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Using citizen science to
estimate surficial soil Blue
Carbon stocks in Great
British saltmarshes

Craig Smeaton1*†, Annette Burden2†, Paulina Ruranska1,
Cai J. T. Ladd3,4, Angus Garbutt2, Laurence Jones2,
Lucy McMahon5, Lucy C. Miller1, Martin W. Skov4

and William E. N. Austin1,6

1School of Geography and Sustainable Development, University of St Andrews,
St Andrews, United Kingdom, 2UK Centre for Ecology and Hydrology, Bangor, United Kingdom,
3School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom,
4School of Ocean Sciences, Bangor University, Menai Bridge, United Kingdom, 5Department of
Environment and Geography, Wentworth Way, University of York, York, United Kingdom,
6Scottish Association of Marine Science, Oban, United Kingdom
A new saltmarsh soil dataset comprising of geochemical and physical property

data from 752 soil samples collected through a sampling program supported by

citizen scientists has been brought together with existing data to make the first

national estimates of the surficial (top 10 cm) soil OC stock for Great British (GB)

saltmarshes. To allow the inclusion of secondary data in the soil stock estimate

a new bespoke organic matter to organic carbon conversion for GB saltmarsh

soil was developed allowing organic matter data measured using loss-on-

ignition to be convert to organic carbon content. The total GB surficial soil OC

stock is 2.320 ± 0.470 Mt; English saltmarshes hold 1.601 ± 0.426 Mt OC,

Scottish saltmarshes hold 0.368 ± 0.091 Mt OC, and Welsh saltmarshes hold

0.351 ± 0.082 Mt OC. The stocks were calculated within a Markov Chain Monte

Carlo framework allowing robust uncertainty estimates to be derived for the

first time. Spatial mapping tools are available to accompany these stock

estimates at individual saltmarsh habitats throughout GB. This data will aid in

the protection and management of saltmarshes and represents the first steps

towards the inclusion of saltmarsh OC in the national inventory accounting of

blue carbon ecosystems.

KEYWORDS

saltmarsh, carbon, vegetation, soil, organic matter, citizen science, spatial mapping,
Great Britain
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Introduction

Saltmarsh ecosystems alongside other intertidal Blue Carbon

habitats such as seagrass and mangroves (Nellemann and

Corcoran, 2009) are recognized hotspots for the burial and

long-term storage of organic carbon (OC). Globally,

saltmarshes occupy an area of 54,951 km2 (Mcowen et al.,

2017) and their soils store between 0.4 – 6.5 Pg of OC

(McLeod et al., 2011; Duarte et al., 2013). Annually, a further

0.9 – 31.4 Tg OC is buried in saltmarsh soils globally (Ouyang

and Lee, 2014). The large quantities of OC stored, coupled with

the high OC burial rates in these ecosystems, has resulted in

saltmarshes now being considered core components of the

coastal carbon (C) cycle (Bauer et al., 2013). The potential for

saltmarshes and other intertidal environments to regulate global

climate through the burial and storage of OC within their soils is

now widely recognized (Macreadie et al., 2019; Macreadie et al.,

2021). Yet, these systems are also at risk. With increasing climate

instability, sea level rise, and anthropogenic pressure, saltmarsh’s

ability to trap and store OC will likely be severely reduced and a

significant proportion of the OC stored within their soils may be

lost by the end of this century (Crosby et al., 2016; Horton et al.,

2018). Globally it is estimated that saltmarsh habitat is reducing

by 1 - 2% yr-1 (Duarte et al., 2008) with approximately 25%

reduction of the global habitat since 1800 (Bridgham et al., 2006;

Mcleod et al., 2011). Yet, recent estimates suggest at a global

scale much of the modern (1999-2019) habitat loss has been

offset by the creation of new saltmarsh (Murray et al., 2022).

Nevertheless, significant efforts are still required to preserve

these saltmarshes and assure the significant quantities of OC

held within their soil is not lost and remineralized, which would

further exacerbate global climate change (Schuerch et al., 2018).

Quantifying the OC stored in saltmarsh soil is a crucial

foundational step towards integrating saltmarsh OC into

national C accounting, understanding the C and climate

impact of habitat loss, and justifying habitat protection and

restoration (Granek et al., 2010; Theuerkauf et al., 2015; Rogers

et al., 2019). Yet the current global saltmarsh soil OC stocks are

coarse, with estimates ranging between 0.4 – 6.5 Pg OC (McLeod

et al., 2011; Duarte et al., 2013). This is largely driven by the

unequal spatial distribution of current stock assessments with

the majority focusing on tropical/sub-tropical areas such as

Australia (Lovelock et al., 2014; Brown et al., 2016; Kelleway

et al., 2016) and the Gulf of Mexico (Thorhaug et al., 2019;

Vaughn et al., 2020). Only a few countries such as Australia

(Young et al., 2021) and the USA (Hinson et al., 2017; Holmquist

et al., 2018) have undertaken national saltmarsh OC stock

assessments. A lack of stock assessments is particularly

apparent across the temperate and boreal saltmarshes of the

NE Atlantic region where data on saltmarsh OC stock is
Frontiers in Marine Science 02
extremely limited (Mueller et al., 2019a; Mueller et al., 2019b).

The best current OC stock data for saltmarshes in Great Britain

(GB) have generally been limited to single marshes (Andrews

et al., 2008; Burden et al., 2013; Porter et al., 2020) or have been

geographically constrained to single regions (Burden et al., 2019;

Ford et al., 2019; Austin et al., 2021). Where full national

saltmarsh soil OC stock estimates have been undertaken

(Beaumont et al., 2014), these are still based on extrapolation

from a relatively few well-studied sites. A recent systematic

review found inconsistencies in the way data was gathered and

reported, makes comparisons and consolidation of knowledge

difficult (Mason et al., 2022). This limited and fragmented

knowledge base could hinder the inclusion of OC held within

GB saltmarshes into national Greenhouse Gas (GHG) reporting

and C budgets.

