

Bangor University

DOCTOR OF PHILOSOPHY

Synthesis and characterisation of organometallic compounds of B, Mn and Re

Brassington, David Steven

Award date: 2001

Awarding institution: University of Wales, Bangor

Link to publication

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Synthesis and characterisation of organometallic compounds of B, Mn and Re.

A thesis submitted in accordance with the requirements for the degree of Doctor of Philosophy.

David Steven Brassington

Department of Chemistry University of Wales, Bangor

November 2001

Putting on the spectacles of science in expectation of finding the answer to everything looked at signifies inner blindness.

J. Frank Dobie

Abstract

This thesis describes the synthesis and characterisation of some new organometallic compounds of manganese, rhenium and boron, with the emphasis on attempts to develop new aspects of boron chemistry. Chapter 1 is written as an introduction to the topics of *arachno*-metallatetraboranes, and the co-ordination chemistry of unsaturated boron containing heterocycles, and Mn and Re(I) carbonyl derivatives.

Chapter 2 is concerned with the synthesis of a series of new $[MBr(CO)_3L_2]$ {M = Mn and Re, L = P(C₆H₄Cl-4)₃, P(C₆H₄OMe-4)₃, P(CH₂Ph)₃, 1/2dppp, 1/2dppb; M = Mn, L = 1/2dppfc} and previously reported {M = Mn and Re, L = PPh₃, 1/2dppm, 1/2dppe; M= Re, L = 1/2dppfc }organometallic derivatives. These complexes were characterised by spectroscopic (³¹P- NMR, IR) and single-crystal X-ray diffraction methods {M = Mn, L = P(C₆H₄Cl-4)₃, 1/2dppe, 1/2dppfc; M = Re, L = P(CH₂Ph)₃, P(C₆H₄OMe-4)₃, 1/2dppfc}. The Mn(I) derivatives of monodentate ligands were *mer,trans*- isomers whereas as all other derivatives were *fac, cis*- isomers.

Chapter 3 reports the reactions of the complexes described in Chapter 2 with $[NBu_4][B_3H_8]$ and the synthesis and characterisation of several *arachno*-2-metallatetraborane derivatives: $[M(CO)_2L_2(B_3H_8)]$ (M = Re, L = PPh₃, P(C₆H₄Cl-4)₃, P(C₆H₄OMe-4)₃, P(C₁Ph)₃; M = Mn and Re, L = 1/2dppm, 1/2dppp, 1/2dppb, 1/2dppfc; M = Mn, L = 1/2dppe). Of these derivatives only $[Mn(CO)_2(dppe)(B_3H_8)]$ has been previously reported. All *arachno*-2-metallatetraboranes were characterised by NMR (¹¹B, ³¹P, ¹H) and IR spectroscopy and $[Mn(CO)_2(dppe)(B_3H_8)]$ and $[Re(CO)_2(dppfc)(B_3H_8)]$ were further characterised by single-crystal X-ray diffraction studies.

Chapter 4 describes the synthesis of a series of 1:1 adducts of the Lewis acid $B(C_6F_5)_3$ with phosphoryl Lewis bases {Et₃PO, ⁿPr₃PO, ⁿOct₃PO, Ph₃PO, (MeO)₃PO, (EtO)₃PO, (PhO)₃PO, (EtO)₂PHO, (nBuO)₂PHO, (PhO)₂PHO, (MeO)₂MePO, (EtO)₂MePO, (EtO)₂MePO, (EtO)₂PhPO, (MeO)Me₂PO, (EtO)Me₂PO} and their subsequent characterisation by spectroscopic (¹H, ¹³C, ¹⁹F, ³¹P – NMR, IR) and single-crystal diffraction studies (Et₃PO, Ph₃PO). The Lewis acidity of $B(C_6F_5)_3$ has been measured by Gutmann's NMR and Lappert's IR methods, and the synthesis and characterisation of $B(C_6F_5)_3$ EtOAc is also reported.

Chapter 5 reports the synthesis and a determination of the Lewis acidity of a number of previously reported $ArBBr_2$ compounds (Ar = Ph, 2-MeC₆H₄, 3-MeC₆H₄, 4-MeC₆H₄, 4-EtC₆H₄, 3,5-Me₂C₆H₃) and unsuccessful attempts to prepare unsaturated 4-membered ring and 6-membered ring B-P heterocyclic compounds by reactions of $ArBBr_2$ (Ar = Ph, 4-MeC₆H₄) with Li[P(SiMe_3)_2] or by thermolysis of preformed $ArBBr_2$ PhPH₂ adducts.

Chapter 6 describes full experimental details of the reactions detailed in Chapters 2 to 5 with crystallographic data for all compounds which were characterised by single-crystal X-ray diffraction methods given in the appendices.

Contents

Acknowledgements		
Abbreviations		
Chapter One		
1.1 Introduction		
1.2 Aims of research	6	
1.3 Boron - the element and its chemistry	7	
1.3.1 Boron - elemental forms	7	
1.3.2 The chemistry of boron	10	
(a) Boranes and borane anions	11	
(b) Boron containing inorganic heterocycles and their metal cor	nplexes	
	16	
(c) Boron NMR spectroscopy	22	
1.4 Rhenium(I) and manganese(I) co-ordination chemistry	22	
1.4.1 Rhenium(I) compounds	25	
1.4.2 Manganese(I) compounds	27	
Chapter Two		
2.1 Introduction	32	
2.1.1 Dimanganese and dirhenium decacarbonyl	33	
2.1.2 Structures of $[Mn_2(CO)_{10}]$ and $[Re_2(CO)_{10}]$	34	
2.1.3 Manganese and rhenium pentacarbonyl halides	35	
2.1.4 Substituted complexes of [MX(CO) ₅]	36	
2.1.5 Formation of $[MX(CO)_3L_2]$ complexes	39	

2.2 Aims	
2.3 Results and Discussion	
2.3.1 Synthesis of $[MBr(CO)_5]$ (M= Mn or Re)	40
2.3.2 Synthesis of [MBr(CO) ₃ L ₂] and [MBr(CO) ₃ (L~L)]	40
2.3.3 ³¹ P NMR spectroscopy	44
2.3.4 Infrared Spectroscopy	47
2.3.5 X-Ray Crystallography	51
2.4 Conclusions	65
Chapter Three	
3.1 Introduction 67	
3.2 Aims	
3.3 Results and Discussion	
3.3.1 Synthesis of the $[B_3H_8]^-$ anion.	69
3.3.2 Attempted synthesis of 2-metallatetraboranes from mer, trans-	
$[MnBr(CO)_3(L)_2]$	70
3.3.3 Synthesis of 2-metallatetraboranes from fac, cis -[MBr(CO) ₃ (L) ₂] and	Ĩ
$fac, cis-[MBr(CO)_3(L~L)]$	70
3.3.4 Infrared spectroscopy	75
3.3.5 ¹¹ B NMR spectroscopy	76
3.3.6 ³¹ P NMR spectroscopy	81
3.3.7 ¹ H NMR spectroscopy	83
3.3.8 X-Ray crystallography	85
3.3.9 Reactions of [Mn(CO) ₂ (dppe)(B ₃ H ₈)]	92
3.4 Conclusions	93

Chapter Four

4.1 Introduction 95	
4.1.1 Lewis acidity of boron compounds	97
4.2 Aims	99
4.3 Results and Discussion	
4.3.1 Preparation and characterisation of $B(C_6F_5)_3$ (4a)	100
4.3.2 Lewis acidity of $B(C_6F_5)_3$	101
4.3.3 Preparation of adducts of $B(C_6F_5)_3$ with organophosphoryl ligands	104
4.3.4 X-ray Crystallography	110
4.4 Conclusions	

Chapter Five

5.1 Introduction 119		119
	5.1.1 Three-membered rings	119
	5.1.2 Four-membered rings	120
	5.1.3 Six-membered rings	123
5.2 Ai	ms	124
5.3 Results and discussion 124		124
	5.3.1. Preparation of the arylborondibromides	124
	5.3.2 Synthesis of tris(trimethylsilyl)phosphine	126
	5.3.3 Attempted synthesis of diphosphadiboretanes and triphosphatriborira	ines
ž	using lithium reagents	128
	5.3.4 Synthesis and thermolysis of ArBBr ₂ PhPH ₂ adducts	129
5.4 Conclusions 13		131

Chapter Six

6.1 General 1		133
6.2 Experimental for Chapter 2		134
	6.2.1 Preparation of $[MBr(CO)_5]$ species (M = Mn, Re)	134
	6.2.2 Synthesis of <i>mer,trans</i> -[MnBr(CO) ₃ L ₂] and <i>fac,cis</i> -[MnBr(CO) ₃ L]	135
	6.2.3 Synthesis of <i>fac</i> , <i>cis</i> -[ReBr(CO) ₃ L ₂]	137
6.3 Experimental for Chapter 3		140
	6.3.1 Synthesis of $[^{n}Bu_{4}N][B_{3}H_{8}]$	140
	6.3.2 Synthesis of <i>arachno</i> - $[M(CO)_2(L)_x(B_3H_8)]$	141
	6.3.3 Thermolysis of [Mn(CO) ₂ (dppe)(B ₃ H ₈)]	144
	6.3.4 Photolysis of [Mn(CO) ₂ (dppe)(B ₃ H ₈)]	144
	6.3.5 Reaction between $[Mn(CO)_2(dppe)(B_3H_8)]$ and PPh ₃	144
6.4 Experimental for Chapter 4		145
	6.4.1 Synthesis of tris(pentafluorophenylborane)	145
	6.4.2 Synthesis of $R_2(R^1O)P=O$ Lewis bases	146
	6.4.3 Synthesis of Lewis base adducts of tris(pentafluorophenyl)borane	147
6.5 Ex	perimental for Chapter 5	157
	6.5.1 Synthesis of Aryltrimethylsilanes	157
	6.5.2 Synthesis of Arylborondibromides from ArSiMe ₃	160
	6.5.3 Synthesis of piperidino phosphorous dichloride	161
	6.5.4 Attempted synthesis of tris(trimethylsilyl)phosphine	162
	6.5.5 Synthesis of tris(trimethylsilyl)phosphine	162
	6.5.6 Attempted synthesis of the diphosphadiboretanes	163
	6.5.7 Adducts of ArBBr ₂ with phenylphosphine	163

References

Acknowledgements

I would like to take this oppourtunity to thank my supervisor, Dr Mike Beckett, for his support throughout the research and his advice in the preparation of this thesis. I would also like to express my thanks to the technical staff at Bangor, in particular Mr Denis Williams and Mr Glyn Connolly. Also I would like to thank the secretarial staff at Bangor, past and present, especially Mrs Barbara Kinsella and Miss Caroline Naylor without whom the department would grind to a halt.

Thanks also to all of my colleagues in the department especially past and present members of Group 103, but in particular Mr Edward "I'll start writing next week" Cavanagh, Mr Dafydd "the human fly" Thomas and Dr Patrick "what a catch" Murphy.

I would like to thank the EPSRC for their funding which ultimately made the research possible and the X-ray crystallographic service and staff at Southampton for collecting data and solving the crystallographic structures contained within this thesi, and to my parents for their love, support and for being there.

Finally, I would like to thank Sue, who has put up with me over the last four years. We showed them that it would last, and you mean the world to me.

Abbreviations

Å	Angstrom(s)
atm	atmosphere(s)
Ar	aryl
B. Pt.	boiling point
br	broad
Bu	butyl
calc.	calculated
cm ⁻¹	wavenumber(s)
conc.	concentrated
Ср	cyclopentadiene
o	degrees
°C	Celsius
d	doublet
dppb	bis(diphenylphosphino)butane
dppe	bis(diphenylphosphino)ethane
dppf	bis(diphenylphosphino)ferrocene
dppm	bis(diphenylphosphino)methane
dppp	bis(diphenylphosphino)propane
δ	chemical shift
Δδ	difference in chemical shift
Eq.	equation
Et	ethyl

Fc	ferrocenyl
Fig.	Figure
g	gram(s)
h	hour(s)
Hz	Hertz
IR	infrared
J	coupling consant
Lit.	literature
m	meta
m	multiplet; medium
Me	methyl
Mes	mesityl
Mesityl	2,4,6-trimethylphenyl
MHz	MegaHertz
Min	minute
MmHg	millimetre(s) Hg
Mmol	millimole
МО	molecular orbital
Mol	mole
M. Pt	melting point
n	normal
NMR	Nuclear Magnetic Resonance
0	ortho
p	para
q	quartet

Ph	phenyl
ppm	part(s) per million
Pr	propyl
Ref.	reference
S	singlet; strong
Str.	stretch(es)
t	triplet; tertiary
THF	tetrahydrofuran
Tmp	2,2,6,6-tetramethylpiperidino
TMS	tetramethylsilane
w	weak

Chapter 1

Introduction

1.1 Introduction.

This thesis consists of six chapters and describes original research into boranes and aspects of their co-ordination chemistry. This chapter contains a literature overview of the chemistry of boron, the co-ordination chemistry of rhenium and manganese carbonyl halides, the synthesis and reactions of boron hydrides and unsaturated inorganic heterocycles which contain three co-ordinate boron centres. Chapters Two and Three are concerned with the synthesis, characterisation and reactions of the species $[M(CO)_3X(PR_3)_2]$ and $[M(CO)_2(PR_3)_2(B_3H_8)]$ (M = Mn, Re; X = Br). Chapter Four concentrates on the preparation of a series of Lewis base adducts of the borane $B(C_6F_5)_3$ whilst Chapter Five is concerned with the attempted synthesis of diphosphadiboretanes and triphosphatriborinanes, their co-ordination chemistry and associated boronphosphorus adduct chemistry. A detailed experimental section is given in Chapter Six.

1.2 Aims of research

The first aim of the research work described within this thesis, was to synthesise and investigate the spectroscopic and structural properties of some new and some previously described rhenium(I) and manganese(I) halo carbonyl phosphines derivatives. Such a study was desirable since previous research into these species was limited and structural characterisation was often left incomplete or ambiguous. Spectroscopic data were to be correlated with benchmark crystallographically determined structures.

The second aim was to use these manganese(I) and rhenium(I) halo carbonyl phosphine derivatives and explore their reactions with the octohydrotriborate anion, $[B_3H_8]^-$. With a few notable exceptions [1,2] this area has been frequently overlooked.

The chemistry of the metallatetraborane obtained in the highest yield was further investigated as representative of this class of compounds.

A third aim of the work detailed was to compare various methods of determining Lewis acidity. The Lewis acidity of tris(pentafluorophenylborane), $B(C_6F_5)_3$, was determined and its reactions with various phosphine oxides ligands with this acceptor was explored.

A final aim of the research was to prepare a series of diphosphadiboretanes and triphosphatriboriranes and to react them with the manganese(I) and rhenium(I) halocarbonyl phosphine derivatives described in Chapter Two in order to prepare novel complexes of these ligands.

1.3 Boron - the element and its chemistry

The chemistry of boron and its compounds is well reviewed in many undergraduate textbooks [3,4], and the following few paragraphs contain a brief overview of the chemistry of this element.

1.3.1 Boron - elemental forms

Boron, in an impure form, was first isolated independently by J. L. Gay Lussac and L. J. Thenard of France, and Humphry Davy of Great Britain in 1806. It was not until later in the 19th century that H. Moissan obtained a relatively pure (95 – 98%) sample of boron by reducing B_2O_3 with magnesium. The name boron was proposed by Davy, who joined the first three letters of its parent ore '*borax*' with the last two letters of '*carbon*', the element that displays a similar chemistry. Boron is not a particularly abundant element, but, it does exist in large localised deposits of borax, $Na_2B_4O_7$ 10H₂O and kernite $Na_2B_4O_7$ '4H₂O, both of which are commercially viable for the preparation of elemental boron. Difficulties arise in trying to obtain high purity boron, due to the high melting point and the corrosive nature of molten boron [5]. There are several commercial methods for the isolation of elemental boron, with all bulk methods leading to a reduction of the purity of the final material. An example of such a process is the reduction of B_2O_3 with magnesium, which yields boron as a black solid of 95-98% purity (Eq. 1.1) [6].

$$Na_2B_4O_7 10H_2O \xrightarrow{H^+} B(OH)_3 \xrightarrow{\Delta} B_2O_3 \xrightarrow{Mg} 2B + 3MgO$$
 (Eq. 1.1)

Boron maybe prepared in large quantities by this method. The element can be obtained in a pure form on a smaller scale (i.e. less than 1Kg), using, for example, the Van Arkel method which involves the pyrolysis of boron triiodide, or the thermal decomposition of diborane or other boron hydrides (Eq. 1.2 and Eq. 1.3) [6].

$$2BI_3 \xrightarrow{Hot W} 2B + 3I_2$$

$$B_2H_6 \xrightarrow{\Delta} 2B + 3H_2$$
(Eq. 1.2)
(Eq. 1.3)

There are several different allotropes of boron and all of which contain the B_{12} icosahedron unit (Figure 1.1). This cluster shape is also known to occur in metal borides and in boron hydride clusters.

Figure 1.1. A B_{12} icosahedron.

The α -rhombohedral allotrope, with 37% space filled, is the densest form of elemental boron. This is low in comparison to the 74% for the close packing of the spheres. The β -rhombohedral form is the most stable allotrope and its complicated structure is given in Figure 1.2.

Figure 1.2. The β -rhombahedral form of boron.

Boron, the only non-metallic element in Group 13 of the periodic table has the valence electronic configuration of $2s^2 2p^1$. The ionisation energies of these electrons

are high (first ionisation energy is 801 kJ mol⁻¹) and as such covalent rather than ionic bonds are favoured [6]. Boron typically forms trivalent compounds and unlike the heavier elements of the group, does not display a tendency to form monovalent compounds [6]. Three co-ordinate boron centres are sp^2 hybridised, with hybrid orbitals lying in the same plane at angles of 120° to one another. However, trigonal planar boron centres have an insufficient number of electrons to fill their valence shell, after forming three σ -bonds, and are invariably Lewis acids.

1.3.2 The chemistry of boron

At elevated pressures and temperatures boron will react with most metals and non-metals but at ambient temperatures boron is relatively inert. However, it will spontaneously react with fluorine to form BF_3 (Eq. 1.4) and will also react with O_2 to slowly form a surface layer of B_2O_3 (Eq. 1.5).

$$B + 3/2F_2 \longrightarrow BF_3$$
(Eq. 1.4)
2B + 3/2O₂ $\longrightarrow B_2O_3$ (Eq. 1.5)

The chemistry of boron is extensive and diverse but may be conveniently subdivided into six main categories, with each category showing differing structures and properties. These categories are metal borides, boron hydrides and their derivatives, boron trihalides their adducts and derivatives, oxo compounds including metaborate esters, polyborates and borosilicates, organoboron compounds with B-C bonds, and lastly inorganic heterocyclic species. Aspects of the chemistry of boron pertinent to this thesis are described below. Detailed discussion of boron trihalides and their adducts, B-P rings and boron hydrides are reserved for Chapters 3, 4 and 5.

1.3.2 (a) Boranes and borane anions

Boron hydrides were first prepared in a pure form by Alfred Stock in 1912 [7]. He prepared these hydrides by the action of acid on magnesium boride and isolated the volatile compounds using vacuum line techniques. In general boranes are colourless, diamagnetic, molecular compounds of low thermal stability. The lowest members are gases at room temperature but with increasing molecular weight they become volatile liquids or solids. Boranes are extremely reactive and several are spontaneously flammable in air. Boranes may be readily converted into anions and the co-ordination chemistry of one such anion, $[B_3H_8]^-$, is described in this thesis. The synthesis of the $[B_3H_8]^-$ anion will be discussed in detail in Chapter Three.

The $[B_3H_8]^-$ anion can form two different classes of butterfly complexes when reacted with a metal species. They can be described as the 1-metallatetraboranes (the body isomer) and the 2-metallatetraboranes (the wingtip isomer) of the butterfly structure. Both are shown in Figure 1.3 below.

1-Metallatetraborane (Body isomer)

2-Metallatetraborane (Wingtip isomer)

Figure 1.3. The two possible isomers of the butterfly structure of metallatetraboranes.

The 1-metallatetraboranes are relatively uncommon in comparison to the 2metallatetraboranes, but, iridium, platinum and palladium complexes readily form such complexes (Eq. 1.6) [8].

 $[Ir(CO)Cl(PPh_3)_2] + Tl[B_3H_8] \longrightarrow [(Ph_3P)_2(CO)HIrB_3H_7] + TlCl (Eq. 1.6)$

During the course of the reaction there is a transfer of a hydrogen atom from the borane moiety to the terminal Ir-H position. The molecular structure of this complex is shown in Figure 1.4 below [9].

Figure 1.4. Molecular structure of an iridium 1-metallatetraborane.

The corresponding Pt and Pd derivatives $[L_2MB_3H_7]$ are prepared by the reaction between a bis(phosphine) metal dihalide complex and the *arachno*- $[B_3H_8]^-$ anion in the presence of a base (Eq. 1.7) [10,11].

$$cis$$
-[PtCl₂(PMe₂Ph)₂] + Cs[B₃H₈] \longrightarrow [(PhMe₂P)₂PtB₃H₇] (Eq. 1.7)

The *arachno*-2-metallatetraboranes are more commonly encountered in the literature. They can be prepared by the displacement of a halide from a metal species by the $[B_3H_8]^-$ anion (Eq. 1.8).

$$L_nMX + B_3H_8^{-1} \longrightarrow [L_{n-1}MB_3H_8] + L + X^{-1}$$
 (Eq. 1.8)

This reaction may occur spontaneously but more often it is induced by thermolysis or photolysis. s-Block and p-block elements also form MB_3 complexes, however these tend to be very volatile compounds that readily decompose in air and they are also thermally unstable.

Complexes containing Cr, W, Mo, Re, Mn, Fe, Ru and Os have been widely studied, with great number of 2-metallatetraboranes having been produced. The direct reaction between $[M(CO)_6]$ (M = Cr, Mo and W) with Cs[B₃H₈] produces compounds of the type $[M(CO)_4(B_3H_8)]^-$. These anions can be stabilised by adding a tetraalkylammonium salt into the reaction mixture (Eq. 1.9) [12].

$$[M(CO)_6] + Cs[B_3H_8] \xrightarrow{(R_4N)Cl} [R_4N][M(CO)_4B_3H_8]$$
(Eq. 1.9)

These compounds can then undergo further reactions. One reaction involves the substitution at the metal centre of $[B_3H_8]^-$ by PH₃ (Eq. 1.10) [13].

$$[M(CO)_4B_3H_8] + 2 PH_3 \longrightarrow cis - [M(CO)_4(PH_3)_2]$$
 (Eq. 1.10)

Similarly the manganese and rhenium species are readily prepared by the direct reaction between $[B_3H_8]^-$ with $[(CO)_5MX]$ (M = Mn and Re) (Eq. 1.11) [2].

$$[R_4N][B_3H_8] + [Mn(CO)_5Br] \longrightarrow [Mn(CO)_4B_3H_8]$$
 (Eq. 1.11)

As was evident with the Cr, Mo and W borane, the $[B_3H_8]^-$ ligand attached to the Mn and Re centres, will undergo further reactions once attached to the metal centre. One such reaction is shown below (Eq. 1.12) [2].

 $[Mn(CO)_4B_3H_8] + X_2 \longrightarrow [Mn(CO)_4B_3H_7X]$ (Eq. 1.12)

These Mn(I) and Re(I) tetraboranes will be discussed in greater depth in Chapter Three.

More recently there has been interest shown in the synthesis and subsequent reactions of the ruthenatetraboranes. The reaction of $[RuClH(CO)(PPh_3)_3]$ with $[R_4N][B_3H_8]$ produces the colourless complex $[RuH(B_3H_8)(CO)(PPh_3)_2]$ in a high yield. The $[B_3H_8]$ unit is readily cleaved from this complex by an excess of tert-butylisonitrile producing $[RuHCl(CN^tBu)_2(PPh_3)_2]$. However, the treatment of $[RuH(B_3H_8)(CO)(PPh_3)_2]$ with *N*-halogenosuccinimide leads to the selective cleavage of the Ru-H bond. The reaction between a Ru "half-sandwich" and $[B_3H_8]^-$ has been reported and is shown in (Eq. 1.13) [14].

This complex can then be reacted with *N*-halogenosuccinimides to produce the chloro, bromo or iodo substituted species.

The coinage metals also produce 2-metallatetraboranes. Metallatetraborane's containing copper are less sensitive to air and water than the corresponding silver species. The copper complexes are relatively straight forward to prepare and tend to follow the routes described above (the replacement of a halide by the $[B_3H_8]^-$ anion). The triphenyl phosphine, arsine and stibine derivatives have all been prepared by this method (Eq. 1.14) [15,16].

$$[(A_{s}Ph_{3})_{3}CuCl] + [B_{3}H_{8}]^{2} \longrightarrow [(A_{s}Ph_{3})_{2}CuB_{3}H_{8}]$$
 (Eq. 1.14)

Similarly, the argentatetraboranes can be prepared in an analogous manner. Another route produces the metallatetraborane directly from the $AgNO_3$ precursor (Eq. 1.15) [12].

$$Cs[B_3H_8] + PR_3 + AgNO_3 \longrightarrow [(R_3P)_2AgB_3H_8]$$
(Eq. 1.15)

1.3.2 (b) Boron containing inorganic heterocycles and their metal complexes

Extensive research has been undertaken on the boron containing heterocycles with elements of the second row, and the synthesis and reactivity of the $R_2N_2B_2R_2^{1}$, $R_3B_3O_3$ (boroxine) and $R_3B_3N_3R_3^{1}$ (borazene) are well documented.

Relatively little work has been described on metal complexes involving boroxines. However, Razuvaev *et al*, in 1976, reported the isolation of $[(CO)_3CrC_6H_5B(OH)_2]$ from the following reaction (Eq. 1.16) [17].

This chromium-boronic acid complex was then dehydrated *in vacuo* to produce the corresponding boroxine [{ $(CO)_3Cr(C_6H_5BO)$ }], shown in Figure 1.5, where it is clear that the { $Cr(CO)_3$ } moieties remain bound to the aryl rather than the boroxine ring.

Figure 1.5. Chromium tricarbonyl complex of triphenylboroxine.

The metal complexes of borazines that have been reported generally have alkyl substituents on the annular atoms. Borazines are potential π -ligands and as such will react preferentially with d^6 metal ligand fragments such as {Cr(CO)₃} to form 18 valence electron compounds [18]. Many half-sandwich compounds [R₃B₃N₃R¹₃ML₃] have been prepared (M = Cr, W, Mo), although there have been no confirmed preparations of the corresponding full sandwich derivatives of the type [(R₃B₃N₃R¹₃)₂M]. The best method of preparation of these half-sandwich compounds is when the {M(CO)₃} moiety carries a labile ligand such as acetonitrile (Eq. 1.17) [19-22].

 $[(MeCN)_3Cr(CO)_3] + (RBNR^1)_3 \longrightarrow [R_3B_3N_3R_3^1Cr(CO)_3] + 3 MeCN (Eq. 1.17)$

It has been shown that the B_3N_3 ring in half-sandwich complexes is labile and can be displaced by other borazine, phosphine and phosphite ligands [23]. Crystallographic data on hexaethylborazine chromiumtricarbonyl has shown that the heterocyclic ring is slightly puckered Figure 1.6 [23]. Infrared studies have shown that the B-N vibrational bands lie at lower energy in relation to uncomplexed borazines. This suggests that the lone pairs on nitrogen have become fully localised owing to the formation of N-Cr dative σ -bonds [23]. The nitrogen atoms effectively gain a formal positive charge and become four co-ordinate, adopting an approximate tetrahedral configuration, which leads to this puckering of the ring.

Figure 1.6. The structure of [(Et₃B₃N₃Et₃)Cr(CO)₃].

A second class of metalloborazine complexes exist. In these the metal atoms are bound *via* a σ -bond to either boron or nitrogen within the B₃N₃ system. One of the few examples of these N-substituted metallo-borazines is the N-lithioborazine, which can be prepared by a method shown in Eq. 1.18.

 $(MeBNH)_3 + MeLi \longrightarrow Me_3B_3N_3H_2Li + CH_4$ (Eq. 1.18)

There is only one example of metal complex co-ordination by borthiin ring systems. Noth and Schuchardt [24] reported that the reaction between $[M(CO)_3(CH_3CN)_3]$ (where M = Mo, Cr and W) with triphenylborthiin in dioxane produced species of the type $[(PhBS)_3M(CO)_3 \cdot 1.5C_4H_8O_2]$. A postulated structure of these compounds is shown in Figure 1.7, with the $\{M(CO)_3\}$ moieties bound to the heterocylic B_3S_3 rings.

Figure 1.7. Structure of $[(PhBS)_3M(CO)_3 \cdot 1.5C_4H_8O_2]$, where M = Cr, Mo or W.

Attempts to remove the dioxane under vacuum resulted in decomposition of the compound.

Reactions of the diphosphadiboretanes have also been investigated by Noeth and co-workers [25,26], where $R_2B_2P_2R_2^1$ rings with sterically hindered groups bound to boron were treated with [Cr(CO)₅(THF)]. This led to the dissociation of the $R_2B_2P_2R_2^1$ ring but produced 1,1-diethyldipropyl-(Tmp)boranylidenephosphane (Eq. 1.19).

The reaction of diphosphadiboretanes, having less hindered substituents, with $[Cr(CO)_5(THF)]$ resulted in the formation of mononuclear or binuclear metal carbonyl complexes Figure 1.8.

Figure 1.8. Mononuclear and binuclear bonding with diphosphadiboretanes.

However, when $(MesBP^tBu)_2$ was reacted with $[Cr(CO)_5(THF)]$, a complex with a different structure, in which the ring system is retained was produced, Figure 1.9.

Figure 1.9. Diphosphadiboretane bound to a chromium tetracarbonyl centre.

The reaction of (MesBPPh)₃ with $[Cr(CO)_3(MeCN)_3]$ has been performed to see if the triphosphatriborinane was able to act as a η^6 ligand [27]. A metal carbonyl complex was produced, in which the chromium was bound to all atoms in the heterocyclic ring (see Figure 1.10).

Figure 1.10. Structure of chromium tricarbonyl(η^6 -1,3,5-triphenyl-2,4,6-trimesityl-1,3,5,2,4,6-triphosphaborinane)

1.3.2 (c) Boron NMR spectroscopy

Boron NMR spectroscopy generally deals with the ¹¹B isotope rather than that of ¹⁰B, due to its high natural abundance (81% ¹¹B compared with 19% ¹⁰B), its better sensitivity in the NMR experiment and its smaller quadrupolar moment [28]. However, measurements of boron-10 NMR spectra can be performed quite easily and are important in isotopic labelling studies where reaction mechanisms are of interest. Both isotopes possess large quadrupoles (¹⁰B = 8.46×10^{26} Q/m², ¹¹B = 4.06×10^{26} Q/m² at 10.75 and 32.1 MHz respectively) [29] since they both have a nuclear spin I > 1. Large quadrupole moments generally lead to short relaxation times (T), during which the nuclei in the experiment return to the ground state quickly [28]. Due to the relationship between relaxation time and the line width of the signal, $v_{l/2} \propto 1/T$ (at half height $v_{l/2}$), broadening of the peaks occurs.

The chemical shift range of ¹¹B covers approximately 200 ppm and chemical shifts can generally be determined with an accuracy of ± 0.5 ppm [28]. The peak area of a ¹¹B NMR signal is related to the number of boron atoms in each chemical environment and the location of the resonance signals for trivalent boron compounds can be explained in terms of a contribution of σ - and π - effects [28]. Basic donor solvents may cause an upfield shift of the NMR signal due to co-ordination (see Chapter Four for further details).

1.4 Rhenium(I) and manganese(I) co-ordination chemistry

The organometallic chemistry of manganese(I) and rhenium(I), unlike the organometallic chemistry of most transition metals, does not have a particularly extensive history. Organometallic species of manganese and rhenium were first

prepared in the 1940's. Since this time research into the organometallic chemistry of manganese and rhenium has grown rapidly.

There is such a large quantity of literature available on compounds of this type, and the reader is directed to texts like Comprehensive Organometallic Chemistry or the annual reviews in the Journal of Organometallic Chemistry for detailed discussions. This section will concentrate solely on the co-ordination chemistry of metal carbonyl derivatives exhibited by both manganese(I) and rhenium(I).

Transition metal carbonyls are very useful and readily available starting materials for the synthesis of low valent metal complexes. However, before any indepth discussion of carbonyl chemistry begins, it is worthwhile understanding the basic bonding arrangement around the metal centres.

The bonding of a ligand to a metal does not normally just involve a σ -bond, invariably there are π -interactions governing the co-ordination of the ligand. The energy level diagram in Figure 1.11 shows a molecular orbital splitting diagram for a first row transition metal (3d, 4s, 4p). Carbon monoxide is a π acceptor ligand, where the triple bond is made up of a σ bond and two π bonds. The π orbitals are filled, but the π^* orbitals (anti-bonding orbitals) are empty.

Figure 1.11. Molecular orbital splitting diagram for a transition element.

These empty π^* orbitals are of the correct symmetry to overlap with the filled t_{2g} orbitals of the metal (d_{xy} , d_{xz} and d_{yz}). This is illustrated in Figure 1.12.

Figure 1.12. Overlap of the t_{2g} orbitals of the metal with the π^* orbitals of CO.

The interaction between the metal t_{2g} orbitals and the linear co-ordination to the CO π^* orbitals effectively means that there is a flow of electron density from the metal to the ligand. This donation of electrons is referred to as back-bonding.

There are several different reactions that metal carbonyls can undergo, substitution, reduction, oxidation and attack on co-ordinated CO. Carbonyl groups can be substituted by other ligands, thermally or photochemically in a dissociative process. Substitution can proceed to the point that there are equal numbers of ligand (L) and carbonyl groups, however, replacement of the remaining carbonyl groups requires the use of quite severe chemical methods (due to the strength of the M-CO back donation).

1.4.1 Rhenium(I) compounds

As will be discussed in Chapter Two, the major starting material in low valent organorhenium chemistry is dirhenium decacarbonyl, $[Re_2(CO)_{10}]$. Oxidation of $[Re_2(CO)_{10}]$ with halogens produces $[Re(CO)_5X]$ and this reaction and the substitution reactions of rhenium halocarbonyls with phosphines will be discussed in detail in Chapter Two. However, it is worthwhile describing some other substitution reactions Eq. 1.20.

$$[\text{Re}_2(\text{CO})_{10}] + X_2 \longrightarrow 2 [\text{Re}(\text{CO})_5 X]$$
 (Eq. 1.20)

Monosubstitution of $[\text{Re}(\text{CO})_5 \text{X}]$ is achieved by treatment of one equivalent of donor ligand in a refluxing solvent. Cleavage of the bridged dihalides $[\{\text{ReX}(\text{CO})_4\}_2]$ with donor ligands is also an efficient method for generating *cis*- $[\text{ReX}(\text{CO})_4\text{L}]$ species [30]. Cleavage of the zero valent disubstituted dinuclear complexes $[\{\text{Re}(\text{CO})_4\text{L}\}_2]$ with X⁻ or X₂ generates *cis*- $[\text{ReX}(\text{CO})_4\text{L}]$. However under certain conditions the *trans* isomer can be isolated. This will on heating generally yield the more stable *cis* isomer.

The dialkyl and diaryl O, S, Se and Te ligands AR_2 act as two electron donors and as such exhibit similar properties to other two electron donors i.e. tertiary phosphines, N-heterocycles. Hence, in a refluxing alcohol $[ReX(CO)_5]$ will react with AR₂ to yield either the mononuclear species $[ReX(AR_2)_2(CO)_3]$ or dinuclear $[{ReX(AR_2)(CO)_3}_2]$ (shown in Eq. 1.21) [31].

This dinuclear species is normally isolated when A is either sulfur or selenium and R is an aryl group. The mononuclear species are obtained when R is an alkyl group.

Related dinuclear complexes $[Re_2Br_2(CO)_6(RA_2R)]$ have been prepared from the THF adduct $[{ReBr(CO)_3(THF)}_2]$ and the appropriate ligand (Eq. 1.22) [32, 33].

The chloro-bridged species [{ReCl(CO)₄}₂] acts as a precursor to complexes containing oxygen donor ligands, for example OH₂, OCMe₂, HOCH₂CH₂OH. Thus upon warming [{ReCl(CO)₄}₂] with an appropriate quantity of ligand the dinuclear chloro-bridged species (monodentate ligands) or mononuclear *fac* complexes (with bidentate ligands) are formed (Eq. 1.23) [34].

Complexes of rhenium with weakly co-ordinating anions (OSO_2CF_3) or organohalide ligands (RX, CHCl₃) have been studied as organometallic Lewis acids. Beck has developed the chemistry of $[Re(CO)_5(FBF_3)]$ [35] in which the BF₄ ligand is readily substituted by a number of anionic and neutral species [36-39].

1.4.2 Manganese(I) compounds

As was seen to be the case for rhenium, the major synthetic precursor in organomanganese carbonyl chemistry is dimanganese decacarbonyl $[Mn_2(CO)_{10}]$. In the majority of cases, the manganese compounds produced all obey the 18 electron rule. However, one notable exception is the photolytic reaction of $[Mn_2(CO)_{10}]$ producing a 17e⁻ species (Eq. 1.24).

$$[Mn_2(CO)_{10}] \xrightarrow{\Delta V} 2 [Mn(CO)_5]$$
 (Eq. 1.24)

If the photolytic reaction is performed in a haloalkane, abstraction of the halogen atom occurs [40] (Eq. 1.25).
$$[Mn(CO)_5] + CCl_4 \longrightarrow [MnCl(CO)_5] + CCl_3 \qquad (Eq. 1.25)$$

Reactions of $[Mn_2(CO)_{10}]$ with both mono and bidentate ligands have been widely studied. Monosubstitution of $[Mn_2(CO)_{10}]$ generally produces compounds of the formula $[Mn_2(CO)_9L]$ where the substituent group is in the axial position [41, 42]. However, disubstitution using bidentate ligands can produce two different geometries. The nitrogen bidentate ligand bipy substitute on a single metal giving an unsymmetrical complex $[(CO)_5MnMn(CO)_3(L^L)]$. Reactions of dppm or dppe with $[Mn_2(CO)_{10}]$ produced a symmetric species in which the bidentate ligand co-ordinates to equatorial positions on adjacent metals, therefore bridging two metal centres (Eq. 1.26) [43].

Manganese pentacarbonyl iodide was the first halo manganese compound to be prepared. It was obtained, along with $[Mn_2(CO)_{10}]$, by carbonylation of MnI_2 . It can also be prepared by the reaction of $[Mn_2(CO)_{10}]$ with iodine in a sealed tube at 140°C [44]. Other halide complexes have been prepared by halogen cleavage of the Mn-Mn bond in $[Mn_2(CO)_{10}]$, and this is discussed in greater detail in Chapter Two.

The substitution of carbonyl groups in $[MnX(CO)_5]$ complexes by neutral ligands have been widely studied. In general, only mild conditions are required to produce the species $[MnX(CO)_{5-n}L_n]$ (where n = 1 or 2) whilst harsher conditions are employed to produce $[MnX(CO)_{5-n}L_n]$ (where n ≥ 3). The same reactions as detailed in

section 1.5.1 occur with manganese. However, manganese carbonyl halides undergo reactions that the analogous rhenium species do not. For example the reaction between $[MnX(CO)_5]$ with tetra alkylammonium halides produced the anionic complex *cis*- $[MnX_2(CO)_4]^-$ (Eq. 1.27) [45, 46].

$$[MnX(CO)_5] + R_4NX \longrightarrow R_4N[MnX_2(CO)_4] + CO \qquad (Eq. 1.27)$$

At the same time the reaction between KCN and $[MnBr(CO)_5]$ was carried out, giving $[Mn(CN)_2(CO)_4]^-$. The displacement of a halide ion in $[MnX_2(CO)_4]^-$ may be assisted by using a halide acceptor such as silver tetrafluoroborate. This provides a convenient route to the monosubstituted tetracarbonyl halide compounds [47] (Eq. 1.28).

$$Et_4N[MnBr_2(CO)_4] + L + AgBF_4 \longrightarrow [MnBr(CO)_4L] + Et_4NBF_4 + AgBr \quad (Eq. 1.28)$$

Reactions between $[MnX(CO)_5]$ and secondary phosphine oxides, secondary phosphine sulphides and secondary phosphine selenides have produced some interesting results. Different products are formed when phosphine sulphides react with $[MnX(CO)_5]$ at varying temperatures. Below 45°C, monosubstituted complexes of the ligand coordinated *via* the sulphide lone pair are produced (Eq. 1.29) [48, 49].

$$[MnX(CO)_5] + S=PHMe_2 \xrightarrow{\langle 45^{\circ}C \rangle} [MnX(CO)_4(S=PHMe_2)] + CO \qquad (Eq. 1.29)$$

At higher temperatures a different product is formed which has the isomeric thiophosphonous acid as a ligand, with co-ordination to the metal occurring *via* the phosphorus atom (Eq. 1.30) [49].

$$[MnX(CO)_5] + SPHMe_2 \xrightarrow{> 50^{\circ}C} [MnX(CO)_4(PMe_2SH)]$$
(Eq. 1.30)

Heating the product shown in Eq. 1.29 produces the product shown in Eq. 1.30. Secondary phosphine oxides produce species analogous to that shown in Eq. 1.29 whilst secondary phosphine selenides produce species analogous to that shown in Eq. 1.30.

Chapter 2

Synthesis and characterisation of triorganophosphine

+

derivatives of $[MBr(CO)_5]$ (M = Mn or Re).

2.1 Introduction

The development of the organometallic chemistry of manganese dates back to 1954 [44] whilst rhenium dates back to 1941 [50]. The organometallic chemistry of rhenium has been less extensively explored than manganese. This lack of attention is not surprising when considering the availability of rhenium and thus its associated cost. As previously mentioned in Chapter One, the dimetal decacarbonyls are the key starting materials in this chemistry [51] and key aspects of the chemistry of $[Mn_2(CO)_{10}]$ are depicted in scheme 2.1, and expanded upon in the following sections [52].

 $[Mn(COMe)(CO)_5]$

2.1.1 Dimanganese and dirhenium decacarbonyl

The first report of dimanganese decacarboyl $[Mn_2(CO)_{10}]$ appeared in 1949 [53], however full characterisation of the compound did not appear until 1954 [44]. The product was prepared by carbonylation of MnI_2 in diethyl ether and gave $[Mn_2(CO)_{10}]$ in a yield of 1%. Obviously, improved methods of synthesis of $[Mn_2(CO)_{10}]$ were required if further work on this compound were to be carried out efficiently and rapidly.

In 1960 Podall *et al* [54] reported a more efficient preparation of $[Mn_2(CO)_{10}]$, this is shown below in (Eq. 2.1). This produced the desired yellow crystalline product in a 55% yield.

$$Mn(CH_3CO_2)_2 + Et_3Al \xrightarrow{3000 \text{ psi CO}} [Mn_2(CO)_{10}] \qquad (Eq. 2.1)$$

Similarly, dirhenium decacarbonyl $[\text{Re}_2(\text{CO})_{10}]$ was first reported in 1941 [50] by Hieber, Schuh and Fuchs. Their synthesis, shown in (Eq. 2.2) relied on high temperatures and pressures but yielded $[\text{Re}_2(\text{CO})_{10}]$ in over 90%.

$$\operatorname{Re}_2O_7 + 17CO \xrightarrow{1250-270^\circ C} [\operatorname{Re}_2(CO)_{10}] + 7CO_2$$
 (Eq. 2.2)

In 1963 Wilkinson *et al* [55] showed that reduction of anhydrous ReCl_3 or ReCl_5 by sodium in THF at 130°C and 250 atm CO allowed the isolation of $[\text{Re}_2(\text{CO})_{10}]$ in 70% yield (Eq. 2.3).

ReCl₃ + Na
$$\xrightarrow{1) \text{THF} 2) 130^{\circ}\text{C}}$$
 [Re₂(CO)₁₀] (Eq. 2.3)
3) 250 atm CO

2.1.2 Structures of $[Mn_2(CO)_{10}]$ and $[Re_2(CO)_{10}]$

X-Ray crystal structure determinations of $[Mn_2(CO)_{10}]$ and $[Re_2(CO)_{10}]$ [56] have shown that these species are structurally isomorphous, with a metal-metal bond joining two {M(CO)₅} units whose radial carbonyl groups are in staggered conformation (Figure 2.1).

Figure 2.1. Structure of $[M_2(CO)_{10}]$ (M = Mn or Re).

This gives rise to a molecule of approximately D_{4d} symmetry. In these $[M_2(CO)_{10}]$ structures, the radial carbonyl groups are bent away from the metal-metal bond with M-M-C angles of around 95°. This larger than expected angle has been explained as a result of an intrinsic property of an $[M(CO)_5]$ unit rather than an effect due to the ligands or the metal-metal bond [57].

There have been a number of studies of the IR spectrum [58-62] and the Raman spectrum [63], of $[Mn_2(CO)_{10}]$ in which assignments have been made and CO force constants calculated. The IR spectrum of $[Mn_2(CO)_{10}]$ consists of three major absorptions at 2046, 2015 and 1984 cm⁻¹ each with the symmetry designations B₂, E₁ and B₂, respectively. Similarly, assignments of the carbonyl region of the IR and Raman spectra of $[Re_2(CO)_{10}]$ have been produced, and force constants have been

determined [62, 64, 65]. The IR spectrum of $[\text{Re}_2(\text{CO})_{10}]$, as with $[\text{Mn}_2(\text{CO})_{10}]$, consists of three major absorptions at 2070, 2014 and 1976 cm⁻¹, each with the same symmetry designation as for $[\text{Mn}_2(\text{CO})_{10}]$. As was described in Scheme 2.1, the metalmetal bond is readily cleaved producing, amongst other product types the pentacarbonyl halides.

2.1.3 Manganese and rhenium pentacarbonyl halides

The pentacarbonyl rhenium halides, first prepared by Hieber [50, 66] are convenient starting materials for many rhenium carbonyl compounds. Similarly, the pentacarbonyl manganese halides were first prepared by Brimm [44] with more comprehensive studies undertaken by Abel and Wilkinson in 1959 [67]. Both of these compounds exhibit interesting photochemical [68, 69], vibrational [70-72] and kinetic properties [73-75]. They are prepared by the direct reaction of a halogen with the dimetal decacarbonyl species (shown in Eq. 2.4) [76].

Cleavage of the metal to metal bond by halogens giving $[MX(CO)_5]$ (where X= Cl, Br and I) has been proposed to go *via* a rate limiting 'end-on' attack of X₂ at the metal-metal bond. This gives a halogenium intermediate (Figure 2.2a) which dissociates X⁻ to give a halogenium ion (Figure 2.2b) [77].

Figure 2.2. Cleavage of the metal-metal bond by a halogen.

Further replacement of the remaining carbonyls by neutral ligands (L) has been studied and results produced have formed the basis of a number of publications over the years. Section 2.1.4 discusses this chemistry in further detail.

2.1.4 Substituted complexes of [MX(CO)₅]

Carbonyl substitution in rhenium halocarbonyls [ReX(CO)₅] is generally 1 to 2 orders of magnitude slower than in the corresponding manganese complexes; however in both cases the reaction has been shown to follow a first order rate law in which [MX(CO)₅] has no dependence on the incoming ligand [73]. It has been suggested that this is due to dissociation of a *cis* carbonyl group resulting from *cis* labilisation [73]. This has been confirmed by a study in which ¹³CO exchange showed *cis* labilisation increased in the order X= I < Br < Cl *i.e.* in the order of decreasing σ - donor character of the halide [78].

Monosubstitution of $[MX(CO)_5]$ can be accomplished by treatment with one equivalent of donor ligand in refluxing solvent. Cleavage of the metal-metal bonded

species [{ $ReX(CO)_4$ }_2] with 2 equivalents of donor ligand is also an efficient method for generating *cis*-[$ReX(CO)_4L$] compounds [79]. It is also possible to take the metalmetal bonded species [{ $Mn(CO)_4L$ }_2], with halogen to produce the monosubstituted species [80] (Eq. 2.5).

$$[\{Mn(CO)_4L\}_2] + X_2 \longrightarrow 2[MnX(CO)_4L]$$
(Eq. 2.5)

Purification and isolation of these monosubstituted compounds however is difficult, since invariably a mixture of the monosubstituted and disubstituted compounds are formed. This lack of specificity is a commonly encountered problem in carbonyl substitution chemistry [81]. One procedure which has been used to overcome this problem is to employ PdO as a catalyst [82] (Eq. 2.6).

 $[\operatorname{Re}(\operatorname{CO})_{5}X] + \operatorname{PR}_{3} \xrightarrow{1) \text{ benzene, RT}} [\operatorname{Re}X(\operatorname{CO})_{4}\operatorname{PR}_{3}]$ >75% yield(Eq. 2.6)

This produces the desired tetracarbonyl species in yields > 75%. However this process is only applicable when Tolmman's cone angle for the organophosphine is below 150° [83] and ligands with a larger cone angle do not react. It has been shown that the mechanism for the substitution reaction is quite different to that of the thermal reaction (which has been established as occurring via an S_N1 mechanism [78]). Furthermore, it is believed that the reaction proceeds *via* a radical chain-type mechanism [84]. This process has no effect on substitution reactions of [MnX(CO)₅].

The species $[MnX(CO)_4L]$ can be produced by a number of different synthetic routes. For example, by the cleavage of $[Mn_2(CO)_8L_2]$ by halogens [80]; by halogen-

hydrogen exchange reactions starting with $[MnH(CO)_4L]$ [85]; or by photolysis of $[Mn_2(CO)_8L_2]$ species in chlorinated solvents. With both manganese and rhenium, the most common complexes by far are the disubstituted species, and this is discussed in section 2.1.5. For manganese, it is also possible to prepare dicarbonyl and monocarbonyl complexes (Eq. 2.7) whereas these dicarbonyl species are rare in rhenium chemistry.

$$[MnBr(CO)_5] + 3L \xrightarrow{1) \text{ Reflux 24h}} mer, cis-[MnBr(CO)_2L_3] + 3CO \quad (Eq. 2.7)$$

However, quite harsh conditions are necessary to achieve these dicarbonyl manganese products [86], and a recent publication has shown that the rhenium dicarbonyl species can be prepared but requires even harsher conditions and the use of perchloric acid. Monocarbonyl complexes are relatively uncommon apart from complexes formed from isocyanide precursors. Species with chelating diphosphines are generated by taking $[MnX(CO)_5]$ with excess ligand and subjecting the mixture to UV photolysis [87]. An alternative method is shown in Figure 2.3 below [88, 89].

Figure 2.3. Preparation of tetrasubstituted monocarbonyl manganese halide (L = $P(OMe)_3$. Conditions are (i) excess L, (ii) [NO][PF₆], (iii) N₂H₄, (iv) L and heat, (v) L and hv

2.1.5 Formation of [MX(CO)₃L₂] complexes

Carbonyl substituted complexes are readily obtained from $[MX(CO)_5]$ which goes *via* intermediate monosubstitution products. The substitution of the second carbonyl is considerably slower than the initial substitution, but will occur at elevated temperatures to form the disubstituted species $[MX(CO)_3L_2]$. Since the first paper on substitution of manganese and rhenium pentacarbonyl halides appeared in 1958, the area has hardly been out of press. The reader is pointed in the direction of Comprehensive Organometallic chemistry (I and II) [90, 91] and the Annual reviews of Manganese and Rhenium in Journal of Organometallic chemistry [92-94] for details.

2.2 Aims

The aims of this research were to prepare a series of new triorganophosphine derivatives of $[MBr(CO)_5]$ (M = Mn and Re] and to unambiguously determine their stereochemistry. The new complexes will be characterised by ³¹P NMR and IR spectroscopy and by single crystal X-ray diffraction studies of suitable crystals. The X-ray structures will serve as benchmarks for the spectroscopic data. These new complexes will also be used as organometallic reagents in the synthesis of metallaborane derivatives, as discussed in Chapter 3.

2.3 Results and Discussion

2.3.1 Synthesis of $[MBr(CO)_5]$ (M = Mn or Re)

 $[MnBr(CO)_5]$ and $[ReBr(CO)_5]$ were prepared by the literature methods [76], in yields varying from 60 to 90%, (Eq. 2.8). The physical and spectroscopic properties of $[MnBr(CO)_5]$ and $[ReBr(CO)_5]$ were in good agreement with literature values.

$$[M_2(CO)_{10}] + Br_2 \longrightarrow 2 [MBr(CO)_5]$$
 (Eq. 2.8)

2.3.2 Synthesis of $[MBr(CO)_3L_2]$ and $[MBr(CO)_3(L\sim L)]$

Direct reaction of $[MBr(CO)_5]$ with various triorganophosphine ligands, in a 1:2 ratio for monodentate phosphines or 1:1 ratio for bidentate phosphines, produced complexes of the type $[MBr(CO)_3L_2]$ and $[MBr(CO)_3(L\sim L)]$ (Eq. 2.9 and 2.10). The Mn(I) complexes were prepared in yields varying from 51 to 91% by refluxing in CHCl₃ for 3-8 h. The Re(I) complexes were prepared by refluxing in CHCl₃ for 24 h and produced in yields ranging from 49 to 85%.

L= dppm, dppe, dppp, dppb, dppfc

M = Mn: 2i, 2j, 2k, 2l, 2m.M = Re: 2n, 2o, 2p, 2q, 2r.

All complexes were analysed *via* elemental analysis, melting point, ³¹P NMR and infra-red spectroscopy. The yield, elemental analysis and melting point data is summarised in Table 2.1 for Mn(I) complexes and Table 2.2 for Re(I) complexes. Compounds **2a**, **2e**, **2i**, **2j**, **2n**, **2o** and **2r** have been reported previously. However, these compounds were not fully characterised in the relevant reports. The remaining complexes are new to this study. All complexes were purified by recrystallisation from a CHCl₃ / hexane mixture (1:4), and they all gave satisfactory elemental analysis.

No	Compound	Analytical data		M.Pt (°C)	Yield (%)
		C(%) Found (Calc)	H(%) Found (Calc)		
	[MnBr(CO) ₅]	21.7 (21.9)	-	169 (Lit 171°C [77])	50
2a	[MnBr(CO) ₃ (PPh ₃) ₂]	63.2 (63.0)	4.0 (4.1)	166	82
2b	$[MnBr(CO)_{3} \{ P(C_{6}H_{4}Cl-4)_{3} \}_{2}]$	45.4 (45.2)	2.4 (2.4)	139	51
2c	$[MnBr(CO)_3 \{P(C_6H_4OMe-4)_3\}_2]$	58.7 (58.6)	4.6 (4.6)	138	77
2d	$[MnBr(CO)_{3} \{ P(CH_{2}C_{6}H_{5})_{3} \}_{2}]$	65.6 (65.4)	5.1 (5.1)	163	89
2i	[MnBr(CO) ₃ (dppm)]	48.2 (48.3)	3.1 (3.2)	178 (Lit 174°C [89])	91
2ј	[MnBr(CO) ₃ (dppe)]	48.5 (49.0)	3.3 (3.4)	184 (Lit 183°C [89])	78
2k	[MnBr(CO) ₃ (dppp)]	56.7 (57.1)	4.2 (4.2)	210	76
21	[MnBr(CO) ₃ (dppb)]	56.9 (57.7)	4.3 (4.4)	215	91
2m	[MnBr(CO) ₃ (dppfc)]	57.7 (57.5)	3.8 (3.7)	191	60

Table 2.1. Analytical data, M.Pt. and yields of Mn(I) tricarbonyl bromide complexes.

