
Bangor University

DOCTOR OF PHILOSOPHY

Enhanced Resource Discovery Mechanisms for Unstructured Peer-to-Peer Network
Environments

Jamal, Azrul Amri

Award date:
2016

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/enhanced-resource-discovery-mechanisms-for-unstructured-peertopeer-network-environments(8b59601d-0d33-4de7-9240-ac2eb50f5ee6).html

Enhanced Resource Discovery Mechanisms for

Unstructured Peer-to-Peer Network

Environments

Azrul Amri bin Jamal

Thesis submitted in partial fulfilment of the requirements for the

degree of PhD

School of Computer Science, Bangor University, United Kingdom

2016

Abstract

This study explores novel methods for resource discovery in unstructured peer-

to-peer (P2P) networks. The objective of this study is to develop a lightweight

resource discovery mechanism suitable to be used in unstructured P2P networks.

Resource discovery techniques are examined and implemented in a simulator with

high scalability in order to imitate real-life P2P environments. Simulated topology

generator models are reviewed and compared, the most suitable topology generator

model is then chosen to test the novel resource discovery techniques.

Resource discovery techniques in unstructured P2P networks usually rely on

forwarding as many query messages as possible onto the network. Even though

this approach was able to return many resources, the flooding of the network with

query messages have an adverse effect on the network. Flooding the network has

undesirable consequences such as degenerative performance of the network, waste

of network resources, and network downtime. This study has developed alpha

multipliers, a method of controlling query message forwarding to deal with the

flooding effect of most resource discovery techniques in unstructured P2P networks.

The combination of alpha multipliers and breadth-first search (BFS), ↵-BFS, was

able to avoid the flooding effect that usually occurs with BFS. The ↵-BFS technique

also increases the combined query efficiency compared to the original BFS.

Aside from improving a uninformed search technique such as the BFS, this

study also examines the network communication cost of several informed resource

discovery techniques. Several issues that arise in informed resource discovery tech-

niques, such as false positive errors, and high network communication costs for

queries to update search results are discussed. This detailed analysis forms the

basis of a lightweight resource discovery mechanism (LBRDM) that reduces the

network communication cost by reducing the number of backward updates inside

the network when utilising the blackboard resource discovery mechanism (BRDM).

Simulations of BRDM and LBRDM show that the lightweight version can also re-

turn an almost identical combined query efficiency than the BRDM.

The solution to control query message forwarding in ↵-BFS, and the removal

ii

of unnecessary exchange of information in LBRDM open a new perspective on

simplifying resource discovery techniques. These approaches can be implemented

on other techniques to improve the performance of resource discovery.

iii

Acknowledgments

I would like to express the deepest appreciation to my committee chair, Dr. William

John Teahan, who has been enthusiastically guiding and encouraging me in this PhD

research. Without his guidance and persistent help, this dissertation would not have

been possible.

I would like to thank the supervisory committee members for my study, Professor

Ludmila Kuncheva and Dr. Ik Soo Lim who has helped me to keep on track with the

research. They’ve guided me on how to stay focus to the research. I would never forget

the heartfelt motivation that they have given me.

A big thank you to Malaysian Ministry of Higher Education (MoHE) and Universiti

Sultan Zainal Abidin (UniSZA) for sponsoring my studies and expenses in Bangor Uni-

versity. I will not be able to further my studies in United Kingdom without their

financial support.

I am thankful to my colleagues for their support, encouragement, and for creating a

fun work environment. I would also like to thank my family for being very supportive

and understanding towards my PhD research. They are my strength and my biggest

motivation.

iv

Nomenclature

APS Adaptive Probabilistic Search

BFS Breadth-First Search

BRDM Blackboard Resource Discovery Mechanism

CAN Content Addressable Network

Chord A protocol and algorithm for a P2P DHT

DFS Depth-First Search

DHT Distributed Hash Table

Int-BFS Intelligent Breadth-First Search

LBRDM Lightweight Blackboard Resource Discovery Mechanism

P2P Peer-to-Peer

PAST Distributed file system layered on top of Pastry

RRW Restricted Random Walk

RW Random Walk

↵-BFS Alpha Breadth-First Search

v

Contents

Abstract ii

Acknowledgments iv

Nomenclature iv

List of Figures and Tables x

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 1

1.3 Thesis Objectives . 2

1.4 Methodology of Research . 3

1.5 Scope of Research . 4

1.6 Thesis Outline . 5

1.7 Contributions . 5

1.7.1 Contributions Towards Computer Network Engineering 6

1.7.2 Contributions to Published Literature 6

2 Literature Review 8

2.1 Introduction . 8

2.2 Peer-to-Peer Networks . 10

2.2.1 P2P Categorisation . 11

2.3 Resource Discovery . 14

2.3.1 Resource Discovery Categorisation 15

2.3.2 Evaluating Resource Discovery Effectiveness 18

2.3.3 Resource Discovery in Unstructured P2P Networks 25

2.4 Discussion and Conclusions . 28

vi

3 Implementation of Resource Discovery Mechanisms on Peer-to-Peer

Simulator 30

3.1 Introduction . 31

3.2 Resource Discovery Mechanisms . 32

3.2.1 Random Walk . 32

3.2.2 Restricted Random Walk . 33

3.2.3 Breadth-First Search . 34

3.2.4 Intelligent BFS (Int-BFS) . 34

3.2.5 Depth-First Search . 37

3.2.6 Adaptive Probabilistic Search . 37

3.2.7 Blackboard Resource Discovery Mechanism 38

3.2.8 Summary of Resource Discovery Mechanisms 39

3.3 Peer-to-Peer Simulators . 39

3.3.1 3LS . 42

3.3.2 General Peer-to-Peer Simulator (GPS) 42

3.3.3 Neurogrid . 43

3.3.4 P2PSim . 43

3.3.5 PeerSim . 44

3.3.6 PeerThing . 44

3.3.7 Query Cycle . 45

3.3.8 RealPeer . 45

3.3.9 Selection of Peer-to-Peer Simulators 46

3.4 Implementation of the Resource Discovery Mechanisms on PeerSim . . . 50

3.5 Conclusions . 51

4 Unstructured P2P Network Topology Simulation 53

4.1 Introduction . 53

vii

4.2 P2P Network Generator Models . 54

4.2.1 Heuristically Optimised Trade-offs Topology 55

4.2.2 Reg Rooted Tree Topology . 57

4.2.3 Star Topology . 58

4.2.4 Ring Lattice Topology . 58

4.2.5 Watts-Strogatz Topology . 59

4.2.6 Scale Free Barabási-Albert Topology 61

4.2.7 Scale Free Dorogovtsev-Mendes Topology 62

4.2.8 K-Out Topology . 64

4.3 Selection of Topology Generator Models 65

4.4 Conclusions . 68

5 Alpha Breadth First Search 70

5.1 Introduction . 71

5.2 Alpha Breadth First Search Overview 72

5.3 Alpha Multipliers . 72

5.4 Restricted Random Walk With Null Exception 74

5.5 Experimental Setup . 76

5.5.1 Topology Setup . 76

5.5.2 Query Behaviour Setup . 77

5.6 Experimental Results . 82

5.7 Discussion and Conclusions . 84

6 Lightweight Blackboard Resource Discovery Mechanism 89

6.1 Introduction . 90

6.2 BRDM Overview . 91

6.3 BRDM Issues . 92

6.3.1 Small Simulation Environment 93

viii

6.3.2 Unrecommended List Type I Error 94

6.3.3 High Network Cost for Unsuccessful Searches 94

6.4 Improving BRDM: Foundations of Lightweight BRDM 96

6.4.1 Increasing the Simulation Environment Size 96

6.4.2 Eliminating Type I Error . 97

6.4.3 Increasing BRDM Query Efficiency 97

6.5 Lightweight BRDM . 99

6.6 Experimental Setup . 100

6.7 Experimental Results . 101

6.8 Discussion and Conclusions . 104

7 Discussion & Conclusions 106

7.1 Discussion . 107

7.2 Summary of Chapters . 110

7.3 Contributions . 112

7.4 Research Limitations . 113

7.5 Review of Aims and Objectives . 114

7.6 Conclusions . 114

7.7 Future Work . 115

References 118

A Appendices (Source Codes) 131

A.1 PeerSim iSearch Configuration File . 131

A.2 PeerSim iSearch Protocol Java Codes . 132

B Appendices (Simulation Results) 140

ix

List of Figures

2.1 (a) Decentralised Overlay Topology. (b) Centralised Overlay Topology. . 13

2.2 Quantitative Survey on the Use of P2P Simulators [74]. 19

2.3 Query Messages Forward and Feedbacks (Found Only). 23

2.4 Query Messages Forward and Feedbacks (All). 24

2.5 Resource Discovery Mechanisms Classification in Grid Computing Sys-

tems [79]. 26

3.1 Query Message Node Traversal . 35

4.1 Generated Topology using Heuristically Optimised Trade-offs Model (N=1000,

↵=2). 55

4.2 Number of Nodes Against Number of Neighbours using Heuristically Op-

timised Trade-offs Model (N=1000, ↵=2). 56

4.3 Generated Topology using Regular Rooted Tree Model (N=1000, k=2). 57

4.4 Generated Topology using Star Model (N=1000). 58

4.5 Generated Topology using Ring Lattice Model (N=1000, k=2). 59

4.6 Generated Topology using Watts-Strogatz Model (N=1000, k=2, �=0.2). 60

4.7 Number of Nodes Against Number of Neighbours using Watts-Strogatz

Model (N=1000, k=2, �=0.2). 60

4.8 Generated Topology using Scale Free Barabási-Albert Model (N=1000,

k=2). 61

4.9 Number of Nodes Against Number of Neighbours using Scale Free Barabási-

Albert Model (N=1000, k=2). 62

4.10 Generated Topology using Scale Free Dorogovtsev-Mendes Model (N=1000,

k=2). 63

4.11 Number of Nodes Against Number of Neighbours using Scale Free Dorogovtsev-

Mendes Model (N=1000, k=2). 63

x

4.12 Generated Topology using K-out Model (N=1000, k=2). 64

4.13 Number of Nodes Against Number of Neighbours using K-out Model

(N=1000, k=2). 65

5.1 Number of Nodes Against Number of Neighbours (Random seed=1234567890,

N=1 million, k=2). 78

5.2 Number of Nodes Against Number of Neighbours (Random seed=1415926535,

N=1 million, k=2). 79

5.3 Number of Nodes Against Number of Neighbours (Random seed=8979323846,

N=1 million, k=2). 80

5.4 Combined Query Efficiency ((⌘+ss)/2) (N=1 million, k=2, TTL=20). . . 86

6.1 Combined Query Efficiency ((⌘+ss)/2) (N=1 million, k=2, TTL=20). . . 102

6.2 Combined Query Efficiency Star ((⌘⇤+ss)/2) (N=1 million, k=2, TTL=20).103

xi

List of Tables

2.1 Advantages and Disadvantages of P2P Topologies. 14

2.2 P2P Techniques According to Their Topologies. 15

3.1 Resource Discovery Techniques . 40

3.2 Summary of P2P Simulator Analysis [22]. 47

3.3 P2P Simulator Architecture Comparison [22]. 48

3.4 P2P Simulator Comparison. 49

4.1 Summary of Topology Generator Models 66

4.2 Topology Generators’ Variables . 67

5.1 Experiment Topology Setup for ↵-BFS, BRDM, & LBRDM. 77

5.2 Alpha Multipliers’ Patterns and Values 81

5.3 Query Efficiency and Maximum Successful Searches Mean According to

Random Seed . 83

5.4 Query Efficiency and Maximum Successful Searches Mean 85

6.1 Average Query Efficiencies (⌘ and ⌘⇤) and Successful Searches (ss) . . . 101

7.1 Review of Aims and Objectives . 114

B.1 ↵-BFS Query Efficiency (⌘) and Maximum Successful Searches (Random

Seed: 1234567890) . 141

B.2 ↵-BFS Query Efficiency (⌘) and Maximum Successful Searches (Random

Seed: 1415926535) . 142

B.3 ↵-BFS Query Efficiency (⌘) and Maximum Successful Searches (Random

Seed: 8979323846) . 143

B.4 Query Efficiency in Percentage (Random Seed: 1234567890, 1415926535,

and 8979323846) . 144

B.5 Maximum Successful Searches in Percentage (Random Seed: 1234567890,

1415926535, and 8979323846) . 145

xii

B.6 Informed Searches Query Efficiencies (⌘ and ⌘⇤) and Successful Searches

(ss) . 146

B.7 Combined Query Efficiencies (⌘ and ⌘⇤) and Successful Searches (ss) . . 147

xiii

List of Algorithms

3.1 Random Walk Pseudocode. 33

3.2 Restricted Random Walk Pseudocode. 33

3.3 Breadth-First Search Pseudocode. 34

3.4 Intelligent BFS Pseudocode. 35

3.5 Depth-First Search Pseudocode. 36

3.6 Adaptive Probabilistic Search Pseudocode. 37

3.7 Blackboard Resource Discovery Mechanism Pseudocode. 38

5.1 Determining QF↵�BFS Value Pseudocode. 74

5.2 RRW Message Forwarding Pseudocode. 75

5.3 RRW with Null Exception Pseudocode. 75

A.1 config-isearch-BRDM.txt . 131

A.2 BRDMProtocol.java (Part 1 of 6) . 133

A.3 BRDMProtocol.java (Part 2 of 6) . 134

A.4 BRDMProtocol.java (Part 3 of 6) . 135

A.5 BRDMProtocol.java (Part 4 of 6) . 136

A.6 BRDMProtocol.java (Part 5 of 6) . 137

A.7 BRDMProtocol.java (Part 6 of 6) . 139

xiv

1 Introduction

Chapter Summary

This chapter contains the introduction to the whole study, enhanced resource discovery

mechanism for unstructured peer-to-peer network environments. Motivation for the

research is also presented in this chapter. Three research objectives have been identified

and all the study, research, experiments have been performed in order to fulfil these

objectives. The chapter ends with a list of contributions towards published literature

that came out from this study.

1.1 Introduction

Resource discovery is one of the most important part in any resource sharing systems

[55, 78]. Peer-to-Peer (P2P) is currently the main means of resource sharing in the

Internet. Resource discovery plays a more important role in P2P, where the resource is

widespread all over the world.

P2P file sharing is often considered as a platform for piracy. In order to fight

piracy, creative industries such as the film, music, and software companies have been

fighting with P2P establishments. Companies put their effort in polluting the file sharing

community in order to discourage piracy [51, 84]. The pollution is done by seeding files

with different content to confuse the file identification [54]. Thus, resource discovery

does not only focus on finding any resource, but it must be extended to find quality

resources [8]. This new approach is known as quality-driven resource discovery.

1.2 Motivation

BitTorrent, is a well-known P2P resource sharing network [20]. The network spans

across the world, and it is believed that it is the protocol that uses the most bandwidth

in the world. However, BitTorrent is still using Breadth-First Search (BFS) [10] for its

1

search. BFS consumes a lot of bandwidth, thus network administrators usually block

all the resource discovery for the BitTorrent. The research in this dissertation was done

to find a better way for resource discovery, where the cost of resource discovery can be

reduced marginally without sacrificing much of the search results.

Resource discovery techniques can be categorised as either blind search or knowledge

based [99]. Blind, or uninformed search resource discovery techniques are usually light-

weight. Examples of uninformed search resource discovery techniques are such as those

proposed by Antonini et.al. [9], and Erdil [24]. A uninformed search resource discovery

usually has a clever way to manipulate the query message propagation method in order

to keep the technique as lightweight as possible. These techniques however rarely show

any learning effect over time.

The knowledge based resource discovery techniques such as those proposed by Said

& Kojima [94], Al-Dmour & Teahan [4, 5], and Hasanzadeh & Meybodi [36] have a

learning effect. The techniques in knowledge based resource discovery will return better

search results the longer the techniques are running in the system. The learning based

techniques usually require some computing power and/or memory from each node that

the query messages visit. A node with less computing resources might struggle to run

the search queries over time. A node with a small amount of memory available might

find difficulty in keeping track of all the knowledge that the node has gained over time.

Observing the advantages and disadvantages of both the lightweight and learning

based resource discovery, it is clear that the field of resource discovery needs to have a

technique that has a learning effect but does not tax the network and nodes too much.

The idea is to reduce the network or computation cost of a learning based resource

discovery technique.

1.3 Thesis Objectives

There are three main objectives of this research.

2

• To design a lightweight resource discovery technique suitable to be used in un-

structured P2P networks.

• To implement the resource discovery techniques onto a P2P simulator.

• To find out the effectiveness of the new resource discovery technique by comparing

it with existing approaches.

1.4 Methodology of Research

There are three types of methodologies could be used for research in P2P networks.

They are by using mathematical approach, experimenting on actual P2P system, and

by conducting computer simulations. Each methodology has their own advantages and

disadvantages.

The mathematical approach is usually the first approach being used to develop

P2P protocols. Nevertheless, mathematical approach usually relies on assumptions and

network simplifications. These are needed to be done, because networks are usually

complex, and simplifying the network might omit several important information. Thus

making the results obtained using the mathematical approach non-usable in real life

P2P network.

The second alternative for P2P research is by implementing the proposed protocols

onto actual P2P network. Implementation on real life P2P network requires a lot of

computer nodes to really reflect P2P network environments. Having computers turned

on to do experiments consume a lot of time, energy, and money. Experiments using

limited amount of P2P nodes might not indicate an actual implementation on P2P

networks, that usually large in scale. Furthermore, experiments on actual P2P systems

might expose the network to security attacks and in some cases, it is possible that the

experiments break the network that is supposed to serve other users than the nodes for

the experiments alone.

3

Therefore, P2P network simulations have been selected as the methodology of re-

search. P2P nodes will be generated using P2P network simulator, and experiments

are conducted upon it. Nevertheless, there are some limitations for experiments on

simulators. The limitation of this methodology are discussed in the following Section

1.5. Details regarding the simulators are discussed further in Section 3.3.

1.5 Scope of Research

There are advantages and disadvantages of methodologies used in P2P network re-

searches. The methodology of simulating the P2P network has been selected to be used

in this research. Experiments on P2P network using simulators are not affected to the

non-realistic results obtained by mathematical models where they requires researchers

to simplify the network being experimented on. The problem with time, energy, and

money consumption of experiments done on actual P2P system are also nonexistent

when doing the experiments on simulators.

Nonetheless, P2P experiments using simulations have their own disadvantages that

requires some trade-offs being made. Conducting experiments on actual P2P system

will require the P2P nodes to communicate each other using actual computer networks.

By using actual networks, the experiments need to utilise all the seven layers of the

Open Systems Interconnection (OSI) model. Thus, experiments conducted using actual

P2P system will show how a real network would react when utilising the protocol that

being experimented.

Experiments using simulations do not imitate all of the seven OSI layers. This is

because a simulator would consume a large number of memory resource in order to

replicate all the seven layers of the OSI model. As similar to other P2P simulators, the

simulator that being used in this research, PeerSim simulates the most important layer

in the OSI model for node to node connection, the network layer.

Another limitation of this research is the memory capacity of the computer running

4

the simulations. Simulator with the best scalability function was chosen in order to max-

imise the number of P2P nodes being simulated. In order to achieve high scalability, the

simulations were done using cycle-driven simulation engine instead of event-based sim-

ulation engine. The event-driven simulation engine process each query based on events

occurring on P2P node. The event-driven simulation engine is closer to actual network,

however the engine uses a very large amount of memory resources, and consumes a lot

of time.

1.6 Thesis Outline

This dissertation is divided into eight chapters. Chapter 1 describes previous work

and gives motivation and objectives for the work performed in this dissertation. The

literature review is shown in Chapter 2. Chapter 3 discusses the implementation of

resource discovery mechanisms on PeerSim, a simulator for peer-to-peer networks. The

simulation of unstructured P2P networks and the selection of topology generator model

are examined in Chapter 4.

Chapter 5 explores a method of reducing query message forwarding in breadth-first

search by implementing alpha multipliers, ↵-BFS. It is then followed by development

of lightweight blackboard resource discovery mechanism (LBRDM) in Chapter 6. The

experimental results for ↵-BFS and LBRDM is presented in Chapter 7. The final

chapter concludes the thesis with collective discussion and conclusions of the whole

work performed in this dissertation.

1.7 Contributions

Contributions of this research can be divided into two main categories: Contributions

towards computer network engineering; and contributions to published literature. Con-

tributions towards computer network engineering section lists the advancement in the

field that can be contributed by implementing the developed techniques of this research

5

onto the computer network engineering field. The contributions to published literat-

ure section lists down all the findings from this research that being published to the

academia world.

1.7.1 Contributions Towards Computer Network Engineering

This research focuses on reducing the weight of search techniques that rely on query

message replication to find resources (eg. Breadth-First Search (BFS), and Blackboard

Resource Discovery Mechanism (BRDM)). BFS is a search technique that is still in

use nowadays in P2P network applications. BRDM is a technique that is in use in

grid computing platform called ParCop for resource discovery. These search techniques

were studied and implemented on Power law simulated network so that it will closely

reflect a real life network condition. This research contributes to the computer network

engineering field by reducing the amount of network usage for applications and protocols

that use the BFS and the BRDM as their resource discovery technique.

1.7.2 Contributions to Published Literature

The list of contributions in terms of journal publications are provided as follows.

• A.A. Jamal, W.S. Wan Awang, M.F. Abdul Kadir, A. Abdul Aziz, and W.J.

Teahan. Implementation of Resource Discovery Mechanisms on PeerSim: En-

abling up to One Million Nodes P2P Simulation. International Journal of Di-

gital Information and Wireless Communications (IJDIWC), 5(1): 14-20, SDIWC,

ISSN: 2225-658X, 2015.

• A.A. Jamal and W.J. Teahan, Alpha Multipliers Breadth-First Search Technique

for Resource Discovery in Unstructured Peer-to-Peer Networks. ARPN Journal

of Engineering and Applied Sciences (JEAS), November 2016. (under review)

6

• A.A. Jamal and W.J. Teahan, Lightweight Blackboard Resource Discovery Mech-

anism for Resource Discovery in Unstructured Peer-to-Peer Network. Journal of

Information and Communication Technology, 2017. (planned)

Contribution in terms of proceedings publication is as follows.

• A.A. Jamal, W.S. Wan Awang, M.F. Abdul Kadir, A. Abdul Aziz, and W.J.

Teahan. Implementation of Resource Discovery Mechanisms onto PeerSim. In

The 3rd International Conference on Informatics & Applications (ICIA2014), Oc-

tober 2014.

7

2 Literature Review

Chapter Summary

This chapter contains the literature review of P2P networks and resource discovery.

This chapter starts with an introduction and some history regarding the Internet and

its usage, the emergence of P2P network and grid computing, followed with the re-

source discovery techniques in grid computing. Overview of the P2P networks, and

the categorisation of the P2P networks are also discussed. This chapter continues with

a review of resource discovery mechanisms, where several types of resource discovery

mechanisms are discussed and explained.

Summary of Each Section

Introduction : Introduction of the chapter

Peer-to-Peer : Brief history of P2P network. Categorising P2P

networks according to their utilisation & technique,

overlay networks, and network topology

Resource

Discovery

: Resource discovery techniques are categorised into

two categories and presented. Resource discovery

techniques in unstructured P2P network are

discussed at the end of the section.

2.1 Introduction

Early computer networks were a point-to-point connection between computers. As the

networks grew bigger, more and more computers became connected and not long after

the Internet was born. In the initial stage, the Internet was usually built from a number

of client-server based connection, where faster computers acted as server and serving

files, information and resources to the client computer which usually consisted of a less

8

powerful computer.

The client-server Internet model was very useful in the early stages of the Inter-

net. Nonetheless, this model has several problems such as network traffic blocking or

network bottleneck, server availability problems, and single point of failure. Computer

technologies have been keeping on advancing following the Moore’s law. Moore’s law is

the observation that the number of transistors in integrated circuits doubles every year.

The observation has been revised so that the number that doubles is now every other

year rather than every year [63].

The shrinkage of the transistors inside integrated circuits enable users to have more

computational power, more energy efficient machines with the same amount of money

[41]. The server class machine of today will be available and obtainable by normal users

several years after [72]. Therefore, the Internet’s client-server architecture is getting less

popular as more Internet users are able to share resources online, a trait that previously

only a server can do.

The motivation to share resources to the Internet has contributed to the birth of

peer-to-peer (P2P) network [80]. All computers (usually referred to as nodes), that

are connected to the P2P network have an equal role. All nodes act as a client and

a server at the same time. There is a large amount of information available in a P2P

network. Nevertheless, this information is usually distributed across the network and is

quite troublesome to find.

Together with the advancement of P2P networks, heterogeneous resources can be

distributed geographically. The need for a computational system to be in one place

has been eliminated. Thus a new type of computational architecture has emerged,

the grid computing [26, 70]. Grid computing utilises the robustness of the Internet

and can distribute computing tasks to multiple heterogeneous computers across the

Internet. The whole distributed grid system can be viewed as one supercomputer [26].

Having resources distributed across the network requires the system to keep track of the

9

resources available, and search for new ones. Therefore, the need to develop techniques

to find the resources, “resource discovery”, became more important [79].

Resource discovery techniques are utilised in distributed computing and resource

sharing system, like grids, computational resource sharing, distributed hosting and util-

ity computing [55, 78]. In the early stages of P2P, researchers have been using old

search methods as resource discovery techniques. Among the earliest techniques are

Breadth-First Search (BFS) [10], Depth-First Search (DFS) [102]. These techniques

have been improved over time, and currently many different enhanced techniques have

been created in order to find the resource throughout the network.

The following section will discuss the history and basis for P2P networks followed

by the different types of resource discovery techniques.

2.2 Peer-to-Peer Networks

The urge to share resources online to some extent emerged at the same time as the

development of P2P networks. The availability of affordable computing power also

helped the emergence of P2P. Internet users wished to share their resources and in the

earliest days of P2P, one network application in particular, Napster [77], had managed

to successfully implement a P2P network worldwide. Using this application, Internet

users could share their music from their own computer to the whole world [80]. In spite

of that, encountering problems with copyright law, Napster did not last long.

After the shutdown of Napster, other resource sharing software based on P2P net-

works emerged. Applications such as eMule [23], Gnutella [31], Gnutella2 [32], BitTor-

rent [15] used P2P networks for content distribution. P2P video and audio streaming

such as PPLive [87], and Skype [100] also gained rapid growth [78]. Even though it

is said that these applications uses a P2P network environment, each P2P network is

not identical. They use different protocols and structures that best suit the network

requirements in terms of speed or availability according to each software.

10

2.2.1 P2P Categorisation

There are several ways to classify a P2P network. Researchers classify P2P networks

based on its utilisation, techniques, structure of overlay network, and topology. Navimi-

pour & Milani [78] categorised P2P networks into two different overlay networks, cent-

ralised, and decentralised. Navimipour et.al [79] classified the P2P networks into four

different topologies, that is, unstructured, structured, super-peer, and hybrid.