Reliance on data from only a few sites makes assumptions

about the homogeneity of soil C stocks across different

biogeographic contexts fail to account for differences due to

soil type or vegetation community, leading to uncertainty in soil

carbon stock estimates (Kelleway et al., 2016; Kelleway et al.,

2017). A challenge for structured surveys for habitats like

saltmarshes - which are widely distributed around national

coastlines, but often in multiple and fragmented locations - is

the ability to reliably sample sufficient sites to gather a robust

national picture of variation within and across sites. The rise of

citizen involvement in data collection has made large-scale

sampling feasible (Aavik et al., 2020), raised public

engagement in science (Phillips et al., 2019), and influenced

policy formulation and implementation (Couvet et al., 2008)

within the conservation sciences. By following standardized

sampling procedures, systematic observations, and simple

methods (Conrad and Hilchey, 2011; Parsons et al., 2011),

citizen-led data collection is now widely appreciated for its

quality and includability in peer-review research (McKinley

et al., 2017).

In this study, we undertake a national scale assessment to

quantify the OC held within the surficial soils (top 10 cm) of the

saltmarshes of GB. Utilizing the well-established relationship

between regional vegetation composition and surficial soil OC

(Ford et al., 2019; Austin et al., 2021; Penk and Perrin, 2022) we

bring together the latest national saltmarsh mapping data

(Haynes, 2016; Natural Resources Wales, 2016; Environment

Agency, 2021) with a new GB wide soil dataset produced

following a standardized sampling methodology by citizen

scientists allowing, for the first time, the quantity of OC held

within surficial soils to be estimated and mapped for all

saltmarshes within GB and its constituent nations (Scotland,

England, and Wales). As this study only focuses on the surficial

(top 10 cm) soils the calculated OC stocks will be an

underestimate of the full quantity of OC held at depth within
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the soil of saltmarshes. Yet, the surficial soil OC stock estimates

are key to understanding saltmarsh OC dynamics at national

scales. The resulting broad spatial understanding of OC stocks

can be used in prioritizing saltmarsh conservation, restoration,

and management from a C storage viewpoint.
Saltmarshes of Great Britain

Saltmarsh habitat is widely distributed around the

constituent nations (Scotland, England, and Wales) of GB

(Figure 1A). The most extensive areas occur along estuaries in

the counties of Hampshire, north Kent, Essex, Norfolk,

Lincolnshire, and Lancashire (May and Hansom, 2003). The

extent of saltmarsh habitat in the GB is estimated to be between

400 km2 and 495 km2 (Burd, 1989; Jones et al., 2011; Burden

et al., 2020; Ladd, 2021). The marshes vary significantly in size

from the small marshes found at the head of Scotland’s fjords to

the expansive coastal systems of the Solway Firth, Morecambe

Bay, and the Wash (Supplementary Figure 1).

In GB, saltmarsh systems can be defined into six core types

(Pye and French, 1993): estuarine, embayment, back-barrier,
Frontiers in Marine Science 03
and fringing marshes are found throughout GB, while loch-head

and perched marshes are found in Scotland. Loch-head marshes

are highly sheltered systems found at the landward end of

Scotland’s fjords. Perched saltmarshes form on sea cliffs and in

the shelter of raised rocky outcrops, where shallow soils tend to

develop in the wave splash-zone (Haynes, 2016).

Saltmarsh vegetation composition across GB is driven by

climatic conditions, coastal processes and soil characteristics,

and hydrological regimes. GB marshes are generally dominated

by SM13 (Puccinellia maritima) and SM16 (Festuca rubra)

vegetation communities as described by the British National

Vegetation Classification (NVC) scheme (Rodwell, 1991). These

communities occupy a significant proportion of GB saltmarshes

but variations in several factors, notably sediment type, climate,

biotic factors, and historical management (Adam, 1978) lead to a

range of differing vegetation communities developing within and

between marshes (Burd, 1989).

Although the variation in saltmarsh vegetation is continuous

within and between sites, it is possible to recognize combinations

of vegetation types which allow several distinct geo-regions to be

identified. Following the approach of Adam (1978) where four

geo-regions were identified across GB:
BA

FIGURE 1

Saltmarshes of Great Britain. (A) Mapped extent of saltmarsh habitat across the nations of Great Britain (exaggerated by 1.5 times for visibility).
Orange lines highlight the different saltmarsh vegetation geo-regions of Great Britain as described by Adam, 1978. (B) Sampling sites across
Great British saltmarsh (orange dots) and the location of secondary data sources (green and purple dots).
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Western Scotland: This geo-region contains all the loch-head

and perched saltmarshes in GB. The marshes are generally small,

on average occupying less than 0.1 km2. The vegetation structure

of the marshes in this geo-region is often simple in comparison to

other areas. These marshes are dominated by Puccinellia/Festuca

and Juncus gerardii communities. The pioneer and low marsh

communities are generally dominated by Salicornia and Suaeda

(Adam, 1978; Haynes, 2016).

Eastern Scotland: Saltmarshes within this geo-region are

defined as embayment, fringing, and back-barrier, with large

estuarine marshes mainly absent (Haynes, 2016). These marshes

are dominated by four vegetation communities which occur in

varying proportions: Salicornia/Suaeda, Puccinellia, Puccinellia/

Festuca, and Juncus gerardii (Adam, 1978; Burd, 1989;

Haynes, 2016).

