Bangor University

DOCTOR OF PHILOSOPHY

Synthesis and characterisation of organometallic compounds of B, Mn and Re

Brassington, David Steven

Award date:
2001

Awarding institution:
University of Wales, Bangor

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Synthesis and characterisation of organometallic compounds of B, Mn and Re .

A thesis submitted in accordance with the requirements for the degree of Doctor of Philosophy.

David Steven Brassington

Department of Chemistry
University of Wales, Bangor

November 2001

Putting on the spectacles of science in expectation of finding the answer to everything looked at signifies inner blindness.

J. Frank Dobie

Abstract

This thesis describes the synthesis and characterisation of some new organometallic compounds of manganese, rhenium and boron, with the emphasis on attempts to develop new aspects of boron chemistry. Chapter 1 is written as an introduction to the topics of arachno-metallatetraboranes, and the co-ordination chemistry of unsaturated boron containing heterocycles, and Mn and $\operatorname{Re}(\mathrm{I})$ carbonyl derivatives.

Chapter 2 is concerned with the synthesis of a series of new $\left[\mathrm{MBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]\{\mathrm{M}$ $=\mathrm{Mn}$ and $\mathrm{Re}, \mathrm{L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}, 1 / 2 \mathrm{dppp}, 1 / 2 \mathrm{dppb} ; \mathrm{M}=$ $\mathrm{Mn}, \mathrm{L}=1 / 2 \mathrm{dppfc}\}$ and previously reported $\left\{\mathrm{M}=\mathrm{Mn}\right.$ and $\mathrm{Re}, \mathrm{L}=\mathrm{PPh}_{3}, 1 / 2 \mathrm{dppm}$, $1 / 2 \mathrm{dppe} ; \mathrm{M}=\mathrm{Re}, \mathrm{L}=1 / 2 \mathrm{dppfc}$ \}organometallic derivatives. These complexes were characterised by spectroscopic (${ }^{31} \mathrm{P}-\mathrm{NMR}, \mathrm{IR}$) and single-crystal X-ray diffraction methods $\left\{\mathrm{M}=\mathrm{Mn}, \mathrm{L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}, 1 / 2\right.$ dppe, $1 / 2 \mathrm{dppfc} ; \mathrm{M}=\mathrm{Re}, \mathrm{L}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}$, $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}, 1 / 2 \mathrm{dppfc}\right\}$. The $\mathrm{Mn}(\mathrm{I})$ derivatives of monodentate ligands were mer, trans- isomers whereas as all other derivatives were fac,cis- isomers.

Chapter 3 reports the reactions of the complexes described in Chapter 2 with $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ and the synthesis and characterisation of several arachno-2metallatetraborane derivatives: $\left[\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]\left(\mathrm{M}=\mathrm{Re}, \mathrm{L}=\mathrm{PPh}_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right.$, $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3} ; \mathrm{M}=\mathrm{Mn}$ and $\mathrm{Re}, \mathrm{L}=1 / 2 \mathrm{dppm}, 1 / 2 \mathrm{dppp}, 1 / 2 \mathrm{dppb}$, $1 / 2 \mathrm{dppfc} ; \mathrm{M}=\mathrm{Mn}, \mathrm{L}=1 / 2 \mathrm{dppe})$. Of these derivatives only $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ has been previously reported. All arachno-2-metallatetraboranes were characterised by NMR $\left({ }^{11} \mathrm{~B},{ }^{31} \mathrm{P},{ }^{1} \mathrm{H}\right)$ and IR spectroscopy and $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ and $\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ were further characterised by single-crystal X-ray diffraction studies.

Chapter 4 describes the synthesis of a series of $1: 1$ adducts of the Lewis acid $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with phosphoryl Lewis bases $\left\{\mathrm{Et}_{3} \mathrm{PO},{ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{PO},{ }^{n} \mathrm{Oct}_{3} \mathrm{PO}, \mathrm{Ph}_{3} \mathrm{PO},(\mathrm{MeO})_{3} \mathrm{PO}\right.$, $(\mathrm{EtO})_{3} \mathrm{PO}, \quad(\mathrm{PhO})_{3} \mathrm{PO}, \quad(\mathrm{EtO})_{2} \mathrm{PHO}, \quad(\mathrm{nBuO})_{2} \mathrm{PHO}, \quad(\mathrm{PhO})_{2} \mathrm{PHO}, \quad(\mathrm{MeO})_{2} \mathrm{MePO}$, $\left.(\mathrm{EtO})_{2} \mathrm{MePO}, \quad(\mathrm{EtO})_{2} \mathrm{PhPO},(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{PO}, \quad(\mathrm{EtO}) \mathrm{Me}_{2} \mathrm{PO}\right\}$ and their subsequent characterisation by spectroscopic ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}-\mathrm{NMR}, \mathrm{IR}\right)$ and single-crystal diffraction studies $\left(\mathrm{Et}_{3} \mathrm{PO}, \mathrm{Ph}_{3} \mathrm{PO}\right)$. The Lewis acidity of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ has been measured by Gutmann's NMR and Lappert's IR methods, and the synthesis and characterisation of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{EtOAc}$ is also reported.

Chapter 5 reports the synthesis and a determination of the Lewis acidity of a number of previously reported ArBBr_{2} compounds $\left(\mathrm{Ar}=\mathrm{Ph}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4}, 3-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\right.$ $\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{EtC}_{6} \mathrm{H}_{4}, 3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$) and unsuccessful attempts to prepare unsaturated 4membered ring and 6 -membered ring $\mathrm{B}-\mathrm{P}$ heterocyclic compounds by reactions of $\mathrm{ArBBr}_{2}\left(\mathrm{Ar}=\mathrm{Ph}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ with $\mathrm{Li}\left[\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ or by thermolysis of preformed $\mathrm{ArBBr} 2 \cdot \mathrm{PhPH}_{2}$ adducts.

Chapter 6 describes full experimental details of the reactions detailed in Chapters 2 to 5 with crystallographic data for all compounds which were characterised by single-crystal X-ray diffraction methods given in the appendices.

Contents

Acknowledgements 1
Abbreviations 2
Chapter One
1.1 Introduction 6
1.2 Aims of research 6
1.3 Boron - the element and its chemistry 7
1.3.1 Boron - elemental forms 7
1.3.2 The chemistry of boron 10
(a) Boranes and borane anions 11
(b) Boron containing inorganic heterocycles and their metal complexes16
(c) Boron NMR spectroscopy 22
1.4 Rhenium(I) and manganese(I) co-ordination chemistry 22
1.4.1 Rhenium(I) compounds 25
1.4.2 Manganese(I) compounds 27
Chapter Two
2.1 Introduction 32
2.1.1 Dimanganese and dirhenium decacarbonyl 33
2.1.2 Structures of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ and $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ 34
2.1.3 Manganese and rhenium pentacarbonyl halides 35
2.1.4 Substituted complexes of $\left[\mathrm{MX}(\mathrm{CO})_{5}\right]$ 36
2.1.5 Formation of $\left[\mathrm{MX}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ complexes 39
2.2 Aims 40
2.3 Results and Discussion 40
2.3.1 Synthesis of $\left[\mathrm{MBr}(\mathrm{CO})_{5}\right](\mathrm{M}=\mathrm{Mn}$ or Re$)$ 40
2.3.2 Synthesis of $\left[\mathrm{MBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ and $\left[\mathrm{MBr}(\mathrm{CO})_{3}(\mathrm{~L} \sim \mathrm{~L})\right]$ 40
2.3.3 ${ }^{31}$ P NMR spectroscopy 44
2.3.4 Infrared Spectroscopy 47
2.3.5 X-Ray Crystallography 51
2.4 Conclusions 65
Chapter Three
3.1 Introduction 67
3.2 Aims 69
3.3 Results and Discussion 69
3.3.1 Synthesis of the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$anion. 69
3.3.2 Attempted synthesis of 2-metallatetraboranes from mer, trans- $\left[\operatorname{MnBr}(\mathrm{CO})_{3}(\mathrm{~L})_{2}\right]$ 70
3.3.3 Synthesis of 2-metallatetraboranes from fac, cis- $\left[\mathrm{MBr}(\mathrm{CO})_{3}(\mathrm{~L})_{2}\right]$ and fac, cis- $\left[\operatorname{MBr}(\mathrm{CO})_{3}(\mathrm{~L} \sim \mathrm{~L})\right]$ 70
3.3.4 Infrared spectroscopy 75
3.3.5 ${ }^{11} \mathrm{~B}$ NMR spectroscopy 76
3.3.6 ${ }^{31} \mathrm{P}$ NMR spectroscopy 81
3.3.7 ${ }^{1} \mathrm{H}$ NMR spectroscopy 83
3.3.8 X-Ray crystallography 85
3.3.9 Reactions of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ 92
3.4 Conclusions 93
Chapter Four
4.1 Introduction 95
4.1.1 Lewis acidity of boron compounds 97
4.2 Aims 99
4.3 Results and Discussion 100
4.3.1 Preparation and characterisation of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4 a})$ 100
4.3.2 Lewis acidity of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ 101
4.3.3 Preparation of adducts of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with organophosphoryl ligands 104
4.3.4 X-ray Crystallography 110
4.4 Conclusions 117
Chapter Five
5.1 Introduction 119
5.1.1 Three-membered rings 119
5.1.2 Four-membered rings 120
5.1.3 Six-membered rings 123
5.2 Aims 124
5.3 Results and discussion 124
5.3.1. Preparation of the arylborondibromides 124
5.3.2 Synthesis of tris(trimethylsilyl)phosphine 126
5.3.3 Attempted synthesis of diphosphadiboretanes and triphosphatriboriranes
using lithium reagents 128
5.3.4 Synthesis and thermolysis of $\mathrm{ArBBr}_{2} \cdot \mathrm{PhPH}_{2}$ adducts 129
5.4 Conclusions 131
Chapter Six
6.1 General 133
6.2 Experimental for Chapter 2 134
6.2.1 Preparation of $\left[\mathrm{MBr}(\mathrm{CO})_{5}\right]$ species $(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$ 134
6.2.2 Synthesis of mer, trans- $\left[\mathrm{MnBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ and fac, cis- $\left[\mathrm{MnBr}(\mathrm{CO})_{3} \mathrm{~L}\right]$ 135
6.2.3 Synthesis of fac, cis- $\left[\operatorname{ReBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ 137
6.3 Experimental for Chapter 3 140
6.3.1 Synthesis of $\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ 140
6.3.2 Synthesis of arachno- $\left[\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{\mathrm{x}}\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ 141
6.3.3 Thermolysis of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ 144
6.3.4 Photolysis of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ 144
6.3.5 Reaction between $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ and PPh_{3} 144
6.4 Experimental for Chapter 4 145
6.4.1 Synthesis of tris(pentafluorophenylborane) 145
6.4.2 Synthesis of $R_{2}\left(R^{1} O\right) P=O$ Lewis bases 146
6.4.3 Synthesis of Lewis base adducts of tris(pentafluorophenyl)borane 147
6.5 Experimental for Chapter 5 157
6.5.1 Synthesis of Aryltrimethylsilanes 157
6.5.2 Synthesis of Arylborondibromides from ArSiMe_{3} 160
6.5.3 Synthesis of piperidino phosphorous dichloride 161
6.5.4 Attempted synthesis of tris(trimethylsilyl)phosphine 162
6.5.5 Synthesis of tris(trimethylsilyl)phosphine 162
6.5.6 Attempted synthesis of the diphosphadiboretanes 163
6.5.7 Adducts of ArBBr_{2} with phenylphosphine 163References164

Acknowledgements

I would like to take this oppourtunity to thank my supervisor, Dr Mike Beckett, for his support throughout the research and his advice in the preparation of this thesis. I would also like to express my thanks to the technical staff at Bangor, in particular Mr Denis Williams and Mr Glyn Connolly. Also I would like to thank the secretarial staff at Bangor, past and present, especially Mrs Barbara Kinsella and Miss Caroline Naylor without whom the department would grind to a halt.

Thanks also to all of my colleagues in the department especially past and present members of Group 103, but in particular Mr Edward "I'll start writing next week" Cavanagh, Mr Dafydd "the human fly" Thomas and Dr Patrick "what a catch" Murphy.

I would like to thank the EPSRC for their funding which ultimately made the research possible and the X-ray crystallographic service and staff at Southampton for collecting data and solving the crystallographic structures contained within this thesi, and to my parents for their love, support and for being there.

Finally, I would like to thank Sue, who has put up with me over the last four years. We showed them that it would last, and you mean the world to me.

Abbreviations

\AA	Angstrom(s)
atm	atmosphere(s)
Ar	aryl
B. Pt.	boiling point
br	broad
Bu	butyl
calc.	calculated
cm^{-1}	wavenumber(s)
conc.	concentrated
Cp	cyclopentadiene
。	degrees
${ }^{\circ} \mathrm{C}$	Celsius
d	doublet
dppb	bis(diphenylphosphino)butane
dppe	bis(diphenylphosphino)ethane
dppf	bis(diphenylphosphino)ferrocene
dppm	bis(diphenylphosphino)methane
dppp	bis(diphenylphosphino)propane
δ	chemical shift
$\Delta \delta$	difference in chemical shift
Eq.	equation
Et	ethyl

Fc	ferrocenyl
Fig.	Figure
g	gram(s)
h	hour(s)
Hz	Hertz
IR	infrared
J	coupling consant
Lit.	literature
m	meta
m	multiplet; medium
Me	methyl
Mes	mesityl
Mesityl	2,4,6-trimethylphenyl
MHz	MegaHertz
Min	minute
MmHg	millimetre(s) Hg
Mmol	millimole
MO	molecular orbital
Mol	mole
M. Pt	melting point
n	normal
NMR	Nuclear Magnetic Resonance
o	ortho
p	para
q	quartet

Ph	phenyl
ppm	part(s) per million
Pr	propyl
Ref.	reference
s	singlet; strong
Str.	stretch(es)
t	triplet; tertiary
THF	tetrahydrofuran
Tmp	$2,2,6,6$-tetramethylpiperidino
TMS	tetramethylsilane
w	weak

Chapter 1

Introduction

1.1 Introduction.

This thesis consists of six chapters and describes original research into boranes and aspects of their co-ordination chemistry. This chapter contains a literature overview of the chemistry of boron, the co-ordination chemistry of rhenium and manganese carbonyl halides, the synthesis and reactions of boron hydrides and unsaturated inorganic heterocycles which contain three co-ordinate boron centres. Chapters Two and Three are concerned with the synthesis, characterisation and reactions of the species $\left[\mathrm{M}(\mathrm{CO})_{3} \mathrm{X}\left(\mathrm{PR}_{3}\right)_{2}\right]$ and $\left[\mathrm{M}(\mathrm{CO})_{2}\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right](\mathrm{M}=\mathrm{Mn}, \mathrm{Re} ; \mathrm{X}=\mathrm{Br})$. Chapter Four concentrates on the preparation of a series of Lewis base adducts of the borane $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ whilst Chapter Five is concerned with the attempted synthesis of diphosphadiboretanes and triphosphatriborinanes, their co-ordination chemistry and associated boronphosphorus adduct chemistry. A detailed experimental section is given in Chapter Six.

1.2 Aims of research

The first aim of the research work described within this thesis, was to synthesise and investigate the spectroscopic and structural properties of some new and some previously described rhenium(I) and manganese(I) halo carbonyl phosphines derivatives. Such a study was desirable since previous research into these species was limited and structural characterisation was often left incomplete or ambiguous. Spectroscopic data were to be correlated with benchmark crystallographically determined structures.

The second aim was to use these manganese(I) and rhenium(I) halo carbonyl phosphine derivatives and explore their reactions with the octohydrotriborate anion, $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$. With a few notable exceptions $[1,2]$ this area has been frequently overlooked.

The chemistry of the metallatetraborane obtained in the highest yield was further investigated as representative of this class of compounds.

A third aim of the work detailed was to compare various methods of determining Lewis acidity. The Lewis acidity of tris(pentafluorophenylborane), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, was determined and its reactions with various phosphine oxides ligands with this acceptor was explored.

A final aim of the research was to prepare a series of diphosphadiboretanes and triphosphatriboriranes and to react them with the manganese(I) and rhenium(I) halocarbonyl phosphine derivatives described in Chapter Two in order to prepare novel complexes of these ligands.

1.3 Boron - the element and its chemistry

The chemistry of boron and its compounds is well reviewed in many undergraduate textbooks [3,4], and the following few paragraphs contain a brief overview of the chemistry of this element.

1.3.1 Boron - elemental forms

Boron, in an impure form, was first isolated independently by J. L. Gay Lussac and L. J. Thenard of France, and Humphry Davy of Great Britain in 1806. It was not until later in the $19^{\text {th }}$ century that H . Moissan obtained a relatively pure ($95-98 \%$) sample of boron by reducing $\mathrm{B}_{2} \mathrm{O}_{3}$ with magnesium. The name boron was proposed by Davy, who joined the first three letters of its parent ore 'borax' with the last two letters of 'carbon', the element that displays a similar chemistry. Boron is not a particularly abundant element, but, it does exist in large localised deposits of borax, $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and kernite $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, both of which are commercially viable for the preparation
of elemental boron. Difficulties arise in trying to obtain high purity boron, due to the high melting point and the corrosive nature of molten boron [5]. There are several commercial methods for the isolation of elemental boron, with all bulk methods leading to a reduction of the purity of the final material. An example of such a process is the reduction of $\mathrm{B}_{2} \mathrm{O}_{3}$ with magnesium, which yields boron as a black solid of $95-98 \%$ purity (Eq. 1.1) [6].

Boron maybe prepared in large quantities by this method. The element can be obtained in a pure form on a smaller scale (i.e. less than 1 Kg), using, for example, the Van Arkel method which involves the pyrolysis of boron triiodide, or the thermal decomposition of diborane or other boron hydrides (Eq. 1.2 and Eq. 1.3) [6].

There are several different allotropes of boron and all of which contain the B_{12} icosahedron unit (Figure 1.1). This cluster shape is also known to occur in metal borides and in boron hydride clusters.

Figure 1.1. A_{12} icosahedron.

The α-rhombohedral allotrope, with 37% space filled, is the densest form of elemental boron. This is low in comparison to the 74% for the close packing of the spheres. The β-rhombohedral form is the most stable allotrope and its complicated structure is given in Figure 1.2.

Figure 1.2. The β-rhombahedral form of boron.

Boron, the only non-metallic element in Group 13 of the periodic table has the valence electronic configuration of $2 s^{2} 2 p^{1}$. The ionisation energies of these electrons
are high (first ionisation energy is $801 \mathrm{~kJ} \mathrm{~mol}^{-1}$) and as such covalent rather than ionic bonds are favoured [6]. Boron typically forms trivalent compounds and unlike the heavier elements of the group, does not display a tendency to form monovalent compounds [6]. Three co-ordinate boron centres are sp^{2} hybridised, with hybrid orbitals lying in the same plane at angles of 120° to one another. However, trigonal planar boron centres have an insufficient number of electrons to fill their valence shell, after forming three σ-bonds, and are invariably Lewis acids.

1.3.2 The chemistry of boron

At elevated pressures and temperatures boron will react with most metals and non-metals but at ambient temperatures boron is relatively inert. However, it will spontaneously react with fluorine to form BF_{3} (Eq. 1.4) and will also react with O_{2} to slowly form a surface layer of $\mathrm{B}_{2} \mathrm{O}_{3}$ (Eq. 1.5).
$\mathrm{B}+3 / 2 \mathrm{~F}_{2} \longrightarrow \mathrm{BF}_{3}$
$2 \mathrm{~B}+3 / 2 \mathrm{O}_{2} \longrightarrow \quad \mathrm{~B}_{2} \mathrm{O}_{3}$

The chemistry of boron is extensive and diverse but may be conveniently subdivided into six main categories, with each category showing differing structures and properties. These categories are metal borides, boron hydrides and their derivatives, boron trihalides their adducts and derivatives, oxo compounds including metaborate esters, polyborates and borosilicates, organoboron compounds with B-C bonds, and lastly inorganic heterocyclic species. Aspects of the chemistry of boron pertinent to this thesis are described below. Detailed discussion of boron trihalides and their adducts, B-P rings and boron hydrides are reserved for Chapters 3,4 and 5.

1.3.2 (a) Boranes and borane anions

Boron hydrides were first prepared in a pure form by Alfred Stock in 1912 [7]. He prepared these hydrides by the action of acid on magnesium boride and isolated the volatile compounds using vacuum line techniques. In general boranes are colourless, diamagnetic, molecular compounds of low thermal stability. The lowest members are gases at room temperature but with increasing molecular weight they become volatile liquids or solids. Boranes are extremely reactive and several are spontaneously flammable in air. Boranes may be readily converted into anions and the co-ordination chemistry of one such anion, $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$, is described in this thesis. The synthesis of the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$anion will be discussed in detail in Chapter Three.

The $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$anion can form two different classes of butterfly complexes when reacted with a metal species. They can be described as the 1-metallatetraboranes (the body isomer) and the 2-metallatetraboranes (the wingtip isomer) of the butterfly structure. Both are shown in Figure 1.3 below.

1-Metallatetraborane (Body isomer)

2-Metallatetraborane (Wingtip isomer)

Figure 1.3. The two possible isomers of the butterfly structure of metallatetraboranes.

The 1-metallatetraboranes are relatively uncommon in comparison to the 2 metallatetraboranes, but, iridium, platinum and palladium complexes readily form such complexes (Eq. 1.6) [8].

$$
\begin{equation*}
\left[\mathrm{Ir}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]+\mathrm{Tl}\left[\mathrm{~B}_{3} \mathrm{H}_{8}\right] \longrightarrow\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{CO}) \mathrm{HIrB}_{3} \mathrm{H}_{7}\right]+\mathrm{TlCl} \tag{Eq.1.6}
\end{equation*}
$$

During the course of the reaction there is a transfer of a hydrogen atom from the borane moiety to the terminal Ir-H position. The molecular structure of this complex is shown in Figure 1.4 below [9].

Figure 1.4. Molecular structure of an iridium 1-metallatetraborane.

The corresponding Pt and Pd derivatives $\left[\mathrm{L}_{2} \mathrm{MB}_{3} \mathrm{H}_{7}\right]$ are prepared by the reaction between a bis(phosphine) metal dihalide complex and the arachno- $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ anion in the presence of a base (Eq. 1.7) [10,11].
$c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]+\mathrm{Cs}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right] \xrightarrow{\mathrm{NEt}_{3}}\left[\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{2} \mathrm{PtB}_{3} \mathrm{H}_{7}\right]$

The arachno-2-metallatetraboranes are more commonly encountered in the literature. They can be prepared by the displacement of a halide from a metal species by the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$anion (Eq. 1.8).

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}} \mathrm{MX}+\mathrm{B}_{3} \mathrm{H}_{8}^{-} \quad \longrightarrow \quad\left[\mathrm{L}_{\mathrm{n}-1} \mathrm{MB}_{3} \mathrm{H}_{8}\right]+\mathrm{L}+\mathrm{X}^{-} \tag{Eq.1.8}
\end{equation*}
$$

This reaction may occur spontaneously but more often it is induced by thermolysis or photolysis. s-Block and p-block elements also form MB_{3} complexes, however these tend to be very volatile compounds that readily decompose in air and they are also thermally unstable.

Complexes containing $\mathrm{Cr}, \mathrm{W}, \mathrm{Mo}, \mathrm{Re}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Ru}$ and Os have been widely studied, with great number of 2-metallatetraboranes having been produced. The direct reaction between $\left[\mathrm{M}(\mathrm{CO})_{6}\right](\mathrm{M}=\mathrm{Cr}$, Mo and W$)$ with $\mathrm{Cs}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ produces compounds of the type $\left[\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]^{-}$. These anions can be stabilised by adding a tetraalkylammonium salt into the reaction mixture (Eq. 1.9) [12].

$$
\begin{equation*}
\left[\mathrm{M}(\mathrm{CO})_{6}\right]+\mathrm{Cs}\left[\mathrm{~B}_{3} \mathrm{H}_{8}\right] \xrightarrow{\left(\mathrm{R}_{4} \mathrm{~N}\right) \mathrm{Cl}} \quad\left[\mathrm{R}_{4} \mathrm{~N}\right]\left[\mathrm{M}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{8}\right] \tag{Eq.1.9}
\end{equation*}
$$

These compounds can then undergo further reactions. One reaction involves the substitution at the metal centre of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$by PH_{3} (Eq. 1.10) [13].

$$
\begin{equation*}
\left[\mathrm{M}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{8}\right]+2 \mathrm{PH}_{3} \longrightarrow c i s-\left[\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{PH}_{3}\right)_{2}\right] \tag{Eq.1.10}
\end{equation*}
$$

Similarly the manganese and rhenium species are readily prepared by the direct reaction between $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$with $\left[(\mathrm{CO})_{5} \mathrm{MX}\right](\mathrm{M}=\mathrm{Mn}$ and Re$)$ (Eq. 1.11) [2].

$$
\begin{equation*}
\left[\mathrm{R}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\right] \longrightarrow\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{8}\right] \tag{Eq.1.11}
\end{equation*}
$$

As was evident with the Cr , Mo and W borane, the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ligand attached to the Mn and Re centres, will undergo further reactions once attached to the metal centre. One such reaction is shown below (Eq. 1.12) [2].
$\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{8}\right]+\mathrm{X}_{2} \longrightarrow\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{7} \mathrm{X}\right]$

These $\operatorname{Mn}(\mathrm{I})$ and $\operatorname{Re}(\mathrm{I})$ tetraboranes will be discussed in greater depth in Chapter Three.
More recently there has been interest shown in the synthesis and subsequent reactions of the ruthenatetraboranes. The reaction of $\left[\mathrm{RuClH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with $\left[\mathrm{R}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ produces the colourless complex $\left[\mathrm{RuH}\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in a high yield. The $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ unit is readily cleaved from this complex by an excess of tert-butylisonitrile producing $\quad\left[\mathrm{RuHCl}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ However, the treatment of $\left[\mathrm{RuH}\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with N -halogenosuccinimide leads to the selective cleavage of the $\mathrm{Ru}-\mathrm{H}$ bond. The reaction between a Ru "half-sandwich" and $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ " has been reported and is shown in (Eq. 1.13) [14].

This complex can then be reacted with N -halogenosuccinimides to produce the chloro, bromo or iodo substituted species.

The coinage metals also produce 2-metallatetraboranes. Metallatetraborane's containing copper are less sensitive to air and water than the corresponding silver species. The copper complexes are relatively straight forward to prepare and tend to follow the routes described above (the replacement of a halide by the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$anion). The triphenyl phosphine, arsine and stibine derivatives have all been prepared by this method (Eq. 1.14) [15,16].

$$
\begin{equation*}
\left[\left(\mathrm{AsPh}_{3}\right)_{3} \mathrm{CuCl}\right]+\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-} \longrightarrow\left[\left(\mathrm{AsPh}_{3}\right)_{2} \mathrm{CuB}_{3} \mathrm{H}_{8}\right] \tag{Eq.1.14}
\end{equation*}
$$

Similarly, the argentatetraboranes can be prepared in an analogous manner. Another route produces the metallatetraborane directly from the AgNO_{3} precursor (Eq. 1.15) [12].

$$
\begin{equation*}
\mathrm{Cs}\left[\mathrm{~B}_{3} \mathrm{H}_{8}\right]+\mathrm{PR}_{3}+\mathrm{AgNO}_{3} \longrightarrow\left[\left(\mathrm{R}_{3} \mathrm{P}_{2} \mathrm{AgB}_{3} \mathrm{H}_{8}\right]\right. \tag{Eq.1.15}
\end{equation*}
$$

1.3.2 (b) Boron containing inorganic heterocycles and their metal

complexes

Extensive research has been undertaken on the boron containing heterocycles with elements of the second row, and the synthesis and reactivity of the $\mathrm{R}_{2} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{R}_{2}{ }^{1}$, $\mathrm{R}_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$ (boroxine) and $\mathrm{R}_{3} \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{R}_{3}{ }^{1}$ (borazene) are well documented.

Relatively little work has been described on metal complexes involving boroxines. However, Razuvaev et al, in 1976, reported the isolation of $\left[(\mathrm{CO})_{3} \mathrm{CrC}_{6} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}\right]$ from the following reaction (Eq. 1.16) [17].

This chromium-boronic acid complex was then dehydrated in vacuo to produce the corresponding boroxine $\left[\left\{(\mathrm{CO})_{3} \mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BO}\right)\right\}_{3}\right]$, shown in Figure 1.5, where it is clear that the $\left\{\mathrm{Cr}(\mathrm{CO})_{3}\right\}$ moieties remain bound to the aryl rather than the boroxine ring.

Figure 1.5. Chromium tricarbonyl complex of triphenylboroxine.

The metal complexes of borazines that have been reported generally have alkyl substituents on the annular atoms. Borazines are potential π-ligands and as such will react preferentially with d^{6} metal ligand fragments such as $\left\{\mathrm{Cr}(\mathrm{CO})_{3}\right\}$ to form 18 valence electron compounds [18]. Many half-sandwich compounds $\left[R_{3} B_{3} N_{3} R^{1}{ }_{3} M L_{3}\right]$ have been prepared ($\mathrm{M}=\mathrm{Cr}, \mathrm{W}, \mathrm{Mo}$), although there have been no confirmed preparations of the corresponding full sandwich derivatives of the type $\left[\left(R_{3} B_{3} N_{3} R^{1}\right)_{2} M\right]$. The best method of preparation of these half-sandwich compounds is when the $\left\{\mathrm{M}(\mathrm{CO})_{3}\right\}$ moiety carries a labile ligand such as acetonitrile (Eq. 1.17) [1922].
$\left[(\mathrm{MeCN})_{3} \mathrm{Cr}(\mathrm{CO})_{3}\right]+\left(\mathrm{RBNR}^{1}\right)_{3} \longrightarrow\left[\mathrm{R}_{3} \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{R}^{1}{ }_{3} \mathrm{Cr}(\mathrm{CO})_{3}\right]+3 \mathrm{MeCN}$ (Eq. 1.17)

It has been shown that the $B_{3} \mathrm{~N}_{3}$ ring in half-sandwich complexes is labile and can be displaced by other borazine, phosphine and phosphite ligands [23]. Crystallographic data on hexaethylborazine chromiumtricarbonyl has shown that the heterocyclic ring is slightly puckered Figure 1.6 [23]. Infrared studies have shown that the B-N vibrational bands lie at lower energy in relation to uncomplexed borazines. This suggests that the lone pairs on nitrogen have become fully localised owing to the formation of $\mathrm{N}-\mathrm{Cr}$ dative σ-bonds [23]. The nitrogen atoms effectively gain a formal positive charge and become four co-ordinate, adopting an approximate tetrahedral configuration, which leads to this puckering of the ring.

Figure 1.6. The structure of $\left[\left(\mathrm{Et}_{3} \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{Et}_{3}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right]$.

A second class of metalloborazine complexes exist. In these the metal atoms are bound via a σ-bond to either boron or nitrogen within the $\mathrm{B}_{3} \mathrm{~N}_{3}$ system. One of the few examples of these N -substituted metallo-borazines is the N -lithioborazine, which can be prepared by a method shown in Eq. 1.18.
$(\mathrm{MeBNH})_{3}+\mathrm{MeLi} \longrightarrow \mathrm{Me}_{3} \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{2} \mathrm{Li}+\mathrm{CH}_{4}$

There is only one example of metal complex co-ordination by borthiin ring systems. Noth and Schuchardt [24] reported that the reaction between $\left[\mathrm{M}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]$ (where $\mathrm{M}=\mathrm{Mo}, \mathrm{Cr}$ and W) with triphenylborthiin in dioxane produced species of the type $\left[(\mathrm{PhBS})_{3} \mathrm{M}(\mathrm{CO})_{3} \cdot 1.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]$. A postulated structure of these compounds is shown in Figure 1.7, with the $\left\{\mathrm{M}(\mathrm{CO})_{3}\right\}$ moieties bound to the heterocylic $\mathrm{B}_{3} \mathrm{~S}_{3}$ rings.

Figure 1.7. Structure of $\left[(\mathrm{PhBS})_{3} \mathrm{M}(\mathrm{CO})_{3} \cdot 1.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]$, where $\mathrm{M}=\mathrm{Cr}$, Mo or W.

Attempts to remove the dioxane under vacuum resulted in decomposition of the compound.

Reactions of the diphosphadiboretanes have also been investigated by Noeth and co-workers [25,26], where $\mathrm{R}_{2} \mathrm{~B}_{2} \mathrm{P}_{2} \mathrm{R}^{1}$ rings with sterically hindered groups bound to boron were treated with $\left[\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{THF})\right]$. This led to the dissociation of the $\mathrm{R}_{2} \mathrm{~B}_{2} \mathrm{P}_{2} \mathrm{R}^{1}{ }_{2}$ ring but produced 1,1-diethyldipropyl-(Tmp)boranylidenephosphane (Eq. 1.19).

The reaction of diphosphadiboretanes, having less hindered substituents, with $\left[\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{THF})\right]$ resulted in the formation of mononuclear or binuclear metal carbonyl complexes Figure 1.8.

mononuclear

binuclear

Figure 1.8. Mononuclear and binuclear bonding with diphosphadiboretanes.

However, when $\left(\mathrm{MesBP}^{t} \mathrm{Bu}\right)_{2}$ was reacted with $\left[\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{THF})\right]$, a complex with a different structure, in which the ring system is retained was produced, Figure 1.9.

Figure 1.9. Diphosphadiboretane bound to a chromium tetracarbonyl centre.

The reaction of $(\mathrm{MesBPPh})_{3}$ with $\left[\mathrm{Cr}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right]$ has been performed to see if the triphosphatriborinane was able to act as a η^{6} ligand [27]. A metal carbonyl complex was produced, in which the chromium was bound to all atoms in the heterocyclic ring (see Figure 1.10).

Figure 1.10. Structure of chromium tricarbonyl $\left(\eta^{6}-1,3,5\right.$-triphenyl-2,4,6-trimesityl-1,3,5,2,4,6-triphosphaborinane)

1.3.2 (c) Boron NMR spectroscopy

Boron NMR spectroscopy generally deals with the ${ }^{11} \mathrm{~B}$ isotope rather than that of ${ }^{10} \mathrm{~B}$, due to its high natural abundance $\left(81 \%{ }^{11} \mathrm{~B}\right.$ compared with $19 \%{ }^{10} \mathrm{~B}$), its better sensitivity in the NMR experiment and its smaller quadrupolar moment [28]. However, measurements of boron-10 NMR spectra can be performed quite easily and are important in isotopic labelling studies where reaction mechanisms are of interest. Both isotopes possess large quadrupoles $\left({ }^{10} \mathrm{~B}=8.46 \times 10^{26} \mathrm{Q} / \mathrm{m}^{2},{ }^{11} \mathrm{~B}=4.06 \times 10^{26} \mathrm{Q} / \mathrm{m}^{2}\right.$ at 10.75 and 32.1 MHz respectively) [29] since they both have a nuclear spin I > 1. Large quadrupole moments generally lead to short relaxation times (T), during which the nuclei in the experiment return to the ground state quickly [28]. Due to the relationship between relaxation time and the line width of the signal, $v_{1 / 2} \propto 1 / T$ (at half height $v_{1 / 2}$), broadening of the peaks occurs.

The chemical shift range of ${ }^{11} \mathrm{~B}$ covers approximately 200 ppm and chemical shifts can generally be determined with an accuracy of $\pm 0.5 \mathrm{ppm}$ [28]. The peak area of a ${ }^{11} \mathrm{~B}$ NMR signal is related to the number of boron atoms in each chemical environment and the location of the resonance signals for trivalent boron compounds can be explained in terms of a contribution of σ - and π - effects [28]. Basic donor solvents may cause an upfield shift of the NMR signal due to co-ordination (see Chapter Four for further details).

1.4 Rhenium(I) and manganese(I) co-ordination chemistry

The organometallic chemistry of manganese(I) and rhenium(I), unlike the organometallic chemistry of most transition metals, does not have a particularly extensive history. Organometallic species of manganese and rhenium were first
prepared in the 1940's. Since this time research into the organometallic chemistry of manganese and rhenium has grown rapidly.

There is such a large quantity of literature available on compounds of this type, and the reader is directed to texts like Comprehensive Organometallic Chemistry or the annual reviews in the Journal of Organometallic Chemistry for detailed discussions. This section will concentrate solely on the co-ordination chemistry of metal carbonyl derivatives exhibited by both manganese(I) and rhenium(I).

Transition metal carbonyls are very useful and readily available starting materials for the synthesis of low valent metal complexes. However, before any indepth discussion of carbonyl chemistry begins, it is worthwhile understanding the basic bonding arrangement around the metal centres.

The bonding of a ligand to a metal does not normally just involve a σ-bond, invariably there are π-interactions governing the co-ordination of the ligand. The energy level diagram in Figure 1.11 shows a molecular orbital splitting diagram for a first row transition metal ($3 \mathrm{~d}, 4 \mathrm{~s}, 4 \mathrm{p}$). Carbon monoxide is a π acceptor ligand, where the triple bond is made up of a σ bond and two π bonds. The π orbitals are filled, but the π^{*} orbitals (anti-bonding orbitals) are empty.

Figure 1.11. Molecular orbital splitting diagram for a transition element.

These empty π^{*} orbitals are of the correct symmetry to overlap with the filled $t_{2 g}$ orbitals of the metal $\left(d_{x y}, d_{x z}\right.$ and $\left.d_{y z}\right)$. This is illustrated in Figure 1.12.

Figure 1.12. Overlap of the $\mathrm{t}_{2 \mathrm{~g}}$ orbitals of the metal with the π^{*} orbitals of CO .

The interaction between the metal $t_{2 g}$ orbitals and the linear co-ordination to the $\mathrm{CO} \pi^{*}$ orbitals effectively means that there is a flow of electron density from the metal to the ligand. This donation of electrons is referred to as back-bonding.

There are several different reactions that metal carbonyls can undergo, substitution, reduction, oxidation and attack on co-ordinated CO. Carbonyl groups can be substituted by other ligands, thermally or photochemically in a dissociative process. Substitution can proceed to the point that there are equal numbers of ligand (L) and carbonyl groups, however, replacement of the remaining carbonyl groups requires the use of quite severe chemical methods (due to the strength of the M-CO back donation).

1.4.1 Rhenium(I) compounds

As will be discussed in Chapter Two, the major starting material in low valent organorhenium chemistry is dirhenium decacarbonyl, $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$. Oxidation of $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ with halogens produces $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}\right]$ and this reaction and the substitution reactions of rhenium halocarbonyls with phosphines will be discussed in detail in Chapter Two. However, it is worthwhile describing some other substitution reactions Eq. 1.20.

$$
\begin{equation*}
\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]+\mathrm{X}_{2} \longrightarrow 2\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}\right] \tag{Eq.1.20}
\end{equation*}
$$

Monosubstitution of $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}\right]$ is achieved by treatment of one equivalent of donor ligand in a refluxing solvent. Cleavage of the bridged dihalides $\left[\left\{\operatorname{ReX}(\mathrm{CO})_{4}\right\}_{2}\right]$ with donor ligands is also an efficient method for generating cis- $\left[\operatorname{ReX}(\mathrm{CO})_{4} \mathrm{~L}\right]$ species [30]. Cleavage of the zero valent disubstituted dinuclear complexes $\left[\left\{\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~L}\right\}_{2}\right]$ with X^{-}or X_{2} generates $c i s-\left[\operatorname{ReX}(\mathrm{CO})_{4} \mathrm{~L}\right]$. However under certain conditions the trans isomer can be isolated. This will on heating generally yield the more stable cis isomer.

The dialkyl and diaryl $\mathrm{O}, \mathrm{S}, \mathrm{Se}$ and Te ligands AR_{2} act as two electron donors and as such exhibit similar properties to other two electron donors i.e. tertiary
phosphines, N -heterocycles. Hence, in a refluxing alcohol $\left[\operatorname{ReX}(\mathrm{CO})_{5}\right]$ will react with AR_{2} to yield either the mononuclear species $\left[\operatorname{ReX}\left(\mathrm{AR}_{2}\right)_{2}(\mathrm{CO})_{3}\right]$ or dinuclear $\left[\left\{\operatorname{ReX}\left(\mathrm{AR}_{2}\right)(\mathrm{CO})_{3}\right\}_{2}\right]$ (shown in Eq. 1.21) [31].

This dinuclear species is normally isolated when A is either sulfur or selenium and R is an aryl group. The mononuclear species are obtained when R is an alkyl group.

Related dinuclear complexes $\left[\operatorname{Re}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{6}\left(\mathrm{RA}_{2} \mathrm{R}\right)\right]$ have been prepared from the THF adduct $\left[\left\{\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{THF})\right\}_{2}\right]$ and the appropriate ligand (Eq. 1.22) $[32,33]$.

The chloro-bridged species $\left[\left\{\operatorname{ReCl}(\mathrm{CO})_{4}\right\}_{2}\right]$ acts as a precursor to complexes containing oxygen donor ligands, for example $\mathrm{OH}_{2}, \mathrm{OCMe}_{2}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$. Thus upon warming $\left[\left\{\mathrm{ReCl}(\mathrm{CO})_{4}\right\}_{2}\right]$ with an appropriate quantity of ligand the dinuclear chloro-bridged species (monodentate ligands) or mononuclear fac complexes (with bidentate ligands) are formed (Eq. 1.23) [34].

Complexes of rhenium with weakly co-ordinating anions $\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$ or organohalide ligands ($\mathrm{RX}, \mathrm{CHCl}_{3}$) have been studied as organometallic Lewis acids. Beck has developed the chemistry of $\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{FBF}_{3}\right)\right][35]$ in which the BF_{4} ligand is readily substituted by a number of anionic and neutral species [36-39].

1.4.2 Manganese(I) compounds

As was seen to be the case for rhenium, the major synthetic precursor in organomanganese carbonyl chemistry is dimanganese decacarbonyl $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$. In the majority of cases, the manganese compounds produced all obey the 18 electron rule. However, one notable exception is the photolytic reaction of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ producing a 17e- species (Eq. 1.24).

$$
\begin{equation*}
\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right] \stackrel{\Delta v}{\rightleftharpoons} 2\left[\mathrm{Mn}(\mathrm{CO})_{5}\right] \tag{Eq.1.24}
\end{equation*}
$$

If the photolytic reaction is performed in a haloalkane, abstraction of the halogen atom occurs [40] (Eq. 1.25).

$$
\begin{equation*}
\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]+\mathrm{CCl}_{4} \longrightarrow\left[\mathrm{MnCl}(\mathrm{CO})_{5}\right]+\mathrm{CCl}_{3} \tag{Eq.1.25}
\end{equation*}
$$

Reactions of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ with both mono and bidentate ligands have been widely studied. Monosubstitution of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ generally produces compounds of the formula $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{9} \mathrm{~L}\right]$ where the substituent group is in the axial position [41, 42]. However, disubstitution using bidentate ligands can produce two different geometries. The nitrogen bidentate ligand bipy substitute on a single metal giving an unsymmetrical complex $\left[(\mathrm{CO})_{5} \mathrm{MnMn}(\mathrm{CO})_{3}\left(\mathrm{~L}^{\wedge} \mathrm{L}\right)\right]$. Reactions of dppm or dppe with $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right.$] produced a symmetric species in which the bidentate ligand co-ordinates to equatorial positions on adjacent metals, therefore bridging two metal centres (Eq. 1.26) [43].

Manganese pentacarbonyl iodide was the first halo manganese compound to be prepared. It was obtained, along with $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$, by carbonylation of MnI_{2}. It can also be prepared by the reaction of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ with iodine in a sealed tube at $140^{\circ} \mathrm{C}$ [44]. Other halide complexes have been prepared by halogen cleavage of the $\mathrm{Mn}-\mathrm{Mn}$ bond in $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$, and this is discussed in greater detail in Chapter Two.

