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A framework to understand 
the role of biological time 
in responses to fluctuating climate 
drivers
Luis Giménez1,2*, Noé Espinosa1 & Gabriela Torres1

Understanding biological responses to environmental fluctuations (e.g. heatwaves) is a critical 
goal in ecology. Biological responses (e.g. survival) are usually measured with respect to different 
time reference frames, i.e. at specific chronological times (e.g. at specific dates) or biological times 
(e.g. at reproduction). Measuring responses on the biological frame is central to understand how 
environmental fluctuation modifies fitness and population persistence. We use a framework, based 
on partial differential equations (PDEs) to explore how responses to the time scale and magnitude 
of fluctuations in environmental variables (= drivers) depend on the choice of reference frame. The 
PDEs and simulations enabled us to identify different components, responsible for the phenological 
and eco-physiological effects of each driver on the response. The PDEs also highlight the conditions 
when the choice of reference frame affects the sensitivity of the response to a driver and the type 
of join effect of two drivers (additive or interactive) on the response. Experiments highlighted the 
importance of studying how environmental fluctuations affect biological time keeping mechanisms, to 
develop mechanistic models. Our main result, that the effect of the environmental fluctuations on the 
response depends on the scale used to measure time, applies to both field and laboratory conditions. 
In addition, our approach, applied to experimental conditions, can helps us quantify how biological 
time mediates the response of organisms to environmental fluctuations.

One of the biggest challenges faced by humanity is climate  change1–3. A key characteristic of current climate 
change is the presence of extreme climatic events, i.e. strong fluctuating environmental conditions, manifested 
as storms, hurricanes and heatwaves. Hence, a challenge for ecologists consists in quantifying and predicting the 
responses of ecological systems (from populations to ecosystems) to such  fluctuations4–7. Despite the emphasis 
in understanding ecology and evolution in fluctuating  environments8–11 most experiments concerning climate 
driven environmental variables focus on responses to constant  conditions11–13. The currently growing body of 
work tackling responses to fluctuating environments highlights the complications in attempting to incorporate 
the role of variation in such environmental  drivers13–17 especially in dealing with their combined  actions18,19. For 
instance, research on extreme events has identified five primary traits characterising  heatwaves20, which should 
be added to the effect produced by the average condition experienced during that event.

An additional layer of complexity is given by the biological time (e.g. time to metamorphosis, to reproduction, 
generation times), characterising biological  systems21. Biological time is governed by the interaction between the 
environmental and physiological processes and plays a critical role in driving fitness, population dynamics and 
community  structure21–25. Biological time is critical because of three reasons. First, responses (e.g. survival rates) 
to environmental conditions are driven by a number of developmental processes operating at different biological 
time  scales26–31, ranging from short (e.g. physiological acclimation) to medium (developmental plasticity) and 
long term (transgenerational plasticity, changes in gene frequencies). Second, if we characterise a fluctuation by 
its time scale, then the response will depend on the biological time characterising that species. From the perspec-
tive of organisms (e.g. with time scales ranging from those of from bacteria to trees), whether a fluctuation is 
long or short, is not determined by the chronological (= clock) time, but instead by its characteristic biological 
 time31. Third, responses may be measured after a predetermined chronological time scale (e.g. at a given time 
in the year) or biological time scale (e.g. at maturity). The expression of biological responses in chronological 
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time is obviously important to understand long term changes in seasonal habitats. However, measurements on 
biological time scales are critical for understanding population dynamics and evolution because such number 
drives individual fitness and the population growth rate. This is especially important in species that experience 
habitat shifts (e.g. most bottom living marine invertebrates, insects, migratory fish, birds and mammals). In such 
species, the biological time is “reset” at critical stages (e.g. metamorphosis, onset of migration) because, after the 
habitat shift, organisms experience the environmental conditions of a new habitat and the conditions in the old 
habitat might become irrelevant. Overall, understanding and quantifying the actual response to climate driven 
fluctuations requires that we also understand how responses are modified with a change in the time reference 
frame (from chronological to biological).

We propose a framework to understand and quantify responses to fluctuations in one or more climate-driven 
environmental variables, considering biological time. We consider environmental fluctuations characterised by 
a magnitude (e.g. the amplitude) and a timescale (e.g. the period of the fluctuation or the time of exposure to a 
given magnitude: Fig. 1). The response is quantified at least once after the environmental drivers are experienced, 
with respect to chronological time or at a given life history event (e.g. at maturity). We use an experimental 
case and simulations to understand how biological responses to fluctuating environmental drivers are modified 
by the clock and biological time scale used to study the response. We structure this article as follows: First, we 
introduce definitions and a system of equations describing the biological responses. Second, the equations are 
explored using four specific cases. Third, in the methods section, we describe the experiments carried out to 
illustrate case 3.