No	Compound	Analytical data		M.Pt. (°C)	Yield (%)
		C(%) Found (Calc)	H(%) Found (Calc)		
	[ReBr(CO) ₅]	14.8 (14.8)	-	182	94
2e	[ReBr(CO) ₃ (PPh ₃) ₂]	53.5 (53.6)	3.3 (3.45)	182 (Lit 181°C [95])	49
2f	$[\text{ReBr}(\text{CO})_3\{\text{P}(\text{C}_6\text{H}_4\text{Cl}-4)_3\}_2]$	43.1 (43.4)	2.5 (2.2)	172	67
2g	$[\text{ReBr}(\text{CO})_3\{\text{P}(\text{C}_6\text{H}_4\text{OMe-4})_3\}_2]$	51.2 (51.2)	4.1 (4.0)	180	70
2h	$[\text{ReBr}(\text{CO})_3(\text{P}(\text{CH}_2\text{C}_6\text{H}_5)_3)_2]$	55.9 (56.4)	4.3 (4.4)	179	59
2n	[ReBr(CO) ₃ (dppm)]	45.9 (45.8)	3.1 (3.0)	225	70
20	[ReBr(CO) ₃ (dppe)]	47.0 (46.5)	3.3 (3.2)	210	82
2p	[ReBr(CO) ₃ (dppp)]	47.2 (47.2)	3.4 (3.4)	292	76
2q	[ReBr(CO) ₃ (dppb)]	46.9 (47.2)	3.3 (3.6)	134	85
2r	[ReBr(CO) ₃ (dppfc)]	49.5 (49.1)	3.3 (3.1)	166	60

Table 2.2. Analytical data, M.Pt and yields of Re(I) tricarbonyl bromide complexes.

When adding two ligands (L) to a pentacarbonyl halide system $[MX(CO)_5]$, three possible isomers maybe potentially formed (Figure 2.4).

Figure 2.4. Differing stereo arrangements for disubstituted metal tricarbonyl centres.

In the cases of both the *fac,cis-* and *mer,trans-* isomers, only one peak would be expected in the phosphorus NMR since both phosphorus atoms are in equivalent environments. However, the *mer,cis-* isomer would show two phosphorus signals since both phosphorus nuclei are in differing environments. All of Mn(I) and Re(I) complexes gave, only one signal and it can be deduced that the compounds produced must have either *fac,cis-* or *mer,trans-* stereochemistry. The complexes with bidentate ligands must adopt a *fac,cis-* geometry whereas those with monodentate ligands may be in either of these two geometries. ³¹P NMR, infrared spectroscopy and X-ray crystal data will be used to distinguish the stereochemistry of these complexes.

2.3.3 ³¹P NMR spectroscopy

During the early 70's research was beginning into the use of ³¹P NMR as a tool for structural elucidation [96]. Merriwether in 1961 described the ³¹P NMR chemical shifts of a series of nickel carbonyl-phosphine complexes [97] and several authors have since used the chemical shift changes upon co-ordination as a diagnostic tool [98-100].

The ³¹P NMR values of free phosphine (δ_f), co-ordinated phosphine (δ_c) and $\Delta\delta$ (calculated from subtracting the coordinated value from the free phosphine ³¹P value) for all of the Mn(I) and Re(I) triorganophosphine complexes produced are shown in Tables 2.3 and 2.4 respectively. A downfield shift is indicated by a negative $\Delta\delta$ value.

No.	Compound	δ _f / ppm	δ _c / ppm	$\Delta \delta = \delta_f - \delta_c$
2a	$[MnBr(CO)_3(PPh_3)_2]$	-6.0	+53.3	-59.3
2b	$[MnBr(CO)_{3} \{ P(C_{6}H_{4}Cl-4)_{3} \}_{2}]$	-9.15	+52.8	-61.95
2c	$[MnBr(CO)_3 \{P(C_6H_4OMe-4)_3\}_2]$	-10.8	+44.8	-55.6
2d	$[MnBr(CO)_{3} \{ P(CH_{2}C_{6}H_{5})_{3} \}_{2}]$	-12.4	+41.8	-54.2
2i	[MnBr(CO) ₃ (dppm)]	-23.0	+11.8 (+10.9 [101])	-34.8
2j	[MnBr(CO) ₃ (dppe)]	-13.3	+69.5 (+67.6 [101])	-82.8
2k	[MnBr(CO) ₃ (dppp)]	-18.1	+27.6	-45.7
21	[MnBr(CO) ₃ (dppb)]	-16.8	+32.9	-49.7
2m	[MnBr(CO) ₃ (dppfc)]	-17.9	+37.1	-55.0

 Table 2.3.
 ³¹P NMR data for Mn(I) tricarbonyl bromide complexes.

No.	Compound	δ _f / ppm	δ _c / ppm	$\Delta \delta = \delta_{f} - \delta_{c}$
2e	[ReBr(CO) ₃ (PPh ₃) ₂]	-6.0	-1.0	-5
2f	$[ReBr(CO)_{3} \{ P(C_{6}H_{4}Cl-4)_{3} \}_{2}]$	-9.15	-2.8	-6.35
2g	$[\text{ReBr}(\text{CO})_3\{\text{P}(\text{C}_6\text{H}_4\text{OMe-4})_3\}_2]$	-10.8	-4.6	-6.2
2h	$[ReBr(CO)_{3} \{P(CH_{2}C_{6}H_{5})_{3}\}_{2}]$	-12.4	-18.1	+5.7
2n	[ReBr(CO) ₃ (dppm)]	-23.0	-38.3 (-38.5 [101])	+15.3
20	[ReBr(CO) ₃ (dppe)]	-13.3	+31.0 (+30.0 [101])	-44.3
2p	[ReBr(CO) ₃ (dppp)]	-18.1	-15.9	-2.2
2q	[ReBr(CO) ₃ (dppb)]	-16.8	-4.0	-12.8
2r	[ReBr(CO) ₃ (dppfc)]	-17.9	-0.7	-17.2

 Table 2.4.
 ³¹P NMR data for Re(I) tricarbonyl bromide complexes.

As would be expected, all of the phosphines upon complexation move downfield i.e. they become deshielded by the central metal atom, with the exception of **2n** and **2h**. The Mn(I) complexes appear to shift further downfield than the analogous Re(I) complexes, this may be due to the difference in size and electron distribution of Mn(I) compared with Re(I). The Mn(I) and Re(I) complexes with the largest $\Delta\delta$ value had dppe as ligand. The phosphorus environments in complexed dppe derivatives with 5membered rings are strongly deshielded by the metal, whereas such deshielding is a lot less pronounced for the 4-membered ring (dppm) and 6-membered ring (dppp) chelates [102]. Indeed, the $\Delta\delta$ value for the rhenium (I) derivative [ReBr(CO)₃(dppm)] **2n** is positive, indicative of overall shielding at phosphorus.

Although both *mer,trans-* and *fac,cis-* complexes have been prepared previously, there has been no reported ³¹P NMR data making any discussion of the results difficult.

IR and X-ray crystallographic data (see later) strongly suggest that the bis(monodentate) Mn(I) derivatives have the *mer,trans*-configuration whereas the analogous Re(I) derivatives have the *fac,cis*-configuration. Inspection of $\Delta\delta$ values for the derivatives would indicate that these values are not diagnostic of configuration.

2.3.4 Infra-red Spectroscopy

As with ³¹P NMR, this is potentially an important diagnostic tool for the solution of stereochemical problems. Infrared spectroscopy is a powerful technique for detecting the presence of metal-carbonyl bonds. The stretching frequencies of manganese and rhenium carbonyls range from 2150 cm⁻¹ to 1850 cm⁻¹ and are in the region expected for terminal metal carbonyl derivatives. This section will be concerned only with the metal carbonyl stretching region in an IR spectrum.

The number of bands that appear in this region of the infrared spectrum can indicate the different isomers present. Table 2.5 shows the number of expected IR absorption bands for the different isomers of $[MBr(CO)_3L_2]$ with equivalent L environments, based on the symmetry of the carbonyl ligands.

Isomer	Approx. Point Group	Expected No of Bands.
<i>Fac, cis</i> [MBr(CO) ₃ L ₂]	Cs	3 (2A' + A'')
<i>Mer, trans</i> [MBr(CO) ₃ L ₂]	C_{2v}	$3(2A_1 + B_2)$

Table 2.5. Expected number of bands for each isomer in the metal carbonyl region.

The symmetry stretches and bends associated with each of the symmetry operators A_1 , B_2 , A' and A'' are shown in Figure 2.5 below.

Figure 2.5. Symmetry stretches and bends associated with the operators A₁, B₂, A' and A''.

The values of the stretches observed in both the Mn(I) and Re(I) complexes are shown in Tables 2.6 and 2.7, respectively.

No	Compound	v (CO) stretches
2a	$[MnBr(CO)_3(PPh_3)_2]$	2040(m), 1943(s), 1918(s)
2b	$[MnBr(CO)_{3} \{P(C_{6}H_{4}Cl-4)_{3}\}_{2}]$	2033(w), 1951(s), 1901(s)
2c	$[MnBr(CO)_{3}{P(C_{6}H_{4}OMe-4)_{3}}_{2}]$	2031(w), 1946(s), 1908(s)
2d	$[MnBr(CO)_{3} \{ P(CH_{2}C_{6}H_{5})_{3} \}_{2}]$	2031(w), 1945(s), 1912(s)
2i	[MnBr(CO) ₃ (dppm)]	2026(s), 1957(s), 1919(s) (2025(s), 1955(s), 1920(s) [88])
2j	[MnBr(CO) ₃ (dppe)]	2008(s), 1935(s), 1915(s) (2023(s), 1956(s), 1917(s) [88])
2k	[MnBr(CO) ₃ (dppp)]	2028(s), 1961(s), 1909(s)
21	[MnBr(CO) ₃ (dppb)]	2028(s), 1962(s), 1910(s)
2m	[MnBr(CO) ₃ (dppfc)]	2025(s), 1959(s), 1909(s)

 Table 2.6. IR stretches of Mn(I) tricarbonyl bromide complexes (KBr disc).

No.	Compound	IR Stretches in Carbonyl region
2e	$[\text{ReBr}(\text{CO})_3(\text{PPh}_3)_2]$	2028(s), 1950(s), 1892(s)
		(2037(s), 1960(s), 1899(s) [95])
2f	$[ReBr(CO)_{3} \{ P(C_{6}H_{4}Cl-4)_{3} \}_{2}]$	2035(s), 1956(s), 1912(s)
2g	$[\text{ReBr}(\text{CO})_3 \{P(C_6H_4\text{OMe-4})_3\}_2]$	2022(s), 1954(s), 1915(s)
2h	$[ReBr(CO)_{3} \{P(CH_{2}C_{6}H_{5})_{3}\}_{2}]$	2033(s), 1952(s), 1899(s)
2n	[ReBr(CO) ₃ (dppm)]	2026(s), 1943(s), 1893(s)
20	[ReBr(CO) ₃ (dppe)]	2026(s), 1948(s), 1913(s)
2p	[ReBr(CO) ₃ (dppp)]	2034(s), 1955(s), 1904(s)
2q	[ReBr(CO) ₃ (dppb)]	2032(s), 1953(s), 1904(s)
2r	[ReBr(CO) ₃ (dppfc)]	2036(s), 1958(s), 1901(s)

Table 2.7. Carbonyl stretches for Re(I) complexes.

As can be seen for this data, there are evidently two types of complexes produced. One of them has three equal intensity carbonyl stretches (see Figure 2.6) whilst the other has only two strong absorptions with one weak one (see Figure 2.7)

Figure 2.6

Figure 2.7

The literature is not clear on the identification of which isomer is which. Clearly, the complexes of the bidentate ligands must be *fac,cis*- and these all have spectra similar to Figure 2.6. The remaining rhenium(I) derivatives have similar spectra and are likely to also be *fac,cis*- whereas the manganese(I) derivatives, 2a - 2e, are of a different type (Fig. 2.7) and are presumably *mer,trans*-. To confirm this, it has been possible to benchmark these IR absorptions against crystal structures as described in the next section.

2.3.5 X-Ray Crystallography

This section reports single crystal crystallographic data for the compounds $[ReBr(CO)_3{P(C_6H_4OMe)_3}_2]$ 2g, $[ReBr(CO)_3{P(CH_2C_6H_5)_3}_2]$ 2h, $[ReBr(CO)_3(dppfc)]$ 2r, $[MnBr(CO)_3{P(C_6H_4Cl)_3}_2]$ 2b, $[MnBr(CO)_3(dppe)]$ 2j and $[MnBr(CO)_3(dppfc)]$ 2m. Full crystallographic data for the compounds is presented in Appendicies A-F. Compound 2r, was determined to have three independent conformational isomers present in the unit cell, but for convenience only the one isomer will be discussed here, compound 2b was a disordered structure, but data are described for the highest occupancy structure.

Tables 2.8, 2.9 and 2.10 contain selected bond lengths for compounds 2b, 2g, 2h, 2j, 2m and 2r whilst Tables 2.11, 2.12 and 2.13 contain selected bond angles for the above compounds. Figure 2.8 to Figure 2.13 show the molecular structures for 2b, 2g, 2h, 2j, 2m and 2r respectively. Atoms are numbered as in the diagrams and arranged in the tables as to be comparable.

51

	2g (Å)		2h (Å)		2r (Å)
Re – P(1)	2.527(9)	Re – P(1)	2.500(5)	Re – P(1)	2.5180(18)
Re – P(2)	2.547(10)	Re – P(2)	2.494(6)	Re – P(2)	2.5520(16)
Re – Br	2.631(6)	Re – Br	2.650(3)	Re – Br	2.586(3)
$\operatorname{Re} - \operatorname{C}(1)$	1.926(4)	$\operatorname{Re} - \operatorname{C}(1)$	1.917(2)	$\operatorname{Re} - \operatorname{C}(1)$	1.855(19)
$\operatorname{Re} - \operatorname{C}(2)$	1.941(4)	$\operatorname{Re} - \operatorname{C}(2)$	1.946(3)	$\operatorname{Re} - \operatorname{C}(2)$	1.930(7)
$\operatorname{Re} - \operatorname{C}(3)$	1.950(4)	Re – C(3)	1.935(2)	$\operatorname{Re} - \operatorname{C}(3)$	1.943(8)

Table 2.8. Selected bond lengths (Å) about the *fac,cis*- rhenium(I) centres in 2g, 2h and
2r.

	2j (Å)		2m (Å)
Mn – P(1)	2.519(10)	Mn - P(1)	2.507(8)
Mn – P(2)	2.321(17)	Mn - P(2)	2.400(11)
Mn – Br	2.333(17)	Mn – Br	2.378(11)
Mn - C(1)	1.818(7)	Mn – C(35)	1.821(4)
Mn - C(2)	1.827(6)	Mn – C(36)	1.824(4)
Mn – C(3)	1.953(9)	Mn – C(37)	1.938(5)

 Table 2.9.
 Selected bond lengths (Å) about the *fac,cis*- manganese(I) centres in 2j and

 2m.

	2b (Å)
Mn – P(1)	2.3260(11)
Mn – P(2)	2.3275(10)
Mn – Br	2.5458(7)
Mn – C(37)	1.7986(8)
Mn – C(38)	1.7986(7)
Mn – C(39)	1.804(4)

 Table 2.10. Selected bond lengths about the mer, trans- manganese(I) centre.

Figure 2.8. Molecular structure of 2b.

Figure 2.9. Molecular structure of 2g

Figure 2.11. Molecular structure of 2j.

Figure 2.12. Molecular structure of 2m, viewed down the OC-Mn-Br axis. The Mn1 and C37 are obscured in this view.

Figure 2.13. Molecular structure of 2r.

	2g (°)		2h (°)		2r (°)
C1-Re-C3	91.21(15)	C1–Re–C3	93.78(10)	C1-Re-C3	91.0(5)
C1–Re–C2	92.88(15)	C1–Re–C2	85.67(10)	C1–Re–C2	90.6(5)
C3–Re-C2	86.48(15)	C3–Re-C2	86.18(10)	C3–Re-C2	86.7(3)
C1-Re-P1	92.91(10)	C1-Re-P1	96.38(7)	C1-Re-P1	84.6(5)
C2-Re-P1	168.79(11)	C2-Re-P1	169.06(7)	C2-Re-P1	87.7(2)
C3-Re-P1	83.82(10)	C3–Re–P1	90.57(2)	C3–Re–P1	172.76(19)
C1–Re–P2	85.66(10)	C1-Re-P2	92.59(7)	C1–Re–P2	97.4(4)
C2–Re–P2	84.11(11)	C2–Re–P2	85.19(7)	C2–Re–P2	169.6(2)
C3–Re–P2	169.91(10)	C3–Re–P2	171.07(7)	C3–Re–P2	86.42(19)
P1-Re-P2	105.89(3)	P1-Re-P2	98.34(2)	P1-Re-P2	99.79(6)
C1–Re–Br	177.98(10)	C1–Re–Br	173.99(7)	C1–Re–Br	175.4(5)
C2–Re–Br	87.36(11)	C2–Re–Br	88.44(7)	C2–Re–Br	85.4(2)
C3–Re–Br	90.80(11)	C3–Re–Br	88.91(8)	C3–Re–Br	86.7(2)
P1–Re–Br	87.19(2)	P1-Re-Br	81.05(14)	P1–Re–Br	97.33(6)
P2–Re–Br	92.37(2)	P2ReBr	93.16(14)	P2-Re-Br	86.41(6)

Table 2.11. Selected bond angles (°) about the rhenium(I) centre.

	2j (°)		2m (°)
C1 – Mn – C3	90.70(2)	C35 – Mn – C36	85.85(16)
C1 – Mn – C2	93.00(2)	C35 – Mn – C37	87.71(17)
C3 – Mn – C2	90.10(2)	C36 – Mn – C37	91.62(15)
C1 – Mn – P1	90.56(18)	C37 – Mn – P1	93.72(12)
C2 – Mn – P1	90.06(17)	C36 – Mn – P1	87.62(11)
C3 – Mn – P1	178.69(17)	C35 – Mn – P1	173.36(11)
C1 – Mn – P2	172.58(19)	C36 – Mn – P2	174.17(12)
C2 – Mn – P2	92.72(17)	C35 – Mn – P2	91.50(11)
C3 – Mn – P2	93.96(17)	C37 – Mn – P2	93.46(10)
P1 – Mn – P2	84.74(6)	P1 – Mn – P2	94.88(4)
C1 – Mn – Br	89.26(18)	C35 – Mn – Br	81.56(12)
C2 - Mn - Br	177.56(17)	C37 – Mn – Br	169.25(12)
C3 – Mn – Br	90.70(16)	C36 – Mn – Br	86.90(12)
P1 – Mn – Br	89.05(5)	P1 – Mn – Br	96.85(3)
P2 – Mn – Br	84.94(5)	P2 – Mn – Br	87.58(3)

Table 2.12. Selected bond angles (°) about the manganese(I) centre.

	2b (°)
C37 – Mn – C38	171.03(8)
C38 – Mn – C39	85.66(17)
C37 – Mn – C39	85.58(17)
C37 – Mn – P1	88.41(12)
C38 – Mn – P1	89.82(12)
C39 – Mn – P1	91.27(13)
C37 – Mn – P2	91.48(12)
C38 – Mn – P2	90.59(11)
C39 – Mn – P2	90.71(13)
P1 – Mn – P2	178.01(4)
C37 – Mn – Br	94.76(8)
C38 – Mn – Br	94.03(7)
C39 – Mn – Br	178.87(12)
P1 - Mn - Br	89.82(3)
P2 – Mn – Br	88.21(3)

Table 2.13. Selected bond lengths around the mer, trans- isomer.

There have been relativiely few crystallographically determined Mn(I) or Re(I) tricarbonyl halide compounds containing two phosphines or related ligands. Those that have are limited to $[MnCl(CO)_3(Et_2PCH_2CH_2PEt_2)]$ [103], $[MnBr(CO)_3(PPhH_2)_2]$ [104], $[MnCl(CO)_3\{C_6H_4(PH_2)_2\}]$ [104], $[MnCl(CO)_3\{C_6H_4(PH_2)_2\}]$ [104], $[MnBr(CO)_3(dppe)]$ [104], $[MnBr(CO)_3(triphos)Cr(CO)_5]$ [105], $[Mn(CO)_3(dppe)(NCO)]$ [106], $[Mn(CO)_3(dppp)C(O)OEt]$ [106], $[MnBr(CO)_3(CNPh)_2]$

[107], $fac, cis-[MnBr(CO)_3(P(OMe)_2Ph)_2]$ [108] and mer, trans-[MnBr(CO)₃(P(OMe₂)Ph)₂] [108], [MnBr(CO)₃{P(OMe)₂O}₂SiMe₂] [109] whilst there determined are fewer structures for Re(I), [ReCl(CO)₃(SbPh₃)₂] [110], $[Re(CO)_3(dppp)C(O)OD]$ [111] and $[ReBr(CO)_3(L_c)_2]$ (where $L_c = cis$ -3,4-dihydro-2,3,4,5-tetraphenyl-2H-1,2,3-diazaphosphole) [112].

For the *fac,cis*- Mn(I) complex 2j, the Mn-C bond length *trans* to Br is shorter than the Mn-C bond lengths *trans* to the tertiary phosphines. This has been observed previously with the [MnBr(CO)₃(triphos)Cr(CO)₅] [105] complex. However, with compound **2m**, the Mn-C bond length *trans* to Br is significantly longer, the corresponding structure in the literature has all three Mn-C bond lengths the same [104].

The Mn-Br bond lengths for **2j** and **2m** are shorter than the corresponding bond lengths found in *fac*-[MnBr(CO)₃(MeNC)₂] (2.54Å), [MnBr(CO)₃(CNPh)₂] (2.527Å) [107], [MnBr(CO)₃(P(OMe)₂Ph)₂] (2.532Å) [108], [MnBr(CO)₃(dppe)] (2.504Å) [104], the two isomers of [MnBr(CO)₃(triphos)Cr(CO)₅] (2.537Å and 2.534Å) [105] and [MnBr(CO)₃{P(OMe₂)₂O}₂SiMe₂] (2.528Å) [109]. Whilst the Mn-P lengths in compounds **2j** and **2m** are longer than those previously reported [MnBr(CO)₃(PPhH₂)₂] (2.305Å and 2.322Å) [104], [MnCl(CO)₃(C₆H₄(PPh₂)₂] (2.325Å and 2.320Å) [104], [Mn(CO)₃(dppe)(NCO)] (2.341Å and 2.329Å) [106], [Mn(CO)₃(dppp)C(O)OEt] (2.346Å and 2.340Å) [106], *fac*,*cis*-[MnBr(CO)₃(P(OMe)₂Ph)₂] (2.296Å and 2.303Å) [108] and [MnBr(CO)₃{P(OMe₂)₂O}₂SiMe₂] (2.258Å and 2.255Å) [109].

There has only been one previous example of a *mer,trans*- Mn(I) tricarbonyl halide complex analysed by X-ray crystallography, $[MnBr(CO)_3(P(OMe)_2Ph)_2]$ [108]. Comparison of compound **2b** with this reported structure shows a good correlation. The Mn-C bond lengths are very similar (1.7968(8)Å to 1.804(4)Å for **2b** *cf*. 1.80(2)Å to 1.80(3)Å for $[MnBr(CO)_3(P(OMe)_2Ph)_2]$) as are the Mn-Br bond length (2.524(7)Å for
$[MnBr(CO)_3(P(OMe)_2Ph)_2]$ cf. 2.5458(7)Å for compound 2b). The Mn-P bond lengths however are different, with those in compound 2b being longer than those found in $[MnBr(CO)_3(P(OMe)_2Ph)_2]$ (2.360(1)Å and 2.3275(10)Å for 2b cf. 2.179(8)Å and 2.260(8)Å for $[MnBr(CO)_3(P(OMe)_2Ph)_2]$).

There is also a good correlation between the three Re(I) crystal structures presented here and those published in the literature [110-112]. Compounds **2g**, **2h** and **2r** all have Re-P bond lengths in the range 2.494(6)Å to 2.5520(16)Å, which are in the same range as those found for *fac*-[Re(CO)₃(dppp)C(O)OD] (Re-P 2.472(3)Å and 2.454(3)Å [111]) and [ReBr(CO)₃(L_c)₂] (Re-P 2.481(3)Å and 2.497(3)Å [112]). The Re-C bond lengths in *fac*-[Re(CO)₃(dppp)C(O)OD] range from 1.927(13)Å to 1.945(14)Å [111], in [ReCl(CO)₃(SbPh₃)₂] they are 1.92(1)Å to 1.97(1)Å [110] and in [ReBr(CO)₃(L_c)₂] they range from 1.898(13)Å to 1.956(14)Å these values are encompassed by the Re-C bond lengths shown for compounds **2g**, **2h** and **2r** (range from 1.855(19)Å to 1.950(4)Å). Compounds **2g**, **2h** and **2r** all exhibit Re-Br bond lengths, in the range 2.586(3)Å to 2.650(3)Å, again in agreement with the Re-Br bond length found in [ReBr(CO)₃(L_c)₂] 2.622(1)Å [112].

The single crystal diffraction studies confirm that there are two different isomers. With the bidentate phosphines attached to both Mn(I) and Re(I), only the *fac,cis*- isomer is observed (this would be expected as the phosphines need to be mutually *cis* to bond with the metal centre). However, in the case of the monodentate phosphines, a *fac,cis*- isomer is observed for Re(I), but a *mer,trans*- isomer is observed for Mn(I). This agrees with the IR spectroscopic data, where all the monodentate phosphine complexes of Mn(I) showed three absorptions (two strong and one weak), whilst for the Re(I) complexes again three absorptions were observed but all three were of equal intensity.

2.4 Conclusions

In conclusion, a range of Mn(I) and Re(I) (bis)triorganophosphine complexes have been prepared. These have been characterised by ³¹P NMR, IR spectroscopy, melting point and elemental analysis. Suitable crystals have been solved via X-ray crystal diffraction. It has been shown that the monodentate phosphines form *mer*,*trans*isomers with Mn(I) with Re(I) monodentate and bidentate phosphines form only the *fac*,*cis*- isomer. Chapter 3

Synthesis and characterisation of octahydrotriborate derivatives of $[M(CO)_3(L)_2Br]$ (M = Mn or Re).

3.1 Introduction

Alfred Stock first prepared the octahydrotriborate anion, $[B_3H_8]^-$, by the reaction of a sodium mercury amalgam with diborane. However he incorrectly characterised the product as Na₂[B₂H₆] [113], and it was not until later that Hough, Edwards and McElroy determined that the product from the reaction was Na[B₃H₈] (Eq. 3.1) [114, 115].

$$2 \operatorname{Na/Hg} + 2 \operatorname{B}_2 \operatorname{H}_6 \xrightarrow{\text{Ether}} \operatorname{Na[B}_3 \operatorname{H}_8] + \operatorname{Na[BH}_4] + 2 \operatorname{Hg}$$
 (Eq. 3.1)

By addition of a carrier species, for example naphthalene, the rate of reaction is increased allowing the synthesis to be completed within a few seconds in THF (Eq. 3.2) [116]. Sodium amalgam has also been found to react with B_4H_{10} and B_5H_{11} in diethyl ether to produce Na[B_3H_8] [117].

$$2 \text{ Na/Hg} + 2 \text{ B}_2\text{H}_6 + \text{ carrier} \xrightarrow{\text{THF}} \text{Na}[\text{B}_3\text{H}_8] + \text{Na}[\text{BH}_4] + 2\text{Hg} + \text{ carrier} \quad (\text{Eq. 3.2})$$

A more convenient synthesis of $[B_3H_8]^-$ however involves the reaction of sodium borohydride with iodine (Eq. 3.3) [118]. A mechanism for this has been postulated, and is thought to involve the oxidation of $[BH_4]^-$ to B_2H_6 , followed by a subsequent reaction between diborane and $[BH_4]^-$ producing $[B_3H_8]^-$ (Eq. 3.4) [118].

$$3 \text{ NaBH}_4 + \text{I}_2 \longrightarrow \text{Na[B}_3\text{H}_8] + 2\text{H}_2 + 2\text{NaI}$$
 (Eq. 3.3)

$$B_{2}H_{6} + Na[BH_{4}] \xrightarrow{\text{diglyme}} Na[B_{3}H_{8}] + H_{2}$$
 (Eq. 3.4)

Alternatively the reaction between boron trifluoride diethyl etherate and Na[BH₄] also produces $[B_3H_8]^-$ (Eq. 3.5) [119].

$$4BF_{3} O(C_{2}H_{5})_{2} + 3 Na[BH_{4}] \xrightarrow{\text{Diglyme}} 3 Na[BF_{4}] + 2 Na[B_{3}H_{8}] + 2 H_{2} + 4 Et_{2}O \quad (Eq. 3.5)$$

The reactions illustrated in Eq. 3.3 and Eq. 3.5 produce sodium octahydrotriborate, which has a limited air stability. A number of other cations can be used which produce salts with enhanced stability, for example the preparation of an air-stable caesium salt is available by a metathesis reaction (Eq. 3.6) [118, 119, 120].

$$CsBr + Na[B_{3}H_{8}] \xrightarrow{H_{2}O} Cs[B_{3}H_{8}] + NaBr \qquad (Eq. 3.6)$$

Tetraalkylammonium salts have proved to be useful due to their high thermal and airstability whilst also having a low moisture sensitivity. They are also soluble in organic solvents which makes them valuable as starting materials for metathesis to other $[B_3H_8]^$ salts. The general method of their preparation involves the addition of a saturated aqueous solution of tetraalkylammonium halide to a diethyl ether solution of Na[B₃H₈] (Eq. 3.7) [116].

$$[R_4N]X + Na[B_3H_8] \xrightarrow{Et_2O} [R_4N][B_3H_8] + NaX \qquad (Eq. 3.7)$$

The most general preparation of metal- B_3H_8 complexes involves the reaction of an organometallic halide with $[R_4N][B_3H_8]$ in a dichloromethane solution (Eq. 3.8). Most reactions proceed at room temperature, although thermal or photolytic induction is required in some cases.

 $[ML_{x}X_{y}] + [B_{3}H_{8}]^{-} \longrightarrow [ML_{(x-1)}X_{(y-1)}(B_{3}H_{8})] + L + X^{-}$ (Eq. 3.8) L = Neutral donor ligand, X = Halide

3.2 Aims

The aim of this chapter was to use the manganese(I) and rhenium(I) halo carbonyl phosphine derivatives prepared in Chapter 2 and explore their reactions with the octohydrotriborate anion. With a few exceptions [1, 2] this area has been frequently overlooked. The chemistry of the complex obtained in the highest yield was to be further investigated as representative of the chemistry of the class.

3.3 Results and Discussion

3.3.1 Synthesis of the $[B_3H_8]$ anion.

 $[^{n}Bu_{4}N][B_{3}H_{8}]$ was prepared by the literature method [118], in yields varying from 70 to 80%, (Eq. 3.9 and Eq. 3.10). The physical and spectroscopic properties of $[^{n}Bu_{4}N][B_{3}H_{8}]$ so obtained were in good agreement with literature values.

$$3Na[BH_4] + I_2 \longrightarrow 2NaI + 2H_2 + Na[B_3H_8]$$
 (Eq. 3.9)

Na[B ₃ H ₈] + [ⁿ Bu ₄ N]I	>	$[^{n}Bu_{4}N][B_{3}H_{8}] + NaI$	(Eq. 3.10)

3.3.2 Attempted synthesis of 2-metallatetraboranes from *mer,trans*-[MnBr(CO)₃(L)₂].

The reaction between compounds 2a-2d and [ⁿBu₄N][B₃H₈], in a 1:1 ratio, were attempted under both thermal and photolytic conditions. In all cases a white solid formed which was insoluble and was difficult to identify. NMR spectra of the residual solids and solution did not indicate formation of any metallatetraborane species.

<u>3.3.3 Synthesis of 2-metallatetraboranes from $fac, cis-[MBr(CO)_3(L)_2]$ and</u> <u> $fac, cis-[MBr(CO)_3(L\sim L)].</u>$ </u>

The reaction between $[{}^{n}Bu_{4}N][B_{3}H_{8}]$ with compounds 2e - 2r, in a 1:1 ratio, produced complexes of the type $[M(CO)_{2}(L)_{2}(B_{3}H_{8})]$ and $[M(CO)_{2}(L\sim L)(B_{3}H_{8})]$ (Eq. 3.11 and Eq. 3.12). The Mn(I) complexes were prepared in yields ranging from 17 to 59% by UV photolysis in CHCl₃ for 20h. Similarly, the Re(I) complexes were prepared in yields ranging from 17 to 46% under the same conditions as Mn(I).

 $[MBr(CO)_3L \sim L] + [B_3H_8]^{-1}$ $[M(CO)_2L \sim L(B_3H_8)] + Br + CO(Eq. 3.11)$ -L~L= dppm, dppe, dppp, dppb, dppfc M = Mn: 3a, 3b, 3d, 3c, 3e. M = Re: 3j, N/A,3k, 31. 3m. $[M(CO)_{3}(L)_{2}Br] +$ $[M(CO)_2(L)_2(B_3H_8)] + Br + CO (Eq. 3.12)$ [B₃H₈] >

L= PPh₃, P(C₆H₄Cl)₃, P(C₆H₄OMe)₃, P(CH₂C₆H₅)₃

M = Re: 3f, 3g, 3h, 3i.

All complexes were analysed by elemental analysis, melting point, ¹H, ¹¹B and ³¹P NMR and infrared spectroscopy. The yield, elemental analysis and melting point data is summarised in Table 3.1 for Mn(I) complexes and Table 3.2 for Re(I) complexes. Only compound **3b** has been reported previously, however this compound was not completely characterised at the time, all other complexes are previously unreported. All complexes decomposed if left in solution for more than 24h, and gradually decomposed in the solid state. All complexes were purified by column chromatography, using hexane and chloroform as eluents on a Florisil column.

No	Compound	Analytical data		M.Pt (°C)	Yield (%)
		C(%) Found (Calc)	H(%) Found (Calc)		
3a	$[Mn(CO)_2(dppm)(B_3H_8)]$	60.2 (60.5)	5.4 (5.6)	187	28
3b	$[Mn(CO)_2(dppe)(B_3H_8)]$	60.9 (61.1)	6.0 (5.9)	243	59
3c	$[Mn(CO)_2(dppp)(B_3H_8)]$	61.7 (61.7)	6.4 (6.1)	85	17
3d	$[Mn(CO)_2(dppb)(B_3H_8)]$	62.6 (62.3)	6.0 (6.3)	157	24
3e	$[Mn(CO)_2(dppfc)(B_3H_8)]$	61.3 (61.3)	5.4 (5.1)	138	36

Table 3.1. Analytical data, M.Pt and yields of $Mn(I) B_3H_8$ complexes.

•

No	Compound	Analytical data		M.Pt (°C)	Yield (%)
		C(%) Found (Calc)	H(%) Found (Calc)		
3f	$[\operatorname{Re}(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\operatorname{B}_3\operatorname{H}_8)]$	56.1 (56.4)	4.7 (4.7)	175	20
3g	$[Re(CO)_{2} \{P(C_{6}H_{4}Cl-4)_{3}\}_{2}(B_{3}H_{8})]$	44.9 (45.0)	3.0 (3.2)	129	36
3h	$[Re(CO)_{2} \{P(C_{6}H_{4}OMe-4)_{3}\}_{2}(B_{3}H_{8})]$	53.4 (53.5)	5.4 (5.1)	109	31
3i	$[Re(CO)_{2} \{P(CH_{2}C_{6}H_{5})_{3}\}_{2}(B_{3}H_{8})]$	59.5 (59.3)	5.4 (5.7)	210	17
3ј	$[Re(CO)_2(dppm)(B_3H_8)]$	48.9 (48.6)	4.7 (4.5)	164	28
3k	$[Re(CO)_2(dppp)(B_3H_8)]$	50.5 (50.1)	5.1 (4.9)	77	32
31	$[Re(CO)_2(dppb)(B_3H_8)]$	50.9 (50.8)	5.0 (5.1)	183	39
3m	$[Re(CO)_2(dppfc)(B_3H_8)]$	51.5 (51.5)	4.2 (4.3)	193	46

Table 3.2. Analytical data, M.Pt and yields of $Re(I) B_3H_8$ complexes.

The product of formula $[M(CO)_2(L)_2(B_3H_8)]$ may exist in a number of isomeric forms (Figure 3.1).

Figure 3.1. Differing isomeric forms of $[M(CO)_2(L)_2(B_3H_8)]$.

Previous work has [2] shown that $[Mn(CO)_2(dppe)(B_3H_8)]$ has structure 1 and the use of chelating phosphine ligands excludes the possibility of 2. In the case of isomer 1, only one peak would be expected in the ³¹P NMR since both phosphorus nuclei are in equivalent environments. However, in isomer 3 and 4, two phosphorus signals of equal intensity would be observed due to the nuclei being in differing environments. The same argument holds true for the ¹¹B NMR, where in isomer 1 two signals would be seen of a 2:1 ratio (2 M-H-B environments and 1 terminal BH₂ environment). But in isomers in 3 and 4, all three boron atoms are in differing environments and hence three signals of equal intensity would be seen. All isomers would be expected to show two carbonyl stretches in their respective infrared spectra. ¹¹B, ³¹P NMR, infrared spectroscopy and X-ray crystallography will be used to confirm that isomer 1 is formed in all cases.

3.3.4 Infra-red spectroscopy

As was demonstrated in chapter 2, infrared spectroscopy is an important diagnostic tool for the determination of stereochemical phenomena. However, unlike the compounds 2a - 2r, only two carbonyls are present in the molecules 3a - 3m. Symmetry considerations would indicate that two carbonyl stretches would be observed for all possible isomers of $[M(CO)_2(L)_2(B_3H_8)]$. This was found to be the case with the exception of compound 3b, which presumably has coincidental overlap of the vibrational stretches. The values of the stretches observed in both the Mn(I) and Re(I) complexes are shown in Table 3.3 and 3.4 respectively.

No	Compound	v (CO) stretches
3a	$[Mn(CO)_2(dppm)(B_3H_8)]$	1961(s), 1901(s)
3b	$[Mn(CO)_2(dppe)(B_3H_8)]$	1922(s) (Lit 1915(s) [2])
3c	$[Mn(CO)_2(dppp)(B_3H_8)]$	1960(s), 1907(s)
3d	$[Mn(CO)_2(dppb)(B_3H_8)]$	1960(s), 1907(s)
3e	$[Mn(CO)_2(dppfc)(B_3H_8)]$	1959(s), 1882(s)

Table 3.3. Infrared stretches of $[Mn(CO)_2(L)_2(B_3H_8)]$ (KBr disc).

No	Compound	v (CO) stretches
3f	$[\operatorname{Re}(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\operatorname{B}_3\operatorname{H}_8)]$	1945(s), 1915(s)
3g	$[\text{Re}(\text{CO})_2\{\text{P}(\text{C}_6\text{H}_4\text{Cl}-4)_3\}_2(\text{B}_3\text{H}_8)]$	1971(s), 1913(s)
3h	$[Re(CO)_{2} \{ P(C_{6}H_{4}OMe-4)_{3} \}_{2}(B_{3}H_{8})]$	2049(s), 1972(s)
3i	$[Re(CO)_{2} \{P(CH_{2}C_{6}H_{5})_{3})_{2} \} (B_{3}H_{8})]$	1948(s), 1901(s)
3ј	$[\text{Re}(\text{CO})_2(\text{dppm})(\text{B}_3\text{H}_8)]$	1966(s), 1902(s)
3k	$[Re(CO)_2(dppp)(B_3H_8)]$	1967(s), 1912(s)
31	$[Re(CO)_2(dppb)(B_3H_8)]$	1965(s), 1900(s)
3m	$[Re(CO)_2(dppfc)(B_3H_8)]$	1964(s), 1912(s)

Table 3.4. Infrared stretches of $[Re(CO)_2(L)_2(B_3H_8)]$ (KBr disc).

As can be clearly seen, all complexes exhibit two strong signals in the carbonyl stretching region. In other reports of metallatetraboranes, values for the B-H stretching frequency have been given. Only small amounts of each compound were available for IR spectroscopic studies, it proved difficult to produce KBr discs of sufficient strengths. Hence all of the B-H data were effectively masked in the background of the IR spectra. B-H stretching data is however, no more diagnostic of structure than the carbonyl stretching data.

3.3.5¹¹B NMR spectroscopy

a) Solution state NMR

Performing solution state ¹¹B NMR gives a rapid indication as to the progress of the reaction and also provides evidence for the structure of the complexes. The high boron content of the multinuclear NMR probe available for this study, meant that the signal

for the terminal boron nucleus was often hidden by the signal from the borosilicate glass of the NMR probe. A sample of $[Mn(CO)_2(dppe)(B_3H_8)]$ was sent to Leeds University to be examined on a high field 'low boron content' multinuclear NMR probe. The ¹¹B spectra obtained in Bangor is shown in Figure 3.2 whilst the ¹¹B obtained from Leeds on the same sample is shown in Figure 3.3.

Figure 3.2. ¹¹B NMR of [Mn(CO)₂(dppe)(B₃H₈)] at 250MHz (Bangor).

Figure 3.3. ¹¹B NMR of $[Mn(CO)_2(dppe)(B_3H_8)]$ at 400MHz (Leeds).

As can be seen there is only one diagnostic signal in the sample run in Bangor (-40.7ppm), whilst the same sample run at Leeds clearly shows two signals, one of intensity two (-40.6ppm) and one of intensity one (+3ppm). These relate to the M-H-B boron environments (intensity two) and the terminal BH₂ boron environments (intensity one), and the values obtained are in close agreement with those reported by Gaines *et al* [2].

All of the remaining manganese and rhenium derivatives produced were only analysed on the instrument in Bangor, hence only the higher intensity signal relating to the metal bound boron was clearly decerned and are reported here. ¹¹B values obtained for the manganese derivatives are reported in Table 3.5, whilst the rhenium derivatives values are shown in Table 3.6.

No.	Compound	M-H- B δ(¹¹ B) /ppm
3a	$[Mn(CO)_2(dppm)(B_3H_8)]$	-40.1
3b	$[Mn(CO)_2(dppe)(B_3H_8)]$	-40.6 (Lit -40.6 [2])
3c	$[Mn(CO)_2(dppp)(B_3H_8)]$	-40.1
3d	$[Mn(CO)_2(dppb)(B_3H_8)]$	-40.1
3e	$[Mn(CO)_2(dppfc)(B_3H_8)]$	-40.6

Table 3.5. ¹¹B NMR values for Mn(I) complexes.

No.	Compound	M-H- B δ(¹¹ B) /ppm
3f	$[Re(CO)_2(PPh_3)_2(B_3H_8)]$	-40.9
3g	$[Re(CO)_{2} \{P(C_{6}H_{4}Cl-4)_{3}\}_{2}(B_{3}H_{8})]$	-40.2
3h	$[Re(CO)_{2} \{ P(C_{6}H_{4}OMe-4)_{3} \}_{2}(B_{3}H_{8})]$	-41.6
3i	$[Re(CO)_{2} \{P(CH_{2}C_{6}H_{5})_{3}\}_{2})(B_{3}H_{8})]$	-41.9
3ј	$[Re(CO)_2(dppm)(B_3H_8)]$	-40.9
3k	$[Re(CO)_2(dppp)(B_3H_8)]$	-41.0
31	$[Re(CO)_2(dppb)(B_3H_8)]$	-41.3
3m	$[Re(CO)_2(dppfc)(B_3H_8)]$	-40.6

Table 3.6. ¹¹B NMR values for Re(I) complexes.

These values are in accord with those published in the literature, [(CH₃)₄N][Cr(CO)₄(B₃H₈)] (BH₂ –3.6, MHB –42.1), [(CH₃)₄N][W(CO)₄(B₃H₈)] (BH₂ –4.7, MHB –42.6) and [(CH₃)₄N][Mo(CO)₄(B₃H₈)] (BH₂ –6.5, MHB –42.2) [12]. This indicates that the borane moiety is not fluxional on the NMR time scale. Also, the similarity of the ¹¹B spectra of all complexes with that of [Mn(CO)₂(dppe)(B₃H₈)] indicates that they are all of the same structure. The ¹¹B NMR data effectively excludes structures **3** and **4** since these would have (unless coincidental) two high field resonances at *ca.* –40ppm.

b) Solid state NMR

Previously there has only been the one reported solid state study of metallatetraboranes [121] all other studies have been restricted to solution ¹H, ¹¹B and ³¹P NMR as well as infrared spectroscopy and X-ray crystallography. Isotropic

chemical shift data from solid state MAS-NMR spectra normally requires simulation of spectra to account for quadrupolar effects. However, the spectra reported here gave strong relatively sharp signals and hence simulation was unnecessary.

One would expect to see two signals in the solid state NMR spectra for the metallatetraboranes discussed in this chapter, with a 2:1 ratio. Indeed, two signals are observed, with a 2:1 ratio, with the upfield signal (*ca.* -40 ppm) being associated with the resonance of the 2 M-H-B boron environments whilst the signal observed downfield (*ca.* 0 ppm) is the resonance associated with the terminal boron nucleus. The ¹¹B solid state MAS-NMR chemical shifts obtained for compounds **3e** and **3j** are given in Table 3.7, whilst the spectra of **3e** is given in Figure 3.4.

No	Compound	M-H- B δ(¹¹ B)	Terminal \mathbf{B} H ₂ δ (¹¹ B)
3e	$[Mn(CO)_2(dppfc)(B_3H_8)]$	-41.38	-3.4
3ј	$[Re(CO)_2(dppm)(B_3H_8)]$	-44.37	-3.9

Table 3.7. Solid state ¹¹B MAS-NMR data for complexes 3e and 3j.

Figure 3.4. Solid state ¹¹B MAS-NMR spectra of complex 3e.

These spectra indicate that like the previously reported Cr and W metallatetraboranes, and unlike the Ag and Cu metallatetraboranes, that the Mn and Re derivatives are not fluxional at room temperature in the solid state.

3.3.6³¹P NMR spectroscopy

The ³¹P NMR values for the metallatetraborane complexes δ , and $\Delta\delta$ (calculated from subtracting the chemical shift of the starting organometallic phosphine halide from δ) are given in Tables 3.8 and 3.9. A downfield shift is indicated by a negative $\Delta\delta$

value. Literature data for the previously prepared compound 3b is unavailable for comparison.

No.	Compound	δ / ppm	Δδ
3a	$[Mn(CO)_2(dppm)(B_3H_8)]$	+49.6	-37.8
3b	$[Mn(CO)_2(dppe)(B_3H_8)]$	+100.1	-30.6
3с	$[Mn(CO)_2(dppp)(B_3H_8)]$	+63.4	-32.9
3d	$[Mn(CO)_2(dppb)(B_3H_8)]$	+68.9	-36.0
3e	$[Mn(CO)_2(dppfc)(B_3H_8)]$	+14.6	+22.5

 Table 3.8.
 ³¹P NMR data for Mn(I) metallatetraborane complexes.

No.	Compound	δ/ppm	Δδ
3f	$[\operatorname{Re}(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\operatorname{B}_3\operatorname{H}_8)]$	+31.8	-32.8
3g	$[Re(CO)_{2} \{ P(C_{6}H_{4}Cl-4)_{3})_{2}(B_{3}H_{8})]$	+16.6	-19.4
3h	$[Re(CO)_{2} \{ P(C_{6}H_{4}OMe-4)_{3} \}_{2}(B_{3}H_{8})]$	+11.5	-16.1
3i	$[Re(CO)_{2} \{ P(CH_{2}C_{6}H_{5})_{3} \}_{2}(B_{3}H_{8})]$	+7.9	-26.0
3ј	$[Re(CO)_2(dppm)(B_3H_8)]$	-21.2	-17.1
3k	$[Re(CO)_2(dppp)(B_3H_8)]$	+0.0	-15.9
31	$[Re(CO)_2(dppb)(B_3H_8)]$	-6.8	+2.8
3m	$[Re(CO)_2(dppfc)(B_3H_8)]$	+2.0	-2.7

 Table 3.9.
 ³¹P NMR data for Re(I) metallatetraborane complexes.

.

The ³¹P NMR chemical shifts of the Mn and Re metallatetraboranes are all, with the exception of compounds **3e** and **3l**, shifted downfield relative to the starting organometallic phosphine halide complexes. In general, the Mn(I) complexes (**3a** – **3d**) had a $\Delta\delta$ value in the region of –35 ppm whilst the Re(I) complexes exhibit a $\Delta\delta$ of approximately –18 ppm. This may be a result of the different size and electron distribution of Mn(I) compared with Re(I).

The observation of only one phosphorus signal in the 31 P NMR of the metallatetraboranes, confirm that isomer **1** (Figure 3.1) is present.

3.3.7 ¹H NMR spectroscopy

Gaines *et al* reported the presence of five distinct hydrogen environments for the $[B_3H_8]^-$ protons in these static bidentate complexes [2]. However, when the samples reported in this study were analysed by solution state ¹H NMR, only two of the five reported environments were clearly distinguishable and these were upfield of TMS. This is in part due to masking the downfield resonances by the protons on the phosphine ligands and also due to the presence of a tetraalkylammonium salt impurity that proved difficult to remove from the samples. Hence, ¹H spectral data are only reported for the range 0 to -20 ppm. In all complexes two distinct proton environments were evident, those of H(5, 6) and H(7, 8) (see Figure 3.5 for numbering scheme).

Figure 3.5. Numbering of the ${}^{1}H$ in $[B_{3}H_{8}]^{-}$.

The proton shifts obtained are in Tables 3.10 and 3.11 for the Mn(I) and Re(I) metallatetraborane species respectively.

No	Compound	H (5, 6)	H (7, 8)
3a	$[Mn(CO)_2(dppm)(B_3H_8)]$	-12.7	-0.9
3b	$[Mn(CO)_2(dppe)(B_3H_8)]$	-12.9	-0.8
3c	$[Mn(CO)_2(dppp)(B_3H_8)]$	-12.7	-0.2
3d	$[Mn(CO)_2(dppb)(B_3H_8)]$	-12.9	-0.7
Зе	$[Mn(CO)_2(dppfc)(B_3H_8)]$	-9.8	-0.2

 Table 3.10.
 ¹H NMR data for the Mn(I) metallatetraboranes.

No	Compound	H (5, 6)	H (7, 8)
3f	$[\operatorname{Re}(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\operatorname{B}_3\operatorname{H}_8)]$	-8.5	-1.1
3g	$[Re(CO)_{2} \{ P(C_{6}H_{4}Cl-4)_{3} \}_{2}(B_{3}H_{8})]$	-9.0	-1.1
3h	$[Re(CO)_{2} \{P(C_{6}H_{4}OMe-4)_{3}\}_{2}(B_{3}H_{8})]$	-9.0	-0.4
3i	$[Re(CO)_{2} \{P(CH_{2}C_{6}H_{5})_{3}\}_{2}(B_{3}H_{8})]$	-8.8	-0.2
3ј	$[Re(CO)_2(dppm)(B_3H_8)]$	-8.5	-0.2
3k	$[Re(CO)_2(dppp)(B_3H_8)]$	-9.2	-0.5
31	$[Re(CO)_2(dppb)(B_3H_8)]$	-9.0	-0.1
3m	$[Re(CO)_2(dppfc)(B_3H_8)]$	-9.4	-0.3

Table 3.11. ¹H NMR data for the Re(I) metallatetraboranes.

These values are consistent with those reported by Gaines for similar metallatetraboranes. The Mn(I) species exhibit lower field proton environments than those exhibited by the Re(I) complexes for the bridging M-H-B's. This is again in agreement with what has been reported in the literature, where the H(5, 6) chemical shift for $[Mn(CO)_4(B_3H_8)]$ was -12.05 ppm, and the corresponding rhenium complex $[Re(CO)_4(B_3H_8)]$ has a chemical shift was -9.33 ppm [2]. Again the H(7, 8) chemical shift of compounds **3a** - **3m** is in close agreement with that reported *c.f.* $[Mn(CO)_4(B_3H_8)] -0.88$ ppm, and $[Re(CO)_4(B_3H_8)] -1.42$ ppm.

3.3.8 X-Ray crystallography

This section reports the single-crystal crystallographic data for the compounds $[Mn(CO)_2(dppe)(B_3H_8)]$ **3b** (Figure 3.6) and $[Re(CO)_2(dppfc)(B_3H_8)]$ **3m** (Figure 3.7). Full crystallographic data for the compounds is presented in Appendicies G and H.

Figure 3.7. Molecular structure of 3m.

	3b		3m
Mn – C(27)	1.844(3)	Re – C(6A)	1.968(4)
Mn – C(28)	1.835(3)	Re – C(6)	1.968(4)
Mn - P(1)	2.240(8)	$\operatorname{Re} - \operatorname{P}(1\mathrm{A})$	2.3911(7)
Mn – P(2)	2.2495(7)	Re – P(1)	2.3911(7)
Mn - B(1)	2.330(3)	Re – B(1A)	2.432(4)
Mn – B(2)	2.336(3)	Re – B(1)	2.432(4)

Table 3.12 contains selected bond lengths for compounds **3b** and **3m** whilst Table 3.13 contains selected bond angles for these compounds.

Table 3.12. Selected bond lengths (Å) in 3b and 3m.

	3b		3m
C28-Mn-C27	176.96(10)	C6A-Re-C6	177.17(17)
C28-Mn-P1	91.99(7)	C6A-Re-P1A	88.57(9)
C27-Mn-P1	88.55(7)	C6-Re-P1A	89.64(10)
C28-Mn-P2	87.10(7)	C6A-Re-P1	89.64(10)
C27-Mn-P2	89.95(7)	C6-Re-P1	88.57(9)
P1-Mn-P2	86.34(3)	P1A-Re-P1	101.34(3)
C28-Mn-B1	96.76(11)	C6A-Re-B1A	92.19(17)
C27-Mn-B1	83.86(11)	C6-Re-B1A	90.45(17)
P1-Mn-B1	156.69(8)	P1A-Re-B1A	150.46(12)
P2-Mn-B1	115.57(8)	P1-Re-B1A	108.2(12)
C28-Mn-B2	95.84(11)	C6A-Re-B1	90.45(17)
C27-Mn-B2	86.69(11)	C6-Re-B1	92.19(17)
P1-Mn-B2	113.50(8)	P1A-Re-B1	108.2(12)
P2-Mn-B2	159.75(8)	P1A-Re-B1	150.46(12)
B1-Mn-B2	44.22(11)	B1A-Re-B1	42.30(2)

Table 3.13. Selected bond angles (°) about the manganese (I) and rhenium (I) centres.

There have only been two Mn(I) complexes containing the $[B_3H_8]$ moiety previously determined by X-ray crystallography, the *nido*- $[Mn(CO)_3(B_3H_8)]$ [2] and the *arachno*- $[Mn(CO)_4(B_3H_7Br)]$ [1], whilst there have been no previous reports of Re(I) $[B_3H_8]$ complexes. Other metallatetraborane complexes which have been characterised crystallographically include [{Cu{PPh_3}_2(B_3H_8)], [NMe_4][{Cr(CO)_4}B_3H_8], [{WH_3(PMe_3)_3}B_3H_8], [{NbCp_2}B_3H_8], [{RuH(CO)(PPh_3)_2}B_3H_8], [{Ru(C₆Me₆)Cl}B₃H₈], [{Ru(PPh₃)(HB{pz}₃}B₃H₈] and [{OsH(CO)(PPh₃)₂}B₃H₈] [14, 121-127]. Bond lengths and bond angles for these Mn(I) metallatetraboranes are shown in Table 3.14 and Table 3.15 respectively (with numbering scheme for the compounds in Table 3.14 and 3.15 being shown in Fig 3.8).

Complex	Interatomic bond distances (M-B) (Å)				
	M-B1	M-B3	B1-B3	B1-B2	B2-B3
$[Mn(CO)_4(B_3H_7Br)]$	2.356(9)	2.356(9)	1.75(2)	1.71(2)	1.71(2)
$[Mn(CO)_3(B_3H_8)]$	2.281(7)	2.273(7)	1.748(9)	1.713(9)	1.737(9)

 Table 3.14.
 Selected interatomic distances for structurally characterised

 metallatetraboranes.

Complex	Interbond angles (°)		
	B1-M-B3	B1-B2-B3	
$[Mn(CO)_4(B_3H_7Br)]$	43.5(4)	61.5(8)	
$[Mn(CO)_3(B_3H_8)]$	45.1(2)	60.9(4)	

Table 3.15. Selected intermolecular bond angles for structurally characterised Mn(I) metallatetraboranes.

Figure 3.8. Atom labelling for Tables 14 and 15.

Figure 3.9. Atom labelling for compounds 3b and 3m.

The Mn-B bond lengths in **3b** (Mn-B1 2.330(3)Å and Mn-B2 2.336(3)Å) are in close agreement with those shown by $[Mn(CO)_4(B_3H_7Br)]$ (Mn-B1 2.356(9)Å and Mn-B2 2.356(9)Å) whilst they are longer than those exhibited by the *nido*- $[Mn(CO)_3(B_3H_8)]$ (Mn-B1 2.281(7)Å and Mn-B3 2.273(7)Å). The Re-B bond lengths in compound **3m** are longer than those found in **3b** (Re-B1 2.432(4)Å, Re-B1A 2.432(4)Å.

