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Summary 

The ability to organize our movements in well-coordinated and functional sequences that are flex-

ibly retrieved and generated from memory is a hallmark of the human behavioral repertoire. To 

achieve this skill, the brain utilizes the period before movement initiation to ‘set up’ and prepare 

the key higher-order properties of sequence representation, namely the order and timing of sequen-

tial movements. Previous neurophysiological research provides evidence for a parallel graded pre-

activation of upcoming movements offering support for a class of neural network models, termed 

competitive queuing (CQ). Timing has been modelled in this context as a key regulator of ordinal 

position of to-be-performed movements, whilst preparation time has been associated with im-

proved subsequent performance. What remains unanswered is the role of preparation time and 

sequence timing in preorganizing the previously reported gradient of movements according to their 

position in the sequence during planning. By addressing that question, the present thesis aimed at 

disambiguating the representation of serial order and sequence timing during planning both with 

behavioral and neural measures. With a novel behavioral ‘delayed-production’ paradigm which 

utilized movement probes, this thesis first investigated the behavioral readout of the CQ mecha-

nism prior to execution of well-learnt finger sequences and its modulation by preparation time or 

sequence timing (different speeds/temporal grouping). Subsequently, using movement decoding 

from non-invasive Electroencephalography (EEG) and concurrent Electromyography (EMG), the 

parallel graded preactivation of upcoming movements and the potential impact of sequence timing, 

and specifically different speeds, on regulating the preactivations were further examined. The find-

ings revealed that the preparatory CQ gradient acquired at the behavioral level represented the 

serial order of simultaneously prepared movements depending on their initial position in the se-

quence. The quality of movements’ organization expressed via the CQ gradient during planning 

was improved by more time to prepare the sequence, not its timing. The longer the preparation 

time the more the gradient was expanded refining the movements’ organization by their ordinal 

position. When more pronounced, i.e., featuring more distinct differences between positions, the 

gradient predicted better sequence performance, suggesting that this mechanism supports a more 

accurate sequence plan accounting for improved sequence execution. The preparatory CQ gradient 

also reflected a fine-grained mechanism which determines the preparatory state of movements 

depending on whether a planned movement belongs to a sequence or not, or whether a movement 

is planned as part of a sequence or not. In contrast to previous findings, time-resolved EEG decod-

ing showed that movement-related neural patterns were not preactivated in parallel before execu-

tion. Post hoc transformation of both the EEG and the EMG time series and timing analysis demon-

strated that the EEG signal was scaled during sequence planning according to the speed of the cued 

sequence. The timing of a movement unrelated to the planned sequence was rehearsed during se-

quence planning at the same time as the sequential movement in the first position. Both findings 

were not present at the neural periphery during sequence planning suggesting a high-level timing 

rehearsal of upcoming movements in the absence of overt motor behavior. Overall, these findings 

demonstrate that order and timing are controlled by different mechanisms during the planning of 

skilled motor sequences. This research has implications for understanding a modular control of 

motor sequence representation and the planning dynamics through different modalities and 

measures. Finally, these findings are discussed in reference to skilled sequencing in movement 

disorders. 
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Chapter 1 

Introduction 

 

 

 

his Chapter aims to introduce the research context by briefly touching upon the historical 

emergence of the key concepts of order and timing that this thesis set out to investigate. 

The Chapter then reviews the relevant literature to shed light on the up-to-date 

knowledge on motor sequence representation with regard to the processing of serial order and 

timing. Specifically, the literature review first focuses on neural network studies of different the-

oretical backgrounds that have provided models for a parallel vs serial sequence representation and 

discusses behavioral data that support either computational account. The review then examines 

more closely neurophysiological evidence in support of a parallel account of sequence representa-

tion with a focus on motor sequence planning. Subsequently, the Chapter delves into the mecha-

nisms of motor timing, motor planning and its relation to sequence performance. The Chapter, 

finally, outlines the aims and objectives of the undertaken constituent projects and defines the 

boundaries of the research questions. 

 

1.1 Research Context  

1.1.1 Early descriptions of motor sequence organization and the concepts of 

serial order and timing 

Sequential behavior is a remarkable manifestation of how we interact with the world through 

movement. As a motor skill, this ability manifests in fundamental types of sequencing behavior 

that are inherent to human development such as tool use, speech production, and writing, or are 

part of artistic and athletic competence in the domains of dancing, musical performance, and 

sports. 

T 
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The ability to smoothly execute a motor skill involves efficient assembly and coordination 

of muscle synergies for generating a sequence of actions in the correct order through time (Doyon 

et al., 2018). A number of neurological disorders, however, disrupt this function, heavily affecting 

the individual’s ability to smoothly complete sequential tasks and activities in their everyday life. 

For example, children with Developmental Coordination Disorder (Sarmiento & Lau, 2020) ex-

hibit significant difficulties in acquiring and performing motor skills due to poor learning strategies 

during training (Biotteau et al., 2016) and impaired motor planning (Bhoyroo et al., 2018, 2019; 

Krajenbrink et al., 2021). Similarly, stuttering, a speech disorder characterized by an interruption 

of timed and coordinated movements necessary for producing fluent speech (Ham, 1999) has been 

associated with motor speech planning deficits (Frick & James, 1965) as shown by behavioral 

(Walsh et al., 2015) and neuroimaging studies (S. Brown et al., 2005; Garnett et al., 2018). Defec-

tive planning and execution of motor sequences are also prominent in other motor speech sound 

disorders such as acquired apraxia (Duffy, 2005; Malcolm R., 2011; Bislick et al., 2017) and de-

velopmental verbal dyspraxia (Bradford & Dodd, 1994; Tükel et al., 2015) and extend to learning 

disabilities such as dysgraphia (Adi-Japha et al., 2007; Biotteau et al., 2019) which affects ortho-

graphic coding and finger order sequence planning in handwriting and typing (Raymer & Rothi, 

2015). In addition, patients with cerebellar disease exhibit impaired control of timing severely 

affecting their ability to integrate visuomotor information and timely execute subsequent actions 

(Bares et al., 2007). Sequencing is also impacted in patients with Parkinson’s disease (Ruitenberg 

et al., 2015) who show difficulty in planning complex sequential movements (Altgassen et al., 

2007; Fritsche et al., 2020; Harrington & Haaland, 1991), impaired storage working memory 

(WM) capacity and incorrect retrieval of serial order (Witt, 2021; Ye et al., 2021). Collectively, 

this evidence points to an impaired interplay between the cognitive system and motor network 

responsible for controlling the optimal selection, planning, and execution of the intended sequen-

tial actions, impacting the orderly output of constituent movements over time. 

Long before the above empirical observations came to light, understanding the underlying 

mechanisms of motor sequence organization, learning and control had been the centre of interest 

for early behavioral and cognitive scientists. The pure behaviorist view proposed a serial learning 

mechanism based on the response chaining hypothesis (Bain, 1864; James, 1891) and the classical 

conditioning laws (Watson, 1913; Watson & Rayner, 1920; Pavlov, 1927/2010). According to this 

account, sequences emerge when a stimulus (e.g., in form of proprioceptive feedback) paired with 
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a response triggers another response. Once this habitual connection is established, movements un-

fold smoothly in a serial manner with the stimuli paired with one movement element cueing the 

next. Ebbinghaus’s (1885/2014) pioneering experiments on verbal serial learning and memory led 

to the formulation of the associative chaining hypothesis. His observations primarily supported 

the assumption that encoding of serial order information is possible due to strong associations 

made between adjacent items in a sequence. Thus, the mechanism for retrieving the serial order of 

a well-learnt list of items would involve a forward ‘scan’ of the chain of associations between the 

successive items. This hypothesis dominated for many decades providing a strong account of se-

quence control which generalized in the field of motor sequence learning. 

However, the fundamental question pertaining to human cognition and motor control was 

fully encapsulated by Lashley K.S. in his thought-provoking essay on The Problem of Serial Order 

in Behavior (1951): How does the healthy brain achieve the integration of movement elements of 

familiar or well-learnt sequences into the desired order and how does that translate to a temporally 

structured sequence during execution? Drawing mainly on examples from the language domain, 

Lashley reduced the serial order problem to a need for understanding the generalized ‘syntax’ of 

serial movements. In rejection of the chaining theories and response-produced feedback dependent 

(i.e., closed-loop) control systems, Lashley introduced a hierarchical account of serial learning. 

His main criticism on the chaining account centered around the argument that an associative chain 

of movements cannot explain the flexibility seen in many motor skills. For instance, the innumer-

ous combinations of phonemes to produce words in speech, or of notes to perform a musical piece 

cannot merely reflect pairwise linkages between successive elements. Instead, Lashley proposed 

that, for serial behavior to occur, a multi-level organization of plans is required which guides in a 

hierarchical fashion activity and output. In addition, Lashley was the first to challenge the role of 

sensory control arguing that it is unlikely that there is time for peripheral feedback to facilitate 

skilled, rapidly performed movements. Crucially, earlier empirical observations of intact motor 

control of limbs despite absent kinesthetic feedback (Lashley, 1917; Lashley & McCarthy, 1926; 

Lashley & Ball, 1929) set the basis for the hypothesis of a purely central motor program independ-

ent of peripheral feedback. 

Lashley concluded that, in such centrally controlled system, action plans of the intended 

sequence are partially excited in parallel, namely preactivated simultaneously, before order is as-

signed to movements. In this structure, a timing mechanism, being at the time the most elusive to 
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explain, was speculated to interact with the spatial system (order) regulating the temporal structure 

of the sequence elements through some scanning process. Lashley’s views on the spatial and tem-

poral systems prescribe that the action plans or motor programs are already at play rendering the 

neural system dynamic before movement initiation. This critical thesis challenged the long-stand-

ing principle underlying the chaining mechanisms – essentially an axiom at the time held by phys-

iologists - that the brain is static until the nervous system receives a stimulus of some form which 

triggers a chain of actions or reflexes. In addition, that action plans are encoded and ‘readied’ 

independently of muscular control and hierarchically organized introduced to motor neuroscience 

the seminal hypothesis that sequence representations may be modular in that different modules, 

i.e., sequence components (Keele et al., 2019) and/or neuromotor synergies (Poggio & Bizzi, 

2004), interact to produce known or novel movements. 

The rigid central – peripheral dichotomy argument received criticism from closed-loop the-

orists (Adams, 1971; R. A. Schmidt, 1975) while there was later consensus that the role of sensory 

feedback in skilled sequence control even for rapid movements cannot be precluded (Adams, 1976; 

Keele & Summers, 1976; Abbs & Winstein, 2019; MacKenzie & Van Eerd, 2019). Importantly, it 

has been suggested that an alternative account to chaining is not a strictly central non associative 

process (Bruce, 1994) as associations can take place under certain conditions in reaching move-

ments (Desmurget & Grafton, 2000), naturalistic action sequences (Botvinick & Plaut, 2004), im-

mediate serial recall (ISR) (Botvinick & Plaut, 2006; Chance & Kahana, 1997), simple structures 

in typing (Keele et al., 2003), episodic memory retrieval (Murdock, 1993), and repetitive move-

ments (Yamashita & Tani, 2008). Despite these criticisms, the motor programming hypothesis has 

been widely accepted as the key notions of hierarchical organization and modular control of 

movement sequencing have fed or inspired several modern theories and models of sequence 

representation and control (Keele, 1968; Keele & Summers, 1976; Foster, 2002; Rhodes et al., 

2004; Keele et al., 2019). 

1.1.2 Contemporary computational approaches on motor sequence control: 

Basic architecture, principles, and assumptions 

Understanding the mechanisms of sequence control has substantially benefited from the 

advancement of connectionist modelling especially over the last 50 years in the field of cognitive 
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science. Connectionism is a theory of information processing and refers to computational ap-

proaches for studying human cognition by using artificial neural networks. Without aiming at 

building direct analogues of biological neural networks, connectionist models focus on simulating 

the neurophysiological functioning of neurons and their networking in the brain by specifying their 

computational properties to explain the workings of cognitive phenomena (Houghton, 2005). Con-

nectionist systems hypothesize that information is processed through connections among distrib-

uted representations. In an artificial neural network, these are in a form of highly inter-connected 

neuronal units, which represent patterns of neuronal activation rather than activation of individual 

neurons (Fodor & Pylyshyn, 1988; Medler, 1998; Walker, 1992; Zhang et al., 2020). 

To date, the prominent connectionist models of sequence representation find their roots in 

early cognitive theories of serial learning. The first mathematical specification of Lashley’s im-

pactful motor program hypothesis (Lashley, 1951) was formulated by Grossberg (1978a, 1978b). 

His model on explaining short-term memory (STM) phenomena observed in free serial recall tasks 

is the computational ancestor of a class of neural networks accounting for a hierarchical organiza-

tion of sequence learning and control, termed competitive queuing (CQ) models (Houghton, 1990). 

Expanding on the theoretical concept of simultaneous plan representations, Grossberg provided 

the basis for the two fundamental assumptions that all CQ networks follow in a system consisting 

of two primary neural levels or layers (Bullock & Rhodes, 2003; B. J. Rhodes et al., 2004): First, 

multiple plan representations (nodes) can be concurrently active in a layer called parallel planning 

layer, and second, in a competitive choice layer those plans compete with one another until the 

most active plan is selected for output (Figure 1.1). 

During sequence retrieval, the co-activated plans (i.e., sequence elements) are accessed in a 

neuronal map in a parallel planning layer, featuring a primacy gradient (Grossberg, 1978a, 1978b; 

Page & Norris, 1998), which reflects graded neuronal activation levels across plans. In the com-

petitive choice layer, plans are controlled by recurrent competitive field (RCF) dynamics, part of 

the WM system, which normalize total activation across the competing plans (Grossberg, 1978a). 

One significant property of this normalization is that the distributed activation patterns are pre-

served in the planning layer via recurrent self-excitation of the most active plan and inhibition of 

all competitor plans. Whilst excitatory activity is thought to reflect the co-firing of excitatory neu-

ronal populations, lateral inhibition is modulated by interneurons. Lateral inhibition is a well-es-

tablished mechanism of neuronal specification which allows neurons to focus their activation by 
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suppressing the firing of surrounding neurons and increasing signal-to-noise when a consistently 

strong signal is received (Sillito et al., 1985; Kral & Majernik, 1996; Appel et al., 2001; Sil’kis, 

2006; Beck & Hallett, 2011; Bakshi & Ghosh, 2017; Sugawara, 2020). In the CQ system, lateral 

inhibition allows the plan with the strongest activation to be chosen through a ‘winner-take-all’ 

mechanism, a second property of the RCF normalization. Once the selected plan wins the compe-

tition and is selected for execution, it is ‘deleted’ from the parallel planning layer, reflecting its 

suppressed activation (inhibition). Due to the RCF dynamics, after a plan is deleted, activity is 

redistributed across the remaining plans still maintaining the rank ordering of the initial activation 

levels. This activity preservation in the planning layer has as a consequence the activation level 

per plan to be reduced as a function of the number of simultaneous plans. Finally, all parallel plans 

are effectively converted to serial production over time through this iterative process terminated 

by the last plan of the sequence being selected for execution. 

 

Figure 1.1 | CQ network. The operation of a CQ network is described here in the context of motor sequence 

control using a hand model for a four-element finger sequence. The parallel planning layer comprises a high-level 

map containing the plan representations of movement elements that constitute the learned or encoded sequence. 

The plans are simultaneously activated with their activation strength depending on their position in the sequence. 

Once the sequence is retrieved, the most active element (i.e., 1st) is self-excited (solid arrow) and at the lower-level 

layer (competitive choice) competes with each of the neighboring nodes by sending inhibitory signals (brackets 

with gray circles, solid and dashed versions). To avoid clutter, inhibitory connections with all other nodes (dashed 

version) are exemplified only for the node corresponding to the 4th element. When the most active element wins 

the competition, it is executed (dashed arrow) and then self-suppressed from the parallel planning layer (depicted 

with sided brackets with gray circles). Every next most active element (2nd, 3rd…) undergoes the same stages until 

the motor sequence is produced and the parallel planning layer is blank. Following this cyclic iterative process, the 

CQ mechanism allows for a forward conversion of the parallel plans to serial output over time. CQ, competitive 

queuing. Adapted from Bullock and Rhodes (2003). 
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In a parallel strand of research, the ‘connectionist revolution’ in the 1980s popularized the 

use of recurrent neural network (RNN) models due to significant advances in their functionality 

and applications (Rumelhart et al., 1986). Inspired by the architecture of biological neural net-

works, RNNs have been developed from their basic form (Hopfield, 1982; Elman, 1990; Jordan, 

1997) to more sophisticated algorithms (Bianchi et al., 2017; Wang et al., 2017; Caterini & Chang, 

2018) and have become very powerful in explaining a wide range of time series or sequential data 

(Kanagachidambaresan et al., 2021). Originating from the classic associative chaining hypothesis 

(Ebbinghaus, 1885/2014; Washburn, 1916/2008), recurrent neural systems posit that a practiced – 

either discrete or continuous - sequential behavior is fundamentally represented serially, yet as a 

cohesive system. Specifically, their architecture is based on the principle that, during sequence 

learning, serial movements are encoded as a chain of associations between the successive elements 

that comprise the learnt sequence. The primary assumption is that for the sequence elements to be 

generated in the intended order, each element in the chain cues and retrieves the one that successes 

it. This property of dependency, in turn, subserves the assumption that no feature of the sequence 

is preprogrammed, namely there is no ‘pre-registered’ element-specific information in place. In-

stead, any current element’s information is both dependent on the previous element’s information 

and time-dependent as it is successively elicited while the sequence elements are serially executed. 

Technically, in an RNN application, generation of a spatiotemporal trajectory of a trained 

sequence is controlled through feed-forward and feed-back – hence, recurrent – signals. In a net-

work consisting of an input, a hidden, and an output layer, each output sequence element is fed 

back to the hidden layer as input. Through this feed-back loop, the hidden layer - a node preserving 

sequential memory information - is fed by a context-specific, e.g., spatiotemporal, state both of 

every current and previous input before the output element is determined (Sherstinsky, 2020; 

Ashraf Zargar, 2021). In modelling sequence representation at the neural level, this means that the 

state of an output neuronal population activity at a specific time, yt, defines the order and timing 

representations that feed the current input activity state and triggers the next output neuronal pop-

ulation activity yt+1. This, in turn, triggers activity yt+2 and so on, until the whole sequence is gen-

erated (Figure 1.2). Therefore, the spatial order of an element within a sequence (i.e., its ordinal 

position) can only be represented serially as it is intrinsically dependent to the occurrence of the 

previous data. Elman (1990) has proposed that time in an RNN system can be stored as an internal 
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representation, thus implicitly, by utilizing an error signal in the form of feedback to guide the 

temporal structure of the sequential elements. 

 

Figure 1.2 | RNN in folded and unfolded states. An RNN consists of three distinct layers, the input (x), hidden 

(h), and output (y) layers, each of which is assigned with different weights (wx, wh, wy) serving to facilitate the 

network’s ability to learn. Similar to the CQ illustration (Figure 1.1), a hand model for a four-element finger se-

quence is used as an example of motor sequence control. Here, an element representation (e.g., 1st, as starting point 

of the finger sequence) is fed to the input layer (xt-1) whose information is sent to the hidden layer (ht-1). The hidden 

layer maintains the sequential memory. Once the current element is output (yt-1), the information in the current 

hidden layer (ht-1) is passed over to the next hidden layer (ht) so that the system ‘knows’ element 1 has been output. 

The process is serially repeated (hence the multiple ‘single’ RNNs as shown in the unfolded version) until the motor 

sequence is completed. RNN, recurrent neural network. Adapted from Ashraf Zargar (2021). 

 

 

1.2 Literature Review 

1.2.1 A parallel vs serial sequence representation of order and timing 

A sequential motor skill is characterized by our ability to proficiently conduct deliberate 

and goal-directed series of movements. Motor sequence acquisition involves the learning of novel 

patterns through practice to ensure a gradually more efficient, i.e., faster and more accurate, exe-

cution of the intended sequential actions (Shmuelof et al., 2012; Whiting, 1975; Willingham, 

1998). How the brain accomplishes the organization of distinct movement elements into sequence 

outputs in the correct order and in a timely manner remains debatable. 
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1.2.1.1 Neural network studies of sequence representation and relevant behavioral data 

A significant proportion of the literature on sequence representation is assigned to neural 

network studies. As previously mentioned, these typically represent two different schools of 

thought, namely a parallel versus serial processing account of sequence learning and control. Var-

iants of CQ models have been developed to simulate a wide range of serial performance data. 

These include action selection (Cooper & Shallice, 2000), verbal, spatial and visual serial recall 

from STM (Gupta & MacWhinney, 1997; Hurlstone & Hitch, 2015, 2018; Henson, 1998; Page & 

Norris, 1998; Burgess & Hitch, 1999; Glasspool, 2014), speech and language production (Bohland 

et al., 2010; Glasspool & Houghton, 2005; Grossberg, 1987; Hartley & Houghton, 1996; Hitch et 

al., 2022; Houghton, 1990; J. Ward et al., 1999), and typing and handwriting (Bullock, 2004b; 

Bullock et al., 1993; Rumelhart & Norman, 1982). Mathematical models based on CQ principles 

have also expanded from saccadic eye movements (Grossberg & Kuperstein, 1986), planning and 

production of sentence and musical sequences (Page, 2019; Palmer & Pfordresher, 2003; 

Pfordresher et al., 2007), to storage of arbitrary sequential events (Bradski et al., 1994) or one-shot 

learning of novel behaviors (Jändel, 2014). 

The application of CQ models to a large variety of serial behavior domains demonstrates 

that a CQ network may describe a central mechanism of sequence learning, planning and control 

(Houghton, 2005; B. J. Rhodes et al., 2004). On the other hand, RNN models have been used to 

explain specific human cognition functions and motor behaviors such as associative memory 

(Lewandowsky & Murdock, 1989; Murdock, 1982, 1983, 1993), and sequential neuronal popula-

tion activity underlying rhythmic movements or stereotyped actions (e.g., Bruno et al., 2017; 

Cannon et al., 2015; Kleinfeld & Sompolinsky, 1988). Thus, although the present research focuses 

on motor sequence representation, in this review modelling studies are discussed with regard to 

how they suggest serial order and timing are encoded in order to plan and generate sequences in 

various domains (motor, speech, etc.), as the principles are common across serial behaviors. Im-

portantly, studies modelling sequences from STM are discussed first since they provide the basis 

in variants of CQ or RNN models for also modelling sequence representation and retrieval from 

long-term memory (LTM). Additionally, this review covers the models’ predictions for serial order 

phenomena observed in human behavior (e.g., reaction times, errors), and their relevance to be-

havioral findings. 
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1.2.1.1.1 Short-term memory 

The CQ structure of parallel representation is very different from an RNN architecture 

where there lie direct pairwise associations between successive items comprising a sequence; these 

direct links are thought as key in associative sequence encoding during learning, as well as in 

planning and execution. A CQ architecture, on the other hand, can be very specific as to how serial 

order of planned actions is represented in the planning layer where multiple candidate plan repre-

sentations are simultaneously active. Various types of CQ modelling specify differently order en-

coding. In the CQ planning layer of ordinal models, the primacy gradient comprises the most basic 

functional mechanism assuming one-dimensional ordinal encoding. The gradient is established 

during sequence learning over the constituent plans such that activation levels monotonically de-

crease across positions. For example, as originally shown by Grossberg (1978b), when recalling a 

list of items from STM, items presented earlier in the sequence were assigned stronger activations 

than later items. Several models of ISR (Farrell & Lewandowsky, 2002, 2004; Grossberg & 

Pearson, 2008; Page & Norris, 1998) support encoding of serial order information based on the 

activation level (or otherwise strength) whereby a primacy gradient is formed depending on the 

items’ initially presented order. 

However, characteristic of the activation gradient in ordinal CQ models is that it remains 

static as sequence production unfolds making them inadequate in simulating order errors in se-

quence retrieval (Burgess & Hitch, 2005). In that front, the primacy model of Page and Norris 

(1998) has made a significant contribution proposing time-decaying activations of constituent item 

representations which though are susceptible to noise when the primacy gradient is formed. Spe-

cifically, the authors predicted that each constituent item’s activation during planning increased 

more with every other item presented or experienced during encoding and attenuated as a function 

of time during retrieval, selection, and output. Order errors in retrieval could emerge because an 

item may incorrectly acquire stronger activation than its preceding item due to random noise in 

input encoding thus causing transposition errors in adjacent items. Criticism, however, persisted 

regarding the capacity of ordinal models to predict a wider range of error patterns reflecting posi-

tional confusions, such as protrusion errors1 on a trial-by-trial basis (Henson, 1998b; Nevill et al., 

1996; Burgess & Hitch, 1999). 

 
1 Protrusion errors refer to incorrectly recalling an item in sequence n at the same position as in sequence n-1 (Conrad, 

1960; Henson, 1998b; Ryan, 1969). 
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Houghton (1990) proposed a more flexible mechanism by suggesting that what controls 

serial order of selected plans during production is a rather dynamic gradient which determines the 

rank reordering of plans in the parallel planning layer by modulating their activation and control-

ling their production through time. This has been also described as an emergent gradient which 

determines on the fly the activation level of phonemic elements, before the production of the in-

tended word, based on additional input (e.g., semantic and/or syntactic) which updates the system 

(Ward, 1994). The operation of such activation dynamics renders the network more effective for 

explaining non-adjacent items errors especially seen in speech production (Rhodes et al., 2004). 

In Houghton’s CQ algorithm for learning and producing phonemic sequences (i.e., words), apart 

from the initial (primacy) gradient acquired during learning, a graded activation pattern over the 

planned sequence elements (phonemes) is preserved through sequence generation. All elements’ 

activations gradually increase until the most activated element is selected for output and then sup-

pressed. Both the decreases in activation of neighbouring elements due to the lateral inhibition 

from the winner and the gradual increase (rebound) of the next most activated element yield rela-

tive activations which govern through time the order in which each element becomes the winning 

response. Because each element is temporally constrained by start and end edges (see also Henson, 

1998b), the sequencing mechanism of graded activations controls at the same time the temporal 

order of winning responses making the use of explicit position-specific information redundant. 

This model was the first most comprehensive computational expression of non-associative links 

postulating a hierarchical control of sequence learning and control. However, it did not clearly 

address the occurrence of protrusion errors. Another criticism it has received regards the automatic 

inhibition of the selected action. This is applicable only to units at the lower level of the hierar-

chical structure, thus units at higher levels either preserve their activation until the action or aspect 

of the sequence they represent is executed (Cooper & Shallice, 2000), or separate mechanisms 

should control their activation/inhibition (Botvinick & Plaut, 2004). 

More advanced CQ models of STM have taken the idea of the dynamic gradient a step 

further by employing a position marking mechanism in conjunction with the primacy gradient for 

representing serial order (Brown et al., 2000, 2007; Burgess & Hitch, 1992, 1999; Henson, 1998a, 

1998b, 1999; Hurlstone & Hitch, 2015, 2018; Lewandowsky & Farrell, 2008). Such positional 

models were inspired by the crude principle that serial order is controlled by means of ordinal 

position ‘slots’ that each sequence element occupies or is assigned to (Conrad, 1965). In practice, 
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however, such a hardcoded mechanism of item-position associations can evoke significant noise 

in the system during recall of a sequence collapsing its correct performance. To account for se-

quence disruption because of order errors, early models (Estes, 1972; C. L. Lee & Estes, 1977, 

1981) used the positional information as a context signal which changes as a function of time 

assuming direct item-position associations. Here, order errors occurred due to perturbations of the 

timings of item-position associations causing reordering of the reactivation of items. Further, 

Burgess & Hitch (1992) demonstrated that recalling items in the correct order in an ISR task by 

accessing the corresponding positional tags was highly imprecise introducing transposition (order) 

errors because of overlapping representations of neighbouring positions. As mentioned above, 

Page and Norris (1998) attribute this persistent error pattern to a ‘fill-in’ phenomenon during which 

an item is recalled at an earlier position (e.g., 1st) in the sequence than it should, so the next posi-

tion (2nd) is filled in by the item that should have originally been recalled at that 1st position. 

Empirical evidence (Farrell et al., 2013; Surprenant et al., 2005) also support this finding contra-

dicting chaining models which hold that once an item ‘hijacks’ an earlier position, it would cue 

the item that succeeded it during encoding. 

Burgess and Hitch (1999) in their powerful context-based positional CQ model of the pho-

nological loop introduced a context signal for encoding position as an additional dimension in the 

network. Simply put, the activation (primacy) gradient over plans of sequence item representations 

dynamically changes over time receiving input from another layer, that of ordinal position context 

signal, throughout sequence production. In their model, when an item is retrieved as part of a to-

be-performed sequence it is activated in the parallel planning layer. Via Hebbian learning 

(Attneave & Hebb, 1950; Hebb, 1961; also cf. Hebb repetition effect; Couture & Tremblay, 2006; 

Cumming et al., 2003) the item-position association is formed. Expanding on Houghton's (1990) 

work on an intrinsic temporal organization of within-sequence items, key in these item-position 

associations is that the positional context information is a time-varying signal that resets after the 

end of a sequence and at the start of recalling the next sequence. To successfully recall the se-

quence, the system updates the positional context via rerunning the timing signal such that an item 

representation is associated with the current state of the positional context signal. This establishes 

a dynamic activation gradient over the items which varies over the generation of sequence elements 

one-by-one through time and allows the retrieval of the most activated item at its corresponding 

position as embedded during learning. In the regime of modelling STM of verbal or even non-
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verbal sequences (Smyth et al., 2005) it has been postulated (Burgess & Hitch, 2005) that the 

positional information is accessed through the episodic buffer in the context of Baddeley’s model 

of WM (Baddeley, 2000). 

The timing signal component either as a moving temporal context (Burgess & Hitch, 1999, 

2006) or oscillatory (Brown et al., 2000, 2007; Hartley et al., 2016) signal makes an important 

contribution to our understanding of a potential role of sequence timing, or else temporal structure, 

in item representation depending on positional information. In these time-based CQ models, the 

timing signal is a moving window or an oscillator operating at varying frequencies that regulates 

the current positional state of an item and renders adjacent activation states of the positional con-

text signal more similar than states that are more distant in time. Therefore, here, temporal infor-

mation of sequential items interacts with the positional information indicating their occurrence 

during encoding and recall. Simulations of the time-based CQ models have focused on addressing 

the explanation of temporal grouping effects during sequence production first demonstrated ex-

perimentally by Ryan (1969). Using an auditory task of ISR of nine-element sequences, Ryan 

showed that temporal grouping (i.e., dividing a long sequence into shorter groups by introducing 

distinct pauses in between) of sequential items affected the shape of the acquired accuracy serial 

position curves2 and the pattern of errors. Specifically, not only were there within-group primacy 

and recency effects (Jahnke, 1965), but importantly within-group order errors were reduced. How-

ever, items still tended to preserve their position in neighbouring recalled groups (i.e., between-

groups transposition errors) implying the existence of between-groups representations of posi-

tional information. The above time-based CQ models successfully predicted an increase in proba-

bility to recall an item at its correct - or an adjacent to it - position when items are temporally 

grouped than when they are presented in longer sequences with isochronous inter-item intervals. 

In addition, consistent with Ryan’s findings, these models could predict an increase of between-

groups positional confusions accounted for by between-groups representations, where items be-

longing to different groups transpose to the same position. Unlike the predictions of chaining-like 

 
2In the literature of serial order, a traditional approach to illustrate sequence production data is by plotting separately 

the correct percent and reaction time of correct trials as a function of the sequence elements upon recall by their serial 

position. These data are visualized as accuracy and latency serial position curves, respectively, both describing the 

profile of sequence production. The accuracy curves exhibit a U-shape curve with pronounced primacy and recency 

effects (Deese & Kaufman, 1957; Jahnke, 1965; Murdock, 1962; Robinson & Brown, 1926) indicating the recall 

accuracy of each serial position. The latency curves typically form an inverted U-shape profile whereby RTs reflect 

the time required for each element to be output. 
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models, these computations also corroborate a hierarchical representation of serial order where 

positional information of items and sequences (groups) is encoded simultaneously but quite inde-

pendently. 

While on the CQ modelling front, substantial developments have been done to predict var-

ious patterns of errors, chaining models have been heavily criticized on their limitation to simulate 

behavioral benchmarks in serial order recall (Hitch et al., 2022). Although the chaining hypothesis 

was long thought to provide a relatively valid account for STM of serial order (Lewandowsky & 

Murdock, 1989; Wickelgren, 1966), pure forward inter-item associations have been inadequate to 

explain simple or complex patterns of errors (Botvinick & Plaut, 2006; Burgess & Hitch, 2005; 

Houghton & Hartley, 1995; B. J. Rhodes et al., 2004; Rosenbaum, 2010). Baddeley's (1968) data 

on acoustic similarity effects on serial recall were the first to empirically refute a chaining account. 

While participants were instructed to recall sequences of alternating phonemically similar and dis-

similar items (here, consonants), critically it was found that they were able to produce the mixed 

sequences as accurately – namely, retrieving the items in their correct position - as the sequences 

made of entirely dissimilar items. This empirical finding disproves the prediction followed by a 

chaining mechanism that, for instance, two dissimilar items cannot be recalled in their correct 

position if they are cued (i.e., preceded) by similar items, thus causing confusion in serial encoding, 

planning and production (see also Henson et al., 1996). 

In addition, associative intrusion errors of adjacent dyads erroneously being recalled in new 

positions - still though preserving their adjacency – are predicted by simple chaining models to 

occur pretty often (Wickelgren, 1966) due to the rigid inter-item associations. However, behavioral 

data by Henson et al. (1996) demonstrated that such errors are much less frequent. Further, simple 

chaining models could not predict transposition errors where an item exchanges positions with 

adjacent items, as that item would just ‘activate’ its following one - certainly not the replaced item. 

A more advanced class of chaining models, using compound chaining mechanisms (Murdock, 

1995; Solway et al., 2012), have overcome the problem of such simple within-sequence order 

errors by using bidirectional (forward and backward) and graded inter-item associations. However, 

more complex error patterns such as omissions and protrusion errors remain unaddressed by RNN, 

i.e., chaining-like, models since these would predict premature termination of sequence retrieval 

and production. 
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Botvinick and Plaut (2004, 2006), while agreeing that simple chaining cannot explain com-

plex sequencing behavior and sequence performance effects, have proposed that a more sophisti-

cated RNN architecture holds promise for an account of action selection in routine naturalistic 

action sequences or serial recall from STM. Botvinick and Plaut (2006) demonstrated that by using 

extensive training and back-propagation (Rumelhart et al., 1986) they were able to simulate 

Baddeley's (1968) findings. Their model exhibited similarity to a CQ hierarchical-like structure in 

that sequence elements were superposition-coded: Each element was represented with a unique 

activation pattern and the whole sequence was represented as a summation of those patterns in the 

hidden layer. Although elements were represented independently based on their ordinal position, 

item identity and positional information were represented together such that an item’s representa-

tion changed depending on its within sequence position. Contrary to the CQ model of Cooper and 

Shallice (2000), the same group (Botvinick & Plaut, 2004) simulating a naturalistic task, repro-

duced omission errors as observed in apraxia patients with acquired brain injury (Schwartz et al., 

1991, 1998). However, both RNN models could not fully capture other sequence performance 

effects like protrusion errors or grouping effects. These models oppose by virtue a traditional hi-

erarchical account for sequence representation in motor control as proposed by early theorists 

(Lashley, 1951; Miller et al., 2017; Restle, 1970). In a holistic hierarchical structure, as the CQ 

models employ, separate representations are assumed for flexible control of aspects of the sequen-

tial action. 

Interestingly, Botvinick and Plaut (2004) successfully simulated a naturalistic serial behav-

ior with an RNN model. They adopted a quasi-hierarchical structure in line with the task’s nature 

where different main tasks (e.g., making coffee) consist of several sub-actions (e.g., grab the cap, 

add sugar, and so on), handled at higher and lower levels of the network. This RNN system em-

ployed multiple internal representations qualifying it as quasi-hierarchical; these were ‘indexical’ 

representations in the hidden layer of the network reflecting the possible target actions, and were 

not preactivated, instead they evolved with experience as the sequence unfolded over time. One 

limitation in this simulation is that the model assumes that action selection and object selection 

involve common processes in that object-directed actions are perceptually selected and guide the 

action. Empirical data from fronto-parietal patients and healthy participants indicate that functional 

relations between objects (e.g., mug, coffee, kettle) affect perception such that when spatially close 

together they create an attentional bias for grouping these related objects into a unified action 
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representation improving performance (McNair & Harris, 2014; Riddoch et al., 2003; Wulff & 

Humphreys, 2013; Yoon et al., 2010). Thus, it is unclear what defines the changing of attentional 

focus over the different objects, as postulated in the input representation layer of the Botvinick and 

Plaut's (2004) model. In addition, the intermingled representations of action and object selection 

assumed here contradict behavioral findings (Boutsen & Humphreys, 2003; Riddoch et al., 2000) 

which show a dissociation between object selection and action (i.e., effector) selection. Here, pa-

tients with cortico-basal degeneration or damages to temporal and medial-frontal cortices had a 

deficit in selecting the correct effector but no impairment in selecting the correct object, suggesting 

that these processes are most likely represented independently. Also, the quasi-hierarchical ac-

count (Botvinick & Plaut, 2004) appears to make a prediction of a flexible overlapping represen-

tation of effectors, chunks, and sequences. Functional neuroimaging (fMRI) recordings, however, 

provide a clear dissociation in the primary motor cortex (M1) area which appears to encode only 

the individual movements constituting the learnt sequences and not the sequence itself (Yokoi et 

al., 2018). On the other hand, the same group (Yokoi & Diedrichsen, 2019) found that chunks and 

sequence representations overlap in the premotor and parietal cortices. This favors a partly quasi-

hierarchical account which posits that different encodings can be accommodated in one level of 

representation. 

The assumption of the CQ framework, following the motor programming theory, that con-

stituent plan representations of a sequence are simultaneously active, implies that movements are 

preactivated and planned in advance of movement initiation. This is a prediction not met by RNN 

models. Behaviorally, the hypothesis that a movement is prepared before it is executed was directly 

tested by Henry and Rogers (1960) in their memory drum hypothesis. Using movement tasks of 

varying demands, they found that reaction time (RT; interval from a ‘go’ signal to movement on-

set) increased with movement complexity (e.g., increased demands and sequence length). The as-

sumption here was that RT reflected the time needed to prepare the movements as determined by 

their complexity and attributable to slower access to the stored patterns of movement representa-

tions. Sternberg et al. (1978) reported a similar effect focusing on sequence length and execution 

rate based on the produced inter-response-intervals of constituent items. In typing and speech tasks 

where participants recalled sequence lists of different lengths after a short practice, both RT of the 

first item and mean inter-response-intervals were found to linearly increase with the length of the 

retrieved sequence. In addition, the inter-response-intervals of constituent items were dependent 
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on their serial position in the retrieved sequence. These data were explained within a more refined 

sequence preparation hypothesis of motor programming that sub-programs, being the constituent 

plan representations of a motor program of a sequence, are encoded and after a trigger they are 

prepared by being assembled and loaded into a motor buffer. 

The above effects have been investigated for establishing behavioral markers of motor plan-

ning in neurological patients exhibiting delayed sequence initiation or timing deficits during exe-

cution. Studies have shown that although patients with Parkinson’s disease typically produced se-

quences with increased inter-response intervals and longer execution times than healthy controls, 

they showed no difference with regard to sequence length and serial position effects (Agostino et 

al., 1992; Rafal et al., 1987; Reilly & Spencer, 2013). These behavioral findings suggest that pa-

tients with disrupted cortico-basal ganglia-cerebellar network have an intact ability to learn short 

sequences and retrieve prepared sequential movements in advance of sequence execution (as op-

posed to longer sequences; e.g., see Harrington & Haaland, 1991; Smiley-Oyen et al., 2007) albeit 

with impaired control of interval timing. This is in line with neurophysiological evidence showing 

that activation in the basal ganglia (BG) and the cerebellum during motor planning accounts for 

controlling movement initiation and interval timing (Kunimatsu et al., 2018). At the same time, 

the preservation of the temporal order of intended movements may be spared by the prefrontal 

cortex, allowing for the correct retrieval and planning of movements (Beiser & Houk, 1998) via 

corticostriatal loops (Alexander et al., 1986). 

The replicable effect of sequence length on RT (e.g., Kilbourn-Ceron & Goldrick, 2021; 

Magnuson et al., 2008; Van Lieshout et al., 1996; Wright et al., 2009) directly refers to the CQ 

network operation. The CQ principles follow the prediction that the time to perform the first 

planned item increases with the plans concurrently active in the planning layer due to the normal-

ization of activation levels relative to their number (Bullock & Rhodes, 2003). Notably, Boardman 

and Bullock (1992) developed a two-layer CQ network in which the time required for a planned 

item to be selected as the winner movement depends on the strength of the activation level of its 

respective input representation. This model reproduced Sternberg et al.'s (1978) critical findings 

by predicting not only the effect of sequence initiation and interval timings of the remaining output 

sequential movements on RT but also the interval timing changes as a function of serial position. 

Further, Farrell and Lewandowsky (2004) successfully simulated the serial position effect on RT 
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latency by producing the characteristic inverted U-shaped serial position curves. In the CQ envi-

ronment of all positional models such an effect is reproducible because plans in the sequence 

boundaries (i.e., first and last positions) have more distinct positions markers than the in-between 

plans facing, as a consequence, less competition from neighbor plans during recall. 