Results
Mathematical theory. We consider a biological response (e.g. body size, survival, biodiversity) to two 
environmental drivers (i.e. any abiotic or biotic factor) but the same idea may be applied to a larger number of 
drivers. The response depends of a set of predictors consisting in the magnitudes (m1 and m2) and time scales of 
fluctuation of two drivers (i = 1, 2); in addition, the response is quantified at least once after the fluctuations have 
been experienced (Fig. 1a).

Time is defined using two different frames; chronological (= clock) time (measured by clocks) and biological 
time. For the “clock” time scales of the fluctuations (t1, t2) there are associated biological times (τ1, τ2). Likewise, 
for the clock time at which the response is quantified ( t∗ ) there is an associated biological time (τ∗).

Biological time is the proportion of (clock) time needed to reach a life history event (e.g. moulting, maturity). 
Hence, for t1, t2 and t∗ we obtain τi = ti/D and τ∗ = t∗/D, (D = clock time needed to reach such life history event). 
We express the τi and τ∗ in terms of a function L = 1/D. For instance, for t∗ we obtain:

where L = L(ω) = D−1(ω) characterises the timing of a life history event (with units as the inverse of clock time 
units). L depends on the set of predictors ω associated to the fluctuations; an important set of predictors will 
be defined by thermal fluctuations (the amplitude and time scales), which in ectotherm species have a strong 
influence on developmental  time32,33. We find by differentiation that L provides the transform function between 
clock and biological time frames; for instance, if L does not depend on any ti we have L = dτ/dti.

The response is expressed as a function of the predictors defined above, as R(m1, m2, t1, t2, t∗) = r[m1, m2, τ1 
(t1), τ2(t2), τ∗ ]. The contribution of each predictor to the response is better understood by the partial derivatives 
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Figure 1.  Experimental set up and equations. (A) A biological system (e.g. an organism) is exposed to two 
fluctuating environmental drivers (E1, E2). The fluctuations are characterised by predictors, i.e. the amplitudes 
(m1, m2) and time scales (t1, t2). Measurement of the response, R, are made at different times ( t∗1) after the 
fluctuations occurred (black circle); additional measurements may be carried out at other fixed times after t∗1  
(grey circles). (B) In a factorial experiment the process would be repeated so that observations are made for a 
minimum of two levels per predictor giving 16 factor combinations. In (B): vertical dimension = magnitude; 
horizonal dimension = clock time scale.
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with respect to each predictor; this defines a system of partial differential equations (PDE; Supplementary note 
1) which expressed in matrix form give the following matrix equation.

In the PDE (Eq. 2), the left-hand side is a vector column of the derivatives of the response in clock time (R), 
with respect to each predictor; the right-hand side is the standard (= inner) product of a matrix (M) by a vector 
of the derivatives of the response in biological time (r), i.e. R = Mr. The matrix contains the derivatives of the 
predictors with respect to each other, with time both expressed in clock or biological scales; one can think of M as 
an object containing coefficients that transform r into R in the same way as a constant (= 1000) would transform 
kilometres into meters of distance. The large number of terms in M highlights the considerable diversity and the 
challenges in quantifying responses to multivariate environmental fluctuations. We show below how to use Eq. (2) 
to quantify the effect of fluctuating environmental drivers on biological responses, as mediated by biological time.

First, we note that M contains three groups of terms: (1) Terms accounting for situations where the magnitude 
of a driver affects the magnitude of the second driver (e.g. temperature drives oxygen concentration in aquatic 
habitats): these are dmi/dmj for any i, j = 1, 2. (2) Terms accounting for cases where the magnitudes and time scales 
of stressors are related: dmi/dtj and dmi/dti. (3) Terms where biological time depends on the magnitude or time 
scale of the environmental fluctuation dτi/dtj and dτi/dmj. The terms of groups (1) and (2) are zero when they 
are mutually independent, such as in a factorial experiment with orthogonal manipulation. We will set those to 
zero in the rest of this analysis.

Second, we note that for group (3) there are three scenarios: (3a) biological time does not depend on any 
environmental driver. This is the trivial case where biological time is proportional to clock time, not considered 
here; M is simplified to a diagonal matrix, i.e. with constants in the diagonal, and zero’s otherwise leading to a 
single constant term per equation (3b). Biological time depends on the magnitudes of any or both drivers. In 
such case, τ1 τ2, and τ∗ will be driven by the same equation: if τi = ti · L (m1, m2) we obtain dτi/dtj = dτi/dti = L (m1, 
m2). (3c) Biological time depends on the time scale of the fluctuations: in such case, differentiating Eq. (1) with 
respect to time, we obtain dτi/dti = L + ti dL/dti.

Here, we explore four special cases where the equations are simplified to highlight the importance of biologi-
cal time in modifying the responses as compared to clock time. We start with the simplest case where there is 
a single environmental variable and then we consider cases with two variables. We focus on cases representing 
the most frequent experiments carried out on multiple driver research, i.e. factorial manipulations where terms 
of the groups 1 and 2 are zero.

