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Abstract 29 

High energy marine regions host ecologically important habitats like temperate reefs, but are 30 

less anthropogenically developed and understudied compared to lower energy waters. In the 31 

marine environment direct habitat observation is limited to small spatial scales, and high 32 

energy waters present additional logistical challenges and constraints. Semi-automated 33 

predictive habitat mapping is a cost-effective tool to map benthic habitats across large extents, 34 

but performance is context specific. High resolution environmental data used for predictive 35 

mapping are often limited to bathymetry, acoustic backscatter and their derivatives. However, 36 

hydrodynamic energy at the seabed is a critical habitat structuring factor and likely an 37 

important, yet rarely incorporated, predictor of habitat composition and spatial patterning. 38 

Here, we used a machine learning classification approach to map temperate reef substrate and 39 

biogenic reef habitat in a tidal energy development area, incorporating bathymetric derivatives 40 

at multiple scales and simulated tidally induced seabed shear stress. We mapped reef substrate 41 

(four classes: sediment (not reef), stony reef (low resemblance), stony reef (medium – high 42 

resemblance) and bedrock reef) with overall balanced accuracy of 71.7%. Our model to predict 43 

potential biogenic Sabellaria spinulosa reef performed less well with an overall balanced 44 

accuracy of 63.4%. Despite low performance metrics for the target class of potential reef in this 45 

model, it still provided insight into the importance of different environmental variables for 46 

mapping S. spinulosa biogenic reef habitat. Tidally induced mean bed shear stress was one of the 47 

most important predictor variables for both reef substrate and biogenic reef models, with 48 

ruggedness calculated at multiple scales from 3 m to 140 m also important for the reef substrate 49 

model. We identified previously unresolved relationships between temperate reef spatial 50 

distribution, hydrodynamic energy and seabed three-dimensional structure in energetic waters. 51 

Our findings contribute to a better understanding of the spatial ecology of high energy marine 52 

ecosystems and will inform evidence-based decision making for sustainable development, 53 

particularly within the growing tidal energy sector. 54 

 55 

Keywords 56 

Reef mapping, bathymetry, tidal energy, machine learning, seascape ecology, spatial scale, 57 

Sabellaria spinulosa, benthic ecology, hydrodynamics, ecosystem management.  58 
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1. Introduction 59 

To understand ecological pattern and process, reliable information about the spatial 60 

distribution of habitats is essential (Brown et al., 2011; Cogan et al., 2009; Turner, 1989). Aerial 61 

and satellite remote sensing has revolutionised spatial ecology, providing spatially continuous 62 

data on a variety of ecologically relevant variables at high resolution across broad extents (Kerr 63 

and Ostrovsky, 2003; McDermid et al., 2005). This type of information is more challenging to 64 

collect for the seabed beyond the shallow clear waters that can be observed with optical remote 65 

sensing (D’Urban Jackson et al., 2020; Lecours et al., 2015). Advances in acoustic remote sensing 66 

now enable collection of high-resolution (< 1m), spatially continuous seabed bathymetry and 67 

acoustic reflectivity (commonly referred to as backscatter). However, detailed seabed mapping 68 

is still costly and inefficient compared to terrestrial remote sensing, such that less than 18% of 69 

the oceans has depth measurements at 1 km resolution or better (Mayer et al., 2018). Other 70 

seabed properties, including benthic habitat characteristics, are even more challenging to map. 71 

Methods for observing seafloor habitats and organismal communities are limited to fine to 72 

moderate spatial scales (0.01 m – 1 km) using diver, camera, crewed/uncrewed vehicle, acoustic 73 

or physical sampling (van Rein et al., 2009). To generate spatially continuous benthic habitat 74 

maps over large extents, practitioners use statistical approaches to  identify relationships 75 

between discrete habitat observations and spatially continuous environmental data and 76 

extrapolate into unobserved locations (Brown et al., 2011). 77 

Temperate reefs are hard-bottom marine habitats between the tropics and the poles, and 78 

include biodiverse ecosystems that provide billions of dollars in ecosystem goods and services 79 

(Bennett et al., 2016; Taylor, 1998). Temperate reef substrate may be bedrock or stony 80 

(geogenic) or derived from organisms (biogenic), both hosting communities of sessile and 81 

mobile reef-associated species (Bué et al., 2020; Diesing et al., 2009; Holbrook et al., 1990). Due 82 

to their ecological importance reef habitats are listed in various national and international 83 

conservation legislation, including Annex 1 of the European Commission Habitats Directive 84 

(European Commission, 2013). However, a lack of information about the distribution and 85 

characteristics of reef habitats hampers effective ecosystem management (Diesing et al., 2009). 86 

Temperate reef habitats are often found in high energy marine waters (Warwick and Uncles, 87 

1980). These areas are challenging and costly to operate within compared to lower energy seas 88 

and as such they are less anthropogenically developed and less well studied (Shields et al., 89 

2011). In response to the global demand for low carbon energy, energetic waters are now of 90 

commercial interest to the nascent marine renewable energy industry (Roche et al., 2016). To 91 

ensure sustainable development, there is a growing need for baseline ecosystem information 92 

about energetic waters. While previous attempts at mapping temperate reefs have shown some 93 
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success, it has proved challenging to distinguish between specific reef types like bedrock and 94 

stony reef, and between reef and non-reef ground without considerable manual input (Dalkin, 95 

2008; Eggleton and Meadows, 2013; Limpenny et al., 2010; Plets et al., 2012; Vanstaen and 96 

Eggleton, 2011). Biogenic temperate reefs are similarly challenging to map, typically requiring 97 

manual interpretation and digitisation of acoustic information (Jenkins et al., 2018; Limpenny et 98 

al., 2010; Lindenbaum et al., 2008; Pearce et al., 2014). There is a growing need for repeatable, 99 

cost-effective habitat mapping in high energy waters, to understand the spatial ecology of these 100 

understudied ecosystems and to support sustainable management in an evolving seascape of 101 

offshore activity (Dannheim et al., 2020; Jouffray et al., 2020; Wilding et al., 2017). 102 