Western: The marshes in the western geo-region are

significantly larger than those in the Western and Eastern

Scotland geo-regions (Supplementary Figure 1), with large

estuarine marshes being common (Burd, 1989). These marshes

are further differentiated by their sandy soils, resulting in greater

importance of P. maritima in the pioneer zone due to reduced

competition from Spartina maritima and Aster tripolium.

Higher precipitation in this geo-region generally leads to more

brackish high marshes with Blysmetum rufi and Halimionetum

portulacoidis communities are commonly found.

South Eastern: The marshes within this geo-region are

smaller than those in the Western region, with exception of

the Wash marshes (Supplementary Figure 1). The prevailing

substrate is fine silt, and marsh vegetation is predominantly

Spartina (Burd, 1989). The mid-low marsh communities,

Puccinellia and Halimione, Puccinellia/Festuca occupy

significant proportions of the total area. Upper marsh

communities are more common than in other geo-regions,

with Phragmites common across much of the region.
Frontiers in Marine Science 04
Methods

Harmonization of saltmarsh
classifications

In the last decade there has been a concerted effort in GB to

measure areal extent and habitat composition. The

classifications used in saltmarsh mapping differ in England to

that of Wales and Scotland. In Scotland (Figure 2A) and Wales

(Figure 2B), saltmarsh data is mapped to NVC communities

(Rodwell, 1991). In England, saltmarsh is mapped to a set of

saltmarsh zones (Spartina, Pioneer, Mid-Low, and High Marsh)

following a modified version of the European nature

information system (EUNIS) classification scheme currently

used by the Environment Agency (Figure 2C). For the

purposes of this study, we define the extent of the saltmarsh

following the approach of the Environment Agency (2021), at

the seaward end the demarcation between saltmarsh and

intertidal flat is described as ≥ 5% ground coverage of

saltmarsh vegetation. The demarcation of the landward extent

is defined when saltmarsh vegetation becomes ≥ 5% of a

predominantly terrestrial vegetation community.

Prior to undertaking OC stock calculations, the mapping

data must be harmonized under a single classification scheme.

The modified EUNIS scheme already utilized in the English

marshes was determined to be best suited to this task. The

EUNIS habitat classification system is a comprehensive pan-

European systems for habitat classification. Using a hierarchical

approach, the habitat types are identified by specific codes, with

saltmarshes being classified as A2.5. These categories can be

further broken down into high (A2.52), mid-high (A2.53), low-

mid (A2.54), pioneer (A2.55) and Spartina dominated

(A2.55443) saltmarsh zones. In this study a modified version

of the EUNIS scheme is used where the mid-high and low-mid
FIGURE 2

Examples of current saltmarsh mapping within (A) Scotland – Caerlaverock marsh (54.969555, -3.484984), (B) Wales – Dovey (Dyfi) Estuary
(52.543454, -3.977258) and (C) England – The Wash (52.926668, 0.061452).
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EUNIS marsh classifications are combined into the mid-low

class. The Scottish and Welsh NVC (Rodwell, 2000) data can be

easily converted to follow the modified EUNIS classification

(Supplementary Table 1) allowing the data to be combined with

the English saltmarsh data and to allow direct comparisons with

neighboring European saltmarshes in the future.

Within the mapped data, some zones were recorded as

mosaics of two or more NVC communities. In these cases, the

first NVC community listed was chosen as the primary

classification. The perched saltmarshes found in Scotland

(Haynes, 2016) have been removed from the datasets, as these

marshes are generally found on cliffs, largely devoid of any

underlying soil (Haynes, 2016; Porter et al., 2020).

The field surveys and photographic data used to classify

marshes was collected between 2010 – 2012 for Scotland

(Haynes, 2016), 2006 – 2019 for England (Environment

Agency, 2021) and 2006 - 2009 for Welsh sites (Natural

Resources Wales, 2016). The marsh classes therefore represent

a snapshot in time of GB saltmarsh extent and vegetation

composition as they were when the surveys were completed.

The classes may no longer be an accurate representation of the

marshes as they are today, especially considering the highly

dynamic nature of the intertidal habitats (Ladd et al., 2019; Ladd,

2021). However, these mapping products remain the best quality

data currently available.
Soil sampling

A total of 752 soil samples were collected from saltmarshes

across GB (Figure 1B) between 2018 – 2021 with the aim of

quantifying surficial OC stocks. Of these, 393 surficial soil (top

10 cm) samples were collected from Scottish saltmarshes using a

mix of either modified syringe samplers (60 ml syringe with end

cut away, creating a 10 cm length barrel with a 3 cm diameter),

or a 3 cm gouge corer by the project team. Both sampling

methods are designed to reduce the effect of compaction of the

fibrous layers of saltmarsh soil (Smeaton et al., 2020). Soil

samples were collected in conjunction with detailed vegetation

surveys designed to explore the relationship between vegetation

and soil OC, alongside investigating the accuracy of current

saltmarsh mapping and to assess potential changes in vegetation

composition and aerial extent since mapping occurred. The

vegetation surveys were undertaken following a standard

protocol where, at each site, a 1 m2 quadrat was placed on the

marsh and percentage coverage of each plant species estimated.

Vegetation composition was then assigned following the NVC

scheme (Rodwell, 2000).

A further 369 samples were collected by volunteer citizen

scientists as part of the “CarbonQuest” initiative. The citizen

scientists were provided with a pack offive modified color-coded
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syringe samplers and instructions to collect samples at equal

distances along a land-to-sea transect and to freeze the samples

upon collection. Sampling locations were recorded by extracting

coordinates from image files associated with photographs taken

of each soil core in situ with a GPS-enabled smart phone.