Case 1: responses to the magnitude of a single variable. We start with the simplest case i.e. where 
the response is driven by the magnitude of a single driver, e.g. temperature (= m). Examples of this case are labo-
ratory experiments quantifying the effect of temperature on body mass or survival of a given species, or meso-
cosm experiments quantifying effects of temperature on species richness where thermal treatments are kept 
constant over time. Here, the response is quantified at different times, both in the clock and biological frames. In 
such case we have R(m, t∗) = r[m, τ∗(m, t∗ )] and the PDEs simplify to.

From Eq. (3), and because dR/dm ≠ dr/dm, we see that the response to the magnitude of the driver depends 
on a component quantifying the effect biological time: as long as dτ∗/dm ≠ 0 the time reference frame affects the 
observed effect of m on the response. The simulation illustrated in Fig. 2 shows a case where there are differences 
between the observed responses at clock vs biological times. In the simulated experiment, there is a strong effect 
of the magnitude of the driver on the response at clock time, but such effect is much less pronounced at biological 
time. By contrast, there is no effect when the response is measured in the biological time frame.

Equation (3) (details in Supplementary code 1) captures an obvious but important feature of experiments 
manipulating temperature over the development of ectotherms, for instance, from birth to metamorphosis; 
namely that there is no consistent definition of a simultaneous event across the different time frames. Experiments 
are usually stopped at different clock times because organisms must be sampled at the same biological time. All 
points located in the horizonal line in Fig. 3 represent simultaneous events, as defined in clock time occurring 
at different temperatures (e.g. whether an animal is dead or alive); however, simultaneous events occurring in 
biological time are represented by the points on the curve. Hence, Fig. 2 gives a geometric representation of such 
fact. Temperature as a driver of developmental  rates32 is a central candidate to produce responses that differ at 
clock vs biological time.

We explore further this case with an example where the response is expressed as a function of time and an 
instantaneous rate μ(m) quantifying for instance mortality, growth or biomass loss. For this example, we obtain 
R(m, t∗) = r[μ(m), τ∗(m, t∗)]. By differentiating in both sides, we get:

(2)
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Equation (4) shows that m affects the response through two components: the instantaneous rate (dμ/dm) 
and the biological time (dτ∗/dm). We call the first component “eco-physiological” and the second component 
“phenological” (m drives the timing of a biological event, e.g. time to maturation). Those components are not 
evident if the response is expressed in clock time; otherwise we would obtain dR/dm = ∂R/∂μ · dμ/dm.

In order to better understand Eq. (4), consider an example where the response is biomass loss experienced by 
an organism during the process of migration (e.g. towards a feeding or reproductive ground); when the access 
to food during migration is very limited the result should be a decrease in body mass reserves through time. Let 
biomass (B) be modelled as an exponential decaying function of time and an instantaneous rate of biomass loss 
μ; let μ depend on temperature (= m) such that, μ = μ(m). In such case we obtain:

By differentiation in both sides of Eq. (5) we get:

Equation (6) shows the eco-physiological (dμ/dm) and phenological components (dτ∗/dm) within the brack-
ets. If μ responds linearly to temperature, then dμ/dm would be represented by a constant quantifying the thermal 
sensitivity of biomass loss; the value of such constant would depend on physiological processes associated to use 
of reserves to sustain movement and the basal metabolic rate. Likewise, if τ∗ responds linearly to temperature, 
the dτ∗/dm would be driven by a constant controlling the sensitivity of developmental time to temperature.
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Figure 2.  Case 1: Response to the magnitude of a single variable (m). Horizontal line: measurement taken at 
clock time t∗ = t∗c; note that, along the line, the response increase with m (it crosses the colour gradient). Curve 
with yellow circles: measurements taken at a constant biological time (τ∗c = 100); along the curve, the response 
does not vary with m. The equations used were: R = m(0.5t∗ ),  τ∗ = t. m giving r = 0.5. τ∗ not depending on m.
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Because biomass is a trait that is central to fitness, Eq. (6) gives the indirect contribution of phenological and 
physiological responses to fitness. Assuming that fitness should be maximised, adaptive responses should involve 
the mitigation of negative effect of m on both components of Eq. (5), represented by the partial derivative of the 
right-hand term. For instance, organisms with the ability to minimise the eco-physiological effect (through e.g. 
a compensatory physiological mechanisms) or the phenological effect (e.g. shortening the exposure time) would 
complete the migration minimal loss of reserves.

By generalization, Eqs. (4–6) help us to provide biological meaning to the terms of the matrix M: any term 
of the form dτ∗/dmj, dτi/dmj or dτi/dtj represents the effect of an environmental driver on the timing of a phe-
nological event; hence, they are phenological components. Terms that contain the effect of an environmental 
variable on an instantaneous rate are eco-physiological components. By substitution we find that the terms of 
the matrix in Eq. (2) can be classified in two categories according to whether the component is eco-physiological 
(E) or phenological (P):

Case 2: multiple driver responses. Here we expand the previous case by looking at a response to the 
magnitude of two different drivers; i.e. keeping the levels of each driver constant over the duration of the experi-
ment. Examples of this case are experiments quantifying the effect of temperature and nutrient load on body 
mass (e.g. in a rearing containers) or species richness (e.g. in mesocosms). This case is represented by the terms 
of first two rows of the matrix and the vectors of Eq. (2), with the terms of the remaining rows set to zero. Here, 
there are different scenarios, but we focus on the one highlighting the importance of biological time.