Bathymetry, backscatter intensity and their derivatives are typically the main, or only 103 

environmental predictor variables in benthic habitat models beyond shallow, clear waters, as 104 

few other variables can be recorded at a comparable resolution. However, numerous other 105 

variables are important in structuring benthic habitats. For example, water chemistry and 106 

temperature, when modelled at appropriate spatial scales, can be important predictors of 107 

benthic habitats (Davies and Guinotte, 2011). Hydrodynamic energy at the seabed is an 108 

important structuring factor for benthic habitats and communities. As well as imparting 109 

mechanical stress (Gove et al., 2015; Koehl, 1999), water flow controls water chemistry 110 

(Gutiérrez et al., 2008), particulate food supply (Rosenberg, 1995; Sebens et al., 1998) and larval 111 

dispersal (Cowen and Sponaugle, 2009). Alteration of flow regimes affects feeding efficiency, 112 

growth rates  and settlement of benthic species that are adapted to specific flow conditions 113 

(Eckman and Duggins, 1993). Critically, hydrodynamic energy affects substrate composition 114 

through sediment transport (Shields, 1936), which in turn controls benthic community 115 

composition and imparts temporal variation within the system (Coggan et al., 2012; Warwick 116 

and Uncles, 1980). Hydrodynamic energy has proved to be an important variable for mapping 117 

benthic habitat spatial distribution at regional and national scales with resolution of kilometres 118 

(Huang et al., 2011; Robinson et al., 2011), but it is often overlooked or unavailable for 119 

predictive mapping at finer scales (Brown et al., 2011; Pearman et al., 2020). The inclusion of 120 

simulated wave induced seabed energy improved predictive habitat mapping for a wave 121 

exposed region in temperate southern Australia (Rattray et al., 2015), and it follows that tidally 122 

induced seabed energy is likely to be an important predictor of high energy habitats in regions 123 

with fast tidal currents. However, to our knowledge no study has incorporated tidally induced 124 

energy at the seabed with high-resolution bathymetry for predictive habitat mapping in 125 

temperate, high tidal energy waters. 126 

Tidally induced hydrodynamic energy is likely to influence the distribution of geogenic and 127 

biogenic reefs in different ways. Strong tidal currents erode and transport sediment, leaving 128 
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stable substrates that may be colonised by epibiota to form geogenic reefs. For biogenic reefs, 129 

the effects of hydrodynamic energy depend on the reef-forming organism.  Sabellaria spinulosa 130 

is a reef-forming annelid that builds aggregations of tubes from suspended coarse sediment, 131 

supporting diverse associated communities (Pearce, 2017). S. spinulosa reef distribution is 132 

likely to be influenced by the availability of resuspended sediment as tube-building material, in 133 

turn driven by hydrodynamic energy (Davies et al., 2009; Holt et al., 1998). We used semi-134 

automated predictive mapping, parameterized with multibeam echo sounder derived variables 135 

and incorporating simulated hydrodynamic energy data, to map previously unresolved 136 

potential reef habitats in a marine area of interest for tidal energy development. We show that 137 

tidally induced bed shear stress is a highly important variable for predicting high energy reef 138 

habitats. Our findings provide a deeper understanding of the relationships between 139 

hydrodynamic conditions, seabed morphology and reef habitats, with implications for 140 

sustainable development of understudied, high tidal energy waters. 141 

 142 

Figure 1. A & B) Location of the study site (black square in A) in north west Wales, UK. C) Bathymetry of 143 
the study area (white boundary) showing point and transect drop-down video sampling locations. D) 144 
Modelled tidally induced mean bed shear stress across the study area. 145 

  146 
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2. Method 147 

2.1 Study Site 148 

We mapped potential reef habitats in a 49 km2 area to the west of Sir Ynys Môn (Isle of 149 

Anglesey), Wales, UK (Fig. 1). Our study area comprised a 500 m buffer around a 35 km2 area 150 

leased for tidal energy device demonstration, which was then buffered inwards by 100 m from 151 

the edge of input data extent to avoid edge effects. Tidal current speeds at the site reach 3.7 m s-152 

1 and annual mean significant wave height is 1.26 to 1.5 m (Royal Haskoning DHV, 2019). Water 153 

depth within the study area ranges from 3-79 m (Fig. 1C) and the seabed comprises a range of 154 

benthic habitats from mobile sediment to stable cobble and bedrock colonised by slow growing 155 

epifauna (Whitton, 2014). The site is known to contain potential reef, but the spatial 156 

distribution of different reef types in the area is unresolved (MarineSpace, 2019). 157 

 158 

2.2 Habitat Observations 159 

We collected seabed video samples within the study site in June and July 2019 using the RV 160 

Prince Madog (Fig. 1C, transect samples), with further samples obtained from a commercial 161 

ecological survey of the study site (Fig. 1C, point samples). Sampling locations were spatially 162 

well-distributed, captured a range of energy conditions, and targeted areas of the study site with 163 

visually different bathymetric features. For transect video samples we used high-resolution 164 

video (1080p, 60 frames per second) with a forward facing (45° to the seabed), mechanically 165 

stabilised camera (FDR X3000, Sony), with dive lights for illumination and parallel lasers for 166 

scaling. To record sampling positions, we used an ultra-short baseline (USBL) system (EasyTrak 167 

Nexus Lite, Applied Acoustics) calibrated to a horizontal accuracy of 8 m. We sampled transects 168 

by drifting for 1 hour or 1 km within an hour either side of slack water, in current speeds of less 169 

than 1 kt.  170 

To extract discrete observation data without introducing multiple operator errors, a single 171 

operator reviewed and classified the transect video footage. Starting from 1 min after the frame 172 

started moving steadily on the seabed, we assigned a class for reef substrate and a class for 173 

potential S. spinulosa reef (Table 1) to each 30 s section. Classes were derived from published 174 

definitions of reef habitat categories developed to aid environmental management, conservation 175 

and spatial planning, in which benthic habitats are categorised according to how closely they 176 

resemble stony reef or biogenic Sabellaria spinulosa reef (Hendrick and Foster-Smith, 2006; 177 