The substitution of carbonyl groups in $\left[\mathrm{MnX}(\mathrm{CO})_{5}\right]$ complexes by neutral ligands have been widely studied. In general, only mild conditions are required to produce the species $\left[\mathrm{MnX}(\mathrm{CO})_{5-\mathrm{n}} \mathrm{L}_{\mathrm{n}}\right]$ (where $\mathrm{n}=1$ or 2) whilst harsher conditions are employed to produce $\left[\mathrm{MnX}(\mathrm{CO})_{5-\mathrm{n}} \mathrm{L}_{\mathrm{n}}\right]$ (where $\mathrm{n} \geq 3$). The same reactions as detailed in
section 1.5.1 occur with manganese. However, manganese carbonyl halides undergo reactions that the analogous rhenium species do not. For example the reaction between $\left[\mathrm{MnX}(\mathrm{CO})_{5}\right]$ with tetra alkylammonium halides produced the anionic complex cis-$\left[\mathrm{MnX}_{2}(\mathrm{CO})_{4}\right]^{-}($Eq. 1.27 $)[45,46]$.

$$
\begin{equation*}
\left[\mathrm{MnX}(\mathrm{CO})_{5}\right]+\mathrm{R}_{4} \mathrm{NX} \longrightarrow \mathrm{R}_{4} \mathrm{~N}\left[\mathrm{MnX}_{2}(\mathrm{CO})_{4}\right]+\mathrm{CO} \tag{Eq.1.27}
\end{equation*}
$$

At the same time the reaction between KCN and $\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right]$ was carried out, giving $\left[\mathrm{Mn}(\mathrm{CN})_{2}(\mathrm{CO})_{4}\right]^{-}$. The displacement of a halide ion in $\left[\mathrm{MnX}_{2}(\mathrm{CO})_{4}\right]^{-}$may be assisted by using a halide acceptor such as silver tetrafluoroborate. This provides a convenient route to the monosubstituted tetracarbonyl halide compounds [47] (Eq. 1.28).
$\left.\mathrm{Et}_{4} \mathrm{~N}^{2} \mathrm{MnBr}_{2}(\mathrm{CO})_{4}\right]+\mathrm{L}+\mathrm{AgBF}_{4} \longrightarrow\left[\mathrm{MnBr}(\mathrm{CO})_{4} \mathrm{~L}\right]+\mathrm{Et}_{4} \mathrm{NBF}_{4}+\mathrm{AgBr}$

Reactions between $\left[\mathrm{MnX}(\mathrm{CO})_{5}\right]$ and secondary phosphine oxides, secondary phosphine sulphides and secondary phosphine selenides have produced some interesting results. Different products are formed when phosphine sulphides react with $\left[\mathrm{MnX}(\mathrm{CO})_{5}\right]$ at varying temperatures. Below $45^{\circ} \mathrm{C}$, monosubstituted complexes of the ligand coordinated via the sulphide lone pair are produced (Eq. 1.29) [48, 49].
$\left[\mathrm{MnX}(\mathrm{CO})_{5}\right]+\mathrm{S}=\mathrm{PHMe}_{2} \xrightarrow{<45^{\circ} \mathrm{C}}\left[\mathrm{MnX}(\mathrm{CO})_{4}\left(\mathrm{~S}=\mathrm{PHMe}_{2}\right)\right]+\mathrm{CO}$

At higher temperatures a different product is formed which has the isomeric thiophosphonous acid as a ligand, with co-ordination to the metal occurring via the phosphorus atom (Eq. 1.30) [49].
$\left[\mathrm{MnX}(\mathrm{CO})_{5}\right]+\mathrm{SPHMe}_{2} \xrightarrow{>50^{\circ} \mathrm{C}}\left[\mathrm{MnX}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{2} \mathrm{SH}\right)\right]$

Heating the product shown in Eq. 1.29 produces the product shown in Eq. 1.30. Secondary phosphine oxides produce species analogous to that shown in Eq. 1.29 whilst secondary phosphine selenides produce species analogous to that shown in Eq. 1.30.

Chapter 2

Synthesis and characterisation of triorganophosphine derivatives of $\left[\mathrm{MBr}(\mathrm{CO})_{5}\right](\mathrm{M}=\mathrm{Mn}$ or Re$)$.

2.1 Introduction

The development of the organometallic chemistry of manganese dates back to 1954 [44] whilst rhenium dates back to 1941 [50]. The organometallic chemistry of rhenium has been less extensively explored than manganese. This lack of attention is not surprising when considering the availability of rhenium and thus its associated cost. As previously mentioned in Chapter One, the dimetal decacarbonyls are the key starting materials in this chemistry [51] and key aspects of the chemistry of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ are depicted in scheme 2.1, and expanded upon in the following sections [52].

Scheme 2.1. Important aspects of the chemistry of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$.

2.1.1 Dimanganese and dirhenium decacarbonyl

The first report of dimanganese decacarboyl $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ appeared in 1949 [53], however full characterisation of the compound did not appear until 1954 [44]. The product was prepared by carbonylation of MnI_{2} in diethyl ether and gave $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right.$] in a yield of 1%. Obviously, improved methods of synthesis of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ were required if further work on this compound were to be carried out efficiently and rapidly.

In 1960 Podall et al [54] reported a more efficient preparation of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$, this is shown below in (Eq. 2.1). This produced the desired yellow crystalline product in a 55% yield.

Similarly, dirhenium decacarbonyl $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right.$] was first reported in 1941 [50] by Hieber, Schuh and Fuchs. Their synthesis, shown in (Eq. 2.2) relied on high temperatures and pressures but yielded $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ in over 90%.

$$
\begin{equation*}
\mathrm{Re}_{2} \mathrm{O}_{7}+17 \mathrm{CO} \xrightarrow[\text { 2) } 200-250 \mathrm{~atm}]{\text { 1) } 250-270^{\circ} \mathrm{C}}\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]+7 \mathrm{CO}_{2} \tag{Eq.2.2}
\end{equation*}
$$

In 1963 Wilkinson et al [55] showed that reduction of anhydrous ReCl_{3} or ReCl_{5} by sodium in THF at $130^{\circ} \mathrm{C}$ and 250 atm CO allowed the isolation of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ in 70% yield (Eq. 2.3).
$\mathrm{ReCl}_{3}+\mathrm{Na} \xrightarrow[\text { 3) } 250 \mathrm{~atm} \mathrm{CO}]{\text { 1) } \mathrm{THF} \quad \text { 2) } 130^{\circ} \mathrm{C}} \quad\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$

2.1.2 Structures of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ and $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$

X-Ray crystal structure determinations of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right.$] and $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right.$] [56] have shown that these species are structurally isomorphous, with a metal-metal bond joining two $\left\{\mathrm{M}(\mathrm{CO})_{5}\right\}$ units whose radial carbonyl groups are in staggered conformation (Figure 2.1).

Figure 2.1. Structure of $\left[\mathrm{M}_{2}(\mathrm{CO})_{10}\right](\mathrm{M}=\mathrm{Mn}$ or Re$)$.

This gives rise to a molecule of approximately $\mathrm{D}_{4 \mathrm{~d}}$ symmetry. In these $\left[\mathrm{M}_{2}(\mathrm{CO})_{10}\right]$ structures, the radial carbonyl groups are bent away from the metal-metal bond with M-M-C angles of around 95°. This larger than expected angle has been explained as a result of an intrinsic property of an $\left[\mathrm{M}(\mathrm{CO})_{5}\right]$ unit rather than an effect due to the ligands or the metal-metal bond [57].

There have been a number of studies of the \mathbb{R} spectrum [58-62] and the Raman spectrum [63], of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ in which assignments have been made and CO force constants calculated. The IR spectrum of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ consists of three major absorptions at 2046, 2015 and $1984 \mathrm{~cm}^{-1}$ each with the symmetry designations $\mathrm{B}_{2}, \mathrm{E}_{1}$ and B_{2}, respectively. Similarly, assignments of the carbonyl region of the IR and Raman spectra of $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ have been produced, and force constants have been
determined $[62,64,65]$. The IR spectrum of $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$, as with $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$, consists of three major absorptions at 2070, 2014 and $1976 \mathrm{~cm}^{-1}$, each with the same symmetry designation as for $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$. As was described in Scheme 2.1, the metalmetal bond is readily cleaved producing, amongst other product types the pentacarbonyl halides.

2.1.3 Manganese and rhenium pentacarbonyl halides

The pentacarbonyl rhenium halides, first prepared by Hieber [50, 66] are convenient starting materials for many rhenium carbonyl compounds. Similarly, the pentacarbonyl manganese halides were first prepared by Brimm [44] with more comprehensive studies undertaken by Abel and Wilkinson in 1959 [67]. Both of these compounds exhibit interesting photochemical [68, 69], vibrational [70-72] and kinetic properties [73-75]. They are prepared by the direct reaction of a halogen with the dimetal decacarbonyl species (shown in Eq. 2.4) [76].

Cleavage of the metal to metal bond by halogens giving $\left[\mathrm{MX}(\mathrm{CO})_{5}\right]$ (where $\mathrm{X}=$ Cl, Br and I) has been proposed to go via a rate limiting 'end-on' attack of X_{2} at the metal-metal bond. This gives a halogenium intermediate (Figure 2.2a) which dissociates X^{-}to give a halogenium ion (Figure 2.2b) [77].

Figure 2.2. Cleavage of the metal-metal bond by a halogen.

Further replacement of the remaining carbonyls by neutral ligands (L) has been studied and results produced have formed the basis of a number of publications over the years. Section 2.1.4 discusses this chemistry in further detail.

2.1.4 Substituted complexes of [MX(CO) ${ }_{5}$]

Carbonyl substitution in rhenium halocarbonyls $\left[\operatorname{ReX}(\mathrm{CO})_{5}\right]$ is generally 1 to 2 orders of magnitude slower than in the corresponding manganese complexes; however in both cases the reaction has been shown to follow a first order rate law in which $\left[\mathrm{MX}(\mathrm{CO})_{5}\right]$ has no dependence on the incoming ligand [73]. It has been suggested that this is due to dissociation of a cis carbonyl group resulting from cis labilisation [73]. This has been confirmed by a study in which ${ }^{13} \mathrm{CO}$ exchange showed cis labilisation increased in the order $\mathrm{X}=\mathrm{I}<\mathrm{Br}<\mathrm{Cl}$ i.e. in the order of decreasing σ - donor character of the halide [78].

Monosubstitution of $\left[\mathrm{MX}(\mathrm{CO})_{5}\right]$ can be accomplished by treatment with one equivalent of donor ligand in refluxing solvent. Cleavage of the metal-metal bonded
species $\left[\left\{\operatorname{ReX}(\mathrm{CO})_{4}\right\}_{2}\right]$ with 2 equivalents of donor ligand is also an efficient method for generating cis-[$\left.\operatorname{ReX}(\mathrm{CO})_{4} \mathrm{~L}\right]$ compounds [79]. It is also possible to take the metalmetal bonded species $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{~L}\right\}_{2}\right]$, with halogen to produce the monosubstituted species [80] (Eq. 2.5).
$\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{~L}\right\}_{2}\right]+\mathrm{X}_{2} \longrightarrow 2\left[\mathrm{MnX}(\mathrm{CO})_{4} \mathrm{~L}\right]$

Purification and isolation of these monosubstituted compounds however is difficult, since invariably a mixture of the monosubstituted and disubstituted compounds are formed. This lack of specificity is a commonly encountered problem in carbonyl substitution chemistry [81]. One procedure which has been used to overcome this problem is to employ PdO as a catalyst [82] (Eq. 2.6).

This produces the desired tetracarbonyl species in yields $>75 \%$. However this process is only applicable when Tolmman's cone angle for the organophosphine is below 150° [83] and ligands with a larger cone angle do not react. It has been shown that the mechanism for the substitution reaction is quite different to that of the thermal reaction (which has been established as occurring via an $\mathrm{S}_{\mathrm{N}} 1$ mechanism [78]). Furthermore, it is believed that the reaction proceeds via a radical chain-type mechanism [84]. This process has no effect on substitution reactions of $\left[\mathrm{MnX}(\mathrm{CO})_{5}\right]$.

The species $\left[\mathrm{MnX}(\mathrm{CO})_{4} \mathrm{~L}\right]$ can be produced by a number of different synthetic routes. For example, by the cleavage of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8} \mathrm{~L}_{2}\right]$ by halogens [80]; by halogen-
hydrogen exchange reactions starting with $\left[\mathrm{MnH}(\mathrm{CO})_{4} \mathrm{~L}\right]$ [85]; or by photolysis of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8} \mathrm{~L}_{2}\right]$ species in chlorinated solvents. With both manganese and rhenium, the most common complexes by far are the disubstituted species, and this is discussed in section 2.1.5. For manganese, it is also possible to prepare dicarbonyl and monocarbonyl complexes (Eq. 2.7) whereas these dicarbonyl species are rare in rhenium chemistry.
$\left[\operatorname{MnBr}(\mathrm{CO})_{5}\right]+3 \mathrm{~L} \xrightarrow[\text { 2) benzene }]{\text { 1) Reflux 24h }}$ mer, cis- $\left[\mathrm{MnBr}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right]+3 \mathrm{CO}$

However, quite harsh conditions are necessary to achieve these dicarbonyl manganese products [86], and a recent publication has shown that the rhenium dicarbonyl species can be prepared but requires even harsher conditions and the use of perchloric acid. Monocarbonyl complexes are relatively uncommon apart from complexes formed from isocyanide precursors. Species with chelating diphosphines are generated by taking [$\left.\mathrm{MnX}(\mathrm{CO})_{5}\right]$ with excess ligand and subjecting the mixture to UV photolysis [87]. An alternative method is shown in Figure 2.3 below [88, 89].
$\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right]$

Figure 2.3. Preparation of tetrasubstituted monocarbonyl manganese halide ($\mathrm{L}=$ $\mathrm{P}(\mathrm{OMe})_{3}$. Conditions are (i) excess L , (ii) $\left[\mathrm{NO}^{2}\left[\mathrm{PF}_{6}\right]\right.$, (iii) $\mathrm{N}_{2} \mathrm{H}_{4}$, (iv) L and heat, (v) L and hv

2.1.5 Formation of $\left[\mathrm{MX}\left(\mathrm{CO}_{3} \underline{2}_{2} \mathrm{~L}_{2}\right]\right.$ complexes

Carbonyl substituted complexes are readily obtained from $\left[\mathrm{MX}(\mathrm{CO})_{5}\right]$ which goes via intermediate monosubstitution products. The substitution of the second carbonyl is considerably slower than the initial substitution, but will occur at elevated temperatures to form the disubstituted species $\left[\mathrm{MX}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$. Since the first paper on substitution of manganese and rhenium pentacarbonyl halides appeared in 1958, the area has hardly been out of press. The reader is pointed in the direction of Comprehensive Organometallic chemistry (I and II) [90, 91] and the Annual reviews of Manganese and Rhenium in Journal of Organometallic chemistry [92-94] for details.

2.2 Aims

The aims of this research were to prepare a series of new triorganophosphine derivatives of $\left[\mathrm{MBr}(\mathrm{CO})_{5}\right](\mathrm{M}=\mathrm{Mn}$ and Re] and to unambiguously determine their stereochemistry. The new complexes will be characterised by ${ }^{31} \mathrm{P}$ NMR and IR spectroscopy and by single crystal X-ray diffraction studies of suitable crystals. The Xray structures will serve as benchmarks for the spectroscopic data. These new complexes will also be used as organometallic reagents in the synthesis of metallaborane derivatives, as discussed in Chapter 3.

2.3 Results and Discussion

2.3.1 Synthesis of $\left[\mathrm{MBr}(\mathrm{CO})_{5}\right](\mathrm{M}=\mathrm{Mn}$ or Re$)$

$\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right]$ and $\left[\operatorname{ReBr}(\mathrm{CO})_{5}\right]$ were prepared by the literature methods [76], in yields varying from 60 to 90%, (Eq. 2.8). The physical and spectroscopic properties of $\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right]$ and $\left[\operatorname{ReBr}(\mathrm{CO})_{5}\right]$ were in good agreement with literature values.

$$
\begin{equation*}
\left[\mathrm{M}_{2}(\mathrm{CO})_{10}\right]+\mathrm{Br}_{2} \xrightarrow{\mathrm{CHCl}_{3,1} \mathrm{~h}} \quad 2\left[\mathrm{MBr}(\mathrm{CO})_{5}\right] \tag{Eq.2.8}
\end{equation*}
$$

2.3.2 Synthesis of $\left[\mathrm{MBr}(\mathrm{CO})_{3} \underline{\underline{L}}_{2}\right]$ and $\left[\mathrm{MBr}(\mathrm{CO})_{3}(\mathrm{~L} \sim \mathrm{~L})\right]$

Direct reaction of $\left[\mathrm{MBr}(\mathrm{CO})_{5}\right]$ with various triorganophosphine ligands, in a 1:2 ratio for monodentate phosphines or 1:1 ratio for bidentate phosphines, produced complexes of the type $\left[\operatorname{MBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ and $\left[\mathrm{MBr}(\mathrm{CO})_{3}(\mathrm{~L} \sim \mathrm{~L})\right]$ (Eq. 2.9 and 2.10). The $\mathrm{Mn}(\mathrm{I})$ complexes were prepared in yields varying from 51 to 91% by refluxing in CHCl_{3} for 3-8 h . The $\mathrm{Re}(\mathrm{I})$ complexes were prepared by refluxing in CHCl_{3} for 24 h and produced in yields ranging from 49 to 85%.

$$
\begin{equation*}
\left[\mathrm{MBr}(\mathrm{CO})_{5}\right]+2 \mathrm{~L} \xrightarrow[\mathrm{CHCl}_{3}]{\text { Reflux }}\left[\mathrm{MBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]+2 \mathrm{CO} \tag{Eq.2.9}
\end{equation*}
$$

$\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)_{3}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$

$L=$ dppm, dppe, dppp, dppb, dppfc
$\mathrm{M}=\mathrm{Mn}: 2 \mathrm{i}, \quad 2 \mathrm{j}, \quad 2 \mathrm{k}, \quad 2 \mathrm{l}, \quad 2 \mathrm{~m}$.
$\mathrm{M}=\mathrm{Re}: \quad 2 \mathrm{n}, \quad 2 \mathrm{o}, \quad 2 \mathrm{p}, \quad 2 \mathrm{q}, \quad 2 \mathrm{r}$.

All complexes were analysed via elemental analysis, melting point, ${ }^{31} \mathrm{P}$ NMR and infra-red spectroscopy. The yield, elemental analysis and melting point data is summarised in Table 2.1 for $\mathrm{Mn}(\mathrm{I})$ complexes and Table 2.2 for $\operatorname{Re}(\mathrm{I})$ complexes. Compounds $\mathbf{2 a}, \mathbf{2 e}, \mathbf{2 i}, \mathbf{2 j}, \mathbf{2 n}, \mathbf{2 o}$ and $\mathbf{2 r}$ have been reported previously. However, these compounds were not fully characterised in the relevant reports. The remaining complexes are new to this study. All complexes were purified by recrystallisation from a CHCl_{3} / hexane mixture $(1: 4)$, and they all gave satisfactory elemental analysis.

No	Compound	Analytical data		M.Pt (${ }^{\circ} \mathrm{C}$)	Yield (\%)
		C(\%) Found (Calc)	H(\%) Found (Calc)		
	$\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right]$	21.7 (21.9)	-	169 (Lit 171 ${ }^{\circ} \mathrm{C}$ [77])	50
2a	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	63.2 (63.0)	4.0 (4.1)	166	82
2b	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\right]$	45.4 (45.2)	2.4 (2.4)	139	51
2c	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}\right\}_{2}\right]$	58.7 (58.6)	4.6 (4.6)	138	77
2d	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$	65.6 (65.4)	5.1 (5.1)	163	89
2 i	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppm})\right]$	48.2 (48.3)	3.1 (3.2)	178 (Lit 174 ${ }^{\circ} \mathrm{C}$ [89])	91
2j	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right]$	48.5 (49.0)	3.3 (3.4)	184 (Lit $183{ }^{\circ} \mathrm{C}$ [89])	78
2k	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppp})\right]$	56.7 (57.1)	4.2 (4.2)	210	76
21	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppb})\right]$	56.9 (57.7)	4.3 (4.4)	215	91
2m	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppfc})\right]$	57.7 (57.5)	3.8 (3.7)	191	60

Table 2.1. Analytical data, M.Pt. and yields of $\mathrm{Mn}(\mathrm{I})$ tricarbonyl bromide complexes.

No	Compound	Analytical data		M.Pt. (${ }^{\circ} \mathrm{C}$)	Yield (\%)
		C(\%) Found (Calc)	H(\%) Found (Calc)		
	$\left[\operatorname{ReBr}(\mathrm{CO})_{5}\right]$	14.8 (14.8)	-	182	94
2 e	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	53.5 (53.6)	3.3 (3.45)	182 (Lit 181 ${ }^{\circ} \mathrm{C}$ [95])	49
2 f	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\right]$	43.1 (43.4)	2.5 (2.2)	172	67
2 g	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}\right\}_{2}\right]$	51.2 (51.2)	4.1 (4.0)	180	70
2h	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]$	55.9 (56.4)	4.3 (4.4)	179	59
2n	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppm})\right]$	45.9 (45.8)	3.1 (3.0)	225	70
20	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right]$	47.0 (46.5)	3.3 (3.2)	210	82
2p	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppp})\right]$	47.2 (47.2)	3.4 (3.4)	292	76
2q	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppb})\right]$	46.9 (47.2)	3.3 (3.6)	134	85
2 r	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppfc})\right]$	49.5 (49.1)	3.3 (3.1)	166	60

Table 2.2. Analytical data, M.Pt and yields of $\operatorname{Re}(\mathrm{I})$ tricarbonyl bromide complexes.

When adding two ligands (L) to a pentacarbonyl halide system $\left[\mathrm{MX}(\mathrm{CO})_{5}\right]$, three possible isomers maybe potentially formed (Figure 2.4).

mer,cis-

fac,cis-

mer,trans-

Figure 2.4. Differing stereo arrangements for disubstituted metal tricarbonyl centres.

In the cases of both the fac,cis- and mer,trans- isomers, only one peak would be expected in the phosphorus NMR since both phosphorus atoms are in equivalent environments. However, the mer, cis- isomer would show two phosphorus signals since both phosphorus nuclei are in differing environments. All of $\mathrm{Mn}(\mathrm{I})$ and $\operatorname{Re}(\mathrm{I})$ complexes gave, only one signal and it can be deduced that the compounds produced must have either fac,cis- or mer,trans- stereochemistry. The complexes with bidentate ligands must adopt a fac,cis- geometry whereas those with monodentate ligands may be in either of these two geometries. ${ }^{31} \mathrm{P}$ NMR, infrared spectroscopy and X-ray crystal data will be used to distinguish the stereochemistry of these complexes.

2.3.3 ${ }^{31} \mathrm{P}$ NMR spectroscopy

During the early 70's research was beginning into the use of ${ }^{31} \mathrm{P}$ NMR as a tool for structural elucidation [96]. Merriwether in 1961 described the ${ }^{31} \mathrm{P}$ NMR chemical shifts of a series of nickel carbonyl-phosphine complexes [97] and several authors have since used the chemical shift changes upon co-ordination as a diagnostic tool [98-100].

The ${ }^{31} \mathrm{P}$ NMR values of free phosphine $\left(\delta_{\mathrm{f}}\right)$, co-ordinated phosphine $\left(\delta_{\mathrm{c}}\right)$ and $\Delta \delta$ (calculated from subtracting the coordinated value from the free phosphine ${ }^{31} \mathrm{P}$ value) for all of the $\mathrm{Mn}(\mathrm{I})$ and $\operatorname{Re}(\mathrm{I})$ triorganophosphine complexes produced are shown in Tables 2.3 and 2.4 respectively. A downfield shift is indicated by a negative $\Delta \delta$ value.

No.	Compound	$\delta_{\mathrm{f}} / \mathrm{ppm}$	$\delta_{\mathrm{c}} / \mathrm{ppm}$	$\Delta \delta=\delta_{\mathrm{f}}-\delta_{\mathrm{c}}$
$\mathbf{2 a}$	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	-6.0	+53.3	-59.3
$\mathbf{2 b}$	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\right]$	-9.15	+52.8	-61.95
$\mathbf{2 c}$	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}_{\mathrm{Me}}-4\right)_{3}\right\}_{2}\right]$	-10.8	+44.8	-55.6
$\mathbf{2 d}$	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$	-12.4	+41.8	-54.2
$\mathbf{2 i}$	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppm})\right]$	-23.0	$+11.8(+10.9[101])$	-34.8
$\mathbf{2 j}$	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right]$	-13.3	$+69.5(+67.6[101])$	-82.8
$\mathbf{2 k}$	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppp})\right]$	-18.1	+27.6	-45.7
$\mathbf{2 l}$	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppb})\right]$	-16.8	+32.9	-49.7
$\mathbf{2 m}$	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppfc})\right]$	-17.9	+37.1	-55.0

Table 2.3. ${ }^{31} \mathrm{P}$ NMR data for $\mathrm{Mn}(\mathrm{I})$ tricarbonyl bromide complexes.

No.	Compound	$\delta_{\mathrm{f}} / \mathrm{ppm}$	$\delta_{\mathrm{c}} / \mathrm{ppm}$	$\Delta \delta=\delta_{\mathrm{f}}-\delta_{\mathrm{c}}$
2e	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	-6.0	-1.0	-5
$\mathbf{2 f}$	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left\{\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\right]\right.$	-9.15	-2.8	-6.35
$\mathbf{2 g}$	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}\right\}_{2}\right]$	-10.8	-4.6	-6.2
2h	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$	-12.4	-18.1	+5.7
$\mathbf{2 n}$	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppm})\right]$	-23.0	$-38.3(-38.5[101])$	+15.3
20	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right]$	-13.3	$+31.0(+30.0[101])$	-44.3
2p	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppp})\right]$	-18.1	-15.9	-2.2
2q	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppb})\right]$	-16.8	-4.0	-12.8
$\mathbf{2 r}$	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppfc})\right]$	-17.9	-0.7	-17.2

Table 2.4. ${ }^{31} \mathrm{P}$ NMR data for $\operatorname{Re}(\mathrm{I})$ tricarbonyl bromide complexes.

As would be expected, all of the phosphines upon complexation move downfield i.e. they become deshielded by the central metal atom, with the exception of $\mathbf{2 n}$ and $\mathbf{2 h}$. The $\mathrm{Mn}(\mathrm{I})$ complexes appear to shift further downfield than the analogous $\operatorname{Re}(\mathrm{I})$ complexes, this may be due to the difference in size and electron distribution of $\mathrm{Mn}(\mathrm{I})$ compared with $\operatorname{Re}(\mathrm{I})$. The $\operatorname{Mn}(\mathrm{I})$ and $\operatorname{Re}(\mathrm{I})$ complexes with the largest $\Delta \delta$ value had dppe as ligand. The phosphorus environments in complexed dppe derivatives with 5membered rings are strongly deshielded by the metal, whereas such deshielding is a lot less pronounced for the 4-membered ring (dppm) and 6-membered ring (dppp) chelates [102]. Indeed, the $\Delta \delta$ value for the rhenium (I) derivative $\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppm})\right] \mathbf{2 n}$ is positive, indicative of overall shielding at phosphorus.

Although both mer,trans- and fac,cis- complexes have been prepared previously, there has been no reported ${ }^{31} \mathrm{P}$ NMR data making any discussion of the results difficult.

IR and X-ray crystallographic data (see later) strongly suggest that the bis(monodentate) $\operatorname{Mn}(\mathrm{I})$ derivatives have the mer,trans-configuration whereas the analogous $\operatorname{Re}(\mathrm{I})$ derivatives have the fac,cis-configuration. Inspection of $\Delta \delta$ values for the derivatives would indicate that these values are not diagnostic of configuration.

2.3.4 Infra-red Spectroscopy

As with ${ }^{31}$ P NMR, this is potentially an important diagnostic tool for the solution of stereochemical problems. Infrared spectroscopy is a powerful technique for detecting the presence of metal-carbonyl bonds. The stretching frequencies of manganese and rhenium carbonyls range from $2150 \mathrm{~cm}^{-1}$ to $1850 \mathrm{~cm}^{-1}$ and are in the region expected for terminal metal carbonyl derivatives. This section will be concerned only with the metal carbonyl stretching region in an \mathbb{R} spectrum.

The number of bands that appear in this region of the infrared spectrum can indicate the different isomers present. Table 2.5 shows the number of expected $\mathbb{I R}$ absorption bands for the different isomers of $\left[\mathrm{MBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ with equivalent L environments, based on the symmetry of the carbonyl ligands.

Isomer	Approx. Point Group	Expected No of Bands.
Fac, cis $\left[\mathrm{MBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$	C_{s}	$3\left(2 \mathrm{~A}^{\prime}+\mathrm{A}^{\prime \prime}\right)$
Mer, trans $\left[\mathrm{MBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$	$\mathrm{C}_{2 v}$	$3\left(2 \mathrm{~A}_{1}+\mathrm{B}_{2}\right)$

Table 2.5. Expected number of bands for each isomer in the metal carbonyl region.

The symmetry stretches and bends associated with each of the symmetry operators A_{1}, $\mathrm{B}_{2}, \mathrm{~A}^{\prime}$ and $\mathrm{A}^{\prime \prime}$ are shown in Figure 2.5 below.
trans.

A_{1}^{a}
cis-

h_{1}^{b} !

8_{1}

.A_{b}

Figure 2.5. Symmetry stretches and bends associated with the operators A_{1}, B_{2}, A^{\prime} and A".

The values of the stretches observed in both the $\mathrm{Mn}(\mathrm{I})$ and $\operatorname{Re}(\mathrm{I})$ complexes are shown in Tables 2.6 and 2.7, respectively.

No	Compound	$v(\mathrm{CO})$ stretches
2a	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	2040(m), 1943(s), 1918(s)
2b	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\right]$	2033(w), 1951(s), 1901(s)
2c	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}\right\}_{2}\right]$	2031(w), 1946(s), 1908(s)
2d	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$	2031(w), 1945(s), 1912(s)
2 i	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppm})\right]$	$\begin{aligned} & \hline 2026(\mathrm{~s}), 1957(\mathrm{~s}), 1919(\mathrm{~s}) \\ & (2025(\mathrm{~s}), 1955(\mathrm{~s}), 1920(\mathrm{~s})[88]) \end{aligned}$
2j	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right]$	2008(s), 1935(s), 1915(s) (2023(s), 1956(s), 1917(s) [88])
2k	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppp})\right]$	2028(s), 1961(s), 1909(s)
21	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppb})\right]$	2028(s), 1962(s), 1910(s)
2m	$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppfc})\right]$	2025(s), 1959(s), 1909(s)

Table 2.6. \mathbb{R} stretches of $\mathrm{Mn}(\mathrm{I})$ tricarbonyl bromide complexes (KBr disc).

No.	Compound	IR Stretches in Carbonyl region
2e	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	$\begin{aligned} & \text { 2028(s), 1950(s), 1892(s) } \\ & (2037(s), 1960(s), 1899(s)[95]) \end{aligned}$
2 f	$\left[\mathrm{ReBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\right]$	2035(s), 1956(s), 1912(s)
2 g	$\left[\mathrm{ReBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}\right\}_{2}\right]$	2022(s), 1954(s), 1915(s)
2h	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$	2033(s), 1952(s), 1899(s)
2n	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppm})\right]$	2026(s), 1943(s), 1893(s)
20	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right]$	2026(s), 1948(s), 1913(s)
2p	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppp})\right]$	2034(s), 1955(s), 1904(s)
2q	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppb})\right]$	2032(s), 1953(s), 1904(s)
2r	$\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppfc})\right]$	2036(s), 1958(s), 1901(s)

Table 2.7. Carbonyl stretches for $\operatorname{Re}(\mathrm{I})$ complexes.
As can be seen for this data, there are evidently two types of complexes produced. One of them has three equal intensity carbonyl stretches (see Figure 2.6) whilst the other has only two strong absorptions with one weak one (see Figure 2.7)

Figure 2.6

Figure 2.7

The literature is not clear on the identification of which isomer is which. Clearly, the complexes of the bidentate ligands must be fac,cis- and these all have spectra similar to Figure 2.6. The remaining rhenium(I) derivatives have similar spectra and are likely to also be fac,cis- whereas the manganese(I) derivatives, $\mathbf{2 a} \mathbf{- 2 \mathbf { e }}$, are of a different type (Fig. 2.7) and are presumably mer,trans-. To confirm this, it has been possible to benchmark these IR absorptions against crystal structures as described in the next section.

2.3.5 X-Ray Crystallography

This section reports single crystal crystallographic data for the compounds $\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)_{3}\right\}_{2}\right] \quad$ 2g, $\quad\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right] \quad$ 2h, $\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppfc})\right] \mathbf{2 r},\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{3}\right\}_{2}\right] \mathbf{2 b},\left[\operatorname{MnBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right] \mathbf{2 j}$ and $\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppfc})\right] \mathbf{2 m}$. Full crystallographic data for the compounds is presented in Appendicies A-F. Compound $2 \mathbf{r}$, was determined to have three independent conformational isomers present in the unit cell, but for convenience only the one isomer will be discussed here, compound $\mathbf{2 b}$ was a disordered structure, but data are described for the highest occupancy structure.

Tables 2.8, 2.9 and 2.10 contain selected bond lengths for compounds $\mathbf{2 b}, \mathbf{2 g}$, $\mathbf{2 h}, \mathbf{2 j}, \mathbf{2 m}$ and $\mathbf{2 r}$ whilst Tables 2.11, 2.12 and 2.13 contain selected bond angles for the above compounds. Figure 2.8 to Figure 2.13 show the molecular structures for $\mathbf{2 b}, \mathbf{2 g}$, $\mathbf{2 h}, \mathbf{2 j}, \mathbf{2 m}$ and $\mathbf{2 r}$ respectively. Atoms are numbered as in the diagrams and arranged in the tables as to be comparable.

	$\mathbf{2 g}(\AA)$		$\mathbf{2 h}(\AA)$		$\mathbf{2 r}(\AA)$
$\mathrm{Re}-\mathrm{P}(1)$	$2.527(9)$	$\operatorname{Re}-\mathrm{P}(1)$	$2.500(5)$	$\mathrm{Re}-\mathrm{P}(1)$	$2.5180(18)$
$\mathrm{Re}-\mathrm{P}(2)$	$2.547(10)$	$\mathrm{Re}-\mathrm{P}(2)$	$2.494(6)$	$\operatorname{Re}-\mathrm{P}(2)$	$2.5520(16)$
$\mathrm{Re}-\mathrm{Br}$	$2.631(6)$	$\mathrm{Re}-\mathrm{Br}$	$2.650(3)$	$\mathrm{Re}-\mathrm{Br}$	$2.586(3)$
$\mathrm{Re}-\mathrm{C}(1)$	$1.926(4)$	$\mathrm{Re}-\mathrm{C}(1)$	$1.917(2)$	$\mathrm{Re}-\mathrm{C}(1)$	$1.855(19)$
$\mathrm{Re}-\mathrm{C}(2)$	$1.941(4)$	$\mathrm{Re}-\mathrm{C}(2)$	$1.946(3)$	$\mathrm{Re}-\mathrm{C}(2)$	$1.930(7)$
$\mathrm{Re}-\mathrm{C}(3)$	$1.950(4)$	$\mathrm{Re}-\mathrm{C}(3)$	$1.935(2)$	$\operatorname{Re}-\mathrm{C}(3)$	$1.943(8)$

Table 2.8. Selected bond lengths (\AA) about the $f a c, c i s$ - rhenium(I) centres in $\mathbf{2 g}, \mathbf{2 h}$ and 2 r .

	$\mathbf{2 j}(\AA)$		$\mathbf{2 m}(\AA)$
$\mathrm{Mn}-\mathrm{P}(1)$	$2.519(10)$	$\mathrm{Mn}-\mathrm{P}(1)$	$2.507(8)$
$\mathrm{Mn}-\mathrm{P}(2)$	$2.321(17)$	$\mathrm{Mn}-\mathrm{P}(2)$	$2.400(11)$
$\mathrm{Mn}-\mathrm{Br}$	$2.333(17)$	$\mathrm{Mn}-\mathrm{Br}$	$2.378(11)$
$\mathrm{Mn}-\mathrm{C}(1)$	$1.818(7)$	$\mathrm{Mn}-\mathrm{C}(35)$	$1.821(4)$
$\mathrm{Mn}-\mathrm{C}(2)$	$1.827(6)$	$\mathrm{Mn}-\mathrm{C}(36)$	$1.824(4)$
$\mathrm{Mn}-\mathrm{C}(3)$	$1.953(9)$	$\mathrm{Mn}-\mathrm{C}(37)$	$1.938(5)$

Table 2.9. Selected bond lengths (\AA) about the fac,cis-manganese (I) centres in $\mathbf{2} \mathbf{j}$ and

2 m .

	2b (A)
$\mathrm{Mn}-\mathrm{P}(1)$	$2.3260(11)$
$\mathrm{Mn}-\mathrm{P}(2)$	$2.3275(10)$
$\mathrm{Mn}-\mathrm{Br}$	$2.5458(7)$
$\mathrm{Mn}-\mathrm{C}(37)$	$1.7986(8)$
$\mathrm{Mn}-\mathrm{C}(38)$	$1.7986(7)$
$\mathrm{Mn}-\mathrm{C}(39)$	$1.804(4)$

Table 2.10. Selected bond lengths about the mer,trans- manganese(I) centre.

Figure 2.8. Molecular structure of 2b.

Figure 2.9. Molecular structure of $\mathbf{2 g}$

Figure 2.10. Molecular structure of $\mathbf{2 h}$.

Figure 2.11. Molecular structure of $\mathbf{2 j}$.

Figure 2.12. Molecular structure of $\mathbf{2 m}$, viewed down the $\mathrm{OC}-\mathrm{Mn}-\mathrm{Br}$ axis. The Mn 1 and C37 are obscured in this view.

Figure 2.13. Molecular structure of 2r.

	$2 \mathrm{~g}\left({ }^{\circ}\right)$		$2 \mathrm{~h}\left({ }^{\circ}\right)$		$2 \mathrm{r}\left({ }^{\circ}\right)$
C1-Re-C3	91.21(15)	C1-Re-C3	93.78(10)	$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 3$	91.0(5)
C1-Re-C2	92.88(15)	C1-Re-C2	85.67(10)	$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 2$	90.6(5)
C3-Re-C2	86.48(15)	C3-Re-C2	86.18(10)	C3-Re-C2	86.7(3)
C1-Re-P1	92.91(10)	C1-Re-P1	96.38(7)	C1-Re-P1	84.6(5)
C2-Re-P1	168.79(11)	C2-Re-P1	169.06(7)	C2-Re-P1	87.7(2)
C3-Re-P1	83.82(10)	C3-Re-P1	90.57(2)	C3-Re-P1	172.76(19)
C1-Re-P2	85.66(10)	C1-Re-P2	92.59(7)	C1-Re-P2	97.4(4)
C2-Re-P2	84.11(11)	C2-Re-P2	85.19(7)	C2-Re-P2	169.6(2)
C3-Re-P2	169.91(10)	C3-Re-P2	171.07(7)	C3-Re-P2	86.42(19)
P1-Re-P2	105.89(3)	P1-Re-P2	98.34(2)	P1-Re-P2	99.79(6)
$\mathrm{C} 1-\mathrm{Re}-\mathrm{Br}$	177.98(10)	$\mathrm{C} 1-\mathrm{Re}-\mathrm{Br}$	173.99(7)	$\mathrm{C} 1-\mathrm{Re}-\mathrm{Br}$	175.4(5)
$\mathrm{C} 2-\mathrm{Re}-\mathrm{Br}$	87.36(11)	$\mathrm{C} 2-\mathrm{Re}-\mathrm{Br}$	88.44(7)	$\mathrm{C} 2-\mathrm{Re}-\mathrm{Br}$	85.4(2)
$\mathrm{C} 3-\mathrm{Re}-\mathrm{Br}$	90.80(11)	$\mathrm{C} 3-\mathrm{Re}-\mathrm{Br}$	88.91(8)	$\mathrm{C} 3-\mathrm{Re}-\mathrm{Br}$	86.7(2)
P1-Re-Br	87.19(2)	$\mathrm{P} 1-\mathrm{Re}-\mathrm{Br}$	81.05(14)	$\mathrm{P} 1-\mathrm{Re}-\mathrm{Br}$	97.33(6)
P2-Re-Br	92.37(2)	P2-Re-Br	93.16(14)	P2-Re-Br	86.41(6)

Table 2.11. Selected bond angles $\left({ }^{\circ}\right)$ about the rhenium(I) centre.

	$2 \mathrm{j}\left({ }^{\circ}\right)$		$2 \mathrm{~m}\left({ }^{\circ}\right)$
$\mathrm{C} 1-\mathrm{Mn}-\mathrm{C} 3$	90.70(2)	C35-Mn-C36	85.85(16)
$\mathrm{C} 1-\mathrm{Mn}-\mathrm{C} 2$	93.00(2)	C35-Mn-C37	87.71(17)
C3-Mn-C2	90.10(2)	C36-Mn-C37	91.62(15)
$\mathrm{C} 1-\mathrm{Mn}-\mathrm{P} 1$	90.56(18)	C37-Mn-P1	93.72(12)
$\mathrm{C} 2-\mathrm{Mn}-\mathrm{P} 1$	90.06(17)	C36-Mn - P1	87.62(11)
C3 - Mn - P1	178.69(17)	C35-Mn-P1	173.36(11)
$\mathrm{C} 1-\mathrm{Mn}-\mathrm{P} 2$	172.58(19)	$\mathrm{C} 36-\mathrm{Mn}$ - P2	174.17(12)
$\mathrm{C} 2-\mathrm{Mn}-\mathrm{P} 2$	92.72(17)	C35-Mn - P2	91.50(11)
C3-Mn - P2	93.96(17)	C37-Mn-P2	93.46(10)
P1-Mn - P2	84.74(6)	$\mathrm{P} 1-\mathrm{Mn}-\mathrm{P} 2$	94.88(4)
$\mathrm{C} 1-\mathrm{Mn}-\mathrm{Br}$	89.26(18)	$\mathrm{C} 35-\mathrm{Mn}-\mathrm{Br}$	81.56(12)
$\mathrm{C} 2-\mathrm{Mn}-\mathrm{Br}$	177.56(17)	$\mathrm{C} 37-\mathrm{Mn}-\mathrm{Br}$	169.25(12)
$\mathrm{C} 3-\mathrm{Mn}-\mathrm{Br}$	90.70(16)	$\mathrm{C} 36-\mathrm{Mn}-\mathrm{Br}$	86.90(12)
$\mathrm{P} 1-\mathrm{Mn}-\mathrm{Br}$	89.05(5)	P1-Mn-Br	96.85(3)
$\mathrm{P} 2-\mathrm{Mn}-\mathrm{Br}$	84.94(5)	$\mathrm{P} 2-\mathrm{Mn}-\mathrm{Br}$	87.58(3)

Table 2.12. Selected bond angles $\left({ }^{\circ}\right)$ about the manganese(I) centre.

	2b (${ }^{\circ}$)
$\mathrm{C} 37-\mathrm{Mn}-\mathrm{C} 38$	$171.03(8)$
$\mathrm{C} 38-\mathrm{Mn}-\mathrm{C} 39$	$85.66(17)$
$\mathrm{C} 37-\mathrm{Mn}-\mathrm{C} 39$	$85.58(17)$
$\mathrm{C} 37-\mathrm{Mn}-\mathrm{P} 1$	$88.41(12)$
$\mathrm{C} 38-\mathrm{Mn}-\mathrm{P} 1$	$89.82(12)$
$\mathrm{C} 39-\mathrm{Mn}-\mathrm{P} 1$	$91.27(13)$
$\mathrm{C} 37-\mathrm{Mn}-\mathrm{P} 2$	$91.48(12)$
$\mathrm{C} 38-\mathrm{Mn}-\mathrm{P} 2$	$90.59(11)$
$\mathrm{C} 39-\mathrm{Mn}-\mathrm{P} 2$	$90.71(13)$
$\mathrm{P} 1-\mathrm{Mn}-\mathrm{P} 2$	$178.01(4)$
$\mathrm{C} 37-\mathrm{Mn}-\mathrm{Br}$	$94.76(8)$
$\mathrm{C} 38-\mathrm{Mn}-\mathrm{Br}$	$94.03(7)$
$\mathrm{C} 39-\mathrm{Mn}-\mathrm{Br}$	$178.87(12)$
$\mathrm{P} 1-\mathrm{Mn}-\mathrm{Br}$	$89.82(3)$
$\mathrm{P} 2-\mathrm{Mn}-\mathrm{Br}$	$88.21(3)$

Table 2.13. Selected bond lengths around the mer,trans- isomer.