2.2.1.1 Based on Utilisation and Techniques The most basic categorisation for

P2P networks are based on their utilisations. The first well known P2P applications was

for file sharing, Napster [77]. However, as has been stated, this has now been shut down

by the judiciary because of copyright infringement lawsuit. Napster was then followed

by several other file sharing P2P applications such as Gnutella [31], Gnutella2 [32], and

KaZaA [49].With file sharing being the first application of P2P networks, some people

might have a misconception that all P2P networks are only for file sharing. There are

also other utilisations of P2P networks beyond mere file-sharing [1].

Multimedia is another intelligent utilisation of P2P networks. Examples of P2P

multimedia applications are P2PTV [27], and Biernacki et. al. [14], that are protocols

to share TV broadcasting over the Internet. Skype [100] and Spotify [53] stream videos

and audios to the peers using their streaming servers and peer-to-peer network.

P2P networks are also being used just for research such as Chord [101], PAST [92],

P-Grid [1], & Coopnet [81]. Another good example of P2P utilisation are for creating

currency, Bitcoin [76]. Netsukuku, an alternative from the Internet is also an example

of P2P utilisation that is not file sharing [27].

Categorisation of P2P networks according to their utilisation might be the easiest

way to classify P2P. Nevertheless, in order to improve the P2P networks, the focus

can not just be on their utilisation because each utilisation might use different types of

network overlay and/or network topology. In addition, a fair categorisation is difficult

11

to achieve because a large portion of P2P networks utilisation are for file sharing.

Categorisation of P2P networks based on its overlay network and network topology

are discussed in following paragraphs.

2.2.1.2 Categorisation Based on Overlay Network Overlay network can be

viewed as a computer network that runs above another computer network. The over-

lay network usually is logical or virtual and the underlying network are considered as

physical network. The overlay network usually are easier to see and understand by the

network users compared to the physical network. An overlay network is a necessity

in P2P networks because in a P2P network, peers can join and leave at any time. If

the network uses exactly the same topology as the physical topology, it can affect the

reliability and availability of the P2P networks [60].

There are two types of overlay network. Figure 2.1 shows the two types as decentral-

ised overlay topology and centralised overlay topology [61]. In a glance, the centralised

overlay network looks like a client-server network where there is a centralised main

computer that controls the information of the whole network. A decentralised overlay

topology, in contrast, there is no central computer that act as the main server of the

whole network.

The type of underlying network topology does not dictate what type of the overlay

network topology. Therefore, there can be multiple combinations of both overlay and

underlying network.

2.2.1.3 Categorisation Based on Network Topology P2P can be categorised

based on their topologies. Navimipour et. al. [79] have grouped the P2P networks based

on four topologies, namely, unstructured, structured, super peer, and hybrid. At the

same time, P2P network overlay topology can be either centralised or decentralised [78].

Combination of both categorisation techniques will generate 8 types of P2P networks in

12

Figure 2.1: (a) Decentralised Overlay Topology. (b) Centralised Overlay Topology.

total. A P2P network can either be an unstructured, structured, super peer, or hybrid

topology with either centralised or decentralised overlay network [78, 79].

Unstructured P2P topology can be generated when all the nodes connected with

each other randomly. Each node in an unstructured P2P network maintains its an-

onymity because there is no information regarding the location of nodes. Structured

P2P networks are organised into a specific topology. Example of P2P networks with an

unstructured P2P network are Napster [77], Gnutella [31].

In contrast to the unstructured networks, the location of all of the nodes in a struc-

tured P2P network are stored in a distributed storage location. Usually the locations

are stored using distributed hash table (DHT), thus the nodes in a structured P2P net-

work do not maintain their anonymity. Examples of P2P networks with a structured

topology are Chord [101], CAN [91]. In a super peer P2P network topology, a node can

either be an ordinary peer or a super peer. An ordinary peer and super peer both act

as a server and a client. The only difference is that a super peer usually has a lot of

neighbours compared to an ordinary peer [78]. Examples of P2P networks that use a

super peer topology are KaZaA [49], Gnutella2 [32].

All three categories listed above have their own advantages and disadvantages. A

13

Table 2.1: Advantages and Disadvantages of P2P Topologies.

Topologies Advantages Disadvantages

Unstructured Offers suitable reliability,
robustness, dynamicity,
scalability, and removes false
positive errors

Suffers from the network-wide
broadcast storm problem and
low security

Structured Offers suitable response time,
reliability, and load balancing

Suffers from high traffic, low
security, and dynamicity

Super Peer Offers suitable scalability, load
balancing, reliability, and
dynamicity

Suffers from complex procedure,
low robustness, noticeable
response time, and single point
of failure in each super-peers

Hybrid Almost offers high reliability,
and scalability

Suffers from low load balancing,
security, and robustness as well
as high overhead

hybrid P2P network topology can also be generated by combining multiple topologies.

The hybrid topology will usually use the advantages of its primary P2P topology that

it takes. Examples of P2P networks that uses the hybrid topology are Loo et. al. [59],

Papadakis et. al. [82]. Table 2.1 shows the advantages and disadvantages of the P2P

networks topology. Table 2.2 are some examples of P2P techniques that are being used

for various network topologies [78].

2.3 Resource Discovery

Resource discovery is an act of discovering resources available for use. In this research,

resource discovery encompasses the discovering resources that are either computational

resources or data and storage resources. These resources are needed to be discovered

for the use of distributed computing such as in grid computing because resources can

join and leave the grid at any given time.

The term “resource” itself, can be used to represent a lot of things. There are times

when the term “resource discovery” brings a different meaning to the academic world.

14

Table 2.2: P2P Techniques According to Their Topologies.

Topologies P2P Techniques

Unstructured Napster [77], Gnutella [31], Qu et. al. [88], Mashayekhi &
Habibi [66], Shojafar et. al. [96], LARD [104], IAPS [96],
DHMCF [69].

Structured Chord [101], CAN [91], Schmidt & Parashar [95], Merz &
Gorunova [68], Giordanelli et. al. [29], Lee et. al. [56],
Zhygmanovskyi & Yoshida [113], Si et. al. [97].

Super Peer KaZaA [49], Gnutella2 [32], Haasn [33], HPRDG [6], Zhang
et. al. [112], SPS [58].

Hybrid Loo et. al. [59], Papadakis et. al. [82], Yang & Yang [109],
GAB [111], HybridFlood [12].

Fuhr, for example, noted that the resource discovery needed to be implemented to

access and gather information from a vast number of digital libraries [28]. This research

discussed various issues regarding information diversity, document formats, indexing

methods, database schemas and protocols.

Macgregor & McCulloch uses the term resource discovery to describe the process

of finding information in online tags, such as a website’s tag cloud [62]. Heckner et.

al. explores social tagging, and how to analyse the user keywords for different digital

resource type [37]. The study focuses on comparative analysis of social media tags, such

as from del.icio.us, flickr, and Youtube. Heckner et. al. [37], Macgregor & McCulloch

[62], and Fuhr [28] considered “information” as a resource, therefore the term resource

discovery brings another meaning to these researchers. In spite of that, the act of

discovering resources in a form of information, can be classified as “information retrieval”,

“knowledge discovery”, or “data mining” [25, 34].

2.3.1 Resource Discovery Categorisation

Discovering computational resources or storage resources are different from finding in-

formation, such in “knowledge discovery”. Instead of finding information inside a node,

15

resource discovery of computational or storage resources for grid computing concerns

whether the node has a resource or whether it does not have the resource.

Singh et. al. [99] classified resource discovery techniques into two main categories,

blind search and knowledge based. Russell and Norvig [93], have categorised search tech-

niques into various categories, such as informed and uninformed searches, adversarial,

optimisation, and evolutionary searches. Concerning the first two categories, Singh

et. al. [99] named them as blind search and knowledge based. The following sections

discusses these search categories.

2.3.1.1 Uninformed (blind) search resource discovery Uninformed or blind

search is a category of resource discovery techniques, where the walkers that bring

queries do not have any information regarding the network throughout the whole search.

The queries will also not be processing any information of the network for their future

searches. The query message sent using uninformed search is lightweight to the network

and the nodes. The query message can be easily replicated or cloned, and distributed

according to its forwarding rules behind the resource discovery techniques that are being

used.

Despite the query messages being lightweight, the techniques in this category usually

rely on the number of query messages in order to find the resources that they want to

find. There are occurrences where the techniques send the same query messages to a

node in the P2P network multiple times. This condition is called flooding the network.

No matter how lightweight the query message, the number of queries will consume a lot

of resources along the way.

Uninformed search resource discovery techniques are usually used in mobile net-

works, or ad-hoc networks where the computational or storage resources on each nodes

are small or limited. Among search techniques that fall into this category are: breadth-

first search (BFS); uniform cost; depth-first search; depth-limited; iterative deepening;

16

and bi-directional [93, 103]. Uninformed search characteristics will be further discussed

in Section 2.3.3 and 3.2.

2.3.1.2 Informed (knowledge-based) search resource discovery Informed or

knowledge-based search is a category of resource discovery techniques where the tech-

niques utilise some heuristic approach towards finding the resource. Resource discovery

techniques that fall within the informed search category take into account the inform-

ation of the network that the techniques have been working on. Techniques within the

informed search category usually generate some information for their own technique’s

future references.

The query messages of knowledge based resource discovery techniques often is not

lightweight, because it contains a lot of information regarding the network. Upon ar-

riving at a new node, several checks need to be done by the node, and sometimes the

nodes need to be compared with the information that they already have. After the

comparison, the information that the query messages initially brought is updated with

the information that the current node has. Further processing by the node needs to be

done in order to decide on where to forward the query messages to.

Informed search resource discovery techniques would usually require some compu-

tation and/or storage resources from the nodes. Together with good computation and

storage management and intelligent decision making, informed search resource discov-

ery techniques can reduce their consumption of network communication resources and

subsequently the computational resources. The longer that the informed search resource

discovery techniques run on a P2P network, the more they learn about the network.

This will lead to a better resource discovery and this phenomena can be considered to

be a “learning effect”.

Among resource discovery techniques that fall into this category are: best-first

search; greedy search; and A* search [103]. All search techniques in this category

17

utilise some kind of heuristic approach in order to select between all the alternatives

that they have. Informed search strategies use problem-specific knowledge to their ad-

vantages according to the goal of the search. For example, the greedy search expands

nodes closest to the goal, and the A* search expands nodes on the least-cost solution

path [103].

The blackboard resource discovery mechanism (BRDM) [4, 5], uses a different kind

of informed search. Rather than using a heuristic in the traditional sense, instead, the

BRDM utilises the knowledge it has obtained through its past behaviour. This reference

to knowledge obtained from past behaviour are also present in other resource discovery

techniques, such as the intelligent-BFS (Int-BFS) [46] and adaptive probabilistic search

(APS) [106].

Informed search resource discovery techniques are usually used in large and complex

interconnected networks, where the nodes in the network have many computation and

storage resources to spare for the maintaining of the network. Informed search will be

further discussed in Section 2.3.3 and 3.2.

2.3.2 Evaluating Resource Discovery Effectiveness

Scientific researches need to be valid and reproducible by other members of the re-

search community. A survey has been done on P2P research papers to find the type

of simulators and evaluation technique used in the researches [74]. Out of 287 papers

on P2P networking subjects, 146 papers do not involved any simulation at all. This

research rely on mathematical calculations in order to proof the P2P algorithm being

developed.

71 papers used simulators but did not specify the simulator being used. 43 papers

developed their own simulators. The remaining 27 papers specified the simulators being

used, such as, NS-2 (8), Chord (SFS) (7), JavaSim (2), and PeerSim (2) (refer Figure

2.3.2). Among these simulators, PeerSim is the only one that is still being used by

18

Figure 2.2: Quantitative Survey on the Use of P2P Simulators [74].

researchers for P2P simulations [22]. Resource discovery techniques’ effectiveness are

calculated by number of nodes being visited by the query message.

There are several criteria that can evaluate the effectiveness of a resource discovery

techniques, such as: space complexity; time complexity; completeness; optimality; and

number of successful searches. Space complexity is a way to measure the amount of

memory used at any point in the algorithm. Time complexity is a measurement of time

needed for the algorithm to be completed. Both space and time complexity is usually

presented as the big O notation [83, 93].

Completeness in resource discovery techniques is whether an algorithm was able to

find all resources in the network. If there were some solutions or targets that were not

solved or found, an algorithm can be called as incomplete. Optimality is a measurement

of algorithms to return the best result obtainable under specific limitations. The number

of successful searches as the name suggests is the amount of successful searches that

19

the resource discovery techniques were able to find. The bigger the number of resources

found, the better performing the algorithm is. For this measurement, the number of

unsuccessful searches are not taken into consideration.

Space complexity is important in this research due to the limited amount of memory

available in running the simulation. Resource discovery techniques with high space com-

plexity would trigger the memory out of bounds error, making the techniques unobtain-

able for comparison with other techniques. Therefore, with the limitation of memory,

the resource discovery techniques in this research are measured based on the number of

successful searches of the algorithms.

There are several costs that need to be considered in resource discovery specific-

ally, or network computing generally [19, 47, 98]. The weight of a resource discovery

technique can be calculated in two ways, they are: network communication cost; and

query efficiency. The former calculation technique are described in detail by Sinclair

[98], while the latter is discussed by Lin & Wang [57], and Russell & Norvig [93].

2.3.2.1 Network Communication Cost Sinclair [98] outlined the calculation to

find network communication costs (NCC). The proposed network communication cost

model divided the network into two types of cost: link cost, and node cost. All shortest

route between two nodes are taken into calculation. The equation to calculate the

weight of the bi-directional link between nodes i and j are as follows:

Wij = 0.5Ni + Lij + 0.5Nj

where Ni and Nj are the node effective distances of nodes i and j respectively. Lij

is the length of link (i, j) in kilometres. The length of the network link is taken into

consideration because data is considered to move at the speed of light in computer

networks.

The second cost in consideration is the node cost. Node cost is taken into con-

20

sideration because longer geographical path may have a lower communication cost if it

traverses fewer nodes. The node effective distance of node i can be calculated as follows:

Ni = E + niF

where E and F are the length of links that the node is connected to in order to transfer

information across node i.

Based on the NCC calculation technique, Sinclair proposed several network con-

nection between countries in Europe. The research further claimed that the previous

NCC of internetwork amongst European countries of 7.22M can be reduced to 2.66M.

NCC technique is best used for calculating physical computer network infrastructure.

It is not suitable for use of peer-to-peer communication cost where there are a lot of

nodes and queries being taken into consideration [98].

2.3.2.2 Query Efficiency Russell & Norvig [93] have outlined two methods to

assess a resource discovery technique effectiveness, they are: search cost; and total cost.

Search cost is the time complexity for the technique to find the solution. Total cost is

the combination of the search cost and the path cost of the solution found [93]. The path

cost to the solution can also be considered as the number of message being forwarded

and returned in the network.

Lin & Wang [57] has outlined a metrics to calculate the effectiveness of a search

algorithm. Efficient algorithm should not generate unnecessary messages and queries

that being generated should have a high probability to find the target. The metrics

proposed by the research is Query Efficiency (QE). Hence QE will be represented as

⌘ (common Greek letter to show efficiency), the equation for ⌘ is as follows :

21

⌘ =
QueryHits

(QueryMessages/N)
(2.1)

=
QueryHits

MessagesPerNode

where N is the number of nodes in the simulation. The query efficiency introduced in

Lin & Wang research is suitable for power-law P2P networks.

2.3.2.3 Selected Resource Discovery Effectiveness Evaluation The NCC cal-

culation technique proposed by Sinclair [98] enables researchers to evaluate the cost of

optical fibre network connections. The cost relies on the length of the connection and

the cost of node for network connections between countries. On the other hand, the ⌘

proposed by Lin & Wang [57] calculates the cost of a search query using the amount

of query hits, query messages being generated, and the number of simulated nodes.

The length of the connection and the cost of nodes being connected is not taken into

consideration.

Both the NCC and the ⌘ can be used to calculate efficiency, however the former

calculates the efficiency of networks, and the latter calculates the efficiency of search

query techniques. The network communication cost is more suitable to be used to

calculate the best backbone network connection between countries, but is not suitable

to calculate the cost of simulated networks, where the length of connection between

nodes are not taken into consideration. Henceforth the ⌘ is being used as the metric to

calculate the efficiency of algorithms introduced in this dissertation.

Equation 2.1 shows the equation of ⌘. The higher the number of query efficiency,

the more efficient the query technique is. The efficiency calculated with the calculation

technique can not be represented as percentage because there are possibilities of having

the efficiency of more than 1.0. For example, the calculation will generate efficiency of

22

Figure 2.3: Query Messages Forward and Feedbacks (Found Only).

more than one if the number of query message sent by the search algorithm are lower

than the number of nodes in the simulated networks, and has at least one query hits.

(If the query failed to get any hit, the efficiency will be zero).

Lin & Wang outlined that an efficient query message should not generate excessive

and unnecessary queries [57]. These uncontrolled generation of queries will waste the

network bandwidth unnecessarily. The research suggest the ⌘ by dividing the query

hits with the messages per node. Messages per node is the results of dividing query

messages with number of nodes in the network. Thus, the ⌘ proposed does not take

into consideration whether the search algorithm evaluated is using the network for

feedback or not, even though the feedback queries uses approximately the same amount

of network bandwidth as the query messages going forward.

Calculating the amount of query feedback is important because each information

that being send in a network uses the network bandwidth. These query messages

23

Figure 2.4: Query Messages Forward and Feedbacks (All).

going forward and their feedbacks can accumulate and create queues and latency in the

network. Figure 2.3 and Figure 2.4 show the flow of query for search technique that

only require queries that have found the target, and search technique that requires all

queries to give feedbacks respectively. In both of the figures, node n0 is the originator of

the query, and the nodes being searched is node n9 and n12. The green and red arrows

shows the query messages being forwarded and their feedbacks respectively.

The amount of query messages being forwarded are the same, 13, for Figure 2.3 and

Figure 2.4. The amount of query feedbacks for techniques that only require positive

feedbacks and techniques that requires all feedback are 6 and 13 respectively. The

number of messages sent in the network for Figure 2.3 and Figure 2.4 are 19 and 26

respectively. In this example the technique that require all feedbacks sent 36.84% more

messages compared to techniques that only requires positive feedbacks to be sent. The

example above is considered small, nevertheless it shows that not only the number of

24

queries is needed, number of feedbacks is also needed to calculate query efficiency.

Thus, a new efficiency calculation metrics is introduced in this thesis in order to

also take into consideration all the network bandwidth communication cost. Thus,

this research proposed a new efficiency metrics that take the bandwidth cost of query

messages going forward and their feedbacks. The new metrics, ⌘⇤ (query efficiency with

feedback), is based on the equation proposed by Lin [57]. The equation for ⌘⇤ is as

follows:

⌘⇤ =
QueryHits

QueryMessagesForward+QueryMessagesFeedback
N

(2.2)

where N is the number of nodes in the network. The number of query hits is divided

with the value of number of messages being sent for that search technique over N .

2.3.3 Resource Discovery in Unstructured P2P Networks

BFS is one of the earliest resource discovery techniques. It derives from mathematical

method introduced by Awerbuch and Galager [10]. In the BFS method, the originator

of the query sends one walker to each adjacent node [10]. In the BFS resource discovery

technique, nodes forward all queries that they have received towards all adjacent nodes.

Randić observed this method and considered BFS as flooding the network [90]. Even

though BFS is well known for flooding the network, the technique is still widely used

in unstructured peer-to-peer (P2P) networks [78].

Kalogeraki et al. introduced Int-BFS, a new resource discovery technique named

[46]. Even though Int-BFS added some learning behaviour onto the BFS technique, in

the early stages of the learning, the walkers replication behaviour are identical to BFS.

Therefore, the problem of walkers from the same query flooding the network might still

arise.

Randić proposed a new method called restricted random walk (RRW) [90]. RRW

25

Figure 2.5: Resource Discovery Mechanisms Classification in Grid Computing Systems
[79].

reduces the amount of query forwarding by not sending the same query message to ad-

jacent nodes that have previously seen the message. However, if all adjacent nodes have

seen the message, RRW will select a random adjacent node to forward the message. The

approach introduced by Randić is able to reduce some unnecessary walker replication

when compared to the original random walk (RW) technique that was introduced by

Gkantsidis et al. [30]. However, the walkers using the RRW technique might be able

to forward the query and later replicate exponentially once it has passed the random

node.

As shown in Figure 2.5, Navimipour et al. have classified resource discovery mech-

anisms into five parts, namely, centralised, decentralised, P2P, hierarchical, and agent

based. Resource discovery for P2P is further classified as unstructured, structured,

super-peer, and hybrid [79]. Unstructured P2P networks are reliable in terms of query

correctness, and single point of failure, and can tolerate node dynamicity. Despite

that, the complexity of resource discovery algorithms for unstructured P2P networks is

O(N2), where N is the number of nodes in the network. Furthermore, the time com-

plexity for unstructured networks has a high order of growth compared to the scale of

26

the network [79].

Among resource discovery techniques, BFS is the most used resource discovery tech-

nique for unstructured P2P networks being used by Napster [105], Iamnitchi [40], Int-

BFS [46], Marzolla [65], and Learning Automata-based Resource Discovery (LARD)

[104]. Napster [105] and Iamnitchi [40] uses BFS that floods the network with queries.

Int-BFS [46] floods the system during its initial stage, but will send less queries once

the network has learnt from its previous queries. Marzolla [65] and LARD [104] use

BFS, but focus on routing of the unstructured P2P networks in order to minimise the

effect of the query flooding.

Navimipour and Milani state that the flooding technique increases the number of

walkers exponentially and causes a huge search overhead [78, 79]. Formally, for un-

structured networks, the amount of neighbours a node has are represented by k, and

the message number of hops as Time-To-Live (TTL). The equation for number of query

message forwarding (FBFS) can be written as follows:

FBFS = kTTL (2.3)

A peer-to-peer node usually has more than 20 neighbours. Therefore, having a 5-

hop BFS resource discovery mechanism would forward 205 query messages or 3.2 million

times. A 10-hop BFS in the network would replicate walkers up to 2010, or 1.024⇥1013

times. These examples are for networks where each node connects on average with other

20 nodes.

In some P2P networks, each node may connect to hundreds of other nodes. In this

case, the amount of walker replication is very large, even when considering that the

search query was initiated by only one node. In a real world network application, there

will be many peers initiating queries. Therefore, implementing a search technique that

floods the network will certainly degenerate the network performance and might even

27

collapse the whole P2P networks.

2.4 Discussion and Conclusions

This chapter contains the literature review for this research. The chapter starts with a

brief history of the Internet and its evolution, moving from its initial client-server based

architecture towards the use of distributed P2P networks. The transition was fuelled

by the advancement of the computer technology, enabling more people to be able to

acquire powerful machines able to do what previously only the servers class computer

could do.

The innovation of the Internet changing from a centralised source of information, to

the development of Web 2.0, where everybody with a device connected to the Internet

contributed to the generation of information that was shared across the Internet. This

vast amount of information leads to an abundance of resources, which then leads to the

requirement to have a suitable resource discovery mechanism in order to find resources

that are needed.

The rise of P2P networks coincided with the rise of Napster, a P2P based music

sharing platform, which in turn was forced to close after a copyright infringement law-

suit. Nevertheless, other than file sharing, P2P networks were also used in several other

applications, such as: multimedia (audio and video) platform; research; alternative

Internet; and even currency management.

P2P networks can be categorised based on its utilisation, overlay networks, and the

network topology. The overlay networks and the P2P network topology are independent

to each other, making it possible to mix between these two criteria in order to develop

new types of P2P networks. This is not to mention that the overlay topology and the

P2P physical network topology also contain a hybrid of their own.

Resource discovery, a crucial part in P2P networks can also be classified within

several categories according to its characteristics. The main categories are, but not

28

limited to: informed (blind) search and uninformed (knowledge-based).

Uninformed search is basically a resource discovery technique that does not retrieve,

process, or store any information regarding the network or onto the network. The query

message in uninformed search is lightweight, and the technique relies on the number of

query messages forwarded to find its desired resources.

Informed search on the other hand utilises some heuristic approach towards finding

the desired resources. The techniques in the informed search category retrieves, pro-

cesses, and stores information on the network in order to decide an optimised query

message forwarding, to return with as many successful searches as possible.

Methods to evaluate the effectiveness of resource discovery techniques are also dis-

cussed. Two evaluation techniques, network communication cost (NCC), and query

efficiency (QE) were discussed. The NCC is more focused on optical networks between

countries, while QE is more suitable for simulated networks. Hence in this disserta-

tion, QE is used as the main evaluation technique. QE is represented as ⌘, a Greek

letter usually used to show efficiency. Another new efficiency evaluation technique is

introduced, the new metrics, ⌘⇤, calculates the query effectiveness with consideration of

query message forwarding and feedbacks. This is in contrast to ⌘ that only uses query

message forwarding in generating the query efficiency.

The discussion continues with resource discovery techniques, but this time focusing

on the techniques used in unstructured P2P networks. Among techniques being dis-

cussed are the BFS, Int-BFS, RW, and RRW. The discussion also had a brief look at

the problem that occurs in unstructured P2P networks that are caused by the most

resource discovery techniques; that is flooding of the network with query messages.

29

3 Implementation of Resource Discovery Mechanisms on

Peer-to-Peer Simulator

Chapter Summary

This chapter discusses regarding several resource discovery techniques being used in

unstructured P2P networks. Among the resource discovery techniques that have been

examined are random walk, restricted random walk, breadth first search, intelligent

breadth first search, adaptive probabilistic search, depth first search and the blackboard

resource discovery mechanism. Each technique was analysed and the pseudocode of each

technique is presented. Several peer-to-peer simulators are listed and reviewed. The

chapter ends with the implementation process of several resource discovery techniques

onto the most suitable peer-to-peer simulator based on the review.

Summary of Each Section

Introduction : Introduction of the chapter

Resource

Discovery

: This section discusses several resource discovery

techniques complete with their pseudocodes.

Peer-to-Peer

Simulators

: Various peer-to-peer simulators is being discussed in

this section. Strong points and shortcomings of each

simulator are also being addressed.

Implementation

of the Resource

Discovery

Mechanisms on

PeerSim

: This section discusses in detail the methodology to

implement resource discovery mechanism onto

PeerSim. Example of experiment parameter setup is

also presented.

30

3.1 Introduction

Resource discovery is one of the most important parts in any resource sharing systems

[55, 78]. Nowadays, the most widely used resource sharing methods are peer-to-peer

(P2P) systems. Resources shared in P2P systems are usually spread all over the Internet.

Resource discovery plays a vital role in P2P, because it does not possess a central

computer storing of all the resources.