Irving, 2009; Limpenny et al., 2010). We only recorded observations for sections in which the 178 

seabed was visible at close enough range to confidently assess particle size using the parallel 179 

lasers for at least 50% of the section. We classified reef substrate as sediment (not reef), stony 180 
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reef (low resemblance), stony reef (mid-high resemblance) or bedrock (Irving, 2009). While we 181 

initially classified stony reef into three resemblance classes, there were few high resemblance 182 

observations, so we combined mid and high resemblance observations (Table 1). We classified 183 

potential biogenic (Sabellaria spinulosa) reef separately to substrate because S. spinulosa can 184 

colonise a range of substrates, and initial data exploration indicated that the predictor variables 185 

we used, mainly morphological descriptors, were unlikely to distinguish between stony reef and 186 

stony reef colonised by S. spinulosa. After preliminary data exploration we classified S. spinulosa 187 

observations as not reef, comprising samples with no S. spinulosa tubes present and those with 188 

individual tubes of less than 10% cover, and potential reef, comprising samples with colonies 189 

over 2 cm high or more than 10% cover (Table 1). We extracted positions of the video 190 

observations to within 8 m horizontal accuracy by matching the video timestamps to the USBL 191 

timestamps. Data from one transect were discarded due to low positional accuracy. 192 

We reclassified an additional point video sample dataset obtained from a commercial ecological 193 

survey of the study site to our classification system based on the percent cover of substrates and 194 

S. spinulosa reef recorded. These data were derived from drop down video sampling of the study 195 

area in 2018 and had been analysed for biotope mapping with percent cover of species and 196 

substrates quantified (MarineSpace, 2019). We gridded the combined transect and point video 197 

observations on a 20 m resolution grid matching the environmental data, assigning the class 198 

with the highest rank (Table 1) where there were multiple observations in a grid cell to give a 199 

single observation per grid cell. We had total of 500 and 509 observations for substrate and 200 

Sabellaria spinulosa respectively, the difference due to S. spinulosa reef obscuring the substrate 201 

in some samples. 202 

  203 
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Table 1. Drop-down video classification. Each 30 second section of video was assigned a class for reef 204 
substrate and potential biogenic reef. Class ranks were used to reduce multiple observations to a single 205 
ground truth observation per pixel of environmental data. Distance between laser points = 50 mm. 206 

CLASS QUALIFIER RANK EXAMPLE 

REEF SUBSTRATE    

SEDIMENT (NOT 

REEF) 

Less than 10% particles of 

64 mm or more. 

1 

 
STONY REEF (LOW 

RESEMBLANCE) 

10 – 40% particles of 64 

mm or more. 

Epifauna present. 

2 

 
STONY REEF (MID-

HIGH 

RESEMBLANCE) 

Over 40 % particles of 64 

mm or more. 

Epifauna present. 

3 

 
BEDROCK REEF Bedrock present 4 

 
BIOGENIC REEF    

NOT S. SPINULOSA 

REEF 

No S. spinulosa tubes seen, 

or S. spinulosa tubes present 

but covering less than 10% 

1 

 
POTENTIAL S. 

SPINULOSA REEF 

S. spinulosa colonies of over 

2 cm height or with over 

10% cover 

2 

 

 207 
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2.3 Environmental predictor variables 208 

To predict the spatial distribution of potential reef habitats we used morphological derivatives 209 

from bathymetry data and a measure of seabed energy as environmental predictor variables 210 

(Table 2). Bathymetry data (1 m horizontal resolution) were collected using a multibeam echo 211 

sounder (MBES) for the study site in 2018 during a commercial survey (Royal Haskoning DHV, 212 

2019) (Fig. 1C). We generated six morphological derivatives from the bathymetry data using the 213 

Surface Parameters and Raster Calculator tools in ArcGIS Pro (ESRI, CA, USA) and the Benthic 214 

Terrain Modeller v3.0 plugin (Walbridge et al., 2018; Wright et al., 2005). The derivatives we 215 

used were slope, curvature, eastness, northness, relative difference from mean value (RDMV) 216 

and vector ruggedness measure (VRM)(Lecours et al., 2017; Sappington et al., 2007; Wilson et 217 

al., 2007). We selected these based on their demonstrated predictive power in the literature, 218 

their hypothesised predictive power within the context of this study, and following 219 

recommendations from Lecours et al. (2017). Morphological derivatives are typically calculated 220 

using a square window with an edge length of 3 pixels, but the scale at which they are generated 221 

and the way in which they are calculated for different scales can influence their predictive 222 

power (Misiuk et al., 2021; Porskamp et al., 2018). We define the scale of a derivative as the 223 

edge length of the square window containing the bathymetric information that influences the 224 

calculation, or the “analysis distance” sensu Misiuk et al. (2021). We generated all morphological 225 

derivatives at scales of 3, 6, 15, 30, 60, 100 and 140 m, an approximate geometric progression 226 

from the minimum window size up to the scale of the hydrodynamic data used (150 m, see 227 

below), beyond which we assumed predictive capability to be minimal in the context of our 228 

study. For scales of 3 m to 60 m we calculated derivatives by mean-aggregation of the 229 

bathymetry data to 2, 5, 10 and 20 m, up to the spatial precision of ground truth samples, then 230 

calculated derivatives using a 3 x 3 pixel window. For scales of 100 m and 140 m we calculated 231 

derivatives from the 20 m resolution bathymetry using 5 x 5 and 7 x 7 pixel windows. These 232 

methods of “resample-calculate” and “k x k window” are the most effective for characterising 233 

features and information at different scales (Misiuk et al., 2021). Derivatives calculated using 234 

bathymetry resolution of 1, 2, 5 and 10 m were mean-aggregated to 20 m to match the 235 

resolution of the remaining data. Multi-collinearity in predictor variables was tested and 236 

resolved by systematically removing highly collinear derivatives until the variance inflation 237 

factor for all predictors was below 10, using the usdm package in R (Dormann et al., 2013; Naimi 238 

et al., 2014; R Core Team, 2021) (Supporting information Fig S1). All derivative data were 239 

generated across the full extent of the bathymetry data where the k x k window contained no 240 

missing data. 241 



10 

 

To generate a predictor variable of seabed energy, we used a 3D Regional Ocean Modelling 242 

System hydrodynamic model with a horizontal resolution of 150 m and 20 vertical layers, 243 

covering the north west Wales region, derived from a larger extent model (Ward et al., 2015). 244 

The model was set to compute and output mean tidally induced bottom bed shear stress over a 245 

typical spring-neap tidal cycle (Fig. 1D). Fast tidal currents are generated at the site as the tide 246 

flows around the Isle of Anglesey and produce a local maximum of bed shear stress. Tidal 247 

current speed and bed shear stress are reduced close to the coastline and further offshore. Mean 248 

bed shear stress is a good predictor of substrate composition at regional scales (Ward et al., 249 