Surveys were completed between August and October 2019,

and all samples were received by the University of St Andrews by

November 2019. Samples were stored at -20°C prior to analysis.

The location data was quality-checked to assure the sampling

protocol was followed and that samples were collected from

appropriate locations (saltmarsh vs freshwater wetland). This

was achieved by comparing the sampling locations to current

saltmarsh maps and high resolution (25 cm) aerial photography.

If the sample location did not overlap with known saltmarsh

habitats, the sample was removed from the sample set and did

not undergo laboratory analysis. As the identification and

quantification of vegetation coverage and composition requires

specialist expertise, it was not possible for all the citizen scientists

to provide this level of detail. Therefore, each sample was

assigned a classification (NVC, Simplified NVC, marsh zone)

using the existing saltmarsh maps.
Soil physical property and
geochemical analysis

The samples within the syringe tubes were visually inspected

and the length of the sample measured to assure accurate

quantification of sample volumes (cm3) was recorded. The

samples were extruded from the syringe and the soil was

described according to the British Columbia protocol for

estimating soil texture (www.for.gov.bc.ca/isb/forms/lib/fs238.

pdf). This approach uses simple qualitative measures

(graininess, moistness, stickiness, and ability to hold a form

without breaking apart when rolled) to classify the soil to one of

twelve soil categories (Supplementary Table 2) which can be

further simplified into sandy, non-sandy and organic (>40%

organic matter (OM) classes (Ford et al., 2019).

The extruded soil samples alongside the samples collected

using the gouge corer were oven dried at 60°C for 72 hrs and

weighed. Using the dry mass and the sample volume (prior to

drying) the dry bulk density was calculated following the

approach of Dadey et al. (1992):

Dry Bulk Density g cm−3� �

= Dry Mass gð Þ=Volume before drying cm3� �
(eq:1)

The dry samples were then milled to a fine powder and split

into two subsamples to undergo loss on ignition (LOI) and

elemental analysis. The quantity of OM within each sample was

determined by LOI following the approach of Craft et al. (1991)
frontiersin.org
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to allow for global comparison. Briefly, 1 g of milled sample was

placed in a crucible and dried overnight at 105°C to remove any

moisture the crucible was then transferred to furnace to be

combusted at 450°C for 4 hrs. The sample was weighed before

and after each stage allowing the OM content of the soil to

be calculated.

The OC content of the soil was determined by placing 10 mg

of sample into silver capsules. The samples were acidified with

HCl (10%) to remove carbonate (CaCO3). The acidified samples

were dried overnight at 50°C and sealed. The OC contents of the

sealed samples were measured using an Elemental Analyzer

(Elementar Vario EL Cube; (Verardo et al . , 1990;

Nieuwenhuize et al., 1994). Triplicate measurements of

samples (n = 30) produced standard deviations (1s) of 0.04%
for OC. Further quality control was assured by repeat analysis of

high OC sediment standard (B2151) with reference values for C

of 7.45 ± 0.14%, the reference standards (n = 76) deviated from

the known OC values by 0.08%.
Secondary soil data

Saltmarsh soil (top 10cm) dry bulk density and OM data for

265 sampling sites across the saltmarshes of Morecambe Bay and

Essex were extracted from the Coastal Biodiversity and

Ecosystem Service Sustainability (CBESS) project outputs

(Ford et al., 2015; Ford et al., 2016a; Ford et al., 2016b; Ford

et al., 2016c). This dataset was further supplemented by

additional data from Morecambe Bay marshes (Baugh, 2019),

the Ribble Estuary (Ford et al., 2012) and Welsh marshes (Ford

et al., 2019).
Organic matter vs organic carbon

With the exception of Baugh (2019), the secondary datasets

do not report the OC content of the soil but rather the OM

content measured by LOI. To convert the OM data to OC

different conversion factors can be applied, the most common

of which is Van Bemmelen (1890) which assumes that 58% of

OM is OC resulting in a 1.724 conversion factor to transform

OM to OC (Van Bemmelen, 1890). Though widely used the

Van Bemmelen (1890) approach is now considered

problematic and is not supported by empirical measurements

both in terrestrial and saltmarsh soils (Pribyl, 2010; Ouyang

and Lee, 2020). In saltmarsh studies the OM to OC conversion

developed by Craft et al. (1991) has been widely applied

globally and in general performs well in organic rich systems

such as those in North America. Yet, the performance of the

Craft et al. (1991) conversion in organo-mineral systems such

as the saltmarshes of GB is uncertain. Using the data collected

from the saltmarshes of GB, a bespoke OM-OC conversion was
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developed following the methodology of Craft et al. (1991).

Using the new bespoke conversion factor the OM data

compiled from the literature were converted to OC and

integrated into the main dataset.
Quantifying soil OC stocks

The surficial (top 10cm) soil OC stocks were determined for

the GB saltmarshes following the calculation steps outlined in

Smeaton et al. (2020) (eq.2-4). For each of the four geo-regions,

the mean (and standard deviation) soil dry bulk density and OC

content were compiled for each NVC, simplified NVC and

marsh zone. A hierarchical approach was used to populate

each of the equations (eq 1-3). Where possible dry bulk

density and OC data for each NVC (i.e., SM13a) for a given

geo-region was utilized in the calculations. If no data was

available, surrogate values were utilized in descending order:

simplified NVC (i.e., SM13), marsh zone (i.e., mid-low), geo-

region average values, and finally national average values. The

areal extent of the NVC and marsh zones was taken from the

marsh classifications (Section 3.1).

