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Abstract 26 

Resource quantification is vital in developing a tidal stream energy site but challenging in high 27 

energy areas. Drone-based large-scale particle image velocimetry (LSPIV) may provide a novel, low 28 

cost, low risk approach that improves spatial coverage compared to ADCP methods. For the first 29 

time, this study quantifies performance of the technique for tidal stream resource assessment, using 30 

three sites. Videos of the sea surface were captured while concurrent validation data were obtained 31 

(ADCP and surface drifters). Currents were estimated from the videos using LSPIV software. 32 

Variation in accuracy was attributed to wind, site geometry and current velocity. Root mean square 33 

errors (RMSEs) against drifters were 0.44 ms-1 for high winds (31 kmh) compared to 0.22 ms-1 for low 34 

winds (10 kmh). Better correlation was found for the more constrained site (r2 increased by 4%); 35 

differences between flood and ebb indicate the importance of upstream bathymetry in generating 36 

trackable surface features. Accuracy is better for higher velocities. A power law current profile 37 

approximation enables translation of surface current to currents at depth with satisfactory 38 

performance (RMSE = 0.32 ms-1 under low winds). Overall, drone video derived surface velocities are 39 

suitably accurate for “first-order” tidal resource assessments under favourable environmental 40 

conditions. 41 

Key words: ocean energy; resource mapping; unmanned aerial vehicles; surface velocimetry; 42 

oceanography; remote sensing 43 

Highlights 44 

1. Drones recorded video footage of the water surface at tidal stream energy sites 45 

2. Synchronous validation data were obtained with ADCPs and surface drifters 46 

3. Surface currents derived from video using LSPIV were compared to in-situ data 47 

4. Method is sufficiently accurate for initial tidal stream site resource assessment  48 

5. Approach also suitable for pollution tracking and other rapid response incidents 49 
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1. Introduction 50 

De-escalation of the climate crisis requires rapid decarbonisation of energy supplies in the pursuit of 51 

a net-zero future [1]. Tidal stream turbines are a promising form of predictable and sustainable low-52 

carbon energy [2-4]; the devices convert kinetic energy from tidal flows and can be either mounted 53 

to the seabed or suspended from floating platforms. The global potential is large, with theoretical 54 

resources in coastal areas calculated at over 8000 TWh/yr [5]. Tidal energy is regular in cyclicity, 55 

easily predictable for years in advance [6, 7] and of high quality [8] which means it has real potential 56 

to contribute to the future energy mix, with baseload possible through development of out-of-phase 57 

sites [9, 10] or storage technology [6, 11, 12]. 58 

A key aspect of tidal stream project development is obtaining detailed information about flow 59 

characteristics at a site. This is vital for a range of purposes during the course of a project: at initial 60 

stages, knowledge of the basic resource is required to establish project viability, e.g. [13-22]; during 61 

the design stage, finer-scale understanding is required for array planning [23, 24] and to microsite 62 

turbines [25, 26]. Fine scale flow data are also required for environmental impact assessment and 63 

post-consent monitoring [27, 28]. 64 

The standard approaches for measuring and understanding currents are acoustic Doppler current 65 

profiler (ADCP) campaigns, e.g. [29, 30], validated numerical modelling, e.g. [14], or a combination of 66 

both, e.g. [21]. ADCP deployments provide high-accuracy measurements, but are limited in 67 

resolution: bed-mounted deployments provide good temporal resolution at one point [26], whereas 68 

vessel-mounted transects [29] provide better, though incomplete, spatial resolution but are limited 69 

temporally. Moreover, deployments can be costly and high risk. Additionally, with the development 70 

of floating tidal stream devices [31], interest in very near surface currents has increased. Establishing 71 

very near surface currents with standard ADCP deployment approaches [32] is difficult due to 72 

blanking distances and device mounting position [33]. Numerical modelling provides high spatial and 73 

temporal resolution data but requires calibration and validation against in-situ measurements: 74 
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comparison against sparse point measurements, while the standard method, is not satisfactory for 75 

validation of highly spatio-temporally variable flows such as tidal stream sites [34]. 76 

These factors have led to interest in remote sensing to provide maps of surface currents at tidal 77 

stream sites; X-band and HF radar has been used for this purpose [35-40] but requires sufficient 78 

wave action to make measurements and significant land-based infrastructure. Satellites can also be 79 

used to map ocean flows but difficulties in measuring close to land and spatial resolution means they 80 

are not suited to tidal stream site characterisation [41, 42]. Use of drones to derive high spatial 81 

resolution surface velocity maps of tidal stream sites has the potential to provide a complementary, 82 

low-cost, technique that may mitigate many of the above concerns. The technology would be 83 

particularly useful for first-pass screening of potential sites due to the portability of equipment and 84 

minimal financial burden, especially those sites in remote communities where standard resource 85 

assessment technology or vessels may not be available. The technique would also allow for real-86 

world spatial measurements of turbine wake velocity deficit, which would be of great value to both 87 

the academic and industrial community. 88 

Use of surface velocimetry to derive currents has become well established for fluvial applications 89 

where suitable accuracy can be achieved [43, 44], and more recently drones have been used to 90 

collect the required video data [45, 46]. Much less surface velocimetry work has been conducted in 91 

coastal or offshore environments and very little at tidal stream sites. Work that has been conducted 92 

in the nearshore  environment includes surf-zone characterisation [47] and wave-induced current 93 

measurement [48-51]. Further offshore, both fixed video and drone-based surface velocimetry has 94 

been applied in large estuaries and tidal embayments [52, 53]. However, at tidal stream energy sites, 95 

use of drones and surface velocimetry has focused on investigating the interaction between ecology 96 

and flow structure [54-56], rather than as a quantitative tool for resource assessment. To enable use 97 

of this technology for resource assessment, understanding of the accuracy and types of errors 98 

associated with the technique is required. 99 
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This study uses large-scale particle image velocimetry (LSPIV), the most common real-world surface 100 

velocimetry technique. Features are tracked between successive frames using cross-correlation of 101 

image subsections and hence velocity fields are derived [57]. Since laboratory-scale PIV makes use of 102 

seeding particles, some LSPIV studies have successfully used artificial tracers, e.g. [58], however 103 

there are practical and environmental constraints which prevents doing this at tidal stream sites. 104 

Instead, an unseeded approach will be used where the movement of ephemeral surface features 105 

such as foam patches or turbulent structures are tracked (sometimes called surface structure image 106 

velocimetry [59]). A range of opensource tools are available for conducting PIV analysis, such as 107 

PIVlab [60, 61], OpenPIV [62, 63] or FUDAA-LSPIV [64]. In this paper, PIVlab is used; while PIVlab was 108 

originally developed for laboratory measurements, it has successfully been applied to real world 109 

flow monitoring in various settings, e.g. [65-72].  110 

This study demonstrates the application of LSPIV to drone-collected video data of unseeded flows 111 

for the measurement surface currents at tidal stream sites and, for the first time, provides an 112 

accuracy assessment for these environments. This study focuses on results from Ramsey Sound in 113 

Pembrokeshire, Wales with supporting results from two other sites (Mumbles Head, Swansea, Wales 114 

and the Inner Sound of the Pentland Firth, Scotland) to demonstrate applicability to other locations. 115 

 116 

2. Study sites 117 

Three UK study sites are considered in this work: Mumbles Head, South Wales; Ramsey Sound, West 118 