A number of researchers have simulated the resource discovery techniques on a P2P

network [55, 78]. Lazaro et. al. [55] focuses on resource discovery mechanisms that

are used to find computational resources. The paper addresses the main requirements

in decentralised resource discovery system such as, search flexibility, scalability, churn

and fault tolerance, completeness, accuracy, security, and miscellaneous performance

requirements.

Navimipour and Milani [78] analyse and examine resource discovery techniques into

four main categories such as, unstructured, structured, super-peer, and hybrid. The

main requirements being examined were scalability, dynamicity, reliability, load balan-

cing, response time, and robustness of the resource discovery techniques.

Lazaro et.al. [55], and Navimipour and Milani [78] did a comprehensive study on

resource discovery techniques, however did not specify the simulators that was used in

their researches. The paper also did not mention the amount of nodes being simulated

for the research. Nai’cken et. al. mentioned that most of the researches did not give

the reference of the simulator being used, or used a custom simulator built specifically

for their research [74].

Several P2P simulators are discussed in this chapter, listing each attributes such

as their advantages, disadvantages, architecture, simulations scales, simulated network

types, extensibility, and features. These P2P simulators is then compared to each other

to find out the best, most suitable simulator to be used for this research experiments.

31

Justifications about the selection of PeerSim as the P2P simulator for this research are

then presented.

Another objective of this chapter is to describe the implementation of several re-

source discovery mechanisms onto PeerSim [71] in order to facilitate the experimental

evaluations described later in this dissertation. PeerSim has been acknowledged by re-

searchers to be having a high level of scalability [22]. Therefore, adding these resource

discovery techniques onto PeerSim enables a vast amount of P2P nodes to be simu-

lated making the simulation of the resource discovery mechanisms nearer to the real-life

network application.

This chapter is an extension to the proceedings paper in The Third International

Conferences on Informatics and Applications (ICIA2014) [42] and to the article in The

International Journal of Digital Information and Wireless Communications (IJDIWC)

Volume 5 Number 1 [43].

3.2 Resource Discovery Mechanisms

Resource discovery techniques have been studied even before the existence of computer

networks. The various techniques being used today are the improvements of previ-

ously developed resource discovery methods. Techniques such as Random Walk [30],

Restricted Random Walk [90], Breadth-First Search [10], Intelligent BFS [46], Depth-

First Search [102], Adaptive Probabilistic Search [106], Blackboard Resource Discovery

Mechanism [4] are explained briefly in the following subsections.

3.2.1 Random Walk

Random walk (RW) [30] is a simple method to locate resources. When one node is

searching for a resource, the node will check for the resource at its current location. If

the resource is not available, the node will send a walker (query) to one adjacent node.

The selection of the adjacent node the walker should go next is decided randomly, thus

32

Algorithm 3.1 Random Walk Pseudocode.
00
01 Receive search message;
02 if (this node has the resource) {
03 Reply to originator;
04 }
05 Forward the message to a random adjacent node;
06

Algorithm 3.2 Restricted Random Walk Pseudocode.
00
01 Receive search message;
02 if (this node has the resource) {
03 Reply to originator;
04 }
05 while (n received the message earlier) do {
06 Randomly select one adjacent node (n);
07 }
08 Forward the message to a random adjacent node;
09

the name of the method. The search will be done recursively until it finds the resource

that it was looking for. There are no restrictions in RW, therefore there is a possibility

that the walker will go back to the node that the walker has been visited previously

[30]. The pseudocode for random walk is shown in Algorithm 3.1.

3.2.2 Restricted Random Walk

Restricted random walk (RRW) [90] represents an improvement upon the random walk

resource discovery mechanism. It carries most of the criteria of a RW, however, the

only differences are when the walker (query) is selecting the adjacent node to go to.

RRW’s walkers will randomly select an adjacent node that it has never visited before.

Therefore, in order to run RRW, the walker will keep track of all of the nodes that it

has visited.

The ability to omit the nodes that it has visited makes the RRW a better method

than RW because it does not waste the time-to-live (TTL) of its walkers. Algorithm

33

Algorithm 3.3 Breadth-First Search Pseudocode.
00
01 N = number of adjacent nodes;
02
03 Receive search message;
04 if (this node has the resource) {
05 Reply to originator;
06 }
07 for n in range (1:N) {
08 if (n received the message earlier) { }
09 else {
10 Forward the message to n;
11 }
12 }
13

3.2 shows the pseudocode for restricted random walk.

3.2.3 Breadth-First Search

Breadth-First Search (BFS) is among the earliest resource discovery techniques that

was used in the field of computer networks. In P2P networks, when a node is searching

for a resource, it will check itself whether it has the requested resource. If not, the

node will query all adjacent nodes for the resources [10]. BFS uses a lot of networking

resources by sending a large amount of queries inside the network. This characteristic

makes BFS flood the network with queries [90]. Figure 3.2.3a shows the sequence of

walkers being generated using the BFS technique. Pseudocode for breadth-first search

is shown in Algorithm 3.3.

3.2.4 Intelligent BFS (Int-BFS)

Intelligent BFS (Int-BFS) [46] is an advancement of the BFS [10] searching technique.

Int-BFS does not flood the entire network. Instead, it only sends walkers to a fraction of

its adjacent nodes. The fraction changes according to the topography and the number

of adjacent nodes. In Int-BFS, the node will store query information regarding how

34

Figure 3.1: Query Message Node Traversal

Algorithm 3.4 Intelligent BFS Pseudocode.
00
01 N = number of adjacent nodes;
02 F = Fraction based on topography & number of adjacent nodes;
03
04 Receive search message;
05 if (this node has the resource) {
06 Reply to originator;
07 }
08 for n in range (1:N*F) {
09 while (n received the message earlier) do {
10 Randomly select one adjacent node (n);
11 }
12 Forward the message to n;
13 }
14

35

Algorithm 3.5 Depth-First Search Pseudocode.
00
01 N = number of adjacent nodes;
02 count = 0;
03
04 Receive search message;
05 if (this node has the resource) {
06 Reply to originator;
07 }
08 for n in range (1:N) {
09 if (n did not receive the message earlier) {
10 increment count by 1;
11 }
12 }
13 if (count == 0) {
14 Return message to originator;
15 }
16 else {
17 while (n received the message earlier) do {
18 Randomly select one adjacent node (n);
19 }
20 Forward the message to n;
21 }
22

many times that the adjacent neighbour has been answering the majority of queries

sent by the node.

When a new query arrives, the node will search the stored queries that it has, and

forwards it to a set number of neighbours that have answered the most results for

the query. Figure 3.2.3c shows the sequence of walkers using Int-BFS. Observe that

the technique uses a randomisation technique to select an adjacent node, therefore the

results would not be like that in every simulation. Algorithm 3.4 shows the pseudocode

for intelligent BFS.

36

Algorithm 3.6 Adaptive Probabilistic Search Pseudocode.
00
01 N = number of adjacent nodes;
02 for n in range (1:N) {
03 Pn=1/N; #probability of n being selected
04
05 Receive search message;
06 if (this node has the resource) {
07 Reply to originator to increase probability being selected;
08 }
09 else {
10 Forward the message randomly using Pn weightage;
11 }
12

3.2.5 Depth-First Search

Depth-first search (DFS) [102] can be viewed as the opposite of BFS [10]. Instead of

forwarding queries to all adjacent nodes, DFS only forwards one walker to one adjacent

node. The selection of the forwarding node is done randomly. The query will continue

on forwarding until no other adjacent nodes can be found that it has not visited. When

it reaches the end (where there is no other choice), the walker will take one step back to

the previous node that it visited, and then continues to go forward to another adjacent

node.

Figure 3.2.3b shows the route sequence that a DFS walker would choose during the

resource discovery. Observe that the technique uses randomisation therefore the results

might differ every simulation cycle. Algorithm 3.5 shows the pseudocode for depth-first

search.

3.2.6 Adaptive Probabilistic Search

Adaptive probabilistic search (APS) [106] is a modification of random walk [30]. In the

initial stage, APS works just like RW, where all adjacent nodes have an equal probability

to be selected. The probability of an adjacent node increases when it returns a hit for any

37

Algorithm 3.7 Blackboard Resource Discovery Mechanism Pseudocode.
00
01 N = number of adjacent nodes;
02 alpha = fraction based on topography and number of adjacent nodes;
03
04 Receive search message;
05 if (this node has the resource) {
06 Reply to originator #write on originator’s n1 blackboard
07 }
08 elsif (the blackboard has the path to the resource) {
09 Reply to originator #write on originator’s n1 blackboard
10 }
11 else {
12 for n in range (1:alpha*N) {
13 Forward to the message to alpha*N adjacent nodes;
14 }
15 }
16
17 decrease TTL by 1
18 if (TTL == 0 && does not find the resource) {
19 Reply to originator #write on originator’s n2 blackboard
20 }
21

query. Alternatively, the probability to be selected decreases if the adjacent node did not

return any successful searches [106]. For this reason, APS searching capabilities improve

over time. The pseudocode for adaptive probabilistic search is shown in Algorithm 3.6.

3.2.7 Blackboard Resource Discovery Mechanism

The Blackboard resource discovery mechanism (BRDM) was first devised in 2004 as a

method that utilises an artificial intelligence knowledge representation technique where

a blackboard is used to list all the important information about neighbouring entities

[4]. In BRDM, the blackboard is used to record recommended adjacent nodes to forward

a future query to. If there is a recommended node, the query will be forwarded to the

node; if there are not any recommended nodes, the query will be forwarded to a number

of random adjacent nodes.

38

BRDM forwards queries using walkers. The amount of walkers is decided based on

the TTL of the query and the amount of adjacent nodes. The percentage of neighbours

to forward the query to can be modified to suit the topology of the P2P networks.

BRDM is utilised as one of the efficient scheduling policies for ParCop, a decentralised

P2P system [3]. Figure 3.2.3c shows the sequence of walkers using BRDM. Observe that

the technique uses randomisation, therefore the results would differ every simulation.

Algorithm 3.7 shows the pseudocode for blackboard resource discovery mechanism.

3.2.8 Summary of Resource Discovery Mechanisms

As stated in Section 2.3, all the above mentioned resource discovery techniques can be

classified into either uninformed or informed search technique. In uninformed search

technique, no data will be stored in the query messages or the nodes. In informed search

technique, the information are stored by the query message or the nodes. Old inform-

ation will be discarded using the least recently used (LRU) algorithm. The techniques

can also be classified according to their query message replication. Each technique will

be either generate multiple replication of the query message, or it can just forward

the query that it received. Table 3.1 shows each resource discovery techniques being

discussed above and their characteristics.

3.3 Peer-to-Peer Simulators

There has been a lot of research conducted on various aspects of P2P networks. Like

other scientific research, studies regarding P2P systems need to produce solutions that

are valid and able to be reproduced by other researchers. There are three methods to

achieve this goal, they are: analytical; using simulations; or by performing experiments

on actual P2P systems [74].

Non-simulation methods for P2P systems are analytical, and by performing on actual

P2P systems. Analytical approach requires the P2P system to be modelled mathem-

39

Ta
bl

e
3.

1:
R

es
ou

rc
e

D
is

co
ve

ry
Te

ch
ni

qu
es

R
es

ou
rc

e
D

is
co

ve
ry

Te
ch

ni
qu

es
M

ul
ti

pl
e

Q
ue

ry
R

ep
lic

at
io

n

Si
ng

le
Q

ue
ry

Fo
rw

ar
di

ng

In
fo

rm
ed

Se
ar

ch
U

ni
nf

or
m

ed
Se

ar
ch

R
an

do
m

W
al

k
(R

W
)

[3
0]

X
X

R
es

tr
ic

te
d

R
an

do
m

W
al

k
(R

RW
)

[9
0]

X
X

B
re

ad
th

-F
ir

st
Se

ar
ch

(B
FS

)
[1

0]
X

X
In

te
lli

ge
nt

B
re

ad
th

-F
ir

st
Se

ar
ch

(I
nt

-B
FS

)
[4

6]
X

X
D

ep
th

-F
ir

st
Se

ar
ch

(D
FS

)
[1

02
]

X
X

A
da

pt
iv

e
P

ro
ba

bi
lis

ti
c

Se
ar

ch
(A

P
S)

[1
06

]
X

X
B

la
ck

bo
ar

d
R

es
ou

rc
e

D
is

co
ve

ry
M

ec
ha

ni
sm

(B
R

D
M

)
[4

]
X

X
A

lp
ha

B
re

ad
th

-F
ir

st
Se

ar
ch

(↵
-B

FS
)⇤

X
X

Li
gh

tw
ei

gh
t

B
la

ck
bo

ar
d

R
es

ou
rc

e
D

is
co

ve
ry

M
ec

ha
ni

sm
(L

B
R

D
M

)⇤
X

X

⇤ :
Te

ch
ni

qu
es

de
ve

lo
pe

d
in

th
is

re
se

ar
ch

.
D

et
ai

ls
re

ga
rd

in
g
↵
-B

FS
an

d
LB

R
D

M
te

ch
ni

qu
es

w
ill

be
di

sc
us

se
d

in
Se

ct
io

n
5

an
d

Se
ct

io
n

6
re

sp
ec

ti
ve

ly
.

40

atically. Nevertheless, real life P2P systems tend to be very complex and robust. In

order to produce the mathematical models, there are many assumptions being done to

simplify the P2P systems. Therefore, any findings using this method will have a very

limited applicability [74].

Experimenting proposed P2P system on an actual system is a difficult thing to do.

P2P systems may scale to a large numbers of nodes, therefore, in order to do the ex-

periments on actual systems a large number of nodes are needed. This method requires

significant amount of resources, and can be very costly in administration and hard-

ware. In case of studies that need to introduce malicious nodes onto the network, many

security issues that require limitations and controls need to be implemented carefully

[74].

In spite aforementioned difficulties and high cost of a real world test bed for actual

P2P systems, there are researchers that use this method. One example is the test bed

PlanetLab [86]. Currently it has 1353 actual nodes spread across 717 sites. All of these

nodes are subject to real-world network conditions.

Simulations of P2P networks do not suffer from the difficulties of the analytical and

the experiments on actual system. The implementation cost of simulations are just a

small fraction when compared to the actual P2P system test bed. The simulations are

less complex when compared to the mathematical model used in the analytical method

[74]. There are several P2P simulators available for researchers to use for the scientific

tests. They are: 3LS [52]; General Peer-to-Peer Simulator (GPS) [110]; Neurogrid [75];

P2PSim [35]; PeerSim [71]; PeerThing [85]; Query Cycle [73]; and RealPeer [38].

Each simulator has their own advantages and disadvantages. Each simulator has

some tradeoffs in order to achieve the goal of the P2P simulator [22, 73, 75]. Among

concerns regarding the experiments on P2P simulations are as follows: poor document-

ation; limited functionality; missing statistical data collection; and publications do not

clearly specify simulations that they use. This leads to poor reproducibility of results

41

and analysis and comparison [74].

3.3.1 3LS

3LS or 3 Layered System is an open source simulator for overlay networks that focuses

on extensibility and usability. The three architectural layers in 3LS are: network model

(bottom layer); protocol model (middle layer); and user model (top layer). Communica-

tions in 3LS can only occur with adjacent layers. The simulator also has several queues

to handle requests, they are: Outbox; Inbox-for-network-delay; Inbox-for-processor-

delay; and Inbox. These queues are implemented to allow simulation of network traffic

and CPU delay [52].

3LS integrates with GUI and uses main memory to store each event executed in

simulations. Consequently the simulator has a high memory overhead that limits the

scalability of the simulated system. At most, 3LS can simulate networks with only a

couple of thousand peers on a regular machine. 3LS is well documented, however the

simulator is not available on the web, researchers can request for the source code from

the authors of the simulator [22].

3.3.2 General Peer-to-Peer Simulator (GPS)

GPS is an event-driven P2P simulator that focuses on modelling P2P protocols as

accurate, efficient, realistic, and dynamic as possible. The simulator is written in Java,

and maintains its efficiency by modelling the communication at the message level. GPS

does not have a fixed synchronous increments, instead the processing and time advance

based on occurrence of events. Packet level simulation is not implemented to maintain

its performance [74, 110].

GPS is poorly documented, in addition, it has a steep learning curve in order to

use the simulator. The simulator excels in extensibility due to the availability of all

infrastructures required for P2P simulations. Other advantages of this simulator is that

42

it is able to functionally model BitTorrent [15] protocol, that seems to be a difficult

feat to be done by other simulators discussed in this chapter. In order to be able

to functionally simulate BitTorrent protocol, the simulator was designed to be tightly

coupled to the BitTorrent protocol. Unfortunately, this simulator design decision has

made it difficult for researchers to implement protocols other than BitTorrent onto it

[22].

3.3.3 Neurogrid

Neurogrid is a simulator developed to simulate large scale neural. In the early stages

of the development, the simulator has been used to compare P2P protocols such as

Freenet [18], Gnutella [31] with the Neurogrid protocol [45]. In recent years, with the

advancement of computing power, Neurogrid is being used to simulate large scale neural

networks[13]. Neurogrid is a single-threaded discrete even simulator able to simulate on

structured and unstructured networks [75].

Neurogrid can only simulate overlay layer of the network, this is due to the simulator

design that assumes all links between nodes have equal bandwidths. The simplifying

assumptions allow the simulator to generate up to 300,000 nodes. Extensive document-

ations for Neurogrid are available on the Internet, however are disorganised in the form

of wiki documentation [22].

3.3.4 P2PSim

P2PSim has a different goal compared to other simulators. The simulator design focuses

on three main objectives: to uncomplicate P2P protocol source codes; to make com-

parison between protocols easy; and to have reasonable performance. P2PSim utilises

threads, thus making protocol implementations as similar as possible to their pseudo-

codes. P2PSim can only simulate structured overlay network topologies, and does not

support distributed simulations. Among network topology that are available in P2PSim

43

are: random graph; end-to-end time graph; G2 graphs; and Euclidean graph [35].

P2PSim simulation can scale up to 3000 nodes for Euclidean constant failure model

topology. The protocols in P2PSim can be extended, however limited and poor C++

API documentation of the simulator makes it difficult to be done. Another drawback

of the simulator is that it is unable to simulate unstructured or semi-structured P2P

routing protocols [22].

3.3.5 PeerSim

PeerSim is a P2P simulator developed under BISON project. Simulations in PeerSim

can be done using cycle-driven or event-driven simulation engine. The simulator has

been designed to simulate large and dynamic P2P networks dynamic. PeerSim does not

have a GUI, simulations parameters are set using a configuration files that are loaded

before the simulation [71].

Class packages are offered in PeerSim in accordance with the type of simulations to

be done. One of PeerSim’s forte is its scalability, the simulator can simulate networks

of up to one million nodes. It has a steep learning curve as the simulator has limited

amount of documentations available on the Internet. Nevertheless, the source code

comment and API documentations are sufficient for researchers to study and use. There

are no distributed simulation available in PeerSim, forcing experiments to be done on

only one machine [22].

3.3.6 PeerThing

PeerThing is a P2P simulator with architectures that can be categorised into two:

system behaviour; and system scenario. The former allows defining the behaviour of

each node in the network. This architecture define the whole behaviour of the network

based on the behaviour in a single peer. The latter define the number of nodes and

their connections’ characteristics such as uplink and downlink speeds, delays, loops, and

44

actions. Once the system behaviour and system scenario have been set, a corresponding

XML (eXtended Markup Language) is generated [85].

PeerThing is claimed to be able to generate 2000 nodes for the Gnutella model [31]

and 1000 nodes for Napster [77] model. This simulator has a GUI, and simulation results

can be saved in comma separated values for further analysis. PeerThing has the best user

manual, however the API documentation source code is not well commented. Therefore,

making it difficult to extend the simulator for other protocols or functionalities [22].

3.3.7 Query Cycle

The Query Cycle Simulator, or sometimes called P2PSim is a P2P simulator developed

by Stanford University for its P2P sociology project. The simulator focuses on accur-

ately simulating user behaviour in P2P file sharing network. Among parameters in the

simulators are query activity, download behaviour, and uptime. As its name suggests,

each cycle in the Query Cycle Simulator is based on queries generated by the network.

The cycle finishes when all peers that submit queries received satisfactory response

[73, 89].

Query Cycle Simulator can simulate up to one million nodes, however there are some

instance that the simulator does not scale when when simulating more than 1000 peers.

The simulator also has GUI present, making it easier to simulate for sociology studies.

Nonetheless, this simulator has poor API documentation, thus limiting the possibility

to extend this simulator [22, 89].

3.3.8 RealPeer

RealPeer is a P2P system development framework. The system can be executed as

a simulator or as a real P2P application. Classes in RealPeer are generic, and the

utilisation of plug-in design pattern makes it easily extensible. Researchers can combine

or exchange elements of the framework to make it suitable for the intended experiments.

45

RealPeer is quite scalable, able to simulate up to 20,000 peers [38].

There is no GUI available for RealPeer, all commands need to be written on the

command prompt. Simulation results for RealPeer are stored in text files. Nevertheless,

the numeric value are stored with no corresponding variable name. RealPeer is still

relatively new, however being actively and extensively developed, it is more likely that

the aforementioned problems will be addressed due time [22].

3.3.9 Selection of Peer-to-Peer Simulators

P2P simulators that have been discussed in previous Section can be summarised as

in Table 3.2. The table lists the usability & documentations, scalability, extensibility,

GUI availability, and the programming language being used to develop the simulators.

Above mentioned simulators can also be summarised based on their architecture (Table

3.3). Table 3.4 shows comparisons between P2P simulators for researches.

Each of the simulators has its advantages and disadvantages. These traits are usu-

ally based on the main objectives of the simulator being built. Among simulators

that were developed for specific objectives are Neurogrid, Query Cycle, and P2PSim.

Neurogrid’s objective is to simulate large scale neural networks, early adaptations of

the P2P protocols were only to proof of concept for Neurogrid protocol [13, 45].

Query Cycle is a part of a larger research group, Stanford P2P sociology project.

Its main objectives are to mimic distilled and simplified human rules of behaviour

towards the P2P networks. These implementations of behaviour are expected to be

used to face several issues such as trust, privacy, and economics [89]. P2PSim focuses

on making peer-to-peer protocol easy to understand, and convenient. The objective of

easy protocol comprehension has lead to tradeoffs with the performance of the simulator

[35]. Simulators with narrow objectives might have simplifying assumptions and difficult

to extend with new protocols. Therefore, simulators like the Neurogrid, Query Cycle,

and P2PSim are not considered to be the simulator for this research.

46

Ta
bl

e
3.

2:
Su

m
m

ar
y

of
P

2P
Si

m
ul

at
or

A
na

ly
si

s
[2

2]
.

Si
m

ul
at

or
s

U
sa

bi
lit

y
/

D
oc

um
en

ta
ti

on
Sc

al
ab

ili
ty

(m
ax

im
um

)
E

xt
en

si
bi

lit
y

G
U

I
La

ng
ua

ge

3L
S

[5
2]

N
/A

20
no

de
s

T
he

or
et

ic
al

ly
ex

te
ns

ib
le

bu
t

pr
ac

ti
ca

l
im

pl
em

en
ta

ti
on

is
re

qu
ir

ed
.

Y
es

Ja
va

G
P

S
[1

10
]

Po
or

do
cu

m
en

ta
ti

on
.

51
2

no
de

s
Po

or
do

cu
m

en
ta

ti
on

lim
it

s
ex

te
ns

ib
ili

ty
.

Y
es

Ja
va

N
eu

ro
gr

id
[7

5]
G

oo
d

A
P

I
do

cu
m

en
ta

ti
on

an
d

us
er

m
an

ua
l.

So
ur

ce
co

de
is

no
t

w
el

lc
om

m
en

te
d.

30
0,

00
0

no
de

s
D

es
ig

ne
d

to
be

ex
te

ns
ib

le
.

Y
es

Ja
va

P
2P

Si
m

[3
5]

Po
or

do
cu

m
en

ta
ti

on
.

3,
00

0
no

de
s

Li
m

it
ed

pr
ot

oc
ol

ex
te

ns
ib

ili
ty

an
d

co
m

pl
ex

ha
nd

lin
g.

Y
es

C
+

+

Pe
er

Si
m

[7
1]

D
et

ai
le

d
A

P
I

do
cu

m
en

ta
ti

on
.

La
ck

s
de

ta
il

in
us

er
m

an
ua

l.
10

6
no

de
s

D
es

ig
ne

d
to

be
ex

te
ns

ib
le

.
N

o
Ja

va

Pe
er

T
hi

ng
[8

5]
G

oo
d

us
er

m
an

ua
l.

Po
or

A
P

I
do

cu
m

en
ta

ti
on

.
So

ur
ce

co
de

is
no

t
w

el
lc

om
m

en
te

d.

2,
00

0
no

de
s

E
xt

en
si

bl
e.

Y
es

Ja
va

Q
ue

ry
C

yc
le

[7
3]

Po
or

A
P

I
do

cu
m

en
ta

ti
on

an
d

us
er

m
an

ua
l.

10
6

no
de

s
Li

m
it

ed
.

Y
es

Ja
va

R
ea

lP
ee

r
[3

8]
W

el
lc

om
m

en
te

d
so

ur
ce

co
de

.
Po

or
A

P
I

do
cu

m
en

ta
ti

on
an

d
us

er
m

an
ua

l.

20
,0

00
no

de
s

Po
or

A
P

I
do

cu
m

en
ta

ti
on

lim
it

s
ex

te
ns

ib
ili

ty
.

N
o

Ja
va

47

Ta
bl

e
3.

3:
P

2P
Si

m
ul

at
or

A
rc

hi
te

ct
ur

e
C

om
pa

ri
so

n
[2

2]
.

Si
m

ul
at

or
s

St
ru

ct
ur

ed
/

U
ns

tr
uc

-
tu

re
d

E
ve

nt
/

C
yc

le
/

Q
ue

ry
ba

se
d

Tr
ig

ge
re

d
by

D
is

tr
ib

ut
ed

Si
m

ul
at

io
n

D
yn

am
ic

N
et

w
or

k
Sp

ec
ia

l
Fe

at
ur

es
A

cc
ur

ac
y

E
ffi

ci
en

cy

3L
S

[5
2]

U
ns

tr
uc

tu
re

d
E

ve
nt

ba
se

d
T

im
e

sc
he

du
lin

g
to

us
er

sp
ec

ifi
c

be
ha

vi
ou

r.

N
o

Y
es

3
Se

pa
ra

te
le

ve
l

ar
ch

it
ec

tu
re

Lo
w

Lo
w

G
P

S
[1

10
]

B
ot

h
D

is
cr

et
e

ev
en

t
ba

se
d

O
cc

ur
re

nc
e

of
ev

en
t.