The bond lengths in the B-B bridge for **3b** (B1-B2 1.756(4)Å) are, within error, the same as those observed for $[Mn(CO)_3(B_3H_8)]$ (B1-B3 1.748(9)Å) and $[Mn(CO)_4(B_3H_7Br)]$ (B1-B3 1.75(2)Å) and in **3m**, (B1-B1A 1.754(10)Å). The bond lengths between the B-B bridge and the terminal BH₂ in **3b** (B1-B3 1.788(4)Å, B2-B3 1.815(5)Å) are slightly longer than those found in $[Mn(CO)_4(B_3H_7Br)]$ (B1-B2 1.71(2)Å, B2-B3 1.71(2)Å) and $[Mn(CO)_3(B_3H_8)]$ (B1-B2 1.713(9)Å, B2-B3 1.737(9)Å) but these differences may not be significant.. In **3m** the situation is not as clear cut. One side of the B1-B1_A-B2 triangle is shorter than the other with the B1-B2 bond length being 1.653(11)Å and the B1_A-B2 bond length being 1.784(12)Å.

The B1-Mn-B2 bond angle (44.22(11)°) in compound **3b** shows close agreement with $[Mn(CO)_3(B_3H_8)]$ (B1-Mn-B3 45.1(2)°) and $[Mn(CO)_4(B_3H_7Br)]$ (B1-Mn-B3 43.5(4)°). Similarly the B1-B3-B2 bond angle in **3b** (58.34(17)°) is slightly smaller than those observed for $[Mn(CO)_3(B_3H_8)]$ (B1-B2-B3 60.9(4)°) and $[Mn(CO)_4(B_3H_7Br)]$ (B1-B2-B3 61.5(8)°). In compound **3m**, a similar observation may be made, where the B1A-Re-B1 bond angle is (42.30(2)°) and the B1-B2-B1A bond angle is $(61.3(5)^\circ)$. The precursors of complexes **3b** and **3m** (**2j** and **2r** respectively) have had their structures determined by X-ray crystallography. In compound **3m**, the Mn-P bond lengths (2.240(8)Å and 2.2495(7)Å) are shorter than those of **2j** (2.519(10)Å and 2.321(17)Å). Similarly, in compound **3m**, the Re-P bond lengths (2.3911(7)Å and 2.3911(7)Å) are shorter than those of its precursor, **2r**, (2.5180(18)Å and 2.5520(16)Å). This would indicate that the *trans*- influence of $[B_3H_8]^-$ is less than that of a *cis*-combination of Br⁻ and CO.

Conversely, the P-Mn-P bond angle of **3b** $(86.34(3)^\circ)$ is larger than that found in **2j** $(84.74(6)^\circ)$. The same is found for **3m** where the P-Re-P bond angle $(101.34(3)^\circ)$ is larger than that of its precursor, **2r**, $(99.79(6)^\circ)$. This may be due to the release of steric constraints due to he removal of the halide.

3.3.9 Reactions of $[Mn(CO)_2(dppe)(B_3H_8)]$

Reactions of $[Mn(CO)_2(dppe)(B_3H_8)]$ were attempted as representitive of this class of compounds. This compound was chosen as it was readily available and obtained in highest yield. Preliminary reactions included thermal (with and without Me₃NO) and photolytic reactions in benzene and CHCl₃, in attempts to remove a carbonyl and generate a *nido*- complex. Thermal and photolytic CO substitution reactions with PPh₃ were also attempted. In all cases, reactions did occur, but these reactions were not clean and complex mixtures resulted from which it was difficult to isolate pure materials. For example, the photolytic decarbonylation of $[Mn(CO)_2(dppe)(B_3H_8)]$ produced a pink solid. ³¹P and ¹¹B NMR of the crude products were performed and the results indicate a possible *nido*-structure. The ¹¹B NMR showed one signal at -47.1ppm (close to the value obtained for the *nido*-

 $[Mn(CO)_3(B_3H_8)]$ species), whilst the ³¹P NMR showed two sets of signals, one at +99.3ppm (unreacted $[Mn(CO)_2(dppe)(B_3H_8)]$ and a multiplet of peaks at +72ppm.

In all cases separation of products proved difficult and time consuming and this area of research was not pursued further.

3.4 Conclusion

This chapter reports the synthesis and characterisation of twelve new and one previously reported Mn(I) and Re(I) *arachno*-2-metallatetraboranes. All compounds were characterised by NMR and IR studies and two compounds, $[Mn(CO)_2(dppe)(B_3H_8)]$ and $[Re(CO)_2(dppfc)(B_3H_8)]$, were characterised by single crystal X-ray diffraction studies. The chemistry of $[Mn(CO)_2(dppe)(B_3H_8)]$ has been further explored but reaction products were not isolated nor characterised.

Chapter 4

Lewis acidity and organophosphoryl adducts of tris(pentafluorophenyl)borane.

4.1 Introduction

It was not until the 1960s that the first reports of pentafluorophenylborane derivatives were published [129]. These included the synthesis of $Cl_2B(C_6F_5)$, $ClB(C_6F_5)_2$ and $B(C_6F_5)_3$ [130]. The strong Lewis acid properties of $B(C_6F_5)_3$ (4a) were acknowledged at the time although they were not put to practical use. This area of research lay dormant for about 20 years, when further applications of pentafluorophenylborane reagents were described [131].

Compared to the boron trihalides, tris(pentafluorophenyl)borane is an ideal boron-based Lewis acid since it possesses both high Lewis acid strength and good stability. It is thermally robust, being able to withstand temperatures of up to 270° C, and it is also resistant towards oxidation by dioxygen. However it is slowly hydrolysed with elimination C₆F₅H, under ambient conditions. The compound forms strong and stable adducts with water [132, 133] which have been analysed by X-ray crystallographic techniques. It is its reaction with zirconium alkyls that have lead to the resurgence of interest in this compound. Some of these reactions are described below.

Treatment of dimethylzirconocenes with $B(C_6F_5)_3$ lead to what was initially described as "cation like" species, with the general formula $[Cp'_2ZrCH_3]^+[CH_3B(C_6F_5)_3]^-$ (Eq. 4.1) [131]. Several of these species have since been structurally characterised [134].

 $[Cp'_{2}Zr(CH_{3})_{2}] + B(C_{6}F_{5})_{3} \longrightarrow [Cp'_{2}Zr(CH_{3})][H_{3}CB^{-}(C_{6}F_{5})_{3}] \quad (Eq. 4.1)$ Where $Cp' = \eta^{5} - C_{5}H_{5}, \eta^{5} - C_{5}Me_{5}$

Analysis of these species in solution by NMR have shown that there are two dynamic processes occurring in these species (Figure 4.1) [135].

Figure 4.1. Dynamic processes occurring in solution for "MCp₂Me₂B(C₆F₅)₃".

The first process exchanges the diastereotopic ring substituents and involves separation of the anion from the cation, flipping of the terminal Zr-CH₃ from one side of the metallocene to the other followed by reassociation of the ion pair (Fig. 4.1(a)). The second process involves the initial dissociation of free $B(C_6F_5)_3$ through μ -H₃C-B bond cleavage followed by abstraction of the other zirconocene methyl group (Fig. 4.1(b)). The process in Fig. 4.1(a) is predominant when M = Zr whilst the process in Fig. 4.1(b) is predominant when M = Hf. This type of process is not just limited to methyl groups; benzyl groups are readily abstracted forming zirconium cations stabilised by benzyl ligands [136] (Figure 4.2).

96

 $[PhCH_2B(C_6F_5)_3]$

Figure 4.2. Zirconium cation stabilised by a benzyl ligand.

4.1.1 Lewis acidity of boron compounds

Boron shows many similarities to its neighbours in the periodic table, carbon and silicon, with its preference to form covalent bonds. However, boron has one fewer valence electrons than its number of valence orbitals. Boron species that are trigonal planar use three sp^2 orbitals, to form three covalent σ -bonds. The boron atom has two electrons short of an octet and, as such, possesses a vacant p_z orbital (which lies perpendicular to the sp^2 plane). This electron deficiency is responsible for the Lewis acidity of sp^2 hybridised boron compounds.

When a Lewis base is added to a Lewis acid a complex is formed which involves the rearrangement of molecular structure of the starting materials. Boron trihalides change from being trigonal planar, in which the boron atom is sp^2 hybridised, to being tetrahedral, upon co-ordination, in which the boron atom is sp^3 hybridised. The process requires energy for orbital re-hybridisation, for overcoming the loss of σ bonding in the original molecule, for overcoming increased electron pair repulsion's between halogen atoms and for overcoming any steric crowding due to a decrease in the X-B-X bond angle. This is offset by the energy gained on formation of the B-L bond. A major factor in determining Lewis acidity of trigonal boron compounds is the extent of σ -bonding to adjacent atoms, and this may be described by using the boron trihalides as examples. The boron trihalides are trigonal planar molecules with D_3h symmetry. The relative order of Lewis acidity of the boron trihalides is BBr₃ > BCl₃ > BF₃, which is the opposite to what would be expected from electronegativity arguments or on steric grounds. The mean energy of the B-F bond is 646 kJ mol⁻¹ which makes it one of the strongest known 'single' bonds. This bond energy is considerably greater than those found in other boron-halide bonds and is stronger than a B-O bond. Evidence for this strong bond is observed if the reaction between water with BF₃ is compared to the reaction between water and other boron trihalides. Boron trifluoride reacts to produce hydrated species BF₃:H₂O and BF₃:2H₂O, whereas the other boron trihalides are hydrolysed to produce orthoboric acid, B(OH)₃ (Eq. 4.2).

$$BX_3 + 3H_2O \longrightarrow B(OH)_3 + 3HX (X = Cl, Br) (Eq. 4.2)$$

The weaker Lewis acidity, relative to the other boron trihalides, found in BF₃ is attributed to the p_{π} - p_{π} back bonding between the filled fluorine *p*-orbital and the vacant boron $2p_z$ orbital. This effect is found in all BX₃ compounds, but the strength of the π bonding is dependent on the overlap between the *p*-orbitals. The π -bond strength of BF₃ is due to a favourable energy match, and a good overlap between the 2p orbital fluorine and the $2p_z$ orbital on boron atom. The overlap becomes progressively less favourable for the larger and more diffuse 3p and 4p orbitals on the chlorine and bromine atoms respectively.

An efficient and simple method for determining the Lewis acidity of boron containing compounds has been reported by Beckett *et al* [137]. The method is based

upon a quantitative parameter which is known as an acceptor number (AN), which was described first by Gutmann [138] and Mayer *et al* [139]. These AN values were derived from ${}^{31}P-{}^{1}H$ NMR chemical shifts produced in triethylphosphine oxide (TEPO) by electrophilic solvent interactions. These lead to deshielding of the phosphorus atoms in TEPO by perturbation of the ${}^{31}P$ chemical shift tensor which has a vector along the P-O axis. These AN values, known as Gutmann's scale, has arbitrary fixed points of hexane at zero and antimony pentachloride at 100.

The AN values of numerous boron containing compounds can be estimated from the $\delta^{31}P$ NMR shift of TEPO dissolved in the boron containing species using the equation below. The values 86.1 and 41.0 relate to the $\delta^{31}P$ of TEPO in antimony pentachloride and hexane solutions, respectively.

AN = 100 x (
$$\delta^{31}P_{(\text{sample})} - 41.0$$
) / {86.1 - 41.0)

4.2 Aims

The primary aim of the research was to measure the Lewis acidity of tris(pentafluorophenyl)borane by Gutmann's method, and to this method with other reported means of Lewis acidity determination. A second aim of the research was to examine the spectroscopic properties, associated with the phosphoryl bond in a range of organophosphoryl ligands co-ordinated to the $B(C_6F_5)_3$ moiety.
4.3 Results and Discussion

4.3.1 Preparation and characterisation of $B(C_6F_5)_3$ (4a)

Tris(pentafluorophenyl)borane (**4a**) was first prepared many years ago [130], however the reported syntheses have a few disadvantages. The first method was to treat a pentane a solution of pentafluorophenyl bromide with n-BuLi at low temperature in order to generate Li(C₆F₅). The latter is thermally sensitive and will detonate at *ca* -20°C. The resulting lithium salt was then treated with boron trichloride to produce LiCl and B(C₆F₅)₃ (Eq. 4.3).

$$3 \operatorname{Li}(C_6F_5) + \operatorname{BCl}_3 \longrightarrow \operatorname{B}(C_6F_5)_3 + 3 \operatorname{LiCl}$$
 (Eq. 4.3)

The reported yield of the crude product was between 30-50% but, when this method was attempted we found it was only possible to isolate $B(C_6F_5)_3$ (4a) in 10% yield after purification. The compound can also be prepared [140] by reacting the Grignard reagent $Mg(C_6F_5)Cl$ in diethyl ether with BF_3Et_2O . This preparation is experimentally also not very satisfactory since there is difficulty in removing co-ordinated diethyl ether from the crude product.

It was decided to follow the preparation reported by Green *et al* [141] whereby the entire system is kept at -78°C. This has been shown to be an essential feature of this synthesis [142]. This method, which is described in detail in Chapter 6, gave $B(C_6F_5)_3$ in 52% yield (Eq. 4.4).

$$3 C_6 F_5 Br + 3 n-BuLi \xrightarrow{-78^\circ C} 3 Li C_6 F_5 + BCl_3 \xrightarrow{-78^\circ C} B(C_6 F_5)_3$$
 (Eq. 4.4)

The tris(pentafluorophenyl)borane (4a) was analysed by ¹¹B, ¹³C and ¹⁹F NMR spectroscopy, as well as infrared spectroscopy. The ¹¹B NMR showed, as would be expected, a single peak. Its chemical shift (-7 ppm) suggested that the boron nucleus was in a tetrahedral geometry [143] and is significantly different from previous values reported in the literature. This was accounted for by considering water co-ordination to the borane moiety. Upon sublimation of the product, ¹¹B NMR gave a single peak at +59 ppm, which is agreement with the literature values [144]. The water adduct $(C_6F_5)_3B(H_2O)$ has been characterised by another research group, and their findings agree with a ¹¹B NMR of –7 ppm. There are four different carbon environments present in $B(C_6F_5)_3$ and assuming free rotation about the B-C bond it would be expected that four different peaks should be present in the ${}^{13}C-{}^{1}H$ NMR. However, this was not the case, the *ipso* carbon was not seen. Therefore ¹³C spectra shows three doublets (¹J(CF) ranging from 235 to 260Hz) for the ortho, meta and para resonances of the perfluoroaryl groups of $B(C_6F_5)_3$ at 148, 137 and 141 ppm, respectively. The ¹⁹F NMR spectra showed the expected three resonances, of relative intensity 2:2:1, for ortho, meta and para aryl substituents at -163, -135 and -156 ppm. These values are in close agreement with Massey and Parks' original ¹⁹F values of -161, -128 and -146 ppm [145]. The infrared spectra will be discussed in detail in section 4.3.3.

4.3.2 Lewis acidity of $B(C_6F_5)_3$

Yamamoto and co-workers have recently investigated the Lewis acid catalysed aldol type and Michael reactions using $B(C_6F_5)_3$ as the catalyst [133]. Parks and Piers [145] found $B(C_6F_5)_3$ to be an efficient catalyst for the hydrosilylation of carbonyl functions. The reactivity and regioselectivity of these Lewis acid catalysed reactions will depend on the details of the reaction mechanism and kinetics. Hence, knowledge of the relative Lewis acidity of the catalyst is of great importance.

Reported methods for the experimental determination of Lewis acidity are based on spectroscopic techniques (IR, NMR) [138, 139, 146-148]. Childs' ¹H NMR method is based upon the downfield shift ($\Delta\delta$) of the H-(3) resonance in crotonaldehyde upon complexation to the Lewis acid. This method has been theoretically justified through MNDO calculations [149]. Erker and co-workers [150, 151] recently reported the application of Childs' method to B(C₆F₅)₃. Their results indicated that B(C₆F₅)₃ is a slightly weaker Lewis acid than BF₃.

In order to further probe the Lewis acidity of $B(C_6F_5)_3$ we prepared two new 1:1 Lewis acid / Lewis base complexes: (TEPO'B(C_6F_5)_3 (4b) and EtOAc'B(C_6F_5)_3 (4c)). They were both prepared in high yield [152] following the procedure of Massey and Parks [130]. Previously reported adducts of $B(C_6F_5)_3$ include amines and ammonia [130, 140], water [153], *O*-carbonyl donors [154], nitriles and isonitriles [151] and phosphines [130, 140, 151, 155]. Compounds 4b and 4c were characterised fully, and 4c and related phosphoryl derivatives will be discussed in greater detail in section 4.3.3.

As a quantitative measure of Lewis acidity, Lappert [148, 149] used the shift $(\Delta v/cm^{-1})$ to lower wavenumber of the carbonyl stretching frequency of EtOAc upon co-ordination. For the adduct **4b**, Δv is 93cm⁻¹ placing the Lewis acidity of B(C₆F₅)₃ significantly lower (Table 4.1) than BCl₃ and lower than that of BF₃ and AlCl₃, in agreement with the result of Erker and co-workers [150, 151].

Acid	Δv/cm ⁻¹
$B(C_6F_5)_3$ (4a)	93
BCl ₃	176
BF ₃	119
AlCl ₃	117

Table 4.1. Lapperts $\Delta v/cm^{-1}$ of EtOAc adducts of various Lewis acids [148, 149].

Gutmann's method has been applied to a range of boron containing Lewis acids by Beckett *et al* [156-158]. The adduct TEPO $B(C_6F_5)_3$ **4c** showed a single ³¹P resonance in a THF solution at room temperature at 78.0 ppm, with a $\Delta\delta$ of 37.0 ppm and hence an AN of 82. To enable a comparison between Childs' and Gutmann's method, the AN values of the non-boron containing Lewis acids AlCl₃, TiCl₄ and SnCl₄ were also determined.

This confirmed the relative Lewis acidities as $BF_3 \sim AlCl_3 > B(C_6F_5)_3$, with $TiCl_4$ and $SnCl_4$ being much weaker Lewis acids (Fig. 4.3). The positive correlation ($R^2 = 0.97$) between the ¹H NMR method of Childs and co-workers, and the measured AN values described above confirms the validity of Gutmann's AN method. With the exception of one pair of similar acidity (AlCl₃ and BF₃), the relative Lewis acid strength as determined using either NMR methods is the same.

Figure 4.3. A graph showing the correlation between Gutmann's acceptor number and Childs Lewis acid scale. $1 = CH_2Cl_2$, $2 = SnCl_4$, $3 = TiCl_4$, $4 = B(C_6F_5)_3$, $5 = AlCl_3$, $6 = BF_3$, $7 = SbCl_5$, $8 = BCl_3$ and $9 = BBr_3$

4.3.3 Preparation of adducts of $B(C_6F_5)_3$ with organophosphoryl ligands.

The reaction of one equivalent of the phosphoryl compound (L) with one equivalent of $B(C_6F_5)_3$ in hexane rapidly produced the new analytically pure adducts $L^{\cdot}B(C_6F_5)_3$ (Eq. 4.5) in moderate to high yields. The phosphoryl compounds used as Lewis bases were the triorganophosphine oxides (Et₃PO, ⁿPr₃PO, ⁿOct₃PO and Ph₃PO), the organoesters of phosphoric acid {(MeO)₃PO, (EtO)₃PO, and (PhO)₃PO}, phosphinic and organophosphonic acids {(EtO)₂(H)PO, (ⁿBuO)₂(H)PO, (PhO)₂(H)PO, (MeO)₂MePO, (EtO)₂MePO and (EtO)₂PhPO}, and two diorganophosphonic acids {(MeO)Me₂PO and (EtO)Me₂PO}.

$$B(C_6F_5)_3 + L \xrightarrow{\text{Hexane, RT}} LB(C_6F_5)_3$$
(Eq. 4.5)
(4c - 4q)

All new adducts were characterised by elemental analysis, M.Pt, IR and multinuclear NMR (¹H, ¹³C, ¹¹B, ¹⁹F and ³¹P) and formula and letter names are given in Table 4.2.

All of the adducts were white solids, except for $(^{n}Oct)_{3}POB(C_{6}F_{5})_{3}$ (4e) which was a viscous liquid, and all were air stable. They were readily soluble in chlorinated solvents, with the exception of $(MeO)Me_{2}POB(C_{6}F_{5})_{3}$ (4p), but were insoluble in petroleum ether. The adducts of the phosphinic acids (4j – 4l) were very deliquescent.

The formulation of these products as adducts follows from their ¹¹B NMR chemical shifts (in the range -0.2 to -9.3 ppm), upfield from "free" B(C₆F₅)₃ (+59 ppm [144]) and in the region normally observed for four co-ordinate tetrahedral boron centres [28]. This was confirmed by the single crystal X-ray crystallographic structures of TEPOB(C₆F₅)₃ (**4c**) and Ph₃POB(C₆F₅)₃ (**4f**). The room temperature multinuclear NMR spectra were in full agreement with the proposed structures. ¹⁹F spectra were obtained for **4c** – **4l**. The chemical shifts of the *ortho, meta* and *para* fluorines depend on a number of factors such as charge density on the fluorine atom or its neighbouring carbon atom, on paramagnetic contributions and on an "*ortho*" effect. These showed the expected three resonances of relative intensity 2:2:1, for *ortho, meta* and *para* aryl substituents at *ca*. –164, -135 and –157 ppm respectively. The values observed are consistent with previously reported adducts of **4a** [144].

The ¹³C spectra of the adducts showed in addition to the resonances associated to the phosphoryl ligand [159], doublets (¹J (CF) *ca*. 240 Hz) for the *ortho, meta* and *para* resonances of the perfluoro aryl groups of $B(C_6F_5)_3$ at *ca*. 148, 137 and 140 ppm

respectively [150, 151, 159]. In all cases the *ipso* carbon was not observed. The ¹H spectra of all the adducts showed little change relative to spectra of the uncomplexed phosphoryl ligands, but there was a slight shift towards higher frequency upon adduct formation.

Phosphorus-31 NMR data for all of the adducts is given in Table 4.2. The $\Delta\delta$ values ($\delta_{adduct} - \delta_{free base}$) which ranged from -9.2 to +25.9 can also be found in Table 4.2. Rather than reflecting change of electron density at phosphorus, these shifts are a consequence of the Lewis acid perturbing the ³¹P chemical shift tensors, which have a component along the PO axis of the phosphoryl ligand [160]. Due to variations in molecular symmetry, the ³¹P chemical shift tensors will differ for each class of phosphoryl derivative, which will ensure that $\Delta\delta$ values are unlikely to be uniform. The phosphorus atoms in the phosphoryl compounds with alkoxy or aryloxy substituents were slightly shielded upon co-ordination to B(C₆F₅)₃. This substituent effect appears cumulative with $\Delta\delta$ values roughly following the order trialkylphosphine oxides (~ +24) > dialkylphosphinates (~ +4) > alkylphosphonates (~ -1) > phosphates (~ -5). Burford and co-workers [159, 161] observed deshielding of the phosphorus centre in adducts of Ph₃PO with BF₃, BCl₃, AlCl₃, AlBr₃ and GaCl₃, and slight shielding at phosphorus in (PhO)₃PO AlCl₃.

No.	Base	δ (free base)	δ (adduct)	$\Delta\delta$ (adduct–free base)
4c	Et ₃ PO	+52.1	+78.0	+25.9
4d	ⁿ Pr ₃ PO	+47.6	+69.3	+21.6
4e	ⁿ Oct ₃ PO	+48.1	+70.6	+22.5
4f	Ph ₃ PO	+28.5	+24.3	-4.2
4g	(MeO) ₃ PO	+1.4	-2.6	-4.0
4h	(EtO) ₃ PO	-1.9	-10.1	-8.2
4i	(PhO) ₃ PO	-18.3	-27.5	-9.2
4j	(EtO) ₂ PHO	+6.4	+3.4	-3.0
4k	(ⁿ BuO) ₂ PHO	+6.9	+5.2	-1.7
41	(PhO) ₂ PHO	+0.2	-1.2	+1.4
4m	(MeO) ₂ MePO	+32.1	+29.9	-2.2
4n	(EtO) ₂ MePO	+27.6	+27.8	+0.2
40	(EtO) ₂ PhPO	+10.8	+16.6	+5.8
4p	(MeO)Me ₂ PO	+53.2	+57.2	+4.0
4q	(EtO)Me ₂ PO	+50.7	+54.5	+3.8

Table 4.2. ³¹P $\Delta\delta$ values (ppm) of B(C₆F₅)₃ adducts of phosphoryl ligands (in CDCl₃).

The $\Delta\delta$ values obtained for the B(C₆F₅)₃ adducts of phosphonic acid esters (~ -2) were similar to those for alkylphosphonate esters indicating that the effect of H was comparable to an alkyl group. The largest $\Delta\delta$ (³¹P) values were the trialkylphosphine oxides, with the $\Delta\delta$ value of TEPO being marginally greater than those of ⁿPr₃PO and ⁿOct₃PO.

No.	Base	v(PO)/cm ⁻¹ (base)	$\nu(PO)/cm^{-1}(adduct)$	$\Delta v(PO)/cm^{-1}$
4c	Et ₃ PO	1193	1172	-21
4d	ⁿ Pr ₃ PO	1157	1131	-26
4e	ⁿ Oct ₃ PO	1151	1143	-8
4f	Ph ₃ PO	1190	1177	-13
4g	(MeO) ₃ PO	1282	1226	-56
4h	(EtO) ₃ PO	1275	1208	-67
4i	(PhO) ₃ PO	1296	1255	-41
4j	(EtO) ₂ PHO	1258	1180	-78
4k	(ⁿ BuO) ₂ PHO	1261	1188	-73
41	(PhO) ₂ PHO	1279	1249	-30
4m	(MeO) ₂ MePO	1242	1190	-52
4n	(EtO) ₂ MePO	1243	1190	-55
40	(EtO) ₂ PhPO	1250	1174	-76
4p	(MeO)Me ₂ PO	1216	1177	-39
4q	(EtO)Me ₂ PO	1210	1187	-23

Table 4.3. $\Delta v(PO)$ values (cm⁻¹) for B(C₆F₅)₃ adducts of phosphoryl ligands, $\Delta v(PO) = v(PO)$ (adduct) - v(PO) (base).

It has been noted [162] that the phosphoryl stretch of TEPO was solvent dependent $\Delta v(PO)$ has been correlated with Gutmann's [138, 139] AN solvent scale.

Lappert used $\Delta v(CO)$ of ethyl acetate upon adduct formation as a measure of Lewis acidity and this has been discussed in section 4.3.2. The v(PO) stretching data for the adducts is shown in Table 4.3 along with the $\Delta v(PO)$ values. The negative $\Delta v(PO)$ values indicate that the v(PO) is shifted to lower wavenumber upon co-ordination to $B(C_6F_5)_3$. The $\Delta v(PO)$ values for the adducts ranged from -8 to -78 cm⁻¹. Detailed examination of the data reveals that the magnitude of $\Delta v(PO)$ was lowest for triorganophosphine oxides and greatest for species with OR or OAr groups at P. The $\Delta v(PO)$ ranges associated with the various classes of compounds, arranged in decreasing order of P-C bonds, were -8 to -26 (phosphine oxides), -23 (phosphinate esters), -52 to -78 (phosphonate esters), and -41 to -67 (phosphate esters). The adducts of phosphonate esters had similar $\Delta v(PO)$ ranges irrespective of whether H or alkyl were bound to P, although a smaller shift was observed for $(PhO)_2(H)POB(C_6F_5)_3$, 4i. A theoretical study [151] has demonstrated that $B(C_6F_5)_3$ is a hard acid and that its bonding is dominated by electrostatic effects. The phosphoryl bond can be drawn as a resonance hybrid of two limiting canonical forms (Figure 4.4) with (I) having a heavier weighting than (II). An electrostatic interaction with $B(C_6F_5)_3$ would favour the former and effectively reduce the PO bond order, and hence v(PO).

Figure 4.4. Resonance hybrids of the phosphoryl bond.

The absolute value of v(PO) in phosphoryl derivatives may be accurately calculated [163] using an empirical relationship involving additive electronegativities of substituents at phosphorus (inductive effects). The $\Delta v(PO)$ values are greatest where π -resonance from a substituent is possible indicating that structures such as $(PhO)_2(PhO^+=)P-O^-$ may be important in lowering the PO bond order upon adduct formation.

4.3.4 X-ray Crystallography

Two of these adducts (TEPOB(C_6F_5)₃ (4c) and Ph₃POB(C_6F_5)₃ (4f)) were characterised by a single crystal X-ray diffraction study. Crystals suitable for X-ray diffraction were given from a layered CHCl₃/hexane solution. These two structures are the only crystallographically characterised structures of phosphoryl adducts of B(C_6F_5)₃. A drawing of the molecular structure of 4c is shown in Figure 4.5 whilst a drawing of the molecular structure of 4f is shown in Figure 4.6. Selected bond lengths are shown in Table 4.4 and selected bond angles in Table 4.5.

Figure 4.5. Molecular structure of $B(C_6F_5)_3$ OPEt₃, 4c.

Figure 4.6. Molecular structure of $B(C_6F_5)_3$ OPPh₃, 4f.

4c	Bond Angle (°)	4f	Bond Angle (°)
P(1)-O(1)-B(1)	161.04(16)	P(1)-O(1)-B(1)	178.7(2)
O(1)-P(1)-C(19)	110.97(13)	O(1)-P(1)-C(1)	109.6(1)
O(1)-P(1)-C(21)	109.81(13)	O(1)-P(1)-C(7)	109.6(1)
O(1)-P(1)-C(23)	111.50(12)	O(1)-P(1)-C(13)	109.9(1)
O(1)-B(1)-C(6)	105.70(19)	O(1)-B(1)-C(19)	104.9(2)
O(1)-B(1)-C(7)	105.30(18)	O(1)-B(1)-C(25)	105.1(2)
O(1)-B(1)-C(13)	106.79(18)	O(1)-B(1)-C(31)	105.1(2)
C(6)-B(1)-C(7)	114.79(19)	C(19)-B(1)-C(25)	113.7(2)
C(6)-B(1)-C(13)	113.8(2)	C(19)-B(1)-C(31)	112.7(2)
C(7)-B(1)-C(13)	109.66(19)	C(25)-B(1)-C(31)	114.2(2)
C(19)-P(1)-C(21)	106.86(15)	C(1)-P(1)-C(7)	110.2(1)
C(19)-P(1)-C(23)	107.07(15)	C(1)-P(1)-C(13)	108.9(1)
C(21)-P(1)-C(23)	110.52(15)	C(7)-P(1)-C(13)	108.7(1)

Table 4.5. Selected bond angles for 4c and 4f.

4c	Bond Length Å	4f	Bond Length Å
P(1)-O(1)	1.4973(13)	P(1)-O(1)	1.497(2)
P(1)-C(19)	1.811(3)	P(1)-C(1)	1.791(2)
P(1)-C(21)	1.763(3)	P(1)-C(7)	1.791(2)
P(1)-C(23)	1.776(3)	P(1)-C(13)	1.783(2)
0(1)-B(1)	1.533(3)	0(1)-B(1)	1.538(3)
B(1)-C(6)	1.632(4)	B(1)-C(19)	1.632(3)
B(1)-C(7)	1.636(4)	B(1)-C(25)	1.639(3)
B(1)-C(13)	1.645(3)	B(1)-C(31)	1.643(3)

Table 4.4. Selected bond length's of 4c and 4f.

As might be expected the molecular structures are essentially what might be found from the precursors with the acid $B(C_6F_5)_3$ and the base (TEPO or Ph₃PO) joined together *via* a O \rightarrow B co-ordinate bond. The overall structure of **4c** is similar to that of **4f** except for the angle at O in the B-O-P linkage being bent in **4c** (161.04(16)°) and linear in **4f** (178.66(16)°).

In **4f** the B-C bonds of the borane are almost eclipsed with respect to the P-C bonds of the phosphine oxide (Figure 4.7).

Figure 4.7. A view down the P(1)-O(1) bond of 4f showing the eclipsed conformation of the phenyl groups of the phosphine oxide and the C_6F_5 groups of the borane.

Figure 4.8. A view of 4f showing the aryl π -interactions between a C₆F₅ and a C₆H₅ unit.

There are weak intramolecular π -stacking interaction between the three C₆F₅ groups of the borane and the three Ph groups of the phosphine oxide (Figure 4.8). This π -stacking interaction has been observed previously where the bent B-O-C system of B(C₆F₅)₃·PhC(X)O (X = OEt, NⁱPr₂) [154] enables a strong interaction between the Ph ring of the base and the C₆F₅ ring of the acid. Similarly the hydroxy bridged borate anion [(C₆F₅)₃BO(H)B(C₆F₅)₃]⁻, with a B-O-B angle of 139.6(5)° and a staggered confirmation, has a strong π -interaction between two of its C₆F₅ rings [153].

Previously determined structures of TEPO adducts have been confined to the following transition metal complexes: $[Mo_2(OAc)_3(OPEt_3)(S_2CPEt_3)][BF_4]$ [164], *mer*-[VCl₃(OPEt₃)₃] [165], $[Ba_2Cu_4(O^tBu)_8(OPEt_3)_2]^{\circ}0.5C_7H_81.5THF$ [166] and $[\{MoCl_2(OPEt_3)(NO)_2\}_2]$ [167].

The B and P atoms in both 4c and 4f are 4 co-ordinate with angles subtended at these atoms close to those expected for σ framework sp^3 hybridisation (Table 4.6).

Compound	Angle at B (°) av.	Angle at P (°) av.	
TEPO B(C ₆ F ₅) ₃ , 4c	109.3	109.45	
$Ph_3PO^{\cdot}B(C_6F_5)_3, 4f$	109.3	109.5	

Table 4.6. Angle at B and P for 4c and 4f.

The detailed deviation of angles at B suggest back strain in the acid upon adduct formation with larger C-B(1)-C angles and smaller O(1)-B(1)-C angles (Table 4.7).

105.7
105.1

Table 4.7. Average angles for 4c and 4f

The deviation at idealised tetrahedral angles at B is less marked than has been observed previously in other adducts [151, 152, 154, 155]. The B(1)-O(1) bond length for 4c at 1.533(3)Å is similar to that found in 4f at 1.538(3)Å and BF₃·B(C₆F₅)₃ 1.516(3)Å [161], shorter than that in BF₃·PhC(H)O 1.591(6)Å [168] and at the lower end of the range (1.52(1) - 1.610(8)Å) observed for B(C₆F₅)₃·PhC(X)O complexes [154]. Shorter B-O distances have been reported in metal-oxo adducts of B(C₆F₅)₃ e.g. [WO{OB(C₆F₅)₃}]²⁻ (1.491(3)-1.508(3)Å) [169] and [(Me₅Cp)₂Zr{OB(C₆F₅)₃}]

(1.460(6)) [170]. As noted above, the B-O-P angles for **4c** and **4f** differ. P-O-M angles in Ph₃PO complexes are variable and range from 123.0(4) (in SeOCl₂·Ph₃PO [171]) to 180 (in AlCl₃·Ph₃PO [159]). The same is observed with TEPO complexes with P-O-M angles in the range from 141.02(46) to 180 [164-170, 172]. An explanation of this phenomena has been offered in terms of the relative π -acceptor properties of the acid [173]. In view of the large difference in this angle for **4c** and **4f** it is clear that other factors must also be in operation. The angle at O when bound to main group atoms (X) from the second row is renowned for its flexibility, and intermolecular crystal packing forces are sufficient to cause a difference in B-O-X angles [174]. The intramolecular π stacking interaction for **4f** are maximised with a linear B-O-P linkage and it is this that might be a factor in the energetics of the system. The P-O bond length at 1.497(2)Å for **4f** and 1.4973(17)Å for **4c** are similar to that found for BF₃·Ph₃PO (1.523(3)Å [161]) and slightly longer than that found for Ph₃PO (1.483(2)Å [175]) indicating a reduction of bond order upon adduct formation.

4.4 Conclusions

A series of 15 new phosphoryl adducts of $B(C_6F_5)_3$ (4a)have been prepared and characterised by satisfactory elemental analysis, M.Pt., IR and NMR (¹H, ¹¹B, ¹³C, ¹⁹F, ³¹P) spectroscopy. The new ethyl acetate complex of $B(C_6F_5)_3$ has also been synthesised and characterised. Δv (P=O) of the phosphoryl adducts have been analysed in terms of substituent effects at P. The Lewis acidity of 4a has been determined by Gutmann's and Lappert's methods and these measurements indicate a Lewis acidity order of TiCl₄ < $B(C_6F_5)_3$ <AlCl₃ ~ BF₃.

Chapter 5

Attempts to prepare unsaturated boron-phosphorus

heterocycles.

5.1 Introduction

The study of unsaturated B-P ring compounds is a relatively recent area of heterocyclic boron chemistry. It has not been exploited to the same extent as the analogous B-N systems due to the mistaken belief that the π -bonding between boron and phosphorus would be too weak to allow for the formation of such heterocycles.

It was discovered that the presence of bulky substituents on or near the reactive centres stabilise these systems, hence reports of these elusive unsaturated ring systems became increasingly common. Comprehensive reviews of B-P chemistry have been written by Noth and Paine [176] and by Power [177, 178].

5.1.1 Three-membered rings

The first compound to be analysed by X-ray crystallography, containing bonding between three co-ordinate boron and phosphorus atoms was that of the diphosphaborirane $Et_2NB(P^tBu)_2$ [179]. This and analogous compounds can be prepared in good yields by treatment of $K_2[({}^tBu)P-P({}^tBu)]$ with a diorganylaminoborondichloride (Eq. 5.1) [180].

These compounds are relatively stable towards dimerisation to the related B_2P_4 sixmembered rings, although the process is influenced by electronic and steric effects of the substituents [180]. The diphosphaboriranes react with potassium in DME to produce the monometallated three membered ring [181], where one of the phosphorus substituents is replaced. If the same reaction is performed in THF it causes cleavage of the P-P bond (Eq. 5.2).

If the non-cyclic product produced from the reaction in Eq. 5.2 is treated with ^tBuPCl₂, a [3+1] cyclocondensation occurs to produce the four membered triphosphaboretane (Eq. 5.3) [182, 183].

Similarly the five-membered tetraphosphaborolidine ring can be prepared from a [4+1] cyclocondensation of $K_2[({}^tBu)P-({}^tBu)P_2-P({}^tBu)]$ with iPr_2NBCl_2 [183].

5.1.2 Four-membered rings

A diphosphadiboretane ring was first prepared by thermolysis of RB[P(SiMe₃)₂]₂ at 150°C (Eq. 5.4) [184]. Other syntheses have since been discovered,

one such synthesis involves the treatment of $tmpBCl_2$ with an equivalent of $Li[P(SiMe)_3R]$ to produce a diphosphadiboretane (Eq. 5.5) [177].

tmpBCl₂ + LiP(SiMe₃)R¹ $\xrightarrow{-\text{LiX}, -\text{TMSCl}}$ 1/2 (tmpBPR¹)₂ (Eq. 5.5)

The first reported X-ray structures of the diphosphadiboretanes were of $(tmpBPCEt_3)$ and $(tmpBPMes)_2$ [185, 186]. The heterocyclic rings were found to be planar with trigonal planar geometries being observed at both boron and exoyclic nitrogen, whilst the phosphorus centres were pyramidal. The B-N bond distances suggested strong exocyclic π -bonding however, crystallographic data and MO calculations indicated the absence of dative P B π -bonding and a lack of any ring delocalisation [177].

Diphosphadiboretanes with aryl or alkyl substituents, rather than amino substituents, have also been prepared [177, 178, 187]. These are readily formed by reactions of organoborondihalides with a lithiated primary phosphine, RPHLi, as shown in Eq. 5.6 [178].

$$RBX_{2} + 2 LiPHR^{1} \longrightarrow 1/2 (RBPR^{1})_{2} + 2 LiX + H_{2}PR^{1}$$
(Eq. 5.6)
Where R / R¹ = Thexyl / Mes

These systems have also been found to possess a planar B_2P_2 ring [178], with the B-P bond lengths being similar to those observed for the diphosphadiboretanes with amino substituents on boron.

Photolysis of a diphosphadiboretane has been reported to produce a fused three membered ring (Eq. 5.7) [188].

Isomers of the diphosphadiboretane with non-alternating B and P atoms have also been prepared by a [2+2] cyclocondensation of $K_2[({}^{t}Bu)P-P({}^{t}Bu)]$ with $Cl(Me_2N)B-B(NMe_2)Cl$, as shown in Eq. 5.8 [189].

These were reported to be planar and readily decomposed in the presence of water or oxygen [189].

5.1.3 Six-membered rings

The first B_3P_3 rings were isolated during an unsuccessful attempt to prepare the related diphosphadiboretane species (scheme 5.1) [178]. It was later found that steric hindrance was an important feature of the synthesis and accordingly several triphosphatriborinanes have been prepared. They have been shown to exhibit less sensitivity towards the atmosphere than the corresponding diphosphadiboretanes, reacting only slowly with water to produce a primary phosphine and boron-oxygen compounds [178].

Scheme 5.1. Synthetic strategy to produce six-membered rings.

Two competing mechanisms have been suggested to operate during the addition of R¹PHLi to RBX₂ and these dictate the identity of the heterocycle so produced [187]. The formation of the four membered ring requires the association of two molecules of a $RB(PHR^{1})_{2}$ intermediate, with the subsequent elimination of R¹PH₂. Bulkier substituents, especially at boron, impede the reaction and the six-membered ring is favoured. Some ligand combinations have been found to afford mixtures of both sixand four-membered rings [187]. X-ray studies of the triphosphatriboriranes have shown that the B_3P_3 ring has a planar configuration, in which all B-P bond lengths are shorter (1.84Å) than those observed for a single B-P bond, suggesting the presence of some double bond character [187].

5.2 Aims

The aims of the research detailed in this chapter were to prepare a series of new diphosphadiboretanes and triphosphatriboriranes, with various aryl substituents at boron, and to examine their co-ordination reactions with metal carbonyl complexes.

5.3 Results and discussion

The preferred route to the heterocyclic species was by the reaction of arylboron dibromides with tris(trimethylsilyl)phosphine, and the preparation of these compounds (section 5.3.1 and 5.3.2) and their reactions (section 5.3.3) are discussed first. The synthesis of PhPH₂ adducts of the arylboron dibromides and their subsequent thermolysis, as an alternative route to B-P heterocycles, is discussed in section 5.3.4.

5.3.1. Preparation of the arylborondibromides

Previous syntheses of the arylborondibromides have involved the use of HgBr, which was found to be a convienient preparation though unfavorable toxicity considerations hinder the work up [190]. Another route to the arylborondibromides is by reaction of borontribromide with an aryltrimethylsilane [191].

The aryltrimethylsilanes have been prepared in good yields by use of a Grignard approach (Eq. 5.9). All compounds were colourless volatile liquids which were analysed by ¹H NMR, IR and M.Pt / B.Pt., and all were in good agreement with

literature values [191]. These compounds prove valuable precursors for the preparation of the arylborondibromides. Reacting an aryltrimethylsilane with one equivalent of borontribromide produces the required arylborondibromide in good yield (Eq. 5.10).

PhBr + Mg Reflux, THF PhMgBr
$$\xrightarrow{Me_3SiCl}$$
 PhSiMe₃ + MgBrCl (Eq. 5.9)
RSiMe₃ + BBr₃ \longrightarrow RBBr₂ + Me₃SiBr (Eq. 5.10)

All the arylboron dibromides were colourless volatile liquids that rapidly decompose in contact with water, and all compounds were authenticated by ¹H and ¹¹B NMR by comparison with literature values (Table 5.1)

ArBBr ₂	¹¹ B NMR shift
PhBBr ₂ [192]	+56.4 [+56.2]
2-MeC ₆ H ₄ BBr ₂ [193]	+57.6 [+57.7]
3-MeC ₆ H ₄ BBr ₂ [192]	+56.8 [+56.9])
4-MeC ₆ H ₄ BBr ₂ [192]	+55.9 (+55.9]
4-EtC ₆ H ₄ BBr ₂ [193]	+56.0 [+56.1]
3,5-Me ₂ C ₆ H ₃ BBr ₂ [193]	+56.8 [+56.7]
MesBBr ₂ [194]	+62.1 [+62.2]

Table 5.1. ¹¹B NMR values for the arylborondibromides literature values in parenthesis (ppm).

Gutmann's AN values can be used as a measure of Lewis acidity [138, 139]. Measurement of Lewis acidity of arylboron dibromides has not been previously reported. The AN values of the arylborondibromides are shown in Table 5.2 below. All values are calculated in accordance with the method described in Chapter 4.

ArBBr ₂	AN Value
PhBBr ₂	67.8
2-MeC ₆ H ₄ BBr ₂	68.7
3-MeC ₆ H ₄ BBr ₂	71.2
$4-MeC_6H_4BBr_2$	68.2
$3,5-Me_2C_6H_3BBr_2$	65.6
4-EtC ₆ H ₄ BBr ₂	66.5

Table 5.2. Acceptor numbers of the arylborondibromides.

Gutmann's AN scale runs from 100 for the strong Lewis acid SbCl₅ to 0 for hexane. As might be expected, all are quite strong Lewis acids, being between $SnCl_4$ (AN = 59) and TiCl₄ (AN = 70) in strength, but considerably weaker than BF₃ (AN = 89) and BBr₃ (AN = 109).

5.3.2 Synthesis of tris(trimethylsilyl)phosphine

Due to the very high commercial cost of tris(trimethylsilyl)phosphine it became necessary to prepare this tertiary phosphine. The initial attempt used a Grignard approach with trimethylsilyl chloride (Eq. 5.11) generating trimethylsilylmagnesium chloride, which was quenched with phosphorus trichloride and left refluxing for 7 days [195].

 $Me_3SiCl + Mg \longrightarrow Me_3SiMgCl \xrightarrow{PCl_3} P(SiMe_3)_3$ (Eq. 5.11)

After the seven day reflux, crude ³¹P NMR samples showed a plethora of signals covering the range of +13 to -153 ppm. There was however, no evidence for formation of P(SiMe₃)₃ (-253 ppm), and upon working up the reaction, a yellow malodourous solid was obtained. Thus it became necessary to find an alternative synthesis for tris(trimethylsilyl)phosphine. One possible method [196] involved the addition of a potassium and sodium alloy to white phosphorus, however this was not attempted due to safety considerations.

A more recent reported preparation of $P(SiMe_3)_3$ involved the reaction of piperidinophosphorus dichloride [197], with lithium powder, followed by quenching the reaction with PCl₃. The piperidinophosphorus dichloride was readily prepared by adding PCl₃ to piperidine in diethyl ether (Eq. 5.12) at 0°C. The compound was distilled, and was a colourless liquid. All data obtained agreed with the literature values.

$$NH + PCl_3 \longrightarrow PCl_2$$
 (Eq. 5.12)

Subsequently reacting the piperidinophosphorus dichloride with lithium powder, and quenching with Me₃SiCl, as illustrated in Eq. 5.13, produced the desired compound in a 59% yield. Tris(trimethylsilyl)phosphine spontaneously combusts in contact with air / moisture, all spectroscopic data for the compound agreed with the literature values.

$$N \longrightarrow PCl_2 + Li \xrightarrow{Me_3SiCl} P(SiMe_3)_3$$
 (Eq. 5.13)

5.3.3 Attempted synthesis of diphosphadiboretanes and triphosphatriboriranes using lithium reagents

In 1977, Fritz and Holderich produced a diphosphadiboretane from lithiated tris(trimethylsilyl)phosphine and PhBBr₂ (Eq. 5.14) and in 1989 Power published the preparation of 6-membered rings B_3P_3 rings by reactions of lithium salts of primary phosphines with (Mes)BBr₂ (Eq. 5.15) [187].

PhBBr₂ + 2LiP(SiMe₃)₂
$$\longrightarrow$$
 [PhBPSiMe₃]₂ + 2LiBr (Eq. 5.14)
ArPHLi + MesBBr₂ \longrightarrow (MesBPAr)₃ (Eq. 5.15)
Ar = Mes, ^tBu, C₆H₁₁, Ph

It was the aim of this research to generate some new 4 and 6-membered BP ring derivatives by repeating the above reactions with the various arylboron dibromides synthesised in section 5.3.1. Mono-lithiation of tris(trimethylsilyl)phosphine with methyl lithium, produced the desired product $Li[P(SiMe_3)_2]$ in good yields (around 60%). The 1:1 reaction between this lithiated phosphine and PhBBr₂ should have produced the diphosphadiboretane (PhBPSiMe₃)₂. However, this was not the case, a

yellow solid was obtained, which gave an array of weak signals in the ³¹P NMR and only several broad signal in the ¹¹B NMR. Similar results were obtained from using 4-MeC₆H₄BBr₂ as the boron source.

It has been reported that under similar reaction conditions, polymeric materials are produced. For example, Livingstone and Coates [198] suggested that the reaction of PhBCl₂ with PhPH₂ at reflux temperatures generated a number of products, and one of which was a yellow polymeric material. Their work was later repeated by Tevebaugh and he reported that the reaction products were a white, waxy, trimeric compound and a low molecular weight polymer [199]. It appears that we were also likely to be forming polymeric materials rather than the anticipated BP ring systems.

The unsuccessful nature of this area of research is not entirely understood. It is possible that the reactions performed here were on too large a scale to enable isolation. Diaz and Power worked with smaller quantities and isolated single crystals. It is also possible that the optimum reaction conditions to obtain these compounds were not fully reported in their original communication.

5.3.4 Synthesis and thermolysis of ArBBr₂ PhPH₂ adducts

An alternative strategy to obtain the BP ring systems was to attempt a thermolysis of preformed adducts of $ArBBr_2$ and $PhPH_2$ (Eq. 5.16 and 5.17).

$ArBBr_2 + PhPH_2$		$ArBBr_2PhPH_2$	(Eq. 5.16)
3ArBBr ₂ PhPH ₂	Δ >>	(ArBPPh) ₃ + 6HBr	(Eq. 5.17)

A number of previously unreported adducts of PhPH₂ with ArBBr₂ (Ar = Ph, 2MeC₆H₄, 3-MeC₆H₄, 4-MeC₆H₄, 3,5-Me₂C₆H₃ and 4-EtC₆H₄) were prepared in hexane at 0°C.

The adducts were characterised by ¹¹B and ³¹P NMR (Table 5.3). The boron nuclei were shielded by ~65 ppm upon co-ordination by the primary phosphine, whilst the ³¹P nuclei are shifted downfield by ~80 ppm by co-ordination to B (Table 5.4) $\Delta\delta$ (³¹P) for BBr₃·PhPH₂ is reported at 56.1 ppm [200]. Attempted thermolysis of these adducts did not lead to clean reactions and presumably led again to polymeric materials.

ArBBr ₂	δ(¹¹ B)	δ(³¹ P)
PhBBr ₂	-4.6	-42.1
$2-MeC_6H_4BBr_2$	-5.1	-50.3
$3-MeC_6H_4BBr_2$	-3.8	-45.4
$4-MeC_6H_4BBr_2$	-3.9	-44.1
$3,5-Me_2C_6H_3BBr_2$	-4.8	-46.3
$4-EtC_6H_4BBr_2$	-4.9	-44.1

Table 5.3. NMR shifts of ArBBr₂ adducts of PhPH₂.

ArBBr ₂	³¹ Ρ Δδ	11Β Δδ
PhBBr ₂	-80.5	+61.0
$2-MeC_6H_4BBr_2$	-72.3	+62.7
$3-MeC_6H_4BBr_2$	-77.2	+60.6
$4-MeC_6H_4BBr_2$	-78.5	+59.8
$3,5-Me_2C_6H_3BBr_2$	-76.3	+60.8
$4\text{-EtC}_6\text{H}_4\text{BBr}_2$	-78.5	+61.7

Table 5.4. $\Delta\delta$ NMR values of adducts of PhPH₂.

5.4 Conclusions

Attempts to prepare the B_2P_2 and B_3P_3 heterocycles by the literature methods proved unsuccessful. An alternate route involving the synthesis of a series of 1:1 adducts of ArBBr₂ with PhPH₂ was also attempted but again these reactions did not yield the desired heterocycles. Accordingly, their co-ordination chemistry could not be examined. Chapter 6

Experimental

6.1 General

All reactions were performed using standard Schlenk line techniques under a dinitrogen atmosphere and all solvents were dried, distilled and degassed prior to use.

A variety of chemicals employed for the following experiments were obtained from commercial sources and used as supplied. Infrared spectra were recorded on a Perkin-Elmer FT-IR 1600 spectrometer, as KBr disks unless otherwise stated. Melting points were measured on an Electrothermal Melting Point apparatus. Multi-element NMR spectra were obtained on a Bruker AC 250 CP / MAS NMR spectrometer (operating at 250 MHz for ¹H, 63 MHz for ¹³C-{¹H}, 80 MHz for ¹¹B-{¹H}, 49 MHz for ²⁹Si-{¹H} and 101 MHz for ³¹P-{¹H}). ¹¹B-{¹H} (solid state) MAS NMR spectra were recorded on a 350 MHz instrument (EPSRC solid state service, Durham) operating at 96.234 MHz, whilst ¹⁹F NMR spectra were recorded on a Bruker 350 operating at 328 MHz. Chemical shifts (δ) are given in ppm with positive values towards high frequency (downfield) from tetramethylsilane for ¹H, ¹³C-{¹H} and ²⁹Si-{¹H}, from BF₃.OEt₂ for ¹¹B-{¹H}, from H₃PO₄ for ³¹P and from CFCl₃ for ¹⁹F. All samples were dissolved in CDCl₃ unless otherwise stated. Elemental analysis was performed using a Carbo Erba CHNS-O Ea1108 instrument using helium as the carrier gas.

The experimental details concerned with Chapter 2, 3, 4 and 5 are shown in sections 6.2, 6.3, 6.4 and 6.5 respectively.

6.2 Experimental for Chapter 2

6.2.1 Preparation of $[MBr(CO)_5]$ species (M = Mn, Re).

The metal pentacarbonylbromides were produced from $[M_2(CO)_{10}]$ (where M= Mn, Re) using a synthetic strategy published by Quick and Angelici [201].

$[ReBr(CO)_5]$

Dirhenium decacarbonyl (0.86 g, 1.32 mmol) was dissolved in dichloromethane (30 cm^3) . To this was added bromine (0.21 g, 1.32 mmol) and the resulting mixture was left to stir at room temperature for 1h after which time a precipitate had formed. The solvent was removed by vacuum and the precipitate recrystalised from acetone and methanol (0.43 g, 88%).

IR (KBr disk, CO region):- 2152s, 2035s, 1965s (Lit. 2154w, 2048s, 2018s, 1987m [76])

M.Pt:- 182°C

$[MnBr(CO)_5]$

To a solution of dimanganese decacarbonyl (2.0 g, 5.13 mmol) in dichloromethane (50 cm³) was added bromine (0.81 g, 5.13 mmol) drop wise. The resulting mixture was left to stir for 1h at room temperature before the solvent was removed to produce a yellow powder. The powder was then re-dissolved in dichloromethane (60 cm³) and filtered. The resulting liquid was layered with hexane (60 cm³). Crystals appeared on leaving and were filtered off (0.7 g, 50%). IR (KBr disk, CO region):- 2137w, 2050s, 2007m (Lit. 2133w, 2049s, 2004m [201])

M.Pt:- 169°C (Lit. 171°C [201]

<u>6.2.2 Synthesis of mer, trans-[MnBr(CO)₃L₂] and fac, cis-[MnBr(CO)₃L₂].</u>

The $[MnBr(CO)_3L_2]$ compounds were produced from $[Mn(CO)_5Br]$ using a route developed by Abel and Wilkinson [202]. The preparation of *mer,trans*- $[MnBr(CO)_3{P(C_6H_4Cl-4)_3}_2]$ (2b) is reported in its entirety; other derivatives were synthesised by a similar method. Analytical and spectroscopic for the following compounds are given in Chapter two. Additional data, is listed here.