1.2.1.1.2 Long-term memory 

Beyond the parallel processing of sequential movements recalled from STM, CQ modelling 

also possesses an advantage of simulating sequences interfacing with LTM. As opposed to 

Sternberg et al.'s (1978) task, when sequences are extensively trained the effect of sequence length 

on RT is extinguished (Klapp, 1995; Verwey, 1999; D. L. Wright et al., 2004). This phenomenon 

has been attributed to the integration of sequence elements into chunks with more practice, per-

mitting faster programming, hence, in turn, faster initiation, of the retrieved sequence (Klapp, 

1995). Rhodes and Bullock (2002) developed a cerebellum-based CQ model successfully simulat-

ing the above behavioral data. The authors’ model was based on a fast recall process of over-learnt 

discrete movement sequences where different sequence chunks are rapidly loaded in parallel from 

LTM to WM. Specifically, the cerebellum, as part of LTM, builds activation gradients of ‘com-

pressed’ sequences during sequence learning and ‘expands’ them into the WM buffer, i.e., the 

planning layer consisting of the constituent normalized plans (Rhodes et al., 2004). Strong learning 

enables the pre-selection of a sequence based on its first element invoking a substantial reduction 

to the time required to recall the sequence. 

By contrast, traditional RNN models have an intrinsic problem in simulating LTM storage 

and retrieval or even very long sequences due to their restricted capacity to go back in time only a 

few timesteps (Mozer et al., 1992). Advances in deep learning, however, have given rise to a new 

variant of RNN, the Long Short Term Memory (LSTM) RNN model (Schmidhuber, 2015) thereby 

solving the problem of capturing long-term dependencies in time. By training a continuous-time 

RNN to learn long-term dependencies, Laje and Buonomano (2013) have modelled chaotic neu-

ronal firing rate to generate spatiotemporal motor trajectories with a network that accurately en-

coded time. Additionally, a study modelled a complex sensorimotor task where spoken elements 

(sensory input) were encoded in high-dimensional state space (Goudar & Buonomano, 2018). The 

final motor output of respective transcribed elements was determined by transforming the high-

dimensional trajectories to low-dimensional motor patterns by utilizing three coordinates of motor 
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output activity to finally generate a 3D written motor pattern. Importantly, this model was trained 

to store stable neural trajectories that were time-varying patterns such that to recognize and predict 

temporally warped output patterns. In both cases, this sequence modelling was possible due to 

specific parameters, such as the implementation of gated trajectories and innate training, which 

maximized the models’ stability and accuracy. Focusing mainly on the control of timing, another 

study sought to address whether sequential responses produced from LTM are timed continuously 

or ‘restarted’ at each response (Laje et al., 2011). The behavioral results showed that both well-

trained spatiotemporal (multi-finger) sequences and purely temporal (single-finger) sequences 

used a continuous timing strategy. The authors built a population-clock RNN model that could be 

trained in the target patterns of discrete movements and generate smooth spatiotemporal sequences 

consistent with the empirical data. In these models, order of a motor sequence is tantamount to 

time which, contrary to the CQ timing signal, is controlled by chains of neurons in a population 

operating in associative connections. Beyond the domain of motor control, Palangi et al. (2016) 

constructed a language processing RNN system with LSTM architecture which makes storage of 

sentence sequences to LTM possible by extracting and retaining semantic information. Still, ex-

traction of semantics of each word in a sequence (‘sequence embedding’) was done in a serial 

manner adopting associative relationships between words in the hidden layer of the network. Sim-

ulations involved backtracking semantic representations during recall. However, they ignored the 

processing of precise timing through utilization of additional timing information (Gers & 

Schmidhuber, 2000) which would have allowed for temporal distinction between sequence ele-

ments. In addition, the latter computations do not have correspondence to empirical data thus 

providing at present a relative weak account of LTM sequence representation and recall. 

1.2.1.2 Parallel planning of sequential movements: Neurophysiological findings  

The CQ and chaining computational theories make opposing predictions as to the neuro-

physiological mechanisms of serial order representation. The cardinal antithesis of parallel vs se-

rial processing of sequential elements follows at the neural level as well. The chaining theory pre-

dicts that sequence-related neural activation during execution is sequential, with all elements being 

activated one by one, i.e., at different time points. Although, chaining-compatible accounts do not 

pose explicit predictions about sequence planning, the process itself of each element becoming 

available/activated after the previous one is executed indicates that such seriality is assumed to 
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operate also during planning. By contrast, the CQ framework postulates simultaneous neural pre-

activation of all constituent elements before movement begins, allowing for serial execution over 

time through the CQ iterative process. 

Neurophysiological data from single-cell and multi-unit recordings from the non-human 

primate brain provide a rich pool of converging evidence on frontal lobe neuronal selectivity to 

the serial order of sequential elements. Usually, in these studies, the term serial order is used in-

terchangeably with ‘rank order’ or ‘temporal order’ as in most cases activity has been identified in 

relation to when a movement occurred or was expected to occur relative to the other movements 

in a sequence (1st, 2nd, 3rd position and so on). Order-related neuronal activity in the frontal lobe 

area, especially the prefrontal cortex and supplementary motor area (SMA), has been at the centre 

of interest because of its role in various aspects of motor control (Nachev et al., 2008), from action 

monitoring (Bonini et al., 2014) to time perception (Protopapa et al., 2019), and in WM 

(Funahashi, 2017; Kimberg et al., 1997; Lara & Wallis, 2015). Together with impairment in tem-

poral lobe structures (Hannesson, Howland, et al., 2004; Heuer & Bachevalier, 2013) and the BG 

(Rothwell et al., 2015; Yin, 2010, 2014), frontal lobe lesions are accountable for disrupting 

memory for serial order and the ability to form orderly sequences in humans (Beldarrain et al., 

1999; Eslinger & Grattan, 1994; Luria & Tsvetkova, 1964) and animals (Hannesson, Vacca, et al., 

2004; Petrides, 1991). 

Specifically, the role of SMA and pre-SMA neuronal activity has been highlighted in the 

planning and control of temporal order of sequential movements in the seminal push-pull-turn 

experiments of the Tanji group. While a group of SMA neurons recorded in monkeys were selec-

tively responsive, before movement onset, to a particular order of forthcoming movements, a dif-

ferent group in the same region was activated during sequence performance after the production 

of a specific movement and before the production of another one (Tanji & Shima, 1994). Interest-

ingly, a dedicated neuronal population in the pre-SMA was consistently transiently activated at the 

moment where the monkey had to update the motor plans of the subsequent required sequence 

(Shima et al., 1996). In addition, the pre-SMA was found to increase activity during intervals be-

tween specific movements or before any of the serial positions regardless of the movement itself 

or the sequence (Shima & Tanji, 2000). 
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Directly probing ordinal position representation in these areas, another study recorded 

brain activity while monkeys had to produce three-element movement sequences at different start-

ing points, directions and endpoints (Clower & Alexander, 1998). Here, a larger amount of pre-

SMA delay and execution activity and less SMA delay activity reflected the ordinal position of a 

movement regardless of which movement preceded or succeeded it, suggesting a preference of 

pre-SMA in representing the ordinal position of sequential movements. Barone and Joseph (1989) 

tested monkeys in a visuospatial oculomotor task in which the animals had to identify by memory 

the correct order of three targets after a short delay. A type of neurons in the peri-arcuate oculo-

motor region of the prefrontal cortex exhibited sustained temporal selective activity: Different cells 

fired preferentially depending on which serial position a movement was associated with, whilst 

activity attenuated when the monkey performed the sequence in an incorrect order. In similar par-

adigms, the prefrontal cortex has shown serial order selective activity during the delay period 

where the monkey prepared the movements. Specifically, lateral prefrontal cellular activity was 

found to respond differentially to sequences consisting of the same movements but in different 

order (Ninokura et al., 2003) or to the rank order of a response alone or its rank order and the 

target’s properties together (Ninokura et al., 2004). A different experimental manipulation led 

Funahashi et al. (1997) to dissociate prefrontal neurons that retain spatial positions (ordinal posi-

tions associated with specific locations) from neurons than retain both spatial positions and tem-

poral order of their presentation. The latter neurons showed distinct pair-dependent and temporal 

order-dependent activity during the delay period. In addition, Berdyyeva and Olson (2010) demon-

strated that neuronal selectivity to the ordinal position (rank order) of a target is widespread across 

different areas in the prefrontal cortex, i.e., the SMA, pre-SMA, supplementary eye field (SEF), 

and dorsolateral prefrontal cortex (DLPFC). Despite small variations, each area showed rank order 

activation during the retrieval (delay) and the execution periods of two serial order action and 

object tasks. 

However, the above studies have focused on selective activity during serial order retrieval 

or execution without directly investigating neurons that encode the serial order information itself. 

While the human mid-DLPFC is implicated in short sequence encoding in WM (Amiez & Petrides, 

2007), the monkey primary motor, premotor, and prefrontal areas were found to encode in concert 

the serial position of stimuli in sequences of different lengths (Carpenter et al., 2018). Consistent 

with behavioral findings from humans by Henson (1999b), these regions encoded serial position 



Chapter 1 

22 
 

in relative terms, namely depending on where in the sequence a movement occurs, rather than 

based on its absolute numerical position. Further, the question of whether there is a dedicated 

neural representation for preparing the system, after recall, to execute a sequence was addressed 

by Ohbayashi et al. (2003). The authors trained the animals to memorize a sequence and then direct 

their saccades to the locations of the recalled positions in forward and backward order. An order-

dependent transient spiking activity in the monkey dorsal premotor cortex (PMd) (human homo-

logue being the pars opercularis/ventral premotor cortex; Ferri et al., 2015; Rizzolatti et al., 2002) 

was elicited only after retrieval and before execution. This indicates that this area has a special role 

in encoding the conversion of serial order information stored in WM to a motor program by setting 

the motor system ready for executing the planned movement. 

All together, these findings indicate that the frontal lobe has a key role in sequencing by 

maintaining the serial order of intended acts. Importantly, they indirectly refer to how context-

based positional CQ networks (e.g., Burgess & Hitch, 1999, 2006) model the encoding and re-

trieval of a sequence and serial position information. Specifically, the above presented neurophys-

iological data collectively agree on the existence of separate sequence-specific or serial position-

specific representations supporting or participating in the encoding, retrieval, or execution of se-

quences, depending on the demands and manipulations of the task. This rather reflects a hierar-

chical structure of representations operating in the brain, an axiom of the CQ class of models but 

not the chaining-like artificial neural networks; the temporal selectivity of activated neurons alone 

in response of serial order retrieval or execution is not adequate to simply account for an inter-

item association mechanism forming a chain of neurons. However, although the discussed studies 

have shown evidence for preferential neural tuning in encoding and/or representing serial order, 

they have not addressed a neural mechanism accounting for parallel planning of movements as 

postulated by CQ. 

Averbeck and colleagues (2002) were the first to provide compelling neural data support-

ing a parallel mechanism of neural code for serial order from planning to execution. The authors 

trained two monkeys in drawing different geometrical shapes. During test, they conducted multi-

unit recordings from the prefrontal cortex while monkeys copied a shape on a trial-by-trial basis. 

A trial started with a delay period (1 or 2 s) providing no information of which shape should be 

drawn. After the end of the delay period, the target shape appeared on the screen and the monkey 
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had to copy the presented geometric by drawing a sequence of strokes. Each drawing was per-

formed in several trials within a block until completed so that the monkey acquired prior 

knowledge during the delay period of which shape would have to draw. This allowed the monkey 

to prepare the target shape before starting the movement. The authors performed a classification 

analysis by training the classifier in neural patterns of each event across a drawing production 

(segment 1, segment 2, and so on) and tested in neural patterns across a trial (delay, Go, segment 

1, segment 2, and so on) to calculate the probability of each pattern belonging to each event, i.e., 

movement segment. They found distinct neural patterns per movement segment which were acti-

vated in parallel for the whole delay period (Figure 2; Averbeck et al., 2002). These preserved a 

rank order of representation probability depending on their serial order of performance, especially 

toward the end of the delay period. Namely, the first movement segment had the strongest pattern 

probability, the second less strong etc., yet they were simultaneously activated. After the ‘go’ sig-

nal the segment trajectory profiles changed in that the segments’ representation strengths peaked 

serially during execution following the produced serial order of movements. Strikingly, the distinct 

neural pattern of each segment in the preparatory activity could predict their correct serial order 

during execution. In addition, once a segment was executed as manifested by reaching its highest 

strength representation during execution, its representation attenuated to zero indicating deletion 

from the neuronal planning map, as predicted by the CQ account. These data are also consistent 

with a partial normalization function of neural activation such that activation across the planned 

movement segments was reduced as a function of their number. The latter finding is in line with 

other non-human primate studies using delayed response tasks where total parallel neural popula-

tion activity of plans in the monkey superior colliculus (Basso & Wurtz, 1998) and the PMd (Cisek 

& Kalaska, 2002) is reduced as the number of possible upcoming targets is increased. Finally, 

further analysis of the serial order error performance during drawing execution in the Averbeck et 

al.'s (2002) study replicated a percent correct U-shaped serial position curve as per the simulations 

of CQ class models (Figure 3; Averbeck et al., 2002). In these short sequences (3-5 segments/ele-

ments), middle segments were more prone to errors than earlier or later segments. These serial 

position curves correlated with the strengths of neural representations such that representation 

strengths of the first and last positions were higher than those of the middle positions. Last, analysis 

of the error patterns showed that whenever a stroke segment was produced in an incorrect order it 

was less likely to have been classified in the correct serial position during planning (Figure 4; 
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Averbeck et al., 2002). These behavioral data and their neural correlates strengthen the importance 

of the preparatory neural activity during motor sequence planning as carrying a code for serial 

order and being potentially a predictor for subsequent performance at least at the level of correct 

serial order production. 

Following a similar approach of neural pattern classification of sequential movements from 

planning through to execution, Kornysheva et al. (2019) recently reported neural pattern trajecto-

ries of keystrokes in humans while producing movement sequences from LTM. Here, participants 

were trained to produce from memory discrete five-element finger sequences of unique spatiotem-

poral identities: identical order but different timing structure (varied temporal inter-press intervals; 

IPIs), identical timing structure but different order. An abstract image at the beginning of a trial 

invoked a preparation period (1.8-2.2 s) and was paired with a subsequent spatiotemporal sequence 

identity. This allowed participants to learn which image signified which sequence and, through 

training, prepare the target sequence once they saw its respective image. Following sequence train-

ing, whole-brain magnetoencephalography (MEG) data were acquired during test and analyzed to 

determine the probability of the averaged neural pattern extracted a few milliseconds before each 

finger press belonging to each press position (1st to 5th). The authors found that, during the final 

second of planning, movement-related press positions were decoded based on their serial position 

of the target (planned) sequence. Similar to Averbeck et al.'s (2002) findings, after the ‘go’ signal 

the patterns were serially unfolded over time. Referring to the activation gradient of a CQ network, 

the preparatory neural pattern of press positions consisted of distinct pattern probabilities of dif-

ferent weights following a rank order which corresponded to the planned serial positions (Figure 

5a; Kornysheva et al., 2019). Moreover, the CQ pattern during planning was preserved for both 

sequences with same finger order but different timing structure and sequences with same timing 

but different finger order suggesting a high-level code for ordinal position independent of effector 

and timing. The authors postulated that this may reflect the neural readout of overlapping repre-

sentations in a temporal context layer similar to the simulations of Burgess and Hitch (1999). In-

terestingly, the CQ pattern correlated with subsequent sequence performance with individuals pre-

senting a ‘shrunk’ CQ pattern during planning (averaged decreased distance between adjacent pat-

terns of press positions) performing worse in terms of finger and temporal errors during sequence 

production. By contrast, those with a well-separated CQ signal characterized by larger distances 

between neural patterns, were predicted to be more accurate during production. This suggests that 
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a well- or poorly-planned sequence due to strong or weak connections, respectively, between a 

moving timing signal and position formed during learning might have caused this modulation of 

the CQ signal. However, a separate role from position of how planned sequence timing may have 

affected the distance of CQ patterns was not addressed in this study. Finally, source reconstruction 

revealed that the preparatory CQ signal and the press decoding patterns during production were 

identified in the right parahippocampal gyrus (PhG) and the ipsilateral posterior cerebellum. The 

contralateral sensorimotor regions were involved only in the production period. 

The above studies are considered benchmarks for identifying a potential neural code for 

serial order supported by parallel preactivation of upcoming movements in non-human and human 

primates, in line with the CQ account. Monkeys in Averbeck et al. (2002) were extensively trained 

in a delayed-response visuo-spatio-motor task. During test, they underwent 30 iterations of the 

same trial for each shape so after the first few trials they knew which shape was upcoming. This 

means that the monkeys most likely maintained the shape in WM across repetitions of the same 

trial. Being, on the other hand, trained to perform the strokes for each shape in a particular order, 

the animals retrieved the serial order from LTM, and during the execution period they started 

copying the shape. On a different paradigm, participants in Kornysheva et al. (2019) were trained 

for two days and were given the initial visual sequence cue (abstract image) to retrieve and prepare 

the respective sequence entirely from memory without any visual guidance after the ‘go’ signal. 

Similarly, then, this indicates that they accessed the episodic traces of sequence representations 

from LTM via the episodic buffer of the WM system (Baddeley, 2000, 2012). A commonality is 

that both tasks employed a sensory signal (implicit or explicit) that triggered neural activity during 

the delay period which included some information processing of maintaining or transferring the 

movement plans into WM and programming some sensorimotor transformation (Funahashi, 2015) 

before execution. 

The detection of movement representations in the prefrontal cortex before movement exe-

cution found by Averbeck et al. (2002) is in line with data signifying the role of this area in several 

functions. Specifically, neurons in the DLPFC present tonic sustained activity (persistent spiking 

rate; Fuster & Alexander, 1971; Kubota & Niki, 1971) in the delay period during processes of WM 

(Funahashi et al., 1989; Fuster & Alexander, 1971), reward anticipation (Leon & Shadlen, 1999; 

Shuler & Bear, 2006; Watanabe, 1996), rule encoding (Wallis et al., 2001), and tuning of goal-

directed behavior (Kim & Shadlen, 1999; Schall & Hanes, 1993). This is possibly attributable to 
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an attempt of the central nervous system to handle delays between stimuli or integrate useful in-

formation (Kim et al., 2021). Critically, it has been suggested that the DLPFC acts as a mediator 

for maintaining representations of motor plans stored in more posterior cortical areas (Curtis & 

D’Esposito, 2003; Lara & Wallis, 2015). In addition, the orderly organization of movement repre-

sentations in this region during planning (Averbeck et al., 2002) may well reflect differentiated 

prefrontal single cell activity specific for processing the temporal order of co-activated planned 

movements depending on their position during the delay period (Funahashi et al., 1997; Naya et 

al., 2017). Such distinct neuronal activity patterns may be supported by inhibitory interactions 

between pairs of co-activated prefrontal neurons whose firing peaks at different timing 

(Constantinidis et al., 2002). 

The cerebellum plays a complex functional role in motor planning (Casartelli et al., 2017; 

Gao et al., 2018), cognitive monitoring and execution (Cui et al., 2000; Leiner, 2010; Manto et al., 

2012), and the control of timing (D’Angelo & De Zeeuw, 2009; De Zeeuw et al., 2011; Doya, 

2000; R. B. Ivry & Keele, 1989; Richard B. Ivry et al., 2002; Knolle et al., 2013; Teki et al., 2011). 

It has also been proposed that in early stages of motor sequence learning the cerebellum is a sig-

nificant moderator in the cerebello-thalamo-cortical loop for optimizing sequence execution 

(Caligiore et al., 2019). It does so by selecting fine-grained neuronal patterns which are key for 

recalling constituent movement elements and communicates with the BG (Bostan et al., 2010) 

which, through the cortico-striatal-thalamo-cortical loops, integrate the individual motor plans into 

a sequence. From all cerebellar regions, preparatory activity before movement onset has been 

found to be dependent on the cerebellar nuclei (Chabrol et al., 2019; Gao et al., 2018), while the 

ipsilateral anterior lobe and posterior volume, lobule VIII, represent sensorimotor information 

(Stoodley & Schmahmann, 2010, 2018). Specifically, the latter regions have been shown to be 

functionally connected to the sensorimotor cortices (Bernard et al., 2012; Habas, 2021; Krienen & 

Buckner, 2009; O’Reilly et al., 2010; Xue et al., 2021) with mapping neuroimaging (Bushara et 

al., 2001; Debas et al., 2010; Grodd et al., 2001, 2005; Guell et al., 2018; Guell & Schmahmann, 

2020; Orban et al., 2010; Rijntjes et al., 1999; Van der Zwaag et al., 2013; Wiestler et al., 2011) 

and stimulation (Mottolese et al., 2013) studies agreeing that these encode finger representations 

supported by cerebello-cortical loops (R. M. Kelly & Strick, 2003). Thus, the cerebellar origins of 

the CQ signal during sequence preparation found in Kornysheva et al. (2019) indicate cerebellar 

contribution already before movement onset to the control of effector-related sequence production. 



Chapter 1 

27 
 

On the other hand, the hippocampus and surrounding parahippocampal structures partici-

pate in procedural memory processing which mediates early motor skill acquisition and the learn-

ing and consolidation of sequential information through connections with the prefrontal cortex and 

the striatum (Albouy et al., 2013). The implication of the PhG in the formulation of the preparatory 

CQ signal (Kornysheva et al., 2019) rather points to the contribution of this structure in first-order 

(as opposed to the prefrontal cortex) encoding and retrieval of concatenated events in a temporal 

order, as shown in decision-making sequence execution (Shahnazian et al., 2021) or episodic 

memory tasks involving sequence rehearsal in human (Ekstrom et al., 2011; Lehn et al., 2009; 

Lieberman et al., 2017) and non-human primates (Naya et al., 2017). This resonates with a pro-

posed framework positing that the hippocampal system is a higher-level controller in a hierarchy 

of brain areas participating in sequence representation: It acts as a ‘general-purpose sequence gen-

erator’ that links together events, successively experienced in time, without encoding detailed in-

formation about space and time (Buzsáki & Tingley, 2018; Friston & Buzsáki, 2016). 

A few other studies have addressed the parallel representation in the context of CQ pro-

cessing of sequential movements. Behmer and colleagues (2018) reported online excitation of pro-

duced movements, namely during sequencing in a copying-typing task, providing indications of 

parallel preactivation of all movements. The authors recorded motor evoked potentials (MEP) trig-

gered by transcranial magnetic stimulation pulse (contralateral motor cortex) while participants 

used the right index finger assigned to different serial positions in five-element sequences of words 

or random non-words. MEPs, elicited at the onset of the press, showed decreased activation as a 

function of 2nd to 5th positions, reflecting cortico-spinal excitability related to the currently pro-

duced response. This indicates that movements were activated in parallel though at different levels. 

Of note, it is possible that this study captured the output state of each movement associated with 

each sequence position reflecting the competitive cue of elements determined by their excitation 

level once selected and while executed. This is in accord with behavioral findings based on a sim-

ilar task showing that RTs of probed sequence positions during typing increase with position num-

ber (Behmer & Crump, 2017). It is unlikely that MEPs readout reflected serial inhibition, as, ac-

cording to the CQ prediction, an action is self-suppressed only after it is executed. That said, the 

predicted serial inhibition would be anticipated to be independent from serial position with all 

position-related MEPs being invariant. A design based on a paired-pulse transcranial magnetic 

stimulation protocol (Kujirai et al., 1993) would be useful for acquiring such a measure probing 
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the GABAergic inhibitory dynamics associated with each press position. In addition, to directly 

investigate parallel preactivation, such a protocol would give insights into the preparatory state of 

each movement (Bestmann & Duque, 2016). As several studies report, MEP amplitude increases 

about 100 ms before effector-related muscle activity (e.g., Chen et al., 1998; Leocani et al., 2000), 

the excitatory movement state-changes would be expected to mirror the activation gradient, i.e., 

the differentiated co-activation of all forthcoming movements depending on their position. 

At the cortical level, lateralized readiness potentials (LRPs; see Schurger et al., 2021) ac-

quired with electroencephalography (EEG), were shown to linearly increase with keystroke num-

ber (Pinet et al., 2019). Specifically, in preparation of unimanual keystrokes, ~200 ms prior to 

movement onset, a two-element sequence exhibited a twice as high amplitude than a single key-

stroke. With no additional data available from longer sequences, we should be cautious in inferring 

a clear sequence length effect on LRP which would putatively reflect graded preactivation of forth-

coming movements. In the same experiment, a bimanual two-element sequence elicited bilateral 

LRPs of same amplitude. Indeed, this slow negative potential, originates in the M1 contralateral 

to the performing limb (Lüder Deecke et al., 1969) and is associated with motor programming and 

execution (Shibasaki & Hallett, 2006). Therefore, the above LRP findings are in support of the 

idea that the brain prepares multiple intended movements in parallel in accord with the motor 

programming hypothesis and the CQ account, with a tendency for a rank order representation of 

unimanual sequences even at the very final stage of a delay period before motor engagement. Ad-

ditional research on the LRPs as an index of late-stage motor preparation has highlighted the pos-

sibility of a limited scope of planning multiple upcoming movements at later positions in lengthy 

word sequences (Scaltritti et al., 2018). In a copying-typing serial task, the related LRPs were 

found to be invariant when a late position (6th or 7th) was probed using the alternate hand as 

opposed to LRPs probing early positions (2nd or 3rd). If, however, the planned sequence elements 

are competitively cued, it is highly likely that not only are they processed in parallel, but move-

ments associated with later positions are significantly inhibited in the competitive choice layer by 

the strongest candidate action to the extent that response-related motor cortical activity is not cap-

tured by LRPs. 

It is indeed an interesting observation that a CQ parallel processing has been shown to be 

traceable across different species, brain areas, and modalities. Bhutani et al. (2013) directly inves-
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tigated the role of BG in the conversion of concurrently pre-planned saccades into a correct se-

quence during execution. By applying deep brain stimulation in bilateral subthalamic nuclei of 

patients with Parkinson’s disease and, conversely, silencing the caudate nucleus in monkeys, while 

performing a double-step saccade task, the authors revealed that disinhibition of these BG neurons 

compromises the execution of saccades in the correct order. Previous behavioral work of the same 

group demonstrated that competing saccades are mutually inhibited so that the one associated with 

the first target is completed first (Ray et al., 2012), while the upcoming saccades are still activated 

in parallel as the sequence unfolds (Bhutani et al., 2017). The above data (Bhutani et al., 2013) 

suggest that the substrate of this competitive inhibition lies in the BG inhibitory neurons. In a CQ 

network, they appear to contribute to the cueing of movement plans in the competitive choice layer 

ensuring that the most active plan manages to inhibit the others in order to be selected for execu-

tion. In addition, the frontal eye field area is implicated in the preservation of the partially activated 

representation plans. These prefrontal neurons have been shown to be concurrently responsive to 

two planned saccades by differentially encoding an upcoming plan while the first is being executed 

(Basu & Murthy, 2020; Jia et al., 2021), providing neurophysiological support of the Bhutani et 

al. (2017) behavioral data.  

1.2.2 Mechanisms of motor timing 

Time-based CQ models (e.g., see Burgess & Hitch, 1999) posit that control of order, in the 

form of ordinal position, depends on a timing signal that moves over time regulating the position 

a sequence element associates with and thus ensuring a correct serial order output. This implies 

that during sequence encoding (e.g., learning or sequence presentation in ISR conditions), the tem-

poral structure of a sequence is mapped on a temporal context controller of the network so that the 

inter-item timing interval variations would guide the timing (i.e., rhythm) of the serially output 

sequential elements. Such a CQ architecture in which timing is integrated by interacting with po-

sition, suggests that order and timing are interwoven core features of sequence learning and control 

reflecting inseparable processes. However, diverse empirical data – from behavioral to neuroim-

aging – suggest that sequence order and timing are likely to be represented independently. 

The possibility that spatiotemporal information may be integrated during sequence learning 

has been investigated by Shin and Ivry (2002). In a serial reaction time task, participants produced 
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temporal sequences, defined by response-stimulus intervals, and ordinal sequences of visual stim-

uli. The two features were considered as learnt concurrently because incidental temporal learning 

occurred only when a temporal sequence also included spatial information. However, to measure 

the level of learning, the authors used the response-stimulus intervals which are heavily embedded 

to the participants’ RTs and not the inter-stimulus intervals (Ullén & Bengtsson, 2003). In addition, 

these experiments used incidental temporal structures, with the authors noting that an independent 

temporal representation is possible once a clearcut temporal pattern is learnt. Ullén and Bengtsson 

(2003) addressed the modular profile of spatiotemporal representations in well-learnt single-finger 

key sequences. Different sequence conditions were learnt and later produced from memory by 

independent groups of participants in different orders. One group first learnt a combined sequence 

consisting of multiple key presses and certain temporal intervals, then a temporal sequence made 

of the timing structure of the combined sequence but involving one key only and last an ordinal 

sequence with the ordinal structure of the combined sequence but isochronous timing. The other 

group learnt the same sequences but ordered as temporal, ordinal, and last combined. This manip-

ulation revealed that learning a combined sequence first acted as an overarching base for benefiting 

the learning of the temporal and ordinal sequences. Importantly, participants not having benefitted 

by this facilitation (second group) performed better in the combined sequence, suggesting that they 

had developed independent representations of order and timing that was transferred to the com-

bined sequence. In a second experiment, it was shown that an ordinal structure with random timing 

can be learnt independently of a certain temporal structure and random order. 

Readiness potentials from EEG data add more support to an account for independent pro-

cessing already from the preparation period of uncued sequential movements (Bortoletto et al., 

2011). Here, the preparation process for a six-element sequence with a demanding (non-isochro-

nous) temporal structure but simple ordering started earlier relative to sequence initiation than for 

an equal-length sequence consisting of a complex order but isochronous timing. At the behavioral 

level, RT research has shown that when the ordinal structure is known in advance but not the 

temporal structure, RTs are faster compared to prior knowledge of the temporal structure but not 

the ordinal one, with the effect being more pronounced in sequences with increased temporal com-

plexity (Maslovat et al., 2018). This dissociation suggests that prior to movement onset the pre-

paratory process supporting sequence timing might be more demanding than that supporting se-

quence ordering. That order and timing are independent was corroborated by further behavioral 
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findings demonstrating that temporal transfer evolves in new ordinal sequences only after the latter 

becomes familiar (Kornysheva et al., 2013). Neuroimaging data confirm that this independent rep-

resentation is supported by different brain areas. Bengtsson et al. (2004) found that control of 

temporal order is related with increases in blood oxygenation level-dependent (BOLD) response 

in the pre-SMA, the precentral sulcus, the temporal lobes, and the contralateral inferior frontal 

gyrus. On the other hand, ordinal structure processing elicited fronto-parietal and cerebellar acti-

vations, as well as increases in the BG. A more thorough investigation of temporal and ordinal 

encoding vs an integrated encoding was conducted in a fMRI study using muti-voxel pattern anal-

ysis (MVPA) (Kornysheva & Diedrichsen, 2014). This method allowed for identifying differenti-

ated neuronal activity associated with certain sequence conditions, during the production of well-

learnt sequences from memory. MVPA revealed that the only region that accounted for integrated 

encoding of ordinal and temporal structure was the contralateral M1. The premotor (PM) cortex 

and parietal cortex showed differentiated encoding of independent representations, with the PMd 

carrying information about the ordinal structure and the ventral PM encoding the temporal struc-

ture. This finding is consistent with data showing that M1 is associated with a higher-order pro-

cessing of sequence representation: As soon as M1 receives input from the premotor cortex, it 

combines the constituent sequence information and then tunes to the demands for movement exe-

cution (Yokoi et al., 2018). 

The above empirical findings indicate that the sensorimotor system relies on a timing 

mechanism that allows for a flexible control of movements over time ensuring well-timed initia-

tion and correct temporal production (Remington, Egger, et al., 2018), without being hardcoded 

with the order of movements. Several studies over the recent years have provided insights into the 

neural computations underlying such a flexible control (García-Garibay et al., 2016; Jazayeri & 

Shadlen, 2015; Merchant et al., 2011; Ohmae et al., 2013; Remington, Narain, et al., 2018; Takeya 

et al., 2017; Wang et al., 2018), by mostly studying cortical ramping activity. Ramping (or climb-

ing) activity is a type of neuronal activity characterized by reliable firing rate dynamics as a func-

tion of time (Merchant, Harrington, et al., 2013; Narayanan, 2016). Ramping is said to capture 

temporal information and is commonly found in timing tasks (Narayanan & Laubach, 2009; Parker 

et al., 2014) as its ramping profile matches the time boundaries of an interval (i.e., activity either 

increases or decreases in a consistent manner from the beginning till the end of the interval). 
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Climbing cell dynamics have been reported to be part of circuits involving cortical and 

subcortical regions that support a central timing mechanism which paces interval timing of motor 

responses (see Merchant, Harrington, et al., 2013). Non-human primate studies outline the profile 

of this type of spiking activity in the medial PM cortex using the synchronization-continuation 

tapping task (Zarco et al., 2009). Different populations interact during timed behavior, yet prefer-

entially spike in alignment with motor responses (Perez et al., 2013), before motor response onset, 

relative to next motor response, and relative to previous one (Merchant et al., 2011). Additionally, 

Jazayeri and colleagues have reported ramping dynamics in the non-human primate brain during 

temporal interval motor tasks involving either eye movements (Jazayeri & Shadlen, 2015) or both 

eye and hand movements (Wang et al., 2018). When monkeys underwent a stage during which 

they had to ‘measure’ a time interval, ramping activity in the lateral intraparietal cortex started 

over once they progressed to the next stage where they had to reproduce the previously perceived 

time interval. The reproduction-related ramping activity increased to a degree that it correlated 

with the measurement-related ramping activity (Jazayeri & Shadlen, 2015). Importantly, the au-

thors found very diverse response dynamics across single neurons and populations in the medial 

frontal cortex, albeit conforming to a common temporal behavior, that of scaling (Wang et al., 

2018). Temporal scaling was evident on a trial-by-trial basis where activity became slower or faster 

depending on whether the animal was producing a long or short interval, respectively. These find-

ings suggest that response dynamics supported by ramping activity in timing tasks can predict 

previous or forthcoming events over time (Cadena-Valencia et al., 2018; Kaufman et al., 2016; 

Tiganj et al., 2018). 

Further, recent data by de Lafuente et al. (2022) demonstrate that a possible mechanism 

underlying temporal scaling capacity may be an internalized metronome which controls and flex-

ibly adjusts the tempo to the temporal demands of the task. Here, monkeys underwent entrainment 

periods with a presentation of a visual stimulus (metronome) shifting from left to right at three 

different tempos. Immediately after, maintenance of these tempos was required in a period ranging 

from one to six intervals, where the visual metronome was no longer present, and no movement 

was performed. At the end of the trial, the animals had to indicate the estimated location of the 

visual metronome on the screen. Spiking activity from six brain areas (SMA, prefrontal cortex, 

lateral and medial parietal lobe, visual cortex, and the hippocampus), revealed that not only were 
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oscillations present during the entrainment period but also during maintenance. Critically, oscilla-

tory activity was scaled (compressed or stretched out) to match the target tempo as initially in-

structed by the metronome and could predict behavior. The authors found that although this mech-

anism was distributed across the recorded areas, there was a hierarchical differentiation in how 

these represented the putative internal metronome. The visual and lateral parietal areas could en-

code more the spatial (location) but not the temporal aspect (tempo/speed) of the metronome, 

whilst SMA showed the exactly opposite pattern, followed by the prefrontal and the medial parietal 

areas. The hippocampus was sensitive to following the alternation of the metronome (from left to 

right and so on), producing different trajectories. As noted by the authors, the latter finding sup-

ports the argument that the hippocampal system is a high-level sequence controller not encoding 

task-specific information about the what (spatial) and when (temporal) of a sequence of events 

(Buzsáki & Tingley, 2018). 

At the behavioral level, Hardy et al. (2018) extensively trained human subjects in a tapping 

task to repeatedly produce a single word at three different speeds, normal speed, twice as fast, and 

twice as slow. During test, reproduction of the learnt word was required without any cues (i.e., no 

visual or auditory targets were present). It was found that participants were able to speed up or 

down the acquired temporal pattern as shown by a scaling index measuring the degree of correla-

tion between the normal and scaled (slow and fast) tempos. Another behavioral experiment showed 

that training can improve temporal precision depending on different speeds and, ultimately, scaling 

(Slayton et al., 2020). Specifically, using a similar task as in Hardy et al. (2018) for studying the 

temporal performance of musicians vs non-expert musicians, Slayton and colleagues found signif-

icant temporal scaling effects in the former group from the beginning of training. While non-ex-

perts struggled at early stages of training, they improved their temporal scaling capacity over the 

course of training, in line with prior behavioral findings of a training effect on temporal scaling 

improvement (Keele & Summers, 1976; Summers, 1975). Both experiments found a Weber-speed 

effect, i.e., more temporal precision (smaller variability) when producing a motor sequence at a 

faster than a slower tempo. 
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A few researchers have attempted to explain temporal scaling data, discussed above, by 

using RRN models. For example, Wang et al. (2018) successfully simulated the findings of tem-

porally scaled ramping activity by manipulating an external input that triggered3 the individual 

neurons and controlled the following recurrent dynamics within specific temporal boundaries. Spe-

cifically, temporal scaling in this ramping RNN model was achieved by using two fixed points at 

the time of initialization, defining the start and end of the speed. The input that governed the speed 

was an external cue input at different speeds which was used to train the model. This simulation 

outcome together with the largely variable response dynamics found in Wang et al. (2018) is at 

odds with a prominent class of population-clock neural network models of timing. The latter hold 

that timing is generated by a population clock which is made of a neuronal chain, i.e., a chain of 

activated neurons within a population. In a busy neuronal population with time-varying firing rates, 

each time point can be coded by the specific activity of individual or a group of neurons. In turn, 

to produce a motor response at certain timing, output neuronal activity can be trained to identify 

activity patterns and read time (Buonomano & Karmarkar, 2002; Buonomano & Laje, 2010; Mauk 

& Buonomano, 2004). A popular representative RNN model based on population-clock dynamics 

was trained in producing words and was able to generate spatiotemporal patterns with accurate 

timing (Laje & Buonomano, 2013). 

Accordingly, Hardy et al. (2018) implemented a population-clock RNN model for simu-

lating the behavioral findings of temporal scaling effects using aperiodic temporal patterns at dif-

ferent speeds. The authors build a network with high-dimensional activity and tackled the disad-

vantage of limited LTM capacity by updating the weight’s values of each input at high time-reso-

lution rate. In this way, extensive training of the model ensured the generation of stable trajectories 

encoding reliable temporal patterns and producing the trained patterns, returning afterwards to a 

rest state. One external cue input served to start each trial and a second one was the speed control-

ler, namely a tonic speed input that modulated the temporal dynamics based on which the network 

was trained. As a result, the model successfully predicted both the temporal scaling and the Weber-

speed effect behavioral data. 

 
3 Of note, in such nonlinear activation functions, output from this activation moves to the next hidden layer and the 

final output is determined by the forward (outputting values from one hidden layer to the next) and back-propagation 

(correcting the final output values based on the forward propagation output and repeating the process) processes. 
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The contrast between the ramping RNN (Wang et al., 2018) and the discussed population-

clock RNNs regards that these are different timing models, the dedicated and intrinsic models, 

respectively. These centre around the debate on whether timing relies on dedicated mechanisms of 

the brain or on intrinsic computations that allow timing to emerge from any neuron (see Paton & 

Buonomano, 2018), for which a full review is beyond the scope of this work. In the simulations 

by the Buonomano group (e.g., Goudar & Buonomano, 2018; Hardy et al., 2018; Laje et al., 2011; 

Laje & Buonomano, 2013), timing emerges solely from the active state of the network, whereas 

Wang et al.'s (2018) simulations of ramping activity rather suggest a common mechanism (e.g., de 

Lafuente et al., 2022) since populations were very variable but merged to produce temporal scaling 

without the need of gated trajectories. 

The above empirical data suggest that order and timing are most likely independent, not 

interacting, processes with timing being controlled by a dedicated mechanism common across 

neuronal populations or intrinsically. Consistent with a modular CQ architecture (Zeid & Bullock, 

2019), a CQ representation of serial order could reconcile with a dedicated mechanism which 

would adjust the tempos of parallel plan representations after the plans in the network’s parallel 

planning layer have been tuned to positions during learning via a positional context layer 

(Houghton et al., 2022). 

1.2.3 What can we learn from planning period dynamics and how?  

Motor planning is a pre-movement state that encompasses a number of processes necessary 

for optimizing the intended forthcoming movement in order to interact effectively with the envi-

ronment (Rosenbaum et al., 2004). These processes can be implicit or explicit learning parameters 

(cf. ordinal and timing parameters of the intended movements, discussed above), memory (Shea-

han et al 2016), action selection (Cisek, 2007; Gallivan et al., 2015, 2016), multisensory integration 

(Sober & Sabes, 2003, 2005) and decision-making (Wolpert & Landy, 2012) processes. An over-

whelmingly increasing amount of data from different measures, modalities and methods has been 

giving insights into the functional and mechanistic role of motor planning in relation to subsequent 

execution. 



Chapter 1 

36 
 

1.2.3.1 The current debate: Reaction time as a marker of motor preparation 

The above definition makes planning a broad term for describing such a wide range of 

processes that may be concurrent to strictly movement-related ones. It has been argued that motor 

planning per se, i.e., preparatory processes that are solely movement-related, should be considered 

as devoid of any higher-order functions (Haith & Bestmann, 2018; Wong et al., 2015). The latter 

processes are proposed to participate in an initial high-level stage for achieving movement gener-

ation by identifying and establishing a motor goal to guide the desired movement outcome. Ac-

cording to this view, this entire composite process constituting the ‘what’ pathway, is time-con-

suming and thus may be responsible for variations in RTs before engaging in movement initiation. 

Subsequently, once a motor goal has been defined, the motor system starts to plan the specifica-

tions of the movement (kinematics, action selection, control of motor commands) necessary to 

achieve the motor goal through a ‘how’ pathway. According to the authors, it is that low-level 

pathway which defines motor planning and accounts for very little preparation time. The above 

framework led to the hypothesis that motor planning is instantaneous, undergoing a continuous 

update based on the ongoing formed motor goals, action selection or direction, and evaluation of 

the benefit (Wong et al., 2015). Part of this thesis has been based on challenging RT as a measure 

of representing better or more complete movement preparation. 