Wales; and, the Inner Sound of the Pentland Firth, North Scotland (Figure 1). The Inner Sound is an 119 

example of a more weather and wave exposed site compared to Ramsey Sound; while Mumbles 120 

Head is a shallow water environment. 121 

 122 

 123 
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2.1 Mumbles Head 124 

Mumbles Head, South Wales (Fig. 1c) was used as an initial test site, and was included to provide 125 

analysis of method accuracy beyond “1st generation” tidal sites, where water depths are 20-50 m 126 

and mean spring peak currents exceed 2 ms-1 [73].  On the ebb phase of the tidal cycle, water exiting 127 

Swansea Bay is funnelled between two islands and current jets are generated on the southern side. 128 

Shallowest water depths were around 1.5 m during the experiment. The site is exposed to both swell 129 

and wind; during the experiment waves with a significant wave height of 0.7 m were present and 130 

highly visible in the video data (see example video A1 in appendix). Flights were undertaken from 131 

the beach at Bracelet Bay, directly to the west of the area of interest. 132 

 133 

2.2 Ramsey Sound 134 

Ramsey Sound is a channel between the Pembrokeshire coast and Ramsey Island (Fig. 1b); it runs 135 

north-south and is 3-km long with widths between 0.7 – 1.6 km. There has been significant interest 136 

in tidal stream energy extraction at the location, with Tidal Energy Ltd.’s DeltaStream device being 137 

deployed in 2015 [74] and the site being currently re-developed by Cambrian Offshore [75]. 138 

Therefore, there has been substantial research into the characteristics of tidal dynamics in the sound 139 

[29, 37, 76-78]. Currents in the region are forced by a progressive tidal wave and so are at a 140 

maximum around high (flood tide) and low water (ebb tide). Flood tide currents are directed 141 

northward and ebb tide currents are directed southward. The site is well protected from waves from 142 

the prevailing south westerly direction, although exposed to waves incident from the north. 143 

Flights were conducted from land over the north-eastern part of the sound (Figure 1b), close to the 144 

DeltaStream deployment site but further east due to flight distance limit regulations of 500 m from 145 

the operator. This means that on the flood tide, water has travelled through the sound, including the 146 

highly irregular bathymetry of ‘The Bitches’ and ‘Horse Rock,’ before reaching the study area; 147 
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whereas on the ebb tide water is travelling into the sound from the more uniform offshore area 148 

(Figure 2). Thus, one might expect greater turbulent features to be present on the flood tide 149 

compared to the ebb; ADCP analysis has previously shown that flood tides have greater turbulent 150 

kinetic energy than ebb tides at the DeltaStream site [26]. 151 

 152 

2.3 Inner Sound of the Pentland Firth 153 

The Inner Sound of the Pentland Firth (Fig. 1d) is one of the most well-known locations for tidal 154 

stream energy, being host to the MeyGen project [80]. The Pentland Firth is the body of water 155 

between the north coast of the Scottish mainland and the Orkney Islands. The island of Stroma is 156 

situated in the Firth and the channel between it and mainland is known as the Inner Sound. There 157 

has been extensive research in this area and a range of measured and modelled current 158 

assessments, e.g. [30, 81-83]. There is a 2-hr phase difference in the M2 tidal wave between the 159 

eastern and western approaches of the Pentland Firth which causes a hydraulic gradient that forces 160 

currents greater than 5 ms-1 [83]. In the Inner Sound, current flows are complex, with strong 161 

asymmetry and misalignment; currents can reach 4 ms-1 [30]. The Inner Sound runs approximately 162 

west – east with widths of 2.5 – 3 km and a length of ~6 km (approximately double the size of 163 

Ramsey Sound). As well as being larger than Ramsey Sound, it is less constrained by the bounding 164 

coastlines. The site is more exposed to wind and waves than Ramsey Sound, both due to the site 165 

scale and due to regional wave climate being more energetic. 166 

A flight was conducted from a boat at the western end of the Inner Sound, close to the island of 167 

Stroma. One characteristic of the Inner Sound is the presence of kolk boils, which are surface 168 

manifestation of turbulence advected from the seabed and can be seen in drone imagery as very 169 

smooth regions [56]. These are common at a range of tidal sites, were present in the collected 170 

imagery (see video A5 in appendix) and may lead to regions with minimal tracers for PIV analysis. 171 



8 
 

3. Methodology  172 

The basic concept of this approach is to hover a drone over an area of interest and collect video data 173 

which can subsequently be analysed with PIVlab to obtain surface velocimetry measurements. 174 

Concurrent validation data are collected to assess technique performance. As well as PIV tests, 175 

stability tests for the drone platform were conducted to establish the magnitude of errors relating to 176 

station-keeping and positioning. 177 

 178 

3.1 Flight methodology 179 

Table 1 provides a summary of flights, conditions and validation data collected (validation data 180 

covered in section 3.2). The experiment at Mumbles Head was conducted for 1 hour starting 1.25 181 

hours after high water; during that time the water level dropped by 1.53m from 8.92m to 7.39m. At 182 

Ramsey Sound, data was collected through both the flood and ebb phases of the tide on the 12th and 183 

just for the flood tide on the 14th. Figure 3 shows a timeseries of tidal elevation and velocity 184 

magnitude, output from a numerical model of the area [37], with times of analysed videos and ADCP 185 

datapoints overlain; slightly different strategies were employed on each day meaning that there was 186 

less temporal separation between ADCP and video on the 14th. At the Pentland Firth, one flight was 187 

conducted, 1 hour before high tide.  Example video data from each of the sites is given as embedded 188 

videos in Appendix A; this shows the range of surface conditions that were covered. 189 

Two different drone and camera combinations were used in this study. At Mumbles Head and 190 

Ramsey Sound, data were obtained using a Zenmuse X7 camera with a 35 mm lens mounted on a DJI 191 

M210 v2 RTK drone (hereafter referred to as M210). At Mumbles Head, the drone was flown with 192 

standard GPS and at Ramsey Sound in RTK GPS mode with the DJI base station. For the flight at the 193 

Inner Sound of the Pentland Firth, a DJI Phantom 4 Pro 2.0 drone with built-in camera was used 194 
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(hereafter referred to as Phantom). This drone operates using standard GPS and was included to 195 

demonstrate capability using lower-cost ‘consumer-grade’ drones. 196 

The drones were flown manually to the areas of interest and hovered at 120 m above surface while 197 

collecting nadir (downward facing) video imagery. 120 m is the maximum height permissible for 198 

drone flights in the UK and was used to ensure the largest field of view; for the cameras used, this is 199 

66 m x 117.5 m (M210) and 109.1 m x 206.8 m (Phantom). Video frames from the M210 had 200 

dimensions of 2160 x 3824 pixels (px), whereas frames from the Phantom had dimensions 2160 x 201 

2096 px. In both cases the video was acquired at 30 frames per second (fps). Nadir imagery was 202 

collected to facilitate georeferencing without ground control points; ground control is unlikely to be 203 

available at many tidal stream sites. 204 

Video data were collected by the M210 in DJI ‘dewarp’ mode, meaning that lens distortion was 205 

removed automatically; for the Phantom, this facility did not exist, and no correction was applied. It 206 

has previously been demonstrated that ignoring lens distortion does not induce significant errors for 207 

drone-based video [84]. For cases where lens distortion is considered critical, and where internal 208 

dewarping procedures are not available, lens distortion can easily be calculated and removed, e.g. 209 

