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Summary 

We intoduce the thesis with a discussion of fundemental magnetism, the 
motivation for our studies and previous theories in the field. Chapter 2 
develops the athermal equation of motion for magnetisation first given by 
Landau and Lifshitz in 1935 and later improved by Gilbert in 1955. We dis­
cuss the analysis of the equations given by Kikuchi in 1956 and the points 
raised by Mallinson in 1986. Simple numerical integration schemes are con­
sidered and single spin solutions are presented. Chapter 3 is devoted to the 
development of our finite element model of magnetisation dynamics. We give 
a variational formulation of the Gilbert equation with the effective magnetic 
field taken to be the functional derivative of the systems free energy as de­
rived in chapter 1. Our initial method follows essentially from a paper by 
Yang and Fredkin in 1998 with some minor modifications. The magneto­
static calculation is a three dimensional generalization of the method given 
by Ridley et al. in 1999. Technical aspects such as sparse matrix storage 
and the solut ion of systems of linear algebraic equations are discussed in 
brief. Some basic examples are given in chapter 4 followed by an analysis of 
magnetisation reversal in individual cobalt grains. The important differences 
between grains of longitudinal and perpendicular orientation are established. 
Chapter 5 describes an attempt to model an open magnetic region using 
periodic boundary conditions and chapter 6 is concerned with the use of 
a time-stepping method which naturally conserves the magnitude of mag­
netisation due to the intrinsic quadratic invariance of the numerical scheme; 
improved numerical stability is established. The self consistency condition 
given by Albequerque et al. in 2001 is then used to show that the numerical 
error of our method may be bounded arbitrarily. Chapter 7 is devoted to the 
consideration of finite temperature magnetisation dynamics. We use the sim­
ple energy-barrier model to highlight the importance of thermal fluctuations, 
giving motivation for a more rigorous analysis. We then derive the stochas­
tic Langevin-Gilbert equation and present single-spin solutions illustrating 
the superparamagnetic transition of cobalt grains as well as the temperature 
dependence of coercivity. Our finite element model is then applied to the 
finite temperature case. In chapter 8 we present some applications of our 
model. The effects of physical microstructure on magnetisation reversal are 
investigated as well as the role of energy dissipation and thermal fluctuations. 
Vve conclude with an evaluation of both our computat ional model and the 
results we have obtained. Further model development is discussed together 
with some as yet unexplored applications. 
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Notation. 

Some of the expressions developed during the course of the thesis become 
quite complex. For clarity we have given a description of our vector and 
matrix notation below. 

Intensity of Magnetisation. 

Magnetisation is described by a piecewise linear vector field M with magni­
tude conserved in space and time 

IM (t)I = Ms. 

Reduced units are used throughout the development of our model 

M 
m =­

Ms 

the unit vector m then represents the local direction of magnetisation. 

Magnetic fields. 

The general magnetic field is denoted by uppercase boldface letters H and 
induction by B , with subscripted symbols to denote various contributions to 
the field 
H ex - Exchange field 
H d - Magnetostatic field 
H anis - Anisotropy field 
H z - Applied, external, Zeeman field. 
The superposition of all contributions is refered to as the effective field 

H eff = H ex+ H d + H anis+ H z. 

The effective field is often scaled with respect to the anisotropy field strength 

h _ H ett 
eff - -­

Hk 

h et I is then refered to as the reduced effective field. 

Energy. 

Expressions of energy density are given using an uppercase E and subscripts 
to denote various contributions correspond to those used for contribut ions 

lll 



to the effective field. The corresponding energy over a body D is expressed 
using an italic 

£ = 1 EdD 

Vectors and Matrices. 

To distinguish between vectors and matrices we use different typ es of boldface 
font. A matrix is indicated by standard boldface 

whereas a vector is indicated by slanted boldface 

A =[Ai]. 

A capital letter indicates a global matrix taking contributions from all ele­
ments of the finite element mesh, whereas a lower-case letter refers to a local 
element matrix 

e 

A vector taking contributions from the three components of vector valued 
nodal variables over all N nodes is denoted with an over-arrow 

Probability. 

In chapter 8 some probability theory is used in connection with the treatment 
of stochastic differential equations. Throughout this chapter the probability 
of event A is denoted by 

Prob(A) 

and a random variable Xi is designated as belonging to a normal distribution 
of such variables by 

where X is the mean of the distribution and a-2 is the variance. 

IV 
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Chapter 1 

Introduction. 

Our int roduction leans heavily on two seminal works, "Micromagnetics" by 
William Fuller Brown, Jr [1] and "Introduction to the theory of Ferromag­
netism" by Amikam Aharoni [2] as well as t utorial notes distributed by Gior­
gio Bertotti at the 10th Biennial Conference on Electromagnetic F ield Com­
putation in Perugia, June 2002 [3] . This is inevitable as we agree completely 
on the statement of t he problem. The material is simply stated as concisely 
as possible in order to establish nomenclature and to allow reference to it 
in lat er chapters. We shall introduce the notion of magnetism and discuss 
it 's origin in the atomic magnetic moment. We will also define the mag­
netic field and the unit system in which we shall be working. vVe discuss 
the magnetic interactions which influence the motion of the moment and 
give a classification of magnetic materials in terms of their susceptibility to 
an applied magnetic field. The motivation for this study is then illustrated 
by a discussion of some poorly understood processes in magnetism and the 
growing demands of the magnetic storage industry which provides the major 
application of the work. We then give an overview of the historical devel­
opment of t he field and give brief discussions of t he pertinant t heories. T he 
chapter concludes with an account of the theory of micromagnetics. This 
theory, which was originally developed by W. F. Brown, Jr and published as 
a comprehensive text in 1963, will form the basis of our physical model. 
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1.1. FUNDAMENTAL MAGNETISM. 

1.1 Fundamental Magnetism. 

1.1.1 The Atomic Magnetic Dipole Moment. 

Figure 1.1: The Bohr atom. 

Origin of the Magnetic moment. 

There are two atomic origins of magnetism. T his can be illustrated using the 
classical model of an atom shown in figure 1.1. An atom posesses a magnetic 
moment µ which is the vector sum of an orbital moment µ 0 due to the orbital 
motion of it's electrons and also a spin moment µ s due to the spin of the 
electrons themselves 

(1.1) 

From figure 1.1 we see that the orbiting electron makes a current loop around 
the nucleus but also it has a spin motion that can be thought of as rotation 
around it's own axis. Both of these mechanisms result in the motion of elec­
trical charge giving rise to so-called Amperian currents and a corresponding 
magnetic moment. We can use the ratio between the net angular momen­
tum and the net atomic magnetic moment to distinguish between a moment 
which is due to orbital motion or a moment which is due to spin motion. 

2 



1.1 . FUNDAMENTAL MAGNETISM. 

The Orbital Moment. Assuming that the electron in figure 1. 1 is moving 
with speed v along a circular orbit of radius r with period 21rr /v we may 
calculate the resulting magnetic moment. T his mot ion of electrical charge 
will produce a current of 

i 
- e V 
--
c 21rr 

(1.2) 

-ev 
2c1rr 

where e is the electrical charge of the electron and c is the speed of light. 
From Ampere's law [4] the magnetic moment of a closed current loop is 
given by the product of the cross-sectional area of the loop and the current. 
Therefore the moment due to the orbiting electron is given by 

-ev 1rr2 __ 
2c1rr 

evr 
2c 

(1.3) 

It is known from quantum mechanics that each electron can exist in various 
energy levels corresponding to orbits of various r in the Bohr model [5]. As 
a consequence, on the atomic scale angular momentum is also quantized and 
is constrained to be an integer multiple of ti = h/21r 

nh IIPall = m evr = -
21r 

(1.4) 

where h is planck's constant and m e is the electron mass. The orbital moment 
can then be written 

enh 
llµall = - 47rffieC · 

So for n = l corresponding to one electron in the ground state we have 

eh 

41rmec 
-9.27 X 1021 

(1.5) 

(1.6) 

µ 8 is known as the Bohr magneton and is the fundamental unit of magnetic 
moment, measured in ergs/Oe or emu. 
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1.1. FUNDAMENTAL MAGNETISM. 

I P, 

c ► :::> 
I 

Figure 1.2: Electron spin. 

The Spin Moment. The spin of an electron can be t hought of as the 
rotation about it's own axis, figure 1.2. Clearly this rotation also leads to 
the motion of electrical charge. However, no explanation of the result ing 
current loops can be given in terms of classical physics primarily due to the 
fact that the shape and charge distribution of the electron are not classicaly 
defined, assuming spherical geometry and a uniform charge distribution gives 
a poor estimate of the observed spin moment [6] . The spin of the electron 
was first postulated to account for features of the optical spectra of gases 
subject to a magnetic field and it's value was determined experimentally. 
T he notion of spin has since been given a more concrete interpretation in 
terms of quantum mechanics [7]. It can be inferred from spectral analysis 
t hat t he magnetic moment due to electron spin motion is given by 

(1.7) 

where P8 is the spin angular momentum. Since P8 is quantized in units of 
h/2, the spin magnetic moment must also be an integer mult iple of the Bohr 
magneton 

llµlls 
e nh 

(1.8) - - ---
cme 4?T 

neh 
4?Tmec 

n µ B 
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1.1. FUNDAMENTAL MAGNETISM. 

The Lande Splitting factor. The orbital moment may also be written 
in terms of angular momentum 

(1.9) 

Here the coefficient of momentum in the expression of orbital moment is half 
the magnitude of that in the expression of spin moment 1.7. Generally we 
may write µ in terms of the Lande splitting factor g and the net angular 
momentum P 

µ (1.10) 

where g ~ l for a moment which is due purely to the orbital angular mo­
mentum P O and g ~ 2 for a purely spin moment, an intermediate value of 
g indicates that both mechanisms contribute to the moment. Contributions 
to P 0 and P 8 from closed shells of electrons is always zero due to cancella­
tions. Therefore a magnetic moment is only macroscopically observable in 
atoms with an incomplete electron shell in the classical model. The mag­
netic moments in ferromagnetic materials such as iron, cobalt and nickel are 
predominantly caused by electron spin and the atomic magnetic moment of 
such materials is therefore often referred to as the spin of the atom. 

The classical approach taken above in fact leads to the same results as a 
more rigorous quantum mechanical description [7]. 

1.1.2 Magnetisation and Response to a Magnetic field. 

Continuum Hypothesis. 

In all subsequent chapters we neglect much of the atomic detail in favour 
of developing a macroscopic model of magnetism which is computationally 
feasible. To do this we assume a continuum hypothesis, that is we assume 
that all variables may be specified continuously and absolutely at any given 
point in space. The variable under consideration, the magnetic moment µ , 
as we have seen is discrete by nature and is associated with atoms occupying 
specific regions of space. Further the moments are subject to thermal fluctu­
ations in both their direction and magnitude [1]. To overcome this problem 
we define a thermodynamically extensive variable. M , known as the inten­
sity of magnetisation, or simply as the magnetisation is defined as the net 
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1.1. FUNDAMENTAL MAGNETISM. 

Figure 1.3: The continuum hypothesis. 

magnetic moment per unit volume V and measured in units of emu/cm3 

(1.11) 

The Magnetic Field. 

In physics a field is an abstract quantity defined as the rate of change of 
energy density with respect to the state variable of a system. For example a 
magnetic field H may be generated in a medium by a current as described 
by Ampere's law. The energy of a system can be defined in two ways. The 
Helmholtz energy is defined as total energy of the system whereas the Gibbs 
free energy is defined as the internal energy of the system. We therefore 
define the magnetic field as the functional derivative of the Gibbs free energy 
density with respect to magnetisation 

(1.12) 

The magnetisation and the magnetic field are often related to one another 
through three quantities; permeability µ , susceptibility x and induction or 
magnetic flux density B. The induction is defined as the response of a 
medium to an applied magnetic field, it can be thought of as t he concentra­
t ion of magnetic field lines and is measured in units of Gauss 

B = H +41rM . (1.13) 

T he relation between a magnetic field and the induction in a medium is 
known as the permeability 

B =µH. (1.14) 
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1.1. FUNDAMENTAL MAGNETISM. 

In free space and in many materials µ is a constant and the relation between 
B and H is linear. In ferromagnets however µ is a complex function of H. 
Finally when Mand H are parallel they may be related by the susceptibility 

M =xH . (1.15) 

Clearly these parameters are themselves related 

B µH (1.16) 

H +41rM µH 

H + 41r(xH ) µH 

1 + 41rx µ 

The Gyromagnetic Effect. 

We now return to the Bohr model to consider the effect of a magnetic field 
on the atomic magnetic moments. We define the gyromagnetic ratio ,-1 as 
the ratio between angular momentum and magnetic moment 

µ = -,P. 

From the equation 1. 10 we see that 

ge ,=--. 
2mec 

(1.17) 

(1.18) 

By the moment of momentum theorem the torque exerted on a magnetic 
moment µ by a magnetic field H is equal to the rate of change of angular 
momentum 

dP 
- =µxH. 
dt 

(1.19) 

We therefore have an equation of motion for the magnetic moment in the 
presence of an applied magnetic field 

dµ - = - "(µ X H. 
dt 

(1.20) 

The motion of an atomic moment in a magnetic field is often compared to 
the motion of a spinning top in a gravitational field [6], [8], [9]. The processes 
have a superficial similarity, however the analogy cannot be pushed too far. 
If the gravitational field is removed from the spinning top it will carry on 
spinning for some time under its own momentum. If the magnetic field is 
removed from the magnetic moment it will stop - instantaneously [10]. 
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1. 1. FUNDAMENTAL MAGNETISM. 

1.1.3 Magnetic Interactions. 

As well as the effect of an applied magnetic field, the atomic moments and 
therefore magnetisation are also influenced by t he interactions between elec­
trons on neighbouring atoms, interactions between electrons and the crys­
tal lattice and also interactions between the elementary dipoles themselves. 
These interactions cannot be understood entirely using classical physics. The 
following explanations of exchange and spin-orbit interactions depend on 
some quantum mechanical theory which can be found in greater depth else­
where [5] . 

Exchange Interactions. 

Electrons repel each other as a result of electrostatic forces described by 
Coulomb's law [4], [11]. The Coulomb interaction arises when the wave 
functions 7Pi, 7Pj of two electrons i, j overlap in space and is proportional to 
the product 

(1.21) 

where the bar denotes the complex conjugate. Now consider the net elec­
tronic wave function of two atoms A, Bat positions XA and x 3 respectively. 
As d( x A, x B) -r O the total electronic wave function is given by 

(1.22) 

The energy over a volume V containing atoms A and B then includes terms 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

where p(., .) is a metric or distance function. Clearly terms 1.23, 1.26 are of 
the form 1.21 and derive from the Coulomb interaction. However terms 1.24, 
1.25 cannot be explained classically and are quantum mechanical in origin. 
This phenomenon is known as the exchange interaction and is essent ially 
a consequence of the Pauli exclusion principle which asserts that no two 
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1.1. FUNDAMENTAL MAGNETISM. 

elect rons may share all four quantum numbers [ll], [5] . It is clear that the 
exchange interaction occurs only for small inter-atomic distances. Specifically 
it manifests itself when the distance between neighbouring atoms approaches 
the spatial support of the respective electronic wave functions. The role of 
the Coulomb interaction itself is to position the electrons in their respective 
orbits around the nucleus of each atom. It then has no further influence over 
the associat ed magnetic moments. 

Spin-Orbit Interactions. 

By relativity each electron is perfectly entitled to consider itself at rest . In 
this scenerio the nucleus of the atom forms a current loop during its or­
bit around the electron. Consequently there is a coupling between the or­
bital angular momentum and the spin angular momentum known as Russell­
Saunders coupling [ll]. In the many-electron atom the net electronic spin 
vector S = I: P s must occupy the maximum value consistent with the Pauli 
exclusion principle. The same forces act to combine the electronic orbital 
momentum vectors O = I: P O to give a resultant net value for the atom. 
0 too takes the maximum possible value consistent with the exclusion prin­
ciple. There is in some sense a competit ion between the spin and orbital 
momenta to assign consistent quantum numbers which maximize S and 0 
respectively. This is known as the spin-orbit interaction which acts to couple 
electron spins to the structure of the crystal lattice, consequent ly the mag­
netic moments are coupled to a certain crystallographic axes and this results 
in a prefered direction of the magnetic moments known as the easy-axis 1 . 

The magnetisation shares the prefered direction of its constituent moments, 
a phenomenon known as magnetocrystalline anisotropy. The easy-axis or 
indeed easy-axes depend on the atomic structure of the material. Iron for 
example has a cubic structure which results in three easy directions coinci­
dent with the three crystallographic axes. Whereas cobalt has a hexagonal 
lattice structure which generally results in a single easy-axis parallel to the 
c-axis of the crystals. As we shall be mostly concerned with cobalt media we 
shall discuss only this so-called uniaxial anisotropy here. The energy which 
results from uniaxial anisotropy depends only on the direction of magneti­
sation with respect to the easy-axis. Due to symmetry in the ab-plane the 
energy density may be given as a series in the even powers of cos( 0) where 0 

1 By prefered direction we mean that it is possible to align magnetic moments in this 
direction with an applied field of lower magnitude than would be required to align them 
in other directions . Also in zero applied field they will tend to align to this direction. 
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1.1. FUNDAMENTAL MAGNETISM. 

is the angle between the c-axis and t he magnetic moments 

Banis = Ki cos2(0) + K2 cos4 (0) + · · ·. 
Alternatively we can expand in terms of a sin(0) series 

Banis= K isin2(0) + K2sin4 (0) + · · ·. 

(1.27) 

(1.28) 

The difference between the two expressions is a constant which is meaningless 
with respect to energy as long as only one or the other expression is applied 
in the same analysis. Clearly Ki, K 2 take different values in equations 1.27 
and 1.28 however it is known from experiment that in both cases that 

(1.29) 

In particular for cobalt the fourth order terms and higher are negligible and 
the energy density may be given simply as 

Banis = K cos2 ( 0) (1.30) 

or 

Banis = K sin2(0) (1.31) 

where K is known as the uniaxial anisotropy constant. 

Dipole-Dipole Interactions. 

The interaction between magnetic moments causes a self demagnetising or 
magnetostatic energy. This potential energy may be derived by considering 
a lattice of elementary moments µ i 

(1.32) 

where h i is the field intensity at lattice point i due to all other moments. In 
the total summation the interaction of moment i with the field due to moment 
j is the same as the interaction of moment j with the field due to moment 
i and each contributions is counted twice. The energy is therefore given 
by half of the sum [12]. As explained by Aharoni [2] we may generalize to 
the continuum by replacing the summation with an integral over the sample 
volume. In equation 1.33 the moments µ i are replaced by magnetisation and 
h i is replaced by the macroscopic magnetostatic field which may be obtained 
from Maxwell's equations as we shall see later 

(1.33) 
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Zeeman Interaction. 

The application of an external magnetic field increases the energy of a sys­
tem by definition. When excited atoms emit photons the result ing spectral 
lines correspond to the quantized energy levels of the atom. The magnetic 
moment of a sample may be obtained experimentally by spectral analysis of 
a sample in an external field. The spectral lines are observed to split into 
three or more distinct lines, this is known as the Zeeman effect [11]. The 
term Zeeman energy has subsequently been used to denote externally ap­
plied magnetic energy. The applied field is also known as the Zeeman field, 
H z. To obtain the energy density resulting from the Zeeman field we simply 
take the projection of the field vector onto the magnetisation 

(1.34) 

where 0MH is the angle between the field vector and the magnetisation. 

Thermal agitations. 

In general thermal agitations give rise to fluctuations in both the magnitude 
and direction of magnetic moments. In ferromagnetic materials the strong 
exchange forces ensure that fluctuations in magnitude are kept to a minimum. 
On t he other hand fluctuations in direction of the moments is smoothed by 
considering the statistically averaged quantity of magnetisation. The major­
ity of our work therefore considers the athermal case, the results of which 
can be applied in most cases. In certain circumstances however the t rans­
verse fluctuations become important, especially when considering magnetic 
particles of reduced dimensions. In this case a phenomenological fluctuating 
magnetic field is defined with sufficient magnitude to produce the observed 
fluctuations in the direction of magnetisation. This topic will be investigated 
in chapter 7 and appropriate modifications to the micromagnetic model are 
made. 

1.1.4 Magnetic Materials. 

Magnetic materials may be broadly classified by the five catagories; diamag­
netic, paramagnetic, ferromagnetic, anti-ferromagnetic and ferrimagnetic. 
Their properties are dictated essentially by the number of electrons in the 
atom, or more precisely by the number of unoccupied orbits in partially filled 
electron shells and also by interactomic distance which dictates the mag­
nitude of exchange interactions. Also they may be characterized by their 
susceptibility to an applied magnetic field. 
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Diamagnetism. 

The vast majority of solids have full electron shells and therefore posses 
negligible magnetic moment. These are characterized by a small negative 
susceptibility of the order of -10- 5 and are termed diamagnetic. The char­
acteristic behaviour of diamagnetic materials when placed in an applied field 
is to acquire a very small magnetic moment which is opposed to the field and 
hence reduce the induction. 

Paramagnetism. 

Materials for which x is small but positive, of the order of 10- 3 at room 
temperature, are termed paramagnetic and are characterised by x being in­
versely proportional to temperature. Here moments are randomly oriented, 
except as biased by an applied field, due to weak interactions between the 
electrons on neighbouring molecules. At low temperature, where we may 
think of the moments as being frozen, increased interaction between atoms 
may cause ferromagnetic or anti-ferromagnetic alignment of the moments. 
However the behaviour of both paramagnetic and diamagnetic materials at 
ambient temperatures may be well approximated by single atom models. 
Materials which have large positive values of x may be split into three groups. 

Ferro magnetism. 

In this thesis we shall be concerned with ferromagnetic materials. In these 
materials strong exchange interactions between atoms cause the elementary 
magnetic moments to align parallel to each other. This results in a sponta­
neous magnetisation in bulk samples even where no magnetic field is present. 
In this case from equation 1.13 the induction is simply equal to 41r M. Ferro­
magnetic materials undergo a paramagnetic transition at the Curie tempera­
ture where the interactions which cause the ferromagnetic alignment become 
weak in comparison with thermal agitations. 

Anti-ferromagnetism. 

Anti-ferromagnetism results from strong exchange interactions resulting in 
an ordered anti-parallel spin configuration. Alternatively the interactions 
between moments in different sub-lattices may cause them to align anti­
parallel to each other. Compounds consisting of two types of atom in which 
the moments of each sub-lattice precisely cancel, are also known as anti­
ferromagnetic. These materials are characterized by zero net magnetisation 
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at all temperatures. The temperature at which anti-ferromagnetic materials 
undergo a paramagnetic t ransition is known as the Neel temperature. 

Ferrimagnetism. 

Variants of anti-ferromagnetism occur when different sub-lattices contain 
atoms with elementary moments of unequal size, so in the ordered state 
they don 't average to zero, leaving a residual net magnetization. These ma­
terials are generally termed ferrimagnetic. 

This thesis is solely concerned with the properties of ferromagnetic ma­
terials, however paramagnetic behaviour may occur in these media under 
various conditions. The distinction between the types of magnetism can 
become rather arbitrary; as well as the 'freezing' of paramagnets and the 
'melt ing' of ferromagnets, further complications exist. When a crystal of fer­
romagnetic material is very small, the magnitude of its magnetic energy may 
become smaller than the magnitude of its thermal energy. This phenomenon 
is known as superparamagnetism and will be discussed further in relation to 
magnetic storage and will be investigated more thoroughly in chapters 7 and 
8. 
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1.2 Motivation for Micromagnetics. 

1.2.1 Ferromagnetic Domains. 

Figure 1.4: Ferromagnetic domain structures in thin film media. 

Regions of homogeneous magnetisation are known as magnetic domains. 
Early investigators of magnetic materials were confused by the fact that fer­
romagnets which could be magnetized or could acquire a spontaneous mag­
netisation by virtue of an applied magnetic field could also exist in a state of 
zero net magnetisation. This was subsequently explained by the existence of 
magnetic domains which could develop by mutual exclusion into configura­
tions which effectively cancel each other out. Modern experimental imaging 
techniques have revealed an amazingly rich and beautiful structure of mag­
netic domain configurations in ferromagnetic materials such as the thin films 
illustrated in figure 1.4. It should be noted here that domain structures of 
such complexety are beyond the predictive capability of any current theory in 
atomic or continuum physics; discussions of the archetypal domain structures 
for simple geometries may be found in numerous publications elsewhere [6], 
[8] . The internal magnetostatic field is known to be largely responsible for 
the formation of domain structures and is highly sensitive to the geometry of 
the sample. For this reason single-domain ellipsoids of revolution are often 
used to give a model in which the magnetostatic field can be neglected. The 
strongest influence on domain propagation is due to exchange interactions. 
The exchange field favours coherent magnetisation and thus moderates the 
effect of the magnetostatic field. The rotation of magnetisation within each 
domain then depends upon the orientation of the magnetisation with respect 
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to the easy-axis. The reversal of single-domain particles is therefore dictated 
entirely by the magnetocrystalline anisotropy. Although other phenomena 
have an effect on the dynamics of magnetisation , this thesis will be concerned 
with the influences of the magnetostatic field , exchange interactions, mag­
netocrystalline anisotropy and of course external magnetic fields. Clearly a 
complete description of magnetic domains requires input from electromag­
netics, quantum mechanics and thermodynamics. However much of the work 
in formulating the problem has already been done and it only remains to find 
the best methods of solution. In section 1.3 we outline theories which best 
describe the individual aspects of t he problem and then give an account of 
the formalism t hat underlays ours and most other work in the field. 

1.2.2 Hysteresis. 

Ho 

' M, 

' 

H, ' ---------------- ,--------- --- ------+ 
' H 
' ' 

Figure 1.5: The limiting hysteresis or M-H loop. 

As a result of magnetic domains as well as material anisotropy all fer­
romagnetic materials exhibit irreversible dynamics and therefore hysteresis. 
T his phenomenon is best illustrated by use of an M-H loop or hysteresis loop 
as shown in figure 1.5. Such loops may be obtained experimentally [13] and 
are used to characterize the magnetic properties of ferromagnetic materials. 
An accurate hysteresis loop is the fundamental deliverable of any micromag­
netic simulation and is a good means by which to obtain experimental veri­
fication of numerical results. Starting from an initially demagnetized state, 
where opposing directions of magnetic domains cause a zero net magnetic 
moment in the sample, an external magnetic field is applied and steadily 
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increased until the maximum net magnetic moment or saturation magneti­
sation Ms is reached. Subsequent increases in the field strength result in no 
further increase in the net magnetic moment because all opposing domains 
have been annihilated and favourably oriented domains have expanded and 
rotated into the field direction unt il the sample consists of one single domain 
aligned with the field. The field is then slowly reversed until negative satura­
tion is reached, clearly the sample now consists of a single magnetic domain 
oriented in the opposite direction. If the field is reversed once more the sam­
ple will naturally return to positive saturation, however the curve will not 
in general follow the same path between the two states. The parameter He 
denotes the critical value of the applied field which must be applied in order 
to switch the magnetisation. Other parameters from the loop reveal further 
information about the material; the nucleation field Hn if it exists denotes 
the value of the applied field at which irreversible magnetisation changes 
first occur, this refers to the creation or nucleation of reversed domains. The 
remanence Mr is the value of magnetisation when the applied field is ex­
actly zero, this corresponds to the natural macroscopically observable value 
of magnetisation in the absence of any field. Also the slope of the M-H loop 
is a characteristic of different materials. Minor loops can be obtained by 
applying the applied field until any given magnetisation is reached; in fact 
there is a continuum of such loops. The loop shown in figure 1.5 is known 
as the limiting hysteresis loop as further increases of field in either direction 
cannot result in a magnetisation higher than the saturation magnetisation 
and subsequent cycles of the field will retrace this limiting curve [13]. 

1.2.3 Applications in Magnetic Storage. 

The technology of magnetic storage is pushing the limits of established the­
ory and requires quantitative numerical predictions to enable further devel­
opment. Although we are not concerned directly with industrially relevent 
research, the recording industry does provide the major application of work 
such as ours. We therefore take some time here to describe the recording 
process itself and to establish what can be gained by the application nu­
merical modelling. Notwithstanding informat ion encoded by reversal of the 
planetary magnetic moment, the history of magnetic recording begins with 
the telegraphone in 1898. This was a device invented by Vlademar Poulsen 
on which he made the first audio recording. Using a microphone connected 
to an electromagnet he made a recording of his own voice on a thin ferromag­
netic wire. By connecting the electromagnet to a speaker and then passing 
it through the stray field from the magnetized wire he was able to play back 
t he recording. In the last 100 years the magnetic recording industry has been 
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conerned with refining essentially the same process in order to manufacture 
media for audio, video and now computer information storage. 1927 saw the 
invention of magnetic tape which consisted of fine ferromagnetic particles 
embedded in a non-magnetic film. This was advantageous from the point 
of view of reproducible magnetic properties and also because it enabled the 
media to be stored on spindles and passed over a read or write head by sim­
ple mechanisms. The first audio recorders appeared in 1948 making use of 
tape media and inductive read-write heads. By the 1950's IBM was devel­
oping metallic thin films to act as storage media for the emerging computer 
technologies. Much of their init ial success came on the back of experimen­
tal results combined with heuristic computational modelling. More recently 
however the rise of optical storage media particularly for audio and video 
applications has put pressure on magnetic recording to justify its existence. 
Also the demanding operating systems and software packages in use in to­
days computers require hard disk drives with fast data rates, high storage 
densities and fast access times. For example the areal storage density of 
drives is currently approaching 100Gbits/inch2 and rising at a rate of 60-100 
percent a year, see figure 1.6. This astonishing rate of increase is pushing 
both technological and fundmental limits. For it to be maintained requires 
a deeper understanding of the magnetisation reversal mechanism in relation 
to those limits. This requires the use of rigorous numerical modelling. 
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Figure 1.6: The growth of areal storage density in magnetic recording media 
[14]. 
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( 

Figure 1.7: The longitudinal writing process. 

The Modern Recording Process. 

As in Paulsen's device modern magnetic recording relies on the fact that 
in certain ferromagnetic materials small regions can be magnetised using an 
external field to form a single magnetic domain aligned in some direction. 
Provided the remenance magnetisation of the media is high enough this sin­
gle domain or bit has stored information once the field is removed, namely 
the direction in which it has been magnetised. The process therefore re­
quires information to be stored as binary digits so that opposing directions 
of magnetisation can be used to store a zero or a one. The writing process is 
illustrated in figure 1.7. An inductive write head consists of a toroidal ferro­
magnet with a fine gap, when the head is magnetised a strong magnetostatic 
field or fringe field forms around the head gap which may be used as the 
external writing field with respect to the media. The exact geometry of the 
head can be optimized to achieve a strong field near the gap. An electric coil 
around the head is used to change the direction of magnetisation in the head 
and therefore the direction of the fringe field in order to write bits of opposite 
orientation. Once bits are written the storage media is then moved passed the 
head, thus transforming the temporal changes in write current into spatial 
bit patterns in the media. T his processes is known as longitudinal recording 

Figure 1.8: Written bits storing the binary string ... 10110100 ... 

reflecting the orientation of the written bits with respect to the plane of the 
media . Obvious technological limitations come from the minimum feat ure 
size obtainable in the fabrication of such heads, more fundamental is the 
intrinsic rate at which magnetisation in the head can be reversed. In older 
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systems the playback process was simply the reverse of the writing process, 
the stray field from the written bits shown in figure 1.8 was used to induce a 
magnetisation in the head which could be read by the changes in the current 
of electric coils around the head [15], [16]. In many cases the same head was 
used for reading and writing. It later became clear that different material 
and geometric properties are important for read and write heads respectively. 
This lead to the replacement of inductive read heads with magnetoresistive 
or MR heads [15], [16], [17], [18] which cause a change in the resistance of the 
head when a change of magnetisation occurs. These have quite recently been 
superseeded by heads making use of the Giant Magnetoresistance property 
or GMR [19] . In general heads are manufactured from soft magnetic mate­
rials and although micromagnetic methods are an appropriate means with 
which to investigate such materials we are concerned in this thesis with the 
magnetisation reversal of hard polycrystalline materials. Our work therefore 
has more immediate application in modelling magnetic storage media. 

Magnetic Storage Media. 

Thin films for magnetic recording are created by sputter deposition or similar 
processes. After deposition, drying commences at nucleation points through­
out the melt; this proceeds at equal speed from each "seed" until a crystallo­
graphic structure has formed by mutual obstruction of neighbouring grains. 
The grains form a stochastic geometry dependent on the relative position of 
seed points. In general the film is very thin, :::; 20nm and the grain structure 
is continuous through its thickness. Each grain adopts it's distinct atomic 
structure resulting in a lattice mis-match at grain boundaries. The grain 
boundary, consisting of a "few" atomic layers in which the a toms svvitch 
from the orientation of one grain to the next, has a surface tension because 
its a toms have a higher free energy than those within the grains. During post 
deposition annealing, where the material is held at high enough temperatures 
for atoms to migrate from one grain to the next, energy will be minimised 
with the straightening of curved boundaries and the reduction of grain area. 
In cobalt in particular, this results in a strongly hexagonal grain structure. 
On any one recording track it would seem sensible to manufacture films with 
an easy axis parallel to the direction of the written bits, however the media 
is manufactured in the form of a disk to enable the location of individual 
bits by rotation of the disk combined with radial movements of the head. 
The films are therefore manufactured so that easy-axes of the grains in the 
plane of the film but with random orientation in the plane. This results in 
an anisotropy which is locally strong, preventing erasure but globally aver­
ages to zero. The straight-forward approach to increasing storage density has 
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been to use bits consisting of ever fewer grains. However a fundemental limit 
of signal to noise ratio is soon reached [15]. As illustrated in figure 1.9, when 
the number of grains per bits is reduced the transitions between bits becomes 
indistinct resulting in low signal quality. This limits the increase in density 

Figure 1.9: Reduction in signal quality with decreasing bit size[96]. 

by reducing the number of constituent grains. To further increase density 
it is therefore necessary to reduce the size of the constituent grains. Vve 
now encounter t he superparamagnetic limit, this occurs when the strength 
of magnetic energy is reduced to the level of thermal energy in each grain. 
In this grain size regime it becomes impossible to store information because 
the magnetisation is subject to thermally activated reversals. 

Recording Technologies. 