<u>Mer, trans-[MnBr(CO)₃{P(C₆H₄Cl-4)₃}₂] (**2b**)</u>

To chloroform (30 cm³) was added [MnBr(CO)₅] (0.5 g, 1.82 mmol). The resulting mixture was stirred before tris(4-chlorophenyl)phosphine (1.33 g, 3.64 mmol) was added. The resulting mixture was stirred for 12h before the solvent was removed. The crude product was recrystalised from a 1:4 chloroform / hexane mixture (0.85 g, 51%).

IR (KBr disk): 3041w, 2034w, 1951m, 1901m, 1480s, 1386s, 1186w, 1080s, 816s, 745s, 706w, 636s

<u>Mer, trans-[MnBr(CO)₃(PPh₃)₂] (2a)</u>

Yield: 82%

IR (KBr disk): 3052s, 2040m, 1943s, 1918s, 1482s, 1433s, 1311m, 1189m, 1159m, 1089s, 1074sh, 1026w, 999s, 747s, 694s, 636s, 618sh
<u>Mer, trans-[MnBr(CO)₃{P(C₆H₄OMe-4)₃}₂] (2c)</u>

Yield: 77%

IR (KBr disk): 3053s, 2024w, 1945s, 1911s, 1595s, 1500s, 1265s, 1217s, 1182m, 1094m, 1029m, 896w, 742s

$\underline{Mer, trans-[MnBr(CO)_3 \{P(CH_2Ph)_3\}_2]} (2d)$

Yield: 89%

IR (KBr disk): 3020s, 2031w, 1949s, 1896s, 1493s, 1072s, 1011s, 912s, 855s, 767s

Fac, cis-[MnBr(CO)₃(dppm)] (2i)

Yield: 91%

IR (KBr disk): 3019s, 2026s, 1957s, 1919s, 1436m, 1215s, 1099m, 1026w, 929w, 750s

Fac, cis-[MnBr(CO)₃(dppe)] (2j)

Yield: 78%

IR (KBr disk): 3018s, 2024s, 1958s, 1916s, 1435s, 1216s, 1097m, 1028w, 929w, 770s, 670m

Fac, cis-[MnBr(CO)₃(dppp)] (2k)

Yield: 76%

IR (KBr disk): 3019s, 2028s, 1961s, 1909s, 1334s, 1218s, 1097m, 971m, 929m, 832w, 752s, 669m

Fac, cis-[MnBr(CO)₃(dppb)] (2l)

Yield: 91%

IR (KBr disk): 3052s, 2015s, 1958s, 1899s, 1483s, 1434s, 1310s, 1218w, 1089s, 999s, 909s, 855m, 812s, 738s, 691s

Fac, cis-[MnBr(CO)₃(dppfc)] (2m)

Yield: 60%

IR (KBr disk): 3018s, 2026s, 1960s, 1910s, 1434m, 1214s, 1091w, 1038w, 929m, 739s, 669s

6.2.3 Synthesis of fac, cis-[ReBr(CO)₃L₂].

The fac, cis-[ReBr(CO)₃L₂] compounds were produced from [ReBr(CO)₅] using an approach developed by Abel and Wilkinson [202]. The preparation of fac, cis-[ReBr(CO)₃(P(C₆H₄OMe-4)₃)₂] (**2g**) is reported in its entirety; other derivatives were synthesised by a similar method. Analytical and spectroscopic for the following compounds are given in Chapter Two. Additional data, is listed here.

Fac, cis-[ReBr(CO)₃{P(C₆H₄OMe-4)₃}₂] (**2g**)

To chloroform (30 cm³) was added [ReBr(CO)₅] (0.5 g, 1.23 mmol). The resulting mixture was stirred before tris(4-methoxyphenyl)phosphine (0.866 g, 2.46 mmol) was added. The resulting solution was heated to reflux for 12h before the solvent was removed. The crude product was recrystalised from a 1:4 chloroform / hexane mixture. (0.91 g, 70%).

IR (KBr disk): 2958m, 2033s, 1953s, 1899s, 1595s, 1501s, 1287s, 1255s, 1215s, 1182s, 1095m, 1031m, 756s

$Fac, cis-[ReBr(CO)_3(PPh_3)_2]$ (2e)

Yield: 49%

IR (KBr disk): 2889s, 2026s, 1948s, 1889s, 1459s, 1376s, 1155w, 1089w, 971w, 736s, 722s

$Fac, cis-[ReBr(CO)_3 \{P(C_6H_4Cl-4)_3\}_2]$ (2f)

Yield: 67%

IR (KBr disk): 3010s, 2035s, 1956s, 1912s, 1567s, 1495s, 1451s, 1229m, 1154w, 1098w, 950w, 735s, 723s

$Fac, cis-[ReBr(CO)_3{P(CH_2Ph)_3}_2]$ (2h)

Yield: 59%

IR (KBr disk): 3026s, 2022s, 1938s, 1904s, 1598s, 1494s, 1451s, 1236m, 1068s, 1028s, 916s, 837s, 776s

Fac, cis-[ReBr(CO)₃(dppm)] (2n)

Yield: 70%

IR (KBr disk): 3059s, 2026s, 1943s, 1893s, 1483m, 1436s, 1360m, 1099s, 1026w, 801m, 728s, 691s

Fac, cis-[ReBr(CO)₃(dppe)] (20)

Yield: 82%

IR (KBr disk): 3053s, 2026s, 1948s, 1913s, 1421m, 1265s, 896w, 738s, 705sh, 696s

Fac,cis-[ReBr(CO)₃(dppp)] (**2p**)

Yield: 76%

IR (KBr disk): 3019s, 2035s, 1956s, 1904s, 1524w, 1434w, 1215s, 1093w, 1017w, 929m, 767s, 669s

Fac,cis-[ReBr(CO)₃(dppb)] (2q)

Yield: 85%

IR (KBr disk): 3019s, 2032s, 1953s, 1904s, 1426m, 1215s, 1095w, 929m, 760s

Fac, cis-[ReBr(CO)₃(dppfc)] (2r)

Yield: 60%

IR (KBr disk): 3018s, 2036s, 1958s, 1901s, 1482m, 1434m, 1216s, 929m, 764s, 669s

6.3 Experimental for Chapter 3

6.3.1 Synthesis of $[^{n}Bu_{4}N][B_{3}H_{8}]$

A three necked 1L round bottom flask was equipped with a sealed mechanical stirrer, a pressure equalising funnel (the tip of which was extended below the surface of the reaction mixture) and a bubbler containing 4-picoline. A slurry of sodium borohydride (17 g, 0.45 mol) in diglyme (250 cm³) was added to the flask. A solution of iodine (20.6 g, 81 mmol) in diglyme (115 cm³) was poured into the pressuring equalising funnel. The reaction system was purged with nitrogen before being placed into a pre-heated oil bath of ~100°C. The iodine solution was slowly added to the sodium borohydride solution over a period of 1 to 2 hours. The resulting mixture was left to stir at ~100°C for a further two hours before being left to cool overnight. The volume was then reduced to approx 100 cm³ before the addition of water (50 cm³). The mixture was filtered to remove the grey byproduct, and the solution transferred to a 2L beaker. To this was added a solution of saturated tetra-n-butylammonium iodide (1 L). The white precipitate produced was filtered and washed with water (900 cm³), and the resulting solid was dried under vacuum. (12.0 g, 72%).

The crude product was purified by the following method. A sample of the crude product (5.2 g) was dissolved in dichloromethane (30 cm³), filtered and then washed with dichloromethane (30 cm³). To the resulting solution was added diethyl ether (400 cm³), the white precipitate that forms was filtered and then dried in vacuum. (4.8 g)

δ(¹¹B): -30.4ppm

M.pt: 203°C (Lit 208°C [118])

6.3.2 Synthesis of arachno- $[M(CO)_2(L)_x(B_3H_8)]$

Following a similar method to that reported by Gaines *et al* [2]. The preparation of *arachno*-[Mn(CO)₂(dppe)(B₃H₈)] (**3b**) is described in detail; all other derivatives were made in a similar manner. Analytical and spectroscopic for the following compounds are given in Chapter Two. Additional data, is listed here.

Arachno- $[Mn(CO)_2(dppe)(B_3H_8)]$ (3b)

To a Carius tube containing dried and degassed dichloromethane (20 cm³) was added *fac,cis*-[MnBr(CO)₃(dppe)] (0.5 mmol, 351 mg) and [ⁿBu₄N][B₃H₈] (0.5 mmol, 141 mg). The tube was cooled to -198° C and evacuated before being sealed. The resulting sealed tube was irradiated for 20h by UV. After this time the tube was opened and the solvent removed *in vacuu*. The product was purified by column chromatography using CH₂Cl₂/ hexane (1:4) on Florisil. (0.16 g, 59%). IR (KBr disk): 3018s, 2957s, 2927m, 2871m, 1923s, 1522m, 1457m, 1421m, 1378w,

1216s, 929m, 770s, 669s, 624w

<u>Arachno-[Mn(CO)₂(dppm)(B₃H₈)] (3a)</u>

Yield: 28%

IR (KBr disk): 3021s, 2959s, 1961s, 1901s, 1466m, 1389w, 1215s, 1030m, 930m, 789s

<u>Arachno-[Mn(CO)₂(dppp)(B₃H₈)] (**3c**)</u>

Yield: 17%

IR (KBr disk): 3053s, 2985m, 1960m, 1907m, 1421s, 1265s, 1067w, 896m, 738s, 705s

<u>Arachno-[Mn(CO)₂(dppb)(B_3H_8)] (3d)</u>

Yield: 24%

IR (KBr disk): 3011w, 1960s, 1907s, 1793m, 1469s, 1382s, 1097s, 908s, 734s, 651s

$Arachno-[Mn(CO)_2(dppfc)(B_3H_8)](3e)$

Yield: 36%

IR (KBr disk): 3053s, 2985s, 1960m, 1882m, 1436w, 1421m, 1265s, 1174m, 1107m, 1062m, 1029m, 896s, 738s, 704s

Arachno-[$Re(CO)_2(PPh_3)_2(B_3H_8)$] (3f)

Yield:20%

IR (KBr disk): 2965s, 2877w, 2388w, 1945m, 1915w, 1634s, 1482s, 1436m, 1382m, 919s, 746s, 650s

<u>Arachno-[Re(CO)₂{P(C₆H₄Cl-4)₃}₂(B₃H₈)] (**3**g)</u>

Yield: 36%

IR (KBr disk): 2966s, 1971s, 1913s, 1515w, 1460m, 1382w, 1216w, 1088m, 908s, 736s, 650s

<u>Arachno-[Re(CO)₂{P(C₆H₄OMe-4)₃}₂(B₃H₈)] (**3h**)</u>

Yield: 31%

IR (KBr disk): 3020m, 2959s, 2049m, 1972m, 1466s, 1378s, 1264s, 1216s, 1181w, 1097w, 1030w, 766s

$\underline{Arachno-[Re(CO)_2 \{P(CH_2Ph)_3\}_2(B_3H_8)]} (3i)$

Yield: 17%

IR (KBr disk): 3019s, 1948s, 1901m, 1496m, 1390m, 1214s, 929s, 768s, 669s

Arachno-[Re(CO)₂(dppm)(B_3H_8)] (3j)

Yield: 28%

IR (KBr disk): 3053s, 2985s, 1966m, 1902m, 1420s, 1265s, 1072m, 895s, 741s, 705s

Arachno-[Re(CO)₂(dppp)(B_3H_8)] (3k)

Yield: 32%

IR (KBr disk): 3053s, 2986s, 1967m, 1912m, 1654w, 1421s, 1265s, 896s, 740s, 705s

Arachno-[$Re(CO)_2(dppb)(B_3H_8)$] (31)

Yield: 39%

IR (KBr disk): 3053, 2986s, 1965m, 1900m, 1421s, 1265s, 896s, 744s, 705s

<u>Arachno-[Re(CO)₂(dppfc)(B_3H_8)] (3m)</u>

Yield: 46%

IR (KBr disk): 3054s, 2987m, 1964s, 1912s, 1421s, 1265s, 896m, 738s, 705s

6.3.3 Thermolysis of [Mn(CO)₂(dppe)(B₃H₈)]

To a round bottomed flask was added $[Mn(CO)_2(dppe)(B_3H_8)]$ (100 mg, 1.82 mmol) and chloroform (30 cm³). The resulting mixture was refluxed for 24hr. Due to the low yields only crude data was available.

δ(¹¹B): -47.1ppm

δ (³¹P): +72ppm, +99.3ppm

6.3.4 Photolysis of [Mn(CO)₂(dppe)(B₃H₈)]

To a carius tube was added $[Mn(CO)_2(dppe)(B_3H_8)]$ (100 mg, 1.82 mmol) and chloroform (30 cm³). The resulting mixture was irradiated for 24hr. Due to the low yields only crude data was available.

δ(¹¹B): -46.9ppm

δ (³¹P): +28.7ppm, +75ppm, +98.2ppm

6.3.5 Reaction between [Mn(CO)₂(dppe)(B₃H₈)] and PPh₃

To a round bottomed flask was added PPh₃ (47.7 mg, 1.82 mmol) and $[Mn(CO)_2(dppe)(B_3H_8)]$ (100 mg, 1.82 mmol). To this was added chloroform (30 cm³) and the resulting mixture was refluxed for 24hr. The crude products produced were insoluble in chlorinated and unchlorinated solvents.

6.4 Experimental for Chapter 4

6.4.1 Synthesis of tris(pentafluorophenyl)borane (4a).

A solution of bromopentafluorobenzene (53.5 g, 217 mmol) in hexane (500 cm³), at -78° C, was treated with n-butyllithium in hexane (86.8 cm³, 2.5 mol dm⁻³, 217 mmol). The resulting white suspension was stirred for 1h and then added to a solution of boron tribromide (72 cm³, 1 mol dm⁻³, 72 mmol) in hexane (300 cm³). After stirring for 24h the mixture was filtered through a bed of celite to give a colourless liquid. A white crystalline material was obtained after reducing the solvent volume to *ca*. 30 cm³. The supernatant liquid was decanted off and the resulting white solid dried *in vacuo*. (19.1 g, 52%).

δ (¹³C): 137.1 (d) ¹J (CF) 235Hz *meta*, 141.1 (d) ¹J (CF) 258Hz *para*, 147.7 (d) ¹J (CF) 239Hz *ortho*, *ipso* C not seen.

δ (¹¹B): +59.1

δ (¹⁹F): -134.9 (2F, ortho), -153.6 (1F, para), -162.3 (2F, meta)

IR (KBr Disk/cm⁻¹):1649, 1519, 1466, 1378, 1284, 1104, 980, 867, 803, 773, 738, 676, 615, 587.

M.Pt: 126-128°C.

Elemental Analysis: for C₁₈F₁₅B

Calc.	C, 42.2; H, 0.0%
Found	C, 42.1; H, 0.0%

6.4.2 Synthesis of $R_2(R^1O)P=O$ derivatives.

Me₂(MeO)P=O

A solution of dimethylphosphinic acid chloride (500 mg, 4.4 mmol) in benzene (50 cm³) was added dropwise to a stirring solution of sodium methoxide (240 mg, 4.4 mmol) in methanol (50 cm³). The resulting solution was stirred until a white precipitate had formed. This mixture was then filtered and the solvents were removed *in vacuo*. The crude product was subsequently purified via bulb to bulb distillation. (0.28 g, 58%)

 δ ($^1\mathrm{H}):$ 1.4 (d, 6H) 2J (HP) 14Hz, 3.6 (d, 3H) 3J (HP) 11Hz.

 δ (¹³C): 14.8 (d) ¹J (CP) 94Hz, 50.4 (d) ²J (CP) 6.7Hz.

δ (³¹P): +53.2

IR (Thin Film): 2986, 2916, 1465, 1422, 1300, 1216, 1042, 938, 875, 769, 753, 683. B.Pt: 77°C /12mm Hg

Me₂(EtO)P=O

Yield 61%.

δ (¹H): 1.0 (t, 3H) ³J (HH) 7Hz, 1.1 (d, 6H) ²J (HP) 14Hz, 3.7 (p, 2H) ³J (HH) 7Hz. δ (¹³C): 15.2 (d) ¹J (CP) 94Hz, 16.2 (d) ³J (CP) 5.7Hz, 59.5 (d) ²J (CP) 5.7Hz δ (³¹P): +50.7 IR (Thin Film): 2982, 2917, 1421, 1393, 1300, 1209, 1098, 1040, 959, 874, 754, 688

B.Pt: 88°C /15mm Hg

6.4.3 Synthesis of Lewis base adducts of tris(pentafluorophenyl)borane.

A typical synthesis is described below for EtOAc $B(C_6F_5)_3$ and $Et_3POB(C_6F_5)_3$. All other adducts were produced in a similar manner.

$\underline{\text{EtOAc}} \underline{B(C_6F_5)_3} (4c)$

To a stirred solution of $B(C_6F_5)_3$ (200 mg, 0.39 mmol) in pentane (30 cm³) was added EtOAc (34 mg, 0.39 mmol). The product which precipitated as a white solid in an analytically pure form was isolated by filtration, washed with pentane at 0°C and subsequently dried *in vacuo*. (0.135 g, 58%).

 $\delta\,(^{1}\mathrm{H}):$ 1.37 (t, 3H) $^{3}\mathrm{J}$ (HH) 7.5Hz, 2.09 (s, 3H), 4.37 (q, 2H) $^{3}\mathrm{J}$ (HH) 7.5 Hz.

δ (¹³C): 13.4, 20.6, 66.6, 136.9 (d) ¹J (CF) 261 Hz *meta*, 140.5 (d) ¹J (CF) 252 Hz *para*, 147.7 (d) ¹J (CF) 246 Hz *ortho*, *ipso* C not seen, 180.9.

δ (¹¹B): -0.7.

δ (¹⁹F): -135.2 (2F, ortho), -155.9 (1F, para), -163.3 (2F, meta).

M.Pt: 98-100°C.

Elemental Analysis for C ₂₂ H ₈ BF ₁₅ O ₂	Calc.	C, 44.0; H, 1.3%
	Found	C, 43.9; H, 1.3%.

<u> $Et_3P=OB(C_6F_5)_3(4b)$ </u>

To a stirred solution of $B(C_6F_5)_3$ (200 mg, 0.39 mmol) in pentane (30 cm³) was added TEPO (52.2 mg, 0.39 mmol). The product which precipitated as a white solid in an analytically pure form was isolated by filtration, washed with pentane at 0°C and subsequently dried *in vacuo*. (0.116 g, 46%).

 δ (¹H): 1.1 (dt, 3H) 3J (HP) 17.5Hz, 3J (HH) 7.5 Hz, 1.94 (dq, 2H) 2J (HP) 12.5Hz, 3J (HH) 7.5Hz.

δ (¹³ C): 5.6 (d) ² J (CP) 4.5Hz, 17.6 (d) ¹ J (CP) 67.9Hz, 136.9 (d) ¹ J (CF) 245Hz meta,				
139.6 (d) ¹ J (CF) 264Hz para, 147.7 (d) ¹ J (CF) 235Hz ortho, ipso C not seen.				
δ (¹¹ B): -2.6.				
δ (¹⁹ F): -134.7 (2F, <i>ortho</i>), -158.3 (1F, <i>para</i>), -164.6 ([2F, meta).			
IR (KBr disk): 3000, 1646, 1518, 1465, 1371, 1283	, 1172, 1098,	980, 851, 774, 738,		
678, 616.				
M.Pt: 188-190°C.				
Elemental analysis for C ₂₄ H ₁₅ BF ₁₅ OP C	Calc.	C, 44.6; H, 2.3%		

Found C, 44.7; H, 2.1%.

$^{n}Pr_{3}P=O^{B}(C_{6}F_{5})_{3}$ (4d)

Yield 54%.

 $\delta\,(^{1}\mathrm{H}):$ 1.0 (dt, 3H) ^{3}J (HH) 7.0Hz ^{4}J (HP) 1.5Hz, 1.5 (m, 2H), 1.83 (m, 2H).

 $\delta(^{13}C)$: 14.9 (d) ³J (CP) 4.0Hz, 15.5 (d) ²J (CP) 17.0Hz, 27.1 (d) ¹J (CP) 65.0Hz, 137 (d) ¹J (CF) 252Hz *meta*, 140.0 (d) ¹J (CF) 255 Hz *para*, 147.7 (d) ¹J (CF) 238 Hz *ortho*, *ipso* C not seen.

δ(¹¹B): -2.6

δ (¹⁹F): -134.5 (2F, *ortho*), -158.4 (1F, *para*), -164.6 (2F, *meta*).

IR (KBr disk): 3000, 1519, 1461, 1373, 1284, 1132, 1102, 979, 861, 797, 767, 738, 679, 615, 579.

M.Pt: 140-141°C.

Elemental analysis for $C_{27}H_{21}BF_{15}OP$

Calc.	C, 47.1; H, 3.0%
Found	C, 47.1; H, 2.8%.

$(^{n}Oct)_{3}P=O^{B}(C_{6}F_{5})_{3}$ (4e)

Yield 51%.

 δ (¹H): 0.9 (t, 3H) ³J (HH) 6.4Hz, 1.25 (m, 12H), 1.85 (m, 2H).

δ (¹³C): 13.9, 21.05 (d) J (CP) 3.8Hz, 22.5, 25.3 (d) ¹J (CP) 65.8Hz, 28.7, 28.8, 30.6, 30.7 (d) ²J (CP) 15.7Hz, 31.6, 137.1 (d) ¹J (CF) 238Hz *meta*, 139.6 (d) ¹J (CF) 258Hz *para*, 147.8 (d) 240Hz *ortho*, *ipso* C not seen.

δ (¹¹B): -3.8

δ (¹⁹F): -134.5 (2F, ortho), -158.7 (1F, para), -164.6 (2F, meta).

IR (Thin Film): 2929, 1644, 1517, 1467, 1376, 1284, 1143, 1100, 981, 912, 742, 650. Elemental analysis for $C_{42}H_{51}BF_{15}OP$ Calc. C, 56.1; H, 5.7% Found C, 56.1; H, 5.5%.

$\underline{Ph_3P=O^{B}(C_6F_5)_3}(4f)$

Yield 37%.

δ (¹H): 7.6 (m).

δ (¹³C): (major) 128.8 (d) J (CP) 2.8Hz, 129.0 (d) J (CP) 2.7Hz, 131.8 (d) J (CP) 10.5Hz, (minor) 132.6 (d) J (CP) 11.5Hz, 133.2 (d) J (CP) 2.9Hz, 133.9 J (CP) 2.9Hz, 136.7 (d) ¹J (CF) 237Hz *meta*, 139.2 (d) ¹J (CF) 254Hz *para*, 147.8 (d) ¹J (CF) 241Hz *ortho*, *ipso* C not seen in both cases.

δ (¹¹B): -0.4

δ (¹⁹F): (major) -134.9 (*ortho*), -158.7 (*para*), -164.9 (*meta*); (minor) -133.1 (*ortho*), -158.2 (*para*), -164.4 (*meta*).

IR (KBr disk): 3010, 1684, 1646, 1517, 1464, 1376, 1285, 1177, 1126, 1102, 978, 848, 793, 773, 750, 684, 616, 575, 532.

M.Pt: 278-280°C.

Elemental analysis for C ₃₆ H ₁₅ BF ₁₅ OP	Calc.	C, 54.7; H, 1.9%
	Found	C, 54.7; H, 1.8%.

$(MeO)_3P=O^{B}(C_6F_5)_3(4g)$

Yield 48%.

 δ (¹H): 3.68 (d) ³J (HP) 10.7Hz.

 δ (¹³C): 56.0 (d) ²J (CP) 132Hz, 136.9 (d) ¹J (CF) 254Hz *meta*, 139.8 (d) ¹J (CF) 245Hz

para, 147.8 (d) ¹J (CF) 241Hz ortho, ipso C not seen.

δ (¹¹B): -1.7.

δ (¹⁹F): -135.1 (2F, *ortho*), -157.8 (1F, *para*), -164.6 (2F, *meta*).

IR (KBr disk): 2995, 1648, 1510, 1470, 1378, 1284, 1226, 1104, 1075, 984, 865, 775,

738, 678, 618, 576, 512

M.Pt: 210-212°C.

Elemental analysis for C ₂₁ H ₉ BF ₁₅ O ₄ P	Calc.	C, 38.7; H, 1.4%
	Found	C, 38.7; H, 1.4%.

$(EtO)_{3}P=O^{B}(C_{6}F_{5})_{3}$ (4h)

Yield 47%.

δ (¹H): 1.3 (t, 3H) ³J (HH) 7.3Hz, 3.9 (quint, 2H) ³J (HH) 7.3Hz ³J (HP) 7.3Hz.

δ (¹³C): 15.8 (d) ³J (CP) 6.7Hz, 63.7 (d) ²J (CP) 5.7Hz, 136.5 (d) ¹J (CF) 240Hz meta,

139.3 (d) ¹J (CF) 269Hz para, 148.1 (d) ¹J (CF) 231Hz ortho, ipso C not seen.

 $\delta(^{11}B)$: -3.7.

δ (¹⁹F): -135.6 (2F, ortho), -157.7 (1F, para), -164.9 (2F, meta).

IR (KBr disk): 2995, 1647, 1521, 1472, 1378, 1287, 1208, 1106, 1049, 981, 774, 739, 677, 617.

M.Pt: 150-151°C.

Elemental analysis for $C_{24}H_{15}BF_{15}O_4P$	Calc.	C, 41.5; H, 2.2%
	Found	C, 41.3; H, 2.1%.

$(PhO)_{3}P=O^{B}(C_{6}F_{5})_{3}$ (4i)

Yield 35%.

 δ (¹H): 7.3 (m).

 δ (^{13}C): 119.8 (d) ^{3}J (CP) 4.7Hz ortho, 126.1 para, 129.9 meta, 136.7 (d) ^{1}J (CF) 244Hz

meta, 141.4 (d) ¹J (CF) 251Hz para, 147.9 (d) ¹J (CF) 255Hz ortho, ipso C's not seen.

δ (¹¹B): -1.2.

δ(¹⁹F): -135.4 (2F, ortho), -157.1 (1F, para), -164.1 (2F, meta).

IR (KBr disk): 3050, 1646, 1590, 1464, 1376, 1287, 1255, 1158, 1106, 1040, 982, 911,

764, 736, 686, 675, 616.

M.Pt: 185-186°C.

Elemental analysis for $C_{36}H_{15}BF_{15}O_4P$	Calc.	C, 51.6; H, 1.8%
	Found	C, 51.3; H, 1.5%.

$(EtO)_2(H)P=O B(C_6F_5)_3 (4j)$

Yield 48%.

 δ (¹H): 1.3 (s, 6H), 4.1 (s, 4H), 6.5 (d, 1H) ¹J (HP) 700Hz.

 δ (¹³C): 15.8 (d) ³J (CP) 6.7Hz, 63.6 (d) ²J (CP) 6.8Hz, 137.0 (d) ¹J (CF) 253Hz *meta*,

140.6 (d) ¹J (CF) 264Hz para, 147.9 (d) ¹J (CF) 247Hz ortho, ipso C not seen.

δ(¹¹B): -2.1

δ (¹⁹F): -135.5 (2F, ortho), -157.5 (1F, para), -164.3 (2F, meta).

IR (KBr disk): 2997, 1647, 1521, 1472, 1380, 1288, 1180, 1107, 1043, 970, 772, 682, 551

M.Pt: 120-122°C.

Elemental analysis for C ₂₂ H ₁₁ BF ₁₅ O ₃ P	Calc.	C, 40.7; H, 1.7%
	Found	C, 40.5; H, 1.7%.

$(^{n}BuO)_{2}(H)P=O^{\cdot}B(C_{6}F_{5})_{3}(4k)$

Yield 37%

 δ (¹H): 0.9 (q, 6H) ³J (HH) 6.7Hz, 1.3 (m, 4H) ³J (HH) 7.6Hz, 1.6 (m, 4H) ³J (HH) 7.3Hz, 4.1 (m, 4H), 6.9 (d, 1H) ¹J (HP) 750Hz.

 δ (¹³C): 15.3, 15.4, 15.5, 15.6, 64.8, 64.9, 67.5, 67.6, 137.0 (d) ¹J(CF) 245Hz meta, 140

(d) ¹J(CF) 245Hz para, 147.8 (d) ¹J(CF) 239Hz ortho, ipso C not seen

δ (¹¹B): -2.2.

δ (¹⁹F): -135.4 (2F, *ortho*), -157.3 (1F, *para*), -164.3 (2F, *meta*).

IR (Thin Film): 3000, 1692, 1646, 1598, 1518, 1469, 1379, 1289, 1237, 1188, 1104, 976, 907, 734, 650.

M.Pt: 44-46°C

Elemental analysis for C₂₄H₁₅BF₁₅O₃P

Calc.	C, 44.2; H, 2.7%
Found	C, 43.9; H, 2.7%.

$(PhO)_2(H)P=OB(C_6F_5)_3(4I)$

Yield 55%.

δ (¹H): 7.1 (2H) ³J (HH) 7.35Hz *ortho*, 7.3 (1H) ³J (HH) 7.35Hz *para*, 7.4 ³J (HH) 7.95Hz *meta*.

δ (¹³C): 120.1 ³J (CP) 4.77Hz ortho, 126.4 para, 130.2 meta, 137.1 ¹J (CF) 254Hz meta,

139.9 ¹J (CF) 249Hz para, 147.8 ¹J (CF) 238Hz ortho, ipso C not seen in both cases.

 δ (¹¹B): -0.25.

δ (¹⁹F): -135.5 (2F, ortho), -156.7 (1F, para), -163.7 (2F, meta).

IR (KBr disk): 3000, 1649, 1596, 1519, 1472, 1373, 1290, 1249, 1190, 1102, 1025, 961,

861, 761, 685, 611, 579.

M.Pt: 130-132°C.

Elemental analysis for C₃₀H₁₁BF₁₅O₃P

Calc.	C, 48.2; H, 1.5%
	23
Found.	C, 47.9; H, 1.4%.

$\underline{Me(MeO)_2P=OB(C_6F_5)_3(4m)}$

Yield 42%.

δ (¹H): 1.3 d ²J (PH) 17.7Hz, 3.6 d ³J (PH) 11.6Hz.

δ (¹³C): 8.7 d ¹J (CP) 146 Hz; 52.9 d ²J (CP) 6.7 Hz; 136.9

 δ (¹¹B): -1.2.

δ (¹⁹F): -135.5 (2F, *o*), -157.2 (1F, *p*), -164.1 (2F, *m*).

IR (KBr disk):2997, 1642, 1554, 1519, 1472, 1373, 1313, 1278, 1190, 1103, 982, 855,

797, 774, 738, 678, 618

M.Pt: 226-228°C.

Elemental analysis for C ₂₁ H ₉ BF ₁₅ O ₃ P	Calc.	C, 39.7; H, 1.4%
	Found	C, 39.4; H, 1.4%.

$Me(EtO)_2P=O^{B}(C_6F_5)_3$ (4n)

Yield 47%.

 δ (¹H): 1.2 (t, 6H) ³J (HH) 7.0Hz, 1.6 (d, 3H) ²J (HP) 18Hz, 4.1 (m, 4H)

δ (¹³C): 9.8 (d) ¹J (PC) 162Hz, 15.6 (d) ³J (CP) 7.6Hz, 15.9 (d) ³J (CP) 6.7Hz, 63.0 (d)

 2 J (CP) 4.8Hz 65.8 (d) 2 J (CP) 8.6Hz, 137.0 (d) 1 J (CF) 252Hz meta, 139.8 (d) 1 J (CF)

261Hz para, 147.7 (d) ¹J (CF) 231Hz ortho, ipso C not seen.

δ (¹¹B): -8.2.

IR (KBr disk): 3002, 1647, 1518, 1462, 1397, 1376, 1321, 1285, 1190, 1107, 1031, 968,

905, 851, 824, 792, 774, 740, 674

M.Pt: 145-147°C.

Elemental analysis for $C_{23}H_{13}BF_{15}O_3P$ Calc. C, 41.6; H, 1.9%

Found C, 41.6; H, 1.7%.

$(EtO)_2PhP=O^{B}(C_6F_5)_3(40)$

Yield 49%.

 δ (¹H): 1.2 (t, 6H) ³J (HH) 6.5Hz, 3.91 (t, 4H) ³J (HH) 7.3Hz, 7.44 (m, 5H).

δ (¹³C): 15.9, 63.5, 128.9 (d) ²J (CP) 12.5Hz *ortho*, 131.2 (d) ³J (CP) 10.1Hz *meta*, 133.6 (d) ⁴J (CP) 4.8Hz *para*, 137.0 (d) ¹J (CF) 252Hz *meta*, 139.9 (d) ¹J (CF) 258Hz *para*, 147.4 (d) ¹J (CF) 273Hz *ortho*.

δ (¹¹B): -1.56.

 δ (³¹P): +16.55.

IR (KBr disk): 3001, 2995, 1734, 1684, 1654, 1560, 1522, 1456, 1291, 1174, 1096,

1027, 976, 804, 749, 694, 560, 534

M.Pt: 170-172°C.

Elemental analysis for C₂₈H₁₅BF₁₅O₃P

Calc.	C, 46.3; H, 2.1%
Found	C, 46.3; H, 1.8%.

$\underline{Me_2(MeO)P=O^{B}(C_6F_5)_3(4p)}$

Yield 36%

δ (¹¹B): -1.6.

IR (KBr disk): 2978, 1717, 1648, 1519, 1466, 1417, 1396, 1375, 1320, 1310, 1283,

1177, 1102, 1057, 980, 895, 848, 795, 773, 739, 678, 617, 576

M.Pt: 243-245°C

Elemental analysis for C ₂₁ H ₉ BF ₁₅ O ₂ P	Calc.	C, 40.6; H, 1.5%
	Found	C, 40.3; H, 1.4%.

$\underline{Me_2(EtO)P=O^{B}(C_6F_5)_3(4q)}$

Yield 42%.

δ (¹H): 1.27(q, 3H) ³J (HH) 7.0Hz, 1.7 (d, 6H) ²J (PH) 14Hz, 4.1 (m, 4H)

 δ (¹³C): 13.4 (d) ¹J (CP) 99Hz, 15.6 (d) ³J (PC) 7.6Hz, 64.4 (d) ²J (CP) 7.6Hz, 137.1 (d)

¹J (CF) 254Hz *para*, 139.7 (d) ¹J (CF) 251Hz *meta*, 147.8 (d) ¹J (CF) 236Hz *ortho*, *ipso* C not seen

δ (¹¹B): -9.3

IR (KBr disk): 3002, 1648, 1559, 1540, 1458, 1399, 1375, 1319, 1284, 1187, 1102,

1042, 971, 890, 853, 797, 772, 743, 681, 616, 576, 538, 480

M.Pt: 168-170°C

Elemental analysis for C ₂₂ H ₁₁ BF ₁₅ O ₂ P	Calc.	C, 41.6; H, 1.7%
	Found	C, 41.6; H, 1.8 %.

6.5 Experimental for Chapter 5

6.5.1 Synthesis of Aryltrimethylsilanes

The general strategy used to synthesise the aryltrimethylsilanes was from a method developed by Clark and co-workers [191]. The preparation of PhSiMe₃ is discussed in detail; all other derivatives were made in a similar manner.

PhSiMe₃

Phenyl bromide (15.70 g, 0.1 mol) was added to dry THF (80 cm³) containing dried magnesium turnings (2.43 g, 0.1 mol) and one iodine crystal. After refluxing for 24h, the mixture was cooled to room temperature before trimethylchlorosilane (10.90 g, 0.1 mol) was added. The mixture was then heated to reflux for another 24h. After this time, the solvent was removed under vacuum and the residue heated for approximately 1h at *ca*. 90°C. The resulting solid was then broken up in diethyl ether (50 cm³) and transferred into a flask containing cold water (40 g), ice (40 g) and conc. HCl (1 cm³). The organic layer was separated and washed first with distilled water and then distilled water containing sodium bicarbonate. The organic phase was dried over anhydrous sodium sulphate overnight and filtered before the diethyl ether was removed *via* a rotary evaporator. This left a pale yellow liquid which was subsequently distilled to give a colourless liquid (10.30 g, 69 %).

δ (¹H): 0.5 (s, 9H); 7.4 - 7.6 (m, 5H)

IR (Thin film): 3068m, 2955s, 1949w, 1877w, 1815w, 1590w, 1425s, 1310m, 1249s, 1113s, 837s, 726s, 697s

B.Pt: 168°C

2-MeC₆H₄SiMe₃

Yield 65%

δ (¹H): 0.7 (s, 9H); 2.8 (s, 3H); 7.45 – 7.85 (m, 4H)

IR (Thin film): 3054m, 2954s, 1802w, 1684w, 1588m, 1445s, 1284w, 1248s, 1128s,

1079s, 842s, 740s, 689s

B.Pt: 185°C

3-MeC₆H₄SiMe₃

Yield 70%

δ (¹H): 0.6 (s, 9H); 2.7 (s, 3H); 7.4 – 7.7 (m, 4H)

IR (Thin film): 3017m, 2955s, 1868w, 1593w, 1575w, 1452m, 1402m, 1311w, 1248s,

1118s, 1054m, 874s, 837s, 778m, 751s, 690s

B.Pt: 186°C

4-MeC₆H₄SiMe₃

Yield 60%

δ (¹H): 0.45 (s, 9H); 2.5 (s, 3H); 7.35(d, 2H); 7.6(d, 2H)

IR (Thin film): 3010w, 2955s, 1904w, 1804w, 1742w, 1604s, 1502w, 1446m, 1392m,

1312w, 1248s, 1191w, 1107s, 839s, 799s, 754s, 691m

B.Pt: 190°C

3,5-Me₂C₆H₃SiMe₃

Yield 72%

 δ (¹H): 0.7(s, 9H); 2.75(s, 6H); 7.4(s, 1H); 7.6(s, 2H)

IR (Thin film): 3014s, 2955s, 1935w, 1852w, 1597m, 1448m, 1401m, 1141s, 878s,

835s, 754s, 689s

B.Pt: 212°C

4-EtC₆H₄SiMe₃

Yield 85%

δ (¹H): 0.5(s, 9H); 1.45(t, 3H); 2.8(q, 2H); 7.35(d, 2H); 7.65(d, 2H)

IR(Thin film): 3010w, 2960s, 1907m, 1660w, 1602s, 1502m, 1458m, 1397s, 1248s,

1191w, 1109s, 1059m, 966w, 841s, 754s, 720m, 692m, 641s

B.Pt: 205°C

MesSiMe₃

Yield 65%

δ (¹H): 0.4(s, 9H); 2.5(m, 9H); 7.0(s, 2H)

IR (Thin film): 2960s, 2740m, 1610m, 1444s, 1248s, 1070s, 962m, 841s, 739s, 687m B.Pt:231°C

6.5.2 Synthesis of Arylborondibromides from ArSiMe₃

These were all prepared from the aryltrimethylsilanes described above, following a procedure of Haubold and co-workers [192]. All compounds were prepared using the same conditions, as typified by the experimental of $4-MeC_6H_4BBr_2$ unless otherwise stated. Crude products were distilled by bulb-to-bulb distillation.

<u>4-MeC₆H₄BBr₂</u>

Boron tribromids (6.30 g, 25.1 mmols) was placed into a 100 cm³ two-necked round-bottomed flask and cooled to 0°C. 4-MeC₆H₄SiMe₃ (4.12 g, 25.1 mmols) was added dropwise and the mixture was then stirred at room temperature for 1h and at 60°C for a further 2h. The mixture was later distilled to give a colourless liquid (5.39 g, 82%) δ (¹H): 2.4 (s, 3H); 7.3 (m, 2H); 8.1 (m, 2H)

B.Pt: 135°C / 2mmHg

$\underline{C_6H_5BBr_2}$

Yield 69%

 δ (¹H): 7.0–8.2 (m)

M.Pt: 45°C

2-MeC₆H₄BBr₂

Yield 38%

δ (¹H):2.6 (s, 3H); 7.2-7.6 (m, 4H); 7.8 (d, 4H)

B.Pt: 65°C / 0.15mmHg

3-MeC₆H₄BBr₂

Yield 68%

δ (¹H): 2.5 (s, 3H); 7.4-7.6 (m, 2H); 8.2 (d, 2H)

B.Pt: 90°C / 0.30mmHg

4-EtC₆H₄BBr₂

Yield 77%

 $\delta\,(^{1}\mathrm{H}){:}$ 1.2 (t, 3H); 2.7 (q, 2H); 7.2 (d, 2H); 8.1 (d, 2H)

B.Pt: 140°C / 0.5mmHg

$3,5-Me_2C_6H_3BBr_2$

Yield 65%

δ (¹H): 2.3 (s, 6H); 7.2 (m, 1H); 7.9 (m, 2H)

M.Pt: 60°C

6.5.3 Synthesis of piperidino phosphorous dichloride

To a three necked 1L round bottomed flask equipped with a mechanical stirrer and a pressure equalising dropping funnel was added a mixture of diethyl ether (250 cm³) and phosphorus trichloride (68.6 g, 0.5 mol). This was subsequently cooled to 0°C before piperidine (42.5 g, 0.5 mol) was added dropwise. The resulting mixture was stirred for 24hr, before the mixture was filtered. The diethyl ether solution remaining was distilled to generate the product (62.8 g, 69%)

 δ (¹³C): 24.1, 26.2, 47.4 (d) ²J (CP) 18Hz

δ (³¹P): +156.4ppm

6.5.4 Attempted synthesis of tris(trimethylsilyl)phosphine

To a stirring and refluxing suspension of magnesium turnings (12.2 g, 0.5 mol) in THF (250 cm³) was added trimethylsilylchloride (54.3 g, 0.5 mol) with bromine (1 cm³). The resulting mixture was left refluxing for 5h before phosphorus trichloride (22.6 g, 0.165 mol) was added drop wise. This mixture was left refluxing for 160h. After this time the reaction was cooled, ³¹P NMR of the crude mixture showed there to be no tris(trimethylsilyl)phosphine present hence no work up was carried out.

6.5.5 Synthesis of tris-trimethylsilylphosphine

To a refluxing mixture of trimethylsilyl chloride (43.46 g, 0.4 mol) and lithium powder (4.86 g, 0.7 mol) in THF (250 cm³) was added drop wise a solution of piperidino phosphorusdichloride (18.59 g, 0.1 mol) in THF (50 cm³). The resulting mixture was left to stir overnight at room temperature. The solvent was removed *in vacuu* and the residue washed with pentane (300 cm³). The resulting mixture is then filtered and the precipitate washed with pentane (3 x 50 cm³). The filtrate is concentrated and then distilled under vacuum (14.7 g, 59%).

 δ (¹H): 0.3ppm

δ (³¹P): -252ppm

B.Pt: 55°C / 0.5mmHg

6.5.6 Attempted synthesis of the diphosphadiboretanes

To LiP(SiMe₃)₂ (1.0 g, 5.4 mmol) in pentane (50 cm³) was added PhBBr₂ (1.3 g, 5.4 mmol) dropwise. The resulting solution was stirred for 24hr, before the solvent was removed *in vacuo* leaving a yellow waxy solid.

6.5.7 Adducts of ArBBr₂ with phenylphosphine

The method for the preparation of PhPH₂·PhBBr₂ is described below in detail, all other adducts were prepared in a similar manner.

PhPH2 PhBBr2

PhBBr₂ (0.59 g, 2.4 mmol) in hexane (30 cm³) was added to PhPH₂ (0.26 g, 2.4 mmol). The resulting solution was stirred for 1hr at 0°C, before the solvent was removed. A white air sensitive solid was produced (0.38 g, 45%).

References

- M. W. Chen, J. C. Calabrese, D. F. Gaines and D. F. Hillenbrand, J. Am. Chem. Soc., 1980, 102, 4928
- 2. D. F. Gaines and S. J. Hildebrandt, Inorg. Chem., 1978, 17, 794
- N. N. Greenwood, Comprehensive Inorganic Chemistry, (Pergemon Press, London 1973), Vol. 2, 665
- N. N. Greenwood and A. Earnshaw, *Chemistry of the Elements*, (Pergamon Press, London, 1984), Ch 6, 155
- F. A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, (Wiley Interscience, 1988), Ch 6, 162
- 6. J. D. Lee, Concise Inorganic Chemistry, (Chapman and Hall, 1991), Ch 12, 329
- 7. A. Stock, Z. Angew. Chem., 1926, 39, 461
- N. N. Greenwood, J. D. Kennedy and J. Staves, J. Chem. Soc. Dalton Trans., 1978, 1146
- J. Bould, N. N. Greenwood, J. D. Kennedy and W. S. McDonald, J. Chem. Soc. Dalton Trans., 1985, 1843
- L. J. Guggenberger, A. R. Kane and E. L. Muetterties, J. Am. Chem. Soc., 1972, 94, 5665
- J. Bould, N. N. Greenwood and J. D. Kennedy, J. Chem. Soc. Dalton Trans., 1984, 2477
- 12. F. Klanberg, E. L. Muetterties and L. J. Guggenberger, Inorg. Chem., 1968, 7, 2272
- 13. F. Klanberg and E. L. Muetterties, J. Am. Chem. Soc., 1968, 90, 3296
- 14. N. W. Alcock, I. D. Burns, K. S. Claire and A. F. Hill, Inorg. Chem., 1992, 31, 2906
- 15. S. J. Lippard and D. A. Ucko, Inorg. Chem., 1968, 7, 1051

- 16. C. H. Bushweller, H. Beall and W. J. Dewkett, Inorg. Chem., 1976, 15, 1739
- G. A. Razuvaev, A. N. Artemov, A. A. Aladjin and N. I. Sirotkin, J. Organomet. Chem., 1976, 111, 131
- 18. W. Siebert, Adv. Organomet. Chem., 1980, 18, 301
- 19. R. Prinz and H. Werner, Angew. Chem. Int. Ed. Engl., 1967, 6, 91
- 20. J. L. Adcock and J. J. Lagowski, Inorg. Chem., 1973, 12, 2533
- 21. M. Scotti and H. Werner, Helv. Chim. Acta, 1974, 57, 1234
- 22. K. Deckelmann and H. Werner, Helv. Chim. Acta, 1971, 54, 2189
- 23. J. J. Lagowski, Coord. Chem. Revs., 1977, 22, 185
- 24. H. Noth and U. Schuchardt, J. Organomet. Chem., 1977, 134, 297
- B. Kaufmann, H. Noth, R. T. Paine, K. Polborn and M. Thomann, Angew. Chem. Int. Ed. Engl., 1993, 32, 1446
- G. Linti, H. Noth, R. T. Paine and K. Polborn, *Angew. Chem. Int. Ed. Engl.*, 1990,
 29, 682
- 27. B. Kaufmnn, N. Metzler, H. Noth and R. T. Paine, Chem. Ber., 1994, 127, 825
- H. Noth and B. Wrackmeyer, NMR Basic Principles and Progress, (Springer, 1978)
- R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, (Longman Scientific and Technical, 1992), 238
- 30. D. Baudry, M. Ephritikhine and H. Felkin, J. Organomet. Chem., 1982, 224, 363
- 31. M. R. Detty and W. D. Jones, J. Am. Chem. Soc., 1987, 109, 5666
- 32. J. K. Hoyano and W. A. G. Graham, Organometallics, 1982, 1, 783
- 33. W. A. Kiel, W. E. Buhro and J. A. Gladysz, Organometallics, 1984, 3, 879
- 34. J. I. Seeman and S. G. Davies, J. Am. Chem. Soc., 1985, 107, 6522
- 35. W. Beck and K. Sunkel, Chem. Rev., 1988, 88, 1405

- E. Fritsch, J. Heidrich, K. Polborn and W. Beck, J. Organomet. Chem., 1992, 441, 203
- P. M. Fritz, J. Breimair, B. Wagner and W. Beck, J. Organomet. Chem., 1992, 426, 343
- 38. P. Steil, U. Nagel and W. Beck, J. Organomet. Chem., 1988, 339, 111
- 39. P. Steil, U. Nagel and W. Beck, J. Organomet. Chem., 1989, 366, 313
- 40. M. L. H. Green and D. J. Jones, Inorg. Chem. Radiochem., 1965, 7, 115
- 41. M. L. Ziegler, H. Haas and R. K. Sheline, Chem. Ber., 1965, 98, 2454
- 42. J. P. Fawcett, A. J. Poe and M. V. Twigg, J. Organomet. Chem., 1973, 61, 315
- 43. L. Y. Y. Chan and F. W. B. Einstein, J. Chem. Soc. Dalton Trans., 1973, 111
- 44. E. O. Brimm, M. A. Lynch and W. J. Sesny, J. Am. Chem. Soc., 1954, 76, 3831
- 45. E. W. Abel and I. S. Butler, J. Chem. Soc., 1964, 434
- 46. R. J. Angelici, J. Organomet. Chem., 1964, 3, 1099
- 47. J. A. Connor and G. A. Hudson, J. Organomet. Chem., 1974, 73, 351
- 48. E. Linder and H. Dreher, J. Organomet. Chem., 1976, 104, 331
- 49. E. Linder and B. Schilling, Chem. Ber., 1977, 110, 3725
- 50. W. Hieber, R. Schuh and H. Fuchs, Z. Anorg. Allg. Chem., 1941, 248, 243
- 51. E. W. Abel and S. P. Tyfield, Adv. Organomet. Chem., 1970, 8, 117
- 52. G. Wilkinson, *Comprehensive organometallic chemistry*, (Elsevier Science, 1989) Vol 1
- 53. D. T. Hurd, G. W. Sentell and F. J. Norton, J. Am. Chem. Soc., 1949, 71, 1899
- 54. H. E. Podall, J. H. Dunn and H. Shapiro, J. Am. Chem. Soc., 1960, 82, 1325
- 55. A. Davison, J. A. McCleverty and G. Wilkinson, J. Chem. Soc., 1963, 1133
- 56. R. G. Behrens, J. Organomet. Chem., 1976, 121, C63
- 57. J. K. Burdett, J. Chem. Soc. Faraday Trans. 2, 1974, 1599

- 58. H. Haas and R. K. Sheline, J. Chem. Phys., 1967, 47, 2996
- 59. N. Flitcroft, D. K. Huggins and H. D. Kaesz, Inorg. Chem., 1964, 3, 1123
- 60. F. A. Cotton and R. M. Wing, Inorg. Chem., 1964, 4, 1328
- 61. G. Bor, Chem. Comm., 1969, 641
- 62. G. Bor and G. Sbrignadello, J. Chem. Soc. Dalton Trans., 1974, 440
- 63. D. M. Adams, M. A. Hooper and A. Squire, J. Chem. Soc. (A), 1971, 71
- 64. G. Sbrignadello, G. Battiston and G. Bor, Inorg. Chim. Acta, 1975, 14, 69
- W. T. Wozniak, G. O. Evans and R. K. Sheline, J. Inorg. Nucl. Chem., 1975, 37, 105
- 66. W. Hieber and H. Schulten, Z. Anorg. Allg. Chem., 1939, 243, 164
- 67. E. W. Abel and G. Wilkinson, J. Chem. Soc., 1959, 1501
- 68. D. R. Tyler and D. P. Petrylak, Inorg. Chim. Acta, 1981, 53, L185
- 69. D. M. Allen, A. Cox, T. J. Kemp, Q. Sultana and R. B. Pitts, J. Chem. Soc. Dalton Trans., 1976, 1189
- H. D. Kaesz, R. Bau, D. Hendrickson and J. M. Smith, J. Am. Chem. Soc., 1967, 89, 2844
- 71. G. Keeling, S. F. A. Kettle and I. Paul, J. Chem. Soc. Dalton Trans., 1971, 3143
- 72. F. Zingales, M. Graziani, F. Faraone and U. Belluco, *Inorg. Chim. Acta*, 1967, 1, 172
- 73. D. A. Brown and R. T. Sane, J. Chem. Soc. (A), 1971, 2088
- 74. M. J. Blandamer, J. Burgess, S. J. Cartwright and M. Dupree, J. Chem. Soc. Dalton Trans., 1976, 1158
- 75. J. Burgess and A. J. Duffield, J. Organomet. Chem., 1979, 177, 435
- 76. S. P. Schmit, W. C. Trogler and F. Basolo, Inorg. Synth., 28, 160
- 77. S. P. Schmidt, W. C. Trogler and F. Basolo, J. Am. Chem. Soc., 1984, 106, 1308

- 78. J. D. Atwood and T. L. Brown, J. Am. Chem. Soc., 1975, 97, 3380
- 79. K. Moedritzer, Synth. React. Inorg. Metal-Org. Chem., 1972, 2, 121
- 80. F. Zingales and U. Sartorelli, Inorg. Chem., 1967, 6, 1243
- 81. J. P. Fawcett and A. Poe, J. Chem. Soc. Dalton Trans., 1977, 1032
- 82. A. E. Leins and N. J. Covilee, J. Organomet. Chem., 1991, 407, 359
- 83. C. A. Tolman, Chem. Rev., 1977, 77, 325
- 84. N. J. Coville, Organometallic Radical Processes, (Elsevier, Amsterdam 1990), 108
- 85. B. L. Booth and R. N. Hazeldine, J. Chem. Soc. A, 1966, 157
- 86. T. Kruck and A. Engelmann, Angew. Chem. Int. Ed. Engl., 1966, 5, 836
- 87. R. H. Reimann and E. Singleton, J. Organomet. Chem., 1972, 38, 113
- 88. P. M. Treichel and J. J. Benedict, J. Organomet. Chem., 1969, 17, P37
- 89. R. H. Reimann and E. Singleton, J. Chem. Soc. Dalton Trans., 1973, 841
- 90. P. M. Treichel, *Comprehensive Organometallic Chemistry*, (Pergammon Press, 1981) Ch 29
- 91. P. M. Treichel, *Comprehensive Organometallic Chemistry II*, (Elsevier Science, 1995) Vol 6, Ch 1-10
- 92. A. Wojciciki, J. Organomet. Chem., 1972, 45, 335
- 93. P. M. Treichel, J. Organomet. Chem., 1973, 58, 273
- 94. P. M. Treichel, J. Organomet. Chem., 1980, 189, 129
- 95. F. Zingales, U. Sartorelli and A. Trovati, Inorg. Chem., 1967, 6, 1246
- 96. B. E. Mann, C. Masters and B. L. Shaw, J. Chem. Soc. A, 1971, 1104
- 97. L. S. Merriwether and J. R. Leto, J. Am. Chem. Soc., 1961, 83, 3182
- 98. J. A. Connor, J. J. Day, E. M. Jones and G. K. McEwen, J. Chem. Soc. Dalton Trans., 1973, 347
- 99. J. A. Connor, G. K. McEwen and C. J. Rix, J. Chem. Soc. Dalton Trans., 1974, 589

- S. O. Grim, R. Barth, W. Briggs, C. A. Tolman and J. P. Jesson, *Inorg. Chem.*, 1974, 13, 1095
- 101. D. A. Edwards and J. Marshalsea, J. Organomet. Chem., 1975, 96, C50
- 102. S. Heitkamp, D. J. Stuffken and K. Vrieze, *J. Organomet. Chem.*, 1979, 169, 107
- 103. G. Q. Li, J. Feldman, J. A. Krause and M. Orchin, Polyhedron, 1997, 16, 2041
- 104. S. J. A. Pope and G. Reid, J. Chem. Soc. Dalton Trans., 1999, 1615
- 105. P. H. Bird, N. J. Coville, I. S. Butler and M. L. Schneider, *Inorg. Chem.*, 1973, 12, 2902
- 106. S. K. Mandal, D. M. Ho and M. Orchin, Polyhedron, 1992, 11, 2055
- 107. D. Bright and O. S. Mills, J. Chem. Soc. Dalton Trans., 1974, 219
- G. J. Kruger, R. O. Heckrodt, R. H. Reimann and E. Singleton, J. Organomet. Chem., 1975, 87, 323
- 109. V. Sum, M. T. Patel, T. P. Kee and M. Thornton-Pett, *Polyhedron*, 1992, 11, 1743
- 110. N. J. Holmes, W. Levason and M. Webster, *J. Organomet. Chem.*, 1998, 568, 213
- 111. S. K. Mandal, D. M. Ho and M. Orchin, J. Organomet. Chem., 1992, 439, 53
- G. Baccolini, L. Busetto, A. Roncaroio, V. G. Albano and F. Demartin, J. Chem. Soc. Dalton Trans., 1987, 21
- A. E. Stock, *Hydrides of Boron and Silicon*, Cornell University Press, Ithica, New York, 1933
- W. V. Hough, L. J. Edwards and A. D. McElroy, *J. Am. Chem. Soc.*, 1956, 78, 689