[85]. The gimbal was set to ‘free’ mode, such that it maintains its orientation independent of drone 210 

movement. 211 

Georeferencing can then be conducted based on GPS position information, drone altitude and 212 

gimbal heading information, similar to approaches used previously [53, 84]. Nadir imagery means 213 

rectification of the imagery is not required and the drone x,y position is equal to the x,y, position of 214 

the centre of the image. The gimbal heading is used to orientate the y axis of the image. The ground 215 

sampling distance, the length of one pixel at sea level, can then be used to assign real world 216 

coordinates to all pixels. Ground sampling distance (GSD) (in metres) can be calculated based on the 217 

height above surface and camera parameters using: 218 
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𝐺𝑆𝐷 =
𝑆𝑤 × 𝐻

𝐹𝑟 × 𝐼𝑤
 219 

where Sw is the sensor width in mm, H is the flight height above surface in metres, Fr is the focal 220 

length of the camera in mm and Iw is the image width in pixels. The height above surface was 221 

calculated using the altitude above take-off in the flight log and the elevation difference between 222 

water level and take off level. For the initial tests at Mumbles Head, the drone was flown from the 223 

beach and take-off level was approximately the water level. At Ramsey Sound, tidal elevation data at 224 

two nearby UK National Tidal and Sea Level Facility gauges (Milford Haven to the south and 225 

Fishguard to the north) was used to estimate water levels in Ramsey Sound for the various flights. 226 

The Phantom was flown from a vessel in the Inner Sound and altitude above sea level taken from the 227 

flight log. Mean values from the flight logs were calculated for all video segments and it was 228 

assumed the drone remained completely stationary during each 1 minute video recording.  229 

To validate this approach, stability of drone hovering and the accuracy of the georectification 230 

procedure were tested with land-based experiments using the M210 for a range of windspeeds. A 231 

grid of black and white lino tiles were arranged on a flat grass field and their positions surveyed 232 

using a TopCon HiPerV network RTK GPS with accuracy of approximately 0.01m; the target in the 233 

centre was made up of four tiles to stand out (Figure 4). Two-dimensional cross correlation of a 234 

template covering the central target was used to assess frame on frame stability of the drone hover. 235 

For this aspect, wind speeds at the drone were taken from the in-flight wind readings of AirdataUAV; 236 

in-flight wind is calculated based on motor readings, drone speed, IMU data and aerodynamic profile 237 

of the drone. Accuracy of the georectification was tested by manually identifying targets in the geo-238 

referenced image and comparing to the surveyed positions. 239 

 240 

 241 

 242 



11 
 

3.2 Validation data collection 243 

Validation data were collected both with surface drifters (Mumbles Head and Ramsey Sound) and 244 

use of the uppermost bin of ADCP transects (Ramsey Sound and Inner Sound). Mumbles Head was 245 

too shallow to allow for ADCP transects, and environmental conditions during the Inner Sound 246 

fieldwork meant drifters would not have been successfully recovered.  247 

Four low-cost surface drifters were constructed based on a Davis drifter design [86], see Figure 5. 248 

Drifter frames were made from PVC pipe and plumbing fittings, with tarpaulin stretched between 249 

the frame to act as the sails. Buoyancy was provided by sections of foam attached to the top arms of 250 

the frame and stability provided by 0.17 kg fishing weights attached to each lower arm. The sails 251 

captured the top 0.5 m of the water column and the drifters had minimal windage. A Garmin Etrex 252 

10 GPS device was attached to each drifter using a small waterproof bag. The GPS units were set to 253 

record points at a set time interval (1 s at Mumbles Head, 2 s at Ramsey Sound due to memory on 254 

the GPS and fieldwork duration). Latitude and longitude were converted to UTM easting and 255 

northings, and then change in position calculated and converted to speed using the recorded 256 

timesteps. The accuracy of position or speed estimates was not assessed for these GPS units: the 257 

units typically have absolute positional accuracy of 3 – 6 m, however relative positional accuracy 258 

over the short-term is much higher [87]; previous studies using similar units have suggested that the 259 

majority of speed errors are within ± 0.2 ms-1 [88-90] and a mean error of 0.01 ms-1 has been 260 

reported [90]. Presence of drifters in the field of view equates to artificial seeding which might have 261 

been expected to skew results; however comparison between videos with and without drifters 262 

showed no difference [91]. 263 

At Ramsey Sound, ADCP transects were conducted from a 10 m monohull vessel using a downward 264 

orientated Teledyne Sentinel operating at 600 kHz. Data were acquired using WinRiver II software, 265 

with GPS and wind data measured by an AIRMAR 200WX meteorological station. The ADCP was 266 

configured to collect 0.5 m bins to a depth of 50 m, pinging at 2 Hz, alternating between water 267 
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profile and bottom track pings which enabled correction for pitch and roll. A compass calibration 268 

was carried out before data collection to remove the magnetic signature of the vessel. The ADCP 269 

was mounted on the side of the vessel at a depth of 0.5 m and with the first bin starting at 0.82 m 270 

below surface; therefore, the validation data considered were between 0.82 and 1.32 m below 271 

surface. ADCP transects were collected covering the flight areas immediately before and after drone 272 

flights.  Error estimates from the ADCP gave a mean error in velocity of 0.19 ms-1. 273 

ADCP transects were obtained at the Pentland Firth immediately after the drone flights, using the 274 

MV Aurora, a small 7 m catamaran vessel, the same vessel that was used to launch the drone. A 275 

similar ADCP was used to Ramsey Sound (Teledyne Workhorse Sentinel 600 kHz), which was 276 

configured to ping at 2 Hz, also alternating between water profile and bottom track pings. Bin depths 277 

were 2 m. The considered bin in this analysis equated to 2.66 – 4.66 m below the surface due to 278 

instrument mounting depth and blanking distance. D-GPS position was collected with the underway 279 

ADCP data using a Hemisphere VS131 differential GPS system with Teledyne RDI VMDAS software. 280 

Bottom tracking was implemented correcting ADCP data for boat movement. Error estimates from 281 

the ADCP gave a mean error in velocity of 0.18 ms-1. 282 

All measured validation data were highly variable in time and therefore a temporal moving average 283 

filter, with a window length of 10 s, was applied to smooth data prior to comparison with the PIV 284 

data. Since the validation data collection was mobile transects or tracks, this is a smoothing in space 285 

as well as time. 286 

 287 

3.3 PIVlab method analysis 288 

Images were transformed to greyscale and contrast stretched with a saturation of 2% before 289 

contrast limited adaptive histogram equalisation [92] applied with a window size of 40 x 40 pixels; 290 
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the window size was determined from preliminary analysis of Mumbles Head data. This pre-291 

processing emphasised the features on the water surface. 292 

PIVlab was used to conduct the analysis, with the default fast Fourier transform window 293 

deformation algorithm, standard correlation robustness and the Gaussian 2x3 point estimator for 294 

sub-pixel movement [60]. Velocities were transformed from pixels/s to ms-1 using the ground 295 

sampling distance. Returned velocities were filtered using a threshold of 8-times standard deviation 296 

and manual definition of velocity limits within the PIVlab GUI to remove clear outliers. Values were 297 

attributed to invalid data points via interpolation between valid velocities. The mean of all individual 298 

frame-on-frame velocities over a 60 s video segment was then taken to be the velocity for each 299 

video. 300 

To establish the appropriate pixel size for the interrogation area, a range of values were tested and 301 

root mean square error (RMSE) calculated against drifter data for a section of video from Ramsey 302 