Y
es

Y
es

M
ac

ro
sc

op
ic

m
od

el
s

H
ig

h
H

ig
h

N
eu

ro
gr

id
[7

5]
B

ot
h

D
is

cr
et

e
ev

en
t

ba
se

d
T

im
e

sc
he

du
lin

g.
N

o
Y

es
N

/A
M

ed
iu

m
Lo

w

P
2P

Si
m

[3
5]

St
ru

ct
ur

ed
D

is
cr

et
e

ev
en

t
ba

se
d

T
im

e
sc

he
du

lin
g.

N
o

N
o

P
se

ud
oc

od
e-

lik
e

im
pl

em
en

ta
-

ti
on

Lo
w

Lo
w

Pe
er

Si
m

[7
1]

B
ot

h
E

ve
nt

ba
se

d
an

d
cy

cl
e

ba
se

d

T
im

e
an

d
ra

nd
om

se
le

ct
io

n.

N
o

Y
es

N
/A

M
ed

iu
m

Lo
w

(E
ve

nt
)

H
ig

h
(C

yc
le

)

Pe
er

T
hi

ng
[8

5]
N

/A
E

ve
nt

ba
se

d
T

im
e

sc
he

du
lin

g
to

us
er

sp
ec

ifi
c

be
ha

vi
ou

r.

Y
es

Y
es

Sy
st

em
be

ha
vi

ou
r

an
d

sy
st

em
sc

en
ar

io
de

fin
it

io
n

H
ig

h
H

ig
h

Q
ue

ry
C

yc
le

[7
3]

U
ns

tr
uc

tu
re

d
Q

ue
ry

ba
se

d
T

im
e

sc
he

du
lin

g.
N

o
Y

es
Fo

r
fil

e
sh

ar
in

g
Lo

w
Lo

w

R
ea

lP
ee

r
[3

8]
U

ns
tr

uc
tu

re
d

D
is

cr
et

e
ev

en
t

T
im

e
sc

he
du

lin
g.

N
o

N
o

D
ev

el
op

m
en

t
en

vi
ro

nm
en

t
M

ed
iu

m
M

ed
iu

m

48

Table 3.4: P2P Simulator Comparison.

Simulators Usability
& Docu-

mentation

Scalability Extensibility Runtime,
Status, &

GUI

Overall
Marks

(F)

PeerSim [71] FFFF FFFFF FFF FFFF 16

Neurogrid [75] FFFFF FFFF FFF FFF 15

PeerThing [85] FFFF F FFFF FFFFF 14

Query Cycle [73] FF FFFFF FF FFFF 13

RealPeer [38] FFFF FF FFF FF 11

P2PSim [35] F F FF FFFF 8

GPS [110] F F FF FFFF 8

3LS [52] N/A N/A F FFF 4

One of the concerns in P2P simulations are the number of nodes in the network

being simulated. P2P simulators with low scalability might come out with protocols

that are not suitable for real life implementation of peer-to-peer where the number

of nodes is very large. Experiments done on the simulators might not truly reflect the

actual implementations of the P2P protocols. Among simulators that has low scalability

are 3LS [52], GPS [108], PeerThing [85], and P2PSim [35] with 20, 512, 2000, and 3000

nodes respectively. These simulators were not explored further to be the simulator of

this research.

Subsequent to the omissions of several simulators above, the two remaining simu-

lators are PeerSim [71] and RealPeer [38]. Both of the simulators are extensible, and

neither have a simulator GUI to simplify the simulations settings. The advantages of

PeerSim against RealPeer are PeerSim has a well documented API and its development

are more mature and supported by researchers. On the other hand, RealPeer has a

better user manual, making it an easier to use compared to PeerSim [22]. PeerSim was

chosen for this research, considering that a well documented API is one of the most

49

important aspect in order to extend a simulator and simulating new protocols.

3.4 Implementation of the Resource Discovery Mechanisms on Peer-

Sim

Several resource discovery techniques have been implemented onto PeerSim. The pseudo-

code of the RW, RRW, BFS, Int-BFS, DFS, APS, and BRDM are shown in Algorithm

3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7 respectively. Although the pseudocodes of the re-

source discovery mechanisms are straightforward, however, the implementation of the

techniques onto PeerSim was found to be anything but straight forward.

In order to achieve its high scalability, developers of PeerSim have developed it in

Java to fully utilise its object oriented programming approach. The node generator and

basic characteristic of the nodes are placed at the base of the PeerSim (peersim.core).

All of the topology generators are placed in peersim.dynamics and the methods to plot

the nodes and topologies are placed in peersim.graph. Resource discovery techniques

are placed in peersim.extras.gj.isearch, a dedicated package for search techniques.

Given that the objects that needed to be used for the resource discovery techniques

are located in several places in the PeerSim package, a configuration file is needed to

run the simulator. An example of the configuration file for BRDM techniques is shown

in Algorithm A.1. Lines 01 to 05 of the configuration file is for the setup of the whole

environment. It is then followed with the setup of the resource discovery technique from

lines 07 to 17. Setup configurations for the topology is stated in lines 19 to 22. Lines

24 to 29 lists all the initial setup configuration for the search. The remainder of the

configuration file are several settings for printing the results of the resource discovery

techniques.

As mentioned above, the implementation of resource discovery techniques are not

straight forward. Resource discovery techniques are needed to be interpreted as object

oriented and not as structured as the pseudocodes may suggest. As an example, the

50

pseudocode for BRDM are shown in Algorithm 3.7, while the real coding for the BRDM

in PeerSim is as shown from Algorithm A.2 until Algorithm A.7. Notice that the code

for BRDMProtocol.java is an extension to SearchProtocol.java, a java programming

that consists of 650 plus lines of codes.

In order to get parameters from outside the program, values needed to be added

in the configuration file. In the case of BRDM, the values of alpha multipliers are

listed in the configuration file, to be read by SearchProtocol.java. The blackboard

implementation of recommended, (N1), and unrecommended, (N2), lists are declared as

HashMap<Node, ArrayList<Node>> so that the list can grow according the information

received, and are renamed to RL and UL respectively to avoid confusion with nodes

numbering.

The amount of message forwarding are dictated by the alpha multipliers. The mes-

sage forwarding is then decided based on the recommended and unrecommended lists,

where in BRDM, the query will be forwarded to the nodes in the recommended list,

and the unlisted, while avoiding forwards to the nodes in the unrecommended list. The

remainder of the BRDM code are the methods needed to add, search, and update the

information in recommended and unrecommended blackboard list.

3.5 Conclusions

There are a lot of P2P simulators available on the Internet. Most of the simulators

are developed for certain objectives, thus making the simulator hard to be extended

for other protocols. There are times when the objectives limit the scalability and made

simplifying assumptions to suite their own research. These features and limitations of

P2P simulators have been used as the justification for selecting PeerSim as the simulator

of this research.

PeerSim is a very scalable P2P simulator. In order to achieve its high scalability,

the simulator is designed to be as object oriented as possible. Components for the

51

simulation in PeerSim are distributed across the whole PeerSim package. Researchers

who want to use PeerSim, would need to choose suitable components of PeerSim based

on the specific research and/or application requirements. These components are usually

dependent upon each other, requiring users to dig deep just to find a simple component,

for example, nodes. To change a simple parameter in PeerSim might require the user

to change multiple files that depend on the parameter.

This difficulty does not include the complexity of extensions, polymorphs, and over-

rides within the PeerSim package. To fully appreciate the scalability of PeerSim, codes

implemented in it should neither be structured nor static. Due to the large package of

PeerSim, and many restrictions and coding techniques, utilising PeerSim as a P2P simu-

lator will require a steep learning curve. Once a researcher was able to endure the steep

learning curve, the testing of P2P techniques and algorithms should be easy. Neverthe-

less, memory and simulation cycle management of PeerSim is commendable, enabling

simulations of up to 1 million nodes, a rare characteristic among P2P simulators.

52

4 Unstructured P2P Network Topology Simulation

Chapter Summary

This chapter discusses the characteristics of several network topology models. The P2P

network topology generator models discussed are as follows: Heuristically optimised

trade-offs, regular rooted tree, star, ring lattice, Watts-Strogatz, scale free Barabási-

Albert, scale free Dorogovtsev-Mendes, and K-out topology generators. The rules and

conditions that need to be followed in order to correctly imitate real life P2P networks

are also listed. The chapter ends with the selection of an unstructured P2P network

topology generator to be used in all of the experiments beyond this chapter.

Summary of Each Section

Introduction : Introduction of the chapter

P2P Network

Generator Models

: Lists all the P2P network generator models. The

characteristics of each model is also being presented.

Selection of the

Topology

Generator Models

: This chapter discusses the real life characteristics of

P2P networks, and some rules and conditions that

the network follows. The P2P network generator

model that can closely imitate real-life P2P networks

is then selected to be used in the resource discovery

experiments.

4.1 Introduction

Many real world scenarios follow the power law distribution. Power law is a functional

relationship between two quantities, where one of the quantities varies as a power of

another. In the example of P2P networks, the two quantities are the number of the

nodes and the number of neighbours that each node has [2]. There will be many nodes

53

that have a small number of neighbours, and there will be a small number of nodes that

have many neighbours.

4.2 P2P Network Generator Models

Network topology types are crucial in experimenting with P2P protocols or algorithms.

As stated in Section 2.3.2, out of 287 papers in P2P field, there are 146 papers that

do not use a simulator, 71 papers uses a simulator but do not specify which simulator

being used, and 43 papers developed their custom simulators for the research [74].

Above mentioned researches generate random network or custom made topologies that

are suitable for their P2P experiments. Karaoglanoglou & Karatza [48] for example,

make use of a “Grid Graph”, a custom made topology generator suitable for P2P Grid

computing to generate their simulated networks.

There are several topology generator being used to generate a P2P network, such as

the Inet Topology Generator, Georgia Tech Internetwork Topology Models (GT-ITM),

and Tiers Topology Generator. The Inet topology generator is developed by University

of Michigan, used to generate an Internet topology based on some configuration para-

meter. The developed topology is structured networks. GT-ITM creates flat random

graphs, and two types of hierarchical graphs. The Tiers topology generator generates a

random graph [16, 17, 67].

A topology with large number of nodes N is needed in order to be able to imitate real

life resource discovery in an unstructured P2P network [6]. Furthermore, the simulated

networks need to follow the power law to truly reflect unstructured P2P networks. With

PeerSim [71], there are several types of networks that can be generated, namely HOT

[64], K-out [71], regular rooted tree [7], ring lattice [107], scale free Barabási-Albert [11],

scale free Dorogovtsev-Mendes [21], star [39], and Watts-Strogatz [107] topology. All

of these topologies can be generated for very large networks (eg. 1,000,000 nodes) and

subsequently be tested with the resource discovery mechanism techniques. This chapter

54

Figure 4.1: Generated Topology using Heuristically Optimised Trade-offs Model
(N=1000, ↵=2).

is an extension to an article submitted to ARPN Journal of Engineering and Applied

Sciences [44].

4.2.1 Heuristically Optimised Trade-offs Topology

Mahadevan et al. introduced Heuristically Optimised Trade-offs (HOT) network

topology that follows the power law [64]. However, as shown in Figure 4.1, topologies

generated by the HOT technique do not resemble unstructured P2P networks. In each

topology generated using the HOT technique, there is a central node connected to

several other nodes that contains a cluster of nodes connected to it. Even though the

central node does not have many neighbours, it shows that the whole network has one

point of failure, a characteristic that clearly resembles a structured network.

55

Figure 4.2: Number of Nodes Against Number of Neighbours using Heuristically Op-
timised Trade-offs Model (N=1000, ↵=2).

56

Figure 4.3: Generated Topology using Regular Rooted Tree Model (N=1000, k=2).

HOT technique utilises an integer variable of “out degree”, ↵ to generate its topology.

The value of ↵ dictates the type of topology that the HOT technique will generate. The

most suitable value for ↵ is between 2 and less or equal than the square root of the

network size, (2 6 ↵ 6
p
N). Extremely low ↵, (1 6 ↵ ⌧

p
N), will generate topology

similar to a Star topology, while ↵ value that is more than the square root of the network

size, (↵ >
p
N), will generate a random graph.

4.2.2 Reg Rooted Tree Topology

Regular rooted tree [7], as the name suggests, is a rooted tree topology using basic

rules and configurations. This topology has a single point of failure, the root, therefore

networks generated using the regular rooted tree model can be considered as structured.

Regular rooted trees have the characteristic of any tree topology, that is the topology

does not contain any loops. Although this characteristic might be useful in establishing

network routes, it will not represent a real-life unstructured P2P network topology.

57

Figure 4.4: Generated Topology using Star Model (N=1000).

4.2.3 Star Topology

Star topology is one of the most basic computer network topologies. It consists of one

super node, and other nodes in the network have only one connection, connecting to the

super node. The one super node is the single point of failure of the network topology.

If the super node is down or broken, the whole network collapses, because other nodes

are no longer connected to each other. Iamnitchi and Foster suggest avoiding using

unrealistically optimistic topology configurations such as star topology (Figure 4.4)

[39].

4.2.4 Ring Lattice Topology

The ring lattice is a highly regular topology [107]. The topology is created by arranging

n nodes in a circle, and joining each nodes to its k nearest neighbours, where n is

the number of nodes and k is a small constant. Ring lattice topology is resilient. In

58

Figure 4.5: Generated Topology using Ring Lattice Model (N=1000, k=2).

order to isolate the network into two parts, the minimum number of connections to

be disconnected are 2k. Therefore, the higher the k, the more resilient the network

topology will be. Even though ring lattice topology has a high availability and does not

have a single point of failure, the network has a clear structure and therefore does not

represent an unstructured network.

4.2.5 Watts-Strogatz Topology

Watts-Strogatz introduced a topology based on the ring lattice topology [107]. The

topology starts similarly as the ring lattice, with every node being arranged to form a

circle. This topology however does have another variable for its randomness, (� | � = 0 ! 1).

When the value of � is equal to 0, the Watts-Strogatz technique will wire the network

using the k nearest neighbour identical with the ring lattice topology. A slight increase

in the value of p will generate a small-world network. When the value of � is equal to

1, an entirely random graph will be generated.

59

Figure 4.6: Generated Topology using Watts-Strogatz Model (N=1000, k=2, �=0.2).

Figure 4.7: Number of Nodes Against Number of Neighbours using Watts-Strogatz
Model (N=1000, k=2, �=0.2).

60

Figure 4.8: Generated Topology using Scale Free Barabási-Albert Model (N=1000,
k=2).

The value of � and k for the Watts-Strogatz model needs to be carefully set in order

to get a suitable topology that follows the power law topology [107]. Having a high

value of � might generate a random graph, which does not show a clear obedience to

the power law. Another disadvantage of the topology is that the generated topology is

not suitable for rescaling. A slight change by either increasing or decreasing the number

of nodes in the network affects the whole simulated network.

4.2.6 Scale Free Barabási-Albert Topology

The Scale Free Barabási-Albert (BA) model has been introduced by Albert-László Bar-

abási and Réka Albert [11]. Prior to Barabási and Albert, the mathematicians, Paul

Erdös and Alfréd Rényi had proposed a scale free network model. However, topologies

generated by the Erdös-Rényi model do not follow the power law distribution. The scale

Free Barabási-Albert model can be considered the first scale free model that follows the

61

Figure 4.9: Number of Nodes Against Number of Neighbours using Scale Free Barabási-
Albert Model (N=1000, k=2).

power law. Nodes can leave and new nodes can be added to the network while obeying

the power law.

Figure 4.8 shows a topology of 1000 nodes generated using the Barabási-Albert

model. The topology generation starts with k nodes, and every subsequent node added

to the Barabási-Albert topology will be connected with k random neighbours that are

already in the network. Thus, the longer a node is in the generated network, the higher

the possibility it is connected with new nodes.

4.2.7 Scale Free Dorogovtsev-Mendes Topology

The Scale Free Dorogovtsev-Mendes [21] is another scale free model to generate an

unstructured P2P network topology. This model is an incremental technique, and starts

with k nodes. All subsequent nodes to be added to the Dorogovtsev-Mendes topology are

connected to the two ends of the network. As the name suggests, scale free Dorogovtsev-

62

Figure 4.10: Generated Topology using Scale Free Dorogovtsev-Mendes Model
(N=1000, k=2).

Figure 4.11: Number of Nodes Against Number of Neighbours using Scale Free
Dorogovtsev-Mendes Model (N=1000, k=2).

63

Figure 4.12: Generated Topology using K-out Model (N=1000, k=2).

Mendes is a scale free model, which means that the network scale can be freely extended

just by adding new nodes. Nodes in the scale free model join and leave the whole

network more easily without disrupting the whole characteristics (whether it obeys

power law, and whether it is structured, or unstructured) of the network model. The

model generates an unstructured network topology that obeys the power law.

4.2.8 K-Out Topology

The K-out model [71] is an original topology model by PeerSim that is based on the

Barabási-Albert model [11]. The only differences are during the initial state of the

topology generation. The initial number of nodes in a Barabási-Albert model is equal

to the value of k. K-out on the contrary starts the topology generation from 1 node,

and the number of neighbours to be connected is N�1, where N is the number of nodes

in the topology. Every subsequent node added to the K-out topology will be connected

with k random neighbours that are already in the network. The K-out model is also a

64

Figure 4.13: Number of Nodes Against Number of Neighbours using K-out Model
(N=1000, k=2).

scale free network topology generator model.

4.3 Selection of Topology Generator Models

Table 4.1 summarises all the topology generator model discussed in this chapter. Table

4.3 lists all the variables utilised in the generation of simulated topology of each tech-

nique. In order to correctly simulate the BFS technique, we need to generate simulated

network topologies that are unstructured, close to real world scenarios (that obey the

power law), and scale free. We have eliminated ring lattice [107], regular rooted tree [7],

star [39] and HOT [64] from our consideration because the network topologies that they

generate are structured. We also omitted the Watts-Strogatz [107] model because of

its non-scale free characteristic and the difficulty to set the model to simulate network

topologies that follow the power law.

Figures 4.8, 4.10, and 4.12 show the generated topology of 1,000 nodes with k value

65

Table 4.1: Summary of Topology Generator Models

Topology Model Scale free Power law Unstructured Structured

Scale free Barabási-Albert [11] X X X
Scale free Dorogovtsev-Mendes [21] X X X

K-out [71] X X
Watts-Strogatz [107] X X

Ring lattice [107] X
Regular rooted tree [7] X

Star [39] X
HOT [64] X X

of 2 using scale free Barabási-Albert [11], scale free Dorogovtsev-Mendes [21], and K-out

[71] respectively. K-out, scale free Barabási-Albert, and scale free Dorogovtsev-Mendes

are the only three generators that are able to produce topologies that follow the power

law, and are also scale free. Being scale free makes it easy to add and remove nodes

while maintaining the node and number of neighbours power law correlation. It is hard

to differentiate between the topologies generated by the three models because there is

no significant structure, a trait that is the most important of being an unstructured

topology.

However, it is easy to differentiate between the models once the number of neigh-

bours on each node is taken into consideration. Figures 4.9, 4.11, and 4.13 show the

logarithmic scaled graph of the number of nodes against number of neighbours on each

node for the scale free Barabási-Albert, scale free Dorogovtsev-Mendes, and K-out mod-

els, respectively. Even though the K-out model is only dissimilar to the Barabási-Albert

during the initial part of the topology generation, the graph shows that the K-out model

does not generate a power law topology. The maximum number of neighbours in the

K-out model for 1000 nodes is only 11.

Both scale free Barabási-Albert [11] and scale free Dorogovtsev-Mendes [21] graphs

66

Table 4.2: Topology Generators’ Variables

Topology Generator Variable(s) Value Description

Heuristically
Optimised
Trade-offs [64]

↵
Small
integer

Out-degree.
1 6 ↵ ⌧

p
N : Star topology.

2 6 ↵ 6
p
N : Clustered

topology.
↵ >

p
N : Random topology.

Reg Rooted Tree [7] k
Small
integer

Number of outgoing links of
nodes in the tree.

Star [39] N/A N/A N/A

Ring Lattice [107] k
Small
integer

Number of neighbouring nodes
being connected. (All nodes are
initially arranged in one circle)

Watts-Strogatz [107] k
Small
integer

Number of neighbouring nodes
being connected. (All nodes are
initially arranged in one circle).

�
Real

number
(0 ! 1)

Probability of rewiring.
� = 0.0: Similar to Ring Lattice
topology.
� = 1.0: Random topology

Scale Free
Barabási-Albert [11] k

Small
integer

Two purposes
1. Number of initial nodes to be
generated.
2. Number of random
neighbours each node would
connect during each node
generation.

Scale Free
Dorogovtsev-Mendes
[21]

k
Small
integer

Initial number of nodes being
generated.

K-Out [71] k
Small
integer

Number of random neighbours
each node would connect during
each node generation.

N : Number of nodes generated for the topology

67

show that the models generate a power law network. However, when examined closely,

there are three outliers in Figure 4.11. These outliers do not seem significant, however,

when considering that the graphs are logarithmic scaled, meaning that the differences in

values for the outliers is more significant. In the generated topologies, the Dorogovtsev-

Mendes model has two nodes with 124 neighbours, and one node with 173 neighbours.

These values differ greatly with the node with the 4th most neighbours, having only 63

neighbours. There are also eight nodes in the scale free Dorogovtsev-Mendes model that

contain only one neighbour, which is quite odd considering every node in the topology

should at least have two neighbours, because every new node added to the network

should connect to the two ends of the topology.

Even though K-out [71] is a scale free model, the network topologies that it generates

do not follow the power law. Thus, the model is removed from our list of topologies we

have experimented with. This leaves the remaining two, scale free Barabási-Albert [11]

and scale free Dorogovtsev-Mendes [21]. We opted against using scale free Dorogovtsev-

Mendes because it generates some irregular nodes, such as nodes with too many neigh-

bours compared to other nodes, and nodes with only one neighbour that the model

should not have generated. Based on the findings regarding the generation of unstruc-

tured P2P networks above, from here henceforth, only the scale free Barabási-Albert

model will be used to test the new ↵-BFS resource discovery mechanism in the next

chapter.

4.4 Conclusions

Several P2P network topology generators, namely HOT [64], K-out [71], regular rooted

tree [7], ring lattice [107], scale free Barabási-Albert [11], scale free Dorogovtsev-Mendes

[21], star [39], and Watts-Strogatz [107] have been tested. The simulated network

topologies are then compared to see characteristics of each network topology generators.

The summary of findings are shown in Table 4.1. From the tests where the number

68

of nodes are set to be 1,000, the HOT [64], regular rooted tree [7], ring lattice [107],

and star [39] show the characteristics of being structured. Whereas the K-out [71], scale

free Barabási-Albert [11], scale free Dorogovtsev-Mendes [21], and Watts-Strogatz [107]

show the characteristics of being unstructured.

Among the structured network topology generators, only the HOT [64] generator

models follows the power law, a crucial criterion to simulate real life network topology.

In the unstructured P2P network topology generator, all except the K-Out [71] follows

the power law distribution. Scale free Barabási-Albert [11], scale free Dorogovtsev-

Mendes [21], and K-Out [71] shows a scale free characteristics, another criterion needed

to closely imitate real life network topology.

Among all eight network topology generator models, only the scale free Barabási-

Albert [11] and scale free Dorogovtsev-Mendes [21] that fulfil the criteria of being un-

structured, follow the power law, and scale free. Further observations on the graphs

of both topology model generators show that there are some outliers in scale free

Dorogovtsev-Mendes [21] model. Therefore, it is found that the best unstructured P2P

network generator to test the resource discovery techniques is the scale free Barabási-

Albert [11] network model generator.

69

5 Alpha Breadth First Search

Chapter Summary

This chapter discusses the Alpha breadth first search, an improved version of breadth-

first search. It implements alpha multipliers, a set of 5 multipliers that dictate the

number of message forwarding from each node. This chapter discusses the two main

techniques that have been implemented on alpha breadth first search, that is alpha

multipliers and restricted random walk with null exception. Both of the techniques

are aimed at reducing message forwarding by eliminating unnecessary duplicate query

messages from the network.

70

Summary of Each Section

Introduction : Introduction of the chapter

Alpha Breadth

First Search

Overview

: This section discusses regarding the problem of the

breadth first search, a basic flooding method that is

still widely used until today, and the need to

overcome the problem.

Alpha Multipliers : Alpha multipliers, the multiplier that controls the

duplication of query message forwarding are

discussed in this section.

Restricted

Random Walk

with Null

Exception

: A simple but essential step of eliminating

unnecessary and duplicating query message in order

to control breadth-first search flooding is discussed in

this section.

Experimental

Setup

: Describes network topology simulation setup and

query behaviours setup that are required for the

experiments.

Experimental

Results

: All experimental steps and results for ↵-BFS and

BFS are listed.

5.1 Introduction

This chapter will explain a new technique that consists of two new walker replication

rules that significantly decreases the amount of walker replications while maintaining

good search results. The first rule consists of implementing alpha multipliers. The

second rule is on determining the forwarding of walkers to nodes that have seen the

query before. Details regarding the two rules of walker replication in alpha breadth-

first search (↵-BFS) will be discussed further in the following sections.

This section is a continuation of an article journal published in International Journal

71

of Digital Information and Wireless Communications, that focuses on testing resource

discovery techniques on simulated P2P networks with one million nodes [43]. Some

parts of this chapter are also published in the ARPN Journal of Engineering and Applied

Sciences [44].

5.2 Alpha Breadth First Search Overview

The breadth-first search technique is widely used in resource discovery in unstructured

P2P networks. Although the technique usually gets the most successful hits, it does

this with a very high cost to the network by flooding it with many replicated query

messages. The message flooding, no matter how small the message, can degenerate

the performance of the whole network, and at worst, could bring down the network

altogether.

The idea of alpha breadth-first search (↵-BFS) is to contain the message flooding to

an acceptable level, while maintaining the same amount of successful searches. We took

two approaches in order to achieve this goal. The first approach is by implementing

alpha multipliers; these change according to the number of hops the query message has

done. The second approach is to control the neighbour selection so that the message

forwarding does not consider the neighbours that have already seen the message.

5.3 Alpha Multipliers

Alpha multipliers are a set of multipliers that dictate how many replications a query

message can make of itself. The amount of replications are based on two variables at

each stage of the message forwarding. They are the number of neighbours that the node

x has, L(nx), and the alpha multipliers (↵hops | 0.0 6 ↵x 6 1.0 & hops = 1, 2, 3, 4, 5, ...)

that are based on the number of hops that the query message has take so far.

↵hops is a real number ranging from 0.0 to 1.0, and hops is the number of hops that

the query message is about to execute. For example the value for the first until the fifth

72

hops’ alpha multipliers can be set as follow: ↵1 = 1.0, ↵2 = 0.8, ↵3 = 0.6, ↵4 = 0.4, and

↵5 = 0.2. Number of query message forwarding for each node is equal to the number of

current alpha multiplied by the number of neighbours that the node has (eg. number

of forwards for the first hop of origin node is ↵1 ⇤ L(no)).