We have already illustrated the longitudinal recording technology which is 
used in today's commercially available hard disks. There are however three 
viable alternatives to this technology. The first is perpendicular recording 
in which the written bits are oriented perpendicular to plane of the film 
[20]. This has been shown experimentally to result in thinner transitions 
between bits and it is thought that perpendicular grains will show greater 
thermal stability and therefore reduce size constraints imposed by the super­
paramagnetic limit. The most difficult obstacle in the development of such 
t echnology is the design of a write head that can produce the desired fringe 
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Figure 1.10: A written bit from a commercially available hard disk. 

field without erasing adjacent bits. The most promising solution is to man­
ufacture films with a soft magnetic underlayer. This underlayer then acts 
as part of the write head, closing the flux from the pole head itself as illus­
trated in figure 1.11. The second alternative is the use of patterned storage 

Figure 1.11: Perpendicular magnetic recording. 

media, this would consist of arrays of nano-scale magnetic elements or nano­
elements with each storing an individual bit. Since there is no transition 
between bits, this technology is fundamentally limited only by the super­
paramagnetic limit of a single grain. This technology is also being developed 
as a form of non-volatile random access memory or MRAM which could re­
place the convent ional hard disk altogether. Nano-elements with rectangular 
in plane geometry are showing most promise at present as shape anisotropy 
results in two anti-parallel equilibrium magnetisation configurations along 
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the long axis of the element. Finally density could be increased by the use of 
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Figure 1.12: Patterned magnetic recording. 

thermally assisted magnetic recording. Here the media is heated by a laser 
at the time of writing, lowering the coercivity. This would enable the use of 
very high anisotropy materials, hence increasing the magnetic energy of the 
grains and reducing the superparamagnetic limit. 

Applications of Micromagnetics. 

Heuristic micromagnetics has helped in the development of tape media and 
with resolving the fields produced by write heads. Now that technology has 
almost reached the superparamagnetic limit there is a clear need for quanti­
tative numerical modelling which can produce reliable predictions concerning 
the magnetic reversal mechanism. Our model has many potential applica­
t ions. Firstly there is a need to understand the switching characteristics of 
MRAM elements. As well as understanding ways of obtaining the desired 
properties it will also be useful in understanding how to obtain reproducible 
switching properties. There is also still much to be learned about the funda­
mental differences between magnetic grains of longitudinal and perpendicular 
orientation. Micromagnetic simulations are vital in exploring magnetisation 
structure in the regime below experimental resolution. With the incorpora­
tion of temperature into the model we will also be able to investigate thermal 
stability as well as thermally assisted reversal. Finally with efficient numer­
ical methods we hope it will be possible to develop a full-scale model of the 
recording process with subgrain resolution. This will help in the optimization 
of conventional media and in the development of new technologies. 
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1.3 Theories of Magnetism. 

1.3.1 Electromagnetism. 

In 1845 James Clerk Maxwell published his "Treatise on Electricity and Mag­
netism" which formed the basis of his theory of the electromagnetic field [21]. 
The theory can be summarized by the set of eponymous field equations 

'v · D p (1.35) 

'v · B 0 

'v X E 
aB 
at 

'v X H 
aD 
at + J. 

These equations are sufficient to describe the relationship between the elec­
tric field E , electric flux density D , the magnetic field H and magnetic flux 
density or induction B in a self-contained way and have found a multitude 
of applications. Maxwell's theory of electromagnetism is however insufficient 
to describe nano-scale phenomena in ferromagnetic materials because it does 
not take into account the intrinsic material properties of the media. Al­
though electromagnetism can be used to describe macroscopically observable 
effects such as the magnetostatic field, to give a complete description of the 
magnetisation reversal process a deeper level of understanding is required. 
The behaviour of the magnetic moments within such materials, which man­
ifests itself macroscopically as electromagnetism, depends strongly on the 
atomic interactions described previously. Clearly a complete description of 
any macroscopic system cannot be given in terms of the individual atoms. 
The problem is then to decide on an appropriate length-scale at which atomic 
effects are important and yet tractable mathematical formulations can be 
given. 

1.3.2 Weiss Domain Theory. 

The first theories of magnetism to incorporate material properties and tem­
perature dependence into the description emerged in the late 1800's and 
early 1900's. After extensive studies of magnetic properties in a wide range 
of materials Curie published results on the susceptibility of diamagnets and 
paramagnets. It was shown that the meager susceptibility of diamagnets is 
independent of temperature whereas that of paramagnets is governed by an 
inverse proportionality to temperature 

C 
X = - (1.36) 

T 
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where C is the Curie constant for the relevent material [6]. Later Weiss pos­
tulated the existence of a molecular field which acted to align magnetisation 
in ferromagnets 

H weiss = >.M (1.37) 

where ).. is another material dependent constant [6], [11]. This led to a 
generalization of 1.36 to the ferromagnetic case 

C 
X = T- 0· (1.38) 

Here 0 = C >.Ms is known as the paramagnetic Curie temperature. This 
theory had some success in accounting for the paramagnetic transition but 
ultimatley failed to account for the demagnetisation of ferromagnets in zero 
field. Accordingly in 1907 Weiss postulated the existence of magnetic do­
mains as an explanation [22] . His explanation has since been shown to be 
essent ially correct but was complete conjecture at the time. The theory was 
partially validated by Barkhausen in 1915. Using an experimental apparatus 
of an iron sample wit hin a coil which was then connected to an amplifier and 
speaker Barkhausen showed that audible clicks now known as Barkhausen 
noise were emitted during the magnetic reversal of the iron sample. These 
noises were interpreted as the reversal of individual Weiss domains. By ap­
plication of the magnetic Kerr and Faraday effects the existence of ferromag­
netic domains soon became visibly verified in experiments by Bit ter [23] and 
Kittel [24] in particular. However Weiss 's theory of the molecular field was 
la ter rejected in favour of the theory put forward by Heisenberg in 1931 [25], 
which first described ferromagnetic order in terms of exchange interactions. 

1.3.3 Domain Wall Theory. 

-r- --{- ---i- ---t--------+- -- -1- ---1- ---1-

Figure 1.13: The Bloch domain wall. 

Once the existence of magnetic domains was established attention t urned 
to understanding their nucleation and propagation, and specifically to inves­
tigating the properties of the domain wall. The domain wall is defined as the 
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t ransition region between adjacent domains. The idea that domain motion 
depended in a non-trivial way on the properties of the wall was first put for­
ward in 1931 by Sixtus and Tonks [26]. They conjectured that the wall should 
posses its own free energy in analogy with the interface between liquids of 
different properties, oil and water for example. The first complete theory of 
the domain wall was derived by Bloch in 1932. He established a calculation 
for both the free energy and the corresponding wall thickness [27]. A bloch 
wall is illustrated in figure 1.13. The theory of course has one fatal error; 
the magnetisation cannot reduce to zero at the center of the wall because its 
magnitude is conserved everywhere by definition. The correct interpretation 
was given by Landau and Lifshitz in 1935 [28]. They showed that only the 
direction of M changes across the wall and that IM I = Ms is retained as in 
figure 1.14. Clearly the bloch wall is the correct interpretation of the tan­
gential component of magnetisation only. The 1935 Landau-Lifshitz paper 
gives calculations for the M vectors across the wall as well as a calculation 
for the free energy. With slight developments by Neel in 1945 [29] and Kittel 
in 1949 [30] these results are still accepted today. 

Figure 1.14: The Landau-Lifshitz domain wall. 

1.3.4 The Stoner-Wohlfarth Model. 

The Stoner-Wohlfarth model came about in t he 1940's because of interest in 
single domain magnetic particles. At the t ime it was beginning to become 
apparant that many commercial alloys consisted of a dispersion of strongly 
ferromagnetic segregates set within a weakly ferromagnetic or non-magnetic 
matrix. The macroscopic ferromagnetic behaviour of these alloys was seen 
to be a product of the fine particle dipoles. Studies of the domain wall 
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e 

H 

Figure 1.15: The Stoner-Wohlfarth particle. 

by researchers such as Becker and Doring [31] were proving to give a good 
understanding of hysteresis in homogeneous materials. However the fine fer­
romagnetic particles of many alloys are below the critical dimensions for 
which domain nucleation is energetically feasible. The reversal of magneti­
sation must then occur by coherent rotation of the single domain as a whole. 
In their 1948 paper Stoner and Wohlfarth develop a theory of t his rever­
sal mechanism and proceed to develop results on the single domain limit of 
such particles [32]. Here we simply recreate the essential energy minimiza­
tion approach which leads to the prediction of anisotropy induced hysteresis 
below the single domain limit. This has since become known as the Stoner­
Wohlfarth model. The particle under consideration is illustrated in figure 
1.15 where the easy-axis e is along the z-axis, 0M is the angle between M 
and e and 0H is t he angle between the applied field and e. T he energy due 
to uniaxial magnetocrystalline anisotropy and the Zeeman energy of the ap­
plied field are found by integrating their respective energy densities given in 
section 1.1. 3 over the sphere 

Canis [ Ksin2 (0M)dV (1.39) 

- [ MsH cos(0H - 0M)dV 
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where V is the volume of the particle, H is the magnitude of the applied 
field and Ms is the magnitude of magnetisation. The assumption of single 
domain behaviour eliminates exchange energy, this together with the ellip­
soidal geometry results in a magnetostatic energy which can be expressed as 
a constant demagnetising factor [2], [32] , [3] 

(1.40) 

To obtain equilibrium states of the magnetisation for given 0 H the total 
energy is minimized with respect to 0 M 

{ K sin2 0M - { HMscos(0a - 0M)- { NMsdV (1.41) lv Jv lv 
KV sin2 0M - ]\Ifs V H cos(0H - 0M) - MsNV. 

2KV sin 0M cos 0M - ]\Ifs V H sin(0H - 0M ). 

We then have an energy minimum at 

0 (1.42) 

> o. 

This may then be used to obtain a minimum for all 0H between O and 7r, 

hence plotting a hysteresis loop for given easy-axis directions. The original 
results from the Stoner-Wohlfarth paper are shown in figure 1.16 

1.3.5 Micromagnetics. 

Although specific aspects of ferromagnetic reversal may be accounted for by 
the theories outlined above, each describes only a facet of the underlying 
magnetisation processes. A need clearly exists to develop a numerical model 
which is able to predict hysteretic properties and realistic domain structures 
of ferromagnetic media from given material parameters. Micromagnetics was 
the first theory of magnetism which had the power to investigate magnetisa­
t ion properties within any conceivable geometry and yet to take into account 
the material propert ies of the medium. No simplifying assumptions are re­
quired and in principal the theory can be applied numerically to any magnetic 
system provided that the discretization cells satisfy the restrictions given by 
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Figure 1.16: Results from Stoner and Wohlfarth's 1948 paper [32]. 

the definition of magnetisation. The idea is simple, all that is required to ob­
tain an equilibrium configuration in any system is to minimize that system's 
free energy with respect to the appropriate state variable, see figure 1.17. 
In magnetism the state variable is the magnetisation configuration with a 
state space consisting of all such configurations. The Gibbs free energy must 
then be derived in terms of the magnetisation in order to perform the min­
imization. As in Brown's original work we assume that the energy takes 
contributions from exchange energy, anisotropy energy, magnetostatic en­
ergy and applied zeeman energy. Other terms such as magnetostriction and 
thermal energy are regarded as negligible in the first instance. This model 
essentially strips away the simplifying restrictions of the Stoner-Wohlfarth 
model and applies energy minimization in the general case. 

Exchange Energy. 

The wave function analysis of the exchange interaction discussed in section 
1.1.3.1 leads to an expression for the exchange energy of atoms A, B of the 
form 

(1.43) 

where l ex is the exchange integral, which is always positive for ferromag­
netic materials [ll], and S A, S 8 are the net electronic spin vectors of atoms 
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Figure 1.17: The energy functional. 

A , B . By virtue of the dot product in 1.43 the exchange energy is mini­
mized for ferromagnets when S A and S 8 are parallel. For anti-ferromagnets 
the exchange integral is negative and Eex is minimized by anti-parallel spin 
vectors. Naturally Jex = 0 for atoms with full electron shells. This opti­
mal orientation of spin vectors results in a corresponding orientation of the 
atomic magnetic moments. Ferromagnetic exchange energy is therefore min­
imized when magnetisation is homogeneous. Generalizations of 1.43 to the 
many atom case give a means by which to calculate the exchange energy. 
However these are only valid in ab initio calculations in which all atoms are 
considered. Corresponding macroscopic approximations [2], [9], [33] usually 
involve the distance between evaluation points and result in the severe mesh 
dependency of numerical solutions. Instead we note that Eex is zero when 
the magnetisation is homogeneous and increases with increased irregularity 
of the magnetisation. Such spatial variation is appropriatley measured by 
'v M . Consequently the most straight-forward expression of the exchange 
energy is given by 

(1.44) 

T he exchange constant A may then be obtained experimentally. Aharoni 
gives a derivation of l ex in terms of atomic spin vectors which arrives at t he 
same expression as that in 1.44 [2] . His derivation relys on a small angle 
approximation for t he orientation of moments and their neighbours, t his 
shows that to remain valid the magnetisation should change by only small 
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angles between evaluation points. As a result discretization cells should be 
no la rger in any direction than the intrinsic exchange length of the material 

(1.45) 

Clearly the exchange energy is independent of the local orientation of M but 
depends on the homogeneity of magnetisation. 

Anisotropy Energy. 

The term anisotropy refers to any mechanism by which measurements de­
pend on the direction in which they are taken. As well as that due to the 
spin-orbit interaction there are other forms of anisotropy at work in ferromag­
netic materials. A prefered direction of magnetisation is often dictated by 
the geometry of the sample, this is known as shape anisotropy and although 
it is often important it requires no new energy term as it is a product of the 
magnetostatic interaction which is calcula ted separately. Anisotropy due to 
the coupling of magnetisation and internal stresses is known as magnetostric­
tion and may be regarded as negligible in our init ial applications. We are 
left with just the magnetocrystalline anisotropy which may be calculated for 
uniaxial materials from the energy density given in section 1.1.3. We require 
the expression in terms of the magnetisation which may be obtained using 
the properties of the scalar product 

Eanis = j~ K cos2(0)dV 

i K(: · e) 2dV 

{ 1{
2 

(M · e)2dV 
Jv Ms 

(1.46) 

where e is a unit vector along the easy-axis direction. Magnetocrystalline 
anisotropy energy is in general far lower than the exchange energy and there­
fore has negligible effect on the magnitude of Nl5 • However in the absence 
of an applied field the direction of local magnetisation is determined entirely 
by the easy-axis direction. 

Magnetostatic Energy. 

The magnetostatic energy is given simply by 

Ed = - ~ { M · H ddV. 
2 lv (1.47) 
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The derivation is given by Brown [1] and Aharoni [2] as the potential energy 
of a distribution of elementary dipoles over V using the Lorentz local field 
approximation. Before the development of modern numerical methods with 
which to solve the Maxwell equations for arbitrary geometry it was the cal­
culation of H d which prevented the general application of micromagnetics. 
The field may be expressed using t he integral equation 

H d = - { v7 · M (r') (r - r') dV' + {ii' · M(r' ) (r - r') dS' (1.48) 
Jv Ir - r' l3 ls Ir - r' l3 

where r and r' are distributed field sources and the points of evaluation re­
spectively. However problems occur with the evaluation of singular integrals 
when r' = r. The calculation is simplified when considering uniformly satu­
rated samples, in that case the field may be given in terms of a demagnetising 
factor 

(1.49) 

In part icular for symmetric bodies with symmetry axes coincident with the 
coordinate axes N is simply a diagonal matrix. When diagonal elements are 
equal due to symmetry N reduces to a scalar N, for example in the case of 
the sphere 

41r A1s 
Nsphere = -

3
-, (1.50) 

simple expressions can also be obtained for the general ellipsoid and used in 
conjunction with Stoner-Wohlfarth type models. 

Brown's Equations. 

Superposing t he terms derived above with the Zeeman energy due to an 
applied field we may form the free energy functional 

1 A 2 . 2 1 
Ee= (J,./J2 jv7MI +Ksm 0 - 2M-Hd -M·H2 )dV. 

V s 
(1.51) 

These are known as Brown's equations after William Fuller Brown, Jr [l ]. 
The first two terms incorporate the essentially quantum mechanical and ther­
modynamical material dependent information into the problem, while the 
third and fourth terms are material independent Maxwellian terms. The 
minimization of this functional gives equilibrium configurations of M for 
any given set of parameters, geometry and applied field. Simulations of a 
hysteresis experiment may then be performed by calculating the equilibrium 
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configuration at each of the required field steps. This process yields a plot 
of the hysteresis loop itself as well as the intermediate domain configura­
t ions at each field-step. However the method does have two fundamental 
limitations. The first is that the dynamic behaviour of the magnetisation 
between field steps is not resolved. This is becoming increasingly important 
in applications to magnetic recording where the resolution of magnetisation 
over very short time intervals is extremely valuable. Secondly and more fun­
damentally, magnetisation reversal often occurs via an irreversible switching 
mechanism at the critical applied field strength He. This is known as a 
Barkhausen jump, see figure 1.18. There is often ambiguity in energy min-

(a) 

I ----------------~----- ---- - -- ------- ~ 
I H 

Figure 1.18: The Barkhausen Jump. 

imization methods as a multiplicity of local energy minima my exist in the 
free energy functional. The problem is further complicated by the fact that 
more than one jump may occur during the same reversal corresponding to 
the reversal of individual domains. From a configuration in advance of a 
Barkhausen jump 1.18 (a), obtained from the initial saturation by means of 
reversible magnetisation changes, there are many possible equilibrium states 
1.18 (b) corresponding to local energy minima. Energy minimization meth­
ods can be used to obtain all such states but, in relation to the first point, 
a dynamic visualization of the magnetisation is required to understand the 
transition from state (a) to state(s) (b). It is the aim of this thesis to show 
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that this problem can be addressed by dynamic finite element analysis on 
the micromagnetic length-scale. Micromagnetics is not yet a feasible design 
tool for magnetic storage and engineering applications. vVe hope to develop a 
numerical model incorporating all the fundemental aspects of magnetisation 
reversal with resolution of magnetisation in both space and time. Further we 
will investigate the computational efficiency and numerical stability of the 
model in order to establish both the region of applicability as well as our 
level of confidence in the results. 
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Chapter 2 

Magnetisation dynamics. 

In this chapter we develop the ideas from chapter 1 and give a brief dis­
cussion of gyromagnetic precession and ferromagnetic resonance of magnetic 
moments and the gyromagnetic effect is then generalized to the magnetisa­
tion. We subsequently introduce the Landau-Lifshitz and Gilbert equations 
of motion for magnetisation and discuss their relative merits in modelling 
the damped gyromagnetic precession of magnetisation about an externally 
applied field. We find in favour of the Gilbert equation and proceed to con­
sider suitable numerical integration methods. The dynamics of a single-spin 
system are then investigated with discussions of how the damping param­
eter and the strength of the applied field influence the precession. Finally 
we introduce the notion of an effective field and show that inclusion of the 
anisotropy field term yields solutions of the Gilbert equation which agree 
exactly with Stoner-·wohlfarth theory. 
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2.1. GYROMAGNETIC PRECESSION. 

2.1 Gyromagnetic Precession. 

H 

µ 

e 

Figure 2.1: The Lannor precession. 

From section 1.1.2 we have 

dµ - = - ryµ X H 
dt 

where 

(2.1) 

(2.2) 

Solving this equation of motion for individual moments µ , gives infinitely 
precessional trajectories at constant angle 0 around the applied field as shown 
in figure 2.1. Notwithstanding thermal fluctuations t he frequency of the 
precession is given by the Larmor frequency 

2 .1.1 Measuring g. 

ry lHI 
21r 

gelHI 
41rmec 

(2.3) 

As mentioned in section 1.1.2, by considering the ratio of spin-angular mo­
mentum to orbital angular momentum we may establish whether a magnetic 
mom ent is due essentially to spin motion, orbit motion or a combination of 
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2.1 . GYROMAGNETIC PRECESSION. 

the two. This problem, like the problem of computing the Larmor frequency, 
reduces to the problem of measuring the Lande splitting factor g. This can 
be achieved in a number of ways, most common are two indirect methods 
which exploit the coupling of magnetic moment and angular momentum. 
Both indirect methods rely on a quantity known as the magnetomechanical 
factor g* 

1 1 
-+-=l. 
g g* 

(2.4) 

The Einstein-de Haas method involves inducing a rotation by magnetisation, 
conversely the Barret method involves inducing a magnetisation by rotation. 
Alternatively g may be measured directly using equation 2.3. 

Einstein-de Haas Method. 

A rod of the material in question may be suspended in an applied magnetic 
field, the field is then suddenly reversed. In consequence the atomic moments 
of the rod align accordingly. This results in corresponding re-alignment of the 
atomic angular momentum vectors which must be balanced by an opposite 
increase in the macroscopic angular momentum of the rod. This small angle 
of rotation which occurs upon reversal of the field may be measured and used 
to compute g in terms of g* . 

Barnett Method. 

Proceeding by rapidly rotating t he rod around its longitudinal axis in zero 
field produces the reciprocal effect. The angular momentum vectors align 
with the axis of rotation which causes a corresponding alignment of the mag­
netic moments. This manifests itself as an increased magnetisation compo­
nent along the axis of the rod. Again allowing g to be computed in terms of 
g*. 

Ferromagnetic Resonance. 

Direct measurement of g is made possible by equation 2.3. The sample 
is placed in a powerful constant applied field H cf and subject to a weak 
transverse field H af which alternates rapidly at frequency v . The precession 
of moments in the sample is primarily dependent on g and IHcfl, although 
energy is absorbed from H af . Slow variation of I H cf I and v allows the 
resonant frequency to be found. This is when the state of maximum energy 
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absorption is reached and v is equal to the frequency of precession. Using 
2.3 we have 

gelHctl 
V = Vr., = --~ 

4nmec 
(2.5) 

and so 

(2.6) 

This is known as the ferromagnetic resonance or FMR experiment. 

2.1.2 Precession of the Magnetisation. 

In our micromagnetic model we assume a continuum hypothesis, that is we 
assume that the magnetization or the net magnetic moment per unit volume 
is a continuous quantity which may be specified at any point in space. Sim­
ilarly we follow the assumpt ions of micromagnetic theory that all magnetic 
fields may be specified exactly at a point as the functional derivative of the 
Gibbs free energy with respect to the magnetization. Although we take ac­
count of atomistic effects, the atomic structure is not explicitly represented 
in the micromagnetic model. We therefore require an equation of motion 
which applies to magnetisation rather than to individual atomic moments. 
This presents no difficulty as the individual atomic moments appear on both 
sides of equation 2.1, we may therefore generalize to the magnetisation. For 
all lattice sites i in an elementary volume V we have 

dµi dt = -,µi X H ; i EV (2.7) 

we may then take the sum over all sites in V while still preserving the equality 

L ( dµi) = L (- 'Y µi X H) . 
i E \I dt iEV 

(2.8) 

Dividing both sides by the volume V we obtain the precession equation in 
terms of magnetisation 

~ dµ i 
L..i E\/ dt 

V 
d(L iEV µi/V) 

dt 

dM 
dt 

L iEV-,µi X H 
V 

-,(L µi/V) x H 
i EV 

-,M X H. 

(2.9) 
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We note here that this equation refers to the motion of magnetisation at 
a single point in space and no longer applies to the single atomic moment. 
All subsequent reference to a single-spin model refers to a single spin in this 
sense and not to a single atom model. 

... -. . . ) 
··-- •••• \ M •• H 

H 

M 

8 

Figure 2.2: Precession of magnetisation. 

2.2 Damped Gyromagnetic Precession. 

We have seen that magnetic moments will precess around an applied mag­
netic field H at the Lamour frequency if they are not subject to any other 
forces. Further that this relation ( equation 2. 7) generalizes to the magneti­
zation, provided that the applied field may be assumed to be homogeneous 
over each unit volume. However 2.9 implies that the magnetisation should 
precess eternally at a constant angle 0 around the field vector as shown in 
figure 2.2, this does not fully describe the macroscopically observed magnetic 
relaxation. If this were the case then the reversal of a magnetic bit by appli­
cation of a writ ing head field would be impossible and the hard disk in my 
computer would not be able to store this information. vVe know from experi­
ence that ferromagnetic moments do indeed align with an applied magnetic 
field and therefore must be subject to some action other than gyromagnetic 
precession. We may gain further insight by cautiously returning to the anal­
ogy with a spinning top. The top will precess around the direction of the 
gravitat ional field in the same way as an atomic moment around a magnetic 
field. However the top will eventually lose energy due to frictional forces and 
fall into alignment with the gravitational field. A similar mechanism is at 
work during the precession of the magnetic moment. To align with a mag­
netic field, a magnetic moment must lose or dissipate energy. This damping 
occurs through the spin-spin and spin-orbit interactions. However the pre-
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cise mechanism by which energy is dissipated during these interactions is not 
well understood. The damping mechanism has been interpreted essentially 
in three different ways. One interpretation is that energy is lost basically in 
the form of heat [3]. Others support the idea that damping represents a lag 
between the atomic interactions and the response time of the moments [10]. 
Finally damping may be seen as a result of thermal agitations. 

We feel that the real dissipation mechanism is probably a combination 
of a ll three of the above, in any case these interactions occur on a time and 
length scale that we cannot hope to model macroscopically. For the same 
reasons as we are forced to work with magnetisation rather than individual 
magnetic moments, we are forced to consider damping in a phenomenologi­
cally manner rather than in terms of the underlying physics. 

In deriving an equation of motion for damped magnetisation dynamics we 
note t hat any vector may be decomposed into three orthogonal basis vectors, 
for example 

(2.10) 

In the same way we may decompose the vector dM / dt into three orthogonal 
components in terms of M and H to give an equation of motion 

dM 
dt = aM + bM x H + cM x (M x H ) (2.11) 

these three terms are orthogonal by virtue of the vector product. As a conse­
quence of the fact that IM I must be conserved, a cannot be anything other 
than zero. To ensure that the undamped case is modelled effectively b is 
naturally given by -,, thereby recovering equation 2.9 when c = 0. 

2.2 .1 The Landau-Lifshitz Equation. 

Landau and Lifshitz were the first to suggest a model of damped gyro­
magnetic precession in 1935 [28]. Their method was to derive a damping term 
by linking the magnetic relaxation with the expected equilibrium, namely 
that the magnetization M will align with an applied external field H . As 
well as the precession term which follows from first principles they assumed 
that dM / dt should have a component which is perpendicular to both the 
current magnetization and the direction of the precession M x H as in 2.11. 
The vector perpendicular to both M and M x His simply M x (M x H ) 
as shown in figure 2.3. This component must be negative to ensure that the 
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M,,H 

H 

M 
9 

Figure 2.3: The Landau-Lifshitz damping mechanism. 

desired equilibrium is achieved. The phenomenological damping constant 
c = >,,j Nls is then introduced to give 

dM >,, - = -,(M x H ) - - (M x (M x H )). 
dt Ms 

(2.12) 

As shown by Kikuchi [34] and more recently by Mallinson [35] it is convenient 

M o.c:H 

dM fi:lt 

Figure 2.4: Spherical components of the Landau-Lifshitz equation. 

to visualize the solution of such equations on the surface of a sphere of radius 
IM I. Applying the cross-product right-hand rule to 2.12 we have two d-::{ 
components of ,(M x H ) and >,,(M x H ) in the azimuthal direction and 
the polar direction respectively. The azimuthal component corresponds to 
undamped precession and the polar component to alignment with the applied 
field as depicted in figure 2.4. With ).., = 0, dM / dt points in the azimuthal 
direction and we recover the precession equat ion 2.9. At small values of)..,, 
dM /dt acquires a polar component and the tip of the magnetisation vector 
takes a spiral path around the sphere until the magnetisation has aligned 
with the field. As ).., is increased the azimuthal component is unchanged. 
The increased polar component however results in both an increase in the 
magnitude of dM / dt and a more direct path around the sphere. With a 
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greater change in M for each increment of t ime dt, the alignment of the 
magnetisation with the applied field becomes faster with increased A. As 
can be seen from figure 2.5 there is no limiting behaviour and so ldM / dtl 
increases, and the time taken for M to align with H decreases, indefinitely 
with increased >-. 

M u H 

Figure 2.5: Asymptotic behaviour of the Landau-Lifshitz equation. 

2.2.2 The Gilbert Equation. 

-~ -).dM/dt) 

H 

M 

e 

Figure 2.6: The Gilbert damping mechanism. 

In 1955 Gilbert [36], in subtle contrast to Landau and Lifshitz, proposed 
that the relaxation of a magnetic moment should be linked to the energy 
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dM ,kit dM ,kit 

Figure 2.7: Precession and damping components of the Gilbert equation. 

dissipation of the system rather than the expected equilibrium. Although 
his approach is still a phenomenological one, it does highlight a marked 
difference in thinking. Gilbert asserted that the equation should model the 
physical behaviour of the system and not simply be tailored to arrive at 
the anticipated solution. To this end the Gilbert equation takes the form of 
the standard precession equation 2.9 with the field term H augmented by a 
damping term which is proportional to the rate of change of magnetisation 

dM >. dM 
dt = -1(M x (H - Ms dt)). (2.13) 

The magnitude of the field components in the cross product is then reduced. 
Damping is thus incorporated implicitly as the precession direction is no 
longer perpendicular to H. We may then write the Gilbert equation in its 
more familliar form with seperated precession and damping terms 

dM = -1(M x H ) + "fA (M x dM ). 
dt Ms dt 

(2.14) 

In the language of the Landau-Lifshitz equation, the damping term is now 
perpendicular to both t he magnetisation and the dynamic gradient of the 
magnetisation. The Gilbert damping constant is then written as a = "f A to 
give 

dM a dM 
dt = -1(M x H ) + !Vls (M x dt ). (2.15) 

We proceed as before and apply the cross-product right-hand rule to give two 
dM /dt components of 1(M x H ) and adM /dt in the azimuthal and polar 
directions respectively. Now in contrast to the Landau-Lifshitz equation, 
the Gilbert damping term contains both azimuthal and polar components 
and the damping mechanism is acting on the total resultant motion dM / dt 
of the magnetisation. For small a we see similar behaviour, but now as a 
increases past a critical value we see that the magnitude of dM / dt must 
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decrease to remain at right -angles to the damping term, see figure 2.7. As 
a result, in highly damped systems the magnetisation takes longer to align 
with the applied field. In agreement with Mallinson [35] we feel that this 
limit ing behaviour is more physically plausable t han t he sit uation implied by 
the Landau-Lifshitz equation. The possible situations arising from Gilbert 
damping are summarised in figure 2.8. 

=1 

Figure 2.8: Asymptotic behaviour of the Gilbert equation. 

2.2.3 The Landau-Lifshitz-Gilbert Equation. 

T he fact that the Landau-Lifshitz equation has dominated over the Gilbert 
equation in the literature until recently is due to computational efficiency 
rather t han physical plausability. The Landau-Lifshitz equation is, in a trivial 
sense, easier to solve than the Gilbert. This is due to the fact t hat dm/ dt 
appears in only t he left-hand side of t he equation as t he dependent variable. 
Although the right-hand side of the Gilbert equation poses no problem in 
general, if a pointwise solution is required, it is simpler to cast this equation 
in so called Landau-Lifshitz form; result ing in t he Landau-Lifshitz-Gilbert 
equation. If we take the vector product of M wit h both sides of 2.15 we 
have 

dM a dM 
M X dt = - 1(M X (M X H )) + Ms (M X (M X dt)) (2.16) 

Since the magnitude of the magnetisation is conserved M · dM / dt = 0. This 
together with t he vector identity 

Q X (Q X dQ ) = (Q · dQ )Q - IQl2dQ 
dt dt dt 

(2.17) 
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gives 

dM dM 
M x dt = -,y(M x (M x H )) - aM8 dt 

substitut ing back into the right-hand side of 2.15 we have 

dM 
dt 

(2.18) 

At this point many authors conclude that we have obtained the Landau­
Lifshitz equation from the Gilbert equation and that the two equations are 
therefore equivalent provided 

'YG 
'YL = l + o:2 

(2.20) 

and 

A - 'YGO: 
- 1 + 0:2 · 

(2.21) 

However we recall that 'Y represents the reciprocal of the gyromagnetic ratio, 
which is proport ional to the ratio of electron charge to electron mass. Equa­
tion 2.20 is therefore meaningless since a constant cannot be a function of 
itself. In the above derivation we may have shown that the two equations 
belong to the same family of damped gyromagnetic precession equations as 
explained by Podio-Guidugli [37] , however the proviso shows that they are 
not at all equivalent. To quote Mallinson [35] "The arguement that, with 
appropriate substitutions of the constants, the two forms are equivalent is a 
sophism; they express different physics." Indeed an extra line of reasoning in 
the above such as "But 'YL = 'Ya = 'Y = ~2 e . " constitutes a proof by contra-m. c 
diction that the Gilbert and Landau-Lifshitz equations are distinct, excepting 
the case of zero damping of course where a = 0 implies that 'YL = 'YG and 
,\ = 0. 
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2.2.4 Discussion. 

We have shown that due to the physical meaningfulness of the parameters 
involved that the Landau-Lifshitz and Gilbert equations are not equivalent, 
either mathematically or physically. 

The difference lies in the fact that Gilbert takes his damping term to be 
perpendicular to the left-hand side of the precession equation 2.9 whereas 
Landau and Lifshitz take theirs from the right-hand side. Once the right­
hand side is augmented by the damping term, these two approaches are 
no longer equivalent except in the case of zero damping. In the Gilbert 
equation dM / dt is damped in a self-consistent manner. In the Landau­
Lifshitz equation however, t he M x H which is present in the damping term 
is no longer equivalent to dM / dt . 

Considering the Landau-Lifshitz-Gilbert form of the Gilbert equation we 
again see that in the Gilbert formalism the damping parameter influences 
the precession term as well as the dissipation term. This is not the case with 
the Landau-Lifshitz formalism. 

We also reinforce the point that the Landau-Lifshitz equation is only 
truely valid for the case of zero damping and it 's use for a damping parameter 
of ,\ < 1 which is assumed to be acceptable by many authors, is not in 
fact physically acceptable. Due to the non-linear behaviour of the system 
under consideration we therefore conclude that t he Gilbert equation is to be 
preferred in all circumstances. 

It has often been commented that these two equations are not the only 
members of the family [34], [35] . The semi-circle in figure 2.8 could be re­
placed by many concievable curves, and among them there are many which 
would give the desired limiting behaviour of the Gilbert equation, such as the 
parabola mentioned by Mallinson [35] . It has also been shown [37] that the 
standard Gilbert equation incorporates only relativistic dissipation, while a 
generalized form of the equation may be derived to incorporate exchange dis­
sipation [38], dry-friction dissipation [39] and others. However in light of the 
fact that very litt le experimental evidence exists to verify such formalisms we 
opt to model magnetisat ion dynamics using the standard Gilbert equation, 
with other phenomenon incorporated via the standard effective field method 
of dynamic micromagnetics. 
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2.3 Numerical Integration Schemes. 