2015) and is likely to have a mechanistic influence on reef substrates and benthic communities. 250 

Bathymetry for the ROMS model was provided from EMODnet (EMODnet Portal, September 251 

2015 release) and bottom friction was controlled through a quadratic bottom drag coefficient 252 

set at 0.003 (Ward et al., 2015). Ocean boundary conditions were taken from the 253 

TOPEX/POSEIDON global tidal model (TPXO). The model validates well against the Holyhead 254 

tide gauge harmonic data (Supporting information Fig S2). We resampled the 150 m resolution 255 

bed shear stress data to 20 m using nearest neighbour without interpolation to match the 256 

spatial resolution of the morphological environmental data.  As the hydrodynamic model 257 

incorporated bathymetry, and raw bathymetry within the depth range of the study site was not 258 

expected to have a mechanistic effect on benthic substrate or biogenic reef distribution, raw 259 

bathymetry was not included as a predictor variable. High quality backscatter data were not 260 

available for the full extent of the study area. 261 

  262 
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Table 2. Environmental predictor variables used to predict reef substrate and biogenic reef for each 20m 263 
x 20 m pixel in the study area after systematic removal of multi-collinear variables. *Vector ruggedness 264 
measure at 60 m scale was included in the reef substrate model but not the biogenic reef model. 265 

Variable Scale (m) 

Curvature 
3 
140 

Eastness 
3 
30 
140 

Northness 
3 
30 
140 

Relative difference from mean value 

3 
15 
60 
140 

Slope 
30 
140 

Vector ruggedness measure 

3 
15 
30 
60* 
140 

Mean bed shear stress 150 
 266 

 267 

2.4 Classification model and predictive mapping 268 

For classification and predictive mapping of reef substrate and potential biogenic reef we used 269 

Random Forests, an ensemble machine learning algorithm based on classification trees 270 

(Breiman, 2001; Cutler et al., 2007). Radom Forests perform consistently well for benthic 271 

habitat mapping in a range of contexts and require minimal tuning (Mitchell et al., 2018; 272 

Wicaksono et al., 2019). The approach is non-parametric, making it a suitable choice given the 273 

characteristics of our sampling design and data. We implemented classification algorithms using 274 

the randomForest and caret packages in R (Kuhn, 2008; Liaw and Wiener, 2002; R Core Team, 275 

2021). To estimate model performance with spatially clustered observations we implemented 276 

spatially buffered leave-one-out cross validation using the blockCV package (R Core Team, 2021; 277 

Valavi et al., 2019), using a buffer radius of 250 m, exceeding the median spatial autocorrelation 278 

range of our environmental predictor variables. In this method, a Random Forest model is 279 

trained on all reference data except for a test sample and the samples within a spatial buffer 280 

around it, then the model is used to predict the test sample. This is repeated using all reference 281 

samples as test samples and model performance is estimated from an error matrix of 282 

observations against predictions. Each Random Forest classification model used 1500 trees and 283 
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3 variables tested at each split, hyperparameters that we derived from preliminary tuning. We 284 

used down-sampling to balance classes in training data. The entire reference dataset was then 285 

used to train a final model to make predictions for all pixels across the study site.  We mapped 286 

spatially explicit uncertainty in predictions as the model-generated probability of the predicted 287 

class for each pixel (Mitchell et al., 2018). Tree-based classifiers can resolve complicated non-288 

linear relationships but cannot extrapolate beyond the extent of the training data. We therefore 289 

also mapped the area of applicability for the model performance estimates, outside of which the 290 

combinations of environmental predictor data were too dissimilar to the training data to be able 291 

to estimate performance (Meyer and Pebesma, 2021). To help interpret the model performance 292 

we produced plots of variable importance and partial dependence plots using the randomForest 293 

package. Variable importance plots show how strongly each variable influences model 294 

predictions. We used the Gini index to measure importance, describing the purity of nodes in a 295 

tree-based classifier (Breiman, 2001). Partial dependence plots visualise the influence of an 296 

individual variable on the relative likelihood that an observation will be predicted as a certain 297 

class (Friedman, 2001). 298 

To assess the performance of a predictive mapping model, an error matrix and a selection of 299 

metrics should be considered in the context of the aims of the model and the user’s interests 300 

(Foody, 2002; Olofsson et al., 2014). The error matrix documents the predicted and observed 301 

classes of the test samples, giving an estimate of the model performance for new, unknown 302 

observations. We generated a selection of standard and recommended performance metrics 303 

from the error matrix (Foody, 2002; Mitchell et al., 2018; Olofsson et al., 2014; Pontius and 304 

Millones, 2011). No single measure can fully describe performance of a classification model, but 305 

here we present balanced accuracy as an overall measure that accounts for imbalance in class 306 

prevalence (Brodersen et al., 2010). For consistency with other studies we also present overall 307 

accuracy as the proportion of correct predictions out of total predictions, and Cohen’s kappa 308 

coefficient (Cohen, 1960), although their use has been discouraged (Brodersen et al., 2010; 309 

Foody, 2020; Pontius and Millones, 2011). To give context to the overall accuracy value, the no 310 

information rate is provided, equal to the proportion of the most prevalent class and therefore 311 

being the accuracy value that would be achieved by predicting all observations as one class. 312 

User’s and producer’s accuracies provide class-wise insight. The user’s accuracy estimates the 313 

reliability of the map for a user, describing the proportion of the predictions of a class that were 314 

actually observed to be that class. The producer’s accuracy, also known as sensitivity, or true 315 

positive rate, estimates the ability of a model to correctly map the land- or seascape, describing 316 

the proportion of known observations of a particular class that were correctly predicted as that 317 

class. The complement of sensitivity is specificity. Specificity, or true negative rate, describes 318 
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how many observations that were known to not be a class were correctly predicted to not be 319 

that class. Finally, we present quantity disagreement and allocation disagreement (Pontius and 320 

Millones, 2011). These measures provide information about the way in which the observations 321 

and predictions differ. High quantity disagreement indicates large differences in class 322 

prevalence while a high allocation disagreement indicates a large proportion of 323 

misclassifications. For further explanation of the metrics used see the Supporting Information.  324 