There have been relativiely few crystallographically determined $\operatorname{Mn}(\mathrm{I})$ or $\operatorname{Re}(\mathrm{I})$ tricarbonyl halide compounds containing two phosphines or related ligands. Those that have are limited to $\left[\mathrm{MnCl}(\mathrm{CO})_{3}\left(\mathrm{Et}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PEt}_{2}\right)\right]$ [103], $\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{PPhH}_{2}\right)_{2}\right.$] [104], $\left[\mathrm{MnCl}(\mathrm{CO})_{3}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PH}_{2}\right)_{2}\right\}\right] \quad[104], \quad\left[\mathrm{MnCl}(\mathrm{CO})_{3}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}\right\}\right] \quad$ [104], $\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right] \quad[104], \quad\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\right.$ triphos $\left.) \mathrm{Cr}(\mathrm{CO})_{5}\right] \quad[105]$, $\left[\mathrm{Mn}(\mathrm{CO})_{3}(\mathrm{dppe})(\mathrm{NCO})\right][106],\left[\mathrm{Mn}(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{C}(\mathrm{O}) \mathrm{OEt}\right][106],\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{CNPh})_{2}\right]$
[107], fac,cis-[$\left.\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right)_{2}\right] \quad[108]$ and mer,trans$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{OMe}_{2}\right) \mathrm{Ph}\right)_{2}\right][108],\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{2} \mathrm{O}\right\}_{2} \mathrm{SiMe}_{2}\right][109]$ whilst there are fewer determined structures for $\operatorname{Re}(\mathrm{I})$, $\left[\mathrm{ReCl}(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}\right] \quad[110]$, $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{C}(\mathrm{O}) \mathrm{OD}\right]$ [111] and $\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{~L}_{\mathrm{c}}\right)_{2}\right]$ (where $\mathrm{L}_{\mathrm{c}}=$ cis-3,4-dihydro-2,3,4,5-tetraphenyl-2H-1,2,3-diazaphosphole) [112].

For the fac, cis- $\mathrm{Mn}(\mathrm{I})$ complex $\mathbf{2} \mathbf{j}$, the $\mathrm{Mn}-\mathrm{C}$ bond length trans to Br is shorter than the Mn-C bond lengths trans to the tertiary phosphines. This has been observed previously with the $\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\right.$ triphos $\left.) \mathrm{Cr}(\mathrm{CO})_{5}\right]$ [105] complex. However, with compound $\mathbf{2 m}$, the $\mathrm{Mn}-\mathrm{C}$ bond length trans to Br is significantly longer, the corresponding structure in the literature has all three Mn-C bond lengths the same [104].

The $\mathrm{Mn}-\mathrm{Br}$ bond lengths for $\mathbf{2 j}$ and $\mathbf{2 m}$ are shorter than the corresponding bond lengths found in $f a c-\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{MeNC})_{2}\right](2.54 \AA),\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{CNPh})_{2}\right](2.527 \AA)$ [107], $\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right)_{2}\right](2.532 \AA)$ [108], $\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right]$ (2.504£) [104], the two isomers of $\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\operatorname{triphos}) \mathrm{Cr}(\mathrm{CO})_{5}\right]$ (2.537 \AA and $\left.2.534 \AA\right)$ [105] and $\left[\operatorname{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{OMe}_{2}\right)_{2} \mathrm{O}\right\}_{2} \mathrm{SiMe}_{2}\right]$ (2.528 \AA) [109]. Whilst the Mn-P lengths in compounds $\mathbf{2} \mathbf{j}$ and $\mathbf{2 m}$ are longer than those previously reported $\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{PPhH}_{2}\right)_{2}\right]$ (2.305 \AA and $2.322 \AA)$ [104], $\left[\mathrm{MnCl}(\mathrm{CO})_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}\right]\right.$ (2.325 \AA and 2.320 $)$ [104], $\left[\mathrm{Mn}(\mathrm{CO})_{3}(\mathrm{dppe})(\mathrm{NCO})\right] \quad(2.341 \AA$ and $2.329 \AA) \quad[106], \quad\left[\mathrm{Mn}(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{C}(\mathrm{O}) \mathrm{OEt}\right]$ (2.346 \AA and $2.340 \AA)$ [106], fac, cis $-\left[\operatorname{MnBr}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right)_{2}\right](2.296 \AA$ and $2.303 \AA)$ [108] and $\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{OMe}_{2}\right)_{2} \mathrm{O}\right\}_{2} \mathrm{SiMe}_{2}\right]$ (2.258 \AA and 2.255 \AA) [109].

There has only been one previous example of a mer,trans- $\mathrm{Mn}(\mathrm{I})$ tricarbonyl halide complex analysed by X-ray crystallography, $\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right)_{2}\right]$ [108]. Comparison of compound $\mathbf{2} \mathbf{b}$ with this reported structure shows a good correlation. The $\mathrm{Mn}-\mathrm{C}$ bond lengths are very similar (1.7968(8) \AA to $1.804(4) \AA$ for $\mathbf{2 b} c f .1 .80(2) \AA$ to $1.80(3) \AA$ for $\left.\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right)_{2}\right]\right)$ as are the $\mathrm{Mn}-\mathrm{Br}$ bond length $(2.524(7) \AA$ for
$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right)_{2}\right] c f .2 .5458(7) \AA$ for compound $\left.\mathbf{2 b}\right)$. The $\mathrm{Mn}-\mathrm{P}$ bond lengths however are different, with those in compound $\mathbf{2 b}$ being longer than those found in $\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right)_{2}\right](2.360(1) \AA$ and $2.3275(10) \AA$ for 2b cf. $2.179(8) \AA$ and $2.260(8) \AA$ for $\left.\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right)_{2}\right]\right)$.

There is also a good correlation between the three $\operatorname{Re}(\mathrm{I})$ crystal structures presented here and those published in the literature [110-112]. Compounds $\mathbf{2 g}, \mathbf{2 h}$ and $2 \mathbf{r}$ all have Re-P bond lengths in the range $2.494(6) \AA$ to $2.5520(16) \AA$, which are in the same range as those found for $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{C}(\mathrm{O}) \mathrm{OD}\right](\operatorname{Re}-\mathrm{P} 2.472(3) \AA$ and $2.454(3) \AA[111])$ and $\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{~L}_{\mathrm{c}}\right)_{2}\right](\operatorname{Re}-\mathrm{P} 2.481(3) \AA$ and $2.497(3) \AA[112])$. The $\operatorname{Re}-\mathrm{C}$ bond lengths in $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{C}(\mathrm{O}) \mathrm{OD}\right]$ range from $1.927(13) \AA$ to $1.945(14) \AA[111]$, in $\left[\operatorname{ReCl}(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}\right]$ they are $1.92(1) \AA$ to $1.97(1) \AA$ [110] and in $\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{~L}_{\mathrm{c}}\right)_{2}\right]$ they range from $1.898(13) \AA$ to $1.956(14) \AA$ these values are encompassed by the $\mathrm{Re}-\mathrm{C}$ bond lengths shown for compounds $\mathbf{2 g}$, $\mathbf{2 h}$ and $\mathbf{2 r}$ (range from $1.855(19) \AA$ to $1.950(4) \AA$). Compounds $\mathbf{2 g}, \mathbf{2 h}$ and $\mathbf{2 r}$ all exhibit $\mathrm{Re}-\mathrm{Br}$ bond lengths, in the range $2.586(3) \AA$ to $2.650(3) \AA$, again in agreement with the $\mathrm{Re}-\mathrm{Br}$ bond length found in $\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{~L}_{\mathrm{c}}\right)_{2}\right]$ 2.622(1) \AA [112].

The single crystal diffraction studies confirm that there are two different isomers. With the bidentate phosphines attached to both $\operatorname{Mn}(\mathrm{I})$ and $\operatorname{Re}(\mathrm{I})$, only the fac,cis- isomer is observed (this would be expected as the phosphines need to be mutually cis to bond with the metal centre). However, in the case of the monodentate phosphines, a fac,cis- isomer is observed for $\operatorname{Re}(\mathrm{I})$, but a mer,trans- isomer is observed for $\mathrm{Mn}(\mathrm{I})$. This agrees with the IR spectroscopic data, where all the monodentate phosphine complexes of $\mathrm{Mn}(\mathrm{I})$ showed three absorptions (two strong and one weak), whilst for the $\operatorname{Re}(\mathrm{I})$ complexes again three absorptions were observed but all three were of equal intensity.

2.4 Conclusions

In conclusion, a range of $\mathrm{Mn}(\mathrm{I})$ and $\operatorname{Re}(\mathrm{I})$ (bis)triorganophosphine complexes have been prepared. These have been characterised by ${ }^{31} \mathrm{P}$ NMR, IR spectroscopy, melting point and elemental analysis. Suitable crystals have been solved via X-ray crystal diffraction. It has been shown that the monodentate phosphines form mer,transisomers with $\operatorname{Mn}(\mathrm{I})$ with $\operatorname{Re}(\mathrm{I})$ monodentate and bidentate phosphines form only the fac, cis- isomer.

Chapter 3

Synthesis and characterisation of octahydrotriborate derivatives of $\left[\mathrm{M}(\mathrm{CO})_{3}(\mathrm{~L})_{2} \mathrm{Br}\right](\mathrm{M}=\mathrm{Mn}$ or Re$)$.

3.1 Introduction

Alfred Stock first prepared the octahydrotriborate anion, $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{]}$, by the reaction of a sodium mercury amalgam with diborane. However he incorrectly characterised the product as $\mathrm{Na}_{2}\left[\mathrm{~B}_{2} \mathrm{H}_{6}\right]$ [113], and it was not until later that Hough, Edwards and McElroy determined that the product from the reaction was $\mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right.$] (Eq. 3.1) [114, 115].
$2 \mathrm{Na} / \mathrm{Hg}+2 \mathrm{~B}_{2} \mathrm{H}_{6} \xrightarrow{\text { Ether }} \quad \mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+\mathrm{Na}\left[\mathrm{BH}_{4}\right]+2 \mathrm{Hg}$

By addition of a carrier species, for example naphthalene, the rate of reaction is increased allowing the synthesis to be completed within a few seconds in THF (Eq. 3.2) [116]. Sodium amalgam has also been found to react with $\mathrm{B}_{4} \mathrm{H}_{10}$ and $\mathrm{B}_{5} \mathrm{H}_{11}$ in diethyl ether to produce $\mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ [117].
$2 \mathrm{Na} / \mathrm{Hg}+2 \mathrm{~B}_{2} \mathrm{H}_{6}+$ carrier $\xrightarrow{\text { THF }} \mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+\mathrm{Na}\left[\mathrm{BH}_{4}\right]+2 \mathrm{Hg}+$ carrier

A more convenient synthesis of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$however involves the reaction of sodium borohydride with iodine (Eq. 3.3) [118]. A mechanism for this has been postulated, and is thought to involve the oxidation of $\left[\mathrm{BH}_{4}\right]^{-}$to $\mathrm{B}_{2} \mathrm{H}_{6}$, followed by a subsequent reaction between diborane and $\left[\mathrm{BH}_{4}\right]^{-}$producing $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$(Eq. 3.4) [118].
$3 \mathrm{NaBH}_{4}+\mathrm{I}_{2} \xrightarrow{\text { diglyme }} \quad \mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+2 \mathrm{H}_{2}+2 \mathrm{NaI}$
$\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{Na}\left[\mathrm{BH}_{4}\right] \xrightarrow{\text { diglyme }} \mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+\mathrm{H}_{2}$

Alternatively the reaction between boron trifluoride diethyl etherate and $\mathrm{Na}\left[\mathrm{BH}_{4}\right]$ also produces $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$(Eq. 3.5) [119].
$4 \mathrm{BF}_{3} \cdot \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}+3 \mathrm{Na}\left[\mathrm{BH}_{4}\right] \xrightarrow{\text { Diglyme }} 3 \mathrm{Na}\left[\mathrm{BF}_{4}\right]+2 \mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+2 \mathrm{H}_{2}+4 \mathrm{Et}_{2} \mathrm{O}$

The reactions illustrated in Eq. 3.3 and Eq. 3.5 produce sodium octahydrotriborate, which has a limited air stability. A number of other cations can be used which produce salts with enhanced stability, for example the preparation of an air-stable caesium salt is available by a metathesis reaction (Eq. 3.6) [118, 119, 120].
$\mathrm{CsBr}+\mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right] \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Cs}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+\mathrm{NaBr}$

Tetraalkylammonium salts have proved to be useful due to their high thermal and airstability whilst also having a low moisture sensitivity. They are also soluble in organic solvents which makes them valuable as starting materials for metathesis to other $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ salts. The general method of their preparation involves the addition of a saturated aqueous solution of tetraalkylammonium halide to a diethyl ether solution of $\mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ (Eq. 3.7) [116].
$\left[\mathrm{R}_{4} \mathrm{~N}\right] \mathrm{X}+\mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right] \xrightarrow{\mathrm{Et}_{2} \mathrm{O}}\left[\mathrm{R}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+\mathrm{NaX}$

The most general preparation of metal- $\mathrm{B}_{3} \mathrm{H}_{8}$ complexes involves the reaction of an organometallic halide with $\left[\mathrm{R}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ in a dichloromethane solution (Eq. 3.8). Most reactions proceed at room temperature, although thermal or photolytic induction is required in some cases.

$$
\begin{equation*}
\left[\mathrm{ML}_{x} \mathrm{X}_{\mathrm{y}}\right]+\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-} \longrightarrow\left[\mathrm{ML}_{(\mathrm{x}-1)} \mathrm{X}_{(\mathrm{y}-1)}\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]+\mathrm{L}+\mathrm{X}^{-} \tag{Eq.3.8}
\end{equation*}
$$

$\mathrm{L}=$ Neutral donor ligand, $\mathrm{X}=$ Halide

3.2 Aims

The aim of this chapter was to use the manganese(I) and rhenium(I) halo carbonyl phosphine derivatives prepared in Chapter 2 and explore their reactions with the octohydrotriborate anion. With a few exceptions [1, 2] this area has been frequently overlooked. The chemistry of the complex obtained in the highest yield was to be further investigated as representative of the chemistry of the class.

3.3 Results and Discussion

3.3.1 Synthesis of the $\left[\mathrm{B}_{3} \underline{\underline{H}}_{\underline{8}}\right]^{-}$anion.

[$\left.{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ was prepared by the literature method [118], in yields varying from 70 to 80%, (Eq. 3.9 and Eq. 3.10). The physical and spectroscopic properties of $\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ so obtained were in good agreement with literature values.
$3 \mathrm{Na}\left[\mathrm{BH}_{4}\right]+\mathrm{I}_{2} \longrightarrow \quad 2 \mathrm{NaI}+2 \mathrm{H}_{2}+\mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$
$\left.\mathrm{Na}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{I} \longrightarrow{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]+\mathrm{NaI}$

3.3.2 Attempted synthesis of 2-metallatetraboranes from mer, trans-

$\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{~L})_{2}\right]$.
The reaction between compounds $\mathbf{2 a - 2 d}$ and $\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$, in a 1:1 ratio, were attempted under both thermal and photolytic conditions. In all cases a white solid formed which was insoluble and was difficult to identify. NMR spectra of the residual solids and solution did not indicate formation of any metallatetraborane species.

3.3.3 Synthesis of 2-metallatetraboranes from $f a c$, cis- $\left[\mathrm{MBr}(\mathrm{CO})_{3}\left(\mathrm{~L}_{2}\right]\right.$ and

 fac, cis-[$\left.\mathrm{MBr}(\mathrm{CO})_{3}(\mathrm{~L} \sim \mathrm{~L})\right]$.The reaction between $\left[{ }^{n} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ with compounds $\mathbf{2 e}-\mathbf{2 r}$, in a 1:1 ratio, produced complexes of the type $\left[\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ and $\left[\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L} \sim \mathrm{~L})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ (Eq. 3.11 and Eq. 3.12). The $\mathrm{Mn}(\mathrm{I})$ complexes were prepared in yields ranging from 17 to 59% by UV photolysis in CHCl_{3} for 20 h . Similarly, the $\mathrm{Re}(\mathrm{I})$ complexes were prepared in yields ranging from 17 to 46% under the same conditions as $\mathrm{Mn}(\mathrm{I})$.

$$
\left[\mathrm{MBr}(\mathrm{CO})_{3} \mathrm{~L} \sim \mathrm{~L}\right]+\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-} \longrightarrow\left[\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L} \sim \mathrm{~L}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]+\mathrm{Br}^{-}+\mathrm{CO} \text { (Eq. 3.11) }
$$

$\mathrm{L} \sim \mathrm{L}=\mathrm{dppm}$, dppe, dppp, dppb, dppfc
$M=M n: 3 \mathrm{a}, \quad 3 \mathrm{~b}, \quad 3 \mathrm{c}, \quad 3 \mathrm{~d}, \quad 3 \mathrm{e}$. $M=\operatorname{Re}: 3 \mathbf{j}, \quad \mathrm{~N} / \mathrm{A}, \quad 3 \mathrm{k}, \quad 3 \mathrm{l}, \quad 3 \mathrm{~m}$.

$$
\begin{aligned}
& {\left[\mathrm{M}(\mathrm{CO})_{3}(\mathrm{~L})_{2} \mathrm{Br}\right]+\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-} \longrightarrow\left[\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]+\mathrm{Br}+\mathrm{CO} \text { (Eq. 3.12) }} \\
& \mathrm{L}=\mathrm{PPh}_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)_{3}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right. \\
& \mathrm{M}=\mathrm{Re}: \quad 3 \mathbf{f}, \quad 3 \mathbf{g}, \quad 3 \mathbf{3}, \quad 3 \mathbf{i},
\end{aligned}
$$

All complexes were analysed by elemental analysis, melting point, ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}$ and ${ }^{31}$ P NMR and infrared spectroscopy. The yield, elemental analysis and melting point data is summarised in Table 3.1 for $\mathrm{Mn}(\mathrm{I})$ complexes and Table 3.2 for $\operatorname{Re}(\mathrm{I})$ complexes. Only compound $\mathbf{3 b}$ has been reported previously, however this compound was not completely characterised at the time, all other complexes are previously unreported. All complexes decomposed if left in solution for more than 24 h , and gradually decomposed in the solid state. All complexes were purified by column chromatography, using hexane and chloroform as eluents on a Florisil column.

No	Compound	Analytical data	M.Pt $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	
3a	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$\mathrm{C}(\%)$ Found (Calc)	$\mathrm{H}(\%)$ Found (Calc)		
3b	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$60.2(60.5)$	$5.4(5.6)$	187	28
3c	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$60.9(61.1)$	$6.0(5.9)$	243	59
3d	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$61.7(61.7)$	$6.4(6.1)$	85	17
3e	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$62.6(62.3)$	$6.0(6.3)$	157	24

Table 3.1. Analytical data, M.Pt and yields of $\mathrm{Mn}(\mathrm{I}) \mathrm{B}_{3} \mathrm{H}_{8}$ complexes.

No	Compound	Analytical data	M.Pt $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	
3f	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	$\mathrm{C}(\%)$ Found (Calc)	$\mathrm{H}(\%)$ Found (Calc)		
3g	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	$44.9(45.0)$	$4.7(4.7)$	175	20
3h	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	$53.4(53.5)$	$3.0(3.2)$	129	36
3i	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	$59.5(59.3)$	$5.4(5.1)$	109	31
3j	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$48.9(48.6)$	$4.7(4.5)$	210	17
3k	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$50.5(50.1)$	$5.1(4.9)$	77	38
3I	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$50.9(50.8)$	$5.0(5.1)$	183	39
3m	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$51.5(51.5)$	$4.2(4.3)$	193	46

Table 3.2. Analytical data, M.Pt and yields of $\operatorname{Re}(\mathrm{I}) \mathrm{B}_{3} \mathrm{H}_{8}$ complexes.

The product of formula $\left[\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ may exist in a number of isomeric forms (Figure 3.1).

1

2

3

4

Figure 3.1. Differing isomeric forms of $\left[\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$.

Previous work has [2] shown that $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ has structure $\mathbf{1}$ and the use of chelating phosphine ligands excludes the possibility of $\mathbf{2}$. In the case of isomer 1, only one peak would be expected in the ${ }^{31} \mathrm{P}$ NMR since both phosphorus nuclei are in equivalent environments. However, in isomer $\mathbf{3}$ and 4, two phosphorus signals of equal intensity would be observed due to the nuclei being in differing environments. The same argument holds true for the ${ }^{11} \mathrm{~B}$ NMR, where in isomer $\mathbf{1}$ two signals would be seen of a $2: 1$ ratio ($2 \mathrm{M}-\mathrm{H}-\mathrm{B}$ environments and 1 terminal BH_{2} environment). But in isomers in $\mathbf{3}$ and 4, all three boron atoms are in differing environments and hence three signals of equal intensity would be seen. All isomers would be expected to show two carbonyl stretches in their respective infrared spectra. ${ }^{11} \mathrm{~B},{ }^{31} \mathrm{P}$ NMR, infrared spectroscopy and X-ray crystallography will be used to confirm that isomer $\mathbf{1}$ is formed in all cases.

3.3.4 Infra-red spectroscopy

As was demonstrated in chapter 2 , infrared spectroscopy is an important diagnostic tool for the determination of stereochemical phenomena. However, unlike the compounds $\mathbf{2 a}-\mathbf{2 r}$, only two carbonyls are present in the molecules $\mathbf{3 a}-\mathbf{3 m}$. Symmetry considerations would indicate that two carbonyl stretches would be observed for all possible isomers of $\left[\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$. This was found to be the case with the exception of compound $\mathbf{3 b}$, which presumably has coincidental overlap of the vibrational stretches. The values of the stretches observed in both the $\mathrm{Mn}(\mathrm{I})$ and $\operatorname{Re}(\mathrm{I})$ complexes are shown in Table 3.3 and 3.4 respectively.

No	Compound	$v(\mathrm{CO})$ stretches
3a	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1961(\mathrm{~s}), 1901(\mathrm{~s})$
3b	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1922(\mathrm{~s})(\mathrm{Lit} 1915(\mathrm{~s})[2])$
3c	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1960(\mathrm{~s}), 1907(\mathrm{~s})$
3d	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1960(\mathrm{~s}), 1907(\mathrm{~s})$
3e	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1959(\mathrm{~s}), 1882(\mathrm{~s})$

Table 3.3. Infrared stretches of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{~L})_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right](\mathrm{KBr}$ disc).

No	Compound	$v(\mathrm{CO})$ stretches
3f	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	$1945(\mathrm{~s}), 1915(\mathrm{~s})$
3g	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	$1971(\mathrm{~s}), 1913(\mathrm{~s})$
3h	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe} \mathrm{Me}_{3}\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	$2049(\mathrm{~s}), 1972(\mathrm{~s})$
3i	$\left.\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right\}\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1948(\mathrm{~s}), 1901(\mathrm{~s})$
3j	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1966(\mathrm{~s}), 1902(\mathrm{~s})$
3k	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1967(\mathrm{~s}), 1912(\mathrm{~s})$
3l	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1965(\mathrm{~s}), 1900(\mathrm{~s})$
3m	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$1964(\mathrm{~s}), 1912(\mathrm{~s})$

Table 3.4. Infrared stretches of $\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{~L})_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right](\mathrm{KBr}$ disc $)$.

As can be clearly seen, all complexes exhibit two strong signals in the carbonyl stretching region. In other reports of metallatetraboranes, values for the B-H stretching frequency have been given. Only small amounts of each compound were available for IR spectroscopic studies, it proved difficult to produce KBr discs of sufficient strengths. Hence all of the B-H data were effectively masked in the background of the IR spectra. B-H stretching data is however, no more diagnostic of structure than the carbonyl stretching data.

3.3.5 ${ }^{11} \mathrm{~B}$ NMR spectroscopy

a) Solution state NMR

Performing solution state ${ }^{11} \mathrm{~B}$ NMR gives a rapid indication as to the progress of the reaction and also provides evidence for the structure of the complexes. The high boron content of the multinuclear NMR probe available for this study, meant that the signal
for the terminal boron nucleus was often hidden by the signal from the borosilicate glass of the NMR probe. A sample of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ was sent to Leeds University to be examined on a high field 'low boron content' multinuclear NMR probe. The ${ }^{11} \mathrm{~B}$ spectra obtained in Bangor is shown in Figure 3.2 whilst the ${ }^{11} \mathrm{~B}$ obtained from Leeds on the same sample is shown in Figure 3.3.

Figure 3.2. ${ }^{11} \mathrm{~B}$ NMR of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ at 250 MHz (Bangor).

Figure 3.3. ${ }^{11} \mathrm{~B}$ NMR of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ at 400 MHz (Leeds).

As can be seen there is only one diagnostic signal in the sample run in Bangor (-40.7 ppm), whilst the same sample run at Leeds clearly shows two signals, one of intensity two (-40.6 ppm) and one of intensity one (+3 ppm). These relate to the M-H-B boron environments (intensity two) and the terminal BH_{2} boron environments (intensity one), and the values obtained are in close agreement with those reported by Gaines et al [2].

All of the remaining manganese and rhenium derivatives produced were only analysed on the instrument in Bangor, hence only the higher intensity signal relating to the metal bound boron was clearly decerned and are reported here. ${ }^{11} \mathrm{~B}$ values obtained for the manganese derivatives are reported in Table 3.5, whilst the rhenium derivatives values are shown in Table 3.6.

No.	Compound	M-H-B $\delta\left({ }^{11} \mathrm{~B}\right) / \mathrm{ppm}$
3a	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-40.1
3b	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	$-40.6(\mathrm{Lit}-40.6[2])$
3c	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-40.1
3d	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-40.1
3e	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-40.6

Table 3.5. ${ }^{\text {II }} \mathrm{B}$ NMR values for $\mathrm{Mn}(\mathrm{I})$ complexes.

No.	Compound	M-H-B $\delta\left({ }^{11} \mathrm{~B}\right) / \mathrm{ppm}$
3f	$\left[\mathrm{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	-40.9
3g	$\left[\mathrm{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	-40.2
3h	$\left[\mathrm{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	-41.6
3i	$\left.\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right)\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-41.9
3j	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-40.9
3k	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-41.0
3l	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-41.3
3m	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-40.6

Table 3.6. ${ }^{11} \mathrm{~B}$ NMR values for $\operatorname{Re}(\mathrm{I})$ complexes.

These values are in accord with those published in the literature, $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{Cr}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right] \quad\left(\mathrm{BH}_{2} \quad-3.6, \quad \mathrm{MHB}-42.1\right), \quad\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{W}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ $\left(\mathrm{BH}_{2}-4.7, \mathrm{MHB}-42.6\right)$ and $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]\left(\mathrm{BH}_{2}-6.5\right.$, MHB -42.2) [12]. This indicates that the borane moiety is not fluxional on the NMR time scale. Also, the similarity of the ${ }^{11} \mathrm{~B}$ spectra of all complexes with that of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ indicates that they are all of the same structure. The ${ }^{11}$ B NMR data effectively excludes structures 3 and 4 since these would have (unless coincidental) two high field resonances at $c a$. -40 ppm .

b) Solid state NMR

Previously there has only been the one reported solid state study of metallatetraboranes [121] all other studies have been restricted to solution ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}$ and ${ }^{31} \mathrm{P}$ NMR as well as infrared spectroscopy and X-ray crystallography. Isotropic
chemical shift data from solid state MAS-NMR spectra normally requires simulation of spectra to account for quadrupolar effects. However, the spectra reported here gave strong relatively sharp signals and hence simulation was unnecessary.

One would expect to see two signals in the solid state NMR spectra for the metallatetraboranes discussed in this chapter, with a 2:1 ratio. Indeed, two signals are observed, with a $2: 1$ ratio, with the upfield signal (ca. -40 ppm) being associated with the resonance of the $2 \mathrm{M}-\mathrm{H}-\mathrm{B}$ boron environments whilst the signal observed downfield (ca. 0 ppm) is the resonance associated with the terminal boron nucleus. The ${ }^{11} \mathrm{~B}$ solid state MAS-NMR chemical shifts obtained for compounds $\mathbf{3 e}$ and $\mathbf{3} \mathbf{j}$ are given in Table 3.7, whilst the spectra of $\mathbf{3 e}$ is given in Figure 3.4.

No	Compound	M-H-B $\delta\left({ }^{11} \mathrm{~B}\right)$	Terminal $\mathbf{B H} \mathrm{H}_{2} \delta\left({ }^{11} \mathrm{~B}\right)$
3 e	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-41.38	-3.4
$\mathbf{3 j}$	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-44.37	-3.9

Table 3.7. Solid state ${ }^{11}$ B MAS-NMR data for complexes $\mathbf{3 e}$ and $\mathbf{3 j}$.

Figure 3.4. Solid state ${ }^{11}$ B MAS-NMR spectra of complex 3e.

These spectra indicate that like the previously reported Cr and W metallatetraboranes, and unlike the Ag and Cu metallatetraboranes, that the Mn and Re derivatives are not fluxional at room temperature in the solid state.

3.3.6 ${ }^{31} \mathrm{P}$ NMR spectroscopy

The ${ }^{31}$ P NMR values for the metallatetraborane complexes δ, and $\Delta \delta$ (calculated from subtracting the chemical shift of the starting organometallic phosphine halide from $\delta)$ are given in Tables 3.8 and 3.9. A downfield shift is indicated by a negative $\Delta \delta$
value. Literature data for the previously prepared compound $\mathbf{3 b}$ is unavailable for comparison.

No.	Compound	δ / ppm	$\Delta \delta$
3a	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	+49.6	-37.8
3b	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	+100.1	-30.6
3c	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	+63.4	-32.9
3d	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	+68.9	-36.0
3e	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	+14.6	+22.5

Table 3.8. ${ }^{31} \mathrm{P}$ NMR data for $\mathrm{Mn}(\mathrm{I})$ metallatetraborane complexes.

No.	Compound	δ / ppm	$\Delta \delta$
3f	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	+31.8	-32.8
3g	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right\}_{3}\right)_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	+16.6	-19.4
3h	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}^{2}-4\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	+11.5	-16.1
3i	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	+7.9	-26.0
3j	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-21.2	-17.1
3k	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	+0.0	-15.9
3l	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-6.8	+2.8
3m	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	+2.0	-2.7

Table 3.9. ${ }^{31} \mathrm{P}$ NMR data for $\mathrm{Re}(\mathrm{I})$ metallatetraborane complexes.

The ${ }^{31}$ P NMR chemical shifts of the Mn and Re metallatetraboranes are all, with the exception of compounds 3 e and 31 , shifted downfield relative to the starting organometallic phosphine halide complexes. In general, the $\mathrm{Mn}(\mathrm{I})$ complexes ($\mathbf{3 a} \mathbf{- 3 d}$) had a $\Delta \delta$ value in the region of -35 ppm whilst the $\operatorname{Re}(\mathrm{I})$ complexes exhibit a $\Delta \delta$ of approximately -18 ppm . This may be a result of the different size and electron distribution of $\mathrm{Mn}(\mathrm{I})$ compared with $\operatorname{Re}(\mathrm{I})$.

The observation of only one phosphorus signal in the ${ }^{31} \mathrm{P}$ NMR of the metallatetraboranes, confirm that isomer $\mathbf{1}$ (Figure 3.1) is present.

3.3.7 ${ }^{1} \mathrm{H}$ NMR spectroscopy

Gaines et al reported the presence of five distinct hydrogen environments for the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$protons in these static bidentate complexes [2]. However, when the samples reported in this study were analysed by solution state ${ }^{1} \mathrm{H} N M R$, only two of the five reported environments were clearly distinguishable and these were upfield of TMS. This is in part due to masking the downfield resonances by the protons on the phosphine ligands and also due to the presence of a tetraalkylammonium salt impurity that proved difficult to remove from the samples. Hence, ${ }^{1} \mathrm{H}$ spectral data are only reported for the range 0 to -20 ppm . In all complexes two distinct proton environments were evident, those of $\mathrm{H}(5,6)$ and $\mathrm{H}(7,8)$ (see Figure 3.5 for numbering scheme).

Figure 3.5. Numbering of the ${ }^{1} \mathrm{H}$ in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$.

The proton shifts obtained are in Tables 3.10 and 3.11 for the $\operatorname{Mn}(\mathrm{I})$ and $\operatorname{Re}(\mathrm{I})$ metallatetraborane species respectively.

No	Compound	$\mathrm{H}(5,6)$	$\mathrm{H}(7,8)$
3a	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-12.7	-0.9
3b	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-12.9	-0.8
3c	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-12.7	-0.2
3d	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-12.9	-0.7
3e	$\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-9.8	-0.2

Table 3.10. ${ }^{1} \mathrm{H} N \mathrm{NR}$ data for the $\mathrm{Mn}(\mathrm{I})$ metallatetraboranes.

No	Compound	$\mathrm{H}(5,6)$	$\mathrm{H}(7,8)$
3f	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	-8.5	-1.1
3g	$\left[\mathrm{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	-9.0	-1.1
3h	$\left.\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)_{3}\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	-9.0	-0.4
3i	$\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	-8.8	-0.2
3j	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-8.5	-0.2
3k	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-9.2	-0.5
3l	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-9.0	-0.1
3m	$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$	-9.4	-0.3

Table 3.11. ${ }^{1} \mathrm{H}$ NMR data for the $\operatorname{Re}(\mathrm{I})$ metallatetraboranes.

These values are consistent with those reported by Gaines for similar metallatetraboranes. The $\mathrm{Mn}(\mathrm{I})$ species exhibit lower field proton environments than those exhibited by the $\operatorname{Re}(\mathrm{I})$ complexes for the bridging M-H-B's. This is again in agreement with what has been reported in the literature, where the $\mathrm{H}(5,6)$ chemical shift for $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ was -12.05 ppm , and the corresponding rhenium complex $\left[\operatorname{Re}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ has a chemical shift was $-9.33 \mathrm{ppm}[2]$. Again the $\mathrm{H}(7,8)$ chemical shift of compounds $\mathbf{3 a}-\mathbf{3 m}$ is in close agreement with that reported c.f. $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]-0.88 \mathrm{ppm}$, and $\left[\operatorname{Re}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]-1.42 \mathrm{ppm}$.

3.3.8 X-Ray crystallography

This section reports the single-crystal crystallographic data for the compounds $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right] \mathbf{3 b}$ (Figure 3.6) and $\left[\mathrm{Re}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right] 3 \mathrm{~m}$ (Figure 3.7). Full crystallographic data for the compounds is presented in Appendicies G and H.

Figure 3.6. Molecular structure of 3b.

Figure 3.7. Molecular structure of $\mathbf{3 m}$.

Table 3.12 contains selected bond lengths for compounds $\mathbf{3 b}$ and 3 m whilst Table 3.13 contains selected bond angles for these compounds.

	3b		3 m
$\mathrm{Mn}-\mathrm{C}(27)$	$1.844(3)$	$\mathrm{Re}-\mathrm{C}(6 \mathrm{~A})$	$1.968(4)$
$\mathrm{Mn}-\mathrm{C}(28)$	$1.835(3)$	$\mathrm{Re}-\mathrm{C}(6)$	$1.968(4)$
$\mathrm{Mn}-\mathrm{P}(1)$	$2.240(8)$	$\mathrm{Re}-\mathrm{P}(1 \mathrm{~A})$	$2.3911(7)$
$\mathrm{Mn}-\mathrm{P}(2)$	$2.2495(7)$	$\mathrm{Re}-\mathrm{P}(1)$	$2.3911(7)$
$\mathrm{Mn}-\mathrm{B}(1)$	$2.330(3)$	$\mathrm{Re}-\mathrm{B}(1 \mathrm{~A})$	$2.432(4)$
$\mathrm{Mn}-\mathrm{B}(2)$	$2.336(3)$	$\mathrm{Re}-\mathrm{B}(1)$	$2.432(4)$

Table 3.12. Selected bond lengths (\AA) in $\mathbf{3 b}$ and $\mathbf{3 m}$.

	3b		$3 \mathbf{m}$
C28-Mn-C27	$176.96(10)$	C6A-Re-C6	$177.17(17)$
C28-Mn-P1	$91.99(7)$	C6A-Re-P1A	$88.57(9)$
C27-Mn-P1	$88.55(7)$	C6-Re-P1A	$89.64(10)$
C28-Mn-P2	$87.10(7)$	C6A-Re-P1	$89.64(10)$
C27-Mn-P2	$89.95(7)$	C6-Re-P1	$88.57(9)$
P1-Mn-P2	$86.34(3)$	C6A-Re-B1A	$92.19(17)$
C28-Mn-B1	$96.76(11)$	C6-Re-B1A	$90.45(17)$
C27-Mn-B1	$83.86(11)$	P1-Re-B1A	$108.2(12)$
P1-Mn-B1	$156.69(8)$	C6A-Re-B1	$90.45(17)$
P2-Mn-B1	$95.84(11)$	C6-Re-B1	$92.19(17)$
C28-Mn-B2	$86.69(11)$	P1A-Re-B1	$108.2(12)$
C27-Mn-B2	$113.50(8)$	B1A-Re-B1	$42.30(2)$
P1-Mn-B2	$44.22(11)$	$159.75(8)$	P1
P2-Mn-B2	B1-Mn-B2		

Table 3.13. Selected bond angles $\left({ }^{\circ}\right)$ about the manganese (I) and rhenium (I) centres.

There have only been two $\mathrm{Mn}(\mathrm{I})$ complexes containing the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ moiety previously determined by X-ray crystallography, the nido- $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ [2] and the arachno- $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{7} \mathrm{Br}\right)\right]$ [1], whilst there have been no previous reports of $\operatorname{Re}(\mathrm{I})$ $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ complexes. Other metallatetraborane complexes which have been characterised crystallographically include $\quad\left[\left\{\mathrm{Cu}\left\{\mathrm{PPh}_{3}\right\}_{2}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]\right.$, $\left[\mathrm{NMe}_{4}\right]\left[\left\{\mathrm{Cr}(\mathrm{CO})_{4}\right\} \mathrm{B}_{3} \mathrm{H}_{8}\right]$, $\left[\left\{\mathrm{WH}_{3}\left(\mathrm{PMe}_{3}\right)_{3}\right\} \mathrm{B}_{3} \mathrm{H}_{8}\right], \quad\left[\left\{\mathrm{NbCp}_{2}\right\} \mathrm{B}_{3} \mathrm{H}_{8}\right], \quad\left[\left\{\mathrm{RuH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right\} \mathrm{B}_{3} \mathrm{H}_{8}\right]$,
$\left[\left\{\mathrm{Ru}\left(\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Cl}\right\} \mathrm{B}_{3} \mathrm{H}_{8}\right],\left[\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{HB}\{\mathrm{pz}\}_{3}\right\} \mathrm{B}_{3} \mathrm{H}_{8}\right]\right.$ and $\left[\left\{\mathrm{OsH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right\} \mathrm{B}_{3} \mathrm{H}_{8}\right][14$, 121-127]. Bond lengths and bond angles for these $\mathrm{Mn}(\mathrm{I})$ metallatetraboranes are shown in Table 3.14 and Table 3.15 respectively (with numbering scheme for the compounds in Table 3.14 and 3.15 being shown in Fig 3.8).

Complex	Interatomic bond distances (M-B) (\AA)				
	M-B1	M-B3	B1-B3	B1-B2	B2-B3
$\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{7} \mathrm{Br}\right)\right]$	$2.356(9)$	$2.356(9)$	$1.75(2)$	$1.71(2)$	$1.71(2)$
$\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	$2.281(7)$	$2.273(7)$	$1.748(9)$	$1.713(9)$	$1.737(9)$

Table 3.14. Selected interatomic distances for structurally characterised metallatetraboranes.

Complex		
	Interbond angles $\left({ }^{\circ}\right)$	
$\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{7} \mathrm{Br}\right)\right]$	$43.5(4)$	B1-B2-B3
$\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$	$45.1(2)$	$61.5(8)$

Table 3.15. Selected intermolecular bond angles for structurally characterised $\mathrm{Mn}(\mathrm{I})$ metallatetraboranes.

Figure 3.8. Atom labelling for Tables 14 and 15.

Figure 3.9. Atom labelling for compounds $\mathbf{3 b}$ and 3 m .

The Mn-B bond lengths in 3b (Mn-B1 2.330(3) \AA and Mn-B2 2.336(3) \AA) are in close agreement with those shown by $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{7} \mathrm{Br}\right)\right](\mathrm{Mn}-\mathrm{B} 12.356(9) \AA$ and $\mathrm{Mn}-$ B2 $2.356(9) \AA$) whilst they are longer than those exhibited by the nido- $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ (Mn-B1 2.281(7) \AA and Mn-B3 2.273(7) \AA). The Re-B bond lengths in compound 3 m are longer than those found in $\mathbf{3 b}$ (Re-B1 2.432(4) $\AA, \operatorname{Re}-B 1 \mathrm{~A} 2.432(4) \AA$.

The bond lengths in the B-B bridge for $\mathbf{3 b}$ (B1-B2 1.756(4) \AA) are, within error, the same as those observed for $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ ($\mathrm{B} 1-\mathrm{B} 3$ 1.748(9) \AA) and $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{7} \mathrm{Br}\right)\right](\mathrm{B} 1-\mathrm{B} 31.75(2) \AA$) and in 3 m , (B1-B1A 1.754(10) \AA). The bond lengths between the $\mathrm{B}-\mathrm{B}$ bridge and the terminal BH_{2} in $\mathbf{3 b}$ (B1-B3 1.788(4) \AA, B2-B3 $1.815(5) \AA$) are slightly longer than those found in $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{7} \mathrm{Br}\right)\right]$ (B1-B2 $1.71(2) \AA$, B2-B3 1.71(2) \AA) and $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right](\mathrm{B} 1-\mathrm{B} 21.713(9) \AA$, B2-B3 1.737(9) \AA) but these differences may not be significant.. In $3 \mathbf{m}$ the situation is not as clear cut. One side of the $\mathrm{B} 1-\mathrm{B} 1_{\mathrm{A}}-\mathrm{B} 2$ triangle is shorter than the other with the $\mathrm{B} 1-\mathrm{B} 2$ bond length being $1.653(11) \AA$ and the $\mathrm{B} 1_{\mathrm{A}}-\mathrm{B} 2$ bond length being $1.784(12) \AA$.

The B1-Mn-B2 bond angle $\left(44.22(11)^{\circ}\right)$ in compound $\mathbf{3 b}$ shows close agreement with $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ (B1-Mn-B3 $\left.45.1(2)^{\circ}\right)$ and $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{7} \mathrm{Br}\right)\right]$ (B1-Mn-B3 $\left.43.5(4)^{\circ}\right)$. Similarly the B1-B3-B2 bond angle in $\mathbf{3 b}\left(58.34(17)^{\circ}\right)$ is slightly smaller than those observed for $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ (B1-B2-B3 60.9(4) ${ }^{\circ}$) and $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{~B}_{3} \mathrm{H}_{7} \mathrm{Br}\right)\right]\left(\mathrm{B} 1-\mathrm{B} 2-\mathrm{B} 361.5(8)^{\circ}\right)$. In compound 3 m , a similar observation may be made, where the B1A-Re-B1 bond angle is $\left(42.30(2)^{\circ}\right)$ and the $\mathrm{B} 1-\mathrm{B} 2-\mathrm{B} 1 \mathrm{~A}$ bond
angle is $\left(61.3(5)^{\circ}\right)$. The precursors of complexes $\mathbf{3 b}$ and $\mathbf{3 m}(\mathbf{2} \mathbf{j}$ and $\mathbf{2 r}$ respectively) have had their structures determined by X-ray crystallography. In compound 3 m , the $\mathrm{Mn}-\mathrm{P}$ bond lengths (2.240(8) \AA and $2.2495(7) \AA$) are shorter than those of $\mathbf{2 j} \mathbf{j} 2.519(10) \AA$ and $2.321(17) \AA)$. Similarly, in compound 3 m , the Re-P bond lengths $(2.3911(7) \AA$ and $2.3911(7) \AA)$ are shorter than those of its precursor, $\mathbf{2 r},(2.5180(18) \AA$ and $2.5520(16) \AA)$. This would indicate that the trans- influence of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$is less than that of a ciscombination of Br^{-}and CO .