- W. V. Hough, L. J. Edwards and A. D. McElroy, J. Am. Chem. Soc., 1958, 80, 1828
- 116. D. F. Gaines, R. F. Schaefer and F. Tebbe, Inorg. Chem., 1963, 2, 526
- R. M. Adams, Boron, Metallo-boron Compounds and Boranes, Interscience, New York, 1964
- 118. W. J. Dewkett, M. Grace and H. Beall, Inorg. Synth., 1974, 15, 111
- 119. W. J. Dewkett, M. Grace and H. Beall, J. Inorg. Nucl. Chem., 1971, 33, 1279
- H. Beall, C. H. Bushweller and M. C. Grace, *Inorg. Nucl. Chem. Lett.*, 1971, 7, 641
- M. A. Beckett and P. W. Jones, Synth. React. Inorg. Met.-Org. Chem., 1997, 27,
 41
- 122. S. J. Lippard and K. M. Melmed, Inorg. Chem., 1969, 8, 2755
- 123. L. J. Guggenberger, Inorg. Chem., 1970, 9, 367
- 124. M. L. H. Green, P. Mountford, P. D. Grebenik, J. B. Leach and J. M. Pounds, J. Organomet. Chem., 1990, 382, C1
- 125. P. D. Grebenik, J. B. Leach, M. L. H. Green and N. M. Walker, J. Organomet. Chem., 1988, 345, C31
- M. Bown, S. L. Ingham, G. E. Norris and J. M. Waters, *Acta Cryst.*, 1995, C51, 1503
- 127. I. D. Burns, A. F. Hill and D. J. Williams, Inorg. Chem., 1996, 35, 2685
- 128. J. Bould, N. P. Rath and L. Barton, Acta Cryst., 1996, C52, 1388
- 129. R. D. Chambers and T. Chivers, Proc. Chem. Soc., 1963, 208
- 130. A. G. Massey and A. J. Park, J. Organomet. Chem., 1964, 2, 245
- 131. X. Yang, C. L. Stern and T. J. Marks, J. Am. Chem. Soc., 1991, 113, 3623

- 132. A. R. Siedle, R. A. Newmark and W. M. Lamanna, *Organometallics*, 1993, 12, 1491
- K. Ishihara, N. Hanaki, M. Funahashi, M. Miyata and H. Yamamoto, *Bull. Chem. Soc. Japan*, 1995, 68, 1721
- 134. X. Yang, C. L. Stern and T. J. Marks, J. Am. Chem. Soc., 1994, 116, 10015
- 135. P. A. Deck and T. J. Marks, J. Am. Chem. Soc., 1995, 117, 6128
- M. Bochmann, S. J. Lancaster, M. B. Hursthouse and K. M. A. Malik, Organometallics, 1994, 13, 2235
- M. A. Beckett, G. C. Strickland, J. R. Holland and K. S. Varma, *Polymer*, 1996, 37, 4629
- 138. V. Gutmann, Coord. Chem. Rev., 1976, 18, 225
- 139. U. Mayer, V. Gutmann and W. Gerger, *Monatshefte fur Chemie*, 1975, 106,
 1235
- 140. A. G. Massey, A. J. Park and F. G. A. Stone, Proc. Chem. Soc., 1963, 212
- A. N. Chernega, A. J. Graham, M. L. H. Green, J. Haggitt, J. Lloyd, C. P.
 Mehnert, N. Metzler and J. Souter, J. Chem. Soc. Dalton Trans., 1997, 2293
- H. H. Brintzinger, D. Fischer, R. Mulhaupt, B. Rieger and R. Waymoutn, Angew. Chem. Int. Ed. Engl., 1995, 34, 1143
- 143. L. H. Doerrer and M. L. H. Green, J. Chem. Soc. Dalton Trans., 1999, 4325
- 144. A. G. Massey and A. J. Parks, J. Organomet. Chem., 1966, 5, 218
- 145. D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 1996, 118, 9440
- 146. R. F. Childs, D. L. Mulholland and A. Nixon, Can. J. Chem., 1982, 60, 801
- 147. M. F. Lappert, J. Chem. Soc., 1961, 817
- 148. M. F. Lappert, J. Chem. Soc., 1962, 542
- 149. P. Laszlo and M. Teston, J. Am. Chem. Soc. 1990, 112, 8750
- S. Doring, G. Erker, R. Frohlich, O. Meyer and K. Bergander, *Organometallics*, 1998, **17**, 2183
- H. Jacobsen, H. Berke, S. Doring, G. Kehr, G. Erker, R. Frohlich and O. Meyer, Organometallics, 1999, 18, 1724
- M. A. Beckett, D. S. Brassington, S. J. Coles and M. B. Hursthouse, *Inorg. Chem. Comm.*, 2000, 3, 530
- A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, S. Cafferkey, L. H.
 Doerrer and M. B. Hursthouse, *Chem. Comm.*, 1998, 3191
- D. J. Parks, W. E. Piers, M. Parvez, R. Atencio an M. J. Zaworotko, Organometallics, 1998, 17, 1369
- D. C. Bradley, I. S. Harding, A. D. Keefe, M. Motevalli and D. –H. Zheng, J. Chem. Soc. Dalton Trans., 1996, 2529
- M. A. Beckett, D. S. Brassington, P. Owen, M. B. Hursthouse, M. E. Light, K.
 M. A. Malik and K. S. Varma, J. Organomet. Chem., 1999, 585, 7
- 157. M. A. Beckett, P. Owen and K. S. Varma, J. Organomet. Chem., 1999, 588, 107
- M. A. Beckett, D. E. Hibbs, M. B. Hursthouse, K. M. A. Malik, P. Owen and K.
 S. Varma, J. Organomet. Chem., 2000, 595, 241
- 159. N. Burford, B. W. Royan, R. E. vH. Spence, T. S. Cameron, A. Linden and R. D. Rogers, J. Chem. Soc. Dalton Trans., 1990, 1521
- 160. S. Un and M. P. Klein, J. Am. Chem. Soc., 1989, 111, 5119
- N. Burford, R. E. vH. Spence, A. Linden and T. S. Cameron, Acta Crystallogr. Sect. C, 1990, 46, 92
- 162. M. C. R. Symons and G. Eaton, J. Chem. Soc. Farady I, 1982, 78, 3033
- 163. J. V. Bell, J. Heisler, H. Tannenbaum and J. Goldenson, J. Am. Chem. Soc.,
 1954, 76, 5185

- 164. D. M. Baird, P. E. Fanwich and T. Barwick, Inorg. Chem., 1985, 24, 3753
- 165. F. A. Cotton, J. Lu and T. Ren, Inorg. Chim. Acta, 1994, 215, 47
- B. Borup, J. C. Huffman and K. G. Caulton, J. Organomet. Chem., 1997, 536, 109
- G. Philipp, S. Wocadlo, W. Massa, K. Dehnicke, D. Fenske, C. Maichle-Mossmer. E. Niquet and J. Strahle, *Z. Naturforsch Teil B*, 1995, 50, 1
- M. T. Reetz, M. Hullmann, W. Massa, S. Berger, P. Rademacher and P. Heymanns, J. Am. Chem. Soc., 1986, 108, 2405
- G. Barrado, L. Doerrer, M. L. H. Green and M. A. Leech, J. Chem. Soc. Dalton Trans., 1999, 1061
- A. R. Siedle, R. A. Newmark, W. M. Lamanna and J. C. Huffman, Organometallics, 1993, 12, 1491
- 171. Y. Hermodsson, Ark. Kemi., 1969, 30, 15
- 172. R. Hauptmann, R. Kliss, J. Schneider and G. Henkel, Z. Anorg. Allg. Chem.,
 1998, 624, 1927
- N. Burford, B. W. Royan, R. E. vH. Spence and R. D. Rogers, J. Chem. Soc. Dalton Trans., 1990, 2111
- D. Murphy, J. P. Sheehan, T. R. Spalding, G. Ferguson, A. J. Lough and J. F.
 Gallagher, J. Meter. Chem., 1993, 3, 1275
- 175. G. Ruban and V. Zabel, Cryst. Struct. Commun., 1976, 5, 671
- 176. R. T. Paine and H. Noeth, Chem. Rev., 1995, 95, 343
- 177. P. P. Power, Angew. Chem. Int. Ed. Engl., 1990, 29, 449
- 178. P. P. Power, J. Organomet. Chem., 1990, 400, 49
- 179. M. Feher, R. Frohlich and K. F. Tebbe, Z. Anorg. Allg. Chem., 1981, 474, 31
- 180. M. Baudler and A. Marx, Z. Anorg. Allg. Chem., 1981, 474, 18

- 181. M. Baudler and G. Kupprat, Z. Anorg. Allg. Chem., 1986, 533, 146
- B. Riegel, A. Pfitzner, G. Heckmann, E. Fluck and H. Binder, *Phosphorus*, Sulfur and Silicon, 1994, 93-94, 173
- B. Riegel, A. Pfitzner, G. Heckmann, E. Fluck and H. Binder, Z. Anorg. Allg. Chem., 1994, 620, 8
- 184. G. Fritz and W. Holderich, Z. Anorg. Allg. Chem., 1977, 431, 61
- A. M. Arif, A. M. Cowley, M. Pakulski and J. M. Power, J. Chem. Soc. Chem. Comm., 1986, 889
- 186. P. Kolle, H. Noth and R. T. Paine, Chem. Ber., 1986, 109, 2681
- 187. H. V. R. Dias and P. P. Power, J. Am. Chem. Soc., 1989, 111, 144
- 188. P. Kolle, G. Linti, H. Noth and K. Polborn, J. Organomet. Chem., 1988, 355, 7
- 189. M. Baudler and M. Hintze, Z. Anorg. Allg. Chem., 1985, 522, 184
- 190. W. Gerrard, M. Howarth, E. F. Mooney and D. E. Pratt, J. Chem. Soc., 1963,
 1582
- 191. H. A. Clark, A. F. Gordon, C. W. Young and M. J. Hunter, J. Am. Chem. Soc., 1951, 73, 3798
- 192. W. Haubold, J. Herdtle, W. Gollinger and W. Einholz, J. Organomet. Chem.,1986, 315, 1
- M. A. Beckett, P. R. Minto and B. Werschkun, J. Organomet. Chem., 1994, 468,
 37
- 194. D. Kaufmann, Chem. Ber., 1987, 120, 853
- 195. A. J. Leffler and E. G. Teach, J. Am. Chem. Soc., 1960, 82, 2710
- 196. H. Schumann and L. Rosch, J. Organomet. Chem., 1973, 55, 257
- 197. E. Niecke and H. Westermann, Synthesis, 1998, 18, 330
- 198. G. E. Coates and J. G. Livingstone, J. Chem. Soc., 1961, 5053

- 199. A. D. Tevebaugh, Inorg. Chem., 1964, 3, 302
- 200. B. Rapp and J. E. Drake, Inorg. Chem., 1973, 12, 2868
- 201. M. H. Quick and R. J. Anjelici, Inorg. Synth., 1990, 28, 126
- 202. E. W. Abel and G. Wilkinson, J. Chem. Soc., 1959, 1601
- 203. R. B. King and N. D. Sadanani, Synth. React. Inorg. Met.-Org. Chem., 1985, 15, 149

Appendix A

Crystal tables for 2b

Table 1. Crystal data and structure refinement.

Identification code	985RC289
Empirical formula	C40 H25 Br C19 Mn O3 P2
Formula weight	1069.44
Temperature	150(2) K
Wavelength	0.71074 A
Crystal sýstem	Monoclinic
Space group	P2/n
Unit cell dimensions	a = 15.3638(3) A b = 14.0991(2) A c = 20.5356(5) A
	beta = 103.9470(10) deg.
Volume	4317.19(15) A^3
Z	4
Density (calculated)	1.645 Mg/m ³
Absorption coefficient	1.901 mm^-1
F(000)	2128
Crystal size	0.2 x 0.2 x 0.3 mm
Theta range for data collection	2.99 to 23.25 deg.
Index ranges	-17<=h<=17, -15<=k<=15, -22<=1<=22
Reflections collected	57780
Independent reflections	6201 [R(int) = 0.0747]
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6201 / 34 / 559
Transmission Factors	Min = 0.594 Max = 0.717
Goodness-of-fit on F^2	1.052
Final R indices [I>2sigma(I)]	R1 = 0.0582, wR2 = 0.1513
R indices (all data)	R1 = 0.0742, wR2 = 0.1643
Largest diff. peak and hole	1.374 and -1.495 e.A^-3

.

Table 2. Atomic coordinates (\times 10^4) and equivalent isotropic displacement parameters (A² \times 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

.....

	x	У	Z	U(eq)
P(1)	8035(1)	5356(1)	5691(1)	27(1)
P(2)	6726(1)	2537(1)	4761(1)	26(1)
Cl(5)	6155(1)	2024(1)	1613(1)	45(1)
Cl(1)	5801(1)	8176(1)	7072(1)	46(1)
C1(6)	2929(1)	1263(1)	5166(1)	62(1) E4(1)
CI(2)	9076(1)	8554(L) 642(1)	5844(1) 6315(1)	54(1)
C1(4)	9314(1)	-642(1) 4210(1)	7957(1)	68(1)
CI(3)	11440(1) 0033(2)	5125(3)	6365(2)	28(1)
C(13)	7375(2)	6160(3)	6090(2)	29(1)
C(1)	7911(2)	6345(3)	4496(2)	31(1)
C(25)	6594(2)	2353 (3)	3854(2)	28(1)
C(31)	5610(2)	2216(3)	4870(2)	27(1)
C(19)	7394(2)	1521(3)	5146(2)	29(1)
C(5)	6015(3)	6563(3)	6427(2)	36(1)
C(9)	8115(3)	7050(3)	4090(2)	36(1)
C(20)	8115(3)	1192(3)	4910(2)	34(1)
C(14)	8990(3)	5080(3)	7032(2)	38(L) 26/1)
C(24)	7281(3) 6504(3)	11/5(3) 50/3/3)	5/50(2)	30(1)
C(6)	10571(3)	4588(3)	6691(2)	38(1)
C(17)	8376(3)	3280(3)	5678(2)	40(1)
C(30)	6462(3)	3146(3)	3430(2)	33(1)
C(34)	3953(3)	1645(3)	5045(2)	37(1)
C(18)	9830(3)	4863(3)	6198(2)	34(1)
C(29)	6337(3)	3038(3)	2747(2)	37(1)
C(10)	8852(3)	7616(3)	4330(2)	36(1)
C(22)	8571(3)	193(3)	5869(2)	44(1)
C(7)	8433(2)	6193 (3)	5140(2)	29(1)
0(1)	8995(2)	2851(2) 1221(2)	5946(2)	57(1) 34(1)
C(32)	5249(3)	1452 (3)	3572(2)	32(1)
C(23)	7867(3)	509(3)	6117(2)	43(1)
C(36)	5100(3)	2807 (3)	5171(2)	37(1)
C(28)	6333(2)	2143(3)	2480(2)	31(1)
C(27)	6451(2)	1350(3)	2882(2)	35(1)
C(33)	4426(3)	1048(3)	4732(2)	37(1)
C(12)	9187(3)	6767(3)	5360(2)	37(1)
C(11)	9400(3)	7469(3)	4962(2)	40(1)
C(15)	9723(3)	4/88(3)	7521(2)	43(1)
C(3)	10503(3)	/646(3)	7344(2)	30(I) 40(1)
C(10)	6402(3)	7406(3)	6686(2)	34(1)
C(21)	8700(3)	519(3)	5265(2)	40(1)
C(2)	7742(3)	7021(3)	6351(2)	34(1)
C(35)	4278(3)	2530(3)	5263(2)	43(1)
0(2)*	8317(1)	4149(3)	4137(1)	71(2)
0(3)*	6805(1)	3640(3)	6476(1)	79(2)
C(37)*	6989(1)	3763 (3)	5973(1)	44(1)
C(38)*	7984(1)	4041(3)	4574(1)	39(1)
Br(2)#	6943(1)	3545(2)	6316(1)	36(1)
Br(3)#	8402(1)	3980 (Z) 3033 (1)	4407(1) 5027/1)	41(1) 20(1)
$\operatorname{Mn}(L)$ $\operatorname{Br}(1) * *$	7404(L) 602271	2828(1) 4828(1)	2234(1) 2591/1)	40(1) 33(1)
$C(\Lambda 2) + +$	6466(1)	4527(1)	4700(1)	79(6)
O(4) ##	6051(3)	4927 (3)	4237(2)	410(3)
C1(7)	5490(1)	548(1)	6800(1)	158(1)
Cl(8A)+	5460(2)	2187(2)	7513(1)	184(2)
Cl(8B)+	6087(1)	2256(1)	7360(3)	369(4)
C1(9)	3946(1)	1488(2)	6972(1)	213(2)

C (4	40)+	5118(1	.)	1	557(1)	715	0 (2	2)	179(9)
C (4	41)+	4961(1	.)	1	655(1)	674	3 (2	1)	362(1)
* =	85%	occupied;	+	= 50%	occupied;	##	=	30%	occupied

й Ж

P(1) -C(13) $P(1) -C(1)$ $P(2) -C(19)$ $P(2) -C(25)$ $Cl(5) -C(28)$ $Cl(6) -C(34)$ $Cl(4) -C(22)$ $C(13) -C(14)$ $C(1) -C(2)$ $C(8) -C(9)$ $C(25) -C(26)$ $C(31) -C(36)$ $C(19) -C(20)$ $C(5) -C(4)$ $C(9) -C(10)$ $C(14) -C(15)$ $C(17) -C(16)$ $C(39) -O(1)$ $C(30) -C(29)$ $C(34) -C(35)$ $C(10) -C(11)$ $C(22) -C(21)$ $C(32) -C(33)$ $C(36) -C(35)$ $C(12) -C(11)$ $C(3) -C(2)$ $O(2) -C(38)$ $C(37) -Mn(1)$ $Br(2) -Mn(1)$ $Mn(1) -C(42)$ $C(42) -O(4)$ $Cl(9) -C(40)$ $Cl(9) -C(40)$	1.831(3) 1.840(4) 1.828(4) 1.743(4) 1.743(4) 1.737(4) 1.738(4) 1.390(6) 1.391(5) 1.381(6) 1.394(5) 1.387(6) 1.378(6) 1.378(6) 1.378(6) 1.378(6) 1.378(6) 1.381(6) 1.381(6) 1.382(7) 1.378(6) 1.382(7) 1.378(6) 1.382(7) 1.379(6) 1.378($\begin{array}{c} P(1) -C(7) \\ P(1) -Mn(1) \\ P(2) -C(31) \\ P(2) -Mn(1) \\ Cl(1) -C(4) \\ Cl(2) -C(10) \\ Cl(2) -C(10) \\ Cl(3) -C(16) \\ C(13) -C(16) \\ C(13) -C(16) \\ C(1) -C(6) \\ C(25) -C(30) \\ C(31) -C(32) \\ C(19) -C(24) \\ C(5) -C(6) \\ C(20) -C(21) \\ C(24) -C(23) \\ C(17) -C(18) \\ C(39) -Mn(1) \\ C(34) -C(33) \\ C(29) -C(28) \\ C(22) -C(23) \\ C(26) -C(27) \\ C(26) -C(27) \\ C(28) -C(27) \\ C(28) -C(27) \\ C(15) -C(16) \\ C(3) -C(4) \\ O(3) -C(37) \\ C(38) -Mn(1) \\ Br(3) -Mn(1) \\ Mn(1) -Br(1) \\ Cl(7) -C(41) \\ Cl(8B) -C(40) \\ Cl(9) -C(41) \\ \end{array}$	1.839(4) 2.3260(111 1.838(4) 2.3275(100 1.736(4) 1.741(4) 1.744(4) 1.398(6) 1.393(5) 1.388(5) 1.401(5) 1.398(5) 1.398(5) 1.389(6) 1.387(6) 1.387(6) 1.386(6) 1.374(6) 1.375(7) 1.388(6) 1.376(6) 1.376(6) 1.374(7) 1.386(6) 1.374(7) 1.386(6) 1.374(7) 1.386(6) 1.798(7) 2.5476(9) 2.5478(7) 1.7503(9) 1.7498(10)	.)))
C(13) - P(1) - C(7) $C(7) - P(1) - Mn(1)$ $C(19) - P(2) - C(31)$ $C(31) - P(2) - C(25)$ $C(31) - P(2) - Mn(1)$ $C(14) - C(13) - C(18)$ $C(14) - C(13) - C(18)$ $C(13) - P(2) - Mn(1)$ $C(2) - C(1) - P(1)$ $C(9) - C(8) - C(7)$ $C(26) - C(25) - P(2)$ $C(36) - C(31) - C(32)$ $C(32) - C(31) - P(2)$ $C(36) - C(31) - C(32)$ $C(32) - C(31) - P(2)$ $C(20) - C(19) - P(2)$ $C(36) - C(31) - C(32)$ $C(20) - C(19) - P(2)$ $C(4) - C(5) - C(6)$ $C(21) - C(20) - C(12)$ $C(16) - C(17) - C(18)$ $C(29) - C(30) - C(22)$ $C(33) - C(34) - C1$ $C(9) - C(10) - C(11)$ $C(23) - C(22) - C(12)$ $C(11) - C(10) - C(12)$ $C(12) - C(7) - P(1)$ $C(27) - C(26) - C(22)$ $C(35) - C(36) - C(33)$ $C(29) - C(28) - C(12)$ $C(28) - C(27) - C(24)$	103.71(100.37(118.26(101.37(102.15(119.60(119.60(119.60(119.6(3) 121.5(3) 122.4(3) 119.1(3) 119.0(4) 119.0(4) 119.0(4) 119.0(4) 119.0(4) 119.0(4) 119.0(4) 119.0(4) 119.0(4) 120.9(4) 120.9(4) 120.9(4) 120.9(4) 120.9(4) 120.9(4) 120.9(4) 120.9(4) 120.9(4) 120.9(4) 120.9(4) 120.5(4) 120.2(4) 120.2(4) 121.7(4) 121.7(4) 121.7(4) 121.7(4) 121.7(4) 121.5(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1) -C(1) 1) -Mn(1) 2) -Mn(1) 2) -C(25) 2) -Mn(1) 13) -P(1) 3) -P(1) 25) -C(30) 25) -P(2) 31) -P(2) 19) -C(24) 19) -P(2) 19) -C(24) 19) -P(2) 19) -C(30) 20) -C(1) 14) -C(13) 5) -C(1) 9) -Mn(1) 34) -C(35) 34) -C(6) 29) -C(30) 00) -C1(2) 22) -C(21) 22) -C(21) 22) -C(21) 22) -C(21) 22) -C(31) 23) -C(24) 23) -C(24) 23) -C(27) 28) -C1(5) 33) -C(32) (11) -C(10)	102.95(17) 110.07(12) 119.36(13) 103.96(17) 109.48(12) 118.04(13) 121.5(3) 118.5(4) 121.9(3) 118.9(4) 123.3(3) 118.6(3) 123.3(3) 118.6(3) 129.2(4) 120.4(4) 121.2(4) 120.2(3) 119.6(4) 129.6(3) 121.3(4) 118.7(4) 118.7(4) 118.9(3) 121.3(4) 121.3(4) 122.3(4) 122.3(4) 129.3(4) 129.3(4) 119.3(4) 119.3(4) 119.3(4)

C(16)-C(15)-C(14)	119.5(4)	C(2)-C(3)-C(4)	119.0(4)
C(17)-C(16)-C(15)	121.8(4)	C(17) - C(16) - Cl(3)	118.0(3)
C(15)-C(16)-Cl(3)	120.2(3)	C(5) - C(4) - C(3)	121.2(4)
C(5) - C(4) - Cl(1)	119.2(3)	C(3) - C(4) - Cl(1)	119.6(3)
C(22)-C(21)-C(20)	119.0(4)	C(3) - C(2) - C(1)	121.3(4)
C(34)-C(35)-C(36)	118.9(4)	O(3)-C(37)-Mn(1)	173.69(15)
O(2) - C(38) - Mn(1)	176.0(3)	C(37)-Mn(1)-C(38)	171.03(8)
C(37)-Mn(1)-C(42)	100.51(10)	C(38)-Mn(1)-C(42)	88.34(10)
C(37) - Mn(1) - C(39)	85.58(17)	C(38) - Mn(1) - C(39)	85.66(17)
C(42) - Mn(1) - C(39)	173.22(16)	C(37) - Mn(1) - P(1)	88.41(12)
C(38) - Mn(1) - P(1)	89.82(12)	C(42) - Mn(1) - P(1)	91.86(7)
C(39) - Mn(1) - P(1)	91.27(13)	C(37) - Mn(1) - P(2)	91.48(12)
C(38) - Mn(1) - P(2)	90.59(11)	C(42) - Mn(1) - P(2)	86.20(7)
C(39) - Mn(1) - P(2)	90.71(13)	P(1) - Mn(1) - P(2)	178.01(4)
C(37) - Mn(1) - Br(1)	94.76(8)	C(38) - Mn(1) - Br(1)	94.03(7)
C(39) - Mn(1) - Br(1)	178.87(12)	P(1) - Mn(1) - Br(1)	89.82(3)
P(2) - Mn(1) - Br(1)	88.21(3)	C(37) - Mn(1) - Br(3)	163.46(8)
C(42) - Mn(1) - Br(3)	95.91(8)	C(39)-Mn(1)-Br(3)	78.13(16)
P(1) - Mn(1) - Br(3)	89.09(7)	P(2) - Mn(1) - Br(3)	91.58(7)
Br(1) - Mn(1) - Br(3)	101.58(5)	C(38) - Mn(1) - Br(2)	165.23(9)
C(42) - Mn(1) - Br(2)	106.41(8)	C(39) - Mn(1) - Br(2)	79.57(16)
P(1) - Mn(1) - Br(2)	90.56(6)	P(2) - Mn(1) - Br(2)	89.54(6)
Br(1)-Mn(1)-Br(2)	100.74(5)	Br(3)-Mn(1)-Br(2)	157.68(7)
O(4) - C(42) - Mn(1)	158.8(3)	Cl(7) - C(40) - Cl(8B)	102.48(14)
Cl(7) - C(40) - Cl(9)	106.92(13)	Cl(8B) - C(40) - Cl(9)	148.56(15)
Cl(9) - C(41) - Cl(7)	106.95(13)	Cl(9) - C(41) - Cl(8B)	124.0(2)
Cl(7) - C(41) - Cl(8B)	91.03(9)		

.

Symmetry transformations used to generate equivalent atoms:

Pable 4. Anisotropic displacement parameters (A^2 x 10^3). The anisotropic displacement factor exponent takes the form: 2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

÷

the second se						
	U11	U22	U33	U23	U13	U12
(1)	22(1)	30(1)	29(1)	-4(1)	5(1)	-1(1)
(2)	23(1)	24(1)	31(1)	0(1)	5(1)	0(1)
1(5)	41(1)	62(1)	31(1)	-6(1)	5(1)	-5(1)
1(1)	38(1)	53(1)	46(1)	-15(1)	5(1)	13(1)
1(6)	42(1)	47(1) EE(1)	108(1)	-19(1)	41(1)	-16(1)
1(2)	49(1) 56(1)	55(I) 51(1)	$\frac{37(1)}{75(1)}$	19(1)	-5(1)	-11(1)
1(4)	64(1)	73(1)	52(1)	1(1)	-16(1)	$\frac{10(1)}{31(1)}$
(13)	24(2)	30(2)	26(2)	-5(2)	-1(2)	-2(2)
(1)	25(2)	31(2)	29(2)	-3(2)	4(2)	4(2)
(8)	26(2)	33(2)	33(2)	-7(2)	7(2)	-3(2)
(25)	22(2)	31(2)	32(2)	-2(2)	6(2)	2(2)
(31)	19(2)	28(2)	33(2)	4(2)	2(2)	-1(2)
(19)	25(2)	25(2)	33(2)	-1(2)	$\perp (2)$	-1(2)
(2)	32(2)	39(2)	35(2)	-1(2)	4(2)	2(2) 4(2)
(20)	31(2)	32(2)	38(2)	5(2)	8(2)	$\frac{1}{2}$
(14)	34(2)	41(2)	40(2)	-2(2)	10(2)	6(2)
(24)	35(2)	32(2)	39(2)	0(2)	7(2)	-1(2)
(6)	30(2)	36(2)	37(2)	-5(2)	10(2)	-5(2)
(17)	26(2)	36(2)	49(2)	-5(2)	4(2)	-1(2)
(39)	34(2)	30(2)	51(3) 35(2)	-11(2)	-1(2)	-8(2)
(30)	27(2)	32(2)	52(2)	-1(2)	14(2)	-4(2)
(18)	31(2)	38(2)	31(2)	-3(2)	4(2)	-2(2)
(29)	31(2)	39(2)	38(2)	5(2)	2(2)	1(2)
(10)	33(2)	34(2)	43(2)	0(2)	13(2)	-5(2)
(22)	38(2)	34(2)	52(3)	4(2)	-3(2)	3(2)
(7)	28(2)	30(2)	29(2)	-6(2)	7(2)	-3(2)
(I) (32)	4 L (Z) 3 2 (2)	41 (2) 32 (2)	70(2)	-4(2)	-14(2)	4(2)
(26)	24(2)	31(2)	41(2)	-2(2)	7(2)	-1(2)
(23)	46(2)	39(2)	39(2)	8(2)	3(2)	1(2)
(36)	32(2)	25(2)	56(3)	-1(2)	14(2)	-4(2)
(28)	24(2)	44(2)	27(2)	-4(2)	6(2)	-3(2)
(27)	26(2)	41(2)	36(2)	-10(2)	6(2)	-2(2)
(33) (12)	33(2)	29(2)	47(2)	-6(2)	9(2)	-7(2)
(12)	30(2)	46(2)	41(2)	-2(2)	1(2)	-12(2)
(15)	56(3)	41(2)	32(2)	3(2)	8(2)	10(2)
(3)	36(2)	32(2)	37(2)	-5(2)	3(2)	1(2)
(16)	42(2)	32(2)	39(2)	-3(2)	-7(2)	4(2)
(4)	27(2)	40(2)	32(2)	-3(2)	1(2)	12(2)
(21)	29(2)	36(2)	52(3)	-2(2)	6(2)	0(2)
(2)	23(2)	37(2)	42(2)	-5(2)	5(2)	-3(2)
(2)	54(2)	40(2)	99(3)	-11(2)	-22(2)	-2(2)
(3)	120(4)	55(3)	68(3)	-5(2)	31(3)	-11(3)
(37)	41(3)	42(3)	50(3)	-12(2)	14(2)	-5(2)
(38)	74(3)	22(2)	18(2)	0(2)	7(2)	-26(2)
r(2)	38(1)	33(1)	36(1)	-4(1)	6(1)	0(1)
r(3)	39(1)	35(1)	43(1)	-4(1)	0(1)	0(1)
n(1) r(1)	23(1)	26(1) 28(1)	32(1)	-2(1)	4(1)	-1(1)
(42)	29(1) 99(11)	20(1) 38(9)	42(1) 129(13)	-8(1) -32(9)	88(10)	-3(1)
(4)	310(4)	140(2)	590(7)	80(4)	-250(4)	-14(9)
1(7)	206(2)	71(1)	223(2)	-46(1)	101(2)	-3(1)
1(8A)	244(6)	112(3)	219(5)	-95(3)	103(4)	-17(4)
l(8B)	789(10)	190(4)	216(5)	-94(4)	293(6)	-301(5)
1(9)	250(3)	225(3)	166(3)	57(2)	54(2)	123(3)

λs.

C(40)	115(11)	75(8)	350(2)	-114(11)	69(14)	18(8)
C(41)	362(1)	362(1)	362(1)	0(1)	87(1)	0(1)
* = 85%	occupied;	+ = 50%	occupied;	## = 30%	occupied	

* = 85% occupied; + = 50% occupied; # = 15% occupied; ** = 70% occupied

ł

Appendix B

Crystal tables for 2g

Table 1. Crystal data and structure refinement.

Identification code	00src069			
Empirical formula	C ₄₅ H ₄₂ BrO ₉ P ₂ Re			
Formula weight	1054.84			
Temperature	150(2) K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	Pbca			
Unit cell dimensions	<i>a</i> = 18.337(4) Å	$\alpha = 90^{\circ}$		
	<i>b</i> = 20.515(4) Å	$\beta = 90^{\circ}$		
	c = 22.738(5) Å	$\gamma = 90^{\circ}$		
Volume	8554(3) Å ³			
Z	8			
Density (calculated)	$1.638 \text{ Mg} / \text{m}^3$			
Absorption coefficient	3.905 mm ⁻¹			
F(000)	4192			
Crystal	Prism; colourless			
Crystal size	$0.2 \times 0.2 \times 0.2 \text{ mm}^3$			
heta range for data collection	2.98 - 30.41°			
Index ranges	$-25 \le h \le 25, -24 \le k \le 28, -26 \le l \le 30$			
Reflections collected	65319			
Independent reflections	11208 [$R_{int} = 0.0588$]			
Completeness to $\theta = 30.41^{\circ}$	86.7 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.472 and 0.347			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	11208/0/529			
Goodness-of-fit on F^2	0.821			
Final R indices $[F^2 > 2\sigma(F^2)]$	nal R indices $[F^2 > 2\sigma(F^2)]$ $RI = 0.0375, wR2 = 0.0954$			
<i>R</i> indices (all data) $RI = 0.0652, wR2 = 0.1165$				
Largest diff. peak and hole 1.884 and -2.020 e Å ⁻³				

Diffractometer: Enraf Nonius KappaCCD area detector (φ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307–326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33–37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421–426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467–473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

Special details:

Atom	x	у	Z	U_{eq}	S.o.f.	
Rel	4450(1)	556(1)	6216(1)	19(1)	1	
Br1	4077(1)	429(1)	7328(1)	30(1)	i i	
P1	3280(1)	1190(1)	6077(1)	21(1)	1	
P2	5425(1)	1398(1)	6459(1)	21(1)	1	
01	4919(1)	752(1)	4947(1)	29(1)	1	
O2	5631(2)	-472(1)	6471(2)	42(1)	1	
O3	3536(2)	-644(1)	5870(1)	35(1)	i.	
04	657(2)	-553(1)	6245(1)	37(1)	Î	
05	3213(2)	2355(2)	3665(1)	-47(1)	- 1	× 10
06	2708(2)	3548(1)	7528(1)	41(1)	1	
07	5474(1)	3862(1)	5058(1)	37(1)	1	
08	5421(2)	2301(1)	8965(1)	40(1)	1	
09	8232(1)	123(1)	5741(1)	34(1)	î	
C1	4741(2)	677(2)	5410(2)	26(1)	i	
C2	5225(2)	-72(2)	6368(2)	28(1)	1	
C3	3850(2)	-187(2)	6004(2)	25(1)	1	
C4	2478(2)	669(2)	6129(2)	24(1)	1	
C5	2302(2)	375(2)	6663(2)	31(1)	1	
C6	1701(2)	-40(2)	6722(2)	31(1)	1	
C7	1270(2)	-162(2)	6235(2)	28(1)	1	
C8	1439(2)	118(2)	5704(2)	26(1)	1	
C9	2028(2)	535(2)	5651(2)	30(1)	t i	
C10	445(2)	-842(2)	6781(2)	46(1)		
C11	3187(2)	1561(2)	5345(2)	23(1)	1	
C12	3288(2)	1188(2)	1841(2)	23(1)	1	
C13	3270(2)	1457(2)	4290(2)	27(1) 31(1)	1	
C14	3177(2)	2131(2)	4221(2)	32(1)	1	
C15	3056(2)	2512(2)	4714(2)	29(1)	1	
C16	3060(2)	2231(2)	5269(2)	26(1)	1	
C17	3202(3)	3050(2)	3589(2)	51(1)	Í	
C18	3067(2)	1855(2)	6575(2)	23(1)	1	
C19	2372(2)	2136(2)	6574(2)	33(1)	1	
C20	2231(2)	2698(2)	6893(2)	34(1)	1	
C21	2786(2)	2982(2)	7219(2)	30(1)	i	
C22	3466(2)	2690(2)	7247(2)	29(1)	1	
C23	3600(2)	2130(2)	6923(2)	25(1)	ī	
C24	2019(2)	3871(2)	7492(2)	56(1)	î	
C25	5450(2)	2137(2)	6020(2)	24(1)	1	
C26	4831(2)	2345(2)	5735(2)	27(1)	1	
C27	4811(2)	2915(2)	5409(2)	30(1)	1	
C28	5430(2)	3293(2)	5368(2)	28(1)	1	
C29	6072(2)	3094(2)	5650(2)	35(1)	1	
C30	6079(2)	2527(2)	5970(2)	35(1)	1	
C31	4838(2)	4049(2)	4741(2)	40(1)	1	
C32	5483(2)	1699(2)	7212(2)	24(1)	1	
C33	5364(2)	2356(2)	7345(2)	27(1)	1	
C34	5326(2)	2577(2)	7922(2)	29(1)	1	
C35	5426(2)	2141(2)	8382(2)	26(1)	1	
C36	5552(2)	1483(2)	8258(2)	27(1)	1	
C37	5560(2)	1268(2)	7686(2)	23(1)	1	
C38	5309(3)	2975(2)	9107(2)	51(1)	1	
C39	6323(2)	1040(2)	6292(2)	22(1)	1	
C40	6806(2)	809(2)	6706(2)	26(1)	1	
C41	7452(2)	492(2)	6545(2)	26(1)	1	
C42	7617(2)	415(2)	5957(2)	26(1)	1	
C43	7133(2)	648(2)	5526(2)	28(1)	1	
C44	6502(2)	953(2)	5697(2)	29(1)	1	
C45	8745(2)	-128(2)	6152(2)	44(1)	1	

Table 2. Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table	3.	Bond	lengths	[Å]	and	angles	[0]

	ACTIVE AND A CONTRACT OF A CON
Re1-C1	1 926(4)
Re1-C3	1.941(4)
Rel-C2	1.941(4)
Rel_Pl	2 5270(0)
Rel P2	2.5279(9)
Rel-F2	2.3467(10)
Rei-Bri	2.0308(0)
PI-CI8	1.815(3)
PI-C4	1.824(4)
P1-C11	1.838(4)
P2-C25	1.816(4)
P2-C32	1.823(4)
P2-C39	1.842(3)
01-C1	1.112(5)
O2-C2	1.133(5)
O3-C3	1.142(4)
O4-C7	1.381(5)
O4-C10	1.410(5)
O5-C14	1.348(5)
O5-C17	1.436(5)
O6-C21	1.365(4)
O6-C24	1 430(5)
07-C28	1.365(4)
07-C31	1.303(4)
08 - C35	1.366(5)
08 - C38	1.335(5)
09-C42	1.455(5)
09-045	1.000(4)
C_{4}	1.423(3)
C4 C5	1.391(3)
C5_C6	1.394(3)
C5-C6	1.399(5)
	1.385(5)
C7-C8	1.371(5)
	1.384(5)
	1.390(5)
	1.404(5)
	1.369(5)
C13–C14	1.402(5)
C14–C15	1.384(5)
C15–C16	1.387(5)
C18–C23	1.379(5)
C18–C19	1.398(5)
C19–C20	1.386(5)
C20-C21	1.388(5)
C21-C22	1.385(5)
C22-C23	1.386(5)
C25-C26	1.375(5)
C25-C30	1.408(5)
C26-C27	1.385(5)
C27-C28	1.378(5)
C28-C29	1.403(5)
C29-C30	1.371(5)
C32-C33	1.398(5)
C32-C37	1.402(5)
$C_{33} - C_{34}$	1.300(5)
C34-C35	1 387(5)
C35-C36	1 209(5)
C36_C37	1.375(5)
	1.373(3)
C39-C40	1.377(5)
C39-C44	1.404(5)

Dr. S. Coles

C40-C41	1.399(5)
C41-C42	1.381(6)
C42C43	1.406(5)
C43-C44	1.372(5)
C1-Re1-C3	91.21(15)
C1-Re1-C2	92.88(15)
C3-Re1-C2	86.48(15)
C1-Re1-P1	92.91(10)
C3-Re1-P1	83,82(10)
C2-Re1-P1	168,79(11)
C1-Re1-P2	85 66(10)
C3-Re1-P2	169.91(10)
$C_2 = Re_1 = P_2$	84 11(11)
Pl_Rel_P2	105 89(3)
Cl_Rel_Brl	177 08(10)
C^2 Rel Drl	00.80(11)
$C_2 = Rc_1 = Br_1$	90.80(11)
D1 Do1 Dr1	87.30(11)
PI-Kel-BII	07.19(2)
P2-Rel-Brl	92.37(2)
C18-P1-C4	103.10(16)
C18-P1-C11	103.51(15)
C4-P1-C11	103.06(16)
C18–P1–Re1	119.48(12)
C4–P1–Re1	111.98(12)
C11-P1-Re1	113.89(11)
C25-P2-C32	103.36(17)
C25-P2-C39	101.42(16)
C32-P2-C39	106.03(15)
C25-P2-Re1	117.71(12)
C32-P2-Re1	118.32(11)
C39-P2-Re1	108.21(11)
C7-O4-C10	118.9(3)
C14-O5-C17	116.8(3)
C21-O6-C24	117.2(3)
C28-07-C31	116.3(3)
C35-O8-C38	116.8(3)
C42-O9-C45	117.9(3)
01-C1-Re1	178.9(3)
02-C2-Re1	174.2(3)
O3-C3-Re1	175.8(3)
C9-C4-C5	117.3(3)
C9-C4-P1	122 9(3)
C5-C4-P1	119 8(3)
C4-C5-C6	121 9(4)
C7-C6-C5	118 9(4)
C8_C7_04	116.9(4)
$C_{0}^{2} - C_{1}^{2} - C_{4}^{2}$	120.0(2)
$C_{0} - C_{1} - C_{0}$	120.0(3)
04 - 07 - 00	123.7(3)
C7-C8-C9	120.8(4)
C8-C9-C4	121.1(4)
C12-C11-C16	117.3(3)
C12-C11-P1	120.4(3)
C16-C11-P1	122.2(3)
C13-C12-C11	121.9(3)
C12-C13-C14	120.2(3)
O5-C14-C15	125.1(4)
O5-C14-C13	115.8(3)
C15-C14-C13	119.1(4)
C14-C15-C16	120.0(3)
C15-C16-C11	121.4(3)

Dr. S. Coles

User: M. Beckett

C23-C18-C19	118.6(3)
C23-C18-P1	120.8(3)
C19-C18-P1	120.4(3)
C20-C19-C18	120.8(3)
C19-C20-C21	119.5(3)
O6-C21-C22	116.0(3)
O6-C21-C20	123.8(3)
C22-C21-C20	120.2(3)
C21-C22-C23	119.6(3)
C18-C23-C22	121.2(3)
C26-C25-C30	117.5(3)
C26-C25-P2	119.9(3)
C30-C25-P2	122.6(3)
C25-C26-C27	122.4(3)
C28-C27-C26	119.3(3)
O7-C28-C27	124.4(3)
O7-C28-C29	115.9(3)
C27-C28-C29	119.8(3)
C30-C29-C28	119.8(3)
C29-C30-C25	121.1(3)
C33-C32-C37	117.2(3)
C33-C32-P2	121.4(3)
C37-C32-P2	121.0(3)
C34-C33-C32	121.9(3)
C35-C34-C33	119.6(3)
O8-C35-C34	125.2(3)
O8-C35-C36	115.3(3)
C34-C35-C36	119.5(3)
C37-C36-C35	120.2(4)
C36-C37-C32	121.6(3)
C40-C39-C44	117.6(3)
C40-C39-P2	124.9(3)
C44-C39-P2	117.2(3)
C39-C40-C41	121.8(3)
C42-C41-C40	119.4(3)
09–C42–C41	125.3(3)
09-C42-C43	114.8(3)
C41-C42-C43	119.9(3)
C44–C43–C42	119.4(3)
C43-C44-C39	121.9(3)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters [Å ² ×10 ³]. The anisotropic displacemen	t
factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + \dots + 2h k a^* b^* U^{12}]$.	

Rel20(1)18(1)18(1) $-1(1)$ 1(1)1(1)Br128(1)40(1)22(1)5(1)1(1) $-5(1)$ P120(1)20(1)22(1) $-2(1)$ 1(1)0(1)P221(1)21(1)19(1)1(1)0(1)0(1)O130(1)32(1)25(2)1(1)1(1)0(1)O245(2)33(2)49(2)0(1) $-3(2)$ 11(1)O337(2)24(1)43(2) $-4(1)$ $-5(1)$ $-4(1)$ O432(2)37(2)29(2)4(1)4(1)15(2)O651(2)28(1)43(2) $-14(1)$ 3(1)8(1)O745(2)28(1)38(2)12(1) $-3(1)$ $-2(1)$ O865(2)32(2)24(2) $-10(1)$ 4(1) $-5(1)$ O928(1)48(2)27(2) $-3(1)$ 4(1)13(1)C119(2)21(2)38(2) $-6(2)$ $-3(2)$ 1(1)C228(2)26(2)29(2)1(2)1(2)1(2)	
Ref $2b(1)$ $16(1)$ $16(1)$ $16(1)$ $16(1)$ $1(1)$ $1(1)$ $1(1)$ Br1 $28(1)$ $40(1)$ $22(1)$ $5(1)$ $1(1)$ $-5(1)$ P1 $20(1)$ $20(1)$ $22(1)$ $-2(1)$ $1(1)$ $0(1)$ P2 $21(1)$ $21(1)$ $19(1)$ $1(1)$ $0(1)$ $0(1)$ O1 $30(1)$ $32(1)$ $25(2)$ $1(1)$ $1(1)$ $0(1)$ O2 $45(2)$ $33(2)$ $49(2)$ $0(1)$ $-3(2)$ $11(1)$ O3 $37(2)$ $24(1)$ $43(2)$ $-4(1)$ $-5(1)$ $-4(1)$ O4 $32(2)$ $37(2)$ $24(2)$ $0(1)$ $-4(1)$ $-15(1)$ O5 $75(2)$ $37(2)$ $29(2)$ $4(1)$ $4(1)$ $15(2)$ O6 $51(2)$ $28(1)$ $43(2)$ $-14(1)$ $3(1)$ $8(1)$ O7 $45(2)$ $28(1)$ $38(2)$ $12(1)$ $-3(1)$ $-2(1)$ O8 $65(2)$ $32(2)$ $24(2)$ $-10(1)$ $4(1)$ $13(1)$ C1 $19(2)$ $21(2)$ $38(2)$ $-6(2)$ $-3(2)$ $1(1)$ C2 $28(2)$ $26(2)$ $29(2)$ $1(2)$ $1(2)$ $1(2)$	
b11 $25(1)$ $40(1)$ $22(1)$ $5(1)$ $1(1)$ $5(1)$ P1 $20(1)$ $20(1)$ $22(1)$ $-2(1)$ $1(1)$ $0(1)$ P2 $21(1)$ $21(1)$ $19(1)$ $1(1)$ $0(1)$ $0(1)$ O1 $30(1)$ $32(1)$ $25(2)$ $1(1)$ $1(1)$ $0(1)$ O2 $45(2)$ $33(2)$ $49(2)$ $0(1)$ $-3(2)$ $11(1)$ O3 $37(2)$ $24(1)$ $43(2)$ $-4(1)$ $-5(1)$ $-4(1)$ O4 $32(2)$ $37(2)$ $29(2)$ $4(1)$ $4(1)$ $-15(1)$ O5 $75(2)$ $37(2)$ $29(2)$ $4(1)$ $4(1)$ $15(2)$ O6 $51(2)$ $28(1)$ $43(2)$ $-14(1)$ $3(1)$ $8(1)$ O7 $45(2)$ $28(1)$ $38(2)$ $12(1)$ $-3(1)$ $-2(1)$ O8 $65(2)$ $32(2)$ $24(2)$ $-10(1)$ $4(1)$ $13(1)$ C1 $19(2)$ $21(2)$ $38(2)$ $-6(2)$ $-3(2)$ $1(1)$ C2 $28(2)$ $26(2)$ $29(2)$ $1(2)$ $1(2)$ $1(2)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
O_{1} $J_{2}(2)$ $J_{1}(2)$ $J_{2}(2)$ $J_{3}(1)$ $J_{3}(1)$ $J_{3}(1)$ O_{5} $75(2)$ $37(2)$ $29(2)$ $4(1)$ $4(1)$ $15(2)$ O_{6} $51(2)$ $28(1)$ $43(2)$ $-14(1)$ $3(1)$ $8(1)$ O_{7} $45(2)$ $28(1)$ $38(2)$ $12(1)$ $-3(1)$ $-2(1)$ O_{8} $65(2)$ $32(2)$ $24(2)$ $-10(1)$ $4(1)$ $-5(1)$ O_{9} $28(1)$ $48(2)$ $27(2)$ $-3(1)$ $4(1)$ $13(1)$ $C1$ $19(2)$ $21(2)$ $38(2)$ $-6(2)$ $-3(2)$ $1(1)$ $C2$ $28(2)$ $26(2)$ $29(2)$ $1(2)$ $1(2)$ $1(2)$	
O_5 $I_5(2)$ $I_7(2)$ $I_2(2)$ $I_1(1)$ $I_1(2)$ $I_2(2)$ O_6 $51(2)$ $28(1)$ $43(2)$ $-14(1)$ $3(1)$ $8(1)$ O_7 $45(2)$ $28(1)$ $38(2)$ $12(1)$ $-3(1)$ $-2(1)$ O_8 $65(2)$ $32(2)$ $24(2)$ $-10(1)$ $4(1)$ $-5(1)$ O_9 $28(1)$ $48(2)$ $27(2)$ $-3(1)$ $4(1)$ $13(1)$ $C1$ $19(2)$ $21(2)$ $38(2)$ $-6(2)$ $-3(2)$ $1(1)$ $C2$ $28(2)$ $26(2)$ $29(2)$ $1(2)$ $1(2)$ $1(2)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
O_8 $65(2)$ $32(2)$ $24(2)$ $-10(1)$ $4(1)$ $-5(1)$ $O9$ $28(1)$ $48(2)$ $27(2)$ $-3(1)$ $4(1)$ $13(1)$ $C1$ $19(2)$ $21(2)$ $38(2)$ $-6(2)$ $-3(2)$ $1(1)$ $C2$ $28(2)$ $26(2)$ $29(2)$ $1(2)$ $1(2)$ $1(2)$	
O9 $28(1)$ $48(2)$ $27(2)$ $-3(1)$ $4(1)$ $13(1)$ $C1$ $19(2)$ $21(2)$ $38(2)$ $-6(2)$ $-3(2)$ $1(1)$ $C2$ $28(2)$ $26(2)$ $29(2)$ $1(2)$ $1(2)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$C_3 = 24(2) = 24(2) = 27(2) = 0(2) = 1(2) = 4(1)$	
$C_4 = 20(2) = 23(2) = 29(2) = -4(1) = 2(1) = 0(1)$	
$C_{5} = 25(2) = 41(2) = 27(2) = 2(2) = -2(2) = -2(2)$	
$C_{6} = 28(2) = 35(2) = 30(2) = 4(2) = 1(2) = 0(2)$	
C7 24(2) 25(2) 36(2) -2(2) 1(1) -1(2)	
C8 = 34(2) = 40(2) = 30(2) = -4(2) = -8(2) = -11(2)	
C9 $32(2)$ $31(2)$ $28(2)$ $0(2)$ $2(2)$ $-6(2)$	
C10 $36(2)$ $43(3)$ $59(3)$ $15(2)$ $3(2)$ $-9(2)$	
C11 $22(2)$ $22(2)$ $26(2)$ $2(1)$ $-1(1)$ $2(1)$	
C12 $30(2)$ 22(2) 27(2) $-3(1)$ 0(2) 2(1)	
C13 $37(2)$ $30(2)$ $26(2)$ $-4(2)$ $-2(2)$ $10(2)$	
C_{14} 38(2) 36(2) 23(2) 4(2) 0(2) 5(2)	
C15 $33(2)$ 26(2) 28(2) 0(2) -4(2) 3(2)	
C16 27(2) 24(2) 26(2) $-2(1)$ $-2(1)$ 5(1)	
C17 86(4) 34(2) 32(2) 7(2) 5(2) 11(2)	
C18 27(2) 23(2) 20(2) -1(1) 4(1) 1(1)	
C19 24(2) 34(2) 40(2) -10(2) -1(2) 1(2)	
C20 26(2) 35(2) 42(2) -9(2) 6(2) 7(2)	
C21 35(2) 24(2) 32(2) -5(2) 8(2) 2(2)	
C22 33(2) 25(2) 29(2) -2(2) -1(2) -1(2)	
C23 24(2) 28(2) 24(2) -2(2) 1(1) 1(1)	
C24 50(3) 37(2) 79(4) -22(2) 13(3) 13(2)	
C25 28(2) 24(2) 21(2) 1(2) 3(1) 0(1)	
C26 26(2) 28(2) 26(2) 2(2) -1(1) -5(1)	
C27 28(2) 29(2) 32(2) 5(2) -2(2) 1(2)	
C28 39(2) 23(2) 24(2) 5(2) 3(2) -2(2)	
C29 26(2) 32(2) 48(3) 9(2) 0(2) -7(2)	
C30 27(2) 33(2) 44(3) 10(2) -6(2) -5(2)	
C31 47(2) 34(2) 38(2) 10(2) -2(2) 8(2)	
C32 21(2) 25(2) 26(2) -4(2) -1(1) -1(1)	
C33 28(2) 26(2) 27(2) 2(2) -5(2) 1(1)	
C34 30(2) 24(2) 32(2) -8(2) 0(2) 1(2)	
C35 25(2) 30(2) 24(2) -4(2) 2(1) -1(1)	
C36 31(2) 29(2) 21(2) 0(2) 2(1) -1(1)	
C37 25(2) 21(2) 25(2) -2(1) 1(1) 1(1)	
C38 88(3) 33(2) 33(3) -14(2) 14(2) -10(2)	
C39 18(2) 23(2) 26(2) -1(1) 0(1) 0(1)	
C40 28(2) 30(2) 21(2) 1(2) 2(1) 1(2)	
C41 25(2) $30(2)$ 23(2) 3(1) $-1(2)$ 4(1)	
C42 24(2) 26(2) 28(2) $-2(2)$ 2(2) 2(1)	
C43 $28(2)$ $38(2)$ $17(2)$ $-6(2)$ $3(1)$ $1(2)$	
C44 $25(2)$ $36(2)$ $27(2)$ $-1(2)$ $-5(2)$ $2(2)$	
C45 39(2) 58(3) 35(2) 8(2) 8(2) 25(2)	

22/02/00 15:28:19

Dr. S. Coles

00src069

-

User: M. Beckett

Atom	x	У	Z	U_{eq}	S.o.f.	
H5	2592	457	6990	37	1	
H6	1593	-231	7083	37	1	
H8	1154	26	5376	42	1	
H9	2126	729	5290	36	ĩ	
H10A	829	-1120	6920	69	1	10
H10B	11	-1095	6721	69	ĩ	
H10C	351	-507	7066	69	1	
H12	3370	743	4879	32	1	
H13	3321	1192	3961	- 37	1	
H15	2972	2957	4673	35	1	
H16	2977	2491	5597	31	1	
H17A	2757	3223	3748	76	i	
H17B	3229	3152	3177	76	1	
H17C	3611	3239	3789	76	Ĩ	
H19	2000	1944	6357	30	1	
H20	1768	2883	6887	41	1	
H22	3831	2868	7481	35	1	
H23	4058	1936	6942	30	1	
H24A	1896	3942	7087	83	1	
H24B	2046	4282	7602	03	1	
H24C	1651	3605	7673	83	1	
H26	4410	2094	5761	30	1	
H27	4384	30/1	5210	36	1	
H29	6493	3345	5620	30	1	
H30	6507	2397	6156	42	1	
H31A	4732	3728	4446	42	1	
H31B	4919	4464	4557	60	1	
H31C	4433	4082	5008	60	1	
H33	5308	2652	7040	30	2 8 9 2 1 0	
H34	5235	3014	8000	34	1	
H36	5630	1191	8564	30	1	
H37	5618	825	7612	28	1	
H38A	5671	3235	8013	20	1	
H38B	5349	3034	0525	77	1	
H38C	4832	3107	8070	77	1	
H40	6701	864	7103	21	1	
H41	7768	335	6832	31	1	
H43	7239	596	5129	34	1	
H44	6183	1107	5410	35	1	
H45A	8940	223	6383	66	1	
H45B	9134	-341	5945	66	1	
H45C	8507	-435	6406	66	1	
	0.007	-433	0400	00	I	

Table 5. Hydrogen coordinates [× 10^4] and isotropic displacement parameters [Å² × 10^3].