The prominent view on the functional role of RTs is that it reflects the time needed to 

compute the appropriate parameters for delivering an optimal response. Traditional studies of mo-

tor programming have shown that preparation of more demanding movements was associated with 

increased RTs (Henry & Rogers, 1960; Sternberg et al., 1978). Rarely this behavioral readout is 

studied independent from a preceding delay or preparation time. Effects of in advance (i.e., prep-

aration) time on response time have shown RT decreases with longer preparation periods (Dahan 

et al., 2019; Riehle & Requin, 1989; Rosenbaum, 1980). Additionally, knowing in advance before 

the ‘go’ signal what movement to make, reduces the RT to movement initiation (Rosenbaum, 

1980). 

Haith et al. (2016) investigated the time required to prepare a movement in an attempt to 

provide a mechanistic understanding of when a movement is ready to be generated by dissociating 

it from the latency to initiate the movement. The authors showed that movement preparation could 

occur earlier than movement initiation; participants accurately made faster reach movements in a 

forced RT condition about 80 ms earlier than their baseline RT. This means that participants made 
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use of less preparation time for producing just as accurate movements. Longer baseline RTs were 

not necessary as did not contribute to actual movement preparation. Instead, as commended by the 

authors, this extra RT time might have served for avoiding potential imprecise movements. In 

keeping with these observations, Wong et al. (2016) found that planning a movement trajectory 

came with an RT cost compared to a cued trajectory in which a plan was not necessary. This RT 

difference was interpreted as reflecting the representation of the planned movement. The first study 

advocates that only a small percent (~15 %) of the interval from a trigger to the response accounts 

for some aspect of, what the authors would call, the ‘what’ specification of the planned movement. 

This then contradicts the claim that movement preparation itself is not as time-consuming as we 

previously thought (Haith & Bestmann, 2018; Wong et al., 2015). In addition, in volitional control 

of movement initiation, as opposed to forced conditions, an RT cost seems to qualify as a necessary 

computation time which can reach a minimum with longer preparation times (Dahan et al., 2019). 

The second study, on the other hand, does not provide a clear ‘what - how’ dissociation, as even 

with a small (22 %) cost in the case where an additional planning process is imposed, we cannot 

preclude that in both experimental conditions additional ‘what’ processes could have taken place 

during planning. 

Making sense of the processes participating in a planning period is necessary for the ad-

vancement of the field as this would facilitate data interpretation and make inferences more accu-

rate. However, more data are warranted for fully understanding the composite nature of motor 

planning and its imprint on RT. 

1.2.3.2 Prediction of upcoming actions and performance level from planning dynamics 

A plethora of evidence supports that motor planning encodes valuable information for pre-

dicting upcoming movements and quality of performance. Utilization of motor programs during 

planning benefits skilled motor learning (O’Shea & Shenoy, 2016) and sequence performance 

(Keele, 1968; Rosenbaum, 1985, 2010), affecting movement time, speed, and accuracy (Al Borno 

et al., 2020; Haith et al., 2016; Klapp, 1976, 1995, 2003; Klapp & Erwin, 1976; Riehle & Requin, 

1989). As discussed previously, multiple motor plan representations of different weights have been 

found to be activated in parallel during planning predicting forthcoming movements and sequence 

performance after movement onset (Averbeck et al., 2002; Kornysheva et al., 2019), in accord 

with the CQ account. In both studies, the parallel movement-related neural patterns predicted both 
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the serial production of planned movements and the level of performance in terms of accuracy. 

Accordingly, motor sequence learning and performance has been shown to benefit from optimized 

planning of multiple sequential movements (Ariani & Diedrichsen, 2019). Specifically, partici-

pants were trained in a discrete production task to produce visually cued five-finger sequences as 

fast as possible. Preparation duration was manipulated by indicating the ‘go’ signal for sequence 

initiation at different time points within the preparation period. It was found that longer preparation 

durations resulted in faster sequence execution for well-learnt sequences. At the same time, prep-

aration time was reduced indicating that participants were gradually able to plan these sequences 

both faster and more accurately. This faster preparation encompassed the planning of the first three 

to four movement elements, planning the rest ‘online’, during execution. This was found regardless 

of training level and possibly indicates a ceiling effect in how many elements can be planned 

before initiation, especially since longer preparation times did not improve this capacity (i.e., plan-

ning the entire sequence). This finding was corroborated when advance knowledge of a certain 

number of elements of upcoming long sequences was given (Ariani et al., 2021). This revealed 

that knowing on average up to three movements ahead positively affected subsequent performance. 

Further, an fMRI investigation has shown that preparatory sequence finger-specific activity origi-

nates in contralateral primary somatosensory cortex (S1), similar to M1, and could predict the 

planned upcoming action (Ariani et al., 2022). Similarly, Gale et al. (2021) found changes in the 

neural states of M1 and S1 with both areas encoding effector-specific information during motor 

planning. These findings suggest that S1 prepares the system for processing the sensory infor-

mation that comes with the intended action. 

1.2.3.3 Neural oscillations show differentiated activity during planning vs execution 

Neural activity during motor planning at the time-frequency domain encodes task-invoked 

information. Specifically, pre-movement oscillatory dynamics show distinct patterns of activation 

relative to peri-movement4 activity. Gamma oscillations originate from local field potentials which 

rhythmically fluctuate at high frequencies (> 30 Hz, but typically > 60 Hz) (Buzśaki & Wang, 

2012; Fries et al., 2007; Kropotov, 2016a). They have been reported in the hippocampus (Colgin 

& Moser, 2010) and the human motor cortex (Cheyne et al., 2008; Crone et al., 1998; K. J. Miller 

et al., 2007; Muthukumaraswamy, 2010; Pfurtscheller et al., 2003; Szurhaj et al., 2005). Increases 

 
4 Activity just before movement onset, during movement, and immediately after movement is completed. 
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in hippocampal and prefrontal gamma activity reflect the increased load of recalled events retained 

in WM during delay periods in neurosurgical patients (Howard et al., 2003; Van Vugt et al., 2010) 

and healthy participants (Roux et al., 2012). On the other hand, the movement-related gamma 

synchronization (MRGS), starting ~ 0.05 s before up until ~ 0.1 s after movement onset, is typically 

localized in the contralateral precentral gyrus (M1) (Cheyne et al., 2008; Gaetz et al., 2010, 2011; 

Muthukumaraswamy, 2010) and the SMA (Wilson et al., 2010). The MRGS is thought to be the 

oscillatory marker of movement execution, given its focal localization and its temporally transient 

bursts. Essential work on the functional profile of the gamma rhythm involved the investigation of 

various types of movements (slow movements, repetitive or ballistic abductions, and static con-

tractions under different conditions) (Muthukumaraswamy, 2010). These experiments revealed 

that each individual movement elicited MRGS at its onset and this activity was not preserved 

through the end of the movement, suggesting that MRGS signifies motor onset response. 

Another prevalent rhythm of the motor circuitry is the beta rhythm (14–30 Hz) which is 

important for motor planning (Heinrichs-Graham & Wilson, 2016; Little et al., 2019; Park et al., 

2013; E. Rhodes et al., 2018; Sanes & Donoghue, 1993; Turella et al., 2016; Tzagarakis et al., 

2010, 2015) and execution (Bizovičar et al., 2014; Tatti et al., 2020), and the temporal control of 

rhythmic movements (Merchant & Bartolo, 2018). 

Motor cortical beta activity, together with the motor-related μ-alpha range (mu rhythm; 8–

13 Hz; Gaustaut, 1952), presents with short attenuation of oscillations, termed event-related desyn-

chronization (ERD). Compared to mu decreases, beta-ERD shows the strongest responses during 

sensorimotor processing and movement preparation and execution and its latency depends on 

movement time; it is observed ~ 1 s before movement onset until ~ 0.5 s after the end of movement 

where it resynchronizes (event-related synchronization; ERS; also termed the post-movement beta 

rebound) (Pfurtscheller & Aranibar, 1977; Pfurtscheller & Lopes Da Silva, 1999), suggesting pos-

sibly a clearing-out of the motor plan to prevent ongoing sensorimotor processing (Hervault et al., 

2021). These 8-30 Hz ERD/ERS dynamics are considered correlates of cortical excitation/inhibi-

tion, respectively, modulating changes in corticospinal excitability (Bergmann et al., 2019; 

Hussain et al., 2019; Thies et al., 2018). Both mu- and beta-ERD show lateralization in contrala-

teral precentral gyrus during preparation, especially in mu-ERD, and become bilateral closer to 

movement onset (Chatrian et al., 1959; Dujardin et al., 1993; Leocani et al., 1997; H. Li et al., 

2018; Pfurtscheller & Berghold, 1989). 
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The functional role of beta, in particular, is not fully understood but it has been suggested 

to be involved in sensorimotor integration and top-down control via its intrinsic fluctuations 

(Barone & Rossiter, 2021; Engel & Fries, 2010). Although otherwise known as the sensorimotor 

rhythm, beta activity is widespread implicating other areas apart from the precentral gyri, such as 

the SMA (Cheyne et al., 2006; Wilson et al., 2010), parietal (Cheyne et al., 2006; Heinrichs-

Graham & Wilson, 2015), premotor (Cheyne et al., 2006) and prefrontal cortices (Heinrichs-

Graham & Wilson, 2015; Lundqvist et al., 2016; Wessel et al., 2013), the BG (Leventhal et al., 

2012; Mirzaei et al., 2017; Stein & Bar-Gad, 2013), and the cerebellum (Wilson et al., 2010). This 

suggests the complex role of beta in cognitive alongside sensorimotor processing for efficient ex-

ecutive control and memory handling in task performance (for a review and discussion, see 

Schmidt et al., 2019). 

1.2.3.4 A mechanistic understanding of motor planning: Outstanding questions 

 The Georgopoulos group (Averbeck et al., 2002) and Kornysheva and colleagues (2019) 

provided evidence of parallel activations of planned movements over a delay period prior to se-

quence execution and serial activations once the movement sequence started. Using decoding tech-

niques, they computed the probability of each action being activated over both periods and found 

that the probabilities ranked in parallel over preparation and then peaked serially over execution, 

both based on ordinal position. This decoded movement-related activation suggests that their 

movement elements were prepared and executed independently. As these were over-learnt se-

quences, motor chunking (unification of elements in one representation) could have occurred even 

when a temporal structure was indirectly imposed during production via feedback (Verwey & 

Dronkert, 1996) as in Kornysheva et al. (2019). Do then the observed distinct activations from 

preparation to production refute the assumption that those movements might have been chunked 

(because chunking would be expected to yield a single neural pattern representation across plan-

ning and execution)? More importantly, is there a common principle under which neural prepara-

tory activity and execution operate, regardless of the number of movements one prepares and pro-

duces or whether a sequence has been transformed to a chunk or not? Zimnik and Churchland 

(2021) recently attempted to address this question by investigating the role of motor cortex (M1 

and PMd) in how different movement types are planned, initiated, and executed. Monkeys were 

trained to produced single reaches or two-element reaching sequence either in a compound manner 
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characterized by rapid production or in a delayed manner where the two movements were tempo-

rally much more discrete. Both were over-learnt sequences and, in the case of the compound 

reaches, extensive training in combination with the minimal interval between the two movements 

was expected to induce motor chunking (Rosenbaum et al., 1983; Sakai et al., 2003). Population 

activity during preparation revealed separate time courses for each movement in both sequence 

conditions, as during execution. In compound reaches, this was manifested by overlapping yet 

distinct activities: The second movement started to prepare when the first was still being executed. 

In addition, single reach activity in preparation was very similar to the activity related to the first 

reach in the sequence conditions. These findings show that the motor system uses a flexible way 

to produce movements of different types using separate representations which do not merge in M1 

as a chunk. 

Another important question in the field of motor neuroscience has been that of what prop-

erty of the preparatory activity in motor cortex defines when the system is ready to execute the 

response and how neurons in the same area can drive both preparatory and movement-related ac-

tivity (Remington, Egger, et al., 2018; Wong et al., 2015). The account that preparatory activity is 

held at a corticospinal subthreshold level (Duque & Ivry, 2009), i.e. suppressed, has long been 

considered unlikely since animal neurophysiological data have shown no indication of inhibitory 

activity in those areas (Churchland et al., 2010; Kaufman et al., 2010, 2013). Instead, it has been 

suggested that preparatory activity is being kept constant within a null (sub)space of a bigger high-

dimensional firing rate space representing a population of neurons, whereas movement activity 

becomes multi-dimensional driving the muscular system to execute the movement (Kaufman et 

al., 2013). Further, the same group identified a potential mechanism that accounts for neuronal 

populations in PMd. This area was found to hold preparatory activity output to a null space atten-

uating their upstream communication with M1, thus preventing activity to extend to other dimen-

sions so to produce movement (Kaufman et al., 2014). In this framework, motor planning could 

be supported by preparatory activity, at an output-null state, which may choose the optimal point 

in the high-dimensional space based on the motor plans of the intended action. Overall, these data 

demonstrate that preparatory and movement activities are distinct while later work confirmed that 

this distinction is also supported by separate computations (Elsayed et al., 2016). Such a mecha-

nism can explain why preparatory activity can co-exist with execution-related activity and predict 
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certain parameters of forthcoming movements or sequences of movements (Remington, Egger, et 

al., 2018). 

 

1.3 Summary and Problem Statement 

The period before we execute a sequence of movement encodes important information 

about its spatiotemporal features - order and timing. Specifically, sequence planning is essential 

for organizing movements in the correct order over specific time constraints. Neural network stud-

ies and empirical evidence provide a framework which supports that sequential elements are 

planned in parallel and competitively queued depending on their initial serial order. Certain CQ 

models suggest a central role of timing regulating serial order in the same system, despite several 

evidence advocating for a dissociative control. At the same time, the delay period to prepare a 

sequence has been linked with more accurate sequence performance. However, no studies to date 

have examined at the behavioral level whether a graded activation of parallel planned movements 

is accessible and whether it is modulated by sequence timing or preparation time. In addition, 

although significant steps have been made in understanding motor timing, the mechanisms of 

speed modulation and its relation to serial order during motor sequence planning in the human 

brain are yet unknown. Specifically, what the field yet lacks is a systematic investigation at the 

neural level of a potential integration of order and time in a common CQ preparatory mechanism 

or instead a dissociation which would imply a modular control of spatiotemporal motor sequences. 

 

1.4 The Present Thesis 

1.4.1 Aims and objectives 

This research aimed to address one broad question emerging from reviewing the literature: 

What are the behavioral and neural markers of a planning mechanism which would explain how 

order and timing of movements are represented before sequence execution? This central question 

is broken down into the following aims: 
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The first strand of this research set out to a) identify a behavioral readout of graded avail-

ability of planned movements, following the CQ framework, and b) investigate whether this CQ 

preparatory gradient is modulated by the temporal structure of the planned sequence or the length 

of preparation time. The second strand aimed to further a) establish at the neural level, using non-

invasive EEG, a CQ parallel graded activation of planned movements belonging to sequences of 

different speeds and b) determine either a dissociation of ordinal position from timing or an inte-

gration of those features during sequence planning. 

To that end, a series of four experiments was conducted employing a within-subjects de-

sign. The first three experiments were built to address the first strand of research whilst the fourth 

experiment was created to cover the questions of the second strand of research. In all experiments, 

a novel ‘delayed-production’ paradigm was utilized which was created to model movement avail-

ability during planning of well-learnt keypress sequences. During sequence training, the paradigm 

employs the principles of the delayed movement (Cisek & Kalaska, 2002, 2005) and the discrete 

sequence production tasks (Verwey, 1999) to establish learning of the target spatiotemporal se-

quences. Its core feature is the learnt association of a unique abstract visual stimulus with a unique 

target sequence. During test, the corresponding abstract visual stimulus enables the retrieval and 

preparation of the cued movement sequence during a delay period, and its production from 

memory following a Go signal (Kornysheva et al., 2019). Through probe trials, the paradigm 

probes the preparatory state of constituent movement elements of the cued sequence or that of a 

prepared or an unprepared single movement, by means of RTs and error rates. In this motor task, 

across experiments, the right hand was used as the effector model performing four-element key-

press finger sequences used to model discrete sequential movements. 

This thesis presents and discusses only the results from data acquired from the test sessions 

as these were designed for addressing the research questions outlined above. Below is an overview 

of the scope and objectives of each experiment. 

Experiment 1 – This experiment measured the behavioral availability of probed movements 

based on their ordinal position during the preparation of two isochronous sequences of different 

finger order but same – slow – timing. The key manipulation here was the varying delay time 

between the abstract visual stimulus and the Go signal. This delay constituted the preparation pe-

riod. This experiment tested the hypothesis that the preparatory gradient of movement availability 

by ordinal position expands with longer preparation time reflecting a more accurate sequence plan. 
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Experiment 2 – This experiment focused on varying the sequence timing by using three 

sequences of identical finger order but different timing: slow, fast, and irregular. The critical ma-

nipulation of sequence timing served to test the alternative hypothesis that timing affects the pre-

paratory gradient depending on ordinal position: The gradient would accordingly be shortened or 

enlarged between positions as per the temporal intervals of the planned sequence. 

 Experiment 3 – Same as experiment 2, adding the measurement of the behavioral availa-

bility of a control movement: a single press delivered by an effector not belonging to any of the 

target sequences. This experiment tested the additional hypothesis that such a movement may be 

part of the preparatory gradient but is much less available than the sequential movements. 

Preparation time was not manipulated in experiments 2 and 3. Across experiments 1-3, an 

overarching hypothesis was tested that a more pronounced preparatory gradient would be associ-

ated with better quality of sequence performance. 

Experiment 4 – Following up experiments 2 and 3, this experiment similarly measured the 

behavioral availability of probed sequential movements, focusing on sequences with the same fin-

ger order but different speeds: slow and fast. A control movement of an unrelated effector was also 

investigated under different conditions. Further, concurrent scalp EEG and electromyography 

(EMG) - as a control measure - recordings were collected on a separate session during the planning 

and production from memory of the sequences and a single movement (unrelated effector). Fol-

lowing the CQ predictions, a machine learning technique was used for decoding the EEG signal 

over sequence planning and execution to investigate the hypothesis of parallel graded preactiva-

tions of planned movements before execution and their potential modulation by sequence speed. 

Scalp EEG is a non-invasive technology for recording electrical brain activity (Berger, 1929) and 

is sensitive to capturing the summed activity of postsynaptic potentials generated from cortical 

pyramidal cells (Buzsáki et al., 2012; Nunez & Srinivasan, 2009; Erik St. Louis et al., 2016). In 

particular, extracting cortical EEG patterns for the aim of classifying certain task conditions using 

machine learning techniques for neural decoding equivalent to MVPA applied in fMRI, has been 

gaining ground over the last years (Carlson et al., 2019). Time-resolved EEG decoding has been 

applied for studying various aspects of cognitive function (J. J. Foster et al., 2015; Samaha et al., 

2016) and motor control (Kikumoto & Mayr, 2018; T. Li et al., 2018; Paek et al., 2014; Tayeb et 

al., 2019; Yang et al., 2015; Yoshimura et al., 2017), as well as for distinguishing key pattern 

representations related to goal-directed behavior over different stages of a task (Hubbard et al., 
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2019). This literature underpins the rich potential of the decoding approach to classify time-re-

solved task information encoded in the EEG signal. 

The preparation and running of all four experiments took place in designated venues in the 

School of Psychology of Bangor University, following ethics approval by the School’s Research 

Ethics Committee. Specifically, the entire preparatory work (e.g., setup of technical equipment, 

programming), the training/test sessions for experiments 1-3, and the training/test behavioral ses-

sions for experiment 4 were delivered at the Skilled Action & Memory Lab. The Psychology Open-

access Electrophysiology and Topographic (POET) Lab hosted the EEG session for experiment 4, 

including prior laboratory work required for preparing the system for data acquisition. 

For the implementation of all four experiments, a total of 102 participants were recruited. 

From this cohort, the datasets of 73 participants (corresponding to circa 377.1 h of data collection) 

were fully analyzed after excluding pilot, noisy or incomplete datasets due to withdrawal as well 

as data from participants showing outlier performance (cf. Chapter 2). 

1.4.2 Scope and delimitations 

Based on the aims and objectives outlined above and the time constraints that this research 

project had to adhere to, its primary scope was to identify and establish the behavioral and neural 

signature of a sequence planning mechanism, focusing on order and timing, in the healthy brain. 

At this early stage of the present line of research, it is necessary to first establish the workings and 

functional role of the planning mechanism under investigation before moving on to examine any 

defective functioning in populations with movement disorders. Therefore, for the conduction of 

all studies, only healthy, non-expert (i.e., with no professional experience in motor skilled sequenc-

ing) participants were recruited for data collection. In addition, the effects of hand dominance in 

motor sequence planning are poorly studied. Limited evidence suggests that left and right handers 

do not exhibit differences in motor planning during an action selection task (Sadeghi et al., 2021) 

whilst the left hemisphere engagement of the premotor-parietal network during sequence planning 

and execution occurs independently of hand dominance (Serrien & Sovijärvi-Spapé, 2015). How-

ever, to the best of our knowledge, there are no available data on handedness effects specifically 

on the control of order and timing, thus for the present studies only right-handed participants were 

recruited. 
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Although this research largely draws on findings from neural network studies - CQ and 

RNNs - it did not seek to investigate a parallel vs serial processing hypothesis, respectively. In-

stead, the outlined questions are clearly set under the CQ hypothesis, formulating alternative hy-

potheses where applicable according to conclusions drawn from the relevant literature. Finally, 

studying the planning of well-learnt sequences inevitably intersects with topics of motor skill 

learning, WM, LTM, motor memory, and memory consolidation. However, delving into the mech-

anisms of each of these domains was beyond the scope of this thesis. 

1.4.3 Significance 

The time before we execute a skilled movement sequence contains valuable information 

about the spatiotemporal profile of the upcoming action. The goal of this research is to advance 

our knowledge of motor sequence planning by shedding light on the preparatory mechanisms of 

serial order and timing control. Identifying a behavioral marker of sequence planning and its rela-

tion to subsequent performance may pave the way for establishing a widely accessed and cost-

efficient behavioral tool for assessing preparatory movement organization. Additionally, the find-

ings on the underpinnings of neural modulation of sequence speed in association with serial order 

during planning will benefit clinical populations who exhibit disruptive timing during motor se-

quence execution. 

1.4.4 Chapter scheme 

Following a historical backdrop and a thorough, critical evaluation of the up-to-date liter-

ature discussed in the current Chapter, the subsequent Chapters present the empirical work con-

ducted for addressing the above outlined research questions. Specifically, Chapter 2 comprises 

experiments 1-3 and Chapter 3, experiment 4. Finally, Chapter 4 discusses the present findings in 

relation to current knowledge and concludes all together on the significance of this work.  
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Chapter 2 

Competitive state of movements during planning  

predicts sequence performance - Experiments 1, 2 and 3 

 

 

 

his Chapter contains identical parts from a peer-reviewed article published in the Journal 

of Neurophysiology (JNP) (Mantziara, Ivanov, Houghton & Kornysheva, 2021) and fea-

tured in the JNP April – June 2021 complementary cover (see below cover and graphical 

abstract). Here, the JNP article has been slightly modified only to meet the formatting requirements 

of this thesis. 

Mantziara, M., Ivanov, T., Houghton, G., & Kornysheva, K. (2021). Competitive state of move-

ments during planning predicts sequence performance. Journal of Neurophysiology, 

125(4), 1251-1268. https://doi.org/10.1152/jn.00645.2020 "Copyright (2021) by the Amer-

ican Physiological Society." 

 

 

  

T 
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2.1 Abstract 

Humans can learn and produce skilled movement sequences from memory, yet the nature of se-

quence planning is not well understood. Previous computational and neurophysiological work sug-

gests that movements in a sequence are planned as parallel graded activations and selected for 

output through competition. However, the relevance of this planning pattern to sequence produc-

tion fluency and accuracy, as opposed to the temporal structure of sequences, is unclear. To resolve 

this question, we assessed the relative availability of constituent movements behaviorally during 

the preparation of motor sequences from memory. In three separate multisession experiments, 

healthy participants were trained to retrieve and produce four-element finger press sequences with 

particular timing according to an abstract sequence cue. We evaluated RT and error rate as markers 

of movement availability to constituent movement probes. Our results demonstrate that longer 

preparation time produces more pronounced differences in availability between adjacent sequence 

elements, whereas no effect was found for sequence speed or temporal grouping. Further, partici-

pants with larger position-dependent differences in movement availability tended to initiate correct 

sequences faster and with a higher temporal accuracy. Our results suggest that competitive preac-

tivation is established gradually during sequence planning and predicts sequence skill, rather than 

the temporal structure of the motor sequence. 

 

2.2 New & Noteworthy 

Sequence planning is an integral part of motor sequence control. Here, we demonstrate that the 

competitive state of sequential movements during sequence planning can be read out behaviorally 

through movement probes. We show that position-dependent differences in movement availability 

during planning reflect sequence preparedness and skill but not the timing of the planned sequence. 

Behavioral access to the preparatory state of movements may serve as a marker of sequence plan-

ning capacity. 

 

Keywords: Competitive queuing; Error rate; Motor planning; Reaction time; Sequence control 
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2.3 Introduction 

Producing movement sequences from memory fluently is an essential capacity of primates, 

in particular humans. It enables a skilled and flexible interaction with the world for a range of 

everyday activities - from tool use, speech, and gestural communication to sports and music. Key 

to fluent sequence production is sequence planning before the initiation of the first movement 

(Lashley, 1951; Rosenbaum, 1985), with longer preparation time benefitting sequence execution, 

i.e., reducing initiation time after a Go cue and improving accuracy (Ariani & Diedrichsen, 2019). 

However, the underlying nature and content of sequence planning is still debated (Remington, 

Egger, et al., 2018). 

Different computational accounts of sequence control make contrasting predictions with 

regard to the content of sequence planning. Models postulating a purely serial control of motor 

sequences suggest that a well-learnt sequence is a cohesive entity, rather than a series of individual 

movements, e.g., individual strokes when drawing a geometrical figure or finger presses playing 

the piano (Goudar & Buonomano, 2018; Laje & Buonomano, 2013). They predict that sequence 

planning activity reflects bringing the neural trajectory toward the correct neural state of sequence 

initiation from which it cascades serially through a learnt trajectory. Sequence planning would 

therefore entail the preparation of the state occupied by the first movement, e.g., using a null state 

to allow preparation without premature initiation, as shown empirically for reaching movements 

(Kaufman et al., 2014; O’Shea & Shenoy, 2016). By contrast, models postulating parallel sequence 

control, such as CQ models (Houghton, 1990), propose simultaneous control of the items, here 

movements, in a sequence. They predict that preparatory neural activity preactivates sequence 

movements concurrently. Specifically, the neural activation pattern for each movement is weighted 

according to its temporal position in the respective sequence (Burgess & Hitch, 1999; Hartley & 

Houghton, 1996), resulting in a position-dependent preactivation gradient for each upcoming 

movement in the sequence. Indirect support for parallel and independent neural control of sequen-

tial movements stems from observations of serial recall including transposition of neighbouring 

sequence items and items occupying the same position in different chunks (Glasspool & Houghton, 

2005; Hartley & Houghton, 1996; Henson, 1998b), and excitability of forthcoming movements 

during sequence production (Behmer et al., 2018). Direct neurophysiological support for the par-

allel control of sequence movements has been provided in the context of well-trained finger se-
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quences (Kornysheva et al., 2019; Pinet et al., 2019), saccades (Basu & Murthy, 2020), and draw-

ing of geometrical shapes (Averbeck et al., 2002). Specifically, during planning, the probability of 

neural patterns associated with each movement in the sequence was highest for the first and lowest 

for the fourth and fifth movements of the planned sequence. This effect could not be explained by 

a graded prepressing of the corresponding fingers according to their order and was observed at the 

trial-by-trial level, suggesting that this competitive preactivation is not an artefact of trial averaging 

(Kornysheva et al., 2019). Importantly, the ordered preactivation gradient of sequence movements 

during planning was relevant to subsequent execution. In particular, the quality and strength of 

this gradient was predictive of sequence production accuracy such that participants with stronger 

preactivation differences between the sequence items during planning were more accurate during 

sequence production. Together, these data suggest that skilled sequence production involves an 

orderly parallel planning of several movements in advance before sequence initiation and predicts 

better sequence performance. 

Although the preactivation gradient during planning has been shown to predict subsequent 

execution, it remains unclear what this preparatory pattern reflects—the skill of sequence produc-

tion (fluency of initiation and accuracy of the sequence execution) or the temporal structure of the 

sequence (speed and temporal grouping). Most CQ models assume the presence of a temporal or 

positional context layer and that the activity gradients are learned by associations of the latter to 

each sequence item in the parallel planning layer, e.g., through Hebbian learning (Burgess & Hitch, 

1999). The form of activity in the context layer can be as simple as a decaying start signal (Page 

& Norris, 1998), a combination of start and end signals (Houghton, 1990, 2018), or a sequence of 

overlapping states (Burgess & Hitch, 2006; Houghton, 1990). Although primarily encoding serial 

order of sequence items, models utilizing overlapping states can implement effects of temporal 

grouping or sequence rhythm (Hartley et al., 2016; Houghton, 1990), making timing an intrinsic 

property of the CQ of sequential movements. Likewise, a separate timing process (Kornysheva et 

al., 2013; Kornysheva & Diedrichsen, 2014; Medina et al., 2005; Spencer et al., 2009; Ullén & 

Bengtsson, 2003; Zeid & Bullock, 2019) may modulate the parallel planning of the serial order of 

items, e.g., in the parallel planning layer. In both cases, the competitive preactivation gradient of 

movements during planning would reflect the temporal grouping or temporal proximity of move-

ments in the upcoming sequence, with movements closer together in time having more similar 

levels of preactivation than those that are further apart (Houghton, 1990). By contrast, sequence 



Chapter 2 

51 
 

timing may not impact the competitive preactivation of sequential movements during planning and 

interact with the latter during execution only. 

To investigate the nature of sequence planning and its relation to subsequent execution, we 

developed a behavioral paradigm to capture the preparatory state of each constituent movement of 

a well-learnt sequence during planning. Following training, participants prepared a motor sequence 

from memory following an abstract visual stimulus associated with a particular sequence of finger 

presses performed with a particular speed or temporal grouping. In half of the trials during the test 

phase, the Go cue was replaced by a finger press cue prompting the production of movements 

associated with different positions in the sequence. We used behavioral availability for fast and 

correct execution of the presses in these Probe trials (RT and error rate) as behavioral markers of 

the relative preactivation of upcoming movements during sequence planning. 

We hypothesized that if CQ during planning primarily reflected the accuracy of the se-

quence plan (Averbeck et al., 2002; Kornysheva et al., 2019), but not its timing, we would predict 

a gradual differentiation of the position-dependent preactivation gradient with longer sequence 

preparation time. Accordingly, we would observe an increase of position-dependent differences in 

press availability across preparation durations of 500, 1000, and 1500 ms, despite matched speed 

and temporal grouping of sequence production. Further, participants with a more pronounced gra-

dient would be more fluent and accurate, specifically show more rapid sequence initiation of cor-

rect sequences after the Go cue, more accurate timing, and fewer finger press errors. 

Alternatively, if the gradient reflected the timing of the sequence during planning, move-

ments planned to be executed closer in time would show smaller position-dependent differences 

relative to movements further apart. Accordingly, sequences twice as fast (speed manipulation) 

would result in more similar levels of availability of movements in neighboring sequence posi-

tions. Further, the latter would be modulated by irregular IPIs with shorter versus longer IPIs being 

accompanied by smaller versus larger differences in position-dependent availability during plan-

ning, respectively (temporal grouping manipulation). 

We report that during the 1.5 s of sequence retrieval and preparation from memory, the 

behavioral availability of sequential movements decreases on average with their planned serial 

position, up to the last but one. Specifically, movement probes associated with later sequence po-

sitions were progressively more likely to lead to erroneous presses during planning, and correct 
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presses were executed more slowly. This characteristic preparatory gradient of movement availa-

bility increased with preparation duration rendering movements preplanned to occur in later com-

pared with earlier sequence positions progressively less available. Across participants, the size of 

this gradient during preparation correlated with more fluent initiation and temporally accurate se-

quence production. Contrary to the timing hypothesis, we found no reliable effect of sequence 

speed or temporal grouping on movement availability during planning. Based on these data, we 

propose that sequence planning involves a competitive preactivation gradient of sequential move-

ments during sequence planning, which operates independently of sequence timing and facilitates 

skilled sequence performance. 

 

2.4 Materials and Methods 

2.4.1 Participants 

Data were collected from a total of 55 right-handed University students (experiment 1: N 

= 19, 11 females; M = 24.2 years, SD = 4.1; experiment 2: N = 18, 11 females; M = 24.2 years, SD 

= 4.5; experiment 3: N = 18, 9 females; M = 20.8 years, SD = 2.4). Four additional participants 

were tested but excluded from analysis based on their sequence production finger error rate (cf. 

Participant Exclusion Criteria). They were hypothesis-naive and had no previous exposure in per-

forming a similar experimental task. All participants had normal or corrected-to-normal vision and 

reported no history of neurological or psychiatric disorders or hearing problems. Handedness was 

evaluated through the online Handedness Questionnaire (http://www.brainmap-

ping.org/shared/Edinburgh.php) adapted from the Edinburgh Handedness Inventory (Oldfield, 

1971) (experiment 1, M = 88.4, SD = 9.4; experiment 2, M = 90.6, SD = 9.7; experiment 3, M = 

90, SD = 11.8). All participants provided written informed consent before participation and were 

debriefed after completing the study. They were compensated either monetarily or with course 

credits at the end of the experiment. All procedures were approved by the Bangor University 

School of Psychology Research Ethics Committee (Ethics Review Board Approval Code 2017-

16100-A14320). 
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2.4.2 Apparatus  

For all three experiments, participants were seated in a quiet room in front of a 19-inch 

LCD monitor (LG Flatron L1953HR, 1280 × 1024 pixels), wearing headphones for noise isolation. 

All instructions, visual stimuli, and feedback were precisely timed by the monitor’s refresh rate 

(60 Hz) and controlled by Cogent 2000 (v1.29) (http://www.vislab.ucl.ac.uk/cogent.php) through 

a custom-written MATLAB program (v9.2 R2017a, The MathWorks, Inc., Natick, MA). In exper-

iments 1 and 2, a Pyka 5-button fiber optic device (Current Designs) was used to record the re-

sponses. A customized foam channel stabilized the cable and a thin anti slip mat, placed underneath 

the response device, prevented from sliding during the task. The response device was positioned 

horizontally and adjusted for each participant to ensure good control over the target buttons as well 

as arm and wrist comfort. Participants were instructed to place the right index, middle, ring, and 

little fingers on the respective target buttons of the device. Experiment 3 used an identical experi-

mental setup with the exception that responses were recorded using a computer keyboard. Here, 

participants were instructed to place their right thumb in addition to the rest of the right-hand 

fingers on the designated keyboard keys. For hand stabilization and comfort, their wrist was posi-

tioned on a rest cushion. 

2.4.3 Experimental design 

All three experiments employed a visually cued motor learning task adapted from 

Kornysheva et al. (2019). Experiments 1 and 2 involved the recording of sequential and single 

button presses produced with the four fingers (index, middle, ring, and little) of the right hand. 

Experiment 3 additionally required single presses with the thumb. In all experiments, participants 

were trained to associate a visual cue (an abstract fractal shape, henceforth Sequence cue) with a 

four-element finger sequence produced with a specific timing. The paradigm employed two main 

trial types: Sequence and Probe (single press) trials. Sequence trials were further divided into vis-

ually instructed and memory-guided trials. Instructed Sequence trials involved the presentation of 

four visual digit cues (index, middle, ring, and little) at specified intervals comprising a unique 

target sequence. These were only used during training in the first two days, and during two re-

fresher blocks on the third day (Figure 2.1a). The test phase on the third day involved sequence 

production without visual guidance (Figure 2.1b). Probe trials involved the production of only one 
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visual digit cue (Probe cue) corresponding to one of the serial positions in the target sequence 

(Figure 2.1c). 

Experiment 1 - preparation duration. All participants were trained to produce two differ-

ent finger sequences comprising four presses with target IPIs of 800 ms (slow timing). Two addi-

tional sequences served as practice sequences to impose familiarization with the task. All se-

quences were randomly generated offline for each participant through a custom-written MATLAB 

code. The sequence generation process excluded sequences with ascending and descending digit 

triplets and identical finger positions. 

All trial types started with a Sequence cue. The Sequence cue had a fixed duration of 400ms 

followed by a fixation cross, the latency of which varied depending on the delay period between 

the Sequence cue and Go cue onsets. The resultant short (500 ms), intermediate (1000 ms), and 

long (1500 ms) delay periods comprised the three preparation duration conditions employed in the 

task. After the delay period, a black right-hand stimulus appeared as the Go cue. 

In an instructed Sequence trial, the Go cue was presented on a gray background for 2400 

ms. A white circle appeared on top of the corresponding finger digits of the hand stimulus sequen-

tially to guide the participants throughout the execution of the sequence. The time intervals be-

tween the digit cues formed the target timing of the sequence and defined its duration of 2400 ms. 

To achieve finger and temporal accuracy during training, participants were asked to ‘synchronize’ 

the correct finger presses with the digit cues until the completion of the sequence. As the first digit 

cue of a sequence appeared at the same time as the Go cue, immediate initiation of the sequence 

was emphasized in the instructions. In a memory-guided Sequence trial, the Go cue was presented 

on a green background, remaining on the screen for 2400 ms. Memory-guided Sequence trials were 

devoid of finger digit cues, requiring participants to produce the upcoming target sequence from 

memory. Participants were instructed to initiate the sequence as quickly as possible and produce 

the sequence according to its target finger order and timing. In a Probe trial, after the delay period, 

the Go cue was replaced with a Probe cue, namely, a single digit cue, displayed for 1000 ms. The 

Probe cue prompted a single press with a corresponding finger as fast and accurately as possible. 

Participants were encouraged to avoid premature responses (before the Go cue) in all trial types. 

Following the Go cue in any trial type, a fixation cross (1000 ms) and, subsequently, feedback 

(1000 ms) were presented on the screen. The duration of a Sequence trial was 5.4 s, and a Probe 

trial had a duration of 4 s, including feedback. The inter-trial interval (ITI) was fixed at 800 ms. 
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The experiment consisted of two 90-min-long training sessions (days 1 and 2) and a test 

session (day 3), which took place over three consecutive days. Day 1 commenced with a practice 

block, which involved two instructed and two memory-guided Sequence trials for each of the target 

sequences, and two randomly selected Probe trials, with randomly chosen preparation durations. 

Over the three days, participants serially underwent a pre-training (2 blocks), a training (36 

blocks), a post-training (2 blocks), and a test phase (2 refresher training blocks and 16 test blocks), 

completing a total of 58 blocks. To assess sequence planning and execution from memory, only 

data from the test phase are presented here. 

Participants were naïve as to the structure of the transition from the training through to the 

test phase and which block type they were administered (Figure 2.1a). The training phase was 

organized in three stages: 12 blocks of 288 instructed Sequence and 72 Probe trials (stage A, 80 

% instructed Sequence and 20 % Probe trials in each block), 12 blocks of 144 instructed, 144 

memory-guided Sequence and 72 Probe trials (stage B, 40 % for each Sequence type and 20 % 

Probe trials in each block), and 12 blocks of 288 memory-guided Sequence and 72 Probe trials 

(stage C, 80 % memory-guided Sequence and 20 % Probe trials in each block). Each training block 

(3 min long) consisted of 30 trials. On each training block, there was a 20 % occurrence of Probe 

trials (6 in each block) comprising a total of 216 throughout the training blocks. All Probe trial 

conditions (24; 2 sequences 3 preparation durations 4 digits) were counterbalanced across the 

training blocks. The test phase (day 3) started with two refresher training blocks (stage B, 40 % 

for each Sequence type and 20 % Probe trials in each block) and immediately progressed to 16 

blocks of 48 trials each, in which 24 memory-guided Sequence and 24 Probe trials were randomly 

presented (test, 50 % memory-guided Sequence and 50 % Probe trials). Duration of each test block 

was 4.4min. 

The preparation duration conditions were counterbalanced across the two target sequences 

in memory-guided Sequence and Probe trials in each block. This resulted in a total of 128 memory-

guided Sequence trials per preparation duration condition, across blocks. In Probe trials, each 

Probe cue was combined with the three preparation duration conditions resulting in 32 trials per 

digit cue per preparation duration condition. The test phase had a total of 768 trials (384 memory-

guided Sequence and 384 Probe trials). Overall, the participants underwent 2004 trials excluding 

the practice trials. 
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Preparation duration (foreperiod) effects on RT have been associated with carry-over ef-

fects from preceding to current trials and may bias our RT findings if trial history is unbalanced 

(Langner et al., 2018; Steinborn & Langner, 2012). Post hoc, we examined the preparation duration 

conditions in both Probe trials and memory-guided Sequence trials (cf. Supplemental Figure S1, a 

and b; see https://doi.org/10.6084/m9.figshare.13688131 or / Supplemental Figure A.S1 in Appen-

dix A). The mean preparation duration of preceding trials (previous, n-1, or two trials previously, 

n-2) did not vary depending on the serial position associated with the target sequence in any of the 

preparation durations of a current trial (n) [4 x 3 repeated measures ANOVAs: Position x Prepa-

ration duration n-1, F(6, 108) = 0.88, p = .511, η2p = .05; Position x Preparation duration n-2, F(6, 

108) = 1.14, p = .344, η2p = .06]. Equally, analysis of the sequence production trials revealed that 

preparation duration of a current trial did not vary with the mean preparation duration of preceding 

trials [one-way repeated measures ANOVAs: Preparation duration n-1, F(2, 36) = 2.53, p = .093, 

η2p = .12; Preparation duration n-2, F(2, 36) = 0.36, p = .701, η2p = .02]. This demonstrates a 

balanced design in which the foreperiod length history up to two previous trials was unlikely to 

bias RT or error rates on the current trial. 