If no spatial derivatives are present in the expression of magnetic field, t hen 
the Gilbert equation is in fact a system of three coupled ordinary differential 
equations (ODE's) for the three components of M. We first consider the 
variation of a scalar variable x with respect to independent variable t 

dx 
dt = f(t , x) . (2.22) 

In general, numerical methods of solving such equations divide the domain of 
x into finite sections 6.t . In dynamic systems these correspond to increments 
of t ime from some time t0 which is considered as the origin. The existence 
and uniqueness of solutions for such initial value problems is well established 
[43]. If we wish to solve for x over some fixed time interval t0 to t1, then 
a finite element or finite difference method is appropriate. In that case we 
would use our knowledge of the relation between xi and xi+1 in terms of ti 
and ti+1 to form an equation for each increment or element 6.t and solve 
the resulting global matrix equation subject to suitable condit ions at t0 and 
t1 ; this is known as a boundary value problem. In predictive simulations 
however, were x at t1 is unknown, this method cannot be applied in a straight­
forward way. Indeed in our work we have no knowledge of where t 1 will 
fall on the t-axis. Rather we use our knowledge of the function J(t, x) to 
make an approximation of xi+1 from the known value of Xi, starting at some 
initial state x0 = x(t0 ) we iterate until t he system reaches equilibrium, i.e. 
Xi+l = Xi- In practice we iterate unt il our given tolerence E is reached 

(2.23) 

This is known as an initial value problem. We now discuss some elementary 
solution schemes in the general case. 

2.3.1 The Euler Method. 

Considering the graph of x(t) in 2.9 we see that over the interval 6.t we may 
approximate the gradient of the tangent to x (t) by the gradient of t he line 
connecting (ti , xi) and (ti+1 , xi+1), that is 

dx 6.x (xi+1 - Xi) 
dt ~ 6.t = (ti+l - ti) 

We see by the definition of a derivative 

dx = lim 6.x 
dt 6.HO 6.t 

(2.24) 

(2.25) 
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Figure 2.9: The tanget at ti and the chord (ti, xi) to (ti+l, xi+1) 

that this approximation converges to the true derivative with decreasing 6..t. 
We may now use these facts to give an approximation for xi+1 

dx (xi+1 - xi) 
dt ~ 6..t (2.26) 

implies that 

(2.27) 

and so 

(2.28) 

So starting with x = Xi at t = ti, we assume that over the t ime increment 6..t, 
x will be incremented by 6..tj(ti, xi) - T his is the simplest form of numerical 
integration known as t he forward or explicit Euler method. Graphically we 
can see that there is some discretization error. In figure 2.10 (a) t he shaded 
area corresponds to the exact area under the curve f (t, x). T his solution 
may be obtained by integration 

1x i+i dx = t i+' f (t, x)dt 
Xi lti 

(2.29) 
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l t;+i J(t , x)dt 

xi+ lt;+i f (t, x)dt 

I 

I I 
(c) 

Figure 2.10: (a) The t rue integral of J(t, x), (b) The forward Euler approxi­
mation, ( c) halving the time-step and ( d) further refinement . 

In figure 2.10 (b) we see that in general t he approximation under-estimates 
the area under f ( t, x) between ti and ti+l for an increasing function f. How­
ever this method is very cheap computationally and upon halving 6.t as in 
figure 2.10 (c) the error is greatly reduced. With further refinement (d) we 
may achieve an arbitrarily close approximation. Fine discretization is of­
ten only required in those areas where the solution is varying rapidly. The 
placing of mesh points in order to obtain an optimal solution for a given 
computational cost is in general a non-trivial task and is currently a very 
active field of research [40]. 

2.3.2 Improved Euler Methods. 

Taking a second look at exact solution 2.29 we see that in principle it was an 
arbitrary choice to take f ( t, x) = f (ti, Xi) as this is no more likely to reflect 
the mean derivative over the interval than the value of f at any other point t . 
In practice the value of the function is taken at this point because we already 
know the value of f at (xi, ti)- We may have chosen to take our value off 
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Figure 2.11: The backward Euler method. 

at time ti+i to give the approximation 

1
t;+1 

Xi+1 = Xi+ J(t, x)dt 
t; 

(2.30) 

Xi+l ~ Xi+ 6-tj(ti+l , Xi+I) 

This scheme is known as the implicit or backward Euler method and as 
can be seen from figure 2.11, makes an over estimate of the integral for 
an increasing function f. This is known as an implicit scheme since the 
unknown xi+1 is present on both the left-hand side and the right-hand side 
of the approximation. In general implicit schemes have the advantage of 
increased numerical stability at the expense of greater computational effort 
in evaluating xi+1 on t he right-hand side. We may however use an explicit 
Euler scheme to obtain an estimate of xi+1 on the right-hand side. So we 
may predict that 

(2.31) 

and then correct using 

(2 .32) 

This is a basic example of a predictor-corrector scheme known as the Heun 
method, more advanced predictor-corrector schemes [41] are often used in 
dynamic micromagnetic simulations [33], [42] . From figure 2.12 we see that 
a much better approximation can clearly be achieved by using a trapezoid 
rather than a rectangular area as shown in figure 2.12 

t i+! 6-t ( ) lt; J(t, x)dt ~ 2 J(xi, ti)+ J(ti+I, xi+1) . (2 .33) 

This leads to a scheme known as the improved Euler, trapezoidal or midpoint 
rule 

(2.34) 
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This method can be thought of as giving a better average of the function 

Figure 2.12: The improved Euler method. 

x over the interval and indeed gives the true mean for a linear function. 
As with the implicit Euler scheme a Heun method can be used to evaluate 
the implicit cont ribution. We shall return to the problem of evaluating the 
implicit Xi+1 term in chapter 6. 

2.3.3 Runge-Kutta Methods. 

We now take a more rigorous perspective on the problem. Let x(t) be the 
exact solution of the init ial value problem 

dx 
dt 

x(to) 

f ( t, X) 

Xo 

and take the Taylor series for x (t) about the point ti 

x(t) = x (ti) + b.tx' (ti) + b.t x" (ti) + ... 
f:l tP ... + - , x(Pl(ti) + O(b.tP+l) 
p. 

(2.35) 

(2.36) 

(2.37) 

where b.t = t - ti · Truncating the Taylor series after the linear term in b.t 
we have 

(2.38) 

Since x(t) is known to satisfy the initial value problem we recover the forward 
Euler approximation 

(2.39) 
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From this perspective we see that we have incurred a truncation error of 
0(6.t2

) , further we see that we may reduce this error by taking more terms 
from the Taylor series. For example truncating after the second order term 
we have 

and since we know x'(ti) = J(ti,xi), we have x"(ti) = f'(ti,xi) to give 

6.t2 
Xi+l ~ Xi+ 6.tj(ti, Xi)+ 2 J'(ti, Xi ) 

(2.40) 

(2.41) 

with error 0(6.t3) and so on. So we may construct Taylor methods as a gen­
eralization of the Euler method to arbitrary order p with rate of convergence 
Q(6,tP+l ). 

(2.42) 

(2.43) 

High order schemes using this method soon become cumbersome as t he pth 

derivatives of f must be computed at each time-step. To obtain higher order 
methods with less complexity we note that 2.41 may be said to have the form 

(2.44) 

where F depends on the order of approximation p. To find an approximation 
scheme with convergence 0(6.tP+l ) it is sufficient to find F such that its 
Taylor expansion agrees with that of the Taylor method of order pas 6.t ➔ 0. 
In general this may be achieved without the use of derivatives of the function 
f and such schemes are known as Runge-Kutta methods. For example to 
obtain a second order method we may choose F such that 

F(t, x ; 6.t) = J(t + o:6.t, x(t) + {36.tj(t, x )) (2.45) 

where a and f3 are chosen so that 2.44 converges at 0(6.t3) . We therefore 
require that its Taylor expansion agrees with that of the Taylor method of 
order 2. This may be achieved with a= f3 = 1/2 [41] to give 

6.t 6.t 
Xi+l = Xi+ 6.tj(ti + 2 , Xi+ 2 f(t, x)) (2.46) 

This is also a form of midpoint method which reduces to the improved Euler 
method when J is linear. The fourth order Runge-Kutta method may be 
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derived in a similar manner by working with the Taylor method of order 4 
to give 

(2.47) 

where 

!:itf (t , x) (2 .48) 

!:it K1 
6 tj(t+ 2 ,x+ 2 ) 

!:it K2 
f':itf(t+ 2 ,x+ 2 ) 
f':itf (t + !:it, X + K3). 
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2.4- A SINGLE SPIN SYSTEM. 

2.4 A Single Spin System. 

We now develop a simple integration scheme for the Gilbert equat ion at a 
single point in space. To simplify matters we will neglect exchange and mag­
netostatic energy in the first instance and consider only the effects of an ex­
ternally applied field and anisotropy energy; thus removing spatial variation 
from the effective magnetic field. Alternatively the results of this section can 
be thought of as referring to the magnetisation of a single domain spherical 
particle. This essentially bestows dynamic visualization upon the Stoner­
\ t\Tohlfarth model. The anisotropy term is incorporated into the model using 
the effective magnetic field 

H eff = (2.49) 

2 .4.1 Reduced Units. 

We have developed the assumption that magnetisation is identical at all 
points of a homogeneous medium and that changes in macroscopic magnetisa­
tion occur via in changes in direction and not via changes in magnitude of t he 
local magnetisation. To remove the magnitude from consideration entirely 
we work in reduced units. This simplifies the definition of the problem and 
presents the equations in a more suitable format for computer programming. 
We re-scale the magnetisation in terms of the saturation magnetisation, we 
may then talk of magnetisation in arbitrary units or reduced magnetisation 

M 
m = Ms. 

Substituting H = H eff and M = Msm into 2.15 we have 

dm aM; dm 
M sdt = - 11Vl5 (m x H eJJ) + Ms (m X dt) 

dm dm 
dt = - ,(m x H en)+ a(m x dt). 

Dividing by I we have 

dm dm 
- - = -(mx H en)+a(m x--) . 
dt dt 

(2.50) 

(2.51) 

(2.52) 
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where dt = 1dt is a reduced t ime increment . In terms of fi the effective field 
is now given by 

H 21{ ( A)A H 
ef J = Ms fi . e e + z. (2.53) 

Finally we divide 2.52 by t he anisotropy field strength Hk = 2I< / M s which 
may then be given in terms of the reduced effective field 

h ( A) A H z 
e ff = fi. e e + Hk . (2.54) 

T he Gilbert equation may then be written in dimensionless form as 

dfi dfi 
dT = -(fi x h eJJ) + a(fi x dT ). (2.55) 

where dT = ,dtHk is now the reduced t ime increment . Similarly the reduced 
Landau-Lifshitz-Gilbert equation may be writ ten as 

dfi 1 a 
--2 (fi X heJJ) + 2 (fi X (fi X heJJ) ). 
l+ a l +a dT 

(2.56) 

2.4.2 Numerical Solution. 

We now apply an explicit Euler m ethod to the solut ion of t he Landau­
Lifshitz-Gilbert equation. The left-hand side of 2.56 is approximated by 

dfi fit+1 - fit 

dT 6.T 
(2.57) 

where the superscripts t and t + l refer t o the st art and end points of 6.T, the 
time-step in reduced time or simulation t ime T . Simulation time is conver ted 
t o real time in seconds by the formula 

6.T , Hk6.t (2.58) 

6.t 
6.T 
--
, Hk 

t 
T 6.T 

, Hk 

where T is the number of time-steps taken. The right-hand side of 2.56 is 
approximat ed over the interval [Tt, Tt+l] by its value at Tt giving the dis­
cretization 

fit+l - fit 

6.T 
1 ( t t ) a ( t t t )) 

_1 _+_a_2 fi x h ef J + l + a2 fi x ( fi x h ef J (2.59) 

fi t+l ( 
1 ( t t ) a ( t t t ) )) fit+ 6.T - 2 fi X h eff + 2 fi x (fi x h eff . 

l +a l +a 
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2.4. A SINGLE SPIN SYSTEM. 

Starting with some initial magnetisation state m 0 we may evolve the system 
for a given time period or until equilibrium is reached 

lmt+l - mtl 
6 7 < E. (2.60) 

At this stage to ensure that 1ml = 1 is conserved we must renormalize m to 
a unit vector at every time-step 

2.4.3 The Gilbert Damping Mechanism. 

_ o,,1.0 
- o,,0.1 
_ a.=10.0 

D {s•i 

(2.61) 

Figure 2.13: Magnetisation trajectories for a < 1, a= 1 and a > 1. 

To illustrate the damping mechanism we iterate 2.59 until lmt+1- mtl/ 6 7 < 
10- 5 with initial magnetisation m 0 = (0, 0, 1) , reduced external field h z = 
(0, 0, -1) and easy axis e = (1/v'2, 0, 1/v'2). This results in a reversal of the 
magnetisation wit h the trajectory and t herefore the switching time depen­
dent on t he damping parameter a . In figure 2.13 the t rajectories are plotted 
on t he surface of the unit sphere. For a < 1 gyromagnetic precession domi­
nates the reversal resulting in a large switching t ime. For a= 1 the damping 
has more effect and t he path to equilibrium is more direct. Finally for a > 1 
the path takes a geodesic across the sphere. This seems at odds with our 
earlier analysis which predicted that as a increased above unity the switching 
time should increase. However we recall that in this regime the magnitude 
of dm / dt becomes very small. Consequently, although the trajectory takes 
a shorter route across the sphere, it is composed of many very much smaller 
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increments. Switching time versus o: for this system is plotted in figure 2.14, 
confirming that o: = 1 gives the minimum switching time in agreement with 
Mallinson [35] and the much earlier work by Kikuchi [34]. 

0.9 
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i 0.7 

~ k o.• 

! 0.5 

.! 04 
~ . 
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0.1 

10' 10' 

Cl. 

Figure 2.14: Switching t ime versus o:. 

2.4.4 Field Strength Dependence of the Precession. 

e" o 

-­_,,L_-~,,---=~, ====,:c_, ==_J 
lh, l 

Figure 2.15: Equilibrium magnetisation versus lhzl• 

One suprising result of the single spin model is that for an isotropic sys­
tem , any applied field of finite magnitude is sufficient to switch the mag­
netisation. Although the switching time will vary according to lhzl, the 
traj ectory of the magnetisation vector is invariant for given material param­
eters. In the more realistic anisotropic system an energy barrier is created 
by the anisotropy energy and only an applied field of lhz I ~ 0.5 is suffi­
cient to switch t he magnetisation for the system described in section 2.4.3. 
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This is illustrated in figure 2. 15, clearly lhzl ~ 0.5 results in an equilibrium 
magnetisation which may be regarded as reversed. Figure 2.16 shows the 
corresponding switching times. 

3.5 

\ 0 2 0 4 0.6 Oji 1 1.2 1 4 ,, 1.8 

lh,I 

Figure 2.16: Switching time versus lhzl• 

2.4.5 Anisotropy Induced Hysteresis. 

. . 

Figure 2.17: Hysteresis simulations for a single spin. 

The height of the energy barrier depends of the orientation of magneti­
sation with respect to the easy-axis e. This results in hysteresis and as can 
be seen from figure 2.17 this model may used to generate hysteresis loops 
which are in exact agreement with the Stoner-Wolhfarth model. We will dis­
cuss the energy barrier further in chapter 7 in relation to finite temperature 
dynamics. 
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Chapter 3 

Finite Element Discretisation. 

This chapter will be devoted to the development of our finite element model 
of magnetization dynamics. We have considered the numerical integration 
with respect to time or the temporal discretisation in the previous chapter; 
we now consider spatial resolution of the system. We give a brief discusion of 
finite element analysis in general. The derivation of the magnetostatic field 
as a magnetic scalar potential is then described, followed by details of the 
finite element solution. We then proceed with the Galerkin formulation of 
the Gilbert equation which leads to our numerical model of magnetisation 
dynamics. Finally technical aspects of the solver are discussed. 
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R 

6R 

Figure 3.1: Discretisation of the problem domain. 

3.1 Finite Element Analysis. 

This section will serve as an introduction to the variational finite element 
t echniques that we shall employ in the subsequent development of our mi­
cromagnetic model. The finite element method was first developed to solve 
problems in structural engineering in t he 1950's and 60's. The region of in­
terest was subdivided into a finite set of components or finite elements which 
were connected by a set of nodes. The structural behavior was considered in 
each of these elements independently and then the over-all equilibrium equa­
tions were assembled. This was the first step in approximating an infinite 
dimensional problem with a finite dimensional problem or discrete problem 
with essentially the same properties. The analysis was based on the theory 
of minimum potential energy. From its origins in structural mechanics the 
finite element method was rapidly developed into a rigorous mathematical 
tool for the solution of field problems by piecewise discretization of variational 
methods. The method may be summarized as follows. A set of functions w 
must be identified which are both sufficient ly differentiable and satisfy any 
boundary conditions of the problem. A so called n-term solution <Pn is then 
sought of the form 

n 

<Pn = L C(lPi (3.1) 
i=l 

where '1/;i E W and then parameters Ci are to be determined. The domain of 
the problem is divided into simple sub-domains or elements as shown in figure 
3.1. Each element then has its own set of trial functions W which are the 
restriction of the global trial funcntions and the global solution is simply the 
sum of the local solutions. In finite element literature t he trial functions may 
be referred to as basis functions, test functions, shape functions, interpolation 
functions or may be interpreted as local coordinates depending on context 
and the variational method under discussion. We will use the term shape 
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function throughout the rest of this thesis as this intuitively describes their 
role in controlling the functional form of the solut ion. 

3.1.1 The Galerkin Method. 

The Galerkin method is one of a family of methods known as the minimum 
residual methods. For self-adjoint elliptic partial differential equations such 
as the Poisson equation it is equivalent to the Rayleigh-Ritz method which 
seeks to find a solution as the minimum of a corresponding energy functional. 
The Galerkin method is however more general and may also be applied to 
problems in which no such functional exists. Consider the boundary value 
problem specified by 

Lcp = f; ( x, y, z ) E R (3.2) 

where L is a differential operator on ¢ and f = f (x, y, z) is a function of 
position with ¢ subject to suitable conditions at the boundary of the region 
aR. In general an approximation will not satisfy 3.2 exactly; the distance 
between the approximate solution ¢ and t he exact solution ¢0 is formally 
defined as the residual r( ¢) associated with the approximate solution ¢. 

r(¢) = L¢- f 

and naturally for the exact solution we have 

r (¢o) L¢o - f 
o. 

(3.3) 

(3.4) 

To minimize the residual we take the orthogonal-projection or L2-projection 
[43] onto our chosen set of shape functions 'I/Ji 

( r(cp)'l/Ji dV = O; i = 1,n. JR 
Then assuming a solution of the form 3.1 we have 

l (L¢- !)'I/Ji dV 0 

l (L</J)'l/Ji dV l f 'l/Ji dV 

1 (L t Cj'lpj) 'l/Ji dV 
R j=l 

l f 'l/Ji dV 

t Cj 1 (L'l/Jj )'l/Ji dV 
j=l R 

l f'l/Ji dV 

(3.5) 

(3.6) 
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A 

l,,.;l 

LB;Q 

p 

F igure 3.2: One dimensional finite element. 

B 

l,,.;Q 

Ls;l 

t his gives a system of n linear algebraic equations for then unknown param­
eters Cj. The solution of which gives the minimum residual for a given set of 
shape functions \JI = 'l/J1 , .. , 'l/Jn satisfying the necessary boundary conditions. 
T he essence of the method is t hat we may solve a partial different ial equation 
simply by performing the differential operator L on a set of functions which 
may be chosen to be easily different iable. The integrations in 3.6 may then 
be performed numerically if necessary. The problem of integrating the op­
erator L has thus been reduced to the problem of solving a system of linear 
algebraic equations. Within a finite element context the shape functions are 
chosen to be interpolatory over each element so that 'l/Jf takes the value of 
unity at node i of element e and zero elsewhere i. e. 'lj;f(xj, yj, zj) = 6ij · The 
values of the Cj then correspond to the local values of cp at each node j. In 
practice each element of t he mesh is mapped to a simple parent cell so that 
the shape functions take the same form over each element. The solution may 
then be written simply as 

(3.7) 
e 

where 

(3.8) 

3 .1.2 Simplex Shape Functions. 

Consider the point Pon line AB of figure 3.2. This line is a one dimensional 
simplex. It is often the case that we are not interested in the coordinate of 
P with respect to an origin but merely in specifying it's position on the line 
relative to the vertices A and B. This may be accomplished with the use of 
two local coordinates LA and L 8 defined as 

LA 
p(P, B) (XB - Xp) 

(3.9) 
p(A, B) (XB - XA) 

Ls 
p(A, P ) (Xp - XA) 
p(A, B) (xs - XA) · 
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Al 

Figure 3.3: Two dimensional finite element. 

These are clearly equivalent to the coefficients of Lagrange's linear interpo­
lating polynomial [ 41], [ 44], [ 45] and may therefore be used to interpolate 
over AB. We also note that the functions are linearly dependent 

L L 
_ p(A, P) + p(B, P) _ 

A + B - p(A, B) - 1. (3.10) 

A two dimensional simplex is a triangle 123 as shown in figure 3.3. Again 
we may specify the location of a point P within the triangle relative to its 
vertices as P ( L1, L2, L3), where 

L1 
A1 

(3.11) -
A 

L2 
A2 

(3.12) -

A 

L3 
A3 

(3.13) -
A 

here Ai are the areas of triangles P jk , where j, k are the nodes j, k =I= i and 
A is the area of the whole triangle. As in the one dimensional case these 
simplex coordinates are interpolatory and linearly dependent 

(3.14) 
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L L L _ A1 + A2 + A3 _ 1 1+ 2+ 3- A - · 

The relations to the global cartesian coordinates however are now more com­
plex. Over the t riangle 123 we have 

1 L1 + L2 + L3 (3 .15) 

X L1X1 + L2X2 + L 3X3 

y L1Y1 + L2Y2 + L3y3 

or in matrix form 

U) U, 1 :, ) u:) X2 (3 .16) 

Y1 Y2 Y3 L3 
X C L 

L c-1x 
' 

which gives 

Li= 
ai + bix + CiY 

(3.17) 
2A 

where 2A is equal to twice t he area of the triangle and is given by the deter­
minant of the coefficient matrix C . The ai,bi,ci are given by its cofactors 

1 1 1 
2A X1 X2 X3 (3.18) 

Y1 Y2 Y3 
ai XjYk - XkYJ, 

bi Yj - Yk, 

Ci Xk - Xj 

where i, j, k is a cyclic permutation of 1, 2, 3. Finally, a three dimensional 
simplex is the tetrahedron 1234 as shown in figure 3.4. The location of a 
point P wit hin the tetrahedron relative to it's vertices may be specified as 
P (L 1, L2, L3,L4 ) where 

L1 ½ (3.19) -
V 

L2 
V2 
-
V 

L3 
Vi 
-
V 

L4 
Vi 
-
V 
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4 

2 

Figure 3.4: Three dimensional finite element. 

Again these are interpolatory and linearly dependent 

Li (xi, Yi) 

L L L L - Vi+Vi+Vi+¼ 1+ 2+ a+ 4- V 1. 

3 

(3.20) 

The relations to cartesian coordinates are a generalization of the lower di­
mensional cases 

L _ ai + bix + CiY + di z 
i - 6V (3.21) 

Here the determinant 6V is equal to six t imes the volume of the tetrahedron 
and the aiA,ci,di are again given by the cofactors of the coefficient matrix 

1 1 1 1 

6V = 
X1 X2 X3 X4 (3.22) 
Y1 Y2 Y3 Y4 

Z1 Z2 Z3 Z4 

Xi Yi zi 1 Yi Zj 
ai = Xk Yk Zk bi= - 1 Yk Zk 

Xt Yt Z/ 1 Yl Z/ 

X· J 1 Z· J X· J Yi 1 
Ci= - Xk 1 Zk di = - Xk Yk 1 

Xt 1 Zt Xt Yt 1 
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where the i, j, k, l are not a cyclic permutation of 1, 2, 3, 4 as is quoted by 
many authors. For given i, the j, k, l are any consistent ordering of the other 
3 t hree vertices looking through t he tetrahedron from vertex i. We adopt 
a right-hand convention which results in an anticlockwise ordering. This is 
important as the direction of the ordering dictates the direction of the normal 
vector to each surface of the tetrahedron. 

The simplex coordinates derived above are clearly equivalent to Lagrangian 
interpolation polynomials of order 1 [41], [44] [45]. They also form a linearly 
dependent basis for the discrete function spaces given by splitting the prob­
lem domain into the corresponding line, triangle or tetrahedron elements. 
Moreover t hey are easily differentiated and enable straight forward integra­
t ion over each element. They are therefore identified as suitable linear shape 
functions for our purposes. We now concentrate on the tetrahedron as t his 
will be used as the standard parent element in most of our subsequent work. 
Analogous results are given for triangle elements in the introductory text on 
the finite element method by A. J. Davies [46]. Partial derivatives of the 
shape functions are given by 

fJLi bi 
(3.23) - -ax 6V 

[)Li Ci 
-
[)y 6V 
fJLi di 

-
[)z 6V 

Integrations over each element are likewise straight-forward to perform using 
the integral formula [46] 

1 6Vm!n !p!q! 

V 
L7: L~ L~L~ dV = -------- . 

(m+n+p+q+3)! 
(3.24) 

Since integrals may usually be reformulated so that only products of shape 
functions or their derivatives appear in the integrand; they may be evaluated 
analytically using 3.24 in almost all circumstances. 

{ 8¢ dV 
lv ax 

4 r I: aLi<l>i dv 
lv. ax 

i = l 

(3.25) 

(3.26) 
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Alternatively numerical quadrature can be used in all cases [47], [48]. Second 

4 

3 

8 9 le=l/: 

-•--
7 

6 

Figure 3.5: Second order two dimensional finite element. 

order or quadratic elements are easily generated in terms of the linear ele­
ments by considering nodes at the mid-side of each edge of the tetrahedron 
and noting that the linear shape functions corresponding to adjacent corner 
nodes are equal to 1/2 there, as shown in figure 3.5. Suitable quadratic shape 
functions are then given by 

(3.27) 

where _j ,k are adjacent corner nodes to mid-side node i . Partial derivatives 
are given by 

8Ni 
ox 
oNi 
oy 

8Ni 
oz 

(3.28) 
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and 

(3.29) 

i = 5, .. , 10. 
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Figure 3.6: The iron filings experiment. 

3.2 The Magnetostatic Field. 

The magnetostatic field or self-demagnetizing field results from the classical 
interaction between magnetic dipoles. Famously the field can be visualized 
by sprinkling iron fillings around a saturated and hence polarized ferromag­
net. As shown in figure 3.6 the filings align with the field lines exterior to 
the magnet to form a characteristic pattern. The interior of the magnet 
experiences a field which is directly opposed to the direction of magnetisa­
tion in most circumstances. However the field is highly geometry dependent . 
Boundary features such as holes or corners can have a strong effect on the 
configuration of field lines. Indeed for some geometries such as a re-ent rant 
corner the field develops a singularity [49]. In this section we shall apply 
the theory outlined in section 3.1 to describe our finite element solution of 
the magnetostatic problem. We first formulate the problem as a magnetic 
scalar potential necessitating the solut ion of Poisson's equation. We then 
describe the Galerkin projection of the Poisson equation in general followed 
by relevent modifications to the case in point. 
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3.2.1 Scalar Potential Formulation. 

The field may be calculated using ab initio calculations of t he interactions 
between atomic moments [12], however within our continuum model it is 
more straight forward to apply Maxwell's equations 1.35. In the absence of 
electric fields E and free currents J we have simply 

(3.30) 

and 

V x H = 0. (3.31) 

Wit h zero Zeeman energy t he magnetic field consists solely of the magneto­
static field H = H d· vVe may therefore define the magnetic scalar potential 
¢> such that 

(3.32) 

where H d is a general solution of 3.31. Recalling that t he magnetic flux 
density is given by 

B = H + 41rM (3.33) 

and substituting into 3.30 we see that ¢> must satisfy Poisson 's equation 

V · (Hd + 41rM ) 

V · ( ( - V ¢>) + 41r M ) 
V ·(-V</>) 

0 

0 

- V · (41rM ) 

V 2¢> 41rV · M . 

(3.34) 

Naturally in the region exterior to the magnetic body where M = 0, ¢> 
satisfies Laplace's equation 

(3.35) 

To ensure continuity, so called jump conditions must be enforced at the inter­
face between magnetic and non-magnetic regions. Finally the potent ial must 
be bounded at infinity. So for a bounded magnetic region D int surrounded 
by an exterior non-magnetic region D ext wit h interface on having outward 
normal ft ; the problem can be stated by the following set of equations 

V 2¢> 41rV · M ; (x, y, z) E D int (3.36) 

V2¢> O; (x, y, z) E D ext 

O</>int O</>ext --- --on on 41r M · n; (x , y, z) E on 
</>int </>ext ; ( X, Y, Z) E oD, 

¢> ➔ O; X ➔ oo, y ➔ oo, z ➔ oo. 
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3.2.2 Galerkin Projection of the Poisson Equation. 

The Poisson equation 

(3.37) 

is a self-adjoint and positive-definite elliptic partial differential equation and 
as such, together with suitable conditions at the domain boundary 8R, can 
be shown to have a unique solut ion [46], [47], [48]. This is due to the fact that 
the positive-definite form has a single minimum. The boundary conditions 
usually fall into one of three categories; either 

the Dirichlet type 

¢ = f (s), (3.38) 

the Neumann type 

8¢ an = g(s), (3.39) 

or the mixed type 

8¢ an + CJ(s)</> = h(s) (3.40) 

where s is the length along 8R from some fixed point on 8R and 8 / 8n is the 
partial derivative along the outward normal to 8R. For an elliptic operator 
such as v72 , t he problem is said to be properly posed if only one type of 
condition holds at each point along 8R. In our subsequent work we will 
consider only the homogeneous form of the Dirichlet condition ¢ = 0 at the 
exterior mesh boundary. Putting L = v72 into equation 3.6 the Galerkin 
projection onto the shape functions 'I/Ji is given by 

l (v72¢ - f) 'l/Ji dV 

l (v72¢)'!/Ji dV 

0 

l 'l/Jd dV; i = l, n. 

Using Green's theorem [43], [46] we have 

(3.41) 
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The shape functions 'l/Ji are chosen to satisfy the homogeneous Dirichlet 
boundary conditions so that the boundary integral in 3.42 vanishes. Sub­
stituting back into the Galerkin projection we have 

(3.43) 

The integration may then be performed separaley over each element e where 
the 'l/Ji are the quadratic shape functions Nt and ¢> takes the form 

10 

c/>e = L NJc/>j 
j=l 

so for every node i E e we have 

10 -!. (V N;' · V(; Nj</>;) dV 

i= c/>j 1 '\J Nt · '\J NJ dV 
j = l R 

or in matrix form 

where 

and 

ft = lfNt dV. 

l JNie dV 

lfNt dV 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

For historical reasons k e is known as the element stiffness matrix and r is 
known as the element force vector. The solution over the whole of R is then 
obtained by accumulating these equations over all elements e to form the 
global matrix equation 

K¢, = F. (3.50) 

Here we list some properties of K that apply to all such formulations. 
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• K is a sparsely populated matrix. Kij is only non-zero if nodes i and 
j are connected in the finite element mesh. 

• K is symmetric. The relation or stiffness between nodes i and j is the 
same as the stiffness between j and i> therefore Kij = K ji · 

• If the differential operator of the problem is positive definite t hen, as­
suming properly posed boundary condit ions) K is a positive definite 
matrix. 

We now obtain a closed form expression for the integral 3.48 The element 
stiffness matrix for t he t hree dimensional Poisson problem may be expressed 
as 

(3.51) 

where 
a 

( 
ag ) a= 8g (Ni, ... , Nio)-

az 
Using t he relation Li+ L2 + L3 + L4 = 1, a factorization of a may be found 
by inspection such that 

where 

and 

B = 

3bi 
- bi 
-bi 
-bi 
3ci 
-Ci 
-Ci 
-Ci 
3di 
-di 
-di 
-di 

- b2 
3b2 
-b2 
-b2 
-C2 
3c2 
-C2 
-C2 
- d2 
3d2 
-d2 
-d2 

- b3 
- b3 
3b3 
-b3 
-C3 
- C3 
3c3 
-C3 
-d3 
-d3 
3d3 
-d3 

1 
a = -wB 

6V 

0 0 0 0 
Li L2 L3 L4 
0 0 0 0 

-b4 4b2 
- b4 4bi 
-b4 0 
3b4 0 
-C4 4c2 
-C4 4Ci 
- C4 0 
3c4 0 
-d4 4d2 
- d4 4di 
-d4 0 
3d4 0 

0 4b3 4b4 0 0 
4b3 0 0 4b4 0 
4b2 4bi O O 4b4 
0 0 4bi 4b2 4b3 
0 4c3 4c4 0 0 

4c3 0 0 4c4 0 
4c2 4ci O O 4c4 
0 0 4ci 4c2 4c3 
0 4d3 4d4 0 0 

4d3 O O 4d4 O 
4d2 4di O O 4d4 
O O 4di 4d2 4d3 

(3.52) 
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To give 

(3.53) 

Integration of w T w may now be performed using the formula 3.24 to give 

1 wTw dV = ( ~ 0 1) = D A 
\/• 0 0 

where 

A = Ve 
1 1 

D 
2 1 

20 1 1 2 
1 1 1 

So ke is given by 

e l T 
k = 35v2 B DB. (3.54) 

To test our Poisson solver we compare our solution for the boundary value 
problem over the unit cube with that given by the NAG routine D03FAF. 
T his is a standard seven point finite difference solver for the Helmholtz equa­
tion 

(3.55) 

which of course becomes the Poisson equation when ,\ = 0. We use D03FAF 
with 64,000,000 mesh nodes to obtain a solution which may be regarded as 
exact. We solve the boundary value problem with a homogeneous Dirichlet 
condition enforced on all the boundary surfaces . A plot of the convergence 
of our solution with mesh refinement is shown in figure 3.7. 
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e w 

Figure 3.7: Convergence of the t hree dimensional Poisson solver. 

3.2.3 Magnetostatic Field Calculation. 

We now consider t he more complex problem posed by equations 3.36 and t he 
associat ed condit ions. As it stands this system should be solved over all space 
with t he open non-magnetic region extending to infinity. Following previous 
wor k [33] we overcome this problem by enforcing a homogeneous Dirichlet 
condit ion at a t runcated outer boundary 8R far from the magnetic region. 
T his method has been shown to give satisfactory results provided that 8R 
extends over 5 times t he ext ent of the largest dimension of the magnetic 
region. The result ing difficulty of generating a conforming finite element 
mesh over t he two regions is acknowledged as a non-trivial problem [50] . 
However t his method preserves t he sparsity of the stiffness matrix which is 
lost by using alternative techniques such as a hybrid finite element - boundary 
element method [51]. We reduce t he number of unknowns by ensuring t hat 
t he mesh in the non-magnetic region is as coarse as possible. The system of 
equations t o be solved can be writ t en as 

'v2¢ 

'v2¢ 

('v </>int - 'v <!>ext) . n 
¢ 

41r'v · M ; (x, y, z) E D int 

0; (x, y, z) E D ext 

41rM·n; (x,y,z)EoD 
O; (x, y, z) E oR. 