Appendix C

Crystal tables for **2h**

Table 1. Crystal data and structure refinement.

Archive code	98_11IS07	
Identification code	MAB1	
Empirical formula	C45H42BrO3P2Re	
Formula weight	958.84	
Temperature	150(2) K	
Wavelength	0.71073 Å [Mo- <i>K</i> α]	
Crystal system	Triclinic	
Space group	<i>P</i> -1	1. 26
Unit cell dimensions	a = 10.15740(10) Å	$\alpha = 103.0460(6)^{\circ}$
	b = 10.3729(2) Å	$\beta = 94.8190(9)^{\circ}$
	c = 19.2892(3) Å	$\gamma = 92.1630(9)^{\circ}$
Volume	1969.52(5) Å ³	
Z	2	
Density (calculated)	1.617 Mg/m ³	
Absorption coefficient	4.220 mm ⁻¹	
F(000)	952	
Crystal size	0.52 x 0.40 x 0.38 mm	
Data collection range	$2.06 \le \theta \le 26.00^{\circ}$	
Index ranges	$-12 \le h \le 12, \ -12 \le k \le$	$\leq 12, -23 \leq l \leq 23$
Reflections collected	34942	
Independent reflections	7740 [$R(int) = 0.0414$]	
Absorption correction	Empirical [via SORTA	.V]
Max. and min. transmission	0.2969 and 0.2176	
Refinement method	Full-matrix least-squar	es on F^2
Data / restraints / parameters	7740 / 0 / 470	
Goodness-of-fit on F^2	1.062	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0193, wR_2 = 0.0$	476
R indices (all data)	$R_1 = 0.0201, wR_2 = 0.0$	481
Largest diff. peak and hole	$1.134 \text{ and } -1.051 \text{ e.}\text{Å}^{-3}$	
Extinction coefficient	0.0025(2)	

Table 2. Atomic co-ordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) with estimated standard deviations (e.s.d.s) in parentheses. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

	x	У	Z	$U_{ m eq}$
Re(1)	9848 52(8)	-3 65(8)	1980 33(4)	15 33(5)
Br(1)	9753 9(2)	2259 8(2)	2038 34(14)	15.55(5)
C(1)	9973(2)	-1531(2)	1220.2(13)	20.47(7)
O(1)	$10040\ 5(17)$	-23557(18)	7180(0)	19.9(3)
C(2)	9543(2)	952(3)	12275(14)	27.2(4)
O(2)	9264(2)	1428(2)	755 5(11)	20.0(3)
C(3)	7942(2)	-218(2)	1045.6(13)	41.0(3)
O(3)	$6811\ 5(17)$	-2738(19)	1943.0(13) 1933 1(10)	21.4(3)
P(1)	12251 3(5)	722 8(6)	2137.0(3)	14.65(11)
C(111)	12231.3(3) 13473(2)	-346(2)	16610(12)	14.03(11)
C(112)	13646(2)	-1670(2)	1847 1(12)	17.8(4)
C(112)	14473(2)	-1795(2)	2442.7(12)	17.3(4)
C(114)	14475(2) 14645(2)	-3022(2)	26007(12)	19.3(3)
C(115)	14073(2) 14022(3)	-4149(2)	21560(14)	24.0(3)
C(116)	13223(3)	-4056(3)	1553 1(15)	28.2(5)
C(117)	13034(2)	-2820(2)	14044(13)	23.9(0)
C(121)	12983(2)	1149(2)	3085.6(12)	18.4(5)
C(122)	14007(2)	2296(2)	3297.1(11)	17.5(4)
C(123)	15326(2)	2158(2)	31697(13)	22.8(5)
C(124)	16236(2)	3246(3)	3350.8(14)	22.8(5)
C(125)	15836(3)	4481(3)	3670.9(14)	30.3(6)
C(126)	14531(3)	4633(2)	3807.5(14)	28 5(6)
C(127)	13624(2)	3551(2)	36164(13)	23.6(5)
C(131)	12505(2)	2292(2)	18254(12)	18.9(5)
C(132)	13309(3)	2190(2)	1196.7(12)	22.5(5)
C(133)	14661(3)	2461(3)	1294.2(17)	354(6)
C(134)	15378(4)	2322(4)	689(2)	60 0(11)
C(135)	14698(5)	1920(4)	10(2)	70.3(13)
C(136)	13374(5)	1691(4)	-80(2)	66.8(11)
C(137)	12669(4)	1812(3)	507.3(15)	427(7)
P(2)	9870.0(5)	-1352.9(6)	2899.4(3)	15.80(12)
C(211)	11422(2)	-2130(2)	3095.8(12)	20.1(5)
C(212)	11505(2)	-2774(2)	3726.2(12)	19.7(5)
C(213)	12185(2)	-2096(2)	4372.2(13)	244(5)
C(214)	12274(2)	-2654(3)	4963 4(14)	28.7(6)
C(215)	11671(2)	-3891(3)	4922 7(13)	26 9(5)
C(216)	10995(2)	-4578(2)	4283 8(13)	20.2(3)
C(217)	10928(2)	-4032(2)	3687 6(12)	29.3(5)
C(221)	9501(2)	-408(2)	3797 1(12)	20.4(5)
-()	2001(2)	100(2)	5171.1(12)	22.3(3)

			And a second	
C(222)	8393(2)	-951(2)	4141.3(12)	19.5(5)
C(223)	8620(3)	-1775(2)	4611.5(13)	25.2(5)
C(224)	7593(3)	-2235(3)	4937.6(15)	36.5(7)
C(225)	6324(3)	-1881(3)	4805.6(15)	40.6(7)
C(226)	6075(3)	-1065(3)	4337.6(15)	39.2(7)
C(227)	7099(2)	-611(3)	4006.9(13)	27.4(5)
C(231)	8587(2)	-2737(2)	2677.1(12)	19.1(5)
C(232)	8555(2)	-3642(2)	1939.1(12)	21.9(5)
C(233)	9556(3)	-4491(2)	1738.1(13)	26.2(5)
C(234)	9500(3)	-5303(3)	1054.6(14)	32.3(6)
C(235)	8434(3)	-5286(3)	565.8(15)	37.0(7)
C(236)	7417(3)	-4471(3)	757.0(15)	37.3(7)
C(237)	7478(3)	-3652(3)	1439.7(14)	28.3(5)

6.83

Table 2 (continued)

$-2\pi^{2}[h^{2}a^{*2}U_{11} + + 2 h k a^{*} b^{*} U_{12}]$						
	<i>U</i> ₁₁	U ₂₂	<i>U</i> ₃₃	<i>U</i> ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Re(1)	13.10(6)	16.40(6)	16.43(6)	3.52(4)	1.90(3)	0.54(3)
Br(1)	24.43(12)	19.02(12)	33.60(14)	-0.63(10)	6.46(10)	3.63(9)
C(1)	16.3(11)	25.4(13)	20.6(12)	10.5(10)	2.5(9)	0.5(9)
O(1)	31.8(10)	27.6(10)	20.2(9)	0.1(8)	5.3(7)	2.1(7)
C(2)	16.6(11)	27.8(13)	35.5(15)	8.2(11)	1.2(10)	-2.0(10)
O(2)	39.2(11)	48.7(13)	44.7(13)	32.1(11)	-8.7(9)	-1.7(9)
C(3)	23.7(13)	19.7(12)	19.6(12)	2.0(9)	2.4(9)	0.7(9)
O(3)	16.3(9)	39.7(11)	37.9(11)	5.4(9)	3.6(7)	1.5(7)
P(1)	13.6(3)	15.6(3)	14.8(3)	3.4(2)	2.2(2)	0.6(2)
C(111)	17.4(10)	19.8(11)	17.4(11)	5.2(9)	5.1(8)	3.1(9)
C(112)	14.8(10)	20.0(11)	18.6(11)	3.5(9)	7.9(8)	1.9(8)
C(113)	17.4(11)	19.0(11)	21.5(12)	2.8(9)	3.6(9)	1.1(9)
C(114)	22.2(12)	24.4(13)	27.5(13)	9.2(10)	4.4(10)	3.6(10)
C(115)	32.3(14)	18.3(12)	30.0(15)	7.8(11)	9.1(11)	5.3(10)
C(110)	34.3(14)	19.0(12)	31.8(14)	-2.4(10)	4.8(11)	-1.5(10)
C(117)	23.3(12) 10.2(11)	23.7(13)	19.8(12)	0.8(10)	2.4(9)	3.2(10)
C(121) C(122)	19.2(11) 20.7(11)	21.0(12) 21.1(11)	14.0(11) 10.2(10)	4.0(9)	2.0(8)	1.7(9)
C(122) C(123)	10.7(11)	21.1(11) 23.8(12)	23.0(13)	23(10)	-0.9(8)	2.0(9) 3.8(0)
C(123)	17.7(11) 17.5(12)	35.1(15)	32.0(13)	73(12)	-3.8(10)	-20(10)
C(125)	31.6(14)	263(14)	30.0(14)	6.5(11)	-9.3(11)	-9.1(11)
C(126)	38.8(15)	18.9(12)	26.1(13)	1.9(10)	1.1(11)	3.6(10)
C(127)	26.9(12)	23.9(12)	20.1(12)	3.2(10)	5.4(9)	5.6(10)
C(131)	19.2(11)	17.8(11)	20.5(12)	6.9(9)	1.0(9)	-0.2(9)
C(132)	34.3(13)	15.5(11)	19.8(12)	6.8(9)	7.0(10)	1.8(9)
C(133)	31.8(14)	29.8(15)	51.9(18)	19.8(13)	16.2(13)	4.7(11)
C(134)	49(2)	48(2)	100(3)	40(2)	42(2)	13.0(16)
C(135)	109(4)	70(3)	48(2)	26(2)	52(2)	30(2)
C(136)	102(4)	71(3)	31.0(19)	13.1(18)	25(2)	8(2)
C(137)	65(2)	43.2(18)	21.1(14)	10.1(13)	3.5(13)	-0.9(15)
P(2)	17.0(3)	16.4(3)	13.0(3)	0.6(2)	4.0(2)	-0.6(2)
C(211)	21.1(11)	20.0(11)	20.4(12)	5.8(9)	5.8(9)	0(9)
C(212)	16.0(11)	24.0(12)	20.1(12)	5.3(9)	5.7(8)	4.7(9)
C(213)	21.3(12)	23.6(12)	26.7(13)	3.2(10)	0.7(9)	-0.2(9)
C(214)	26.5(13)	35.2(15)	21.9(13)	4.1(11)	-5.4(10)	2.7(11)
C(215)	28.5(13)	34.8(14)	19.9(12)	10.5(11)	2.3(10)	8.0(11)
C(216)	25.0(12)	21.7(12)	27.8(13)	6.9(10)	6.5(10)	3.3(9)
C(217)	22.6(11)	20.7(12)	17.6(12)	3.2(9)	2.6(9)	3.4(9)
C(221)	27.5(12)	20.1(12)	16.7(11)	-2.0(9)	4.8(9)	-0.6(9)
C(222)	21.2(11)	19.8(11)	14.1(11)	-3.9(9)	4.0(8)	0.5(9)
C(223)	30.8(13)	26.7(13)	18.2(12)	2.9(10)	6.1(10)	7.1(10)

Table 3. Anisotropic displacement parameters ($Å^2 \times 10^3$). The anisotropic displacement factor exponent takes the form:

C(224)	56.2(19)	31.3(15)	24.1(14)	6.0(11)	17.3(12)	1.3(13)
C(225)	39.6(16)	46.8(18)	29.8(15)	-5.7(13)	18.8(12)	-13.7(13)
C(226)	19.9(13)	61(2)	27.7(15)	-9.1(14)	4.4(10)	1.1(12)
C(227)	27.3(13)	36.0(15)	15.6(12)	-1.8(10)	1.1(9)	7.5(11)
C(231)	20.5(11)	19.1(11)	16.3(11)	0.6(9)	4.6(8)	-2.8(9)
C(232)	28.4(12)	17.2(11)	18.3(12)	0.3(9)	5.0(9)	-5.8(9)
C(233)	36.5(14)	21.2(12)	20.2(12)	3.5(10)	2.6(10)	2.1(10)
C(234)	45.9(16)	21.9(13)	26.0(14)	-3.5(11)	8.8(12)	3.3(11)
C(235)	52.0(18)	28.5(14)	22.0(14)	-10.0(11)	2.2(12)	-5.6(12)
C(236)	40.0(16)	38.4(16)	25.5(14)	-4.1(12)	-7.6(11)	-7.2(12)
C(237)	27.5(13)	27.2(13)	26.5(14)	-1.0(11)	2.7(10)	-4.1(10)

	x	У	Z	$U_{ m eq}$
11(111)	12211	507	1140	0.1
H(111)	13211	-507	1142	21
H(111)	14044	1007	1750	21
H(115)	14924	-1027	2745	23
H(114)	13192	-3080	3015	29
H(115)	14140	-4989	2263	34
H(110)	12800	-4833	1242	36
H(117)	12477	-2/62	993	28
H(121)	12253	1348	3396	22
H(121)	13392	354	3190	22
H(123)	15611	1310	2956	27
H(124)	17132	3140	3254	35
H(125)	16457	5223	3797	36
H(126)	14255	5478	4032	34
H(127)	12725	3668	3705	28
H(131)	11626	2601	1698	23
H(131)	12945	2978	2229	23
H(133)	15102	2736	1762	42
H(134)	16310	2499	744	72
H(135)	15180	1806	-399	84
H(136)	12928	1446	-547	80
H(137)	11737	1636	443	51
H(211)	11576	-2812	2665	24
H(211)	12157	-1443	3175	24
H(213)	12593	-1241	4408	29
H(214)	12751	-2184	5397	34
H(215)	11720	-4266	5330	32
H(216)	10577	-5427	4253	29
H(217)	10483	-4521	3249	24
H(221)	10318	-328	4126	27
H(221)	9296	499	3757	27
H(223)	9493	-2026	4710	30
H(224)	7769	-2801	5255	44
H(225)	5624	-2193	5033	49
H(226)	5199	-815	4243	47
H(227)	6915	-59	3683	33
H(231)	8717	-3283	3035	23
H(231)	7711	-2359	2727	23
H(233)	10290	-4516	2074	31
H(234)	10196	-5869	925	39
H(235)	8399	-5835	97	44
H(236)	6676	-4470	422	45
H(237)	6775	-3093	1567	34
	17. S S S	NT307072 773	REALE STREAM!	

.

Table 4. Hydrogen atom co-ordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) with e.s.d.s in parentheses.

			N. (1997) - 1997 (1997)
Re(1)-C(1)	1.917(2)	Re(1)-C(3)	1.935(2)
Re(1)-C(2)	1.946(3)	Re(1)-P(2)	2.4936(6)
Re(1)-P(1)	2.5000(5)	$\operatorname{Re}(1)$ - $\operatorname{Br}(1)$	2.6504(3)
C(1)-O(1)	1.146(3)	C(2)-O(2)	1.150(3)
C(3)-O(3)	1.145(3)		12 255
P(1)-C(111)	1.857(2)	P(1)-C(121)	1.863(2)
P(1)-C(131)	1.875(2)	C(111)-C(112)	1.507(3)
C(112)-C(117)	1.391(3)	C(112)-C(113)	1.398(3)
C(113)-C(114)	1.388(3)	C(114)-C(115)	1.380(4)
C(115)-C(116)	1.385(4)	C(116)-C(117)	1.392(4)
C(121)-C(122)	1.510(3)	C(122)-C(123)	1.389(3)
C(122)-C(127)	1.394(3)	C(123)-C(124)	1.393(3)
C(124)-C(125)	1.383(4)	C(125)-C(126)	1.381(4)
C(126)-C(127)	1.386(4)	C(131)-C(132)	1.505(3)
C(132)-C(133)	1.380(4)	C(132)-C(137)	1.394(4)
C(133)-C(134)	1.410(5)	C(134)-C(135)	1.397(6)
C(135)-C(136)	1.347(6)	C(136)-C(137)	1.375(5)
P(2)-C(211)	1.847(2)	P(2)-C(231)	1.852(2)
P(2)-C(221)	1.863(2)	C(211)-C(212)	1.512(3)
C(212)-C(217)	1.394(3)	C(212)-C(213)	1.396(3)
C(213)-C(214)	1.389(4)	C(214)-C(215)	1.383(4)
C(215)-C(216)	1.387(4)	C(216)-C(217)	1.390(3)
C(221)-C(222)	1.507(3)	C(222)-C(223)	1.392(3)
C(222)-C(227)	1.392(3)	C(223)-C(224)	1.386(4)
C(224)-C(225)	1.373(5)	C(225)-C(226)	1.386(5)
C(226)-C(227)	1.386(4)	C(231)-C(232)	1.515(3)
C(232)-C(233)	1.393(4)	C(232)-C(237)	1.394(4)
C(233)-C(234)	1.390(4)	C(234)-C(235)	1.378(4)
C(235)-C(236)	1.381(4)	C(236)-C(237)	1.392(4)
			12

Table 5. Interatomic distances (Å) with e.s.d.s in parentheses.

C(1)-Re(1)-C(3)	93.78(10)	C(1)-Re(1)-C(2)	85.67(10)
C(3)-Re(1)-C(2)	86.18(10)	C(1)-Re(1)-P(2)	92.59(7)
C(3)-Re(1)-P(2)	85.19(7)	C(2)-Re(1)-P(2)	171.07(7)
C(1)-Re(1)-P(1)	96.38(7)	C(3)-Re(1)-P(1)	169.06(7)
C(2)-Re(1)-P(1)	90.57(7)	P(2)-Re(1)-P(1)	98.34(2)
C(1)-Re(1)-Br(1)	173.99(7)	C(3)-Re(1)-Br(1)	88.44(7)
C(2)-Re(1)-Br(1)	88.91(8)	P(2)-Re(1)-Br(1)	93.157(14)
P(1)-Re(1)-Br(1)	81.048(14)		
O(1)-C(1)-Re(1)	172.8(2)	O(2)-C(2)-Re(1)	173.4(2)
O(3)-C(3)-Re(1)	176.4(2)	Š _e	
C(111)-P(1)-C(121)	103.72(10)	C(111)-P(1)-C(131)	102.08(10)
C(121)-P(1)-C(131)	104.14(10)	C(111)-P(1)-Re(1)	120.69(7)
C(121)-P(1)-Re(1)	114.15(7)	C(131)-P(1)-Re(1)	110.25(7)
C(112)-C(111)-P(1)	116.9(2)	C(117)-C(112)-C(113)	117.8(2)
C(117)-C(112)-C(111)	120.5(2)	C(113)-C(112)-C(111)	121.6(2)
C(114)-C(113)-C(112)	121.2(2)	C(115)-C(114)-C(113)	119.9(2)
C(114)-C(115)-C(116)	120.0(2)	C(115)-C(116)-C(117)	119.8(2)
C(112)-C(117)-C(116)	121.2(2)	C(122)-C(121)-P(1)	117.0(2)
C(123)-C(122)-C(127)	118.1(2)	C(123)-C(122)-C(121)	122.3(2)
C(127)-C(122)-C(121)	119.5(2)	C(122)-C(123)-C(124)	120.8(2)
C(125)-C(124)-C(123)	120.1(2)	C(126)-C(125)-C(124)	119.8(2)
C(125)-C(126)-C(127)	120.0(2)	C(126)-C(127)-C(122)	121.2(2)
C(132)-C(131)-P(1)	115.6(2)	C(133)-C(132)-C(137)	120.0(3)
C(133)-C(132)-C(131)	121.0(2)	C(137)-C(132)-C(131)	119.0(2)
C(132)-C(133)-C(134)	119.0(3)	C(135)-C(134)-C(133)	119.0(3)
C(136)-C(135)-C(134)	121.5(3)	C(135)-C(136)-C(137)	119.8(4)
C(136)-C(137)-C(132)	120.7(4)		119.0(1)
C(211)-P(2)-C(231)	104.73(11)	C(211)-P(2)-C(221)	103.11(11)
C(231)-P(2)-C(221)	103.43(10)	C(211)-P(2)-Re(1)	117.48(7)
C(231)-P(2)-Re(1)	112.77(8)	C(221)-P(2)-Re(1)	113.83(8)
	10 ST0		
C(212)-C(211)-P(2)	117.5(2)	C(217)-C(212)-C(213)	118.3(2)
C(217)-C(212)-C(211)	122.4(2)	C(213)-C(212)-C(211)	119.4(2)
C(214)-C(213)-C(212)	120.9(2)	C(215)-C(214)-C(213)	120.2(2)
C(214)-C(215)-C(216)	119.5(2)	C(215)-C(216)-C(217)	120.3(2)
C(216)-C(217)-C(212)	120.7(2)	C(222)-C(221)-P(2)	117.9(2)
C(223)-C(222)-C(227)	117.8(2)	C(223)-C(222)-C(221)	121.9(2)
C(227)-C(222)-C(221)	120.3(2)	C(224)-C(223)-C(222)	121.9(2) 121.1(2)
C(225)-C(224)-C(223)	120.5(3)	C(224)-C(225)-C(226)	1194(3)
C(225)-C(226)-C(227)	120.2(3)	C(226)-C(227)-C(222)	121.4(3)
C(232)-C(231)-P(2)	1163(2)	C(233)-C(232)-C(237)	1180(2)
C(233)-C(232)-C(231)	122.6(2)	C(237) - C(232) - C(231)	110.0(2)
C(234)-C(233)-C(232)	122.0(2) 121 1(2)	$C(235)_C(234)_C(232)$	12.4(2) 120.0(2)
C(234)-C(235)-C(236)	1200(2)	C(235) - C(235) - C(235)	120.0(3)
C(236)-C(237)-C(230)	120.0(2)	$C(233)^{-}C(230)^{-}C(237)$	120.0(3)
	120.7(3)		

Table 6. Angles between interatomic vectors (°) with e.s.d.s in parentheses

Appendix D

Crystal tables for 2j

Table 1. Crystal data and structure refinement for Mn(CO)₃Br(dppe)CHCl₃.

Identification code	99SRC056
Empirical formula	C ₃₀ H ₂₅ Br Cl ₃ Mn O ₃ P ₂
Formula weight	736.64
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2 ₁ /c
Unit cell dimensions	a = 11.2561(7) Å
	b = 19.5844(11) Å
	c = 14.7549(9) Å
	$\beta = 108.075(3)^{\circ}$.
Volume	3092.1(3) Å ³
Z	4
Density (calculated)	1.582 Mg/m ³
Absorption coefficient	2.113 mm ⁻¹
F(000)	1480
Crystal size	0.20 x 0.05 x 0.05 mm ³
Theta range for data collection	2.92 to 24.71°.
Index ranges	-13<=h<=13, -23<=k<=23, -17<=l<=17
Reflections collected	49193
Independent reflections	5257 [R(int) = 0.1412]
Completeness to theta = 24.71°	96.6 %
Max. and min. transmission	0.9017 and 0.6773
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5257 / 0 / 361
Goodness-of-fit on F ²	1.040
Final R indices [I>2sigma(I)]	R1 = 0.0567, WR2 = 0.1357
R indices (all data)	R1 = 0.1023, wR2 = 0.1574
Largest diff. peak and hole	1.133 and -0.531 e.Å ⁻³

Br(1)-Mn(1)	2.5198(10)	C(16)-C(17)	1.398(8)
Mn(1)-C(2)	1.818(7)	C(8)-C(9)	1.366(10)
Mn(1)-C(1)	1.827(6)	C(8)-C(7)	1.374(9)
Mn(1)-C(3)	1.953(9)	Cl(3)-C(30)	1.736(7)
Mn(1)-P(1)	2.3206(17)	C(23)-C(22)	1.397(8)
Mn(1)-P(2)	2.3325(17)	C(19)-C(20)	1.374(9)
P(2)-C(5)	1.821(6)	C(22)-C(21)	1.370(9)
P(2)-C(12)	1.830(5)	C(20)-C(21)	1.381(9)
P(2)-C(6)	1.832(6)	O(3)-C(3)	0.955(7)
P(1)-C(24)	1.823(6)		
P(1)-C(4)	1.828(5)	C(2)-Mn(1)-C(1)	93.0(2)
P(1)-C(18)	1.836(6)	C(2)-Mn(1)-C(3)	90.1(2)
Cl(1)-C(30)	1.761(7)	C(1)-Mn(1)-C(3)	90.7(2)
Cl(2)-C(30)	1.767(6)	C(2)-Mn(1)-P(1)	90.06(17)
O(1)-C(1)	1.121(6)	C(1)-Mn(1)-P(1)	90.56(18)
O(2)-C(2)	1.126(7)	C(3)-Mn(1)-P(1)	178.69(17)
C(11)-C(10)	1.372(9)	C(2)-Mn(1)-P(2)	92.72(17)
C(11)-C(6)	1.377(8)	C(1)-Mn(1)-P(2)	172.58(19)
C(18)-C(23)	1.369(8)	C(3)-Mn(1)-P(2)	93.96(17)
C(18)-C(19)	1.382(8)	P(1)-Mn(1)-P(2)	84.74(6)
C(5)-C(4)	1.528(8)	C(2)-Mn(1)-Br(1)	177.56(17)
C(25)-C(24)	1.382(8)	C(1)-Mn(1)-Br(1)	89.26(18)
C(25)-C(26)	1.392(8)	C(3)-Mn(1)-Br(1)	90.70(16)
C(24)-C(29)	1.395(8)	P(1)-Mn(1)-Br(1)	89.05(5)
C(6)-C(7)	1.384(9)	P(2)-Mn(1)-Br(1)	84.94(5)
C(26)-C(27)	1.377(9)	C(5)-P(2)-C(12)	105.9(3)
C(12)-C(17)	1.388(8)	C(5)-P(2)-C(6)	104.2(3)
C(12)-C(13)	1.397(8)	C(12)-P(2)-C(6)	101.4(3)
C(29)-C(28)	1.376(9)	C(5)-P(2)-Mn(1)	107.05(19)
C(15)-C(14)	1.372(8)	C(12)-P(2)-Mn(1)	113.74(18)
C(15)-C(16)	1.379(8)	C(6)-P(2)-Mn(1)	123.11(19)
C(10)-C(9)	1.370(9)	C(24)-P(1)-C(4)	106.8(3)
C(14)-C(13)	1.382(8)	C(24)-P(1)-C(18)	100.5(3)
C(27)-C(28)	1.380(9)	C(4)-P(1)-C(18)	103.6(3)

Table 3. Bond lengths [Å] and angles [°] for Mn(CO)₃Br(dppe)CHCl₃.

C(24)-P(1)-Mn(1)	117.08(19)	C(14)-C(15)-C(16)	120.0(6)
C(4)-P(1)-Mn(1)	107.80(19)	C(9)-C(10)-C(11)	119.6(6)
C(18)-P(1)-Mn(1)	119.75(19)	C(15)-C(14)-C(13)	120.7(6)
C(10)-C(11)-C(6)	122.1(6)	C(14)-C(13)-C(12)	120.4(5)
C(23)-C(18)-C(19)	119.4(5)	C(26)-C(27)-C(28)	120.1(6)
C(23)-C(18)-P(1)	121.3(4)	C(5)-C(4)-P(1)	110.4(4)
C(19)-C(18)-P(1)	119.2(4)	C(29)-C(28)-C(27)	119.4(6)
C(4)-C(5)-P(2)	109.8(4)	C(15)-C(16)-C(17)	119.8(6)
O(1)-C(1)-Mn(1)	179.0(5)	C(9)-C(8)-C(7)	120.8(7)
C(24)-C(25)-C(26)	120.1(6)	C(12)-C(17)-C(16)	120.7(6)
O(2)-C(2)-Mn(1)	179.0(5)	C(8)-C(9)-C(10)	119.4(6)
C(25)-C(24)-C(29)	118.5(5)	C(8)-C(7)-C(6)	120.8(7)
C(25)-C(24)-P(1)	122.6(4)	C(18)-C(23)-C(22)	120.3(6)
C(29)-C(24)-P(1)	118.8(5)	C(20)-C(19)-C(18)	120.6(6)
C(11)-C(6)-C(7)	117.3(6)	C(21)-C(22)-C(23)	119.6(6)
C(11)-C(6)-P(2)	120.9(5)	C(19)-C(20)-C(21)	119.9(6)
C(7)-C(6)-P(2)	121.8(5)	C(22)-C(21)-C(20)	120.2(6)
C(27)-C(26)-C(25)	120.4(6)	Cl(3)-C(30)-Cl(1)	111.5(4)
C(17)-C(12)-C(13)	118.4(5)	Cl(3)-C(30)-Cl(2)	110.6(4)
C(17)-C(12)-P(2)	124.0(4)	Cl(1)-C(30)-Cl(2)	108.9(4)
C(13)-C(12)-P(2)	117.5(4)	O(3)-C(3)-Mn(1)	176.6(6)
C(28)-C(29)-C(24)	121.5(6)		

Symmetry transformations used to generate equivalent atoms:

Appendix E

Crystal tables for **2m**

Table 1. Crystal data and structure refinement.

Identification code	99src306	
Empirical formula	C37H28BrFeMnO3P2	
Formula weight	773.23	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 11.515(2) Å	$\alpha = 90^{\circ}$
	b = 19.546(4) Å	$\beta = 93.26(3)^{\circ}$
	c = 14.169(3) Å	$\gamma = 90^{\circ}$
Volume	3183.9(11) Å ³	2
Z	4	
Density (calculated)	1.613 Mg / m ³	
Absorption coefficient	2.245 mm ⁻¹	
F(000)	1560	
Crystal	Block; orange	
Crystal size	$0.15 \times 0.125 \times 0.1 \text{ mm}^3$	
θ range for data collection	1.77 – 27.49°	
Index ranges	$-14 \le h \le 14, -21 \le k \le 25, -18 \le h$! ≤ 17
Reflections collected	36700	
Independent reflections	7273 $[R_{int} = 0.0652]$	
Completeness to $\theta = 27.49^{\circ}$	96.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.804 and 0.668	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	7273 / 0 / 406	
Goodness-of-fit on F^2	1.099	
Final R indices $[F^2 > 2\sigma(F^2)]$	RI = 0.0494, wR2 = 0.1433	
R indices (all data)	RI = 0.0663, wR2 = 0.1549	
Largest diff. peak and hole	1.049 and $-1.726 \text{ e} \text{ Å}^{-3}$	

Diffractometer: Enraf Nonius KappaCCD area detector (φ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307–326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33–37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421–426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467–473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

Special details:

Atom	x	у	Z	U _{eq}	S.o.f.		
br1	2534(1)	2387(1)	7072(1)	36(1)	1		
fe1	3382(1)	1017(1)	9575(1)	18(1)	1		
mn1	2037(1)	1187(1)	6572(1)	18(1)	1		
p1	996(1)	886(1)	7932(1)	17(1)	1		
p2	3886(1)	853(1)	7250(1)	16(1)	1		
01	2985(2)	1661(2)	4787(2)	41(1)	1		
02	-136(2)	1764(2)	5685(2)	42(1)	1		
o3	1604(3)	-98(2)	5685(2)	38(1)	1		
c1	4937(3)	690(2)	9127(2)	20(1)	1		
c2	5118(3)	1063(2)	9982(2)	24(1)	1		
c3	4677(3)	1734(2)	9830(2)	26(1)	1		
c4	4191(3)	1777(2)	8885(2)	24(1)	1		
c5	4347(3)	1124(2)	8439(2)	18(1)	1		
c6	1715(3)	1329(2)	9788(2)	25(1)	1		
c7	2268(3)	1088(2)	10646(2)	31(1)	1		
c8	2601(3)	402(2)	10518(2)	26(1)	1		
c9	2275(3)	208(2)	9572(2)	23(1)	1		
c10	1703(3)	783(2)	9106(2)	20(1)	1		
c11	165(3)	99(2)	7675(2)	21(1)	1		
c12	314(3)	-525(2)	8143(2)	23(1)	1		
c13	-301(3)	-1098(2)	7836(3)	28(1)	1		
c14	-1105(3)	-1062(2)	7067(3)	27(1)	1		
c15	-1302(3)	-441(2)	6629(3)	33(1)	1		
c16	-675(3)	135(2)	6922(3)	29(1)	1		
c17	-205(3)	1444(2)	8270(2)	21(1)	1		
c18	-1085(3)	1155(2)	8780(3)	29(1)	Ĩ		
c19	-1979(3)	1556(2)	9086(3)	33(1)	1		
c20	-1996(3)	2253(2)	8888(3)	32(1)	1		
c21	-1126(3)	2545(2)	8415(3)	30(1)	1	9	
c22	-228(3)	2137(2)	8086(3)	26(1)	1	×	
c23	4186(3)	-72(2)	7326(2)	18(1)	1		
c24	5300(3)	-338(2)	7243(2)	23(1)	1		
c25	5507(3)	-1034(2)	7314(2)	28(1)	1		
c26	4608(3)	-1479(2)	7493(3)	28(1)	1		
c27	3504(3)	-1225(2)	7586(2)	27(1)	1		
c28	3285(3)	-527(2)	7496(2)	19(1)	1		
c29	5102(3)	1123(2)	6561(2)	20(1)	Ĩ.		
c30	5999(3)	1527(2)	6938(2)	23(1)	1		
c31	6959(3)	1669(2)	6412(3)	30(1)	1		
c32	7017(3).	1397(2)	5512(3)	30(1)	1	1	
c33	6114(3)	1001(2)	5126(2)	28(1)	1		
c34	5162(3)	868(2)	5647(2)	24(1)	1		
c35	2678(3)	1472(2)	5494(2)	26(1)	1		
c36	675(3)	1532(2)	6051(2)	26(1)	1		
c37	1758(3)	311(2)	5960(3)	26(1)	1		

Table 2. Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles [°].

br1-mn1	2.5068(8)
fe1-c5	2.018(3)
fe1–c4	2.032(4)
fe1-c9	2.031(3)
fe1-c1	2.037(3)
fe1-c8	2.044(3)
fe1-c7	2.047(4)
fe1-c2	2.051(3)
fe1-c6	2.052(3)
fe1-c10	2.059(3)
fe1-c3	2.063(4)
mn1-c35	1.821(4)
mn1-c36	1.824(4)
mn1-c37	1.938(5)
mn1–p2	2.3769(11)
mn1-p1	2.4000(11)
p1-c10	1.822(3)
p1-c11	1.837(3)
p1-c17	1.846(3)
p2-c5	1.817(3)
p2-c29	1.829(3)
p2-c23	1.842(3)
01-c35	1.143(4)
o2-c36	1.136(4)
03-c37	0.903(4)
c1-c2	1.420(5)
c1-c5	1.435(5)
c2-c3	1.418(5)
c3-c4	1.424(5)
c4-c5	1.438(3)
c6-c7	1.421(5) 1.420(5)
27 28	1.439(3)
c7-c8 c8 c0	1.409(0)
$c_{0}-c_{1}$	1.422(5)
c11-c12	1.394(5)
c11-c12	1.394(5) 1.400(5)
c12-c13	1.381(5)
c13–c14	1.391(5)
c14-c15	1.376(6)
c15-c16	1.389(5)
c17–c22	1.381(5)
c17-c18	1.395(5)
c18-c19	1.383(5)
c19–c20	1.391(6)
c20-c21	1.362(6)
c21-c22	1.406(5)
c23-c24	1.396(5)
c23-c28	1.397(5)
c24-c25	1.383(5)
c25–c26	1.386(5)
c26–c27	1.378(5)
c27–c28	1.393(5)
c29–c30	1.383(5)
c29–c34	1.394(5)
c30–c31	1.397(5)
c31-c32	1.387(5)
c32–c33	1.384(5)
c33–c34	1.381(5)

c5-fe1-c4	41.61(13)
c5-fe1-c9	116.92(14)
c4-fe1-c9	150.74(14)
c5-fe1-c1	41.44(13)
c4-fe1-c1	69.16(14)
c9-fe1-c1	108.49(14)
c5-fe1-c8	149.88(14)
c4-fe1-c8	167.19(14)
c9-fe1-c8	40.86(14)
cl-fel-c8	116.48(14)
c5-fel-c7	168.88(15)
c4-fe1-c7	129.17(16)
c9-fe1-c7	68.56(15)
cl-fel-c/	148.34(14)
c8-fe1-c7	40.29(16)
$c_{3-1e_{1}-c_{2}}$	69.37(13)
$c_{4} - 1c_{1} - c_{2}$	120.52(14)
$c_{1}-c_{2}$	129.52(14)
$c_{1} = c_{1} = c_{2}$	107.46(14)
$c_{7-fe1-c_{2}}$	107.40(14) 115.48(14)
c5-fe1-c6	130 42(14)
c4-fe1-c6	108.20(15)
c9-fe1-c6	68 87(14)
$c_1-f_{e_1-c_6}$	170 15(13)
c8-fe1-c6	68 21(15)
c7-fe1-c6	40.57(15)
c2-fe1-c6	148.26(14)
c5-fe1-c10	108.38(13)
c4-fe1-c10	117.07(14)
c9-fe1-c10	41.29(13)
c1-fe1-c10	130.94(13)
c8-fe1-c10	68.89(13)
c7-fe1-c10	68.77(14)
c2-fe1-c10	169.26(14)
c6-fe1-c10	40.96(13)
c5-fe1-c3	69.16(13)
c4-fe1-c3	40.69(14)
c9-fe1-c3	167.55(14)
cl-tel-c3	68.21(14)
c8-fe1-c3	128.73(14)
$c/-iei-c_3$	107.54(15)
$c_2 - 1c_1 - c_3$	40.55(15)
$c_{10} = f_{e_{1}} = c_{3}$	110.44(13) 140.70(14)
c_{35} -mn1- c_{36}	85 85(16)
$c_{35} - mn_{1} - c_{37}$	87 71(17)
$c_{36}^{-mn1} - c_{37}^{-mn1}$	91.62(15)
c_{35} -mn1-n2	91.50(11)
c_{36} -mn1-n2	174 17(12)
c37-mn1-p2	93.46(10)
c35-mn1-p1	173.36(11)
c36-mn1-p1	87.62(11)
c37-mn1-p1	93.72(12)
p2-mn1-p1	94.88(4)
c35-mn1-br1	81.56(12)
c36-mn1-br1	86.90(12)
c37-mn1-br1	169.25(12)
p2-mn1-br1	87.58(3)
p1-mn1-br1	96.85(3)

29/07/99 13:09:27

Dr. S. J. Coles

99src306

4

c10-p1-c11	106.84(16)
c10-p1-c17	97.49(15)
c11-p1-c17	99.02(15)
c10-p1-mn1	122.86(11)
c11-p1-mn1	108.95(11)
c17-p1-mn1	118.65(11)
c5-p2-c29	102.61(15)
c5-p2-c23	100.87(14)
c29-p2-c23	99.67(15)
c5-p2-mn1	120.16(11)
c29–p2–mn1	113.60(11)
c23-p2-mn1	116.96(11)
c2-c1-c5	108.4(3)
c2-c1-fe1	70.21(19)
c5-c1-fe1	68.57(18)
c3–c2–c1	108.2(3)
c3-c2-fe1	70.3(2)
cl-c2-tel	69.14(19)
c2-c3-c4	108.3(3)
c2-c3-fe1	69.4(2)
c4-c3-fe1	68.5(2)
c3-c4-c5	108.0(3)
c3-c4-ie1	70.8(2)
c5-c4-te1	68.66(19)
c1-c5-c4	107.0(3)
c1-c5-p2	124.0(2)
$c_{4}-c_{5}-p_{2}$	129.0(3)
c1-c3-le1	(10)
$c_{4}-c_{5}-f_{6}$	124 27(17)
p2-c5-ref	124.37(17) 108.4(3)
c7-c6-fe1	69.5(2)
$c_{10-c_{6-f_{e_{1}}}}$	69.81(19)
c8-c7-c6	108 5(3)
c8-c7-fe1	69.8(2)
c6-c7-fe1	69.9(2)
c7–c8–c9	108.4(3)
c7-c8-fe1	69.9(2)
c9-c8-fe1	69.08(19)
c8–c9–c10	108.2(3)
c8-c9-fe1	70.1(2)
c10-c9-fe1	70.41(19)
c6–c10–c9	106.5(3)
c6-c10-p1	121.2(3)
c9-c10-p1	132.2(3)
c6-c10-fe1	69.23(19)
c9-c10-fe1	68.30(18)
p1-c10-fe1	129.25(17)
c12-c11-c16	117.9(3)
c12-c11-p1	126.1(3)
c16-c11-p1	116.0(3)
c13-c12-c11	120.8(3)
c12-c13-c14	120.8(3)
c15-c14-c13	118.9(3)
c14-c15-c16	120.7(4)
c15-c16-c11	120.8(4)
c22-c17-c18	119.2(3)
c22-c17-p1	
	122.5(3)
c18-c17-p1	122.5(3) 118.2(3)
c18-c17-p1 c19-c18-c17	122.5(3) 118.2(3) 120.6(3)
c18-c17-p1 c19-c18-c17 c18-c19-c20	122.5(3) 118.2(3) 120.6(3) 119.6(3)

29/07/99 13:09:27

Dr. S. J. Coles

c21-c20-c19	120.6(3)
c20-c21-c22	120.0(4)
c17-c22-c21	120.0(3)
c24-c23-c28	118.2(3)
c24-c23-p2	122.1(3)
c28-c23-p2	119.7(2)
c25-c24-c23	121.0(3)
c24-c25-c26	120.2(3)
c27-c26-c25	119.6(3)
c26-c27-c28	120.4(3)
c27-c28-c23	120.5(3)
c30-c29-c34	119.2(3)
c30-c29-p2	122.5(3)
c34-c29-p2	118.2(3)
c29-c30-c31	120.3(3)
c32-c31-c30	119.7(3)
c33-c32-c31	120.3(3)
c32-c33-c34	119.7(3)
c33-c34-c29	120.8(3)
o1-c35-mn1	174.1(3)
o2-c36-mn1	175.9(3)
o3-c37-mn1	178.0(4)

Symmetry transformations used to generate equivalent atoms:

Table 4. factor exp	Fable 4. Anisotropic displacement parameters $[Å^2 \times 10^3]$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + \dots + 2h k a^* b^* U^{12}]$.					
Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U ¹²
br1	34(1)	24(1)	50(1)	2(1)	0(1)	-1(1)
C- 1	10(1)	10/11	1 6 / 1 3			

TROM	<u> </u>		. 0	U	U	0	
br1	34(1)	24(1)	50(1)	2(1)	0(1)	-1(1)	
fe1	19(1)	19(1)	16(1)	-2(1)	2(1)	0(1)	
mn1	17(1)	18(1)	20(1)	4(1)	1(1)	0(1)	
p1	16(1)	14(1)	19(1)	1(1)	2(1)	0(1)	
p2	16(1)	16(1)	17(1)	0(1)	2(1)	-1(1)	
01	38(2)	56(2)	29(1)	16(1)	3(1)	-4(1)	
o2	26(1)	51(2)	47(2)	18(2)	-7(1)	5(1)	
03	29(2)	68(2)	15(1)	2(1)	3(1)	20(2)	
c1	17(2)	23(2)	21(2)	0(1)	3(1)	1(1)	
c2	20(2)	32(2)	20(2)	2(1)	0(1)	-3(1)	
c3	30(2)	24(2)	25(2)	-8(2)	3(1)	-7(2)	
c4	28(2)	21(2)	23(2)	-3(1)	4(1)	-3(1)	
c5	18(2)	19(2)	18(2)	0(1)	2(1)	-2(1)	
c6	24(2)	26(2)	27(2)	-7(2)	5(1)	2(1)	
c7	24(2)	49(2)	19(2)	-9(2)	5(1)	-1(2)	
c8	22(2)	33(2)	22(2)	8(2)	2(1)	-2(1)	
c9	19(2)	24(2)	24(2)	5(1)	2(1)	-4(1)	
c10	16(2)	23(2)	20(2)	0(1)	4(1)	1(1)	
c11	18(2)	19(2)	25(2)	-2(1)	5(1)	-4(1)	
c12	23(2)	18(2)	30(2)	3(1)	1(1)	-1(1)	
c13	29(2)	19(2)	38(2)	0(2)	8(2)	-1(1)	
c14	29(2)	25(2)	28(2)	-9(2)	9(1)	-11(2)	
c15	35(2)	39(2)	26(2)	1(2)	-4(2)	-17(2)	
c16	32(2)	26(2)	28(2)	7(2)	-6(1)	-12(2)	
c17	18(2)	19(2)	24(2)	-2(1)	1(1)	-12(2)	
c18	28(2)	23(2)	37(2)	4(2)	7(2)	2(1)	
c19	24(2)	39(2)	37(2)	-1(2)	14(2)	1(2)	
c20	24(2)	33(2)	37(2)	-12(2)	4(2)	7(2)	
c21	28(2)	21(2)	40(2)	-1(2)	(2)	6(2)	
c22	24(2)	22(2)	31(2)	1(2)	5(1)	0(1)	
c23	23(2)	17(2)	14(1)	-3(1)	1(1)	1(1)	
c24	23(2)	23(2)	24(2)	0(1)	1(1)	3(1)	
c25	28(2)	30(2)	24(2)	-3(2)	-3(1)	9(2)	
c26	38(2)	19(2)	26(2)	-3(1)	-5(2)	2(2)	
c27	32(2)	22(2)	26(2)	-1(1)	-1(1)	-5(2)	
c28	17(2)	22(2)	18(2)	-3(1)	1(1)	0(1)	2
c29	19(2)	21(2)	20(2)	2(1)	0(1)	0(1)	
c30	24(2)	22(2)	24(2)	-1(1)	5(1)	-1(1)	
c31	24(2)	32(2)	35(2)	1(2)	2(2)	-10(2)	
c32	24(2)	37(2)	31(2)	7(2)	9(1)	-5(2)	
c33	28(2)	37(2)	19(2)	0(2)	5(1)	0(2)	
c34	26(2)	27(2)	19(2)	-1(1)	1(1)	-5(1)	
c35	24(2)	31(2)	24(2)	3(2)	-3(1)	3(2)	
c36	28(2)	26(2)	25(2)	4(2)	2(1)	-2(2)	
c37	3(2)	22(2)	51(3)	31(2)	-8(1)	-6(1)	
		and the second					

Appendix F

Crystal tables for 2r

University of Southampton · Department of Chemistry EPSRC National Crystallography Service

Table 1. Crystal data and structure refinement.

Identification code Empirical formula	00src068 C ₃₇ H ₂₈ BrFeO ₃ P ₂ Re	0.1
Formula weight	904.49	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 9.21530(1) Å	$\alpha = 90^{\circ}$
5 ¥	b = 54.1758(3) Å	$\beta = 111.999(3)^{\circ}$
	c = 21.76700(2) Å	$\gamma = 90^{\circ}$
Volume	$10075.9(6) Å^3$	1 20
Ζ	12	
Density (calculated)	$1.789 \text{ Mg} / \text{m}^3$	
Absorption coefficient	5.353 mm ⁻¹	
F(000)	5280	
Crystal	Block; yellow	
Crystal size	$0.07 \times 0.07 \times 0.05 \text{ mm}^3$	
θ range for data collection	2.94 - 25.05°	
Index ranges	$-10 \le h \le 10, -64 \le k \le 64, -25 \le 10$	$l \leq 25$
Reflections collected	56559	
Independent reflections	$17103 [R_{int} = 0.0604]$	
Completeness to $\theta = 25.05^{\circ}$	96.1 %	
Max. and min. transmission	0.7756 and 0.7057	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	17103/1/1240	
Goodness-of-fit on F^2	1.000	
Final R indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0454, wR2 = 0.0928	
R indices (all data)	R1 = 0.0715, wR2 = 0.1007	
Largest diff. peak and hole	1.758 and –1.287 e Å ⁻³	

Diffractometer: Enraf Nonius KappaCCD area detector (\$\phi\$ scans and \$\omega\$ scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307–326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33–37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421–426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467–473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

Special details:

The asymmetric unit contains 3 independent molecules. The final structure was checked for additional crystallographic symmetry using the *Platon* program package. The comparison of the three independent molecules I (Re1), II (Re2) and III(Re3) shows that I and II_{inverted} have approximate the same geometry. In contrast, there are considerable geometric differences between I and III_{inverted} and between III and II. In each molecule the axial positions of the Re co-ordination occupied by Br and CO was found to be disordered. Partial occupancies for the major components were refined to 0.59, 0.56 and 0.75.

The CHCl₃ solvate (19 e/cell) was treated in the manner described by Sluis and Spek (Acta Cryst. A46 (1990), 194.

Dr. T. Gelbrich

0 eq 10 001			Benning			
Atom	x	У	z	U_{eq}	S.o.f.	
Rel	3205(1)	-1095(1)	3304(1)	18(1)	1	
Fel	-453(1)	-541(1)	2504(1)	22(1)	1	
Brl	4624(2)	-965(1)	2530(1)	25(1)	0.586(4)	
CI	2330(16)	-1201(3)	3899(8)	42(4)	0.586(4)	
01	1717(13)	-1264(2)	4277(5)	32(3)	0.586(4)	
BrlA	2176(3)	-1259(1)	4187(1)	27(1)	0.414(4)	
CIA	4180(30)	-1004(5)	2745(13)	48(9)	0.414(4)	
	4810(20)	-923(4)	2383(10)	34(8)	0.414(4)	
DIA	708(2)	-1105(1)	2265(1)	19(1)	1	
D1	2958(2)	-670(1)	3728(1)	19(1)	1	
02	6519(6)	-1144(1)	4373(3)	57(2)	î	
02	3860(6)	-1628(1)	3004(2)	33(1)	1	
C2	5273(0)	-1111(1)	3986(3)	31(2)	1	
C2	2521(9)	-1/11(1) -1/3/(2)	3093(3)	22(2)	1	
C31	-01(7)	-810(1)	1918(3)	20(2)	1	
C21	-91(7)	-508(1)	1934(3)	20(2) 24(2)	1	
C11	087(7)	-554(1)	3467(3)	21(2)	1	
CII	374(8)	-703(2)	3360(3)	32(2)	1	
C12	-1608(8)	-548(2)	3110(3)	34(2)	i	
C14	-1098(8) -1105(8)	-304(2)	3061(3)	31(2)	1	
C14	482(8)	-306(1)	3291(3)	25(2)	1	
C13	-180(8)	-393(1)	1679(3)	26(2)	·	
C23	-1742(8)	-473(1)	1526(3)	28(2)	i	
C24	-1742(8) -1706(8)	-731(1)	1660(3)	30(2)	i	
C23	3072(7)	-391(1)	3611(3)	20(2)	i	
C32	4170(8)	-193(1)	4029(3)	30(2)	1	
C33	4769(9)	25(1)	3916(4)	39(2)	i	
C34	5177(8)	52(2)	3377(4)	36(2)	1	
C35	4969(8)	-140(2)	2948(4)	31(2)	1	
C36	4415(7)	-365(1)	3063(3)	25(2)	1	
C41	3635(8)	-673(1)	4640(3)	20(2)	1	
C42	5252(9)	-692(1)	5012(3)	36(2)	1	
C43	5761(10)	-692(1)	5697(4)	42(2)	1	
C44	4742(10)	-683(1)	6015(4)	41(2)	1	
C45	3179(10)	-660(1)	5651(4)	38(2)	1	
C46	2632(8)	-658(1)	4962(3)	27(2)	1	
C51	1142(7)	-1253(1)	1595(3)	18(2)	1	
C52	1399(7)	-1119(1)	1095(3)	23(2)	1	
C53	1799(8)	-1241(2)	616(3)	28(2)	1	
C54	1944(7)	-1489(2)	632(3)	30(2)	. 1	
C55	1703(8)	-1629(1)	1124(3)	27(2)	1	
C56	1307(8)	-1507(1)	1596(3)	25(2)	1	
C61	-1064(7)	-1275(1)	2201(3)	19(2)	1	
C62	-2212(8)	-1313(1)	1575(3)	25(2)	1	
C63	-3606(8)	-1428(1)	1501(3)	32(2)	1	
C64	-3880(8)	-1515(1)	2037(3)	29(2)	1	
C65	-2720(8)	-1488(1)	2664(3)	29(2)	1	
C66	-1341(7)	-1366(1)	2743(3)	23(2)	1 ***	
Re2	2114(1)	-698(1)	-1732(1)	19(1)	1	
Fe2	5932(1)	-1245(1)	-1099(1)	21(1)	1	
Br2	2900(2)	-543(1)	-2697(1)	30(1)	0.562(4)	
CI'	1320(20)	-777(3)	-1074(8)	43(5)	0.562(4)	
O1'	782(16)	-830(3)	-673(7)	37(4)	0.562(4)	
Br2A	865(4)	-811(1)	-882(2)	25(1)	0.438(4)	
C1'A	2830(20)	-611(4)	-2417(10)	25(5)	0.438(4)	
01'A	3250(20)	-564(4)	-2852(9)	42(7)	0.438(4)	
P1'	2289(2)	-1122(1)	-2171(1)	19(1)	1	

Table 2. Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Dr. T. Gelbrich

P2'	4753(2)	-693(1)	-774(1)	19(1)	1
01'	-1349(6)	-646(1)	-2664(3)	51(2)	1
02'	1852(7)	-141(1)	-1516(2)	47(2)	1
C1'	-80(9)	-675(1)	-2344(4)	33(2)	1
C2'	1973(8)	-350(2)	-1563(3)	32(2)	1
C11'	5701(8)	-987(1)	-475(3)	20(2)	1
C12'	7321(8)	-1054(1)	-287(3)	25(2)	1
C13'	7457(8)	-1308(2)	-140(3)	33(2)	1
CIA	5071(8)	-1405(1)	-234(3)	23(2)	1
C14	4872(8)	-1208(1)	-440(3)	23(2)	1
COL	40/2(0)	-1200(1) -1227(1)	-2020(3)	18(2)	1
C21	4245(7)	1475(1)	-1886(3)	35(2)	i
C22	4020(0)	-1473(1)	-1754(3)	20(2)	1
C23	6433(8)	-1407(2)	-1704(3)	29(2)	1
C24	5552(7)	-1220(2)	-1068(3)	27(2)	1
C25	3333(7)	-1008(1)	-1908(3)	27(2)	1
C31	1393(7)	-1397(1)	-1900(3)	22(2)	1
C32	1025(7)	-1405(1)	-1397(3)	23(2)	1
C33	452(8)	-1021(1)	-1233(3)	30(2)	1
C34'	196(8)	-1828(1)	-1028(4)	31(2)	1
C35'	524(8)	-1817(1)	-2202(3)	30(2)	1
C36'	1125(7)	-1605(1)	-2309(3)	25(2)	1
C41'	1408(8)	-1134(1)	-3084(3)	20(2)	1
C42'	-212(8)	-1108(1)	-3393(3)	29(2)	1
C43'	-873(9)	-1109(1)	-4084(3)	35(2)	1
C44'	30(10)	-1134(1)	-4456(3)	37(2)	1
C45'	1616(9)	-1166(1)	-4146(3)	30(2)	1
C46'	2310(8)	-1170(1)	-3461(3)	26(2)	1
C51'	4443(7)	-568(1)	-57(3)	18(2)	1
C52'	4172(8)	-317(1)	-18(3)	28(2)	1
C53'	3810(8)	-218(1)	489(3)	31(2)	1
C54'	3726(8)	-377(2)	984(3)	34(2)	1
C55'	4044(8)	-621(2)	977(3)	30(2)	1
C56'	4398(7)	-719(1)	457(3)	25(2)	1
C61'	6399(8)	-502(1)	-784(3)	22(2)	1
C62'	6437(8)	-402(1)	-1359(3)	28(2)	1
C63'	7713(9)	-269(1)	-1355(4)	34(2)	1
C64'	9017(9)	-241(1)	-764(4)	35(2)	1
C65'	8958(8)	-337(1)	-183(4)	33(2)	I
C66'	7659(8)	-467(1)	-194(3)	28(2)	1
Re3	2581(1)	-2572(1)	-461(1)	20(1)	1
Fe3	-820(1)	-3068(1)	-1(1)	19(1)	1
Br3	3142(2)	-2973(1)	-1004(1)	28(1)	0.750(4)
C1"	2367(13)	-2251(3)	-144(5)	27(3)	0.750(4)
O1"	2239(12)	-2058(2)	64(5)	48(4)	0.750(4)
Br3A	2508(7)	-2119(1)	-63(3)	33(2)	0.250(4)
C1"A	2850(50)	-2880(4)	-820(20)	59(14)	0.250(4)
01"A	3240(40)	-3071(6)	-1002(16)	42(14)	0.250(4)
P1"	-245(2)	-2665(1)	-1087(1)	19(1)	1
P2"	2708(2)	-2755(1)	624(1)	20(1)	1
O2"	2529(5)	-2301(1)	-1713(2)	40(1)	I
O3"	6176(6) .	-2517(1)	136(2)	38(1)	1
C2''	2552(8)	-2408(1)	-1250(4)	27(2)	1
C3"	4854(8)	-2534(1)	-65(3)	25(2)	1
C11"	-1053(7)	-2944(1)	-917(3)	19(2)	1
C12"	-304(8)	-3184(1)	-787(3)	19(2)	1
C14"	-2730(8)	-3227(1)	-718(3)	24(2)	1
C13"	-1332(8)	-3354(1)	-672(3)	23(2)	1
C15"	-2573(7)	-2975(1)	-881(3)	22(2)	1
C21"	1023(7)	-2899(1)	713(3)	16(2)	1
C22"	935(7)	-3152(1)	895(3)	22(2)	1
C23"	-575(8)	-3188(1)	931(3)	23(2)	1

23/02/00 15:15:29

•

Dr. T. Gelbrich

00src68

User: Dr. Beckett

C24"	-1414(8)	-2964(1)	774(3)	23(2)	1	
C25"	-436(7)	-2783(1)	638(3)	20(2)	1	
C31"	-1655(7)	-2426(1)	-1065(3)	21(2)	1	
C32"	-1273(8)	-2276(1)	-522(3)	24(2)	1	
C33"	-2322(8)	-2088(1)	-493(4)	30(2)	1	
C34"	-3710(8)	-2060(1)	-1015(4)	32(2)	1	
C35"	-4097(8)	-2212(2)	-1570(4)	35(2)	1	
C36"	-3084(8)	-2394(1)	-1588(3)	25(2)	1	
C41"	-674(7)	-2701(1)	-1975(3)	17(2)	1	
C42"	-944(7)	-2493(1)	-2396(3)	25(2)	1	
C43"	-1274(8)	-2522(1)	-3064(3)	27(2)	1	
C44"	-1298(8)	-2753(2)	-3333(4)	32(2)	1	
C45"	-1008(8)	-2958(1)	-2919(3)	27(2)	1	
C46"	-696(7)	-2932(1)	-2248(3)	24(2)	1	
C51"	3270(7)	-2524(1)	1292(3)	20(2)	1	
C52"	2480(8)	-2496(1)	1715(3)	28(2)	1	
C53"	2925(8)	-2313(1)	2207(3)	31(2)	1	
C54"	4159(8)	-2162(1)	2276(3)	27(2)	1	
C55"	4964(8)	-2190(1)	1867(3)	29(2)	I	
C56"	4507(8)	-2364(1)	1362(3)	27(2)	1	
C61"	4188(8)	-2994(1)	963(3)	24(2)	1	
C62"	4167(8)	-3207(1)	592(3)	31(2)	1	
C63"	5210(9)	-3399(2)	858(4)	40(2)	1	
C64"	6294(9)	-3384(2)	1498(4)	39(2)	1	
C65"	6351(8)	-3175(2)	1862(4)	39(2)	1	
C66"	5306(8)	-2981(2)	1610(3)	32(2)	1	

•

Dr. T. Gelbrich

00src68

User: Dr. Beckett

Table 3. Bond lengths [Å] and angles [°].