 325 

 326 

Figure 2. A) Predicted reef substrate classes with visually apparent misclassified areas are masked out. B) 327 
Probability of the predicted class for each pixel. C) Area of applicability for the performance estimates of 328 
the classifier. Areas in grey have environmental variables too dissimilar to the model training data to 329 
estimate performance. 330 

  331 
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3. Results 332 

3.1 Reef substrate 333 

We predicted the distribution of reef substrate in the study area by classifying the substrate into 334 

four classes: sediment (not reef), stony reef (low resemblance), stony reef (mid-high 335 

resemblance) and bedrock reef (Fig. 2A). Most observations were correctly predicted for each 336 

class (Table 3), reflected in the overall balanced accuracy of 71.7% (Table 4). For all classes, 337 

misclassifications were mostly in classes similar to the target class (Table 3). For example, 338 

sediment was mostly misclassified as stony reef (low resemblance) and rarely as bedrock. 339 

User’s accuracy, estimating the reliability of the mapped pixels, was highest for stony reef (mid-340 

high resemblance) (65.5%) and lowest for stony reef (low resemblance) (47.2%). Producer’s 341 

accuracy, indicating the consistency of correctly predicting known observations, was highest for 342 

sediment (66.9%) and lowest for stony reef (low resemblance) (47.6%). The reference data and 343 

predictions differed due to misclassification (allocation disagreement = 37.2%), more than due 344 

to differences in class prevalence (quantity disagreement = 6%) (Table 4).  345 

Table 3. Error matrix for the model predicting reef substrates following spatially buffered cross validation. 346 
True positives are in grey. Values are normalised by the total number of observations for each class, such 347 
that the columns sum to 1. 348 

   Observed  

  
Sediment Stony reef (l) Stony reef (m-h) Bedrock reef 

P
re

d
ic

te
d

 Sediment 0.669 0.315 0.049 0.012 

Stony reef (l) 0.269 0.476 0.224 0.107 

Stony reef (m-h) 0.038 0.105 0.517 0.226 

Bedrock reef 0.023 0.105 0.210 0.655 

 349 

 350 

Table 4. Performance estimates for the model predicting reef substrates following spatially buffered cross 351 
validation.  352 

 Overall Sediment Stony reef (l) Stony reef (m-h) Bedrock reef 

Total observations 500 130 143 143 84 

User's accuracy 0.571 0.621 0.472 0.655 0.534 

Producer's accuracy / 
Sensitivity 

0.579 0.669 0.476 0.517 0.655 

Specificity 0.855 0.857 0.787 0.891 0.885 

Quantity disagreement 0.06 0.02 0.002 0.06 0.038 

Allocation disagreement 0.372 0.172 0.3 0.156 0.116 
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Balanced accuracy 0.717     

Accuracy 0.568     

No information rate 0.286     

Kappa 0.421     

 353 

 354 

The most important variables for predicting reef substrate classes in the study area were vector 355 

ruggedness measure at scales from 3 m to 140 m, and mean bed shear stress (Fig. 3). Partial 356 

dependence plots of the three most important variables showed that areas with high fine-scale 357 

(3 m) ruggedness were more likely to be classified as bedrock and less likely to be classified as 358 

sediment, while areas with high broad-scale (140 m) ruggedness were more likely to be 359 

classified as stony reef and less likely to be classified as bedrock (Fig. 4). Areas with high mean 360 

bed shear stress (over 2.55 Nm-2) were more likely to be classified as bedrock or stony reef 361 

(mid-high resemblance) and less likely to be classified as sediment or stony reef (low 362 

resemblance) (Fig. 4). A reliability heat map of classification probabilities showed variation in 363 

the consistency of predictions among samples (Supporting information Figure S3). 364 

The model predicted much of the visually rugged ground in the highest energy central region of 365 

the study area to be bedrock reef, with stony reef (mid to high resemblance) predictions 366 

concentrated in the high energy region where the ground was less rugged (Fig. 2A). A mixture of 367 

the two stony reef classes was predicted throughout the moderate energy regions where there 368 

was relatively smooth seabed and a mixture of sediment and stony reef (low resemblance) was 369 

predicted in the lowest energy regions. We could visually interpret certain seabed features like 370 

bedrock outcrops from the raw bathymetry data and qualitatively assess the performance of the 371 

predive model for some of the study area extent. The model appeared to perform well for these 372 

areas, with most visually apparent bedrock outcrops being correctly classified. Visually 373 

apparent misclassifications were mostly concentrated around feature boundaries, but there 374 

were notable misclassifications of apparent sediment waves as bedrock. Spatially explicit 375 

classification probabilities showed that the probability of assigned classes was moderate for 376 

most of the mapped area, with a mean ± sd of 0.47 ± 0.11 (Fig. 2B). The area of applicability 377 

analysis indicated regions of the study area where combinations of environmental variables 378 

were poorly represented in the training data and therefore model performance estimates were 379 

not reliable. The regions outside the area of applicability were mostly high energy, high 380 

ruggedness areas of apparent bedrock in the central study area and very low energy areas close 381 

to the shore in the eastern study area (Fig. 2C). 382 
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 383 

 384 

 385 

Figure 3. Relative importance of predictor variables in the model predicting reef substrate. Variable 386 
importance is quantified by the mean decrease in the Gini index if the variable is not included within the 387 
Random Forest model. The Gini index is a measure of node purity.  388 

 389 

 390 

Figure 4. Partial dependence plots for the three variables with highest importance in the model predicting 391 
reef substrate. The plots visualise the influence of each variable on the likelihood that an observation is 392 
predicted to be each of four classes. For example, observations with low mean bed shear stress are less 393 
likely to be classified as bedrock reef or stony reef (mid-high resemblance) and more likely to be classified 394 
as sediment or stony reef (low resemblance). 395 

  396 
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3.2 Potential Sabellaria spinulosa biogenic reef 397 

Our classification model aimed to predict two classes for Sabellaria spinulosa: not reef, 398 

encompassing samples with no S. spinulosa seen and those with S. spinulosa present but not 399 

forming reef, and potential reef, encompassing samples with low, medium or high resemblance 400 

to a biogenic reef. The model predicted most observations correctly with a balanced accuracy of 401 