(3.56) 
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As described elsewhere it is important t hat the potential is of higher or­
der than the magnetisation to reflect the physics of the system [52]. Using 
quadratic shape functions N e over each element e E n int the contribution to 
the Galerkin residual is given by 

Rfnt = - ( V Nt · V ¢dVe -1· Nt (41rV · M )dVe 
l v, v• 

+ ( Nt V ¢ · dSe 
ls• 

- ( V Nt · V ¢dV e - ( Nt (41r'v · M )dVe Jve Jve 
+ ( NtV ¢ · n dSe. 

ls• 
Similarly for elements e E n ext the residual takes contribut ions 

(3.57) 

(3.58) 

Here we note that the normal directions for the interface integrals are oppo­
site so that the direction of integration is opposite for elements in n inl and 
n ext 

l Nt V <Pinl . n.dSe + i N{'v<Pexl . ndse 

= l Nt (V<Pint - 'v<Pext) . n.dse. 

(3.59) 

Making a substitution we may include the interface condition (V <Pint - V <Pext ) · 
n = (41rM ) • n implicitly within the calculation 

(3.60) 

Summing the residual over all elements we have 

R = L R fnt + L R!xt· (3.61) 
eEOinl eE fi exl 

The solution is then obtained by setting R = 0 and solving the resulting 
system of linear algebraic equations 

K ¢ = F + F (3.62) 
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1 

k 

i 

Figure 3.8: Interface condition enforced at element faces which coincide with 
an. 

where K takes contribut ions from each element e 

(3.63) 

which can be calculated using the closed form matrix expression 3.54 and F 
takes contribut ions from elements e within D int 

ft = - { Nt ( 41rv7 · M ) dVe Jve 
Using linear interpolation of M over each element we have 

ft = - { Nn 41rv7 · M )dVe Jve 

- 41r [. N: ( v. ( t.L;M;) )dv' 

-41r L Nt( ( t ( v L;)M;) )dv' 

(3.64) 

(3.65) 

Contributions to F then come from the boundary integral enforced along 
the interface 

(3.66) 
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where Ae refers to faces of element e which coincide with the interface. Again 
the integrals can be performed analytically. To illustrate our method consider 
the element in figure 3.8 as an example. Face jkl is on 80 with node i inside 
Dint· Over face jkl Li= 0, so Lj + Lk + Li= 1 ⇒ Lt= l - Lk - Lj . So 

Therefore 

X 

y 

z 

Lj(Xj - Xt) + Lk(Xk - Xt) + Xt 

Lj (yj - Yt) + Lk (Yk - Yt) + Yt 

Lj(Zj - z1) + Lk(zk - z1) + z1. 

(3.67) 

(3.68) 

gives a parameterization of the surface Ajkl· T he direction of the tangents 
to t he surface are given by 

(3.69) 

The surface area differential is then given by 

(3.70) 

which on expansion can be expressed in terms of the coefficients of shape 
function Li 

The unit outward normal to the surface is given by 

r j x r k 

lr j x r kl 

(b; + c; + d;t½ ( =~: ) . 
- di 

(3.71) 

(3.72) 
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So the contribution from corner nodes j on the interface to re is then 

and the contribution from midside nodes q is 

r; = 47!' { Nq M · IljkldAjkl 
l Ajkl 

r1 r1-Lk ( bi ) 
-47!' lo lo 4LjLk M · ~: dLjdLk 

47!' ( (bi(2Mxj + 2Mxk + Mxt) ) 
-

30 
+ci(2Nlyj + 2Myk + Nlyt) 
+di (2Mzj + 2Mzk + l\lfzt) 

where j, k refer to adjacent corner nodes to midside node q. 

(3.74) 

(3 .75) 

(3.76) 

As we shall be working with reduced magnetisation m = M / Ms in our 
micromagnetic model the magnetostatic field will be calculated as a function 
of m at each timestep. We therefore require the magnitude of the field to be 
scaled by Ms 

- 'v</>(M ) - 'v </>( Nls m) (3.77) 

-Ms 'v</>(m). 
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3.3 Micromagnetic Model. 

Our computational model is based on the reduced Gilbert equation of motion 
given in chapter 2 

dm 
dT 

a(m x dm) - dm 
dT dT 

- m x heff + a( m x dd";) 
m X h eff 

(3.78) 

wit h dT = , Hkdt as before. T he effective field now takes contribut ions 
froms all terms in the Gibb's free energy, i.e. exchange energy, magnetostatic 
energy, anisotropy energy and applied Zeeman enegy 

j. A 2 1 K ( A)2 £ = -l'vMI --H d·M-- M·e - H -M dV. Af2 2 JV/2 z V s s 
(3. 79) 

Again the effective field is defined as t he derivative of internal free energy 
wit h respect to the magnetisation 

H eff 
f)[, 

fJM 

~ 'v2 M + H d( M ) + ~ ( M · e )e + Hz. 
s s 

In terms of reduced magnetisation m = M / Nls we have 

H eff = ~ 'v2m + MsH d(m ) + ~: (m · e)e + H z. 

(3.80) 

(3.81) 

Finally we scale the effective field with respect to t he anisot ropy field strength 
h eff = H e!J/H k, H k = 2K /Ms to give 

heff (3.82) 

T his problem now involves both spatial and temporal discretization, pro­
vided that all t erms of heJ I can be evaluated at each node, a pointwise 
solution is reasonably straight forward. However the exchange field cannot 
be easily evaluated at a point due to the second order spatial derivative of 
magnetisation which vanishes under linear interpolation. Rather than using 
a more computationally intensive higher order basis for m we implement a 
variational formulation of the problem. 
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3.3.1 Galerkin Projection of the Gilbert Equation. 

This section highlights the power of the Galerkin method over other vari­
ational formulations. Although no underlaying quadratic form exists from 
which to extract a minimum corresponding to the solution, we may still uti­
lize the Galerkin projection in order to obtain a solution. Taking the Galer kin 
projection of 3.78 onto a set of linear basis functions IJ! = {1/!i, i = 1, .. , N} 
we have an expression for each of the N nodes of the spatial mesh 

i 1i ( a(m X ~~) - ~~) dV = i 1i(m x heJJ) dV (3.83) 

i = l , .. ,N. 

here the 1i refer to global basis functions which vanish at all nodes j -=I=- i 

1 i(Xj , YJ, Zj) = 6ij 

with support over all elements containing node i 

supp(1i) = {e : i E e}. 

(3.84) 

(3.85) 

These global basis functions are nothing more than the accumulation of the 
local shape functions L'f of elements e E supp( 1i). In fact the support of 1i 
is equivalent to the union of support of the Li for elements e containing node 
i 

supp( 1i) = LJ supp(Lf). (3.86) 
e:iEe 

Coversly the support of each Li is equivalent to the common support of the 
1 j for nodes j E e 

supp(LD = n supp( 1j). (3.87) 
.iEe 

This can be visualized in a straight forward manner by considering the ex­
ample of a one dimensional mesh in figure 3.9, with nodes i = 1, .. , N and 
elements ej, j = l , .. , N - l . The support of 1i contains elements ej- l and ej. 

The global basis function 1i is then clearly equivalent to the accumulation 
of local shape functions L?-1 and L? . The projection onto W is therefore 
equivalent to the accumulated projections onto the L'f, i = l , 2, 3, 4 for all 
elements e of the spatial mesh 

i 1, 2, 3, 4 

e l , .. , E 
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T he accumulation of local projections results in duplicate contributions from 
each node, with supp('l/Ji) contribut ions for each node (i). Because 'I/Ji E [O, 1] 
by definition, 'I/Ji is not the direct sum of the L; 

'I/Ji =I= L Lf. (3.89) 
eEsupp('lj;;) 

However by considering figure 3.9 we realize that it is true to say that integrals 
of 'I/Ji are given by the direct sum of integrals of t he Li 

[ 'I/Ji dV = L 1 e Lf di/. 
eEsupp('lj;;) V 

(3.90) 

For each i the equality in 3.83 is preserved and no averaging to preserve 
'I/J E [O, 1] is required. Clearly the i contribution from all nodes j (/. supp( i) is 
zero. This build-up of the projection integrals from elemental contributions 
was implicit in our previous Galerkin formulation of t he Poisson equation. 
By expressions of the form 3.88 in future working we will always mean the 
accumulation of such expressions over supp( 'I/Ji) and the superscript e will be 
dropped. 

Figure 3.9: (a) Global basis function 'I/Ji, (b) local shape function L? - 1 and 
( c) local shape function L? . 

3.3.2 Field Calculations. 

The right hand side of equation 3.88 takes cont ributions from the four terms 
of h ef J 

[ Lim x h eff dV = 1 [ Lim x \7
2m dV 

+ [ Lim x h d dV 

(3.91) 
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+ i Lim X (m. e)e dV 

+ i Lim X h z dV. 

The integral for the exchange term may be evaluated using Green 's theorem 
[53] 

r Lim X (ii. v')m dS 
lav 
-i m x (v' Li · v')m dV. 

(3.92) 

The Galerkin projection effect ively reduces the order of differentiation on m , 
enabling the integral to be evaluated after discretization using the linear in­
terpolation scheme. Contributions from the magnetostatic field are evaluated 
using data from the scalar potential calculation described previously 

M21 _s Lim x (-v'</>) dV 
2K v 

(3.93) 

--
8 L ·m X v'"' dV M
21 2J{ V i 'f' 

M2 1 
K

s Liv'</> x m dV. 
2 \I 

Contributions from anisotropy and applied field terms are then straight for­
ward. 

3.3.3 Spatial Discretisation. 

The final step in developing our variational formulation of the model is to 
expand the magnetisation and contributions to the effective field in terms of 
the local shape functions and nodal values 

4 

m L L·m· i i (3 .94) 
i = l 

dm 4 

L L _dm i (3.95) 
d, . i d, 

i=l 

10 

v' <p v' ( ~ Ni</>i ) (3.96) 
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4 

LLih z,i· (3.97) 
i=l 

Over each element we have 

i L;a ( t, L;m ; ) x ( t, L, d:• ) dV - i L, ( t, L; d:; ) dV(3.98) 

= ; { Li ( t Ljmj) x (n · V) ( t Lkmk) dS 
lav J = l k = l 

-: i ( t, L;m;) x (V L, · V) ( t, L,m,) dV 
M2 { ( 10 ) ( 4 ) + 2!( l v Li ~(V Nj)<Pj x ~ Lkmk dV 

4 4 

+ i L, ( ~L;m;) X ( ~L,m, e )e dV 

+ .l L, ( t,L;m;) x ( t, L,h,,,) dV 

Since the nodal values are constants these integrals may then be reformu­
lated with only the local shape functions appearing within each integrand 

(3.99) 
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4 4 

+LL ffi j x (m k . e)e 1 LiL jLk dV 
j=l k=l V 

Evaluation of each integral is t hen straight forward using t he integral formula 
3.24. For each node i we have a linear equation with 3N unknowns, namely 
the t hree components of dm/dT at each of t he N nodes, in terms of t he known 
components of m and the calculated components of hef f. These equations 
may then be formulated as the matrix equation 

where 

A(m) dri-i 
dT 

G (h e11)m 

G (heff, m) 

dm1 = dr 
dmt 
dr 

dm~ 
d:i"" 

dm~ 
dr. 

dm' 
___jf_ 

dr. 
dm~ 
dr 

(3.100) 

(3.101) 
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and 

m= (3.102) 

The bilinear forms, mass matrix A ( m ) and force vector coefficient matrix 
G (h e!J) take contributions from the left hand side and the right hand side 
of 3.99 respectively. 

3.3.4 Temporal Discretization. 

Solving the matrix equation yields pointwise values for dm / dT. We are then 
free to use any of the numerical integration schemes outlined in chapter 2 
to obtain values of m at the subsequent t ime-step. For example our ini­
tial applications of the model used an explicit Euler method which may be 
implemented as follows 

(3.103) 

So solving the system of linear equations 3.99 and performing an Euler inte­
gration at each node takes the system from simulation time Tt to 7t+ 1. We 
may therefore evolve the entire system from any initial configuration m 0 in 
the same way as a standard init ial value problem. Hysteresis simulations can 
be performed by allowing the system to reach equilibrium at each field step 
in the same way as the example for a single spin in chapter 2. 
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3.4 Computer Implementation. 

We now discuss some technical aspects of the model. The calculations have 
been implemented using the both the Fort ran 90 and C++ programming 
languages and run on Dec alpha and Pentium 4 machines. Our methods of 
storing and manipulat ing sparse matrices, iterat ively solving systems of linear 
equations, mesh generation as well as the structure of the computer program 
itself require further explanation. Using sparse column format to store the 
large matrices we encounter uses memory efficiently but more importantly 
allows us to build-up the mass matrix A symbolically at the start of the 
program and assign numerical cont ribut ions from each element directly to the 
correct global index at each time-step of the simulation. Use of the GMRES 
[54] iterative solver enables efficient solution of the linear equations, using the 
magnetisation configuration from the previous time-step as input . We discuss 
some problems encountered during the meshing of the "two-region" geometry 
and the effects of mesh quality on our solut ions. Finally we give schematic 
illustrations of how the code is structured and discuss the importance of 
user-defined tolerances in relation to the definition of equilibrium. 

3.4.1 Sparse Matrix Technology. 

The stiffness matrix and mass matrix of our magnetostatic and dynamic 
calculation will be very large; n2 and (3N) 2 where n is the total number of 
quadratic nodes in the mesh and N is the number of linear nodes within 
the magnetic region respectively. For large systems with more than a few 
hundred nodes this makes our computations impossible, within our available 
computing facilities, without the use sparse matrix technology. Taking the 
stiffness matrix for the three dimensional Poisson problem as an example, 
each element matrix has 100 ent ries. This gives an upper limit on the number 
of non-zero ent ries in the global matrix of 100 times the number of elements. 
With a typical mesh for a small magnetostatic problem of say 900 nodes and 
600 elements, the stiffness matrix will have 9002 = 810, 000 entries while less 
than 100 x 600 = 60, 000 of these will be non-zero. So even in this small 
problem only around 7.5% of the allocated memory is storing anything other 
than zero's. This percentage drops still further for larger problems and finer 
meshes. Various sparse matrix formats have been developed which store only 
the non-zero elements of the matrix and usually two other arrays containing 
directions t o their position in the matrix. 
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Triad Format. 

This simple sparse format consists of three linear arrays A, I A and J A which 
completely specify any given matrix. Each non-zero entry is stored in array 
A, the corresponding row number is stored at the same index of I A and 
the corresponding column number is stored at the same index of J A. For 
example the matrix 

11 12 0 0 15 
21 22 0 0 0 

Afull = 0 0 33 0 35 
0 0 0 44 0 

51 0 53 0 55 

may be stored as 

A (51, 12, 11,33, 15,53,55,22,35, 44,21) 

I A (5, 2, 1, 3, 1, 5, 5, 2, 3, 4, 2) 

J A (1, 1, 1, 3, 5, 3, 5, 2, 5, 4, 1) 

Although we have not saved memory in this example as 52 < (3 x 11) , 
the saving is great for all but the smallest systems. This is clear from figure 
3.4.1 where we have assumed that the number of elements is 2/3 the number 
of nodes in a given mesh. It can be seen from the above example that the 
entries need not be ordered, which is sometimes useful when building up a 
matrix with contribut ions from each element. 

Row Format. 

This format again consists of three arrays A, I A and J A which completely 
specify the matrix. The non-zero elements are stored in A counting down 
the rows. I A holds the column index for each non-zero entry and J A holds 
the offsets into I A and A for the beginning of each row. So for 

11 12 0 0 15 
21 22 0 0 0 

Afull = 0 0 33 0 35 
0 0 0 44 0 
51 0 53 0 55 

we have 
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Figure 3.10: Full versus sparse matrix formats. 

A (11, 12, 15, [21 , 22, [33, 35, [44, [51, 53, 55) 

IA (1 , 2,5,[1,2,[3, 5, [4, [1,3, 5) 

J A (1, 4, 6, 8, 9, 12) 

We now have a slight improvement in memory allocation over the triad 
format; instead of 3 x number of non-zero's we use 2 x number of non-zero's+number 
of rows+ 1 1 . The benefit of this format comes with improved computational 
efficiency, as instead of searching the whole list to find a given entry Ai,j, 
we only have to search row i which we know to begin at JA(i) . Here the 
rows must appear in order but the ordering of the elements of each row is 
unimportant in general. 

Sparse Matrix Addition. 

In formulating the matrix equation in finite element calculations the global 
stiffness matrix must be accumulated over all e elements of the mesh; this 

1 Note that J A has a length of the number of row + 1, as the last entry is used to mark 
the end of the list 

88 



3.4, COMPUTER IMPLEMENTATION. 

is equivalent to performing the addition of e sparse matrices. It is straight­
forward to perform the addition of matrices in triad format , if we have two 
such matrices A and B, then C =A+ B may be written simply as 

C (A, B ) 

IC (IA,IB) 

JC (JA, JB) 

However this may result in more than one entry for any given position 
the matrix. This is a further waste of memory, if contributions from many 
element matrices are required for example in the Poisson problem, then the 
full lO0xnumber of elements must be allocated. Further, if the matrix is to 
be passed to another package which will not accept duplicate entries in the 
specification, then these duplicates must be removed, which is a laborious 
task - even for a computer! For each entry we must loop over all remaining 
entries to see if a duplicate exists that must be added and the saving of mem­
ory has become very costly in CPU time. The addition of two matrices in 
row format is performed by two algorithms: a symbolic algorithm which de­
termines the result ing structure and a numerical algorithm which determines 
the values of the non-zero entries in the resulting matrix, taking advantage 
of the previous knowledge of their positions. It is possible to perform the 
addit ion numerically in a single step, but little is gained by doing so. On the 
other hand, splitt ing the procedure into two steps introduces an additional 
degree of freedom into the program, which is very useful when, as in our 
case, duplicate ent ries must be removed. Also for our dynamic calculations 
the structure is fixed and only the numerical values of the matrix change at 
each time-step. 

The Multiple Switch Method. 

We illustrate this method by performing the addition of two matrices in row 
format 

AJull u ~ ~ n 
A (6, 1,3,5, 7, 2,3) 

IA (1,4,1,3,1,2,3) 

JA (1,3,5, 7,8) 
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and 

Bfull ( H H) 
6 0 0 1 

B (8, 2, 5, 3, 1, 2, 6, 1) 

IB (2,3,2,4,1,3,1,4) 

JB (1,3,5,7,9) 

Symbolic algorithm. The resulting matrix C = A+ B has four columns, 
we therefore define the multiple switch vector to be an integer array IX 
with four positions, initialized to zero; this array is used to keep track of 
contributions to each position in the row under consideration. The first part 
of the addition is to form IC by merging I A and I B row by row. For the 
first row this implies merging 1, 4 and 2, 3. These numbers are sequentially 
added to IC; when 1 is added to IC, t he row index 1 is also stored in 
IX (I). Then 4 is added to IC and 1 is stored in IX ( 4). In order to avoid 
repeating elements in IC, before adding each element we check IX for the 
value 1, i.e. to see if the switch is 'on', this doesn't occur for row l. Once 
row 1 is processed we have 

IC = (l, 4, 2, 3) 

IX = (1,1,1,1) 

Here we see that row 1 of C is fully populated as there is a 1 in all 
positions of IX . JC is easily constructed with the help of a pointer, which 
points to the first empty position of IC, in this case 

JC(l) = 1 

JC(2) = 5 

Now we have to merge the second row; 1, 3 and 2, 4. The row index is 
now 2 and we store 2 in IX and check IX for t he value 2. After processing 
row 2 we have 

IC (l, 4, 2, 3, 1, 3, 2, 4) 

IX (2, 2, 2, 2) 

JC (l , 5, 9) 
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and IX is ready to process row 3 

IC (1,4,2,3, 1,3,2,4, 1,2,3) 

IX (3, 3, 3, 2) 
JC (1, 5, 9, 12). 

Finally 

IC (1,4,2,3, 1,3,2,4,1,2,3,4, 1) 
IX (4, 3, 3, 4) 

JC (1, 5, 9, 12, 14). 

Numerical algorithm. To perform the numerical part of the algorithm 
we define an array X , of length the number of columns, to accumulate the 
values of t he non-zero's in each row of A and B . Again taking the only 
sensible option of starting at row 1 

(i) we first use IC to set to zero the positions 1, 4, 2 and 3 of X. 

X = (0, 0, 0, 0) 

(ii) We then use I A (J I (l) .. J 1(2) - 1) = 1, 4 to store the first two values 
of A in positions 1 and 4 respectively, of X. 

X =(6,0,0, 1) 

(iii) Next we use I B and B to accumulate the values 8 and 2 in positions 
2 and 3 of X respectively. 

X = (6, 8, 2, 1) 

(iv) Finally we use IC to retrieve from positions 1, 4, 2 and 3 of X the 
final values to be stored in C. 

C =(6, 1,8,2) 

The remaining rows are processed sequentially in the same way 
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Row 2: 

(i) X (0,0,0,0) 

(ii) X (3,0,5,0) 

(iii) X (3,5,5,3) 

(iv) C (6,1,8,2, 3,5,5,3) 

Row 3: 

(i) X (0, 0, 0, 3) 

(ii) X (7,2,0,3) 

(iii) X (8 , 2, 2,3) 

(iv) C (6, 1,8,2,3,5,5,3,8,2,2) 

Row 4: 

(i) X (0,2,2, 0) 

(ii) X (0 , 2, 2, 3) 

(iii) X (6,2,2,4) 

(iv) C (6,1,8, 2, 3, 5, 5, 3,8,2,2, 4,6) 

To give 

C (6, 1,8,2,3,5, 5, 3,8, 2,2,4, 6) 

IC (1 , 4, 2, 3, 1, 3, 2, 4, 1, 2, 3, 4, 1) 
JC (1, 5, 9, 12, 14). 

It is interesting to note that the symbolic section of the procedure has 
no knowledge of the actual numerical values of the elements. If zero's are 
present in the sparse representation of A or B , due to imposing a Dirichlet 
condition for example, then t hese will be processed as if they were non-zero 
entries and cause no problems. It is clear that these methods are very easily 
extended to add more than two sparse matrices together and are therefore 
appropriate for accumulating contributions to a global stiffness matrix from 
individual element matrices. The improvement in computational efficiency 
is now clear, as to remove duplicate entries we only have to check entries in 
the same row, leading to at most n operations per entry instead of n 2 . 
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SLAP column format. 

More sophisticated methods exist for sparse matrix representation, but the 
desired efficiency for our work is achieved using a variant of the row format 
described above, this is the most common advanced sparse matrix format 
[55]. Our chosen Sparse Linear Algebra Package uses a sparse column format 
with the diagonal entry appearing first in each column and the other entries 
ordered by row number. The solver will accept matrices in the triad format , 
however computational efficiency is further compromised as the format is 
converted internally by the routine at every time-step of the simulation. So 
for opt imal efficiency we present the matrix in column format by using the 
methods outlined above but with the roles of rows and columns interchanged. 
Some additional work is then required to order the columns but this only 
amounts to a heap-sort over each column. 

3.4.2 Iterative Solvers. 

In both the magnetostatic and dynamic calculations we are required to solve 
matrix equations of the form 

Ax=b (3.104) 

The large number of unknowns in finite element calculations not only has an 
impact on memory requirements, the methods we use to solve the systems of 
linear equations must also be chosen carefully. Direct methods such as Gaus­
sian elimination are not at all suitable because the sparsity of the matrices 
is not exploited. The computational effort required grows with every step of 
a standard Gaussian elimination as more entries become non-zero. 

Matrix decomposition Methods. 

For this reason various forms of iterative solver have been developed. The 
simplest of these is the fixed point method. Here A is decomposed 

A = M -N (3.105) 

where Mis chosen to be an easily invertible matrix. Substituting into 3.104, 
we then have 

M x = Nx+b. (3.106) 

T his leads to the so-called fixed point iteration 

Mxk+1 Nxk + b (3.107) 

x k+ 1 M - 1 (Nxk + b) 

(I - M - 1A )xk + M - 1b. 
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Since N no longer appears explicitly in this expression, iterations may be 
performed using any easily invertible matrix M i- I. The true solution x is 
clearly a fixed point of the system and these iterations will converge for all 
x 0 E JR provided that the spectral radius of A is strict ly less than 1 [56]. 

Alternatively we may perform a diagonal decomposition of A as follows 

A = D-1 - U (3.108) 

where D is a diagonal matrix, L is a lower triangular matrix, U is an upper 
triangular matrix. This can result in two types of iteration scheme. 

where 

(L + U )xk + b 

0 - 1 (1 + U)xk + o -1b 

Gxk+ d 

{ 
~ - i ...J.. _7· 

O;
au' I 

i=j 

bi 

(3.109) 

If the components of x k+1 are computed sequentially this is known as the 
Jacobi method whereas if x k is updated with the known values of xk+i at 
each stage we have an improved scheme known as the Gauss-Seidel method. 
This method may be further improved by weighting the change in the value 
of each xi, a technique known as overrelaxation or underrelaxation depending 
on the value of the weighting factor [56]. 

Gradient Methods. 

The methods described above are all essentially modifications of the fixed 
point method. Alternatively we may consider the solution of Ax = b as a 
minimizer of the functional 

(3.110) 

We may now choose some initial guess x 0 E ]Rn and compute successive 
directions towards the minimum 

(3.111) 
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and 

(3.112) 

until we obtain a minimum of f at 

(3.113) 

This method is efficient for well-conditioned matrices, however successive di­
rection may become almost parallel for a matrix A of large condition number 
/);(A). This results in very slow convergence. 

To ensure that successive direction do not become nearly-parallel we may 
choose them to be orthogonal in the metric dictated by A. Directions dk 
and d k+1 are A-orthogonal if 

(3.114) 

This conjugate gradient method ensures that the solution x = A - 1b for 
x = (x1 , x2 , ... , xn) is obtained after at most n iterations. vVith a rate of 
convergence which depends on l);(A2) Finally we may replace scalar products 
u Tv by u T Av. This minimizes errors in the norm 

(3.115) 

This is known as the minimum residual method and can be shown to converge 
with a rate proportional to /);(A ). In our calculations we use a generalized 
minimum residual method (GMRES), this relies on the fact that optimal 
convergence would be achieved if successive directions dk were A-orthogonal 
to all previous directions. The space of all such directions is known as the 
Krylov subspace [57]. In practice it is inefficient to orthogonalize against 
the whole Krylov space of dimension k and a maximum dimension is set a 
priori. We have used a freely available version of the GMRES solver which 
employs preconditioning and diagonal scaling [58]. We have so far used 
right preconditioning with the identity as a scaling marix. The maximum 
dimension of the Krylov space has been set in accordance with optimal values 
for micromagnetic calculations outlined in the work of other researchers [59]. 

3.4.3 Mesh Generation. 

To generate our finite element meshes we the Triangle mesh generation pack­
age [60] in two dimensions and the Cubit mesh generation toolsuite [61] for 
three dimensional problems. Triangle is run from the command line and 
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takes a planar line segment graph as input whereas cubit allows the creation 
of geometry by Boolean operations on primitives. Due to the fact that do­
main nucleation is intrinsically a consequence of magnetostatic energy, the 
quality of our simulations in mult i-domain systems hinges on the quality of 
our magnetostatic calculation. This in turn is dictated by the quality of the 
finite element discretisation. 

Mesh Quality. 

Figure 3.11: The beta aspect ratio of a triangular element . 

Assuming the use of simplex elements, mesh quality in finite element 
models can be measured by the beta aspect ratio of the elements /3 . Which 
can be defined as the ratio of the radius of the circumcircle/circumsphere 
re to three times the radius of the inscribed circle/sphere ri as depicted in 
figure 3 .11. 

(3.116) 

Acceptable values of /3 range between 1 and 3 [62], [63]. T his is a consequence 
of t he fact that a priori error estimators for the Poisson equation can always 
be derived directly in terms of f3 [43], [62]. As we have already discussed, due 
to the magnetostatic calculation we require a fine discretization within the 
magnetic region coupled to a coarse discretisation in the surrounding non­
magnetic region if possible. The size of elements are constrained to be smaller 
than the exchange length within t he magnetic region and unconstrained in 
the exterior. Also we constrain /3 to be between 1 and 3 in the magnetic 
region. In two dimensions a natural grading of the element size from the 
fine to coarse region was obtained directly from the mesh generator. This 
enabled us to obtain a good solut ion of c/> with relatively few exterior ele­
ments. However our method became problematic in three dimensions. Here 
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meshes obtained directly from the generator often contained large or long­
thin elements spanning the exterior region and containing nodes from both 
the interface and the exterior boundary. This resulted in unacceptable errors 
in the scalar potent ial. As a remedy we introduced one or more mesh grad­
ing shells a t intervals across the exterior region enabling us to stagger the 
transition between fine and coarse discretization and improve exterior mesh 
quality with respect to (3 . Thus we were able to obtain acceptable solutions, 
albeit at the expense of increasing the number of elements. 

Mesh Topolgy. 

The numerical values associated with the mesh, known as the mesh topology 
are stored in three files. The first is a list of nodes such as 

1 0.001 0.001 0.001 1 
2 0.001 0.001 - 0.001 1 
3 0.00073654 0.00062543 0.00074354 0 

the lines are indexed by a global node number and each line consists of the 
cartesian coordinates for t hat node. The final column is used to store markers 
which denote nodes at which the Dirichlet condit ion is to be enforced. The 
second file consists of a list of elements such as 

1 67 68 69 70 253 255 354 756 534 543 1 
2 69 70 72 73 255 354 425 534 535 865 1 
3 71 72 73 74 425 672 673 176 353 223 1 

here the lines are indexed by a global element number and each line consists 
of a list of quadratic nodes contained in that element, for t he tetrahedron 
they are listed according to the ordering shown in figure 3.5. T he final column 
is used to store a 1 or a 0 depending on whether the element is part of the 
magnetic or non-magnetic region. In simulations of polycrystalline media 
a non-zero value indicates an element within the magnetic region with the 
value ident ifying the grain number. Finally a list of boundary faces which 
comprise the interface between the magnetic and non-magnetic regions is 
stored in a third file. To remove any ambiguity the interior element to which 
the face belongs as well as the number of that face within the element must 
be stored. 
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3.4.4 Code structure. 

This program takes an initial magnetisation configuration and evolves the 
system to equilibrium subject to given field and material parameters. 

Equilibrium 

1. Initialize 

• Read and store finite element mesh. 

• Compute element shape functions and store coefficients. 

• Set parameters from an input file: 
e, hz, A, lllfs, I<, a, t . 

• Set G MRES parameters. 

• Initialize time T = 0 

2. Assign magnetisation 

• Assign or read in the ini tial magnetisation configuration. 

3. Matrix Build-up 

• Build-up stiffness matrix for the Poisson solver and assign coeffi­
cients to a static array. 

• Symbolic Build-up of the mass matrix for the Gilbert solver. 

• Store markers for elemental contributions to Gilbert matrix coef­
ficients. 

4. Dynamic loop 

• Build-up force vector for the Poisson solver. 

• Solve the Poisson equation. 

• Calculate coefficients of the Gilbert matrix and pass to dynamic 
array using markers. 

• Build-up force vector for the Gilbert solver. 

• Solve the Gilbert equation. 

• Output new magnetisation configuration. 

• Update time T = T + 1, t = T6.t. 

• If dm / dt > c return to 4. 

98 



3.4. COMPUTER IMPLEMENTATION. 

5. End 

Hysteresis simulations are performed using essent ially t he same code with 
an extra loop over the field steps. 

Hysteresis 

1. Initialize 

2. Assign magnetisation. 

3. Matrix Build-up. 

4. Saturate magnetisation 

• hz = l.5. 

• Dynamic loop. 

5. Hysteresis loop 

• Reduce applied field. 

• Dynamic loop. 

• If h z > - l.5 return to 5. 

6. End 

3.4.5 Equilibrium and Tolerance. 

Thermodynamic Equilibrium. 

As we shall see in chapter 7 the notion of a magnetisation configuration at 
equilibrium is somewhat naive as magnetic moments are always subject to 
thermal fluctuations. However even in the athermal case the notion is prob­
lematic. We may define the equilibrium in a number of ways, firstly the con­
figuration of the magnetisation may be regarded as stationary if dm/dt = 0 
everywhere. Alternatively no further change can occur if the torque m x h ef f 

vanishes. For simplicity we have considered the vanishing derivative to signal 
equilibrium. However it can be seen from a simple single-spin simulation that 
the spin will precess ever closer to the field but will never actually align with 
it exactly. By considering an ever greater number of decimal places in our 
value of t he derivative we may continue to observe precession of the moment. 
T his is because the notion of equilibrium is analogous to the mathematical 
notion of infinity, it is something to be approached rather than something to 
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be reached. We therefore need to define a tolerance at which we can say that 
the derivat ive is negligible. From trial and error we have found that in all 
cases no significant change in magnetisation will occur once the maximum 
value of dm / dr at any node has fallen b elow 10- 5 . This then serves as our 
value of E above. 

GMRES Tolerance. 

We have found that to achieve convergence of the magnetisation to this 
equilibrium requires a tighter constraint on t he tolerance of the G MRES 
solver. This is the value at which the residual can be regarded as minimized. 
Often we require it to be as low as 10- 10 in order for sensible results to be 
obtained. 
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Chapter 4 

Numerical Examples. 

We now present some examples of calculations which can be performed using 
the method developed in the previous chapter. None of the following repre­
sents any new physics, we simply aim to show the diversity of problems which 
can be investigated and establish agreement with previous results. We give 
solutions of the magnetostatic calculation for three different geometries. That 
of the sphere gives agreement with the analytical solution whereas the cube 
and the general nano-element are calculations which can only be performed 
numerically. We then present some well known remenance states of a rect­
angular cobalt nano-element and proceed to investigate possible switching 
mechanisms. Finally we simulate the reversal of an individual cobalt grain 
and compare the properties of longitudinal versus perpendicular orientation. 
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4.1 The Magnetostatic field. 

4 .1.1 The Sphere. 

Figure 4.1: Magnetostatic field of a uniformly saturated sphere, calculated 
using a very coarse mesh ~ x ~ 500nm. A Three dimensional image is shown 
on the left and a horizontal cross-section on the right. 

From chapter 1 we know that t he magnetostatic field within a uniformly 
saturated sphere is given by the scalar relation 

H?here(M) = 41rMs (4.1) 
3 

wit hin our model we solve for H d = - V¢(m ) and therefore expect 

(4.2) 

Due to this scalar relat ion we also expect that H?here will be uniform within 
the sphere. We now show some results of the magnetostatic calculation for 
a sphere of radius lµm. The vector field calculated over a very coarse mesh 
is shown in figure 4.1. The calculation was performed with m uniformly 
saturated along the z-axis. It appears from the t hree dimensional image 
on the left that H d is infact uniform, however on closer inspection we see 
that significant divergence exists near the boundary. Refining the mesh we 
obtain the images shown in figure 4.2. Clearly we have convergence towards 
a uniform state even with mesh sizes 1 - 2 orders of magnitude less than 
those required for micromagnetic calculations. As well as field configuration 
it is also important that we calculate the magnitude of the field correctly. 
In figure 4.3 we plot the average magnitude of H?here for these calculations 
and for t hose with further mesh refinement. 
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Figure 4.2: Repeated calculations with mesh refinement . .6.x ~ 250nm (left) 
and .6.x ~ 100nm. 