And the second	
Re1-C1A	1.83(3)
Re1-C1	1.855(19)
Re1-C2	1.930(7)
Re1-C3	1.943(8)
Re1-P1	2.5180(18)
Re1-P2	2.5520(16)
Re1-Br1	2.586(3)
Rel-BrlA	2.597(3)
Fe1-C22	2.018(7)
Fel-Cll	2.020(6)
Fe1-C12	2.035(7)
Fe1-C25	2.043(7)
Fe1-C21	2.044(6)
Fe1_C24	2.046(6)
Fe1-C15	2.049(6)
Fe1-C13	2.047(7)
Fe1-C14	2.055(7)
Fe1-C23	2.063(7)
$C_{1-O_{1}}$	1.21(2)
C1A = O1A	1.23(3)
P2-C21	1.803(7)
P2-C51	1.833(6)
P2-C61	1.833(7)
P1-C11	1.802(7)
P1-C41	1.846(6)
P1-C31	1.847(7)
$\Omega^2 - C^2$	1.155(7)
03-03	1,135(7)
$C_{21} - C_{22}$	1.411(9)
C21-C25	1.446(9)
C22-C23	1.419(9)
C22-H22	0.9500
C11-C15	1.426(9)
C11-C12	1.434(9)
C12-C13	1.413(10)
C12-H12	0.9500
C13-C14	1.418(10)
C13-H13	0.9500
C14-C15	1.436(9)
C14-H14	0.9500
C15-H15	0.9500
C23-C24	1.410(9)
C23-H23	0.9500
C24-C25	1.425(9)
C24-H24	0.9500
C25-H25	0.9500
C31-C32	1.373(9)
C31-C36	1.405(8)
C32-C33	1.362(9)
C32-H32	0.9500
C33–C34	1.368(9)
C33-H33	0.9500
C34-C35	1.361(10)
C34-H34	0.9500
C35-C36	1.380(9)
C35-H35	0.9500
C36-H36	0.9500
C41-C46	1.355(9)
C_{41} = C_{42}	1 408(9)
0+1-042	1.400(2)

C42-C43	1.386(9)
C42-H42	0.9500
C43-C44	1.362(11)
C43-H43	0.9500
C44-C45	1.365(10)
C44-H44	0.9500
C45-C46	1.391(9)
C45-H45	0.9500
C46-H46	0.9500
C51-C56	1 386(9)
C51-C50	1.380(9)
C51-C52	1.400(9)
C52-C55	1.390(9)
C32-H32	0.9500
C53-C54	1.351(9)
C53–H53	0.9500
C54–C55	1.397(9)
C54-H54	0.9500
C55-C56	1.382(9)
C55–H55	0.9500
C56–H56	0.9500
C61–C66	1.387(8)
C61-C62	1.391(8)
C62–C63	1.382(9)
C62-H62	0.9500
C63–C64	1.366(9)
C63-H63	0.9500
C64–C65	1.390(9)
C64-H64	0.9500
C65-C66	1 384(9)
C65-H65	0.9500
C66_H66	0.9500
Pa2 C1/4	1.00(2)
Rez-CIA	1.90(2)
Rez-Cz	1.932(9)
Rez-CI	1.89(2)
Rez-CI	1.965(8)
Re2-PT	2.5191(18)
Re2-P2	2.5428(17)
Re2–Br2A	2.591(3)
Re2–Br2	2.604(2)
Fe2-C11'	2.018(7)
Fe2-C21'	2.027(6)
Fe2-C15'	2.027(7)
Fe2-C25'	2.032(7)
Fe2-C12'	2.037(6)
Fe2-C22'	2.052(7)
Fe2-C23'	2.054(7)
Fe2-C24'	2.057(7)
Fe2-C14'	2.060(6)
Fe2-C13'	2.062(6)
C1'-01'	1.19(3)
C1'A-01'A	1,17(3)
P1'-C21'	1.797(7)
P1'-C31'	1 841(7)
P1'-C41'	1.846(6)
P2'-C11'	1 815(7)
P2'_C51'	1.013(7)
P2' C61'	1.01/(/)
	1.844(7)
	1.126(8)
02-02	1.148(8)
C11'-C15'	1.437(9)
C11'-C12'	1.439(9)

23/02/00 15:15:29

Dr. T. Gelbrich

00src68

C12'-C13'	1.410(10)
C12'-H12'	0.9500
C13'-C14'	1.408(9)
C13'-H13'	0.9500
C14'-C15'	1.422(9)
C14'-H14'	0.9500
C15'-H15'	0.9500
C21'-C22'	1 437(9)
C21 - C22	1 454(9)
C21-C25	1.418(0)
C22-C23	0.9500
C22-H22	1.421(10)
C23-C24	1.421(10)
C23-H23	0.9500
C24'-C25'	1.427(9)
C24'-H24'	0.9500
C25'-H25'	0.9500
C31'-C32'	1.389(8)
C31'-C36'	1.399(9)
C32'-C33'	1.394(9)
C32'-H32'	0.9500
C33'-C34'	1.377(10)
C33'-H33'	0.9500
C34'-C35'	1.394(9)
C34'-H34'	0.9500
C35'-C36'	1.382(9)
C35'-H35'	0.9500
C36'–H36'	0.9500
C41'-C46'	1.383(9)
C41'-C42'	1.396(9)
C42'-C43'	1.397(9)
C42'-H42'	0.9500
C43'-C44'	1.367(10)
C43'-H43'	0.9500
C44'-C45'	1.372(10)
C44'-H44'	0.9500
C45'-C46'	1.384(8)
C45'-H45'	0.9500
C46'-H46'	0.9500
C51'-C52'	1.393(9)
C51'-C56'	1.398(9)
C52'-C53'	1.375(9)
C52'-H52'	0.9500
C53'-C54'	1.403(10)
C53'-H53'	0.9500
C54'-C55'	1.360(10)
C54'-H54'	0.9500
C55'-C56'	1.395(9)
C55'-H55'	0.9500
C56'-H56'	0.9500
C61' - C62'	1 377(9)
C61'-C66'	1 385(9)
C62'-C63'	1.375(9)
C62-C03	0.9500
C62-F102	1 402(10)
C63' H63'	0.9500
	1 397(0)
	1.367(9)
	0.9300
C65'-C66'	1.382(9)
C65'-H65'	0.9500
C66'-H66'	0.9500
Re3-C1"A	1.900(3)

23/02/00 15:15:29

Dr. T. Gelbrich

Pa3_C2"	1 027(8)
Rej-C2	1.000(14)
Res-CI	1.909(14)
Re3-C3	1.954(7)
Re3-P1"	2.4961(17)
Re3–P2"	2.5223(17)
Re3–Br3	2.6171(18)
Re3–Br3A	2.615(7)
Fe3-C25"	2.022(6)
Fe3-C12"	2.037(6)
Fe3-C11"	2.036(6)
Fe3-C24"	2.038(7)
Fe3_C21"	2.030(7)
E-2 C15"	2.040(0)
	2.052(0)
Fe3-C14	2.052(6)
Fe3-C13"	2.056(6)
Fe3-C23"	2.061(6)
Fe3-C22"	2.064(6)
C1"01"	1.16(2)
C1"A–O1"A	1.21(3)
P1"-C11"	1.788(7)
P1"-C41"	1.832(6)
P1"-C31"	1.845(7)
P2"-C21"	1.812(7)
P2"-C61"	1.824(7)
P2"-C51"	1 840(7)
02''-C2''	1 154(8)
02 - 02	1 134(7)
	1.134(7)
	1.441(9)
	1.440(9)
	1.409(9)
C12"-H12"	0.9500
C14"–C15"	1.427(9)
C14"–C13"	1.430(9)
C14"–H13"	0.9500
C13"-H14"	0.9500
C15"–H15"	0.9500
C21"-C22"	1.436(9)
C21"-C25"	1.438(9)
C22"-C23"	1.437(9)
C22"-H22"	0.9500
C23"-C24"	1.409(9)
C23"-H23"	0.9500
C24"-C25"	1,436(9)
C24"-H24"	0.9500
C25"-H25"	0.9500
C31"-C32"	1 371(9)
$C_{21}^{-C_{22}}$	1.307(9)
C31 - C30	1.392(0)
C32 -C33	0.0500
C32 -H32	0.9500
C33"-C34"	1.364(9)
C33"-H33"	0.9500
C34"–C35"	1.393(10)
C34"-H34"	0.9500
C35"–C36"	1.371(9)
C35"-H35"	0.9500
C36"-H36"	0.9500
C41"-C46"	1.383(9)
C41"-C42"	1,414(9)
C42''-C43''	1 380(9)
C42"_H42"	0.9500
	1 278(0)
C43 -C44	1.578(9)

Dr. T. Gelbrich

C43"-H43"	0.9500
C44"-C45"	1.391(9)
C44"-H44"	0.9500
C45"-C46"	1.387(8)
C45"-H45"	0.9500
C46"-H46"	0.9500
C51"-C52"	1.379(9)
C51"–C56"	1.394(9)
C52"-C53"	1,400(9)
C52"-H52"	0.9500
C53"-C54"	1.363(9)
C53"-H53"	0.9500
C54"	1.365(9)
C54"-H54"	0.9500
C55"-C56"	1.387(9)
C55"-H55"	0.9500
C56"-H56"	0.9500
C61"-C66"	1.401(9)
C61''-C62''	1 405(9)
C62" - C63"	1 387(9)
C62"-H62"	0.9500
C63''-C64''	1 380(10)
C63"-H63"	0.9500
C64" - C65"	1 371(10)
C64"-H64"	0.9500
C65"-C66"	1 392(10)
C65"-H65"	0.9500
C66"-H66"	0.9500
	156100
CIA-ReI-CI	176.1(9)
CIA-ReI-C2	86.4(8)
CI-ReI-C2	90.6(5)
CIA-ReI-C3	86.5(8)
CI-ReI-C3	91.0(5)
C2-Ref-C3	80.7(3)
CIA-ReI-PI	97.7(8)
C1-ReI-PI	84.0(5)
$C_2 = ReI = PI$	87.7(2)
CIA Del D2	172.76(19)
CI Del D2	83.4(7)
$C_1 = Re_1 = P_2$	97.4(4)
$C_2 = Re1 = P_2$	109.0(2)
$C_3 - Ke_1 - F_2$	00.42(19)
PI-ReI-P2	99.79(0)
CI Del Del	1.0(8)
C2 Del Del	175.4(5)
C2-Rel-Brl	85.4(2)
C3-Rel-Bri	80.7(2)
PI-ReI-Bri	97.33(0)
Cla D-1 D-1A	80.41(0)
CIA-ReI-Bria	172.0(8)
CI-ReI-Bria	4.2(5)
C2-ReI-Bria	80.7(2)
CO-Kel-BrIA	89.0(2)
ri-Kei-BriA	86.15(6)
PZ-Kel-BriA	100.95(6)
Bri-Kel-BrlA	1/1.25(6)
CZZ-FeI-CII	109.0(3)
C22-Fe1-C12	131.7(3)
CII-FeI-CI2	41.4(3)
C22 - Fe = -C25	68.5(3)

2

Dr. T. Gelbrich

00src68

C11-Fe1-C25	147.9(3)
C12-Fe1-C25	114.9(3)
C22-Fe1-C21	40.6(3)
C11-Fe1-C21	115.2(3)
C12-Fe1-C21	107.8(3)
C25-Fe1-C21	41.4(2)
C22-Fe1-C24	68.4(3)
C11-Fe1-C24	170.5(3)
C12-Fe1-C24	147.0(3)
C25-Fe1-C24	40.8(3)
C21-Fe1-C24	69.3(3)
C22-Fe1-C15	116.7(3)
C11-Fe1-C15	41.0(3)
C12-Fe1-C15	69.0(3)
C25-Fe1-C15	169.7(3)
C21-Fe1-C15	148.1(3)
C24-Fe1-C15	131.0(3)
C22-Fe1-C13	170.1(3)
C11-Fe1-C13	68.8(3)
C12-Fe1-C13	40.5(3)
C25-Fe1-C13	107.9(3)
C21-Fe1-C13	130.7(3)
C24-Fe1-C13	115.3(3)
C15-Fe1-C13	68.5(3)
C22-Fe1-C14	148.8(3)
CII-FeI-CI4	69.0(3)
C12 - Fe1 - C14	68.6(3)
C_{23} -FeI-CI4	130.2(3)
$C_{21} = Fe_{1} = C_{14}$	109.0(3)
$C_{24} = 161 - C_{14}$	108.0(3)
C13 - Fe1 - C14	41.0(3)
$C_{22} - F_{e1} - C_{23}$	40.4(3)
$C_{11} - Fe_{1} - C_{23}$	132 2(3)
C12 - Fe1 - C23	171.5(3)
C25-Fe1-C23	68.0(3)
C21-Fe1-C23	68.6(3)
C24-Fe1-C23	40.1(3)
C15-Fe1-C23	109.6(3)
C13-Fe1-C23	147.6(3)
C14-Fe1-C23	116.3(3)
01-C1-Re1	177.6(14)
O1A-C1A-Re1	175(2)
C21-P2-C51	103.2(3)
C21-P2-C61	101.6(3)
C51-P2-C61	100.0(3)
C21-P2-Re1	116.3(2)
C51-P2-Re1	108.8(2)
C61-P2-Re1	124.1(2)
C11-P1-C41	103.6(3)
C11-P1-C31	99.9(3)
C41-P1-C31	99.8(3)
Cl1-Pl-Rel	115.0(2)
C41-PI-Kel	110.2(2)
C3I-PI-Kel	125.4(2)
O2-C2-Rel	173.4(6)
Con Con Con	173.9(6)
C22-C21-C25	106.2(6)
C22-C21-P2	124.5(5)
C23-C21-P2	128.7(6)
C22-C21-Fe1	68.7(4)

....

23/02/00 15:15:29

Dr. T. Gelbrich

00src68

10

C25-C21-Fe1	69.2(4)
P2-C21-Fe1	120.4(3)
C21-C22-C23	109.7(6)
C21-C22-Fe1	70.7(4)
C23-C22-Fe1	71.4(4)
C21-C22-H22	125.2
C23-C22-H22	125.2
Fe1-C22-H22	124.4
$C_{15}-C_{11}-C_{12}$	108.0(6)
C15-C11-P1	127.0(5)
$C_{12} - C_{11} - P_{1}$	124 8(6)
C15_C11_Fel	70 6(4)
Cl2_Cl1_Fel	69.8(4)
	122 1(3)
	107.7(7)
C13 - C12 - C11	70.2(4)
C11 - C12 - Fel	68 7(4)
	126.2
CI3-CI2-HI2	126.2
CII-CI2-HI2	120.2
FeI-CI2-HIZ	120.5
	109.0(7)
C12–C13–Fel	09.3(4)
CI4-CI3-Fel	70.1(4)
C12-C13-H13	125.5
C14-C13-H13	125.5
Fe1-C13-H13	126.7
C13-C14-C15	107.7(6)
C13-C14-Fe1	69.5(4)
C15-C14-Fel	69.3(4)
C13-C14-H14	126.2
C15-C14-H14	126.2
Fe1-C14-H14	126.6
C11-C15-C14	107.6(6)
C11-C15-Fe1	68.4(4)
C14-C15-Fe1	69.7(4)
C11-C15-H15	126.2
C14-C15-H15	126.2
Fe1C15H15	127.2
C24-C23-C22	107.8(7)
C24-C23-Fe1	69.3(4)
C22-C23-Fe1	68.0(4)
C24-C23-H23	126.1
C22-C23-H23	126.1
Fe1-C23-H23	128.2
C23-C24-C25	108.0(6)
C23-C24-Fe1	70.6(4)
C25-C24-Fe1	69.5(4)
C23-C24-H24	126.0
C25-C24-H24	126.0
Fe1-C24-H24	125.5
C24-C25-C21	108.2(6)
C24-C25-Fe1	69.7(4)
C21-C25-Fe1	69.4(4)
C24-C25-H25	125.9
C21-C25-H25	125.9
Fe1-C25-H25	126.6
C32-C31-C36	118.3(7)
C32-C31-P1	119.9(5)
C36-C31-P1	121.5(5)
C33-C32-C31	121.2(7)
C33-C32-H32	119.4

7

23/02/00 15:15:29

Dr. T. Gelbrich

00src68

C31-C32-H32	119.4
C32-C33-C34	120.7(7)
C32-C33-H33	119.7
C34-C33-H33	119.7
C35-C34-C33	119.4(7)
C35-C34-H34	120.3
C33-C34-H34	120.3
$C_{34} - C_{35} - C_{36}$	121.1(7)
$C_{24} = C_{25} = C_{26}$	121.1(7)
C34-C35-H35	119.5
C30-C33-H33	119.5
C35-C36-C31	119.2(7)
C35-C36-H36	120.4
C31-C36-H36	120.4
C46-C41-C42	119.2(6)
C46-C41-P1	122.3(5)
C42-C41-P1	118.5(5)
C43-C42-C41	118.4(7)
C43-C42-H42	120.8
C41-C42-H42	120.8
C44-C43-C42	121.9(8)
C44-C43-H43	119.1
C42-C43-H43	119.1
C43-C44-C45	119.1(7)
C43-C44-H44	120.4
C45 - C44 - H44	120.4
$C_{43} = C_{44} = \Pi_{44}$	120.3
C44 - C45 - C40	120.3(7)
C44-C45-H45	119.0
C46-C45-H45	119.8
C41-C46-C45	121.0(7)
C41-C46-H46	119.5
C45-C46-H46	119.5
C56-C51-C52	117.7(6)
C56-C51-P2	119.2(5)
C52-C51-P2	123.0(5)
C53-C52-C51	120.4(7)
C53-C52-H52	119.8
C51-C52-H52	119.8
C54-C53-C52	120.1(7)
C54-C53-H53	119.9
C52-C53-H53	119.9
C53-C54-C55	121.3(7)
C53-C54-H54	119.4
C55-C54-H54	119.4
C56-C55-C54	118.1(7)
C56-C55-H55	120.9
C54-C55-H55	120.9
C55-C56-C51	122.4(7)
C55-C56-H56	118.8
C51-C56-H56	118.8
C66 - C61 - C62	117.7(6)
C66 - C61 - P2	123.7(5)
C62 - C61 - P2	125.7(5) 118.5(5)
C62 - C61 - C61	120.0(6)
C62 C62 H62	110.5
	119.5
C01-C02-H02	119.5
04-003-062	121.0(6)
C64-C63-H63	119.5
C62-C63-H63	119.5
C63-C64-C65	118.9(7)
C63-C64-H64	120.6
C65-C64-H64	120.6

23/02/00 15:15:29 Dr. T. Gelbrich

00src68

User: Dr. Beckett

C66-C65-C64	120.3(7)
C66-C65-H65	119.9
C64-C65-H65	119.9
C65-C66-C61	121.1(6)
C65-C66-H66	119.5
C61-C66-H66	119.5
C1'A-Re2-C2'	88. 6 (6)
C1'A-Re2-C1'	177.6(7)
C2'-Re2-C1'	90.3(5)
C1'A-Re2-C1'	91.5(6)
C2'-Re2-C1'	86.8(3)
C1'-Re2-C1'	86.3(5)
C1'A-Re2-P1'	80.7(6)
C2'-Re2-P1'	168. 6(2)
C1'-Re2-P1'	100.2(5)
C1'-Re2-P1'	89.7(2)
C1'A-Re2-P2'	97.6(5)
C2'-Re2-P2'	87. 0 (2)
C1'-Re2-P2'	84.5(5)
C1'-Re2-P2'	168.8(2)
P1'-Re2-P2'	98.16(6)
Cl'A-Re2-Br2A	174. 6(6)
C2'-Re2-Br2A	91. 0(2)
C1'-Re2-Br2A	3. 3(5)
C1'-Re2-Br2A	83.1(2)
P1'-Re2-Br2A	99.32(9)
P2'-Re2-Br2A	87.77(9)
C1'A-Re2-Br2	5.7(6)
C2'-Re2-Br2	84.2(2)
C1'-Re2-Br2	1/2.1(5)
CI'-Re2-Br2	81.1(2)
PI-Rez-Brz	100 00(6)
PZ-Kez-BIZ	160.90(0)
$G_{11} = F_{e_2} = C_{21}$	113 3(3)
$C11' = Fe^2 = C15'$	41 6(3)
C21' - Fe2 - C15'	107.4(3)
C11'-Fe2-C25'	105.9(3)
C21'-Fe2-C25'	42.0(3)
C15'-Fe2-C25'	130.7(3)
C11'-Fe2-C12'	41.6(2)
C21'-Fe2-C12'	146.4(3)
C15'-Fe2-C12'	69.3(3)
C25'-Fe2-C12'	113.5(3)
C11'-Fe2-C22'	146.9(3)
C21'-Fe2-C22'	41.3(2)
C15'-Fe2-C22'	115.5(3)
C25'-Fe2-C22'	69. 7 (3)
C12'-Fe2-C22'	171.0(3)
C11'-Fe2-C23'	170.0(3)
C21'-Fe2-C23'	68.7(3)
C15'-Fe2-C23'	148.2(3)
C25'-Fe2-C23'	08.0(3)
C12-Fe2-C23	131.0(3)
C111 En2 C24	40.4(3)
$C11 - Fe_2 - C_24$	60.2(2)
$C_{21} = Fc_{2} = C_{24}$	1701(3)
C13 - Fe2 - C24 C25' - Fe2 - C24'	1/0.1(3)
$C_{23} = Fe_{2} = C_{24}$	107 8(3)
$C_{12} = 1.62 = 0.24$ $C_{22}' = Fe_{2} = C_{24}'$	68 7(3)
022-102-024	00.1(3)

•

23/02/00 15:15:29

Dr. T. Gelbrich

User: Dr. Beckett

C23'-Fe2-C24'	40.4(3)
C11'-Fe2-C14'	69.2(3)
C21'-Fe2-C14'	131.9(3)
C15'-Fe2-C14'	40.7(2)
C25'-Fe2-C14'	170.9(3)
C12'-Fe2-C14'	68.3(3)
C22'-Fe2-C14'	109.9(3)
C23'-Fe2-C14'	117.4(3)
C24'-Fe2-C14'	148.1(3)
C11'-Fe2-C13'	68.6(3)
C21'-Fe2-C13'	171.3(3)
C15'-Fe2-C13'	68.0(3)
$C_{25'-Fe_{2}-C_{13'}}$	146.6(3)
C12' - Fe2 - C13'	40 2(3)
$C_{22}' = F_{e2} = C_{13}'$	133 0(3)
$C_{23'-Fe_{2}-C_{13'}}$	111.0(3)
$C_{24}^{-}=E_{2}^{-}=C_{13}^{-}$	116.4(3)
$C14' - Fe^2 - C13'$	39 9(3)
$O1'-C1'-Re^2$	178.2(14)
$O1^{-}O1^{-}O1^{-}A = C1^{-}A = Pa^{2}$	177.5(19)
	102 2(2)
$C_{21} = P_1 = C_{31}$	101.1(3)
$C_{21} = P_1 = C_{41}$	101.1(3)
$C_{21}^{-1} = C_{41}^{-1}$	114.0(2)
$C_{21} = P_1 = Re_2$	114.9(2)
CALL DIL D-2	123.0(2)
CHI PI CEL	112.0(2)
C11 - P2 - C51	103.2(3)
$C_{11} = P_2 = C_{01}$	102.1(3)
C_{11} P_{2} $-C_{01}$	101.3(3)
CTI-P2-Rez	118.0(2)
CSI -P2 -Rez	107.3(2)
C01 - P2 - Re2	122.2(2)
O1 - C1 - Re2	174.0(7)
$O_2 - C_2 - Re_2$	1/4./(0)
	107.0(6)
CIS-CII-P2	123.8(5)
CIZ-CII-PZ	129.0(5)
CIS-CII-Fe2	69.5(4)
CIZ-CII-Fez	69.9(4)
P2-CII-Fe2	121.0(3)
C13 - C12 - C11	107.6(7)
C13 - C12 - Fe2	70.8(4)
	08.3(4)
	120.2
	120.2
	120.1
C14 - C13 - C12	109.4(7)
CI4-CI3-Fe2	70.0(4)
CI2-CI3-Fe2	68.9(4)
C14'-C13'-H13'	125.3
С12-С13-Н13	125.3
Fe2-C13-H13	127.4
C13'-C14'-C15'	107.8(6)
C13'-C14'-Fe2	70.1(4)
C15'-C14'-Fe2	68.4(4)
C13'-C14'-H14'	126.1
C15'-C14'-H14'	126.1
Fe2-C14'-H14'	127.0
C14'-C15'-C11'	108.1(6)
C14'-C15'-Fe2	70.9(4)
C11'-C15'-Fe2	68.9(4)

\$

23/02/00 15:15:29

Dr. T. Gelbrich

00src68

User: Dr. Beckett

14

C14'-C15'-H15'	125.9
C11'-C15'-H15'	125.9
Fe2-C15'-H15'	125.9
C22'-C21'-C25'	107.6(6)
C22'-C21'-P1'	127 2(5)
C25'-C21'-P1'	125.0(5)
$C_{22} = C_{21} = F_{e_{22}}$	70 3(3)
$C_{22} = C_{21} = \Gamma_{C2}$	(0.3(3) (0.2(3)
CZJ-CZI-FEZ	09.2(3)
PI-C2I-Fez	122.9(3)
C23-C22-C21	107.4(6)
C23'-C22'-Fe2	69.9(4)
C21'-C22'-Fe2	68.4(3)
C23'-C22'-H22'	126.3
C21'-C22'-H22'	126.3
Fe2-C22'-H22'	127.0
C24'-C23'-C22'	109.5(6)
C24'-C23'-Fe2	69.9(4)
C22'-C23'-Fe2	69.7(4)
C24'-C23'-H23'	125.2
C22'-C23'-H23'	125.2
Fe2-C23'-H23'	126.7
$C_{23'} - C_{24'} - C_{25'}$	107.9(7)
C_{23}^{-1} C_{24}^{-1} E_{23}^{-1}	60 7(A)
$C_{23} = C_{24} = 1C_{2}$	69.6(4)
	08.0(4)
C23-C24-H24	126.0
C25'-C24'-H24'	126.0
Fe2-C24-H24	127.2
C24'-C25'-C21'	107.5(7)
C24'-C25'-Fe2	70.5(4)
C21'-C25'-Fe2	68.8(4)
C24'-C25'-H25'	126.3
C21'-C25'-H25'	126.3
Fe2-C25'-H25'	126.0
C32'-C31'-C36'	120.0(7)
C32'-C31'-P1'	121.2(5)
C36'-C31'-P1'	118.7(5)
C31'-C32'-C33'	118.9(7)
C31'-C32'-H32'	120.6
C33'-C32'-H32'	120.6
C34'-C33'-C32'	121.9(7)
C34'-C33'-H33'	119.0
C32'–C33'–H33'	119.0
C33'–C34'–C35'	118.4(7)
C33'-C34'-H34'	120.8
C35'–C34'–H34'	120.8
C36'-C35'-C34'	121 2(7)
C36'-C35'-H35'	1194
C34'-C35'-H35'	119.4
C35' - C35' - C31'	110.4
C35'-C36'-H36'	119.0(7)
$C_{33} = C_{30} = H_{30}$	120.2
	120.2
C40 - C41 - C42	120.1(6)
C46'-C41'-P1	121.6(5)
C42-C41'-P1'	118.3(5)
C41'-C42'-C43'	118.3(7)
C41'-C42'-H42'	120.9
C43'-C42'-H42'	120.9
C44'-C43'-C42'	121.5(7)
C44'-C43'-H43'	119.3
C42'C43'H43'	119.3
C45'-C44'-C43'	119.5(6)

23/02/00 15:15:29

Dr. T. Gelbrich

User: Dr. Beckett

C45'-C44'-H44'	120.2
C43'-C44'-H44'	120.2
C44'-C45'-C46'	120.6(7)
C44'-C45'-H45'	119.7
C46'-C45'-H45'	119.7
C45'-C46'-C41'	119.9(7)
C45'-C46'-H46'	120.0
C41'-C46'-H46'	120.0
C52'-C51'-C56'	117.4(6)
C52'-C51'-P2'	120.5(5)
C56'-C51'-P2'	122.0(5)
C53'-C52'-C51'	122.3(7)
C53'-C52'-H52'	118.8
C51'-C52'-H52'	118.8
C52' - C53' - C54'	118.4(7)
C52-C53-C54	120.8
C54' C53' H53'	120.0
$C_{54} = C_{53} = H_{53}$	121.0(7)
0551 0541 11541	121.0(7)
$C_{33} - C_{34} - C_{34}$	119.5
C53-C54-H54	119.5
	119.7(7)
C54-C55-H55	120.2
C26-C22-H22	120.2
C55'-C56'-C51'	121.0(7)
С55-С56-Н56	119.5
C51'-C56'-H56'	119.5
C62'-C61'-C66'	119.4(6)
C62'-C61'-P2'	122.3(5)
C66'-C61'-P2'	118.2(5)
C61'-C62'-C63'	120.9(6)
C61'-C62'-H62'	119.6
C63'-C62'-H62'	119.6
C62'-C63'-C64'	120.0(7)
C62'-C63'-H63'	120.0
C64'-C63'-H63'	120.0
C65'-C64'-C63'	119.0(7)
C65'-C64'-H64'	120.5
C63'-C64'-H64'	120.5
C66'-C65'-C64'	120.3(7)
C66'-C65'-H65'	119.9
C64'-C65'-H65'	119.9
C65'-C66'-C61'	120.4(7)
C65'-C66'-H66'	119.8
C61'-C66'-H66'	119.8
C1"A-Re3-C2"	89.9(14)
C1"A-Re3-C1"	175.7(14)
C2"-Re3-C1"	86.1(4)
C1"A-Re3-C3"	89.3(13)
C2"-Re3-C3"	90.0(3)
C1"-Re3-C3"	89.1(4)
C1"A-Re3-P1"	82.6(13)
C2"-Re3-P1"	86.7(2)
C1"-Re3-P1"	98.8(3)
C3"-Re3-P1"	171.3(2)
C1"A-Re3-P2"	94.3(14)
C2"-Re3-P2"	175.2(2)
C1"-Re3-P2"	89.6(3)
C3"-Re3-P2"	87.8(2)
P1"-Re3-P2"	96.05(6)
C1"A-Re3-Br3	5.7(14)
C2"-Re3-Br3	85.5(2)

ŝ

23/02/00 15:15:29

Dr. T. Gelbrich

00src68

16

C1"-Re3-Br3A	5.6(4)
C3"-Re3-Br3A	84 9(2)
P1"_Re3_Br34	102 62(14)
P2"_Pa3_Pr3A	02.02(14)
Pr ² Po ² Pr ²	164 62(14)
C25" E-2 C12"	104.02(14)
	141.0(3)
C25 -Fe3-C11	110.4(3)
C12"-Fe3-C11"	41.6(2)
C25"-Fe3-C24"	41.4(3)
C12"-Fe3-C24"	177.4(3)
C11"-Fe3-C24"	139.1(3)
C25"-Fe3-C21"	41.5(2)
C12"-Fe3-C21"	112.8(3)
C11"-Fe3-C21"	110.5(3)
C24"-Fe3-C21"	69.5(3)
C25"-Fe3-C15"	109.2(3)
C12"-Fe3-C15"	69.0(3)
C11"-Fe3-C15"	41.3(2)
C24"-Fe3-C15"	110.0(3)
C21"-Fe3-C15"	137.8(3)
C25"-Fe3-C14"	136.2(3)
C12"-Fe3-C14"	68.7(3)
C11"-Fe3-C14"	69 4(3)
$C^{24''}-Fe^{3}-C^{14''}$	109.0(3)
$C_{21}^{-}=E_{2}^{-}=C_{14}^{-}$	1777(3)
$C_{21} = F_{03} = C_{14}$	40.7(3)
C15 = 1.65 = C14 $C25'' = E_{23} = C12''$	40.7(2)
$C_{23} = Fe_{3} = C_{13}$	177.0(3)
C12 - Fe3 - C13	40.3(2)
C11 -Fe3-C13	69.0(3)
C24 -Fe3-C13	137.2(3)
C21"-Fe3-C13"	141.5(3)
C15"-Fe3-C13"	68.3(3)
C14"-Fe3-C13"	40.7(3)
C25"-Fe3-C23"	68.6(3)
C12"-Fe3-C23"	139.2(3)
C11"-Fe3-C23"	179.0(3)
C24"-Fe3-C23"	40.2(2)
C21"-Fe3-C23"	68.8(3)
C15"-Fe3-C23"	138.9(3)
C14"-Fe3-C23"	111.3(3)
C13"-Fe3-C23"	112.0(3)
C25"-Fe3-C22"	69.2(3)
C12"-Fe3-C22"	112.3(3)
C11"-Fe3-C22"	139.0(3)
C24"-Fe3-C22"	68.7(3)
C21"-Fe3-C22"	41.0(2)
C15"-Fe3-C22"	178.3(3)
C14"-Fe3-C22"	140.5(3)
C13"-Fe3-C22"	113 3(3)
C23"-Fe3-C22"	40 8(2)
O1"-C1"-Re3	178 3(11)
01"4-C1"4-Da2	170.3(11)
	1/1(4)
CII - FI - C41	100.8(3)

C1"-Re3-Br3

C3"-Re3-Br3

P1"-Re3-Br3

P2"-Re3-Br3

C1"A-Re3-Br3A

C2"-Re3-Br3A

170.1(4)

85.7(2)

85.93(5)

98.59(6)

170.3(14)

82.3(3)

C11"-P1"-C31"

C41"-P1"-C31"

Dr. T. Gelbrich

103.6(3)

103.1(3)

٤.

Dr. T. Gelbrich

00src68

18

C11" D1" Do2	110 2(2)
	119.2(2)
C41 - P1 - Re3	111.3(2)
C31 -P1 -Res	110.5(2)
C21"-P2"-C61"	101.0(3)
C21"-P2"C51"	102.0(3)
C61"-P2"-C51"	102.4(3)
C21"-P2"-Re3	121.89(19)
C61"-P2"-Re3	115.0(2)
C51"-P2"-Re3	112.0(2)
O2"-C2"-Re3	177.5(7)
O3"-C3"-Re3	176.6(6)
C15"-C11"-C12"	106.6(6)
C15"-C11"-P1"	126.8(5)
C12"-C11"-P1"	126.5(5)
C15"-C11"-Fe3	69.9(4)
C12"-C11"-Fe3	69.2(3)
P1"-C11"-Fe3	125.7(3)
C13"-C12"-C11"	108 5(6)
C13''-C12''-Fe3	70.6(4)
$C_{11}^{-1} = C_{12}^{-1} = C_{13}^{-1} = $	69.2(4)
C13''-C12''-H12''	125.8
C11" C12"-H12"	125.8
$C_{11} = C_{12} = A_{12}$	125.0
$res - c_{12} - r_{12}$	120.0
C13 - C14 - C13	107.7(0)
C13 - C14 - Fe3	60 9(4)
C13 - C14 - Fe3	126.2
C13 -C14 -H13	120.2
CI3 -CI4 -HI3	120.2
$Fe_{3}-C14 - FI_{3}$	120.0
C12 - C13 - C14	60.1(4)
C12 - C13 - Fe3	69.1(4)
C14 - C13 - Fe3	125.6
C12 - C13 - H14	125.6
C14 - C13 - H14	123.0
	108 4(6)
C14 - C15 - C11	60.6(4)
C14 - C15 - Fe3	69.0(4)
CIT -CIS -Fes	00.0(3)
CI4 -CI5 -HI5	125.0
CIT-CIS-HIS	125.8
Fe3-C15"-H15"	127.4
$C22^{-}-C21^{-}-C25^{-}$	107.6(6)
	125.4(5)
C25"-C21"-P2"	120.9(5)
C22"-C21"-Fe3	70.4(3)
C25"-C21"-Fe3	68.6(3)
P2"-C21"-Fe3	127.9(3)
C23"-C22"-C21"	107.5(6)
C23"-C22"-Fe3	69.5(3)
C21"-C22"-Fe3	68.6(3)
C23"-C22"-H22"	126.3
C21"-C22"-H22"	126.3
Fe3-C22"-H22"	127.2
C24"-C23"-C22"	109.0(6)
C24"-C23"-Fe3	69.0(4)
C22"-C23"-Fe3	69.7(3)
C24"-C23"-H23"	125.5
C22"-C23"-H23"	125.5
Fe3-C23"-H23"	127.3
C23"-C24"-C25"	108.0(6)
C23"-C24"-Fe3	70.8(4)

C25"-C24"-Fe3	68.7(4)
C23"-C24"-H24"	126.0
C25" C24" H24"	126.0
	120.0
Fe3-C24 -H24	120.1
C24"-C25"-C21"	108.0(6)
C24"-C25"-Fe3	69.9(4)
C21"-C25"-Fe3	69,9(4)
C24"-C25"-H25"	126.0
	120.0
C21 -C23 -H23	120.0
Fe3-C25"-H25"	125.8
C32"–C31"–C36"	119.3(6)
C32"-C31"-P1"	118.9(5)
C36"-C31"-P1"	121.7(5)
C31"-C32"-C33"	120 4(6)
C21" C22" H22"	110.9
$C_{31} - C_{32} - H_{32}$	119.6
C33"-C32"-H32"	119.8
C34"–C33"–C32"	118.9(7)
C34"-C33"-H33"	120.5
C32"-C33"-H33"	120.5
C33"-C34"-C35"	120 9(7)
C33"_C34"_H34"	110.6
	119.0
C35"-C34"-H34	119.6
C36"-C35"-C34"	119.6(7)
C36"-C35"-H35"	120.2
C34"-C35"-H35"	120.2
C35"-C36"-C31"	120.9(7)
C35"-C36"-H36"	119.6
C21" C26" H26"	110.6
	119.0
C46"-C41"-C42"	118.3(6)
C46"-C41"-P1"	120.8(5)
C42"-C41"-P1"	120.9(5)
C43"-C42"-C41"	120.4(7)
C43"-C42"-H42"	119.8
C41"-C42"-H42"	119.8
C44" C42" C42"	121.0(7)
	121.0(7)
C44 -C43 -H43	119.5
C42"-C43"-H43"	119.5
C43"-C44"-C45"	118.7(7)
C43"-C44"-H44"	120.6
C45"-C44"-H44"	120.6
C46"-C45"-C44"	121 0(7)
C46"-C45"-H45"	119.5
	119.5
	119.5
C41"-C46"-C45"	120.6(7)
C41"-C46"-H46"	119.7
C45"-C46"-H46"	119.7
C52"-C51"-C56"	118.2(6)
C52"-C51"-P2"	122.7(5)
C56"-C51"-P2"	110.0(5)
C50 -C51 -F2	119.0(3)
$C_{51} - C_{52} - C_{53}$	120.8(7)
C51"-C52"-H52"	119.6
C53"-C52"-H52"	119.6
C54"-C53"-C52"	120.2(7)
C54"-C53"-H53"	119.9
C52"-C53"-H53"	1199
C55"-C54" C53"	110 6(7)
	119.0(7)
C35 -C54 -H54	120.2
C53"-C54"-H54"	120.2
C54"-C55"-C56"	121.0(7)
C54"-C55"-H55"	119.5
C56"-C55"-H55"	119.5

23/02/00 15:15:29

Dr. T. Gelbrich

00src68

Dr. T. Gelbrich

00src68

Symmetry transformations used to generate equivalent atoms:

C55"-C56"-C51"	120.1(7)
C55"-C56"-H56"	119.9
C51"-C56"-H56"	119.9
C66"-C61"-C62"	117.7(7)
C66"-C61"-P2"	121.9(6)
C62"-C61"-P2"	120.2(5)
C63"-C62"-C61"	121.2(7)
C63"-C62"-H62"	119.4
C61"-C62"-H62"	119.4
C64"-C63"-C62"	120.2(8)
C64"-C63"-H63"	119.9
C62"-C63"-H63"	119.9
C65"-C64"-C63"	119.3(7)
C65"-C64"-H64"	120.4
C63"-C64"-H64"	120.4
C64"-C65"-C66"	121.7(7)
C64"-C65"-H65"	. 119.2
C66"-C65"-H65"	119.2
C65"-C66"-C61"	119.8(7)
C65"-C66"-H66"	120.1
C61"-C66"-H66"	120.1

÷

motor one							
Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}	
Re1	21(1)	20(1)	13(1)	0(1)	4(1)	1(1)	
Fel	18(1)	24(1)	20(1)	-1(1)	3(1)	2(1)	
Br1	23(1)	26(1)	25(1)	1(1)	9(1)	-2(1)	
P2	21(1)	22(1)	14(1)	0(1)	5(1)	0(1)	
P1	19(1)	22(1)	15(1)	-2(1)	6(1)	0(1)	
02	36(3)	62(5)	45(4)	-20(3)	-17(3)	22(3)	
03	46(3)	27(4)	27(3)	0(2)	14(2)	2(3)	
C2	33(5)	30(5)	20(4)	-12(3)	-2(3)	14(4)	
C3	24(4)	30(5)	11(4)	0(3)	8(3)	0(4)	
C21	23(4)	21(5)	13(4)	-3(3)	4(3)	2(3)	
C22	28(4)	24(5)	16(4)	0(3)	5(3)	3(3)	
C11	17(4)	27(5)	17(4)	-8(3)	5(3)	-2(3)	
C12	30(4)	42(6)	24(4)	-5(4)	12(3)	-3(4)	
C13	21(4)	49(6)	33(4)	-12(4)	11(3)	-1(4)	
C14	28(4)	30(5)	34(4)	-6(4)	12(4)	7(4)	
C15	25(4)	24(5)	22(4)	-8(3)	4(3)	-1(3)	
C23	34(4)	22(5)	25(4)	0(3)	15(3)	1(3)	
C24	29(4)	24(5)	24(4)	3(3)	2(3)	3(3)	
C25	21(4)	37(6)	25(4)	-4(3)	1(3)	-2(4)	
C31	15(4)	20(5)	23(4)	-3(3)	6(3)	4(3)	
C32	35(5)	22(5)	33(4)	-1(4)	13(4)	-4(4)	
C33	46(5)	23(5)	46(5)	-7(4)	16(4)	-10(4)	
C34	40(5)	28(5)	46(5)	6(4)	25(4)	-5(4)	
C35	22(4)	41(6)	33(4)	3(4)	14(3)	-3(4)	
C36	10(4)	35(5)	28(4)	-5(3)	6(3)	-2(3)	
C41	23(4)	17(4)	16(4)	-4(3)	2(3)	0(3)	
C42	38(5)	42(6)	19(4)	-11(3)	0(4)	7(4)	
C43	52(6)	36(6)	22(4)	-7(4)	-7(4)	19(4)	
C44	69(6)	36(6)	16(4)	0(4)	13(4)	13(5)	
C45	54(6)	38(6)	28(5)	-2(4)	23(4)	-9(4)	
C46	30(4)	30(5)	19(4)	-4(3)	7(3)	-5(4)	
C51	13(3)	25(5)	15(4)	-7(3)	5(3)	-2(3)	
C52	23(4)	29(5)	16(4)	7(3)	5(3)	-3(3)	
C53	32(4)	33(5)	18(4)	1(3)	10(3)	-9(4)	
C54	18(4)	51(6)	20(4)	-7(4)	6(3)	-3(4)	
C55	26(4)	24(5)	24(4)	-9(3)	1(3)	2(3)	2
C56	29(4)	29(5)	17(4)	0(3)	10(3)	0(3)	
C61	18(4)	18(4)	22(4)	-1(3)	9(3)	2(3)	
C62	30(4)	30(3)	17(4)	2(3)	17(3)	-6(4)	
C63	28(4)	37(5)	22(4)	-2(3)	-2(3)	-5(4)	
C64	21(4)	31(3)	30(4)	2(3)	D(3)	-7(3)	
C03	29(4)	30(3)	19(4)	0(3)	7(3)	0(4)	
C00 Ro2	20(1)	20(3)	15(1)	-1(3)	4(3)	-2(3)	
RCZ Ec2	18(1)	25(1)	15(1)	-2(1)	3(1)	2(1)	
D-1	40(1)	32(1)	21(1)	1(1)	13(1)	-5(1)	
01	40(1)	43(8)	30(9)	-3(7)	5(7)	-8(5)	
DI	17(1)	24(1)	13(1)	-3(7)	3(1)	-1(1)	
ר ו סי	21(1)	24(1)	14(1)	-1(1)	6(1)	0(1)	363 I
01'	28(3)	64(5)	45(4)	-10(3)	-5(3)	12(3)	
02'	63(4)	28(4)	43(3)	1(3)	12(3)	8(3)	
C1'	42(5)	31(5)	27(4)	-6(3)	13(4)	12(4)	
C2'	32(5)	45(6)	19(4)	7(4)	9(3)	6(4)	
C11'	24(4)	26(5)	5(3)	-3(3)	0(3)	-6(3)	
C12'	25(4)	28(5)	14(4)	-4(3)	0(3)	6(3)	
C13'	31(5)	46(6)	10(4)	-7(3)	-4(3)	11(4)	
C14'	38(5)	18(5)	13(4)	-3(3)	9(3)	-3(3)	
C15'	27(4)	30(5)	12(4)	1(3)	5(3)	3(4)	

Table 4. Anisotropic displacement parameters $[Å^2 \times 10^3]$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + \dots + 2h k a^* b^* U^{12}]$.

User: Dr. Beckett

C21'	19(4)	24(5)	8(3)	-5(3)	1(3)	1(3)
C22'	18(4)	26(5)	24(4)	-7(3)	2(3)	5(3)
C22	28(4)	38(6)	10(4)	-11(3)	7(3)	8(4)
C25	20(4)	56(0)	15(4)	-11(3)	7(3)	0(4)
C24	19(4)	44(0)	23(4)	-/(4)	11(3)	3(4)
C25'	20(4)	44(5)	13(4)	-6(3)	3(3)	1(4)
C31'	17(4)	28(5)	19(4)	4(3)	4(3)	-1(3)
C32'	18(4)	28(5)	22(4)	2(3)	7(3)	2(3)
C33'	31(4)	40(6)	19(4)	8(4)	7(3)	-2(4)
C34'	23(4)	27(5)	36(5)	6(4)	4(4)	-3(3)
C25'	36(5)	21(5)	29(4)	-2(3)	6(4)	-2(4)
0201	24(4)	27(5)	16(4)	2(3)	7(2)	2(+)
C36	24(4)	35(3)	10(4)	-2(3)	7(3)	-4(3)
C41'	24(4)	15(4)	15(4)	-1(3)	3(3)	-4(3)
C42'	32(4)	30(5)	18(4)	-5(3)	2(3)	-5(4)
C43'	31(4)	35(5)	22(4)	-7(3)	-11(4)	-2(4)
C44'	63(6)	25(5)	8(4)	-4(3)	-3(4)	0(4)
C45'	46(5)	28(5)	13(4)	-5(3)	9(4)	-9(4)
C46'	27(4)	28(5)	22(4)	0(3)	8(3)	2(3)
CSI	16(4)	24(5)	11(3)	-2(3)	1(3)	-2(3)
CSI	20(4)	20(5)	20(4)	_2(3)	6(3)	-4(4)
C52	30(4)	20(5)	20(4)	10(2)	16(4)	7(4)
C53	41(5)	22(5)	52(4)	-10(3)	10(4)	-7(4)
C54'	29(4)	55(6)	22(4)	-/(4)	15(3)	-3(4)
C55'	35(5)	38(6)	19(4)	4(4)	12(3)	0(4)
C56'	25(4)	27(5)	17(4)	-3(3)	2(3)	-5(3)
C61'	27(4)	18(4)	26(4)	-3(3)	15(3)	1(3)
C62'	29(4)	33(5)	18(4)	3(3)	4(3)	-2(4)
C63'	54(5)	34(5)	25(4)	2(4)	25(4)	-11(4)
C64'	37(5)	30(5)	50(5)	-9(4)	30(4)	-9(4)
C65'	26(4)	33(5)	38(5)	-7(4)	8(4)	3(4)
COS	20(4)	25(5)	10(4)	8(3)	14(3)	-10(4)
000	52(4)	33(3)	19(4)	-0(3)	7(1)	-10(4)
Res	10(1)	20(1)	17(1)	U(1)	7(1)	O(1)
Fe3	20(1)	23(1)	13(1)	-1(1)	5(1)	-2(1)
Br3	26(1)	33(1)	29(1)	-4(1)	13(1)	6(1)
C1"	23(6)	34(9)	18(6)	6(6)	2(4)	15(6)
O1"	41(6)	62(9)	44(6)	3(5)	18(5)	22(5)
P1"	19(1)	24(1)	13(1)	1(1)	6(1)	0(1)
P2"	15(1)	26(1)	16(1)	-1(1)	4(1)	1(1)
O2"	31(3)	60(4)	31(3)	14(3)	15(3)	2(3)
O3"	21(3)	55(4)	35(3)	0(3)	9(2)	0(3)
C2"	17(4)	36(5)	29(4)	-6(4)	11(3)	-1(3)
C3"	23(4)	30(5)	27(4)	-4(3)	14(3)	-11(4)
C11"	18(4)	23(5)	9(3)	-1(3)	-2(3)	-1(3)
CI1	22(4)	25(5)	10(3)	5(3)	5(3)	-3(3)
014"	22(4)	21(5)	11(3)	2(2)	2(2)	15(4)
C14	20(4)	51(5)	11(3)	-3(3)	3(3)	-13(4)
C13"	31(4)	22(5)	15(4)	-7(3)	9(3)	-2(3)
C15"	20(4)	25(5)	16(4)	-1(3)	1(3)	0(3)
C21''	16(4)	25(5)	5(3)	-1(3)	2(3)	1(3)
C22''	19(4)	26(5)	18(4)	4(3)	3(3)	6(3)
C23"	35(4)	30(5)	6(3)	1(3)	9(3)	-9(4)
C24"	24(4)	31(5)	15(4)	-1(3)	8(3)	2(4)
C25"	22(4)	24(5)	8(3)	-1(3)	-1(3)	1(3)
C31"	22(4)	18(4)	26(4)	2(3)	14(3)	3(3)
C32"	28(4)	24(5)	23(4)	1(3)	13(3)	5(3)
C33"	34(5)	24(5)	36(5)	-2(3)	17(4)	0(4)
C34"	24(5)	21(5)	37(5)	2(3)	20(4)	17(4)
C34	34(3)	54(6)	22(5)	20(4)	12(4)	17(4)
035	21(4)	34(0)	55(5)	20(4)	13(4)	10(4)
C36"	22(4)	31(3)	21(4)	5(3)	9(3)	-1(3)
C41"	10(3)	27(5)	14(4)	-1(3)	6(3)	-5(3)
C42"	21(4)	31(5)	26(4)	1(3)	14(3)	-7(3)
C43"	35(4)	29(5)	18(4)	8(3)	13(3)	2(4)
C44''	30(4)	45(6)	25(4)	1(4)	18(3)	2(4)
C45"	33(4)	28(5)	22(4)	-4(3)	11(3)	8(4)
C46"	26(4)	28(5)	17(4)	4(3)	7(3)	4(3)

23/02/00 15:15:29

•

Dr. T. Gelbrich

00src68

User: Dr. Beckett

C51"	15(4)	25(5)	15(4)	-2(3)	0(3)	2(3)	
C52"	21(4)	42(6)	19(4)	-6(3)	5(3)	0(3)	
C53"	29(4)	50(6)	13(4)	-10(3)	8(3)	-2(4)	
C54"	30(4)	21(5)	22(4)	-11(3)	0(3)	2(4)	
C55"	29(4)	24(5)	34(4)	-7(4)	11(4)	-11(3)	
C56"	26(4)	34(5)	23(4)	-4(3)	11(3)	-4(4)	
C61"	24(4)	27(5)	21(4)	0(3)	10(3)	-3(3)	
C62"	28(4)	34(5)	28(4)	9(4)	6(3)	4(4)	
C63"	48(5)	46(6)	33(5)	4(4)	24(4)	14(4)	
C64"	34(5)	45(6)	47(5)	21(4)	25(4)	16(4)	
C65"	28(5)	52(6)	32(5)	18(4)	7(4)	14(4)	
C66"	26(4)	44(6)	23(4)	7(4)	7(3)	7(4)	

Dr. T. Gelbrich

Atom	x	У	z	U _{eq}	S.o.f.		
H22	1923	-594	2093	28	1		
H12	-383	-875	3442	38	î		
H13	-2754	-599	29 93	41	1		
H14	-1850	-164	2905	37	1		
H15	1138	-168	3321	30	1		
H23	130	-231	1622	31	1		
H24	-2652	-372	1362	34	î		
H25	-2591	-833	1591	36	Ĩ		
H32	3885	-208	4404	36	Ť		
H33	4905	158	4214	46	1		
H34	5603	204	3302	43	ī		
H35	5208	-118	2563	37	ĩ		
H36	4335	-500	2776	30	ĩ		
H42	5978	-704	4797	43	i		
H43	6853	-699	5951	51	i		
H44	5113	-693	6485	49	i		
H45	2461	-645	5869	45	ĩ		
H46	1540	-645	4714	33	1		
H52	1301	-944	1082	28	i		
H53	1971	-1149	278	33	i		
H54	2214	-1570	303	36	i		
H55	1808	-1804	1134	33	î		
H56	1141	-1600	1933	30	1		
H62	-2034	-1260	1194	30	1		
H63	-4387	-1447	1070	38	1		
H64	-4846	-1592	1982	34	1		
H65	-2875	-1553	3039	35	1		
H66	-572	-1344	3175	27	î		
H12'	8151	-946	-266	29	1		
H13'	8404	-1400	0	39	1		
H14'	5743	-1572	-172	28	i		
H15'	3780	-1221	-537	28	1		
H22'	4230	-1618	-1886	29	1		
H23'	7133	-1606	-1647	35	1		
H24'	7934	-1166	-1744	34	Ĩ		
H25'	5515	-894	-2031	32	ī		
H32'	1161	-1260	-1127	27	ĩ		
H33'	232	-1627	-843	36	1		
H34'	-195	-1976	-1510	37	1		
H35'	330	-1957	-2484	36	1		
H36'	1355	-1600	-2760	30	1		
H42'	-849	-1089	-3139	35	1		
H43'	-1974	-1091	-4302	43	ĩ		
H44'	-438	-1129	-4926	44	1		
H45'	2244	-1186	-4403	35	î		
H46'	3404	-1197	-3251	31	1		
H52'	4240	-210	-352	33	Ĩ		
H53'	3620	-46	503	37	· · · · ·	5 A 84	
H54'	3443	-312	1329	40	1		
H55'	4025	-726	1325	36	1		
H56'	4613	-890	452	30	1		
H62'	5571	-425	-1764	33	1		
H63'	7712	-197	-1753	41	1		
H64'	9925	-157	-761	42	ĩ		
H65'	9814	-313	225	40	Ĩ		
H66'	7631	-533	206	33	Ĩ		
H12"	710	-3220	-780	23	1		

Table 5. Hydrogen coordinates [$\times 10^4$] and isotropic displacement parameters [Å² × 10³].