63.4%, but there was a high proportion of misclassifications (Table 5, Table 6). The potential 402 

reef class had a producer’s accuracy of 64% but a low user’s accuracy of 29.6% due to a high 403 

number of false positives (Table 6), suggesting that a map of predicted spatial distribution 404 

based on environmental variables would not be reliable. A reliability diagram indicated that the 405 

model was not well calibrated and underpredicted the potential reef class (Supporting 406 

information Figure S4). 407 

 408 

Table 5. Error matrix for the model predicting potential Sabellaria spinulosa reef following spatially 409 
buffered cross validation. True positives are in grey. Values are normalised by the total number of 410 
observations for each class, such that the columns sum to 1. 411 

  Observed 

 
 Not reef Potential reef 

Predicted 
Not reef 0.628 0.360 

Potential reef 0.372 0.640 

 412 

 413 

Table 6. Performance estimates for the model predicting potential Sabellaria spinulosa reef following 414 
spatially buffered cross validation.  415 

 Overall Not reef Potential reef 

Observations 509 409 100 

User's accuracy 0.587 0.877 0.296 

Producer's accuracy / Sensitivity 0.634 0.628 0.64 

Specificity 0.634 0.64 0.628 

Quantity disagreement 0.228 0.228 0.228 

Allocation disagreement 0.141 0.141 0.141 

Balanced accuracy 0.634   

Accuracy 0.631   

No information rate 0.804   

Kappa 0.187   
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 416 

The variable importance plot for this model showed that mean bed shear stress was the single 417 

most important variable for predicting potential S. spinulosa reef, with the remaining variables 418 

having much lower importance (Fig. 5). A partial dependence plot for the effect of mean bed 419 

shear stress on class predictions showed that the potential S. spinulosa reef was less likely to be 420 

predicted above mean bed stress of 2.52 Nm-2 (Fig. 6B). 421 

 422 

 423 

Figure 5. Relative importance of predictor variables in the model predicting potential Sabellaria spinulosa 424 
reef. Variable importance is quantified by the mean decrease in the Gini index if the variable is not included 425 
within the Random Forest model. The Gini index is a measure of node purity.  426 

 427 

 428 
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 429 

Figure 6. Partial dependence plot showing the influence of mean bed shear stress in the model predicting 430 
reef substrate. The plot visualises the influence of a single variable on the likelihood that an observation is 431 
predicted to be potential biogenic reef or not. Observations with high mean bed shear stress are less 432 
likely to be classified as potential reef and more likely to be classified as not biogenic reef.  433 
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4. Discussion 434 

We used a machine learning approach to map previously unresolved temperate reef habitats in 435 

a high tidal energy marine region, finding that hydrodynamic energy at the seabed and 436 

ruggedness measured at multiple scales were the most important predictors of potential reef 437 

habitats. Our model predicting geogenic reef classes generated useful predictions, but our 438 

model predicting biogenic Sabellaria spinulosa reef did not satisfy our objectives. 439 

Our reef substrate model performed well, with a balanced accuracy of 71.7%. The performance 440 

was sufficient to provide useful information about the distribution of potential temperate reef 441 

habitats relative to the environmental variables in our study site. While not directly comparable, 442 

other studies with similar contexts and model frameworks have reported overall accuracies of 443 

81-93% (Haggarty and Yamanaka, 2018), and 69.7% (Porskamp et al., 2018). We were able to 444 

predict stony reef using hydrodynamic and seabed morphology data with a user’s accuracy of 445 

65.5%. As an ecologically important habitat listed in the EC Habitats Directive Annex 1, there is 446 

a need for environmental managers of member states to understand the spatial distribution of 447 

this habitat in their jurisdictional waters. Identifying and evaluating the habitat by remote 448 

sensing rather than direct observation or sampling has historically proved challenging (Irving, 449 

2009; Limpenny et al., 2010). Our findings are encouraging and suggest that it will be possible 450 

to develop protocols to identify areas of potential stony reef using remotely sensed and 451 

modelled environmental data, enabling targeted sampling and improved efficiency in resource 452 

use for environmental management. 453 

Mean tidally induced bed shear stress was one of the most important variables in predictive 454 

models for both reef substrate and potential Sabellaria spinulosa biogenic reef. Our results 455 

support findings from wave exposed coastal regions (Porskamp et al., 2018; Rattray et al., 456 

2015), showing that hydrodynamic energy is an important predictor of reef habitats in high 457 

energy waters. Seabed ruggedness calculated at scales of 3 m, 15 m and 140 m were also 458 

important variables for predicting reef substrate. These variables had low multicollinearity 459 

indicating that they represented features of different scales in the seascape. For instance, 3 m 460 

ruggedness may represent individual boulders or topographically complex bedrock, 15 m 461 

ruggedness may represent raised patches of cobbles and boulders surrounded by more erodible 462 

sediment, and 140 m ruggedness may represent large-scale bedforms and glacial features in the 463 

region (Van Landeghem et al., 2009). Interestingly, where there was high 140 m scale 464 

ruggedness, stony reef was predicted rather than bedrock, suggesting that bedrock bathymetry 465 

was more homogenous than stony reef at this scale in our study area. Our results support an 466 

increasingly recognised need to include predictor variables at multiple scales for benthic habitat 467 

mapping (Lecours et al., 2015; Misiuk et al., 2021; Porskamp et al., 2018). As with bathymetric 468 
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indices, the ability of bed shear stress to structure and predict benthic habitats is likely to differ 469 

across spatial scales. Variation in water flow influences species distribution by controlling 470 

proximal factors across scales. For instance, suspended food availability is influenced by 471 

topographically driven turbulence at the centimetre scale (Prado et al., 2020), and by 472 

oceanographic processes like upwelling at the kilometre scale (Navarrete et al., 2005). Fine-473 

scale hydrodynamic energy information with resolution comparable to bathymetry data across 474 

regional extents would likely enhance the performance of predictive models. This would benefit 475 

benthic habitat mapping and marine species distribution modelling to better understand 476 

patterns and processes at organism-centric scales. However, unlike bathymetry that is relatively 477 

stable through time, hydrodynamic conditions are highly variable, making simulating and 478 

validating them at fine spatial scales logistically and computationally challenging with current 479 

technology. 480 

Our predictive model for Sabellaria spinulosa biogenic reef was largely driven by the singular 481 

important variable of bed shear stress. Although the performance metrics were low and the use 482 