4.1.2 The Cuboid. 

Non-ellipsoidal geometry results in magnetostatic fields which are non-unifrom 
in both direction and magnitude as shown in figure 4.4. Here we show the 
calculated field for a lµm cube. The field curls at the corners of the cube 
and can be seen to be much stronger there than in the interior. In the next 
section we will see that the field is in fact strong enough to cause magneti­
sation to rotate out of the easy-axis direction. This results in the so-called 
flower state. Here we see that the magnetostatic field is also dependent on 
the aspect ratio in cuboidal geometries. We see from rectangular cuboid on 
the right in figure 4.4 that the magnitude of field becomes very small at the 
center of the cuboid at an aspect ratio of 4 : 1. In fact H d at the center 
approches zero as the length of the long axis approaches infinity. An error 
analysis for the analogous two dimensional problem is given by Ridley et al. 
[64]. 
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Figure 4.3: Convergence of the magnitude of H?here with mesh refinement. 

4.2 Switching of Cobalt Nano-elements. 

The investigation of so-called nano-elements is technologically important as 
they provide the basic memory elements of the patterned magnetic recording 
media discussed in chapter 1. The greatest technological challenge in devel­
oping such media is the manufacture of elements with a consist ent remenance 
state which can be used to indicate whether a O or a 1 is being stored. Fur­
ther the switching characteristics must be reproducible over many reversals 
and also consistent over the many elements of a memory array. 

4.2.1 Remanence States. 

As we saw in chapter 1 a strong remanece state must exist within a memory 
element in order for information to be re-read once it has been written. For 
this reason elements with a long aspect ratio are used in order to obtain two 
well defined equilibrium states which are anti-parallel along the length of the 
element. As shown in figure 4.5 t he remanence value increases with increased 
aspect ratio. In this section we investigat e some possible remenance states 
for a cobalt nano-element of dimensions 80 x 25 x 10nm3 surrounded by non­
magnetic material. The remanence states are obtained by saturating the 
element along its long axis and then allowing t he magnetisation to relax in 
zero field. 
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Figure 4.4: Magnetostatic field for a uniformly saturated cube (left) and 
rectangular cuboid (right). 

Figure 4.5: Remanence states of rectangular nano-elements. 

The Flower State. 

First we simulate an element which has an easy-axis aligned with the long 
axis. The three components of magnetisation are plotted in figure 4.6. Due 
to symmetry the magnetisation curls in a similar manner at all the corners 
of the element. This curling is due essentially to the magnetostatic field 
which is minimized when magnetisation is aligned with boundary surfaces, 
this results in the so-called flower state shown on the left in figure 4. 7. This is 
a snap-shot of the magnetisation along a horizontal cross-section after O.Olns 
of the relaxation. Eventually symmetry is broken and an anti-symmetric 
state is formed known as an S-state. This state is observed on the right 
in figure 4.7 at 0.lns, here an equilibrium has been reached and no further 
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Figure 4.6: Components of magnetisation during relaxation to t he flower 
state. 

F igure 4.7: The flower state on the left and the S-state on the right. 

change in magnetisation occurs. This is physically meaningful as the S-state 
has a lower energy than the flower state for t his geometry; however it is not 
entirely clear how symmetry is broken within the numerical model. 

The Curling State. 

We now consider the case of a similar nano-element with an easy-axis per­
pendicular to t he long axis. T he relaxation now sees a far greater change 
in magnetisation with significant domain structures emerging. We see from 
figure 4.8 that precession of the magnetisation now has more of an effect, 
both the x and z component make an over-relaxation before returning to an 
equilibrium. The final equilibrium configuration is shown in figure 4.9. T his 
sort of structure is known as magnetisation ripple and is attributed to conflict 
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Figure 4.8: Components of magnetisation during relaxation to the curling 
stat e. 

between shape anisotropy which would tend to make the magnetisation align 
with the long axis and magnetocrystalline anisot ropy which would encourage 
alignment with the short axis. 

Figure 4.9: The curling state. 

Breaking Symmetry. 

Finally we consider the effects of art ificially breaking the symmetry of the 
flower state. To achieve this we perform the relaxation from a slightly skewed 
init ial sa turation. These results are obtained with only a 1 ° skew over the 
element length. From average components of magnetization shown in figure 
4.10 and the equilibrium configuration shown in figure 4.11 it seems that 
this makes little difference to the relaxation. However on closer inspection 
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Figure 4.10: Relaxation from a skewed init ial saturation. 

it can be seen that the magnetisation at the ends of the particle are now 
slightly more aligned with the short axis than the S-state shown in figure 
4.7. By inspecting the magnitude of dm /dr during the three relaxations in 

Figure 4.11: A stronger S-state. 

figure 4.12 we see that t here is a substant ial difference between relaxations 
from the symmetric and skewed initial saturations. With the symmetric 
saturation the flower state forms and the system approaches a metastable 
state until approximately 0.02ns when symmetry is broken and dm / dr rises 
once more. The skewed saturation on the other hand has a more direct 
path to equilibrium and consequent ly reaches an energy minimum some 50ps 
more quickly than the symmetric case. Since in applications the sides of the 
nano-element could never be made perfectly parallel with current fabrication 
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techniques, the relaxation obtained from skewed saturation must be regarded 
as more realistic. The relaxation of the particle with easy-axis perpendicular 
to t he saturation shows far more structure in the dm / d, plot reflecting the 
more complex energy surface. 

" 
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Figure 4.12: dm/d, for the three states, that obtained from the symmetric 
parallel saturation in blue, the skewed parallel saturation in red and the 
perpendicular saturation in green. 

4.2.2 Switching Mechanisms. 

Numerical reversal experiments were then performed by the application of an 
external field of 9000Oe along the long axis of the particle starting from the 
three remanence states calculated in the previous section. By flower state we 
refer to the final equilibrium configuration of the symmetric saturation and by 
S-state we mean the state obtained from the skewed saturation. By observing 
the magnetisation configurat ion during the course of these three reversals we 
shall see domain nucleation and subsequent magnetisation reversal by the 
three most important switching mechanisms namely domain wall motion, 
coherent rotation and vortex motion. The easy-axis during these reversals 
remains the same as that used to obtain the remanence state in each case. 

Switching from the Flower State. 

The reversal from the flower state is shown in figure 4.13. Reversed domains 
nucleate at anti-symmetric corners of the element, separated from the re­
maining interior domain by magnetic swirls or vortices. At the center of 
these vortices a large out of plane component develops in the magnetisation. 
The vortices then pass through the width of the element leaving a so-called 
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Figure 4.13: Switching from the flower state. 

head to head domain wall in their wake. However it can be seen that this 
wall is nonuniform across the nano-element, during the motion of the wall a 
saddle structure passes along its length. Finally the walls meet at t he center 
of the nano-element as the reversed domains expand at the expense of the 
interior domain. 

Switching from the curling State. 

Figure 4.14: Switching from the curling state. 

A markedly different mechanism is at work in the reversal experiment with 
t ransverse anisotropy. Here the magnetisation ripple observed at remenance 
develops into two vortices which nucleate at the edges of the nano-element 
and then migrate towards the center. The vortices which remain stationary 
at the center of the nano-element for some time form the boundaries between 
three domains. These domains remain coherent throughout the reversal and 
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rotate into the direction of the applied field. By which t ime the vortices have 
passed through the width of the element. 

Switching from the S-State. 

Figure 4. 15: Switching from the S-state. 

Figure 4.15 shows the reversal from the S-state. We now see further 
effects of the break in symmetry during relaxation. As with the flower state 
the reversal commences with the nucleation of anti-symmetric vortices near 
the ends of the nano-element. However due to slight skew ( ... very slight!) 
in magnetisation, the lower vortex migrates far more quickley across the 
nano-element. This leaves a head-to-head wall which begins to travel up the 
length of the nano-element while the upper vortex still occupies the central 
region. This example highlights the sensit ivity of the reversal mechanism 
and illustrates the challenges in the development of MRAM elements with 
consistent switching properties. 
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4.3 Switching of Individual Cobalt Grains. 

The results presented so far are important for validation of our computer 
model as they give agreement with previous numerical results for such ide­
alized systems [65] and we have qualitative agreement with experimental 
results. The results are idealized in two fundamental ways. Firstly in appli­
cations cobalt is usually polycrystalline in nature made up of many irregular 
grains. Secondly our assumption of a uniform easy axis direction over the 
sample is unrealistic; in reality each grain has a distinct easy-axis with the 
orientations varying randomly from grain to grain in longitudinal media. As 
a first step in modelling such media we consider the reversal of an individ­
ual cobalt grain. In thin film cobalt media such as that used for magnetic 
recording the polycrystalline structure is generally continuous in the out of 
plane direction with an irregular lattice in the plane. Each grain can there­
fore be modelled by a deformed hexagonal prism, this is particularly realistic 
for cobalt which has a strongly hexagonal structure as we shall discuss in the 
next chapter. We consider a grain with a 20nm diameter and 20nm thickness 
which is typical of the grain size for the magnetic layer of hard disk media 
in current drives. The finite element discretization of the grain is shown in 
figure 4.16, again the size of t he elements is constrained such that no element 
edge is longer than 2.5nm. 

L L 

F igure 4.16: Spatial discretization of the cobalt grain. Showing a plan view 
(left) and front elevation (right). 

4.3.1 Longitudinal Orientation. 

In longitudinal recording media granular orientations, and therefore easy-axis 
directions, are randomly distributed in the plane. The combined easy direc­
t ions then average to zero over t he many grains which constitute a written 
bit. To model the reversal of a single grain we assume t hat bits are written 

112 



4.3. SWITCHING OF INDIVIDUAL COBALT GRAINS. 

along the y-axis and we define the easy-axis to be e = ( .jf/2, .jf/2, 0) so 
that the magnetisation is saturated half way between the hard and easy-axis. 
In a real film any orientation is equally likely, but this is a fair represenation 
of the general case. As before we allow the sample to relax in zero field and 
then apply a field of -9000Oe along the direction of initial saturation. In 
the remanence state on the left of figure 4.17 we see that the magnetisa­
tion has aligned with the easy axis direction in the interior of the grain with 
some curling at the corners due to magnetostatics. This gives a remenance 
of mr = 0. 72, t his low value is due to t he fact that the initial saturation 
is misaligned with both the easy-axis direction and with most of t he edges 
of the grain. The reversal then proceeds by coherent rotation as shown in 
horizantal cross-section in figure 4.17. 

Figure 4.17: Switching mechanism of the longitudinal grain. 

4.3.2 Perpendicular Orientation. 

To model the reversal in a grain of perpendicular orientation we use the same 
mesh with both t he initial saturation and easy-axis direction along the z-axis. 
Again the reversing field is applied anti-parallel to the initial saturation. In 
the perpendicular grain we have a stronger remanence state of mr = 0.96 
due to the fact that magnetisation is initially aligned with both the easy-axis 
direction as well as most physical axes of the grain. The greater stability of 
magnetisation in perpendicular grains is one of the major advantages of per­
pendicular magnetic recording media. The reversal mechanism is illustarted 
in vertical cross-section in figure 4.18. Again the reversal occurs by coherent 
rotation but we now see more pronounced curling of the magnetisation. This 
indicates that the grain is only just below the single domain limit for perpen­
dicular orientation. These results are in qualitative agreement with those of 
Suess et al. where the single domain behaviour is observed in perpendicular 
of diameter 12nm when the grain height falls below 40nm [66]. 
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Figure 4.18: Switching mechanism of the perpendicular grain. 

4.3.3 Slow reversal. 

In order to obtain coercivity values for the grain in its respective orientations 
we perform simulations of the hysteresis experiment for both t he longit udinal 
and perpendicular case. As explained in great detail elsewhere [15], [16], the 
square loop obtained from the perpendicular grain indicates much greater 
suitability as a magnetic recording media. However at this grain-size the 
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F igure 4.19: Hysteresis loops for t he longitudinal and perpendicular grain of 
diameter 20nm. 

perpendicular grain exhibits a lower coercivity value t han the longitudinal 
case. This is explained by the less coherent magnetisation configurations in 
figure 4.18 as opposed to figure 4.17. 

4 .3.4 Effects of Grain Size. 

Finally we demonstrate a well known feature of polycrystalline thin films, 
namely the grain size dependence of coercivity. This result is the basis for 
much of t he development in high density storage media. Figure 4.20 compares 
t he hysteresis loops for the same grains as figure 4.19 but here the mesh has 
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Figure 4.20: Hysteresis loops for a longitudinal and perpendicular grain of 
diameter 15nm. 

been scaled to realize a reduction in grain diameter from 20 to 15nm while 
maintaining geometry and aspect ratio. As expected from previous numerical 
and experimental work this reduction in grain size results in an increase in 
coercivity in both cases. This increase is marginal in the longitudinal case 
but substantial in the perpendicular case. The grain size is now below the 
critical single domain limit for both perpendicular as well as longitudinal 
orientations resulting in comparable values of t he coercivity. Perpendicular 
grains below the single domain limit therefore possess both the sort after 
qualities of high remenance and high coercivity. This is a good example of 
the manner in which micromagnetics may be used in order to investigate 
the switching properties of magnetic media, paving the way for experimental 
investigations and assisting in the interpretation of experimental results. The 
challenge is now to perform simulations of thin film media consisting of many 
thousands of such grains. Development and optimization of the magnetic 
properties for applications can then be performed computationally as well as 
experimentally. 

115 



Chapter 5 

Thin Film Simulations. 

In this chapter we apply the method derived in chapter 3 and illustrated in 
chapter 4 t o the simulation of magnetisation dynamics within a continuous 
thin film. First we develop an algorithm with which to generate a realistic 
physical model of t he microstructure of polycrystalline thin film. This model 
is based on the Voronoi tessellation of a random planar point set. We then 
discuss methods of solving open boundary problems and illustrat e the use of 
implicit periodic boundary conditions for the Poisson problem. Progressing 
to the open boundary problem we consider solutions of t he magnetostatic cal­
culation on an infinite periodic extension of a two dimensional array of cobalt 
grains. Solving the Gilbert equation over this region then gives a model of 
magnetisation dynamics within an infinite thin film. Solutions for uniformly 
oriented grains recover t hose of the Stoner-Wohlfarth model. This is to be 
expected since within a uniformly saturated infinite two dimensional film 
no surface charges exist and therefore the magnetostatic field is everywhere 
zero. Likewise the vanishing exchange energy allows the spins to act inde­
pendently, which of course means t hey act coherently for uniform anisotropy. 
Repeating the simulations with random granular orientations result s in re­
alistic magnetisation ripple structures at remanence and hysteresis curves 
which are qualitatively in agreement with experiment. Interesting questions 
are raised as to how big the parent ensemble of the periodic region should be 
in order obtain quantitative agreement vvith experiment . 
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5.1 Microstructure Model. 

Having developed our micromagnetic model we wish to apply our work in the 
simulation of polycrystalline thin film media. The imaging of such films has 
been the subject of much recent work [67]. Consequent ly we have a very good 
idea of how the films form and the geometry of the resulting grain structure. 
It has also become clear from experimental work that magnetic properties 
of thin films are closely related to the microscopic physical structure. As 
discussed in chapter 1, once thin films are deposited drying commences from 
random nucleation points forming a stochastic geometry in the plane. Post­
deposition annealing then results in a straightening of grain boundaries to 
give a roughly hexagonal polycrystalline grain structure. To simulate this 
geometry we employ the Voronoi tessellation which is a common model for 
stochastic geometries and arrival time dependent partitions. 

5.1.1 The Voronoi Tessellation. 

The Voronoi tessellation or Voronoi diagram is defined as a partitioning of 
Rn associated with a given set of points P C !Rn [68] . Each Voronoi partition 
or Voronoi cell V (Pi) is defined as the region of !Rn which is closer to point 
Pi than any other point in P . In two dimensions it may also be defined as 
the dual of the Delauney triangulation of the given point set. This simple 
tessellation has a multit ude of applications; for example the British post 
office use such a tessellation in the allocation of post codes. Our application 
is to generate the in-plane structure of polycrystalline thin films such as those 
discussed above. Before discussing the generation of the point-set or seed set 
P = {pi} we give a more formal definition of the planar Voronoi tessellation. 

Planar Ordinary Voronoi Diagrams. 

Let P = {p1, p2, ...... .. ,, pn} be a set of n distinct points in the plane. With 
2 :s; n < oo and X i i= Xj for i i= j, where X i is the position vector of Pi · Then 
the (ordinary) Voronoi polygon associated with Pi is formally defined as the 
region given by 

(5.1) 

Also, when P c JR the planar ordinary Voronoi diagram generated by P is 
the set given by 

V(P) = {V(p1), V(p2) , ....... , V(pn)} . 

Some observations concerning this type of structure are listed below 
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• Under this definition all V(pi) are closed sets. 

• Some points are elements of more than one Voronoi polygon , these 
points form the boundaries of the polygons. 

• Polygons only overlap at t heir boundary, 8V (pi) . 

• The set of polygons is collectively exhaustive and mutually exclusive 
apart from at boundaries i.e. V forms a tessellation. 

• Voronoi edges may be line segments, a half line or an infinite line shared 
by two Voronoi polygons i.e. 

This set may be empty or may degenerate into a point, otherwise we 
say t hat V (pi) and V (pj) are adjacent. 

• A Voronoi ver tex qi may be defined as a point shared by three or more 
Voronoi polygons. 

Degeneracy. A Voronoi diagram is said to be degenerate when there exists 
at least one vertex at which four or more Voronoi edges meet. A degener­
ate Voronoi diagram often appears when the generator points are regularly 
spaced. We shall assume that every vertex in the Voronoi diagram has exactly 
three edges. This is known as the non-degeneracy assumption. In practice 
this can always be achieved when generat ing a lattice for purposes such as 
ours. 

Planar ordinary Voronoi diagram defined with half-planes. Let 
P = {P1,P2, ····· ·,Pn} C lR2, with 2 ~ n < oo and Xi =/= Xj for i =/= j . 
Then the ordinary Voronoi polygon associated wit h Pi is given by 

V(pi) = n 1i(Pi,Pj) 
jf.i 

where 1-i(Pi, PJ), the dominance region of Pi over Pj, is given by 

1-i (Pi,Pj) = (x: llx - xiii~ ll x - Xj ll , j =I= i). 

This is the region to one side of the bisector of Pi and Pj 
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Again the planar ordinary Voronoi diagram generated by P is the set 

The equivalence of the two definitions is clear, for i -=I= j 

This definition is more suitable for implementation as a computer pro­
gram. However a naive algorithm constructed from the definitions given 
above would be computationally costly as well as prone to ambiguities at 
vertices caused by numerical errors. However , due to the multitude of appli­
cations for this tessellation there has been substantial research into efficient 
algorithms with which to generate them. The most widely used are the incre­
mental method, the divide-and-conquer method and the plane sweep method 
[69]. Our Voronoi generator uses a version of the sweep method. 

Edge-effects. Assuming that an algorithm has been developed for gener­
ating a large, suitably dense, number of points inside a bounded region, we 
still have a further complication. No matter how large V(P) is, allowance 
must be made for edge-effects introduced by those cells on the boundary. All 
such cells are either infinite in area with two edges which are infinitely long 
rays or they consist of truncated versions of the above intersecting with the 
boundary. One way around this is to exclude from consideration any cells for 
which a circle, centered at any vertex of a cell and passing through the three 
seed points which are equidistant from that vertex, intersects the boundary. 
Alternatively, if the boundary region is a rectangle, additional points may 
be created outside of each boundary edge which are translates of elements of 
P inside the opposite edge of the rectangle. The t ranslated points can then 
be used to complete the polygons of those points of V(P) whose polygons 
intersect the boundary. The later method, which is equivalent to convert­
ing the rectangular region into a torus, is usually referred to as a periodic 
boundary condition. It has the advantage that an infinity of computational 
platelets may be interlocked to give a region which extends indefinitely in all 
directions. Since we will be employing periodic boundary conditions within 
our micromagnetic model, we require a periodic geometry and the second 
method is naturally applied. 

Computational Algorithm. 

We shall be concerned with modelling the grains of a pure cobalt thin film 
and therefore require a strongly hexagonal grain structure. After generating 
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Figure 5.1: Examples of grain structure with increasing irregularity. 

Voronoi diagrams from a standard Poisson point process we found that very 
irregular and unrealistic structures were obtained. We therefore developed 
a simple algorithm with which to generate a geometry which consists of a 
deformed hexagonal lattice. The algorithm is outlined below: 

1. Store a set of points whose Voronoi diagram is a planar hexagonal array. 

2. Take a random walk from each point in the set. 

3. Apply periodic boundary conditions if required. 

4. Recompute the Voronoi diagram of the deformed point set. 

5. Store the Voronoi cells whose seed points fall inside the chosen geome-
try. 

By controlling the time and step size of the random walk grain structures of 
arbitrary irregularity may be generated. Four such structures are illustrated 
in figure 5.1, ranging from the hexagonal array with zero deviation in grain 
size to a pseudo random Voronoi structure as would be obtained from a 
Poisson point set. The mean grain size is maintained in all four examples 
since the area is partitioned into the same number of cells in each case. An 
example with periodic boundary conditions is shown in figure 5.2. A unique 
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Figure 5.2: An example of grain structure with periodic boundary conditions. 

randomly chosen orientation of the easy-axis is assigned to each grain in the 
micromagnetic model. 

Grain Boundaries. 

Our model has one distinct limitation, namely the description of the grain 
boundaries. These are modelled as the edges of the Voronoi cells which have 
no thickness whereas in real thin films the grain boundary has a finite thick­
ness of several atomic layers over which the lattice orientation changes from 
that of one grain to the next. Although the grains could be physically sepa­
rated as in other micromagnetic models [42], [70] it was decided that meshing 
within a finite grain boundary would not be computationally feasible. We 
therefore decided that all boundary integrals of the micromagnetic formula­
tion should be evaluated at the grain boundary and the easy-axes of adjacent 
grains should be averaged there. 
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5.2 The Open Boundary Problem. 

Numerical simulation of magnetisation dynamics in thin film media is non­
trivial due to the fact that numerical methods such as finite element analysis 
require a bounded computational region over which to perform calculations 
in finite dimensional space. Appropriate boundary conditions must then 
be enforced depending on the physics of the system, mathematically they 
are also necessary in order to remove indeterminacies which correspond to 
rigid body motions or deformations of the system. These otherwise manifest 
themselves as matrix singularities which prevent us from solving the system 
of linear equations. Accordingly a non-magnetic interface is usually defined 
at the boundary of the discretization which allows suitable conditions to be 
enforced. The more complex problem of studying magnetisation dynamics 
in continuous thin films has received little rigorous attention. At the rele­
vant length scale, the computational region in such systems may be regarded 
as infinitely far from the boundary of the magnetic region. The problem 
is sometimes resolved using replicas of the computational region surround­
ing the central cell to create effective periodic boundary conditions [9] . The 
imaged regions are used to calculate the interaction fields acting upon the 
central region. The magnetic moments in the replica cells are then updated 
after every time step in the dynamic simulation. This approach has been very 
successful in modelling the magnetisation dynamics in polycrystalline thin 
films where the magnetisation is assumed homogeneous within each grain 
and may therefore be represented by a single magnetic moment. However it 
has recently become apparent that quantitative micromagnetic modelling re­
quires discretization at the sub-grain level [71], [72]. It is therefore difficult to 
see how these methods could be applied to formal numerical calculations. To 
enforce appropriate boundary conditions, the magnetisation over the whole 
region must be resolved at each time-step and this becomes computationally 
intensive for systems of a reasonable size. The minimum image convent ion 
adopted by [9], although successfully applied to arrays of Stoner-Wolhfarth 
particles, appears meaningless in the context of a finite element calculation. 

Methods for solving open boundary problems via the finite element method 
are well established [73]. Indeed various methods exist for the calculation of 
electromagnetic fields exterior to a magnetic region. (i) The exterior region 
may be truncated to approximate the infinite domain by a sufficiently large 
closed domain which is the method we have successfully employed in the 
calculation of magnetostatic fields. (ii) The use of infinite or mapped ele­
ments [74]. (iii) Hybrid finite element/boundary element methods have been 
used to calculate magnetostatic fields within a magnetic region without the 
need to perform a discretization of the exterior region [51]; this method has 
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the advantage of significantly reducing the computational region, although 
it does lead to a fully populated stiffness matrix. (iv) Finally t ransforma­
tions may be used to map the infinite open region to a closed domain [75], 
[76]. All these methods provide a means to deal with the infinite external 
region in electromagnetic computations, but cannot in general be applied to 
modelling an open magnetic region. We now develop a simple method with 
which to model the micromagnetic behaviour of an infinite thin film using 
implicit periodic boundary conditions. 
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5.3 Implicit Periodic Boundary Conditions. 

(b) 

Figure 5.3: (a) Finite element discretization and (b) periodic mesh topology. 

In this chapter we employ a two dimensional discretization with triangu­
lar elements, again with linear interpolation of magnetisation and quadratic 
interpolation of the scalar potential 

i = l 

6 

¢ = L Ni¢i 
i= l 

(5.2) 

(5.3) 
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The calculation follows essentially the same method as that outlined for the 
three dimensional element in chapter 3. First consider the magnetostatic cal­
culation. To obtain an infinite periodic extension of flint we enforce implicit 
periodic boundary conditions at EJD, which is achieved by associating geomet­
rically opposite nodes on EJD with the same linear equation in the variational 
formulation of the Poisson equation. These are then effectively the same node 
and the linear equation corresponding to one of them may be removed. With 
no explicit enforcment of any boundary conditions we enforce ¢i = ¢i, for all 
nodes i, i' E 80 such as A, A' and B , B' in figure 5.3. Similarly m i = m i' 

is implicitly enforced in the dynamic calculation. As we can see from figure 
5.3, this is topologically equivalent to working on a torus, a finite two di­
mensional region with no external boundary. The dynamic calculations may 
then proceed as before and the magnetostatic calculation consists simply of 
a Galerkin minimization of the Poisson equation over flint· Although no ex­
plicit boundary conditions have yet been enforced the periodicity will clearly 
constrain the solution in some way. In fact the periodic boundary conditions 
are sufficient to remove indeterminacies or equivalently to remove matrix 
singularities corresponding to deformation and spatial translation from the 
resulting linear equations. The remaining matrix singularity, corresponding 
to rigid body mot ion of the solution along the ¢ axis, may be removed by 
enforcing a Dirichlet condition cp = ¢D at a single node of the discretization. 
This allows the linear equations to be solved and effectively fixes the solu­
tion. The value we choose is unimportant as we require the gradient of the 
pot ential rather than the potential itself and clearly H d = - 'v cp is invariant 
with respect to ¢D so for simplicity we choose ¢D = 0. 

5.3.1 The Poisson equation on a Torus. 

To investigate the convergence of the Poisson solver we take a hypothetical 
periodic magnetisation distribut ion with sinusoidal divergence of period 21r, 
so that ¢ satisfies 

- '72¢ = sin(x) sin(y) (5.4) 

over [O, 21r] x [O, 21r]. Enforcing ¢D = 0 at (1r, 1r), the potential may then be 
compared with the exact solut ion 

A 1 
cp = 2 sin ( x) sin (y) . (5.5) 

Figure 5.4 illustrates the point that for our magnetostatic calculation the 
value of ¢D is irrelevant because the gradient of the potential is the same in all 
cases. The solution is merely shifted up or down the ¢-axis accordingly. Plots 
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Figure 5.4: Solutions of - '72¢ = sin(x) sin(y) for ¢0 = - 1 (top) , ¢0 = 0 
(middle) and ¢0 = 1 (bottom). 

of the error in the L2 and energy norm versus mesh size are shown in figure 
5.5 for ¢0 = 0 fixed at (-1r , 1r). This solution is naturally periodic and since 
we have chosen a domain to coincide with the period and boundaries (x, 0) , 
(x, 21r), (0, y) , 21r, y) at which ¢ is naturally zero; t he periodic boundary 
conditions should have no effect. Indeed for the meshes we have considered 
these curves are indistinguishable from those obtained by a conventional 
Poisson solver with ¢ = 0 enforced at all nodes on the boundary. 

5.3.2 Periodic Magnetostatics. 

It is t hen straight-forward to employ the periodic Poisson solver in our mag­
netostatic calculation. For a uniformly saturated two dimensional film we 
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Figure 5.5: Convergence of periodic Poisson solver. 

have no surface charges and as expected the magnetostatic field is zero every­
where. This is a fair asymptotic representation of the field which naturally 
tends to zero as the extent of the film tends to infinity. For non-uniform 
magnetisation configurations we observe the familiar dipole configuration. 
Figure 5.6 shows h d for negatively saturated grain embedded in a film which 
is otherwise saturated in the positive direction. Figure 5.7 shows the effect 
of saturating the grain perpendicular to the surrounding film. Here the field 
aligns at 45° between the magnetisation inside the grain and that outside, 
giving closure of the flux lines B = H d + 41!' M. By instead saturating the 
bottom left grain in the reverse direction we can better see the transparency 
of the periodic boundary, the corresponding h d configuration is shown in 
figure 5.8. Finally figure 5.9 shows h d for two mis-aligned grains in an oth­
erwise saturated film, resulting in dipole-dipole interactions between grains 
as expected.. The closure of the flux lines is again clear and so too is the 
transparency of the periodic boundary. 
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Figure 5.6: hd for a grain of anti-parallel magnetisation in an otherwise 
saturated film. 
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Figure 5.7: hd for a grain of perpendicular magnetisation in an otherwise 
saturated film. 
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Figure 5.8: The effect of assigning a reverse saturation to the grain in the 
bot tom-left corner of the computational region. 
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Figure 5.9: Dipole-dipole interaction between two mis-aligned grains. 
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5.4 Dynamic Simulations. 

5.4.1 Uniform Anisotropy. 

Figure 5.10: Remanence configuration with e = ( /f/2, /f/2). 

The dynamic computation is unaffected by the periodic boundary; nodes 
on the boundary are no different from nodes in the interior of the com­
putational region. As a simple test of the code we consider magnetisation 
dynamics over the array of 20nm grains shown previously with uniform gran­
ular orientations. This admits the simple prediction that performing a re­
laxation from a uniform saturation along the y-axis with uniform anisotropy 
will result in h d and h ex remaining at zero throughout the simulation. Mag­
netisation at each node will therefore act independently. Since they will all 
experience the same anisotropy field, they will therefore act coherently. With 
e = ( /f/2, /f/2) we observe the remanence configuration shown in figure 
5.10. With nothing to cause inhomogeneities in the magnetisation, the spins 
simply align with the easy-axis direction. Figure 5.11 shows hysteresis loops 
of the same film for various orientaions of e. In each case the reversal occurs 
by coherent rotation of t he magnetisation from the saturated state. Again 
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5.4. DYNAMIC SIMULATIONS. 

the magnetostatic and exchange interactions remain negligible during these 
simulations and we recover hysteresis curves as predicted by the single-spin 
Stoner-Wohlfarth model [32]. 

C/l 

1 
1.5 1 

External fh=JI4 ;i-I k 

- e:45° 

- e:89° 

0.5 

Figure 5.11: Hysteresis curves of a uniformly oriented thin film for various 
e. 

5.4.2 Random Anisotropy. 

In reality of course, polycrystalline thin films are known to have randomly 
oriented grains. We therefore assign a unique easy axis to each grain, ran­
domly chosen from a uniform distribution across the half-circle. Over the 
film the easy-axes then cancel each other and the net anisotropy is zero. 
As before we have used a Gilbert damping parameter of a = 1 in these 
results, a discussion of variable damping will be given in chapter 8. Satu­
rating the film along the y-direction and allowing the magnetisation to relax 
in zero field we obtain the remanence configuration shown in figure 5.12. 
As expected from experimental images of the remanent state in such films 
the magnetisation relaxes to a wave-like structure known as magnetisation 
ripple. This structure must be attributed to the net effects of exchange inter­
actions which encourage the magnetisation to remain in the saturated state 
and the local magnetocrystalline anisotropy which favours relaxation to the 
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5.4. DYNAMIC SIMULATIONS. 

Figure 5.12: Remenance configuration with e randomly assigned in each 
grain. 

easy-axis within each grain. Once the homogeneity of magnetisation is bro­
ken the magnetostatic field becomes non-zero and causes shape anisotropy 
within each grain. Performing a hysteresis simulation in the usual manner 
we observe a reversal by vortex nucleation and subsequent expansion of re­
versed domains. This contests the often quoted assumption that domains 
must nucleate at defects in the sample or at edge irregularities on the sample 
boundary. Here we have no defects and no boundary yet vortices may be 
observed in the magnetisation configuration at coercivity illustrated in figure 
5.13. As we saw in figure 5.9 dipole-dipole interactions exist between the 
grains and in figure 5.12 we see that non-uniform magnetisation exists at re­
manence. Curling of the magnetisation due to the magnetostatic field is then 
the only explanation of vortex nucleation in this model. The hysteresis loop 
is plotted in figure 5.14. Here we see further evidence of nucleation with the 
curve falling below the saturation magnetisation well before the coercive field 
is reached, indicating that irreversible magnetisation processes are occuring 
prior to switching. 
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5.4, DYNAMIC SIMULATIONS. 

Figure 5.13: Magnetisation configuration at coercivity with e randomly as­
signed in each grain. 

5.4.3 Grain Size Effects. 

Subsequently hysteresis simulations were performed with films of lower grain 
sizes. These were performed by geometric scaling of the finite element mesh 
to achive the desired grain size as in the previous chapter. Coercive states of 
the magnetisation for grain diameters of 10nm and 15nm are shown in figures 
5.16 and 5.15. Here we see a transition to more coherent magnetisation as 
grain size decreases. This can be explained by noticing that magnetisation 
was less homogeneous within individual grains in the 20nm case. As grain 
size decreases the magnetisation is more strongly pinned because the smaller 
grains aproaching the single domain limit ensure that a vortex or domain 
wall cannot pass without reversing the grain as a whole. This is reflected in 
the increasing squareness of the hysteresis loops with decreasing grain size 
as shown in figures 5.18 and 5.17 
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Figure 5.14: Hysteresis loop for randomly oriented 20nm grains. 

5 .4.4 Physical Acceptability. 