Consider a case where biological time depends on the magnitude of the first driver while the response is 
explicitly driven by the magnitude of the second driver (Fig. 4). For instance, the response may be the survival 
rate of a host organism exposed to different temperature and parasitic load. The response in clock time is 
described as R(mP, t∗). The driver controlling the biological time is temperature (mT) while the parasitic load (mP) 
controls survival. In such case, dτ∗/∂mP = 0, dR/dmP ≠ 0 and dR/dmT = 0. Although by definition the response in 
clock time does not depend on mT , it will do so in biological time. This is because, applying the matrix multi-
plication in Eq. (2), we obtain:

The second right-hand term in Eq. (8a) quantifies the effect of temperature on the response mediated by bio-
logical time. In order to better understand the responses, consider a simple linear response: R = R0 − mP·t∗ and 
notice that, for a fixed clock time (t∗c) the effect of the magnitude of parasitism is constant (dR/dmP = −t∗c); hence, 
the response can be understood, geometrically, as a flat surface with slope not depending on temperature. Now, 
note that under the specific conditions of our example, r = R0 − mP·τ∗/L(mT). Hence, for a fixed biological time 
(τ∗c) we obtain ∂r/∂mP = −τ∗c/L(mT); i.e. the importance of the parasitic effect depends now on temperature. In 
addition, this example is valid for the case of additive effects of any two environmental drivers: assuming R = R0 
− (a1·mP + a2· mT)·t∗ (a1, a2 are constants), we obtain dR/dmP = −a1t∗ ; however, ∂r/∂mP = −a1τ∗c/L(mT). In words, 
additive effects observed in clock time become interactive in biological time. This is illustrated in the simulation 
(Supplementary code 2) depicted in Fig. 4: the response in clock time depends on a single driver (parasite load); 
however, the response in biological time is interactive, i.e. the effect of parasite load depends on temperature.
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Case 3: role of clock and biological time scale of fluctuation. Previous examples did not consider, 
the time scale of the fluctuations as drivers of the response. Here we explore how a biological variable (= survival 
rate) responds to different levels of magnitude of a driver (= temperature) and to simultaneously changing the 
time scale of a fluctuation (from clock to biological time) of a second driver (= food limitation). As model, we 
use larval stages of a crab because there is sufficient information on the effect of temperature and food levels on 
survival and the timing of  moulting33,34.

We performed the so-called point-of-reserve-saturation experiment  (PRS35), i.e. exposing groups of recently 
hatched larvae of the crab Hemigrapsus sanguineus to different initial feeding periods (= our time scale of fluctua-
tion), after which they were starved until they either died or moulted to the second larval stage (Supplementary 
Fig. 1). H. sanguineus is originated from East Asia but has invaded the Atlantic shores of North America and 
North  Europe36,37. This experiment was carried out at 4 temperature levels (15–21 °C), within the range of ther-
mal tolerance of larvae of this species, i.e. where the magnitude of temperature does not affect  survival38,39. In 
addition, because there is a single level of food limitation (= starvation), the magnitude of food limitation  (mF) 
is not considered as a variable in the example.

The response variable was the proportion of first stage larvae surviving the moulting event to the second 
stage, set to biological time τ∗ = 1. In response to different starvation periods (preceded by feeding), the survival 
shows a sigmoidal  pattern35, characterised by a parameter,  PRS50. This is the point of development where larval 
reserves are “saturated”; i.e. enough reserves have been accumulated during the previous feeding period to ensure 
survival and moulting to the next stage.

Under the conditions of the experiment, the survival proportion (= R) is driven only by the time scale of 
a fluctuation (here t1 = t, τ1 = τ for simplicity), characterised by the starvation period; hence, R = R(t) = r[τ(t)] 
given that there is a single time of observation fixed to τ∗ = 1. Because biological time does not depend t, we get 
L = dτ/dt and:

Equation (9) is represented in the PDE by the terms of row 3 and column 4 of M multiplied by the term of 
row 3 of the column vector r; dτ/dt = L(m), m represents the magnitude of temperature.

The relationship between biological time and temperature was best explained by a power function D(T) = aTb 
(Fig. 4A, Supplementary Table 1, Supplementary Fig. 2), in consistence with previous  studies36,40. The interac-
tion between starvation time and temperature was weak (Supplementary Fig. 3); best models retained starvation 
time only at 21 °C where the percentage of explained variance was still low  (R2 < 0.2). The full range of starvation 
times resulted in a variation of developmental time of < 2 days, while the full range of temperature used resulted 
in variations of 8 days (range 5–14 days); hence, we approximated the model as L depending on temperature 
as L = 1/(aTb).