23/02/00 15:15:29

Dr. T. Gelbrich

00src68

User: Dr. Beckett

H13"	-3605	-3297	-652	29	1	
H14"	-1131	-3524	-579	27	1	
H15"	-3340	-2850	-953	26	1	
H22"	1730	-3273	976	26	1	
H23"	-948	-3338	1044	28	1	
H24"	-2446	-2938	759	28	1	
H25"	-706	-2615	521	23	1	
H32"	-300	-2296	-163	29	1	
H33"	-2061	-1984	-116	36	1	
H34"	-4422	-1936	-999	38	1	
H35"	-5058	-2188	-1935	42	1	
H36"	-3360	-2500	-1962	30	1	
H42"	-899	-2331	-2217	30	1	
H43"	-1487	-2381	-3343	32	1	
H44"	-1508	-2772	-3792	38	1	
H45"	-1025	-3118	-3099	33	1	
H46"	-495	-3074	-1973	29	1	
H52"	1623	-2601	1672	34	1	
H53"	2365	-2295	2492	37	1	
H54"	4456	-2037	2608	33	1	
H55"	5852	-2090	1929	35	1	
H56"	5037	-2374	1064	32	1	
H62"	3424	-3220	151	37	1	
H63"	5177	-3541	598	48	1	
H64"	6995	-3516	1684	47	1	
H65"	7122	-3162	2297	46	1	
H66"	5352	-2840	1877	38	1	

5**%**.

00src68

Appendix G

Crystal tables for 3b

Table 1. Crystal data and structure refinement.

Identification code	592 495 KC 307		
Empirical formula	$C_{28}H_{32}B_3MnO_2P_2$		
Formula weight	549.85		
Temperature	150(2) K		
Wavelength	0.71073 A		
Crystal system	Orthorhombic		
Space group	Pbca		
Unit cell dimensions	a = 17.123(3) Å	$\alpha = 90^{\circ}$	
	b = 12.328(2) Å	$\beta = 90^{\circ}$	
	c = 26.170(5) Å	$\gamma = 90^{\circ}$	
Volume	5524.3(17) Å ³		
Z	8		
Density (calculated)	1.322 Mg / m ³		
Absorption coefficient	0.618 mm ⁻¹		
F(000)	2288		
Crystal	Plate; orange		
Crystal size	$0.2 \times 0.15 \times 0.02 \text{ mm}^3$		
θ range for data collection	1.96 – 27.45°		
Index ranges	$-16 \le h \le 22, -13 \le k \le 15, -33 \le k$	′ ≤ 25	
Reflections collected	37761		
Independent reflections	$6296 [R_{int} = 0.0810]$		
Completeness to $\theta = 27.45^{\circ}$	90.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.992 and 0.925		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	6296 / 0 / 357		
Goodness-of-fit on F^2	0.830		
Final R indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0432, wR2 = 0.1112		
R indices (all data)	RI = 0.0774, wR2 = 0.1326		
Largest diff. peak and hole	0.434 and -0.391 e Å ⁻³		

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307–326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33–37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421–426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467–473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

Special details:

Atom	x	у	z	Ueq	S.o.f.	
Mnl	-56(1)	3860(1)	3647(1)	19(1)	1	
P1	-238(1)	3376(1)	2827(1)	21(1)	1	
P2	-677(1)	2312(1)	3851(1)	20(1)	1	
01	1459(1)	2681(1)	3640(1)	31(1)	1	
O2	-1623(1)	4911(1)	3687(1)	34(1)	1	
B1	509(2)	4790(2)	4328(1)	27(1)	1	
B2	681(2)	5443(2)	3742(1)	29(1)	1	
B3	188(2)	6161(2)	4255(1)	35(1)	1	
C1	590(1)	3405(2)	2384(1)	21(1)	1	
C2	575(2)	2793(2)	1934(1)	29(1)	1	
C3	1186(2)	2820(2)	1594(1)	33(1)	1	
C4	1829(2)	3473(2)	1690(1)	30(1)	1	
C5	1856(2)	4085(2)	2131(1)	27(1)	1	
C6	1244(2)	4047(2)	2477(1)	24(1)	1	9 320
C7	-982(1)	4079(2)	2448(1)	25(1)	1	
C8	-1422(2)	3581(2)	2065(1)	33(1)	1	
C9	-1928(2)	4181(2)	1764(1)	41(1)	1	
C10	-2006(2)	5285(2)	1840(1)	42(1)	1	
C11	-1587(2)	5789(2)	2221(1)	36(1)	1	
C12	-1079(2)	5190(2)	2522(1)	28(1)	1	
C13	-544(2)	1942(2)	2827(1)	24(1)	1	
C14	-1123(2)	1781(2)	3263(1)	24(1)	1	
C15	-1490(1)	2316(2)	4304(1)	22(1)	1	
C16	-2031(2)	1466(2)	4308(1)	31(1)	1	
C17	-2626(2)	1447(2)	4660(1)	36(1)	1	
C18	-2700(2)	2260(2)	5018(1)	35(1)	1	
C19	-2170(2)	3109(2)	5018(1)	38(1)	1	
C20	-1576(2)	3138(2)	4663(1)	28(1)	1	
C21	-77(1)	1207(2)	4101(1)	21(1)	1	
C22	373(2)	1418(2)	4531(1)	32(1)	1	
C23	842(2)	612(2)	4745(1)	37(1)	1	
C24	859(2)	-401(2)	4525(1)	39(1)	1	
C25	415(2)	-623(2)	4101(1)	39(1)	1	
C26	-51(2)	176(2)	3885(1)	31(1)	1	
C27	882(2)	3125(2)	3635(1)	22(1)	1	
C28	-1012(2)	4530(2)	3676(1)	22(1)	1	

Table 2. Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.
Table 3. Bond lengths [Å] and angles [°].

Mn1-C28	1.835(3)
Mn1-C27	1.844(3)
Mn1–P1	2.2480(8)
Mn1–P2	2.2495(7)
Mn1-B1	2,330(3)
Mn1–B2	2 336(3)
P_1-C_1	1.831(3)
PI_C7	1.832(3)
P1_C13	1.832(3)
P2 C15	1.845(2)
P2-C13	1.827(2)
P2-C21	1.828(2)
P2-C14	1.840(2)
01-027	1.130(3)
02-C28	1.147(3)
BI-B2	1.756(4)
B1-B3	1.788(4)
B2-B3	1.815(5)
C1–C6	1.394(3)
C1-C2	1.398(3)
C2-C3	1.376(4)
C3-C4	1.387(4)
C4-C5	1.381(4)
C5-C6	1.386(3)
C7–C12	1.393(3)
C7–C8	1.398(3)
C8–C9	1.384(4)
C9-C10	1.381(4)
C10-C11	1.377(4)
C11-C12	1.386(4)
C13-C14	1.525(3)
C15-C20	1.390(3)
C15-C16	1.399(3)
C16-C17	1.373(4)
C17-C18	1.380(4)
C18-C19	1.384(4)
C19–C20	1.379(4)
C21-C22	1.389(4)
C21-C26	1.391(3)
C22-C23	1.395(4)
C23–C24	1.375(4)
C24–C25	1.374(4)
C25-C26	1.387(4)
C28-Mn1-C27	176.96(10)
C28–Mn1–P1	91.99(7)
C27-Mn1-P1	88.55(7)
C28-Mn1-P2	87.10(7)
C27-Mn1-P2	89.95(7)
P1-Mn1-P2	86.34(3)
C28-Mn1-B1	96.76(11)
C27-Mn1-B1	83.86(11)
Pl-Mnl-Bl	156.69(8)
P2-Mn1-B1	115.57(8)
C28-Mn1-B2	95.84(11)
C27-Mn1-B2	86.69(11)
PI-Mn1-B2	113.50(8)
P2-Mn1-B2	159.75(8)
B1-Mn1-B2	44.22(11)
C1-P1-C7	100.73(11)

30/07/99 12:07:37

Dr. S. J. Coles

3

C1-P1-C13	103.76(11)
C7-P1-C13	104.83(12)
C1-P1-Mn1	119.42(8)
C7-P1-Mn1	119.17(9)
C13-P1-Mn1	107.14(8)
C15-P2-C21	101.50(10)
C15-P2-C14	103 12(11)
$C_{21} - P_{2} - C_{14}$	105.46(11)
C15 - P2 - Mn1	120.82(8)
$C_{1}=P_{2}=M_{n}$	116.83(8)
C14-P2-Mn1	107 42(8)
$P_2 = P_1 = P_3$	61 50(18)
$B_2 = B_1 = B_3$	69 09(14)
	00.00(14)
B3-B1-MIII	104.78(17)
B1-B2-B3	60.07(17)
B1–B2–Mn1	67.70(14)
B3-B2-Mn1	103.64(18)
B1-B3-B2	58.34(17)
C6-C1-C2	117.9(2)
C6-C1-P1	121.50(18)
C2-C1-P1	120.55(19)
C3-C2-C1	121.2(2)
C2-C3-C4	120.1(2)
C5-C4-C3	119.7(2)
C4-C5-C6	120.3(2)
C5-C6-C1	120.8(2)
C12-C7-C8	117.7(2)
C12-C7-P1	118.30(19)
C8-C7-P1	123.8(2)
C9-C8-C7	120.8(3)
C10C9C8	120.3(3)
C11-C10-C9	119.9(3)
C10-C11-C12	119.9(3)
$C_{11} - C_{12} - C_{7}$	121 4(3)
C14-C13-P1	108.02(16)
C13 - C14 - P2	108.05(17)
$C_{20}-C_{15}-C_{16}$	118 1(2)
$C_{20} = C_{15} = P_{2}$	121 37(19)
C16-C15-P2	120.52(18)
C17 - C16 - C15	120.32(10)
C16 C17 C18	120.7(2)
	120.7(2)
	119.3(3)
$C_{20} = C_{19} = C_{18}$	120.3(2)
	121.0(2)
C22-C21-C26	118.8(2)
C22-C21-P2	117.47(18)
C26-C21-P2	123.7(2)
C21-C22-C23	120.7(2)
C24-C23-C22	119.5(3)
C25-C24-C23	120.4(3)
C24-C25-C26	120.4(3)
C25-C26-C21	120.1(3)
O1-C27-Mn1	178.3(2)
O2-C28-Mn1	177.3(2)
Construction of the second sec	

Symmetry transformations used to generate equivalent atoms:

4

Table 4. Anisotropic displacement parameters $[Å^{2} \times 10^{3}]$. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U^{11} + \dots + 2h k a^{*} b^{*} U^{12}]$.

Atom	U^{11}	U ²²	U ³³	U^{23}	U^{13}	U ¹²	
Mnl	18(1)	19(1)	19(1)	0(1)	0(1)	-2(1)	
P1	19(1)	23(1)	20(1)	-1(1)	-1(1)	-4(1)	
P2	18(1)	20(1)	21(1)	0(1)	1(1)	-2(1)	
01	24(1)	32(1)	37(1)	-1(1)	0(1)	3(1)	
O2	25(1)	37(1)	39(1)	-2(1)	0(1)	6(1)	
BI	28(2)	29(2)	24(2)	0(1)	-6(1)	0(1)	
B2	25(2)	22(1)	41(2)	-4(1)	-7(1)	-4(1)	
B3	46(2)	25(2)	33(2)	-2(1)	-11(2)	1(1)	
CI	21(1)	23(1)	19(1)	2(1)	-2(1)	-1(1)	
C2	28(2)	30(1)	28(2)	-6(1)	0(1)	-7(1)	
C3	35(2)	36(1)	28(2)	-8(1)	5(1)	-5(1)	
C4	24(2)	36(1)	29(2)	1(1)	6(1)	1(1)	
C5	21(1)	33(1)	28(1)	3(1)	0(1)	-5(1)	
C6	24(1)	25(1)	24(1)	-1(1)	-2(1)	-1(1)	
C7	17(1)	35(1)	23(1)	6(1)	1(1)	-5(1)	
C8	26(2)	43(2)	29(2)	-1(1)	-3(1)	-5(1)	
C9	24(2)	67(2)	30(2)	4(1)	-10(1)	-13(1)	
C10	24(2)	59(2)	43(2)	23(1)	-7(1)	-3(1)	
C11	27(2)	36(1)	45(2)	17(1)	-2(1)	-1(1)	
C12	21(1)	34(1)	30(1)	6(1)	-1(1)	-5(1)	
C13	27(1)	23(1)	22(1)	-3(1)	0(1)	-5(1)	
C14	23(1)	22(1)	25(1)	-1(1)	0(1)	-5(1)	
C15	18(1)	28(1)	22(1)	2(1)	0(1)	-1(1)	
C16	29(2)	31(1)	32(2)	-2(1)	3(1)	-6(1)	
C17	26(2)	41(2)	39(2)	3(1)	6(1)	-10(1)	
C18	29(2)	43(2)	35(2)	5(1)	11(1)	3(1)	
C19	38(2)	37(2)	37(2)	-5(1)	12(1)	4(1)	
C20	25(2)	29(1)	30(1)	-2(1)	2(1)	-2(1)	
C21	17(1)	22(1)	23(1)	7(1)	5(1)	-2(1)	
C22	30(2)	29(1)	35(2)	5(1)	-3(1)	-6(1)	
C23	29(2)	44(2)	39(2)	15(1)	-7(1)	-6(1)	
C24	34(2)	37(2)	47(2)	16(1)	7(1)	12(1)	
C25	47(2)	30(1)	38(2)	3(1)	6(1)	13(1)	
C26	35(2)	29(1)	29(2)	0(1)	2(1)	4(1)	
C27	24(1)	24(1)	18(1)	-2(1)	0(1)	-6(1)	
C28	24(1)	20(1)	23(1)	0(1)	-4(1)	-4(1)	

Appendix H

Crystal tables for 3m

University of Southampton · Department of Chemistry EPSRC National Crystallography Service

Table 1. Crystal data and structure refinement.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	99src443 $C_{36}H_{36}B_{3}FeO_{2}P_{2}Re$ 837.07 150(2) K 0.71073 Å Monoclinic C2/c a = 13.2009(3) Å b = 15.8108(4) Å	$\alpha = 90^{\circ}$ $\beta = 91.0570(10)^{\circ}$
Volume Z	$c = 10.0822(3) \text{ Å}^3$ 3356.05(13) Å ³ 4	y = 90
Density (calculated)	$1.657 \text{ Mg} / \text{m}^3$	
Absorption coefficient	4.163 mm ⁻¹	
F(000)	1656	
Crystal	tabular; orange	
Crystal size	$0.25 \times 0.10 \times 0.10 \text{ mm}^3$	
θ range for data collection	2.01 - 26.02°	
Index ranges	$-16 \le h \le 16, -19 \le k \le 19, -19 \le$	<i>l</i> ≤19
Reflections collected	12891	
Independent reflections	$3274 [R_{int} = 0.0361]$	
Completeness to $\theta = 26.02^{\circ}$	98.8 %	
Max. and min. transmission	0.6809 and 0.4225	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	3274/2/285	
Goodness-of-fit on F ²	1.060	in a sev
Final R indices $[F^2 > 2\sigma(F^2)]$	RI = 0.0228, wR2 = 0.0534	
<i>R</i> indices (all data)	RI = 0.0249, wR2 = 0.0543	
Extinction coefficient	0.00103(8)	
Largest diff. peak and hole	1.693 and -0.980 e A^{-3}	

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307–326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33–37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421–426). Program used to solve structure: DIRDIF-96 (P. T. Beurskens, G. Beurskens, W. P. Bosman, R. de Gelder, S. Garcia-Granda, R. O. Gould, R. Israël & J. M. M. Smits (1996). Crystallography Laboratory, University of Nijmegen, The Netherlands. Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

Special details:

The two alternative positions of the disordered B2 atom are related by -x, y, $-z + \frac{1}{2}$

99src443

(1)		Did responses interaction		FOR CONTRACTOR AND A STREET		
Atom	x	у	z	U_{eq}	S.o.f.	
Rel	0	1836(1)	2500	24(1)	1	
Fel	0	-886(1)	2500	26(1)	ï	
P1	1400(1)	878(1)	2471(1)	22(1)	1	
01	-72(2)	1772(2)	573(2)	59(1)	1	
Bl	-663(4)	3271(3)	2530(4)	54(1)	1	
B2	-163(8)	3832(6)	1774(7)	64(3)	0.50	
C1	1216(2)	-189(2)	2846(2)	27(1)	1	
C2	1544(2)	-1003(2)	2558(2)	36(1)	1	
C3	1090(3)	-1631(2)	3052(2)	45(1)	1	
C4	511(3)	-1231(2)	3662(2)	41(1)	I	
C5	584(2)	-348(2)	3547(2)	31(1)	1	
C6	-46(3)	1805(2)	1277(2)	37(1)	1	
C11	2518(2)	1199(2)	3110(2)	33(1)	1	
C12	3385(3)	710(3)	3086(2)	52(1)	1	
C13	4224(3)	940(5)	3576(3)	80(2)	1	
C14	4204(4)	1617(4)	4090(3)	78(2)	1	
C15	3355(4)	2101(4)	4112(3)	64(1)	1	
C16	2510(3)	1901(2)	3626(2)	42(1)	1	
C21	1982(2)	794(2)	1446(2)	25(1)	1	
C22	1890(2)	108(2)	908(2)	33(1)	1	
C23	2347(3)	122(2)	142(2)	41(1)	1	
C24	2883(3)	825(3)	-106(2)	47(1)	1	
C25	2958(3)	1512(3)	407(2)	43(1)	1	
C26	2505(2)	1502(2)	1176(2)	34(1)	1	

Table 2. Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles [°].

٠

Re1-C6 ⁱ	1.968(4)
Re1-C6	1.968(4)
Re1-P1 ⁱ	2 3911(7)
Re1-P1	2 3911(7)
Re1-B1 ⁱ	2.3371(1)
Re1-B1	2.432(4)
Del_HID	1 92(2)
Fal Cl ⁱ	1.65(5)
Fel-Cl	2.017(3)
Fel-Cl	2.017(3)
Fel-CS	2.026(3)
Fel-CS	2.026(3)
Fel-C2'	2.046(3)
Fe1–C2	2.0 46(3)
Fe1-C4'	2.048(3)
Fe1-C4	2. 0 48(3)
Fe1-C3'	2.049(3)
Fe1-C3	2.049(3)
P1C1	1.809(3)
P1-C21	1.837(3)
P1-C11	1.853(3)
O1-C6	1.134(4)
B1-B2	1.653(11)
B1-B1 ⁱ	1.754(10)
B1-H1B	1.21(3)
B1-H2B	1.06(5)
B1-H3B	1.10(5)
B2-B1 ⁱ	1 784(12)
B2-H3B	1 31(5)
B2-H4B	1,258(8)
B2-H5B	1.2230(0)
C1_C2	1.247(0)
C1_C5	1,437(4)
C1_C3	1,412(5)
C2_C3	0.06(4)
$C_2 = C_4$	1 404(5)
$C_2 U_2$	1.404(3)
	0.93(4)
C4 II	1.412(3)
	, 0.87(4)
	0.89(3)
	1.382(5)
	1.385(5)
	1.396(6)
C12-H12	0.88(3)
C13-C14	1.353(8)
C13-H13	0.82(4)
C14–C15	1.359(8)
C14-H14	0.91(6)
C15-C16	1.386(5)
C15-H15	0.80(4)
C16-H16	0.92(4)
C21-C26	1.389(4)
C21-C22	1.392(4)
C22-C23	1.381(4)
C22-H22	0.93(3)
C23-C24	1.381(6)
C23-H23	0.97(4)
C24-C25	1.366(6)
C24-H24	0.91(4)
C25-C26	1.384(5)
TAN OF THE WAY AND A CONTRACT OF THE PARTY O	

間

C25-H25	0.92(4)
C26-H26	0.90(3)
$C6^{i}$ -Re1-C6	177 17(17)
$C6^{i}$ Pal $-P1^{i}$	88 57(0)
	00.37(9)
Co-Rel-Pl	89.64(10)
C6'-Re1-P1	89.64(10)
C6-Re1-P1	88.57(9)
P1 ⁱ -Re1-P1	101.34(3)
C6 ⁱ -Re1-B1 ⁱ	92.19(17)
C6-Re1-B1 ⁱ	90.45(17)
Pl ⁱ -Rel-Bl ⁱ	150.46(12)
P1-Re1-B1	108 20(12)
$C6^{i}$ -Ra1-R1	90.45(17)
C6 Dal D1	02 10(17)
	108 20(12)
PI-ReI-BI	108.20(12)
PI-ReI-BI	150.46(12)
B1'-Re1-B1	42.3(2)
C6'-Re1-H1B	89.4(10)
C6-Re1-H1B	92.4(10)
P1 ⁱ -Re1-H1B	79.3(10)
P1-Re1-H1B	178.9(10)
B1 ⁱ -Re1-H1B	71.2(10)
B1-Re1-H1B	28 9(10)
Cl^{i} Fel Cl	113 79(17)
$C1^{i}$ Eal $C5^{i}$	41 63(12)
CI-FeI-CS	41.05(12)
CI-FeI-CS	106.77(13)
CI-Fel-CS	106.77(13)
C1-Fe1-C5	41.63(12)
C5'-Fe1-C5	130.31(18)
C1'-Fe1-C2'	41.40(12)
C1-Fe1-C2 ⁱ	148.08(12)
C5 ⁱ -Fe1-C2 ⁱ	68.71(14)
C5-Fe1-C2 ⁱ	116.04(13)
C1 ⁱ -Fe1-C2	148.08(12)
C1-Fe1-C2	41.40(12)
C_{5i} -Fe1-C2	116 04(13)
C5-Ee1-C2	68 71(14)
C_{2}^{i} E ₂ 1 C ₂	160 63(19)
$C_2 = Fe_1 = C_2$	• 60.20(12)
CI-FeI-C4	• 69.30(12)
CI-FeI-C4	130.11(14)
C5'-Fe1-C4'	40.55(13)
C5-Fe1-C4'	169.57(14)
C2'-Fe1-C4'	67.87(14)
C2-Fe1-C4 ⁱ	109.18(14)
C1 ⁱ -Fe1-C4	130.11(14)
C1-Fe1-C4	69.30(12)
C5 ⁱ -Fe1-C4	169.57(14)
C5-Ee1-C4	40 55(13)
C^{2i} Fe1 C^{4}	100.18(14)
$C_2 = C_1 = C_4$	67 97(14)
CZ-FEI-C4	07.87(14)
C4-FeI-C4	149.1(2)
CI-FeI-C3	69.23(13)
C1-Fe1-C3	169.27(14)
C5'-Fe1-C3'	68.18(15)
C5-Fe1-C3 ⁱ	148.75(14)
C2 ⁱ -Fe1-C3 ⁱ	40.34(14)
C2-Fe1-C3 ⁱ	131.17(14)
$C4^{i}$ -Fel-C3 ⁱ	40.09(15)
$C4-Fe1-C3^{i}$	117 33(15)
	160 27(14)
CI-rel-CS	109.27(14)

.

User: Dr. Beckett

C1-Fe1-C3	69.23(13)
C5 ⁱ -Fe1-C3	148.75(14)
C5-Fe1-C3	68.18(15)
C2 ⁱ -Fe1-C3	131.17(14)
C2-Fe1-C3	40.34(14)
C4 ⁱ -Fe1-C3	117.33(15)
C4-Fe1-C3	40.09(15)
C3 ⁱ -Fe1-C3	109.8(2)
C1-P1-C21	107.03(13)
C1-P1-C11	100.43(13)
C21-P1-C11	100.10(13)
C1-P1-Rel	118,43(9)
$C_{21}-P_{1}-Re_{1}$	113,52(9)
C11-P1-Rel	115.06(11)
$B_{2-B_{1-B_{1}}}^{i}$	63 1(5)
B2-B1-Bel	109 7(4)
B1 ⁱ _B1_Rel	68 86(12)
B2_B1_H1B	132 3(16)
B1 ⁱ _B1_H1B	115 8(15)
Rel_Bl_HIB	46 9(15)
R2_R1_H2R	122(3)
\mathbf{P}_{1}^{1} \mathbf{P}_{1}^{1} \mathbf{P}_{1}^{1} \mathbf{P}_{1}^{1} \mathbf{P}_{1}^{1} \mathbf{P}_{1}^{1}	110(3)
	125(3)
	100(3)
	52(3)
$D_{2} - D_{1} - D_{3} D_{3}$	114(3)
	120(3)
	00(3)
HIB-BI-HSB	107(4)
$R_{1}R_{2}R_{1}R_{1}R_{2}R_{1}R_{1}R_{1}R_{2}R_{1}R_{1}R_{2}R_{1}R_{1}R_{1}R_{1}R_{1}R_{1}R_{1}R_{1$	61 3(5)
B1_B2_B1 B1_B2_H3B	41(2)
$B1^{i}$ $B2^{-H3B}$	102(2)
B1_B2_H4B	88(3)
B1 ⁻ B2-H4B	87(3)
$H_{3B}B_{2}H_{4B}$	100(4)
B1_B2_H5B	120(4)
$B1^{i}B2^{-H5B}$	113(4)
H3B_B2_H5B	97(5)
H4B-B2-H5B	151(5)
$C_{2}-C_{1}-C_{5}$	106 2(3)
$C_2 - C_1 - P_1$	133.2(2)
C_{2} C_{1} P_{1}	120 5(2)
$C_2 - C_1 - F_{e_1}$	70 40(18)
$C_{5}-C_{1}-F_{e_{1}}$	69.52(17)
P1-C1-Fe1	121.88(14)
$C_{3}-C_{2}-C_{1}$	108.4(3)
$C_3 - C_2 - F_{e1}$	69.9(2)
C1-C2-Fe1	68.20(17)
$C_{3}-C_{2}-H_{2}$	127(2)
$C_1 = C_2 = H_2$	125(2)
$E_{e1} = C_{2} = H_{2}$	126(2)
$C_{4}-C_{3}-C_{2}$	108 5(3)
C4-C3-Fe1	69.94(19)
$C_2 = C_3 = Fe1$	69 74(19)
$C_{4}-C_{3}-H_{3}$	127(2)
C2-C3-H3	124(2)
Ee1_C3_H3	127(2)
C3_C4_C5	108 4(3)
$C_3 - C_4 - C_3$	70.0(2)
$C_{-C_{+}}$	68 88(18)
$C_{3}-C_{4}-H_{4}$	129(3)
	1

•

17/11/99 12:54:00

Dr. T. Gelbrich

User: Dr. Beckett

5

-

05 04 114	12210
C5-C4-H4	122(3)
Fel-C4-H4	125(3)
C4–C5–C1	108.5(3)
C4-C5-Fe1	70 .57(19)
C1-C5-Fe1	68.84(17)
C4-C5-H5	127(2)
C1-C5-H5	124(2)
Fe1-C5-H5	124(2)
O1-C6-Rel	178.7(3)
C12-C11-C16	118.7(3)
C12-C11-P1	118.8(3)
C16-C11-P1	122 5(3)
C_{11} C_{12} C_{13}	119 2(5)
C11-C12-C13	120(2)
	120(2)
	121(2)
	121.8(5)
C14-C13-H13	128(3)
C12-C13-H13	110(3)
C13-C14-C15	119.1(4)
C13-C14-H14	120(3)
C15-C14-H14	121(3)
C14-C15-C16	120.8(5)
C14-C15-H15	118(3)
C16-C15-H15	121(3)
C11-C16-C15	120.4(4)
C11-C16-H16	119(2)
C15-C16-H16	121(2)
C26-C21-C22	118.1(3)
C26-C21-P1	116.2(2)
C22-C21-P1	125.6(2)
C23-C22-C21	120.5(3)
C23-C22-H22	117.7(19)
C21-C22-H22	121.8(19)
C24-C23-C22	120.3(3)
C24-C23-H23	121(2)
C22-C23-H23	119(2)
$C_{25} - C_{24} - C_{23}$	119 9(3)
$C_{25} - C_{24} - H_{24}$	121(3)
$C_{23} - C_{24} - H_{24}$	119(3)
$C_{23} = C_{24} = C_{25} = C_{26}$	120 2(3)
$C_{24} = C_{25} = C_{20}$	121(2)
$C_{24} = C_{25} = 1125$	110(2)
$C_{20} = C_{20} = \Pi_{20}$	121 0(2)
$C_{23} = C_{20} = C_{21}$	121.0(3)
C23-C20-H20	120(2)
C21-C26-H26	119(2)

Symmetry transformations used to generate equivalent atoms: (i) -x, y, $-z + \frac{1}{2}$

User: Dr. Beckett

Atom	U^{11}	U ²²	U^{33}	U^{23}	U^{13}	U ¹²	
Rel	28(1)	22(1)	20(1)	0	6(1)	0	
Fel	29(1)	23(1)	27(1)	0	-1(1)	0	
P1	21(1)	26(1)	19(1)	1(1)	2(1)	-2(1)	
01	71(2)	86(2)	22(1)	10(1)	10(1)	38(2)	
B1	55(3)	25(2)	81(4)	-5(2)	8(3)	6(2)	
B2	65(6)	31(4)	98(8)	20(5)	37(6)	12(4)	
C1	22(1)	32(2)	26(1)	4(1)	-3(1)	1(1)	
C2	31(2)	33(2)	44(2)	9(1)	-1(1)	10(1)	
C3	46(2)	29(2)	58(2)	13(2)	-5(2)	6(2)	
C4	45(2)	42(2)	37(2)	17(2)	-6(2)	-10(2)	
C5	32(2)	38(2)	23(2)	5(1)	-2(1)	-5(1)	
C6	34(2)	40(2)	37(2)	7(1)	10(1)	15(1)	
C11	27(2)	47(2)	24(1)	4(1)	1(1)	-12(1)	
C12	30(2)	89(3)	36(2)	-5(2)	-5(1)	1(2)	
C13	28(2)	151(6)	59(3)	6(3)	-11(2)	4(3)	
C14	47(3)	144(5)	42(2)	4(3)	-17(2)	-42(3)	
C15	62(3)	94(3)	37(2)	-5(2)	-10(2)	-47(3)	
C16	42(2)	51(2)	33(2)	1(2)	0(2)	-22(2)	
C21	21(1)	33(2)	21(1)	2(1)	2(1)	2(1)	
C22	32(2)	35(2)	31(2)	-2(1)	4(1)	2(1)	
C23	42(2)	53(2)	28(2)	-9(2)	7(1)	5(2)	
C24	41(2)	72(3)	27(2)	4(2)	13(1)	3(2)	
C25	37(2)	55(2)	36(2)	12(2)	9(1)	-9(2)	
C26	34(2)	40(2)	29(2)	-2(2)	4(1)	-6(2)	

Table 4. Anisotropic displacement parameters $[Å^2 \times 10^3]$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + \dots + 2h k a^* b^* U^{12}]$.

•

Atom	x	у	z	U _{eq}	S.o.f.	
H2	1980(30)	-1090(20)	2100(20)	53(11)	1	
H3	1130(30)	-2210(20)	2950(20)	40(9)	1	
H4	140(30)	-1450(30)	4040(20)	49(11)	1	
H5	280(20)	50(20)	3837(19)	26(8)	I	
H12	3410(20)	280(20)	2740(20)	33(9)	1	
H13	4660(30)	570(20)	3550(30)	49(12)	1	
H14	4740(40)	1730(30)	4430(40)	99(19)	1	
H15	3340(30)	2480(30)	4440(30)	57(13)	1	
H16	1940(30)	2240(20)	3630(20)	40(10)	1	
H22	1530(20)	-370(20)	1047(19)	24(8)	1	
H23	2260(30)	-360(20)	-230(20)	40(9)	1	
H24	3140(30)	840(30)	-620(30)	62(12)	1	
H25	3280(30)	2000(20)	240(20)	52(11)	1	
H26	2540(20)	1960(19)	1510(20)	24(8)	1	
H1B	-1060(20)	2580(20)	2541(19)	35(8)	1	
H2B	-1000(30)	3560(30)	3060(30)	82(14)	I	21.
H3B	-1050(40)	3530(30)	1980(30)	94(16)	1	
H4B	-100(60)	4440(20)	2270(30)	30	0.50	
H5B	-160(70)	3540(60)	1050(20)	80(30)	0.50	

Table 5. Hydrogen coordinates [× 10^4] and isotropic displacement parameters [Å² × 10^3].

,

Appendix I

Crystal tables for 4c

University of Southampton · Department of Chemistry EPSRC National Crystallography Service

Table 1. Crystal data and structure refinement.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	$\begin{array}{l} 00 \text{src161} \\ \text{C}_{24}\text{H}_{15}\text{BF}_{15}\text{OP} \\ 646.14 \\ 150(2) \text{ K} \\ 0.71073 \text{ Å} \\ \text{Triclinic} \\ P-1 \\ a = 10.344(2) \text{ Å} \\ b = 11.174(2) \text{ Å} \end{array}$	$\alpha = 74.39(3)^{\circ}$ $\beta = 89.09(3)^{\circ}$	
	c = 11.553(2) Å	$\gamma = 84.29(3)^{\circ}$	
Volume	1279.5(4) Å ³	7 = 04.29(3)	
Z	2		
Density (calculated)	1.677 Mg / m ³		
Absorption coefficient	0.236 mm ⁻¹		
F(000)	644		
Crystal	Prism; colourless		
Crystal size	$0.30 \times 0.15 \times 0.15 \text{ mm}^3$		
θ range for data collection	2.26 – 27.55°		
Index ranges	$-13 \le h \le 11, -14 \le k \le 14, -15 \le k$	≤ 15	
Reflections collected	19170		
Independent reflections	5853 $[R_{int} = 0.0499]$		
Completeness to $\theta = 27.55^{\circ}$	99.1 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9655 and 0.9327		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	5853 / 0 / 382		
Goodness-of-fit on F^2	0.891		
Final R indices $[F^2 > 2\sigma(F^2)]$	RI = 0.0506, wR2 = 0.1286		
R indices (all data)	RI = 0.1150, wR2 = 0.1604		
Largest diff. peak and hole	0.296 and -0.303 e Å ⁻³		

Diffractometer: Enraf Nonius KappaCCD area detector (\$\$\phi\$ scans and \$\omega\$ scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307–326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33–37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421–426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467–473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

Special details:

Atom	x	у	Z	U_{eq}	S.o.f.	
P1	3407(1)	6943(1)	1423(1)	52(1)	1	
F1	5573(1)	9003(2)	1411(1)	68(1)	1	
F2	8132(2)	8627(2)	1702(2)	97(1)	1	
F3	9193(2)	7636(2)	3941(2)	99(1)	1	
F4	7621(2)	7040(2)	5863(2)-	90(1)	1	
F5	5077(2)	7405(2)	5602(1)	76(1)	1	
F6	3037(2)	5824(1)	4494(2)	81(1)	1	
F7	1391(2)	5191(2)	6274(2)	96(1)	1	
F8	219(2)	6925(2)	7304(2)	94(1)	1	
F9	727(2)	9334(2)	6471(2)	101(1)	1	
F10	2332(2)	10008(2)	4663(2)	93(1)	1	
F11	4855(2)	10831(1)	2826(2)	76(1)	1	
F12	3872(2)	13048(1)	1526(2)	85(1)	1	
F13	1539(2)	13334(2)	412(2)	99(1)	1	
F14	161(2)	11318(2)	682(2)	94(1)	1	
F15	1107(1)	9093(1)	2008(2)	71(1)	1	77
01	3369(2)	7520(2)	2453(1)	52(1)	1	3 6
B1	3606(3)	8403(2)	3222(2)	46(1)	1	
C1	6044(2)	8494(2)	2550(2)	52(1)	1	
C2	7366(3)	8316(3)	2668(2)	62(1)	1	
C3	7910(3)	7821(3)	3797(3)	67(1)	1	
C4	7103(3)	7526(2)	4758(2)	60(1)	1	
C5	5775(2)	7727(2)	4592(2)	54(1)	1	
C6	5168(2)	8218(2)	3488(2)	47(1)	1	
C7	2710(2)	7973(2)	4414(2)	48(1)	1	
C8	2434(2)	6762(2)	4907(2)	54(1)	1	
C9	1613(3)	6395(3)	5854(2)	62(1)	1	
C10	1027(3)	7259(3)	6375(2)	64(1)	1	
C11	1284(3)	8467(3)	5951(2)	65(1)	1	
C12	2106(3)	8796(2)	5006(2)	58(1)	1	
C13	3067(2)	9819(2)	2437(2)	46(1)	1	
C14	3688(2)	10883(2)	2287(2)	54(1)	i	
C15	3194(3)	12046(2)	1621(2)	61(1)	ī	
C16	2025(3)	12204(2)	1073(2)	65(1)	1	2
C17	1339(3)	11183(3)	1203(2)	63(1)	1	
C18	1857(2)	10042(2)	1881(2)	53(1)	1	
C19	5010(3)	6186(3)	1276(3)	80(1)	1	
C20	5548(4)	5278(3)	2411(4)	104(1)	ī	
C21	2324(3)	5778(3)	1680(3)	80(1)	ĩ	
C22	964(3)	6216(3)	1885(4)	102(1)	1	2
223	3030(3)	8082(3)	38(2)	66(1)	1	
	2881(3)	7594(4)	-1061(3)	93(1)	1	

Table 2. Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

D1_01	1 4073(17)
P1-01	1.763(3)
PI-C2I	1.705(5)
PI-C23	1.770(3)
PI-CI9	1.811(5)
FI-CI	1.361(3)
F2-C2	1.347(3)
F3-C3	1.329(3)
F4-C4	1.343(3)
F5-C5	1.346(3)
F6-C8	1.358(3)
F7C9	1.344(3)
F8-C10	1.344(3)
F9-C11	1.350(3)
F10-C12	1.348(3)
F11-C14	1.356(3)
F12-C15	1 358(3)
F13_C16	1.340(3)
F13-C10	1.344(3)
F14-C17	1.251(2)
F13-C18	1.531(5)
OI-BI	1.333(3)
BI-C6	1.032(4)
B1-C7	1.636(4)
B1-C13	1.645(3)
C1C2	1.366(4)
C1-C6	1.391(3)
C2–C3	1.377(4)
C3C4	1.366(4)
C4C5	1.377(4)
C5-C6	1.379(3)
C7–C8	1.376(3)
C7-C12	1.384(3)
C8–C9	1.373(4)
C9–C10	1.359(4)
C10-C11	1.358(4)
C11-C12	1.366(4)
C13-C14	1.376(3)
C13-C18	1.384(3)
C14-C15	1.373(3)
C15-C16	1 348(4)
C16-C17	1 376(4)
C17 - C18	1 366(4)
C19-C20	1.501(4)
C19-C20	1.470(4)
C21-C22	1.475(4)
C23-C24	1.520(4)
O1 D1 C21	100 81(13)
01-F1-C21	111 50(12)
01-F1-C23	110 53(12)
C21-P1-C23	110.52(15)
OI-PI-CI9	110.97(13)
C21-P1-C19	106.86(15)
C23-P1-C19	107.07(15)
P1-01-B1	161.04(16)
O1-B1-C6	105.7 0 (19)
O1-B1-C7	105.30(18)
C6-B1-C7	114.79(19)
O1-B1-C13	106.79(18)
C6-B1-C13	113.8(2)
C7-B1-C13	109.66(19)

Table 3. Bond lengths [Å] and angles [°]. P1-O1

F1-C1-C2

115.9(2)

	4.5.
F1-C1-C6	118.8(2)
$C_{2}-C_{1}-C_{6}$	125.4(2)
$F_2 - C_2 - C_1$	120.8(2)
$F_2 = C_2 = C_3$	120.2(2)
C1 - C2 - C3	119 0(3)
E2_C3_C4	121 1(3)
F3-C3-C1	1204(3)
$r_3 - c_3 - c_2$	118 6(2)
C4 - C3 - C2	110.0(2)
F4-C4-C5	120 6(3)
$r_4 - c_4 - c_5$	120.0(3)
C3-C4-C3	115 1(2)
F5-C5-C4	110.1(2)
F5-C5-C6	120.8(2)
C4-C5-C6	124.1(2)
C5-C6-C1	112.7(2)
C5-C6-B1	120.3(2)
C1-C6-B1	120.7(2)
C8-C7-C12	112.7(2)
C8C7B1	123.0(2)
C12-C/-B1	123.6(2)
F6-C8-C9	115.3(2)
F6-C8-C7	120.0(2)
C9-C8-C7	124.6(2)
F7-C9-C10	119.8(2)
F7C9C8	120.6(3)
C10-C9-C8	119.6(2)
F8C10C9	120.8(3)
F8-C10-C11	120.4(3)
C9-C10-C11	110.6(2)
F9-C11-C10	119.0(2)
F9-C11-C12	110.0(3)
CIO-CII-CI2	115.9(3)
F10-C12-C11	119.7(2)
C11 C12 C7	124 4(2)
C11-C12-C18	113 1(2)
C14-C13-B1	126 4(2)
C14 - C13 - B1	120.4(2)
F11_C14_C15	115 5(2)
F11-C14-C13	120 4(2)
C15-C14-C13	124.1(2)
C16-C15-F12	119.6(2)
C16-C15-C14	120.2(3)
$F_{12}-C_{15}-C_{14}$	120.2(3)
F13-C16-C15	120.7(3)
F13-C16-C17	120.6(3)
C15-C16-C17	118.8(2)
F14-C17-C18	120.6(3)
F14-C17-C16	120.0(2)
C18-C17-C16	119.3(3)
F15-C18-C17	116.0(2)
F15-C18-C13	119.6(2)
C17 - C18 - C13	124.4(3)
C20-C19-P1	114.5(3)
C22-C21-P1	114.5(2)
C24-C23-P1	116.5(2)

Symmetry transformations used to generate equivalent atoms:

CALLER ALL STREET

the mean and the set of the second

User: Beckett

factor ex	ponent takes the	e form: $-2\pi^{2}[h^{2}a]$	$a^{*}0^{*} + \cdots + 2h$. k a* b* U**].			
Atom	U^{11}	U^{22} .	U^{33}	U^{23}	U^{13}	U^{12}	
P1	61(1)	49(1)	46(1)	-16(1)	-3(1)	-2(1)	
F1	61(1)	91(1)	44(1)	-6(1)	3(1)	-9(1)	
F2	57(1)	148(2)	82(1)	-25(1)	19(1)	-15(1)	
F3	50(1)	134(2)	108(1)	-30(1)	-14(1)	0(1)	
F4	84(1)	108(1)	68(1)	-5(1)	-30(1)	-4(1)	
F5	73(1)	105(1)	45(1)	-7(1)	-1(1)	-15(1)	
F6	120(1)	47(1)	71(1)	-12(1)	27(1)	0(1)	
F7	123(2)	77(1)	85(1)	-6(1)	31(1)	-40(1)	
F8	83(1)	129(2)	67(1)	-18(1)	31(1)	-22(1)	
F9	130(2)	101(1)	73(1)	-37(1)	37(1)	11(1)	
F10	157(2)	60(1)	71(1)	-31(1)	37(1)	-21(1)	
F11	73(1)	56(1)	99(1)	-21(1)	-16(1)	-10(1)	
F12	99(1)	47(1)	106(1)	-12(1)	14(1)	-12(1)	
F13	115(2)	63(1)	99(1)	4(1)	-8(1)	23(1)	
F14	67(1)	103(1)	101(1)	-20(1)	-24(1)	22(1)	
F15	50(1)	72(1)	91(1)	-24(1)	-1(1)	-7(1)	
01	61(1)	54(1)	46(1)	-20(1)	2(1)	-7(1)	
B1	54(2)	44(1)	41(1)	-13(1)	1(1)	-6(1)	
C1	53(2)	57(1)	47(1)	-14(1)	-2(1)	-4(1)	
C2	55(2)	74(2)	60(2)	-22(1)	8(1)	-8(1)	
C3	47(2)	72(2)	84(2)	-25(2)	-9(1)	1(1)	
C4	62(2)	59(2)	59(2)	-13(1)	-18(1)	-2(1)	
C5	61(2)	51(1)	50(1)	-14(1)	-2(1)	-6(1)	
C6	51(1)	43(1)	47(1)	-13(1)	-1(1)	-3(1)	
C7	51(1)	52(1)	41(1)	-14(1)	1(1)	-7(1)	
C8	59(2)	52(2)	51(1)	-13(1)	3(1)	-5(1)	
C9	65(2)	65(2)	53(2)	-5(1)	6(1)	17(1)	
C10	54(2)	92(2)	46(1)	-13(1)	11(1)	-14(2)	
C11	71(2)	77(2)	50(2)	-24(1)	11(1)	2(2)	
C12	74(2)	52(2)	50(1)	-16(1)	8(1)	-7(1)	
C13	49(1)	49(1)	40(1)	-13(1)	7(1)	-3(1)	
C14	58(2)	49(1)	54(1)	-14(1)	3(1)	-3(1)	
C15	73(2)	46(2)	62(2)	-12(1)	14(1)	-3(1)	
C16	76(2)	51(2)	57(2)	-2(1)	6(1)	12(1)	
C17	56(2)	72(2)	58(2)	-16(1)	-2(1)	14(1)	
C18	50(1)	59(2)	53(1)	-21(1)	8(1)	-2(1)	
C19	85(2)	80(2)	80(2)	-37(2)	-1(2)	14(2)	
C20	100(3)	91(3)	117(3)	-37(2)	-31(2)	33(2)	
C21	100(2)	65(2)	79(2)	-24(2)	-3(2)	-17(2)	
C22	80(2)	95(3)	126(3)	-20(2)	5(2)	-18(2)	
C23	67(2)	79(2)	49(1)	-10(1)	-4(1)	-9(1)	
C24	84(2)	141(3)	56(2)	-35(2)	-10(2)	5(2)	

Table 4. Anisotropic displacement parameters $[Å^2 \times 10^3]$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + \dots + 2h k a^* b^* U^{12}]$.

.

The second state of an even state state at the

Atom	x	У	z	U _{eq}	S.o.f.	
H19A	4975	5748	660	96	1	
H19B	5603	6823	1007	96	1	65
H20A	5584	5700	3030	156	1	
H20B	6407	4939	2268	156	1	
H20C	4997	4614	2660 -	156	1	
H21A	2341	5434	993	95	1	
H21B	2629	5109	2375	95	1	
H22A	902	6380	2659	153	1	
H22B	410	5584	1856	153	1	
H22C	699	6968	1273	153	1	
H23A	2227	8570	135	79	1	
H23B	3708	8643	-123	79	1	
H24A	3683	7144	-1198	140	Î	
H24B	2664	8283	-1752	140	1	
H24C	2202	7047	-924	140	1	

Table 5. Hydrogen coordinates [$\times 10^4$] and isotropic displacement parameters [$\mathring{A}^2 \times 10^3$].

.

Appendix J

Crystal tables for 4f

嶺

Table 1. Crystal	data and	structure	refinement.
------------------	----------	-----------	-------------

Identification code	00SRC095	
Empirical formula	C ₃₆ H ₁₅ BF ₁₅ OP	
Formula weight	790.26	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 31.0247(4) Å	
	<i>b</i> = 9.4124(2) Å	$\beta = 105.9570(9)^{\circ}$
	c = 22.5961(3) Å	
Volume	6344.19(18) Å ³	
Z	8	
Density (calculated)	$1.655 \text{ Mg}/\text{m}^{3}$	
Absorption coefficient	0.207 mm ⁻¹	
<i>F</i> (000)	3152	
Crystal	Colourless block	
Crystal size	$0.10 \times 0.10 \times 0.05 \text{ mm}^3$	
heta range for data collection	2.95 – 25.03°	
Index ranges	$-36 \le h \le 36, -11 \le k \le 1$	1, −26 ≤ l ≤ 25
Reflections collected	31694	
Independent reflections	5572 [$R_{int} = 0.0690$]	
Completeness to $\theta = 25.03^{\circ}$	99.5 %	
Absorption correction	Multiscan, SORTAV	
Max. and min. transmission	0.9897 and 0.9796	
Refinement method	Full-matrix least-squares of	$\operatorname{cn} F^2$
Data / restraints / parameters	5572/0/548	
Goodness-of-fit on F^2	1.036	
Final R indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0395, wR2 = 0.093	4
R indices (all data)	R1 = 0.0620, wR2 = 0.103	1
Extinction coefficient	0.00049(11)	
Largest diff. peak and hole	0.265 and $-0.381 \text{ e} \text{ Å}^{-3}$	4

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307–326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33–37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421–426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467–473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

Special details: All hydrogen atoms were located from the difference map and fully refined.

00SRC095

 Table 3. Bond lengths [Å] and angles [°].

P1-01	1.4971(15)	C1-C6	1.388(3)
P1-C13	1.783(2)	C1-C2	1.390(3)
P1C1	1.791(2)	C24-C23	1.368(3)
P1-C7	1.791(2)	C33–C32	1.373(3)
F11-C32	1.355(2)	C33–C34	1.374(3)
F12-C33	1.345(2)	C36-C35	1.382(3)
F14-C35	1.345(3)	C13-C14	1.390(3)
F5-C24	1.357(3)	C13-C18	1.398(3)
F6-C26	1.353(2)	C30-C29	1.375(3)
F15-C36	1.357(2)	C30-C25	1.388(3)
O1-B1	1.538(3)	C34–C35	1.365(3)
F9-C29	1.346(3)	C18-C17	1.375(3)
F1-C20	1.353(2)	C25-B1	1.639(3)
F2-C21	1.346(3)	C28-C27	1.374(3)
F8-C28	1.347(3)	C28-C29	1.374(4)
F7-C27	1.345(3)	C23-C22	1.376(4)
F10-C30	1.355(3)	C9-C10	1.371(4)
F4-C23	1.347(3)	C9–C8	1.393(3)
F13-C34	1.350(2)	C20-C21	1.381(3)
F3-C22	1.347(3)	C12-C11	1.380(3)
C26–C27	1.375(3)	C21-C22	1.368(3)
C26–C25	1.389(3)	C6-C5	1.392(4)
C7-C8	1.383(3)	C10-C11	1.381(4)
C7–C12	1.395(3)	C3-C2	1.379(4)
C31-C36	1.382(3)	C3-C4	1.388(4)
C31–C32	1.393(3)	C16-C15	1.380(3)
C31-B1	1.643(3)	C16-C17	1.384(3)
C19-C20	1.385(3)	C15-C14	1.383(4)
C19–C24	1.395(3)	C4-C5	1.369(4)
C19–B1	1.632(3)		
O1-P1-C13	109.85(9)	C36-C31-C32	113.50(18)
01-P1-C1	109.52(9)	C36-C31-B1	126.09(19)
C13-P1-C1	108.89(10)	C32-C31-B1	120.39(19)
O1-P1-C7	109.63(9)	C20-C19-C24	113.3(2)
C13-P1-C7	108.70(10)	C20C19B1	126.15(18)
C1-P1-C7	110.23(10)	C24-C19-B1	120.49(19)
P1O1B1	178.66(16)	C6-C1-C2	120.2(2)
F6-C26-C27	116.4(2)	C6-C1-P1	120.99(19)
F6-C26-C25	119.37(19)	C2-C1-P1	118.70(17)
C27-C26-C25	124.3(2)	F5-C24-C23	116.46(19)
C8-C7-C12	120.3(2)	F5-C24-C19	118.90(19)
C8-C7-P1	122.12(17)	C23-C24-C19	124.6(2)
C12-C7-P1	117.60(17)	F12-C33-C32	121.2(2)

09/03/00 09:36:39 Dr. M. E. Light

00SRC095

F12-C33-C34	119.73(18)	C21-C20-C19	124.0(2)
C32-C33-C34	119.1(2)	C11-C12-C7	119.6(2)
F15-C36-C31	120.96(18)	F7-C27-C28	119.7(2)
F15-C36-C35	115.03(19)	F7-C27-C26	121.0(2)
C31-C36-C35	124.0(2)	C28-C27-C26	119.3(2)
C14-C13-C18	119.3(2)	F2-C21-C22	120.1(2)
C14-C13-P1	121.66(16)	F2-C21-C20	120.4(2)
C18-C13-P1	119.03(17)	C22-C21-C20	119.5(2)
F10-C30-C29	115.52(19)	F3-C22-C21	120.1(2)
F10-C30-C25	120.7(2)	- F3-C22-C23	120.5(2)
C29-C30-C25	123.8(2)	C21-C22-C23	119.4(2)
F13-C34-C35	120.2(2)	C1-C6-C5	119.0(3)
F13-C34-C33	120.3(2)	F9-C29-C28	119.5(2)
C35-C34-C33	119.49(19)	F9-C29-C30	120.8(2)
C17-C18-C13	120.2(2)	C28-C29-C30	119.7(2)
F11-C32-C33	116.11(19)	C9-C10-C11	120.3(2)
F11-C32-C31	119.53(18)	C7-C8-C9	119.2(2)
C33-C32-C31	124.4(2)	C2-C3-C4	119.5(3)
C30-C25-C26	113.7(2)	C3–C2–C1	120.2(3)
C30-C25-B1	126.03(19)	O1–B1–C19	104.91(17)
C26-C25-B1	120.12(18)	O1-B1-C25	105.12 (17)
F8-C28-C27	119.9(2)	C19-B1-C25	113.67(17)
F8-C28-C29	121.0(2)	O1-B1-C31	105.06(16)
C27-C28-C29	119.1(2)	C19-B1-C31	112.69(18)
F14-C35-C34	119.99(19)	C25-B1-C31	114.21(18)
F14-C35-C36	120.5(2)	C15-C16-C17	120.4(2)
C34-C35-C36	119.5(2)	C18-C17-C16	120.0(2)
F4-C23-C24	121.2(2)	C16-C15-C14	119.9(2)
F4-C23-C22	119.6(2)	C15-C14-C13	120.2(2)
C24-C23-C22	119.1(2)	C12-C11-C10	120.2(3)
C10-C9-C8	120.5(2)	C5-C4-C3	120.5(3)
F1-C20-C21	115.3(2)	C4-C5-C6	120.6(3)
F1-C20-C19	120.69(19)		

Symmetry transformations used to generate equivalent atoms:

-

• -

άų.