Volume m3� �
= Area m2� �

 x Soil depth mð Þ (eq:2)

Mass kgð Þ = Volume m3� �
 x Dry bulk density kg m−3� �

(eq:3)

OC stock kgð Þ = Mass kgð Þ x OC content %ð Þ (eq:4)

The calculation steps (eq.2-4) were undertaken within a

Markov Chain Monte Carlo (MCMC) framework allowing

improved estimations of the uncertainties associated with the

quantified OC stocks. MCMC analysis was applied using the

OpenBUGS software package (Lunn et al., 2009) by taking

1,000,000 out of 100,000,000 random samples from a normal

distribution of each variable (area, dry bulk density, OC content)

to populate equations (eq.2-4). This process generates a

significant quantity of solutions which follow a normal

distribution. The application of standard descriptive statistical

techniques to the pool of generated solutions allows the mean,

standard deviation, minimum, maximum, and 5th, 50th

(median), and 95th percentiles to be calculated.

OC Storage kg OC m−2� �
= OC Stock kgð Þ=Area m2� �

(eq:5)

For each of the four geo-regions and GB as a whole, the area

normalized soil OC storage was calculated following equation 5

within the MCMC framework for each available NVC alongside

the marsh zones. The outputs from these calculations were

combined with the geospatial data (Section 3.1) to create a new

bespoke geospatial dataset illustrating soil OC storage across the

saltmarshes of GB, and allowing the quantification of individual

marsh soil OC stocks.
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Results and interpretation

Saltmarsh areal extent and vegetation

The GB wide mapping (Haynes, 2016; Natural Resources

Wales, 2016; Environment Agency, 2021) estimates that

saltmarsh habitat occupies an area of 451.65 km2, in line with

previous studies (Burd, 1989; Jones et al., 2011; Burden et al.,

2020). English saltmarshes represent 74% of all saltmarsh habitat

in GB, with Scottish and Welsh marshes each accounting for

13% of the areal coverage (Table 1). Across the four geo-regions

(Adam, 1978), 92% of saltmarsh habitat can be found in the

Western (44%) and South Eastern (48%) geo-regions, with the

remaining 8% spread across the Western Scotland and Eastern

Scotland regions (Table 1).

The differences in vegetation communities within each geo-

region reflect the classification developed by Adam (1978). The

clearest of these differences is the zonation of the marshes and

the occurrence of Spartina (Table 1; Supplementary Figure 2).

The marshes located in the Western Scotland and Eastern

Scotland geo-regions are similar in that 96% and 86% of the

total marsh area is classified as mid-low marsh vegetation

respectively (Table 1). The differentiating factor between these

two regions is the greater abundance of pioneer and high marsh

vegetation found in the Eastern Scotland region when compared

to Western Scotland (Table 1). The marshes of the Western and

South Eastern regions are still dominated by mid-low marsh

vegetation with 66% and 50% aerial coverage, but a greater

proportion of the vegetation is classified as pioneer and high

marsh (Table 1; Supplementary Figure 2). The presence of

Spartina in these regions is also a defining factor, with 7% of

the Western and 18% of geo-regions marshes being dominated
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by Spartina in comparison only 0.7% and 0.1% of the marshes in

the Western Scotland and Eastern Scotland regions (Table 1).

To determine the accuracy of the current saltmarsh maps

(Haynes, 2016; Natural Resources Wales, 2016), NVC

classifications (Rodwell, 1991) were derived from vegetation

surveys carried out in Scotland (Miller et al., 2022) and Wales

(Ford et al., 2019) and compared to the mapped NVC class in

these areas. Of the simplified 584 NVCs derived from the

vegetation surveys, 2% of the data points differ and these are

confined to the highly dynamic (Ladd, 2021) pioneer zone. To

account for lateral marsh dynamics (Ladd et al., 2019) since the

vegetation classification surveys were done, an uncertainty value

of 5% was applied to all areas used to determine soil OC stock to

assure robust uncertainty estimates.
Saltmarsh soil physical and
geochemical composition

Dry bulk density
The dry bulk density values are comparable to both global

datasets from muddy and sandy intertidal soils and sediments

(Bradley and Morris, 1990; Flemming and Delafontaine, 2000)

and existing data from GB (Beaumont et al., 2014; Ford et al.,

2019; Marley et al., 2019; Smeaton et al., 2020). Across the four

geo-regions there are distinct differences, largely driven by the

dominant substrate found in the estuary (e.g., mud vs sand). Both

theWestern Scotland and Eastern Scotland regions are dominated

by soils defined as non-sandy and organic which is reflected in the

dry bulk density data (Figures 3A, B). Average soil dry bulk

density values of 0.39 ± 0.25 g cm-3 and 0.54 ± 0.30 g cm-3 are

observed in the Western Scotland and Eastern Scotland regions
TABLE 1 Areal extent (km2) of saltmarsh habitat across the nations of Great Britain, and the four geo-regions (Adam, 1978; Figure 1).