Survival showed an S-shape pattern consistent with results found for other  species35. When the starvation 
time was expressed in clock time (PRS50 = t50 in days) there was a dilation/contraction effect of the response 

(9)
dR

dt
=

∂r

∂τ
· L(m2)

S

R
0.
2

0.
4

0.
6

0.
8

15 20 25 30 35

0.
2

0.
4

0.
6

0.
8

15 20 25 30 35

15
18
21
24

Re
sp

on
se

Driver-2 level= m2

Temperature

(B)(A)
R(t*= 40) r(τ*= 1)

16 18 20 22 24

15
20

25
30

35

Temperature

S
tre

ss
or

2

16 18 20 22 24

Temperature

0.2

0.4

0.6

0.8

R(t= 40) r( = 1)

Temperature level= m1

St
re

ss
or

-2
 le

ve
l =

 m
2

Figure 3.  Case 2: Multiple driver responses. (A) Modelled responses (colour scale) at a specific clock (t∗ = 40) 
and biological times (τ∗ = 1), showing an interactive effect only in the biological time frame. (B) Interaction 
plots of the responses for specific levels of temperature and a second driver showing that the effect high 
temperature mitigates the negative effect of the second driver on the response. The response was modelled with 
as a sigmoidal function R = exp(−t∗φ) with φ = 0.1[1 + exp(m2/2)]−1 to produce a strong gradient in the range of 
 m2 = 25–30 units. The biological time was modelled based on the effect of temperature on the development of 
marine  organisms33 as so that t∗ = τ∗ exp[−22.47 + 0.64/(k(m1 + 273)], i.e., using the Arrhenius equation with k: 
Boltzmann constant (≈ 8.617  10–5 eV  K−1).
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Figure 4.  Case-3: Responses of food limitation. (A) Effect of temperature on the time needed by larvae to 
moult for developmental time, D(T). (B) Proportion of survivors in response to temperature and the starvation 
period measured in clock time. Data were fitted with a Boltzmann sigmoidal function with parameters given 
in Supplementary Table 2. (C) Proportion of survivors vs time scale of starvation period in biological time. The 
equation obtained for the response in clock time (t), was R (t,T) = −0.70/(1 + f), with f = 19.3[t· e−9.457 ·T2.569) − 
0.53, L = 1/D(T).
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curve, quantified by the PRS50 and driven by the effect of temperature on biological time (Fig. 4B, Supplementary 
Table 2). When time was expressed in biological time units (PRS50 = τ50), a single response curve explained 91% 
of total variation (Fig. 4C, Supplementary Table 3), irrespective of temperature. The estimate of parameters by 
temperature showed  PRS50 in the range of 0.47–0.58% of moulting time with a slight decrease towards higher 
temperatures (Supplementary Table 4); the range of percent values found here is also consistent with findings in 
other species (40–60%)35. There were therefore important differences in the effect of temperature on estimates of 
 PRS50 depending on the choice between time scale (Supplementary Table 5). In synthesis, in the biological time 
scale we found a simple function showing that the  PRS50 was less responsive to a change in temperature than in 
clock time; we will address this point in the discussion in the context of physiological time keeping mechanisms.

Case 4: biological time depends on the time scale of the fluctuation. Here, we generalise the 
above cases by considering situations where both the magnitude and time scale of an environmental fluctuation 
drive biological time. For simplicity, we consider a single driver. In such case, L = L(m,t) and the PDEs reduce to:

We now consider a response interpreted as a decay in performance of an organism, where longer time scales 
of the fluctuation increase the biological time, as expected for cases where organisms are exposed to suboptimal 
conditions (e.g. food limitation experienced over a given time scale). There are obviously many possible scenarios 
but for better understanding, we consider Cases 4A-D, where dL/dt is negative, reducing performance and where 
the functions linking m and t with L act additively or multiplicatively. Additive responses are will be illustrated 
with L = [k1/m + k2/t], while multiplicative responses will be illustrated L = k3/mt, with k1, k2 and k3 as constants.

The first two cases focus on Eq. (10a), which may be considered as an extension of Case 3. Case 4A: additive 
response: in such case dL/dt depends only on t and we get that dR/dt and dr/dτ differ by a factor k1/m:

In addition, if L only depends on t, the result is that the response in clock time does not depend on the time 
scale of fluctuation (dR/dt = 0) because the terms of Eq. (10a) associated to L cancel out. However, the response in 
biological time does not need to be zero (dr/dτ may not be zero). For instance, assume that r(m, τ) = exp(−ω·m·τ), 
and L = k2/t , with ω = constant. We obtain R = exp(−ω·m·k2) and dR/dt = 0, while dr/dτ = −ω·m·exp(−ω·m·τ).

Case 4B: Multiplicative response of m and t in L. In such case, dR/dt = 0 because the terms associated to L 
cancel out, while dr/dτ may not be zero.