Sound with mean drifter velocity of 1.35 ms-1 (standard deviation 0.5 ms-1). A three pass analysis was 303 

conducted, with windows reducing by half every pass.  Smaller starting window size slightly 304 

increases accuracy of results (Table 2), therefore a starting pixel window of 128 px was used with 305 

subsequent passes of 64 px and 32 px. It should be noted that reducing size of the interrogation area 306 

does increase computational time. 307 

The ground sampling distance for data from the Phantom was 0.0505 m whereas the ground 308 

sampling distance for data from the M210 was approximately 0.03 m (depending on exact flight 309 

height and tide level). This meant that, at 30 fps, the velocity equivalent to a movement of 1 pixel 310 

between frames was 1.52 ms-1 (Phantom) and 0.9 ms-1 (M210); while there is sub-pixel estimation 311 

within PIVlab, to reduce this speed associated with movement of 1 pixel, frames were extracted at 312 

15 fps such that 1-px movement between frames equated to 0.45 ms-1 (M210) and 0.76 ms-1 313 

(Phantom). 314 
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Video lengths of 60 s were used in the analysis. This decision was based on a trade-off between an 315 

industry requirement for rapid area mapping (shorter videos) and the turbulent flows at tidal stream 316 

sites requiring sufficient temporal averaging to obtain reasonable estimates of mean current. The 60 317 

s duration was determined based on consideration both of 2009 bottom-mounted ADCP deployment 318 

at Ramsey Sound (Figure 6) and comparison of results of different video segment lengths (see 319 

section 4.3). Measurements from the ADCP bin closest to the surface were extracted for 15 minutes 320 

every hour and then the percentage error between averages over different temporal windows and 321 

the 15 minute time average calculated. Unsurprisingly, longer time windows led to lower percentage 322 

errors (Figure 5); for a 60 s time window, the average percentage error was 7 %. It should be 323 

recognised that the use of drones to map surface currents is more akin to an ADCP transect (where 324 

minimal temporal averaging is accepted as standard) than a fixed ADCP deployment. 325 

 326 

4. Results 327 

4.1 Stability and georeferencing analysis 328 

The stability of the M210 drone was assessed for a range of windspeeds (Figure 7). Mean values of 329 

frame-on-frame movement were calculated and then converted to error in ms-1. Mean frame on 330 

frame movements ranged from 0.003 m to 0.01 m; this is an average of less than one pixel ground 331 

sampling distance at 120 m altitude. Converting to error gave a mean value of 0.07 ms-1 with a 332 

maximum of 0.15 ms-1. There is no significant relationship between windspeed and drone 333 

movement; it is likely that wind gustiness and turbulence are more relevant to the small movements 334 

observed. 335 

Average geo-referencing error was 2.1 m (standard deviation 3.2 m) for non-RTK flights; it is 336 

assumed that this would reduce for RTK-enabled flights but has not been tested. Errors are smallest 337 

at the central point, with slightly larger errors near the edges of the image.  338 



15 
 

 339 

4.2 Drifter and ADCP validation measurements 340 

Histograms of velocity measurements for all sites using both drifters and ADCP data are given in 341 

Figure 8. A range of flow speeds have been measured, up to almost 2.5 ms-1. Tidal turbine cut-in 342 

velocities and rated velocities vary depending on design; cut-in speeds in the literature range from 343 

0.5 ms-1 – 1 ms-1 (average 0.88 ms-1) and rated velocities between 2 – 4 ms-1 with a mean of 2.91 ms-1 344 

[93]. Therefore, the validation data cover a sensible range for this application, although generally at 345 

the lower end of velocities of interest and some velocities below typical cut in speeds. The top bin of 346 

the ADCP datasets does not measure the true surface; typically, one would expect the true surface 347 

current to be higher. To illustrate this, Figure 9 shows the mean of profiles that have had velocities 348 

normalised by mean profile velocity and depths normalised by depth to seabed (measured by ADCP) 349 

to give a representation of average current profile. Additionally, a 1/7th power law profile is included 350 

using a bed roughness of 0.4, a value previously estimated as suitable for tidal stream site velocity 351 

profiles [94]. The motivation for using a previously estimated bed roughness value, rather than curve 352 

fitting to obtain a value, is the desire to be able to estimate water column velocities from surface 353 

velocities without prior water column velocity information (see Section 4.6). There is an interesting 354 

difference between data from Ramsey Sound on the 12th May which seems to show a larger increase 355 

in current speed near the surface, compared to the 14th May. This difference is postulated to be 356 

caused by the greater wind speeds on the 12th May. The top bin of data in the Inner Sound is lower 357 

in the water column and so it is harder to determine response nearer the surface, but higher 358 

velocities are expected based on the power law fit. 359 

 360 

4.3 Example surface current maps 361 
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Figure 10 provides two examples of surface current maps averaged over a 60 s video, one from 362 

Mumbles Head and one from Ramsey Sound. Drifter measurement locations and direction are 363 

shown as the grey arrows. The smaller scale of the site at Mumbles Head (Figure 8a) means that the 364 

current jet between the islands and the adjacent lower flow region can be seen in one field of view. 365 

For Ramsey, while site scales are much larger, variation in current over the area is still observable. 366 

While not the focus of this work, which considers current magnitude, it is relevant to consider 367 

current direction. In both cases, current directions of surface velocimetry outputs and drifters match 368 

well; there is more variability in the drifter directions, but this is to be expected given they are 369 

instantaneous directions rather than 60 s averages for the current maps.  370 

 371 

4.4 Comparison between PIV results and measured flow data 372 

To determine whether 60 s was an appropriate video length for analysis, root mean square errors 373 

(RMSE) were calculated for different video lengths for a subset of the Ramsey Sound data (Figure 374 

11). It can be seen that mean RMSE drops as video length increases, but that the rate of decrease 375 

slows around 50-60 s; thereby suggesting that the chosen duration is appropriate and a suitable 376 

compromise between rapid surveying of large areas and more accurate mean flow values. 377 

Comparison between ADCP measurements and PIVlab-derived currents for the two Ramsey Sound 378 

experiments and the Inner Sound experiment is given in Figure 12. ADCP and PIVlab measurements 379 

show good correlation for the experiment at Ramsey Sound on the 14th May and reasonable 380 

correlation at the Inner Sound.  The relationship is poorer at Ramsey Sound on the 12th May. The 381 

scatter is greater for the Inner Sound and there seems to be a bias with PIVlab overestimating 382 

compared to the ADCP, a similar bias is shown at Ramsey on the 12th May. These biases may be 383 

related to the ADCP not measuring true surface currents, which are likely to be higher (Figure 9).  384 

The bias is smaller and in the other direction for the 14th May, possibly related to less noticeable 385 

wind effects (Figure 9). 386 
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Correlation and error statistics are shown in Table 3. Values are given for all instances and for 387 

measured values above 0.88 ms-1 (the mean cut-in speed for tidal stream turbines) to represent the 388 

velocities most relevant to the tidal stream turbine industry.  For all three experiments, 389 

consideration of velocities over 0.88 ms-1 reduces the RMSE, however r2 values are only improved for 390 

the experiment at Ramsey Sound on the 14th May. Results at all sites are similar in terms of 391 

percentage errors when only higher velocities are considered but quite different when lower 392 

velocities are also included. Percentage errors and RMSE are both reduced when higher velocities 393 

only are considered. There is less difference for Ramsey Sound on the 14th May; results in general 394 

are best for this case. Correlation is highest for Ramsey on the 14th May and worst for Ramsey on the 395 