There are possibilities that the number of forwards fell below 1 (eg. number of

adjacent neighbour is 2, and the current alpha multiplier is 0.4). In order to maintain

continuation of the search, the number of forwards will be reset to 1. If not, the query

message may finish earlier than it should have been, eliminating the chance to find the

resource needed.

Let no be the node where the query messages originate from. The number of query

message that are forwarded F↵�BFS for TTL of 5 and above in ↵-BFS are as follows:

F↵�BFS = ↵5 · L (↵4 · L (↵3 · L (↵2 · L (↵1 · L (no))))) . (5.1)

Using the above mentioned set of alpha multiplier values on networks with 20 neigh-

bours per node, say then the messages sent is reduced from 3.2 million messages to just

122,880 messages only as shown in following calculation:

F↵�BFS = (1.0⇥ 20)⇥ (0.8⇥ 20)⇥ (0.6⇥ 20)⇥ (0.4⇥ 20)⇥ (0.2⇥ 20)

= 20⇥ 16⇥ 12⇥ 8⇥ 4

= 122, 880.

The pseudocode for the QF calculation is provided in Algorithm 5.1.

73

Algorithm 5.1 Determining QF↵�BFS Value Pseudocode.

01
02 n = number of neighbours;
03 alpha[5] = [1.0, 0.8, 0.6, 0.4, 0.2];
04 hops = number of hops;
05
06 QF = n * alpha[hops-1];
07 round QF to nearest integer.
08
09 if (QF is less than 1) {
10 QF is set to 1;
11 }
12

5.4 Restricted Random Walk With Null Exception

PeerSim [71] has two types of neighbour selection for the purpose of query forwarding.

One is random walk (RW) [30], and the other one is restricted random walk (RRW)

[90]. Both RW and RRW decide to forward or replicate any query message randomly.

The only differences is that RRW uses a method named selectFreeNeighbor that will

forward to one of the free neighbours, that is, neighbour nodes that did not receive

the query message earlier. However, if there is no free neighbour available, it will still

select and return one non-free neighbour to forward the message. We consider that

the query message forwarding to a non-free neighbour is unnecessary and a waste of

network resource. Algorithm 5.2 depicts the pseudocode of message forwarding that is

being used by RRW.

The message forwarding method that is being used by RRW returns an ID of a neigh-

bour (neighbourID) even though there is no free neighbour available. We have altered

the message forwarding selection method to only return a free neighbour’s neighbourID.

The return value is set to null if there is no free neighbour available. Once the search

protocol received the null value, no message forwarding will be done. The query

message will stop on that node. The new RRW with null exception is run after the

74

Algorithm 5.2 RRW Message Forwarding Pseudocode.
01
02 receive query message.
03
04 if (there are free neighbours) {
05 select one of the free neighbours;
06 } else {
07 select one of the neighbours;
08 }
09 return neighbourID;
10

Algorithm 5.3 RRW with Null Exception Pseudocode.
01
02 receive query message.
03
04 if (there are free neighbours) {
05 select one of the free neighbours;
06 return neighbourID;
07 } else {
08 return null;
09 }
10

75

calculation of F↵�BFS , therefore, it will overwrite the outcome of the F↵�BFS if there

is no free neighbours available. The new method is named, selectFreeNeighborOnly.

Algorithm 5.3 shows the pseudocode of the restricted random walk with null exception.

5.5 Experimental Setup

The experimental setup for the experiments can be divided into two parts, namely

the topology setup, and the query behaviour setup. The former setup focuses on the

topology of the simulated network being experimented on. The setup focuses on the

generation of the topology such as the type of topology generator, the direction of

connections, variables, and random seed. The latter setup focuses on setup affect the

behaviours of the query such as alpha multipliers, query forwarding and replication,

number of initial query, and time-to-live.

5.5.1 Topology Setup

The BFS and ↵-BFS techniques have been tested according to these parameters: one

million nodes distributed and wired using the scale free Barabási-Albert model; undir-

ected connection; k variable of two; and is run of 20 cycles. The experimental setup

parameters are shown in Table 5.1.

The experiments were done using three different random seed in order to get multiple

results using the listed sets of alpha multipliers. The first random seed is 1234567890,

a standard seed being used in PeerSim simulations. The second and third random seed

is the first 10 and the following 10 decimal places of ⇡ respectively. The value of 22/7

up until the 20th decimal places is 3.14159265358979323846, therefore the value for the

second and third random seeds are 1415926535 and 8979323846 respectively.

Figure 5.1, Figure 5.2, and Figure 5.3 show the distribution logarithmic graph of

the number of neighbours against number of nodes in the generated topology using

1234567890, 1415926535, and 8979323846 as the random seed respectively. As expected,

76

the graph obeys the power law and does not show any outliers in the data. Number of

neighbours of nodes have a mean (x̄) of 3.999992 across all three random seeds. Number

of neighbours standard deviation (�) for random seed of 1234567890, 1415926535, and

8979323846 are 8.4006762, 8.6408129, and 8.2416443 respectively.

Table 5.1: Experiment Topology Setup for ↵-BFS, BRDM, & LBRDM.

Parameters Value

Topology generator model Scale free Barabási-Albert

Number of nodes (N) 1,000,000

Number of initial query 1

Number of cycles run 20

k 2

Random Seeds 1234567890, 1415926535, and 8979323846

Time To Live (TTL) 5, 10, and 20

5.5.2 Query Behaviour Setup

The alpha multipliers are a set of five-tuple numbers that act as multipliers to find the

number of query message replication needed on each step of the search. The five-tuple

numbers can be of any combination of numbers ranged from zero to one. Let the alpha

multipliers be numbers with one decimal place, the five-tuple numbers can have 10C5,

252 combinations.

Several patterns or orders of alpha multipliers such as, fixed numbers, ascending

order, descending order, division, and logarithmic has been chosen for the experiments.

The numbers and their patterns are as shown in Table 5.2. Fixed numbers pattern is

where the numbers are all the same from ↵1 to ↵5. Ascending is when the value of ↵1

keeps on increasing until ↵5. Ascending pattern means that smaller number of queries

are forwarded nearer to the originator, and the query forwarding increases when away

77

Fi
gu

re
5.

1:
N

um
be

r
of

N
od

es
A

ga
in

st
N

um
be

r
of

N
ei

gh
bo

ur
s

(R
an

do
m

se
ed

=
12

34
56

78
90

,N
=

1
m

ill
io

n,
k
=

2)
.

78

Fi
gu

re
5.

2:
N

um
be

r
of

N
od

es
A

ga
in

st
N

um
be

r
of

N
ei

gh
bo

ur
s

(R
an

do
m

se
ed

=
14

15
92

65
35

,N
=

1
m

ill
io

n,
k
=

2)
.

79

Fi
gu

re
5.

3:
N

um
be

r
of

N
od

es
A

ga
in

st
N

um
be

r
of

N
ei

gh
bo

ur
s

(R
an

do
m

se
ed

=
89

79
32

38
46

,N
=

1
m

ill
io

n,
k
=

2)
.

80

Table 5.2: Alpha Multipliers’ Patterns and Values

Set Pattern ↵1 ↵2 ↵3 ↵4 ↵5

A Fixed* 1.0 1.0 1.0 1.0 1.0

B Descending 1.0 0.8 0.6 0.4 0.2

C log10 1.0 0.9030 0.7782 0.6021 0.3010

D Descending 1.0 0.8 0.4 0.2 0.1

E Division** 1.0 0.5 0.25 0.125 0.0625

F Descending 0.8 0.5 0.3 0.1 0.0

G Division 0.8 0.4 0.2 0.1 0.05

H Descending *** 0.5 0.4 0.3 0.0 0.0

I Division** 0.5 0.25 0.125 0.0625 0.03125

J Ascending 0.2 0.4 0.6 0.8 1.0

K Fixed 0.8 0.8 0.8 0.8 0.8

L Fixed 0.6 0.6 0.6 0.6 0.6

M Fixed 0.5 0.5 0.5 0.5 0.5

N Fixed 0.4 0.4 0.4 0.4 0.4

O Fixed 0.3 0.3 0.3 0.3 0.3

* Equivalent to BFS.
** Inspired by six degrees of separation techniques [50].

*** Used by Al-Dmour and Teahan for unstructured P2P networks [4].

81

from the originator. Descending pattern is the exact opposite of Ascending pattern.

Division pattern is when the alpha multipliers are half of the previous alpha multipli-

ers. This results with five-tuples that keeps decreasing as the number of hops increases.

The division pattern is inspired with the six degrees of separation studies [50]. The

alpha multipliers in this pattern can also be summarised as follows, ↵x = 2�x+1.The

log10 pattern is when the number of alpha multipliers are decided with the decreasing

number of 10 base log. (log1010 = 1, log108 = 0.9030, log106 = 0.7782, log104 = 0.6021,

log102 = 0.3010).

All experiments started with one initial query. The experiments are repeated three

times with the change of the TTL parameter. The TTL are set to 5, 10, and 20.

Query efficiency are calculated using Equation 2.1 that has been discussed thoroughly

in Section 2.3.2. The maximum number of successful searches (the number of successful

searches when all queries finished their TTL) for each iteration of the experiments are

also being recorded.

5.6 Experimental Results

Table B.1, Table B.2, and Table B.3 list all the query efficiency (⌘) and the maximum

number of successful searches for three different random seeds, 1234567890, 1415926535,

and 8979323846 respectively. On each table, the top 10 query efficiency are marked with

green, and the top 10 maximum successful searches are marked with cyan. It can be

observed from results across the random seeds that the alpha multipliers that generate

high number of query efficiency do not have a high number of successful searches, and

vice versa. This suggests that at some settings, the query forwarding techniques have

high efficiency with the expense of not finding many resources in the network. In

resource discovery, having high query efficiency and high number of successful searches

are considered equally important.

In order to find the best alpha multiplier values for unstructured P2P networks,

82

Ta
bl

e
5.

3:
Q

ue
ry

E
ffi

ci
en

cy
an

d
M

ax
im

um
Su

cc
es

sf
ul

Se
ar

ch
es

M
ea

n
A

cc
or

di
ng

to
R

an
do

m
Se

ed

A
lp

ha
M

ul
ti

pl
ie

rs
Q

ue
ry

E
ffi

ci
en

cy
an

d
M

ax
.

Su
cc

es
sf

ul
Se

ar
ch

es
Av

er
ag

e
(%

)

↵
1

↵
2

↵
3

↵
4

↵
5

R
an

do
m

Se
ed

:
12

34
56

78
90

R
an

do
m

Se
ed

:
14

15
92

65
35

R
an

do
m

Se
ed

:
89

79
32

38
46

T
T

L5
T

T
L1

0
T

T
L2

0
T

T
L5

T
T

L1
0

T
T

L2
0

T
T

L5
T

T
L1

0
T

T
L2

0

1.
0

1.
0

1.
0

1.
0

1.
0

27
.2

5
50

.6
5

N
A

31
.6

1
54

.2
8

54
.3

5
29

.2
0

57
.2

0
56

.9
9

1.
0

0.
8

0.
6

0.
4

0.
2

38
.5

9
58

.8
0

64
.2

1
40

.1
4

63
.4

6
66

.6
9

34
.2

9
53

.0
3

58
.5

6

1.
0

0.
90

30
0.

77
82

0.
60

21
0.

30
10

35
.6

9
57

.0
9

62
.2

7
38

.6
1

62
.7

2
63

.3
4

34
.1

1
58

.2
5

60
.3

4

1.
0

0.
8

0.
4

0.
2

0.
1

42
.8

8
53

.1
4

59
.8

6
43

.7
4

57
.8

7
64

.4
7

36
.1

4
47

.2
2

51
.2

5

1.
0

0.
5

0.
25

0.
12

5
0.

06
25

45
.3

1
50

.5
7

54
.2

5
47

.1
6

52
.5

3
57

.2
0

40
.6

9
40

.5
0

43
.0

7

0.
8

0.
5

0.
3

0.
1

0.
0

45
.4

8
50

.3
8

52
.6

0
47

.6
3

52
.4

1
56

.4
1

36
.6

8
40

.0
8

40
.9

5

0.
8

0.
4

0.
2

0.
1

0.
05

49
.0

7
50

.1
4

52
.5

0
47

.8
6

52
.6

0
55

.1
0

37
.0

8
37

.1
0

42
.3

5

0.
5

0.
4

0.
3

0.
0

0.
0

45
.3

4
49

.1
4

50
.7

7
46

.3
7

50
.8

5
54

.0
9

39
.7

5
37

.9
5

38
.8

8

0.
5

0.
25

0.
12

5
0.

06
25

0.
03

12
5

47
.8

0
50

.6
3

50
.3

7
50

.3
0

51
.1

5
52

.6
8

50
.3

8
44

.8
3

39
.9

5

0.
2

0.
4

0.
6

0.
8

1.
0

23
.8

6
57

.8
8

59
.0

8
29

.4
5

60
.4

1
61

.0
0

23
.9

9
56

.8
9

57
.9

8

0.
8

0.
8

0.
8

0.
8

0.
8

26
.5

8
57

.3
3

57
.7

9
32

.7
9

58
.0

4
58

.0
5

28
.8

4
58

.2
6

58
.3

7

0.
6

0.
6

0.
6

0.
6

0.
6

29
.8

6
60

.1
6

62
.1

4
35

.7
6

62
.9

7
63

.8
2

30
.4

3
57

.4
5

59
.7

7

0.
5

0.
5

0.
5

0.
5

0.
5

33
.1

2
59

.7
7

63
.9

3
35

.3
1

62
.7

6
64

.7
2

32
.1

7
54

.3
5

59
.7

0

0.
4

0.
4

0.
4

0.
4

0.
4

37
.2

2
56

.8
2

63
.6

8
40

.0
1

61
.1

1
66

.9
6

33
.1

7
49

.3
2

56
.0

4

83

both query efficiency (⌘) and the maximum number of successful searches importance

are weighted the same. All of the values of query efficiency and the maximum successful

searches are converted into percentage by dividing it with the maximum value of the

parameter. For example, the maximum value of query efficiency for the random seed

of 1234567890 is 220,228. Therefore, all query efficiency for that set of experiments

is divided by 220,228 and multiplied by 100%. The results of converting the query

efficiency and maximum successful searches into percentage are as shown in Table B.4

and Table B.5 respectively. The top average from each random seed experiments are

marked with green.

After converting query efficiency and maximum successful searches into percentage,

corresponding results from Table B.4 and Table B.5 are added and the mean is calcu-

lated. The average are shown in Table 5.4. Numbers that are marked with green colour

are the ones with the highest result on both query efficiency and maximum successful

searches. All three of them are with the TTL of 20. The five-tuple alpha multipliers

corresponding to the top three are Set B = {1.0, 0.8, 0.6, 0.4, 0.2}, Set M = {0.5, 0.5,

0.5, 0.5, 0.5}, and Set N = {0.4, 0.4, 0.4, 0.4, 0.4} with combined efficiency of 63.15%,

62.78%, and 62.23% respectively. Graph for ↵-BFS for all of the alpha multipliers set

(Set A to Set N) with TTL of 20 is shown in Figure 5.4.

5.7 Discussion and Conclusions

This chapter suggested two methods on reducing the query message forwarding for

uninformed search resource discovery techniques that rely on flooding the network to

find resources. The first method is by restricting the query message forwarding so that

the resource discovery technique will only forward query a message to a fraction of the

current node’s neighbours. The second method is to avoid resending the same query

message to neighbours that have seen the message.

The query message forwarding restrictions are achieved by implementing alpha mul-

84

Table 5.4: Query Efficiency and Maximum Successful Searches Mean

Alpha Multipliers Query Efficiency ⌘
and Max. Successful
Searches Average (%)

↵1 ↵2 ↵3 ↵4 ↵5 TTL5 TTL10 TTL20

1.0 1.0 1.0 1.0 1.0 29.35 54.04 55.67

1.0 0.8 0.6 0.4 0.2 37.68 58.43 63.15

1.0 0.9030 0.7782 0.6021 0.3010 36.14 59.35 61.98

1.0 0.8 0.4 0.2 0.1 40.92 52.74 58.53

1.0 0.5 0.25 0.125 0.0625 44.39 47.87 51.51

0.8 0.5 0.3 0.1 0.0 43.26 47.62 49.99

0.8 0.4 0.2 0.1 0.05 44.67 46.61 49.98

0.5 0.4 0.3 0.0 0.0 43.82 45.98 47.91

0.5 0.25 0.125 0.0625 0.03125 49.49 48.87 47.67

0.2 0.4 0.6 0.8 1.0 25.77 58.39 59.35

0.8 0.8 0.8 0.8 0.8 29.40 57.88 58.07

0.6 0.6 0.6 0.6 0.6 32.02 60.19 61.91

0.5 0.5 0.5 0.5 0.5 33.53 58.96 62.78

0.4 0.4 0.4 0.4 0.4 36.80 55.75 62.23

0.3 0.3 0.3 0.3 0.3 39.04 51.29 58.22

85

Fi
gu

re
5.

4:
C

om
bi

ne
d

Q
ue

ry
E

ffi
ci

en
cy

((
⌘
+
ss
) /
2
)

(N
=

1
m

ill
io

n,
k
=

2,
T

T
L=

20
).

86

tipliers, five-tuple numbers between 0.0 to 1.0. Number of query message replication

and forwarding can be controlled at the first five hops of the query. Query message can

be forwarded but will not be replicated in the subsequent hops.

The restricted random walk with null exception is a change in the code to return

a null value if there is no neighbouring node that has never seen the query message.

Once the node received the null exception, it will not forward the query message.

This method is to reduce unnecessary query message forwards. These two methods,

↵ multipliers and restricted random walk with null exception is still considered within

uninformed search resource discovery technique because they do not require the nodes

to store any information regarding the search.

Several values of alpha multipliers are tested to find out the best option for unstruc-

tured P2P network. The alpha multipliers were set as either fixed, descending order,

ascending order, logarithmic, and division. All these multipliers are then tested onto

three sets of random seeds, and three values of TTL in order to find the best paramet-

ers for resource discovery in unstructured P2P networks. The results are shown in two

type of measurements, they are query efficiency (⌘) and maximum successful searches.

Results of the experiments show that set of alpha multipliers with high query efficiency

do not have as much successful searches as the query that has lower query efficiency.

Considering that both measurements are equally important in resource discovery,

each experiment results are converted into percentage values. These values are added

together and averaged to come out with a single measurement (combination of query

efficiency and number of maximum successful searches). Combination of alpha multi-

pliers that return the top three results are Set B = {1.0, 0.8, 0.6, 0.4, 0.2}, Set M =

{0.5, 0.5, 0.5, 0.5, 0.5}, and Set N = {0.4, 0.4, 0.4, 0.4, 0.4} with combined efficiency

of 63.15%, 62.78%, and 62.23% respectively. All three combinations shows their best

results with TTL of 20.

From the experiments, it is known that the BFS technique that floods the network

87

has the maximum number of successful searches. Nevertheless, the technique has the

worst query efficiency compared to any other alpha multipliers combination. BFS re-

source discovery technique has a combined efficiency results of 55.67%. It is observed

that the best combination of alpha multipliers, Set B has increased the combined effi-

ciency of BFS by 7.48%.

88

6 Lightweight Blackboard Resource Discovery Mechanism

Chapter Summary

This chapter discusses the Blackboard Resource Discovery Mechanism (BRDM). Some

issues regarding the resource discovery technique are also listed and explained. The

main issue, network cost, are highlighted. Network cost calculation methods are also

discussed in this chapter. The solutions to the issues are then discussed leading to a

new resource discovery technique. The new lightweight technique is called lightweight

BRDM (LBRDM).

89

Summary of Each Section

Introduction : Introduction of the chapter

BRDM Overview : Overview of the blackboard resource discovery

mechanism. Discusses the main idea, characteristics

and query message handling of the resource discovery

technique.

BRDM Issues : Addresses the issues of previous researches in BRDM:

Small simulation environment, unrecommended lists

type I error, and high network cost of unsuccessful

searches.

Improving

BRDM:

Foundations of

Lightweight

BRDM

: The solution of the issues listed in previous section

are listed. Also presents the calculation of the

resource discovery costs to support the argument.

Lightweight

BRDM

: This section discussed the approach taken in order to

reduce the network communication cost of BRDM.

Experimental

Setup

: Describes network topology simulation setup and

query behaviours setup that are required for the

experiments.

Experimental

Results

: All experimental steps and results for LBRDM and

BRDM are listed.

6.1 Introduction

The Blackboard Resource Discovery Mechanism (BRDM) is a technique used in grid

computing to find resources. The technique was first coined by Al-Dmour and Teahan

[4], and is used in the enhanced ParCop [3]. In BRDM, all nodes in the P2P network

90

has two blackboards to store information regarding the surround neighbouring nodes.

The blackboard mechanism is based on research in the field of artificial intelligence

[5]. In BRDM, the mechanism is used to keep track of recommended and unrecommen-

ded neighbours for query message forwarding. The recommended and unrecommended

neighbour lists are independent of each other.

6.2 BRDM Overview

In BRDM, the search starts with one query message, mes, from the originator node,

no. The search query is then forwarded to a fraction of its adjacent neighbours. Upon

receiving the message, the neighbouring nodes that received the query messages will

then forward it to a fraction of their neighbours. Each time the messages are cloned

and forwarded, the message’s Time-To-Live, TTL, is reduced by one. This action of

forwarding will be done recursively until the message’s TTL has expired [5].

In the early stages of searching using the BRDM technique, the network is flooded

with query messages. The recommended and unrecommended lists are empty. Once

the node forwarded the query messages, it will wait for the reply from the neighbouring

nodes that it has already sent the query messages to. If the neighbouring node finds

the source that the search intended, or the neighbouring node knows a path towards

the source, the neighbouring node will be added onto the recommended list located in

the forwarding node [5].

On the other hand, if after the search TTL has depleted, but still the neighbouring

node could not return a successful searches, the neighbouring node will be added to

the unrecommended list. The longer BRDM is run on the network, the more that it

can learn from it. The size of recommended and unrecommended list will increase over

time. Subsequently, when BRDM receives a new query message, it will then choose

neighbouring nodes that appears in its own recommended list. If there is no recommen-

ded list, BRDM will look into the unrecommended list. The node will then forward the

91

query message to its neighbouring nodes that are not in the unrecommended list [5].

The more nodes in the recommended and unrecommended lists, the more intelligent

the BRDM technique will be. The number of successful searches will increase over

time, without the need to forward as much query messages as in the earlier stages. This

demonstrates a learning effect, where the technique learns about its surrounding and

intelligently decides where to and where not to forward [5].

6.3 BRDM Issues

BRDM has been shown by Al-Dmour and Teahan to produce good results compared

to other resource discovery mechanisms [5]. Nonetheless, there are several issues in

BRDM that need to be addressed. These include a small simulation environment, un-

recommended list type I errors being produced, and high network costs for unsuccessful

searches.

In order to explore the BRDM technique and develop improvements, the network

has been set as recommended in the literature published in International Journal of

Digital Information and Wireless Communications (IJDIWC) entitled “Implementation

of Resource Discovery Mechanisms on PeerSim: Enabling up to One Million Nodes P2P

Simulation” [43]. The general simulation parameters that were used are described in

the following paragraphs.

Let L(nx) be the set of nodes to which a node nx is connected. l(nx) is the set of

the nodes to which the query will be forwarded from node nx. The association between

L(nx) and l(nx) are as shown in the following equation:

l (nx) ✓ L (nx) . (6.1)

Let no be where the query message that originates from. Fx is the number of query

messages that have been forwarded by the x resource discovery technique. The number

92

of query messages forwarded on each step l are equal to the number of neighbouring

nodes L on each step. Therefore, the number of query messages forwarded for a TTL

of 5 can be stated as follows:

Fx = l (l (l (l (l (no))))) .

The number of query messages forwarded for multiple TTL can be simplified as

followed:

Fx = lTTL � lTTL�1 � lTTL�2 � ... � l (no) (6.2)

=
TTLY

0

l (no) . (6.3)

As shown in the Equation 6.3, it can be observed that the number of query mes-

sage forwarding, QF , increases geometrically. Clearly, the amount of query message

forwarding can be reduced significantly if the number of messages that are forwarded is

reduced at each step of the resource discovery.

6.3.1 Small Simulation Environment

The comparison for the BRDM was done using a simulator that placed the nodes in 100

by 100 plots. Therefore at most, only 10,000 nodes can be tested. In order to simulate

a real life P2P environment, this resource discovery mechanism needs to be tested with

a larger network. In order to clear up this issue, BRDM and several other resource

discovery mechanism were implemented on PeerSim so that they could be tested with

up to one million simulated unstructured P2P nodes [42, 43]. The small number of nodes

used for the previous BRDM simulations [4] was because of the limitation of computing

93

power that was available at the time the work was published which restricted the size

of the networks that were used to simulate the resource discovery techniques that have

exponential growth.

6.3.2 Unrecommended List Type I Error

Al-Dmour and Teahan’s technique utilises two blackboards on each node in the P2P

network. One blackboard, N1 lists all of the recommended neighbouring nodes, and the

other blackboard, N2 lists all of the unrecommended nodes. As shown in the equations

above, reducing message forwarding on each step will have a significant reduction of the

whole query message forwarding, QF . The unrecommended list is an intelligent way of

reducing query message forwarding on each stage [4].

All neighbouring nodes that are included in the unrecommended list will not be sent

any query message. Nevertheless, in the early steps of message forwarding by BRDM,

not all neighbouring nodes are forwarded with the message. Thus, the query message

might not find the results, even though the resources might be nearby. The neighbouring

nodes without successful hits will be included in N2, and would not be forwarded with

any query message. This error is called a Type I error.

6.3.3 High Network Cost for Unsuccessful Searches

Intelligent breadth first search (Int-BFS) [46] increases the probability of choosing a

neighbour based on the neighbour’s action of forwarding a message. Adaptive prob-

abilistic search (APS) [106] increases the probability of choosing a neighbour based on

whether the neighbour returns any successful searches, and vice versa. In contrast,

BRDM puts neighbouring nodes in the recommended or unrecommended lists based on

successful searches [4].

As shown in Equation 6.3, the number of query messages that are forwarded is

QF =
QTTL

0 l (no). Let ss be the number of query messages that return successful

94

searches, and us be the number of query messages that return unsuccessful searches.

Upon any successful or unsuccessful search, the query message needs to traverse through

all nodes that it has visited and inform the nodes regarding the status of the search.