Conversely, the P-Mn-P bond angle of $\mathbf{3 b}\left(86.34(3)^{\circ}\right)$ is larger than that found in $\mathbf{2 j}\left(84.74(6)^{\circ}\right)$. The same is found for $\mathbf{3 m}$ where the P-Re-P bond angle $\left(101.34(3)^{\circ}\right)$ is larger than that of its precursor, $\mathbf{2 r},\left(99.79(6)^{\circ}\right)$. This may be due to the release of steric constraints due to he removal of the halide.

3.3.9 Reactions of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\right.$ dppe $\left.)\left(\mathrm{B}_{3} \underline{H}_{8}\right)\right]$

Reactions of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ were attempted as representitive of this class of compounds. This compound was chosen as it was readily available and obtained in highest yield. Preliminary reactions included thermal (with and without $\mathrm{Me}_{3} \mathrm{NO}$) and photolytic reactions in benzene and CHCl_{3}, in attempts to remove a carbonyl and generate a nido- complex. Thermal and photolytic CO substitution reactions with PPh_{3} were also attempted. In all cases, reactions did occur, but these reactions were not clean and complex mixtures resulted from which it was difficult to isolate pure materials. For example, the photolytic decarbonylation of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ produced a pink solid. ${ }^{31} \mathrm{P}$ and ${ }^{11} \mathrm{~B}$ NMR of the crude products were performed and the results indicate a possible nido-structure. The ${ }^{11} \mathrm{~B}$ NMR showed one signal at -47.1 ppm (close to the value obtained for the nido-
$\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{~B}_{3} \mathrm{H}_{8}\right)\right]$ species), whilst the ${ }^{31} \mathrm{P}$ NMR showed two sets of signals, one at $+99.3 \mathrm{ppm}\left(\right.$ unreacted $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ and a multiplet of peaks at +72 ppm .

In all cases separation of products proved difficult and time consuming and this area of research was not pursued further.

3.4 Conclusion

This chapter reports the synthesis and characterisation of twelve new and one previously reported $\mathrm{Mn}(\mathrm{I})$ and $\mathrm{Re}(\mathrm{I})$ arachno-2-metallatetraboranes. All compounds were characterised by NMR and IR studies and two compounds, $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ and $\left[\mathrm{Re}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$, were characterised by single crystal X-ray diffraction studies. The chemistry of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ has been further explored but reaction products were not isolated nor characterised.

Chapter 4

Lewis acidity and organophosphoryl adducts of tris(pentafluorophenyl)borane.

4.1 Introduction

It was not until the 1960s that the first reports of pentafluorophenylborane derivatives were published [129]. These included the synthesis of $\mathrm{Cl}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, $\mathrm{ClB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ [130]. The strong Lewis acid properties of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathbf{a})$ were acknowledged at the time although they were not put to practical use. This area of research lay dormant for about 20 years, when further applications of pentafluorophenylborane reagents were described [131].

Compared to the boron trihalides, tris(pentafluorophenyl)borane is an ideal boron-based Lewis acid since it possesses both high Lewis acid strength and good stability. It is thermally robust, being able to withstand temperatures of up to $270^{\circ} \mathrm{C}$, and it is also resistant towards oxidation by dioxygen. However it is slowly hydrolysed with elimination $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$, under ambient conditions. The compound forms strong and stable adducts with water [132, 133] which have been analysed by X-ray crystallographic techniques. It is its reaction with zirconium alkyls that have lead to the resurgence of interest in this compound. Some of these reactions are described below.

Treatment of dimethylzirconocenes with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ lead to what was initially described as "cation like" species, with the general formula $\left[\mathrm{Cp}_{2}^{\prime} \mathrm{ZrCH}_{3}\right]^{+}\left[\mathrm{CH}_{3} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$(Eq. 4.1) [131]. Several of these species have since been structurally characterised [134].

$$
\begin{equation*}
\left[\mathrm{Cp}_{2}^{\prime} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)_{2}\right]+\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \longrightarrow\left[\mathrm{Cp}_{2}^{\prime} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\right]\left[\mathrm{H}_{3} \mathrm{CB}^{-}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] \tag{Eq.4.1}
\end{equation*}
$$

Where $\mathrm{Cp}^{\prime}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}, \eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$

Analysis of these species in solution by NMR have shown that there are two dynamic processes occurring in these species (Figure 4.1) [135].
(a)

(b)

Figure 4.1. Dynamic processes occurring in solution for " $\mathrm{MCp}_{2} \mathrm{Me}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ".

The first process exchanges the diastereotopic ring substituents and involves separation of the anion from the cation, flipping of the terminal $\mathrm{Zr}-\mathrm{CH}_{3}$ from one side of the metallocene to the other followed by reassociation of the ion pair (Fig. 4.1(a)). The second process involves the initial dissociation of free $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ through $\mu-\mathrm{H}_{3} \mathrm{C}-\mathrm{B}$ bond cleavage followed by abstraction of the other zirconocene methyl group (Fig. 4.1(b)). The process in Fig. 4.1(a) is predominant when $\mathrm{M}=\mathrm{Zr}$ whilst the process in Fig. 4.1(b) is predominant when $\mathrm{M}=\mathrm{Hf}$. This type of process is not just limited to methyl groups; benzyl groups are readily abstracted forming zirconium cations stabilised by benzyl ligands [136] (Figure 4.2).

Figure 4.2. Zirconium cation stabilised by a benzyl ligand.

4.1.1 Lewis acidity of boron compounds

Boron shows many similarities to its neighbours in the periodic table, carbon and silicon, with its preference to form covalent bonds. However, boron has one fewer valence electrons than its number of valence orbitals. Boron species that are trigonal planar use three $s p^{2}$ orbitals, to form three covalent σ-bonds. The boron atom has two electrons short of an octet and, as such, possesses a vacant p_{z} orbital (which lies perpendicular to the $s p^{2}$ plane). This electron deficiency is responsible for the Lewis acidity of $s p^{2}$ hybridised boron compounds.

When a Lewis base is added to a Lewis acid a complex is formed which involves the rearrangement of molecular structure of the starting materials. Boron trihalides change from being trigonal planar, in which the boron atom is $s p^{2}$ hybridised, to being tetrahedral, upon co-ordination, in which the boron atom is $s p^{3}$ hybridised. The process requires energy for orbital re-hybridisation, for overcoming the loss of σ bonding in the original molecule, for overcoming increased electron pair repulsion's between halogen atoms and for overcoming any steric crowding due to a decrease in the X-B-X bond angle. This is offset by the energy gained on formation of the B-L bond.

A major factor in determining Lewis acidity of trigonal boron compounds is the extent of σ-bonding to adjacent atoms, and this may be described by using the boron trihalides as examples. The boron trihalides are trigonal planar molecules with $D_{3} h$ symmetry. The relative order of Lewis acidity of the boron trihalides is $\mathrm{BBr}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}$, which is the opposite to what would be expected from electronegativity arguments or on steric grounds. The mean energy of the B-F bond is $646 \mathrm{~kJ} \mathrm{~mol}^{-1}$ which makes it one of the strongest known 'single' bonds. This bond energy is considerably greater than those found in other boron-halide bonds and is stronger than a B-O bond. Evidence for this strong bond is observed if the reaction between water with BF_{3} is compared to the reaction between water and other boron trihalides. Boron trifluoride reacts to produce hydrated species $\mathrm{BF}_{3} \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BF}_{3} 2 \mathrm{H}_{2} \mathrm{O}$, whereas the other boron trihalides are hydrolysed to produce orthoboric acid, $\mathrm{B}(\mathrm{OH})_{3}$ (Eq. 4.2).

$$
\begin{equation*}
\mathrm{BX}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{~B}(\mathrm{OH})_{3}+3 \mathrm{HX} \quad(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}) \tag{Eq.4.2}
\end{equation*}
$$

The weaker Lewis acidity, relative to the other boron trihalides, found in BF_{3} is attributed to the $p_{\pi}-p_{\pi}$ back bonding between the filled fluorine p-orbital and the vacant boron $2 p_{z}$ orbital. This effect is found in all BX_{3} compounds, but the strength of the π bonding is dependent on the overlap between the p-orbitals. The π-bond strength of BF_{3} is due to a favourable energy match, and a good overlap between the $2 p$ orbital fluorine and the $2 p_{z}$ orbital on boron atom. The overlap becomes progressively less favourable for the larger and more diffuse $3 p$ and $4 p$ orbitals on the chlorine and bromine atoms respectively.

An efficient and simple method for determining the Lewis acidity of boron containing compounds has been reported by Beckett et al [137]. The method is based
upon a quantitative parameter which is known as an acceptor number (AN), which was described first by Gutmann [138] and Mayer et al [139]. These AN values were derived from ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts produced in triethylphosphine oxide (TEPO) by electrophilic solvent interactions. These lead to deshielding of the phosphorus atoms in TEPO by perturbation of the ${ }^{31} \mathrm{P}$ chemical shift tensor which has a vector along the P-O axis. These AN values, known as Gutmann's scale, has arbitrary fixed points of hexane at zero and antimony pentachloride at 100 .

The AN values of numerous boron containing compounds can be estimated from the $\delta{ }^{31} \mathrm{P}$ NMR shift of TEPO dissolved in the boron containing species using the equation below. The values 86.1 and 41.0 relate to the $\delta{ }^{31} \mathrm{P}$ of TEPO in antimony pentachloride and hexane solutions, respectively.

$$
\mathrm{AN}=100 \times\left(\delta^{31} \mathrm{P}_{\text {(sample) }}-41.0\right) /\{86.1-41.0)
$$

4.2 Aims

The primary aim of the research was to measure the Lewis acidity of tris(pentafluorophenyl)borane by Gutmann's method, and to this method with other reported means of Lewis acidity determination. A second aim of the research was to examine the spectroscopic properties, associated with the phosphoryl bond in a range of organophosphoryl ligands co-ordinated to the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ moiety.

4.3 Results and Discussion

4.3.1 Preparation and characterisation of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (4a)

Tris(pentafluorophenyl)borane (4a) was first prepared many years ago [130], however the reported syntheses have a few disadvantages. The first method was to treat a pentane a solution of pentafluorophenyl bromide with $\mathrm{n}-\mathrm{BuLi}$ at low temperature in order to generate $\mathrm{Li}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$. The latter is thermally sensitive and will detonate at $c a-$ $20^{\circ} \mathrm{C}$. The resulting lithium salt was then treated with boron trichloride to produce LiCl and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Eq. 4.3).

$$
\begin{equation*}
3 \mathrm{Li}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)+\mathrm{BCl}_{3} \longrightarrow \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}+3 \mathrm{LiCl} \tag{Eq.4.3}
\end{equation*}
$$

The reported yield of the crude product was between $30-50 \%$ but, when this method was attempted we found it was only possible to isolate $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathbf{a})$ in 10% yield after purification. The compound can also be prepared [140] by reacting the Grignard reagent $\mathrm{Mg}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}$ in diethyl ether with $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$. This preparation is experimentally also not very satisfactory since there is difficulty in removing co-ordinated diethyl ether from the crude product.

It was decided to follow the preparation reported by Green et al [141] whereby the entire system is kept at $-78^{\circ} \mathrm{C}$. This has been shown to be an essential feature of this synthesis [142]. This method, which is described in detail in Chapter 6, gave $B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in 52% yield (Eq. 4.4).
$3 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Br}+3 \mathrm{n}-\mathrm{BuLi} \underset{\text { hexane }}{-78^{\circ} \mathrm{C}} 3 \mathrm{LiC}_{6} \mathrm{~F}_{5}+\mathrm{BCl}_{3} \xrightarrow[\text { hexane }]{-78^{\circ} \mathrm{C}} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$

The tris(pentafluorophenyl)borane (4a) was analysed by ${ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy, as well as infrared spectroscopy. The ${ }^{11} \mathrm{~B}$ NMR showed, as would be expected, a single peak. Its chemical shift (-7 ppm) suggested that the boron nucleus was in a tetrahedral geometry [143] and is significantly different from previous values reported in the literature. This was accounted for by considering water co-ordination to the borane moiety. Upon sublimation of the product, ${ }^{11} \mathrm{~B}$ NMR gave a single peak at +59 ppm , which is agreement with the literature values [144]. The water adduct $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~B}\left(\mathrm{H}_{2} \mathrm{O}\right)$ has been characterised by another research group, and their findings agree with a ${ }^{11} \mathrm{~B}$ NMR of -7 ppm . There are four different carbon environments present in $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and assuming free rotation about the $\mathrm{B}-\mathrm{C}$ bond it would be expected that four different peaks should be present in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR. However, this was not the case, the ipso carbon was not seen. Therefore ${ }^{13} \mathrm{C}$ spectra shows three doublets $\left({ }^{1} \mathrm{~J}(\mathrm{CF})\right.$ ranging from 235 to 260 Hz) for the ortho, meta and para resonances of the perfluoroaryl groups of $B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ at 148,137 and 141 ppm , respectively. The ${ }^{19} \mathrm{~F}$ NMR spectra showed the expected three resonances, of relative intensity $2: 2: 1$, for ortho, meta and para aryl substituents at $-163,-135$ and -156 ppm . These values are in close agreement with Massey and Parks' original ${ }^{19} \mathrm{~F}$ values of $-161,-128$ and -146 ppm [145]. The infrared spectra will be discussed in detail in section 4.3.3.

4.3.2 Lewis acidity of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$

Yamamoto and co-workers have recently investigated the Lewis acid catalysed aldol type and Michael reactions using $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ as the catalyst [133]. Parks and Piers [145] found $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ to be an efficient catalyst for the hydrosilylation of carbonyl functions. The reactivity and regioselectivity of these Lewis acid catalysed reactions
will depend on the details of the reaction mechanism and kinetics. Hence, knowledge of the relative Lewis acidity of the catalyst is of great importance.

Reported methods for the experimental determination of Lewis acidity are based on spectroscopic techniques (IR, NMR) [138, 139, 146-148]. Childs' ${ }^{1}$ H NMR method is based upon the downfield shift $(\Delta \delta)$ of the $\mathrm{H}-(3)$ resonance in crotonaldehyde upon complexation to the Lewis acid. This method has been theoretically justified through MNDO calculations [149]. Erker and co-workers [150, 151] recently reported the application of Childs' method to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. Their results indicated that $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ is a slightly weaker Lewis acid than BF_{3}.

In order to further probe the Lewis acidity of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ we prepared two new $1: 1$ Lewis acid / Lewis base complexes: $\left(\mathrm{TEPO} B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4 b})\right.$ and $\left.\mathrm{EtOAc} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4 c})\right)$. They were both prepared in high yield [152] following the procedure of Massey and Parks [130]. Previously reported adducts of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ include amines and ammonia [130, 140], water [153], O-carbonyl donors [154], nitriles and isonitriles [151] and phosphines [130, 140, 151, 155]. Compounds $\mathbf{4 b}$ and $\mathbf{4 c}$ were characterised fully, and $\mathbf{4 c}$ and related phosphoryl derivatives will be discussed in greater detail in section 4.3.3.

As a quantitative measure of Lewis acidity, Lappert [148, 149] used the shift $\left(\Delta v / \mathrm{cm}^{-1}\right)$ to lower wavenumber of the carbonyl stretching frequency of EtOAc upon co-ordination. For the adduct $\mathbf{4 b}, \Delta v$ is $93 \mathrm{~cm}^{-1}$ placing the Lewis acidity of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ significantly lower (Table 4.1) than BCl_{3} and lower than that of BF_{3} and AlCl_{3}, in agreement with the result of Erker and co-workers [150, 151].

Acid	$\Delta v / \mathrm{cm}^{-1}$
$\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4 a})$	93
BCl_{3}	176
BF_{3}	119
AlCl_{3}	117

Table 4.1. Lapperts $\Delta \mathrm{V} / \mathrm{cm}^{-1}$ of EtOAc adducts of various Lewis acids [148, 149].

Gutmann's method has been applied to a range of boron containing Lewis acids by Beckett et al $[156-158]$. The adduct $\mathrm{TEPO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} 4 \mathrm{c}$ showed a single ${ }^{31} \mathrm{P}$ resonance in a THF solution at room temperature at 78.0 ppm , with a $\Delta \delta$ of 37.0 ppm and hence an AN of 82. To enable a comparison between Childs' and Gutmann's method, the AN values of the non-boron containing Lewis acids $\mathrm{AlCl}_{3}, \mathrm{TiCl}_{4}$ and SnCl_{4} were also determined.

This confirmed the relative Lewis acidities as $\mathrm{BF}_{3} \sim \mathrm{AlCl}_{3}>\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, with TiCl_{4} and SnCl_{4} being much weaker Lewis acids (Fig. 4.3). The positive correlation (R^{2} $=0.97$) between the ${ }^{1} \mathrm{H}$ NMR method of Childs and co-workers, and the measured AN values described above confirms the validity of Gutmann's AN method. With the exception of one pair of similar acidity $\left(\mathrm{AlCl}_{3}\right.$ and $\left.\mathrm{BF}_{3}\right)$, the relative Lewis acid strength as determined using either NMR methods is the same.

Figure 4.3. A graph showing the correlation between Gutmann's acceptor number and Childs Lewis acid scale. $1=\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2=\mathrm{SnCl}_{4}, 3=\mathrm{TiCl}_{4}, 4=\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, 5=\mathrm{AlCl}_{3}, 6=$ $\mathrm{BF}_{3}, 7=\mathrm{SbCl}_{5}, 8=\mathrm{BCl}_{3}$ and $9=\mathrm{BBr}_{3}$

4.3.3 Preparation of adducts of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with organophosphoryl ligands.

The reaction of one equivalent of the phosphoryl compound (L) with one equivalent of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in hexane rapidly produced the new analytically pure adducts $\mathrm{L} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Eq. 4.5) in moderate to high yields. The phosphoryl compounds used as Lewis bases were the triorganophosphine oxides ($\mathrm{Et}_{3} \mathrm{PO},{ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{PO},{ }^{\mathrm{n}} \mathrm{Oct}_{3} \mathrm{PO}$ and $\mathrm{Ph}_{3} \mathrm{PO}$), the organoesters of phosphoric acid $\left\{(\mathrm{MeO})_{3} \mathrm{PO},(\mathrm{EtO})_{3} \mathrm{PO}\right.$, and $\left.(\mathrm{PhO})_{3} \mathrm{PO}\right\}$, phosphinic and organophosphonic acids $\left\{(\mathrm{EtO})_{2}(\mathrm{H}) \mathrm{PO}, \quad\left({ }^{\mathrm{n}} \mathrm{BuO}\right)_{2}(\mathrm{H}) \mathrm{PO}, \quad(\mathrm{PhO})_{2}(\mathrm{H}) \mathrm{PO}\right.$, $(\mathrm{MeO})_{2} \mathrm{MePO},(\mathrm{EtO})_{2} \mathrm{MePO}$ and $\left.(\mathrm{EtO})_{2} \mathrm{PhPO}\right\}$, and two diorganophosphonic acids $\left\{(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{PO}\right.$ and $\left.(\mathrm{EtO}) \mathrm{Me}_{2} \mathrm{PO}\right\}$.

$$
\begin{equation*}
\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}+\mathrm{L} \xrightarrow{\text { Hexane, } \mathrm{RT}} \quad \underset{\substack{\mathrm{c} \\(4 \mathrm{c}-4 \mathrm{q})}}{\mathrm{L}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}} \tag{Eq.4.5}
\end{equation*}
$$

All new adducts were characterised by elemental analysis, M.Pt, \mathbb{R} and multinuclear NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B},{ }^{19} \mathrm{~F}\right.$ and $\left.{ }^{31} \mathrm{P}\right)$ and formula and letter names are given in Table 4.2.

All of the adducts were white solids, except for $\left({ }^{\mathrm{n}} \mathrm{Oct}\right)_{3} \mathrm{PO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4 e})$ which was a viscous liquid, and all were air stable. They were readily soluble in chlorinated solvents, with the exception of $(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{PO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4} \mathbf{p})$, but were insoluble in petroleum ether. The adducts of the phosphinic acids $(\mathbf{4} \mathbf{j} \mathbf{- 4 I})$ were very deliquescent.

The formulation of these products as adducts follows from their ${ }^{11} \mathrm{~B}$ NMR chemical shifts (in the range -0.2 to -9.3 ppm), upfield from "free" $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(+59 \mathrm{ppm}$ [144]) and in the region normally observed for four co-ordinate tetrahedral boron centres [28]. This was confirmed by the single crystal X-ray crystallographic structures of TEPO $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4 c})$ and $\mathrm{Ph}_{3} \mathrm{PO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4 f})$. The room temperature multinuclear NMR spectra were in full agreement with the proposed structures. ${ }^{19} \mathrm{~F}$ spectra were obtained for $\mathbf{4 c} \mathbf{- 4 1}$. The chemical shifts of the ortho, meta and para fluorines depend on a number of factors such as charge density on the fluorine atom or its neighbouring carbon atom, on paramagnetic contributions and on an "ortho" effect. These showed the expected three resonances of relative intensity $2: 2: 1$, for ortho, meta and para aryl substituents at ca. $-164,-135$ and -157 ppm respectively. The values observed are consistent with previously reported adducts of $\mathbf{4 a}$ [144].

The ${ }^{13} \mathrm{C}$ spectra of the adducts showed in addition to the resonances associated to the phosphoryl ligand [159], doublets ($\left.{ }^{1} \mathrm{~J}(\mathrm{CF}) c a .240 \mathrm{~Hz}\right)$ for the ortho, meta and para resonances of the perfluoro aryl groups of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ at $c a .148,137$ and 140 ppm
respectively [150, 151, 159]. In all cases the ipso carbon was not observed. The ${ }^{1} \mathrm{H}$ spectra of all the adducts showed little change relative to spectra of the uncomplexed phosphoryl ligands, but there was a slight shift towards higher frequency upon adduct formation.

Phosphorus-31 NMR data for all of the adducts is given in Table 4.2. The $\Delta \delta$ values $\left(\delta_{\text {adduct }}-\delta_{\text {free base }}\right)$ which ranged from -9.2 to +25.9 can also be found in Table 4.2. Rather than reflecting change of electron density at phosphorus, these shifts are a consequence of the Lewis acid perturbing the ${ }^{31} \mathrm{P}$ chemical shift tensors, which have a component along the PO axis of the phosphoryl ligand [160]. Due to variations in molecular symmetry, the ${ }^{31} \mathrm{P}$ chemical shift tensors will differ for each class of phosphoryl derivative, which will ensure that $\Delta \delta$ values are unlikely to be uniform. The phosphorus atoms in the phosphoryl compounds with alkoxy or aryloxy substituents were slightly shielded upon co-ordination to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, whilst in compounds with alkyl substituents were deshielded upon co-ordination to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. This substituent effect appears cumulative with $\Delta \delta$ values roughly following the order trialkylphosphine oxides $(\sim+24)>$ dialkylphosphinates $(\sim+4)>$ alkylphosphonates $(\sim-1)>$ phosphates (~-5). Burford and co-workers $[159,161]$ observed deshielding of the phosphorus centre in adducts of $\mathrm{Ph}_{3} \mathrm{PO}$ with $\mathrm{BF}_{3}, \mathrm{BCl}_{3}, \mathrm{AlCl}_{3}, \mathrm{AlBr}_{3}$ and GaCl_{3}, and slight shielding at phosphorus in $(\mathrm{PhO})_{3} \mathrm{PO}^{-A l C l_{3}}$.

No.	Base	δ (free base)	δ (adduct)	$\Delta \delta$ (adduct-free base)
$\mathbf{4 c}$	$\mathrm{Et}_{3} \mathrm{PO}$	+52.1	+78.0	+25.9
$\mathbf{4 d}$	${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{PO}$	+47.6	+69.3	+21.6
$\mathbf{4 e}$	${ }^{n} \mathrm{Oct}_{3} \mathrm{PO}$	+48.1	+70.6	+22.5
$\mathbf{4 f}$	$\mathrm{Ph}_{3} \mathrm{PO}$	+28.5	+24.3	-4.2
$\mathbf{4 g}$	$(\mathrm{MeO})_{3} \mathrm{PO}$	+1.4	-2.6	-4.0
$\mathbf{4 h}$	$(\mathrm{EtO})_{3} \mathrm{PO}$	-1.9	-10.1	-8.2
$\mathbf{4 i}$	$(\mathrm{PhO})_{3} \mathrm{PO}$	-18.3	-27.5	-9.2
$\mathbf{4 j}$	$(\mathrm{EtO})_{2} \mathrm{PHO}$	+6.4	+3.4	-3.0
$\mathbf{4 k}$	$\left({ }^{\mathrm{n}} \mathrm{BuO}\right)_{2} \mathrm{PHO}$	+6.9	+5.2	-1.7
$\mathbf{4 l}$	$(\mathrm{PhO})_{2} \mathrm{PHO}$	+0.2	-1.2	+1.4
$\mathbf{4 m}$	$(\mathrm{MeO})_{2} \mathrm{MePO}$	+32.1	+29.9	-2.2
$\mathbf{4 n}$	$(\mathrm{EtO})_{2} \mathrm{MePO}$	+27.6	+27.8	+0.2
$\mathbf{4 0}$	$(\mathrm{EtO})_{2} \mathrm{PhPO}$	+10.8	+16.6	+5.8
$\mathbf{4 p}$	$(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{PO}$	+53.2	+57.2	+4.0
$\mathbf{4 q}$	$(\mathrm{EtO}) \mathrm{Me}_{2} \mathrm{PO}$	+50.7	+54.5	+3.8

Table 4.2. ${ }^{31} \mathrm{P} \Delta \delta$ values (ppm) of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ adducts of phosphoryl ligands (in CDCl_{3}).

The $\Delta \delta$ values obtained for the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ adducts of phosphonic acid esters (~-2) were similar to those for alkylphosphonate esters indicating that the effect of H was comparable to an alkyl group. The largest $\Delta \delta\left({ }^{31} \mathrm{P}\right)$ values were the trialkylphosphine oxides, with the $\Delta \delta$ value of TEPO being marginally greater than those of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{PO}$ and ${ }^{\mathrm{n}} \mathrm{Oct}_{3} \mathrm{PO}$.

No.	Base	$v(\mathrm{PO}) / \mathrm{cm}^{-1}($ base $)$	$v(\mathrm{PO}) / \mathrm{cm}^{-1}(\mathrm{adduct})$	$\Delta v(\mathrm{PO}) / \mathrm{cm}^{-1}$
$\mathbf{4 c}$	$\mathrm{Et}_{3} \mathrm{PO}$	1193	1172	-21
$\mathbf{4 d}$	${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{PO}$	1157	1131	-26
$\mathbf{4 e}$	${ }^{n} \mathrm{Oct}_{3} \mathrm{PO}$	1151	1143	-8
$\mathbf{4 f}$	$\mathrm{Ph}_{3} \mathrm{PO}$	1190	1177	-13
$\mathbf{4 g}$	$(\mathrm{MeO})_{3} \mathrm{PO}$	1282	1226	-56
$\mathbf{4 h}$	$(\mathrm{EtO})_{3} \mathrm{PO}$	1275	1208	-67
$\mathbf{4 i}$	$(\mathrm{PhO})_{3} \mathrm{PO}$	1296	1255	-41
$\mathbf{4 j}$	$(\mathrm{EtO})_{2} \mathrm{PHO}$	1258	1180	-78
$\mathbf{4 k}$	$\left({ }^{\mathrm{n}} \mathrm{BuO}\right)_{2} \mathrm{PHO}$	1261	1188	-73
$\mathbf{4 l}$	$(\mathrm{PhO})_{2} \mathrm{PHO}$	1279	1249	-30
$\mathbf{4 m}$	$(\mathrm{MeO})_{2} \mathrm{MePO}$	1242	1190	-52
$\mathbf{4 n}$	$(\mathrm{EtO})_{2} \mathrm{MePO}$	1243	1190	-55
$\mathbf{4 o}$	$(\mathrm{EtO})_{2} \mathrm{PhPO}$	1250	1174	-76
$\mathbf{4 p}$	$(\mathrm{MeO}) \mathrm{Me}_{2} \mathrm{PO}$	1216	1177	-39
$\mathbf{4 q}$	$(\mathrm{EtO}) \mathrm{Me}_{2} \mathrm{PO}$	1210	1187	-23

Table 4.3. $\Delta v(\mathrm{PO})$ values $\left(\mathrm{cm}^{-1}\right)$ for $B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ adducts of phosphoryl ligands, $\Delta v(\mathrm{PO})=$ $v(\mathrm{PO})$ (adduct) $-v(\mathrm{PO})$ (base).

It has been noted [162] that the phosphoryl stretch of TEPO was solvent dependent $\Delta v(\mathrm{PO})$ has been correlated with Gutmann's [138, 139] AN solvent scale.

Lappert used $\Delta v(\mathrm{CO})$ of ethyl acetate upon adduct formation as a measure of Lewis acidity and this has been discussed in section 4.3.2. The $v(\mathrm{PO})$ stretching data for the adducts is shown in Table 4.3 along with the $\Delta v(\mathrm{PO})$ values. The negative $\Delta v(\mathrm{PO})$ values indicate that the $v(\mathrm{PO})$ is shifted to lower wavenumber upon co-ordination to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. The $\Delta \mathrm{v}(\mathrm{PO})$ values for the adducts ranged from -8 to $-78 \mathrm{~cm}^{-1}$. Detailed examination of the data reveals that the magnitude of $\Delta v(\mathrm{PO})$ was lowest for triorganophosphine oxides and greatest for species with OR or OAr groups at P . The $\Delta v(\mathrm{PO})$ ranges associated with the various classes of compounds, arranged in decreasing order of $\mathrm{P}-\mathrm{C}$ bonds, were -8 to -26 (phosphine oxides), -23 (phosphinate esters), -52 to -78 (phosphonate esters), and -41 to -67 (phosphate esters). The adducts of phosphonate esters had similar $\Delta v(\mathrm{PO})$ ranges irrespective of whether H or alkyl were bound to P , although a smaller shift was observed for $(\mathrm{PhO})_{2}(\mathrm{H}) \mathrm{PO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, 4 \mathbf{i}$. A theoretical study [151] has demonstrated that $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ is a hard acid and that its bonding is dominated by electrostatic effects. The phosphoryl bond can be drawn as a resonance hybrid of two limiting canonical forms (Figure 4.4) with (I) having a heavier weighting than (II). An electrostatic interaction with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ would favour the former and effectively reduce the PO bond order, and hence $v(\mathrm{PO})$.

(I)

(II)

Figure 4.4. Resonance hybrids of the phosphoryl bond.

The absolute value of $v(\mathrm{PO})$ in phosphoryl derivatives may be accurately calculated [163] using an empirical relationship involving additive electronegativities of substituents at phosphorus (inductive effects). The $\Delta v(\mathrm{PO})$ values are greatest where π resonance from a substituent is possible indicating that structures such as $(\mathrm{PhO})_{2}\left(\mathrm{PhO}^{+}=\right) \mathrm{P}-\mathrm{O}^{-}$may be important in lowering the PO bond order upon adduct formation.

4.3.4 X-ray Crystallography

Two of these adducts (TEPOB($\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (4c) and $\mathrm{Ph}_{3} \mathrm{POB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4 f})$) were characterised by a single crystal X-ray diffraction study. Crystals suitable for X-ray diffraction were given from a layered $\mathrm{CHCl}_{3} /$ hexane solution. These two structures are the only crystallographically characterised structures of phosphoryl adducts of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. A drawing of the molecular structure of $\mathbf{4 c}$ is shown in Figure 4.5 whilst a drawing of the molecular structure of $\mathbf{4} \mathbf{f}$ is shown in Figure 4.6. Selected bond lengths are shown in Table 4.4 and selected bond angles in Table 4.5.

Figure 4.5. Molecular structure of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{OPEt}_{3}, 4 \mathrm{c}$.

Figure 4.6. Molecular structure of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{OPPh}_{3}, 4 \mathbf{f}$.

$4 \mathbf{c}$	Bond Angle (${ }^{\circ}$)	4f	Bond Angle (${ }^{\circ}$)
$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{B}(1)$	$161.04(16)$	$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{B}(1)$	$178.7(2)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(19)$	$110.97(13)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	$109.6(1)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	$109.81(13)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$109.6(1)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(23)$	$111.50(12)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	$109.9(1)$
$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(6)$	$105.70(19)$	$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(19)$	$104.9(2)$
$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(7)$	$105.30(18)$	$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(25)$	$105.1(2)$
$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(13)$	$106.79(18)$	$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(31)$	$105.1(2)$
$\mathrm{C}(6)-\mathrm{B}(1)-\mathrm{C}(7)$	$114.79(19)$	$\mathrm{C}(19)-\mathrm{B}(1)-\mathrm{C}(25)$	$113.7(2)$
$\mathrm{C}(6)-\mathrm{B}(1)-\mathrm{C}(13)$	$113.8(2)$	$\mathrm{C}(19)-\mathrm{B}(1)-\mathrm{C}(31)$	$112.7(2)$
$\mathrm{C}(7)-\mathrm{B}(1)-\mathrm{C}(13)$	$109.66(19)$	$\mathrm{C}(25)-\mathrm{B}(1)-\mathrm{C}(31)$	$114.2(2)$
$\mathrm{C}(19)-\mathrm{P}(1)-\mathrm{C}(21)$	$106.86(15)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$110.2(1)$
$\mathrm{C}(19)-\mathrm{P}(1)-\mathrm{C}(23)$	$107.07(15)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	$108.9(1)$
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(23)$	$110.52(15)$	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(13)$	$108.7(1)$

Table 4.5. Selected bond angles for $\mathbf{4 c}$ and $\mathbf{4 f}$.

4c	Bond Length \AA	4f	Bond Length \AA
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.4973(13)$	$\mathrm{P}(1)-\mathrm{O}(1)$	$1.497(2)$
$\mathrm{P}(1)-\mathrm{C}(19)$	$1.811(3)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.791(2)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.763(3)$	$\mathrm{P}(1)-\mathrm{C}(7)$	$1.791(2)$
$\mathrm{P}(1)-\mathrm{C}(23)$	$1.776(3)$	$\mathrm{P}(1)-\mathrm{C}(13)$	$1.783(2)$
$0(1)-\mathrm{B}(1)$	$1.533(3)$	$0(1)-\mathrm{B}(1)$	$1.538(3)$
$\mathrm{B}(1)-\mathrm{C}(6)$	$1.632(4)$	$\mathrm{B}(1)-\mathrm{C}(19)$	$1.632(3)$
$\mathrm{B}(1)-\mathrm{C}(7)$	$1.636(4)$	$\mathrm{B}(1)-\mathrm{C}(25)$	$1.639(3)$
$\mathrm{B}(1)-\mathrm{C}(13)$	$1.645(3)$	$\mathrm{B}(1)-\mathrm{C}(31)$	$1.643(3)$

Table 4.4. Selected bond length's of $\mathbf{4 c}$ and $\mathbf{4 f}$.

As might be expected the molecular structures are essentially what might be found from the precursors with the acid $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and the base $\left(\mathrm{TEPO}\right.$ or $\left.\mathrm{Ph}_{3} \mathrm{PO}\right)$ joined together via a $\mathrm{O} \rightarrow \mathrm{B}$ co-ordinate bond. The overall structure of $\mathbf{4 c}$ is similar to that of $\mathbf{4 f}$ except for the angle at O in the B-O-P linkage being bent in $\mathbf{4 c}\left(161.04(16)^{\circ}\right)$ and linear in $\mathbf{4 f}\left(178.66(16)^{\circ}\right)$.

In $\mathbf{4 f}$ the B-C bonds of the borane are almost eclipsed with respect to the P-C bonds of the phosphine oxide (Figure 4.7).

Figure 4.7. A view down the $\mathrm{P}(1)-\mathrm{O}(1)$ bond of $\mathbf{4 f}$ showing the eclipsed conformation of the phenyl groups of the phosphine oxide and the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups of the borane.

Figure 4.8. A view of $\mathbf{4 f}$ showing the aryl π-interactions between a $\mathrm{C}_{6} \mathrm{~F}_{5}$ and a $\mathrm{C}_{6} \mathrm{H}_{5}$ unit.

There are weak intramolecular π-stacking interaction between the three $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups of the borane and the three Ph groups of the phosphine oxide (Figure 4.8). This π-stacking interaction has been observed previously where the bent B-O-C system of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PhC}(\mathrm{X}) \mathrm{O}\left(\mathrm{X}=\mathrm{OEt}, \mathrm{N}^{\mathrm{i}} \mathrm{Pr}_{2}\right)$ [154] enables a strong interaction between the Ph ring of the base and the $\mathrm{C}_{6} \mathrm{~F}_{5}$ ring of the acid. Similarly the hydroxy bridged borate anion $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{BO}(\mathrm{H}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$, with a B-O-B angle of $139.6(5)^{\circ}$ and a staggered confirmation, has a strong π-interaction between two of its $\mathrm{C}_{6} \mathrm{~F}_{5}$ rings [153].

Previously determined structures of TEPO adducts have been confined to the following transition metal complexes: $\left[\mathrm{Mo}_{2}(\mathrm{OAc})_{3}\left(\mathrm{OPEt}_{3}\right)\left(\mathrm{S}_{2} \mathrm{CPEt}_{3}\right)\right]\left[\mathrm{BF}_{4}\right][164]$, mer$\left[\mathrm{VCl}_{3}\left(\mathrm{OPEt}_{3}\right)_{3}\right] \quad[165], \quad\left[\mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{8}\left(\mathrm{OPEt}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{7} \mathrm{H}_{8} 1.5 \mathrm{THF} \quad[166]$ and $\left[\left\{\mathrm{MoCl}_{2}\left(\mathrm{OPEt}_{3}\right)(\mathrm{NO})_{2}\right\}_{2}\right][167]$.

The B and P atoms in both $\mathbf{4 c}$ and $\mathbf{4 f}$ are 4 co-ordinate with angles subtended at these atoms close to those expected for σ framework $s p^{3}$ hybridisation (Table 4.6).

Compound	Angle at $\mathrm{B}\left({ }^{\circ}\right)$ av.	Angle at $\mathrm{P}\left({ }^{\circ}\right)$ av.
$\mathrm{TEPO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathbf{4 c}$	109.3	109.45
$\mathrm{Ph}_{3} \mathrm{PO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathbf{4} \mathbf{f}$	109.3	109.5

Table 4.6. Angle at B and P for $4 c$ and $4 f$.

The detailed deviation of angles at B suggest back strain in the acid upon adduct formation with larger $\mathrm{C}-\mathrm{B}(1)-\mathrm{C}$ angles and smaller $\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}$ angles (Table 4.7).

Compound	$\mathrm{C}-\mathrm{B}(1)-\mathrm{C}\left({ }^{\circ}\right) \mathrm{av}$.	$\mathrm{O}-\mathrm{B}(1)-\mathrm{C}\left({ }^{\circ}\right) \mathrm{av}$.
$\mathrm{TEPO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathbf{4 c}$	112.7	105.7
$\mathrm{Ph}_{3} \mathrm{PO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathbf{4} \mathbf{~}$	113.5	105.1

Table 4.7. Average angles for $\mathbf{4 c}$ and $\mathbf{4 f}$

The deviation at idealised tetrahedral angles at B is less marked than has been observed previously in other adducts $[151,152,154,155]$. The $\mathrm{B}(1)-\mathrm{O}(1)$ bond length for 4 c at $1.533(3) \AA$ is similar to that found in $\mathbf{4 f}$ at $1.538(3) \AA$ and $\mathrm{BF}_{3} \cdot \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} 1.516(3) \AA$ [161], shorter than that in $\mathrm{BF}_{3} \cdot \mathrm{PhC}(\mathrm{H}) \mathrm{O} 1.591(6) \AA[168]$ and at the lower end of the range (1.52(1) - $1.610(8) \AA \AA$) observed for $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PhC}(\mathrm{X}) \mathrm{O}$ complexes [154]. Shorter B-O distances have been reported in metal-oxo adducts of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ e.g. $\left[\mathrm{WO}\left\{\mathrm{OB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{3}\right]^{2-} \quad(1.491(3)-1.508(3) \AA) \quad[169]$ and $\left[\left(\mathrm{Me}_{5} \mathrm{Cp}\right)_{2} \mathrm{Zr}\left\{\mathrm{OB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}\right]$
(1.460(6)) [170]. As noted above, the B-O-P angles for $\mathbf{4 c}$ and $\mathbf{4 f}$ differ. P-O-M angles in $\mathrm{Ph}_{3} \mathrm{PO}$ complexes are variable and range from 123.0(4) (in $\mathrm{SeOCl}_{2} \cdot \mathrm{Ph}_{3} \mathrm{PO}$ [171]) to 180 (in $\mathrm{AlCl}_{3} \cdot \mathrm{Ph}_{3} \mathrm{PO}$ [159]). The same is observed with TEPO complexes with P-O-M angles in the range from $141.02(46)$ to 180 [164-170, 172]. An explanation of this phenomena has been offered in terms of the relative π-acceptor properties of the acid [173]. In view of the large difference in this angle for $\mathbf{4 c}$ and $\mathbf{4 f}$ it is clear that other factors must also be in operation. The angle at O when bound to main group atoms (X) from the second row is renowned for its flexibility, and intermolecular crystal packing forces are sufficient to cause a difference in B-O-X angles [174]. The intramolecular $\pi-$ stacking interaction for $\mathbf{4 f}$ are maximised with a linear B-O-P linkage and it is this that might be a factor in the energetics of the system. The P-O bond length at $1.497(2) \AA$ for $\mathbf{4 f}$ and $1.4973(17) \AA$ for $\mathbf{4} \mathbf{c}$ are similar to that found for $\mathrm{BF}_{3} \cdot \mathrm{Ph}_{3} \mathrm{PO}(1.523(3) \AA$ [161]) and slightly longer than that found for $\mathrm{Ph}_{3} \mathrm{PO}$ (1.483(2) \AA [175]) indicating a reduction of bond order upon adduct formation.

4.4 Conclusions

A series of 15 new phosphoryl adducts of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (4a)have been prepared and characterised by satisfactory elemental analysis, M.Pt., IR and NMR $\left({ }^{1} \mathrm{H},{ }^{11} \mathrm{~B},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}\right.$, ${ }^{31} \mathrm{P}$) spectroscopy. The new ethyl acetate complex of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ has also been synthesised and characterised. $\Delta v(\mathrm{P}=\mathrm{O})$ of the phosphoryl adducts have been analysed in terms of substituent effects at P . The Lewis acidity of $\mathbf{4 a}$ has been determined by Gutmann's and Lappert's methods and these measurements indicate a Lewis acidity order of $\mathrm{TiCl}_{4}<\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}<\mathrm{AlCl}_{3} \sim \mathrm{BF}_{3}$.

Chapter 5

Attempts to prepare unsaturated boron-phosphorus heterocycles.

5.1 Introduction

The study of unsaturated B-P ring compounds is a relatively recent area of heterocyclic boron chemistry. It has not been exploited to the same extent as the analogous B-N systems due to the mistaken belief that the π-bonding between boron and phosphorus would be too weak to allow for the formation of such heterocycles.

It was discovered that the presence of bulky substituents on or near the reactive centres stabilise these systems, hence reports of these elusive unsaturated ring systems became increasingly common. Comprehensive reviews of B-P chemistry have been written by Noth and Paine [176] and by Power [177, 178].

