situations against independent reference data, to understand the limitations of their data 

before using them in ecological studies. 
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In chapter 3 I studied the spatial and temporal dynamics of Sabellaria alveolata reef 

habitat, concluding that the habitat is dynamic at fine spatial and temporal scales, while 

being simultaneously stable at larger scales. The methods used in this study required 

large spring tides coinciding with favourable weather conditions of low wind speed and 

no precipitation, so survey opportunities were limited and meant only one site could be 

studied in detail. A primary question that emerges from the study is whether the 

structural dynamics observed at this site are representative of other sites of the same 

habitat. S. alveolata reef habitat characteristics are highly variable between sites 

separated by only short distances (Stone et al., 2019) and the environmental controls on 

the habitat structure and dynamics are poorly understood (Collin et al., 2018; Desroy et 

al., 2011). My study site was at the northern range edge of the habitat (Firth et al., 2015) 

so may experience a different balance of pressures to more southerly sites.  

A useful outcome of this thesis is that I showed that with a carefully controlled workflow, 

drone-derived structure from motion photogrammetry data can have equivalent accuracy 

to terrestrial laser scan data. Collecting drone aerial imagery is faster than terrestrial laser 

scanning and the equipment is cheaper, so the S. alveolata reef study could be efficiently 

extended to further sites using only drone data. However, drone imagery requires 

daylight, so daytime spring tides would be required and local restrictions on flying drones 

may be a constraint (Duffy et al., 2018). By extending this study to further sites, the drivers 

of structural dynamics in the habitat could be explored. It is not known how the various 

factors acting on the habitat including air and water temperature, wave and current 

forces, sediment supply, immersion cycle, nutrient input, water chemistry, human 

activity, bioerosion and predation interact with the life history of S. alveolata to influence 

the balance of accretion and erosion of the reef colonies (Collin et al., 2018). Sediment 

supply is likely to be the most important factor controlling the maximum height and 

accretion rate of reef colonies (Gruet, 1986). This means that changes to the sediment 

supply and transport regime to an area caused by natural processes and anthropogenic 

activities like cliff erosion, storms, dredging and coastal construction may change the 

environmental suitability for the species, and the reef habitat that it can create. To test the 

influence of sediment supply on reef structural dynamics, an experiment could be 

conducted to sample coarse sediment in the water column from close to the substrate and 

at the maximum reef height at several locations in a habitat, and at several sites. Sampling 
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sediment from the water column is challenging and usually requires bulky equipment or 

expensive optical laser diffraction instruments, neither of which is appropriate for 

replication at this scale on wave-exposed shores. I designed a low-cost prototype 

sediment trap that could be used for this purpose after testing in controlled conditions. 

The contents of the sediment traps would need to be regularly retrieved and the study 

would need to continue for at least a year to understand the general conditions at each 

site. I determined that this study was outside the scope of my thesis. 

In chapter 4 I used bathymetry, backscatter and simulated hydrodynamic energy to 

predict the distribution of ecologically important classes of reef habitat in a high energy 

marine region. Predictive mapping can be conducted using many frameworks (Brown et 

al., 2011) and it is important to recognise that there will always be a degree of uncertainty 

in the maps produced (Foody, 2002; Strong, 2020), especially when mapping natural 

systems with discrete classes (Fiorentino et al., 2018). Best practice for assessing map 

accuracy involves an independent reference survey of observations using a statistically 

robust sampling design, followed by constructing an error matrix of reference and 

predicted classes and calculating a selection of accuracy metrics (Congalton, 1991; Foody, 

2002; Stehman and Czaplewski, 1998). However, due to time and resource constraints, 

independent datasets for producing, or training, the map and testing the accuracy are 

rarely collected. Instead, statistical routines like cross-validation used here, are used to 

estimate accuracy using subsets of the training data (Mitchell et al., 2018). Further, in this 

study as in many others, it was not feasible to design a fully randomised spatial 

distribution of sample points to use for ground truth data due to the practical constraints 

of sampling at sea in a challenging environment. While the Random Forest framework I 

used is non-parametric and makes no assumptions about input data characteristics, it is 

sensitive to spatial autocorrelation and a fully randomised sampling design would be 

more desirable (Millard and Richardson, 2015). There is ongoing debate about the best 

way to estimate model performance for spatial mapping without a probability sample of 

reference data (Meyer and Pebesma, 2022, 2021; Ploton et al., 2020; Wadoux et al., 2021). 