Areal extent (km2)

Scotland England Wales Great Britain

Pioneer 3.32 13.75 1.16 17.36

Mid-Low 51.42 175.94 43.64 270.99

High 3.47 71.96 1.14 76.57

Spartina 0.12 25.15 6.70 32.83

Unclassified — 49.01 4.88 53.89

Total 58.33 335.80 57.51 451.65

Western Scotland Eastern Scotland Western South Eastern

Pioneer 0.10 1.88 7.13 8.21

Mid-Low 15.87 14.91 131.28 108.85

High 0.43 1.08 38.16 36.89

Spartina 0.11 0.01 10.13 22.7

Unclassified — — 12.99 40.99

Total 16.51 17.96 199.69 217.64
The bold values represent the nations and the geo-regions.
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respectively. The dry bulk density values found in the Western

region are the highest observed (Figure 3C) reflecting the sandy

nature of many of these systems (Adam, 1978; Burd, 1989; Ford

et al., 2019; Harvey et al., 2019). The average soil dry bulk density

from this region is 0.88 ± 0.36 g cm-3, almost double that

measured in any other region. The highest values are found in

the pioneer zone (1.31 ± 0.10 g cm-3), decreasing as soils become

more organic in the high marsh (Figure 3C). In the South Eastern

region, soil dry bulk density varies little between marsh zones with

an average value of 0.63 ± 0.26 g cm-3 observed. As with the

Western geo-region, the highest values are found in the pioneer

zone, decreasing across the transition landward to an average dry

bulk density of 0.51 ± 0.22 g cm-3 in the high marsh.
Organic carbon
Organic matter vs organic carbon

A linear regression between LOI and OC (p < 0.001, R2 =

0.83) produced a bespoke conversion for GB saltmarshes (eq.6).

OC content %ð Þ = 0:377 x OM %ð Þ + 1:452 (eq:6)
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Using this new conversion (Figure 4), the data compiled

from the literature (Section 3.4) was converted from % OM data

to % OC, which can be used alongside the data produced

through elemental analysis (Section 3.3)

Organic carbon content

The OC content of GB saltmarshes ranges between 0.02% in

sandy soils to 59.7% in organic-rich soils (Figure 5). The values

measured in this study are comparable to other data from GB

(Andrews et al., 2008; Burden et al., 2013; Beaumont et al., 2014;

Marley et al., 2019; Smeaton et al., 2020) and other temperate

saltmarshes (Mueller et al., 2019a; Mueller et al., 2019b; Penk

and Perrin, 2022).

All regions generally display a trend of increasing soil OC

content upon moving from the pioneer to high marsh zones.

Whilst these trends exist in all regions, the quantity of OC found

in the soils varies. Western Scotland and Eastern Scotland

contained the highest quantities of OC (Figures 5A, B), with

average OC contents of 15.23 ± 7.62% and 14.39 ± 8.73%

respectively. For both regions, soils associated with the
frontiersin.org
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FIGURE 3

Soil dry bulk density (g cm-3) values associated with different saltmarsh vegetation and zones across the four geo-regions (A–D) of Great
Britain. Error bars represent 1s. Full breakdown of the OC data can be found in Supplementary Figure 3 and Supplementary Table 4.
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vegetation classes SM13, SM16, and SM28 had the greatest OC

content (Figure 5). The high OC content of the saltmarsh soils

within these two geo-regions is potentially driven by high

allochthonous OC input from the neighboring OC rich

terrestrial environment (Lilly and Donnelly, 2012). The

marshes within the Western Scotland region have the highest

observed OC values (Figure 5A); within this region terrestrial

derived OC has been shown to be the dominant component of

near shore (fjords) sedimentary OC stores (Smeaton and Austin,

2017). Therefore it would not be unexpected that the high OC

contents in the saltmarshes at head of these systems was due to

the presence of large quantities of terrestrial OC. In comparison,

the OC content of the Western region was considerably lower,

with an average OC value of 5.85 ± 4.72%. The low OC content

of these soils is likely due to these marshes being dominated by

sand. The physical properties (e.g., low porosity) of sandy soils

generally do not provide the conditions (e.g., low oxygen) to

preserve and retain OM (Yost and Hartemink, 2019) resulting

in low OC contents (Figure 4). In the Western region, there is

a distinct difference in OC content of the soils upon moving

landward (Figure 5C), with the pioneer zone on average

containing 3.91 ± 2.40% OC, with values reaching 7.31 ±

3.92% OC in the high marsh. For context, the highest values

in the Western region are broadly comparable to OC values

measured in the pioneer zone of the Eastern Scotland region

(Supplementary Table 5). Saltmarsh soils within the South

Eastern region contain similarly low quantities of OC, with an
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average value of 6.53 ± 3.21%. The highest soil OC content

(9.57 ± 5.37% OC) was again observed in the high marsh.
Data validation

Soil dry bulk density and OC content values were checked

for outliers (Supplementary Figure 5). Two samples with very

high OC contents (>60%, all other samples <35%) and two with

very low bulk density were excluded.
Soil OC stocks of Great
British saltmarshes

Surficial soils (top 10 cm) within GB saltmarshes hold an

estimated 2.32 ± 0.47 Mt of OC. The Western geo-region

saltmarsh soils hold the greatest quantity of OC (1.12 ± 0.36

Mt OC) followed by the South Eastern region (0.96 ± 0.29 Mt

OC) with the soils within the Western Scotland and Eastern

Scotland holding < 0.15 Mt each (Figure 6A). Despite containing

lower volumes of OC per soil unit area than any other geo-

region, C stocks were highest in the western geo-region by virtue

of having the largest marsh extent. The Western and South

Eastern marsh extent is > 10 times greater than that found in

either the Western Scotland and Eastern Scotland regions

(Table 1). The patterns observed in the geo-regions are closely
FIGURE 4

Correlation between the quantity of OM measured by loss on ignition (LOI) and OC content derived from elemental analysis for 766 saltmarsh
soil samples of differing texture (sandy, non-sandy and organic) from across Great Britain (p < 0.001; R2 = 0.83). Grey dotted lines represent the
95th percentile prediction bands.
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BA

FIGURE 6

Saltmarsh surficial soil (A) OC stocks (Mt) and (B) soil OC storage (kg OC m-2) for the different saltmarsh zones within the four geo-regions of
Great Britain. Error bars represent 1s. Full statistical breakdown of the OC stocks can be found in Supplementary Tables 6-10.
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FIGURE 5

Soil OC content (%) values associated with different saltmarsh vegetation and zones across the four geo-regions (A–D) of Great Britain. Error
bars represent 1s. Full breakdown of the OC data can be found in Supplementary Figure 4 and Supplementary Table 5.
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mirrored in the national saltmarsh surficial (top 10 cm) soil OC

stocks with the English marshes hold an estimated 1.601 ± 0.426

Mt of OC, whilst Scottish and Welsh marshes hold similar OC

quantities (Table 2).