\ i\Tith this model we have been successful in predicting a t ransition to in­
creased uniformity of magnetisation with decreasing grain size as well as 
increased loop-squareness. Alt hough these predict ions are in agreement with 
experiment [77] , there are two fundamental flaws in these results. Firstly we 
have predicted that h e will decrease with decreasing grain size. This is in 
contradiction to accepted experimental findings [77] and indeed contradicts 
our results from the previous chapter. Secondly all of the calculated coerciv­
ities are rather lower than would be expected [78] . This second point may be 
explained by the fact that grains are strongly exchange coupled whereas at 
physical grain boundaries the exchange decoupling may be more severe. This 
is a possibly recoverable modelling error. The incorrect prediction of coer­
civity dependence on grain size is however more of a problem. This suggests 
that scaling the mesh to achieve smaller grain size is instrumental in lower­
ing h e and hence that our model is sensitive to the size of the computational 
region under consideration. Experimental results can be found to support 
such behaviour [79], however we feel that this is the except ion that proves 
the rule. Although we are clearly modelling an infinite film, the constraints 
imposed on the magnetisation by the periodic boundary conditions appear 
to be too restrictive. Although this could be rectified by using a much larger 
ensemble of grains, deciding on the number necessary to remove this art ifact 
could form the basis of an entire PhD project in its own right . A decision 
was therefore made to pursue the modelling of individual cobalt grains and 
nano-particles where our model has had more success. Thus giving us time 
to investigate the numerical stability of the problem and to consider the 
incorporation of thermal effects into the model. 
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5.4. DYNAMIC SIMULATIONS. 

Figure 5. 15: Magnetisation configuration at coercivity with e randomly as­
signed in each 15nm grain. 

Figure 5.16: Magnetisation configuration at coercivity with e randomly as­
signed in each 10nm grain. 
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Figure 5.17: Hysteresis loop for randomly oriented 15nm grains . 
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Figure 5.18: Hysteresis loop for randomly oriented 10nm grains. 
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Chapter 6 

Geometric Integration. 

In this chapter we go on to consider the most appropriate t ime-stepping 
scheme to implement in the model. Several such schemes were outlined in 
chapter 2 which were the basic schemes obtained by truncation of the Taylor 
series for the solut ion. These have many adaptations and generalizations. 
For example the idea of a predictor corrector scheme illustrated by the Heun 
method may be generalized to higher order. So out of the myriad of possible 
solut ion schemes, which one do we choose? Does it matter? The classical 
answer is that we choose the highest order scheme permitted by our com­
putational facillities, thus minimizing the truncation error. The practical 
answer is often that we use Euler and refine our time-step until our error 
falls below the given tolerence and perhaps increase it again if the error gets 
very small on subsequent t ime-steps. Neither of these philosophies is partic­
ularly efficient and neither makes any attempt to incorporate the physical 
properties of the problem into the properties of the solution scheme. However 
the "third-way" of geometric integration is making a very strong case for the 
opinion that intrinsic phenomenon or invariants of a system are in fact the 
most important feature of a given problem and that truncation error is of sec­
ondary importance [80]. These methods have found particular applicat ions 
in long t ime scale problems such as meteorology and stellar dynamics where 
a numerical error, no matter how small, is likely to accumulate exponentially 
and eventually swamp the solut ion. Whereas a scheme which respects the 
intrinsic properties of t he solut ion will often evolve in a manner that agrees 
well over t ime with the real system, even though the local t runcation error 
may be quite large. The definition of suitable intrinsic propert ies is often 
a non-trivial task, however from chapter 2 we know that the gyromagnetic 
precession modelled by t he Gilbert equation has one important invariant, 
namely that t he solutions should all lie on the surface of a sphere of radius 
[Ml = M8 ; we therefore require a scheme which is quadratically invariant. 
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6.1 Geometric Integration Methods. 

In general numerical methods for ordinary differential equations such as the 
Runge-Kutta scheme seek to minimize local errors incurred by t he Taylor 
series truncation of the solution. Over any finite t ime interval t he correct 
solution is then obtained in the limit as the t ime-step approaches zero. How­
ever the qualitative and geometrical structure of t he problem is often lost. 
In this case, for problems involving long integration times, the build-up of 
local errors is inevitable. Geometric integration is an emerging paradigm 
which aims to preserve the underlying structure of a differential equation 
after discretization. This structure may take the form of conservation laws 
associated with the manifold on which the solution evolves such as the con­
servation of energy in planetary motion or the conservation of vorticity in at­
mospheric problems. Alternatively conservation laws may be associated with 
the phase space such as the conservation of volume in divergence-free prob­
lems. Deeper invariants are often found such as Galilean, reversal, scaling or 
Lie group symmetries. Discretization schemes which are also invariant under 
such symmetries are therefore identified as appropriate numerical methods 
[80]. In dynamic micromagnetics the magnetisation vector M represents a 
statist ical average of magnetic moments, the magnitude of which should be 
conserved in time IM (t) I = M8 • We work in reduced units m = M / A1s and 
so local solutions are constrained to evolve on the unit sphere. Any numerical 
scheme which is intrinsically quadratically invariant is therefore identified as 
an appropriate method. This simply means that solutions are constarined 
to lie on the sphere quite naturally due to the structure of the scheme in 
the same way as exact solutions must lie on the sphere due to the structure 
of t he differential equation. For a general three dimensional vector valued 
variable x = x(t) satisfying some differential equation; quadratic invariance 
of a numerical solution scheme can be defined as any method such that 

3 3 

L xt+ 1 
= L x! = C (6.1) 

i = l i = l 

where C is a constant over every time-step [t, t + 1]. As shown by Budd et 
al. this criterion is satisfied by an implicit midpoint rule. It is important in 
this context that the scheme is t ruely implicit , t hat is we deal with implicit 
terms directly and not approximate them using a nested or iterated explicit 
method. This rules out the use of any predictor-corrector type schemes. 
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6. 2. A POINTWISE SOLUTION. 

6.2 A Pointwise Solution. 

The midpoint method has been successfully implemented by various authors 
within a finite difference formulation of magnetisation dynamics. Serpico et 
al. [81] have used a midpoint rule to integrate the Landau-Lifshitz eqution 
while Albuquerque et al. [82] have used a variant of the Crank-Nicholson 
scheme in their discretization of the Landau-Lifshitz-Gilbert equation. Here 
we employ the method described by Serpico et al. to obtain pointwise solu­
tions of the reduced Landau-Lifshitz-Gilbert equation. The symmetry of a 
midpoint rule is most straight-forward to illustrate if we write the equation 
in terms of a damped field ii. 

dm 
(1 + a?) dT 

h 

h eJJ 

- m x h 

h eff + a(m x h eJJ) 

: 'v2m + hd + (m · e)e + hz 

(6.2) 

(6.3) 

(6.4) 

where h eJ 1 is the sum of exchange, magnetostatic, anisotropy and applied 
field terms, scaled with respect to the anisotropy field strength Hk as usual. 
Using the 0(.6.T2

) approximations 

dm t+1;2 m t+l - m t 
(6.5) - ~ 

dT .0.T 

m t+l/2 
m t+l + mt 

(6.6) ~ 
2 

we have an implicit midpoint scheme which yields a straight-forward point­
wise solution obtained from the system of three linear equations 

where 

( 

l+a2 
6.T 

A = _lfi 
2 z 

l h-
2 y 

Intuitively we see that I ml cannot grow because 

(6.7) 

(6.8) 

(6.9) 
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6.2. A POINTWISE SOLUTION. 

and therefore over any time-step [t, t+ l], both m t+ 1 and m t have coefficients 
of equal size; a more rigorous proof is given by Serpico et al. [81] . Values of 

ht+1
/

2 
are calculated from previous timesteps using an O(.6.T2) extrapolation 

formula 

-t+l/2 3 -t 1 -t- 1 
h = - h - - h . 

2 2 
(6.10) 

This causes a problem at t = 0 because h t- i is not defined, this so called start­
ing problem is overcome by using an iterated Euler method for the first time­
step. Solutions for a single point, neglecting magnetostatic and exchange 

, .s 

u 

,o' 10' 101 10' 

/J. t (ts) 

Figure 6.1 : Convergence of single spin solutions using an implicit Euler 
method (red), an explicit Euler method (blue) and an implicit midpoint 
method (green). 

interactions, are summarised in figure 6.1 for initial magnetisation m 0 

(0, 0, 1), applied field h z = (0, 0, - 1.5) and easy-axis e = (-/JJ2, 0, -/JJ2). 
In general an explicit Euler scheme shown by the blue line will over-estimate 
the magnitude of m and an implicit Euler method shown by the red line will 
make an under estimate, whereas the midpoint scheme shown by the green 
line ensures that the solut ion is constrained to lie upon the unit sphere. The 
graph shows the magnitude of m at equilibrium versus t ime-step for the 
three methods. Clearly intolerable errors build up with the Euler schemes 
for all but the smallest t ime-steps. It must be emphazied that this applies 
to any Taylor method, no matter how high the order of local approxima­
t ion achieved, any finite errors will accumulate and eventually swamp the 
solution over long integration times. Figure 6.2 depicts the evolut ion of so­
lutions using the explicit Euler ( dashed) and midpoint (solid) methods for a 
time-step of .6.t = lOfs . Although m comes to equilibrium along the same 
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6.2. A POINTWISE S OLUTION. 

direction in both cases there is a clear departure of the Euler solution from 
the unit sphere. Also a marked difference in the direction of m can be seen at 
intermediate stages of the reversal. In a multi-spin system where the mag­
netisation is interacting, such errors may well be propagated through the 
system. This is our major objection to simply normalizing the solution from 
a Taylor scheme at every timestep by enforcing m · m = 1. 

Figure 6.2: The evolutions of solutions with D..t = 10.f s for an explicit Euler 
method (dashed line) and an implicit midpoint method (solid line) . 
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6.3. FINITE ELEMENT DISCRETIZATION. 

6.3 Finite Element Discretization. 

Returning to the Galerkin projection of the standard reduced Gilbert equa­
tion onto a set of linear basis funct ions 

(6.11) 

We use the temporal discretization given in equations 6.5 and 6.6 with an 
extrapolated effective field at the midpoint 

(6.12) 

to build up the variational formulation from elemental contribut ions over 
three dimensional mesh 

The Li are local shape functions over each tetrahedron as before. Local 
spatial discretization m = ~;=1 Ljmj and h ef f = ~k=i LkheJ J,k over each 
finite element then allows the integrals to be performed analytically. This 
yields a system of linear algebraic equations for m t+i over the whole domain, 
which is solved iteratively by the GMRES algorithm as before. 

The following numerical results are obtained by performing a reversal of 
the cobalt nano-element from skewed saturation as in chapter 4. Comparisons 
are made between the midpoint scheme outlined above and the Euler scheme 
described in chapter 3. 
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6.4- NUMERICAL STABILITY. 

6.4 Numerical Stability. 

-0,03 

0,01 0.02 ( ) 0.03 
t ns 

0.04 0.05 

Figure 6.3: Magnitude of the average magnetisation vector during the early 
stages of reversal using an explicit Euler method with 6..t = l0fs (red) , an 
explicit Euler method with 6..t = 20fs (blue) and a midpoint method with 
6..t = 20fs (green). 

We now consider the build-up of numerical errors in an Euler scheme in 
comparison with our midpoint method. In figure 6.3 we plot 1 - 1ml during 
the the early stages of the calculation. The midpoint scheme with 6..t = 20fs 
is shown in green, the Euler method with 6..t = 20fs is shown in blue and 
the Euler method wit h 6..t = lOfs is shown in red. The errors in the Euler 
solut ions can be seen to accumulate very quickly. Whereas the midpoint 
scheme conserves JmJ to reasonable precision as in the single-spin case. It 
is often assumed that using a Taylor scheme with very small time-steps will 
overcome the problem of numerical instability. Indeed in this case halving 
the time-step results in some improvement after a period of 0.04ns. However 
we also see that in the initial stages of the simulation the errors accumulate 
just as quickly in real time independent of 6..t. Consequently simulations are 
flawed from the outset despite later improvements due to t he reduced time­
step. It must be emphasized here that although truncation errors would be 
smaller for a higher order Taylor method, such error accumulation would still 
occur given long enough simulation time [80]. 
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6.5. EFFICIENCY. 
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Figure 6.4: Comparison of GMRES iterations over the whole simulation 
for the Euler method with normalization (blue) and the midpoint method 
(green) , both with 6.t = 20fs. 

Normalization of the magnetisation vector at every time-step is a common 
method of avoiding the error build-up, however this merely masks the nu­
merical instability that exists. Further , normalization has a negative impact 
on computational efficiency. As can be seen from figure 6.4, normalization 
of the Euler scheme requires far more iterations of t he GMRES algorithm. 
This is because normalization effectively discards part of the solut ion at each 
time-step. This in t urn makes minimization of the residual using values from 
the previous time-step as an initial value more computationally intensive. In­
tegrating the area between these curves corresponds to a significant amount 
of cpu time for long simulations such as the calculation of a hysteresis loop 
for a large system. 
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6. 6 Error Control. 
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Figure 6.5: Recalculated a values during the reversal, using the midpoint 
method with 6.t = 20fs and 6.x = 2.5nm (blue), 6.t = 40fs and 6.x = 2.5nm 
(red) , 6.t = 20fs and 6.x = 5nm (dotted green). 

With a numerically stable method, such as the midpoint scheme outlined 
above, Im[ becomes redundant as an error estimator. As even at large time­
steps where accuracy is impossible 1ml will be conserved. This highlights 
the fact the Im[ should be thought of as an indicator of numerical stability 
rather than of truncation error. A useful alternative is the self-consistency 
based control scheme described by Albuquerque et al. [82]. Re-calculating 
the value of the damping parameter a at each time-step gives a measure of 
self-consistency of the discretization. This may then be used as an estimate 
of the error which causes any change in the system's total energy. The re­
calculated a is derived from the Landau-Lifshitz-Gilbert equation in terms 
of the rate of change of the system's free energy 

JV h eff . dt dV 
ad - r 

yn - f v (~)2dV 
(6.14) 

This value may be calculated by expansion in terms of the global basis func­
tions 1Pi, i = 1, .. , N 

J ( '\'N ., .. h ·). ( I:1=1 1/ljdrnj)dv 
V L..,i =l 'l-'t e f f ,i dr 

(6.15) 
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( I:i,j h e/ f,i - ~ ) J v 'lp(lpjdif 

( I:k,l d;:_& . d;:1 ) f v 1Pk1P1dil . 

Due to the long range magnetostatic interactions O'.dyn is a global quantity 
and cannot be evaluated locally. To perform the calculation using local 
shape functions the numerator and denominator of 6.16 must be evaluated 
separately over each element and contributions must be accumulated over 
the whole region before the division is performed. 

where 

and 

,,.,, _ I:e J~ttmera'lor 
u.dyn - '°' 1e 

6 e denominator 

r _ ( ~ dm k . dm 1) ;· L L dile 
denominator - L...,; d'T d'T k l 

k)= l v• 

(6.16) 

(6.17) 

(6.18) 

As shown in figure 6.5, O'.dyn is sensitive to both spatial and temporal dis­
cretisation error. First consider the red and blue lines, these both refer to 
simulations with spatial discretization size ~ x = 2.5nm but with temporal 
discrestisation sizes of ~t = 20fs shown in blue and ~t = 40fs shown in red. 
We see that the model is convergent in some sense as the t ime-step is re­
duced, with a halving of the time-step result ing in a halving of the maximum 
error. With a time-step of ~t = 20fs the error is bounded at 5 percent and 
with ~t = 40fs the error is bounded at 10 percent. We note however that 
even with the larger time-step, O'.dyn remains below 5 percent for the most 
part of the simulation. 

Now compare the blue and green lines. These both represent simulations 
with ~t = 20fs but we now consider the effects of spatial discretisation size. 
The dotted green line represents a simulation with a doubling of the average 
element size. As we can see this has a drastic effect on numerical error, in 
fact it is true to say that we are no longer performing the same simulation. 
This justifies our earlier assumption that elements should be no larger than 
the exchange length of the material. 

We conclude that O'.dyn provides an excellent error indicator during the 
dynamic reversal. However we have found in all cases that its value rises 
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exponent ially as the system comes to equilibrium. This is inevitably due 
to t he fact that (dm/ dT)2 vanishes more quickly than h eff · dm/dT in our 
model. This problem is not addressed in the original publication of the adyn 

calculation [82]. 
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6. 7 Adaptivity. 

We have seen that large time-steps can give an acceptable solut ion during 
certain parts of the simulation. Also we have seen that the time-step may at 
times need to be quite small if better than 5 percent accuracy is required. It is 
therefore appropriate to apply the model adaptively in time with appropriate 
adjustment of the extrapolation formula for h eff · For example if la:- - O:°dynl 

is greater than the prescribed tolerance then the time-step may be halved 
and equation 6.13 will take contribut ions from 

5 t 1 t - 1 
h ejf = 4-. h eff - 4-. heff (6.19) 

or alternatively if the t ime-step is doubled when the error falls well below 
tolerance we have 

(6.20) 

A doubling of the spatial discretization size has been shown to have a more 
dramatic effect resulting in unacceptable error. For this reason spatial adap­
tivity would not be beneficial. Due to the global nature of O:°dyn we do not 
have a spatial error indicator on which to base such adaptivity and fur ther 
de-refinement of the mesh is limited by the constraint that elements should 
be smaller than lex . This is well below the element size needed to achieve a 
good solution of the magnetostatic problem in any case. 
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Chapter 7 

Finite Temperature Model. 

Before embarking on a finite element analysis of finite temperature dynamics 
we will return to t he Stoner-Wohlfarth model of a single domain particle. 
This model may be used to illustrate the motivation behind a more rigor­
ous formulation. A brief discussion of the necessary stochastic calculus will 
then be given followed by the Langevin formulation of the Gilbert equation. 
Single-spin solutions will then be presented giving simple examples of ther­
mal relaxation and stochastic resonance. Our finite element discretization of 
the Gilbert equation will then be adapted to t he finite temperature case. 
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7.1 . THE ENERGY BARRIER. 

7 .1 The Energy barrier. 

e 

H 

Figure 7.1: Stoner-Wohlfarth part icle with easy-axis e = (0, 0, 1) and mag­
netisation at angle 0M to the z-axis. 

Consider a non-interacting spherical Stoner-Wohlfarth particle of volume 
V = 41rr3 /3 as shown in figure 7.1 in an applied magnetic field in the negative 
z-direction. With easy-axis e = (0, 0, 1) and magnetisation IMI = Ms at 
angle 0Mrad to the z-axis. The particle clearly has two equilibrium states at 
M = (0, 0, Ms) and M = (0, 0, -Nls) - Recall from chapter 1 that for applied 
field H = (0, 0, - H) the total energy of the system is given by 

£(0M) = KV sin2 (0M) + Nls V H cos(0M) (7.1) 

with stationary point given by 

sin(0M)(2KV cos(0M) - MsVH) = 0 (7.2) 

sin(0M) = 0 gives two minima at 0M = 0 and 0M = 1r, cos(0M) = AifsH/2K 
gives a single maxima at 0M = 1r /2. The minimum energy of the sys­
tem is therefore ±Ms V H and the maximum energy is given by KV(l + 
(Ms H/2K)2) . The significant parameter in t his problem is the energy bar­
rier 

6.E = Emax - Emin (7.3) 
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which by the use of some simple mathematics determines the energy required 
for the system to make a transit ion from one stable equilibrium or energy 
minimum to another. 

6.E Kv(1 + (~5//)2
) ± Nl8 V H 

KV(l + (!)2 ± 2 !) 
KV(l ± !f 

(7.4) 

where Hk = 2K/M8 as usual. The energy functional is visualized in figure 7.2 
for different applied field strengths H. In zero-field the energy barrier is KV 
with symmetric energy minima at 0M = 0 and 0M = 1r . For an applied field 
of H = Hk/2 symmetry is broken and 6.E = KV(l±l/2), so that the energy 
barrier now differs by a factor of KV depending on which equilibrium state 
the system occupies. Finally for fields H ~ Hk the energy barrier vanishes 
leaving a single equilibrium state. This corresponds to a field associated with 
sufficient Zeeman energy to rotate the magnetisation out of the easy axis. 
This model is rather limited. Firstly real magnetic grains are not spherical 
meaning that the magnetostatic field cannot be neglected. Secondly as we 
shall see, the state of thermodynamic equilibrium is never actually realized 
due to thermal agitation. The Stoner-Wohlfarth model does enable us how­
ever to see that, with these idealized conditions, in zero field there exists 
an energy barrier of height KV between two stable magnetisation states. 
The thermal energy associated with the particle is given by Ethm = KsT 
where K 8 = 1.38065 x 10- 16 is Boltzmann's constant and T is temperature 
on t he Kelvin scale. Clearly if T is large or V is small the thermal energy 
may become greater than the energy barrier that exists between equilibrium 
magnetisation states. The magnetisation may then reverse due to thermal 
energy alone in the abscence of any applied field. As discussed in chapter 
1 the point at which ferromagnets become dominated by thermal agitation 
is known as the Curie temperature, above which they behave paramagnet­
ically. The recipricol situation where the particle volume becomes so small 
that KV < K8 T at ambient temperature is known as superparamagnetism 
and again results in the particle becoming dominated by thermal agitations. 
This phenomenon is particularly important in magnetic storage technology 
where the grains of thin film recording media are already close to this size 
regime and approaching what has become known as the superparamagnetic 
limit. The estimation of this crit ical grain size is a difficult task as it is 
very sensit ive to a vast number of parameters. We may at least illustrate 
the problem and give a crude estimate by using the Stoner-Wohlfarth par-
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Figure 7.2: Energy functional for a Stoner-Wohlfart h particle with (a) H = 0 
field, (b) H = Hk/2 and (c) H = Hg . 
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Figure 7.3: Temperature dependence of the superparamagnetic limit . 

ticle. We may say that the part icle will become superparamagnetic, that 
is suscept ible to random switching in zero field, when K ET / KV > 1. At 
T = 300°K and assuming a spherical cobalt particle we have K ET > K V 
when the particle radius r < 1.33nm. The dependence of KV on r is plotted 
in figure 7.3. Also plotted is K ET at T = 200°K (green), T = 300°K (red) 
and T = 400°K (blue) to indicate the superparamagnetic limit at those tem­
peratures. Finally we may appeal to the Stoner-Wohlfarth model to illustrate 
thermally assisted magnetisation reversal. This is a process which has been 
proposed to overcome the superparamagnetic limit . Even with small V we 
may retain K 8 T / K V < 1 by increasing the uniaxial anisotropy constant K. 
In figure 7.4 a-= K ET/K V is plotted against K for the cobalt particle ofra­
dius r = 1.33nm. Clearly as K increases the stability ratio a- descends below 
unity and the particle is once more within the st able ferromagnetic region at 
T = 300°K. The increase in K may be achieved in storage media by alloying 
of the cobalt to achieve harder magnetic properties. This possiblity has re­
cieved lit tle attention unt il recently due to problems of writ ing information 
on such high anisotropy media. This problem may however be resolved by 
heating the media with a laser to lower He for writing. With increased T, a­
is taken above unity once more where the application of a field H « Hk will 
be sufficient to switch the magnetisation. When the media has returned to 
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Figure 7.4: Stability ratio versus uniaxial anisotropy constant for the Stoner­
\i\Tohlfarth partical of radius r = 1.33nm at T = 300°K. 

ambient temperature the thermal stability properties are naturally restored. 
As mentioned previously this model is very limited due to its simplifying 

assumptions. This together with the need for dynamic resolut ion of magneti­
sation motivates us to formulate a stochastic differential equation of motion. 
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7.2 Stochastic Differential Equations. 

Thermal agitations in magnetic media have correlation t imes much shorter 
than the response time of the system which is typically of t he order of 10- 7 s. 
According to the quantum mechanical Nyquist formula [83] the spectrum of 
thermal fluctuations may be regarded as Gaussian or white up to a frequency 
of order I<BT / h which is approximatly 10- 13s-1 at T = 300°K. This is due 
essentially to the central limit theorem or law of large numbers. We may 
therefore apply the theory of Langevin dynamics [84] and regard the thermal 
agitations as being driven by a Markov process with normal distribution and 
mean zero; commonly known as a Wiener process. Since the Wiener process 
is nowhere differentiable, its derivative is not classically defined and we may 
not use the theory of deterministic calculus to derive an equation of mo­
tion. Instead we must appeal to the theory of stochastic calculus which was 
first made rigorous by Ito [85] in the 1940's and independently by Gikhman 
[86] at around the same time. A more straight-forward interpretation of the 
stochastic integral was later given by Stratonovich in 1966 [87]. In general 
stochastic calculus may be regarded as the generalization of deterministic 
theory to incorporate the statistical features of the real world such as noise, 
diffusion and thermal agitations. In fact a deterministic differential equation 
may legitimately be defined as a degenerate form of the associated stochastic 
differential equation where the Wiener process has zero variance. To give a 
full derivat ion of stochastic calculus requires the use of probability and mea­
sure theory largely beyond the scope of this thesis. In the following therefore 
we give only a brief outline of the way in which the stochastic integral should 
be interpreted and the subsequent impact of one's interpretation on appro­
priate methods of numerical solution. All the points raised in this section 
are covered with far greater detail and rigour in the comprehensive book on 
t he subject by Kloeden and Platen [88]. 

7.2.1 The Wiener process. 

Vve define the one dimensional Wiener process as any path W(t) which is 
continuous on [O, T] and satisfying conditions (i) to (iii) below. 

(i) Prob(vV(0) = 0) = 1 
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or equivalently 

The process is vectorized by defining each of the i components as an inde­
pendent Wiener process with Prob(W (0) = 0) = 1 and Wi(t) independent 
of Wj(t) for all components i, j at t E [0, T] . We may define a discrete 
Wiener process by dividing the time interval into N sub-intervals of length 
6.t separated by N + 1 discretization nodes 

T /N 
W (t); t = i 6.t 

W (ti- 1) + 6.W(ti); i = 1, .. , N 

where 6. lV ( t i) is an independent Gaussian increment 

6. W(ti) "'"' N(0, 6.t) 

"'"' ~N(O, l ). 

(7.5) 

(7.6) 

(7.7) 

Three such discrete ·w iener processes, or equivalently one three dimensional 
Wiener process is shown in figure 7.5. The independent Gaussian variables 
6.Wj(ti), j = 1, .. , 3, i = 1, .. , N are generated using a lagged Fibonacci 
generator with two Marsaglia shifts to give uniformly distributed input for 
the Box-Muller generator which then outputs standard Gaussian deviates 
[89] . 

7.2.2 The Langevin equation. 

The first stochastic differential equation (SDE) was used to describe Brown­
ian motion by Langevin in 1908 [90]. Using Newton's second law he arrived 
at the following description of a solid particle in fluid suspension 

dv(t) 
M ---;ft = - av (t) + J(t) (7.8) 

where the state variable is the velocity of the particle v, M is the mass of 
the particle, a is the viscous drag coefficient and f is a stochastic process 
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Time (ns) 

Figure 7.5: Three dimensional Wiener process with Gaussian deviates gen­
erat ed by t he Box-Muller method. 
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representing the impacts of fluid molecules. The moments off are naturally 

(J(t)) = 0 (7.9) 

(J(ti)J(t2)) = CJ;8(t2 - ti), 

where CJ5 is the strength of the impacts from fluid molecules and 8(t2 - ti) 
is the Dirac delta function. The first moment ensures that the effect of 
collisions averages to zero over time while the second moment represents the 
high frequency of the collisions with respect to the t ime-scale of the particle 's 
velocity. Equations of this type are now generally known as the family of 
Langevin equations and expressed for state variable X ( t) as 

dX(t) 
~ = a(t, X(t)) + b(t, X(t)),(t) (7.10) 

where a is a deterministic or 'drift' term and b(t, X(t)),(t) is a stochastic 
diffusion or 'noise' term, with space-time independent noise intensity factor 
b and Gaussian random variables ,(t) for each t. If b = b(t) is independent 
of the state variable the drift term is said to be perturbed by additive noise 
whereas if b = b(t, X(t)) is a function of both t and X(t) as in the case 
of finite temperature magnetisation dynamics we have multiplicative noise. 
Clearly for b = 0 a deterministic differential is recovered. The above equation 
may then be written as a symbolic differential 

dX(t) = a(t, X(t))dt + b(t, X(t))~(t)dt (7.11) 

to be interpreted as the integral equation 

X(t) = X(0) + 1T a(t, X(t))dt + 1T b(t, X(t))~(t)dt. (7.12) 

For the special case a = 0, b = l ; ~(t) should be the derivative of a Wiener 
process W(t), suggesting that the integral equation may be written 

{T {T dW(t) 
X(t ) = X(0) + lo a(t, X(t))dt + lo b(t, X(t)) dt dt (7.13) 

X(0) + 1T a(t, X(t))dt + 1T b(t, X(t))dW(t). 

As mentioned earlier however the Wiener process is nowhere differentiable 
and therefore the white noise process ,(t) does not strictly exist as a con­
ventional function of t. As with the original Langevin equation representing 
Brownian motion, for any Gaussian noise term ~(t), the covariance function 
is a constant multiple of the Dirac delta function. Hence the integral with re­
spect to dlV(t) cannot be evaluated in the conventional Riemann or Lebesgue 
sense. Since a Wiener process is not of bounded variation over time interval 
[0, Tl, the integral cannot be evaluated as a Riemann-Stieltjes integral either. 
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7.2.3 Stochastic Calculus. 

The problem of interpreting a stochastic differential equation therefore lies 
in the interpretation of the integral 

1T b(t, X(t))dvV(t) . (7.14) 

vVe first make the simplifying assumption that b(t, X (t)) = bis constant over 
some small interval [ti, ti+1]. No-matter how the integral is defined over this 
interval, provided that ti+l - ti is small, we would demand that 

(7.15) 

We now assume that over the interval [O, Tl, b is a step function comprised 
of constant functions over each small interval [ti, ti+1] as illustrated in figure 
7.6. So we have b(t, X(t)) = b(t) = bi on ti ~ t < ti+1 for i = 0, .. , n - l 
where O = to < t1 < ..... < ti < ti+l < ... < tn = T and bi are constants. We 
may then say that with probability 1 

T n - 1 1 b(n) (t)dvV(t ) = L bi(W(ti+1) - W(ti)) . 
0 l = O 

(7.16) 

Relaxing the assumption of a step function we may then consider the full 
set of continuous, differentiable functions on [O , T]. The general integrand 
b(t, X(t)) may always be written as the limit of step functions b(n) and there­
fore the problematic integral 7.14 may be defined as the limit of integrals 
7.16 

1T b(t, X(t))dW(t) = lim f r b(nl(t, X(t) )dW(t) 
n➔oo lo 

n-1 

lim L bi{W(ti+1) - vV(ti)}, 
n➔oo 

i=O 

(7.17) 

The problem now comes down to determining the proper mode of convergence 
by which the step functions b(n) approach the function b( t, X ( t )) in the limit 
as n -+ oo. The pioneering work of Ito [85] was to establish, due to the well 
behaved mean-squared properties of the Wiener process [88],[91], that 7.18 
exists and is unique with probability 1 in the sense of a mean-squared limit. 
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bi ......... • .••.• •. . .. 

bl ... . . . . .. . • .. . .. . .. . . .. 

F igure 7.6: b(t, X(t)) = bi on ti :;::; t < ti+l for i = 0, .. , n - 1. 

This definition of the stochastic integral obeys rules of deterministic cal­
culus such as linearity and additivity 

1T ( a {b(t, X(t))} + ${b(t, X(t))}) dliV(t) (7.18) 

= a 1T b(t,X(t))dW(t) +$ for b(t, X(t))dW(t) 

(

2 

b ( t, X ( t)) dvV ( t) 
l to 

(

1 

b(t, X(t))dvV(t) 
l ta 

1
t2 

+ b(t,X(t))dW(t). 
ti 

(7.19) 

However the interpretation leads to a more peculiar form of the chain rule. 
In deterministic calculus we are used to the fact that 

(7.20) 

when w(O) = 0. This is not the case with the Ito integral. Due to the 
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properties of the mean square limit we have 

n-1 2 I: ( W(ti+1) - vV(t1) ) = T. (7.21) 
i=O 

Hence in Ito calculus the integral is evaluated as 

1T W(t)dW(t) - I: W(t,) ( W(t,+1) - W(t1)) 

i = O 

(7.22) 

1 1 n-1 2 

2 vV(T)2 
- 2 I: ( w(ti+1) - W(t1) ) 

i=O 

~W(T)2 - ~T 
2 2 

This extra term results from the fact t hat in Ito calculus the Taylor series 
and therefore the chain rule are fundamentally different from deterministic 
calculus. Classically for a function 

U(t) = b(t, X(t)) (7.23) 

where b(t,X(t)) has continuous second order partial derivatives and X(t) is 
defined as dX(t) = jdW(t) we would expect that 

ob ob 
dU(t) = 

0
/t, X(t))dt + ox (t, X(t))dx. (7.24) 

This comes from the Taylor expansion for b( t, X ( t)) with second order terms 
and higher in flt and !:J.x to be regarded as negligible. In contrast when X(t) 
is a stochastic process we must take account of the fact that d(X(t))2 = 
j2(dW(t))2 is non-negligible [88]. This gives 

(
ob l 2 o2b ) 

dU(t) = ot (t , X(t)) + 2J ox2 (t, X(t)) dt (7.25) 

ob 
+ ox (t , X(t))dx. 

This is known as the Ito theorem and is essentially a consequence of the fact 
that in the definition of the Ito integral, b is evaluated at the beginning of 
each t ime interval in the sum 

(7.26) 
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There was no justification for this decision other than the assumption that 
the beginning is usually a good place to start . Clearly we could have adopted 
a convention in which b was evaluated at the end of each interval 

(7.27) 

Or indeed each bi could be evaluated at any other point in the interval 

bi = b((l - >..) ti+>..ti+l, (7.28) 

X (( l - >..)ti)+ X( >..ti+i) ) , 0 :S >.. :S 1. 

It can be shown [88] that in this interpretation 

1T 1 1 
vV(t)dW(t) = - W(T)2 + (>.. - -)T. 

o 2 2 
(7.29) 

Clearly when >.. = 0 we recover the Ito interpretation, whereas when >.. = 1/ 2 
the irksome extra term vanishes and we recover the classical result. It was 
first shown by St ratonovich in 1966 [87] that this interpretation in fact obeys 
all t he transformation laws of deterministic calculus without except ion. The 
convention of using >.. = 1/ 2 became known as the Stratonovich interpretation 
with the integral off (t) with respect to W denoted 

1T f (t ) o dW(t) (7.30) 

It has become popular in the numerical treatment of stochastic differential 
equations due to the fact t hat the Stratonovich-Taylor series takes the same 
form as the classical Taylor series. Numerical integration schemes are there­
fore more straight-forward to develop. T he Ito interpretation is often pre­
ferred in analytical treatments due to the martingale properties associated 
with stochastic integrals of t his type only [88] . 

7.2.4 Numerical Solution of SDE's. 

There has been much debate over t he merits of the various interpretations 
of stochastic integrals. As the different interpret ations will clearly converge 
to different solutions for a given Wiener process. In this work we are not 
interested in investigating stochastic calculus for its m-vn sake but merely 
seeking a convenient method by which to develop a stochastic form of the 
Gilbert equation. We therefore adopt the Stratonovich interpretation in order 
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to take advantage of the simpler form of its Taylor expansion. The numerical 
methods based on truncation of the Taylor series described in chapter 2 may 
then be generalized to the stochastic case. \Ve give brief examples of two such 
schemes below. Again a more detailed discussion is given by Kloeden and 
Platen [88] . Also discussions related to the Stratonovich interpretation and 
subsequent numerical solution of the stochastic Gilbert and Landau-Lifshitz 
equations are given by Hannay [9] and Scholz [92] respectively. 