The next two cases focus on Eq. (10b), which is an extension of cases 1 and 2. The effect of the time scale 
of the fluctuation depends again on how it relates, through L, to the effect of the magnitude of the fluctuation. 
We interpret the response as a decay in performance (or fitness), contributed by the “ecophysiological” and 
“phenological” components:

In Eq. (11), the phenological component (within the brackets) is driven by two terms. The expression t·dL/
dm shows that the time scale of the fluctuation act as increasing the exposure to the suboptimal conditions and 
contributes to a further reduction in performance. Equation (11) takes different forms depending on whether 
the functions linking t and m with L are additive or multiplicative.

Case 4C: when the response is additive, the phenological contribution is proportional to the time scale of the 
fluctuation which then contributes to a further reduction of the performance:

Case 4D. When the response is multiplicative, the phenological component responds non-linearly to the 
time scale of the fluctuation.

In both 4C and 4D the effect of the magnitude, m, on the response depends on whether the fluctuation is 
quantified in terms of clock or biological time. For example, when L = k1/m or L = k3/mt, dR/dm does not depend 
on t while dr/dm depends on τ. Overall, Cases 4A-D further extend the relevance of cases 1 and 2 in understand-
ing the effects of fluctuating environmental drivers on the responses.
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Discussion and conclusions
We have introduced a mathematical framework to better understand and quantify the responses of biological sys-
tems to fluctuations in climate driven stressors. Central to that framework is the need to consider biological time 
as playing a role in driving ecological and evolutionary  processes20. We did not consider the average magnitude of 
the fluctuation because responses to fluctuations can differ from responses to the average in two different ways. 
First, under extreme fluctuations critical tolerance levels may be surpassed leading to the collapse or irrevers-
ible shift of the biological system under study. The most obvious case is when the temperature surpasses critical 
tolerance levels leading to  death42 but experiencing less extreme levels may lead to negative carry-over effects or 
acclimatory  responses15, not present when average conditions are experienced. Second, when the relationships 
between environmental drivers (e.g. temperature) and biological responses (e.g. physiological performance) 
is non-linear, average conditions do not predict well the expected response to a fluctuating  environment13,17.

We started with the simple Case 1 of a single variable and no fluctuation. This case may be considered as trivial 
but helped as a step to understand more complex cases. For instance, through Case 1 we noted that when the 
matrix M of the PDE is not the identity matrix, simultaneous events in biological time are not so in clock time; 
this known observation in experimental research was then identified geometrically as the difference between a 
curve and straight lines when plotting the response in the space defined the magnitude of an environmental vari-
able and the time scale of observation (Fig. 2). With further analysis of Case 1, we noted that the M contained two 
types of terms interpreted as eco-physiological and phenological effects. The specific example of the migrating 
organism provided further biological interpretation to the components of the differential equation. We focused 
on the negative effects of temperature (biomass loss) and then noted that adaptations should minimise either 
one or both the phenological and the physiological components if biomass loss were to be minimised. This is 
for instance the case of the evolution of early life histories of marine invertebrates to habitats characterised by 
limited food  availability43. Where food is available, marine invertebrate tend to develop through feeding larval 
stages; however, where food is too limiting, most species develop through non-feeding larvae with abbreviated 
larval phase. In such case, the allocation of maternal reserves into eggs contributes to minimise both the eco-
physiological a phenological components with respect to survival, because both the mortality rates and devel-
opmental time are independent of food availability.

In Case 2, we introduced the magnitude of a second variable, to explore more complex scenarios studied 
through factorial experiments carried out under constant conditions; i.e. not yet considering the time scale of 
a fluctuation. Here, the presence of an interactive response depended on the scale used to measure time. This 
finding is central to climate change biology, given the interest on interactive effects of multiple environmental 
variables on biological  systems12,18,19,44. A critical question is whether effects are additive or whether they are 
antagonistic or synergistic. Additive effects refer to situation where the response can be modelled from the 
isolated effect of each single variable; many biological responses are however synergistic or  antagonisitic44. Syn-
ergistic responses occur when the combined effects are larger than the expected contribution of each separate 
variable. Synergistic responses are critical when they are negative, for instance the combined effect of habitat 
loss and an environmental stressor, as they can drive ecosystem collapse. By contrast, antagonistic responses 
imply a mitigation effect. For management, it is essential to get the response right because resources for actions 
are limited and disrupting synergies may be considered a  priority51. In such context our findings suggest that 
management depends on using the correct time frame to measure the response. Interactive effects also change 
when responses at low levels of organization (e.g. consumer resource functional responses) are used to predict 
those at higher levels (e.g. population  dynamics45), because of the non-linear nature of the function mapping 
the response across levels. In our case there is a non-linearity in that the components of M are partial derivatives 
which depend on the predictors (i.e. the original functions are non-linear).