12th May, despite error statistics on the 12th been better than for the Inner Sound. Importantly, the 396 

RMSEs calculated are much less than the variability in measured flow over the tidal cycle. 397 

Additionally, in the error calculations, it is assumed that the validation data represents the true 398 

velocity, when in fact there is an error associated with both ADPC and drifter measurements (see 399 

Discussion). 400 

Figure 13 gives the same comparison for the drifter velocities. Both the comparison against each 401 

drifter measurement and the drifter track mean measurements are displayed; the RMSE, r2, and 402 

percentage error values are given in Tables 4 and 5. On average, comparison with surface drifters 403 

(Tables 4 and 5) give better performance than comparison with ADCP (Table 3). One can see 404 

different clusters on the 12th depending on whether measurements were taken on the flood or ebb.  405 

The data on the ebb shows PIVlab consistently underestimating compared to the validation data; the 406 

PIV estimate is almost giving a straight line result, suggesting it is insensitive to current velocity. 407 

However, higher velocities are not covered in the ebb tide data and so performance may improve if 408 

tests done for higher ebb tide velocities. On the flood tide, PIVlab and drifter velocities match well 409 

for higher velocities but PIVlab overestimates for lower velocities. A similar pattern to the flood tide 410 

is seen at Mumbles Head. By contrast, on the 14th May at Ramsey Sound there is a good match for all 411 

measured velocities. The statistics are similar whether instantaneous or track mean velocities are 412 
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considered. The similarity is lower when the Mumbles Head dataset is considered, possibly related 413 

to the presence of waves. RMSE values are worse for Ramsey Sound on the 12th May compared to 414 

the 14th May; this is also the case for the ADCP measurements and may be related to the stronger 415 

wind speeds on the 12th obscuring the current signal.  416 

 417 

4.5. Consideration of errors 418 

Given the scatter in the results, it is instructive to consider the relationship between errors and 419 

various factors. The factors considered were: error distribution about field of view; error against 420 

time difference between video recording and ADCP point; relationship between error and velocity; 421 

and, geographic distribution of errors. Figure 14 shows percentage errors for both drifters and ADCP 422 

from all Ramsey Sound flights over both days, plotted in image co-ordinates. There is no obvious 423 

relationship between error and position in the image, indicating that any systematic errors caused 424 

by treatment of lens distortion or georeferencing are not a large source of discrepancy between 425 

LSPIV-derived and measured velocities.  426 

One would expect errors to increase with temporal separation between video capture and ADCP 427 

measurement. Numerical model outputs from a validated model of the site [37] show current 428 

speeds varied by up to 0.35 ms-1 over a 15-minute period during the experiments, which is a similar 429 

magnitude to the calculated errors.  Errors do increase with time (Figure 15); however, the 430 

relationship is weak (R2=0.06) and low errors are found even at longer temporal separation. This 431 

weak relationship suggests that validating the PIV results using ADCP transect data recorded within 432 

±15 minutes of video capture is not a major source of the scatter seen in the results. The ADCP data 433 

on the 12th May had greater temporal separation from the videos than that on the 14th May which 434 

may go some way to explain the worse correlation on the 12th May. The same graph was not 435 

produced for drifters since the drifters were largely time synchronous with the video.  436 
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There appears to be a structure to the errors when comparing against measured velocity (Figure 16); 437 

in this case error is displayed in ms-1 rather than percentage error. For all experiments and validation 438 

data types, there is a negative trend, though the slope varies. The trend is statistically significant at 439 

the 99% level for all cases except for the Inner Sound ADCP (significant at 90% level) and the Ramsey 440 

Sound 14th May drifter data (insignificant). For these two, the trend is not visually obvious. Errors are 441 

positive (PIVlab over predicting) for lower velocities and either lower magnitude or negative (PIVlab 442 

underpredicting) for higher velocities. The exception is the ebb tide results for the 12th May at 443 

Ramsey Sound where errors are always negative, but there is still a significant negative trend.  444 

Percentage error for ADCP and drifter results were mapped for both days at Ramsey Sound (Figure 445 

17), only the flood was considered as there was minimal spatial variation for the ebb results. There is 446 

nothing too striking in the geographic spread of errors; there is greater positive percentage error to 447 

the east, out of the main flow which matches the findings shown in Figure 16. The positive errors in 448 

the centre of the sound are from runs close to slack water.  449 

Given that errors are greater at low flow, something that has been noted in fluvial environments too, 450 

it is worth considering the source of these errors. One aspect is the presence of contaminating 451 

signals from wind-driven ripples or waves that are of greater magnitude than the current signature. 452 

Figure 18 shows pixel intensity timestacks for sections of video from Mumbles Head, from both flood 453 

and ebb at Ramsey on the 12th May and from Ramsey Sound on the 14th May. Pixel intensity 454 

timestacks are created by ‘stacking’ 1 – pixel wide transects taken from consecutive frames in the 455 

same location; thus, they show the time evolution of greyscale intensity and the movement of 456 

features through times can be tracked. For these timestacks, the transect runs parallel to the 457 

current. At Mumbles Head the wave signature (right to left) can be seen and is similar in both 458 

greyscale intensity variation and velocity (gradient in figure) to the current signature (left to right) 459 

for much of the image slice and greater in intensity than the current signature for pixels 1-1400. 460 

Likewise, for the flood tide at Ramsey Sound on the 12th May, while the left to right current signal is 461 
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more evident, there is still a right to left signal caused by small waves which is not dissimilar in 462 

magnitude. On the ebb tide, sun glint off wind ripples means that a current signal is not evident at 463 

all. By contrast, the example from the flood tide on the 14th May shows a more dominant current 464 

signal compared to the wave signal. For better understanding of the variation in flow signatures, 465 

embedded videos are provided in Appendix A.  466 

 467 

4.6. Translation to currents at depth 468 

The ability to translate from drone-measured surface currents to currents deeper in the water 469 

column without existing information of the velocity profile would be highly desirable. This is tested 470 

here based on the similarity between mean normalised ADCP profiles and a 1/7th power law profile 471 

with coefficients estimated at other sites [94] (Figure 9). The power law profile was used with the 472 

surface current estimate to estimate currents 10m above the sea bed by setting z to 10 in the power 473 

law profile equation: 474 

𝑈𝑧 =  (
𝑧

𝛽 ℎ
)

1
7⁄

�̅� 475 

Where Uz is the current speed at a height z above the seabed; β is the bed roughness, set to 0.4 476 

based on [94]; h is the total water depth (in this case as measured by ADCP); and, �̅� is the mean 477 

current speed estimated as 1.1139 x Usurface (based on the normalised current profile in Fig 9). This 478 

calculated velocity was compared to the velocity at 10m above the sea bed measured by the ADCP. 479 

Figure 19 displays the results of this analysis. For both the Ramsey Sound cases, accuracies are 480 

similar: on the 12th May RMSEs are actually lower than the surface current comparison (RMSE =0.32 481 

ms-1 versus 0.46 ms-1), which suggests a spurious result for this date; on the 14th May, where good 482 

comparison at the surface was found (RMSE = 0.28 ms-1), the RMSE is only slightly worse (0.32 ms-1). 483 