5.1.1 Three-membered rings

The first compound to be analysed by X-ray crystallography, containing bonding between three co-ordinate boron and phosphorus atoms was that of the diphosphaborirane $\mathrm{Et}_{2} \mathrm{NB}\left(\mathrm{P}^{\mathrm{t} B u}\right)_{2}$ [179]. This and analogous compounds can be prepared in good yields by treatment of $\mathrm{K}_{2}\left[\left({ }^{t} \mathrm{Bu}\right) \mathrm{P}-\mathrm{P}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right]$ with a diorganylaminoborondichloride (Eq. 5.1) [180].

These compounds are relatively stable towards dimerisation to the related $\mathrm{B}_{2} \mathrm{P}_{4}$ sixmembered rings, although the process is influenced by electronic and steric effects of the substituents [180].

The diphosphaboriranes react with potassium in DME to produce the monometallated three membered ring [181], where one of the phosphorus substituents is replaced. If the same reaction is performed in THF it causes cleavage of the P-P bond (Eq. 5.2).

If the non-cyclic product produced from the reaction in Eq. 5.2 is treated with ${ }^{\mathrm{t}} \mathrm{BuPCl}_{2}$, a $[3+1]$ cyclocondensation occurs to produce the four membered triphosphaboretane (Eq. 5.3) [182, 183].

Similarly the five-membered tetraphosphaborolidine ring can be prepared from a [4+1] cyclocondensation of $\mathrm{K}_{2}\left[\left({ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{P}-\left({ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{P}_{2}-\mathrm{P}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right]$ with ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NBCl}_{2}$ [183].

5.1.2 Four-membered rings

A diphosphadiboretane ring was first prepared by thermolysis of $\mathrm{RB}\left[\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ at $150^{\circ} \mathrm{C}$ (Eq. 5.4) [184]. Other syntheses have since been discovered,
one such synthesis involves the treatment of $\mathrm{tmpBCl} \mathrm{F}_{2}$ with an equivalent of $\mathrm{Li}\left[\mathrm{P}(\mathrm{SiMe})_{3} \mathrm{R}\right]$ to produce a diphosphadiboretane (Eq. 5.5) [177].

$$
\begin{equation*}
\mathrm{tmpBCl}_{2}+\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right) \mathrm{R}^{1} \xrightarrow{-\mathrm{LiX},-\mathrm{TMSCl}} \quad 1 / 2\left(\mathrm{tmpBPR}^{1}\right)_{2} \tag{Eq.5.5}
\end{equation*}
$$

The first reported X-ray structures of the diphosphadiboretanes were of $\left(\mathrm{tmpBPCEt}_{3}\right)$ and $(\mathrm{tmpBPMes})_{2}[185,186]$. The heterocyclic rings were found to be planar with trigonal planar geometries being observed at both boron and exoyclic nitrogen, whilst the phosphorus centres were pyramidal. The B-N bond distances suggested strong exocyclic π-bonding however, crystallographic data and MO calculations indicated the absence of dative P B π-bonding and a lack of any ring delocalisation [177].

Diphosphadiboretanes with aryl or alkyl substituents, rather than amino substituents, have also been prepared [177, 178, 187]. These are readily formed by reactions of organoborondihalides with a lithiated primary phosphine, RPHLi, as shown in Eq. 5.6 [178].

$$
\begin{equation*}
\mathrm{RBX}_{2}+2 \mathrm{LiPHR}^{1} \longrightarrow 1 / 2\left(\mathrm{RBPR}^{1}\right)_{2}+2 \mathrm{LiX}+\mathrm{H}_{2} \mathrm{PR}^{1} \tag{Eq.5.6}
\end{equation*}
$$

Where R / R ${ }^{1}=$ Thexyl / Mes

These systems have also been found to possess a planar $\mathrm{B}_{2} \mathrm{P}_{2}$ ring [178], with the B-P bond lengths being similar to those observed for the diphosphadiboretanes with amino substituents on boron.

Photolysis of a diphosphadiboretane has been reported to produce a fused three membered ring (Eq. 5.7) [188].

Isomers of the diphosphadiboretane with non-alternating B and P atoms have also been prepared by a $[2+2]$ cyclocondensation of $\mathrm{K}_{2}\left[\left({ }^{\mathrm{B}} \mathrm{Bu}\right) \mathrm{P}-\mathrm{P}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right]$ with $\mathrm{Cl}\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{B}$ $\mathrm{B}\left(\mathrm{NMe}_{2}\right) \mathrm{Cl}$, as shown in Eq. 5.8 [189].

(Eq. 5.8)

These were reported to be planar and readily decomposed in the presence of water or oxygen [189].

5.1.3 Six-membered rings

The first $\mathrm{B}_{3} \mathrm{P}_{3}$ rings were isolated during an unsuccessful attempt to prepare the related diphosphadiboretane species (scheme 5.1) [178]. It was later found that steric hindrance was an important feature of the synthesis and accordingly several triphosphatriborinanes have been prepared. They have been shown to exhibit less sensitivity towards the atmosphere than the corresponding diphosphadiboretanes, reacting only slowly with water to produce a primary phosphine and boron-oxygen compounds [178].

Scheme 5.1. Synthetic strategy to produce six-membered rings.

Two competing mechanisms have been suggested to operate during the addition of $\mathrm{R}^{1} \mathrm{PHLi}$ to RBX_{2} and these dictate the identity of the heterocycle so produced [187]. The formation of the four membered ring requires the association of two molecules of a $\mathrm{RB}\left(\mathrm{PHR}^{1}\right)_{2}$ intermediate, with the subsequent elimination of $\mathrm{R}^{1} \mathrm{PH}_{2}$. Bulkier substituents, especially at boron, impede the reaction and the six-membered ring is favoured. Some ligand combinations have been found to afford mixtures of both sixand four-membered rings [187].

X-ray studies of the triphosphatriboriranes have shown that the $\mathrm{B}_{3} \mathrm{P}_{3}$ ring has a planar configuration, in which all B-P bond lengths are shorter (1.84 \AA) than those observed for a single B-P bond, suggesting the presence of some double bond character [187].

5.2 Aims

The aims of the research detailed in this chapter were to prepare a series of new diphosphadiboretanes and triphosphatriboriranes, with various aryl substituents at boron, and to examine their co-ordination reactions with metal carbonyl complexes.

5.3 Results and discussion

The preferred route to the heterocyclic species was by the reaction of arylboron dibromides with tris(trimethylsilyl)phosphine, and the preparation of these compounds (section 5.3.1 and 5.3.2) and their reactions (section 5.3.3) are discussed first. The synthesis of PhPH_{2} adducts of the arylboron dibromides and their subsequent thermolysis, as an alternative route to B-P heterocycles, is discussed in section 5.3.4.

5.3.1. Preparation of the arylborondibromides

Previous syntheses of the arylborondibromides have involved the use of HgBr , which was found to be a convienient preparation though unfavorable toxicity considerations hinder the work up [190]. Another route to the arylborondibromides is by reaction of borontribromide with an aryltrimethylsilane [191].

The aryltrimethylsilanes have been prepared in good yields by use of a Grignard approach (Eq. 5.9). All compounds were colourless volatile liquids which were analysed by ${ }^{1} \mathrm{H}$ NMR, IR and M.Pt / B.Pt., and all were in good agreement with
literature values [191]. These compounds prove valuable precursors for the preparation of the arylborondibromides. Reacting an aryltrimethylsilane with one equivalent of borontribromide produces the required arylborondibromide in good yield (Eq. 5.10).
$\mathrm{PhBr}+\mathrm{Mg} \xrightarrow{\text { Reflux, } \mathrm{THF}} \quad \mathrm{PhMgBr} \xrightarrow{\mathrm{Me}_{3} \mathrm{SiCl}} \mathrm{PhSiMe}_{3}+\mathrm{MgBrCl}$
$\mathrm{RSiMe}_{3}+\mathrm{BBr}_{3} \longrightarrow \mathrm{RBBr}_{2}+\mathrm{Me}_{3} \mathrm{SiBr}$

All the arylboron dibromides were colourless volatile liquids that rapidly decompose in contact with water, and all compounds were authenticated by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR by comparison with literature values (Table 5.1)

ArBBr_{2}	${ }^{\text {II }} \mathrm{B}$ NMR shift
$\mathrm{PhBBr}_{2}[192]$	$+56.4[+56.2]$
$2-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}[193]$	$+57.6[+57.7]$
$3-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}[192]$	$+56.8[+56.9])$
$4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}[192]$	$+55.9(+55.9]$
$4-\mathrm{EtC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}[193]$	$+56.0[+56.1]$
$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BBr}_{2}[193]$	$+56.8[+56.7]$
$\mathrm{MesBBr}_{2}[194]$	$+62.1[+62.2]$

Table 5.1. ${ }^{11}$ B NMR values for the arylborondibromides literature values in parenthesis (ppm).

Gutmann's AN values can be used as a measure of Lewis acidity [138, 139]. Measurement of Lewis acidity of arylboron dibromides has not been previously reported. The AN values of the arylborondibromides are shown in Table 5.2 below. All values are calculated in accordance with the method described in Chapter 4.

ArBBr_{2}	AN Value
PhBBr_{2}	67.8
$2-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	68.7
$3-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	71.2
$4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	68.2
$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BBr}_{2}$	65.6
$4-\mathrm{EtC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	66.5

Table 5.2. Acceptor numbers of the arylborondibromides.

Gutmann's AN scale runs from 100 for the strong Lewis acid SbCl_{5} to 0 for hexane. As might be expected, all are quite strong Lewis acids, being between $\mathrm{SnCl}_{4}(\mathrm{AN}=59)$ and $\mathrm{TiCl}_{4}(\mathrm{AN}=70)$ in strength, but considerably weaker than $\mathrm{BF}_{3}(\mathrm{AN}=89)$ and BBr_{3} $(\mathrm{AN}=109)$.

5.3.2 Synthesis of tris(trimethylsilyl)phosphine

Due to the very high commercial cost of tris(trimethylsilyl)phosphine it became necessary to prepare this tertiary phosphine. The initial attempt used a Grignard approach with trimethylsilyl chloride (Eq. 5.11) generating trimethylsilylmagnesium
chloride, which was quenched with phosphorus trichloride and left refluxing for 7 days [195].

After the seven day reflux, crude ${ }^{31} \mathrm{P}$ NMR samples showed a plethora of signals covering the range of +13 to -153 ppm . There was however, no evidence for formation of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}(-253 \mathrm{ppm})$, and upon working up the reaction, a yellow malodourous solid was obtained. Thus it became necessary to find an alternative synthesis for tris(trimethylsilyl)phosphine. One possible method [196] involved the addition of a potassium and sodium alloy to white phosphorus, however this was not attempted due to safety considerations.

A more recent reported preparation of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ involved the reaction of piperidinophosphorus dichloride [197], with lithium powder, followed by quenching the reaction with PCl_{3}. The piperidinophosphorus dichloride was readily prepared by adding PCl_{3} to piperidine in diethyl ether (Eq. 5.12) at $0^{\circ} \mathrm{C}$. The compound was distilled, and was a colourless liquid. All data obtained agreed with the literature values.

Subsequently reacting the piperidinophosphorus dichloride with lithium powder, and quenching with $\mathrm{Me}_{3} \mathrm{SiCl}$, as illustrated in Eq. 5.13, produced the desired compound
in a 59% yield. Tris(trimethylsilyl)phosphine spontaneously combusts in contact with air / moisture, all spectroscopic data for the compound agreed with the literature values.

5.3.3 Attempted synthesis of diphosphadiboretanes and triphospha-

triboriranes using lithium reagents

In 1977, Fritz and Holderich produced a diphosphadiboretane from lithiated tris(trimethylsilyl)phosphine and PhBBr_{2} (Eq. 5.14) and in 1989 Power published the preparation of 6-membered rings $\mathrm{B}_{3} \mathrm{P}_{3}$ rings by reactions of lithium salts of primary phosphines with (Mes) BBr_{2} (Eq. 5.15) [187].

$$
\begin{equation*}
\mathrm{PhBBr}_{2}+2 \mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2} \longrightarrow \quad\left[\mathrm{PhBPSiMe}_{3}\right]_{2}+2 \mathrm{LiBr} \tag{Eq.5.14}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{ArPHLi}+\mathrm{MesBBr}_{2} \longrightarrow(\mathrm{MesBPAr})_{3} \tag{Eq.5.15}
\end{equation*}
$$

$$
\mathrm{Ar}=\mathrm{Mes},{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{Ph}
$$

It was the aim of this research to generate some new 4 and 6 -membered BP ring derivatives by repeating the above reactions with the various arylboron dibromides synthesised in section 5.3.1. Mono-lithiation of tris(trimethylsilyl)phosphine with methyl lithium, produced the desired product $\mathrm{Li}\left[\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ in good yields (around 60%). The $1: 1$ reaction between this lithiated phosphine and PhBBr_{2} should have produced the diphosphadiboretane $\left(\mathrm{PhBPSiMe}_{3}\right)_{2}$. However, this was not the case, a
yellow solid was obtained, which gave an array of weak signals in the ${ }^{31} \mathrm{P}$ NMR and only several broad signal in the ${ }^{11}$ B NMR. Similar results were obtained from using 4$\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$ as the boron source.

It has been reported that under similar reaction conditions, polymeric materials are produced. For example, Livingstone and Coates [198] suggested that the reaction of PhBCl_{2} with PhPH_{2} at reflux temperatures generated a number of products, and one of which was a yellow polymeric material. Their work was later repeated by Tevebaugh and he reported that the reaction products were a white, waxy, trimeric compound and a low molecular weight polymer [199]. It appears that we were also likely to be forming polymeric materials rather than the anticipated BP ring systems.

The unsuccessful nature of this area of research is not entirely understood. It is possible that the reactions performed here were on too large a scale to enable isolation. Diaz and Power worked with smaller quantities and isolated single crystals. It is also possible that the optimum reaction conditions to obtain these compounds were not fully reported in their original communication.

5.3.4 Synthesis and thermolysis of $\mathrm{ArBBr}_{2} \mathrm{PhPH}_{2}$ adducts

An alternative strategy to obtain the BP ring systems was to attempt a thermolysis of preformed adducts of ArBBr_{2} and PhPH_{2} (Eq. 5.16 and 5.17).

$$
\begin{array}{lll}
\mathrm{ArBBr}_{2}+\mathrm{PhPH}_{2} & \longrightarrow & \mathrm{ArBBr}_{2} \cdot \mathrm{PhPH}_{2} \\
3 \mathrm{ArBBr}_{2} \cdot \mathrm{PhPH}_{2} & \Delta & (\mathrm{ArBPPh})_{3}+6 \mathrm{HBr} \tag{Eq.5.17}
\end{array}
$$

A number of previously unreported adducts of PhPH_{2} with $\mathrm{ArBBr}_{2}\left(\mathrm{Ar}=\mathrm{Ph}, 2 \mathrm{MeC}_{6} \mathrm{H}_{4}\right.$, 3- $\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ and $4-\mathrm{EtC}_{6} \mathrm{H}_{4}$) were prepared in hexane at $0^{\circ} \mathrm{C}$.

The adducts were characterised by ${ }^{11} \mathrm{~B}$ and ${ }^{31} \mathrm{P}$ NMR (Table 5.3). The boron nuclei were shielded by $\sim 65 \mathrm{ppm}$ upon co-ordination by the primary phosphine, whilst the ${ }^{31} \mathrm{P}$ nuclei are shifted downfield by $\sim 80 \mathrm{ppm}$ by co-ordination to B (Table 5.4) $\Delta \delta\left({ }^{31} \mathrm{P}\right)$ for $\mathrm{BBr}_{3} \mathrm{PhPH}_{2}$ is reported at 56.1 ppm [200]. Attempted thermolysis of these adducts did not lead to clean reactions and presumably led again to polymeric materials.

ArBBr_{2}	$\delta\left({ }^{11} \mathrm{~B}\right)$	$\delta\left({ }^{3 \mathrm{P}}\right)$
PhBBr_{2}	-4.6	-42.1
$2-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	-5.1	-50.3
$3-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	-3.8	-45.4
$4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	-3.9	-44.1
$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BBr}_{2}$	-4.8	-46.3
$4-\mathrm{EtC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	-4.9	-44.1

Table 5.3. NMR shifts of ArBBr_{2} adducts of PhPH_{2}.

ArBBr_{2}	${ }^{31} \mathrm{P} \Delta \delta$	${ }^{11} \mathrm{~B} \Delta \delta$
PhBBr_{2}	-80.5	+61.0
$2-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	-72.3	+62.7
$3-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	-77.2	+60.6
$4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	-78.5	+59.8
$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BBr}_{2}$	-76.3	+60.8
$4-\mathrm{EtC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$	-78.5	+61.7

Table 5.4. $\Delta \delta$ NMR values of adducts of PhPH_{2}.

5.4 Conclusions

Attempts to prepare the $\mathrm{B}_{2} \mathrm{P}_{2}$ and $\mathrm{B}_{3} \mathrm{P}_{3}$ heterocycles by the literature methods proved unsuccessful. An alternate route involving the synthesis of a series of 1:1 adducts of ArBBr_{2} with PhPH_{2} was also attempted but again these reactions did not yield the desired heterocycles. Accordingly, their co-ordination chemistry could not be examined.

Chapter 6

Experimental

6.1 General

All reactions were performed using standard Schlenk line techniques under a dinitrogen atmosphere and all solvents were dried, distilled and degassed prior to use.

A variety of chemicals employed for the following experiments were obtained from commercial sources and used as supplied. Infrared spectra were recorded on a Perkin-Elmer FT-IR 1600 spectrometer, as KBr disks unless otherwise stated. Melting points were measured on an Electrothermal Melting Point apparatus. Multi-element NMR spectra were obtained on a Bruker AC 250 CP / MAS NMR spectrometer (operating at 250 MHz for ${ }^{1} \mathrm{H}, 63 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, 80 \mathrm{MHz}$ for ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}, 49 \mathrm{MHz}$ for ${ }^{29} \mathrm{Si}-\left\{{ }^{1} \mathrm{H}\right\}$ and 101 MHz for ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$). ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ (solid state) MAS NMR spectra were recorded on a 350 MHz instrument (EPSRC solid state service, Durham) operating at 96.234 MHz, whilst ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker 350 operating at 328 MHz . Chemical shifts (δ) are given in ppm with positive values towards high frequency (downfield) from tetramethylsilane for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{29} \mathrm{Si}-\left\{{ }^{1} \mathrm{H}\right\}$, from $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ for ${ }^{11} \mathrm{~B}-\left\{{ }^{\mathrm{I}} \mathrm{H}\right\}$, from $\mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ and from CFCl_{3} for ${ }^{19} \mathrm{~F}$. All samples were dissolved in CDCl_{3} unless otherwise stated. Elemental analysis was performed using a Carbo Erba CHNS-O Ea1108 instrument using helium as the carrier gas.

The experimental details concerned with Chapter 2, 3, 4 and 5 are shown in sections $6.2,6.3,6.4$ and 6.5 respectively.

6.2 Experimental for Chapter 2

6.2.1 Preparation of $\left[\mathrm{MBr}(\mathrm{CO})_{5}\right]$ species $(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$.

The metal pentacarbonylbromides were produced from $\left[\mathrm{M}_{2}(\mathrm{CO})_{10}\right]$ (where $\mathrm{M}=$ $\mathrm{Mn}, \mathrm{Re})$ using a synthetic strategy published by Quick and Angelici [201].

$\left[\operatorname{ReBr}(\mathrm{CO})_{5}\right]$

Dirhenium decacarbonyl ($0.86 \mathrm{~g}, 1.32 \mathrm{mmol}$) was dissolved in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$. To this was added bromine $(0.21 \mathrm{~g}, 1.32 \mathrm{mmol})$ and the resulting mixture was left to stir at room temperature for 1 h after which time a precipitate had formed. The solvent was removed by vacuum and the precipitate recrystalised from acetone and methanol ($0.43 \mathrm{~g}, 88 \%$).

IR (KBr disk, CO region):- 2152s, 2035s, 1965s (Lit. 2154w, 2048s, 2018s, 1987m [76])
M.Pt:- $182^{\circ} \mathrm{C}$

$\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right]$

To a solution of dimanganese decacarbonyl ($2.0 \mathrm{~g}, 5.13 \mathrm{mmol}$) in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ was added bromine $(0.81 \mathrm{~g}, 5.13 \mathrm{mmol})$ drop wise. The resulting mixture was left to stir for 1 h at room temperature before the solvent was removed to produce a yellow powder. The powder was then re-dissolved in dichloromethane $\left(60 \mathrm{~cm}^{3}\right)$ and filtered. The resulting liquid was layered with hexane $\left(60 \mathrm{~cm}^{3}\right)$. Crystals appeared on leaving and were filtered off ($0.7 \mathrm{~g}, 50 \%$).

IR (KBr disk, CO region):- 2137w, 2050s, 2007m (Lit. 2133w, 2049s, 2004m [201])
M.Pt:- $169^{\circ} \mathrm{C}$ (Lit. $171^{\circ} \mathrm{C}$ [201]

6.2.2 Synthesis of mer, trans- $\left[\mathrm{MnBr}\left(\mathrm{CO}_{3} \underline{\underline{L}}_{2}\right]\right.$ and fac, cis- $\left.-\mathrm{MnBr}\left(\mathrm{CO}_{3}\right)_{3} \underline{\underline{L}}_{2}\right]$.

The $\left[\mathrm{MnBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ compounds were produced from $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\right]$ using a route developed by Abel and Wilkinson [202]. The preparation of mer,trans$\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}\right\}_{2}\right]$ (2b) is reported in its entirety; other derivatives were synthesised by a similar method. Analytical and spectroscopic for the following compounds are given in Chapter two. Additional data, is listed here.

Mer, trans- $\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}^{2}-4\right)_{3}\right\}_{2}\right](\mathbf{2 b})$

To chloroform $\left(30 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right](0.5 \mathrm{~g}, 1.82 \mathrm{mmol})$. The resulting mixture was stirred before tris(4-chlorophenyl)phosphine ($1.33 \mathrm{~g}, 3.64 \mathrm{mmol}$) was added. The resulting mixture was stirred for 12 h before the solvent was removed. The crude product was recrystalised from a $1: 4$ chloroform / hexane mixture (0.85 g , $51 \%)$.

IR (KBr disk): 3041w, 2034w, 1951m, 1901m, 1480s, 1386s, 1186w, 1080s, 816s, 745s, 706w, 636s

Mer, trans- $\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (2a)

Yield: 82\%
IR (KBr disk): 3052s, 2040m, 1943s, 1918s, 1482s, 1433s, 1311m, 1189m, 1159m, 1089s, 1074sh, 1026w, 999s, 747s, 694s, 636s, 618sh

Mer, trans- $\left.\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}_{\mathbf{C}} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}\right\}_{2}\right]$ (2c)

Yield: 77\%

IR (KBr disk): 3053s, 2024w, 1945s, 1911s, 1595s, 1500s, 1265s, 1217s, 1182m, 1094m, 1029m, 896w, 742s

Mer, trans $-\left[\mathrm{MnBr}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right\}_{2}\right]$ (2d)
Yield: 89\%

IR (KBr disk): 3020s, 2031w, 1949s, 1896s, 1493s, 1072s, 1011s, 912s, 855s, 767s

$\underline{F a c, c i s-\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppm})\right](\mathbf{2 i})}$

Yield: 91\%
IR (KBr disk): 3019s, 2026s, 1957s, 1919s, 1436m, 1215s, 1099m, 1026w, 929w, 750s

$\underline{\text { Fac, } \text { cis }-\left[\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right](\mathbf{2 j})}$

Yield: 78\%
IR (KBr disk): 3018s, 2024s, 1958s, 1916s, 1435s, 1216s, 1097m, 1028w, 929w, 770s, 670m

Yield: 76\%

IR (KBr disk): 3019s, 2028s, 1961s, 1909s, 1334s, 1218s, 1097m, $971 \mathrm{~m}, 929 \mathrm{~m}, 832 \mathrm{w}$, 752s, 669m

$\underline{\text { Fac, } c i s-\left[\mathrm{MnBr}(\mathrm{CO})_{3}\right.} \mathbf{Z}^{(\mathrm{dppb})](2 \mathbf{I})}$

Yield: 91\%
IR (KBr disk): $3052 \mathrm{~s}, 2015 \mathrm{~s}, 1958 \mathrm{~s}, 1899 \mathrm{~s}, 1483 \mathrm{~s}, 1434 \mathrm{~s}, 1310 \mathrm{~s}, 1218 \mathrm{w}, 1089 \mathrm{~s}, 999 \mathrm{~s}$, 909s, $855 \mathrm{~m}, 812 \mathrm{~s}, 738 \mathrm{~s}, 691 \mathrm{~s}$

Fac, cis-[$\mathrm{MnBr}(\mathrm{CO})_{3}$ (dppfc)] ($\mathbf{2 m}$)

Yield: 60\%

IR (KBr disk): 3018s, 2026s, 1960s, 1910s, 1434m, 1214s, 1091w, 1038w, 929m, 739s, 669s

6.2.3 Synthesis of fac, cis- $\left[\operatorname{ReBr}(\mathrm{CO})_{3} \underline{\mathrm{~L}}_{2}\right]$.

The fac, cis- $\left[\operatorname{ReBr}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ compounds were produced from $\left[\operatorname{ReBr}(\mathrm{CO})_{5}\right]$ using an approach developed by Abel and Wilkinson [202]. The preparation of fac,cis$\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)_{3}\right)_{2}\right](2 \mathrm{~g})$ is reported in its entirety; other derivatives were synthesised by a similar method. Analytical and spectroscopic for the following compounds are given in Chapter Two. Additional data, is listed here.

Fac, cis- $\left[\mathrm{ReBr}\left(\mathrm{CO}_{3}{ }_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \underline{H}_{4} \mathrm{OMe}^{\mathrm{OM}}\right)_{3}\right\}_{2}\right](2 \mathrm{~g})\right.$

To chloroform $\left(30 \mathrm{~cm}^{3}\right)$ was added $\left[\operatorname{ReBr}(\mathrm{CO})_{5}\right](0.5 \mathrm{~g}, 1.23 \mathrm{mmol})$. The resulting mixture was stirred before tris(4-methoxyphenyl)phosphine ($0.866 \mathrm{~g}, 2.46$ mmol) was added. The resulting solution was heated to reflux for 12 h before the solvent was removed. The crude product was recrystalised from a 1:4 chloroform / hexane mixture. ($0.91 \mathrm{~g}, 70 \%$).

IR (KBr disk): 2958m, 2033s, 1953s, 1899s, 1595s, $1501 \mathrm{~s}, 1287 \mathrm{~s}, 1255 \mathrm{~s}, 1215 \mathrm{~s}, 1182 \mathrm{~s}$, $1095 \mathrm{~m}, 1031 \mathrm{~m}, 756 \mathrm{~s}$

$\underline{\text { Fac, cis }-\left[\operatorname{ReBr}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{2 e})}$

Yield: 49\%
IR (KBr disk): 2889s, 2026s, 1948s, 1889s, 1459s, 1376s, 1155w, 1089w, 971w, 736s, 722 s

Fac,cis- $\left[\operatorname{ReBr}\left(\mathrm{CO}_{3} 3_{3}\left\{\mathrm{P}_{6} \mathbf{C}_{6} \underline{H}_{4} \underline{\left.\left.\mathrm{Cl}-4)_{3}\right\}_{2}\right](\mathbf{2 f})}\right.\right.\right.$

Yield: 67\%
IR (KBr disk): 3010s, 2035s, 1956s, 1912s, 1567s, 1495s, 1451s, 1229m, 1154w, 1098w, 950w, 735s, 723s

Fac,cis-[ReBr(CO) $)_{3}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right\}_{2}\right](\mathbf{2 h})}\right.$

Yield: 59\%
IR (KBr disk): 3026s, 2022s, 1938s, 1904s, 1598s, 1494s, 1451s, 1236m, 1068s, 1028s, 916s, 837s, 776s

Yield: 70\%
IR (KBr disk): 3059s, 2026s, 1943s, 1893s, 1483m, 1436s, 1360m, 1099s, 1026w, 801m, 728s, 691s

Fac,cis-[ReBr(CO) ${ }_{3}($ dppe $\left.)\right](\mathbf{2 0})$

Yield: 82\%
IR (KBr disk): 3053s, 2026s, 1948s, 1913s, 1421m, 1265s, 896w, 738s, 705sh, 696s
$\left.\underline{\text { Fac, } c i s-[\operatorname{ReBr}(C O})_{3}(\mathrm{dppp})\right](\mathbf{2 p})$
Yield: 76\%
IR (KBr disk): 3019s, 2035s, 1956s, 1904s, 1524w, 1434w, 1215s, 1093w, 1017w, 929m, 767s, 669s

Fac, cis $-\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppb})\right](\mathbf{2 q})$

Yield: 85\%
IR (KBr disk): 3019s, 2032s, 1953s, 1904s, 1426m, 1215s, 1095w, 929m, 760s

Fac, cis $-\left[\operatorname{ReBr}(\mathrm{CO})_{3}(\mathrm{dppfc})\right](\mathbf{2 r})$

Yield: 60\%
IR (KBr disk): 3018s, 2036s, 1958s, 1901s, 1482m, 1434m, 1216s, $929 \mathrm{~m}, 764 \mathrm{~s}, 669 \mathrm{~s}$

6.3 Experimental for Chapter 3

6.3.1 Synthesis of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}^{\mathrm{N}}\right]\left[\mathrm{B}_{3} \underline{H}_{8}\right]$

A three necked 1 L round bottom flask was equipped with a sealed mechanical stirrer, a pressure equalising funnel (the tip of which was extended below the surface of the reaction mixture) and a bubbler containing 4-picoline. A slurry of sodium borohydride ($17 \mathrm{~g}, 0.45 \mathrm{~mol}$) in diglyme $\left(250 \mathrm{~cm}^{3}\right)$ was added to the flask. A solution of iodine ($20.6 \mathrm{~g}, 81 \mathrm{mmol}$) in diglyme $\left(115 \mathrm{~cm}^{3}\right)$ was poured into the pressuring equalising funnel. The reaction system was purged with nitrogen before being placed into a pre-heated oil bath of $\sim 100^{\circ} \mathrm{C}$. The iodine solution was slowly added to the sodium borohydride solution over a period of 1 to 2 hours. The resulting mixture was left to stir at $\sim 100^{\circ} \mathrm{C}$ for a further two hours before being left to cool overnight. The volume was then reduced to approx $100 \mathrm{~cm}^{3}$ before the addition of water $\left(50 \mathrm{~cm}^{3}\right)$. The mixture was filtered to remove the grey byproduct, and the solution transferred to a 2 L beaker. To this was added a solution of saturated tetra-n-butylammonium iodide (1 L). The white precipitate produced was filtered and washed with water $\left(900 \mathrm{~cm}^{3}\right)$, and the resulting solid was dried under vacuum. ($12.0 \mathrm{~g}, 72 \%$).

The crude product was purified by the following method. A sample of the crude product (5.2 g) was dissolved in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$, filtered and then washed with dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$. To the resulting solution was added diethyl ether (400 cm^{3}), the white precipitate that forms was filtered and then dried in vacuum. (4.8 g)
$\delta\left({ }^{11} \mathrm{~B}\right):-30.4 \mathrm{ppm}$
M.pt: $203^{\circ} \mathrm{C}$ (Lit $208^{\circ} \mathrm{C}$ [118])

6.3.2 Synthesis of arachno-[M(CO) $\left.)_{2}\left(\mathrm{~L}_{2}\right)^{2}\left(\mathrm{~B}_{3} \underline{H}_{8}\right)\right]$

Following a similar method to that reported by Gaines et al [2]. . The preparation of arachno- $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ (3b) is described in detail; all other derivatives were made in a similar manner. Analytical and spectroscopic for the following compounds are given in Chapter Two. Additional data, is listed here.

Arachno- $\left[\mathrm{Mn}\left(\mathrm{CO}_{2}\right)_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \underline{\mathrm{H}}_{8}\right)\right](3 \mathrm{Bb})$

To a Carius tube containing dried and degassed dichloromethane ($20 \mathrm{~cm}^{3}$) was added fac, cis-[$\left.\mathrm{MnBr}(\mathrm{CO})_{3}(\mathrm{dppe})\right](0.5 \mathrm{mmol}, 351 \mathrm{mg})$ and $\left[{ }^{\mathrm{H}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right](0.5 \mathrm{mmol}$, 141 mg). The tube was cooled to $-198^{\circ} \mathrm{C}$ and evacuated before being sealed. The resulting sealed tube was irradiated for 20 h by UV. After this time the tube was opened and the solvent removed in vacuu. The product was purified by column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (1:4) on Florisil. ($0.16 \mathrm{~g}, 59 \%$).

IR (KBr disk): 3018s, 2957s, 2927m, 2871m, 1923s, 1522m, 1457m, 1421m, 1378w, 1216s, 929m, 770s, 669s, 624w

Arachno- $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{2} \underline{H}_{8}\right)\right]$ (3a)

Yield: 28\%
IR (KBr disk): 3021s, 2959s, 1961s, 1901s, 1466m, 1389w, 1215s, 1030m, 930m, 789s

Arachno- $\left[\mathrm{Mn}\left(\mathrm{CO}_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \underline{\mathrm{H}}_{8}\right)\right](3 \mathrm{c})\right.$

Yield: 17\%
IR (KBr disk): 3053s, 2985m, 1960m, 1907m, 1421s, 1265s, 1067w, 896m, 738s, 705s

Arachno- $\left[\mathrm{Mn}\left(\mathrm{CO}_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \underline{H}_{8}\right)\right]\right.$ (3d)

Yield: 24\%
IR (KBr disk): 3011w, 1960s, 1907s, 1793m, 1469s, 1382s, 1097s, 908s, 734s, 65 ls

Arachno- $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \underline{\mathrm{H}}_{8}\right)\right](3 \mathrm{e})$

Yield: 36\%
IR (KBr disk): 3053s, 2985s, 1960m, 1882m, 1436w, 1421m, 1265s, 1174m, 1107m, $1062 \mathrm{~m}, 1029 \mathrm{~m}, 896 \mathrm{~s}, 738 \mathrm{~s}, 704 \mathrm{~s}$

Arachno- $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~B}_{3} \underline{H}_{8}\right)\right](\mathbf{3 f})$

Yield:20\%
IR (KBr disk): 2965s, 2877w, 2388w, 1945m, 1915w, 1634s, 1482s, 1436m, 1382m, 919s, 746s, 650s

Arachno- $\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \underline{H}_{4} \underline{\mathrm{Cl}}^{2}\right)_{3}\right\}_{2}\left(\mathrm{~B}_{3} \underline{H}_{8}\right)\right](3 \mathrm{~g})$

Yield: 36%
IR (KBr disk): 2966s, 1971s, 1913s, 1515w, 1460m, 1382w, 1216w, 1088m, 908s, 736s, 650s

Arachno- $\left[\operatorname{Re}(\mathrm{CO})_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \underline{H}_{4} \mathrm{OMe}^{\mathrm{OM}}\right)_{3} \mathcal{I}_{2}\left(\mathrm{~B}_{3} \underline{H}_{8}\right)\right](\mathbf{3 h})\right.$

Yield: 31%
IR (KBr disk): 3020m, 2959s, 2049m, 1972m, 1466s, 1378s, 1264s, 1216s, 1181w, 1097w, 1030w, 766s

Arachno- $\left[\operatorname{Re}\left(\mathrm{CO}_{2}\right)_{2}\left\{\mathrm{P}_{\left(\mathrm{CH}_{2}\right.} \mathrm{Ph}_{3}\right)_{2} \underline{2}_{2}\left(\mathrm{~B}_{3} \underline{H}_{8}\right)\right](\mathbf{3 i})$

Yield: 17\%
IR (KBr disk): 3019s, 1948s, 1901m, 1496m, 1390m, 1214s, 929s, 768s, 669s

Arachno- $\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dppm})\left(\mathrm{B}_{3} \underline{H}_{8}\right)\right](3 \mathrm{j})$

Yield: 28\%
IR (KBr disk): 3053s, 2985s, 1966m, 1902m, 1420s, 1265s, 1072m, 895s, 741s, 705s

Arachno- $\left[\operatorname{Re}\left(\mathrm{CO}_{2}\right)_{2}(\mathrm{dppp})\left(\mathrm{B}_{3} \underline{\mathrm{H}}_{8}\right)\right](\mathbf{3 k})$

Yield: 32\%

IR (KBr disk): 3053s, 2986s, 1967m, 1912m, 1654w, 1421s, 1265s, 896s, 740s, 705s

Arachno- $\left[\operatorname{Re}\left(\mathrm{CO}_{2}(\mathrm{dppb})\left(\mathrm{B}_{3} \underline{H}_{8}\right)\right]\right.$ (3I)

Yield: 39\%
IR (KBr disk): $3053,2986 \mathrm{~s}, 1965 \mathrm{~m}, 1900 \mathrm{~m}, 1421 \mathrm{~s}, 1265 \mathrm{~s}, 896 \mathrm{~s}, 744 \mathrm{~s}, 705 \mathrm{~s}$

Arachno- $\left[\operatorname{Re}\left(\mathrm{CO}_{2}(\mathrm{dppfc})\left(\mathrm{B}_{3} \underline{H}_{8}\right)\right](3 \mathrm{~m})\right.$

Yield: 46\%
IR (KBr disk): 3054s, 2987m, 1964s, 1912s, 1421s, 1265s, 896m, 738s, 705s

6.3.3 Thermolysis of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\right.$ dppe $\left.)\left(\mathrm{B}_{3} \underline{H}_{8}\right)\right]$

To a round bottomed flask was added $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right](100 \mathrm{mg}, 1.82$ $\mathrm{mmol})$ and chloroform $\left(30 \mathrm{~cm}^{3}\right)$. The resulting mixture was refluxed for 24 hr . Due to the low yields only crude data was available.
$\delta\left({ }^{11} \mathrm{~B}\right):-47.1 \mathrm{ppm}$
$\delta\left({ }^{31} \mathrm{P}\right):+72 \mathrm{ppm},+99.3 \mathrm{ppm}$

6.3.4 Photolysis of $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\right.$ dppe $\left.)\left(\mathrm{B}_{3} \underline{H}_{8} \underline{ }\right)\right]$

To a carius tube was added $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right](100 \mathrm{mg}, 1.82 \mathrm{mmol})$ and chloroform $\left(30 \mathrm{~cm}^{3}\right)$. The resulting mixture was irradiated for 24 hr . Due to the low yields only crude data was available.
$\delta\left({ }^{11} \mathrm{~B}\right):-46.9 \mathrm{ppm}$
$\delta\left({ }^{31} \mathrm{P}\right):+28.7 \mathrm{ppm},+75 \mathrm{ppm},+98.2 \mathrm{ppm}$

6.3.5 Reaction between $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\right.$ dppe $\left.)\left(\mathrm{B}_{3} \underline{H}_{8} \underline{2}\right)\right]$ and PPh_{3}

To a round bottomed flask was added $\mathrm{PPh}_{3}(47.7 \mathrm{mg}, 1.82 \mathrm{mmol})$ and $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppe})\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right](100 \mathrm{mg}, 1.82 \mathrm{mmol})$. To this was added chloroform $\left(30 \mathrm{~cm}^{3}\right)$ and the resulting mixture was refluxed for 24 hr . The crude products produced were insoluble in chlorinated and unchlorinated solvents.

6.4 Experimental for Chapter 4

6.4.1 Synthesis of tris(pentafluorophenyl)borane (4a).

A solution of bromopentafluorobenzene ($53.5 \mathrm{~g}, 217 \mathrm{mmol}$) in hexane (500 cm^{3}), at $-78^{\circ} \mathrm{C}$, was treated with n-butyllithium in hexane $\left(86.8 \mathrm{~cm}^{3}, 2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 217\right.$ mmol). The resulting white suspension was stirred for 1 h and then added to a solution of boron tribromide $\left(72 \mathrm{~cm}^{3}, 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 72 \mathrm{mmol}\right)$ in hexane $\left(300 \mathrm{~cm}^{3}\right)$. After stirring for 24 h the mixture was filtered through a bed of celite to give a colourless liquid. A white crystalline material was obtained after reducing the solvent volume to $c a .30 \mathrm{~cm}^{3}$. The supernatant liquid was decanted off and the resulting white solid dried in vacuo. (19.1 g, 52\%).
$\delta\left({ }^{13} \mathrm{C}\right): 137.1$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 235 \mathrm{~Hz}$ meta, 141.1 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 258 \mathrm{~Hz}$ para, 147.7 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF})$ 239 Hz ortho, ipso C not seen.
$\delta\left({ }^{11} \mathrm{~B}\right):+59.1$
$\delta\left({ }^{19} \mathrm{~F}\right):-134.9(2 \mathrm{~F}$, ortho $),-153.6(1 \mathrm{~F}$, para $),-162.3(2 \mathrm{~F}$, meta $)$
IR (KBr Disk/cm ${ }^{-1}$) : $1649,1519,1466,1378,1284,1104,980,867,803,773,738,676$, 615, 587.
M.Pt: $126-128^{\circ} \mathrm{C}$.

Elemental Analysis: for $\mathrm{C}_{18} \mathrm{~F}_{15} \mathrm{~B}$ Calc. \quad C, $42.2 ; \mathrm{H}, 0.0 \%$

Found
C, $42.1 ; \mathrm{H}, 0.0 \%$

6.4.2 Synthesis of $\mathrm{R}_{2}\left(\mathrm{R}^{1} \mathrm{O}\right) \mathrm{P}=\mathrm{O}$ derivatives.

$\mathrm{Me}_{2}(\mathrm{MeO}) \mathrm{P}=\mathrm{O}$

A solution of dimethylphosphinic acid chloride ($500 \mathrm{mg}, 4.4 \mathrm{mmol}$) in benzene $\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirring solution of sodium methoxide ($240 \mathrm{mg}, 4.4 \mathrm{mmol}$) in methanol $\left(50 \mathrm{~cm}^{3}\right)$. The resulting solution was stirred until a white precipitate had formed. This mixture was then filtered and the solvents were removed in vacuo. The crude product was subsequently purified via bulb to bulb distillation. ($0.28 \mathrm{~g}, 58 \%$) $\delta\left({ }^{1} \mathrm{H}\right): 1.4(\mathrm{~d}, 6 \mathrm{H}){ }^{2} \mathrm{~J}(\mathrm{HP}) 14 \mathrm{~Hz}, 3.6(\mathrm{~d}, 3 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HP}) 11 \mathrm{~Hz}$.
$\delta\left({ }^{13} \mathrm{C}\right): 14.8(\mathrm{~d}){ }^{1} \mathrm{~J}(\mathrm{CP}) 94 \mathrm{~Hz}, 50.4(\mathrm{~d}){ }^{2} \mathrm{~J}(\mathrm{CP}) 6.7 \mathrm{~Hz}$.
$\delta\left({ }^{31} \mathrm{P}\right):+53.2$
IR (Thin Film): 2986, 2916, 1465, 1422, 1300, 1216, 1042, 938, 875, 769, 753, 683.
B.Pt: $77^{\circ} \mathrm{C} / 12 \mathrm{~mm} \mathrm{Hg}$

$\mathrm{Me}_{2}(\mathrm{EtO}) \mathrm{P}=\mathrm{O}$

Yield 61%.
$\delta\left({ }^{1} \mathrm{H}\right): 1.0(\mathrm{t}, 3 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7 \mathrm{~Hz}, 1.1(\mathrm{~d}, 6 \mathrm{H}){ }^{2} \mathrm{~J}(\mathrm{HP}) 14 \mathrm{~Hz}, 3.7(\mathrm{p}, 2 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7 \mathrm{~Hz}$.
$\delta\left({ }^{1.3} \mathrm{C}\right): 15.2$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CP}) 94 \mathrm{~Hz}, 16.2$ (d) ${ }^{3} \mathrm{~J}(\mathrm{CP}) 5.7 \mathrm{~Hz}, 59.5$ (d) ${ }^{2} \mathrm{~J}(\mathrm{CP}) 5.7 \mathrm{~Hz}$
$\delta\left({ }^{31} \mathrm{P}\right):+50.7$
IR (Thin Film): 2982, 2917, 1421, 1393, 1300, 1209, 1098, 1040, 959, 874, 754, 688
B.Pt: $88^{\circ} \mathrm{C} / 15 \mathrm{~mm} \mathrm{Hg}$

6.4.3 Synthesis of Lewis base adducts of tris(pentafluorophenyl)borane.

A typical synthesis is described below for $\mathrm{EtOAc} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. All other adducts were produced in a similar manner.