We used Case 3 to explore responses including the time scale of fluctuation and to better understand how 
experimental results are interpreted in the light of the PDE. We studied responses in larval stages because of 
the relevance of marine larvae in driving climate-change effects on marine organisms: most marine organisms 
(e.g. mussels, crabs, fish) develop through a pelagic larval stage, and larval dynamics affect species  range38,39, 
population  dynamics46,  connectivity47 and community  structure48. Warming provides a new context where larvae 
need to cope with fluctuations in e.g. food abundance (or other variables) in a scenario of increased metabolic 
demands due to higher  temperatures49.

Case 3 highlighted the importance of understanding how temperature drives time keeping mechanisms in 
biological systems, understood as those responsible for setting the pace and regulating the timing of life history 
 events50. For Case 3, the phenological component of the PDEs captured the effect of temperature on PRS50 which 
instead reflects hormonal control of the so called “D0-threshold”. This threshold is surpassed when moulting 
hormones are triggered and the premoult period  starts51; after D0, development proceeds at a rate that is inde-
pendent of food levels and larvae will moult. Case 3 therefore highlights the importance of understanding how 
temperature drives the hormonal regulation of moulting, for the formulation of mechanistic models predicting 
survival. By extension, knowledge of role of hormones and other signalling  mechanisms50,52,53 should help the 
formulation of models in other species. In cases where organisms undergo acclimation, an important question 
is how the time scale of acclimation relates to time keeping mechanisms, including hormonal processes and 
metabolic  rates31. Acclimation speed correlates negatively with body size, most likely driven by the positive effect 
of metabolic rates on acclimation  speed54. Perhaps acclimation time, as a fraction of developmental time, varies 
little with temperature or alternatively, acclimation time and the developmental processes setting phenological 
events have different sensitivities to temperature.

In Case 4, we introduced effects of the time scale of a fluctuation on the function L and found equations that 
may be considered extensions of the previous cases. A critical question is to determine situations when responses 
may follow Cases 1–3, 4 or be further simplified into the trivial case. An important point is therefore to determine 
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how and when developmental time depends on the time scale of the fluctuation being experienced. For instance, 
we find that dependencies on degree  days41 fit within Cases 1–3 (Supplementary note 2, Supplementary Fig. 4). 
However, whether the developmental time is driven by time scale of the fluctuation depends on the timing of 
the fluctuation in relation to size thresholds reached as organisms  grow55–57. Our work suggest that we need to 
understand how such thresholds relate to time-keeping mechanisms.

We used the PDEs to understand the importance of the choice of time scale, within an experimental set-
ting. In addition, Case 3 suggest the set of conditions where simple models predict responses to environmental 
fluctuations. In the example, the response may be approximated by a function quantifying the relationship 
between temperature and biological time and a second function controlling the timing of the starvation period. 
Notice that under the range of temperatures considered, the transformation from clock to biological time led to 
a simple model with high predicting capacity (> 90% of explained variation) although it ignores the significant 
(but small) effects of food limitation on developmental time (Supplementary Fig. 3). In similar cases, data of the 
response from a narrow temperature range would give an approximation of ∂r/∂τ when scaled in biological time. 
In that case, additional data on the effect of temperature on biological time may be used predict the response. 
An important point is the set of conditions where equation-8 may be used with safety. For our experimental 
system, we hypothesise that equation-2 had a good fit because the developmental time varied little with the time 
of starvation and the range of temperatures was within the so called “pejus range”58 i.e. where survival was high 
irrespective of the magnitude of temperature (dR/dmT ≈0). However, assumptions are not valid if the response 
fall within Case 4 or at temperatures beyond the pejus threshold where a change in temperature have strong 
effects on the response.

Under the conditions of equation-8, one may combine mechanistic sub-models as modules (e.g. for each of 
the partial derivatives). In Case 3, the first module is given by L which may be modelled from metabolic theories 
 (MTE32,33). For instance, in the MTE, the effect of temperature on biological time, is represented by the Arrhenius 
equation, which instead will determine L. For the second module (represented by ∂r/∂τ), we can associate the 
response to hormonal control of development which drive the timing the switch of the sigmoid survival func-
tion. More in general, sigmoid responses are characteristic of populations or ecosystems exhibiting regime or 
phase  shifts59,60. At the population level, phase shifts reflect an unstable equilibrium (saddle points) point driven 
by thresholds associated to density-dependent changes in mating and reproduction. Hence, the mechanisms 
associated to such phase shifts would be captured in the response function expressed on biological time scale 
(e.g. the generation time for population level responses).