Results are less good for the Inner Sound, where currents are overestimated. This is related to the 484 

overestimation of surface currents.  485 
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 486 

5. Discussion  487 

This work has demonstrated the use of large-scale particle image velocimetry applied to drone 488 

collected video for measurement of surface currents at tidal stream sites and investigated the 489 

magnitude and source of errors. It is important to note that the validation data (ADCP and drifters) 490 

were assumed to represent the true surface velocity but in fact have errors associated with them; 491 

both data types have errors of approximately 0.2ms-1. Overall, the method was least successful at 492 

Ramsey Sound on the 12th May when data were collected at the limit of drone wind endurance 493 

(wind 31 kmh during experiment, maximum endurance 35 kmh); which meant there was strong 494 

wind generated signals in the imagery. Excessive wind or wave generated surface phenomena can 495 

become the dominant signal; cross-correlation tracks these rather than the current features and 496 

hence provides erroneous results. Results are best for the experiment at Ramsey Sound on the 14th 497 

May. For this experiment, the wind was much lighter (10 kmh) and thus contaminating wind 498 

generated signals were lower; additionally, cloudless skies meant illumination was both bright and 499 

uniform which meant turbulent surface structures were highly visible. However, differences in 500 

accuracy are noted between the flood and ebb tide results on the 12th May when there is no 501 

difference in wind speeds, but wind-driven ripples are more obviously dominant for the ebb. 502 

Therefore, it is postulated that accuracy will also depend on upstream bathymetry and its effect on 503 

turbulent structures on the surface. At the Inner Sound there is a large amount of scatter; it is 504 

postulated that the very smooth areas in kolk boils lead to areas where there are no trackable 505 

features, leading to poor PIV performance when boils are present in the images. Additionally, the 506 

larger scale of the Inner Sound’s mean weather effects on signal to noise ratio are likely to be 507 

greater. 508 

Accuracy increases when only velocities above a typical tidal stream turbine cut-in speed (0.88ms-1) 509 

are considered. This is encouraging because it means that for the velocities most of interest, large 510 
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scale particle image velocimetry is more likely to give reasonable results. However, since lower 511 

velocities are typically over predicted, areas of unsuitable current might be incorrectly assumed to 512 

be worth further exploration. From a site viability assessment perspective this means that one might 513 

expect some false positives but few false negatives. However, it should be noted that turbine power 514 

output is proportional to the cube of velocity so any errors in velocity will be magnified when power 515 

is estimated.  516 

A range of error statistics have been reported for surface velocimetry in fluvial environments. Using 517 

PIVlab, Liu et al. [66] report a mean absolute error of 0.97 ms-1 for flows around 2 ms-1 and a drone 518 

elevation of 112 m; they found that mean absolute error reduced to 0.49 ms-1 when the drone was 519 

flown at 32 m altitude (finer pixel resolution). By contrast, in flows below 1 ms-1, Lewis et al. [68] 520 

found that velocity magnitudes measured by PIVlab were within 5% of near surface velocities 521 

measured by acoustic Doppler velocimeter (ADV). Another LSPIV study compared drone and fixed 522 

video results and found errors of around 50% [95]. Lower errors are found with seeded experiments, 523 

for example, Strelnikova et al. [96] report RMSE values of 0.1 and mean absolute percentage 524 

differences of 12%. The results presented here for tidal stream sites are similar to the range of 525 

results presented for fluvial applications. This is encouraging given that there are a range of factors 526 

that, with further research, could be improved upon.  527 

It is suggested that image manipulation to identify and remove contaminating signals would improve 528 

results. Future research will consider appropriate filtering mechanisms to achieve this. There are a 529 

range of other surface velocimetry techniques which may provide better results and future work will 530 

also examine the applicability of these.  It has been shown that accuracy is dependent on the site 531 

characteristics and so work is underway to collect data at a wide range of sites.   532 

Greater computational power may also enable better results; due to use of desktop PCs, the 533 

‘standard’ correlation robustness setting in PIVlab was used [61]. ‘High’ and ‘extreme’ correlation 534 

robustness settings in the software provide alternative, more accurate (lower RMSE), approaches to 535 
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the cross-correlation but at expense of increased computational time; approximately 2-3 times 536 

slower for the ‘high’ setting and 7 times slower for the ‘extreme’ setting [61].  537 

One aspect of the approach that will, in general, be less accurate than for fluvial applications is the 538 

georeferencing, due to the lack of ground control at tidal sites (typically river banks are in the field of 539 

view for fluvial studies). However, stability assessment has shown that frame on frame movement 540 

leads to average errors in current velocity of 0.07 ms-1; for the velocities of typical interest to tidal 541 

stream developers (0.88 – 4 ms-1) this equates to percentage errors of 2 – 8 %. This hovering stability 542 

induced error is similar to previously reported for a different drone, the DJI Phantom 3 [68]. 543 

Moreover, as the drone aims to keep station in one location, some movements will lead to over-544 

estimation and others under-estimation of currents which will mean errors in returned velocity will 545 

be less when averaged over 1 minute. It is feasible that with real time kinematic (RTK) GPS, the 546 

drone’s position could be used to correct for any hovering instability; RTK precision can be as fine as 547 

0.01 m and at 120 m elevation the ground sampling distance is 0.03 m. Limitations in the flight log 548 

data of the tested equipment meant this was not possible in this study but it could be possible with 549 

other systems. Average absolute x,y, positioning error compared to GPS was found to be 2.1 m 550 

based on targets spread out through the image. It is considered that this absolute accuracy is 551 

acceptable, given the scales at tidal stream energy sites. The errors were lower for the central 552 

targets than targets nearer the edges of the image, suggesting that lens distortion may not be 553 

completely removed. Additionally, georeferencing was sensitive to the accuracy of the elevation 554 

estimate which affected ground sampling distance; this would also give larger errors further from 555 

the centre of the image. The accuracy of the ground sampling distance estimate will also affect the 556 

accuracy of the returned velocity.   557 

The work raises the question of the best way to validate the surface current maps derived from PIV. 558 

Results are slightly better for the surface drifters, which is unsurprising since they better map the 559 

true surface currents due to ADCP blanking distance. However, the movement of surface drifters 560 
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mean averaging over the same 60 s duration as the PIV results is not really feasible while 561 

maintaining some spatial resolution; the same is true of ADCP transects. Bottom mounted ADCP 562 

allows appropriate temporal averaging, but, unless multiple devices are deployed, no spatial 563 

coverage. It might be that comparison of multiple remotely sensed techniques is more appropriate. 564 

Knowledge of surface currents is important to the tidal stream industry, especially for floating tidal 565 

stream turbines. However, to maximise benefit for developers of seabed mounted turbines, 566 

approaches to transform from surface currents to currents at hub height will be required. This needs 567 

further assessment, however, preliminary analysis (Figures 9 and 19) suggests that a power law 568 

profile [94] can be used to transform surface velocities to the depth of interest, with accuracy largely 569 

depending on the accuracy of the initial surface current estimation.  This approach does rely on also 570 

having suitable bathymetric information to assign the profile depth. Consideration will need to be 571 

given to deviation of current profiles from standard profiles at the near surface caused by wind-572 

driven currents and Stokes drift; if suitable measurements are available these could be estimated 573 

and removed, alternatively it may restrict use of the technique to times with low wind and waves. 574 