EtOAc $\left.-\mathcal{B}_{\left(\mathrm{C}_{6}\right.} \mathrm{F}_{5}\right)_{3}(4 \mathrm{c})$

To a stirred solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(200 \mathrm{mg}, 0.39 \mathrm{mmol})$ in pentane $\left(30 \mathrm{~cm}^{3}\right)$ was added EtOAc ($34 \mathrm{mg}, 0.39 \mathrm{mmol}$). The product which precipitated as a white solid in an analytically pure form was isolated by filtration, washed with pentane at $0^{\circ} \mathrm{C}$ and subsequently dried in vacuo. ($0.135 \mathrm{~g}, 58 \%$).
$\delta\left({ }^{1} \mathrm{H}\right): 1.37(\mathrm{t}, 3 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.5 \mathrm{~Hz}, 2.09(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{q}, 2 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.5 \mathrm{~Hz}$.
$\delta\left({ }^{13} \mathrm{C}\right): 13.4,20.6,66.6,136.9$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 261 \mathrm{~Hz}$ meta, 140.5 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 252 \mathrm{~Hz}$ para, 147.7 (d) ${ }^{1} \mathrm{~J}$ (CF) 246 Hz ortho, ipso C not seen, 180.9.
$\delta\left({ }^{11} \mathrm{~B}\right):-0.7$.
$\delta\left({ }^{19} \mathrm{~F}\right):-135.2(2 \mathrm{~F}$, ortho $),-155.9(1 \mathrm{~F}$, para $),-163.3(2 \mathrm{~F}$, meta $)$.
M.Pt: $98-100^{\circ} \mathrm{C}$.
$\begin{array}{lll}\text { Elemental Analysis for } \mathrm{C}_{22} \mathrm{H}_{8} \mathrm{BF}_{15} \mathrm{O}_{2} & \text { Calc. } & \mathrm{C}, 44.0 ; \mathrm{H}, 1.3 \% \\ & \text { Found } & \mathrm{C}, 43.9 ; \mathrm{H}, 1.3 \% .\end{array}$

$\mathrm{Et}_{3} \mathrm{P}=\mathrm{O} \underline{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathbf{b})$

To a stirred solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(200 \mathrm{mg}, 0.39 \mathrm{mmol})$ in pentane $\left(30 \mathrm{~cm}^{3}\right)$ was added TEPO ($52.2 \mathrm{mg}, 0.39 \mathrm{mmol}$). The product which precipitated as a white solid in an analytically pure form was isolated by filtration, washed with pentane at $0^{\circ} \mathrm{C}$ and subsequently dried in vacuo. ($0.116 \mathrm{~g}, 46 \%$).
$\delta\left({ }^{1} \mathrm{H}\right): 1.1(\mathrm{dt}, 3 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HP}) 17.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{HH}) 7.5 \mathrm{~Hz}, 1.94(\mathrm{dq}, 2 \mathrm{H}){ }^{2} \mathrm{~J}(\mathrm{HP}) 12.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}$ (HH) 7.5 Hz .
$\delta\left({ }^{13} \mathrm{C}\right): 5.6(\mathrm{~d}){ }^{2} \mathrm{~J}(\mathrm{CP}) 4.5 \mathrm{~Hz}, 17.6$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CP}) 67.9 \mathrm{~Hz}, 136.9$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 245 \mathrm{~Hz}$ meta, 139.6 (d) ${ }^{1} J$ (CF) 264Hz para, 147.7 (d) ${ }^{1} \mathrm{~J}$ (CF) 235 Hz ortho, ipso C not seen.
$\delta\left({ }^{11} \mathrm{~B}\right):-2.6$.
$\delta\left({ }^{19} \mathrm{~F}\right):-134.7(2 \mathrm{~F}$, ortho $),-158.3(1 \mathrm{~F}$, para $),-164.6(2 \mathrm{~F}$, meta $)$.
IR (KBr disk): 3000, 1646, 1518, 1465, 1371, 1283, 1172, 1098, 980, 851, 774, 738, 678, 616.
M.Pt: $188-190^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{OP}$
$\begin{array}{ll}\text { Calc. } & \mathrm{C}, 44.6 ; \mathrm{H}, 2.3 \% \\ \text { Found } & \mathrm{C}, 44.7 ; \mathrm{H}, 2.1 \%\end{array}$

${ }^{n} \mathrm{Pr}_{3} \underline{\mathrm{P}=\mathrm{O}} \underline{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathrm{~d})$

Yield 54\%.
$\delta\left({ }^{1} \mathrm{H}\right): 1.0(\mathrm{dt}, 3 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.0 \mathrm{~Hz}^{4} \mathrm{~J}(\mathrm{HP}) 1.5 \mathrm{~Hz}, 1.5(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H})$.
$\delta\left({ }^{13} \mathrm{C}\right): 14.9(\mathrm{~d}){ }^{3} \mathrm{~J}(\mathrm{CP}) 4.0 \mathrm{~Hz}, 15.5$ (d) ${ }^{2} \mathrm{~J}(\mathrm{CP}) 17.0 \mathrm{~Hz}, 27.1$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CP}) 65.0 \mathrm{~Hz}, 137$ (d)
${ }^{1} \mathrm{~J}$ (CF) 252 Hz meta, 140.0 (d) ${ }^{1} \mathrm{~J}$ (CF) 255 Hz para, 147.7 (d) ${ }^{1} \mathrm{~J}$ (CF) 238 Hz ortho, ipso C not seen.
$\delta\left({ }^{11} \mathrm{~B}\right):-2.6$
$\delta\left({ }^{19} \mathrm{~F}\right):-134.5(2 \mathrm{~F}$, ortho $),-158.4(1 \mathrm{~F}$, para $),-164.6(2 \mathrm{~F}$, meta $)$.
IR (KBr disk): 3000, 1519, 1461, 1373, 1284, 1132, 1102, 979, 861, 797, 767, 738, 679, 615, 579.
M.Pt: $140-141^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{BF}_{15} \mathrm{OP}$
Calc.
C, 47.1; H, 3.0\%
Found
C, 47.1; H, 2.8%.

$\left({ }^{(1)} \mathrm{Oct}\right)_{3} \mathrm{P}=\mathrm{O} \cdot \underline{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathrm{e})$

Yield 51%.
$\delta\left({ }^{1} \mathrm{H}\right): 0.9(\mathrm{t}, 3 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 6.4 \mathrm{~Hz}, 1.25(\mathrm{~m}, 12 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H})$.
$\delta\left({ }^{13} \mathrm{C}\right): 13.9,21.05$ (d) J (CP) $3.8 \mathrm{~Hz}, 22.5,25.3$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CP}) 65.8 \mathrm{~Hz}, 28.7,28.8,30.6$, 30.7 (d) ${ }^{2} \mathrm{~J}$ (CP) $15.7 \mathrm{~Hz}, 31.6,137.1$ (d) ${ }^{1} \mathrm{~J}$ (CF) 238 Hz meta, 139.6 (d) ${ }^{1} \mathrm{~J}$ (CF) 258 Hz para, 147.8 (d) 240 Hz ortho, ipso C not seen.
$\delta\left({ }^{11} \mathrm{~B}\right):-3.8$
$\delta\left({ }^{19} \mathrm{~F}\right):-134.5(2 \mathrm{~F}$, ortho $),-158.7(1 \mathrm{~F}$, para $),-164.6(2 \mathrm{~F}$, meta $)$.
IR (Thin Film): 2929, 1644, 1517, 1467, 1376, 1284, 1143, 1100, 981, 912, 742, 650.
Elemental analysis for $\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{BF}_{15} \mathrm{OP}$
Calc. C, 56.1; H, 5.7\%
Found C, 56.1; H, 5.5\%.

$\mathrm{Ph}_{3} \underline{\mathrm{P}=\mathrm{O}} \underline{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathrm{f})$

Yield 37%.
$\delta\left({ }^{1} \mathrm{H}\right): 7.6(\mathrm{~m})$.
$\delta\left({ }^{13} \mathrm{C}\right):($ major $) 128.8$ (d) J (CP) $2.8 \mathrm{~Hz}, 129.0$ (d) J (CP) $2.7 \mathrm{~Hz}, 131.8$ (d) J (CP) 10.5 Hz , (minor) 132.6 (d) J (CP) $11.5 \mathrm{~Hz}, 133.2$ (d) J (CP) $2.9 \mathrm{~Hz}, 133.9 \mathrm{~J}$ (CP) 2.9 Hz , 136.7 (d) ${ }^{1} \mathrm{~J}$ (CF) 237 Hz meta, 139.2 (d) ${ }^{1} \mathrm{~J}$ (CF) 254 Hz para, 147.8 (d) ${ }^{1} \mathrm{~J}$ (CF) 241 Hz ortho, ipso C not seen in both cases.
$\delta\left({ }^{11} \mathrm{~B}\right):-0.4$
$\delta\left({ }^{19} \mathrm{~F}\right)$: (major) -134.9 (ortho), -158.7 (para), -164.9 (meta); (minor) -133.1 (ortho), 158.2 (para), -164.4 (meta).

IR (KBr disk): 3010, 1684, 1646, 1517, 1464, 1376, 1285, 1177, 1126, 1102, 978, 848, $793,773,750,684,616,575,532$.
M.Pt: $278-280^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{OP}$
Calc.
C, $54.7 ; \mathrm{H}, 1.9 \%$
Found
C, 54.7; H, 1.8%.

$(\mathrm{MeO})_{3} \mathrm{P}=\mathrm{O} \cdot \mathrm{B}_{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathrm{~g})}$

Yield 48%.
$\delta\left({ }^{1} \mathrm{H}\right): 3.68(\mathrm{~d}){ }^{3} \mathrm{~J}(\mathrm{HP}) 10.7 \mathrm{~Hz}$.
$\delta\left({ }^{13} \mathrm{C}\right): 56.0(\mathrm{~d}){ }^{2} \mathrm{~J}(\mathrm{CP}) 132 \mathrm{~Hz}, 136.9$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 254 \mathrm{~Hz}$ meta, 139.8 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 245 \mathrm{~Hz}$ para, 147.8 (d) ${ }^{1} \mathrm{~J}$ (CF) 241 Hz ortho, ipso C not seen.
$\delta\left({ }^{11} \mathrm{~B}\right):-1.7$.
$\delta\left({ }^{19} \mathrm{~F}\right):-135.1(2 \mathrm{~F}$, ortho $),-157.8(1 \mathrm{~F}$, para $),-164.6(2 \mathrm{~F}$, meta $)$.
IR (KBr disk): 2995, 1648, 1510, 1470, 1378, 1284, 1226, 1104, 1075, 984, 865, 775, $738,678,618,576,512$
M.Pt: $210-212^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{21} \mathrm{H}_{9} \mathrm{BF}_{15} \mathrm{O}_{4} \mathrm{P}$
Calc. \quad C, $38.7 ; \mathrm{H}, 1.4 \%$
Found
C, 38.7 ; H, 1.4%.

$(\mathrm{EtO})_{3} \underline{\mathrm{P}=\mathrm{O}} \underline{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathbf{h})$

Yield 47%.
$\delta\left({ }^{1} \mathrm{H}\right): 1.3(\mathrm{t}, 3 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.3 \mathrm{~Hz}, 3.9$ (quint, 2 H$)^{3} \mathrm{~J}(\mathrm{HH}) 7.3 \mathrm{~Hz}{ }^{3} \mathrm{~J}(\mathrm{HP}) 7.3 \mathrm{~Hz}$.
$\delta\left({ }^{13} \mathrm{C}\right): 15.8(\mathrm{~d}){ }^{3} \mathrm{~J}(\mathrm{CP}) 6.7 \mathrm{~Hz}, 63.7$ (d) ${ }^{2} \mathrm{~J}(\mathrm{CP}) 5.7 \mathrm{~Hz}, 136.5$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 240 \mathrm{~Hz}$ meta,
139.3 (d) ${ }^{1} \mathrm{~J}$ (CF) 269 Hz para, 148.1 (d) ${ }^{1} \mathrm{~J}$ (CF) 231 Hz ortho, ipso C not seen.
$\delta\left({ }^{11} \mathrm{~B}\right):-3.7$.
$\delta\left({ }^{19} \mathrm{~F}\right):-135.6(2 \mathrm{~F}$, ortho $),-157.7(1 \mathrm{~F}$, para $),-164.9(2 \mathrm{~F}$, meta $)$.

IR (KBr disk): 2995, 1647, 1521, 1472, 1378, 1287, 1208, 1106, 1049, 981, 774, 739, 677, 617.
M.Pt: $150-151^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{O}_{4} \mathrm{P}$
Calc.
C, 41.5; H, 2.2\%
Found
C, 41.3; H, 2.1%.

$(\mathrm{PhO})_{3} \mathrm{P}=\mathrm{O} \underline{\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathrm{i})}$

Yield 35\%.
$\delta\left({ }^{1} \mathrm{H}\right): 7.3(\mathrm{~m})$.
$\delta\left({ }^{13} \mathrm{C}\right): 119.8(\mathrm{~d}){ }^{3} \mathrm{~J}(\mathrm{CP}) 4.7 \mathrm{~Hz}$ ortho, 126.1 para, 129.9 meta, 136.7 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 244 \mathrm{~Hz}$ meta, 141.4 (d) ${ }^{1} \mathrm{~J}$ (CF) 251 Hz para, 147.9 (d) ${ }^{1} \mathrm{~J}$ (CF) 255 Hz ortho, ipso C's not seen. $\delta\left({ }^{11} \mathrm{~B}\right):-1.2$.
$\delta\left({ }^{19} \mathrm{~F}\right):-135.4(2 \mathrm{~F}$, ortho), $-157.1(1 \mathrm{~F}$, para) , $-164.1(2 \mathrm{~F}$, meta $)$.
IR (KBr disk): 3050, 1646, 1590, 1464, 1376, 1287, 1255, 1158, 1106, 1040, 982, 911, 764, 736, 686, 675, 616.
M.Pt: $185-186^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{O}_{4} \mathrm{P}$

Calc.	$\mathrm{C}, 51.6 ; \mathrm{H}, 1.8 \%$
Found	$\mathrm{C}, 51.3 ; \mathrm{H}, 1.5 \%$

$\left.(\mathrm{EtO})_{2}(\mathrm{H}) \mathrm{P}=\mathrm{O} \cdot \mathrm{B}_{\left(\mathrm{C}_{6}\right.} \underline{F}_{5}\right)_{3}(4 \mathbf{j})$
Yield 48%.
$\delta\left({ }^{1} \mathrm{H}\right): 1.3(\mathrm{~s}, 6 \mathrm{H}), 4.1(\mathrm{~s}, 4 \mathrm{H}), 6.5(\mathrm{~d}, 1 \mathrm{H}){ }^{1} \mathrm{~J}(\mathrm{HP}) 700 \mathrm{~Hz}$.
$\delta\left({ }^{13} \mathrm{C}\right): 15.8(\mathrm{~d}){ }^{3} \mathrm{~J}(\mathrm{CP}) 6.7 \mathrm{~Hz}, 63.6$ (d) ${ }^{2} \mathrm{~J}(\mathrm{CP}) 6.8 \mathrm{~Hz}, 137.0$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 253 \mathrm{~Hz}$ meta,
140.6 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 264 \mathrm{~Hz}$ para, 147.9 (d) ${ }^{1} \mathrm{~J}$ (CF) 247 Hz ortho, ipso C not seen.
$\delta\left({ }^{11} \mathrm{~B}\right):-2.1$
$\delta\left({ }^{19} \mathrm{~F}\right):-135.5(2 \mathrm{~F}$, ortho $),-157.5(1 \mathrm{~F}$, para $),-164.3(2 \mathrm{~F}$, meta $)$.
IR (KBr disk): 2997, 1647, 1521, 1472, 1380, 1288, 1180, 1107, 1043, 970, 772, 682, 551
M.Pt: $120-122^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{22} \mathrm{H}_{11} \mathrm{BF}_{15} \mathrm{O}_{3} \mathrm{P}$
Calc.
C, 40.7; H, 1.7\%
Found
C, $40.5 ; \mathrm{H}, 1.7 \%$.

$\left({ }^{(1 \mathrm{BuO}}\right)_{2}(\mathrm{H}) \mathrm{P}=\mathrm{O}-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathbf{k})$

Yield 37%
$\delta\left({ }^{1} \mathrm{H}\right): 0.9(\mathrm{q}, 6 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 6.7 \mathrm{~Hz}, 1.3(\mathrm{~m}, 4 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.6 \mathrm{~Hz}, 1.6(\mathrm{~m}, 4 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH})$
$7.3 \mathrm{~Hz}, 4.1(\mathrm{~m}, 4 \mathrm{H}), 6.9(\mathrm{~d}, 1 \mathrm{H})^{1} \mathrm{~J}(\mathrm{HP}) 750 \mathrm{~Hz}$.
$\delta\left({ }^{13} \mathrm{C}\right): 15.3,15.4,15.5,15.6,64.8,64.9,67.5,67.6,137.0$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 245 \mathrm{~Hz}$ meta, 140
(d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 245 \mathrm{~Hz}$ para, 147.8 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 239 \mathrm{~Hz}$ ortho, ipso C not seen
$\delta\left({ }^{11} \mathrm{~B}\right):-2.2$.
$\delta\left({ }^{19} \mathrm{~F}\right):-135.4(2 \mathrm{~F}$, ortho $),-157.3(1 \mathrm{~F}$, para $),-164.3(2 \mathrm{~F}$, meta $)$.
IR (Thin Film): 3000, 1692, 1646, 1598, 1518, 1469, 1379, 1289, 1237, 1188, 1104, 976, 907, 734, 650.
M.Pt: $44-46^{\circ} \mathrm{C}$
Elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{O}_{3} \mathrm{P}$
Calc.
C, 44.2; H, 2.7\%
Found
C, 43.9; H, 2.7%.

Yield 55%.
$\delta\left({ }^{1} \mathrm{H}\right): 7.1(2 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.35 \mathrm{~Hz}$ ortho, $7.3(1 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.35 \mathrm{~Hz}$ para, $7.4{ }^{3} \mathrm{~J}(\mathrm{HH})$ 7.95 Hz meta.
$\delta\left({ }^{1.3} \mathrm{C}\right): 120.1^{3} \mathrm{~J}(\mathrm{CP}) 4.77 \mathrm{~Hz}$ ortho, 126.4 para, 130.2 meta, $137.1^{1} \mathrm{~J}$ (CF) 254 Hz meta, $139.9^{\mathrm{I}} \mathrm{J}$ (CF) 249 Hz para, $147.8^{\mathrm{I}} \mathrm{J}$ (CF) 238 Hz ortho, ipso C not seen in both cases.
$\delta\left({ }^{11} \mathrm{~B}\right):-0.25$.
$\delta\left({ }^{19} \mathrm{~F}\right):-135.5(2 \mathrm{~F}$, ortho $),-156.7(1 \mathrm{~F}$, para $),-163.7(2 \mathrm{~F}$, meta $)$.
IR (KBr disk): 3000, 1649, 1596, 1519, 1472, 1373, 1290, 1249, 1190, 1102, 1025, 961, 861, 761, 685, 611, 579.
M.Pt: $130-132^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{30} \mathrm{H}_{11} \mathrm{BF}_{15} \mathrm{O}_{3} \mathrm{P}$
Calc. $\quad \mathrm{C}, 48.2 ; \mathrm{H}, 1.5 \%$
Found. C, 47.9; H, 1.4\%.

$\underline{\mathrm{Me}(\mathrm{MeO})_{2}} \underline{\mathrm{P}=\mathrm{O}} \underline{\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathrm{~m})}$

Yield 42%.
$\delta\left({ }^{1} \mathrm{H}\right): 1.3 \mathrm{~d}^{2} \mathrm{~J}(\mathrm{PH}) 17.7 \mathrm{~Hz}, 3.6 \mathrm{~d}^{3} \mathrm{~J}(\mathrm{PH}) 11.6 \mathrm{~Hz}$.
$\delta\left({ }^{1.3} \mathrm{C}\right): 8.7 \mathrm{~d}^{1} \mathrm{~J}(\mathrm{CP}) 146 \mathrm{~Hz} ; 52.9 \mathrm{~d}^{2} \mathrm{~J}(\mathrm{CP}) 6.7 \mathrm{~Hz} ; 136.9$
$\delta\left({ }^{11} \mathrm{~B}\right):-1.2$.
$\delta\left({ }^{19} \mathrm{~F}\right):-135.5(2 \mathrm{~F}, o),-157.2(1 \mathrm{~F}, p),-164.1(2 \mathrm{~F}, m)$.
IR (KBr disk):2997, 1642, 1554, 1519, 1472, 1373, 1313, 1278, 1190, 1103, 982, 855, $797,774,738,678,618$
M.Pt: $226-228^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{21} \mathrm{H}_{9} \mathrm{BF}_{15} \mathrm{O}_{3} \mathrm{P}$
Calc.
C, $39.7 ; \mathrm{H}, 1.4 \%$
Found
C, 39.4; H, 1.4\%.

$\mathrm{Me}(\mathrm{EtO})_{2} \mathrm{P}=\mathrm{O}-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{4 n})$

Yield 47%.
$\delta\left({ }^{1} \mathrm{H}\right): 1.2(\mathrm{t}, 6 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.0 \mathrm{~Hz}, 1.6(\mathrm{~d}, 3 \mathrm{H})^{2} \mathrm{~J}(\mathrm{HP}) 18 \mathrm{~Hz}, 4.1(\mathrm{~m}, 4 \mathrm{H})$
$\delta\left({ }^{13} \mathrm{C}\right): 9.8(\mathrm{~d}){ }^{1} \mathrm{~J}(\mathrm{PC}) 162 \mathrm{~Hz}, 15.6$ (d) ${ }^{3} \mathrm{~J}(\mathrm{CP}) 7.6 \mathrm{~Hz}, 15.9$ (d) ${ }^{3} \mathrm{~J}(\mathrm{CP}) 6.7 \mathrm{~Hz}, 63.0$ (d)
${ }^{2} \mathrm{~J}(\mathrm{CP}) 4.8 \mathrm{~Hz}, 65.8$ (d) ${ }^{2} \mathrm{~J}$ (CP) $8.6 \mathrm{~Hz}, 137.0$ (d) ${ }^{1} \mathrm{~J}$ (CF) 252 Hz meta, 139.8 (d) ${ }^{1} \mathrm{~J}$ (CF)
261 Hz para, 147.7 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 231 \mathrm{~Hz}$ ortho, ipso C not seen.
$\delta\left({ }^{11} \mathrm{~B}\right):-8.2$.
IR (KBr disk): 3002, 1647, 1518, 1462, 1397, 1376, 1321, 1285, 1190, 1107, 1031, 968, $905,851,824,792,774,740,674$
M.Pt: $145-147^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{BF}_{15} \mathrm{O}_{3} \mathrm{P}$
Calc. \quad C, $41.6 ; \mathrm{H}, 1.9 \%$
Found
C, $41.6 ; \mathrm{H}, 1.7 \%$.

$(\mathrm{EtO})_{2} \underline{\mathrm{PhP}=\mathrm{O}} \underline{B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(40)}$

Yield 49%.
$\delta\left({ }^{1} \mathrm{H}\right): 1.2(\mathrm{t}, 6 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 6.5 \mathrm{~Hz}, 3.91(\mathrm{t}, 4 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.3 \mathrm{~Hz}, 7.44(\mathrm{~m}, 5 \mathrm{H})$.
$\delta\left({ }^{13} \mathrm{C}\right): 15.9,63.5,128.9$ (d) ${ }^{2} \mathrm{~J}(\mathrm{CP}) 12.5 \mathrm{~Hz}$ ortho, 131.2 (d) ${ }^{3} \mathrm{~J}$ (CP) 10.1 Hz meta, 133.6 (d) ${ }^{4} \mathrm{~J}$ (CP) 4.8 Hz para, 137.0 (d) ${ }^{1} \mathrm{~J}$ (CF) 252 Hz meta, 139.9 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 258 \mathrm{~Hz}$ para, 147.4 (d) ${ }^{1} \mathrm{~J}(\mathrm{CF}) 273 \mathrm{~Hz}$ ortho.
$\delta\left({ }^{11} \mathrm{~B}\right):-1.56$.
$\delta\left({ }^{31} \mathrm{P}\right):+16.55$.
IR (KBr disk): 3001, 2995, 1734, 1684, 1654, 1560, 1522, 1456, 1291, 1174, 1096, 1027, 976, 804, 749, 694, 560, 534
M.Pt: $170-172^{\circ} \mathrm{C}$.

Elemental analysis for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{O}_{3} \mathrm{P}$
Calc. \quad C, $46.3 ; \mathrm{H}, 2.1 \%$
Found
C, 46.3; H, 1.8\%.

$\mathrm{Me}_{2}(\mathrm{MeO}) \mathrm{P}=\mathrm{O} \underline{\mathrm{B}\left(\mathrm{C}_{6} \underline{F}_{5}\right)_{3}(4 \mathrm{p})}$

Yield 36%
$\delta\left({ }^{11} \mathrm{~B}\right):-1.6$.
IR (KBr disk): 2978, 1717, 1648, 1519, 1466, 1417, 1396, 1375, 1320, 1310, 1283, 1177, 1102, 1057, 980, 895, 848, 795, 773, 739, 678, 617, 576
M.Pt: $243-245^{\circ} \mathrm{C}$

Elemental analysis for $\mathrm{C}_{21} \mathrm{H}_{9} \mathrm{BF}_{15} \mathrm{O}_{2} \mathrm{P}$
Calc. \quad C, $40.6 ; \mathrm{H}, 1.5 \%$
Found
C, 40.3; H, 1.4\%.

$\mathrm{Me}_{2}(\mathrm{EtO}) \mathrm{P}=\mathrm{O} \underline{\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(4 \mathrm{q})}$

Yield 42%.
$\delta\left({ }^{1} \mathrm{H}\right): 1.27(\mathrm{q}, 3 \mathrm{H}){ }^{3} \mathrm{~J}(\mathrm{HH}) 7.0 \mathrm{~Hz}, 1.7(\mathrm{~d}, 6 \mathrm{H}){ }^{2} \mathrm{~J}(\mathrm{PH}) 14 \mathrm{~Hz}, 4.1(\mathrm{~m}, 4 \mathrm{H})$
$\delta\left({ }^{1.3} \mathrm{C}\right): 13.4$ (d) ${ }^{1} \mathrm{~J}(\mathrm{CP}) 99 \mathrm{~Hz}, 15.6$ (d) ${ }^{3} \mathrm{~J}(\mathrm{PC}) 7.6 \mathrm{~Hz}, 64.4$ (d) ${ }^{2} \mathrm{~J}(\mathrm{CP}) 7.6 \mathrm{~Hz}, 137.1$ (d)
${ }^{1} \mathrm{~J}$ (CF) 254Hz para, 139.7 (d) ${ }^{1} \mathrm{~J}$ (CF) 251Hz meta, 147.8 (d) ${ }^{1} \mathrm{~J}$ (CF) 236Hz ortho, ipso C not seen
$\delta\left({ }^{11} \mathrm{~B}\right):-9.3$
IR (KBr disk): 3002, 1648, 1559, 1540, 1458, 1399, 1375, 1319, 1284, 1187, 1102, $1042,971,890,853,797,772,743,681,616,576,538,480$
M.Pt: $168-170^{\circ} \mathrm{C}$

Elemental analysis for $\mathrm{C}_{22} \mathrm{H}_{11} \mathrm{BF}_{15} \mathrm{O}_{2} \mathrm{P}$
Calc.
C, 41.6; H, 1.7\%
Found
C, 41.6; H, 1.8%.

6.5 Experimental for Chapter 5

6.5.1 Synthesis of Aryltrimethylsilanes

The general strategy used to synthesise the aryltrimethylsilanes was from a method developed by Clark and co-workers [191]. The preparation of PhSiMe_{3} is discussed in detail; all other derivatives were made in a similar manner.

PhSiMe_{3}

Phenyl bromide ($15.70 \mathrm{~g}, 0.1 \mathrm{~mol}$) was added to dry THF $\left(80 \mathrm{~cm}^{3}\right)$ containing dried magnesium turnings ($2.43 \mathrm{~g}, 0.1 \mathrm{~mol}$) and one iodine crystal. After refluxing for 24 h , the mixture was cooled to room temperature before trimethylchlorosilane (10.90 g , 0.1 mol) was added. The mixture was then heated to reflux for another 24 h . After this time, the solvent was removed under vacuum and the residue heated for approximately 1h at ca. $90^{\circ} \mathrm{C}$. The resulting solid was then broken up in diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ and transferred into a flask containing cold water (40 g), ice $(40 \mathrm{~g})$ and conc. $\mathrm{HCl}\left(1 \mathrm{~cm}^{3}\right)$. The organic layer was separated and washed first with distilled water and then distilled water containing sodium bicarbonate. The organic phase was dried over anhydrous sodium sulphate overnight and filtered before the diethyl ether was removed via a rotary evaporator. This left a pale yellow liquid which was subsequently distilled to give a colourless liquid ($10.30 \mathrm{~g}, 69 \%$).
$\delta\left({ }^{\mathrm{I}} \mathrm{H}\right): 0.5(\mathrm{~s}, 9 \mathrm{H}) ; 7.4-7.6(\mathrm{~m}, 5 \mathrm{H})$
IR (Thin film): 3068m, 2955s, 1949w, 1877w, 1815w, 1590w, 1425s, 1310m, 1249s, $1113 \mathrm{~s}, 837 \mathrm{~s}, 726 \mathrm{~s}, 697 \mathrm{~s}$
B.Pt: $168^{\circ} \mathrm{C}$

2-MeC $\mathbf{6}_{6} \underline{H}_{4} \underline{S i M e}_{3}$

Yield 65\%
$\delta\left({ }^{1} \mathrm{H}\right): 0.7(\mathrm{~s}, 9 \mathrm{H}) ; 2.8(\mathrm{~s}, 3 \mathrm{H}) ; 7.45-7.85(\mathrm{~m}, 4 \mathrm{H})$
IR (Thin film): 3054m, 2954s, 1802w, 1684w, 1588m, 1445s, 1284w, 1248s, 1128s, $1079 \mathrm{~s}, 842 \mathrm{~s}, 740 \mathrm{~s}, 689 \mathrm{~s}$
B.Pt: $185^{\circ} \mathrm{C}$

3-MeC ${ }_{6} \underline{H}_{4}$ SiMe $_{3}$

Yield 70\%
$\delta\left({ }^{1} \mathrm{H}\right): 0.6(\mathrm{~s}, 9 \mathrm{H}) ; 2.7(\mathrm{~s}, 3 \mathrm{H}) ; 7.4-7.7(\mathrm{~m}, 4 \mathrm{H})$
IR (Thin film): 3017m, 2955s, 1868w, 1593w, 1575w, 1452m, 1402m, 1311w, 1248s, $1118 \mathrm{~s}, 1054 \mathrm{~m}, 874 \mathrm{~s}, 837 \mathrm{~s}, 778 \mathrm{~m}, 751 \mathrm{~s}, 690 \mathrm{~s}$
B.Pt: $186^{\circ} \mathrm{C}$

4-MeC ${ }_{6} \underline{H}_{4}$ SiMe $_{3}$

Yield 60\%
$\delta\left({ }^{\mathrm{I}} \mathrm{H}\right): 0.45(\mathrm{~s}, 9 \mathrm{H}) ; 2.5(\mathrm{~s}, 3 \mathrm{H}) ; 7.35(\mathrm{~d}, 2 \mathrm{H}) ; 7.6(\mathrm{~d}, 2 \mathrm{H})$
IR (Thin film): 3010w, 2955s, 1904w, 1804w, 1742w, 1604s, 1502w, 1446m, 1392m, $1312 \mathrm{w}, 1248 \mathrm{~s}, 1191 \mathrm{w}, 1107 \mathrm{~s}, 839 \mathrm{~s}, 799 \mathrm{~s}, 754 \mathrm{~s}$, 691 m
B.Pt: $190^{\circ} \mathrm{C}$

$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \underline{H}_{3} \mathrm{SiMe}_{3}$

Yield 72%
$\delta\left({ }^{1} \mathrm{H}\right): 0.7(\mathrm{~s}, 9 \mathrm{H}) ; 2.75(\mathrm{~s}, 6 \mathrm{H}) ; 7.4(\mathrm{~s}, 1 \mathrm{H}) ; 7.6(\mathrm{~s}, 2 \mathrm{H})$
IR (Thin film): 3014s, 2955s, 1935w, 1852w, 1597m, 1448m, $1401 \mathrm{~m}, 1141 \mathrm{~s}, 878 \mathrm{~s}$, 835s, 754s, 689s
B.Pt: $212^{\circ} \mathrm{C}$
$4-\mathrm{EtC}_{6} \underline{H}_{4} \mathrm{SiMe}_{3}$
Yield 85\%
$\delta\left({ }^{1} \mathrm{H}\right): 0.5(\mathrm{~s}, 9 \mathrm{H}) ; 1.45(\mathrm{t}, 3 \mathrm{H}) ; 2.8(\mathrm{q}, 2 \mathrm{H}) ; 7.35(\mathrm{~d}, 2 \mathrm{H}) ; 7.65(\mathrm{~d}, 2 \mathrm{H})$
IR(Thin film): $3010 \mathrm{w}, 2960 \mathrm{~s}, 1907 \mathrm{~m}, 1660 \mathrm{w}, 1602 \mathrm{~s}, 1502 \mathrm{~m}, 1458 \mathrm{~m}, 1397 \mathrm{~s}, 1248 \mathrm{~s}$, 1191w, 1109s, 1059m, 966w, 841s, 754s, 720m, 692m, 641s
B.Pt: $205^{\circ} \mathrm{C}$
$\mathrm{MeSSiMe}_{3}$
Yield 65\%
$\delta\left({ }^{1} \mathrm{H}\right): 0.4(\mathrm{~s}, 9 \mathrm{H}) ; 2.5(\mathrm{~m}, 9 \mathrm{H}) ; 7.0(\mathrm{~s}, 2 \mathrm{H})$
IR (Thin film): 2960s, 2740m, 1610m, 1444s, 1248s, 1070s, $962 \mathrm{~m}, 841 \mathrm{~s}, 739 \mathrm{~s}, 687 \mathrm{~m}$ B.Pt: $231^{\circ} \mathrm{C}$

6.5.2 Synthesis of Arylborondibromides from ArSiMe_{3}

These were all prepared from the aryltrimethylsilanes described above, following a procedure of Haubold and co-workers [192]. All compounds were prepared using the same conditions, as typified by the experimental of $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{BBr}_{2}$ unless otherwise stated. Crude products were distilled by bulb-to-bulb distillation.

$4-\mathrm{MeC}_{6} \underline{H}_{4} \mathrm{BBr}_{2}$

Boron tribromids ($6.30 \mathrm{~g}, 25.1 \mathrm{mmols}$) was placed into a $100 \mathrm{~cm}^{3}$ two-necked round-bottomed flask and cooled to $0^{\circ} \mathrm{C}$. $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SiMe}_{3}(4.12 \mathrm{~g}, 25.1 \mathrm{mmols}$) was added dropwise and the mixture was then stirred at room temperature for 1 h and at $60^{\circ} \mathrm{C}$ for a further 2 h . The mixture was later distilled to give a colourless liquid ($5.39 \mathrm{~g}, 82 \%$) $\delta\left({ }^{1} \mathrm{H}\right): 2.4(\mathrm{~s}, 3 \mathrm{H}) ; 7.3(\mathrm{~m}, 2 \mathrm{H}) ; 8.1(\mathrm{~m}, 2 \mathrm{H})$ B.Pt: $135^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$

$\mathrm{C}_{6} \underline{H}_{5} \underline{\mathrm{BBr}}_{2}$

Yield 69\%
$\delta\left({ }^{1} \mathrm{H}\right): 7.0-8.2(\mathrm{~m})$
M.Pt: $45^{\circ} \mathrm{C}$

$2-\mathrm{MeC}_{6} \underline{H}_{4} \mathrm{BBr}_{2}$

Yield 38\%
$\delta\left({ }^{\mathrm{I}} \mathrm{H}\right): 2.6(\mathrm{~s}, 3 \mathrm{H}) ; 7.2-7.6(\mathrm{~m}, 4 \mathrm{H}) ; 7.8(\mathrm{~d}, 4 \mathrm{H})$
B.Pt: $65^{\circ} \mathrm{C} / 0.15 \mathrm{mmHg}$

$3-\mathrm{MeC}_{6} \underline{H}_{4} \mathrm{BBr}_{2}$

Yield 68\%
$\delta\left({ }^{1} \mathrm{H}\right): 2.5(\mathrm{~s}, 3 \mathrm{H}) ; 7.4-7.6(\mathrm{~m}, 2 \mathrm{H}) ; 8.2(\mathrm{~d}, 2 \mathrm{H})$
B.Pt: $90^{\circ} \mathrm{C} / 0.30 \mathrm{mmHg}$
$4-\mathrm{EtC}_{6} \underline{H}_{4} \mathrm{BBr}_{2}$
Yield 77\%
$\delta\left({ }^{1} \mathrm{H}\right): 1.2(\mathrm{t}, 3 \mathrm{H}) ; 2.7(\mathrm{q}, 2 \mathrm{H}) ; 7.2(\mathrm{~d}, 2 \mathrm{H}) ; 8.1(\mathrm{~d}, 2 \mathrm{H})$
B.Pt: $140^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$

$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BBr}_{2}$

Yield 65\%
$\delta\left({ }^{1} \mathrm{H}\right): 2.3(\mathrm{~s}, 6 \mathrm{H}) ; 7.2(\mathrm{~m}, 1 \mathrm{H}) ; 7.9(\mathrm{~m}, 2 \mathrm{H})$
M.Pt: $60^{\circ} \mathrm{C}$

6.5.3 Synthesis of piperidino phosphorous dichloride

To a three necked 1 L round bottomed flask equipped with a mechanical stirrer and a pressure equalising dropping funnel was added a mixture of diethyl ether (250 cm^{3}) and phosphorus trichloride ($68.6 \mathrm{~g}, 0.5 \mathrm{~mol}$) . This was subsequently cooled to $0^{\circ} \mathrm{C}$ before piperidine ($42.5 \mathrm{~g}, 0.5 \mathrm{~mol}$) was added dropwise. The resulting mixture was stirred for 24 hr , before the mixture was filtered. The diethyl ether solution remaining was distilled to generate the product ($62.8 \mathrm{~g}, 69 \%$)
$\delta\left({ }^{1.3} \mathrm{C}\right): 24.1,26.2,47.4(\mathrm{~d}){ }^{2} \mathrm{~J}(\mathrm{CP}) 18 \mathrm{~Hz}$
$\delta\left({ }^{31} \mathrm{P}\right):+156.4 \mathrm{ppm}$

6.5.4 Attempted synthesis of tris(trimethylsilyl)phosphine

To a stirring and refluxing suspension of magnesium turnings ($12.2 \mathrm{~g}, 0.5 \mathrm{~mol}$) in THF ($250 \mathrm{~cm}^{3}$) was added trimethylsilylchloride ($54.3 \mathrm{~g}, 0.5 \mathrm{~mol}$) with bromine (1 cm^{3}). The resulting mixture was left refluxing for 5 h before phosphorus trichloride $(22.6 \mathrm{~g}, 0.165 \mathrm{~mol})$ was added drop wise. This mixture was left refluxing for 160 h . After this time the reaction was cooled, ${ }^{31} \mathrm{P}$ NMR of the crude mixture showed there to be no tris(trimethylsilyl)phosphine present hence no work up was carried out.

6.5.5 Synthesis of tris-trimethylsilylphosphine

To a refluxing mixture of trimethylsilyl chloride ($43.46 \mathrm{~g}, 0.4 \mathrm{~mol}$) and lithium powder $(4.86 \mathrm{~g}, 0.7 \mathrm{~mol})$ in THF $\left(250 \mathrm{~cm}^{3}\right)$ was added drop wise a solution of piperidino phosphorusdichloride ($18.59 \mathrm{~g}, 0.1 \mathrm{~mol}$) in THF $\left(50 \mathrm{~cm}^{3}\right)$. The resulting mixture was left to stir overnight at room temperature. The solvent was removed in vacuu and the residue washed with pentane $\left(300 \mathrm{~cm}^{3}\right)$. The resulting mixture is then filtered and the precipitate washed with pentane $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The filtrate is concentrated and then distilled under vacuum ($14.7 \mathrm{~g}, 59 \%$).
$\delta\left({ }^{1} \mathrm{H}\right): 0.3 \mathrm{ppm}$
$\delta\left({ }^{31} \mathrm{P}\right):-252 \mathrm{ppm}$
B.Pt: $55^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$

6.5.6 Attempted synthesis of the diphosphadiboretanes

To $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}(1.0 \mathrm{~g}, 5.4 \mathrm{mmol})$ in pentane $\left(50 \mathrm{~cm}^{3}\right)$ was added $\mathrm{PhBBr}_{2}(1.3 \mathrm{~g}$, 5.4 mmol) dropwise. The resulting solution was stirred for 24 hr , before the solvent was removed in vacuo leaving a yellow waxy solid.

6.5.7 Adducts of ArBBr_{2} with phenylphosphine

The method for the preparation of $\mathrm{PhPH}_{2} \mathrm{PhBBr}_{2}$ is described below in detail, all other adducts were prepared in a similar manner.

$\mathrm{PhPH}_{2} \mathrm{PhBBr}_{2}$

$\mathrm{PhBBr}_{2}(0.59 \mathrm{~g}, 2.4 \mathrm{mmol})$ in hexane $\left(30 \mathrm{~cm}^{3}\right)$ was added to $\mathrm{PhPH}_{2}(0.26 \mathrm{~g}, 2.4$ mmol). The resulting solution was stirred for 1 hr at $0^{\circ} \mathrm{C}$, before the solvent was removed. A white air sensitive solid was produced $(0.38 \mathrm{~g}, 45 \%)$.