Similar to forwarding query messages, traversing backward, B, would also cost the

network some network resource. The network cost for informing all previous nodes

regarding both successful (Bs) and unsuccessful searches (Bu) can be equated as follows:

Bs =
QFX

0

ss⇥ number of nodes traversed (6.4)

Bu =
QFX

0

us⇥ TTL. (6.5)

Note that in the Equations 6.4 and 6.5, successful searches will travel up until they

find the resources, while unsuccessful searches have to traverse in the nodes up till

the TTL is depleted before they can report to the originator. Given that all queries

forwarded should be either successful or unsuccessful, and the length that the message

needs to go back to inform the originator is the same as the length that it took to go

forward, relations between F , Bs, and Bu can be formulated as follows:

F = Bs +Bu. (6.6)

Therefore, in resource discovery techniques that require queries to return the status

of the search upon the end of TTL, such as APS [106] and BRDM [4], the total number

of messages travelling, TAPS/BRDM inside the P2P system are as follows:

TAPS/BRDM = FAPS/BRDM +BAPS/BRDM

* BAPS/BRDM = Bs +Bu

95

Using Equation 6.6, substitute the value of Bs +Bu:

BAPS/BRDM = FAPS/BRDM (6.7)

) TAPS/BRDM = 2
�
FAPS/BRDM

�

= 2

"
TTLY

0

l (no)

#
. (6.8)

In a uninformed search resource discovery such as BFS, the amount of query message

forwarding can overwhelm to the whole system. The backward traversing that would

also cost the network as much as the query message forwarding is also going to make the

situation even worse. The total network cost would be double the uninformed search.

6.4 Improving BRDM: Foundations of Lightweight BRDM

As mentioned above, there are three things that need to be addressed regarding BRDM;

namely, small simulation environment, unrecommended lists type I error, and high

network cost for unsuccessful searches. Two enhancements have been devised in order

to tackle the problems stated in the previous section. These are now described.

6.4.1 Increasing the Simulation Environment Size

Al-Dmour and Teahan have compared resource discovery techniques for unstructured

P2P networks [4]. Nevertheless, possibly due to the computing power restrictions at the

time, the simulations were done for only 1000 nodes. In order to simulate the resource

discovery technique to be closer to real life unstructured P2P networks, the techniques

were implemented on a highly scalable PeerSim [22, 71]. The simulation for this research

was done using the maximum settings, that is usually up to one million nodes.

96

6.4.2 Eliminating Type I Error

Type I error occurs when the algorithm produces false positives. In BRDM, there are

two blackboards on each node, recommended nodes N1 and unrecommended nodes N2.

If a query message successfully searches for the resource, it will return its finding to the

whole nodes that it traverses through. The findings will be updated in each node’s N1.

There is no possibility for a type I or type II error for this blackboard update.

Notwithstanding this, if a query message did not find the resource that it has been

searching for, it will also update all the nodes that the message traverses to. Nonetheless,

in BRDM, not all neighbours are selected to be forwarded the query message. Therefore,

there is a possibility that a node neighbouring to the resource was not find because the

message was not forwarded to the neighbour. By updating the unsuccessful searches

back to the originator and all the nodes the message traverses to, the node will be

included in N2. Being included in N2 means that it will not be selected for future

resource discovery message forwarding. This error is called type I error, a false positive.

The easiest way to eliminate this type I error is to disable the unsuccessful searches

blackboard update. Eliminating the update means that each node will only need one

blackboard list, that is the recommended list N1.

6.4.3 Increasing BRDM Query Efficiency

As discussed in Section 2.3.2, Lin & Wang [57] propose query efficiency, ⌘ (Equation 2.1)

as a way to evaluate the efficiency of query techniques. However the metrics proposed

above does not take into consideration the number of feedback, which equally important

because the feedbacks use the network bandwidth and ultimately may flood the network.

A new metric, query efficiency with feedback, ⌘⇤ (Equation 2.2) is proposed to take into

consideration the number of feedbacks in calculating the efficiency of resource discovery

techniques. Substituting the number of messages sent (Equation 6.3) into ⌘⇤ (Equation

97

2.2) will produce following equation:

⌘⇤ =
QueryHits

QueryMessagesForward+QueryMessagesFeedback
N

=
QueryHits

[
Q

TTL

0 l(n
o

)]+B
s

+B
u

N

(6.9)

where Bs and Bu are the feedbacks for successful and unsuccessful searches respectively.

no is the origin node of the query and N is the number of nodes in the network.

Number of query messages sent and feedbacks differs between resource discovery

techniques. Obtaining a balance between query replication and its feedback is crucial

to make sure the resource discovery technique remains efficient. In BRDM, all queries

sent would have to generate a feedback query towards its originator, making the number

of query messages sent and feedback to be the same (Equation 6.7). Substituting

Bs +Bu =
QTTL

0 l (no) to Equation 6.9, the ⌘⇤ calculation for BRDM is as follows:.

⌘⇤ =
QueryHits
2[
Q

TTL

0 l(n
o

)]
N

Resource discovery techniques that require all queries to send feedbacks have equal

number of query messages sent and feedbacks. The number of query messages sent

is equal to or bigger than the positive feedbacks (
QTTL

0 l (no) > Bs). Therefore, by

eliminating the need to give feedbacks by unsuccessful query, the query efficiency of the

resource discovery technique should increase, if not equal to techniques that requires all

queries to send feedbacks.

98

TTLY

0

l (no) > Bs

) QueryHits
2[
Q

TTL

0 l(n
o

)]
N

6 QueryHits

[
Q

TTL

0 l(n
o

)]+B
s

N

⌘⇤AF 6 ⌘⇤SoF

where ⌘AF and ⌘SoF are query efficiency for resource discovery technique that require

all feedbacks and techniques that only require successful feedbacks respectively.

Therefore, it has been proven that techniques that require all successful and un-

successful messages queries to return their finding through the network will incur a

greater cost and less query efficiency when compared to techniques that only requires

successful searches to return their findings. In pursuance of fulfilling the lightweight

resource discovery that is based on BRDM, the need to return queries that are unsuc-

cessful searches will be eliminated. It will significantly reduce the cost of network of

BRDM, which results in message reduction and higher query efficiency. The new light-

weight technique, Lightweight Blackboard Resource Discovery Mechanism (LBRDM),

utilises only one blackboard on each node, recommended nodes N1 compared to two

blackboards on BRDM, recommended nodes N1 and unrecommended nodes N2.

6.5 Lightweight BRDM

With reference to Section 6.4.2 and 6.4.3, there are several things that are needed to

be done. In order to eliminate the type I error (issue in Section 6.4.2) of the unrecom-

mended nodes N2, there are two ways to handle it. The first method is by eliminating

the N2 altogether. The second method is to forward query messages to nodes that are

in N2 even though it is listed as unrecommended.

Section 6.4.3 discusses the network cost of resource discovery techniques that require

99

both successful and unsuccessful searches to return their search results ⌘⇤AF . The number

of query messages going forward and backward is very substantial, and might overwhelm

the network. As a result of ⌘⇤AF network cost is almost twice the ⌘⇤SoF , it might be a

good idea not to use the return query of the unsuccessful searches. Ultimately, disabling

the unrecommended nodes N2 blackboard from the BRDM technique would solve two

issues of the BRDM, the type I error and the high network cost issue.

6.6 Experimental Setup

In order to compare the experiments performed on the BFS and ↵-BFS, the BRDM

and LBRDM techniques have also been tested according to the same topology setup

parameters: one million nodes distributed and wired using the scale free Barabási-

Albert model; undirected connection; k variable of two; and is run of 20 cycles. The

nodes and neighbours distribution for the random seed of 1234567890, 1415926535,

and 8979323846 are shown in Figure 5.1, Figure 5.2, and Figure 5.3 respectively. The

experimental setup parameters are shown in Table 5.1.

The query behaviour setup are one initial query and the TTL of 20. Three of the

best five-tuple alpha multipliers discovered in Section 5 are used in all of the experiments

for BRDM and LBRDM. The three alpha multipliers set are Set B = {1.0, 0.8, 0.6,

0.4, 0.2}, Set M = {0.5, 0.5, 0.5, 0.5, 0.5}, and Set N = {0.4, 0.4, 0.4, 0.4, 0.4},

as shown in Table 5.2. Query efficiency (⌘) are calculated using Equation 2.1 that

has been discussed thoroughly in Section 2.3.2. Query efficiency with feedback (⌘⇤)

(Equation 6.9) that was discussed in Section 6.4.3 were calculated to find the efficiency

of informed resource discovery techniques. The maximum number of successful searches

(the number of successful searches when all queries finished their TTL) for each iteration

of the experiments are also being recorded.

100

Table 6.1: Average Query Efficiencies (⌘ and ⌘⇤) and Successful Searches (ss)

Techniques Alpha Multipliers ⌘ & ss ⌘⇤ & ss

BRDM
Set B 89.30 70.65

Set M 80.40 62.84

Set N 68.15 47.60

LBRDM
Set B 84.12 86.31

Set M 84.01 86.28

Set N 69.02 70.86

6.7 Experimental Results

Table B.7 shows the results for BRDM and LBRDM resource discovery techniques when

tested on three different random seed and three different sets of alpha multipliers. The

results are then averaged across the random seed and then are shown in Table 6.1.

It can be observed that in two out of three sets of alpha multipliers (Set M and N),

the LBRDM has a better combined query efficiency (⌘ & ss) than BRDM. This shows

that the LBRDM technique can maintain good results even though it only require one

blackboard on each node instead of two blackboards in BRDM.

In combined query efficiency star that took into consideration of network communic-

ation cost, ⌘⇤ & ss, the LBRDM has a higher percentage of efficiency compared to the

BRDM in all three sets of alpha multiplier being experimented. This result is expected

because the LBRDM is designed to use less network resources by eliminating the re-

quirements to return unsuccessful results to the originator of the query. The comparison

chart for BRDM and LBRDM in combined query efficiency and query efficiency star

metrics are shown in Figure 6.1 and 6.2 respectively.

101

Fi
gu

re
6.

1:
C

om
bi

ne
d

Q
ue

ry
E

ffi
ci

en
cy

((
⌘
+
ss
) /
2
)

(N
=

1
m

ill
io

n,
k
=

2,
T

T
L=

20
).

102

Fi
gu

re
6.

2:
C

om
bi

ne
d

Q
ue

ry
E

ffi
ci

en
cy

St
ar

((
⌘
⇤
+
ss
) /
2
)

(N
=

1
m

ill
io

n,
k
=

2,
T

T
L=

20
).

103

6.8 Discussion and Conclusions

This chapter listed several problems that has been identified on the tests and experi-

ments done with previous resource discovery techniques. The first problem is regarding

small simulation size of the experiments that have been done, which might not truly

reflect the real life P2P networks. This research has implemented the resource discovery

techniques on a highly scalable P2P simulator, PeerSim [71]. The implementation was

discussed in detail in Section 3 of this dissertation.

The chapter continues with the discussion regarding the approaches taken to elim-

inate type I error and reduce the number of network communication cost on informed

resource discovery techniques. Type I error happens when the resource discovery tech-

nique demerits nodes that did not return with successful searches, even though not all

nodes that are connected to the node being degraded have been previously checked.

This happens when TTL is implemented, and the resource discovery technique only

selects a fraction of its neighbouring node to forward the query messages with.

This study also identified the problem of some informed resource discovery tech-

niques that requires all forwarded query messages to return their findings whether it is

successful or not. Return of successful searches to the nodes that the query message

previously traversed on is useful. Nevertheless returning information of unsuccessful

searches, where the amount of unsuccessful searches is bigger than successful searches

might be unnecessary and a waste of network communication resource.

This study has developed a new lightweight BRDM that requires the technique to

only return successful searches information instead of returning both successful and un-

successful searches. The new technique being developed is lightweight, thus it is named

as lightweight BRDM, or LBRDM. Both the BRDM and LBRDM techniques were im-

plemented onto PeerSim (refer Section 3). The experimental setup for the informed

resource discovery techniques was set to be the same as what have been found in the

104

uninformed resource discovery experiments. Three sets of five-tuple alpha multipliers

that returned the best results for the uninformed resource discovery experiments are

used in these experiments.

From the experiments, it is found that even though the LBRDM does not have the

same amount of information as the BRDM, the LBRDM was able to have combined

query efficiency that is comparable to BRDM. This shows that some of the information

being shared and distributed in BRDM is not as necessary as it was thought it was.

The action to remove information communication and one of the blackboards on each

node in the network do not degenerate the resource discovery efficiency.

105

7 Discussion & Conclusions

Chapter Summary

This chapter is divided to several sections: Discussion; Summary of Chapters; Contribu-

tions; Review of Aims and Objectives; Conclusions; and Future works. The discussion

is where all the findings and observations during the whole study are discussed. It is

then followed with summary of all the chapters in this dissertation. Contributions to

the academic publications are also listed in the contributions section. Review of aims

and objectives are also listed, right before the conclusion of this dissertation. Future

works are also included at the end of this chapter.

Summary of Each Section

Introduction : Introduction of the chapter.

Discussion : This section contains the summary of all the

discussions in this dissertation.

Summary of

Chapters

: Summaries of each Chapters in this dissertation are

included in this section.

Contributions : Contributions from this dissertation are listed.

Research

Limitations

: Limitations of this research are listed.

Review of Aims

and Objectives

: This section lists all the main objectives of this

dissertation and the outcomes from this dissertation.

Conclusions : This section contains the conclusions for all the

research and experiments performed in this

dissertation.

Future Works : All future work related to this dissertation is listed in

this section.

106

7.1 Discussion

This study starts with the research motivation of reducing the network communication

cost for resource discovery mechanisms for unstructured P2P network environments.

This is because it is difficult to find resources in a large unstructured network, and

users usually rely on techniques that flood the network with query message. For that

reason, three main objectives of this research were: to design a lightweight resource

discovery technique; implement it on a P2P simulator; and examines the effectiveness

of the newly developed techniques.

Through the literature review, the characteristics of peer-to-peer networks were

discussed and categorised according to its utilisation, overlay networks, and network

topology. Research regarding resource discovery techniques were explored, and categor-

ised the techniques into two types: uninformed search techniques and knowledge based

techniques. This study also identified several problems with certain resource discovery

techniques. The breadth-first search technique, is the best in the unstructured P2P

networks in terms of finding the most amount of resources in the network but: with a

high price of flooding the network with query messages.

In order to study how the resource discovery techniques find resources, the techniques

needed to be implemented on a P2P network. Nevertheless, acquiring a big platform

just to test P2P techniques would be too expensive. Therefore, the P2P techniques

are implemented on PeerSim, a highly scalable P2P network simulator. PeerSim’s

forte, high scalability, was able to be achieved by programming it in object oriented

approach. The object oriented approach has a large package, able to run many types

of P2P experiments, such as: resource discovery; load balancing; and peer aggregation.

Nonetheless, this vast library of simulation capability leads to a steep learning curve

of the whole simulator ecosystem. Implementing a resource discovery technique on

PeerSim requires a good programming capability.

107

To closely imitate the real unstructured P2P network, the network topology gen-

erator models need to follow certain rules, the simulated networks need to: follow the

power law; unstructured; and are scale free. Several P2P network generators, namely,

HOT, regular rooted tree, star, ring lattice, Watts-Strogatz, scale free Barabási-Albert,

scale free Dorogovtsev-Mendes, and K-out were tested. Up of all eight topology gener-

ator models, only two models, scale free Barabási-Albert, and scale free Dorogovtsev-

Mendes were able to fulfil the criteria that have been set. The scale free Barabási-

Albert was finally selected for the simulations, this is due to the finding that the scale

free Dorogovtsev-Mendes, at generating 1000 nodes has generated 2 nodes that can be

considered as outliers from the power law.

Resource discovery techniques are divided into two categories: uninformed and in-

formed searches. For the uninformed search, BFS, the most widely used resource dis-

covery on unstructured P2P networks has been scrutinised. The flooding of the network

with query messages deemed to be the main problem of the technique. The number of

query message forwarding for BFS can be summarised as, FBFS = L (L (L (L (L (no))))),

or FBFS =
QTTL

0 L (no), where L(no) is the number of originator’s neighbouring node.

From the equation, it can be observed that number of query messages forwarding in

BFS increases exponentially.

Two methods have been devised in order to overcome the problem. The first one

was by implementing alpha multipliers, a method to restrict number of query message

forwarding according to the number of hops that the query message has taken. The

second one was to implement a regulation, not to forward the same message to neigh-

bouring nodes that have seen the query. The implementation of alpha multipliers and

the forwarding regulation on BFS is named ↵-BFS.

Multiple values of five-tuple alpha multipliers are tested to come out with the best

three set of alpha multipliers. They are, Set B = {1.0, 0.8, 0.6, 0.4, 0.2}, Set M =

{0.5, 0.5, 0.5, 0.5, 0.5}, and Set N = {0.4, 0.4, 0.4, 0.4, 0.4} with combined efficiency

108

of 63.15%, 62.78%, and 62.23% respectively. The BFS has a combined query efficiency

of 55.67%. The experiments show that by implementing the Set B, M, and N alpha

multipliers of the ↵-BFS, the combined query efficiency were increased 7.48%, 7.11%,

and 6.56%.

For the category of informed resource discovery, the BRDM has been examined

thoroughly. Several issues have been addressed, such as: small simulation environment;

type I error in unrecommended lists; and high network communication cost needed

to send the information of unsuccessful searches. This study has implemented the

BRDM onto PeerSim to increase the number of network simulated for the experiments

to 1 million nodes. The resource discovery query efficiency is calculated as follows:

⌘⇤ = QueryHits

[QTTL

0 l(n
o

)+B

s

+B

u]/N
, where TTL is the time to live, l(no) is the number of query

message forwards, Bs and Bu are the number of message traversing in order to inform

successful searches and unsuccessful searches respectively.

Acknowledging the problem, the requirement to return information of unsuccessful

searches is dropped, as an approach to reduce network communication cost and at the

same time increases the query efficiency. Subsequently, unrecommended blackboard

lists, N2, are also dropped from the BRDM because of no information of unsuccessful

search will be received in the technique. These actions were able to tackle the remaining

two issues of BRDM: type I error in unrecommended lists; and high network commu-

nication cost. The withdrawal of unrecommended list is considered as changing the

BRDM to be lightweight, thus the developed technique is name lightweight BRDM, or

LBRDM.

The BRDM and LBRDM are experimented side-by-side using the same experimental

setup. The combined query efficiency (⌘) of LBRDM shows a better result in two out of

three alpha multiplier sets. The sets where the results of LBRDM is better than BRDM

are Set M, and N of the alpha multipliers with BRDM: 80.40% and LBRDM: 84.01%,

and BRDM: 68.15% and LBRDM: 69.02% combined query efficiency respectively. The

109

set where the BRDM outperformed the LBRDM is the Set B, where the BRDM with

89.30% and LBRDM with 84.12% combined query efficiency. Nevertheless the results

show that the LBRDM does not suffer from any setback compared to BRDM even

though it does not incorporate the use of information from the unsuccessful searches

and the non-existent of one of the blackboard list (N2).

7.2 Summary of Chapters

This dissertation starts with the first chapter, containing the introduction to the whole

study, enhanced resource discovery mechanism for unstructured peer-to-peer network

environments. Motivation for the research is also written in this chapter. Three research

objectives have been identified and all the study, research, experiments have been per-

formed in order to fulfil these objectives. The chapter ends with a list of contributions

towards published literature that came out from this study.

Chapter 2 contains the literature review of P2P networks and resource discovery.

This chapter starts with an introduction and some history regarding the Internet and

its usage, the emergence of P2P network and grid computing, followed with the resource

discovery techniques in grid computing. Overview of the P2P networks, and the cat-

egorisation of the P2P networks are discussed. This chapter continues with a review

of resource discovery mechanisms, where several types of resource discovery mechan-

isms are discussed and explained. The resource discovery evaluation techniques are also

discussed at the end of this chapter.

The following chapter, Chapter 3, several P2P simulators have been discussed and

compared in order to find the best simulator to run the experiments. The remaining

of the chapter discusses the implementation of several resource discovery techniques

being used in unstructured P2P networks in a P2P simulator called PeerSim. Resource

discovery techniques that have been implemented are random walk, restricted random

walk, breadth first search, intelligent breadth first search, adaptive probabilistic search,

110

depth first search and the blackboard resource discovery mechanism. Pseudocode of

each resource discovery technique that was implemented on PeerSim are also shown.

The code implemented for the BRDM resource discovery technique is presented and

discussed at the end of this chapter.

Chapter 4 discusses the characteristics of several network topology models. The P2P

network topology generator models discussed are as follows: HOT, regular rooted tree,

star, ring lattice, Watts-Strogatz, scale free Barabási-Albert, scale free Dorogovtsev-

Mendes, and K-out topology generators. The rules and conditions that need to be

followed in order to correctly imitate real life P2P networks are also listed. The chapter

ends with the selection of an unstructured P2P network topology generator to be used

in all of the experiments beyond Chapter 4.

The subsequent chapter, Chapter 5, discussed regarding the Alpha breadth first

search, an improved version of breadth-first search. It implements alpha multipliers,

a set of 5 multipliers that dictate the number of message forwarding from each node.

This chapter discusses the two main techniques that have been implemented on alpha

breadth first search, that is alpha multipliers and restricted random walk with null

exception. Both of the techniques are aimed at reducing message forwarding by elimin-

ating unnecessary duplicate query messages from the network. Experiments were done

to find the best set of alpha multipliers that are able to outperform the BFS resource

discovery technique using the combined query efficiency metrics.

Chapter 6 discusses the Blackboard Resource Discovery Mechanism (BRDM). Some

issues regarding the resource discovery technique are also listed and explained. The

main issue, network cost, are highlighted. Network cost calculation methods are also

discussed in this chapter. The solutions to the issues are then discussed leading to a

new resource discovery technique. The new lightweight technique is called lightweight

BRDM (LBRDM). The LBRDM is then compared to BRDM in sets of experiments,

and the LBRDM shows almost no setbacks compared to the BRDM even though it uses

111

less information and resource in the resource discovery.

Chapter 7 is the final chapter of this dissertation. The summary of previous discus-

sions in the dissertation are shown in this chapter. It also lists the contribution of this

study towards the field of computer science and engineering, generally, and computer

networks, specifically. The chapter also contains limitations of this research and review

of aims and objectives of the research. The conclusion of the whole research is stated

towards the end of this chapter, before closing the whole dissertation with future works

that can be done in relation to this research.

7.3 Contributions

This research has manage to come out with several contributions towards the computer

networks engineering knowledge. The two most significant contributions are the alpha

multipliers and the prove that unsuccessful searches are unimportant. The five-tuple

alpha multipliers are considered significant due to the fact that the query efficiency

can be increased compared to flooding the unstructured P2P networks in order to find

resources. Three sets of alpha multipliers with the best results were pointed out and

can be used to reduce the flooding of the networks with query messages.

Some informed resource discovery mechanisms rely on information regarding unsuc-

cessful searches. The importance of the information is trivial. There is also possibility

that the information may generate a Type I error that will reduce the resource discovery

query efficiency. Experiments conducted in this research have proven that without the

information of unsuccessful searches, the resource discovery mechanism can still produce

an almost equivalent combined query efficiency. This research has proven that the ex-

change of information regarding unsuccessful searches to be unimportant and negligible.

By removing the information, resource discovery can be more efficient without the un-

necessary information exchange and storage. This results to a less usage of computing

and network resources of the P2P network.

112

Other contributions of this research are the identification and classification of the

resource discovery mechanism to be used in unstructured P2P networks. This research

also scrutinised several P2P simulators and found out the best simulator to experiment

with very large scale P2P network. Simulated network topology generators were also

tested and the most consistent and most realistic (closely imitate real-life P2P network)

topology generator has been found. Finally, this research also contributed to the im-

plementation of several resource discovery mechanism onto PeerSim, where some of the

mechanisms required some change in the main search protocol class of the simulator.

7.4 Research Limitations

Resource discovery techniques can be tested and experimented using mathematical mod-

els, on actual P2P systems, and on P2P simulators. All experiments for the resource

discovery in this thesis were done on a P2P simulator named PeerSim. There are several

limitations of doing experiments using PeerSim simulators such as: the resource discov-

ery technique can be tested on limited number of Open Systems Interconnection (OSI)

layers; limited amount of P2P nodes based on the memory capacity of the computer.

The OSI layers are important to show how users can communicate with each other

using the network. The OSI layer model has seven layers, namely: application; present-

ation; session; transport; network; data-link; and physical layer. P2P research on actual

P2P system would have to be tested on all seven layers. By utilising PeerSim for all of

the experiments in this research, the simulator only simulates the network and physical

layer of the OSI model. Nevertheless, the two layers simulated by PeerSim are the layers

that are crucial for resource discovery.

The second limitation for this research is the number of simulated nodes in PeerSim is

reliant to the capacity of the memory of the computer running the simulation. PeerSim is

developed using Java programming language, therefore all simulations and experiments

for this research were done using Java Virtual Machine (JVM) with memory allocation

113

of 16GB. There are some experiments that were not completed, for example, one of the

experiment for the BFS only managed to complete the first out of 20 cycles being set

for the simulation. This limitation can be overcome with future technologies and the

increment of memory capacity.

7.5 Review of Aims and Objectives

There are three main objectives of this research. The review of the objectives are as

shown in Table 7.1

Table 7.1: Review of Aims and Objectives
Research Objectives Final Outcomes

To design a lightweight resource
discovery technique suitable to be

used in unstructured P2P networks.

Two lightweight resource discovery
techniques were designed for
unstructured P2P networks.

To implement resource discovery
techniques onto a P2P simulator.

Several resource discovery
techniques were implemented onto

PeerSim. Two newly designed
resource discovery techniques are

also implemented onto the
simulator.

To find out the effectiveness of the
new resource discovery techniques

by comparing it with existing
approaches.

Experiments have been done on the
new resource discovery techniques

and compared to existing
approaches.

7.6 Conclusions

The ↵-BFS and LBRDM were able to reduce network communication cost of BFS and

BRDM respectively. The ↵-BFS was able to do so by controlling the number of query

message forwarding. Apart from low network communication cost, the technique was

able to generate a better (approximately twice) percentage of successful searches when

114

compared to the number of message forwarding. The LBRDM was able to reduce the

network communication cost by eliminating the need for the query message to return

unnecessary information, for the case of BRDM, is the information of unsuccessful

searches.

The implementation of ↵-multipliers can be easily done to other uninformed search

resource discovery techniques, as it only requires the number of hops that the query

message has taken. For the LBRDM approach of eliminating unnecessary information

and type I error, there are other resource discovery techniques that requires such in-

formation. Using the same approach towards the techniques might be able to reduce

network communication cost of those techniques.

7.7 Future Work

In this research, several resource discovery techniques are examined and tested. Two

newly developed resource discovery techniques are also designed, and tested on a simu-

lator. In BRDM and LBRDM, the number of forwarded query messages is determined

based on the number of hops. After the number has been obtained, there are several

ways to divide the value. In BRDM, the number is devised so that it will forward

to nodes in the recommended lists, and the remaining to the nodes that are unlisted

(neither listed in the recommended nor the unrecommended list).