This obviously has the advantage of improving accuracy of the results as well due to the 575 

aforementioned reasons.  576 

Going forward, the ambition is to use the drone to collect videos with overlapping fields of view 577 

(such as presented in Figure 8) creating a series of tiles that would cover an area of interest and 578 

when stitched together provide a wider area map. Such flights can be automated to ensure the 579 

correct area is covered, for example DJI drones can be controlled in ‘mission’ mode within the DJI 580 

Pilot app by providing a .kml file of desired hover locations and specifying the other flight and video 581 

parameters. Currently, in the UK, standard drone use is limited to visual line of sight (500 m) from 582 

the operator which limits the potential area mapped; however beyond visual line of sight permission 583 

is possible and in other countries, such as the EU, the 500 m limit is not currently required provided 584 

the drone can be identified visually. Another limitation is battery life; flight duration of the tested 585 
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drones was 20-30 minutes, and it is for this reason that video segments were restricted to 1 minute. 586 

Based on a 30 minute flight, it is expected that 15 separate fields of view could be collected which, 587 

when flown at 120m above sea surface with a 10% overlap and a 3 x 5 grid would cover an area of 588 

186 x 538 m. However, as drone and battery technology advances, newer drones have flight 589 

durations approaching 1 hour, which means that either larger areas could be covered or longer 590 

video segments recorded which may better represent the mean flow (it was found that 1 minute 591 

videos had errors of 7% compared to the 15 minute mean flow). Therefore, in future it is imagined 592 

that wide areas could be mapped rapidly.  593 

Additionally, while this work has focussed on average flow fields, it is possible that drones could also 594 

be used to consider other physics of surface flows such as turbulence. Here, frame on frame results 595 

were averaged, but individual frame on frame velocities could be considered to assess turbulent 596 

fluctuations.  For such studies, longer videos would be needed to separate mean flow for 597 

turbulence; and, for accurate turbulence results, the station-keeping precision of drones would need 598 

to be improved or for movements to be mitigated for.  This would be useful in better understanding 599 

the dynamics of features such as Kolk boils, which have been previously identified in drone imagery 600 

and linked to ecological behaviour [56]. Other studies have used optical imagery from drones to 601 

measure the surface wave field [97], based on the pixel intensity signal. It is also feasible that wave 602 

induced orbital velocities on the water’s surface could be measured and this used to derive wave 603 

parameters. However, such measurements would likely need high seeding densities, whether 604 

natural foam tracers or artificial particles. 605 

 606 

6.Conclusions 607 

Nadir video data from low-cost, publicly available drones can be used to estimate sea-surface flow 608 

speed using surface velocimetry. Therefore, low-cost and low-risk remotely sensed tidal stream 609 

resource assessments can be made, greatly improving mapping of potential sites, particularly in 610 



26 
 

challenging sites and remote communities/industries. The tested approach is complementary to 611 

existing ADCP techniques in terms of coverage, resolution, and accuracy.  612 

Method accuracy was found to depend on site bathymetry generating sufficient surface turbulent 613 

structures that can be tracked, with differences noted between flood and ebb results at Ramsey 614 

Sound. Greater scatter in results was found for the larger Inner Sound compared to Ramsey Sound, 615 

which suggests site geometry may affect results, probably due to differences in site exposure and 616 

size of turbulent features. Accuracy was influenced by the presence of wind induced surface 617 

features. Under calm conditions at Ramsey Sound (10 kmh wind speed), the accuracy of velocities 618 

returned by large scale particle imagery are considered suitable for use in tidal resource estimation 619 

(RMSE < 0.25 ms-1 versus surface drifters). Under windier conditions (31 kmh wind speed), current-620 

advected surface features are partially obscured by temporally variable wind-driven surface 621 

features, leading to spurious cross-correlations and higher RMSEs (RMSE < 0.54 ms-1 versus surface 622 

drifters). However, even under windier conditions, results can be suitably accurate for higher 623 

velocities (RMSE = 0.33 ms-1 against surface drifters), provided the turbulent surface structures are 624 

visible.  625 
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Appendix A 655 

This appendix provides examples of the video data used for the surface velocimetry analysis. While 656 

60 s videos were used for the analysis, only 15 s portions are shown here.  657 

 658 
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Figures 929 

 930 

Figure 1: a) Location of the three study sites (Mumbles Head in red, Ramsey Sound in green, 931 

Pentland Firth in orange); and, aerial imagery for b) Ramsey Sound; c) Mumbles Head; d) Inner 932 

Sound of the Pentland Firth. Indicative flight areas are shown as red polygons. White outline arrows 933 

indicate the direction of flood tide currents. 934 
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 935 

Figure 2: The Bathymetry of Ramsey Sound with key features labels and the flight area indicated as a 936 

black polygon. The black outline arrow indicates direction of the flood tide. Bathymetry [79] © 937 

British Crown and OceanWise, 2021. All rights reserved. Licence No. EK001-20180802. Not to be 938 

used for Navigation.  939 

 940 
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 941 

Figure 3: Hydrodynamic timeseries describing the experiments at Ramsey Sound for: a) 12th May, 942 

and b) 14th May. The blue lines give current speed and the orange lines tidal elevation. On top of 943 

these, the vertical black lines indicate times of analysed video segments and the orange crosses 944 

times of ADCP measurements. The drifters, which were measuring more frequently, are not shown. 945 

 946 

Figure 4: a) the grid set out for the stability tests (targets ringed in orange); b) a close up of the black 947 

and white quadrant targets; c) a close up of the central target used for the cross-correlation. 948 
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 949 

Figure 5: The design of the low-cost Lagrangian surface drifters: the blue indicates the tarpaulin 950 

drogue (i.e., “sail” to capture flow beneath the sea surface); the grey the PVC piping frame; the 951 

yellow the ‘pool noodles’ used for buoyancy; and the black represents the fishing weights used to 952 

provide stability. Dimensions are in mm. 953 

 954 

 955 

Figure 6: a) Percentage error with reference to 15-minute mean velocity against segment duration 956 

for the uppermost bin of a bottom mounted ADCP, lines are shaded based on mean velocity such 957 

that higher velocities are darker blue; b) a histogram of percentage errors for segments of 60 s 958 

duration using the same ADCP data. 959 
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 960 

Figure 7: A plot of error arising from drone stability against wind speed. 961 

 962 

963 
Figure 8: Histograms of validation data speeds for: a) drifters at Mumbles Head; b) drifters at 964 

Ramsey Sound on 12/05/2021; c) drifters at Ramsey Sound on 14/05/2021; d) ADCP at Ramsey 965 

Sound on 12/05/2021; e) ADCP at Ramsey Sound on 14/05/2021; f) ADCP at the Inner Sound of 966 

Pentland Firth. 967 
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 968 

Figure 9. Mean velocity profiles. To best represent the profile shape, velocities were normalised by 969 

mean velocity and depths by ADCP-measured water depth prior to the mean being taken. A 1/7th 970 

power law current estimation is also shown. 971 

 972 

Figure 10: Example LSPIV surface velocity maps for one 60 s video segment for: a) Mumbles Head 973 

and b) Ramsey Sound. Colour shading indicates current speed and black arrows are unit vectors 974 

representing LSPIV estimated direction. The orange arrows are unit vectors indicating direction of 975 

drifter travel. The masked out section in panel a) is a section of land in the field of view. 976 
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 977 