A further key limitation of this study was not having high quality backscatter data for the 

full extent of the study area, which may have improved the accuracy of the model. 
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The outcomes of chapter 4 highlighted that hydrodynamic energy is an important 

predictor for reef habitat distribution. Further work in environmentally similar sites 

elsewhere would be useful to determine the generality of this conclusion. I found that 

predicting the spatial distribution of Sabellaria spinulosa reef was challenging with the 

environmental information available. The habitat can be visually identified in the higher 

resolution data from side scan sonar but these data cannot be automatically analysed as 

a spatially continuous mosaic (Limpenny et al., 2010). It is expected that as the 

discriminatory power of multibeam echo sounders improves, increasingly fine-scale 

features will be detectable. Future work aiming to improve the detection of S. spinulosa 

reef habitat should examine whether higher resolution bathymetry and calibrated 

backscatter from a more advanced system can detect a characteristic acoustic signature 

from this ecologically important reef habitat. An important consideration with benthic 

habitat mapping is temporal dynamics of the substrate composition. As discussed in 

chapter 2, trade-offs in spatial, temporal and thematic resolution and extent are necessary 

with any sampling approach. Benthic ecosystems are dynamic over several timescales 

(Southward et al., 2004), but the high costs of sea going surveys and time required to 

survey large spatial extents of seabed mean that while the data are high in spatial 

resolution, temporal resolution of benthic maps is often limited to a single snapshot. For 

biogenic reefs like S. spinulosa reef, the emergent reef features can be transient over 

various timescales, and the conditions that lead to reef building in some locations and 

presence of isolated individuals in others are not well understood (Pearce et al., 2014). 

For these reasons, benthic habitat mapping would be improved with regular repeat 

surveys to capture the scale of temporal as well as spatial variation in a seascape.  

5.4 Future research priorities, opportunities, and 

challenges 

In an age of rapid technological development, advanced data collection tools and sources 

of detailed ecosystem data are becoming increasingly accessible to ecologists. Emerging 

technologies can quickly move from being niche tools used only by specialist user groups 

to being familiar to many. The rise of drones as scientific tools exemplifies this. A decade 

ago, for many, the term “drone” referred to military aircraft, while prototypes were being 

developed for scientific imaging (Colomina and Molina, 2014; Koh and Wich, 2012). Just 
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few years later, drones are now commonplace, consumer-grade technology, in diverse 

forms for countless applications. They are familiar features in the methods of conference 

presentations and articles as low-cost remote sensing platforms, even having dedicated 

journals (Gonzalez-Aguilera and Rodriguez-Gonzalvez, 2017). Since embarking on my 

research for this thesis, the technologies I have exploited for ecological mapping, 

including drones, laser scanning, structure-from-motion photogrammetry and multibeam 

echo sounders have gone through similarly rapid development. Recent years have seen 

rapid emergence of the technologies as commonplace tools within certain fields in 

ecology. To highlight this, results from a Web of Science search in June 2021 show that 

87% (118 out of 135) of articles about “structure from motion” or “photogrammetry”, and 

“coral”, were published since 2015. This thesis serves to both test the technologies and 

demonstrate their applications, showing how 3D mapping can be used to characterise 

variation in habitat structure in space and time across scales, and highlighting the value 

of structural metrics in characterising and mapping reef habitats. The ability to collect 

detailed, accurate, spatially continuous data about ecosystem structure is no longer 

limiting for ecological studies in many contexts. The major challenges for the discipline 

now lie in handling, processing, analysing and interpreting the large volumes of data 

generated to extract information that can advance our understanding of ecosystems to 

support ecosystem management and conservation. Several studies have demonstrated 

the potential of emerging technologies for 3D ecosystem mapping, now there is a need to 

apply them to answer key research questions in full-scale observational and experimental 

studies. 

There is a bottleneck between 3D data collection and usable outputs, at the data analysis 

stage. Capturing a detailed digital reconstruction of a scene is now relatively easy but 

quantifying its structural characteristics for various statistical analyses is more 

challenging. Mapping has traditionally been conducted in 2D and so decades of 

development of analytical techniques for spatial data have been based on this format. For 

example, metrics based on a patch-mosaic landscape model can be extracted and analysed 

with the widely used FRAGSTATS software (McGarigal and Marks, 1995). Where they are 

collected, 3D ecosystem data are often analysed as 2.5D elevation models, with each 2D 

position having a single elevation value. This may be appropriate for analysing relatively 

planar environments across large extents, like a sedimentary seabed, but information is 
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lost from more complex environments with vertical and overhanging features. Just as 

metrics have been developed for analysis of 2D models, there is a need to develop 3D 

structural metrics to quantify and compare 3D landscape and seascape models. 

Procedures are being developed to quantify structural metrics of 3D objects and analyse 

differences in complex 3D shapes (Kedron et al., 2019; Reichert et al., 2017). 