There are two important points concerning relevance of our approach to characterizing biological responses 
to environmental fluctuations in the field. First, our main finding, i.e. that responses to environmental fluctua-
tions depends on the scale used to measure time, is valid for both field and experimental conditions. The use of 
the experimental set up only facilitates teasing apart the independent contributions of each of the predictors (i.e. 
the magnitudes and time scales of fluctuations). However, whether one can directly apply the equations straight 
away to field conditions, depends on meeting the assumptions used to formulate the equations; in this sense our 
approach is not different from any other experimental approach and the usual recommendations  apply18. There 
are three assumptions: (1) the right few predictors are identified (e.g. magnitudes and times scales of tempera-
ture and any other factor). (2) No covariation among predictors; (3) fluctuations characterised by well-defined 
values of predictors. A first challenge in field applications is the complexity shown by natural environmental 
fluctuations. For instance, real fluctuations (e.g. heatwaves) consist of a sequence of oscillations; in addition, 
fluctuations may be characterised by descriptors other than the period and amplitude (e.g. the rate of daily tem-
perature increase in tropical habitats)20. A second challenge is that environmental variables covary in the  field12. 
This include situations, not considered here, where different environmental variables fluctuate  sequentially12,31, 
and an additional time scale must be included in the PDEs (i.e. the one separating the fluctuations). Third, in the 
field, fluctuations may be characterised by means and variances of the predictor values and attempts to model the 
average biological response need to consider issues associated to non-linear  responses13,17. However, the most 
likely scenario is that field observations inform the design of future experiments. For example, field studies can 
identify the main environmental variables, the most important traits characterising the fluctuations, whether 
fluctuations of different variables occur sequentially or  simultaneously12,18.

Another important question is what time frame should we choose. The selection of the appropriate reference 
frame will depend on the question asked by the researcher. In experiments aimed at determining the effects 
of environmental fluctuations on body size or survival at e.g. maturation, biological time will be the obvious 
choice. Biological time will be a choice in situations where organisms experience habitat shifts through the life 
cycle, for example in species where the larval habitat is aquatic and the adult habitat is terrestrial. In such case, 
once the aquatic larvae metamorphose to a terrestrial juvenile stage, the importance of the larval habitat condi-
tions for the survival of the juvenile is likely to be low; hence, what matters are the conditions experienced as 
larvae up to the time of metamorphosis. There are however cases where the decision is less clear. For example, 
where larvae and adults coexist or where key environmental variables (e.g. weather conditions) can affect both 
the larval and adult habitat. Another example is the one given by, mesocosm experiments, used to study the 
effect of warming on populations and  communities18; under warming, it is likely that populations fluctuate over 
more generations that in the absence of warming. If the number of generations is important, it will be helpful to 
analyse the responses considering both clock and biological time (i.e. after a fixed number of generations). The 
same experiment may be designed to understand the importance of a fluctuation occurring at a characteristic 
clock time scale, associated to e.g. seasonal fluctuations or 5-day long heatwaves; in such case, the scale of the 
fluctuation should be kept in clock time. Overall, we will profit from analysing the response in both time frames, 
as they will provide different pieces of information.
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Methods
Experiments were carried out in automated fully programmable incubators (RUMED-EcoLineR). At each combi-
nation of temperature and starvation period, three replicate groups (10 larvae each) were kept in well oxygenated 
and filtered natural seawater (mesh = 1 μm, salinity = 32.5 PSU) in glass vials of 100 ml. Water and food were 
changed every day (except at 21 °C where food was checked every ~ 12 h, at 7:00 and 18:00 h); at such times 
larvae were checked for moulting or mortality (dead larvae were removed from cultures). Larvae were fed freshly 
hatched Artemia sp nauplii, provided at libitum (density 5 nauplii per ml) during the feeding periods.

The effect of temperature (T) or feeding period on developmental time (D) were evaluated through model 
 selection61,62 using general least squares for model fitting and Akaike information criterium (AIC) for model 
comparison. Analyses were carried out in R using the package  nlme61. Four models were compared, i.e. linear 
( D = −a · T+b), exponential ( D = a · e

−b·T ), power ( D = a · T
−b ) and Arrhenius ( D = a · e

b

(T+273 ), where a 
and b are constants. Models were fitted after appropriate transformations, log(D) for exponential, log(D)-log(T) 
for power and log(D) vs 1/(T + 273) for Arrhenius model.

Effects of initial feeding periods on survival were evaluated using the sigmoidal dose response function:

where fm and fM are the asymptotic minima and maxima respectively, k is the slope parameter and  PRS50 is the 
timing of the inflection point where f(PRS50) = f(xM)/2. Model fitting was carried out by non-linear regression 
(in GraphPad Prism software), with feeding period expressed in both chronological and biological time scales. 
When the biological time scale was used, a single model was fitted to data from all temperatures. In that case, 
there were sufficient degrees of freedom to enable appropriate estimation of the four model parameters. In addi-
tion, separate models were fitted by temperature using at biological and chronological time. For those models, 
the estimation of some parameters was unreliable (e.g. extremely large confidence intervals); hence, we focused 
on estimating  PRS50, which is the parameter determining the time of the inflexion point in the curve. Therefore, 
we set fm = 0 and fM = M, with M being the average survival of the last three points. In addition, for 19 and 21 °C 
we set k to a constant value obtained after our initial attempt to estimate k.

Data availability
Data will be available in the portal PANGEA.
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