Figure 11: Mean RMSE of PIVlab results compared to surface drifters against video length for a 978 

subset of the Ramsey Sound data covering velocities from 0.8 – 1.5 ms-1. 979 

 980 

Figure 12: PIVlab derived velocity against ADCP measured velocity for: a) Ramsey Sound on 981 

12/05/21, b) Ramsey Sound of 14/05/21, and c) the Inner Sound of the Pentland Firth. 982 

 983 
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 984 

Figure 13: PIVlab derived velocity against surface drifter measured velocity for: a) Ramsey Sound on 985 

12/05/21, b) Ramsey Sound of 14/05/21, and c) Mumbles Head. Instantaneous velocities are given 986 

as the finer blue crosses and track mean values as the thicker red crosses. For the experiment on the 987 

12th (b), data are split between flood and ebb with yellow and purple indicating the ebb. 988 

 989 

Figure 14: Percentage errors for all ADCP and drifter tracks from Ramsey Sound plotted on image co-990 

ordinates. Circles indicate drifter points and squares ADCP points. 991 

 992 
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 993 

Figure 15: A comparison between error and temporal separation of ADCP recording to video start 994 

time from the Ramsey Sound survey location. Dates correspond to the two survey dates in May 995 

2021. 996 

 997 

Figure 16: Plots of error against validation velocity for: a) surface drifters as track mean values; b) 998 

ADCP. Lines of best fit are added to the figure, in the same colour as the icons. 999 

 1000 
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 1001 

Figure 17: A map showing the geographic distribution of errors for both days at Ramsey Sound (flood 1002 

only). 1003 
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 1004 

Figure 18: Pixel timestacks for greyscale intensity, timestacks are orientated such that the current 1005 

direction is from left to right. a) Mumbles Head; b) Flood from Ramsey Sound 12th; c) Ebb from 1006 

Ramsey Sound on the 12th; d) Flood from Ramsey Sound on the 14th. Where the current is evident, 1007 

orange lines illustrate the travel of some current signatures; in panel a, the blue lines indicate wave 1008 

signatures in the timestack. 1009 
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 1010 

Figure 19: A comparison between ADCP velocities measured at 10m above the seabed and velocities 1011 

at 10m above seabed estimated from drone measured surface velocities and the power law profile. 1012 

Comparative plots of the two velocities are given for a) Ramsey Sound on the 12th May, c) Ramsey 1013 

Sound on the 14th May, e) Inner Sound. Error histograms are given for b) Ramsey Sound on the 12th 1014 

May, d) Ramsey Sound on the 14th May, f) Inner Sound. 1015 
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 1016 

Appendix Figures 1017 

Appendix Figures are video – see online version https://doi.org/10.1016/j.renene.2022.07.030 1018 

 1019 

Tables 1020 

Table 1. A summary of the conditions and validation data collected during fieldwork. 1021 

Date Site Drone No. videos 

analysed 

Tide 

state 

Wind 

Speed 

(kmh) 

Environmental 

conditions 

Validation 

data 

02/03/2021 Mumbl

es Head 

M210  7 ebbing 20 Overcast, 0.7 

m waves 

Drifter 

12/05/2021 Ramsey 

Sound 

M210 

with RTK 

11 Flood 

and ebb 

31 Overcast Drifter and 

ADCP (ADCP 

flood only) 

14/05/2021 Ramsey 

Sound 

M210 

with RTK 

11 Flood 10  Bright 

sunshine 

Drifter and 

ADCP 

02/07/21 Inner 

Sound 

Phantom 1 Flood 16 Overcast ADCP 

 1022 

 1023 

Table 2: Root mean squared errors depending on the size of the starting window in pixels (px). 1024 

Run (px) 100 200 250 300 350 500 

RMSE (ms-1) 0.209 0.218 0.221 0.222 0.224 0.229 

https://doi.org/10.1016/j.renene.2022.07.030
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Table 3: RMSE and r2 values for comparison between PIVlab results and ADCP for all flow conditions 1025 

(“all”) and flow speeds important for tidal-stream energy resource, when flow speeds are above the 1026 

threshold of turbine generated electricity (“v>0.88ms-1”). Values for the individual sites and an 1027 

average value are presented. 1028 

Site Velocity set RMSE (ms-1) r2 Mean 

percentage 

absolute error 

Ramsey 

(12/05/21) 

All 0.46 0.10 42% 

Ramsey 

(12/05/21) 

v>0.88 ms-1 0.35 0.07 24% 

Ramsey 

(14/05/21) 

All 0.28 0.60 22% 

Ramsey 

(14/05/21) 

v>0.88 ms-1 0.27 0.70 18% 

Inner Sound All 0.68 0.56 75% 

Inner Sound v>0.88 ms-1 0.54 0.65 28% 

Average all 0.47 0.42 46% 

Average v>0.88 ms-1 0.39 0.47 23% 

 1029 

  1030 
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Table 4: RMSE and r2 values for comparison between PIVlab results and instantaneous drifter 1031 

velocities for all flow conditions (“all”) and flow speeds important for tidal-stream energy resource, 1032 

when flow speeds are above the threshold of turbine generated electricity (“v>0.88ms-1”). Values for 1033 

the individual sites and an average value are presented. 1034 

Site Velocity set RMSE (ms-1) r2 Mean 

percentage 

absolute error 

Ramsey 

(12/05/21) -Flood 

All 0.39 0.92 72% 

Ramsey 

(12/05/21) – Flood 

v>0.88 ms-1 0.29 0.92 25% 

Ramsey 

(12/05/21) – Ebb 

All 0.41 0.05 48% 

Ramsey 

(12/05/21) – Ebb 

v>0.88 ms-1 0.54 0.01 57% 

Ramsey 

(14/05/21) 

All 0.24 0.74 30% 

Ramsey 

(14/05/21) 

v>0.88 ms-1 0.20 0.75 13% 

Mumbles Head All 0.34 0.65 106% 

Mumbles Head v>0.88 ms-1 0.27 0.43 15% 

Average All 0.34 0.58 64% 

Average v>0.88 ms-1 0.32 0.52 28% 

 1035 
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Table 5: RMSE and r2 values for comparison between PIVlab results and drifter velocities averaged 1036 

over a track for all flow conditions (“all”) and flow speeds important for tidal-stream energy 1037 

resource, when flow speeds are above the threshold of turbine generated electricity (“v>0.88ms-1”). 1038 

Values for the individual sites and an average value are presented. 1039 

Site Velocity set RMSE (ms-1) r2 Mean 

percentage 

absolute error 

Ramsey 

(12/05/21) -Flood 

All 0.44 0.67 70% 

Ramsey 

(12/05/21) – Flood 

v>0.88 ms-1 0.33 0.29 23% 

Ramsey 

(12/05/21) – Ebb 

All 0.45 0.17 51% 

Ramsey 

(12/05/21) – Ebb 

v>0.88 ms-1 0.52 0.55 56% 

Ramsey 

(14/05/21) 

All 0.22 0.76 19% 

Ramsey 

(14/05/21) 

v>0.88 ms-1 0.21 0.75 13% 

Mumbles Head All 0.25 0.85 57% 

Mumbles Head v>0.88 ms-1 0.14 0.85 9% 

Average  All 0.34 0.61 49% 

Average v>0.88 ms-1 0.30 0.61 25% 

 1040 