References

1. M. W. Chen, J. C. Calabrese, D. F. Gaines and D. F. Hillenbrand, J. Am. Chem. Soc., 1980, 102, 4928
2. D. F. Gaines and S. J. Hildebrandt, Inorg. Chem., 1978, 17, 794
3. N. N. Greenwood, Comprehensive Inorganic Chemistry, (Pergemon Press, London 1973), Vol. 2, 665
4. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, (Pergamon Press, London, 1984), Ch 6, 155
5. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, (Wiley Interscience, 1988), Ch 6, 162
6. J. D. Lee, Concise Inorganic Chemistry, (Chapman and Hall, 1991), Ch 12, 329
7. A. Stock, Z. Angew. Chem., 1926, 39, 461
8. N. N. Greenwood, J. D. Kennedy and J. Staves, J. Chem. Soc. Dalton Trans., 1978, 1146
9. J. Bould, N. N. Greenwood, J. D. Kennedy and W. S. McDonald, J. Chem. Soc. Dalton Trans., 1985, 1843
10. L. J. Guggenberger, A. R. Kane and E. L. Muetterties, J. Am. Chem. Soc., 1972, 94, 5665
11. J. Bould, N. N. Greenwood and J. D. Kennedy, J. Chem. Soc. Dalton Trans., 1984, 2477
12. F. Klanberg, E. L. Muetterties and L. J. Guggenberger, Inorg. Chem., 1968, 7, 2272
13. F. Klanberg and E. L. Muetterties, J. Am. Chem. Soc., 1968, 90, 3296
14. N. W. Alcock, I. D. Burns, K. S. Claire and A. F. Hill, Inorg. Chem., 1992, 31, 2906
15. S. J. Lippard and D. A. Ucko, Inorg. Chem., 1968, 7, 1051
16. C. H. Bushweller, H. Beall and W. J. Dewkett, Inorg. Chem., 1976, 15, 1739
17. G. A. Razuvaev, A. N. Artemov, A. A. Aladjin and N. I. Sirotkin, J. Organomet. Chem., 1976, 111, 131
18. W. Siebert, Adv. Organomet. Chem., 1980, 18, 301
19. R. Prinz and H. Werner, Angew. Chem. Int. Ed. Engl., 1967, 6, 91
20. J. L. Adcock and J. J. Lagowski, Inorg. Chem., 1973, 12, 2533
21. M. Scotti and H. Werner, Helv. Chim. Acta, 1974, 57, 1234
22. K. Deckelmann and H. Werner, Helv. Chim. Acta, 1971, 54, 2189
23. J. J. Lagowski, Coord. Chem. Revs., 1977, 22, 185
24. H. Noth and U. Schuchardt, J. Organomet. Chem., 1977, 134, 297
25. B. Kaufmann, H. Noth, R. T. Paine, K. Polborn and M. Thomann, Angew. Chem. Int. Ed. Engl., 1993, 32, 1446
26. G. Linti, H. Noth, R. T. Paine and K. Polborn, Angew. Chem. Int. Ed. Engl., 1990, 29, 682
27. B. Kaufmnn, N. Metzler, H. Noth and R. T. Paine, Chem. Ber., 1994, 127, 825
28. H. Noth and B. Wrackmeyer, NMR - Basic Principles and Progress, (Springer, 1978)
29. R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, (Longman Scientific and Technical, 1992), 238
30. D. Baudry, M. Ephritikhine and H. Felkin, J. Organomet. Chem., 1982, 224, 363
31. M. R. Detty and W. D. Jones, J. Am. Chem. Soc., 1987, 109, 5666
32. J. K. Hoyano and W. A. G. Graham, Organometallics, 1982, 1, 783
33. W. A. Kiel, W. E. Buhro and J. A. Gladysz, Organometallics, 1984, 3, 879
34. J. I. Seeman and S. G. Davies, J. Am. Chem. Soc., 1985, 107, 6522
35. W. Beck and K. Sunkel, Chem. Rev., 1988, 88, 1405
36. E. Fritsch, J. Heidrich, K. Polborn and W. Beck, J. Organomet. Chem., 1992, 441, 203
37. P. M. Fritz, J. Breimair, B. Wagner and W. Beck, J. Organomet. Chem., 1992, 426, 343
38. P. Steil, U. Nagel and W. Beck, J. Organomet. Chem., 1988, 339, 111
39. P. Steil, U. Nagel and W. Beck, J. Organomet. Chem., 1989, 366, 313
40. M. L. H. Green and D. J. Jones, Inorg. Chem. Radiochem., 1965, 7, 115
41. M. L. Ziegler, H. Haas and R. K. Sheline, Chem. Ber., 1965, 98, 2454
42. J. P. Fawcett, A. J. Poe and M. V. Twigg, J. Organomet. Chem., 1973, 61, 315
43. L. Y. Y. Chan and F. W. B. Einstein, J. Chem. Soc. Dalton Trans., 1973, 111
44. E. O. Brimm, M. A. Lynch and W. J. Sesny, J. Am. Chem. Soc., 1954, 76, 3831
45. E. W. Abel and I. S. Butler, J. Chem. Soc., 1964, 434
46. R. J. Angelici, J. Organomet. Chem., 1964, 3, 1099
47. J. A. Connor and G. A. Hudson, J. Organomet. Chem., 1974, 73, 351
48. E. Linder and H. Dreher, J. Organomet. Chem., 1976, 104, 331
49. E. Linder and B. Schilling, Chem. Ber., 1977, 110, 3725
50. W. Hieber, R. Schuh and H. Fuchs, Z. Anorg. Allg. Chem., 1941, 248, 243
51. E. W. Abel and S. P. Tyfield, Adv. Organomet. Chem., 1970, 8, 117
52. G. Wilkinson, Comprehensive organometallic chemistry, (Elsevier Science, 1989) Vol 1
53. D. T. Hurd, G. W. Sentell and F. J. Norton, J. Am. Chem. Soc., 1949, 71, 1899
54. H. E. Podall, J. H. Dunn and H. Shapiro, J. Am. Chem. Soc., 1960, 82, 1325
55. A. Davison, J. A. McCleverty and G. Wilkinson, J. Chem. Soc., 1963, 1133
56. R. G. Behrens, J. Organomet. Chem., 1976, 121, C63
57. J. K. Burdett, J. Chem. Soc. Faraday Trans. 2, 1974, 1599
58. H. Haas and R. K. Sheline, J. Chem. Phys., 1967, 47, 2996
59. N. Flitcroft, D. K. Huggins and H. D. Kaesz, Inorg. Chem., 1964, 3, 1123
60. F. A. Cotton and R. M. Wing, Inorg. Chem., 1964, 4, 1328
61. G. Bor, Chem. Comm., 1969, 641
62. G. Bor and G. Sbrignadello, J. Chem. Soc. Dalton Trans., 1974, 440
63. D. M. Adams, M. A. Hooper and A. Squire, J. Chem. Soc. (A), 1971, 71
64. G. Sbrignadello, G. Battiston and G. Bor, Inorg. Chim. Acta, 1975, 14, 69
65. W. T. Wozniak, G. O. Evans and R. K. Sheline, J. Inorg. Nucl. Chem., 1975, 37, 105
66. W. Hieber and H. Schulten, Z. Anorg. Allg. Chem., 1939, 243, 164
67. E. W. Abel and G. Wilkinson, J. Chem. Soc., 1959, 1501
68. D. R. Tyler and D. P. Petrylak, Inorg. Chim. Acta, 1981, 53, L185
69. D. M. Allen, A. Cox, T. J. Kemp, Q. Sultana and R. B. Pitts, J. Chem. Soc. Dalton Trans., 1976, 1189
70. H. D. Kaesz, R. Bau, D. Hendrickson and J. M. Smith, J. Am. Chem. Soc., 1967, 89, 2844
71. G. Keeling, S. F. A. Kettle and I. Paul, J. Chem. Soc. Dalton Trans., 1971, 3143
72. F. Zingales, M. Graziani, F. Faraone and U. Belluco, Inorg. Chim. Acta, 1967, 1, 172
73. D. A. Brown and R. T. Sane, J. Chem. Soc. (A), 1971, 2088
74. M. J. Blandamer, J. Burgess, S. J. Cartwright and M. Dupree, J. Chem. Soc. Dalton Trans., 1976, 1158
75. J. Burgess and A. J. Duffield, J. Organomet. Chem., 1979, 177, 435
76. S. P. Schmit, W. C. Trogler and F. Basolo, Inorg. Synth., 28, 160
77. S. P. Schmidt, W. C. Trogler and F. Basolo, J. Am. Chem. Soc., 1984, 106, 1308
78. J. D. Atwood and T. L. Brown, J. Am. Chem. Soc., 1975, 97, 3380
79. K. Moedritzer, Synth. React. Inorg. Metal-Org. Chem., 1972, 2, 121
80. F. Zingales and U. Sartorelli, Inorg. Chem., 1967, 6, 1243
81. J. P. Fawcett and A. Poe, J. Chem. Soc. Dalton Trans., 1977, 1032
82. A. E. Leins and N. J. Covilee, J. Organomet. Chem., 1991, 407, 359
83. C. A. Tolman, Chem. Rev., 1977, 77, 325
84. N. J. Coville, Organometallic Radical Processes, (Elsevier, Amsterdam 1990), 108
85. B. L. Booth and R. N. Hazeldine, J. Chem. Soc. A, 1966, 157
86. T. Kruck and A. Engelmann, Angew. Chem. Int. Ed. Engl., 1966, 5, 836
87. R. H. Reimann and E. Singleton, J. Organomet. Chem., 1972, 38, 113
88. P. M. Treichel and J. J. Benedict, J. Organomet. Chem., 1969, 17, P37
89. R. H. Reimann and E. Singleton, J. Chem. Soc. Dalton Trans., 1973, 841
90. P. M. Treichel, Comprehensive Organometallic Chemistry, (Pergammon Press, 1981) Ch 29
91. P. M. Treichel, Comprehensive Organometallic Chemistry II, (Elsevier Science, 1995) Vol 6, Ch 1-10
92. A. Wojciciki, J. Organomet. Chem., 1972, 45, 335
93. P. M. Treichel, J. Organomet. Chem., 1973, 58, 273
94. P. M. Treichel, J. Organomet. Chem., 1980, 189, 129
95. F. Zingales, U. Sartorelli and A. Trovati, Inorg. Chem., 1967, 6, 1246
96. B. E. Mann, C. Masters and B. L. Shaw, J. Chem. Soc. A, 1971, 1104
97. L. S. Merriwether and J. R. Leto, J. Am. Chem. Soc., 1961, 83, 3182
98. J. A. Connor, J. J. Day, E. M. Jones and G. K. McEwen, J. Chem. Soc. Dalton Trans., 1973, 347
99. J. A. Connor, G. K. McEwen and C. J. Rix, J. Chem. Soc. Dalton Trans., 1974, 589
100. S. O. Grim, R. Barth, W. Briggs, C. A. Tolman and J. P. Jesson, Inorg. Chem., 1974, 13, 1095
101. D. A. Edwards and J. Marshalsea, J. Organomet. Chem., 1975, 96, C50
102. S. Heitkamp, D. J. Stuffken and K. Vrieze, J. Organomet. Chem., 1979, 169, 107
103. G. Q. Li, J. Feldman, J. A. Krause and M. Orchin, Polyhedron, 1997, 16, 2041
104. S. J. A. Pope and G. Reid, J. Chem. Soc. Dalton Trans., 1999, 1615
105. P. H. Bird, N. J. Coville, I. S. Butler and M. L. Schneider, Inorg. Chem., 1973, 12, 2902
106. S. K. Mandal, D. M. Ho and M. Orchin, Polyhedron, 1992, 11, 2055
107. D. Bright and O. S. Mills, J. Chem. Soc. Dalton Trans., 1974, 219
108. G. J. Kruger, R. O. Heckrodt, R. H. Reimann and E. Singleton, J. Organomet. Chem., 1975, 87, 323
109. V. Sum, M. T. Patel, T. P. Kee and M. Thornton-Pett, Polyhedron, 1992, 11, 1743
110. N. J. Holmes, W. Levason and M. Webster, J. Organomet. Chem., 1998, 568, 213
111. S. K. Mandal, D. M. Ho and M. Orchin, J. Organomet. Chem., 1992, 439, 53
112. G. Baccolini, L. Busetto, A. Roncaroio, V. G. Albano and F. Demartin, J. Chem. Soc. Dalton Trans., 1987, 21
113. A. E. Stock, Hydrides of Boron and Silicon, Cornell University Press, Ithica, New York, 1933
114. W. V. Hough, L. J. Edwards and A. D. McElroy, J. Am. Chem. Soc., 1956, 78, 689
115. W. V. Hough, L. J. Edwards and A. D. McElroy, J. Am. Chem. Soc., 1958, 80, 1828
116. D. F. Gaines, R. F. Schaefer and F. Tebbe, Inorg. Chem., 1963, 2, 526
117. R. M. Adams, Boron, Metallo-boron Compounds and Boranes, Interscience, New York, 1964
118. W. J. Dewkett, M. Grace and H. Beall, Inorg. Synth., 1974, 15, 111
119. W. J. Dewkett, M. Grace and H. Beall, J. Inorg. Nucl. Chem., 1971, 33, 1279
120. H. Beall, C. H. Bushweller and M. C. Grace, Inorg. Nucl. Chem. Lett., 1971, 7, 641
121. M. A. Beckett and P. W. Jones, Synth. React. Inorg. Met.-Org. Chem., 1997, 27, 41
122. S. J. Lippard and K. M. Melmed, Inorg. Chem., 1969, 8, 2755
123. L. J. Guggenberger, Inorg. Chem., 1970, 9, 367
124. M. L. H. Green, P. Mountford, P. D. Grebenik, J. B. Leach and J. M. Pounds, J. Organomet. Chem., 1990, 382, C1
125. P. D. Grebenik, J. B. Leach, M. L. H. Green and N. M. Walker, J. Organomet. Chem., 1988, 345, C31
126. M. Bown, S. L. Ingham, G. E. Norris and J. M. Waters, Acta Cryst., 1995, C51, 1503
127. I. D. Burns, A. F. Hill and D. J. Williams, Inorg. Chem., 1996, 35, 2685
128. J. Bould, N. P. Rath and L. Barton, Acta Cryst., 1996, C52, 1388
129. R. D. Chambers and T. Chivers, Proc. Chem. Soc., 1963, 208
130. A. G. Massey and A. J. Park, J. Organomet. Chem., 1964, 2, 245
131. X. Yang, C. L. Stern and T. J. Marks, J. Am. Chem. Soc., 1991, 113, 3623
132. A. R. Siedle, R. A. Newmark and W. M. Lamanna, Organometallics, 1993, 12, 1491
133. K. Ishihara, N. Hanaki, M. Funahashi, M. Miyata and H. Yamamoto, Bull. Chem. Soc. Japan, 1995, 68, 1721
134. X. Yang, C. L. Stern and T. J. Marks, J. Am. Chem. Soc., 1994, 116, 10015
135. P. A. Deck and T. J. Marks, J. Am. Chem. Soc., 1995, 117, 6128
136. M. Bochmann, S. J. Lancaster, M. B. Hursthouse and K. M. A. Malik, Organometallics, 1994, 13, 2235
137. M. A. Beckett, G. C. Strickland, J. R. Holland and K. S. Varma, Polymer, 1996, 37, 4629
138. V. Gutmann, Coord. Chem. Rev., 1976, 18, 225
139. U. Mayer, V. Gutmann and W. Gerger, Monatshefte fur Chemie, 1975, 106, 1235
140. A. G. Massey, A. J. Park and F. G. A. Stone, Proc. Chem. Soc., 1963, 212
141. A. N. Chernega, A. J. Graham, M. L. H. Green, J. Haggitt, J. Lloyd, C. P. Mehnert, N. Metzler and J. Souter, J. Chem. Soc. Dalton Trans., 1997, 2293
142. H. H. Brintzinger, D. Fischer, R. Mulhaupt, B. Rieger and R. Waymoutn, Angew. Chem. Int. Ed. Engl., 1995, 34, 1143
143. L. H. Doerrer and M. L. H. Green, J. Chem. Soc. Dalton Trans., 1999, 4325
144. A. G. Massey and A. J. Parks, J. Organomet. Chem., 1966, 5, 218
145. D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 1996, 118, 9440
146. R. F. Childs, D. L. Mulholland and A. Nixon, Can. J. Chem., 1982, 60, 801
147. M. F. Lappert, J. Chem. Soc., 1961, 817
148. M. F. Lappert, J. Chem. Soc., 1962, 542
149. P. Laszlo and M. Teston, J. Am. Chem. Soc. 1990, 112, 8750
150. S. Doring, G. Erker, R. Frohlich, O. Meyer and K. Bergander, Organometallics, 1998, 17, 2183
151. H. Jacobsen, H. Berke, S. Doring, G. Kehr, G. Erker, R. Frohlich and O. Meyer, Organometallics, 1999, 18, 1724
152. M. A. Beckett, D. S. Brassington, S. J. Coles and M. B. Hursthouse, Inorg. Chem. Comm., 2000, 3, 530
153. A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, S. Cafferkey, L. H. Doerrer and M. B. Hursthouse, Chem. Comm., 1998, 3191
154. D. J. Parks, W. E. Piers, M. Parvez, R. Atencio an M. J. Zaworotko, Organometallics, 1998, 17, 1369
155. D. C. Bradley, I. S. Harding, A. D. Keefe, M. Motevalli and D. -H. Zheng, J. Chem. Soc. Dalton Trans., 1996, 2529
156. M. A. Beckett, D. S. Brassington, P. Owen, M. B. Hursthouse, M. E. Light, K. M. A. Malik and K. S. Varma, J. Organomet. Chem., 1999, 585, 7
157. M. A. Beckett, P. Owen and K. S. Varma, J. Organomet. Chem., 1999, 588, 107
158. M. A. Beckett, D. E. Hibbs, M. B. Hursthouse, K. M. A. Malik, P. Owen and K. S. Varma, J. Organomet. Chem., 2000, 595, 241
159. N. Burford, B. W. Royan, R. E. vH. Spence, T. S. Cameron, A. Linden and R. D. Rogers, J. Chem. Soc. Dalton Trans., 1990, 1521
160. S. Un and M. P. Klein, J. Am. Chem. Soc., 1989, 111, 5119
161. N. Burford, R. E. vH. Spence, A. Linden and T. S. Cameron, Acta Crystallogr. Sect. C, 1990, 46, 92
162. M. C. R. Symons and G. Eaton, J. Chem. Soc. Farady I, 1982, 78, 3033
163. J. V. Bell, J. Heisler, H. Tannenbaum and J. Goldenson, J. Am. Chem. Soc., 1954, 76, 5185
164. D. M. Baird, P. E. Fanwich and T. Barwick, Inorg. Chem., 1985, 24, 3753
165. F. A. Cotton, J. Lu and T. Ren, Inorg. Chim. Acta, 1994, 215, 47
166. B. Borup, J. C. Huffman and K. G. Caulton, J. Organomet. Chem., 1997, 536, 109
167. G. Philipp, S. Wocadlo, W. Massa, K. Dehnicke, D. Fenske, C. MaichleMossmer. E. Niquet and J. Strahle, Z. Naturforsch Teil B, 1995, 50, 1
168. M. T. Reetz, M. Hullmann, W. Massa, S. Berger, P. Rademacher and P. Heymanns, J. Am. Chem. Soc., 1986, 108, 2405
169. G. Barrado, L. Doerrer, M. L. H. Green and M. A. Leech, J. Chem. Soc. Dalton Trans., 1999, 1061
170. A. R. Siedle, R. A. Newmark, W. M. Lamanna and J. C. Huffman, Organometallics, 1993, 12, 1491
171. Y. Hermodsson, Ark. Kemi., 1969, 30, 15
172. R. Hauptmann, R. Kliss, J. Schneider and G. Henkel, Z. Anorg. Allg. Chem., 1998, 624, 1927
173. N. Burford, B. W. Royan, R. E. vH. Spence and R. D. Rogers, J. Chem. Soc. Dalton Trans., 1990, 2111
D. Murphy, J. P. Sheehan, T. R. Spalding, G. Ferguson, A. J. Lough and J. F. Gallagher, J. Meter. Chem., 1993, 3, 1275
174. G. Ruban and V. Zabel, Cryst. Struct. Commun., 1976, 5, 671
175. R. T. Paine and H. Noeth, Chem. Rev., 1995, 95, 343
176. P. P. Power, Angew. Chem. Int. Ed. Engl., 1990, 29, 449
177. P. P. Power, J. Organomet. Chem., 1990, 400, 49
178. M. Feher, R. Frohlich and K. F. Tebbe, Z. Anorg. Allg. Chem., 1981, 474, 31
179. M. Baudler and A. Marx, Z. Anorg. Allg. Chem., 1981, 474, 18
180. M. Baudler and G. Kupprat, Z. Anorg. Allg. Chem., 1986, 533, 146
181. B. Riegel, A. Pfitzner, G. Heckmann, E. Fluck and H. Binder, Phosphorus, Sulfur and Silicon, 1994, 93-94, 173
182. B. Riegel, A. Pfitzner, G. Heckmann, E. Fluck and H. Binder, Z. Anorg. Allg. Chem., 1994, 620, 8
183. G. Fritz and W. Holderich, Z. Anorg. Allg. Chem., 1977, 431, 61
184. A. M. Arif, A. M. Cowley, M. Pakulski and J. M. Power, J. Chem. Soc. Chem. Comm., 1986, 889
185. P. Kolle, H. Noth and R. T. Paine, Chem. Ber., 1986, 109, 2681
186. H. V. R. Dias and P. P. Power, J. Am. Chem. Soc., 1989, 111, 144
187. P. Kolle, G. Linti, H. Noth and K. Polborn, J. Organomet. Chem., 1988, 355, 7
188. M. Baudler and M. Hintze, Z. Anorg. Allg. Chem., 1985, 522, 184
189. W. Gerrard, M. Howarth, E. F. Mooney and D. E. Pratt, J. Chem. Soc., 1963, 1582
190. H. A. Clark, A. F. Gordon, C. W. Young and M. J. Hunter, J. Am. Chem. Soc., 1951, 73, 3798
191. W. Haubold, J. Herdtle, W. Gollinger and W. Einholz, J. Organomet. Chem., 1986, 315, 1
192. M. A. Beckett, P. R. Minto and B. Werschkun, J. Organomet. Chem., 1994, 468, 37
193. D. Kaufmann, Chem. Ber., 1987, 120, 853
194. A. J. Leffler and E. G. Teach, J. Am. Chem. Soc., 1960, 82, 2710
195. H. Schumann and L. Rosch, J. Organomet. Chem., 1973, 55, 257
196. E. Niecke and H. Westermann, Synthesis, 1998, 18, 330
197. G. E. Coates and J. G. Livingstone, J. Chem. Soc., 1961, 5053
198. A. D. Tevebaugh, Inorg. Chem., 1964, 3, 302
199. B. Rapp and J. E. Drake, Inorg. Chem., 1973, 12, 2868
200. M. H. Quick and R. J. Anjelici, Inorg. Synth., 1990, 28, 126
201. E. W. Abel and G. Wilkinson, J. Chem. Soc., 1959, 1601
202. R. B. King and N. D. Sadanani, Synth. React. Inorg. Met.-Org. Chem., 1985, 15, 149

Appendix A

Crystal tables for 2b

Table 1. Crystal data and structure refinement.

Identification code	98SRC289
Empirical formula	C40 H25 Br Cl9 Mn O3 P2
Formula weight	1069.44
Temperature	150 (2) K
Wavelength	0.71074 A
Crystal sẏstem	Monoclinic
Space group	$\mathrm{P} 2 / \mathrm{n}$
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=15.3638(3) \mathrm{A} \\ & \mathrm{~b}=14.0991(2) \mathrm{A} \\ & \mathrm{c}=20.5356(5) \mathrm{A} \end{aligned}$
	beta $=103.9470(10) \mathrm{deg}$.
Volume	4317.19(15) A^3
z	4
Density (calculated)	$1.645 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$1.901 \mathrm{~mm}^{\wedge}-1$
F (000)	2128
Crystal size	$0.2 \times 0.2 \times 0.3 \mathrm{~mm}$
Theta range for data collection	2.99 to 23.25 deg.
Index ranges	$-17<=\mathrm{h}<=17,-15<=\mathrm{k}<=15,-22<=1<=22$
Reflections collected	57780
Independent reflections	$6201[\mathrm{R}$ (int) $=0.0747]$
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	6201 / $34 / 559$
Transmission Factors	Min $=0.594$
.	Max $=0.717$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.052
Final R indices [$\mathrm{I} \times 2$ sigma(I)]	$\mathrm{R} 1=0.0582, \mathrm{wR} 2=0.1513$
R indices (all data)	$\mathrm{R} 1=0.0742, \mathrm{wR} 2=0.1643$
Largest diff. peak and hole	1.374 and -1.495 e. $\mathrm{A}^{\wedge}-3$

Table 2. Atomic coordinates ($x 10^{\wedge} 4$) and equivalent isotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U (eq)
P(1)	8035(1)	5356 (1)	5691(1)	27(1)
P (2)	6726 (1)	2537(1)	4761 (1)	26 (1)
Cl (5)	6155(1)	2024(1)	1613 (1)	45 (1)
C1(1)	5801(1)	8176 (1)	7072 (1)	46 (1)
Cl (6)	2929(1)	1263 (1)	5166 (1)	62 (1)
Cl (2)	9076 (1)	8554 (1)	3844(1)	54 (1)
Cl (4)	9314(1)	-642(1)	6315(1)	64 (1)
C1 (3)	11448(1)	4210(1)	7957 (1)	68 (1)
C(13)	9033(2)	5125 (3)	6365 (2)	$28(1)$
C(1)	7375 (2)	6160 (3)	6090(2)	29 (1)
C (8)	7911 (2)	6345 (3)	4496(2)	31 (1)
C(25)	6594(2)	2353 (3)	3854(2)	$28(1)$
C (31)	5610(2)	2216(3)	4870 (2)	27 (1)
C (19)	$7394(2)$	1521(3)	5146(2)	29 (1)
C (5)	6015(3)	6563 (3)	6427 (2)	36 (1)
C (9)	8115 (3)	7050 (3)	4090 (2)	36 (1)
C (20)	8115(3)	1192 (3)	4910(2)	$34(1)$
C(14)	8990(3)	5080(3)	$7032(2)$	$38(1)$
C (24)	7281 (3)	1175 (3)	5756 (2)	36 (1)
$\mathrm{C}(6)$	6504(3)	5943 (3)	6127 (2)	$34(1)$
$\mathrm{C}(17)$	10571(3)	4588(3)	6691(2)	$38(1)$
C (39)	8376(3)	3280(3)	5678(2)	40 (1)
C (30)	6462(3)	3146 (3)	3430 (2)	33 (1)
C (34)	3953 (3)	1645 (3)	5045(2)	37 (1)
C (18)	9830(3)	4863 (3)	6198(2)	34 (1)
C (29)	6337(3)	3038 (3)	2747(2)	$37(1)$
C (10)	8852(3)	7616 (3)	4330 (2)	36 (1)
C (22)	8571(3)	193 (3)	5869 (2)	44 (1)
$\mathrm{C}(7)$	8433 (2)	6193(3)	5140(2)	29 (1)
O(1)	8995(2)	2851(2)	5946(2)	57(1)
C (32)	5249 (3)	1331 (3)	4645 (2)	34 (1)
C (26)	6590(2)	1452 (3)	3572 (2)	$32(1)$
C (23)	7867.3)	509 (3)	6117 (2)	43 (1)
C (36)	5100(3)	2807(3)	5171(2)	37 (1)
C (28)	6333 (2)	2143 (3)	2480 (2)	31 (1)
C (27)	6451(2)	1350 (3)	2882(2)	35 (1)
C(33)	4426(3)	1048(3)	4732 (2)	$37(1)$
C(12)	9187(3)	6767(3)	5360 (2)	37 (1)
C(11)	9400(3)	7469 (3)	4962 (2)	40 (1)
C(15)	9723(3)	4788(3)	7521 (2)	43 (1)
$\mathrm{C}(3)$	7264 (3)	7646 (3)	6650 (2)	36 (1)
$\mathrm{C}(16)$	10503(3)	4551 (3)	7344(2)	40 (1)
C (4)	6402 (3)	7406 (3)	6686(2)	$34(1)$
C (21)	8700(3)	519 (3)	5265 (2)	40 (1)
C (2)	7742 (3)	7021 (3)	6351(2)	$34(1)$
C (35)	4278(3)	2530(3)	5263(2)	43 (1)
O(2) *	8317(1)	4149 (3)	4137 (1)	71(2)
O(3) *	6805(1)	3640 (3)	6476(1)	$79(2)$
C(37)*	6989(1)	3763 (3)	5973(1)	44 (1)
C (38) *	7984 (1)	4041 (3)	4574 (1)	$39(1)$
Br (2) \#	6943(1)	3545 (2)	6316(1)	$36(1)$
$\mathrm{Br}(3)$ \#	8402(1)	3986 (2)	4407(1)	41 (1)
Mn (1)	7404 (1)	3933 (1)	5234 (1)	$28(1)$
$\mathrm{Br}(1)$ **	6022 (1)	4826 (1)	4591(1)	$33(1)$
C(42) \#\#	6466 (1)	4537 (1)	4700 (1)	$79(6)$
O(4) \#\#	6051 (3)	4927 (3)	4237 (2)	410 (3)
Cl (7)	5490(1)	548 (1)	6800 (1)	158(1)
Cl $(8 \mathrm{~A})+$	5460 (2)	2187 (2)	7513 (1)	184(2)
$\mathrm{Cl}(8 \mathrm{~B})+$	6087 (1)	2256 (1)	7360 (3)	369(4)
Cl (9)	3946 (1)	1488(2)	6972 (1)	213(2)

$\mathrm{C}(40)+$	$5118(1)$	$1557(1)$	$7150(2)$	$179(9)$
$\mathrm{C}(41)+$	$4961(1)$	$1655(1)$	$6743(1)$	$362(1)$

$*$	$=85 \%$	occupied;	$+=50 \%$
	occupied; $\quad \# \# ~=~ 30 \% ~ o c c u p i e d ~$		
$\#$	$=15 \%$ occupied;	$* *=70 \%$ occupied	

Table 3. Bond lengths [A] and angles [deg].

$\mathrm{P}(1)-\mathrm{C}(13)$	$1.831(3)$	$\mathrm{P}(1)-\mathrm{C}(7)$	$1.839(4)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.840(4)$	$\mathrm{P}(1)-\mathrm{Mn}(1)$	$2.3260(11)$
$\mathrm{P}(2)-\mathrm{C}(19)$	$1.828(4)$	$\mathrm{P}(2)-\mathrm{C}(31)$	$1.838(4)$
$\mathrm{P}(2)-\mathrm{C}(25)$	$1.843(4)$	$\mathrm{P}(2)-\mathrm{Mn}(1)$	$2.3275(10)$
$\mathrm{Cl}(5)-\mathrm{C}(28)$	$1.743(4)$	$\mathrm{Cl}(1)-\mathrm{C}(4)$	$1.736(4)$
$\mathrm{Cl}(6)-\mathrm{C}(34)$	$1.737(4)$	$\mathrm{Cl}(2)-\mathrm{C}(10)$	$1.741(4)$
$\mathrm{Cl}(4)-\mathrm{C}(22)$	$1.738(4)$	$\mathrm{Cl}(3)-\mathrm{C}(16)$	$1.744(4)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.390(6)$	$\mathrm{C}(13)-\mathrm{C}(18)$	$1.398(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.391(5)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.393(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.381(6)$	$\mathrm{C}(8)-\mathrm{C}(7)$	$1.388(5)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.394(5)$	$\mathrm{C}(25)-\mathrm{C}(30)$	$1.401(5)$
$\mathrm{C}(31)-\mathrm{C}(36)$	$1.387(6)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.398(5)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.393(6)$	$\mathrm{C}(19)-\mathrm{C}(24)$	$1.393(6)$
$\mathrm{C}(5)-\mathrm{C}(4)$	$1.378(6)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.389(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.376(6)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.387(6)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.378(6)$	$\mathrm{C}(24)-\mathrm{C}(23)$	$1.386(6)$
$\mathrm{C}(17)-\mathrm{C}(16)$	$1.371(6)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.384(5)$
$\mathrm{C}(39)-\mathrm{O}(1)$	$1.149(5)$	$\mathrm{C}(39)-\mathrm{Mn}(1)$	$1.804(4)$
$\mathrm{C}(30)-\mathrm{C}(29)$	$1.378(6)$	$\mathrm{C}(34)-\mathrm{C}(33)$	$1.368(6)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.380(6)$	$\mathrm{C}(29)-\mathrm{C}(28)$	$1.374(6)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.381(6)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.375(7)$
$\mathrm{C}(22)-\mathrm{C}(21)$	$1.382(7)$	$\mathrm{C}(7)-\mathrm{C}(12)$	$1.396(5)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.379(6)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1.388(6)$
$\mathrm{C}(36)-\mathrm{C}(35)$	$1.378(6)$	$\mathrm{C}(28)-\mathrm{C}(27)$	$1.376(6)$
$\mathrm{C}(12)-\mathrm{C}(11)$	$1.373(6)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.374(7)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.380(6)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.386(6)$
$\mathrm{C}(2)-\mathrm{C}(38)$	$1.1464(8)$	$\mathrm{O}(3)-\mathrm{C}(37)$	$1.1478(8)$
$\mathrm{C}(37)-\mathrm{Mn}(1)$	$1.7986(8)$	$\mathrm{C}(38)-\mathrm{Mn}(1)$	$1.7986(7)$
$\mathrm{Br}(2)-\mathrm{Mn}(1)$	$2.5492(9)$	$\mathrm{Br}(3)-\mathrm{Mn}(1)$	$2.5476(9)$
$\mathrm{Mn}(1)-\mathrm{C}(42)$	$1.8001(9)$	$\mathrm{Mn}(1)-\mathrm{Br}(1)$	$2.5458(7)$
$\mathrm{C}(42)-\mathrm{O}(4)$	$1.1500(10)$	$\mathrm{Cl}(7)-\mathrm{C}(41)$	$1.7502(9)$
$\mathrm{Cl}(7)-\mathrm{C}(40)$	$1.7502(10)$	$\mathrm{Cl}(8 \mathrm{~B})-\mathrm{C}(40)$	$1.7503(9)$
$\mathrm{Cl}(8 \mathrm{~B})-\mathrm{C}(41)$	$2.063(3)$	$\mathrm{Cl}(9)-\mathrm{C}(41)$	$1.7498(10)$
$\mathrm{Cl}(9)-\mathrm{C}(40)$	$1.7506(8)$		
$\mathrm{C}(13)-\mathrm{P}(1)$			

$C(13)-P(1)-C(7)$
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(1)$
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{Mn}(1)$
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(31)$
$C(31)-P(2)-C(25)$
$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{Mn}(1)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{P}(1)$
$C(2)-C(1)-P(1)$
$C(9)-C(8)-C(7)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{P}(2)$
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$
$C(32)-C(31)-P(2)$
$C(20)-C(19)-P(2)$
$C(4)-C(5)-C(6)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$
C(23)-C(24)-C(19)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$
C(29)-C(30)-C(25)
C(33)-C(34)-Cl(6)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$
C(9) -C (10) -C (11)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Cl}(2)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{Cl}(4)$
$C(8)-C(7)-C(12)$
$C(12)-C(7)-P(1)$
$C(27)-C(26)-C(25)$
C(35)-C(36)-C(31)
C(29)-C(28)-Cl(5)
$C(28)-C(27)-C(26)$
C(11)-C(12)-C(7)
103.71 (17) $100.37(17)$ 118.26 (12) $101.37(17)$ $102.15(17)$ $119.60(13)$ 118.9(3) 119.0(3) 119.6 (3) 121.5(3) 122.4(3) 117.5(3) 119.1(3) 121.4(3) 119.0 (4) 120.9(4) 120.8(4) 118.9(4) 120.5(4) 118.6(3) 120.5(4) 120.8 (4) $119.6(3)$ $120.0(4)$ 117.7(4) 123.0(3) 120.2 (4) 121.7(4) 118.7(3) 119.6(4) 121.5(4)

$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(1)$	$102.95(17)$
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{Mn}(1)$	$110.07(12)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{Mn}(1)$	$119.36(13)$
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(25)$	$103.96(17)$
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{Mn}(1)$	$109.48(12)$
$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{Mn}(1)$	$118.04(13)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{P}(1)$	$121.5(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$118.5(4)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{P}(1)$	$121.9(3)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(30)$	$118.9(4)$
$\mathrm{C}(30)-\mathrm{C}(25)-\mathrm{P}(2)$	$118.6(3)$
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{P}(2)$	$123.3(3)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)$	$118.6(3)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{P}(2)$	$119.0(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$119.2(4)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$120.4(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$121.0(4)$
$\mathrm{O}(1)-\mathrm{C}(39)-\mathrm{Mn}(1)$	$178.2(4)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$121.2(4)$
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{Cl}(6)$	$120.2(3)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$119.6(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{Cl}(2)$	$119.6(3)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$121.3(4)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{Cl}(4)$	$118.7(4)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{P}(1)$	$118.9(3)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	$121.3(4)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$119.4(4)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$121.3(4)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{Cl}(5)$	$120.0(3)$
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	$119.3(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$119.3(4)$

$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	119.5 (4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.0 (4)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	121.8(4)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{Cl}(3)$	118.0 (3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{Cl}(3)$	120.2(3)	C (5) -C (4)-C (3)	121.2 (4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cl}(1)$	119.2 (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cl}(1)$	119.6 (3)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	119.0 (4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.3(4)
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	118.9(4)	$\mathrm{O}(3)-\mathrm{C}(37)-\mathrm{Mn}(1)$	173.69(15)
$\mathrm{O}(2)-\mathrm{C}(38)-\mathrm{Mn}(1)$	176.0(3)	$\mathrm{C}(37)-\mathrm{Mn}(1)-\mathrm{C}(38)$	171.03 (8)
$\mathrm{C}(37)-\mathrm{Mn}(1)-\mathrm{C}(42)$	100.51(10)	$\mathrm{C}(38)-\mathrm{Mn}(1)-\mathrm{C}(42)$	88.34 (10)
$\mathrm{C}(37)-\mathrm{Mn}(1)-\mathrm{C}(39)$	$85.58(17)$	$\mathrm{C}(38)-\mathrm{Mn}(1)-\mathrm{C}(39)$	85.66 (17)
$\mathrm{C}(42)-\mathrm{Mn}(1)-\mathrm{C}(39)$	173.22(16)	$\mathrm{C}(37)-\mathrm{Mn}(1)-\mathrm{P}(1)$	88.41(12)
$\mathrm{C}(38)-\mathrm{Mn}(1)-\mathrm{P}(1)$	89.82 (12)	$\mathrm{C}(42)-\mathrm{Mn}(1)-\mathrm{P}(1)$	91.86 (7)
$\mathrm{C}(39)-\mathrm{Mn}(1)-\mathrm{P}(1)$	91.27 (13)	$\mathrm{C}(37)-\mathrm{Mn}(1)-\mathrm{P}(2)$	91.48 (12)
$\mathrm{C}(38)-\mathrm{Mn}(1)-\mathrm{P}(2)$	90.59 (11)	$\mathrm{C}(42)-\mathrm{Mn}(1)-\mathrm{P}(2)$	86.20 (7)
$\mathrm{C}(39)-\mathrm{Mn}(1)-\mathrm{P}(2)$	90.71 (13)	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{P}(2)$	178.01(4)
$\mathrm{C}(37)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	94.76 (8)	$\mathrm{C}(38)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	$94.03(7)$
$\mathrm{C}(39)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	178.87(12)	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	89.82 (3)
$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	88.21 (3)	$\mathrm{C}(37)-\mathrm{Mn}(1)-\mathrm{Br}(3)$	163.46 (8)
$\mathrm{C}(42)-\mathrm{Mn}(1)-\mathrm{Br}(3)$	95.91 (8)	$\mathrm{C}(39)-\mathrm{Mn}(1)-\mathrm{Br}$ (3)	78.13 (16)
$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{Br}(3)$	89.09 (7)	$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{Br}(3)$	$91.58(7)$
$\mathrm{Br}(1)-\mathrm{Mn}(1)-\mathrm{Br}(3)$	101.58 (5)	$\mathrm{C}(38)-\mathrm{Mn}(1)-\mathrm{Br}(2)$	165.23 (9)
$\mathrm{C}(42)-\mathrm{Mn}(1)-\mathrm{Br}(2)$	106.41 (8)	$\mathrm{C}(39)-\mathrm{Mn}(1)-\mathrm{Br}(2)$	79.57 (16)
$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{Br}(2)$	90.56 (6)	$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{Br}(2)$	89.54 (6)
$\mathrm{Br}(1)-\mathrm{Mn}(1)-\mathrm{Br}(2)$	100.74 (5)	$\mathrm{Br}(3)-\mathrm{Mn}(1)-\mathrm{Br}(2)$	157.68 (7)
$\mathrm{O}(4)-\mathrm{C}(42)-\mathrm{Mn}(1)$	158.8 (3)	Cl (7)-C(40)-Cl (8B)	102.48(14)
Cl (7)-C (40)-Cl (9)	106.92 (13)	Cl (8B) - C (40)-Cl (9)	148.56 (15)
Cl (9)-C (41)-Cl (7)	106.95(13)	Cl (9)-C (41)-Cl (8B)	124.0 (2)
Cl (7)-C (41)-Cl (8B)	91.03 (9)		

Symmetry transformations used to generate equivalent atoms:
'able 4. Anisotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$). he anisotropic displacement factor exponent takes the form: $2 \mathrm{pi} \wedge 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}^{\star \wedge} 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U} 12\right.$]

	U11	U22	U33	U23	U13	U12
(1)	22 (1)	30(1)	29 (1)	-4 (1)	5(1)	-1(1)
(2)	23 (1)	24 (1)	31 (1)	0 (1)	$5(1)$	0 (1)
$1(5)$	41 (1)	$62(1)$	31 (1)	-6(1)	$5(1)$	-5(1)
1 (1)	$38(1)$	$53(1)$	46 (1)	-15 (1)	$5(1)$	13 (1)
$1(6)$	$42(1)$	47 (1)	108(1)	-19(1)	41 (1)	-16(1)
1 (2)	$49(1)$	55 (1)	57 (1)	17 (1)	9(1)	-11(1)
1 (4)	56 (1)	$51(1)$	75 (1)	19 (1)	-5(1)	$18(1)$
1 (3)	64 (1)	73 (1)	$52(1)$	1 (1)	-16(1)	31 (1)
(13)	24 (2)	30 (2)	26 (2)	-5 (2)	-1(2)	-2 (2)
(1)	25 (2)	31 (2)	29 (2)	-3 (2)	4(2)	4 (2)
(8)	26 (2)	33 (2)	33 (2)	-7 (2)	7 (2)	-3 (2)
(25)	22 (2)	$31(2)$	32 (2)	-2 (2)	6 (2)	2 (2)
(31)	19(2)	28 (2)	33 (2)	4 (2)	$2(2)$	-1(2)
(19)	25 (2)	25 (2)	33 (2)	-1(2)	1 (2)	-1(2)
(5)	26 (2)	44(2)	36 (2)	-5 (2)	6 (2)	2 (2)
(9)	$32(2)$	$39(2)$	35 (2)	-1 (2)	$4(2)$	4 (2)
(20)	$31(2)$	$32(2)$	$38(2)$	$5(2)$	8(2)	1 (2)
(14)	34(2)	41 (2)	40 (2)	-2 (2)	10 (2)	6 (2)
(24)	35 (2)	$32(2)$	39 (2)	0 (2)	7 (2)	-1(2)
(6)	30 (2)	36 (2)	37 (2)	-5 (2)	10 (2)	-5 (2)
(17)	26 (2)	36 (2)	49 (2)	-5 (2)	4 (2)	-1 (2)
(39)	34 (2)	30 (2)	$51(3)$	-11(2)	-1 (2)	-8(2)
(30)	$32(2)$	$32(2)$	35 (2)	-1(2)	7 (2)	$2(2)$
(34)	27 (2)	35 (2)	52 (2)	1(2)	14 (2)	-4 (2)
(18)	$31(2)$	$38(2)$	$31(2)$	-3(2)	4 (2)	-2 (2)
(29)	31 (2)	$39(2)$	$38(2)$	5 (2)	2 (2)	$1(2)$
(10)	33 (2)	$34(2)$	43 (2)	0 (2)	13 (2)	-5 (2)
(22)	$38(2)$	$34(2)$	$52(3)$	4(2)	-3(2)	3 (2)
(7)	28 (2)	30 (2)	$29(2)$	-6(2)	7 (2)	-3(2)
(1)	$41(2)$	41 (2)	76 (2)	-4 (2)	-14(2)	4(2)
(32)	$32(2)$	$32(2)$	36 (2)	-3 (2)	6 (2)	$1(2)$
(26)	24(2)	31 (2)	41 (2)	-2 (2)	$7(2)$	-1(2)
(23)	46 (2)	$39(2)$	39 (2)	$8(2)$	$3(2)$	1 (2)
(36)	$32(2)$	25 (2)	56 (3)	-1 (2)	14 (2)	-4(2)
(28)	24(2)	44 (2)	27 (2)	-4(2)	6 (2)	-3(2)
(27)	26 (2)	41 (2)	36 (2)	-10(2)	6 (2)	-2 (2)
(33)	33 (2)	29 (2)	47 (2)	-6(2)	$9(2)$	-7(2)
(12)	36 (2)	40 (2)	33 (2)	-2 (2)	3 (2)	-7(2)
(11)	30 (2)	46 (2)	41 (2)	$3(2)$	1 (2)	-12(2)
(15)	56 (3)	$41(2)$	32 (2)	3 (2)	8 (2)	10(2)
(3)	36 (2)	$32(2)$	37 (2)	-5 (2)	3 (2)	$1(2)$
(16)	42 (2)	$32(2)$	$39(2)$	-3(2)	-7(2)	$4(2)$
(4)	27 (2)	40 (2)	32 (2)	-3(2)	1 (2)	12 (2)
(21)	29 (2)	36 (2)	52 (3)	-2 (2)	6 (2)	$0(2)$
(2)	23 (2)	37 (2)	42 (2)	-5 (2)	5 (2)	-3(2)
(35)	$38(2)$	$31(2)$	65 (3)	-5 (2)	22 (2)	-2(2)
(2)	54 (2)	40 (2)	$99(3)$	-11(2)	-22(2)	$4(2)$
(3)	120(4)	55 (3)	68 (3)	-5 (2)	31 (3)	-11(3)
(37)	41(3)	42 (3)	50(3)	-12(2)	14 (2)	-5 (2)
(38)	$74(3)$	22 (2)	18(2)	0 (2)	$7(2)$	-26(2)
$r(2)$	$38(1)$	33 (1)	36 (1)	-4(1)	6 (1)	$0(1)$
r (3)	$39(1)$	35 (1)	43 (1)	-4(1)	$0(1)$	$0(1)$
n (1)	23 (1)	26 (1)	$32(1)$	-2 (1)	4(1)	-1(1)
$r(1)$	$29(1)$	$28(1)$	$42(1)$	-8(1)	$8(1)$	-3(1)
(42)	99(11)	$38(9)$	129(13)	-32(9)	$88(10)$	-14(9)
(4)	310 (4)	140 (2)	590 (7)	80 (4)	-250(4)	-30(3)
1 (7)	$206(2)$	$71(1)$	223 (2)	-46(1)	101 (2)	-3(1)
1 (8A)	244(6)	112 (3)	219 (5)	-95(3)	103 (4)	-17(4)
1 (8B)	789 (10)	190 (4)	216 (5)	-94(4)	293 (6)	-301(5)
1 (9)	250 (3)	225 (3)	166 (3)	57 (2)	54 (2)	123(3)

* = 85\% occupied; $\quad+=50 \%$ occupied; $\quad \# \#=30 \%$ occupied
\# = 15\% occupied; $\quad * *=70 \%$ occupied

Appendix B

Crystal tables for $\mathbf{2 g}$

Table 1. Crystal data and structure refinement.