The Euler-Maruyama method. 

This method is a generalization of the deterministic Euler method. Given 
the symbolic differential 

dX(t) = a(t,X(t))dt + b(t, X(t))dW(t) (7.31) 

we proceed with a first order time discretization 

6.X = a(t, X(t)) 6.t + b(t, X(t))6.ltV (7.32) 

where 

l
•ln+l 

6.t dt = tn+l - tn 
tn 

6.vV = l ~n+l dvV(t) = W(tn+1) - W(tn) 

So that 6.l1V is the -J75j,N(O, 1) distributed increment of the Weiner process 
over [tn, tn+1J. Evaluating a and bat tn then gives the stochastic counterpart 
of the deterministic explicit Euler method, known as the Euler-Maruyama 
method 

Since we have evaluated integrals at the lower end of [tn, tn+il, this scheme 
will naturally converge to the Ito solut ion. However a so-called noise-induced 
drift term may be used to ensure convergence to the stratonovich solution if 
required [88], [9]. 
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The Heun method. 

As in the deterministic case we may improve the Euler method by attempting 
to evaluate a and b at the upper end of the time interval or at the midpoint. 
For example a midpoint scheme would take the form 

X(tn+l) = X (tn) + ~ ( a(tn) X (tn) ).6.t + b(tn, X (tn) ).6. W) (7.34) 

+1 ( a(tn+l, X (tn+1) ).6.t + b(tn+l, X (tn+1)) .6. W). 

This scheme naturally converges to the Stratonovich solution because 7.35 
approximates the corresponding Stratonovich integral by definition. Here 
we may convert back to the Ito integral using a recipricol correction term 
[88], [9]. Approximating the implicit contribut ions using an explicit Euler 
approximation we have a Stochastic Heun method 

X(tn+1) = X(tn) + 1 ( a(tn, X(tn)).6.t + b(tn, X(tn)).6.W ) (7.35) 

+1 ( a(tn+l, X(tn+1)) .6.t + b(tn+l, X (tn+1) ).6. W) 

X(tn+1) X(tn) + a(tn, X(tn) ).6.t + b(tn) X(tn) ).6. W. 

However stronger convergence is obtained by using a fully implicit method or 
by iterating calculation of the implicit contribution X ( tn+l ) until convergence 
is reached at each t ime-step. 
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7.3 The Langevin-Gilbert Equation. 

Having developed the rudiments of stochastic calculus we are now in a posi­
t ion to discuss t he derivation of a stochastic differential equat ion of motion 
for magnetisation dynamics. To take account of thermal agitations we recall 
that not only the magnitude but also the direction of the magnetisation vec­
t or should be regarded as a statistical average. Superposed upon the mean 
trajectory of magnetisation given by the Gilbert equation are spontaneous 
fluctuations in M as described by the fluctuation-dissipation theorem [84], 
[93) . To achieve this t he effective field of deterministic magnetisation dynam­
ics is augmented by a randomly fluctuating field H thm· T he thermal field 
is a formal concept, introduced for convenience, which is defined as the field 
necessary to produce t he observed fluctuations in M from the deterministic 
path predicted by the Gilbert equation. This leads to a definition of t he 
Langevin-Gilbert equation in reduced units as 

dm dm 
dT = - m X (h eff + h thm) + a(m X dT ) (7.36) 

re-arranging we have 

dm dm 
a(m X dT) - dT = m X h eff + m X h thm (7.37) 

or written as a symbolic different ial 

a(m x dm) - dm = m x h etfdT + m x h t1imdT. (7.38) 

Now H thm is a random fluctuating three dimensional vector quantity and 
may therefore be defined as the time derivative of a three dimensional Wiener 
process 

H thm (7.39) 

w 
where vVi:, W y, W z are space and t ime independent Wiener processes satisfy­
ing the conditions outlined in section 7.2.1. We then scale with respect to 
Hk in order to remain consistent with the reduced units of the equation 

h thm = H uim/ Hk (7.40) 

also taking account of the reduced time increment dT = , H kdt 

(7.41) 
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So finally we have 

a(m x dm )-dm 
dW 

(m x heJJ)dT + 1(m x dT )dT 

(m x heJJ)dT + 1(m x dW ) 

which is to be interpreted as the integral equation 

a 1T m (T) x dm (T) 

-1T dm (T) 

1T m (T) X heJJ(T, m (T))dT 

T 

+, 1 m (T) 0 dW (T) 

(7.42) 

(7.43) 

where 0 denotes a vector product wit hin a Stratonovich interpretation of 
the stochastic integral. The moments of dW (T) follow from the Langevin 
theory referenced earlier [83], [90], [84] for fluctuations of frequency orders of 
magnitude higher than the response time of the system 

(dW (T)) 

(dW(Ti)dW(Tj) J 

(7.44) 

(7.45) 

where c5 is again the Dirac delta function and CJ is the strength of thermal 
:fluctuations. 

7.3.1 Thermal Field Strength. 

The purpose of the work in this chapter is to enable a quantitative investi­
gation of temperature dependence in magnetic materials and subsequently 
to allow investigations into superparamagnetism and thermally assisted mag­
netisation reversal in magnetic storage media. To enable a proper description 
of finite temperature magnetisat ion dynamics it is vital that the thermal field 
strength realistically represents the temperature dependence of thermal fluc­
tuations. The strength of the thermal field CJ represents the deviation from 
the deterministic trajectory of the magnetisation caused by the fluctuations 
and CJ2 is therefore essentially the variance of the Wiener process W ( T) from 
which h uim is derived. Since we are taking the Stratonovich interpretation 
we may adapt the value of CJ2 given by Brown in his derivation of the Fokker­
Planck equation for a single domain part icle [84] . Brown gives the second 
moment of H thm as 

(7.46) 
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where i, j refer to ith, jlh components of H thm respectively. Comparing our 
formulation of the Gilbert equation with Brown's rJ is given by 

a 
rJ= "!Ms . 

To give the variance of the fluctuations as 

7.3 .2 Reduced Langevin-Gilbert equation. 

(7.47) 

(7.48) 

(7.49) 

Taking account of the reduced units and the y1(dt) dependence of the Wiener 
process discussed above we may give a concise definition of the reduced 
Langevin-Gilbert equation as the symbolic differential 

a(m x dm ) - dm = (m x heJJ)dT + CJr(m 0 dW ) 

where CJr is the dimensionless reduced field strength 

Clr 'Y 
( 2KBTadt ) 

Ms'YV 

(2KBTadT ) 
HkMs'Y2V 

( 2KBTadT ) 
HkMsV 

(7.50) 

(7.51) 

where t he Wiener process is now understood to have a standardized normal 
distribution of increments 

dWi '-"' N(O, l ); i = 1, .. , 3 (7.52) 

7 .3.3 Numerical Integration Scheme. 

Previous workers on this problem [9], [92] have advocated the use of the 
Heun method in solving the stochastic Gilbert equation numerically. This 
is due to the fact that, being a form of midpoint rule, the Heun method 
naturally converges to the Stratonovich solut ion. Other schemes such as 
the Euler-Marayauma require the use of a so-called noise induced drift term 
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in order to keep the magnitude of magnetisation constant during numerical 
integration. Rather than give a comparison of numerical schemes as has been 
done extensively elsewhere, we merely note here that the implicit midpoint 
rule outlined in the previous chapter has all the advantages of the Heun 
method. In fact the implicit midpoint rule converges more strongly to the 
St ratonovich solution giving an order of convergence which could be achieved 
with the predictor-corrector type Heun scheme only by iterating the predictor 
contribut ion. Applying a temporal discretization using the implicit midpoint 
rule we have 

a(m t+1l2) x .6.m) - .6.m = (m t+1
/
2 x h~;}12 ) + o-r(m t+ i/2 0 .6 W) (7.53) 

where 0 (.672
) approximation gives 

h t+l/2 
ef J 

.6.m 

D.T 

.6.W 

m t+l + m t 

2 
3 t 1 t- 1 
2 h ef f - 2hef f 

m t+l - m t 

Tt+l - Tt 

w t+i - w t. 

(7.54) 

(7.55) 

(7.56) 

(7.57) 

(7.58) 

The discrete Wiener process W again has standardized normal deviates 

.6 liVi ""N(O, 1); i = 1, .. , 3 

scaled by the field strength constant 

Collecting terms in t + 1 to the left hand side we have 

- m t 

3.6.T t t 
+ - 4- (m X h eff) 

D.T ( t h t-1 ) -4 m x eff 

+~' (m t 0 w ). 

This can then by expressed as the matrix equation 

Amt+1 = Bmt 

(7.59) 

(7.60) 

(7.61) 

(7.62) 
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where, droppping the ef J subscript from components of h et f, 

An (7.63) 

A12 

A13 

A 21 

A22 - 1 

A 23 

A31 

A 32 

A 33 

Bu (7.64) 

B 12 

B13 

B 21 

B 22 

B 23 

B 31 

B32 

B33 

and solved in the straight-forward manner 

(7.65) 

where 

(7.66) 
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+(A13 + A12 * A23)B31)/D 

C12 ((1 - A23A32)B12 - (A12 + A13A32) 

+(A13 + A12A23)B32)/ D 

C13 - ((1 - A23A32)B13 - (A13 + A12A23) 

+(A12 + A13A32)B23)/ D 

C21 ((1 - A31A13)B21 - (A21 + A23A31) 

+(A23 + A13A21)B31)/ D 

C22 (-1 + A31A13 + (A21 + A23A31)B12 

+(A23 + A13A21)B32)/ D 

C23 ((1 - A31A13)B23 - (A23 + A13A21) 

+(A21 + A23A31)B13)/ D 

C31 ((1 - A21A12)B31 - (A31 + A21A32) 

+(A32 + A12A31)B21)/ D 

C32 ( (1 - A21A12)B32 - (A32 + A12A31) 

+(A31 + A21A32)B12)/ D 

C33 (-1 + A21A12 + (A31 + A21A32)B13 

+(A32 + A12A31)B23)/ D 

7.3.4 Thermal R elaxation. 

Figure 7.7: Relaxation of a Stoner-Wohlfarth particle of radius 4nm in 
zero field with easy-axis e = (0, 0, 1) and initial magnetisation m = 

( /lfi, 0, y/JJ2). 
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A pointwise solution of the Langevin-Gilbert equation using the numeri­
cal scheme outined above may now be used to give a dynamic visualization 
of magnetisation reversal within a Stoner-Wohlfarth particle. We make the 
usual assumptions of the Stoner-Wohlfarth model, namely that magnetisa­
tion is homogeneous within the particle and that the internal magnetostatic 
field may be neglected due to spherical geometry. We then solve with the 
effective field taking contributions from anisotropy and applied field terms 

(7.67) 

The thermal field strength is given by 

(7.68) 

with the volume of the spherical particle given by V = 41rr3 /3 cm3 and ma­
terial properties for cobalt . F irst we consider the relaxation of magnetisation 
in zero applied field with initial saturation m 0 = ( v'f]2, 0, v'f]2) and e 
along the z-axis at ambient temperature. Again the tiny magnitude of I< 8 

ensures that the effect of thermal fluctuations are negligible at T = 300°K 
unless V is approaching the angstrom regime. Figure 7.7 shows the trajec­
tory of magnetisation within a particle of radius r = 4nm, representing a 
cobalt grain of diameter 8nm which is expected to be thermally stable from 
experimental results [96] and is well above the superparamagnetic limit pre­
dicted by the energy barrier model. Although the magnetisation would be 
regarded as stable for a particle of this size the notion of an equilibrium state 
is shown to be naive. Once aligned with the easy-axis direction the magneti­
sation vector continues to be perturbed by thermal fluctuations indefinitley 
and can never be regarded as "at equilibrium" . As the volume of the particle 
is reduced the deviation from the deterministic trajectory becomes more pro­
nounced. Relaxations in zero field for particles of radius r = 4nm, r = 3nm 
and r = 2nm are summarized in figure 7.8. The plots show the magnitude 
of the z-component of magnetisation over a period of 1 nano-second. Defin­
ing the superparamagnetic limit as the size of particle in which spontaneous 
reversal can occur in zero field, we see that this occurs at a radius of some­
where between 2nm and 3nm. An increase on the prediction of direct energy 
minimization. As the radius decreases further the frequency of spontaneous 
reversals increases as shown by the plot of mz versus time for a particle of 
r = 1nm in figure 7.9. 
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Figure 7.8: Relaxation of Stoner-Wohlfarth particles in zero field with radius 
4nm (blue), 3nm (green) and 2nm (red). 

7.3.5 Stochastic Resonance. 

In order to consider the effect of thermal agitations on the magnetisation 
reversal process we repeat the simulation shown in figure 7. 7 in the presence 
of a reverse field of l½Hk. To highlight the temperature dependence of the 
process we show the trajectory of magnetisation in figure 7.10 at (a) T = 
0°K, (b) T = 150°K and (c) T = 300°K. Clearly the random walk of the 
magnetisation vector converges in some sense to the deterministic trajectory 
as temperature approaches zero Kelvin. The magnitude of perturbations of 
the magnetisation vector around the equilibrium position also diminish with 
reduced temperature. Considering a slower reversal we may investigate the 
effect of this temperature dependence on hysteresis properties. Accordingly 
we apply the reversed field in steps of 6Oe, allowing the magnetisation to relax 
at each field step for lns. From the hysteresis loops shown in figure 7.11 it is 
clear that temperature has a profound effect on the coercivity of the particle. 
This phenomenon is known as stochastic resonance, it is a vital feature of 
the magnetisation reversal process and a crucial feature to be captured in 
order to perform quantitative micromagnetic modelling. As highlighted by 
figure 7.11 the deterministic approach cannot hope to predict coercivity of 
media at finite temperature. We see that in the finite temperature case the 
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Figure 7.9: Relaxation of a Stoner-Wohlfarth particle in zero field with radius 
1nm. 

tails of the hysteresis curves join up at only very high and very low values of 
the applied field, this is again because the equilibrium position at each field 
step attained by the athermal system is meaningless in the finite temperature 
case. Finally we note that in the finite temperature case the hysteresis loop is 
not a uniformly changing curve but instead fluctuates about a mean path. In 
figure 7.12 we see that amplitude and frequency of the stochastic resonance 
increases with temperature. 
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7.4 . FINI TE ELEMENT MODEL. 

Figure 7.10: Reversal of a Stoner-Wohlfarth particle of radius 4nm for T = 
0°K (top), T = 150°K (middle) and T = 300°K (bottom). 

7 .4 Finite Element Model. 

Strictly speaking simulations such as those performed in the previous section 
should be repeated many t imes using different realizations of t he Wiener 
process to obtain statistical data. However we are not concerned here with 
producing results on the probability of a given particle switching but rather 
we require a method of incorporating the effect of thermal agitations into our 
finite element model in a reasonably rigorous manner. It should however be 
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Figure 7.11: Hysteresis loops at T = 0°K (blue), T = 150°K (green) and 
T = 300°K (red) . 
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Figure 7.12: Stochastic resonance. 
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7.4 . FINITE ELEMENT MODEL. 

kept in mind that our results are only examples of a single realization of the 
simulated event. Although we have convergence to unique solutions for any 
given \.Viener process, parameters such as coercivity or switching time should 
be understood as estimates which could form part of a sample from which to 
draw statistics and cannot be regarded as confident predictions. T his section 
gives a brief overview of our finite element implementation of the stochastic 
t ime-stepping scheme followed by an example of relaxation in zero field at 
finite temperature. We now return to the full description of the effective field 
as described previously 

heff = ; v'2m + h d + (m · e)e + h z. (7.69) 

The specification of thermal field strength from Brown's work [84] makes use 
of t he volume of the single-domain particle. In the subsequent work we follow 
the methods of Zhang and Fredkin [94], defining a unique thermal fluctuation 
over each element at each time-step. The volume used in the calculation of 
thermal field strength is then that of the element concerned 

(Je = r 

7.4.1 Variational Formulation. 

(7.70) 

We now give a full spatial discretization of the problem combined with the 
stochastic time-stepping scheme outlined above. Following from the athermal 
model, the Galerkin projection of the Langevin-Gilbert equation in symbolic 
differential form onto the piecewise linear shape functions L i is given by 

i Li(a(m x dm ) - dm ) dV = i Li(m x h eff )dT dV (7.71) 

+ i Lw(m ~ dW ) dV. 

We then employ the midpoint approximations to give 

i Liam t x m t+l dV - i L im t+l dV - i L im t dV (7.72) 

- r 3Li D..T t+l ht dv r 3L i D..T t h t dv Jv 4 m x ef J + Jv 4 m X eff 

r LiD..T t+l ht-l dv r L i D..T t h t - 1 dv + Jv 4 m X eff - Jv - 4- m X eff 

- { Li<J(m t+1 ® 6..W) dV + { L i<J(m t®D..W ) dV. 
lv 2 lv 2 
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7.4. FINITE ELEMENT MODEL. 

Finally we interpolate m and h ef f in terms of the L i to obtain a system of 
linear equations as before 

A ( t h t h t-1 AW ) ..., t+l 
thm m ' eff, eff> Ll m 

7.4.2 Implementation. 

G thm(h !11 , h !1}, !:::. W )m t 

G thm(m t, h !ff, h~ff' !:::. W ).(7.73) 

Due to the use of the symbolic differential, !:::.T appears in the numerator of 
coefficients in 7. 72 instead of in the denominator as before. This was found 
to result in some very small entries in A thm creating subsequent problems for 
the iterative solver. In practice we may divide both sides of equat ion 7.73 
by !:::.Tso that the GMRES algorithm can minimize the residual in far fewer 
iterations. Since the magnit ude of magnetisation is still conserved to within 
around 10- 6 by the midpoint time-stepping method we may be assured that 
the scheme will converge to the Stratonovich solution. The incorporation 
of the thermal fluctuations into the finite element model was very straight 
forward . Computation is increased slightly as we must generate a Gaussian 
deviate for every interior element at each t ime-step. 

7.4.3 Modelling Thermal Relaxation with Sub-grain 
Discretisation. 
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Figure 7.13: Comparison of the magnetisation component in the z-direction 
at 0°K and 300°K. 
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We may now use the finite element model to consider the relaxation in 
zero field of particles with arbitrary geometry. Returning to the perpen­
dicular cobalt grain from chapter 4 consider thermal effects with sub-grain 
resolution. Unlike the single-spin model used earlier in this chapter we now 
have a non-uniform magnetisation configuration within the grain and it is 
more meaningful to talk of a remenance magnetisation value. In figure 7.13 
we show results from a relaxation simulation of the grain at 0°K and at 
ambient temperature. The grain's easy-axis and initial saturation are in 
the out-of-plane direction as in chapter 4. At 0°K the grain reaches an 
equilibrium after 0.lns and no further change occurs in the magnetisation 
configuration. A minimum can be seen in the relaxation curve due to preces­
sion, once in equilibrium mz = 0.96 which can be regarded as a well defined 
remanence value mr. In contrast at 300°K the grain never reaches an equilib­
rium, instead the magnetisation resonates around a value of mz = 0.9. The 

Figure 7.14: Comparison of the magnetisation states after a 2ns relaxation 
at 0°K (left) and 300°K (right) . 

magnetisation states of the grain after 2ns at 0°K and 300°K are compared 
in figure 7.14. As well as local oscillations of the magnetisation vector at 
300°K which result in a more disordered system, we also see a difference in 
the overall configuration. In this particular snap-shot we observe an S-state. 
However as a function of time the magnetisation may be observed to jump 
between many low-energy states such as the S-state, the flower state and the 
C-state. Or rather their equivalents within this geometry. The effect of the 
thermal fluctuations is therefore twofold. The local disorder is moderated by 
exchange interactions and ferromagnetism is maintained. This effect could 
be modelled by simply considering a lattice of interacting spins at each node. 
In finite element analysis however it must be remembered that the magneti­
sation is in fact a continuous vector field which is sampled at the nodes but is 
also well-defined within the elements between them. Another benefit of this 
approach now becomes clear as we may observe frust rastion of the global 
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magnetisation. Local fluctuations are seen to cause transitions to nearby 
minima in the energy surface. Since the real system is also continuous in 
t ime it is slightly misguided to think of jumps over energy barriers, instead 
it is more realistic to think of a constantly changing energy surface leading 
to the constant ly varying value of mz in figure 7.13. 

T hese continual t ransit ions of the minimum energy state leading to dis­
tinct changes in the global magnetisation as well as the expected local dis­
order have also been reported in the study of nano-scale permalloy elements 
[95]. Clearly as temperature is increased the increased thermal energy will 
lead to the annihilation of ever larger energy barriers and eventually to su­
perparamagnetism. 

We obtain a remanence value at finite temperature by averaging the value 
of mz over the 2ns period of the simulation. We feel that this is a fair 
approximation of the value which would be macroscopically observable by 
experiment. Such remanence values are plotted for temperatures between 0 
and 300°K is figure 7.15 where the error bars indicate the standard deviation 
of values taken. We can see a steady decline in mr and by extrapolating 
this curve we may predict that superparamagnetism will not occur in grains 
of these dimensions except at impossibly high temperatures. In fact the 
decrease in mr becomes more gradual as temperature increases. 

Finally it should be remembered that t hese results refer to a single cobalt 
grain. Grains which are embedded within a thin film will have exchange 
interaction with neighbouring grains and are likely to exhibit more stable 
magnetisation. 
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F igure 7.15: Remenance versus temperature between 0°K and 300°K. 
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Chapter 8 

Applications. 

This chapter presents some applications of the model. We have tried to 
present results which can only be obtained via sophisticated numerical meth­
ods in order to illustrate t he usefulness of our methods. We illustrate four 
phenomena of nano-scale magnetism; the influence of material microstructure 
on magnetisation dynamics, the effects of Gilbert damping, superparamag­
netism in cobalt grains and finally the temperature dependence of coercivity. 
All t hese simulations highlight the importance of sub-grain discretization 
since either they could not be performed at all or else they would give du­
bious results using a less sophisticated model. In section 8.1 we show that 
magnetisation dynamics and indeed coercivity values depend in a subtle way 
on the physical texture of cobalt nano-elements. Further we show that small 
deviations from a regular grain structure are enough to account for exper­
imentally observed variation in coercivity values. Next we show that the 
value of the Gilbert damping parameter influences not only the reversal t ime 
but also the mode of magnetisation reversal. Indeed this work suggests the 
feasibility of an inverse problem to obtain the correct value or possibly the 
correct functional form of the damping parameter to be used in micromag­
netic simulations. In considering superparamagnetism in cobalt grains we 
show that t he superparamagnetic limit is not an abrupt transit ion as pre­
dicted by earlier theory but rather takes the form of a gradual reduction in 
remenance as grain size is reduced. Also we describe how it manifests itself as 
a challenge to computational modelling as well as the physical limitations it 
places on magnetic storage. Finally we demonstrate reduced coercivity at fi­
nite temperature due to stochastic resonance. Using the finite element model 
we are also able to highlight differences between the temperature dependence 
of longitudinal and perpendicular cobalt grains. 
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8.1. INFLUENCE OF MATERIAL MICROSTRUCTURE. 

8.1 Influence of Material Microstructure. 

Figure 8.1: Bright-field TEM images of 200 x 40nm2 cobalt nano-elements 
[96]. 

The first application of our work came at an early stage in t he model 
development, nevertheless we were able to apply a two dimensional dis­
cret ization and obtain some useful results. Nanoscale magnet ic elements 
or nanoelements provide a unique context in which to study numerically t he 
dependence of magnetization dynamics on material microstructure. With a 
bounded magnetic region it is possible to perform a rigorous calculation of 
magnetisation reversal which, as we have seen is currently impractical in the 
study of continuous media. During t he first year of the work , experimental 
results concerning the switching of cobalt and permalloy nano-elements were 
published by a group at Glasgow [96], [97]. In addition to fundamental inter­
est , arrays of such nano-elements have important applications as patterned 
magnetic recording media. As discussed in chapter 1, signal-to-noise ratio 
constraints on t he minimum number of grains required per bit are eliminated. 
This allows pat terned media to achieve a smaller bit area and therefore higher 
potential recording density t han conventional media. Short of the superpara­
magnetic limit of a single grain , density is limited only by fabrication and 
read / write technology. The minimum feature size in lithographic fabrication 
techniques is now well into the nanometer regime, allowing for ever more 
miniaturization of nano-structured part icles. We chose to investigate the 
switching characteristics of 200 x 40nm2 rectangular nanoelements with a 
grain size ?: 8nm as it was been demonstrated experimentally that these are 
magnet ically stable in 50nm spaced arrays of mixed state [96]. However in 
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situ magnetization reversal experiments at Glasgow revealed that the coer­
civity of such nanoelements can vary by up to 300Oe. This distribution has 
previously been attributed to the magnetostatic interactions between neigh­
boring nanoelements which undoubtedly exist [72]. Our simulations were 
intended to establish that variations in coercivity from one nanoelement to 
another are also to be expected in the non-interacting case. 

8.1.1 Experimental Comparison. 

Figure 8.2: Simulated geometry of a 200 x 40nm2 nano-element and the 
corresponding finite element mesh. 

The predominantly hexagonal grain structure of the elements is clearly 
visible in the TEM image shown in figure 8.1. Accordingly we used the 
algorithm described in chapter 5 to obtain realistic geometries with which 
to construct our finite element meshes, conforming to the constraint that 
discretization size should be less than lex ~ 2.8nm for cobalt. A typical 
nano-element with a grain size of 8nm and the corresponding mesh is shown 
in figure 8.2. It has been shown that both edge roughness and end geometry 
have a strong effect on the reversal of such elements [99] , [98]. We therefore 
ensured that the edge roughness ratio was simillar for all the nano-elements 
we investigated with excessively rough samples discarded. Also the nano­
elements were defined as all grains of the Voronoi diagram which fell within 
in prefectly rectangular area. This ensured that nano-elements with sharply 
pointed ends which are known to have higher coercivity were not generated. 
To mimic the magnetocrystalline anisotropy of the elements a distinct ran­
domly chosen easy-axis was assigned to each grain. We were then able to 
use our numerical simulation to reveal spatial resolution of the magnetiza­
tion vector through incremental points in t ime, this gives a visualizat ion of 
t he reversal process which is difficult to obtain experimentally. Hysteresis 
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simulations were performed by saturating the nano-elements along their long 
axis and slowly reversing the applied field, allowing the system to come to 
equilibrium at each of 3000 field st eps from + l.5Hk to -l.5Hk. Calculated 
values of coercivity were higher than those obtained experimentally but this 
,.vas expected due to the absence of the strong out of plane component in the 
applied field which is present during in-situ reversal experiments [96] as well 
as the absense of thermal agitations in this model. The simulations allowed 
the mode of reversal to be observed as well as establishing how the physical 
grain-structure influences intermediate magnetization configurations. Figure 

(c) (d} 

' I I t Y ., , ., ,..~ . ' . ' . ,. ';< 

> 

Figure 8.3: Simulated reversal of a 200 x 40nm2 cobalt nano-element. 

8.3 shows the slow magnetisation reversal of a typical nano-element of mean 
grain size 8nm. The corresponding hysteresis loop is shown in figure 8.4. 
The reversal shows t he typical mechanism for elements of this grain size. 
At remenance (a) some magnetisation ripple can be seen, t hen roughly anti­
symmetric vortices nucleate near the ends of the element (b). At higher field 
interior vortices nucleate and pass through the width of the element (c)-(d). 
The outer vortices migrate more slowly across the element width complet­
ing the reversal ( e) . Residual vortices are still present near the ends of the 
nano-element at the coercive field and a further increase in field is required to 
eliminate them. Such residual vortices are one of t he origins of the so-called 
brown paradox, when ferromagnets are observed to switch at fields below the 
usual value of He [1], [2], [10]. If such vortices are not fully eliminated then 
on subsequent reversals the vortices have a "head-start" and may initiate the 
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reversal of the element before the usual nucleation field is reached. 
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Figure 8.4: The corresponding hysteresis loop. 

8.1.2 Effects of Grain Size. 

To examine the grain size dependence of coercivity, we consider individual 
nanoelements with grain diameter of zero deviation from the mean. The 
hysteresis curves for three nanoelements with grain diameter 8nm, 10nm and 
12nm are shown in figure 8.5. The nano-element consisting of 8nm grains ex­
hibits strongly pinned magnetization with no significant nucleation occurring 
until shortly before the coercive field is reached, giving a square hysteresis 
curve. In larger grains we see irreversible magnetization changes at fields 
below the coercivity. The large Barkhausen jump in the 12nm curve cor­
responds to the formation of well defined end domains prior to switching. 
In t rials with different anisotropy distribut ions these irreversible jumps oc­
cur at slightly different fields, but are always present in the case of larger 
grains and always negligible in the case of the 8nm grains. It was observed 
during the simulations that the magnetization within individual grains was 
strongly uniform in the case of the 8nm grains and less so in the larger 
grains. We conclude that with fixed global geometry, the relative size of the 
grains in the nano-elements dictates the balance between shape anisotropy 

186 



8.1. INFLUENCE OF MATERIAL MICROSTRUCTURE. 

and magnetocrystalline anisotropy, therefore defining the energy surface. In 
nanoelements of smaller grain diameter , domain motion is strongly pinned at 
grain boundaries. In such grains the dominant magnetocrystalline anisotropy 
suppresses nucleation, which is not achieved until the level of Zeeman energy 
is sufficient to overcome the energy barrier in each grain. As grain size in­
creases the effects of shape anisotropy become more apparent, resulting in 
softer magnetic properties. 
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Figure 8.5: Comparison of hysteresis loops for regular nano-elements of grain 
size 8nm, 10nm and 12nm. 

8.1.3 Effects of Grain Regularity. 

We now consider the effect of grain size distribution on the reversal pro­
cess. As can be seen from figure 8.6 t he experimentally measured switching 
field is not single valued over a number of nano-elements but instead has 
a range of almost 300Oe. We employed our finite element simulation to 
test the hypothesis that differences in physical microstructure are responsi­
ble for the observed distribut ion of values. A sample of 100 nanoelements 
was generated. Each of mean grain diameter 8nm, but with standard de­
viation in grain area ranging from 0 to 0.3nm2

. In collaboration with the 
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Figure 8.6: Experimentally measured coercivity values for cobalt nano­
elements, [96]. 

Glasgow group it was decided that this gave a realist ic range of grain irregu­
larity, representative of the variation observed in TEM images. An identical 
easy-axis distribution was assigned to each nanoelement and hysteresis sim­
ula tions were performed. The mode of reversal was qualitatively the same 
in all the observed simulations. In all cases magnetization ripple is observed 
in the remnant state with wavelength ~ 100nm; this develops into vortex 
structures, first at the ends of the nanoelement where h d is strongest , and 
then towards the middle. The vortices then migrate through the width of the 
nanoelement, aligning the magnetization with the applied field. This gives 
good qualitative agreement with previous numerical studies as well as with 
the experimental results. The coercive state during our simulations for four 
different nano-elements are illustrated in figure 8. 7. It is clear from figure 
8. 7 that specific intermediate magnetization configurations are dictated by 
the physical microstructure. Although the magnetization configuration at 
coercivity is rather similar in all four cases, there are slight differences in the 
position and orientation of the four vortices. This can only be due to the 
different grain structures of each element as all other factors are identical. 
The distribution of the 100 calculated coercivity values is shown in figure 8.8. 
The range of over 200Oe accounts for much of the dispersion in experimen­
tal measurements. No strong correlation was established between coercivity 
and grain irregularity, indeed the nanoelement with regular grain-structure 
had the coercivity shown in figure 8.8, close to the mean value rather than 
being the maximum as expected. Specific magnetization configurations de­
pend on the local balance between shape and magnetocrystalline anisotropy. 
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Figure 8.7: Coercive states for four irregular nano-elements of mean grain 
size 8nm. 

Although all the 8nm grained nanoelements exhibit the same mode of rever­
sal, different grain structures permit variations in the realized intermediate 
magnetization configurations during reversal due to variations in the local 
energy surface. T his is reflected in the range of calculated coercivity values. 
Low correlation between coercivity and grain irregularity however indicates 
that the dynamics depend on a combination of grain-struct ure and easy-axis 
distribution unique to each nanoelement , reflecting a unique relationship be­
tween the physical grain-structure and the crystal lattice. Variation in the 
coercivity of Co nanoelements is therefore to be expected even in the ab­
sence of magnetostatic interactions from neighboring members of an array. 
The distribution of remnance magnetization values, lVIr shown in figure 8.9 
has a range of 25emu/ cm3 , with most values closely packed around the mean. 
Interestingly the separation of the minor peak from the rest of the distribu­
tion shows that restrictions exist on the possible values of lVlr - This again 
reflects that magnetisation is strongly pinned at grain boundaries in grains 
of such reduced dimensions. T his apparent quantization in lVIr values results 
from the fact that domain walls lie on or near the grain boundary, there is 
not a smooth transition between one magnetisation state and another with 
changing geometry. It is of course possible that we were unlucky enough to 
model almost 100 nano-elements from the lower end of the distribution and 
only a few from the higher end. For this reason the result was not included in 
our publication which discussed only the microstructure dependence of H c · 
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8. 2. GILBERT DAMPING IN COBALT THIN FILMS. 

8.2 Gilbert Damping in Cobalt Thin Films. 

So far we have discussed the Gilbert damping parameter and the phenomena 
it represents briefly in chapter 2 where we proceeded to examine its influence 
over the motion of a single spin. The only major conclusions which can be 
drawn from the single spin analysis are that the length of the trajectory of 
magnetisation during reversal decreases with increased a and that the rever­
sal t ime has a minimum with respect to a at a = l. These characteristics 
are automatically inherited by many micromagnetic models which consist 
essentially of ensembles of Stoner-Wohlfarth particles modified by Gilbert 
clamping and spin to spin interactions. Hence we thought it would be an 
interesting and useful exercise to investigate how the damping parameter 
influences magnetisation dynamics in our finite element model. In all the 
simulations so far we have used a value of a = 1, we have no justification 
for doing so other than the fact t hat minimum switching t imes and there­
fore minimum cpu t imes should result . This is defensible as until recently 
there was no justification for using any other value either. Until recently 
the contribut ion of damping in FMR experiments was neglected ent irely and 
any damping in the system was included in the measured value of , . Things 
have improved somewhat with the development of more rigorous FMR ex­
periments which take account of t he damping. In such experiments the FMR 
line width is related to the damping parameter as described in [101]. These 
results show a temperature dependence of a which is of course taken from the 
athermal Gilbert equation; this is an obvious but pertenant criticism. Also 
any retardation of precession due to extrinsic factors such as material defects, 
surface anisotropy and magnetostriction are also included in the measured 
value. Very recently attempts have been made to separate the intrinsic and 
extrinsic contributions to these measurements. Wit h promising work at NIST 
[101] factoring out the contribution from the so-called two-magnon model. 
Although the jury is still out on exact values, t he general opinion is that a 
is in the region of 0.01 in permalloy t hin film media, however litt le work has 
been presented concerning harder magnetic materials. 