of the model to generate a predictive map was not appropriate, the results still provide valuable 483 

insight into the environmental variables characterising S. spinulosa reef. S. spinulosa reef was 484 

not predicted to occur in the areas of the study site with highest energy, suggesting that bed 485 

shear stress was a limiting factor for the habitat above 2.52 Nm-2. Higher flow rates may present 486 

barriers to larval settlement, tube building or feeding, but there is little existing information on 487 

the environmental limits of the species (Davies et al., 2009). This threshold in bed shear stress 488 

corresponded with one driving substrate predictions, above which bedrock and stony reef (mid-489 

high resemblance) were more likely to be predicted. This may indicate that substrate suitability 490 

influenced a lack of S. spinulosa reef predictions in this area. While few observations of S. 491 

spinulosa reef on bedrock were recorded, stony reef substrate was found to support S. spinulosa 492 

reef in lower energy parts of the study area. There may be an interaction between substrate and 493 

bed shear stress influencing biogenic reef development that would need further research to 494 

elucidate. Bathymetric derivatives had low importance as predictor variables for potential S. 495 

spinulosa biogenic reef, suggesting that they were ineffective in explaining the variation in S. 496 

spinulosa reef presence among observations. S. spinulosa is difficult to detect using multibeam 497 

bathymetry acoustic data and expert interpretation of higher resolution side scan sonar data is 498 

recommended to locate potential reefs (Limpenny et al., 2010). Although our original acoustic 499 

data resolution was relatively high at 1 m, it may have still been too low to distinguish S. 500 

spinulosa reef morphology in a topographically variable area dominated by stony reef, and more 501 

observations of reef presence may be needed to train an effective model. Sabellariid reefs are 502 

dynamic in both space and time in terms of their emergence, density and patchiness (Jackson-503 
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Bué et al., 2021; Jenkins et al., 2018; Pearce et al., 2014), and can survive periods of burial due to 504 

sediment transport (Hendrick et al., 2016). This presents further challenges in both detecting 505 

reef habitats and identifying its environmental niche with a limited temporal scale. 506 

Observations through time are needed for an improved understanding of the environmental 507 

conditions suitable for S. spinulosa reef habitat development. 508 

Misclassifications were identified both in the error matrices and through manual inspection of 509 

the generated predicted maps. Most misclassifications were in classes most similar to the target 510 

class, which is to be expected with a classification system that discretises the continuous 511 

variation of a natural environment (Foody, 2002; Wang, 1990). This was most evident in the low 512 

performance metrics for the stony reef (low resemblance) class, which represented an 513 

intermediate on a continuum of cobble and boulder percent cover between sediment and stony 514 

reef classes. The challenging nature of this classification task was reflected in the high 515 

proportion of relatively low pixel-wise predicted class probabilities, particularly where a 516 

mixture of sediment and stony reef classes were predicted (Fig. 2B). Continuous mapping 517 

approaches can represent gradients in natural environments better than hard classification, but 518 

at a cost of interpretability for end users (Feilhauer et al., 2020). Misclassification of sediment 519 

wave bedforms as bedrock were visually identified and could largely be explained by a paucity 520 

of observations in areas with low energy but high ruggedness. As the classification algorithm 521 

can only learn from the training data, with no rugged sediment observations in the training 522 

data, rugged ground was most likely to be predicted as bedrock or stony reef. This suggests that 523 

semi-automated and manual interpretation mapping methods are complementary and the use 524 

of multiple methods will ultimately improve the quality of benthic habitat maps (Diesing et al., 525 

2014). Other sources of uncertainty included the limited field of view of video observations 526 

(approx. 1 x 1 m) relative to the pixel size of the final map (20 x 20 m), and the potential for the 527 

observed substrate (e.g., sediment) to be a veneer over another substrate (e.g., bedrock or 528 

biogenic reef). This is a particular concern in areas with strong tidal currents where high 529 

volumes of sediment are periodically transported and deposited during a tidal cycle and a single 530 

observation in time cannot capture such transience. Our predictive models may have been 531 

improved with multibeam echo sounder backscatter data across the extent of the study area. 532 

However, collection of high quality backscatter requires additional survey time and optimal sea 533 

state conditions, and it is an unstandardised variable (Lamarche and Lurton, 2018). Further, 534 

where a thin layer of sediment overlays hard substrate backscatter can be highly variable, 535 

making it less valuable as a predictor of observed substrate (Lucieer et al., 2013).  536 

Accuracy metrics are useful for assessing the performance and usefulness of a model for a 537 

specific application but should not be used in isolation to compare different models and studies 538 
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(Bennett et al., 2013; Mitchell et al., 2018). The performance of benthic habitat mapping varies 539 

with decisions made throughout planning, data collection and analysis, leading to a lack of 540 

standardisation (Strong, 2020). For instance, choices in model framework, scale and choice of 541 

environmental variables, the number of observation classes used and whether to use a 542 

geomorphic or biological basis to classes, all affect different aspects of the resulting map 543 

product (Ierodiaconou et al., 2018; Porskamp et al., 2018; Smith et al., 2015). A predicted map 544 

should therefore be considered along with its error matrix, several performance metrics and 545 

spatially explicit uncertainty estimates in a case-by-case basis to determine its suitability for a 546 

particular user and purpose(Congalton, 1991; Foody, 2002). It should also be recognised that 547 

that the performance estimates evaluate the classification model, rather than the true accuracy 548 

of a predicted map. Ideally probability sampling would be used to collect independent training 549 

and validation data for a predictive model to make design-based inference (Cochran, 1977; 550 

Olofsson et al., 2014), but this is rarely achieved for benthic mapping with resource limitations 551 

and the logistical constraints of sampling at sea, especially in high energy environments. To 552 

address the limitations of imperfect sampling design, methods have been developed to estimate 553 

a model’s ability to predict into unobserved space. These include the methods applied here of 554 

spatial cross validation and area of applicability analysis (Meyer and Pebesma, 2021; Ploton et 555 

al., 2020).  556 

The findings of this study support the use of predictive mapping as an efficient and repeatable 557 

tool for ecosystem management in logistically challenging environments like high tidal energy 558 

waters. These traditionally less anthropogenically developed and understudied regions are 559 

seeing novel industrial interest from the nascent marine renewable energy industry, generating 560 

demand for cost effective means to gather baseline ecosystem information (Shields et al., 2011; 561 