Experiment 2 - sequence timing. Procedures for experiment 2 were identical to experiment 

1 except that the delay period was fixed at 1500 ms and participants were trained in associating 

three target sequences. Each featured a unique Sequence cue associated with one finger order in-

structed to be performed at three target IPIs: slow (800–800–800 ms), fast (400–400–400 ms), and 

irregular (400–1600–400 ms), comprising the three timing conditions. The timing manipulation 

was used to test the effect of temporal proximity and grouping on the preactivation of movements 

during preparation. The relative compression and expansion of target IPIs by a scaling factor of 2 

in the fast and irregular timing conditions relative to the baseline condition (long preparation du-

ration and slow timing conditions) is in line with previous work on motor timing (J. Wang et al., 

2018). Although participants were trained to produce specific IPI durations imposed by the target 

IPIs, relative timing, i.e., temporal IPI modulations relative to the baseline condition, was key to 

evaluating the influence of timing at the group and individual levels. Thus, relative timing was 

calculated offline from memory-guided Sequence trials (test phase) as each IPI duration (1st, 2nd, 

3rd) relative to the mean produced IPI duration in the baseline condition (in percent). Accordingly, 

relative temporal error was defined as the mean absolute deviation from the target IPI per trial in 

percent. 
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In a Sequence trial, the Go cue remained on the screen for 3000 ms, whereas in a Probe 

trial, the Probe cue for 1000 ms. This was followed by a fixation cross (1000 ms) and feedback 

(1000 ms) with a varying ITI of 500, 900, and 1300 ms. As a result, a Sequence trial was 6.5 min 

long and a Probe trial 4.5 min long. The participants underwent the same structure of training and 

test sessions as in experiment 1. The timing conditions were equally matched to the number of all 

trial types in each block. Overall, in this experiment participants completed 2016 trials over 58 

blocks. 

Experiment 3 - sequence timing and control movement. Procedures for experiment 3 were 

identical to experiment 1, except the introduction of additional Probe trials that cued the thumb. 

Thumb presses were not part of any target finger sequence. Thus, they served as a control condition 

to obtain RTs and error rates for unplanned movements. Across each training stage, there were 60 

Probe trials, whereas the test phase (30 blocks 26 trials) contained 360 memory-guided Sequence 

trials (120 trials per timing condition), 360 Probe trials (30 trials per digit per timing condition), 

and 60 thumb Probe trials (20 trials per timing condition). Overall, participants completed 1990 

trials over 72 blocks, excluding the practice block. 

Feedback. In all experiments, a points system was designed to reward fast initiation and 

accurate performance and avoid any performance drift in blocks with motor production from 

memory. To incentivize the participants to gain as many points as possible on each trial, we offered 

an extra monetary reward (£10) to those two with the highest total points. In Sequence trials, points 

(0–10) could be awarded based on three performance criteria: finger press accuracy, sequence 

initiation RT, i.e., response from Go cue to the first press, and temporal error (deviation from the 

target IPIs). Points in each Sequence trial were the sum of the points for initiation RT and mean 

temporal error, multiplied by finger press accuracy points (0 or 1). If at least one incorrect press 

or an incorrect number of presses was recorded (< 4 or > 4), 0 points were given on that trial, 

regardless of initiation RT and temporal error. Points gained from the initiation RT component of 

the sequence were defined by tolerance RT windows of 0–200, 200–360, 360–480, 480–560, and 

560–600 ms resulting in 5, 4, 3, 2, and 1 points, respectively. For late (> 600) responses, 0 points 

were given. Mean temporal error was calculated for each trial as deviation of presses from target 

timing in percent of the respective target IPI to account for the scalar variability of timing (Jazayeri 

& Shadlen, 2010; Rakitin et al., 1998). Thresholds for mean absolute percentage deviation across 
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all correct presses were set at 10, 20, 30, 40, and 50 % assigning 5, 4, 3, 2, and 1 points, respec-

tively. Mean temporal error above 50 % resulted in 0 points. 

Points (0–5) in each Probe trial were calculated based on finger press accuracy (0 or 1) and 

RT utilizing the same tolerance RT windows. In the case of an incorrect press or incorrect number 

of presses (< 1 or > 1), 0 points were given regardless of the RT length. The points were displayed 

on the screen after each Probe trial, whereas after a Sequence trial they were presented above a 

schematic visual feedback. 

Schematic feedback provided information on both finger press accuracy and temporal error 

performance only after each Sequence trial. An ‘x’ or a ‘-’ symbol was shown for every correct or 

incorrect press, respectively. For early presses, the respective symbol was displayed below the 

midline (target timing), whereas for late presses it was displayed above. For orientation, the lines 

above and below (upper and lower border) corresponded to timing deviations as large as the target 

IPI itself (100 %). Timing deviation was only shown for second, third, and fourth presses of the 

sequence. The first symbol reflected the first press and was always positioned on the midline, 

representing the starting point of the sequence. Participants were instructed to adjust their perfor-

mance by keeping the ‘x’ symbols as close to the midline as possible. Deviation from the target 

onset (presented or assumed) rather than the interval timing encouraged participants to synchronize 

with the instructed sequences during training, however, may have contributed to a tendency to 

compress the overall sequence length during the memory-guided Sequence trials. 
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c 

 

Figure 2.1 | Design and experimental conditions. a. The first two days integrated the three training stages. Par-

ticipants progressed from entirely instructed sequence production trials (stage A) to blocks of mixed trials (stage 
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B) and, finally, to producing the target sequences from memory during the last stage of the training (stage C). All 

training stages incorporated a fixed percentage of Probe trials, randomized in each block, to ensure a degree of 

familiarity with single-press Probe cues. In the test phase (day 3), participants underwent two refresher blocks 

(stage B) and, subsequently, an equal number of memory- guided Sequence trials and Probe trials (test). b. Test 

phase: After training, participants were prompted to produce four-element finger sequences from memory follow-

ing a Go cue. Each finger order or timing corresponded to a unique abstract visual Sequence cue presented for up 

to 1500ms before the Go cue (preparation period). Experiment 1 cued the production of sequences with two differ-

ent finger orders and isochronous timing (slow). Here, we manipulated the duration of the preparation period (500, 

1000, 1500 ms). In experiments 2 and 3, the Sequence cues had a fixed preparation duration of 1500 ms and 

prompted the production of sequences with the same finger order but a different timing (slow, fast, irregular). In 

all three experiments, the target IPIs, illustrated in ms, were used to train participants to develop a relative timing 

proportionate to the target timing. Participants received visual feedback in each trial on the accuracy of the finger 

order and their timing. Points were based on finger press accuracy, initiation RT, and temporal accuracy (cf. Mate-

rials and Methods). c. Test phase: In all experiments, we introduced Probe trials, in which, following the prepara-

tion period, the Go cue was replaced with a Probe cue. That prompted a particular finger digit to be pressed, cor-

responding to each sequence position or a control movement, which did not feature in any sequence production. 

The Probe condition was used to obtain the RT and error rate for each position at the end of the preparation period. 

The participants received points for accurate presses and fast RTs. RT, reaction time; IPIs, inter-press intervals. 

 

2.4.4 Participant exclusion criteria 

In each experiment, mean finger error rate (percent error trials out of total trials) during 

sequence production from memory (memory-guided Sequence trials; test phase) above three stand-

ard deviations of the group mean performance was considered as outlier performance. This was to 

ensure that participants reached a comparable skill level in sequence production. Additionally, it 

allowed for a sufficient number of trials for RT analysis per participant, which included correct 

trials only. Data exclusion was blind to the individual Probe trial performance and, thus, independ-

ent of the measures analyzed to test our hypotheses. In experiment 1, the data of one participant 

were excluded who showed 53.1 % finger error in the short, 54.7 % in the intermediate, and 53.9 

% in the long preparation duration conditions. Two participants’ data sets were removed from 

experiment 2, one with 25 % finger error in the slow timing and 18.8 % in the irregular timing 

conditions, while the other showed 44.5 % finger error in the fast timing condition. The data of 

one participant were excluded from experiment 3 due to 12.5 % finger error in the fast timing 

condition. Overall, the data of 19 participants were analyzed for experiment 1, 18 participants for 

experiment 2, and 18 participants for experiment 3. 
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2.4.5 Data analysis 

Data analyses were performed using custom written code in MATLAB (v9.2 R2017a, The 

MathWorks, Inc., Natick, MA) and SPSS v22.0 (IBM Corp., Armonk, NY). 

Sequence planning. Median RT (correct trials only) and mean error rate in Probe trials 

were used as dependent measures for assessing the availability of movements corresponding to 

different sequence positions during planning. First, we tested for the RT and error rate increases 

from 1st to 2nd, 2nd to 3rd, and 3rd to 4th positions in each experiment. These were tested in the 

baseline condition common across the three experiments (long preparation duration and slow tim-

ing conditions). One-tailed paired samples t tests were performed on the raw RTs and error rates, 

based on the one - sided hypothesis of an increase with position number. The position-dependent 

differences for error were further examined in the lower and upper RT quartiles to test for position 

- dependent increases of press error depending on response speed. 

Second, to test for the interaction of factors Position (1st, 2nd, 3rd, 4th) and Preparation 

Duration (short/500 ms, intermediate/1000 ms, long/1500 ms) in Probe trials of experiment 1, the 

raw RTs and error rates were submitted to two-way repeated measures ANOVAs. Using the same 

test, we assessed the interaction of the factors Position and Sequence Timing (slow, fast, irregular) 

in experiments 2 and 3. Significant interaction effects were investigated using planned repeated 

contrasts to determine the changes relative to baseline that were driving the interaction. To evaluate 

the RT and error rate for the control movement (experiment 3), we used two-tailed paired samples 

t tests (control vs 4th position). 

Third, we calculated the increase of RT and error rate for each probed position relative to 

the first position in each condition (in %) for each participant. This enabled us to quantify and 

visualize the relative position-dependent increases in each condition (Figure 2.2). Further, we cal-

culated the average relative RT and error differences between adjacent positions (mean difference 

across 1st minus 2nd, 2nd minus 3rd, 3rd minus 4th) in the baseline condition for each participant 

as markers of the movements’ preactivation gradient size during sequence planning. One-way re-

peated measures ANOVAs in each experiment were used to assess modulations of the latter by the 

experimental conditions (Preparation Duration in experiment 1 and Timing in experiments 2 and 

3). To test for the association between these measures and sequence performance (initiation RT of 

correct sequences, relative temporal error, and finger error rate), six one-tailed Pearson’s correla-

tion analyses were performed across experiments (N = 55). Further, a median split was calculated 
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based on each performance measure for raw mean RTs and error rates for each position in the 

baseline condition. These were subjected to three mixed ANOVAs (Position x Group) to test for 

the position-dependent differences in movement availability during planning depending on perfor-

mance (N = 55). 

Finally, we looked at the percent of presses associated with the 1st, 2nd, 3rd, and 4th posi-

tions of the planned sequence in erroneous Probe trials, for each probed position separately (four 

one - way repeated measures ANOVAs; N = 55). 

Sequence production. Only the memory-guided Sequence trials (test phase) were used for 

analyzing the components of sequence production. First, relative timing (percent duration of each 

IPI relative to the mean produced IPI in the baseline condition) was subjected to a 3 x 3 repeated 

measures ANOVA, for each experiment, depending on IPI (1st, 2nd, 3rd) and Preparation Duration 

(experiment 1) or Sequence Timing (experiments 2 and 3). Finally, to evaluate the fluency and 

accuracy of sequence production, we calculated sequence initiation RT (online recording of Go 

cue to first press latency), relative temporal error (deviation from target IPI), and finger press error 

(percent trials with incorrect presses). These constituted the three performance measures to reflect 

skill in sequence execution and were analyzed for each experiment separately in nine one-way 

repeated measures ANOVAs to assess modulations of skill by Preparation Duration or Timing. 

The error data of both Probe and Sequence trials were arcsine transformed (Winer et al., 

1991) before they were submitted to the ANOVA models and t tests due to violation of normality. 

Partial eta-squared ratios and Cohen’s d are reported as measures of effect sizes in the correspond-

ing tests. 

 

2.5 Results 

2.5.1 Availability of movements during sequence planning is dependent on their 

position in the planned sequence 

In all three experiments, participants were trained for 2 days to associate abstract visual 

cues with four-element finger sequences. They were instructed to produce the sequences with a 

particular temporal structure (Timing: slow, fast, irregular) following a brief preparation period 

(Preparation Duration: short/500 ms, intermediate/1000 ms, long/1500 ms). In half of the trials in 

the test phase (day 3), a Probe cue instructed participants to respond with the corresponding finger 
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press as quickly and accurately as possible at the end of the planning phase (Figure 2.1c). This 

allowed us to probe the availability of movement associated with each position of the planned 

sequence (1st–4th) for accurate and fast execution. Based on our previous neurophysiological find-

ings (Kornysheva et al., 2019) in a similar task that showed a graded preactivation of movements 

during planning according to their sequential position, we hypothesized that the behavioral avail-

ability of movements during planning will be position dependent. Specifically, we predicted a 

significant increase in RT and error rate for probed movements from 1st to 2nd and 2nd to 3rd 

positions. Based on our neurophysiological results, we did not expect an increase in movement 

availability from penultimate to final position (here: 3rd to 4th), but the latter has been previously 

observed in the context of a drawing sequence task in nonhuman primates (Averbeck et al., 2002). 

Additionally, we included probes for a control movement (experiment 3) to reveal whether the 

movement associated with the last position of the planned sequence is more accurately and quickly 

selected and executed than a movement that is not part of the sequence. A higher behavioral avail-

ability of the last position movement would suggest that the sequence movements are more preac-

tivated, albeit to a different level, rather than activated and inhibited relative to a baseline move-

ment. Position-dependent RT and press error increases were analyzed from trials in the experi-

mental condition, which constituted the baseline in all three experiments (long preparation dura-

tion - 1500 ms - and slow timings). 

Reaction times to movement probes. Figure 2.2a shows the percent RT increase relative to 

the RT for the movements associated with the first position, respectively [cf. Supplemental Figure 

S2a for raw RT values (see https://doi.org/10.6084/m9.figshare.13227953 or Supplemental Figure 

A.S2a in Appendix A); Supplemental Table S1A for statistics (see 

https://doi.org/10.6084/m9.figshare.13673605 or Supplemental Table A.S1a in Appendix A)]. Ex-

periment 1 revealed a significant RT increase from 1st to 2nd position [paired samples t test: t(18) 

= -7.45, p < .001, d = 1.32, one-tailed] but not from 2nd to 3rd position [t(18) = 0.05, p = .479, d 

= 0.01] or from 3rd to 4th position [t(18) = -0.72, p = .241, d = 0.09]. Experiment 2 replicated the 

RT results from experiment 1, revealing a significant RT increase from 1st to 2nd position [t(17) 

= -6.45, p < .001, d = 1.60], but not from 2nd to 3rd [t(17) = -0.63, p = .267, d = 0.16] or 3rd to 

4th position [t(17) = -0.25, p = .404, d = 0.05]. Experiment 3 showed a significant RT increase 

from 1st to 2nd position [t(17) = -4.61, p < .001, d = 1.03] and, unlike the experiments 1 and 2, 

also from 2nd to 3rd position [t(17) = -2.41, p = .014, d = 0.40]. As in experiments 1 and 2, the RT 
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increase from 3rd to 4th position was not significant [t(17) = -0.21, p = .417, d = 0.04]. To further 

investigate whether the inconsistent mean RT increase for probes from 2nd to 3rd position would 

be resolved with higher power, a pooled analysis across the three experiments was performed (N 

= 55). This revealed a marginal RT increase from 2nd to 3rd position [t(54) = -1.55, p = .063, d = 

0.15], suggesting that this overall increase was highly variable across subjects. Finally, the RT of 

the control movement was significantly higher than the movement associated with the last position 

(4th) of the planned sequence [paired samples t test: t(17) = 3.04, p = .007, d = 0.86, two-tailed]. 

Across experiments, the present RT data show that during sequence planning, correct fin-

ger presses associated with earlier positions in a sequence can be selected and executed quicker 

than those associated with later positions, suggesting a position-dependent preactivation gradient. 

In particular, the latter can switch flexibly trial-by-trial, depending on which finger sequence is 

retrieved and planned in a particular trial. The data also suggest that the availability is modulated 

up to three positions ahead, with RT increases for later positions becoming less consistent across 

subjects. Finally, although the movement associated with the last position was the slowest to exe-

cute on average, it was still faster than a control movement not featuring in the planned sequence. 

Error rates to movement probes. Figure 2.2b shows the percent press error increase rela-

tive to the error rates for the movements associated with the first position, respectively (cf. Sup-

plemental Figure S2b for raw press error rates / Supplemental Figure A.S2b in Appendix A; Sup-

plemental Table S1a for statistics / Supplemental Table A.S1a in Appendix A). Experiment 1 re-

vealed significant error increases from 1st to 2nd position [paired samples t test: t(18) = -6.65, p < 

.001, d = 1.83, one-tailed] and from 2nd to 3rd position [t(18) = -1.93, p = .035, d = 0.27], and no 

significant increase from 3rd to 4th position [t(18) = -1.24, p = .116, d = 0.21]. Experiment 2 

replicated the significant error increase from 1st to 2nd position [t(17) = -5.51, p < .001, d = 1.57] 

and from 2nd to 3rd position [t(17) = -2.05, p = .029, d = 0.43]. In contrast, the difference from 

3rd to 4th position showed no significant increase, but an unexpected decrease of errors [t(17) = 

2.60, p = .010, d = 0.54]. Experiment 3 again replicated the significant error increases from 1st to 

2nd position [t(17) = -7.77, p < .001, d = 1.83] and from 2nd to 3rd position [t(17) = -1.88, p = 

.039, d = 0.58], while there was no significant difference between the 3rd and 4th positions [t(17) 

= 0.77, p = .227, d = 0.20]. The control movement did not show a significant increase in errors 

compared with the 4th position [paired samples t test: t(17) = -0.81, p = .430, d = 0.26, two-tailed]. 
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The error rate data from all experiments indicate that during sequence planning, movement 

probes associated with earlier positions in a sequence are more likely to lead to correct finger 

presses than those associated with later positions, which are more prone to erroneous finger 

presses. Like RT, error rate data point to a position-dependent preactivation gradient for move-

ments associated with the first three positions in the sequence, but respective error increases be-

tween the first three positions appear to be more pronounced and consistent across participants, 

particularly for increases from 2nd to 3rd position. Further, it shows that movements associated 

with the last (4th) position are equally error prone as a sequence irrelevant control movement, 

although the former is still faster to execute when selected correctly. Taken together, our findings 

advocate the presence of a preparatory preactivation gradient, which renders movements associ-

ated with later sequence positions less available for correct selection and fast execution. They point 

to the planning of up to three constituent movements in advance within a brief preparation period 

and retrieval from memory. This preactivation level does not increase linearly with movement 

positions but falls off and becomes more variable across participants for movements associated 

with later positions. The variability of the gradient during planning across participants is examined 

below in the context of skilled performance. 
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Figure 2.2 | Position-dependent movement availability during sequence planning. a. RTs for each probed se-

quence position relative to the first position. b. press errors for each probed sequence position relative to the first 

position. (cf. raw RT and press error graphs in Supplemental Figure S2, a and b or Supplemental Figure A.S2a and 

b in Appendix A). Both relative RT and press error were calculated from RTs and press error rates, respectively, 

obtained in Probe trials prompting the production of a movement associated with the 1st–4th press position of the 

planned sequence (experiments 1, 2, and 3) or a control movement not present in any sequence (experiment 3). 

Black inset violin plots illustrate the position-dependent increases of raw RT and raw press error in the baseline 

condition (Dur: 1500 ms, T: slow), from 1st to 2nd, 2nd to 3rd, and 3rd to 4th positions. Gray inset violin plots 

illustrate the difference between 4th position and control across sequence conditions, as indicated by the brackets. 

c. relative press error in lower (‘Fast RT’) and upper (‘Slow RT’) RT quartiles. Error bars in line graphs represent 

standard errors. In inset violin plots, solid white lines represent the median, and lower and upper dashed white lines 

represent the 25th and 75th percentiles, respectively. Significance asterisks over the black inset violin plots indicate 
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one-tailed increases (position-dependent increases in RT and error rate), whereas the asterisks over the gray inset 

violin plots represent significance for a two-tailed test (increases or decreases in availability relative to control 

movement). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0. 001. Dur, duration; RT, reaction time; T, timing. 

 

2.5.2 Position-dependent differences in movement availability are modulated 

by preparation duration, not timing 

Next, we examined whether the position-dependent availability for correct movement se-

lection and fast execution during planning is modulated by the time to prepare a sequence, or the 

planned sequence timing.  

Preparation duration. According to our accuracy hypothesis, a more accurate plan of the 

sequence progressively established across preparation durations of 500-1500 ms would lead to an 

expansion of the preactivation gradient (Kornysheva et al., 2019). In experiment 1 (cf. Supple-

mental Table S1b for statistics / Supplemental Table A.S1b in Appendix A), we found a large 

significant interaction of Position and Preparation Duration for error rates [4 x 3 repeated measures 

ANOVA of raw press error rates: F(6, 108) = 3.35, p = .005, η2p = .16). The latter was driven by 

a significant error rate increase for 2nd relative to 1st sequence positions with longer preparation 

duration [500 vs 1500 ms preparation duration, F(1, 18) = 15.89, p =.001, η2p = .47]. This contrast 

was also significant for RTs [F(1, 18) = 5.89, p = .026, η2p = .25], although the interaction between 

Position and Preparation Duration for RTs did not reach significance [4 x 3 repeated measures 

ANOVA of raw RTs: F(6, 108) = 2.07, p = .063, η2p = .10]. This shows that the increase in RT 

and error rate from 1st to 2nd position became more pronounced with longer preparation durations, 

an effect which drove the significant interaction. 

Importantly, both the relative RT and error differences became more pronounced with 

longer preparation duration conditions [one-way repeated measures ANOVA of: relative RT dif-

ferences - experiment 1, F(2, 36) = 4.38, p = .020, η2p = .20; relative error differences - experiment 

1, F(2, 36) = 3.46, p = .042, η2p = .16; cf. Supplemental Table S1c for statistics / Supplemental 

Table A.S1c in Appendix A]. Thus, more time to prepare the sequence made the probed move-

ments associated with later positions less available for correct selection and fast execution, and 

vice versa. This suggests that the preactivation state of the planned movements became more dif-

ferentiated according to position and the preactivation gradient expanded across the sequence re-

trieval and preparation period. 
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Timing. According to the timing hypothesis, movements in a sequence that are closer in 

time should have more similar levels of preactivation, and vice versa, leading to a contraction and 

expansion of the preactivation gradient for each action. Contrary to the timing hypothesis, the 

interaction between Position and Timing (cf. Supplemental Table S1b for statistics / Supplemental 

Table A.S1b in Appendix A) did not reach significance, neither for RTs, nor for error rate increases 

[4 x 3 repeated measures ANOVA of: raw RTs - experiment 2, F(3.27, 55.54) = 2.30, p = .082, 

η2p = .12, Greenhouse-Geisser corrected, χ2(20) = 42.61, p = .003; experiment 3, F(3.87, 65.79) = 

0.98, p = .426, η2p = .05, Greenhouse-Geisser corrected, χ2(20) = 34.06, p = .028; raw error rates 

- experiment 2, F(6, 102) = 1.86, p = .095, η2p = .10; experiment 3, F(6, 102) = 1.02, p = .416, η2p 

= .06]. This finding was corroborated by an absent effect of timing on either the relative RT or the 

relative error differences [one-way repeated measures ANOVA of: relative RT differences - ex-

periment 2, F(1.48, 25.23)= 0.68, p = .475, η2p = .04, Greenhouse-Geisser corrected, χ2(2) = 6.83, 

p = .033; experiment 3, F(2, 34) = 1.92, p = .162, η2p = .10; relative error differences - experiment 

2, F(2, 34) = 0.00, = 0.999, η2p = .00; experiment 3, F(1.27, 21.52) = 1.50, p = .241, η2p = .08, 

Greenhouse-Geisser corrected, χ2(2) = 13.87, p = .001; cf. Supplemental Table S1c for statistics / 

Supplemental Table A.S1c in Appendix A]. We investigated whether the results may be contami-

nated by participants that considerably deviated in their relative temporal error performance 

(memory-guided Sequence trials; test phase). Therefore, we performed the same analyses after 

removing outlier participants that showed little modulation of timing during sequence production 

(cf. Supplemental Figure S3; see https://doi.org/10.6084/m9.figshare.13168514 or Supplemental 

Figure A.S3 in Appendix A). However, without these outliers, the interaction between Position 

and Timing was still not significant. Overall, these analyses indicate that preparing a sequence that 

is twice as fast, or temporally grouped, did not impact the position-dependent preactivation gradi-

ent of movements during sequence planning. 

2.5.3 Position-dependent modulation of press error during planning is revealed 

through fast responses to probes 

Next, we sought to determine whether the characteristic position-dependent increases in 

press errors in Probe trials were driven by automatic responses to Probe cues or by deliberate 

movement selection. To investigate this question, we analyzed the position-dependent error in-

creases for the first versus last RT distribution quartiles in each participant (baseline condition: 
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1500 ms preparation duration and slow timing). Figure 2.2c (cf. Supplemental Table S1a for sta-

tistics / Supplemental Table A.S1a in Appendix A) illustrates the press error increases relative to 

the first position for fast and slow RT quartiles. In fast response trials, we found significant error 

increases up to the 3rd position in experiments 1 and 3 [paired samples t tests: experiment 1, 1st to 

2nd position, t(18) = -6.54, p < .001, d = 0.54, one-tailed; 2nd to 3rd position, t(18) = -2.87, p = 

.005, d = 0.40; 3rd to 4th position, t(18) = 3.12, p = .003, d = 0.48; experiment 3, 1st to 2nd position, 

t(17) = -6.59, p < .001, d = 2.12; 2nd to 3rd position, t(17) = -1.82, p = .043, d = 0.55; 3rd to 4th 

position, t(17) = 1.63, p = .061, d = 0.35] and up to the 2nd position in experiment 2 [1st to 2nd 

position, t(17) = -6.99, p < .001, d = 1.57; 2nd to 3rd position, t(17) = -0.93, p = .184, d = 0.43; 

3rd to 4th position, t(17) = 1.43, p = .085, d = 0.54]. In contrast, in slow response trials, errors did 

not increase significantly with position [experiment 1, 1st to 2nd position, t(18) = 0.59, p = .281, 

d = 0.20; 2nd to 3rd position, t(18) = -0.55, p = .294, d = 0.19; 3rd to 4th position, t(18) = -0.60, p 

= .277, d = 0.16; experiment 2, 1st to 2nd position, t(17) = -0.57, p = .290, d = 0.20; 2nd to 3rd 

position, t(17) = 0.00, p = .500, d = 0.00; 3rd to 4th position, t(17) = 0.57, p = .290, d = 0.20; 

experiment 3, 1st to 2nd position, t(17) = -0.34, p = .368, d = 0.08; 2nd to 3rd position, t(17) = 

0.15, p = .443, d = 0.04; 3rd to 4th position, t(17) = 0.54, p = .299, d = 0.17]. The control movement 

did not show more errors than the 4th position in either fast or slow RT as in the main results [fast 

RTs, t(17) = -0.95, p = .353, d = 0.28, two-tailed; slow RTs, t(17) = 0.10, p = .922, d = 0.03]. 

These results demonstrate that the position-dependent availability of movements for cor-

rect selection following movement Probe cues is driven by automatic responses rather than by a 

cognitive selection process. 

2.5.4 Incorrect presses to movement probes during planning are dominated by 

the movement in the first sequence position 

We investigated whether incorrect presses in Probe trials were associated with specific 

positions of the planned sequence on that trial (Figure 2.3; cf. Supplemental Table S2 for statistics; 

see https://doi.org/10.6084/m9.figshare.13673668 or Supplemental Table A.S2 in Appendix A). 

This was undertaken for each probed position separately and across all three experiments. Results 

for 1st position (Figure 2.3, upper left) did not yield significant differences among the press rate 

for 2nd, 3rd, and 4th positions [one-way repeated measures ANOVA: F(2, 108) = 0.63, p = .535, 

η2p = .01]. In contrast, probing the movements associated with 2nd, 3rd, and 4th positions revealed 

https://doi.org/10.6084/m9.figshare.13673668


Chapter 2 

70 
 

that participants consistently selected the 1st position more frequently. Specifically, when the 2nd 

position was probed (Figure 2.3, upper right), there was a significant difference among 1st, 3rd, 

and 4th erroneously pressed positions [F(1.38, 74.36) = 84.70, p < .001, η2p = .61, Greenhouse-

Geisser corrected, χ2(2) = 31.92, p < .001; 1st position higher than 3rd position, p < .001; 1st 

position higher than 4th position, p < .001; 3rd position higher than 4th position, p = .007]. Simi-

larly, the press rate for the 1st position when the 3rd position was probed (Figure 2.3, lower left) 

was higher than the 2nd and 4th pressed positions [F(1.34, 72.50) = 84.90, p < .001, η2p = 0.61, 

Greenhouse - Geisser corrected, χ2(2) = 35.65, p < .001; 1st position higher than 2nd position, p < 

.001; 1st position higher than 4th position, p < .001; 2nd position marginally lower than 4th posi-

tion, p = .069]. The 4th probed position (Figure 2.3, lower right) produced higher 1st position 

presses [F(1.54, 83.34) = 42.95, p < .001, η2p = 0.44, Greenhouse-Geisser corrected, χ2(2) = 18.60, 

p < .001; 1st position higher than 2nd position, p < .001; 1st position higher than 3rd position, p < 

.001; 2nd position not significantly higher than 3rd position, p = 1.000]. 

The distribution of erroneous presses shows that the movement availability was highly bi-

ased toward the production of the movement in the first position in each respective sequence upon 

retrieval and planning of the cued sequence. 
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Figure 2.3 | Pattern of press errors for probed movements associated with different sequence positions. In-

correct presses per probed position across experiments are shown in percent of all responses. **p ≤ 0.01, ***p ≤ 0. 

001. 
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2.5.5 Greater position-dependent differences in movement availability during 

planning predict better performance 

Position-dependent preactivation differences between sequential movement patterns dur-

ing planning have been shown to predict the participants’ subsequent performance accuracy 

(Kornysheva et al., 2019). Specifically, the distance (i.e., difference) between the neural pattern 

probabilities of consecutive movements during planning predicted more skilled sequence execu-

tion. Accordingly, we predicted that larger position-dependent differences in availability of move-

ments for correct selection and fast execution during planning would correlate with a more skilled 

performance during sequence execution. Position-dependent differences in availability of move-

ments was considered a proxy measure for the preactivation gradient size (cf. relative RT and error 

differences in Data Analysis, Materials and Methods). We took faster initiation of correct se-

quences after the Go cue, as well as reduced relative temporal errors and finger errors as markers 

of a more skilled performance. Correlation analyses were performed on group data (N = 55) ob-

tained from trials in the baseline condition present in all experiments [long preparation duration 

and slow timing conditions; Figure 2.4, a and b; cf. Supplemental Figure S4 for raw RT and error 

differences (see https://doi.org/10.6084/m9.figshare.13168628 or Supplemental Figure A.S4 in 

Appendix A); Supplemental Table S3a for statistics (see 

https://doi.org/10.6084/m9.figshare.13673734 or Supplemental Table A.S3a in Appendix A)]. Re-

sults showed that participants with larger relative RT and error differences during planning initi-

ated correct sequences faster (relative RT differences: r = -.39, p = .002; relative error differences: 

r = -.54, p < .001, one-tailed). Larger relative RT differences during planning were also correlated 

with lower relative temporal error (r = -.35, p = .005). This association did not hold up for the 

relative error differences (r = -.05, p = .356). Thus, the latter may be a less sensitive predictor for 

temporal accuracy than the relative RT differences. In contrast to our predictions, we did not find 

an association with finger error (relative RT differences: r = .08, p = .273; relative error differ-

ences: r = .12, p = .196). This was likely due to ceiling effects in finger press accuracy performance 

attributable to the limited number of trained finger sequences. 

To inspect the position-dependent slopes in movement availability based on sequence per-

formance, we performed median split-based initiation RT, relative temporal error, and finger error 

(Figure 2.4 insets; cf. Supplemental Table S3b for statistics / Supplemental Table A.S3b in Ap-

https://doi.org/10.6084/m9.figshare.13673734
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pendix A). Participants with faster initiation RTs exhibited larger position-dependent RT differ-

ences (Figure 2.4a, inset) compared with those with slower initiation RTs [mixed ANOVA with 

median split of initiation RT: main effect of Group, F(1, 53) = 33.63, p < .001, η2p = .39; Position 

x Group, F(3, 159) = 5.70, p = .001, η2p = .10]. Equally, the position-dependent press error differ-

ences (Figure 2.4b, inset) were steeper for participants with fast initiation RTs [mixed ANOVA 

with median split of initiation RT: main effect of Group, F(1, 53) = 10.77, p = .002, η2p = .17; 

Position x Group, F(3, 159) = 3.90, p = .010, η2p = .07]. Median splits by relative temporal error 

or finger error did not show differences in movement availability during planning, confirming 

further that this relationship is either more subtle (temporal error) or absent (finger error). 

Together, these analyses show that behavioral markers of a more expanded preactivation 

gradient can predict faster initiation of correct finger sequences and improved relative temporal, 

but not finger accuracy during production. 

Next, we conducted a series of extended analyses focusing on sequence production. These 

additional analyses examined whether participants - on average - produced the sequences from 

memory with accurate relative timing, and whether preparation time and sequence timing condi-

tions changed performance, i.e., speed of correct sequence initiation, as well as temporal and finger 

accuracy. 
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a 

 

b 

 

Figure 2.4 | Correlation of performance with position-dependent differences in movement availability during 

planning. The mean difference between adjacent positions (1st–2nd, 2nd–3rd, 3rd–4th) based on RTs and press 

errors relative to the first position (Probe trials) was taken as a proxy for the preactivation gradient size during 

preparation, with steeper (larger) differences reflecting a more expanded gradient (cf. raw RT and error differences 

in Supplemental Figure S4 or Supplemental Figure A.S4 in Appendix A). a. Correlations between relative position-

dependent differences in RT in Probe trials and each of the performance measures (initiation RT, relative temporal 

error, and finger error). b. Correlations between relative position-dependent differences in error rate in Probe trials 

and each of the performance measures (initiation RT, relative temporal error, and finger error). Inset graphs in each 

panel illustrate relative position-dependent RT (a) and press error (b) increases during planning for participants 

with faster vs slower initiation RT and lower vs higher relative temporal error performance (median splits). Error 

bars represent standard errors. All correlations are one-tailed, in line with one-sided predictions regarding the ben-

eficial effect of a differentiated preactivation of sequence movements during planning. RT, reaction time. **p ≤ 

0.01, ***p ≤ 0. 001. 

 

2.5.6 Participants produced sequences from memory with correct relative tim-

ing 

Participants were trained to either retain the same (experiment 1) or consistently modulate 

(experiments 2 and 3) the relative timing during sequence production across sequence conditions. 

On average, participants produced the sequences with timing relative to the target IPIs [Figure 

2.5a; cf. Supplemental Table S4 for statistics (see https://doi.org/10.6084/m9.figshare.13673800 

https://doi.org/10.6084/m9.figshare.13673800
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or Supplemental Table A.S4 in Appendix A); Supplemental Figure S5 for mean absolute press 

timing per trial (see https://doi.org/10.6084/m9.figshare.13168649 or Supplemental Figure A.S5 

in Appendix A)]. 

The mean relative timing of finger presses in experiment 1 was nearly identical across 

preparation duration conditions (Figure 2.5a, left). Nevertheless, we detected a small but signifi-

cant interaction between IPI and Preparation Duration [3 × 3 repeated measures ANOVA: F(4, 

72) = 2.53, p = .048, η2p = .12], explained by IPI modulations of 9 ms across conditions. Post hoc 

comparisons (Bonferroni-corrected for nine tests) revealed a significant shortening of the 1st in-

terval in the short preparation duration (p = .002) and of the 1st (p = .002) and 3rd (p = .004) 

intervals in the intermediate compared with the long preparation duration. This shows that there 

was a tendency to slightly compress the 1st and 3rd intervals with shorter preparation time. If there 

were a timing confound on sequence planning duration in experiment 1, the timing effect should 

have been vastly amplified by the experimental modulation of timing requiring the doubling or 

halving of IPIs in experiments 2 and 3. However, we did not observe any strong and consistent 

effect of the latter on sequence planning. 

Experiment 2 (Figure 2.5a, middle) showed a large significant interaction of IPI and Tim-

ing [3 x 3 repeated measures ANOVA: F(1.26, 21.42) = 59.49, p < .001, η2p = .78, Greenhouse-

Geisser corrected, χ2(9) = 97.83, p < .001], in line with the task instructions. The pairwise com-

parisons (Bonferroni-corrected for nine tests) of the produced IPIs confirmed that the participants 

modulated their relative timing according to the target IPI structure. In accordance with the cued 

sequence, the 1st IPI was significantly longer in the slow than in the fast (p < .001) and the irregular 

timing conditions (p < .001), while it did not differ in the fast versus irregular timing conditions (p 

= 1.000). The 2nd IPI length increased slightly, yet proportionally for both the slow and fast timing 

conditions, retaining the significant difference (p < .001) and doubled in length in the irregular 

relative to the slow timing condition (p < .001). The 3rd IPI exhibited a very similar profile to the 

1st IPI (slow vs fast, p < .001; slow vs irregular, p < .001), but its length decreased slightly in the 

fast compared with the irregular timing condition (p = .027). Experiment 3 (Figure 2.5a, right) 

replicated the findings of experiment 2 showing a significant interaction of IPI and Timing [3 x 3 

repeated measures ANOVA: F(1.56, 26.49) = 17.37, p < .001, η2p = .51, Greenhouse-Geisser cor-

rected, χ2(9) = 61.31, p < .001]. Again, post hoc pairwise comparisons (Bonferroni-corrected for 

nine tests) confirmed that the 1st IPI in the slow timing was longer than that in the fast (p = .001) 

https://doi.org/10.6084/m9.figshare.13168649%20or%20Supplemental%20Figure%20A.S5%20in%20Appendix%20A)
https://doi.org/10.6084/m9.figshare.13168649%20or%20Supplemental%20Figure%20A.S5%20in%20Appendix%20A)
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and irregular (p = .003) timing conditions, while no difference was found between the fast and 

irregular timing conditions (p = 1.000). The 2nd IPI was significantly longer in the slow compared 

with the fast timing condition (p = .001), but shorter compared with the irregular timing condition 

(p = .005). Similarly, the 2nd IPI in the fast timing was half as long than in the irregular timing 

condition (p < .001). The 3rd IPI was twice as long in the slow compared with the fast timing 

condition (p < .001). It did not show a significant shortening for the irregular timing when com-

pared with the slow timing condition (p = 1.000) and showed only a marginally significant differ-

ence between the fast and irregular timing conditions (p = .096). 

Overall, these results demonstrate that, on average, participants produced the finger se-

quences from memory with accurate relative timing across conditions. 

a 

 

b 

 

Figure 2.5 | Sequence production. a. Relative timing as a function of IPI production of a slow, twice as fast, and 

an irregular sequence. Both the produced (solid lines) and target IPIs (dashed lines) were normalized across trials 
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relative to the baseline condition (Dur: 1500 ms, T: slow). Error bars represent standard errors. b. Sequence initia-

tion RT (Go cue to first press latency), relative temporal error, and finger error (proportion of trials with incorrect 

presses) in each experimental condition (preparation duration, experiment 1; timing, experiments 2 and 3). Solid 

white lines represent the median, and lower and upper dashed white lines represent the 25th and 75th percentiles, 

respectively. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0. 001. Dur, duration; RT, reaction time; T, timing; IPI, inter-press 

interval. 

 

2.5.7 Longer preparation durations shortened initiation of correct sequences 

We found a significant difference in sequence initiation RT with Preparation Duration 

[one-way repeated measures ANOVA: experiment 1, F(1.38, 24.88) = 52.81, p < 0.001, η2p = .75, 

Greenhouse-Geisser corrected, χ2(2) = 10.07, p = .006; Figure 2.5b, left; cf. Supplemental Table 

S4 for statistics / Supplemental Table A.S4 in Appendix A]. Pairwise comparisons (Bonferroni-

corrected for three tests) confirmed that sequence initiation RT was significantly faster for the 

intermediate (1000 ms) and long (1500 ms) preparation duration than following a short (500 ms) 

preparation duration (intermediate vs short, p < .001; long vs short, p < .001). Further, sequence 

initiation RT following a long preparation duration was significantly faster as compared with the 

intermediate preparation duration (p = .005). In experiments with single movements, the effect of 

variable preparation duration on RT is known as the foreperiod effect (Foley, 1959; Vallesi et al., 

2007). It can be accounted for by generic motor preparedness due to heightened temporal expec-

tation (hazard rate) for longer preparation durations (Bueti et al., 2010) and includes carry-over 

effects across trials (Langner et al., 2018; Steinborn & Langner, 2012) (cf. Supplemental Figure 

S6 for preparation duration effects of preceding trials in experiment 1; see 

https://doi.org/10.6084/m9.figshare.13675330 or Supplemental Figure A.S6 in Appendix A). 