8 .2.1 Single grain simulations 

We first employ the fini te element model in the simulated reversal of a single 
longitudinal cobalt grain. We have already seen that the balance bewteen 
shape and magnetocrystalline anisotropy dictates the specific magnetisation 
configurations in thin films during reversal and therefore influences the coer­
civity. To assess the effects of damping we repeat t he reversal experiment of 
section 4.3.1 with various values of a . Vve define the effective coercive state 
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as that at which the average magnet ization in the y-direction is zero during 
the reversals. These states are pictured in figure 8.10. 

Figure 8.10: Effective coercive states for a single cobalt grain with damping 
parameter (a) a = 10, (b) a= 1, (c) a= 0.1 and (d) a = 0.01. 

For a high damping of a = 10 in (a) we see that the grain behaves 
much like a Stoner-\iVohlfarth particle with almost total homogeneity of the 
magnetisation and the dynamics determined almost entirely by the relative 
orientations of e and h z. After this coercive state has been reached the 
reversal continues by coherent rotation. Figure 8. l0(b) shows the coercive 
state observed in the simulation wit h a = 1 shown in section 4.3.l. As we 
have already noted this still results in single domain behaviour. In contrast 
to (a) however noticable effects of shape anisotropy are now present. Quite 
unexpectedly the reduction in a appears to have altered the system in favour 
of greater alignment with the grain surfaces, the shortened m vectors at grain 
boundaries indicate that a significant out of plane component is present . This 
is a feature we would usually identify with the minimization of magnetostatic 
energy. This t rend continues as a is reduced to 0.1 in figure 8. l0(c). Here 
we see that shape anisotropy becomes more important as the magnetisation 
has aligned with all of the grain boundaries. The reduction in magnetostatic 
energy achieved by this configuration must be greater than the energy taken 
to form the domain wall at the bottom-right edge of the grain. We can be sure 
of this as our athermal model will always follow the minimum energy path 
from its init ial saturation and the saturation was the same in all four cases. 
In this case the reversal continues by the expansion of the reversed domain 
across the grain followed by coherent rotation into the applied field direction. 
This departure from single domain behaviour can only be interpreted as 
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a continuing shift towards softer magnetic properties, i.e. more dominant 
shape anisotropy, with reduced damping. Finally in (d) we see much softer, 
vortices which have developed at opposite corners of the grain to minimize 
magnetostatic energy drive the reversal by domain motion. 

These results highlight the importance of sub-grain discretization in quan­
t itative micromagnetic modelling. Although the single-spin model is useful 
to visualize damping at each spin, for a full description of the magnetisation 
and intra-granular interactions we require sub-grain resolution. By consider­
ing the configurations shown in figure 8.10 we may see that Gilbert damping 
shifts the balance between shape and magnetocrystalline anisotropy within 
magnetic grains and does not merely dictate the reversal time, as could be 
inferred from the single-spin model. We see from figure 8.11 however that in 
agreement with the spin model we obtain a minimum switching time when 
a = 1. Unlike the single spin however the increase in switching time for a 
much greater than 1 or much smaller than 1 is less severe. 
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Figure 8.11: Reversal time versus a for the single cobalt grain. 

8.2.2 Thin film simulations 

We now apply our two dimensional finite element model to the simulation of 
a polycrystalline thin film. As in chapter 5 this is achieved by using implicit 
periodic boundary conditions. Magnetisation reversal simulations were per­
formed on the ensemble of 48 coupled Voronoi grains with mean diameter 
20nm shown previously. Again the easy-axis in each grain was chosen ran­
domly from a uniform distribution across the half-cicle. The initial saturation 
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Figure 8.12: Reversal time versus a for a periodic thin film. 

is allowed to relax in zero field before a reverse field of l.5Hk is applied. The 
simulation with a = 1 was shown in chapter 5, we now present analogous 
simulations with values of a less than 1. The results of these simulations 
are summarised in figure 8.12 to compare with the single-spin and isolated 
grain simulations. \Ve see that the minimum reversal t ime again occurs at 
a = 1, however the reversal time for a « 1 is now far greater t han that 
in either the single-spin case or the isolated grain. This must be due to 
the interactions between grains of different orientations which take longer 
to reach an equilibrium when the dynamics are negligibly damped. This is 
illustrat ed by t he individual magnetisation reversal plots for various a < 1 
shown in figure 8.13. These reflect the different modes reversal. Although 
the magnetisation remains mostly homogeneous within individual grains at 
all values of the damping parameter in the coupled film, a marked difference 
in domain configuration was observed. As we saw in figure 5.13, for a = 1 
the reversal occurs by the motion of nucleated vortices through the system. 
This results in a smooth reversal curve. In contrast to this for lower damping 
the domain structures become more degenerate, with irregular maze-like do­
mains dominating the the reversal. This is reflected in the many inflections 
in the reversal curve for a = 0.10, presumably these are caused by more 
complex interaction between domains which in turn cause a slowing down 
of the reversal. With lower damping t he reversal curves become even more 
structured. The effective coercive states for a= 0.1 and a = 0.01 are shown 
figures 8.14 and 8.15 respectively. At a = 0.01 coherent magnetisation is 
observed only within individual grains. Returning to figure 8.13 we see that 
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Figure 8.13: Reversal curves for the periodic thin film with a:::; 1. 

as a ➔ 0 the reversal curve becomes more jagged as local energy minimisa­
tion within each grain becomes more dominant, until at a= 0.01 no reversal 
occurs. Clearly such low values of a do not give a realist ic representation of 
energy dissipation in this model, as a field of l.5Hk should be sufficient to 
completely reverse the magnetisation in such a thin film. 

8.2.3 The Nature of Energy Dissipation. 

We have demonstrated that sub-grain discretization is necessary for quanti­
tative micromagnetic modelling of polycrystalline media due to the effects of 
intra-granular interactions and the effect of Gilbert damping on the delicate 
balance between them. Although the inter-granular interactions may be in­
corporated into single-spin per grain models, the intra-granular interactions 
are not resolved. It appears that within individual grains decreased damping 
leads to softer magnetic properties. And within a coupled thin film reduced 
a leads to increased disorder in magnetisation. 

The Gilbert equation is widely used to describe the dynamics of FMR 
experiments and the analysis often assumes that damping is negligible in 
such experiments. However we have seen that a plays a critical role in de­
termining the reversal mechanism and cannot be ignored. Ideally an inverse 
problem can be conceived in which the value of a for a given system could 
be found by comparison of experimental data with the results of numerical 
simulations. This would provide the exact value or range of values to be used 
in micromagnetic models without confusion between intrinsic and extrinsic 
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Figure 8.14: Effective coercive state of the periodic thin film with a = 0.1. 

contributions. 
It is often inferred from Kikuchi [34] that a damping constant of a = 1 is 

the most suitable value to use in micromagnetic simulations as this gives the 
minimum switching time in a single-spin system. Vve have seen that this is 
also t rue in both a single grain and a coupled thin film and further that a= 1 
cont inues to give a physically acceptable reversal t ime in these systems. 

Originally we had concluded that a could not be as low as 0.01 since 
this resulted in physically unacceptable results in our model. However in 
light of resent experiments which confirm that a must be at least 1 or 2 
orders of magnitude lower than 1 we are forced to reject this conclusion and 
accept that the result must be due to the periodicity in our thin film model. 
Intuit ively if an excited spin-wave cannot ever leave the torus then we do not 
have a truely open magnetic region. Energy can then only be dissipated via 
Gilbert damping leading to the physically unacceptable result in figure 8.13. 
From this we must conclude that two dimensional modelling with periodic 
boundary conditions is not a sensible method in micromagnetics. 

196 



8. 2. GILBERT DAMPING IN COBALT THIN FILMS. 

Figure 8.15: Effective coercive state of the periodic thin film with a = 0.01. 
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8.3 Modelling Superparamagnetism. 

We now consider the relaxation of longitudinal grains at ambient tempera­
ture and consider the effects of reducing grain size. We expect from chapter 8 
that reduced grain size will eventually result in superparamagnetism. How­
ever instead of the idealized spherical grain considered previously we may 
now consider a realistic Voronoi grain. Again the same mesh is used for 
all the simulations and scaled to achieve the desired grain size. Similar re­
sults were obtained for the perpendicular grain and so to avoid repetition we 
present results for the longitudinal case only. In figure 8.16 we see the relax­
ation of the 20nm grain over a period of 2ns, as expected the magnetisation 
oscillates around a value which is somewhat lower than would be obtained in 
the athermal simulation. Nevertheless the average value of my = 0.67 is still 
a reasonably strong remenance value. The equivalent relaxations for grain 
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Figure 8.16: Relaxation of a 20nm longitudinal grain at 300°K. 

sizes of 15, 10, 8 and 7 are shown in figures 8.17 to 8.20. Reducing the grain 
size to 15nm results in only a modest reduction of the average magnetisation 
value and the grain is resistant to thermal fluctuations. Upon reduction to 
10nm the effective remenance value is reduced once more and we see fluctu­
ations of greater amplitude in the magnet isation. Whereas at 8nm we see a 
large fluctuation in the magnetisation which is alsmost sufficient to switch 
the grain. It appears from these finite element simulations that the onset of 
the superparamagnetic limit is more gradual than the abrupt transition pre­
dicted by the single spin model. From the figures we see that the remenance 
magnetisation is reduced with reductions of grain size, accompanied by an 
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Figure 8.17: Relaxation of a 15nm longitudinal grain at 300°K. 

increase in the amplitude of fluctuations. Until at 7nm the net magnetisation 
in the y-direction averages to zero over t ime. These results are summarized 
in figure 8.21 where mr is defined as the average component of magnetisation 
in the y-direction. We should note here that during simulations of the 7nm 
grain the GMRES algorithm was occasionally unable to significantly reduce 
the residual. Upon further shrinking of the grain such errors became more 
and more frequent . We interpret this phenomenon as spontaneous jumps of 
the magnetisation to quite different low energy configurations which means 
that the magnetisation configuration from the previous time-step is no longer 
a good initial guess for the solver. On such occasions the solver simply re­
duces the residual as much as possible and our program proceeds to the next 
time-step. It would seem that this results in the magnetisation becoming 
stuck around low energy states with my ~ 0. This interpretation is sup­
port by noting that the trend of increased amplitude of the fluctuations with 
decreasing grain size is halted at 8nm which suggests that the larger fluctu­
ations in smaller grains cannot be resolved. This requires more investigation 
and possibly the consideration of alternative solvers for situations in which 
superparamagnetism is likely to occur. No such errors occured for grains of 
diameter 2: 8nm and we conclude that the G MRES algorithm is still the 
most appropriate solver for this regime. 
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Figure 8.18: Relaxation of a 10nm longitudinal grain at 300°K. 
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Figure 8.19: Relaxation of a 8nm longitudinal grain at 300°K. 
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Figure 8.20: Relaxation of a 7nm longitudinal grain at 300°K. 
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Figure 8.21: Remenance magnetisation versus grain size. 
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8.4 Temperature Dependence of Coercivity. 

8.4.1 Longitudinal Grains. 
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Figure 8.22: Comparison of hysteresis loops for the longitudinal grain at 0°K 
(blue) and 300°K (green). 

To consider the effect of temperature on the coercivity of cobalt grains 
we repeat the simulations of section 4.3.3 using the finite temperature model. 
Figure 8.22 shows the hysteresis loop for the longitudinal grain at 300°K in 
green with the athermal curve shown in blue for reference. Immediat ley we 
see an improvement in the quality of our results using the finite element 
model. With the incorporation exchange and magnetostatic interactions 
across the magnetisation, the abrupt jump to a reversed state which was 
observed for the Stoner-Wohlfarth particle does not occur. Consequently the 
tails of the hysteresis loop join at high and low fields as is observed exper­
imentally. This simulation in fact gives a far deeper understanding of the 
reversal process. In section 7.3.5 we saw that fluctuations in the magnetisa­
t ion lead to rapid oscillations of the hysteresis curve, with the amplitude of 
these oscillations depending only on temperature. In the Stoner-Wohlfarth 
model the effects of stochastic resonance are the same at all fields. In figure 
8.22 on the other hand we see that the magnitude of oscillations increases 
with increasing magnitude of the reversing field. As more Zeeman energy 
is applied the effects of thermal energy are magnified. As soon as one of 
these oscillation results in a negat ive value of the average magnet isation, a 
Barkhausen jump occurs and the grain is switched . As expected this occurs 
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at a field somewhat lower t han that which would be required to anihilate the 
energy barrier at zero temperature. As expected from the previous section 
we obtain a remenance value of mr = 0.67 ± 0.05. 

The most interesting feature of this simulation is the mechanism by which 
coercivity is reduced. We have already seen in chapter 7 that at elevated tem­
peratures a frustration of the global magnetisation configuration develops. In 
figure 8.22 we see that this global frustration is also dependent on field. This 
is in contrast to earlier results which suggest that reduced coercivity at fi­
nite temperature is merely a result of increased local disorder , in analogy to 
the ferromagnetic-paramagnetic transition in a spin lattice. In some ways 
of course the analogy is good. However we may clearly see from figure 8.22 
that at constant finite temperature the application of zeeman energy results 
in thermal fluctuations of increased magnitude, until at the critical field fluc­
tuations become large enough to jump over the energy barrier. Finally we 
note that further increases in zeeman energy deepen the energy minimum 
corresponding to the reversed state, so that fluctuations of the magnetisa­
t ion can no longer results in result in a switching event. The magnetisation 
therefore remains in the switched state. Magnetisation fluctuations of this 
magnetude are not observed in experimental hysteresis loops due to the fact 
that magnetisation is measured over a longer time-scale in such experiments. 
This results in a mean-path curve. We should also note that in the contin­
uous thin film, intergranular interactions would tend to limit the magnitude 
of such fluctuations. 

8.4.2 Perpendicular Grains. 

In figure 8.23 we show results of a hysteresis simulation for the perpendic­
ular grain. In this case there is only a more modest reduction in coercivity 
as temperature rises. Also the hysteresis curve is more disimillar from the 
athermal case. Here the reversal occurs over a number of field-steps at 300°K 
in contrast to the single Barkhausen jump observed at 0°K. Since there were 
no minimization problems reported from the GMRES solver during these 
simulations we may conclude that the system does not become artificially 
pinned at a specific magnetisation value over a field-step due to spontaneous 
jumps not being resolved. Rather we may conclude that this is in fact a 
feature of the finite temperature reversal in perpendicular grains and not 
merely an artifact of the model. This can be explained by recalling that 
grains are observed to jump continually over small energy barriers at finite 
t emperature. It must be remembered that energy barriers can be small on 
one side corresponding to a local minima but much deeper on the other side 
corresponding to a state of much lower energy. Once such low-energy states 
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Figure 8.23: Comparison of hysteresis loops for the perpendicular grain at 
0°K (blue) and 300°K (green). 

have been reached the magnetisation cannot change significantly until a fur­
ther increase in Zeeman energy causes a shift in the energy landscape. This 
phenomenon results in a sloped hysteresis loop which is in fact representa­
tive of experimental loops for perpendicular media of large grain-size. As 
we have seen previously some non-uniformity must exist within the magneti­
sation to allow alternative magnetisation configurations to be separated by 
small energy barriers. Notice that the slope is not curved as in the case of 
the longitudinal grain, this curved slope is a result of the orientaion of the 
easy-axis rather than of non-uniform magnetisation. 

204 



Chapter 9 

Con cl us ions. 

The aim of this project was to develop a three dimensional micromagnetic 
simulation using finite element methods to resolve nano-scale features in the 
microstructure of polycrystalline thin films. This goal has been achieved with 
a model that can be applied to arbitrary geometry with given material prop­
erties. We conclude that this work has brought the theory of micromagnetics 
one step closer to being a reliable design tool as well as giving new insight 
into the fundemental magnetisation reversal mechanism. We now give an 
evaluation of the micromagnetic model, our microstructure model and the 
computational simulations we have performed. We then discuss some for­
mulation and algorithmic improvements which could be made to the code 
in the future as well as an outstanding physical feature which should be in­
corporated into the microstructure model to enable t he simulation of thin 
film magnetic storage media. Finally we consider further technological and 
scientific applications in which the model could and indeed is being used to 
good effect. 
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9.1 Evaluation. 

This work has consisted of three components; the development of the mi­
cromagnetic solver, the generation of realistic geometry and construction of 
the finite element mesh, and finally the computational simulations we have 
chosen to perform. These three aspects of the work will now be evaluated 
individually. 

9 .1.1 Micro magnetic Model. 

We have presented a self-consistent model of magnetisation dynamics which 
can be applied to bounded or periodic nano-scale systems. In homogeneous 
material of arbitrary geometry may be considered. The model employs an 
unstructured finite element discretization of the Gilbert equation and asso­
ciated components of the effective magnetic field. We have shown that our 
magnetostatic calculation converges to an analytical solution for the sphere 
at discretization sizes far higher than are necessary for micromagnetic cal­
culations. We are therefore assured of a good solution for the field at each 
time-step in our simulations. We have employed a variational formulation of 
the dynamic equations which has several advantages. Most importantly the 
athermal model is mesh independent provided that the discretization size is 
smaller than the characteristic exchange length of the material. This is im­
portant because in future applications of the model Angstrom scale features 
such as material defects may be modelled by local refinement of the mesh 
without fear of mesh induced artifacts. Secondly our method allows contri­
butions from the second order derivative of magnetisation due to exchange to 
be evaluated using a linear spatial basis of the magnetisation. Finally almost 
any conceivable term may be added to the effective field in the future. Any 
such terms would appear as integrands over each element; these may then 
be evaluated in terms of the local shape functions or indeed using Gaussian 
quadrature where necessary. We are therefore confident that the model is 
universally applicable to bounded nano-scale systems. 

We have employed modern sparse matrix methods in handling the large 
systems of linear equations to be solved. Using a symbolic build-up of the 
mass matrix for a given mesh a priori we need only calculate numerical entries 
during the simulation with no data handling at run-time. The sparse matrix 
in row or column format can be passed to any external solver. At present we 
use the GMRES algorithm but it is not hard-wired into the code and may 
be supplanted by more efficient solvers should they become avalable. 

As well as a model of bounded regions we have employed implicit periodic 
boundary conditions in order to model an infinite two dimensional region. vVe 
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have peformed simulations of an extended polycrystalline thin film using this 
method with some success. The model captures t he qualitative features of 
magnetisation reversal, such as the magnetisation ripple structures observed 
at remanence and the transition between reversal by coherent rot ation and 
reversal by vortex motion with increasing grain size. However further work 
is required to establish how many grains are needed to accuratley model the 
quant itative characteristics of t he reversal mechanism such as the coerciv­
ity. In hindsight we see that although the periodic region is infinite, the 
computational region will probably have to be very large in order for longi­
tudinal magnetisation structures to develop in a realistic manner. However 
this constraint would seem less important in the simulation of thin films with 
perpendicular orientation. Indeed simillar methods with interface boundary 
condit ions enforced in the out of plane direction have recently been success­
fully applied to modelling perpendicular magnetic recording media [102]. 

'vVe have briefly considered the notion of geometric integration. In t he 
context of micromagnetics a geometric method is simply any method which 
is quadratically invariant and therefore conserves the modulus of the mag­
netisation vector. We have shown that an implicit midpoint scheme which 
can be thought of as an average of the forward and backard Euler methods 
satisfies this criterion. This method was shown to be numerically stable and 
more efficient t han normalization of a quadratically variant scheme, such 
as the Euler method. The method may also be implemented adaptively in 
time using a self-consistency control scheme. T he work of Albuquerque et 
al. [82] shows that t here exist other invariants of the system which are not 
conserved by the midpoint scheme. Investigation of geometric integration 
methods which preserve such invariants may further improve accuracy. 

F inally we have incorporated finite temperature effects into the model via 
the Langevin-Gilbert equation. An implementation of our midpoint scheme is 
a suitable numerical method as it will naturally converge to the stratonovich 
solut ion of t he stochastic differential equation. T he difficulty in application 
of this method is that a thermal field strength must be assigned to the nor­
mally distributed Weiner process used to represent thermal fluctuations. In 
Browns original method he calculates a field strength inversely proportional 
to the volume of the single domain particle under consideration. It is unclear 
t hen how to apply his method in a multi-domain system. In line with other 
work [92] we have used his calculation substituting the volume of each finite 
element for t he volume of the particle. Clearly this leads to mesh depen­
dency and possibly an exagarated strength of the thermal field. We feel our 
simulations give ball-park results in the finite temperature case but that the 
thermal field strength should be moderated by a mesh dependent factor. The 
form of this factor is still an open question in our opinion [103] . 

207 



9.1. EVALUATION. 

9.1.2 Microstructure Model. 

The Voronoi tessellation is widely accepted as the best geometric represen­
tation of polycrystalline thin films [104]. The polygonal cells accurately rep­
resent the structure of thin film grains whose boundaries straighten upon 
post deposition annealing. The polygonal geometry also ensures that dis­
cretisation error due to poor boundary approximation does not occur. Our 
algorithm for the generation of particular Voronoi constructions allows us 
to deform a hexagonal or indeed any other lattice to an arbitrary degree. 
Thus enabling arbitrary grain irregularity while maintaining t he mean grain 
size. A realistic level of grain irregularity was decided upon in collaboration 
with experimental researchers. Our method has enabled us to establish the 
influence of material microstructure on the reversal mechanism in thin film 
nano-elements. At present the model is restricted to the representation of 
pure cobalt grains due to poor resolut ion of the grain boundaries. However 
realistic randomly oriented easy-axis can be assigned to the grains. 

9.1.3 Applications. 

In chapter 4 we have illustrated many types of reversal mechanism in the 
context of a homogeneous cobalt nano-element and went on to illustrate the 
most important differences between cobalt grains of longitudinal and per­
pendicular orientation. In chapter 8 we have presented four more interesting 
applications. The work on microstructural effects in cobalt nano-elements 
illustrates the success of both the micromagnetic and the microstructural 
model. With favourable comparisons to experimental results we can be sure 
that the solver is producing sensible results. Further the agreement with the 
range of coercivity values gives justification to our physical representaion. 
The subject of the Gilbert damping parameter is always somewhat contro­
versial, primarily because it means different things to different people. Exper­
imental researchers often present results which show that measured damping 
parameters depend on various other pheneomena, indeed even on tempera­
ture. Whereas these phenomena are almost always represented within the 
effective magnetic field in micromagnetic simulations and temperature effects 
are represented by random fluctuations in a stochastic differential equation 
or by Monte Carlo simulations. It is unclear then how the experimentally 
measured values of a should be related to the value used in computational 
simlations. We hope that the work shown in section 8.2 at least highlights 
the importance of resolving this question. 

A fact which echoes through all the applications of our model is that 
subgrain discretization is of upmost importance in micromagnetic modelling. 
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We come to this conclusion simply by observing phenomena which cannot 
be resolved using a simple single spin model. This is due essentially to the 
simple energy barrier decribed by the Stoner-Wohlfarth model. Such a model 
cannot reflect the full complexity of the energy functional. In short the finite 
element method gives a continuum model which is true to our continuum 
hypothesis in the definition of magnetisation. In chapter 4 we saw that the 
distinct differences between longitudinal and perpendicular grains, as well as 
between grains of different sizes are due essentially to the balance between 
shape and magnetocrystalline anisotropy. The respective geometries can only 
give rise to such shape anisotropy when the grains are properly modelled. In 
section 8.2 we saw that Gilbert damping has a profound effect on the reversal 
of longitudinal grains. We have concluded that damping shifts the balance 
between shape and magnetocrystalline anisotropy. Again this phenomenon 
cannot be predicted without subgrain resolution. Finally in realistic cobalt 
grains the superparamagnetic limit occurs at a higher grain size than that 
predicted using a spherical single domain particle. Further we have shown 
that superparamagnetic behaviour appears gradually with reduced grain size 
and is not the abrupt transition which it is often perceived to be. 

However as grain size decreases below the single domain limit as is the 
case in many applications we conclude that more useful results may be ob­
t ained using the computationally faster enhanced Stoner-Wohlfarth model. 
With faster simulations of this sort systems of far greater dimensions can be 
considered with comparable cpu time without loss of quality in the results. 
Indeed agreement between finite element and enhanced Stoner-Wohlfarth 
simula tions has recently been demonstrated in the context of minute ferro­
magnetic particles [105] . Despite the agreement , it was also shown that the 
finite element model gave a deeper understanding of the reversal process. We 
therefore maintain that the value of information obtained from a micromag­
netic simulation is proportional to the computational effort invested provided 
efficient methods are used. Initially sub-grain discretization is important to 
establish single domain behaviour, justifying the use of simpler models. Also 
in problems with non-uniform geometries a finite element discretization is 
desirable to distinguish between different types of single domain behaviour. 

9.2 Model Development. 

As we have already ment ioned an almost arbitrary effective field may be 
considered using this model since terms do not have to be explicitly evaluated 
at a point. For example the expression for uniaxial anisotropy in the effective 
field could be replaced by an expression for cubic anisotropy. Incorporation of 
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new terms could only ever be a problem if they included high order derivatives 
of magnetisation which could not be handled using Greens formula. Even 
in this case essentially the same method could be applied, requiring only 
a higher order basis for the magnetisation. In this section we discuss only 
fundemental changes which may improve the validity or efficiency of the 
model. 

9.2.1 Grain Boundary Resolution. 

The current t reatment of grain boundaries in the majority of micromagnetic 
models is unsatisfactory. We have shown that grain size may be used to tai­
lor magnetic properties. However at present another experimental technique 
which is used to increase coercivity is beyond the scope of our model. By 
alloying cobalt with non-magnetic substances such as chromium greater con­
t rol over coercivity can be obtained. It has been shown that in such alloys 
the chromium segregates to the grain boundaries [104], this results in a non­
magnetic grain boundary and subsequent decoupling of the magnetostatic 
and exchange interactions between grains. This is effective in increasing coer­
civity, however at 12 percent chromium the alloy becomes non-magnetic and 
is no longer useful as a storage medium. Therefore a greater understanding 
of this decoupling near the non-magnetic limit would be very useful. In our 
current model however the grain boundaries have zero thickness and cannot 
assume the propert ies of t he chromium. Something has to be done to sep­
arate the grains, simply lowering the exchange constant at the boundary is 
not really acceptable. Ideally the grains should be physically separated with 
discretisation inside the boundary, this approach would be computationally 
intensive but is not unfeasible. Such a model would allow direct definit ion of 
the material properties within the grain boundary with no fudge factor. 

Attempts have been made to directly incorporate atomistic effects at the 
grain boundary into a finite element model [106] . Here a Heisenberg model 
of exchange coupling between the grains was used with explicit ly represented 
atomic moments coupled to the finite element discretisation of magnetisa­
tion within the grains. Simulations with a single grain boundary separating 
grains with anti-parallel magnetisations gave promising results with dramatic 
changes of the domain wall in the grain boundary upon a reduction of the 
exchange constant there. However no details of the calculation were given 
and it seems likely that very small elements would be required within the 
grains to couple vvith the Heisenberg model in the grain boundary. This 
model then suffers from the same limitations as direct discretization within 
the grain boundary with no foreseeable extra benefit. 

F inally rather than applying a coarse-graining approach [107] we propose 
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that the problem could be overcome using so-called mortar elements . These 
are used primarily to connect elements of different order in a finite element 
model where p-refinement rather than h-refinement is in operation. This is a 
common adaptive method in which the order of shape functions is increased 
in areas where greater resolution is required. We propose that such elements 
could be used to connect a pair of grains with all nodes on each ot the 
grain boundaries forming nodes of the mortar element . Interior nodes could 
then be specified at which properties such as the exchange constant differed 
from those in the grains. A higher order polynomial would then be used 
to interpolate the magnetisation across the element as in spectral element 
analysis [48]. These elements could then be made very thin without affecting 
the discretization size within the grain. Indeed they could be defined as 
two dimensional plates between the grains. Unfortunetly there was no t ime 
within this project to implement the idea. 

9.2.2 BEM Magnetostatic Calculation. 

A decision was made early in the course of this project to employ a purely 
fini te element solution of the magnetostatic field. In this case the stiffness 
matrix remains sparse and computational methods for such matrices can be 
applied. However as discussed in chapter 3 this philosophy had several short 
comings. Firstly it was found tha t elements in the external region could 
not be made arbit rarily coarse without effecting the quality of the solution. 
This results in a large amout of computation to calculate the potential in the 
external region which is never explicitly used by the model. In hindsight we 
feel that this over-head is probably comparable to the expense of dealing with 
a fully populated matrix resulting from the hybrid finite element/boundary 
element method used by other authors [51]. The simplifications to mesh 
generation and processing then favour the hybrid method. 

9.2.3 Preconditioning. 

We have employed the GMRES matrix solver in all our simulations to date 
using only the default set t ings with the exception that the dimension of the 
Krylov subspace was set to the opt imal value for such calculations [59] . A 
myriad of precondit ioning schemes are now available which may well be more 
efficient 
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9.2.4 Parallelization. 

Recent advances in parallel computing techniques hold interesting possi­
bilities for micromagnetics. Such computations are carried out via two 
paradigms. The computat ional region may be split into a number of regions 
with each region being assigned to an individual processor. The calculation 
then requires overlapping layers of ghost elements between each region and 
a message passing interface (MPI) to couple the regions together. A scheme 
can be imagined in which individual processors are assigned to each grain of 
a thin film problem. Interior magnetisation could then be resolved subject to 
interactions from the other grains. This scheme would rely on a very sophis­
ticated MPI to handle both short-ranged exchange interactions and non-local 
magnetostatic interactions effectively. 

Alternatively parallelization may be achieved through open message pass­
ing (OpenMP). This method considers the computational region as a single 
entity in the same way as a serial program, here the structure of the computer 
program itself decomposed into modules which can be run simultaneously on 
different processors. For example when we loop over all elements to for a 
stiffness matrix or mass matrix the contribut ions are independent of each 
other and could therefore be calculated on different processors. 

There are adavantages and disadvantages of both methods. MPI meth­
ods have been known to speed up calculations while still taking up the vast 
majority of cpu time doing the internal book-keeping. This indicates that 
the methos has not yet reached its full potential and will continue to improve 
performance as better interfaces are developed. The openMP scheme doesn't 
rely on domain decomposition and is often therfore more straight-forward in 
application. Indeed simple parallelization can be performed implicitly at 
compilation time. This method does have two major disadvantages; firstly it 
is limited in applicability and secondly it raises complicated memory man­
agement issues. 

Some problems are sequential in nature over a large domain and naturally 
lend themselves to MPI whereas others are clearly more suited to OpenMP. 
Taking our model as an example it isn't clear which method would be most 
suitable. A rigorous comparison is required. 

9.3 Further Applications. 

The list of potential applications for our current model is very large and 
increases steadily with the refinements mentioned above. We mention only 
a sample of problems here that we feel illustrate the versatility of the code. 
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9.3.1 Magnetic Recording simulation. 

In our investigations to date we have considered magnetisation dynamics due 
to an external field which is constant in space and time. In real appliations 
such as magnetic recording the head field is non-uniform in space and moves 
in time with respect to the media. We have accounted for these features in 
the model so that a full recording simulation may be performed in the future. 
The term 

(9.1) 

is evaluted over each element in the variational formulation. The applied field 
h z may therefore take any functional form or may simply be defined at the 
nodes as required. These values may also change between time-steps. Finite 
element methods for head field calculations are well established. Conven­
tional analytical calculations encounter problems when the head and media 
are combined in the same model, as the head should be infinitly imaged in 
the media and conversly the media should be infinitly imaged in the head. 
This is accomplished quite naturally in a finite element discretization. How­
ever we re-encounter the open-magnetic-boundary problem since periodic 
boundary conditions are not an appropiate means with which to resolve the 
head field. A first step towards a recording model is easily conceived with 
the media extending far enough away from the head to render edge effects 
neglegible when considering the reversal of a bit directly beneath the head. 
Such a model would require a massive number of finite elements to resolve 
the media at the subgrain level. However with efficient preconditioning and 
parallelization we feel that a micromagnetic model with essentially the same 
method as that outlined in this thesis could be used as a robust design tool 
for magnetic storage media as well as giving improved head design facili­
ties. We accept however that in its present form the model is most useful in 
investigations of discrete nano-scale systems. 

9.3.2 Rock Magnetism. 

Such an application has recently become apparent in the form of under­
standing magnetisation dynamics and in particular in domain wall motion 
in magnetite crystals. Thermoremanent magnetisation is proposed as a cost­
effective alternative to carbon dating in certain applications. This is possible 
because the magnetite crystals which are present in most of the earths crust 
in fact form the oldest known magnetic recording device. These cryst als have 
a coercivity higher than the earths magnetic field at ambient temperature, 
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however in periods of increased temperature it is possible for them to switch 
at such low fields. Combined with records of a region's thermal history, a 
magnetic history of the magnetite crystals can then be used to date a given 
rock from that region. This has prompted a need to achieve a better under­
standing of the micromagnetic behaviour in such crystals. Neel's relaxation 
time equation for t hermal activation of single domain crystals over an en­
ergy barrier has been verified over extended time [108] . However in the case 
of multidomain particles some disagreement exists between the Neel model 
and observed results. The single domain limit of magnetite crystals is in 
the region of 100nm, therefore particle sizes of interest are well within the 
range of our model. We hope to perform simulations in the future in order 
to investigate the remanent domain configurations and thermal activat ion 
of multidomain crystals. This will however require that cubic anisotropy is 
incorporated into the model. 

At fields as low as the earths field magnetostriction effects also become 
important and should be resolved. This requires the derivatives of magnetic 
elastic and elastic energy to be incorporated into the effective magnetic field. 
These energies can be found as the solution to a set of second order partial 
differential equations which would have to be solved at every time-step of 
the micromagnetic model. This work presents both a useful application and 
a nice numerical problem. Such a model would have further applications 
ranging from the investigation of mechanical damping to t ribological effects 
in magnetic recording. 

9 .3.3 Superspin-glass Transition in Minute Nano-particles. 

Much experimental work has been underway recently on the magnetisation 
dynamics of ultra-small nano-part icles. In particular we note the work of 
J. De Tora et al. [109], [110] on mechanically alloyed Fe particles of only 
1nm in diameter. Finite element modelling is ideally suited to modelling the 
interactions between such particles. Computations over many hundreds of 
particles employing periodic boundary condit ions in three dimensions would 
provide the ideal complement to experimental results, particularly in the in­
vestigations of the illusive RKKY interaction. A standard micromagnetic 
simulation would establish whether classical interactions can account for ex­
perimentally observed behaviour . Experimental verification of the stochastic 
Gilbert equation could also be investigated by comparison of temperature 
dependent results. 
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