If the number of nodes in the recommended lists is bigger than the number of

forwarded query messages it will only forward to one of its unlisted neighbour. This

affects the number of resources found, because the protocol does not encourage the query

message to go to new and unknown nodes. The handling of the number of forwarded

query messages can be changed to develop a new resource discovery technique, that will

try to find resources in new and unknown nodes. For example, instead of setting the

number of alpha multipliers to a set of fixed numbers, the alpha multipliers can be set

to have variable numbers depending on the condition of the query or the nodes, such as,

115

has the query message found resources or based on how many percent of the adjacent

node being forwarded the message.

Another variable that should be experimented upon are the time-to-live (TTL).

This research has proven that the longer the TTL, the higher the query efficiency of

the resource discovery technique. Nonetheless, the longer the TTL, the higher the

number of query being sent, which might lead to unnecessary query forwarding. A

mechanism should be devised to alter the TTL of each query message. For example, if

the query message has found a resource, the TTL can be either elongated or shortened.

Justification of elongating the TTL is to find more resources in adjacent nodes, because

finding one resource in a node does not mean that its adjacent nodes do not have the

resource that the query searched for. Justification of the latter is no other than to

decrease network communication cost and increase the query efficiency.

All of the techniques mentioned in this dissertation, the BFS, ↵-BFS, BRDM, and

LBRDM are the techniques used in unstructured P2P networks. Considering that there

are other P2P network topologies aside from unstructured, such as: the structured;

super peer; and hybrid, implementing the approaches done in ↵-BFS and LBRDM may

or may not be effective. Nonetheless, there is no harm in trying it in a simulator. In

order to make an easy adaptation towards other types of topologies, the adaptation work

should focus on hybrid versions of unstructured P2P networks. Another approach is by

implementing the ↵-BFS onto all fields that utilise the BFS as their search technique.

Aside from resource discovery in P2P networks based on its physical topologies

alone, there are also overlay networks, where the nodes are connected logically. Logical

networks opens up to a different type of resource discovery, where nodes can connect and

disconnect with each other based on the resource discovery techniques being used. Both

the physical topologies and the overlay topologies are interesting choices to implement

the approaches taken in this dissertation, in the hope of improving successful searches

and reduce the network communication costs.

116

There are two ways to implement the resource discovery on overlay networks. The

first method is by implementing the resource discovery technique onto P2P simulator

that simulate more OSI layers than PeerSim. The second method is by implementing

the resource discovery technique onto real-life P2P system. Implementing to the real-life

P2P system seems to be a better choice because it will lead to a real-life implementation

of the resource discovery mechanisms being developed in this research. The second

approach will also make it easier for other researchers to adapt and utilise the resource

discovery mechanism in actual P2P resource discovery problems and application.

117

References

[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,

M. Punceva, and R. Schmidt. P-grid: A self-organizing structured P2P system.

ACM Special Interest Group on Management of Data (SIGMOD), 32(3):29–33,

2003.

[2] L.A. Adamic and B.A. Huberman. Power-law distributions of the world wide web.

Science Magazine, 287(2115), March 2000.

[3] N.A. Al-Dmour and M.S. Saraireh. ParCop with new capabilities and efficient

scheduling policies. Leonardo Journal of Sciences, (18):11–26, January-June 2011.

[4] N.A. Al-Dmour and W.J. Teahan. The blackboard resource discovery mechanism

for P2P networks. In International Conference on Parallel and Distributed Com-

puting Systems (IASTED), MIT, Cambridge, MA, USA, November 9-11 2004.

[5] N.A. Al-Dmour and W.J. Teahan. The blackboard resource discovery mechanism

for distributed computing over peer-to-peer networks. In Proceedings of Inter-

national Conference on Parallel and Distributed Computing and Networks (IAS-

TED), 2005.

[6] H. Ali, M. Ahmed, and et. al. HPRDG: A scalable framework hypercube-P2P-

based for resource discovery in computational grid. In Computer Theory and

Applications (ICCTA), 2012 22nd International Conference on, pages 2–8. IEEE,

2012.

[7] N. Alon. A parallel algorithmic version of the local lemma. In Proceedings of the

32nd Annual Symposium on Foundations of Computer Science, pages 586–593,

1991.

118

[8] B. Amann, L. Berti-Equille, Z. Lacroix, and M.E. Vidal. Challenges of quality-

driven resource discovery. In Resource Discovery, Lecture Notes in Computer

Science, volume 6799, pages 181–189. Springer Berlin Heidelberg, January 2012.

[9] M. Antonini, S. Cirani, G. Ferrari, P. Medagliani, M. Picone, and L. Veltri. Light-

weight multicast forwarding for service discovery in low-power IoT networks. In

Software, Telecommunications and Computer Networks (SoftCOM), 2014 22nd

International Conference on, pages 133–138. IEEE, 2014.

[10] B. Awerbuch and R.G. Gallager. A new distributed algorithm to find breadth

first search trees. In IEEE Transactions on Information Theory, volume IT-33,

pages 315–322, May 1987.

[11] A.L. Barabási and R. Albert. Emergence of scaling random networks. In Science,

volume 286, pages 509–512. American Association for the Advancement of Science

(AAAS), 1999.

[12] H. Barjini, M. Othman, and H. Ibrahim. An efficient hybridflood searching al-

gorithm for unstructured peer-to-peer networks. In Information Computing and

Applications, pages 173–180. Springer, 2010.

[13] B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.M.

Bussat, R. Alvarez-Icaza, J.V. Arthur, P.A. Merolla, and K. Boahen. Neurogrid:

A mixed-analog-digital multichip system for large-scale neural simulations. Pro-

ceedings of the IEEE, 102(5):699–716, 2014.

[14] A. Biernacki, T. Bauschert, and T.M. Knoll. BitTorrent based P2P IPTV traffic

modelling and generation. 2009.

[15] BitTorrent. http://www.bittorrent.com/, 2012.

119

[16] J. Chen, C.C. Wang, F.C.D. Tsai, C.W. Chang, S.S. Liu, J.J. Guo, W.J. Lien,

J.H. Sum, and C.H. Hung. The design and implementation of WiMAX module for

NS-2 simulator. In Proceedings from the 2006 workshop on NS-2: the IP network

simulator, page 5. ACM, 2006.

[17] Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno, L. Delgrossi, and

H. Hartenstein. Overhaul of IEEE 802.11 modeling and simulation in NS-2. In

Proceedings of the 10th ACM Symposium on Modeling, analysis, and simulation

of wireless and mobile systems, pages 159–168. ACM, 2007.

[18] I. Clarke, S.G. Miller, T.W. Hong, O. Sandberg, and B. Wiley. Protecting free

expression online with freenet. IEEE Internet Computing, 6(1):40–49, January

2002.

[19] A.J. Conejo, J. Contreras, D.A. Lima, and A. Padilha-Feltrin. Zbus transmission

network cost allocation. IEEE Trans. Power Syst, 22(1):342–349, 2007.

[20] R. Cuevas, M. Kryczka, A. Cuevas, S. Kaune, C. Guerrero, and R. Rejaie. Un-

veiling the incentives for content publishing in popular BitTorrent portals. In

IEEE/ACM Transactions of Networking. IEEE Press, 2012.

[21] S.N. Dorogovtsev and J.F.F. Mendes. Evolution of networks. Advances in Physics,

51(4):1079–1187, 2002.

[22] M. Ebrahim, S. Khan, and S.S.U.H. Mohani. Peer-to-peer network simulators: an

analytical review. arXiv preprint arXiv:1405.0400, 2014.

[23] eMule. http://www.emule-project.net/, 2010.

[24] D.C. Erdil. Proxy-based cloud resource sharing. In Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), 2011 International Conference

on, pages 463–468. IEEE, 2011.

120

[25] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge

discovery in databases. AI magazine, 17(3):37, 1996.

[26] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scal-

able virtual organizations. International Journal of High Performance Computing

Applications, 15(3):200–222, 2001.

[27] G.A. Fowler and S. McBride. http://www.appliancedesign.com/articles/88301-

newest-export-from-china-pirated-pay-tv-9-2. Wall Street J, 2005.

[28] N. Fuhr. Resource discovery in distributed digital libraries. 1999.

[29] R. Giordanelli, C. Mastroianni, and M. Meo. Bio-inspired P2P systems: The case

of multidimensional overlay. ACM Transactions on Autonomous and Adaptive

Systems (TAAS), 7(4):35, 2012.

[30] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks.

In INFOCOM, volume 1, pages 120–130, Hong Kong, 2004.

[31] Gnutella. http://rfc-gnutella.sourceforge.net/, 2010.

[32] Gnutella2. Gnutella2 developer network, http://g2.trillinux.org/, 2012.

[33] M.I. Haasn. Semantic technology and super-peer architecture for internet based

distributed system resource discovery. International Journal of New Computer

Architectures and their Applications (IJNCAA), 1(4):848–865, 2011.

[34] J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques: concepts

and techniques. Elsevier, 2011.

[35] J.B. Harris. A Scalable & Extensible Peer-to-Peer Network Simulator. PhD thesis,

Carleton University Ottawa, 2005.

121

[36] M. Hasanzadeh and M.R. Meybodi. Grid resource discovery based on distributed

learning automata. Computing, 96(9):909–922, 2014.

[37] M. Heckner, T. Neubauer, and C. Wolff. Tree, funny, to_read, google: what are

tags supposed to achieve? a comparative analysis of user keywords for different

digital resource types. In Proceedings of the 2008 ACM workshop on Search in

social media, pages 3–10. ACM, 2008.

[38] D. Hildebrandt, L. Bischofs, and W. Hasselbring. RealPeer - a framework for

simulation-based development of peer-to-peer systems. In Parallel, Distributed

and Network-Based Processing, 2007. (PDP’07). 15th EUROMICRO Interna-

tional Conference on, pages 490–497. IEEE, 2007.

[39] A. Iamnitchi and I. Foster. On fully decentralised resource discovery in grid

environments. Grid Computing-GRID 2001, (51-62), 2001.

[40] A. Iamnitchi, I. Foster, and D. Nurmi. A peer-to-peer approach to resource discov-

ery in grid environments. IEEE High Performance Distributed Computing, July

2002.

[41] Intel Corporation. Over 6 decades of continued transistor shrinkage, innovation.

Whitepapers, Intel Corporation, Santa Clara, California, May 2011.

[42] A.A. Jamal, W.S. Wan Awang, M.F. Abdul Kadir, A. Abdul Aziz, and W.J.

Teahan. Implementation of resource discovery mechanisms onto PeerSim. In

Proceedings of the 3rd International Conference on Informatics & Applications

(ICIA2014), Kuala Terengganu, Malaysia, October 2014.

[43] A.A. Jamal, W.S. Wan Awang, M.F. Abdul Kadir, A. Abdul Aziz, and W.J.

Teahan. Implementation of resource discovery mechanisms on PeerSim: Enabling

up to one million nodes P2P simulation. International Journal of Digital Inform-

ation and Wireless Communications (IJDIWC), 5(1):14–20, 2015.

122

[44] A.A. Jamal and W.J. Teahan. Alpha multipliers breadth-first search technique

for resource discovery in unstructured peer-to-peer networks. ARPN Journal of

Engineering and Applied Sciences, (under review), 2016.

[45] S. Joseph. Neurogrid: Semantically routing queries in peer-to-peer networks. In

Web Engineering and Peer-to-Peer Computing, pages 202–214. Springer, 2002.

[46] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A local search mechanism

for peer-to-peer networks. In Proceedings of the 11th International Conference

on Information and Knowledge Management (CIKM), pages 300–307, McLean,

Virginia, USA, 2002. ACM.

[47] A. Kapoor. Total cost of application ownership (tca). Whitepapers, The Tolly

Group, June 1999.

[48] K. Karaoglanoglou and H. Karatza. Resource discovery in a Grid system: Dir-

ecting requests to trustworthy virtual organizations based on global trust values.

Journal of Systems and Software, 84(3):465–478, 2011.

[49] KaZaA. http://www.kazaa.com/, 2010.

[50] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In Pro-

ceedings of the 32nd annual ACM symposium on Theory of computing, pages 163–

170. ACM, 2000.

[51] J. Kong, W. Cai, L. Wang, and Q. Zhao. A study of pollution on BitTorrent.

In The 2nd International Conference on Computer and Automation Engineering

(ICCAE), volume 3, pages 118–122. IEEE, February 2010.

[52] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J. Vuori. P2PRealm-peer-

to-peer network simulator. In 11th International Workshop on Computer-Aided

123

Modeling, Analysis and Design of Communication Links and Networks, pages 93–

99. IEEE, 2006.

[53] G. Kreitz and F. Niemelä. Spotify - large scale, low latency, P2P music-on-demand

streaming. In Peer-to-Peer Computing (P2P), 2010 IEEE Tenth International

Conference on, pages 1–10. IEEE, 2010.

[54] E.S. Kyper and R.H. Blake. An investigation of the intention to share files over

P2P networks. AMCIS 2009 Proceedings, page 738, 2009.

[55] D. Lazaro, J.M. Marques, J. Jorba, and X. Vilajosana. Decentralized resource

discovery mechanisms for distributed computing in peer-to-peer environments.

ACM Computing Surveys (CSUR), 45(4):54, 2013.

[56] G. Lee, Y.C. Chen, and C.C. Lee. Supporting similarity range queries efficiently

by using reference points in structured p2p overlays. In Advances in Intelligent

Systems and Applications-Volume 1, pages 645–652. Springer, 2013.

[57] T. Lin and H. Wang. Search performance analysis in peer-to-peer networks. In

Peer-to-Peer Computing (P2P), 2003 IEEE Third International Conference on,

pages 204–205. IEEE, 2003.

[58] M. Liu, E. Harjula, and M. Ylianttila. An efficient selection algorithm for building

a super-peer overlay. Journal of Internet Services and Applications, 4(1):1–12,

2013.

[59] B.T. Loo, R. Huebsch, I. Stoica, and J.M. Hellerstein. The case for a hybrid P2P

search infrastructure. In Peer-to-Peer Systems III, pages 141–150. Springer, 2005.

[60] S.H. Lu, K.C. Li, K.C. Lai, and Y.C. Chung. A scalable P2P overlay based

on arrangement graph with minimized overhead. Peer-to-Peer Networking and

Applications, 7(4):497–510, 2014.

124

[61] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and comparison

of peer-to-peer overlay network schemes. Communications Surveys & Tutorials,

IEEE, 7(2):72–93, 2005.

[62] G. Macgregor and E. McCulloch. Collaborative tagging as a knowledge organisa-

tion and resource discovery tool. Library review, 55(5):291–300, 2006.

[63] C. Mack et. al. Fifty years of Moore’s law. Semiconductor Manufacturing, IEEE

Transactions on, 24(2):202–207, 2011.

[64] P. Mahadevan, C. Hubble, D. Krioukov, B. Huffaker, and A. Vahdat. Orbis:

Rescaling degree correlations to generate annotated Internet topologies. ACM

SIGCOMM Computer Communication Review, 37(4):325–336, August 2007.

[65] M. Marzolla, M. Mordacchini, and S. Orlando. Peer-to-peer systems for discover-

ing resources in a dynamic grid. Parallel Computing, 33(4):339–358, 2007.

[66] H. Mashayekhi and J. Habibi. Combining search and trust models in unstructured

peer-to-peer networks. The Journal of Supercomputing, 53(1):66–85, 2010.

[67] S. McCanne, S. Floyd, K. Fall, K. Varadhan, et al. Network simulator NS-2, 1997.

[68] P. Merz and K. Gorunova. Fault-tolerant resource discovery in peer-to-peer grids.

Journal of Grid Computing, 5(3):319–335, 2007.

[69] S.L. Mirtaheri and M. Sharifi. DHMCF: An efficient resource discovery frame-

work for pure unstructured peer-to-peer systems. Computer Networks, 59:213–226,

2014.

[70] A. Mirzaee and P. Rahimzadeh. A agent-based decentralized algorithm for re-

source semantic discovery in economic grid. In Communication Software and

Networks (ICCSN), 2011 IEEE 3rd International Conference on, pages 306–311.

IEEE, 2011.

125

[71] A. Montresor and M. Jelasity. PeerSim: A scalable P2P simulator. In Proceed-

ings of the 9th International Conference on Peer-to-Peer (P2P’09), pages 99–100,

Seattle, WA, September 2009.

[72] G.E. Moore. Lithography and the future of Moore’s law. In Advances in Resist

Technology and Processing XII, volume 2438, pages 2–17, June 1995.

[73] S. Naićken, A. Basu, B. Livingston, and S. Rodhetbhai. A survey of peer-to-peer

network simulators. In Proceedings of the 7th Annual Postgraduate Symposium,

volume 2, Liverpool, UK, May 2006.

[74] S. Naićken, A. Basu, B. Livingston, S. Rodhetbhai, and I. Wakeman. Towards

yet another peer-to-peer simulator. In Proceedings of The Fourth International

Working Conference on Performance Modelling and Evaluation of Heterogeneous

Networks (HET-NETs), Ilkley, UK, 2006.

[75] S. Naićken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers.

The state of peer-to-peer simulators and simulations. ACM SIGCOMM Computer

Communication Review, 37(2):95–98, 2007.

[76] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted,

1(2012):28, 2008.

[77] Napster. http://www.napster.com/, 2004.

[78] N.J. Navimipour and F.S. Milani. A comprehensive study of the resource discov-

ery techniques in peer-to-peer networks. In Peer-to-Peer Network Applications.

Springer Science+Business Media New York, March 2014.

[79] N.J. Navimipour, A.M. Rahmani, A.H. Navin, and M. Hosseinzadeh. Resource

discovery mechanisms in grid systems: A survey. Journal of Network and Com-

puter Applications, 41:389–410, 2014.

126

[80] T. O’Reilly. What is web 2.0: Design patterns and business models for the next

generation of software. Communications & strategies, (1):17, 2007.

[81] V.N. Padmanabhan, H.J. Wang, P.A. Chou, and K. Sripanidkulchai. Distributing

streaming media content using cooperative networking. In Proceedings of the 12th

international workshop on Network and operating systems support for digital audio

and video, pages 177–186. ACM, 2002.

[82] H. Papadakis, P. Trunfio, D. Talia, and P. Fragopoulou. Design and implement-

ation of a hybrid P2P-based grid resource discovery system. In Making Grids

Work, pages 89–101. Springer, 2008.

[83] C.H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[84] H. Park, J. Yang, J. Park, S.G. Kang, and J.K. Choi. A survey on peer-to-peer

overlay network schemes. In 2008 10th International Conference on Advanced

Communication Technology, volume 2, pages 986–988, 2008.

[85] PeerThing. http://www.se.uni-oldenburg.de/en/download/pgp2p/userguide.pdf,

2006.

[86] PlanetLab. http://www.planet-lab.org/, 2014.

[87] Softonic PPLive. http://www.pplive.en.softonic.com/, 2010.

[88] W. Qu, W. Zhou, and M. Kitsuregawa. Sharable file searching in unstructured

peer-to-peer systems. The Journal of Supercomputing, 51(2):149–166, 2010.

[89] Query Cycle. http://p2p.stanford.edu/index.html, 2015.

[90] M. Randić. Restricted random walks on graphs. In Theoretica Chimica Acta 92,

number 2, pages 97–106, 1995.

127

[91] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable

content-addressable network. 2001.

[92] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-

scale, persistent peer-to-peer storage utility. In ACM SIGOPS Operating Systems

Review, volume 35, pages 188–201. ACM, 2001.

[93] S. Russell and P. Norvig. Artificial intelligence: A modern approach, volume 25.

Prentice-Hall, Egnlewood Cliffs, 3rd edition, 2010.

[94] M.P. Said and I. Kojima. S-MDS: Semantic monitoring and discovery system for

the grid. Journal of Grid Computing, 7(2):205–224, 2009.

[95] C. Schmidt and M. Parashar. Flexible information discovery in decentralized dis-

tributed systems. In High Performance Distributed Computing, 2003. Proceedings.

12th IEEE International Symposium on, pages 226–235. IEEE, 2003.

[96] M. Shojafar, J.H. Abawajy, Z. Delkhah, A. Ahmadi, Z. Pooranian, and A. Ab-

raham. An efficient and distributed file search in unstructured peer-to-peer net-

works. Peer-to-Peer Networking and Applications, 8(1):120–136, 2015.

[97] H. Si, Z. Chen, Y. Deng, and L. Yu. Semantic web services publication and

OCT-based discovery in structured P2P network. Service Oriented Computing

and Applications, 7(3):169–180, 2013.

[98] M.C. Sinclair. Minimum cost topology optimisation of the cost 239 european

optical network. In Artificial Neural Nets and Genetic Algorithms, pages 26–29.

Springer, 1995.

[99] Y.P. Singh, R. Rathi, J. Gajrani, and V. Jain. Two levels TTL for unstruc-

tured P2P network using adaptive probabilistic search. International Journal of

Scientific & Engineering Research, 3(1):1–4, January 2012.

128

[100] Skype. http://www.skype.com/, 2010.

[101] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM

Computer Communication, pages 149–160, August 2001.

[102] R. Tarjan. Depth-first search and linear graph algorithms. In 12th Annual Sym-

posium on Switching and Automata Theory. IEEE Computer Society, October

1971.

[103] W.J. Teahan. Informed search, artificial intelligence and intelligent agents. Uni-

versity Lecture, Bangor University, 2015.

[104] J.A. Torkestani. A distributed resource discovery algorithm for P2P grids. Net-

work and Computer Applications, 35(6):2028–2036, 2012.

[105] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M. Pen-

nanen, K. Popov, V. Vlassov, and S. Haridi. Peer-to-peer resource discovery in

grids: Models and systems. Future Generation Computer Systems, 23(7):864–878,

2007.

[106] D. Tsoumakos and N. Roussopoulos. Adaptive probabilisitic search for peer-to-

peer networks. In Proceedings of the 3rd International Conference on Peer-to-Peer

Computing (P2P), page 102. IEEE Computer Society, 2003.

[107] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393:440–442, June 1998.

[108] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In

Proceedings of the 22nd International Conference on Distributed Computing Sys-

tems (ICDCS), page 5. IEEE Computer Society, 2002.

129

[109] M. Yang and Y. Yang. An efficient hybrid peer-to-peer system for distributed

data sharing. Computers, IEEE Transactions on, 59(9):1158–1171, 2010.

[110] W. Yang and N. Abu-Ghazaleh. GPS: a general peer-to-peer simulator and its

use for modeling BitTorrent. In Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems, 2005. 13th IEEE International Symposium on,

pages 425–432. IEEE, 2005.

[111] M. Zaharia and S. Keshav. Gossip-based search selection in hybrid peer-to-peer

networks. Concurrency and Computation: Practice and Experience, 20(2):139,

2008.

[112] W. Zhang, S. Zhang, M. Cai, and Y. Liu. A reputation-based peer-to-peer archi-

tecture for semantic service discovery in distributed manufacturing environments.

Concurrent Engineering, page 1063293X12457402, 2012.

[113] A. Zhygmanovskyi and N. Yoshida. Peer-to-peer network for flexible service shar-

ing and discovery. In Multiagent System Technologies, pages 152–165. Springer,

2013.

130

A Appendices (Source Codes)

A.1 PeerSim iSearch Configuration File

Algorithm A.1 config-isearch-BRDM.txt

00
01 random.seed 1234567890
02 simulation.cycles 20
03 control.0 peersim.cdsim.Shuffle
04
05 network.size 1000000
06
07 include.protocol search
08 protocol.topology peersim.core.IdleProtocol
09 protocol.topology.capacity 10
10 protocol.search peersim.extras.gj.isearch.BRDMProtocol
11 protocol.search.ttl 10
12
13 protocol.search.alpha1 0.8
14 protocol.search.alpha2 0.5
15 protocol.search.alpha3 0.3
16 protocol.search.alpha4 0.1
17 protocol.search.alpha5 0.0
18
19 init.0 peersim.dynamics.WireScaleFreeBA
20 init.0.protocol search
21 init.0.k 2
22 init.0.undir
23
24 init.1 peersim.extras.gj.isearch.SearchDataInitializer
25 init.1.protocol search
26 init.1.keywords 1000
27 init.1.query_nodes 1
28 init.1.query_interval 1
29 init.1.max_queries 1
30
31 control.0 peersim.extras.gj.isearch.SearchObserver
32 control.0.protocol search
33 control.0.verbosity 1
34

131

A.2 PeerSim iSearch Protocol Java Codes

132

Algorithm A.2 BRDMProtocol.java (Part 1 of 6)

000
001 package peersim.extras.gj.isearch;
002 import java.util.ArrayList;
003 import java.util.HashMap;
004 import java.util.Iterator;
005
006 import peersim.config.Configuration;
007 import peersim.core.Linkable;
008 import peersim.core.Node;
009
010 public class BRDMProtocol extends SearchProtocol {
011 public static final String PAR_WALKERS = "walkers";
012
013 public static final String PAR_ALPHA1 = "alpha1";
014 public static final String PAR_ALPHA2 = "alpha2";
015 public static final String PAR_ALPHA3 = "alpha3";
016 public static final String PAR_ALPHA4 = "alpha4";
017 public static final String PAR_ALPHA5 = "alpha5";
018
019 protected int walkers;
020 protected double alpha1, alpha2, alpha3, alpha4, alpha5;
021
022 protected HashMap<Node, ArrayList<Node>> RL;
023 protected HashMap<Node, ArrayList<Node>> UL;
024
025 public BRDMProtocol(String prefix) {
026 super(prefix);
027 walkers = Configuration.getInt(prefix + "." + PAR_WALKERS, 1);
028
029 alpha1 = Configuration.getDouble(prefix + "." + PAR_ALPHA1, 0.0);
030 alpha2 = Configuration.getDouble(prefix + "." + PAR_ALPHA2, 0.0);
031 alpha3 = Configuration.getDouble(prefix + "." + PAR_ALPHA3, 0.0);
032 alpha4 = Configuration.getDouble(prefix + "." + PAR_ALPHA4, 0.0);
033 alpha5 = Configuration.getDouble(prefix + "." + PAR_ALPHA5, 0.0);
034
035 RL = new HashMap<Node, ArrayList<Node>>();
036 UL = new HashMap<Node, ArrayList<Node>>();
037 }
038
Continued in Algorithm A.3.

133

Algorithm A.3 BRDMProtocol.java (Part 2 of 6)
Continued from Algorithm A.2.
038
039 public void process(SMessage mes) {
040 boolean match = this.match(mes.payload);
041
042 int amountOfForwards=0;
042
043 if (match){
044 this.notifyOriginator(mes);
045 updateAllRouteTaken(mes, "RL");
046 } else {
047 updateAllRouteTaken(mes, "UL");
048 }
049
050 if(mes.hops==0){
051 amountOfForwards=(int)(this.degree()*alpha1);
052 }else if(mes.hops==1){
053 amountOfForwards=(int)(this.degree()*alpha2);
054 }else if(mes.hops==2){
055 amountOfForwards=(int)(this.degree()*alpha3);
056 }else if(mes.hops==3){
057 amountOfForwards=(int)(this.degree()*alpha4);
058 }else if(mes.hops==4){
059 amountOfForwards=(int)(this.degree()*alpha5);
060 }else{
061 amountOfForwards=1;
062 }
063
064 if(amountOfForwards<1){
065 amountOfForwards=1;
066 }
067
068 mes.addCurrentNode(whoAmI);
069 ArrayList<Node> sentNode = new ArrayList<Node>();
070
Continued in Algorithm A.2.