However, the effect on initiation RT reported here cannot be attributed to general temporal pre-

paredness alone. In contrast to classical foreperiod paradigms, the current paradigm involves a 

Sequence cue at the start of the foreperiod, instead of a neutral warning signal. Therefore, a facil-

itation of initiation RT will reflect the state of sequence preparedness that increases with longer 

durations (Ariani & Diedrichsen, 2019; Sternberg et al., 1978), not just nonspecific effects of tem-

poral expectation. 

There was no main effect of Timing on sequence initiation RT in experiment 2 [one-way 

repeated measures ANOVA: F(1.41, 23.92) = 1.70, p = .207, η2p = .09, Greenhouse-Geisser cor-

rected, χ2(2) = 8.76, p = .013], but a main effect of Timing in experiment 3 [one-way repeated 

measures ANOVA: F(1.29, 21.99) = 11.59, p = .001, η2p = .41, Greenhouse-Geisser corrected, 

https://doi.org/10.6084/m9.figshare.13675330
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χ2(2) = 12.63, p = .002]. As explained by pairwise comparisons (Bonferroni-corrected for three 

tests), participants in experiment 3 were slower at initiating a sequence of slow timing when com-

pared with fast timing (p = .006) and irregular timing (p = .010). There was no difference in initi-

ation RT between the fast and the irregular timing conditions (p = .118). This effect was not con-

sistent across experiments 2 and 3, but present at the mean level in both experiments. This implies 

that sequences with a slow isochronous timing structure were less prepared for initiation following 

a Go cue compared with sequences that started with two presses in short succession (fast and 

irregular timing structures), which may be more prone to a rushed initiation. 

2.5.8 Sequences involving irregular inter-press intervals were produced with 

less accurate timing 

Next, we established whether preparation duration (experiment 1) and sequence timing 

(experiments 2 and 3) modulated relative temporal error during sequence production (Figure 2.5b, 

middle; cf. Supplemental Table S4 for statistics / Supplemental Table A.S4 in Appendix A). In 

experiment 1, mean relative temporal error did not differ among the three preparation duration 

conditions [one-way repeated measures ANOVA: F(2, 36) = 0.11, p = .901, η2p = .01]. Here, rel-

ative temporal performance may have been compensated in the short preparation duration condi-

tion by slower initiation RT (cf. above). In experiment 2, there was a significant effect of Timing 

[one-way repeated measures ANOVA: F(2, 34) = 28.23, p < .001, η2p = .62]. Pairwise comparisons 

(Bonferroni-corrected for three tests) revealed that participants performed at a lower relative tem-

poral error when producing a sequence of slow timing compared with irregular timing (p < .001) 

and a sequence of fast timing compared with irregular timing (p < .001), whereas there was no 

difference between sequences in the slow versus fast timing conditions (p = 1.000). Experiment 3 

replicated the main effect of Timing [one-way repeated measures ANOVA: F(1.45, 24.72) = 7.06, 

p = .007, η2p = .29, Greenhouse-Geisser corrected, χ2(2) = 7.53, p = .023]. In line with the findings 

of experiment 2, there were less relative temporal errors in the slow timing (p = .049) and fast 

timing (p = .008) conditions when compared with the irregular timing condition. Again, there was 

no significant difference in relative temporal performance between the two isochronous conditions 

(slow vs fast, p = 1.000). In sum, the production of sequences which consisted of non-isochronous 

IPIs (irregular timing condition) as opposed to equal IPI lengths (isochronous timing conditions; 

slow, fast) were associated with decreased relative temporal accuracy. 
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2.5.9 Finger press accuracy in sequences produced from memory was matched 

across conditions 

In the test phase, participants produced finger press sequences entirely from memory. Nei-

ther Preparation Duration [one-way repeated measures ANOVA: experiment 1, F(2, 36) = 0.23, p 

= .795, η2p = .01] nor Timing [one-way repeated measures ANOVA: experiment 2, F(2, 34) = 0.02, 

p = .984, η2p = .00; experiment 3, F(2, 34) = 0.96, p = .394, η2p = .05] affected finger error during 

sequence production (Figure 2.5b, right; cf. Supplemental Table S4 for statistics / Supplemental 

Table A.S4 in Appendix A). This means that participants prepared the finger order of cued se-

quences with the same accuracy, regardless of the preparation time or temporal structure of the 

planned sequence. Note that finger error in sequence production was higher in experiment 1 than 

in experiments 2 and 3. This is likely due to experiment 1 involving sequences of two different 

finger sequences on a trial-by-trial basis, whereas experiments 2 and 3 involved the same finger 

sequence performed with different timing. 

 

2.6 Discussion 

Sequence planning is central to skilled action control; however, its content and structure is 

poorly understood (Bullock, 2004a; Remington, Egger, et al., 2018). Neurophysiological findings 

have demonstrated that a trained movement sequence is preplanned by establishing a competitive 

preactivation gradient of movement patterns according to their serial position, and that the quality 

of this neural pattern during planning predicts subsequent performance (Averbeck et al., 2002; 

Basu & Murthy, 2020; Kornysheva et al., 2019; Pinet et al., 2019). Here, we report a putative 

behavioral marker of this competitive preactivation gradient. During a short retrieval and prepara-

tion period, we measured the behavioral availability of each constituent movement of the planned 

sequence for accurate and fast production. Our findings show that behavioral availability is de-

pendent on the sequence position the respective movements are associated with, mirroring the 

preactivation gradient observed in neurophysiological studies (Averbeck et al., 2002; Kornysheva 

et al., 2019) as predicted by CQ models (Bullock, 2004a; Hartley et al., 2016; Hartley & Houghton, 

1996; Houghton, 1990). Critically, a stronger differentiation between the state of movements as-

signed to consecutive sequence positions correlated with markers of skilled production - the speed 
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of correct sequence initiation and the temporal production accuracy. In contrast, the latter did not 

reliably reflect the sequence production speed, or the IPI pattern of the planned sequence. 

Sequence planning markedly contrasts with mechanisms for nonsequential movement 

planning involving multiple movement options: In the latter, a cued set of possible movements 

triggers equal activity increase in cortical populations tuned to the respective movements, and the 

preparatory competition is only resolved once a cue specifies the target movement (Cisek & 

Kalaska, 2005). In contrast, sequence planning established a fine-tuned gradient of movement pre-

activations, with the latter switching flexibly on a trial-by-trial basis, in line with the retrieved 

sequence. Notably, movements that were part of the planned sequence were executed faster than 

a control movement, which was not part of the retrieved sequence (Figure 2.2a, right). This sug-

gests that all constituent movements were concurrently preactivated above a passive baseline, al-

beit to a different degree depending on their position in the planned sequence. 

Our study provides a measure of the competitive state of constituent movements before 

sequence production. This is complementary to previous behavioral work that supports the pres-

ence of CQ of sequence presses during production, such as accuracy and RT curves obtained from 

sequence execution (B. J. Rhodes et al., 2004; Verwey & Abrahamse, 2012), or on-the-fly move-

ment planning following sequence initiation, assessed behaviorally (Behmer & Crump, 2017) and 

through measures of cortico-spinal excitability (Behmer et al., 2018). Gilbert and colleagues have 

employed a paradigm at the interface between sequence preparation and production to characterize 

the CQ profile of the respective sequential movements - silent rehearsal (Gilbert et al., 2017). Here, 

participants were asked to listen to sequences of spoken digits and silently rehearse the items dur-

ing a retention interval. They received explicit instructions to rehearse the sequence at the same 

pace as active production. After an unpredictable delay, a tone prompted the report of an item 

being rehearsed at that moment and revealed graded overlapping probabilities of neighbouring 

items, suggesting potential CQ during internal rehearsal. In contrast to the latter study, our para-

digm did not enable active rehearsal during preparation: First, our participants retrieved the se-

quence entirely from memory without a sensory instruction period which might have facilitated 

active entrainment with the sequence before planning. Second, the period for sequence retrieval 

and planning was comparatively brief (ranging from 500 to 1500 ms after Sequence cue onset) and 

not sufficient to cycle through the full sequence at the rate participants employed for active pro-

duction. In addition, if the observed CQ gradient were somehow driven by silent rehearsal at the 
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target rate, it would have been more pronounced for the fast sequences, as more of the planned 

sequence could fit into the preparation phase. However, there was no significant difference be-

tween relative availability of probed movements for fast and slow sequences. 

Whilst active motor rehearsal at scale during the short preparation phase is unlikely, an 

alternative serial preparation mechanism may be related to rapid sequence replay. The latter has 

been observed in the hippocampus during navigation tasks (Ólafsdóttir et al., 2018) and perceptual 

sequence encoding (Liu et al., 2019), as well as in the motor cortex in the context of motor se-

quence learning tasks (Eichenlaub et al., 2020). Replay has been shown to involve fast sweeps 

through the neural patterns associated with the sequence during wakeful rest and planning (pre-

play) (Drieu & Zugaro, 2019; Eichenlaub et al., 2020; Jafarpour et al., 2014; Ólafsdóttir et al., 

2018) and is characterized by a multifold temporal compression (Eichenlaub et al., 2020; Kurth-

Nelson et al., 2016; Liu et al., 2019; Michelmann et al., 2019). How replay could translate into a 

parallel preactivation of serial movements reported here is uncertain. One possibility is that serial 

sweeps during motor sequence planning involve fast repeated replay fragments (Davidson et al., 

2009; Michelmann et al., 2019) of different length during preparation, starting with the first ele-

ments - e.g., 1st-2nd-3rd, 1st-2nd, 1st, 1st-2nd-3rd-4th, 1st-2nd etc. This would produce an overall 

bias toward the preactivation of earlier rather than later parts of the planned sequence. This, in 

turn, may be translated into a cumulative ramping activity for each constituent movement by a 

separate downstream neuronal mechanism during the preparation period (Cisek & Kalaska, 2005; 

N. Li et al., 2016). Analysis of the ‘sequenceness’ of the corresponding neural patterns (Eichenlaub 

et al., 2020; Liu et al., 2019) during preparation should shed light on the presence of preplay and 

its possible relationship to the competitive preactivation of movements during planning 

(Kornysheva et al., 2019). 

Characteristic differences in press error rate to movement probes were revealed through 

faster rather than slower responses after the Probe cue (Figure 2.2c). This suggests that the com-

petitive preactivation gradient established during the short phase of sequence retrieval and plan-

ning is driven by a rapid automatic process and is not a result of slow deliberation or higher-level 

decision making. Contrary to a prominent account of sequence learning (Krakauer & Mazzoni, 

2011; Wong & Krakauer, 2019), we suggest that the reported behavioral differences in sequence 

press availability reflect mechanisms of rapid and automatic planning for the production of discrete 

motor sequences from memory. 



Chapter 2 

82 
 

Remarkably, longer preparation reinforced the competitive preactivation making responses 

to movement probes associated with later sequence positions even slower and more inaccurate 

relative to those associated with earlier positions. This is counterintuitive in the context of single 

movement performance gains from longer foreperiod durations (Niemi & Näätänen, 1981). Here, 

a pure foreperiod effect would dictate general benefits for RT and error rate with longer preparation 

durations (Steinborn et al., 2008). In contrast, we found relative benefits and costs of the latter to 

be position dependent. The reported differences in movement availability became more striking 

the longer time participants had to prepare, e.g., the error rate for probed movements associated 

with later positions increased further with longer foreperiods—these movements became even 

harder to retrieve. The preactivation gradient expansion with longer preparation suggests a dy-

namic refinement of the plan for sequence production during retrieval and planning. We propose 

that the primacy gradient (Grossberg, 1978b, 1978a) in the parallel planning layer of CQ models 

expands dynamically during each sequence preparation phase enhancing the organization of se-

quential movements with preparation time. 

Furthermore, participants exhibiting more pronounced differences in availability of move-

ments associated with neighbouring sequence positions during planning exhibited both faster ini-

tiation times and a more accurate temporal execution of the sequence after the Go cue, particularly 

when looking at position-dependent differences in RT. These findings strengthen the interpretation 

that an ordered competitive preactivation of movements during planning pre-empts subsequent 

fluency and temporal accuracy of the sequence (Kornysheva et al., 2019). The individual differ-

ences in planning are likely driven by differences in sequence learning, which are associated with 

an expansion of the ‘planning horizon’ with practice (Ariani & Diedrichsen, 2019). 

Yet, we did not replicate the association of the planning gradient with finger error proba-

bility found in the latter study. This may be due to a smaller pool of timing and finger order se-

quences that the participants had to learn relative to the previous paradigm, and the presence of 

only one finger order (paired with different sequence timings) in experiments 2 and 3. This facili-

tated finger accuracy to reach ceiling levels in a substantial number of participants. Future exper-

iments should resolve an association with finger accuracy through the inclusion of a larger pool of 

trained sequences to provoke more frequent finger errors. Alternatively, reaching, drawing or force 

production tasks would allow to quantify more fine-grained deviations from target at overall high 

ordinal accuracy levels of sequence production. 
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In contrast to preparation duration, doubling the speed of sequence production did not 

change the relative behavioral availability of sequential movements during planning. This suggests 

invariance of the preactivation gradient across sequences produced at different time scales. This 

transfer across speed profiles is in line with the presence of flexible motor timing and temporal 

scaling in dynamic neuronal populations (Goudar & Buonomano, 2018; Wang et al., 2018). Here, 

the assumption is that a separate neural process controls the speed of a sequence during execution, 

e.g., through the strength of an external input to the network involved in the generation of timed 

behavior (Wang et al., 2018). We found that preparing a sequence of the same length with an 

irregular compared with an isochronous interval structure was associated with a slight tendency 

for a dampened CQ gradient during sequence planning. However, this nonsignificant trend is un-

likely to be the effect of temporal grouping, as the irregular interval sequence was characterized 

by a significant increase in temporal interval production error (Figure 2.5b, middle), associated 

with timing complexity—the sequencing of two different (non-isochronous) constituent temporal 

intervals rather than just one (isochronous). Instead, we hypothesize that longer preparation time 

(above 1500 ms) would have benefitted the participants and enhanced the relative preactivation 

gradient, in line with experiment 1, facilitating the formation of a more accurate plan for this more 

temporally complex sequence. 

Our empirical data on the preordering of sequential movements do not support the integra-

tion of movement order with movement timing before sequence execution. The weighting of the 

availability of each movement appears to be entirely driven by its position in the planned sequence 

and correlated with the fluency of correct sequence initiation. Given that participants could on 

average correctly modulate the relative timing of the sequences, a separate preparation process for 

the speed and timing of the respective sequence must be assumed. The latter may take place con-

currently or at different time points during preparation (Bortoletto et al., 2011; Bortoletto & 

Cunnington, 2010; Maslovat et al., 2018). In previous work, we proposed a drift-diffusion based 

model which contains input from separate modules that activate movement order and timing 

(Kornysheva et al., 2013). This model was based on behavioral sequence learning data demon-

strating that sequence timing is encoded independently of the movement order but requires multi-

plicative, rather than additive integration with each movement. This enables trained sequence tim-
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ing to be transferred to new sequences but only after the movement order has been acquired, rec-

onciling previous experimental findings (Kornysheva & Diedrichsen, 2014; O’Reilly et al., 2008; 

Shin & Ivry, 2003; Ullén & Bengtsson, 2003; Zeid & Bullock, 2019). 

Recently, Zeid and Bullock (2019) proposed how such plans may be generated in the con-

text of CQ models. The authors propose that two separate CQ modules could operate in parallel - 

one controlling the item order and the other controlling the sequence of IPIS that define a rhythmic 

pattern, including separate parallel planning and competitive choice layers. Although this model 

is in line with neurophysiological and imaging evidence for a separate control of timing for se-

quence generation (Bengtsson et al., 2004, 2005; Crowe et al., 2014; Friston & Buzsáki, 2016; 

Kornysheva & Diedrichsen, 2014; Merchant, Pérez, et al., 2013), empirical support for timing 

being implemented via a CQ process for temporal intervals is still lacking. Behavioral paradigms 

are unlikely to be valuable in this context, as it is impossible to probe the planning of IPI sequences 

decoupled from the effector. However, neurophysiological recordings in monkeys and humans 

may shed further light on the organization of interval patterns before production: If temporal in-

tervals in a sequence are competitively queued, we should expect neuronal populations preferen-

tially tuned to temporal intervals of different durations, e.g., as found in the medial premotor cortex 

(Crowe et al., 2014; Merchant, Pérez, et al., 2013), to be preactivated in parallel during planning 

according to their respective position in the sequence, and transfer across effectors. 

Alternatively, timing of discrete movements in a sequence may be controlled during exe-

cution only through the acquired cyclical dynamics of neuronal population activity. Specifically, 

isochronous sequences involving the same movement have been associated with circular popula-

tion trajectories where each interval cycle is shifted forward along a sequence position or ‘tapping 

manifold’ resulting in a helical population trajectory (Balasubramaniam et al., 2021; Russo et al., 

2020). Here, the interval duration has been linked to the amplitude size of the trajectory loops thus 

controlling the speed of isochronous tapping sequences. The sequence position or ‘tapping mani-

fold’ may be the readout of a CQ process and thus serve as a potential interface between position, 

interval, and movement identity. However, it remains unclear whether such a cyclical procession 

of population activity is also utilized for the production of sequences with non-isochronous inter-

vals and sequences involving multiple movements. 
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Conclusions 

In sum, our findings indicate that the behavioral availability of movements during a brief 

period of retrieval and planning reflects the subsequent movement order, such that movements 

associated with later positions are less available for fast and accurate execution. Crucially, the 

competitive state of the movements appears to be invariant to the exact timing of the sequence. 

Instead, it is dynamically established during sequence planning and predicts the individual’s sub-

sequent sequence production fluency and accuracy. The current behavioral paradigm could pro-

vide a straightforward and cost-effective way to assess the organization of movements during se-

quence planning across trials in individual participants, in addition to neurophysiological ap-

proaches requiring access to neuroimaging, electrophysiology and computational resources for ad-

vanced neural pattern analysis (Averbeck et al., 2002; Kornysheva et al., 2019). This behavioral 

readout of the state of movements before execution may serve to advance our understanding of the 

neural processes associated with disorders affecting the fluent production of motor sequences, such 

as stuttering, dyspraxia, and task-dependent dystonia (Craig-McQuaide et al., 2014; Howell, 2007; 

Ingham et al., 2018; N. Miller, 1988; Sadnicka et al., 2018). 
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Serial order and speed modulation during motor sequence 
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3.1 Abstract  

Motor sequence planning encodes information about the organization of serial order of movements 

and the timing of the planned sequence. Parallel preactivation of movements, graded by their serial 

position, form a behavioral CQ gradient that has been reported to be unaffected by planned se-

quence timing. We set out to address whether, at the neural level, sequence planning is organized 

in parallel preactivations of upcoming movements ordered by their position and modulated by 

sequence speed. Healthy participants were trained for two days to retrieve and produce from 

memory a four-finger sequence with two different timings (slow vs fast) and a sequence-irrelevant 

control effector, as prompted by abstract visual cues. We approached our question by re-testing 

for the behavioral CQ gradient (day 3), followed by non-invasive EEG and concurrent EMG re-

cordings (day 4). Our behavioral results replicate the presence of a CQ preactivation gradient rep-

resenting serial order of upcoming movements while being invariant of sequence speed. In con-

trast, EEG pattern decoding of sequential movements showed no evidence of CQ parallel preacti-

vation. Normalization and timing analysis revealed that sequential movement-related patterns were 

temporally scaled during preparation and production periods to match the timing of the planned, 

slow or fast, sequence speed. Temporal modulation was not observed at the EMG level during 

preparation. The decoded control effector temporally coincided with the movement-related pattern 

associated with first sequence position during preparation and production at the EEG but not at the 

EMG level. Exploratory source reconstruction showed that the same temporal patterns were shared 

among subcortical, frontal, and sensorimotor areas. These findings support the presence of a high-

level preparatory timing rehearsal mechanism which flexibly adjusts to the intended speed and is 

represented outside the CQ mechanism. Our results indicate that order and timing may be con-

trolled by separate systems. 

3.2 New & Noteworthy 

Order and timing are important properties of motor sequence organization. We used behavioral 

movement probes and movement decoding from non-invasive EEG during sequence planning. 

Order was represented via a behavioral CQ preparatory mechanism. EEG decoding detected a 

timing rehearsal signal which flexibly transferred across planned sequences of different speeds. 

Order and timing may be represented independently suggesting modular control of spatiotemporal 

movement sequences. 

 

Keywords: EEG decoding; EMG decoding; Competitive queuing; Serial order; Temporal scal-

ing; Motor sequence planning 

  



Chapter 3 

88 
 

3.3 Introduction 

We interact with the world through complex motor behaviors that encompass the planning 

and execution of sequential movements. Intrinsic to skilled sequencing is the ability to control 

movements in a predefined order and, often, adaptable timing, such as at different speeds. To per-

form a well-learnt sequence, its constituent elements are preserved and organized in an orderly 

fashion through a motor program (Keele et al., 2019; Klapp & Greim, 1979; Lashley, 1951; 

Sternberg et al., 1978). Equally critical, the role of temporal organization in motor sequence con-

trol has been investigated in frontal lobe patients (L. Deecke et al., 1985; Foerster, 1936; Halsband 

et al., 1993; Kleist, 1907; Nichelli et al., 1995; Picton et al., 2006), and patients with cerebellar 

(Bares et al., 2007, 2011; Bareš et al., 2012; Broersen et al., 2016; Richard B. Ivry et al., 2002; 

Raghavan et al., 2016) and other movement disorders involving the cortico-basal ganglia-cerebel-

lar network (Avanzino et al., 2013, 2016; Bernardinis et al., 2019; Harrington et al., 1998; Jones 

& Jahanshahi, 2014, 2015; Martino et al., 2019), exhibiting disruptive timing in sequential timing 

behaviors. While volitional movements are prepared before they begin (Ghez et al., 1991; 

Rosenbaum, 1980), what remains yet unaddressed is how order and timing are represented during 

sequence planning. 

CQ models accounting for the control of serial behavior (Grossberg, 1978a, 1978b; 

Houghton, 1990) posit that sequential movements are preactivated in parallel and compete with 

each other in a process to be selected for execution. In the CQ architecture, serial order of move-

ment elements is retained in a planning neuronal map of simultaneous, yet graded, activations 

which are ranked depending on elements’ ordinal position (Farrell & Lewandowsky, 2002, 2004; 

Grossberg & Pearson, 2008; Page & Norris, 1998; Brown et al., 2000, 2007; Burgess & Hitch, 

1992, 1999; Henson, 1998a, 1998b, 1999; Hurlstone & Hitch, 2015, 2018; Lewandowsky & 

Farrell, 2008). The first direct empirical evidence of a neural code for serial order during sequence 

planning comes from multi-unit recordings from the prefrontal cortex of trained monkeys in a 

delay drawing task (Averbeck et al., 2002). The authors found that each sequential movement 

(stroke) was distinctly associated with a neuronal pattern before sequence execution. During this 

planning period, the representations of movement-related patterns were co-activated in parallel 

and ranked by their serial position predicting subsequent correct order during execution. Further, 

human MEG data have shown that the preparatory queuing pattern of upcoming sequential move-

ments correlated with sequence performance (Kornysheva et al., 2019). Critically, these parallel 
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patterns were preserved for sequences of different order and timing. Together, these studies advo-

cate for an abstract effector- and timing-independent code for serial order that governs subsequent 

correct serial execution. 

In support of these findings, we have reported a behavioral readout of a preactivation gra-

dient during sequence planning reflecting the ranked availability of movements according to their 

learnt serial position (Mantziara et al., 2021). It has been suggested that a temporal context may 

be integrated in the planning map of a CQ mechanism; model simulations suggest that temporal 

variations operating via overlapping timing signals or oscillators can control the rhythm or tem-

poral grouping of serially recalled items (G. D. A. Brown et al., 2000, 2007; Burgess & Hitch, 

1999, 2006; Hartley et al., 2016). This makes the prediction that movements closer in time, as per 

their perceived timing during learning, would have more similar activations during planning, com-

promised competition with one another, and thus similar availability states, e.g., comparable RTs 

and errors (Burgess & Hitch, 1999; Hartley et al., 2016). In the same study, we directly addressed 

whether temporal proximity of movements is reflected in their availability by investigating the 

interactive relationship between ordinal position and timing during planning. The position-depend-

ent graded availability of competing movements was found to be invariant of the planned temporal 

structure or speed of the retrieved sequence. Instead, it linearly expanded with longer preparation 

time and, when more pronounced, correlated with faster initiation and temporally correct sequence 

performance. This finding supports two interpretations: First, that movement availability depended 

on order, not timing, supports the notion that these sequence components may involve two inde-

pendent processes prior to movement onset (Bednark et al., 2015; Bengtsson et al., 2004; 

Bortoletto et al., 2011; Kornysheva et al., 2013; Kornysheva & Diedrichsen, 2014; Maslovat et al., 

2018; Ullén & Bengtsson, 2003), and, second, the preactivation gradient reflected the quality of 

sequence plan representation associated with later improved performance. 

The capacity to maintain the spatial information of serial order in animal models has been 

ascribed to frontal cortical activity selective to the ordinal position of to-be-performed sequential 

actions, in the SMA and pre-SMA (Shima et al., 1996; Shima & Tanji, 2000; Tanji & Shima, 

1994), prefrontal cortex (P. Barone & Joseph, 1989; Funahashi et al., 1997; Ninokura et al., 2003, 

2004), premotor cortex (Ohbayashi et al., 2003) or widespread in the frontal lobe (Berdyyeva & 

Olson, 2010). However, this order-related neuronal activity during retrieval or delay periods is 

reported as intrinsically associated with the temporal order of the intended movements without 
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investigating a mechanism of how serial order and timing are represented. Therefore, there is a 

need for establishing any potential dissociation or interaction of a timing and positional signal in 

the context of a sequence planning mechanism. 

Here, we trained healthy participants in planning and executing from memory two uniman-

ual four-finger sequences with identical order but different speeds, slow and fast. We first probed 

the behavioral availability of constituent movements of the planned sequence by recording RTs 

and error rates of each ordinal position during a 1.5 s planning period. In keeping with our previous 

approach (Mantziara et al., 2021), we aimed to establish whether the position-dependent preacti-

vation gradient is modulated by the planned speed of the retrieved sequence. Further, we investi-

gated the planning and execution dynamics over time of the same sequences and a control single 

press movement. As previously shown with MEG technology (Kornysheva et al., 2019), this was 

done by using, instead, EEG together with surface EMG for decoding the cortical and muscular 

activity, respectively. Finally, we reconstructed the cortical activity from the left M1/S1, left PMd, 

left SMA, right PhG, and the left DLPFC. It is well established that M1 and S1 regions contrala-

teral to the acting hand encode representations of sequential movements during execution 

(Kornysheva & Diedrichsen, 2014; Yokoi et al., 2018). Although activation in these regions is 

unlikely to account for abstract representations of orderly movements during sequence planning 

(Kornysheva et al., 2019), they have been shown to encode effector-specific information (Ariani 

et al., 2022; Gale et al., 2021). The PMd cortex is one of the regions associated with motor planning 

activity (Cisek & Kalaska, 2002; Ohbayashi et al., 2003; Pilacinski et al., 2018) encoding the tem-

poral structure of well-trained sequences (Kornysheva & Diedrichsen, 2014; Rossi-Pool et al., 

2019). Last, we also examined the left SMA (Berdyyeva & Olson, 2010; Kornysheva & 

Diedrichsen, 2014; Shima et al., 1996; Shima & Tanji, 2000; Tanji & Shima, 1994), right PhG 

(Kornysheva et al., 2019) and left DLPFC (Averbeck et al., 2002; Fermin et al., 2016) because of 

their implication during sequence planning. Decoding at source-level aimed at addressing how 

these regions contribute to modulations of movement representations during planning and execu-

tion depending on ordinal position and sequence speed. 

We sought to address how order and timing of the constituent movements are centrally and 

peripherally represented during the planning and execution periods. According to the CQ predic-

tion, we expected that neural movement-related pattern activations would form parallel traces in a 

rank order from the 1st to at least the penultimate movement (here, 3rd) whilst converting to serial 
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order during execution. If the CQ mechanism incorporates a temporal code for sequence timing, 

here speed, this would be reflected in variable proximity of the parallel traces. In other words, a 

parallel compression or expansion of parallel movement-related activations would be modulated 

by the planned speed, following the CQ prediction that closer or overlapping timing signals would 

render more temporally proximal movements exhibit similar preactivation states (Burgess & 

Hitch, 1999; Hartley et al., 2016). We predicted that these modulations would not be explained by 

muscular activity during planning (Kornysheva et al., 2019). 

Our behavioral data replicate a graded availability of upcoming movements for accurate 

and fast production during movement planning depending on their planned ordinal position. In line 

with previous results (Mantziara et al., 2021), we found that this position-dependent preactivation 

gradient was not affected by the planned speed. By contrast, EEG decoding revealed no CQ par-

allel modulation of either ordinal position or speed during planning. Instead, decoded movements 

were temporally scaled during planning sequences of different speeds, preserving their ordinal 

position in a serial fashion over time before execution. No such preparatory patterns were observed 

in the decoded muscular activity of the associated motor presses. Temporal scaling during planning 

and execution was shared among the regions of interest at source level. Our data suggest that while 

serial order of upcoming movements becomes competitively organized at the end of planning, a 

separate, yet co-existing, timing mechanism rehearses their concomitant temporal occurrence by 

flexibly adjusting the tempo as per the planned sequence speed. This cortically widespread pre-

paratory mechanism is likely to reflect an imprint of timing before execution. This process appears 

to be supported by critical brain regions that work in concert to create spatiotemporal representa-

tions for flexibly controlling timed behavior without compromising order. 

 

3.4 Materials and Methods 

3.4.1 Participants 

A total of nineteen right-handed Bangor University students participated in the study. After 

excluding one participant due to excessively noisy EEG data, the data of eighteen participants were 

analyzed (N = 18; M = 23.5 years, SD = 3 years, 10 females). Hand dominance was assessed with 

the online Handedness Questionnaire (http://www.brainmapping.org/shared/Edinburgh.php) 

adapted from the Edinburgh Handedness Inventory (Oldfield, 1971) (N = 18; M = 83.3 %, SD = 
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16.6 %). Participants had no previous experience in performing a similar motor sequence learning 

task and were debriefed on the hypothesis of the study only after the completion of the experiment. 

All participants reported normal or corrected-to-normal vision, normal hearing, and no history of 

neurological or psychiatric conditions. Study participation followed written informed consent and 

was compensated with either course credits or £7/h. The recruitment and experimental procedures 

were approved by the Bangor University School of Psychology Research Ethics Committee (Ap-

proval Code 2017-16100-A14320). 

3.4.2 Apparatus 

During the behavioral training (days 1 and 2) and test (day 3) sessions, participants per-

formed a visually cued motor task on a 19-inch LCD monitor (1280 x 1024 pixels), seated in a 

quiet dimly lit room while wearing headphones for noise cancellation. The EEG test session (day 

4) took place in a dark, sound-shielded Faraday cage where participants performed the task on a 

28-inch LCD monitor (1080 x 1920 pixels) with a 100 cm viewing distance to the screen. In both 

settings, the task stimuli were synchronized with the monitors’ refresh rate (60 Hz) and presented 

with the Cogent 2000 toolbox (v1.29; http://www.vislab.ucl.ac.uk/cogent.php). The experimental 

visual presentations and response recordings were set up in an in-house MATLAB code (v9.2 

R2017a, The MathWorks, Inc., Natick, Massachusetts, United States). Responses were collected 

from 13 participants using a 5-button fiber optic device (Pyka; Current Designs) throughout the 

behavioral and EEG sessions. For the rest of the participants (N = 5), responses were obtained 

from a computer keyboard device in all sessions. A customized foam channeled the devices’ cables 

to prevent movement unrelated to the task and instability. Before task initiation, participants were 

asked to place the five fingers of their right hand on the specified target buttons of either response 

device using a wrist cushion. 

3.4.3 Behavioral task and experimental design 

The task is an adaptation of the delayed sequence production paradigm which has been 

used to study movement availability during planning of well-learnt movement sequences before 

execution (Mantziara et al. 2021). To assess sequence or single movement planning and execution 

from memory, we recorded sequential presses produced with the right index, middle, ring, and 
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little fingers, single presses with the right thumb, and probe presses with all fingers including the 

right thumb. 

The experiment involved two training sessions, a behavioral test session, and an EEG test 

session, over four consecutive days (Figure 3.1a). Participants were trained (days 1 and 2) to as-

sociate a unique visual cue (abstract fractal shape) with either a four-element finger sequence of 

the same finger order with a slow or fast speed (Sequence trials), or a single press delivered with 

an unrelated effector to the sequence (Single press trials). A trial started with a Sequence or Single 

press cue, respectively, which signified the respective required movement and triggered the re-

trieval of the corresponding target press(es). After a certain delay (1500 ms; preparation period), 

a Go cue prompted the production of the required press(es). In the case of a Sequence trial in early 

training, the Go cue (hand stimulus on a gray background) featured timed visual guidance for the 

target finger sequence by imposing participants to synchronise their presses with the successively 

displayed digit cues in either of two target rhythms. During training, participants transitioned from 

visually-guided to memory-guided trials requiring movement production from memory following 

the Go cue (hand stimulus on a green background without digit cue(s)), depending on the unique, 

Sequence or Single press, cue. 

Memory-guided Sequence trials assessed production of a slow or fast finger sequence (slow 

/ 800 ms inter-press-intervals, IPIs, fast / 400 ms IPIs; Speed condition) in the behavioral test 

session (day 3; Figure 3.1b). Single press trials (control / unrelated effector; Single press condition) 

were of interest in the behavioral session for comparing initiation of a planned single movement 

as opposed to a whole sequence retrieved and produced from memory. Participants were addition-

ally trained in Control single press trials and familiarized with dispersedly presented Probe trials. 

Control single press trials (day 3) were always visually guided starting with a unique Single press 

cue and were used for obtaining a behavioral baseline measure of a prepared movement (control / 

unrelated effector; Prepared condition). Probe trials (day 3) were designed to assess the prepara-

tory state of constituent movements of the cued sequence (probes for 1st – 4th sequence positions; 

Probed position condition) and that of an unprepared movement, not part of the cued sequence 

(control / unrelated effector; Unprepared condition). A Probe trial started with a Sequence cue 

and, following a delay period, a Probe cue (single digit cue on hand stimulus) required a fast and 

accurate press in line with the corresponding displayed digit cue. In the EEG session (day 4; Figure 

3.1c), participants underwent memory-guided Sequence (slow and fast) and Single press trials for 
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the purpose of decoding the sequential presses and single movement of an unrelated effector, not 

featuring in the planned sequence, from preparation through to production. As this study set out to 

assess sequence planning and execution from memory, we present data from the test phases. 

For all trial types, participants were instructed to perform the correct target finger press(es) 

avoiding premature responses (i.e., before the Go cue). Probe, Single press, and Control single 

press trials additionally required participants to respond as fast as possible to the Go cue. Instruc-

tions for the memory-guided Sequence trials emphasized the reproduction of the target finger se-

quence with a slow or fast speed by adhering to the respective temporal structure as much as pos-

sible. Participants received points after each trial with Sequence trials followed also by visual feed-

back enabling them to monitor both their finger and temporal accuracy. The visual feedback and 

point system have been previously published (Mantziara et al., 2021; pp. 1255 - 1256). Single 

press and Control single press trials in that context were treated in the same way as the Probe 

trials. 

All visual cues (Sequence / Single press) at the beginning of a trial had a constant duration 

of 400 ms followed by a fixation cross displayed for 1100 ms, resulting in a 1500 ms delay. The 

Go cue remained on the screen for 3000 ms in the Sequence trials. In the Probe, Single press, and 

Control single press trials, the Probe or Go cue, respectively, remained on the screen for 1000 ms. 

After the end of Go / Probe cue, a fixation cross and feedback were presented for 1000 ms each. 

The ITI was 500, 900 or 1300 ms, randomized across trials. A Sequence trial had a duration of 4.5 

s, and a Probe / Single press / Control single press trial had a duration of 2.5 s (excluding fixation 

cross and feedback). 

For the target finger sequence, different finger order combinations were generated and ran-

domly assigned to each participant. From this pool of sequences, we excluded finger orders with 

ascending or descending digit triplets. Four additional sequences were introduced as practice se-

quences in a practice block at the beginning of training. Prior to administration of the test blocks, 

both behavioral and EEG test sessions started with two training refresher blocks of 37 trials each, 

containing randomized visually- guided (x 8), memory-guided Sequence trials (x 8), Probe trials 

(x 5), visually- guided (x 4), memory-guided Single press trials (x 4), and Control single press 

trials (x 8). Each test block consisted of the same number of memory-guided Sequence trials for 

each speed condition. Accordingly, in Probe trials each digit (i.e., Probe) cue was matched with 

the Speed conditions. Overall, in the behavioral session participants underwent 120 memory-
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guided Sequence trials per speed condition, 30 Probe trials per probed position per speed condi-

tion, 30 Probe trials for unrelated effector per speed condition, 120 Single press, and 120 Control 

single press trials (26 randomly presented trials x 30 blocks: memory-guided Sequence x 8, Probe 

x 8 for sequence positions, Probe x 2 for unrelated effector, memory-guided Single press x 4, 

Control single press x 4). The EEG session involved 128 memory-guided Sequence trials per 

Speed condition and 128 Single press trials (24 randomly presented trials x 16 blocks: memory-

guided Sequence x 16, Single press x 8). 
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Figure 3.1 | Design, trial types, and experimental conditions. Each trial type is represented with a unique symbol 

across a, b, and c panels as a cross-reference to corresponding conditions. a. Trial types used in training and test 
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phases are shown in percent of total trials per block. Participants were trained for two days based on a protocol of 

early (A), intermediate (B), and late (C) training stages. The behavioral test blocks (day 3) contained equal numbers 

of memory-guided Sequence and Probe trials, control probes (unrelated effector), and equal numbers of Control 

single press and memory-guided Single press trials (see Materials and Methods). The EEG test blocks (day 4) 

consisted of memory-guided Sequence and Single press trials. Both test sessions started with a refresher block as 

the ones used in stage B training. Percentages of Sequence trials reflect equal trial numbers for each sequence Speed 

condition. b. Behavioral test session: Each sequence Speed (memory-guided Sequence trials) and Single press 

(memory-guided Single press trials) condition started with a unique cue and prompted the respective movement 

production from memory. The Prepared condition (Control single press trials) commenced with a unique cue and 

was always visually-instructed (digit cue on Go cue). The Probed position condition (1st – 4th sequence positions) 

started with a Sequence cue signifying a sequence Speed condition (slow or fast). c. EEG test session: Conditions 

used were the exact same sequence Speed and Single press conditions as in the Behavioral test session. For all days 

and conditions, the preparation period was 1500 ms and the required (‘Target’) press(es) were as depicted for each 

condition (b, c). Bottom arrows represent the duration of a Go (3000 ms) or Probe (1000 ms) cue display onscreen. 

After each trial a fixation cross and feedback were displayed (see Materials and Methods). 

 

3.4.4 EEG and EMG acquisition 

EEG signal was recorded continuously from 128 scalp (10-20 system) locations using a 

Biosemi Active II system (BioSemi Instrumentation, Amsterdam, the Netherlands). Concurrently, 

continuous surface EMG recordings were obtained from eight surface electrodes in a bipolar belly-

tendon montage, over the abductor polices brevis (thumb), the abductor digiti minimi (little finger), 

and the first dorsal interrosei (index) and in a belly-belly montage over the flexor carpi radialis 

(arm) (Supplemental Figure B.S1 in Appendix B). EEG and EMG data were sampled at 2048 Hz. 

3.4.5 EEG and EMG preprocessing  

All data preprocessing and subsequent analyses were implemented using the Fieldtrip 

toolbox (Oostenveld et al., 2011). 

EEG and EMG data were trigger-based epoched and filtered applying a Butterworth band-

pass filter of 0.5 – 90 Hz with a 4th order high-pass filter and a stopband filter of 48 – 52 Hz for 

removing line noise. 

The EEG epochs were visually inspected for marking noisy trials with very high kurtosis 

(≥ 40) over large group of channels, indicative of slow drifts, high-frequency bursts in the signal 

or electronics artifacts (Delorme et al., 2007). Noisy channels were identified via visual inspection 

in conjunction with the order statistics based outlier detection technique (Giri et al., 2015) (Sup-

plemental Figure B.S2 in Appendix B). This approach is based on detecting outlier channels with 
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significantly high variability throughout the trial time course using range as a measure of disper-

sion. Channels with variability above 2 standard deviations from the mean were inspected to avoid 

marking those channels in which individual trials accounted for any detected maximum variability. 

On average, 3.1 % of all channels showed consistent noise on a trial-wise basis and excluded from 

further preprocessing analysis. Data were then re-referenced to average and downsampled to 1000 

Hz. The previously detected noisy trials were removed from the data at that stage. Across partici-

pants, 4.5 % (range: 0 – 10.2 %) of trials were rejected. Independent Component Analysis (ICA) 

was performed using blind source separation (Jung et al., 2000) with the implementation of the 

Infomax algorithm (Bell & Sejnowski, 1995; Shen et al., 2002). Detection and removal of those 

components accounting for physiological artifacts were guided by inspecting the components’ time 

courses and related topographies. Additional visual inspection of the activity power spectra of each 

component’s frequency course provided a more robust criterion for removing artefactual compo-

nents driven by EMG noise, whereby decision-making for removal was based on observing a con-

sistently increasing frequency after 5 Hz (Jung et al., 2000) (Supplemental Figure B.S3 in Appen-

dix B). After subtracting the artefactual components and back projecting the data to channel space, 

the marked noisy channels were interpolated by using the average time-courses of the neighbour-

ing channels located within a 0.13 mm diameter around each problematic channel location and 

added to the ICA-corrected data. Reconstructing the noisy channels based on ICA-cleaned data 

overcomes the problem of introducing rank-deficient data and noise to the signal decomposition 

procedure ensuring a better ICA solution to the EEG data (Nolan et al., 2010). 