GB saltmarsh OC stocks have been estimated at 0.7 - 13 Mt

OC (Beaumont et al., 2014; Luisetti et al., 2019; Legge et al.,

2020), however differences in sampling depth make it difficult to

directly compare these with each other and with this study at the

GB scale (Table 3), therefore for fair comparisons it is important

to compare like-for-like estimates (i.e. stocks derived from the

top 10 cm of soil). Surficial soil (top 10 cm) OC stocks have been

recently estimated for Scotland (Austin et al., 2021), Wales
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(ABPmer, 2020), and GB (scaled from NW Europe to match

the extent of GB marshes; Legge et al., 2020) at 0.368 ± 0.102,

0.32, and 0.7 – 2.8 Mt OC respectively. The estimates for

Scotland (Austin et al., 2021) were calculated using an early

version of the data utilized in this study using a simplified

calculation methodology, therefore the similarity in OC stocks is

not surprising. The surficial (top 10 cm) saltmarsh soils of the

Republic of Ireland are estimated to hold 0.265 Mt of OC (Penk,

2019). The saltmarshes of the Republic of Ireland occupy an area

of 69.26 km2, are within the same climatic zone, and have similar

vegetation composition (Penk and Perrin, 2022) to GB

saltmarshes. These Irish systems are similar in size to the
TABLE 3 Saltmarsh surficial soil OC stock estimates from this study in comparison to existing OC soil stocks from Great British and temperate
saltmarsh systems. Note that Beaumont et al. (2014) estimates are for depths 0 - 50 or 0 - 100 cm.

Nation Soil Depth(cm) Soil OC Stock(Mt) Soil OC Storage(kg OC m-2) Reference

Scotland 0-10 0.368 ± 0.091 6.31 ± 1.56 This Study

England 1.601 ± 0.426 4.50 ± 1.20

Wales 0.351 ± 0.082 6.10 ± 1.43

Great Britain 2.320 ± 0.470 5.14 ± 1.04

Scotland 0-10 0.368 ± 0.102 6.0 ± 1.8 (Austin et al., 2021)

Wales 0-10 0.32 5.56 (ABPmer, 2020)

Republic of Ireland 0-10 0.265 3.8 (Penk and Perrin, 2022)

NW Europe 0-10 2.8 – 7.6 — (Legge et al., 2020)

NW Europe (scaled to GB) 0.7 – 2.8

Scotland 0-50 (100) 0.49 — (Beaumont et al., 2014)

England 4.32

Wales 0.57

Northern Ireland 0.02

Great Britain 5.41
TABLE 2 Summary of surficial (top 10 cm) soil OC stocks (Mt) for the four saltmarsh geo-regions, and nations within Great Britain. Full statistical
breakdown of the OC stocks can be found in Supplementary Tables 6-10.

Surficial (top 10cm) soil OC stock (Mt)

Geo-region Western Scotland Eastern Scotland Western South Eastern

Pioneer 0.001 ± 0.0003 0.008 ± 0.005 0.027 ± 0.013 0.038 ± 0.020

Mid-Low 0.098 ± 0.048 0.119 ± 0.057 0.773 ± 0.339 0.445 ± 0.228

High 0.005 ± 0.003 0.015 ± 0.007 0.209 ± 0.119 0.195 ± 0.129

Spartina 0.0005 ± 0.0003 — 0.038 ± 0.012 0.099 ± 0.051

Unclassified — — 0.070 ± 0.048 0.181 ± 0.110

Total 0.105 ± 0.048 0.142 ± 0.058 1.116 ± 0.360 0.958 ± 0.290

Nation Scotland England Wales Great Britain

Pioneer 0.015 ± 0.005 0.062 ± 0.062 0.003 ± 0.0004 0.073 ± 0.025

Mid-Low 0.320 ± 0.090 0.836 ± 0.836 0.279 ± 0.008 1.435 ± 0.411

High 0.033 ± 0.008 0.371 ± 0.371 0.020 ± 0.008 0.424 ± 0.175

Spartina 0.0005 ± 0.0003 0.102 ± 0.102 0.018 ± 0.007 0.137 ± 0.053

Unclassified — 0.230 ± 0.108 0.020 ± 0.013 0.251 ± 0.119

Total 0.368 ± 0.091 1.601 ± 0.426 0.351 ± 0.082 2.320 ± 0.470
The bold values represent the four nations of GB and four geo-regions.
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Scottish and Welsh saltmarshes and produce comparable OC

stocks (Table 2).

Across the GB saltmarshes, the greatest quantity of OC is

stored in the mid-low marsh zone, followed by the high marsh

(Figure 6A). This is largely because the aerial extent of the mid-low

marsh zone is 3 times greater than the high marsh extent. The

disparity in the extent of the high to the mid-low marsh zones is a

key indicator of coastal squeeze (Hughes and Paramor, 2004)

which has primarily been driven by the need to expand agricultural

land in Great Britain since the 17th century (Smout, 2003).