134

Algorithm A.4 BRDMProtocol.java (Part 3 of 6)

Continued from Algorithm A.3.
070
071 if (RL.containsKey(whoAmI) && !RL.get(whoAmI).isEmpty()) {
072 Iterator<Node> it = RL.get(whoAmI).iterator();
073
074 while (it.hasNext()) {
075 Node cNode = it.next();
076
077 for (int i = 0; i < this.degree(); i++) {
078 Node fwdNode = this.getNeighbor(i);
079
080 if (cNode.equals(fwdNode)) continue;
081 if (!sentNode.contains(fwdNode) && RL.get(cNode).contains(fwdNode)){
082 this.forward(fwdNode, mes);
083 sentNode.add(fwdNode);
084 amountOfForwards--;
085 }
086 }
087 }
088 }
089
090 if (UL.containsKey(whoAmI) && !UL.get(whoAmI).isEmpty()) {
091 Iterator<Node> it = UL.get(whoAmI).iterator();
092
093 while (it.hasNext()) {
094 Node cNode = it.next();
095
096 for (int i = 0; i < amountOfForwards && i < this.degree(); i++){
097 Node fwdNode = this.selectFreeNeighbor(mes);
098
099 if (cNode.equals(fwdNode)) continue;
100 if (!sentNode.contains(fwdNode) && UL.get(cNode).contains(fwdNode)){
101 this.forward(fwdNode, mes);
102 sentNode.add(fwdNode);
103 amountOfForwards--;
104 }
105 }
106 }
107 }
108
Continued in Algorithm A.5.

135

Algorithm A.5 BRDMProtocol.java (Part 4 of 6)
Continued from Algorithm A.2.
108
109 if(amountOfForwards<1){
110 amountOfForwards=1;
111 }
112
113 for(int i=0; i<amountOfForwards; i++){
114 Node neighbor = this.selectFreeNeighborOnly(mes);
115
116 if(neighbor!=null && !sentNode.contains(neighbor)) {
117 this.forward(neighbor, mes);
118 }
119 }
120 sentNode.clear();
121 }
122
123 public void nextCycle(peersim.core.Node node, int protocolID) {
124 super.nextCycle(node, protocolID);
125 int[] data = this.pickQueryData();
126
127 if (data != null) {
128 System.err.println("RUN NEXT CYCLE");
129 SMessage m = new SMessage(node, this.whoAmI, SMessage.QRY, 0,
data);
130
131 for (int i = 0; i< this.walkers && i < this.degree(); i++) {
132 this.send((Node) this.getNeighbor(i), m);
133 }
134 }
135 }
136
Continued in Algorithm A.6

136

Algorithm A.6 BRDMProtocol.java (Part 5 of 6)
Continued from Algorithm A.5.
137 public boolean addULNeighbor(Node current, Node neighbor) {
138 if (UL.containsKey(current)) {
139 if (RL.containsKey(current)) {
140 if (!UL.get(current).contains(neighbor) &&
!RL.get(current).contains(neighbor)) {
141 UL.get(current).add(neighbor);
142 return true;
143 }
144 } else {
145 if (!UL.get(current).contains(neighbor)) {
146 UL.get(current).add(neighbor); return true;
147 }
148 }
149 } else {
150 ArrayList<Node> tmp = new ArrayList<Node>();
151 tmp.add(current);
152 UL.put(current, tmp);
153 return true;
154 }
155 return false;
156 }
157
158 public boolean addRLNeighbor(Node neighbor, Node current) {
159 if (RL.containsKey(current)) {
160 if (!RL.get(current).contains(neighbor)) {
161 RL.get(current).add(neighbor);
162 if (UL.containsKey(current)) {
163 if (UL.get(current).contains(neighbor)) {
164 UL.get(current).remove(neighbor.getIndex());
165 }
166 }
167 return true;
168 }
169 } else {
179 ArrayList<Node> tmp = new ArrayList<Node>();
180 tmp.add(neighbor);
190 RL.put(current, tmp);
191 return true;
192 }
193 return false;
194 }
Continued in Algorithm A.7

137

138

Algorithm A.7 BRDMProtocol.java (Part 6 of 6)
Continued from Algorithm A.6.
195
196 public boolean findNeighborUL(Node neighbor) {
197 if (UL.containsKey(whoAmI) && UL.get(whoAmI).contains(neighbor)) {

198 return true;
199 }
200 return false;
201 }
202
203 public boolean findNeighborRL(Node neighbor) {
204 if (RL.containsKey(whoAmI) && RL.get(whoAmI).contains(neighbor)) {
205 return true;
206 }
207 return false;
208 }
209
210 public boolean updateAllRouteTaken(SMessage msg, String type) {
211 if (msg.routeTaken.isEmpty()) {
212 System.err.println("BRDM Protocol - Update Ancestor Node Failed
(routeTaken is empty)");
213 return false;
214 }
215
216 Iterator<Node> itNode = msg.routeTaken.iterator();
217 Node p = this.whoAmI;
218 while (itNode.hasNext()) {
219 Node c = itNode.next();
220 if (c.equals(p)) continue;
221
222 if (type.equals("RL")){
223 addRLNeighbor(p, c);
224 } else {
225 addULNeighbor(p, c);
226 }
227 p = c;
228 }
229 return true;
230 }
231 }
232

139

B Appendices (Simulation Results)

140

Ta
bl

e
B

.1
:
↵
-B

FS
Q

ue
ry

E
ffi

ci
en

cy
(⌘

)
an

d
M

ax
im

um
Su

cc
es

sf
ul

Se
ar

ch
es

(R
an

do
m

Se
ed

:
12

34
56

78
90

)

A
lp

ha
M

ul
ti

pl
ie

rs
Q

ue
ry

E
ffi

ci
en

cy
(⌘

)
M

ax
.

Su
cc

es
sf

ul
Se

ar
ch

es

↵
1

↵
2

↵
3

↵
4

↵
5

T
T

L5
T

T
L1

0
T

T
L2

0
T

T
L5

T
T

L1
0

T
T

L2
0

1.
0

1.
0

1.
0

1.
0

1.
0

29
,5

72
2,

84
7

N
A

*
89

,2
44

21
7,

30
9

N
A

*

1.
0

0.
8

0.
6

0.
4

0.
2

14
2,

78
7

15
9,

76
3

16
2,

83
7

26
,8

37
97

,8
94

11
8,

38
9

1.
0

0.
90

30
0.

77
82

0.
60

21
0.

30
10

12
4,

93
8

15
1,

33
6

15
4,

50
8

31
,8

13
98

,7
90

11
8,

16
5

1.
0

0.
8

0.
4

0.
2

0.
1

17
6,

86
0

19
2,

56
7

19
8,

06
9

11
,8

27
40

,9
57

64
,7

15

1.
0

0.
5

0.
25

0.
12

5
0.

06
25

19
5,

29
3

20
8,

90
9

21
1,

88
2

4,
21

5
13

,6
62

26
,7

27

0.
8

0.
5

0.
3

0.
1

0.
0

19
6,

63
1

21
1,

05
3

21
0,

63
2

3,
64

2
10

,6
89

20
,7

55

0.
8

0.
4

0.
2

0.
1

0.
05

21
3,

64
6

21
3,

20
4

21
5,

22
1

2,
45

8
7,

55
7

15
,8

14

0.
5

0.
4

0.
3

0.
0

0.
0

19
7,

84
2

21
1,

53
7

21
3,

61
5

1,
81

5
4,

84
8

9,
87

8

0.
5

0.
25

0.
12

5
0.

06
25

0.
03

12
5

20
9,

61
3

22
0,

22
8

21
6,

01
3

89
4

2,
72

4
5,

77
1

0.
2

0.
4

0.
6

0.
8

1.
0

55
,9

69
77

,2
92

76
,2

91
48

,4
92

17
5,

29
9

18
1,

47
4

0.
8

0.
8

0.
8

0.
8

0.
8

47
,6

28
58

,9
00

58
,8

06
68

,5
10

19
1,

05
5

19
3,

14
0

0.
6

0.
6

0.
6

0.
6

0.
6

86
,6

72
10

4,
25

3
10

3,
98

7
44

,2
70

15
8,

59
5

16
7,

44
8

0.
5

0.
5

0.
5

0.
5

0.
5

11
5,

46
5

13
0,

60
2

13
2,

38
7

30
,0

04
13

0,
89

2
14

7,
22

1

0.
4

0.
4

0.
4

0.
4

0.
4

14
5,

44
0

16
8,

53
5

17
2,

33
8

18
,2

33
80

,6
58

10
6,

69
4

0.
3

0.
3

0.
3

0.
3

0.
3

17
5,

93
8

18
7,

14
6

19
2,

64
6

8,
76

4
47

,1
45

74
,0

12
*

In
su

ffi
ci

en
t

m
em

or
y

er
ro

r

141

Ta
bl

e
B

.2
:
↵
-B

FS
Q

ue
ry

E
ffi

ci
en

cy
(⌘

)
an

d
M

ax
im

um
Su

cc
es

sf
ul

Se
ar

ch
es

(R
an

do
m

Se
ed

:
14

15
92

65
35

)

A
lp

ha
M

ul
ti

pl
ie

rs
Q

ue
ry

E
ffi

ci
en

cy
(⌘

)
M

ax
.

Su
cc

es
sf

ul
Se

ar
ch

es

↵
1

↵
2

↵
3

↵
4

↵
5

T
T

L5
T

T
L1

0
T

T
L2

0
T

T
L5

T
T

L1
0

T
T

L2
0

1.
0

1.
0

1.
0

1.
0

1.
0

21
,5

54
19

,3
59

19
,5

42
11

7,
68

0
21

9,
30

6
21

9,
44

9

1.
0

0.
8

0.
6

0.
4

0.
2

13
2,

25
3

14
5,

29
8

14
7,

14
9

46
,9

21
13

6,
49

9
14

8,
88

8

1.
0

0.
90

30
0.

77
82

0.
60

21
0.

30
10

96
,5

51
95

,8
69

94
,9

74
75

,0
92

18
1,

56
4

18
5,

19
1

1.
0

0.
8

0.
4

0.
2

0.
1

17
4,

66
7

18
8,

93
7

19
3,

41
2

21
,2

49
69

,3
13

93
,9

37

1.
0

0.
5

0.
25

0.
12

5
0.

06
25

20
4,

37
2

21
3,

09
7

21
6,

33
7

7,
24

6
22

,2
58

39
,6

13

0.
8

0.
5

0.
3

0.
1

0.
0

20
6,

91
1

21
6,

29
8

21
9,

22
8

6,
82

0
18

,6
23

33
,3

09

0.
8

0.
4

0.
2

0.
1

0.
05

21
0,

25
3

22
1,

94
4

22
0,

77
2

4,
57

3
13

,9
29

26
,0

76

0.
5

0.
4

0.
3

0.
0

0.
0

20
4,

19
6

21
7,

82
7

22
2,

85
3

3,
95

2
10

,2
71

19
,5

77

0.
5

0.
25

0.
12

5
0.

06
25

0.
03

12
5

22
3,

81
0

22
3,

87
1

22
4,

53
1

2,
02

1
5,

68
7

11
,7

65

0.
2

0.
4

0.
6

0.
8

1.
0

64
,8

02
71

,5
45

71
,1

66
65

,9
18

19
5,

21
5

19
8,

19
3

0.
8

0.
8

0.
8

0.
8

0.
8

48
,2

99
46

,9
34

46
,1

21
96

,7
18

20
8,

87
5

20
9,

70
9

0.
6

0.
6

0.
6

0.
6

0.
6

92
,4

51
96

,6
62

95
,4

02
66

,5
95

18
1,

89
2

18
6,

87
3

0.
5

0.
5

0.
5

0.
5

0.
5

10
8,

85
8

11
9,

89
8

11
6,

76
4

48
,6

00
15

8,
27

5
16

9,
91

8

0.
4

0.
4

0.
4

0.
4

0.
4

15
2,

85
4

17
1,

12
6

17
3,

82
2

26
,2

26
10

0,
96

6
12

4,
00

3

0.
3

0.
3

0.
3

0.
3

0.
3

17
7,

82
0

19
4,

30
7

19
9,

55
6

14
,0

54
58

,0
84

85
,5

86

142

Ta
bl

e
B

.3
:
↵
-B

FS
Q

ue
ry

E
ffi

ci
en

cy
(⌘

)
an

d
M

ax
im

um
Su

cc
es

sf
ul

Se
ar

ch
es

(R
an

do
m

Se
ed

:
89

79
32

38
46

)

A
lp

ha
M

ul
ti

pl
ie

rs
Q

ue
ry

E
ffi

ci
en

cy
(⌘

)
M

ax
.

Su
cc

es
sf

ul
Se

ar
ch

es

↵
1

↵
2

↵
3

↵
4

↵
5

T
T

L5
T

T
L1

0
T

T
L2

0
T

T
L5

T
T

L1
0

T
T

L2
0

1.
0

1.
0

1.
0

1.
0

1.
0

1,
11

5
1,

14
9

1,
13

5
2,

47
1

5,
56

3
5,

54
9

1.
0

0.
8

0.
6

0.
4

0.
2

4,
24

0
4,

48
9

4,
56

9
85

9
2,

77
0

3,
32

9

1.
0

0.
90

30
0.

77
82

0.
60

21
0.

30
10

3,
21

8
3,

34
4

3,
33

0
1,

55
1

4,
14

9
4,

39
1

1.
0

0.
8

0.
4

0.
2

0.
1

5,
18

2
5,

62
6

5,
44

8
40

8
1,

33
0

1,
90

3

1.
0

0.
5

0.
25

0.
12

5
0.

06
25

6,
27

2
5,

86
7

5,
76

6
15

3
41

5
77

1

0.
8

0.
5

0.
3

0.
1

0.
0

5,
66

7
5,

88
5

5,
62

9
12

9
35

5
63

1

0.
8

0.
4

0.
2

0.
1

0.
05

5,
79

1
5,

56
5

6,
00

1
87

24
7

52
7

0.
5

0.
4

0.
3

0.
0

0.
0

6,
22

1
5,

77
4

5,
66

4
85

19
6

37
6

0.
5

0.
25

0.
12

5
0.

06
25

0.
03

12
5

7,
97

7
7,

01
3

6,
11

3
42

97
18

2

0.
2

0.
4

0.
6

0.
8

1.
0

1,
89

6
2,

18
2

2,
16

4
1,

34
7

4,
80

8
4,

94
2

0.
8

0.
8

0.
8

0.
8

0.
8

1,
74

7
1,

86
9

1,
84

5
1,

99
0

5,
17

9
5,

20
8

0.
6

0.
6

0.
6

0.
6

0.
6

2,
94

9
3,

09
8

3,
08

3
1,

32
9

4,
23

2
4,

50
0

0.
5

0.
5

0.
5

0.
5

0.
5

3,
84

0
3,

95
2

4,
05

2
90

1
3,

29
1

3,
81

7

0.
4

0.
4

0.
4

0.
4

0.
4

4,
49

7
4,

77
4

4,
86

8
55

4
2,

15
8

2,
84

0

0.
3

0.
3

0.
3

0.
3

0.
3

4,
79

0
5,

39
8

5,
38

8
25

9
1,

13
3

1,
79

9

143

Ta
bl

e
B

.4
:

Q
ue

ry
E

ffi
ci

en
cy

in
Pe

rc
en

ta
ge

(R
an

do
m

Se
ed

:
12

34
56

78
90

,1
41

59
26

53
5,

an
d

89
79

32
38

46
)

A
lp

ha
M

ul
ti

pl
ie

rs
Q

ue
ry

E
ffi

ci
en

cy
(⌘

)
Pe

rc
en

ta
ge

(%
)

↵
1

↵
2

↵
3

↵
4

↵
5

R
an

do
m

Se
ed

:
12

34
56

78
90

R
an

do
m

Se
ed

:
14

15
92

65
35

R
an

do
m

Se
ed

:
89

79
32

38
46

T
T

L5
T

T
L1

0
T

T
L2

0
T

T
L5

T
T

L1
0

T
T

L2
0

T
T

L5
T

T
L1

0
T

T
L2

0

1.
0

1.
0

1.
0

1.
0

1.
0

13
.4

3
1.

29
N

A
9.

60
8.

62
8.

70
13

.9
7

14
.4

0
14

.2
3

1.
0

0.
8

0.
6

0.
4

0.
2

64
.8

4
72

.5
4

73
.9

4
58

.9
0

64
.7

1
65

.5
4

53
.1

5
56

.2
7

57
.2

8

1.
0

0.
90

30
0.

77
82

0.
60

21
0.

30
10

56
.7

3
68

.7
2

70
.1

6
43

.0
0

42
.7

0
42

.3
0

40
.3

5
41

.9
1

41
.7

4

1.
0

0.
8

0.
4

0.
2

0.
1

80
.3

1
87

.4
4

89
.9

4
77

.7
9

84
.1

5
86

.1
4

64
.9

5
70

.5
3

68
.3

0

1.
0

0.
5

0.
25

0.
12

5
0.

06
25

88
.6

8
94

.8
6

96
.2

1
91

.0
2

94
.9

1
96

.3
5

78
.6

2
73

.5
5

72
.2

8

0.
8

0.
5

0.
3

0.
1

0.
0

89
.2

9
95

.8
3

95
.6

4
92

.1
5

96
.3

3
97

.6
4

71
.0

3
73

.7
7

70
.5

6

0.
8

0.
4

0.
2

0.
1

0.
05

97
.0

1
96

.8
1

97
.7

3
93

.6
4

98
.8

5
98

.3
3

72
.6

0
69

.7
6

75
.2

2

0.
5

0.
4

0.
3

0.
0

0.
0

89
.8

4
96

.0
5

97
.0

0
90

.9
4

97
.0

1
99

.2
5

77
.9

8
72

.3
8

71
.0

1

0.
5

0.
25

0.
12

5
0.

06
25

0.
03

12
5

95
.1

8
10

0.
00

98
.0

9
99

.6
8

99
.7

1
10

0.
00

10
0.

00
87

.9
1

76
.6

3

0.
2

0.
4

0.
6

0.
8

1.
0

25
.4

1
35

.1
0

34
.6

4
28

.8
6

31
.8

6
31

.7
0

23
.7

7
27

.3
5

27
.1

3

0.
8

0.
8

0.
8

0.
8

0.
8

21
.6

3
26

.7
4

26
.7

0
21

.5
1

20
.9

0
20

.5
4

21
.9

0
23

.4
3

23
.1

3

0.
6

0.
6

0.
6

0.
6

0.
6

39
.3

6
47

.3
4

47
.2

2
41

.1
7

43
.0

5
42

.4
9

36
.9

7
38

.8
3

38
.6

5

0.
5

0.
5

0.
5

0.
5

0.
5

52
.4

3
59

.3
0

60
.1

1
48

.4
8

53
.4

0
52

.0
0

48
.1

3
49

.5
5

50
.7

9

0.
4

0.
4

0.
4

0.
4

0.
4

66
.0

4
76

.5
3

78
.2

5
68

.0
8

76
.2

1
77

.4
2

56
.3

8
59

.8
4

61
.0

2

0.
3

0.
3

0.
3

0.
3

0.
3

79
.8

9
84

.9
8

87
.4

8
79

.2
0

86
.5

4
88

.8
8

60
.0

5
67

.6
7

67
.5

5

144

Ta
bl

e
B

.5
:

M
ax

im
um

Su
cc

es
sf

ul
Se

ar
ch

es
in

Pe
rc

en
ta

ge
(R

an
do

m
Se

ed
:

12
34

56
78

90
,1

41
59

26
53

5,
an

d
89

79
32

38
46

)

A
lp

ha
M

ul
ti

pl
ie

rs
M

ax
.

Su
cc

es
sf

ul
Se

ar
ch

es
Pe

rc
en

ta
ge

(%
)

↵
1

↵
2

↵
3

↵
4

↵
5

R
an

do
m

Se
ed

:
12

34
56

78
90

R
an

do
m

Se
ed

:
14

15
92

65
35

R
an

do
m

Se
ed

:
89

79
32

38
46

T
T

L5
T

T
L1

0
T

T
L2

0
T

T
L5

T
T

L1
0

T
T

L2
0

T
T

L5
T

T
L1

0
T

T
L2

0

1.
0

1.
0

1.
0

1.
0

1.
0

41
.0

7
10

0.
00

N
A

53
.6

3
99

.9
3

10
0.

00
44

.4
2

10
0.

00
99

.7
5

1.
0

0.
8

0.
6

0.
4

0.
2

12
.3

5
45

.0
5

54
.4

8
21

.3
8

62
.2

0
67

.8
5

15
.4

4
49

.7
9

59
.8

4

1.
0

0.
90

30
0.

77
82

0.
60

21
0.

30
10

14
.6

4
45

.4
6

54
.3

8
34

.2
2

82
.7

4
84

.3
9

27
.8

8
74

.5
8

78
.9

3

1.
0

0.
8

0.
4

0.
2

0.
1

5.
44

18
.8

5
29

.7
8

9.
68

31
.5

9
42

.8
1

7.
33

23
.9

1
34

.2
1

1.
0

0.
5

0.
25

0.
12

5
0.

06
25

1.
94

6.
29

12
.3

0
3.

30
10

.1
4

18
.0

5
2.

75
7.

46
13

.8
6

0.
8

0.
5

0.
3

0.
1

0.
0

1.
68

4.
92

9.
55

3.
11

8.
49

15
.1

8
2.

32
6.

38
11

.3
4

0.
8

0.
4

0.
2

0.
1

0.
05

1.
13

3.
48

7.
28

2.
08

6.
35

11
.8

8
1.

56
4.

44
9.

47

0.
5

0.
4

0.
3

0.
0

0.
0

0.
84

2.
23

4.
55

1.
80

4.
68

8.
92

1.
53

3.
52

6.
76

0.
5

0.
25

0.
12

5
0.

06
25

0.
03

12
5

0.
41

1.
25

2.
66

0.
92

2.
59

5.
36

0.
75

1.
74

3.
27

0.
2

0.
4

0.
6

0.
8

1.
0

22
.3

1
80

.6
7

83
.5

1
30

.0
4

88
.9

6
90

.3
1

24
.2

1
86

.4
3

88
.8

4

0.
8

0.
8

0.
8

0.
8

0.
8

31
.5

3
87

.9
2

88
.8

8
44

.0
7

95
.1

8
95

.5
6

35
.7

7
93

.1
0

93
.6

2

0.
6

0.
6

0.
6

0.
6

0.
6

20
.3

7
72

.9
8

77
.0

6
30

.3
5

82
.8

9
85

.1
6

23
.8

9
76

.0
7

80
.8

9

0.
5

0.
5

0.
5

0.
5

0.
5

13
.8

1
60

.2
3

67
.7

5
22

.1
5

72
.1

2
77

.4
3

16
.2

0
59

.1
6

68
.6

1

0.
4

0.
4

0.
4

0.
4

0.
4

8.
39

37
.1

2
49

.1
0

11
.9

5
46

.0
1

56
.5

1
9.

96
38

.7
9

51
.0

5

0.
3

0.
3

0.
3

0.
3

0.
3

4.
03

21
.6

9
34

.0
6

6.
40

26
.4

7
39

.0
0

4.
66

20
.3

7
32

.3
4

145

Ta
bl

e
B

.6
:

In
fo

rm
ed

Se
ar

ch
es

Q
ue

ry
E

ffi
ci

en
ci

es
(⌘

an
d
⌘
⇤)

an
d

Su
cc

es
sf

ul
Se

ar
ch

es
(s

s)

Te
ch

ni
qu

e
A

lp
ha

M
ul

ti
pl

ie
rs

R
an

d.
Se

ed
:

12
34

56
78

90
R

an
d.

Se
ed

:
14

15
92

65
35

R
an

d.
Se

ed
:

89
79

32
38

46

⌘
⌘
⇤

ss
⌘

⌘
⇤

ss
⌘

⌘
⇤

ss

B
R

D
M

Se
t
B

17
1,

93
3

85
,9

66
12

,0
53

15
9,

65
4

79
,8

27
29

,3
97

4,
83

3
2,

41
7

34
8

Se
t
M

15
9,

60
5

79
,8

02
10

,4
79

15
8,

85
6

79
,4

28
18

,1
22

4,
38

6
2,

19
3

41
7

Se
t
N

17
8,

45
8

89
,2

29
4,

39
9

18
1,

14
9

90
,5

74
8,

56
4

5,
50

3
2,

75
2

24
6

LB
R

D
M

Se
t
B

16
6,

91
1

14
3,

03
6

8,
32

0
16

9,
99

3
14

5,
29

4
19

,4
03

4,
78

3
4,

76
0

51
3

Se
t
M

15
8,

11
5

13
6,

52
8

9,
60

5
16

0,
94

2
13

8,
63

1
20

,6
74

4,
43

6
4,

41
6

51
5

Se
t
N

18
1,

22
4

15
3,

42
1

4,
21

8
18

6,
71

2
15

7,
33

6
10

,0
58

4,
89

8
4,

87
5

28
8

146

Ta
bl

e
B

.7
:

C
om

bi
ne

d
Q

ue
ry

E
ffi

ci
en

ci
es

(⌘
an

d
⌘
⇤)

an
d

Su
cc

es
sf

ul
Se

ar
ch

es
(s

s)

Te
ch

ni
qu

es
A

lp
ha

M
ul

ti
pl

ie
rs

R
an

d.
Se

ed
:

12
34

56
78

90
R

an
d.

Se
ed

:
14

15
92

65
35

R
an

d.
Se

ed
:

89
79

32
38

46

⌘
&

ss
⌘
⇤

&
ss

⌘
&

ss
⌘
⇤

&
ss

⌘
&

ss
⌘
⇤

&
ss

B
R

D
M

Se
t
B

97
.4

78
.0

92
.8

75
.4

77
.7

58
.6

Se
t
M

87
.5

69
.5

73
.4

56
.1

80
.3

63
.0

Se
t
N

67
.5

47
.3

63
.1

43
.3

73
.9

52
.1

LB
R

D
M

Se
t
B

80
.6

81
.1

78
.5

79
.2

93
.3

98
.6

Se
t
M

83
.5

84
.3

78
.3

79
.2

90
.3

95
.3

Se
t
N

67
.5

67
.5

67
.1

67
.1

72
.5

78
.0

147