Preprocessing of the EMG signal after epoching and filtering, included downsampling at 

1000 Hz, and rejecting the same noisy trials for each participant as in the EEG data. 

3.4.6 EEG source reconstruction 

Source reconstruction of the EEG data involved computations for the forward solution 

based on the standard boundary element method (BEM) volume conductor model of the head 

(Oostenveld et al., 2003). This method computes the boundary of the solution domain by optimally 

approximating the three compartments of the head (scalp, skull, and brain) forming closed triangle 

meshes with the necessary number of boundary elements (nodes) (Fuchs et al., 2001). The BEM 

model is expressed in Montreal Neurological Institute (MNI) space (in mm) using the geometry of 

the highly defined colin27 stereotaxic average brain (Holmes et al., 1998). The template electrode 
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set of the Biosemi 128 setup, available in the SPM125 toolbox (Penny et al., 2007), was aligned to 

the BEM head model. During re-alignment, the standard fiducials were used as anatomical land-

marks (nasion, inion, left and right pre-auricular points) in line with the 10-20 placement system 

and the electrodes were projected to the nearest points onto the head surface mesh (i.e., the scalp 

surface). The source model was then constructed creating a dipole 3-D grid with a 7.5 mm resolu-

tion by shifting the dipoles inward from the skull by 1 mm for determining the number of dipoles 

inside the brain volume and the number of dipoles outside. To specify the spatial distribution of 

the sources (i.e., how activity from a source point reaches the electrodes), the leadfield matrix was 

computed based on the source model, the head model, and the positions of the re-aligned elec-

trodes. 

The inverse solution for computing the spatial filter and estimating the amplitude of the 

sources was implemented for each participant using a linearly constrained minimum variance 

beamforming algorithm. This computation was based on the leadfield matrix and the noise-covar-

iance matrix which was estimated from a time window in the baseline period of the baseline-

corrected and time-locked preprocessed EEG data. The resulted reconstructed source data were 

then parcellated for identifying the indices of sources in the tissue corresponding to each of the 

following regions of interest (ROI): left M1/S1, left PMd, left SMA, right PhG, and the left 

DLPFC. The parcellation procedure for each region used a 12.5 mm ROI sphere defined via the 

MarsBar tool of SPM12 in NIFTI6 format. The ROI masks were created using anatomical MNI 

coordinates based on previous knowledge on the regions’ role in the planning and execution of 

motor sequences (M1/S1, -22, -36, 52; PhG, 30, -30, -24, Kornysheva et al., 2019; PMd, -24, -15, 

58; SMA, -9, 1, 54, Kornysheva & Diedrichsen, 2014; DLPFC, -39, 23, 31, Fermin et al., 2016). 

Consequently, the ROI-guided parcellation output allowed for creating the ROI source data fea-

turing a binary mask for the dipole positions corresponding to the ROI tissue. Last, the channel 

(sensor) level data (baseline-corrected and time-locked preprocessed data) were linearly mapped 

onto the virtual channel level using the spatial filter information from the ROI source data and the 

 
5 Statistical Parametric Mapping software (https://marsbar-toolbox.github.io/index.html, 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 
6 Neuroimaging Informatics Technology Initiative file format for storing imaging data 

(https://nifti.nimh.nih.gov/background). 

https://marsbar-toolbox.github.io/index.html
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respective specified ROI dipole positions. This resulted in creating 20 virtual channels for M1/S1, 

DLPFC, and SMA, 18 for PMd, and 21 for PhG. 

3.4.7 Time-frequency representation analysis 

EEG signal decomposition at sensor level was conducted for each participant applying 

Morlet wavelet transform with a constant width of 7 cycles in each frequency for computing the 

time-frequency values over sliding time windows of 0.1 s. This method was used to extract the 

power spectra over all sensors or virtual channels between 1 and 80 Hz for correct trials only (see 

Statistical Analysis) of each movement condition (slow sequence / fast sequence / single press). 

3.4.8 Linear discriminant analysis 

Preprocessed EEG data at sensor and source level and EMG data were subjected to linear 

discriminant analysis (LDA) for calculating the probability of the activity pattern of each press 

condition (1st press position, 2nd press, 3rd press, 4th press, single press) in Sequence trials over 

the whole trial period. The single press pattern was extracted from Single press trials which were 

produced with a finger not featuring in Sequence trials (thumb). This condition, therefore, served 

as a control pattern as it lacked sequential context and had no overlap in effector-specific infor-

mation. 

From the preprocessed data, only correct trials (see Statistical Analysis) were used for clas-

sification. The data were baseline-corrected by subtracting the mean activity across 0.5 s prior to 

the Sequence / Single press cue for each trial and channel, respectively. A trial-wise (trial-fold) 

leave-one-out cross-validation was used for the LDA procedure. The mean voltage pattern during 

a 100 ms window before press onset for each button press from Sequence and Single press trials, 

and the common sensor-by-sensor covariance matrix were calculated from the training dataset. We 

used a Gaussian-linear multi-class classifier to compute the posterior probability of an activity 

pattern belonging to each of the five press conditions (1st, 2nd, 3rd, 4th press positions, single 

press) across non-overlapping 100 ms windows along the time course of a Sequence trial (includ-

ing baseline / ITI, preparation, and production periods). 
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3.4.9 Temporal normalization of pattern probabilities 

To probe the presence of temporal scaling or deviation across slow and fast sequence con-

ditions, in a post hoc analysis the press pattern probability curves of the sensor- and source-level 

EEG data and EMG data were normalized relative to trial-by-trial movement time in the prepara-

tion and production periods. Movement time was defined as the time between the onset of the 1st 

and 4th press in the sequence, corresponding to 0 and 100 % of the movement time, respectively. 

This was used as the reference time frame for detecting the corresponding probability values in the 

time series on a trial-by-trial basis. For each participant and sequence condition, probability values 

were extracted from 50 % of the movement time before the 1st and after the 4th press of the pro-

duction period time series. To normalize the probability values of the preparation period time se-

ries, the Sequence cue was taken as the reference time point reflecting the onset of sequence re-

trieval. Accordingly, probability values were extracted from 50 % of the movement time before 

the Sequence cue and after the end of movement time. The extracted values for both periods were 

resampled to 200 time points per press pattern. This resampling transformation yielded directly 

comparable time series for both sequence speed conditions and periods, allowing for testing for 

the temporal scaling hypothesis based on corresponding time samples. To visualize the motor 

presses recorded from the behavioral task during the EEG session, we normalized the motor press 

timings on a trial-wise basis for each participant by calculating the percent timing of each press, 

using movement onset (i.e., first press) as a reference, relative to movement time (press timing 

defined as the absolute difference of 1st from 1st, 2nd from 1st, 3rd from 1st, 4th from 1st; each 

press timing / movement time x 100). 

Further, to determine the timing dynamics of the probability peaks, velocity of the normal-

ized press probability values was computed for each participant and condition for establishing the 

change in position relative to time in each period. 

3.4.10 Statistical analysis 

Statistical analyses were conducted with the IBM SPSS Statistics v27.0 software (IBM 

Corp., Armonk, NY) on data acquired from the test sessions (days 3 and 4). In all behavioral anal-

yses involving RT data, only correct trials were included. As correct Probe / Single press / Control 

single press trials were registered those with a correct digit press and correct number of presses 

(i.e., one), conducted within 1000 ms from the Probe / Go cue (Probe trials for 1st - 4th: 85 % for 
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slow, 87 % for fast; Probe trials for control: 82 % for slow, 81 % for fast; Single press trials in 

behavioral session: 93 %; Single press trials in EEG session: 97 %; Control single press trials: 96 

%). Correct Sequence trials were those with correct digit presses in the correct order and correct 

number of presses (i.e., four), produced within 3000 ms from the Go cue with mean temporal error 

≤ 50 % (Behavioral session: 95 % for slow, 91 % for fast; EEG session: 98 % for slow, 97 % for 

fast). As the same criteria were applied for the trials submitted to LDA, all subsequent statistical 

analyses of the sensor- and source-level EEG and EMG data were performed on correct trials only 

of the preprocessed data. 

Behavioral data. To assess the availability of each of four movements associated with dif-

ferent sequence positions during planning, we analyzed the raw median RT and mean error rate of 

Probe trials. Specifically, we examined the position-dependent differences by testing for RT and 

error increases from 1st to 2nd and 2nd to 3rd positions across speed conditions using one-tailed 

paired samples t tests. Since our previous findings (Mantziara et al., 2021) have pointed to an 

elevated availability of the 4th position compared to the 3rd position, we tested for a decrease in 

RT and errors from 3rd to 4th position (one-tailed paired samples t tests). We were then interested 

in replicating our hypothesis of an absent effect of sequence speed on movement availability de-

pending on sequence position. To that end, we performed two separate two-way repeated-measures 

ANOVAs for analyzing RTs and errors, respectively, under the factors Position (1st / 2nd / 3rd / 

4th) and Speed (slow / fast). 

The availability of an unprepared movement not learnt as part of the cued sequence (control 

/ unrelated effector – Probe trials), was tested against the last sequential movement (4th position 

– Probe trials) (unprepared minus 4th position; one-tailed paired samples t tests for RT and error 

rate). We additionally hypothesized that planning a whole sequence would yield a cost reflected 

in a lower preparatory availability for sequence initiation (1st position – Probe trials) as compared 

to a prepared single movement (control / unrelated effector – Control single press trials). Thus, we 

predicted that a prepared movement would exhibit faster RTs and less errors when contrasted with 

the 1st sequential movement (1st position minus prepared; one-tailed paired samples t tests for RT 

and error rate). 

Further, to probe the association between the preparatory availability state of movements 

and subsequent sequence performance, for each participant we computed the size of the preacti-

vation gradient by taking the mean relative RT and error difference across 1st-2nd, 2nd-3rd, and 
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3rd-4th positions in the slow condition (Mantziara et al., 2021). We conducted four one-tailed 

Pearson’s correlations between each of above measures and sequence initiation RT (Go cue to first 

press latency) and relative temporal error (percent mean deviation of relative timing from target 

timing), as markers of sequence performance. We predicted that participants with larger size of 

preactivation gradient would be faster in starting the sequence and show higher relative temporal 

accuracy (Mantziara et al., 2021). Given that participants had to learn a single finger sequence, we 

did not expect within-sequence condition inter-subject variability in finger accuracy (Mantziara et 

al., 2021). In addition, the initiation RT and relative temporal error performance measures in the 

slow condition were subjected to a median split to explore the position-dependent slopes based on 

high or low initiation RT and temporal error (four mixed ANOVAs; Position x Group). 

Analysis of behavioral responses during sequence production was performed separately on 

data of the behavioral (day 3) and the EEG (day 4) test sessions. Memory-guided Sequence trials 

were used to assess participants’ production timing relative to target timing and the three compo-

nents of sequence performance: sequence initiation RT, relative temporal error, and finger error 

(calculated as percent trials with incorrect presses including incorrect number of presses and/or 

incorrect order out of total trials; see Mantziara et al., 2021; Materials and Methods). Of note, 

finger error rate for the behavioral data of the EEG test session was still calculated out of total 

trials including those rejected during preprocessing. First, to establish the extent to which partici-

pants adhered to the target speed, relative timing (mean percent duration of three IPIs relative to 

mean produced IPI duration in the slow condition) was calculated for each participant and the 

mean relative timing (mean across three relative IPIs) was compared between the two sequence 

speed conditions (slow minus fast; one-tailed paired samples t test). Initiation RT was assessed in 

the sequence speed and single press conditions (memory-guided Single press trials) predicting that 

producing a planned single movement from memory would be faster than initiating a sequence of 

movements of either speed (one-way repeated measures ANOVA). The effect of sequence speed 

condition on relative temporal and finger error was tested using separate one-way repeated 

measures ANOVAs. 

Where the assumption of normally distributed error data was violated in either Probe or 

Sequence trials, arcsine transformation was performed (Winer et al., 1991) before submitting the 

data to the ANOVA models and t tests. 
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Neurophysiological data. Statistical analysis of oscillatory activity at sensor level was re-

duced to the alpha (8-13 Hz) beta (14-30 Hz) power bands. First, we directly tested for event-

related desynchronisation (ERD) by extracting mean data in each Band range (alpha / beta), Period 

(preparation / production), and Movement condition (slow sequence / fast sequence / single press) 

relative to baseline using one-tailed paired samples t tests. We then investigated potential interac-

tion effects between the factors Band, Period, and Movement submitting the same data to a three-

way repeated measures ANOVA to unravel the underlying relationships between the levels of 

interest. 

To test for the CQ hypothesis of parallel preactivations of sequential presses during plan-

ning, mean probabilities of each press-related pattern (1st – 4th press positions) of EEG and EMG 

decoded data were extracted from the last 1 s of the preparation period of the slow and fast condi-

tions. These were analyzed in four separate one-way repeated measures ANOVAs. Pairwise com-

parisons were focused on the 1st – 2nd, 2nd – 3rd and 3rd – 4th press positions differences. 

Serial preactivation processing of press-pattern related probabilities by position number 

(preparation period) and serial order during sequence execution (production period) were tested 

using the peak velocity timings computed from the EEG and EMG normalized probabilities as the 

dependent measure. These were analyzed under the press position conditions in each speed condi-

tion and period using four separate one-way repeated measures ANOVAs for each modality. As 

the press-related preactivation of the 4th press position in the slow speed condition exceeded on 

average the end of the preparation period (occurring at 78 % of movement time; Figure 3.4a, 

shaded area in Slow), we excluded the 4th press pattern probabilities from analysis of the prepar-

atory normalized signal. As such, in the case of a significant main effect of press position, one-

tailed paired samples t tests were performed between adjacent press positions (Preparation: 2nd 

minus 1st, 3rd minus 2nd; Production: 2nd minus 1st, 3rd minus 2nd, 4th minus 3rd). Peak velocity 

timings were also used for testing the hypothesis of temporal scaling during each period, by pre-

dicting an absent effect of sequence speed on peak velocity timings per sequence press position. 

This was assessed with a two-way repeated measures ANOVA (Speed x Position) for each period 

and modality. A post hoc exploration of a potential weaker temporal scaling in preparation as 

compared to production involved a three-way repeated measures ANOVA (Period x Speed x Po-

sition). Last, to investigate whether the preparatory and production press positions scaled similarly, 
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we performed one-tailed Pearson’s correlations between the sensor-level EEG peak velocity tim-

ings (mean across trials) during preparation and those during production for each press position up 

to the 3rd press position. 

Analysis of the peak velocity timings of the source level EEG data aimed at testing the 

same hypothesis of serial ordering of press positions and temporal scaling in either period. Thus, 

we accordingly performed four one-way repeated measures ANOVAs, followed by planned one-

tailed paired samples t tests between adjacent press positions in case of a significant main effect 

of press position, and two two-way repeated measures ANOVAs (Speed x Position) for each ROI. 

Finally, analysis of the decoded single press condition was centered on establishing a sim-

ilarity between the EEG decoded signals of the single press and 1st press position based on their 

timing occurrence and peak amplitude. To address this, we first analyzed the peak velocity timing 

of the single press and 1st press position probabilities time series in each period and speed condi-

tion in paired samples t tests (two-tailed, Bonferroni-corrected for four tests at α = .013; 1st press 

position minus single press). Similarly, the peak amplitudes (maximum probability value per par-

ticipant) of the 1st press-related pattern probabilities and single press pattern probabilities were 

compared with paired samples t tests (two-tailed, Bonferroni-corrected for four tests at α = .013; 

1st press position minus single press) in each period and speed condition. 

In the case that the assumption of sphericity was violated in any of the repeated measures 

ANOVA tests, the degrees of freedom for the F-distribution were adjusted using the Greenhouse-

Geisser correction (if ε statistic < .75). Reported effect sizes were measured by means of partial 

eta-squared ratios and standardized mean differences (Cohen’s d) for the ANOVA and t tests, 

respectively. 

 

3.5 Results 

3.5.1 Behavioral data 

3.5.1.1 Reaction times and errors during sequence and control movement planning 

To examine the behavioral availability of constituent movements at the end of sequence 

planning, we analyzed RTs and error rates of probed movements (Probe trials) recorded for each 

sequence position 1.5 s after the Sequence cue as in Mantziara et al. (2021). Figure 3.2a shows the 
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percent increases in RT and error rate relative to the first position for each dependent measure (raw 

RT and press error graphs in Supplemental Figure B.S4 in Appendix B; see Supplemental Table 

B.S1 in Appendix B for statistics). Planned comparisons were performed to test for position-de-

pendent differences in RT and error increases up to the penultimate position across speed condi-

tions. RT analysis (Figure 3.2a, left) showed a significant increase from 1st to 2nd position [t(17) 

= -7.24, p < .001, d = 1.71] while the increase from 2nd to 3rd position did not reach significance 

[t(17) = -1.45, p = .083, d = 0.34]. Press errors (Figure 3.2a, right) revealed a significant increase 

from 1st to 2nd position [t(17) = -4.07, p < .001, d = 0.96] and 2nd to 3rd position [t(17) = -1.82, 

p = .043, d = 0.43]. As previous findings have shown a tendency of increased availability for the 

4th position compared to the 3rd (Mantziara et al., 2021), we tested for a decrease which reached 

significance for the errors [RTs: t(17) = 1.00, p = .166, d = 0.24; Error rates: t(17) = 2.08, p = .027, 

d = 0.49]. Responses to probed positions during planning did not vary by sequence speed as at-

tested by a non-significant interaction between Position and Speed [RTs: F(3, 51) = 2.14, p = .107, 

η2p = .11; Error rates: F(3, 51) = 0.48, p = .697, η2p = .03]. In sum, while both RTs and errors 

reliably showed competitive availability between the first two positions, error responses showed a 

most pronounced graded availability up to the 3rd position. This movement availability was not 

subject to any variations due to planned sequence speed. 

As predicted, probing an unprepared control movement following sequence preparation 

(Figure 3.2a) which did not feature in the planned sequence resulted in significantly slower [t(17) 

= 4.90, p < .001, d = 1.15] and more erroneous responses relative to the last probed sequence 

position [t(17) = 1.75, p = .05, d = 0.41]. By contrast, a prepared single movement (same effector 

as the unprepared control movement) was produced much faster than the 1st probed position [t(17) 

= 22.77, p < .001, d = 5.37] and with less errors [t(17) = 2.58, p = .010, d = 0.61]. This shows that 

while an unprepared single, unrelated movement was less available for fast and correct execution, 

a prepared one was facilitated indicating a sequence-related cost evident when preparing a whole 

sequence instead of a single unrelated movement. 

Contrary to previous findings (Kornysheva et al., 2019; Mantziara et al., 2021), we failed 

to find a significant correlation between the size of the preactivation gradient and either sequence 

initiation RT (relative RT differences: r = .210, p = .202; relative error differences: r = -.241, p = 

.167) or relative temporal error (relative RT differences: r = .302, p = .111; relative error differ-

ences: r = -.053, p = .417) (see Supplemental Table B.S2 in Appendix B for statistics). Although 
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participants with faster sequence initiation RT differed significantly from those with slower se-

quence initiation RT [main effect of Group, F(1, 16) = 6.19, p = .024, η2p = .28], they had no 

variations in the position-dependent RT gradient [Position x Group, F(3, 48) = 0.69, p = .561, η2p 

= .04], suggesting that the RT position-dependent differences slope was invariant to sequence ini-

tiation RT performance. We found no other significant main effects of Group based on a median 

split of performance measures for the position-dependent RT and error differences [RT differ-

ences: median split of relative temporal error, F(1, 16) = 0.19, p = .668, η2p = .01; Error differ-

ences: median split of initiation RT, F(1, 16) = 0.04, p = .844, η2p = .00; median split of relative 

temporal error, F(1, 16) = 1.43, p = .250, η2p = .08] (see Supplemental Table B.S3 in Appendix B 

for statistics). These results are likely due to decreased power in opposition to our previous find-

ings which were based on a larger sample (N = 55; Mantziara et al., 2021). A post hoc power 

analysis (G*Power 3.1.9.7, RRID:SCR_013726) showed that the present study was powered at 

only 34 % to find an effect size as low as 0.30 for the correlations between RT and error differences 

and performance measures, and at 25 % for the effect size of 0.28 of the main effect of Group 

based on initiation RT. Therefore, to obtain a medium effect size with at least the same amount of 

power as previously achieved (i.e., ≥ 72 %), future studies examining such associations should 

target larger samples (N ≥ 54). 

3.5.1.2 Performance in sequence and single press execution 

Following training, finger sequences were produced from memory (days 3 and 4) with high 

accuracy by sequence speed condition (behavioral session: slow, M = 95 %, SD = 6 %; fast: M = 

91 %, SD = 8 %; EEG session: slow, M = 98 %, SD = 2 %; fast: M = 97 %, SD = 3 %). As 

expected, sequence production was modulated by speed depending on the retrieved sequence as 

prompted by the Sequence cue. Mean relative timing differed significantly at group level between 

the sequence conditions [behavioral session: t(17) = 18.36, p < .001, d = 4.5; EEG session: t(17) 

= 41.73, p < .001, d = 9.8] with the fast sequence produced on average in half the time (behavioral 

session: M = 49 %, SD = 11 %; EEG session: M = 47 %, SD = 5 %) of the slow sequence (behav-

ioral session: M = 100 %, SD = 1 %; EEG session: M = 100 %, SD = 0 %) (Figure 3.2b; d). There 

was a difference in initiation RT depending on movement condition (slow sequence, fast sequence, 

single press) [behavioral session: F(1.26, 21.42) = 263.59, p < .001, η2p = .94; EEG session: F(2, 

34) = 18.96, p < .001, η2p = .53] with the single press being significantly faster than initiating 



Chapter 3 

108 
 

either a slow or a fast sequence (behavioral session: p < .001; EEG session: p = .001) whilst the 

two sequence conditions did not differ (behavioral session: p = .216; EEG session: p = 1.00) (Fig-

ure 3.2c; e, left). Although participants tended to make slightly more finger errors in the fast se-

quence condition (Figure 3.2c; e, right) [behavioral session: F(1, 17) = 7.94, p = .012, η2p = .32; 

EEG session: F(1, 17) = 7.30 , p = .015, η2p = .30], relative temporal error was unaffected by speed 

condition [behavioral session: F(1, 17) = 0.10, p = .756, η2p = .006; EEG session: F(1, 17) = 0.001, 

p = .974, η2p = .00] (Figure 3.2c; e, middle) (see Supplemental Table B.S4 in Appendix B for 

statistics).. These findings show that participants were able to retrieve and produce finger se-

quences of different speeds from memory with equally correct temporal accuracy relative to the 

target timing. Executing a single movement from memory was faster compared to initiating a se-

quence of any speed, suggesting a sequence-related cost in initiating the production of a sequence. 

Overall, the behavioral results are in line with the previously found preactivation gradient 

during sequence planning (Mantziara et al., 2021). RTs and errors to movement probes during 

planning of the respective sequence showed a graded position-dependent availability of sequential 

movements up to the penultimate position. Contrary to our previous report on producing sequences 

of different speeds and temporal structure with the same finger accuracy (Mantziara et al., 2021; 

Figure 2.5b, right, experiments 2 and 3), here, participants committed more finger errors in the fast 

sequence. Despite overlearning a single finger order at two isochronous speeds, it is likely that this 

difference was the result of a low contextual interference effect which is associated with poorer 

performance at retention due to decreased cognitive demands during learning (Lin et al., 2010; 

Magill & Hall, 1990; Pauwels et al., 2014; Shea & Morgan, 1979; D. Wright et al., 2016; D. L. 

Wright et al., 2004). Importantly, although sequences were produced with correct temporal accu-

racy matching the target sequence speed, availability of the individual sequential movements dur-

ing planning was unaffected by the planned speed. Yet, availability of movements appears to dif-

ferentiate depending on movement type (i.e., sequential vs single unrelated movement), with an 

unprepared unrelated effector being more inhibited when a target sequence is retrieved and pre-

pared. By contrast, a prepared unrelated effector is more facilitated suggesting that planning the 

constituent movements of a sequence is more demanding. 
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Figure 3.2 | Planning and execution. a. Sequence and control movement planning: Relative RT (left) and relative 

press error (right) are normalized values relative to first position obtained from Probe trials (Probed position; 1st – 

4th sequence positions), control Probe trials (Unprepared), and Control Single press trials (Prepared) (cf. raw RT 

and press error graphs in Supplemental Figure B.S4 in Appendix B). b, d. Sequence production from memory: 

Relative timing as a function of IPI during production of a slow and fast speed sequence in the Behavioral (b) and 

EEG (d) sessions. The produced (solid lines) and target IPIs (dashed lines) were normalized relative to the slow 
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speed condition. c, e. Sequence and single press performance: Initiation RT in each movement type condition (slow 

/ fast sequence, single press), and relative temporal error and finger error during sequence production, as performed 

from memory in the Behavioral (c) and EEG (e) sessions. Error bars represent standard errors (a, b, d). Thick red 

lines represent the median, and lower and upper thin red lines represent the 25th and 75th percentiles, respectively 

(c, e). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0. 001. RT, reaction time; IPI, inter-press interval. 

 

 

3.5.2 Neurophysiological data 

3.5.2.1 Oscillatory activity  

During the EEG session (day 4), participants were prompted to prepare for 1.5 s and pro-

duce from memory a temporally distinct isochronous sequence of either speed (slow or fast) or a 

single press, following a Go cue. First, we wished to establish that our task evoked pre- and peri- 

movement-related oscillatory changes of ERD underpinning the preparation and production of 

each movement condition. Control analysis of the EEG signal at the time-frequency domain re-

vealed the expected power fluctuations guided by the prevalent beta (14-30 Hz) and μ-alpha (8-13 

Hz) rhythms of the sensorimotor circuit (see Supplemental Table B.S5 in Appendix B for statis-

tics). In all movement conditions (Figure 3.3), we found a significant decrease in the beta band for 

both preparation and production compared to baseline (paired samples t test: preparation, slow, 

t(17) = 2.66, p = .009, d = 0.63; fast, t(17) = 2.61, p = .009, d = 0.62; single press, t(17) = 1.77, p 

= .048, d = 0.42; production, slow, t(17) = 3.81, p < .001, d = 0.90; fast, t(17) = 3.95, p < .001, d 

= 0.93; single press, t(17) = 2.12, p = .025, d = 0.50). Although we did not detect significant 

decrease in the alpha band during preparation (slow, t(17) = -0.14, p = .445, d = 0.03; fast, t(17) = 

0.41, p = .342, d = 0.10; single press, t(17) = -0.13, p = .450, d = 0.03), alpha ERD was present 

during production of a slow or fast sequence but not of a single press (slow, t(17) = 1.89, p = .038, 

d = 0.45; fast, t(17) = 2.29, p = .018, d = 0.54; single press, t(17) = 1.56, p = .069, d = 0.37). 

Movement did not interact with Band and Period (F(4, 68) = 0.65, p = .632, η2p = .037) while post 

hoc comparisons (Bonferroni-corrected for six tests) of a significant Band x Period interaction 

(F(2, 34) = 3.47, p = .043, η2p = .170) confirmed a stronger ERD in the beta band during production 

compared to baseline (p = .007) and preparation (p = .004). Overall, these results indicate increased 

cortical excitation before and during movement execution in the beta power band. Specifically, 

beta ERD was present during preparation and became stronger during production regardless of 

sequence speed or movement type (sequential or single). These results are in line with previous 
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findings reporting decreases in the beta range during movement preparation and execution 

(Bizovičar et al., 2014; Heinrichs-Graham & Wilson, 2016; Little et al., 2019; Park et al., 2013; E. 

Rhodes et al., 2018; Sanes & Donoghue, 1993; Schneider et al., 2020; Tatti et al., 2020; Turella et 

al., 2016; Tzagarakis et al., 2010, 2015). Alpha ERD showed a varying profile as it was detectable 

during production of a sequence of either speed, suggesting stronger cortical activation during the 

production of sequential movements than a single movement. At the same time, we did not find 

significant alpha modulations during preparation of any movement possibly because these changes 

were calculated across electrodes. Previous studies have reported alpha decreases during move-

ment preparation in central sites of the motor strip (H. Li et al., 2018; Schneider et al., 2020), 

consistent with the focal sensorimotor origin of the motor-related alpha oscillations (Garcia-Rill, 

2015; Gaustaut, 1952; Kropotov, 2016b). 

 

 

Figure 3.3 | Oscillatory changes in preparation and production. Average time-frequency representation of the 

EEG activity was computed across electrodes in the alpha and beta frequency range (8-30 Hz) for each movement 

condition (slow / fast sequence, single press). The solid black vertical line (t = -1.5 s) denotes the beginning of a 

trial with a Sequence or Single press cue display (exemplar abstract shape) and of the preparation period up to the 

display of a Go cue (dashed black vertical line at t = 0 s; hand image). The production period started from the Go 

cue to the end of a Sequence trial (t = 3 s) or of a Single press trial (t = 1 s). Values in color bar reflect percent 

change of power relative to baseline (0.5 s before the Sequence / Single press cue); warm colors represent increases; 

cold colors represent decreases. 
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3.5.2.2 EEG and EMG decoding at sensor level 

Next, we decoded the EEG signal in a trial-by-trial cross-validation approach across the 

time course of a Sequence trial in both speed conditions to calculate the probability of each press-

related pattern activation occurring over the preparation and production periods. In addition, we 

examined whether any observed effects in the preparation period might reflect muscle activation 

at the periphery. Therefore, the surface EMG data underwent the same LDA decoding procedure. 

3.5.2.1.1 EEG decoding shows no evidence of competitive queuing during sequence planning 

Previous research in primates (Averbeck et al., 2002) and humans (Kornysheva et al., 2019) 

has shown that well-trained sequential movements are activated in parallel before sequence initi-

ation consistent with the predictions of CQ models accounting for motor sequence control. We set 

out to test whether the previously reported neural CQ pattern of preparatory parallel activations 

would be detectable in the decoded EEG signal during sequence planning and whether it would be 

modulated by the planned timing, i.e., sequence speed. 

If a CQ mechanism controls the planning of sequential elements, we would expect that 

mean amplitude of the decoded press patterns would be modulated by sequence position with the 

1st press position showing higher amplitude than the 2nd and the 2nd press position higher than 

the 3rd. Additionally, a compression of the parallel preactivations during the planning of a fast 

sequence compared to a slow one, would indicate that the timing of the planned sequence is inte-

grated within the CQ mechanism. By contrast, we predicted that at the muscular level the decoded 

EMG press probability pattern for the first press position would be more elevated than for the rest 

press positions which would not modulate (Kornysheva et al., 2019). 

EEG decoding data (Figure 3.4a and b, left) revealed a significant main effect of press 

position in both conditions during the last 1 s of the preparation period [slow, F(4, 68) = 53.78, p 

< .001, η2p = .76; fast, F(4, 68) = 32.84, p < .001, η2p = .66]. Contrary to our prediction, the mean 

press-related pattern probabilities were not orderly ranked depending on their position in the se-

quence: Post hoc pairwise comparisons (Bonferroni-corrected for three tests) showed that mean 

press pattern probability of the 1st press was significantly lower than the 2nd press (p < .001), 

while 2nd press was not different than 3rd press (p = 1.000), and similarly the 3rd press did not 

differ from the 4th press (p = .580). In the fast condition, the mean press pattern probability of the 

1st press was significantly lower than the 2nd (p < .013) and 2nd lower than the 3rd (p < .001), 
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whereas there was no difference between 3rd and 4th presses (p = 1.000). Analysis of the muscular 

press patterns (Figure 3.4a and b, right) showed no main effect of press position in either timing 

condition [slow, F(4, 68) = 0.78, p = .544, η2p  = .04; fast, F(4, 68) = 0.96, p = .437, η2p  = .05] 

(see Supplemental Table B.S6 in Appendix B for statistics). 

These EEG decoding results fail to find evidence for CQ dynamics in sequence planning. 

Press-related pattern probabilities were not preactivated in parallel and ordered by their position 

in the sequence. In contrast, we observed rehearsal-like EEG patterns during the whole preparation 

period resembling the corresponding serial press patterns during the production period. 
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Figure 3.4 | EEG and EMG press-related pattern probabilities. a. Press pattern probabilities of sequential press 

positions belonging to slow and fast Sequence trials were obtained with the LDA decoding procedure for each 

modality. The classifier was trained in the mean signal across 100 ms before a motor press obtained in Sequence 

and Single press trials to distinguish patterns of five classes (i.e., press conditions: 1st, 2nd, 3rd, 4th sequential 

press positions and a single press). The model then calculated the posterior probability of a pattern belonging to 

each class over non-overlapping 100 ms time windows across the time series of the signal (i.e., baseline, prepara-

tion, and production periods). Shaded areas in trace plots represent standard error. Results for the press pattern 

probabilities of the single press condition are shown and discussed separately (section 3.5.2.1.3, Figure 3.6). The 

exemplar abstract shape (solid black vertical line at t = -1.5 s) at the beginning of a trial denotes the timing of the 
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Sequence cue display. The hand image (dashed black vertical line at t = 0 s) represents the timing of the Go cue 

display. The interval from Sequence to Go cue is the preparation period and from Go cue to the end of a Sequence 

trial (t = 3 s) is the production period. Press pattern probabilities before the Sequence cue belong to a 0.5 s long 

baseline period. Mean absolute press timing of motor responses for each sequential press position is depicted with 

vertical color-coded lines after the Go cue, averaged across trials. b. Mean pattern probabilities for each press 

position over the last 1 s of the preparation period (bar in ohra across -1 to 0 s in a) were calculated for each 

sequence speed condition and modality to test for differences in the mean amplitude of decoded movements de-

pending on sequential press position (1st – 2nd, 2nd – 3rd, 3rd – 4th). Middle black lines represent the median, and 

lower and upper black lines represent the 25th and 75th percentiles, respectively. **p ≤ 0.01, ***p ≤ 0. 001. LDA, 

linear discriminant analysis. 

 

 3.5.2.1.2 Sequence-related preparatory activity is temporally scaled depending on planned 

speed 

The acquired EEG preparatory patterns point to preactivation of press-related patterns 

which are possibly serially rehearsed during the preparation period. First, we examined whether 

the upcoming sequential presses could be serially preactivated upon sequence retrieval adhering 

to the serial order of presses in the planned sequence. Second, we sought to unravel the potential 

role of a planned timing mechanism in the observed EEG and EMG decoded signals. Specifically, 

we asked whether our task invoked temporal scaling, i.e., slowing down or speeding up the press 

probabilities during the preparation period depending on the planned sequence condition (slow vs 

fast). To that end, we normalized the time series of the EEG and muscular press probabilities 

relative to movement time for each condition (see Materials and Methods) (Figure 3.5a). We then 

calculated the velocity of the temporally normalized press pattern probabilities and computed the 

timing of peak velocity for each press pattern. 

We predicted that scaled EEG peak velocities of press positions would serially ascent over 

time, i.e., would be temporally ordered, as a function of sequence press position number in either 

condition or period. In addition, if temporal scaling occurred in both preparation and production 

periods, the normalized (scaled) timing of EEG peak velocities would be unaffected by sequence 

condition. If this ordering reflected overt rehearsal at a solely central neural level with no muscular 

engagement, EMG peak velocities would be ordered and temporally scaled during production but 

not preparation. 

Analysis of the scaled EEG peak velocities showed a main effect of press position in both 

sequence conditions in preparation [slow: F(2, 34) = 27.23, p < .001, η2p = .62; fast: F(2, 34) = 

67.08, p < .001, η2p = .80] and production [slow: F(2, 34) = 12.20, p < .001, η2p = .42); fast: F(2, 
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34) = 15.66, p < .001, η2p = .48] (see Supplemental Table B.S7 in Appendix B for statistics). 

Planned comparisons revealed that press positions during preparation were serially ordered in time 

in both sequence conditions [slow, 2nd minus 1st, t(17) = 4.62, p < .001, d = 1.09); 3rd minus 2nd, 

t(17) = 3.12, p = .003, d = 0.74; fast, 2nd minus 1st, t(17) = 4.36, p < .001, d = 1.03; 3rd minus 

2nd, t(17) = 9.27, p < .001, d = 2.18] (Figure 3.5b, left). Equally, during production press positions 

were serially ordered in time consistently up to the 3rd press position in the slow condition [2nd 

minus 1st, t(17) = 9.96, p < .001, d = 2.35); 3rd minus 2nd, t(17) = 2.22, p = .021, d = 0.52; 4th 

minus 3rd, t(17) = 1.61, p = .063, d = 0.38) and for the whole sequence in the fast condition (2nd 

minus 1st, t(17) = 19.14, p < .001, d = 4.51; 3rd minus 2nd, t(17) = 12.75, p < .001, d = 3.00; 4th 

minus 3rd, t(17) = 13.45, p < .001, d = 3.17]. In line with our prediction, timing of scaled EEG 

peak velocities of press positions did not change significantly depending on sequence condition in 

either preparation [F(2, 34) = 3.14, p = .056, η2p = .16] or production periods [F(1.71, 29.13) = 

1.35, p = .271, η2p = .07] (see Supplemental Table B.S8 in Appendix B for statistics). However, 

the marginally significant interaction (cf. p = .056) between press position and sequence speed 

condition may suggest a less pronounced temporal scaling in preparation. Post hoc pairwise com-

parisons showed that the timing did not differ between slow and fast sequence conditions (1st press 

position, p = .263; 2nd, p = .575; 3rd, p = .212, Bonferroni-corrected for three tests). Further, 

asking whether temporal scaling was less pronounced in preparation compared to production, we 

explored potential differences in press positions between sequence conditions depending on period 

(preparation vs production). Analysis showed no significant interaction among period, sequence 

speed condition and press position [F(2,34) = 1.52, p = .233, η2p = .08]. These results indicate that 

timings of press positions were temporally scaled following the timing of the cued sequence and 

were serially ordered over time during preparation and during production at least up to the 3rd 

position. 

As predicted, a main effect of press position was found in the scaled EMG peak velocities 

in the production period of either sequence condition [slow: F(2, 34) = 14.97, p < .001, η2p = .47; 

fast: F(1.31, 22.26) = 29.86, p < .001, η2p = .64] but not in the preparation period [slow: F(2, 34) 

= 1.73, p = .192, η2p = .09; fast: F(2, 34) = 0.98, p = .387, η2p = .05] (Figure 3.5b, right) (see 

Supplemental Table B.S7 in Appendix B for statistics). According to planned comparisons, timing 

of peak velocities during production was ordered by press position for both conditions [slow: 2nd 

minus 1st, t(17) = 3.22, p = .003, d = 0.76); 3rd minus 2nd, t(17) = 2.80, p = .006, d = 0.66; 4th 
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minus 3rd, t(17) = 2.02, p = .030, d = 0.48; fast: 2nd minus 1st, t(17) = 1.89, p = .038, d = 0.45; 

3rd minus 2nd, t(17) = 9.59, p < .001, d = 2.26; 4th minus 3rd, t(17) = 3.62, p = .001, d = 0.85]. 

Timing of scaled EMG peak velocities of press positions during production was invariant of se-

quence speed condition during production [F(3, 51) = 1.50, p = .226, η2p = .08], as expected based 

on the behavioral press timings (Figure 3.5a, insets for timings of 1st-4th press positions) (see 

Supplemental Table B.S8 in Appendix B for statistics). As predicted, these results suggest that 

EMG timings of press positions were serially order over time and temporally scaled across speed 

conditions in the production period only. 

Last, we explored whether the timing of scaled EEG peak velocities of each press position 

during preparation were associated with those during production, across sequence conditions (Fig-

ure 3.5c). Pairwise Pearson’s correlation analysis showed non-significant relationships for either 

pair of press positions (1st: r = .359, p = .104; 2nd: r = -.291, p = .129; 3rd: r = .230, p = .188; see 

Supplemental Table B.S9 in Appendix B for statistics). Of note, correlation analysis for the 1st 

position was based on fourteen subjects (N = 14) after excluding four outlier subjects who ac-

counted for a positive correlation. The above result suggests that timings of press positions did not 

evolve similarly over time in the preparation and production periods. 

Overall, these results demonstrate that neural peak velocities of press pattern probabilities 

were temporally scaled to match the planned timing of the cued sequence both during preparation 

and production periods. Peak velocities occurred serially over the preparation time just as during 

production depending on the learnt serial position of the cued sequence. Although on average the 

last press position distinctly succeeded the penultimate one as confirmed by the motor press and 

the EMG timings, the timings of the last two press positions during production of the slow se-

quence did not differ suggesting possible overlapping timing representations at the central neural 

level. We did not find any association between preparation and production indicating that timings 

of press positions did not covary across the two periods. In contrast to the centrally related neural 

temporal scaling, at the neural periphery there were no increases in press decoding or temporal 

scaling of those increases during preparation but only during production. This confirms that the 

preparatory mechanism controlling sequence speed did not reflect overt motor production during 

the preparation period. 
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Figure 3.5 | Normalized EEG and EMG press-related pattern probabilities. a. Pattern probabilities directly 

obtained with the LDA were normalized relative to movement time (i.e., onset of 1st and 4th press in the sequence) 

and resampled for each period, sequence speed condition, and modality separately. In the ‘Production’ trace plots, 
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0 % to 100 % represent movement time. Mean press timings of motor responses were normalized relative to move-

ment time (inset color-coded violin plots). In the ‘Preparation’ trace plots, 0 % to 100 % represent the onset of 

sequence retrieval (exemplar abstract shape on solid black vertical line at 0 %) and the end of movement time, 

respectively. The shaded area in the slow speed condition denotes the end of preparation period at 78 % of move-

ment time (dashed vertical line) and the beginning of production period (shaded hand image signifying the Go cue). 

Shaded areas in trace plots represent standard error. b. Mean peak velocity timings of the normalized pattern prob-

abilities as a function of press position. Violin plots follow the columnar organization from (a). Data of the 4th 

press position in the preparatory normalized probabilities were not included in the analysis. Middle black lines 

represent the median, and lower and upper black lines represent the 25th and 75th percentiles, respectively. c. 