Saltmarsh soils in the Western Scotland and Eastern Scotland

geo-regions have the highest soil OC storage (i.e., OC stock

normalized for area; Figure 6B) with values of 6.28 ± 2.97 kg OC

m-2 and 7.94 ± 3.30 kg OC m-2 respectively. In the saltmarsh soils

of Western and South Eastern regions where the largest stocks are

located, we observe lower OC storage values of 5.18 ± 1.69 kg OC

m-2 and 4.15 ± 1.27 kg OC m-2 respectively. These differences are

potentially driven by local sediment loads, sedimentation rates,

dilution of the OC by minerogenic input and by the underlying

substrate. Marshes with sandy soil (Western and South Eastern)

generally have higher dry bulk densities (Figure 3) than their

muddy counterparts and fail to trap and store OM (Figure 5)

(Kelleway et al., 2016). OC storage values reported here are

comparable to previous studies in Scotland (4.4 to 6.5 kg

OC m-2; Austin et al., 2021), Wales (5.56 kg OC m-2; ABPmer,

2020), and the Republic of Ireland (3.8 kg OC m-2; Penk, 2019).
Mapping soil OC storage and stocks

The new spatial mapping of OC storage allows the

calculation of site-specific OC stocks, providing managers and

policymakers a bespoke tool to assist in the management of these

systems at both the local and national scale. By combining
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current saltmarsh maps (Haynes, 2016; Natural Resources

Wales, 2016; Environment Agency, 2021) with the calculated

NVC and marsh zone specific OC densities (Supplementary

Tables 11-14), it is possible to gain a geospatial understanding of

OC across saltmarshes (Figure 7) and calculate saltmarsh

specific surficial soil OC stocks (Figure 8). The OC density

maps highlight changes in OC storage between saltmarshes and

within the marshes themselves from the pioneer to high marsh

zones (Figure 7).

Marshes in the Ribble Estuary (53.711340, -2.943835) hold

the largest OC stock (139,916 tonnes OC) followed by the

saltmarshes found in the the major estuaries of GB such as the

Wash (52.926668, 0.061452), Morecambe Bay (54.175172,

-2.849556) and the Solway Firth (54.969555, -3.484984). The

saltmarshes in Essex, the Solent, Dornoch Firth and Cromarty

Firth are smaller and hold less OC within their soils. A large

number of small marshes within these areas does result in OC

stocks equivalent to the largest marshes (Figure 8;

Supplementary Data). Of the 438 marshes with surficial soil

OC stocks, 229 marshes hold < 1000 tonnes OC in their surficial

soils, with only 30 exceeding > 20,000 tonnes of OC

(Supplementary Data). This results in large disparity in the

distribution of OC across GB saltmarsh with 7% of

saltmarshes accounting for 55% of soil OC storage.

The spatial mapping of OC density and marsh specific OC

stocks are designed to assist environmental managers and

policymakers in determining how best to protect and preserve

these important coastal environments and how best to move

forward with the inclusion of saltmarshes in national C

accounting. To that end, data used to create these maps is

freely available. It is envisaged that these decision support

tools will evolve as new spatial mapping is introduced and/or

when additional soil parameters (e.g., dry bulk density and OC

content) become available.
FIGURE 7

Examples of OC storage (kg OC m-2) mapped across (A) Scotland – Caerlaverock marsh (54.969555, -3.484984), (B) Wales – Dovey (Dyfi)
Estuary (52.543454, -3.977258) and (C) England – The Wash (52.926668, 0.061452). Full geospatial dataset (Smeaton et al., 2022) can be found
at: https://catalogue.ceh.ac.uk/documents/cb8840f2-c630-4a86-9bba-d0e070d56f04.
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Conclusion

There is a growing international awareness that the burial

and storage of OC in saltmarshes may provide a nature-based

solution to regulating atmospheric C. A fundamental

opportunity therefore presents itself to society, namely, to

manage and protect these important OC hotspots from

increasing climatic and anthropogenic threats. Quantifying the

magnitude of the surficial soil OC stocks and how it is spatially

distributed across the GB saltmarshes is a critical foundational

step towards this goal. The surficial soils (top 10 cm) of GB

saltmarshes contain 2.32 ± 0.47 Mt OC. Across GB marshes
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there is a disparity in OC stocks, the Scottish systems hold more

carbon per unit area but the extreme differences in marsh extent

result in the expansive marshes of England holding 69% of the

total soil OC. The new spatial mapping products could not have

readily been produced without the assistance of UK citizen

scientists and are envisaged to provide decision support tools

to assist in the management of these important C resources. The

mapping has highlighted that a small number (n = 30) of large

marshes located in the major estuaries (The Wash, Morecambe

Bay and the Solway Firth) represent 55% of the total soil OC

stock. This raises the fundamental question on how to best

manage these ecosystems for C at a national scale, do we take a
FIGURE 8

Mapped surficial soil OC stocks (tonnes) for individual saltmarshes across Great Britain. Size of circle represent the absolute magnitude of the
stock (tonnes) while the colors highlight ranges: Red: < 1,000 tonnes OC, Blue 1,000 – 10,000 tonnes OC, Green: 10,000 – 50,000 tonnes OC,
Purple: 50,000 – 100,000 and Orange > 100,000 tonnes OC. Full breakdown of OC stocks can be found in the supplementary data.
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holistic approach for all marshes, or do we focus our efforts on

the C rich areas? Although this study provides an additional

contribution to the quantification and understanding of GB

saltmarsh soils and their OC stores as a significant component

of UKs natural capital, this new understanding of surficial soil

OC stocks only represents a first step towards answering this

question. The mechanisms that govern the accumulation,

preservation and long-term storage of OC in these systems

remain poorly defined across GB saltmarshes.
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