With increasing collection and use of high-resolution remote sensing data across sectors 

and access to high powered cloud-based computing, novel analytical approaches are 

rapidly emerging, especially on open source platforms (Hesselbarth et al., 2021). At 

present, processing and analysis of 3D data requires high levels of specialist manual input 

to extract useful information. In the future, with standardised processing pipelines and 

analyses exploiting machine learning and artificial intelligence, many of the more 

commonly required tasks may be automated. For example, it is conceivable that a repeat 

survey of an intertidal reef site could be conducted and analysed with minimal human 

input. A drone could be deployed, collect imagery and upload it to cloud storage 

automatically. Generation of 3D models could take place in the cloud following a standard 

processing workflow. Automated analysis could then be conducted to extract useful 

information including spatially explicit 3D complexity, segmentation and identification of 

species and substrate, organism or feature volume distribution, and spectral analysis to 

assess the health of certain species. Automated workflows are valuable to many users, 

improving efficiency and standardisation for common tasks (Hopkinson et al., 2020). 

Indeed, drone survey flight paths are commonly automated to ensure sufficient overlap 

in images, automated, uncrewed vessel systems are in use for seabed mapping (Zwolak et 

al., 2020) and data extraction from point clouds can be automated for common tasks 

(Maas et al., 2008). However, there will always be a demand for bespoke data collection 

and analysis, particularly in academia, making the current rapid development of 

accessible open-source solutions encouraging. 

With increasingly advanced and automated data collection, huge volumes of data are 

being collected by countless parties for different uses in academia and industry. Many 

datasets are collected, analysed, and used for a single purpose before being archived. 

Often, access to the data, and even knowledge of their existence is restricted to the 

owners. Collection and storage of large volumes of data has monetary and environmental 
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cost (Dutta and Hasan, 2013), so efforts should be made to improve the accessibility of 

datasets for others to use. In an age of big data and cloud-based computing, complex 

models and analyses benefit from large volumes of data, so access to archived data from 

multiple sources could help improve our understanding of natural systems without the 

need for new data collection. As an example of what can be achieved by multisource data 

collection and access efforts, the Nippon Foundation-GEBCO Seabed 2030 Project aims to 

produce a map of the entire globe’s seabed by 2030, having increased the coverage from 

8% in 2017 to 19% in 2020 (Mayer et al., 2018, seabed2030.org). Another ambitious 

project that will benefit from detailed information about ecosystem structure across 

scales is the European Space Agency’s Digital Twin Earth. This project aims to make 

improved simulations and predictions and future environmental scenarios using high 

volumes of earth observation data integrated with high powered computing and artificial 

intelligence, with one of several precursor projects focussing on a Digital Twin Ocean 

(esa.int/Applications/Observing_the_Earth/Working_towards_a_Digital_Twin_of_Earth).  

Collation of data from different sources is not without difficulty, and quality control is 

essential. For this reason there is an urgent need for standardisation of data collection by 

emerging technologies like structure-from-motion photogrammetry, or at a minimum, 

guidelines for recording sufficient metadata to assess the quality of the data.  

As big data forms an increasingly important resource in ecology, ecologists will benefit 

from working collaboratively with specialists from other fields to optimise the 

information gained from large datasets and to overcome challenges. Working with data 

scientists can help ecologists interrogate large datasets efficiently and optimise the 

pipeline from data to information to impact (Li et al., 2020). Working collaboratively with 

experts from other disciplines can expand the scope of investigation and provide added 

insight into natural systems (Shiklomanov et al., 2019). In chapter 4 I collaborated with 

oceanographers to integrate bathymetric and seafloor backscatter information with 

simulated hydrodynamic information. The hydrodynamic energy data were generated 

from a custom model run at a relatively high spatial resolution compared to many readily 

available sources of similar data. The outcomes of this study showed that the 

hydrodynamic information was a key variable structuring ecological processes and 

interactions in the study area, providing insight that would have been challenging to 

examine without this collaboration. Similar collaboration would be valuable to integrate 
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3D ecosystem information with other information sources to ask important questions. For 

example, heterogeneity in 3D ecosystem structure creates a variety of habitats that can 

provide thermal refuges buffered from broad-scale temperature (Milling et al., 2018). By 

integrating 3D ecosystem structure information with spatially explicit climate change 

projections, spatial variation in the vulnerability of ecosystems to climate change can be 

examined, enabling environmental managers to plan distribution of resources and act to 

protect their local biodiversity (Hooidonk et al., 2016). Finally, a persistent challenge in 

science is bridging the gap between academia and the public or decision makers, a critical 

step to maximise the impact of new findings. The modern world of high-volume, fast paced 

information sharing via social media can be at odds with the quality controlled but lengthy 

process of academic publishing. Collaboration with science communication professionals 

can help academics disseminate their work to reach specific target audiences efficiently 

(Groffman et al., 2010). With visually impressive outputs from 3D mapping tools, research 

from this field can be particularly engaging, helping to educate the public about current 

global environmental challenges and convince decision makers to enact positive change. 

Low cost, versatile 3D mapping tools like structure-from-motion photogrammetry and 

consumer-grade laser scanners now found in the latest mobile phones create 

opportunities for widespread engagement through citizen science, empowering the 

public to take ownership of their local ecosystems and the challenges they face.  
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