Color-coded pairwise correlations for the peak velocity timings of 1st, 2nd, and 3rd press positions between prep-

aration and production. Each dot represents a participant. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0. 001. LDA, linear discri-

minant analysis. 

 

3.5.2.1.3 Single press-related activity reflects a high-level timing code at the EEG level 

We observed that the single press EEG pattern peaked at the same time as the first press 

position of the planned sequence (Figure 3.6, left). We assessed this co-occurrence by extracting 

and comparing the timing of peak velocities for each press pattern and speed condition. Results 

confirmed that the timings of the 1st press position and the single press coincided in both prepara-

tion [1st press position minus single press; slow, t(17) = -0.60, p = .560, d = 0.14); fast, t(17) = -

0.45, p = .658, d = 0.11] and production periods [slow, t(17) = -1.31, p = .208, d = 0.31; fast, t(17) 

= -1.63, p = .122, d = 0.38; Bonferroni-corrected for four tests at α = .013]. In addition, the EEG 

single press pattern exhibited a similar probability to the 1st press (i.e., > 22 % on average). Com-

parison of the peak amplitudes showed that the single press pattern did not differ significantly from 

the 1st press position pattern in both speed conditions and periods except for the fast condition in 

production [preparation: slow, t(17) = 2.46, p = .025, d = 0.58); fast, t(17) = 1.34, p = .197, d = 

0.32; production: slow, t(17) = 2.45, p = .026, d = 0.58); fast, t(17) = 3.76, p = .002, d = 0.89; 

Bonferroni-corrected for four tests at α = .013] (see Supplemental Table B.S10 in Appendix B for 

statistics). The peak amplitude similarity and temporal proximity of the single press pattern to the 

first press position of a sequence - both occurring around the same time after the Sequence and Go 

cue - indicates that the classifier distinguished a single press pattern activation that resembled the 

first press position activation in both preparation and production periods. Such similarity was not 

observed in the EMG decoded signal (Figure 3.5, right). Instead, here, as expected, only a motor 

press associated with the first press position showed an increased probability at the muscular level 

after the Go cue. Therefore, the temporal co-occurrence of similar EEG patterns at the central 

neural level indicates that the first sequence position and a single movement, which involved a 
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different effector, likely shared a common abstract code for timing during preparatory rehearsal 

and movement generation. 

 

 

Figure 3.6 | EEG and EMG single press-related pattern probabilities. a. Press pattern probabilities of a single 

press are shown alongside those of a first press position for each sequence speed condition and modality. Shaded 

areas in trace plots represent standard error. For a full description of depicted symbols in the graphs, see Figure 

3.4a. 

 

 

3.5.2.3 EEG ROI-based decoding activity at source level 

Whole-brain analysis of the normalized press patterns at sensor level showed that presses 

of a planned sequence were temporally scaled during planning matching the intended sequence 

speed that occurred subsequently during sequence execution. We aimed to explore the neural 

sources of temporal scaling examining how brain areas that have been associated with motor se-

quence planning and production contribute to this process during preparation alone, during pro-
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duction alone, or others both. To that end, we reconstructed the EEG data and created virtual chan-

nels of ROIs at source level. Identical to the sensor-level analysis approach, the source data under-

went the LDA decoding procedure, followed by temporal normalization, and peak velocity timing 

calculations of the press probabilities. We analyzed the source data from the left M1/S1, left PMd, 

left SMA, right PhG, and left DLPFC (see Supplemental Table B.S11 in Appendix B for statistics). 

All regions of interest (Figure 3.7) showed a main effect of press position, i.e., serial order 

of timing of peak velocities ascending by press position during the preparation period in both con-

ditions [M1/S1 - slow, F(2, 34) = 43.81, p < .001, η2p = .720; 2nd minus 1st, t(17) = 4.88, p < .001, 

d = 1.15); 3rd minus 2nd, t(17) = 4.98, p < .001, d = 1.17; M1/S1 - fast, F(2, 34) = 62.94, p < .001, 

η2p = .79; 2nd minus 1st, t(17) = 6.97, p < .001, d = 1.64; 3rd minus 2nd, t(17) = 4.06, p < .001, d 

= 0.96; PMd - slow, F(2, 34) = 50.32, p < .001, η2p = .75; 2nd minus 1st, t(17) = 3.96, p < .001, d 

= 0.93); 3rd minus 2nd, t(17) = 7.18, p < .001, d = 1.69; PMd - fast, F(2, 34) = 39.93, p < .001, 

η2p = .70; 2nd minus 1st, t(17) = 4.38, p < .001, d = 1.03; 3rd minus 2nd, t(17) = 5.08, p < .001, d 

= 1.20; SMA - slow, F(2, 34) = 33.76, p < .001, η2p = .67; 2nd minus 1st, t(17) = 4.37, p < .001, d 

= 1.03); 3rd minus 2nd, t(17) = 4.07, p < .001, d = 0.96; SMA - fast, F(2, 34) = 51.70, p < .001, 

η2p = .75; 2nd minus 1st, t(17) = 4.61, p < .001, d = 1.09; 3rd minus 2nd, t(17) = 6.25, p < .001, d 

= 1.47; PhG - slow, F(2, 34) = 58.28, p < .001, η2p = .77; 2nd minus 1st, t(17) = 5.45, p < .001, d 

= 1.28); 3rd minus 2nd, t(17) = 5.47, p < .001, d = 1.29; PhG - fast, F(2, 34) = 65.09, p < .001, η2p 

= .79; 2nd minus 1st, t(17) = 5.86, p < .001, d = 1.38; 3rd minus 2nd, t(17) = 5.78, p < .001, d = 

1.36; DLPFC - slow, F(2, 34) = 48.09, p < .001, η2p = .74; 2nd minus 1st, t(17) = 5.91, p < .001, 

d = 1.39); 3rd minus 2nd, t(17) = 4.39, p < .001, d = 1.03; DLPFC - fast, F(2, 34) = 21.26, p < 

.001, η2p = .56; 2nd minus 1st, t(17) = 3.00, p < .001, d = 0.71; 3rd minus 2nd, t(17) = 4.67, p < 

.001, d = 1.10]. 

During the production period, a main effect of press position was found only for M1/S1 in 

the slow condition, and PhG and DLPFC regions in the fast condition [M1/S1 - slow, F(2, 34) = 

7.84, p = .002, η2p = .32; 2nd minus 1st, t(17) = -0.76, p = .229, d = 0.18); 3rd minus 2nd, t(17) = 

4.38, p < .001, d = 1.03; 4th minus 3rd, t(17) = -1.26, p = .112, d = 0.30; M1/S1 - fast, F(2, 34) = 

1.64, p = .208, η2p = .09; PMd - slow, F(1.33, 22.66) = 3.56, p = .062, η2p = .17; PMd - fast, 

F(1.34, 22.83) = 1.63, p = .212, η2p = .09; SMA - slow, F(2, 34) = 0.03, p = .968, η2p = .002; SMA 

- fast, F(2, 34) = 1.69, p = .199, η2p = .09; PhG - slow, F(2, 34) = 0.01, p = .990, η2p = .001; PhG 

- fast, F(1.27, 21.54) = 5.53, p = .008, η2p = .25; 2nd minus 1st, t(17) = -2.81, p = .006, d = 0.66; 
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3rd minus 2nd, t(17) = 2.76, p = .007, d = 0.65; 4th minus 3rd, t(17) = 1.74, p = .050, d = 0.41; 

DLPFC - slow, F(1.26, 21.35) = 2.29, p = .117, η2p = .12; DLPFC - fast, F(2, 34) = 8.14, p = 

.001, η2p = .32; 2nd minus 1st, t(17) = -3.36, p = .002, d = 0.79; 3rd minus 2nd, t(17) = 4.37, p < 

.001, d = 1.03; 4th minus 3rd, t(17) = 0.53, p = .301, d = 0.13]. 

In addition, no region showed a significant interaction between timing of peak velocities 

and sequence condition in preparation [M1/S1, F(2, 34) = 1.24, p = .302, η2p = .07; PMd, F(2, 34) 

= 0.57, p = .571, η2p = .04; SMA, F(1.48, 25.21) = 0.39, p = .680, η2p = .02; PhG, F(2, 34) = 

0.26, p = .776, η2p = .02; DLPFC, F(2, 34) = 0.34, p = .716, η2p = .02]. Similarly, timings of peak 

velocities did not differ depending on sequence condition during production [M1/S1, F(3, 51) = 

0.32, p = .812, η2p = .02; PMd, F(3, 51) = 0.48, p = .645, η2p = .03; SMA, F(1.96, 33.40) = 0.39, p 

= .679, η2p = .02; PhG, F(3, 51) = 2.35, p = .084, η2p = .12; DLPFC, F(3, 51) = 0.52, p = .608, η2p 

= .03]. 

Altogether, this analysis indicates that temporal scaling of peak velocities timings was pre-

sent in all regions during preparation and production. However, while serial order by ordinal po-

sition was observed consistently in preparation, timings of press positions in production varied or 

showed weak successions in time, suggesting stronger timing representations of decoded move-

ments during preparation. 
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Figure 3.7 | Normalized EEG press-related pattern probabilities at source level. Press-related pattern proba-

bilities of the decoded source-reconstructed signal of five ROIs (left M1 / S1, left PMd, left, SMA, right PhG, left 

DLPFC) were normalized and resampled for each period and sequence speed condition, following the same calcu-

lations as for the press-related pattern probabilities at sensor level (cf. Figure 3.5a). Each head model features the 

volumetric binary mask for the dipole positions corresponding to the tissue of the labelled ROI (see Materials and 

Methods). Shaded areas in trace plots represent standard error. For a full description of depicted symbols in the 

graphs, see Figure 3.5a. ROI, region of interest; M1 / S1, primary motor / primary somatosensory cortex; PMd, 
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dorsal premotor cortex; SMA, supplementary motor area; PhG, parahippocampal gyrus; DLPFC, dorsolateral pre-

frontal cortex. 

 

 

3.6 Discussion 

This study set out to investigate how serial order and timing are represented during se-

quence planning. To that end, we trained our participants in planning and producing from memory 

finger sequences of the same digit order in a slow and fast speed. In line with previous behavioral 

findings, we show that while upcoming movements are organized in a preactivation gradient and 

competitively queued by their ordinal position, sequence timing, here speed, is not part of this 

behavioral CQ code for serial order. Decoding the cortical EEG signal in sequence preparation and 

production, we demonstrate that movement-related activity is temporally scaled during sequence 

planning and execution matching the speed of the planned sequence on a trial basis while preserv-

ing serial order in time. The temporally scaled preparatory patterns were not accounted for by 

muscular or effector-related activity. Instead, performing source reconstruction we find that this 

centrally controlled timing mechanism is distributed across key cortical regions. 

Previous findings have shown that sequential movements are prepared in parallel and com-

petitively queued before execution with this preparatory pattern reflecting effector- and timing-

independent representation of ordinal position (Averbeck et al., 2002; Kornysheva et al., 2019; 

Mantziara et al., 2021). In convergence with our previous report (Mantziara et al., 2021), our be-

havioral results corroborate that upcoming movements occupying a position in a learnt sequence 

are simultaneously preactivated but in a competitive fashion graded by their ordinal position. This 

finding is in line with the positional encoding mechanism in sequence production simulations of 

context-based positional CQ models (Henson, 1998a, 1998b, 1999; Hurlstone & Hitch, 2015, 

2018; Lewandowsky & Farrell, 2008). In such systems, the primacy gradient of preactivated plan 

representations in the planning layer of the CQ architecture dynamically changes over sequence 

generation receiving input from a positional representation code forming item-position associa-

tions. Our data suggest that during sequence learning movements were associated with their re-

spective ordinal positions via Hebb repetition and learning (Attneave & Hebb, 1950; Burgess & 

Hitch, 1999; Cumming et al., 2003; Hebb, 1961; Page & Norris, 2009). As such, during preparation 
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participants retrieved sequential elements based on their initially learnt ordinal position as shown 

by the position-dependent preactivation gradient. 

In keeping with our previous findings (Mantziara et al., 2021), although participants were 

able to correctly modulate sequence execution by the target speed (Figure 3.2b, d), this modulation 

was not present in the preactivation gradient (Figure 3.2a). These invariant position-dependent 

differences to the planned sequence speed indicate an absent association between a positional and 

timing code as part of the CQ mechanism. This finding is at odds with the prediction made by 

prominent time-based CQ models (Burgess & Hitch, 1999, 2006; Hartley et al., 2016) that an 

integrated timing signal controls the positional state of elements and their preactivation level de-

pending on their temporal proximity. However, such a functional independence of ordinal position 

from timing is in line with prior behavioral (Kornysheva et al., 2013; Maslovat et al., 2018; Ullén 

& Bengtsson, 2003), EEG (Bortoletto et al., 2011) and neuroimaging findings (Bednark et al., 

2015; Bengtsson et al., 2004; Kornysheva & Diedrichsen, 2014) advocating different control sys-

tems for the preparation of timing compared to order, and a modular control allowing flexible 

handling and combination of spatiotemporal sequences. 

Our data of decoded EEG cortical activity revealed that movements were serially preac-

tivated by ordinal position exhibiting temporal rehearsal that followed the speed of the respective 

planned sequence (Figure 3.5). To our knowledge, this is the first neurophysiological demonstra-

tion in humans of a temporally scaled motor sequence rehearsal or replay during planning. Tem-

poral scaling is best accounted for by dynamic neural patterns that consistently ramp at different 

speeds (de Lafuente et al., 2022; Mello et al., 2015; J. Wang et al., 2018) or neural population 

clocks (Coull et al., 2011; Paton & Buonomano, 2018). Our finding of scaled temporal processing 

during planning and execution may be related to ramping cortical activity typically invoked in 

timing tasks as shown in the mammalian brain (Ding, 2015; Donnelly et al., 2015; Merchant et al., 

2011; Merchant & Averbeck, 2017; Narayanan & Laubach, 2009; Parker, 2016; Parker et al., 2014; 

Perez et al., 2013; Wang et al., 2018; Zarco et al., 2009). Previous findings from monkeys per-

forming an interval reproduction task confirm that delay-related ramping activity occurring during 

interval perception could predict activity in a subsequent reproduced time interval (Jazayeri & 

Shadlen, 2015). In our paradigm, such climbing dynamics, compressed or stretched, according to 

the intended motor IPIs may explain the scaled peak timings observed during a delay of 1.5 s 

before movement initiation. It is unlikely that this preparation period acted as a ‘temporal receptive 
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window’ affecting subsequent scaled production (Lerner et al., 2014) as no temporal guidance was 

present in any sensory form. In addition, that this modulation was absent at the muscular space 

further suggests that a motor timing rehearsal may have operated at the central neural level without 

motor output. Most importantly, we were able to decode a single movement at a similar timing to 

the first position of a sequence during preparation and production. These temporally coincident 

EEG decoded patterns of the single movement and first sequence position (Figure 3.6) point to an 

effector-independent representation of timing at the beginning of preparatory rehearsal and at 

movement initiation. Thus, our time-based task may have involved dedicated time representations 

during sequence learning, allowing participants to rhythmically rehearse the target sequence with-

out overt motor behavior. Such an interpretation is consistent with recent neurophysiological evi-

dence from nonhuman primates for scaled neural oscillatory activity supported by a putative inter-

nalized metronome during pre-movement periods; activity mainly in the SMA followed by parietal 

areas encoded the temporal information allowing this mechanism to flexibly adjust to the timing 

requirements of the task (de Lafuente et al., 2022). 

Contrary to our prediction, we did not observe the previously reported parallel CQ of press-

related neural patterns obtained with multi-unit (Averbeck et al., 2002) and MEG (Kornysheva et 

al., 2019) recordings, despite the complete alignment of probability patterns during production 

across studies (Figure 3.4). This discrepancy may be due to differences in task affordances. Here, 

participants had to focus on timing rather than the pre-ordering of movements. In contrast to pre-

vious studies, sequences produced from memory retained the same movement order, but required 

a change in sequence speed on a trial-by-trial basis. This may have manifested itself in the observed 

scaled preparatory EEG patterns as a temporal adjustment of the movement sequence, i.e., speed-

ing up or down, according to the target, slow or fast, speed. Differences in sensitivity of modalities 

to source orientations may also account for this diverging result. Scalp EEG recordings are more 

sensitive to both radial (gyri) and tangential (sulci) source components of cortical activity (with 

radially oriented dipoles dominating more the EEG signal), whilst MEG detects only tangential 

sources (Ahlfors et al., 2010; Cohen & Halgren, 2003; Singh, 2014). Nevertheless, a CQ parallel 

pattern of serial order was observed at the behavioral level, suggesting that this process was re-

tained, but not picked up at the EEG level. 

Our results pose the intriguing question of how the CQ-compatible position-dependent pre-

activation gradient which we find at the behavioral level can be reconciled with the temporally 
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scaled EEG pattern replay during preparation. The presence of a behavioral CQ code for serial 

order may be attributed to certain aspects of preparatory availability that RTs and errors reflect. 

Our behavioral results ascertain that our task captured this behavioral readout of degree of readi-

ness (RTs; Boardman & Bullock, 1992) and activation strength (errors; Averbeck et al., 2002) as 

a proxy of movement preactivation level driven by ordinal position. At the same time, the EEG 

signal detected a putative motor timing engram sensitive to sequences reactivated at the target 

timescales during preparation. How these two planning mechanisms may collaborate or interact is 

unaddressed here. We argue that our preparatory scaling results constitute a high-level timing 

readout of traces of the retrieved sequential movements from intermediate-term memory/LTM at 

a speed close to the one that they were initially experienced and encoded. A plausible scenario 

would be that serial order information carried via the CQ mechanism is fed by the organization of 

temporal interval dynamics depending on the encoded sequence timing (e.g., 400-800-400 ms) to 

ensure that movement outputs are temporally separated by the input timing. Such an operation 

would presume a modular control - and possibly a hierarchy (de Lafuente et al., 2022) - of spatio-

temporal sequence planning where the CQ module would give order-related input to the timing 

module or vice versa. A future study using concurrent EEG-MEG with various target spatiotem-

poral sequences would shed light on the presence of a position-driven CQ parallel preactivation 

pattern at the neural level and a simultaneous motor timing engram during the planning of se-

quences of different effectors, speeds, and temporal structures. 

That our task may have engaged a distributed timing mechanism related with widespread 

activity is inferred by our exploratory ROI-based source reconstruction results. Analysis of M1/S1, 

PMd, SMA, PhG, and DLPFC showed that all brain areas exhibited temporal scaling during prep-

aration and production (Figure 3.7). This indicates a distributed encoding of the necessary temporal 

information for flexibly switching to the cued sequence speed on a trial basis. The collective cor-

tical engagement may suggest that the temporal processing during planning and execution required 

activation of core and context-specific areas as part of a large network, in line with a central par-

tially shared timing mechanism model (Merchant, Harrington, et al., 2013). In support of this ac-

count, de Lafuente et al. (2022) demonstrated that a distributed network encompassing frontal, 

parietal, and temporal lobe areas is hierarchically organized in encoding the temporal and spatial 

features of an event, and a higher-level general sequential state ensuring sequenceness (neural 

succession) of events. Here the authors proposed that this widespread activity underpins the ability 



Chapter 3 

128 
 

to estimate and preserve timing in delay periods through internal representations of sensorimotor 

engrams that are replayed once they have been formed during learning and familiarization with a 

task. Our present finding of a shared speed modulation mechanism during sequence planning res-

onates with the engram replay hypothesis in that our participants may have replayed the neural 

patterns associated with the constituent motor events in the required speed without relying on ex-

ternal sensory cues and/or muscle engagement. The temporal scaling during sequence execution 

from memory was accompanied by correctly timed motor responses depending on the planned 

speed, suggesting the maintenance of time representations over sequence completion. 

The temporal scaling ability to adapt a movement sequence by changing its speed has been 

demonstrated behaviorally in humans during sequence execution showing that after extensive 

training accurate reproduction from memory is achieved at different speeds (Hardy et al., 2018; 

Slayton et al., 2020). Our design did not allow for investigating a training effect on improved 

temporal scaling capacity as previously shown in timing paradigms (Keele & Summers, 1976; 

Slayton et al., 2020; Summers, 1975). However, the scaled EMG movement-related patterns dur-

ing production (Figure 3.5a, right; Production) and the respective behavioral motor press timings 

(Figure 3.5a, left; insets in Production) indicate that our participants received adequate training to 

successfully adjust the correct tempo during execution. 

Although temporal scaling was observed in both preparation and production periods, we 

found no relationship between the movement-related patterns in the two periods. This uncorrelated 

scaled timing behavior may indicate that while the brain uses the same temporal modulation strat-

egy, preparatory activity is not identical to movement-related activity (Elsayed et al., 2016). This 

is in line with findings from the nonhuman primate motor cortex showing that neural population 

responses operate at orthogonal subspaces during movement preparation and generation: Despite 

unrelated activity patterns, these neural populations employ computations for withholding prepar-

atory activity to delay movement onset or transferring activity to the movement subspace in the 

transition to movement initiation (Elsayed et al., 2016; Kaufman et al., 2013, 2014). Our sequence 

execution scaled results alongside the respective motor press timings corroborate that the required 

information was passed after the Go cue manifested by well-timed sequence generation. 

Despite common (within-subject) effector identities for the first press across the two target 

sequences, we found no evidence for prominent muscular preparation of the first press position as 

reported previously (Kornysheva et al., 2019) (Figure 3.4b, right). Contrary to the task in the study 
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of Kornysheva et al. (2019), our task imposed a speedy response of the first press of a sequence as 

fast as possible after the Go cue. This requirement may have engaged inhibitory mechanisms serv-

ing the prevention of potentially premature motor responses (Boulinguez et al., 2008; Duque & 

Ivry, 2009). As such, the observed invariant first press related EMG pattern may be a manifestation 

of cortico-spinal suppression, at the end of the preparation period, of the forthcoming first press to 

ensure a timely correct movement upon the signal for sequence initiation (Duque & Ivry, 2009). 

Our behavioral results imply a fine-grained modulation of movement availability during 

planning which distinguishes plan representations depending on movement type, namely on 

whether a movement belongs to a planned sequence or not. Specifically, we show that while pre-

activated sequential movements are facilitated relative to unprepared single ones (Mantziara et al., 

2021), they carry an overall sequence cost compared to prepared single movements. The latter 

point may be readily reflected on the RT initiation results showing a faster initiation for a single 

movement than a sequence (Figure 3.2c, e, left). This suggests that facilitation in the availability 

of sequential movements during planning was reduced across a number of movement elements, 

thus possibly delaying sequence initiation, as opposed to a single movement (Bullock & Rhodes, 

2003; Sternberg et al., 1978). Conversely, the limited facilitation of the unprepared single move-

ment reflects its suppression most likely due sequence retrieval. Especially, its slowing (cf. RTs) 

is not comparable with RT costs seen in deviant motor responses performed with the alternate hand 

(Ostry, 1983; Scaltritti et al., 2018; Shaffer, 1978) as here only the right hand was used for all 

movement conditions. At the same time, the facilitated (faster and less erroneous), yet graded, 

planned sequential movements or the even more facilitated prepared single movement cannot be 

interpreted in the context of a more efficient planning process (Seegelke et al., 2021; Valyear & 

Frey, 2014, 2015). The latter account proposes that behavioral advantages occur due to repetitive 

presses with the same effector. However, since in our task Probe trials for sequential and control 

movements were randomized and interspersed with sequence and single press trials, the observed 

facilitations may be supported by access to separate abstract plan representations of movement 

types. 
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Conclusions 

Using behavioral probes and decoded EEG cortical activity, we show that serial order of 

upcoming sequential movements and timing are represented independently during planning of se-

quences of different speeds. Our work supports the idea that the sensorimotor system and interact-

ing areas employ a mechanism of flexible motor timing which transfers across sequences of dif-

ferent temporal structures. This timing mechanism which appears to flexibly modulate the tem-

poral rehearsal of upcoming movements complements the behavioral CQ readout of serial order 

which at the same time encodes the preparatory weight of movements depending on their position 

in the planned sequence. Our findings have important implications for explaining variations or 

diverging evidence for order and/or timing difficulties in skilled sequencing seen in movement 

disorders of the cortico-basal ganglia-cerebellar network (Agostino et al., 1992; Altgassen et al., 

2007; Avanzino et al., 2013, 2016; Fritsche et al., 2020; Harrington & Haaland, 1991; Jones & 

Jahanshahi, 2015; Rafal et al., 1987; Reilly & Spencer, 2013; Spencer, 2015). Additionally, clini-

cal populations exhibiting mainly timing deficits in sequence performance may benefit from in-

vestigations of a potentially impaired neural mechanism of timing modulation during sequence 

planning that could be improved through fine-grained passive (Cadena-Valencia et al., 2018), 

rhythmic (Merchant & Honing, 2014; Thaut, 2013) or neuronal oscillatory entrainment (Amengual 

et al., 2017; Helfrich et al., 2014). 
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Chapter 4 

Discussion 

 

 

 

n what follows, I provide an overview of the thesis’ empirical findings and underscore the 

importance of this work. The present findings are then interpreted in relation to the current 

knowledge in the field. Relevant limitations characterizing this work as well as future direc-

tions that emerge from outstanding questions are discussed in an interwoven manner alongside the 

implications of this research. 

 

4.1 Thesis Overview 

There is a clear consensus in the literature that motor planning plays an important role in 

properties of subsequent production of movements (Al Borno et al., 2020; Haith et al., 2016; Keele, 

1968; Klapp, 1976, 1995, 2003; Klapp & Erwin, 1976; Riehle & Requin, 1989; Rosenbaum, 1985, 

2010). During task-relevant delays prior to movement sequence initiation, brain activity carries 

information for predicting not only forthcoming movements (Ariani et al., 2022; Gale et al., 2021) 

but also the level of sequence performance (Averbeck et al., 2002; Kornysheva et al., 2019). In 

line with a CQ account, several neurophysiological studies provide support for a parallel preacti-

vation of sequential elements prior to movement initiation competitively queued by their ordinal 

position (Averbeck et al., 2002; Basu & Murthy, 2020; Bhutani et al., 2017; Kornysheva et al., 

2019). Prominent time-based CQ models have proposed that sequence timing is controlled via an 

integrated timing signal that regulates the ordinal position of each sequential element and makes 

adjacent elements (e.g., positions 2 and 3 in a sequence) having more similar activations if closer 

in time than more temporally distant (G. D. A. Brown et al., 2000, 2007; Burgess & Hitch, 1999, 

2006; Hartley et al., 2016). In addition, longer time to prepare a sequence has been associated with 

better preparedness for subsequent execution and accuracy (Ariani & Diedrichsen, 2019). How-

I 
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ever, to date the field has lacked a systematic empirical investigation of order and timing repre-

sentations via a CQ preparatory mechanism and the role of preparation time in organizing preac-

tivated movements before execution. 

In Chapter 2, we investigated across three experiments the competitive preactivation of 

planned movements by probing the behavioral availability of each constituent movement in well-

learnt short finger sequences performed from memory and a control movement. In accord with the 

CQ hypothesis, these experiments revealed the presence of a preactivation gradient as the prepar-

atory CQ mechanism that controls upcoming movements at the end of preparation time to become 

available for fast and accurate execution depending on ordinal position. An unplanned movement 

was rather preactivated at a lower level than the sequential movements. In opposition to the pre-

diction of time-based CQ models, sequence timing (temporal grouping and speed) did not regulate 

movements’ preactivation depending on their ordinal position. By contrast, longer preparation 

times strengthened the preactivation gradient which was associated with improved sequence per-

formance when position-dependent differences were greater. These experiments demonstrate that 

timing is not part of the CQ mechanism during sequence planning. Instead, more time to prepare 

a sequence refines the orderly organization of movements to ensure more fluent and accurate per-

formance. 

Using the same task, the research presented in Chapter 3 first aimed at reestablishing the 

behavioral preactivation gradient focusing on speed manipulation (slow vs fast) of well-learnt se-

quences produced from memory. Second, it set out to determine whether at the central neural level 

(decoded EEG activity) movement-related patterns are preactivated in parallel according to their 

position in the sequence. In addition, if speed modulation was part of the CQ preparatory mecha-

nism, those patterns would modulate accordingly with movements closer in time (fast sequence) 

showing similar preactivation levels than movements further apart (slow sequence). This study 

replicated the behavioral preactivation gradient as well as an absent effect of planned speed on 

position-dependent differences, in keeping with the findings from the previous experiments (cf. 

Chapter 2). Contrary to the CQ hypothesis, movement-related neural patterns of upcoming move-

ments were not preactivated in parallel. Instead, the EEG decoding results showed a centrally con-

trolled timing mechanism through which movement-related neural patterns were temporally scaled 

according to the planned sequence speed. These findings indicate that serial order of upcoming 
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sequential movements and timing are represented independently during sequence planning through 

different preparatory mechanisms that may complement each other. 

The main contributions of this work are multifold. First, it provides a comprehensive exper-

imental basis for unpacking a behavioral and neural code for serial order and timing during the 

planning of skilled motor sequences. The novel behavioral paradigm employed in this line of re-

search makes this work the first to have behaviorally assessed the preparatory organization of 

movements prior to sequence initiation. This expands the field’s knowledge on the operation of 

CQ as a preparatory mechanism dedicated to a code for serial position in the context of planning 

well-practiced motor sequences. It also offers new empirical data to feed the design of augmented 

LTM CQ models which could form a CQ framework focusing on the mechanics of position-based 

encoding. Importantly, the modulation of the CQ preparatory mechanism by preparation time ad-

vances our understanding of the role of this pre-movement period and its relation to the quality of 

subsequent sequence performance. An additional novelty of the current work is that, using the 

EEG modality and signal pattern decoding, it demonstrates that movement sequences can be de-

coded from preparation to production. Crucially, it reveals for the first time a putative timing pre-

paratory mechanism operating in the human brain which flexibly modulates preactivations of up-

coming movements depending on the intended speed. Thus, this research sheds further light on the 

idea that the core features of sequence organization under investigation - order and timing - may 

be regulated by different control systems. 

 

4.2 Research Implications 

4.2.1 Evidence in favor of a competitive queuing account: Sequential move-

ments are prepared in parallel before execution 

Early on, motor science was geared to the idea that movements are prepared before we 

execute them (Ghez et al., 1991; Henry & Rogers, 1960; Rosenbaum, 1980; Sternberg et al., 1978). 

In particular, the influential motor programming hypothesis (Keele, 1968; Keele & Summers, 

1976; Lashley, 1951) was the first to put forward that motor programs are movement plans that 

are simultaneously preactivated and contain parameters determining upcoming sequence execu-

tion. At the same time, the advancement of CQ neural networks through the years brought out their 

strong advantage of explaining a variety of cases of human behavioral benchmarks, namely errors 
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and RTs of sequential elements, by reproducing previous seminal behavioral data (e.g., Baddeley, 

1968; Ryan, 1969; Sternberg et al., 1978). Specifically, CQ models have demonstrated via simu-

lations of sequence production data how serial order of elements is associated with these measures, 

by showing error and RT increases as a function of serial position which, closer to the end of the 

sequence, level off or even decrease relative to previous positions (Boardman & Bullock, 1992; 

Farrell & Lewandowsky, 2004; Hurlstone & Hitch, 2015). In contrast to those production-related 

CQ dynamics, here, we investigated for the first time the parallel preactivation of sequential move-

ments using the above behavioral measures as indirect proxies of movement availability during 

planning. 

The acquired RTs and errors to probed positions at the end of a preparation period, revealed 

a gradient featuring position-dependent differences that reflected a graded movement availability 

depending on ordinal position. The consistent finding of a preactivation gradient of sequential 

movements observed across four behavioral test sessions (cf. experiments 1, 2, 3, and 4; Figures 

2.2a, b, and 3.2a) suggests that upcoming movements were preactivated in parallel, yet at different 

levels depending on their position in the sequence. This finding converges with evidence for a 

neural CQ signal reported elsewhere (Averbeck et al., 2002; Kornysheva et al., 2019), reflecting 

parallel preactivation of movements organized by ordinal position. Overall, these data cannot be 

accounted for in a context of a chaining mechanism. If serial order was supported by inter-item 

associations, the same task would possibly have incurred a facilitated first position and invariant 

responses of movements associated with the rest probed positions. 

The position-dependent preactivation gradient (also referred to here as preparatory CQ gra-

dient), reported here, exhibited some differences between RTs and errors during planning: While 

errors consistently showed increases with serial position up to the 3rd position, RTs mainly showed 

position differences up to the 2nd position (except in experiment 3). This ostensible discrepancy 

possibly reflects what these measures represent. In a CQ network, RTs mirror the time that a move-

ment element (the one with the strongest activation) takes to become the winner and exceed the 

response output threshold through self-excitation and inhibition of neighbors (e.g., see Boardman 

& Bullock, 1992). In this context, this measure rather reflects a degree of readiness driven by the 

activation strength and excitation/inhibition dynamics of the candidate movement element which 

is about to be output. There is a possibility that since our task probed movements just before exe-
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cution, movements did not go through the CQ process (self-excitation→inhibition of neigh-

bors→output→self-inhibition/deletion from the planning map). That said, the RTs of 2nd position 

possibly constitute a readout of a movement struggling to pass through the competition with a still 

activated 1st position in place since the latter was never in fact executed. Accordingly, the RT 

attenuation after the 2nd position which levels off with the following positions suggests an accu-

mulative difficulty of these positions to take over as they have to compete more movement plans 

(1st and 2nd) and their more strongly activated movement plans. This is corroborated by our error 

pattern results (Figure 2.3) which confirm a persisting tendency of selecting the movement with 

the strongest activation, that in the 1st position, no matter which other position was probed. 

Errors, on the other hand, have been proposed to be linked to a direct readout of activation 

strength of simultaneously active movement plans in the parallel planning map (cf. primacy gra-

dient) as middle movements with weaker activations during planning were found to be more erro-

neous during execution than earlier or later movements (Averbeck et al., 2002) replicating the 

inverted U-shaped serial position curve (Deese & Kaufman, 1957; Jahnke, 1965; Murdock, 1962; 

Robinson & Brown, 1926). This is in agreement with CQ models, predicting that the first and last 

sequential positions lying at the sequence boundaries show stronger positional representations be-

cause they face less competition (Boardman & Bullock, 1992; Farrell & Lewandowsky, 2004; 

Hurlstone & Hitch, 2015). Therefore, given the nature of the present task, our data point to the 

error-based preactivation gradient being a more robust readout of movement availability as it likely 

constitutes a behavioral translation of the preactivation level(s) as formed at the primacy gradient 

of the CQ system (Grossberg, 1978b, 1978a). However, our experiments did not show a consist-

ently distinct plan representation for the movement associated with the last probed position (4th), 

as only in experiments 2 and 4 that movement was less erroneous than the one associated with the 

3rd position. This is in line with a neural preparatory CQ gradient showing a high-level positional 

code that transferred across different sequences, yet the last movement (5th) did not possess a 

differentiated positional pattern compared to its preceding 4th movement (Kornysheva et al., 

2019). Therefore, our finding suggests that the last sequential position might not have exhibited a 

strong positional representation at the end of sequence planning. 

It is important to note that the preparatory CQ gradient possibly reflects a high-level repre-

sentation of movement sequence organization with regard to encoding and retrieving order, medi-

ated by major memory systems (WM, LTM). Several CQ theorists see this as a potentially ‘global’ 
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mechanism that could provide the basis for explaining many types of serial behavior beyond just 

motor, addressing what Lashley (1951) described as the problem of syntax of action in an attempt 

to identify its underlying principles. Does that mean, then, that the preparatory CQ gradient is a 

higher-order, i.e., cognitive, readout of a sequence in preparation, suitable for explaining the ability 

of the brain to represent order (Krakauer et al., 2019; Wong & Krakauer, 2019)? It may be so, as 

it has been shown to operate at the level of the frontoparietal network detected in the DLPFC 

(Averbeck et al., 2002). We show, nevertheless, that the position-dependent differences manifested 

in the error-based preactivation gradient (Figure 2.2c) were explained by very rapid responses to 

the probed positions (cf. Probe trials). That is, not only were participants able to organize the cued 

sequence in the target order but importantly they produced each response very fast. This suggests 

that they did not utilize time to deliberate and decide what movement to select. It, instead, shows 

that the gradient was the readout of an automatic preparatory process which is unlikely to be ac-

counted for by higher-order executive cognitive processing such as action selection and decision 

making. This may suggest that the CQ mechanism also operates at lower-level motor circuits as 

shown in the indirect pathway of the BG (Bhutani et al., 2013) and the cerebellum (Kornysheva et 

al., 2019) before movement execution. In line with this, the RT-based CQ gradient may be the 

imprint of automatic and necessary RT calculations accounting for motor-related preparation 

(Haith et al., 2016) of each sequential movement element being, nonetheless, bound to the CQ 

loop. Additionally, our data advocate that the CQ gradient reflects the preparatory level of constit-

uent sub-movements of a well-learnt finger sequence which had reached the level of a motor skill, 

since each sequence was smoothly executed with high spatiotemporal accuracy and motor preci-

sion (cf. Sequence trials). Therefore, these findings corroborate that these skilled sequences were 

transiently prepared contradicting the position that such motor sequence tasks using discrete se-

quential movements only address abstract spatiotemporal representations of learned sequences 

(Krakauer et al., 2019; Wong & Krakauer, 2019). 

4.2.2 Competitive queuing as a code for serial order 

The preactivation gradient featured differences in movement availability by their serial po-

sition that were invariant of the planned sequence timing (Figure 2.2a, b; experiments 2 and 3; 

Figure 3.2a). In rejection of predictions of time-based CQ models, this finding confirms that this 

mechanism accounts for a preparatory behavioral code for serial order, i.e., ordinal position of 
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sequential movements, without interacting with sequence timing. It is also of note that the gradient 

reflected effector-independent position differences, as we obtained similar position-dependent dif-

ferences despite the use of different finger order sequences across participants. These data resonate 

with context-based CQ models that employ the position marking and primacy gradient mecha-

nisms for representing order without though incorporating a temporal code, i.e., a timing context 

signal (Henson, 1998a, 1998b, 1999; Hurlstone & Hitch, 2015, 2018; Lewandowsky & Farrell, 

2008). The primacy gradient of simultaneously active plan representations (cf. parallel planning 

layer) is formed by receiving dynamic input from a position marking mechanism (cf. positional 

context layer) responsible for assigning positional representations to sequence item representations 

(here, movement elements). The positional context layer comprises a signal of sequentially acti-

vated nodes representing positional cues or marks. In such CQ systems, it is the positional repre-

sentations at this higher level of the network architecture that determine which sequence element 

will be the strongest to be released for execution. This is primarily due to item-position associa-

tions emerging during sequence learning; as a result, during sequence retrieval each sequential 

item becomes most activated (hence, wins the competition after) when the position it was associ-

ated with during learning matches the currently activated positional mark. Notably, our data of a 

dynamic effect of preparation time on the position-dependent gradient illustrate that the gradient 

expanded with longer preparation times (Figure 2.2a, b; experiment 1). This finding points specif-

ically to the potential operation of such a positional context layer which might vary as to how it 

affects the items’ activation within different preparation windows. 

In a CQ model for sequence preparation, we propose that associations between plans of 

sequence element representations in a parallel planning layer and their respective position nodes 

in a positional context layer are formed during learning (Houghton et al., 2022). The positional 

context features a positional tuning of the nodes which controls positional differences between 

plans via a tuning parameter. The accuracy of the tuning parameter may reflect how well a se-

quence was learnt due to variant training exposure or inter-subject sensorimotor variability. A nar-

row tuning defines a more accurate sequence plan with distinct positional differences between 

sequence elements. Thus, it produces a more expanded CQ gradient which becomes more pro-

nounced at later timepoints of sequence preparation. Conversely, a wide tuning introduces noise 

in item-positional pairing and thus yields a compressed CQ gradient of plan representations which 

stays relatively the same throughout preparation. Except for positional encoding, this model is also 
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designed to explain subsequent correct performance based on quality of positional differences dur-

ing planning on the basis that a more accurate sequence plan (narrow tuning→expanded CQ gra-

dient) is assumed to control a robust orderly organization of movement which facilitates, in turn, 

fluent sequence initiation and accurate execution. Therefore, it would readily account for our data 

showing an association between a pronounced preparatory CQ gradient with more fluently initi-

ated and temporally accurate sequences (Figure 2.4). 

Contrary to the vast majority of CQ studies which focus on modelling STM for serial order, 

the above proposed model presumes some kind of intermediate-term memory or LTM sequence 

representation, albeit not implemented in the network. This thesis presented findings in support of 

a behavioral CQ code for serial order based on data from LTM which no existing CQ model to 

date can fully account for. Our participants were trained for two days in producing from memory 

short unimanual finger sequences with high accuracy. These sequences were of minimal spatial 

(i.e., finger order) demands per participant (two finger orders in experiment 1, one finger order in 

experiments 2, 3, and 4) and specific temporal structures. Throughout the training stages, although 

our experiments followed a randomized design for trial presentation, maintenance of serial order 

during sequence learning was likely mediated by the Hebb repetition effect (Hebb, 1961). This is 

a consistent effect observed when successive repetitions of the same sequences lead to improve-

ments in ISR of order. Extended to a wide range of memory domains including movement 

(Kornysheva et al., 2013; Tremblay & Saint-Aubin, 2009), visuo-spatial (Couture & Tremblay, 

2006), or visual sequences (Horton et al., 2008), the Hebb repetition effect is thought to be the 

process through which order of sequential elements is encoded (Hurlstone et al., 2014). 