Wilding et al., 2017). We found that tidally induced seabed shear stress was a powerful variable 562 

for predicting reef habitats in high tidal energy temperate seas, and highlighted the importance 563 

of calculating bathymetric morphological derivatives at multiple scales for benthic habitat 564 

mapping. Our results will contribute to a better understanding of the spatial ecology of 565 

temperate reef ecosystems and will inform evidence-based decision making for ecosystem 566 

management in high energy marine areas. 567 

  568 
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Supporting information 884 

Accuracy metrics 885 

No single metric can fully describe the accuracy of a predictive map. To assess the accuracy of a 886 

predictive map for a specific purpose, a selection of accuracy estimates should be considered 887 

that are derived from the error matrix of predictions and observations. The error matrix is also 888 

known as a confusion matrix or contingency table. In this paper we use some of the more 889 

common metrics found in the literature. Here, we describe how the metrics we used were 890 

calculated using a generic example error matrix with three classes. 891 

 892 

Metric: Overall accuracy 893 

Synonyms: Accuracy 894 

Description: The proportion of correct positive predictions. 895 

Calculation: True positives (all classes) / Total observations (all classes) 896 

  Observed  

  A B C Totals 

P
re

d
ic

te
d

 

A 22 7 0 29 

B 4 39 9 52 

C 2 5 12 19 

 Totals 28 51 21 100 

 897 

Overall accuracy = 0.73 898 

 899 

Metric: User’s accuracy 900 

Synonyms: Error of commission, precision, positive predictive value 901 

Description:  For a specific class, the proportion of positive predictions that were observed to be 902 

that class.  903 

Calculation: True positives (Class A) / Total predictions (Class A) 904 

  Observed  

  A B C Totals 

P
re

d
ic

te
d

 

A 22 7 0 29 

B 4 39 9 52 

C 2 5 12 19 

 Totals 28 51 21 100 

 905 

User’s accuracy (Class A) = 0.76 906 
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Metric: Producer’s accuracy / Sensitivity 907 

Synonyms: Error of omission, true positive rate, recall 908 

Description: For a specific class, what proportion of positive observations were correctly 909 

predicted? 910 

Calculation: True positives (Class A) / Total observations (Class A) 911 

  Observed  

  A B C Totals 

P
re

d
ic

te
d

 

A 22 7 0 29 

B 4 39 9 52 

C 2 5 12 19 

 Totals 28 51 21 100 

 912 

Producer’s accuracy / Sensitivity (Class A) = 0.79 913 

 914 

Metric: Specificity 915 

Synonyms: True negative rate 916 

Description: For a specific class, what proportion of negative observations were correctly 917 

predicted? 918 

Calculation: True negatives (Class A) / Total negative observations (Class A) 919 

 920 

  Observed  

  A B C Totals 

P
re

d
ic

te
d

 A 22 7 0 29 

B 4 39 9 52 

C 2 5 12 19 

 Totals 28 51 21 100 

 921 

Specificity (Class A) = 0.90 922 

 923 

Metric: Balanced accuracy 924 

Description: An overall accuracy metric that compensates for unbalanced class observations 925 

Calculation: The global mean of the class-wise means of sensitivity and specificity 926 

(((Sensitivity (Class A) + Specificity (Class A)) / 2) + ((Sensitivity (Class B) + Specificity (Class 927 

B)) / 2) + ((Sensitivity (Class C) + Specificity (Class C)) / 2)) / 3 928 
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 929 

Metric: Quantity disagreement 930 

Description: Error attributed to differences in the class prevalence of observations and 931 

predictions (Pontius and Millones, 2011; Warrens, 2015). 932 

Calculation: Where pij is the proportion of samples observed as class i and predicted as class j, 933 

pi+ and p+I are the observed and predicted totals for each class respectively, or the column and 934 

row totals of an error matrix of the proportions, such that the full matrix sums to 1, and c is the 935 

number of classes (Warrens, 2015) 936 

 937 

The quantity disagreement of class i is given by 938 

 939 

𝑞𝑖 = |𝑝𝑖+ −  𝑝+𝑖| 940 

 941 

The overall quantity disagreement is given by 942 

 943 

𝑄 =  
1

2
∑ |𝑝𝑖+ − 𝑝+𝑖|

𝑐

𝑖=1

 944 

 945 

Metric: Allocation disagreement 946 

Description: Error attributed to differences in per-unit class identities between observations 947 

and predictions (Pontius and Millones, 2011; Warrens, 2015). 948 

Calculation: Using the definitions given for quantity disagreement (Warrens, 2015) 949 

 950 

The allocation disagreement for class i is given by 951 

 952 

𝑎𝑖 = 2 min(𝑝𝑖+, 𝑝+𝑖) − 2𝑝𝑖𝑖  953 

 954 

The overall allocation disagreement is given by 955 

 956 

𝐴 =  [∑ min(𝑝𝑖+, 𝑝+𝑖)

𝑐

𝑖=1

] − ∑ 𝑝𝑖𝑖

𝑐

𝑖=1

 957 
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 958 

Figure S1. Correlation matrix of environmental predictor variables included in the predictive 959 

models. Circle colour and size indicate the strength and sign of correlation between two 960 

variables. Morphological variable names include the derivative abbreviation and scale (m). 961 

Abberviations: curvature (crv), eastness (east), northness (nth), relative difference from mean 962 

value (rdmv), slope (slp), vector ruggedness measure (vrm). Vrm_60 was included in the 963 

substrate model but not the Sabellaria spinulosa model after variable selection by variance 964 

inflation factor. 965 

 966 

 967 

 968 
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 969 

 970 

Figure S2. Our hydrodynamic model validates well against Holyhead tidal gauge harmonic data 971 
in amplitude (A), phase (B) and elevation (C). Tidal elevation was processed using ttide_py1 for 972 
tidal analysis and the numpy python library was used to calculate r-squared values. 973 

 974 

 
1 https://github.com/moflaher/ttide_py 
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 975 

Figure S3. Heat map of predicted class probabilities for a random subset of samples (30 per 976 

observed class) from the reef substrate model.  977 

 978 

 979 

Figure S4. Reliability diagram for the Sabellaria spinulosa reef model. The model appears to 980 

underpredict S. spinulosa reef, treated as the event.  981 