A CQ system adopts the Hebbian mechanism as an exposure process to strengthen posi-

tional tuning (i.e., degree of item-position associations) through repetition (e.g., Burgess & Hitch, 

1999; Page & Norris, 2009). The CQ modelling of LTM sequence representation involves the 

incorporation of an interface with WM where the two systems exchange information for correct 

sequence encoding and generation (Burgess & Hitch, 2005). It has been proposed that Hebb repe-

tition is a good candidate mechanism for supporting this WM -LTM interaction (Burgess & Hitch, 

2006). It has also been shown that LTM representation for serial order is possible in an expanded 

hierarchical model where sequences are ‘transferred’ from WM to LTM during learning and re-

trieved from LTM rapidly as chunks back to WM where they are ‘decomposed’ into their constit-
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uent elements (Rhodes & Bullock, 2002). Then, in the WM environment, the positional infor-

mation defining the order of each element is accessed via the episodic buffer which receives this 

input from another positional context signal in the LTM environment. Such an operation is possi-

bly applicable to our data by adding to the proposed CQ model for sequence preparation (Houghton 

et al., 2022) a separate LTM module containing its own positional context which would feed the 

WM module upon sequence retrieval. 

4.2.3 Motor timing during sequence planning: A separate control mechanism? 

Collectively, our behavioral (experiments 1-4) and EEG results (experiment 4) provide ev-

idence that serial order and timing are controlled by separate mechanisms. Our analysis of the 

normalized decoded EEG signal demonstrates that preparatory neural patterns associated with se-

quential movements of the cued sequences were scaled over the preparation period according to 

the corresponding planned speed (Figure 3.5). This scaled serial preactivation suggests that partic-

ipants covertly rehearsed the timing pattern of the planned sequence during the delay from Se-

quence to Go cue. 

The observed rehearsal might find its substrate to some kind of intrinsic ‘offline’ sequential 

activity (Buhry et al., 2011) consistent with the speed of the cued sequence. Influential research in 

the rodent brain has shown replay activity originating in the hippocampal place cells7: These reac-

tivate memories of past spatial sequences during sharp-wave ripple (SWR) events (Pavlides & 

Winson, 1989) at a time-compressed manner (~ 20 times the actual/experienced speed) during 

sleep or rest (Davidson et al., 2009; Karlsson & Frank, 2009; A. K. Lee & Wilson, 2002; Nádasdy 

et al., 1999). Such reactivations have been reported to occur in both forward and reverse orders 

before and after active task engagement, respectively (Diba & Buzsáki, 2007). Additional work 

has shown that hippocampal place cells in the rodent also exhibit slower reactivations, close to the 

rate of the experienced speed, during sleep (Louie & Wilson, 2001; Ribeiro et al., 2004) or pauses 

in a spatial alternation task (Denovellis et al., 2021). The latter findings suggest that replay activity 

encodes variable speeds of experienced sequential events which may facilitate memory storage, 

updating and retrieval (Denovellis et al., 2021). Interestingly, this dedicated hippocampal replay 

 
7 Hippocampal place cells encode a subject’s position in space, i.e., location in the environment, not ordinal position 

within a sequence of events per se, by increasing their firing rate for certain locations (Dehaene & Brannon, 2011). 
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of familiar sequences has been reported to co-exist with hippocampal preplay activity, i.e., a dif-

ferentiated sequential firing pattern that occurs during sleep or rest prior to novel spatial tasks and 

is thought to encode and facilitate future experiences (Dragoi & Tonegawa, 2011). 

Hippocampal replay is thought to play a central role in memory consolidation and planning 

of goal-directed behavior during spatial navigation (see Ólafsdóttir et al., 2018) and was specifi-

cally proposed as a possible mechanism of episodic memory consolidation for preserving temporal 

order (Diba & Buzsáki, 2007; for a review, see Buzsáki, 2015). As a result of the memory consol-

idation process, replay events are also detected in cortical circuits showing coordinated reactiva-

tion synchronized with the hippocampal SWR during sleep (e.g., Euston et al., 2007; Ji & Wilson, 

2007; Rothschild et al., 2017). This coordination reflects the transition of the rigorously retained 

new memory representations in the hippocampus to the neocortex to support LTM storage and 

retrieval (Buzsáki, 1996, 2015; Lisman & Morris, 2001). 

Indications of non-hippocampal replay are also reported in humans, though in the absence 

of direct recordings of SWR activity hence constituting indirect evidence (Ólafsdóttir et al., 2018). 

For example, compressed neural firing rates have been directly observed in the human motor cor-

tex of tetraplegic patients using intracranial multi-unit recordings during rest intervals between 

periods of performing a motor sequence task (Eichenlaub et al., 2020). In addition, using MVPA 

classification analysis of BOLD fMRI signal in the visual cortex, Wittkuhn and Schuck (2021) 

were able to decode the sequential order of five-element visual events presented in different 

speeds. After sequence presentation, participants had to indicate the position of a previously pre-

sented image in the sequence. Event-related patterns showed a rank order probability depending 

on serial position, over the period between a visual event and a response. Importantly, the slower 

the sequences the more each event-related pattern probability peaked at timepoints further apart. 

This indirect evidence of cortical replay events may well reflect coordinated replay activity which 

is distributed across multiple cortical areas in order to meet the requirements of a current task. 

From the above, two important questions inevitably arise: First, since hippocampal-driven 

replay supports episodic (declarative) memory encoding and consolidation, in what way could this 

neural phenomenon drive activity underlying a delayed production motor sequence task which 

might have also involved motor (procedural) memory? Following the long-held dichotomy per-

taining to the two memory systems as to both their functional role and their neural substrates, 

mounting evidence have been pointing to an interactive relationship that supports motor sequence 
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acquisition and consolidation (Albouy et al., 2008; S. Kim, 2020; Poldrack & Packard, 2003; 

Rieckmann et al., 2010; Shohamy et al., 2008). These show that across initial learning the hippo-

campus competes with the striatum, a BG structure subserving procedural memory, which com-

partmentalizes its contribution depending on the learning stage (Lehéricy et al., 2004, 2005). Thus, 

it has been proposed that the hippocampus plays a major role in early motor skill learning, medi-

ated by the involvement of the prefrontal cortex for rehearsing temporal order (Ashe et al., 2006), 

whilst the striatum takes over at later learning stages where motor sequences have become more 

automatic with practice (Albouy et al., 2013). That said, it is very likely that our task which has 

involved short-term sequence training (two days) reflects activity associated with intermediate-

term memory storage supported by hippocampal (and prefrontal) participation manifested as re-

play activity. 

Subsequently, a second question regards whether hippocampal reactivation events may also 

a) control action planning and b) encode temporal information, i.e., the timing pattern, of the past 

experienced sequences. Recent work has challenged the view that replay supports planning of to-

be-performed trajectories in spatial navigation tasks (Gillespie et al., 2021). The authors designed 

a task featuring a multiple-location setting where the rat could explore various spatial trajectories. 

The findings suggest that replay activity did not reflect the upcoming action (trajectory), but in-

stead replay was associated with locations that were consistently coupled with a reward in the past 

or locations that were not recent experiences. Regarding the second strand of the question, it should 

be noted that the earlier mentioned studies reporting putative replay activity in humans (Eichenlaub 

et al., 2020; Wittkuhn & Schuck, 2021) do not provide strong, direct evidence that replay encodes 

the temporal segregation of the events comprising the previously learnt or perceived sequence. 

Instead, their findings most likely indicate a cortical distribution of replay reflecting an intrinsic 

organization of hippocampal cell population into temporal sequences (Dragoi & Buzsáki, 2006; 

Friston & Buzsáki, 2016; Harris et al., 2003) as a key mechanism of memory storage during idle 

states. 

In light of the fruitful replay literature and the potential role of hippocampal cells in encod-

ing space and/or time, Buzsáki and Tingley (2018) have argued that the feature of hippocampal 

activity to occur at different timescales relative to the perceived sequence renders the hippocampal 

system an inaccurate estimator, even less a predictor, of the real-world spatiotemporal structures. 

Instead of being a specialized structure in representing those sequence features, data indicate that 
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it is more likely that the hippocampus and surrounding parahippocampal structures are responsible 

for ‘perceiving’, so to speak, a sequential context; by concatenating events and generating neuronal 

assembly sequences, this system ensures encoding and retrieval of temporally successive events 

without caring about their temporal structure (Deuker et al., 2016; Garvert et al., 2017; Hsieh et 

al., 2014; Nielson et al., 2015). In support of this working hypothesis (see also Friston & Buzsáki, 

2016), recent multi-unit recordings from the monkey brain show that spatiotemporal events are 

controlled by a network of areas hierarchically organized as to what extent they encode space 

(here, right and left positions) and time during a metronome task (de Lafuente et al., 2022). All 

recorded areas (SMA, prefrontal cortex, lateral and medial parietal lobe, visual cortex, and the 

hippocampus) showed more or less scaled oscillatory activity which changed depending on the 

target tempo of the visual metronome. There was, nonetheless, a differentiation regarding the en-

coding weights for space and time that each area carried. SMA accounted to the greatest extent for 

the tempo (speed) of the metronome. Spatial information was encoded in the visual cortex, while 

the lateral intraparietal cortex encoded tempo and space to a similar degree. Interestingly, the hip-

pocampus showed strong encoding for following separate neural trajectories representing the se-

quentiality of metronome’s ‘position’ (right, left, right, left, and so on) with minimal encoding of 

either space or tempo. 

The above remarks support the idea that the hippocampus is a higher-level controller of 

spatiotemporal sequences and is rather unlikely that hippocampal reactivations can account for our 

temporally scaled EEG results during planning. Instead, this finding may reflect the timing readout 

of cortical firing patterns synchronized with movement event onsets, as shown for example in the 

SMA (Cadena-Valencia et al., 2018), and detected by striatal neurons which learn with experience 

to encode temporal durations between events (Allman & Meck, 2012; Matell & Meck, 2000, 

2004). This process is part of the engagement of the cortico-thalamo-basal ganglia circuit in inter-

val timing (Coull et al., 2008, 2011) being key in the operation of a central timing mechanism for 

controlling timed behavior that is shared among multiple areas (Merchant, Harrington, et al., 

2013). Specifically, the core timing network (SMA and BG) interacts with other regions such as 

prefrontal, sensorimotor, auditory, visual cortex, and/or the cerebellum (Figure 2c; Merchant, 

Harrington, et al., 2013) in order to control motor timing, depending on the task demands and the 

specific temporal context of movements. In line with this, it is likely that the temporally scaled 
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rehearsal reported here reflects the participants’ ability to have formed dedicated time representa-

tions during learning which were deployed during retrieval of a sequence speed condition. Im-

portantly, we show that these representations contained a timing signal on a trial-by-trial basis 

during sequence planning, which was absent at the muscular level corroborating the deployment 

of a high-level, centrally controlled signal (Figure 3.5). Additionally, our decoding analysis of a 

control planned single movement revealed that its timing co-occurred with the first sequence po-

sition during planning and execution with this observation being absent at the periphery (Figure 

3.6). This indicates the presence of an abstract (effector-blind) representation of timing at the start 

of sequence preparation and execution. Further research, however, should dissociate timing from 

a potential abstract positional code by manipulating the timing press of a control single press con-

dition at later timepoints corresponding to those of sequential press positions (2nd, 3rd, and so on). 

A single press related pattern activation at those individual corresponding timings would favor a 

timing rehearsal and reproduction account. Alternatively, we would still see a co-occurrence with 

the first press position suggesting an abstract code for first position even in the absence of subse-

quent movement-related patterns as in the case of a single press movement. 

Our finding of a high-level timing signal during sequence planning advances the literature 

in regard to the workings of a timing system that is independent from the control of serial order. 

The differentiated planning of motor sequences with varying complexity of order and timing has 

been captured with RPs, with sequences consisting of a complex timing structure and easy order 

starting to prepare earlier compared to sequences with a reverse spatiotemporal profile (Bortoletto 

et al., 2011). Previous MEG work has investigated how anticipation of order and timing during 

incidental, implicit acquisition of complex spatiotemporal finger sequences is associated with os-

cillatory dynamics in the sensorimotor cortices that might improve sequence performance 

(Heideman et al., 2018). This study found stronger beta power decreases in anticipation of short 

temporal intervals compared to long ones with contralateral suppression mediating performance 

through faster responses. These oscillatory modulations were specific to the temporal structure and 

were transferred across different spatial sequences. Using MEG decoding, Kornysheva et al. 

(2019) found a CQ parallel preactivation of upcoming movements ranked by their position in the 

sequence and that this signal was preserved across sequences of different finger orders and/or tim-

ings. However, the above studies did not isolate the spatial and temporal effects on the underlying 

neural modulations. Specifically, the study of Kornysheva et al. (2019) did not disambiguate 
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whether the preparatory CQ signal encoded the ordinal position or the temporal intervals of the 

planned sequence. The authors speculated that the signal might be driven by overlapping positional 

and temporal representations in a high-level context layer in the CQ model (Burgess & Hitch, 

1999, 2006). Here, we extend previous findings by detecting at the behavioral level a mechanism 

that controls ordinal position without integrating timing (cf. CQ preactivation gradient) and a tim-

ing rehearsal signal present at the central neural level. This suggests that order and timing are 

represented independently and the CQ gradient was in effect during sequence planning but not 

contained in the EEG signal. It should be noted that the task in the previous study (Kornysheva et 

al., 2019) was based on a two-by-two design where participants had to learn and produce from 

memory four different combinations of spatiotemporal sequences thus increasing the demand of 

reorganizing the ordinal position. The present task, on the other hand, required a focus on changing 

the speed while retaining order, thus most likely tapping on the aspect of interval timing encoding 

and retrieval. Alternatively, the difference in findings might be explained by the EEG sensitivity 

to detect both radially and tangentially oriented current dipoles, whilst the former are not recorded 

by MEG hence producing no signal (Ahlfors et al., 2010; Cohen & Halgren, 2003; Singh, 2014). 

This explains the capacity of EEG to record a richer map of cortical neuronal assemblies that might 

have sent considerable input to the core timing network presumably engaged in this task, as dis-

cussed previously. Moreover, our exploratory analysis of the decoded EEG signal at the source 

level in five critical regions implicated in planning or execution (M1/S1, PMd, SMA, PhG, 

DLPFC) showing timing rehearsal most strongly during sequence planning (Figure 3.7) cannot 

preclude that a CQ parallel positional code can be detected at the EEG level. Thus, a future study 

combining simultaneous EEG and MEG recordings utilizing various sequence conditions would 

be necessary for addressing whether the CQ operation would still be present in both the MEG and 

the EEG signals. The co-existence of a positional and timing code at the central neural level would 

provide input for the architecture of modular CQ or hierarchy-based RNN models where timing is 

learnt and reproduced by the system as an independent module (Calderon et al., 2021; Zeid & 

Bullock, 2019). 
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4.2.4 Quality of the preparatory competitive queuing gradient reflects the mo-

tor sequence plan and correlates with performance 

At the behavioral level, we also show that the position-dependent preactivation gradient was 

modulated by the time to prepare a sequence, not its planned timing (Figure 2.2a, b). Previous 

studies have reported a functional link between planning and performance through correlations 

between neural representations of movements during planning and performance accuracy (regard-

ing finger and temporal accuracy) during execution (Averbeck et al., 2002; Kornysheva et al., 

2019). Additionally, longer preparation times are suggested to result in faster and more accurate 

(regarding finger accuracy: order, digit identity etc.) execution of temporally unstructured finger 

sequences (i.e., instructed to be executed as fast as possible), especially affecting the first few 

movements (Ariani & Diedrichsen, 2019). Collectively, these findings led us to hypothesize that 

preparation time may play a role in forming a sequence plan representation that facilitates subse-

quent execution. An alternative hypothesis was that if timing affected the position differences 

based on how close or far apart in time the associated movements were in the sequence (Burgess 

& Hitch, 1999; Hartley et al., 2016), it would be the driving force for controlling an accurate se-

quence plan representation within the CQ gradient. In rejection of the latter hypothesis, we found 

that the error-based CQ gradient gradually expanded over preparation windows of 500 ms, 1000 

ms, and 1500 ms. This suggests that preparation time provides the means for the preparatory CQ 

gradient to refine the sequence plan by amplifying the relative availability of movements, i.e., 

increasing their position-dependent differences. Technically, this translates to movements associ-

ated with later positions being less available with more preparation time, and conversely, move-

ments associated with earlier positions being more facilitated. Although counterintuitive, such 

modulation implies that preactivation levels depending on ordinal position became more enhanced 

ensuring that competition, hence correct output in execution, was not compromised. The scaling 

of the gradient may be supported by sustained neural activity in the prefrontal cortex explained by 

sequence retrieval from intermediate-term memory or LTM and maintenance to WM until the Go 

/ Probe cue. This prefrontal activity is maintained for variant delay periods (Funahashi et al., 1989; 

Fuster & Alexander, 1971; Kubota & Niki, 1971) and is thought to reflect the active state of the 

neuronal population which processes the current information (Lundqvist et al., 2018). Prefrontal 

sustained activity has been shown to be associated with the strength of the memory representation 
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for as long it needs to be held in WM until response output, with longer delay periods predicting 

more accurate responses (Curtis et al., 2004; Funahashi et al., 1989). 

Critically, across experiments 1, 2 and 3 we demonstrate that the position-dependent preac-

tivation gradient, formed in a 1.5 s preparation period, is a preparatory mechanism accounting for 

improvements in subsequent sequence performance. This was evident when participants with a 

more expanded gradient (i.e., larger differences between adjacent positions) were able to initiate 

the planned sequence faster and execute it more accurately as to its temporal structure than partic-

ipants with a more ‘compressed’ gradient (Figure 2.4). This is in line with previous findings from 

Kornysheva et al. (2019) where, accordingly, a more expanded preparatory CQ gradient charac-

terized by well-separated press-related neural patterns predicted temporal and finger accuracy im-

provements during sequence performance. The inter-subject variability in the preparatory CQ gra-

dient may be explained by individual differences in motor sequence learning. As previously men-

tioned, a more pronounced CQ gradient may be accounted for by the establishment of stronger 

associations between each sequential movement and its position during learning. It is plausible 

that those participants developed such strong positional tuning assumed to enhance movements’ 

differential preactivation hence yielding faster sequence initiation and increased temporal accu-

racy. Additionally, recent work has shown that practicing motor sequences over several days (five) 

expands the planning horizon by increasing slightly the number of planned movements, while the 

planning of the remaining few movements occurs ‘online’, i.e., during execution (Ariani et al., 

2021). Within each day, this increase also correlated with faster and more accurate sequence exe-

cution. 

In our view, the above two accounts for explaining the association between a pronounced 

CQ gradient and improved performance observed in our data are not mutually exclusive. Although 

all our participants received the same amount of training, inter-subject variability in sequence 

learning and planning capacity may account for differences in the quality of the preparatory CQ 

gradient (pronounced vs weak). It is possible that participants who became more efficient during 

learning in planning the required movements ahead (i.e., before the Go cue) exhibited a more pro-

nounced CQ gradient. Thus, an increased planning horizon may have provided adequate capacity 

during the preparation period for facilitating stronger positional tuning. By contrast, individuals 

with a narrower CQ gradient made more temporal errors and delayed sequence initiation. Accord-
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ingly, this might suggest that those participants possessed a poorer planning horizon during learn-

ing which compromised their capacity to establish strong associations between movement plan 

representations and their serial position in the first place. A future study using a longer training 

protocol would possibly address an effect on the quality of the CQ gradient reflecting stronger 

position-dependent preactivations of sequences following more extensive practice. 

The above points regarding the role of preparation time in refining the motor sequence plan 

and the origins of the quality of the preparatory CQ gradient raise the following questions: How 

much preparation time is it required for an optimally refined sequence plan or differently put, how 

much more would the CQ gradient expand past the 1.5 s preparation period? Second, how would 

the CQ gradient develop when planning longer sequences (> 4 elements)? 

Future research should test whether there is a cap in the CQ gradient optimization by thor-

ough examination of the gradient’s expansion over incremental 500 – 1000 ms preparation win-

dows beyond the maximum preparation duration used here (1.5 s) or 1.8-2.2 s reported elsewhere 

(Kornysheva et al., 2019). At least for single reaching movements, it has been proposed that there 

is an optimal planning time within which a motor response reaches a minimum RT indicating an 

adequate movement preparation state (Dahan et al., 2019; Haith et al., 2016). Increasing this plan-

ning time past this point was found to increase RT (Dahan et al., 2019). Additionally, Ariani & 

Diedrichsen (2019) suggest that there is a maximum planning time within which only a proportion 

of a movement sequence can be prepared: Here, five-element finger sequences, trained to be pro-

duced as fast and as accurately as possible, benefited from a 1.6 s preparation time during which 

an average of three movements were prepared. More preparation time (2.4 s) was not utilized for 

accommodating the rest of the movements which were thought to be subsequently planned ‘online’ 

(see also Ariani et al., 2021). Similarly, we report that the preparatory CQ gradient lacked a con-

sistent difference of the last position (4th) compared to the previous position. This may indicate 

weak positional tuning of the last movement at the end of a 1.5 s planning period, possibly planned 

subsequently online after the Go cue. Based on these findings, we assume that additional planning 

time in our task would most likely not strengthen the CQ gradient. However, the gradient might 

be maintained for longer planning periods due to prefrontal sustained neural activity which scales 

with the delay length before the response is prompted supporting the memory representation of the 

cued sequence (Curtis et al., 2004; Ikkai & Curtis, 2011; Riley & Constantinidis, 2016). 
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 Last, a future experiment should address the outstanding question regarding the consistency 

of the preparatory CQ gradient when planning longer movement sequences. To our knowledge, 

CQ models have simulated sequence recall data from STM for sequences consisted of up to nine 

elements. A common observation across their findings is that the longer a sequence is, the more 

errors and RTs increase at the middle serial positions, peaking though at a later serial position as 

a function of sequence length (Farrell & Lewandowsky, 2004; Hartley et al., 2016; Hurlstone & 

Hitch, 2015; Lewandowsky & Farrell, 2008). Therefore, we would expect that the preparatory CQ 

gradient when planning, for instance, a finger sequence of seven elements even from intermediate-

term memory or LTM, would show similar RT and error patterns to those reported here. Specifi-

cally, movement availability would consistently decrease up to roughly the fifth position because 

of weak positional representations of the later movements as we have shown here (see also 

Kornysheva et al., 2019). 

4.2.5 Differentiated facilitation of planned and unplanned single movement 

plan representations relative to sequential movements 

Although the focus of this research was on skilled motor sequence planning, we wished to 

investigate single movements under different conditions as to how these perform relative to con-

stituent movements of a sequence during planning. Movements that occupy a position in a se-

quence were shown to be preactivated in a competitive manner depending on their serial position 

as initially learned. By contrast, single movements associated with an unrelated effector, never 

learnt as part of a sequence, behave differently before execution depending on whether they were 

planned or unplanned. Specifically, when a sequence was cued but, instead of a sequence position, 

an unrelated effector was probed, this unexpected, unprepared movement was slower and more 

erroneous than the last probed sequence position suggesting limited preactivation (Figure 2.2a; 

experiment 3; Figure 3.2a). When, on the other hand, a single press of a prepared unrelated effector 

was cued, the associated response exhibited increased preactivation compared to the first sequen-

tial movement indicating a cost for accessing a whole sequence (Figure 3.2a). In short, although 

sequential sub-actions were more facilitated compared to an unprepared action, they carried a se-

quence cost compared to a prepared action, on the grounds that facilitation must be distributed 

across more actions. The lower preactivation of an unprepared action most likely reflects its rela-

tive suppression because both centrally and peripherally the system was prepared for executing a 
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certain (cued) sequence. On the other hand, a valid account for a more facilitated single movement 

vs a sequence is found in a CQ principle which follows that plan representations comprising the 

primacy gradient, at the parallel planning layer in the network, are partially normalized (Averbeck 

et al., 2002; Grossberg, 1978a). That is, total distributed neural activation across plans is reduced 

as a function of their number which results from how the RCF at the lower, competitive choice, 

layer controls the recurrent self-excitation of the most active plan and the inhibition of all compet-

itors. The RCF normalization also affects the speed for movement initiation which has been shown 

to directly depend on the number of active plans in the parallel planning layer: The more plans the 

slower the RT of the first movement (Bullock & Rhodes, 2003; Sternberg et al., 1978), converging 

with our sequence and single press initiation RT results. 

However, what remains to be resolved is whether the single movement was more facilitated 

because it was just single (i.e., not sequential) or because it was prepared and delivered with an 

effector that never belonged to a trained sequence. Previous imaging work has shown distinct se-

quence-specific neuronal patterns for multi-finger finger sequences (i.e., neuronal tuning sensitive 

to the sequential context) in premotor and parietal areas, and the SMA (Grafton et al., 1998; 

Kornysheva & Diedrichsen, 2014; Wiestler et al., 2014; Wiestler & Diedrichsen, 2013; Yokoi et 

al., 2018) which become pronounced as a result of skill learning (Wiestler & Diedrichsen, 2013). 

Importantly, during sequence retrieval, encoding of a sequence at an abstract level (i.e., effector-

independent) is associated with increases in the inferior parietal cortex whilst the sensorimotor 

cortex encodes effector-specific information (Grafton et al., 1998). On the other hand, single-fin-

ger presses elicit activation in the hand area of M1 and the somatosensory cortex (Yokoi et al., 

2018). Thus, the distinct facilitation of a planned single movement and a sequence, observed here, 

may suggest that participants were able to flexibly access on a trial-by-trial basis the respective 

plan representations which were characterized by differentiated preactivation level and supported 

by distinguishable effector-specific neuronal activation. Further behavioral and imaging research, 

nevertheless, should examine the possibility of a persisting facilitated preactivation of single vs 

sequential movements in the presence of common effectors. For example, if planning a sequence 

consisting of a middle-little-index-ring or ring-little-index- middle finger order vs planning a single 

press of the ring, still elicits a more facilitated availability of the single press, it would provide 

stronger evidence for a sequence-related preactivation cost relative to a single movement preacti-

vation. That is, despite that the latter movement condition would be delivered with an effector 
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included in a trained sequence at different serial positions (first or last), distinct retrieval and dif-

ferentiated planned availability would still be corroborated by dedicated neuronal activations. 

4.2.7 Relevance to brain-computer interface research 

Our approach on decoding sequential movements from non-invasive EEG preparatory sig-

nals can be considered as complementary to brain-computer interface (BCI) related studies. The 

development of BCI systems for motor control of assistive devices was originally based on the 

idea that brain signals of amputee patients contain motor representations that can be detected with 

neural recording methods (Nirenberg et al., 1971). BCI technologies and related work focus on 

achieving efficient communication between brain activity and external machines. The goal is two-

fold (Lebedev & Nicolelis, 2017): One application is the direct generation and control of response 

outputs so that the human patient end user interacts with the environment through a device, such 

as a robotic neuroprosthetic effector, which has been designed to decode commands (e.g., Huang 

et al., 2009; Yang & Leung, 2013). A second application aims at neurorehabilitation via feedback 

to the patient for invoking plastic changes or entrainment (e.g., Sitaram et al., 2017). 

Invasive techniques for brain activity recording, such as Electrocorticography, single- and 

multi-unit activity, have been successfully used for decoding movement parameters because of 

their high spatiotemporal resolution (Hauschild et al., 2012; Hochberg et al., 2006; S. P. Kim et 

al., 2008; Moran & Schwartz, 1999; Mulliken et al., 2008; Slutzky & Flint, 2017). However, non-

invasive modalities such as EEG, fMRI, and MEG, have gained ground due to their low risk com-

pared to invasive methods. Since its early use in BCI protocols (Nirenberg et al., 1971; Vidal, 

1973), EEG in particular has been widely used in this domain because of its capacity to directly 

measure cortical activity and its lower cost (for a review and discussion, see Abiri et al., 2019; 

Saha et al., 2021). 

In general, the fruitful BCI-related work using EEG is focused on decoding either effector 

movements (Liao et al., 2014; Paek et al., 2014; Yoshimura et al., 2017) or movement preparation 

(Ieracitano et al., 2021), intention (Bulea et al., 2014; Valenti et al., 2021; Yang et al., 2015), or 

imagery (Ang & Guan, 2017; Cho et al., 2017; Gaur et al., 2021; Kevric & Subasi, 2017; Tabar & 

Halici, 2017) for contributing to the development of neuroprosthetic technology. In most cases, 

decoding task aspects from the EEG signal recorded during motor paradigms involves the devel-

opment, optimization and validation of classification algorithms to improve the decoding accuracy 
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(i.e., decrease the difference between measured and predicted task aspect). Linear decoders have 

been used to decode single-finger and repetitive finger movements from the EEG signal during 

execution (Paek et al., 2014; Yoshimura et al., 2017). Similarly, Yang et al. (2015) developed a 

linear classifier to decode kinematic parameters (peak speed and acceleration) of center-out reach-

ing movements using EEG oscillatory activity in alpha and beta bands utilizing though the signal 

from a short preparation period. The authors found that movement parameters were successfully 

decoded from the planning period alone, but the EEG oscillatory signal from both planning and 

execution was a better predictor of peak speed and acceleration. Applying deep learning, another 

group decoded the time frame of movement intention (interchangeably also termed here prepara-

tion) before an open or close action vs rest based on a ‘hybrid’ EEG signal from both the time and 

the time-frequency domains (Ieracitano et al., 2021). 

To our knowledge, BCI-oriented literature has not yet explored advanced models optimized 

for decoding planned motor sequences. In the present EEG study (cf. Chapter 3), we trained a 

Gaussian-linear classifier in discriminating neural patterns of sequential movements from a prep-

aration period based on the signal associated with the sequential motor presses enacted during the 

production period. By using a trial-fold cross-validation approach (Kohavi, 1995; Lemm et al., 

2011), which increases the model’s ability to learn the input features (here, neural patterns of the 

EEG voltage signal) and hence improves its classification accuracy, we showed that the EEG pre-

paratory signal encodes activity associated with to-be-performed sequential movements (Figures 

3.4a and 3.5a, left). Importantly, the decoded muscular signal acquired with concurrent EMG re-

cordings (Figure 3.4a, right) can readily act as an additional validation of the model’s performance 

to successfully classify the press conditions: The press-related peak pattern probabilities during 

the production period coincided with the executed sequential motor presses depending on sequence 

speed condition (Figure 3.4a, right; color-coded vertical lines of press timings; Figure 3.5a, right), 

whilst the preparatory press-related pattern probabilities did not vary, in line with an absence of 

overt movement. Therefore, our findings demonstrate the feasibility of successfully decoding 

planned motor sequences from non-invasive EEG and can contribute to BCI protocols utilizing 

the preparatory signal. 
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4.2.6 Implications for skilled motor sequencing in movement disorders 

Serial order and/or timing are compromised in several movement disorders of the cortico-

basal ganglia-cerebellar network (Agostino et al., 1992; Altgassen et al., 2007; Bares et al., 2007; 

S. Brown et al., 2005; Duffy, 2006; Frick & James, 1965; Fritsche et al., 2020; Ham, 1999; 

Harrington & Haaland, 1991; Malcolm R., 2011; Tükel et al., 2015; Ye et al., 2021). The degree 

to which these deficits are observed may vary largely depending on disease stage and severity, as 

well as the medication status and related implications due to ‘side’ effects and inter-individual 

variability (e.g., see Ruitenberg et al., 2015). In addition, depending on the clinical population 

under investigation, studies use different tasks to infer conclusions about order and timing impair-

ment. Such an example is the study of skilled sequencing in Parkinson’s disease and BG patients, 

employing from simple RT (e.g., Rafal et al., 1987), to serial reaction time (e.g., S. W. Kelly et 

al., 2004; Seidler et al., 2007; Siegert et al., 2006; Werheid et al., 2003) and synchronization-

continuation tasks (e.g., Harrington et al., 1998; Spencer & Ivry, 2005). Altogether, this literature 

agrees on a slower sequence initiation of multi-element sequences but also provides diverging 

evidence with studies showing or assuming impaired or preserved encoding (see Ruitenberg et al., 

2015) and pre-programming of serial order (e.g., Harrington & Haaland, 1991; Reilly & Spencer, 

2013; Ye et al., 2021) and variable or intact control of timing relative to the target timing during 

sequence execution (see Jones & Jahanshahi, 2015). Our present findings can contribute to under-

standing how sequence planning dynamics can explain these variations and impairments and pro-

vide the basis for the design of intervention protocols. Such patients would benefit from neuroreha-

bilitation programs aiming at assessing and modulating movement preactivations and timing. Spe-

cifically, our finding of a CQ readout for serial order provides an advantage for assessing behav-

iorally how the preparatory organization of sequential movements can account for sequence initi-

ation, positional representation, and temporal accuracy variations during execution. In addition, a 

potentially dysfunctional timing rehearsal signal may be manipulated through neuromodulation, 

stimulation and neurofeedback (e.g., Bichsel et al., 2021) during sequence planning, such as via 

regulating gamma bursts to match the target temporal intervals (Cadena-Valencia et al., 2018). 
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4.3 Concluding Remarks 

Serial order and timing of well-learnt movement sequences are integral features of se-

quence learning, planning and control, usually treated as being two faces of the same coin, i.e., 

integrated in a common control system. Using a novel behavioral paradigm, this work demon-

strates a preparatory CQ mechanism prior to sequence execution which controls the serial order, 

but not the timing, of simultaneously prepared movements depending on their initial position in 

the sequence. At the neural level, a separate putative timing engram was present featuring serial 

preactivations that followed the planned sequence timescale. These findings indicate that the sen-

sorimotor system makes use of hierarchical representations of order and timing during sequence 

planning. These seem to be driven by different preparatory control systems which ensure that well-

timed behavior transfers across sequences of different speeds preserving the correct order of se-

quential movements. This research advances our understanding of a potential spatiotemporal mod-

ularity of motor sequence organization. Further research should shed light on how these modules 

work together during planning and execution. The present findings have implications for move-

ment disorders which show order and timing deficiencies in retrieving order and processing timing 

during motor sequence planning. 
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Appendix A 

Chapter 2 – Supplemental material 

 

 

Supplemental Figure A.S1 | Preparation duration in preceding trials in relation to conditions in the current 

trial in Experiment 1. a. Probe trials: Mean preparation duration in preceding trials, n-1 and n-2 (first and second 

rows, respectively), as a function of probed positions in the preparation duration conditions in a current trial (n) (4 

x 3 repeated measures ANOVAs: Position x Preparation duration n-1, F(6, 108) = .88, p = .511, η2p = .05; Position 

x Preparation duration n-2, F(6, 108) = 1.14, p = .344, η2p = .06). b. Memory-guided Sequence trials: Mean prep-

aration duration in preceding trials, n-1 and n-2 (first and second rows, respectively), as a function of the preparation 

duration conditions in a current trial (n) (one-way repeated measures ANOVAs: Preparation duration n-1, F(2, 36) 

= 2.53, p = .093, η2p =.12; Preparation duration n-2, F (2, 36) = .36, p = .701, η2p = .02). Error bars represent 

standard errors. 
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Supplemental Figure A.S2 | Position-dependent movement availability during sequence planning (raw RT 

and error rate values). Complementary graphs to Figure 2.2, illustrating the raw RT (a) and percent press errors 

(b) of probed movements associated with the 1st - 4th press positions of the planned sequence. Error bars represent 

standard errors. 
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Supplemental Figure A.S3 | Position-dependent movement availability during sequence planning without 

outliers in relative temporal error. a. In Experiment 2, RT increased significantly from 1st to 2nd position (t(16) 

= -7.108, p < .001, d = 1.72) whilst 3rd and 4th positions did not change significantly 

compared to 2nd and 3rd positions, respectively (2nd to 3rd position, t(16) = -.570, p = .289, d = .16; 3rd to 4th 

position, t(16) = -.322, p = .376, d = .07). Experiment 3 revealed significant RT increases from 1st to 2nd position 

(t(16) = -4.264, p < .001, d = .97) and from 2nd to 3rd position (t(16) = -2.155, p = .02, d = .37). No significant 

change was found from 3rd to 4th position (t(16) = .393, p = .35, d = .08). The control movement showed a signif-

icant RT increase compared to the 4th position (t(16) = 3.120, p = .007, d = .89). Position did not interact with 

Timing in either experiment for RTs (Experiment 2, F(3.264, 52.231) = 2.570, p = .059, η2p = .138, Greenhouse-

Geisser corrected, χ²(20) = 39.305, p = .007; Experiment 3, F(3.797, 60.758) = .852, p = .493, η2p = .051, Green-

house-Geisser corrected, χ²(20) = 34.635, p = .025). b. Experiment 2 showed significantly increasing errors up to 

the 3rd position with 2nd and 3rd positions exhibiting more errors than the 1st (t(16) = -5.816, p < .001, d = 1.71) 

and 2nd (t(16) = -1.830, p = .043, d = .41) positions, respectively. The 3rd position was significantly different than 

the 4th position (t(16) = 2.367, p = .016, d = .54). In Experiment 3, errors increased significantly from 1st to 2nd 

position (t(16) = -7.352, p < .001, d = 1.80) whilst there was a marginally significant increase from 2nd to 3rd 

position (t(16) = -1.592, p = .066, d = .50). There was no significant difference between the 3rd and 4th positions 

(t(16) = .766, p = .228, d = .21). The control movement did not show a significant increase in errors compared to 

the 4th position (t(16) = -.662, p = .517, d = .22). Similar to the RTs, Position did not interact with Timing in either 
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experiment for errors (Experiment 2, F(6, 96) = 1.696, p = .130, η2p = .096; Experiment 3, F(6, 96) = .696, p = 

.654, η2p = .042). Error bars represent standard errors. 

 

 

 

Supplemental Figure A.S4 | Correlation of performance with position-dependent differences in movement 

availability during planning (raw RT and error rate values). Raw reaction time (RT) in ms and percent press 

error during preparation (Probe trials) were used to calculate the mean difference between adjacent positions (1st - 

2nd and so on), reflecting the preactivation gradient size of constituent movements of the planned sequence. a. 

Larger raw RT differences correlated with faster sequence initiation and less relative temporal errors during pro-

duction. b. A negative correlation was similarly found between raw error differences and sequence initiation RT, 

but not relative temporal error. Neither measure was associated with decreased finger errors (a, b; Finger error 

(%)). All correlations are one-tailed. 
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Supplemental Figure A.S5 | Finger press timing during sequence production per trial. Individual participants' 

raster plots show the timing of single button presses for each correct Sequence trial produced from memory after 

the Go cue (t = 0) following training (target timing superimposed, gray lines). The colour code of the button presses 

corresponds to the press position in Figures 2.1 (b, c) and 2.3. Within each condition, trials are ordered from most 
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accurate to least accurate by the mean deviation from the target interval structure across each trial (colour coding 

for conditions, cf. side bars in first participants panels, respectively). 

 

 

 

 

Supplemental Figure A.S6 | Sequential preparation duration effects in Experiment 1. Memory-guided Se-

quence trials: Sequence initiation RT (Go cue to first press) in the preparation duration conditions in a current trial 

(n), split by the same conditions in preceding trials, n-1 and n-2 (3 x 3 repeated measures ANOVAs: Preparation 

duration n-1 x Preparation duration n, F(4, 72) = .69, p = .599, η2p = .04; Preparation duration n-2 x Preparation 

duration n, F(4, 72) = 1.77, p = .143, η2p = .09). Error bars represent standard errors. 
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Appendix B 

Chapter 3 – Supplemental material 

 

 

 

Supplemental Figure B.S1 | EMG electrode setup. Demonstration of surface electrode placement on the right 

hand/arm of a volunteer. Pairs of electrodes were placed on the same muscle in a bipolar montage: EXG1 and 

EXG2 on the flexor carpi radialis (arm; left image), EXG3 and EXG4 on the abductor polices brevis (thumb; middle 

image), EXG5 and EXG6 on the abductor digiti minimi (little finger; middle image), and EXG5 and EXG6 on the 

first dorsal interrosei (index; right image). 
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Supplemental Figure B.S2 | Channel outlier detection. Six anterior channels (red circles) were identified as 

noisy (‘outliers’) during channel inspection with the Order Statistics based Outlier Detection technique (Giri et al., 

2015) in the EEG data of a representative participant. Thorough visual inspection of all trials in each of the detected 

channels confirmed that five of them accounted for excessive noise (C5, C6, C7, C8, C30 sensors depicted with 

red circles in the ellipse). Because only a few trials could explain the increased variability of the sixth sensor 

(pointed with the arrow), it was not marked as a problematic electrode. Channel number in x axis refers to the 128 

channels used for the EEG recordings. The channel maximum variability on y axis refers to each channel’s highest 

variability (see Giri et al., 2015). 
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Supplemental Figure B.S3 | Activity power spectra and topoplots of independent components. EEG data of a 

representative participant exhibiting typical blinking and additional noise, especially in A and B sensors. Visual 

inspection of power spectra (a) and respective topoplots (b) of thirty ICs indicated increased EMG noise in the 

occipito-temporal region (see IC6 in a and b). Low (< 10) B and high (> 25) A sensors accounted for the observed 

EMG activity as confirmed by cross-checking each channel on a trial-by-trial basis (not depicted here). This artefact 

was most likely due to contraction of the muscle temporalis or the cervical muscle. After thorough parallel inspec-

tion of the ICs’ time courses (not shown here) alongside their power spectra and topoplots, components removed 

were 1, 6, 7 and 15: IC1 due to blinking (C sensors), IC6 due to typical EMG noise as explained above, IC7 due to 
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noise caused by saccades (C and B sensors), and, last, IC15 due to slow reflex upward eye movements (C and D 

sensors) typically seen in drowsiness (Bell’s phenomenon; Berry, 2012). IC, independent component. 

 

 

 

 

Supplemental Figure B.S4 | Position-dependent movement availability and control movements during se-

quence planning (raw RT and error rate values). Complementary graphs to Figure 3.2 to illustrate the data used 

for the corresponding statistical analysis. Raw RT (a) and percent press errors (b) of probed movements associated 

with the 1st - 4th press positions of the planned sequence (slow / fast) and of a prepared and unprepared control 

single movement. Error bars represent standard errors. 
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