Identification code	00src069
Empirical formula	$\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{BrO}_{9} \mathrm{P}_{2} \mathrm{Re}$
Formula weight	1054.84
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a=18.337(4) \AA \quad \alpha=90^{\circ}$
	$b=20.515(4) \AA \quad \beta=90^{\circ}$
	$c=22.738(5) \AA \quad \gamma=90^{\circ}$
Volume	8554(3) \AA^{3}
Z	8
Density (calculated)	$1.638 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.905 \mathrm{~mm}^{-1}$
F(000)	4192
Crystal	Prism; colourless
Crystal size	$0.2 \times 0.2 \times 0.2 \mathrm{~mm}^{3}$
θ range for data collection	$2.98-30.41^{\circ}$
Index ranges	$-25 \leq h \leq 25,-24 \leq k \leq 28,-26 \leq l \leq 30$
Reflections collected	65319
Independent reflections	$11208\left[R_{\text {int }}=0.0588\right]$
Completeness to $\theta=30.41^{\circ}$	86.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.472 and 0.347
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	11208/0/529
Goodness-of-fit on F^{2}	0.821
Final R indices [$\left.F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0375, w R 2=0.0954$
R indices (all data)	$R I=0.0652, w R 2=0.1165$
Largest diff. peak and hole	1.884 and -2.020 e \AA^{-3}

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

[^0]Table 2. Atomic coordinates [$\times 10^{4}$], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right.$] and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{\text {re }}$	S.o.f.	
Rel	4450(1)	556(1)	6216(1)	19(1)	1	
Brl	4077(1)	429(1)	7328(1)	30(1)	1	
P1	3280(1)	1190(1)	6077(1)	21(1)	1	
P2	5425(1)	1398(1)	6459(1)	21(1)	1	
O1	4919(1)	752(1)	4947(1)	29(1)	1	
O2	5631(2)	-472(1)	6471(2)	42(1)	1	
O3	3536(2)	-644(1)	5870(1)	35(1)	1	
04	657(2)	-553(1)	6245(1)	37(1)	1	
O5	3213(2)	2355(2)	3665(1)	47(1)	1	.
O6	2708(2)	3548(1)	7528(1)	41(1)	1	
07	5474(1)	3862(1)	5058(1)	37(1)	1	
08	5421(2)	2301(1)	8965(1)	40(1)	1	
O9	8232(1)	123(1)	5741(1)	34(1)	1	
C1	4741(2)	677(2)	5410(2)	$26(1)$	1	
C2	5225(2)	-72(2)	6368(2)	28(1)	1	
C3	3850(2)	-187(2)	6004(2)	25(1)	1	
C4	2478(2)	669(2)	6129(2)	24(1)	1	
C5	2302(2)	375(2)	6663(2)	31(1)	1	
C6	1701(2)	-40(2)	6722(2)	31(1)	1	
C7	1270(2)	-162(2)	6235(2)	28(1)	1	
C8	1439(2)	118(2)	5704(2)	35(1)	1	
C9	2028(2)	535(2)	5651(2)	30(1)	1	
C10	445(2)	-842(2)	6781(2)	46(1)	,	
C11	3187(2)	1561(2)	5345(2)	23(1)	1	
C12	3288(2)	1188(2)	4841(2)	27(1)	1	
C13	3270(2)	1457(2)	4290(2)	31(1)	1	
C14	3177(2)	2131(2)	4221(2)	32(1)	1	
C15	3056(2)	2512(2)	4714(2)	29(1)	1	
C16	3060(2)	2231(2)	5269(2)	26(1)	1	
C17	3202(3)	3050(2)	3589(2)	51(1)	1	
C18	3067(2)	1855(2)	6575(2)	23(1)	1	
C19	2372(2)	2136(2)	6574(2)	33(1)	1	
C20	2231(2)	2698(2)	6893(2)	34(1)	1	
C21	2786(2)	2982(2)	7219(2)	30(1)	1	
C22	3466(2)	2690(2)	7247(2)	$29(1)$	1	
C23	3600(2)	2130(2)	6923(2)	25(1)	1	
C24	2019(2)	3871(2)	7492(2)	56(1)	1	
C25	5450(2)	2137(2)	6020(2)	24(1)	1	
C26	4831(2)	2345(2)	5735(2)	$27(1)$	1	
C27	4811(2)	2915(2)	5409(2)	30(1)	1	
C28	5430(2)	3293(2)	5368(2)	28(1)	1	
C29	6072(2)	3094(2)	5650(2)	35(1)	,	
C30	6079(2)	2527(2)	5970(2)	35(1)	1	
C31	4838(2)	4049(2)	4741(2)	40(1)	1	
C32	5483(2)	1699(2)	7212(2)	24(1)	,	
C33	5364(2)	2356(2)	7345(2)	27(1)	1	
C34	5326(2)	2577(2)	7922(2)	29(1)	1	
C35	5426(2)	2141(2)	8382(2)	26(1)	1	
C36	5552(2)	1483(2)	8258(2)	27(1)	,	
C37	5560(2)	1268(2)	7686(2)	23(1)	1	
C38	5309(3)	2975(2)	9107(2)	51(1)	1	
C39	6323(2)	1040(2)	6292(2)	22(1)	1	
C40	6806(2)	809(2)	6706(2)	26(1)	1	
C41	7452(2)	492(2)	6545(2)	26(1)	1	
C42	7617(2)	415(2)	5957(2)	26(1)	1	
C43	7133(2)	648(2)	5526(2)	28(1)	,	
C44	6502(2)	953(2)	5697(2)	29(1)	1	
C45	8745(2)	-128(2)	6152(2)	44(1)	1	

Table 3. Bond lengths $[\AA]$ and angles [${ }^{\circ}$].

Rel-C1	1.926(4)
Rel-C3	$1.941(4)$
Rel-C2	$1.950(4)$
Rel-P1	2.5279(9)
Rel-P2	2.5467(10)
Rel-Brl	$2.6308(6)$
P1-C18	1.815(3)
P1-C4	1.824(4)
P1-C11	$1.838(4)$
P2-C25	1.816(4)
P2-C32	$1.823(4)$
P2-C39	1.842(3)
$\mathrm{Ol}-\mathrm{Cl}$	1.112(5)
O2-C2	1.133(5)
O3-C3	1.142(4)
O4-C7	1.381(5)
O4-C10	1.410(5)
O5-C14	1.348(5)
O5-C17	1.436(5)
O6-C21	1.365(4)
O6-C24	1.430(5)
O7-C28	1.365(4)
O7-C31	1.423(5)
O8-C35	1.366 (5)
O8-C38	1.435(5)
O9-C42	$1.368(4)$
O9-C45	1.423(5)
C4-C9	1.391(5)
C4-C5	$1.394(5)$
C5-C6	$1.399(5)$
C6-C7	$1.385(5)$
C7-C8	1.371 (5)
C8-C9	1.384(5)
C11-C12	1.390 (5)
C11-C16	1.404(5)
C12-C13	$1.369(5)$
C13-C14	1.402(5)
C14-C15	1.384(5)
C15-C16	1.387(5)
C18-C23	1.379(5)
C18-C19	$1.398(5)$
C19-C20	$1.386(5)$
C20-C21	$1.388(5)$
C21-C22	$1.385(5)$
C22-C23	$1.386(5)$
C25-C26	$1.375(5)$
C25-C30	1.408(5)
C26-C27	$1.385(5)$
C27-C28	1.378(5)
C28-C29	1.403(5)
C29-C30	1.371 (5)
C32-C33	1.398(5)
C32-C37	$1.402(5)$
C33-C34	1.390(5)
C34-C35	1.387 (5)
C35-C36	1.398(5)
C36-C37	1.375(5)
C39-C40	1.377(5)
C39-C44	$1.404(5)$

C40-C41	1.399(5)
C41-C42	1.381(6)
C42-C43	$1.406(5)$
C43-C44	1.372(5)
C1-Re1-C3	91.21(15)
C1-Re1-C2	92.88(15)
C3-Re1-C2	86.48(15)
C1-Rel-P1	92.91(10)
C3-Re1-P1	83.82(10)
C2-Re1-P1	168.79(11)
C1-Re1-P2	85.66(10)
C3-Re1-P2	169.91(10)
C2-Re1-P2	84.11(11)
P1-Re1-P2	105.89(3)
$\mathrm{C} 1-\mathrm{Re} 1-\mathrm{Brl}$	177.98(10)
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{Br} 1$	90.80(11)
$\mathrm{C} 2-\mathrm{Re} 1-\mathrm{Br} 1$	87.36(11)
P1-Re1--Brl	87.19(2)
P2-Re1-Br1	92.37(2)
C18-P1-C4	103.10(16)
C18-P1-C11	103.51(15)
C4-P1-C11	103.06(16)
C18-P1-Rel	119.48(12)
C4-P1-Rel	111.98(12)
C11-P1-Rel	113.89(11)
C25-P2-C32	103.36(17)
C25-P2-C39	101.42(16)
C32-P2-C39	106.03(15)
C25-P2-Re1	117.71(12)
C32-P2-Rel	118.32(11)
C39-P2-Rel	108.21(11)
C7-O4-C10	118.9(3)
C14-O5-C17	116.8(3)
C21-O6-C24	117.2(3)
C28-O7-C31	116.3(3)
C35-08-C38	116.8(3)
C42-O9-C45	117.9(3)
O1-Cl-Rel	178.9(3)
O2-C2-Rel	174.2(3)
O3-C3-Rel	175.8(3)
C9-C4-C5	117.3(3)
C9-C4-P1	122.9(3)
C5-C4-P1	119.8(3)
C4-C5-C6	121.9(4)
C7-C6-C5	118.9(4)
C8-C7-O4	116.2(3)
C8-C7-C6	120.0(3)
O4-C7-C6	123.7(3)
C7-C8-C9	120.8(4)
C8-C9-C4	121.1(4)
C12-C11-C16	117.3(3)
C12-C11-P1	120.4(3)
C16-C11-P1	122.2(3)
C13-Cl2-Cl1	121.9(3)
C12-C13-C14	120.2(3)
O5-C14-C15	125.1(4)
O5-C14-C13	115.8(3)
C15-C14-C13	119.1(4)
C14-C15-C16	120.0(3)
C15-C16-C11	121.4(3)

$\mathrm{C} 23-\mathrm{C} 18-\mathrm{C} 19$	$118.6(3)$
$\mathrm{C} 23-\mathrm{C} 18-\mathrm{P} 1$	$120.8(3)$
C19-C18-P1	$120.4(3)$
C20-C19-C18	$120.8(3)$
C19-C20-C21	$119.5(3)$
O6-C21-C22	$116.0(3)$
O6-C21-C20	$123.8(3)$
C22-C21-C20	$120.2(3)$
C21-C22-C23	$119.6(3)$
C18-C23-C22	$121.2(3)$
C26-C25-C30	$117.5(3)$
C26-C25-P2	$119.9(3)$
C30-C25-P2	$122.6(3)$
C25-C26-C27	$122.4(3)$
C28-C27-C26	$119.3(3)$
O7-C28-C27	$124.4(3)$
O7-C28-C29	$115.9(3)$
C27-C28-C29	$119.8(3)$
C30-C29-C28	$119.8(3)$
C29-C30-C25	$121.1(3)$
C33-C32-C37	$117.2(3)$
C33-C32-P2	$121.4(3)$
C37-C32-P2	$121.0(3)$
C34-C33-C32	$121.9(3)$
C35-C34-C33	$119.6(3)$
O8-C35-C34	$125.2(3)$
O8-C35-C36	$115.3(3)$
C34-C35-C36	$119.5(3)$
C37-C36-C35	$120.2(4)$
C36-C37-C32	$121.6(3)$
C40-C39-C44	$117.6(3)$
C40-C39-P2	$124.9(3)$
C44-C39-P2	$117.2(3)$
C39-C40-C41	$121.8(3)$
C42-C41-C40	$119.4(3)$
O9-C42-C41	$125.3(3)$
O9-C42-C43	$114.8(3)$
C41-C42-C43	$119.9(3)$
C44-C43-C42	$119.4(3)$
C43-C44-C39	$121.9(3)$
Sy	

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	$U^{\prime \prime}$	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Rel	20(1)	18(1)	18(1)	-1(1)	1(1)	1(1)
Brl	28(1)	40(1)	22(1)	5(1)	1(1)	-5(1)
P1	20(1)	20(1)	22(1)	-2(1)	$1(1)$	O(1)
P2	21(1)	21(1)	19(1)	1(1)	0 (1)	0 (1)
O1	30(1)	32(1)	25(2)	1(1)	1(1)	O(1)
O2	45(2)	33(2)	49(2)	0 (1)	-3(2)	11(1)
O3	37(2)	24(1)	43(2)	-4(1)	-5(1)	-4(1)
O4	32(2)	37(2)	43(2)	O(1)	-4(1)	-15(1)
O5	75(2)	37(2)	29(2)	4(1)	4(1)	15(2)
06	51(2)	28(1)	43(2)	-14(1)	3(1)	8(1)
07	45(2)	28(1)	38(2)	12(1)	-3(1)	-2(1)
08	65(2)	32(2)	24(2)	-10(1)	4(1)	-5(1)
O9	28(1)	48(2)	27(2)	-3(1)	4(1)	13(1)
C1	19(2)	21(2)	38(2)	-6(2)	-3(2)	1(1)
C2	28(2)	26(2)	29(2)	1(2)	1(2)	1(2)
C3	24(2)	24(2)	27(2)	0 (2)	1(2)	4(1)
C4	20(2)	23(2)	29(2)	-4(1)	2(1)	0 (1)
C5	25(2)	41(2)	27(2)	2(2)	-2(2)	-2(2)
C6	28(2)	35(2)	30(2)	4(2)	1(2)	0 (2)
C7	24(2)	25(2)	36(2)	-2(2)	1(1)	-1(2)
C8	34(2)	40(2)	30(2)	-4(2)	-8(2)	-11(2)
C9	32(2)	31(2)	28(2)	0(2)	2(2)	-6(2)
C10	36(2)	43(3)	59(3)	15(2)	3(2)	-9(2)
C11	22(2)	22(2)	26(2)	2(1)	-1(1)	2(1)
C12	30(2)	22(2)	27(2)	-3(1)	0 (2)	2(1)
C13	37(2)	30(2)	26(2)	-4(2)	-2(2)	10(2)
C14	38(2)	36(2)	23(2)	4(2)	0(2)	5(2)
C15	33(2)	26(2)	28(2)	0 (2)	-4(2)	3(2)
C16	27(2)	24(2)	26(2)	-2(1)	-2(1)	5(1)
C17	86(4)	34(2)	32(2)	7(2)	5(2)	11(2)
C18	27(2)	23(2)	20(2)	-1(1)	4(1)	1(1)
C19	24(2)	34(2)	40(2)	-10(2)	-1(2)	1(2)
C20	26(2)	35(2)	42(2)	-9(2)	6(2)	7 (2)
C21	35(2)	24(2)	32(2)	-5(2)	8(2)	2(2)
C22	33(2)	25(2)	29(2)	-2(2)	-1(2)	-1(2)
C23	24(2)	28(2)	24(2)	-2(2)	1(1)	1(1)
C24	50(3)	37(2)	79(4)	-22(2)	13(3)	13(2)
C25	28(2)	24(2)	21(2)	1(2)	3(1)	0 (1)
C26	26(2)	28(2)	26(2)	2(2)	-1(1)	-5(1)
C27	28(2)	29(2)	32(2)	5(2)	-2(2)	1(2)
C28	39(2)	23(2)	24(2)	5(2)	3(2)	-2(2)
C29	26(2)	32(2)	48(3)	9(2)	0 (2)	-7(2)
C30	27(2)	33(2)	44(3)	10(2)	-6(2)	-5(2)
C31	47(2)	34(2)	38(2)	10(2)	-2(2)	8(2)
C32	21(2)	25(2)	26(2)	-4(2)	-1(1)	-1(1)
C33	28(2)	26(2)	27(2)	2(2)	-5(2)	$1(1)$
C34	30(2)	24(2)	32(2)	-8(2)	0 (2)	1(2)
C35	25(2)	30(2)	24(2)	-4(2)	2(1)	$-1(1)$
C36	31(2)	29(2)	21(2)	0 (2)	2(1)	-1(1)
C37	25(2)	21(2)	25(2)	-2(1)	1(1)	$1(1)$
C38	88(3)	33(2)	33(3)	-14(2)	14(2)	-10(2)
C39	18(2)	23(2)	26(2)	-1(1)	0 (1)	0 (1)
C40	28(2)	30(2)	21(2)	1(2)	2(1)	1 (2)
C41	25(2)	30(2)	23(2)	3(1)	-1(2)	4(1)
C42	24(2)	26(2)	28(2)	-2(2)	2(2)	2(1)
C43	28(2)	38(2)	17(2)	-6(2)	3(1)	1 (2)
C44	25(2)	36(2)	27(2)	-1(2)	-5(2)	2(2)
C45	39(2)	58(3)	35(2)	8(2)	8(2)	25(2)

Table 5. Hydrogen coordinates $\left[\times 10^{4}\right]$ and isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$.

Atom	x	y	z	$U_{\text {ci }}$	S.o.f.
H5	2592	457	6990	37	1
H6	1593	-231	7083	37	1
H8	1154	26	5376	42	1
H9	2126	729	5290	36	1
H10A	829	-1120	6920	69	1
H10B	11	-1095	6721	69	1
H10C	351	-507	7066	69	1
H12	3370	743	4879	32	1
H13	3321	1192	3961	37	1
H15	2972	2957	4673	35	1
H16	2977	2491	5597	31	1
H17A	2757	3223	3748	76	1
H17B	3229	3152	3177	76	1
H17C	3611	3239	3789	76	1
H19	2000	1944	6357	39	1
H20	1768	2883	6887	41	1
H22	3831	2868	7481	35	1
H23	4058	1936	6942	30	1
H24A	1896	3942	7087	83	1
H24B	2046	4282	7692	83	1
H24C	1651	3605	7673	83	1
H26	4410	2094	5761	32	1
H27	4384	3041	5219	36	1
H29	6493	3345	5620	42	1
H30	6507	2397	6156	42	1
H31A	4732	3728	4446	60	1
H31B	4919	4464	4557	60	1
H31C	4433	4082	5008	60	1
H33	5308	2652	7040	32	1
H34	5235	3014	8000	34	1
H36	5630	1191	8564	32	1
H37	5618	825	7612	28	1
H38A	5671	3235	8913	77	1
H38B	5349	3034	9525	77	1
H38C	4832	3107	8979	77	1
H40	6701	864	7103	31	1
H41	7768	335	6832	31	1
H43	7239	596	5129	34	1
H44	6183	1107	5410	35	1
H45A	8940	223	6383	66	1
H45B	9134	-341	5945	66	1
H45C	8507	-435	6406	66	1

Appendix C

Crystal tables for 2h

Table 1. Crystal data and structure refinement.

Archive code	98_11IS07
Identification code	MAB1
Empirical formula	$\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{BrO}_{3} \mathrm{P}_{2} \mathrm{Re}$
Formula weight	958.84
Temperature	150(2) K
Wavelength	$0.71073 \AA\left[\mathrm{Mo}-K_{\alpha}\right]$
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	$a=10.15740(10) \AA \quad \alpha=103.0460(6)^{\circ}$
	$b=10.3729(2) \AA \quad \beta=94.8190(9)^{\circ}$
	$c=19.2892(3) \AA \quad \gamma=92.1630(9)^{\circ}$
Volume	1969.52(5) \AA^{3}
Z	2
Density (calculated)	$1.617 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.220 \mathrm{~mm}^{-1}$
$F(000)$	952
Crystal size	$0.52 \times 0.40 \times 0.38 \mathrm{~mm}$
Data collection range	$2.06 \leq \theta \leq 26.00^{\circ}$
Index ranges	$-12 \leq h \leq 12,-12 \leq k \leq 12,-23 \leq l \leq 23$
Reflections collected	34942
Independent reflections	$7740[R(\mathrm{int})=0.0414]$
Absorption correction	Empirical [via SORTAV]
Max. and min. transmission	0.2969 and 0.2176
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7740 / 0 / 470
Goodness-of-fit on F^{2}	1.062
Final R indices [$1>2 \sigma(I)]$	$R_{1}=0.0193, w R_{2}=0.0476$
R indices (all data)	$R_{1}=0.0201, w R_{2}=0.0481$
Largest diff. peak and hole	1.134 and -1.051 e. \AA^{-3}
Extinction coefficient	0.0025(2)

Table 2. Atomic co-ordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) with estimated standard deviations (e.s.d.s) in parentheses. U_{eq} is defined as $1 / 3$ of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$U_{\text {eq }}$
$\mathrm{Re}(1)$	$9848.52(8)$	$-3.65(8)$	$1980.33(4)$	$15.33(5)$
$\mathrm{Br}(1)$	$9753.9(2)$	$2259.8(2)$	$2938.34(14)$	$26.47(7)$
$\mathrm{C}(1)$	$9973(2)$	$-1531(2)$	$1220.2(13)$	$19.9(5)$
$\mathrm{O}(1)$	$10040.5(17)$	$-2355.7(18)$	$718.9(9)$	$27.2(4)$
$\mathrm{C}(2)$	$9543(2)$	$952(3)$	$1227.5(14)$	$26.6(5)$
$\mathrm{O}(2)$	$9264(2)$	$1428(2)$	$755.5(11)$	$41.6(5)$
$\mathrm{C}(3)$	$7942(2)$	$-218(2)$	$1945.6(13)$	$21.4(5)$
$\mathrm{O}(3)$	$6811.5(17)$	$-273.8(19)$	$1933.1(10)$	$31.8(4)$
$\mathrm{P}(1)$	$12251.3(5)$	$722.8(6)$	$2137.9(3)$	$14.65(11)$
$\mathrm{C}(111)$	$13473(2)$	$-346(2)$	$1661.9(12)$	$17.8(4)$
$\mathrm{C}(112)$	$13646(2)$	$-1670(2)$	$1847.1(12)$	$17.5(4)$
$\mathrm{C}(113)$	$14473(2)$	$-1795(2)$	$2442.7(12)$	$19.5(5)$
$\mathrm{C}(114)$	$14645(2)$	$-3022(2)$	$2600.7(14)$	$24.0(5)$
$\mathrm{C}(115)$	$14022(3)$	$-4149(2)$	$2156.0(15)$	$28.2(5)$
$\mathrm{C}(116)$	$13223(3)$	$-4056(3)$	$1553.1(15)$	$29.9(6)$
$\mathrm{C}(117)$	$13034(2)$	$-2820(2)$	$1404.4(13)$	$23.6(5)$
$\mathrm{C}(121)$	$12983(2)$	$1149(2)$	$3085.6(12)$	$18.4(5)$
$\mathrm{C}(122)$	$14007(2)$	$2296(2)$	$3297.1(11)$	$17.5(4)$
$\mathrm{C}(123)$	$15326(2)$	$2158(2)$	$3169.7(13)$	$22.8(5)$
$\mathrm{C}(124)$	$16236(2)$	$3246(3)$	$3350.8(14)$	$28.8(6)$
$\mathrm{C}(125)$	$15836(3)$	$4481(3)$	$3670.9(14)$	$30.3(6)$
$\mathrm{C}(126)$	$14531(3)$	$4633(2)$	$3807.5(14)$	$28.5(6)$
$\mathrm{C}(127)$	$13624(2)$	$3551(2)$	$3616.4(13)$	$23.6(5)$
$\mathrm{C}(131)$	$12505(2)$	$2292(2)$	$1825.4(12)$	$18.9(5)$
$\mathrm{C}(132)$	$13309(3)$	$2190(2)$	$1196.7(13)$	$22.5(5)$
$\mathrm{C}(133)$	$14661(3)$	$2461(3)$	$1294.2(17)$	$35.4(6)$
$\mathrm{C}(134)$	$15378(4)$	$2322(4)$	$689(2)$	$60.0(11)$
$\mathrm{C}(135)$	$14698(5)$	$1920(4)$	$10(2)$	$70.3(13)$
$\mathrm{C}(136)$	$13374(5)$	$1691(4)$	$-80(2)$	$66.8(11)$
$\mathrm{C}(137)$	$12669(4)$	$1812(3)$	$507.3(15)$	$42.7(7)$
$\mathrm{P}(2)$	$9870.0(5)$	$-1352.9(6)$	$2899.4(3)$	$15.80(12)$
$\mathrm{C}(211)$	$11422(2)$	$-2130(2)$	$3095.8(12)$	$20.1(5)$
$\mathrm{C}(212)$	$11505(2)$	$-2774(2)$	$3726.2(12)$	$19.7(5)$
$\mathrm{C}(213)$	$12185(2)$	$-2096(2)$	$4372.2(13)$	$24.4(5)$
$\mathrm{C}(214)$	$12274(2)$	$-2654(3)$	$4963.4(14)$	$28.7(6)$
$\mathrm{C}(215)$	$11671(2)$	$-3891(3)$	$4922.7(13)$	$26.9(5)$
$\mathrm{C}(216)$	$10995(2)$	$-4578(2)$	$4283.8(13)$	$24.3(5)$
$\mathrm{C}(217)$	$10928(2)$	$-4032(2)$	$3687.6(12)$	$20.4(5)$
$\mathrm{C}(221)$	$9501(2)$	$-408(2)$	$3797.1(12)$	$22.3(5)$

Table 2 (continued)

$\mathrm{C}(222)$	$8393(2)$	$-951(2)$	$4141.3(12)$	$19.5(5)$
$\mathrm{C}(223)$	$8620(3)$	$-1775(2)$	$4611.5(13)$	$25.2(5)$
$\mathrm{C}(224)$	$7593(3)$	$-2235(3)$	$4937.6(15)$	$36.5(7)$
$\mathrm{C}(225)$	$6324(3)$	$-1881(3)$	$4805.6(15)$	$40.6(7)$
$\mathrm{C}(226)$	$6075(3)$	$-1065(3)$	$4337.6(15)$	$39.2(7)$
$\mathrm{C}(227)$	$7099(2)$	$-611(3)$	$4006.9(13)$	$27.4(5)$
$\mathrm{C}(231)$	$8587(2)$	$-2737(2)$	$2677.1(12)$	$19.1(5)$
$\mathrm{C}(232)$	$8555(2)$	$-3642(2)$	$1939.1(12)$	$21.9(5)$
$\mathrm{C}(233)$	$9556(3)$	$-4491(2)$	$1738.1(13)$	$26.2(5)$
$\mathrm{C}(234)$	$9500(3)$	$-5303(3)$	$1054.6(14)$	$32.3(6)$
$\mathrm{C}(235)$	$8434(3)$	$-5286(3)$	$565.8(15)$	$37.0(7)$
$\mathrm{C}(236)$	$7417(3)$	$-4471(3)$	$757.0(15)$	$37.3(7)$
$\mathrm{C}(237)$	$7478(3)$	$-3652(3)$	$1439.7(14)$	$28.3(5)$

Table 3. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$. The anisotropic displacement factor exponent takes the form:

$$
-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} U_{11}+\ldots+2 \mathrm{hka}^{*} \mathrm{~b}^{*} U_{12}\right]
$$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Re}(1)$	13.10(6)	16.40(6)	16.43(6)	3.52(4)	1.90(3)	0.54(3)
$\mathrm{Br}(1)$	24.43(12)	19.02(12)	33.60(14)	-0.63(10)	6.46(10)	3.63(9)
C(1)	16.3(11)	25.4(13)	20.6(12)	10.5(10)	2.5(9)	0.5(9)
$\mathrm{O}(1)$	31.8(10)	27.6(10)	20.2(9)	0.1(8)	5.3(7)	2.1(7)
C(2)	16.6(11)	27.8(13)	35.5(15)	8.2(11)	1.2(10)	-2.0(10)
$\mathrm{O}(2)$	39.2(11)	48.7(13)	44.7(13)	32.1(11)	-8.7(9)	-1.7(9)
C(3)	23.7(13)	19.7(12)	19.6(12)	2.0(9)	2.4(9)	0.7(9)
$\mathrm{O}(3)$	16.3(9)	39.7(11)	37.9(11)	5.4(9)	3.6(7)	1.5(7)
$\mathrm{P}(1)$	13.6(3)	15.6(3)	14.8(3)	3.4(2)	2.2(2)	0.6(2)
C(111)	17.4(10)	19.8(11)	17.4(11)	5.2(9)	5.1(8)	3.1(9)
C(112)	14.8(10)	20.0(11)	18.6(11)	3.5(9)	7.9(8)	1.9(8)
C(113)	17.4(11)	19.0(11)	21.5(12)	2.8(9)	3.6(9)	1.1(9)
C(114)	22.2(12)	24.4(13)	27.5(13)	9.2(10)	4.4(10)	3.6(10)
C(115)	32.3(14)	18.3(12)	36.0(15)	7.8(11)	9.1 (11)	5.3(10)
C(116)	34.3(14)	19.6(12)	31.8(14)	-2.4(10)	4.8(11)	-1.5(10)
C(117)	23.3(12)	25.7(13)	19.8(12)	0.8(10)	2.4(9)	3.2(10)
C(121)	19.2(11)	21.8(12)	14.6(11)	4.6(9)	2.0(8)	1.7(9)
C(122)	20.7(11)	21.1(11)	10.2(10)	3.4(9)	-0.9(8)	2.0(9)
C(123)	19.7(11)	23.8(12)	23.0(13)	2.3(10)	-2.0(9)	3.8(9)
C(124)	17.5(12)	35.1(15)	$32.2(14)$	7.3(12)	-3.8(10)	-2.0(10)
C(125)	31.6(14)	26.3(14)	30.0(14)	6.5(11)	-9.3(11)	-9.1(11)
C(126)	38.8(15)	18.9(12)	26.1(13)	1.9(10)	1.1(11)	3.6(10)
C(127)	26.9(12)	23.9(12)	20.1(12)	3.2(10)	5.4(9)	5.6(10)
C(131)	19.2(11)	17.8(11)	20.5(12)	6.9(9)	1.0(9)	-0.2(9)
C(132)	34.3(13)	15.5(11)	19.8(12)	6.8(9)	7.0(10)	1.8(9)
C(133)	31.8(14)	29.8(15)	51.9(18)	19.8(13)	16.2(13)	4.7(11)
C(134)	49(2)	48(2)	100(3)	40(2)	42(2)	13.0(16)
C(135)	109(4)	70(3)	48(2)	26(2)	52(2)	30(2)
C(136)	102(4)	71(3)	31.0(19)	13.1(18)	25(2)	8(2)
C(137)	65(2)	43.2(18)	21.1(14)	10.1(13)	3.5(13)	-0.9(15)
P (2)	17.0(3)	16.4(3)	13.0(3)	0.6(2)	4.0(2)	-0.6(2)
C(211)	21.1(11)	20.0(11)	20.4(12)	5.8(9)	5.8(9)	0(9)
C(212)	16.0(11)	24.0(12)	20.1(12)	5.3(9)	5.7(8)	4.7(9)
C(213)	21.3(12)	23.6(12)	26.7(13)	3.2(10)	0.7(9)	-0.2(9)
C(214)	26.5(13)	35.2(15)	21.9(13)	4.1(11)	-5.4(10)	2.7(11)
C(215)	28.5(13)	34.8(14)	19.9(12)	10.5(11)	2.3(10)	8.0(11)
C(216)	25.0(12)	21.7(12)	27.8(13)	6.9(10)	6.5(10)	3.3(9)
C(217)	22.6(11)	20.7(12)	17.6(12)	3.2(9)	2.6(9)	3.4(9)
C(221)	27.5(12)	20.1(12)	16.7(11)	-2.0(9)	4.8(9)	-0.6(9)
C(222)	21.2(11)	19.8(11)	14.1(11)	-3.9(9)	4.0(8)	0.5(9)
C(223)	30.8(13)	26.7(13)	18.2(12)	2.9(10)	$6.1(10)$	7.1(10)

Table 3 (continued)

$\mathrm{C}(224)$	$56.2(19)$	$31.3(15)$	$24.1(14)$	$6.0(11)$	$17.3(12)$	$1.3(13)$
$\mathrm{C}(225)$	$39.6(16)$	$46.8(18)$	$29.8(15)$	$-5.7(13)$	$18.8(12)$	$-13.7(13)$
$\mathrm{C}(226)$	$19.9(13)$	$61(2)$	$27.7(15)$	$-9.1(14)$	$4.4(10)$	$1.1(12)$
$\mathrm{C}(227)$	$27.3(13)$	$36.0(15)$	$15.6(12)$	$-1.8(10)$	$1.1(9)$	$7.5(11)$
$\mathrm{C}(231)$	$20.5(11)$	$19.1(11)$	$16.3(11)$	$0.6(9)$	$4.6(8)$	$-2.8(9)$
$\mathrm{C}(232)$	$28.4(12)$	$17.2(11)$	$18.3(12)$	$0.3(9)$	$5.0(9)$	$-5.8(9)$
$\mathrm{C}(233)$	$36.5(14)$	$21.2(12)$	$20.2(12)$	$3.5(10)$	$2.6(10)$	$2.1(10)$
$\mathrm{C}(234)$	$45.9(16)$	$21.9(13)$	$26.0(14)$	$-3.5(11)$	$8.8(12)$	$3.3(11)$
$\mathrm{C}(235)$	$52.0(18)$	$28.5(14)$	$22.0(14)$	$-10.0(11)$	$2.2(12)$	$-5.6(12)$
$\mathrm{C}(236)$	$40.0(16)$	$38.4(16)$	$25.5(14)$	$-4.1(12)$	$-7.6(11)$	$-7.2(12)$
$\mathrm{C}(237)$	$27.5(13)$	$27.2(13)$	$26.5(14)$	$-1.0(11)$	$2.7(10)$	$-4.1(10)$

Table 4. Hydrogen atom co-ordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) with e.s.d.s in parentheses.

	x	y	z	$U_{\text {eq }}$
H(111)	13211	-507	1142	21
H(111)	14344	154	1756	21
H(113)	14924	-1027	2745	23
H(114)	15192	-3086	3015	29
H(115)	14140	-4989	2263	34
H(116)	12806	-4833	1242	36
H(117)	12477	-2762	993	28
$\mathrm{H}(121)$	12253	1348	3396	22
H(121)	13392	354	3190	22
H(123)	15611	1310	2956	27
H(124)	17132	3140	3254	35
H(125)	16457	5223	3797	36
H(126)	14255	5478	4032	34
H(127)	12725	3668	3705	28
H(131)	11626	2601	1698	23
H(131)	12945	2978	2229	23
H(133)	15102	2736	1762	42
H(134)	16310	2499	744	72
H(135)	15180	1806	-399	84
H(136)	12928	1446	-547	80
H(137)	11737	1636	443	51
$\mathrm{H}(211)$	11576	-2812	2665	24
H(211)	12157	-1443	3175	24
H(213)	12593	-1241	4408	29
H(214)	12751	-2184	5397	34
H(215)	11720	-4266	5330	32
H(216)	10577	-5427	4253	29
H(217)	10483	-4521	3249	24
H(221)	10318	-328	4126	27
H(221)	9296	499	3757	27
H(223)	9493	-2026	4710	30
H(224)	7769	-2801	5255	44
$\mathrm{H}(225)$	5624	-2193	5033	49
H(226)	5199	-815	4243	47
H(227)	6915	-59	3683	33
H(231)	8717	-3283	3035	23
H(231)	7711	-2359	2727	23
H(233)	10290	-4516	2074	31
H(234)	10196	-5869	925	39
H(235)	8399	-5835	97	44
H(236)	6676	-4470	422	45
$\mathrm{H}(237)$	6775	-3093	1567	34

Table 5. Interatomic distances (\AA) with e.s.d.s in parentheses.

$\operatorname{Re}(1)-\mathrm{C}(1)$	$1.917(2)$	$\mathrm{Re}(1)-\mathrm{C}(3)$	$1.935(2)$
$\operatorname{Re}(1)-\mathrm{C}(2)$	$1.946(3)$	$\mathrm{Re}(1)-\mathrm{P}(2)$	$2.4936(6)$
$\operatorname{Re}(1)-\mathrm{P}(1)$			$2.6504(3)$
$\mathrm{C}(1)-\mathrm{O}(1)$			
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.146(3)$	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.150(3)$
	$1.145(3)$		
$\mathrm{P}(1)-\mathrm{C}(111)$			$1.863(2)$
$\mathrm{P}(1)-\mathrm{C}(131)$	$1.857(2)$	$\mathrm{P}(1)-\mathrm{C}(121)$	$1.507(3)$
$\mathrm{C}(112)-\mathrm{C}(117)$	$1.391(3)$	$\mathrm{C}(111)-\mathrm{C}(112)$	$1.398(3)$
$\mathrm{C}(113)-\mathrm{C}(114)$	$1.388(3)$	$\mathrm{C}(114)-\mathrm{C}(113)$	$1.380(4)$
$\mathrm{C}(115)-\mathrm{C}(116)$	$1.385(4)$	$\mathrm{C}(116)-\mathrm{C}(117)$	$1.392(4)$
$\mathrm{C}(121)-\mathrm{C}(122)$	$1.510(3)$	$\mathrm{C}(122)-\mathrm{C}(123)$	$1.389(3)$
$\mathrm{C}(122)-\mathrm{C}(127)$	$1.394(3)$	$\mathrm{C}(123)-\mathrm{C}(124)$	$1.393(3)$
$\mathrm{C}(124)-\mathrm{C}(125)$	$1.383(4)$	$\mathrm{C}(125)-\mathrm{C}(126)$	$1.381(4)$
$\mathrm{C}(126)-\mathrm{C}(127)$	$1.386(4)$	$\mathrm{C}(131)-\mathrm{C}(132)$	$1.505(3)$
$\mathrm{C}(132)-\mathrm{C}(133)$	$1.380(4)$	$\mathrm{C}(132)-\mathrm{C}(137)$	$1.394(4)$
$\mathrm{C}(133)-\mathrm{C}(134)$	$1.410(5)$	$\mathrm{C}(134)-\mathrm{C}(135)$	$1.397(6)$
$\mathrm{C}(135)-\mathrm{C}(136)$	$1.347(6)$	$\mathrm{C}(136)-\mathrm{C}(137)$	$1.375(5)$
$\mathrm{P}(2)-\mathrm{C}(211)$	$1.847(2)$	$\mathrm{P}(2)-\mathrm{C}(231)$	$1.852(2)$
$\mathrm{P}(2)-\mathrm{C}(221)$	$1.863(2)$	$\mathrm{C}(211)-\mathrm{C}(212)$	$1.512(3)$
$\mathrm{C}(212)-\mathrm{C}(217)$	$1.394(3)$	$\mathrm{C}(212)-\mathrm{C}(213)$	$1.396(3)$
$\mathrm{C}(213)-\mathrm{C}(214)$	$1.389(4)$	$\mathrm{C}(214)-\mathrm{C}(215)$	$1.383(4)$
$\mathrm{C}(215)-\mathrm{C}(216)$	$1.387(4)$	$\mathrm{C}(216)-\mathrm{C}(217)$	$1.390(3)$
$\mathrm{C}(221)-\mathrm{C}(222)$	$1.507(3)$	$\mathrm{C}(222)-\mathrm{C}(223)$	$1.392(3)$
$\mathrm{C}(222)-\mathrm{C}(227)$	$1.392(3)$	$\mathrm{C}(223)-\mathrm{C}(224)$	$1.386(4)$
$\mathrm{C}(224)-\mathrm{C}(225)$	$1.373(5)$	$\mathrm{C}(225)-\mathrm{C}(226)$	$1.386(5)$
$\mathrm{C}(226)-\mathrm{C}(227)$	$1.386(4)$	$\mathrm{C}(231)-\mathrm{C}(232)$	$1.515(3)$
$\mathrm{C}(232)-\mathrm{C}(233)$	$1.393(4)$	$\mathrm{C}(232)-\mathrm{C}(237)$	$1.394(4)$
$\mathrm{C}(233)-\mathrm{C}(234)$	$1.390(4)$	$\mathrm{C}(234)-\mathrm{C}(235)$	$1.378(4)$
$\mathrm{C}(235)-\mathrm{C}(236)$	$1.381(4)$	$\mathrm{C}(236)-\mathrm{C}(237)$	$1.392(4)$

Table 6. Angles between interatomic vectors $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses

$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{C}(3)$	93.78(10)	$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{C}(2)$	85.67(10)
$\mathrm{C}(3)-\operatorname{Re}(1)-\mathrm{C}(2)$	86.18(10)	$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{P}(2)$	92.59(7)
$\mathrm{C}(3)-\operatorname{Re}(1)-\mathrm{P}(2)$	85.19(7)	$\mathrm{C}(2)-\operatorname{Re}(1)-\mathrm{P}(2)$	171.07(7)
$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{P}(1)$	96.38(7)	$\mathrm{C}(3)-\operatorname{Re}(1)-\mathrm{P}(1)$	169.06(7)
$\mathrm{C}(2)-\operatorname{Re}(1)-\mathrm{P}(1)$	90.57(7)	$\mathrm{P}(2)-\operatorname{Re}(1)-\mathrm{P}(1)$	98.34(2)
$\mathrm{C}(1)-\mathrm{Re}(1)-\mathrm{Br}(1)$	173.99(7)	$\mathrm{C}(3)-\operatorname{Re}(1)-\operatorname{Br}(1)$	88.44(7)
$\mathrm{C}(2)-\operatorname{Re}(1)-\operatorname{Br}(1)$	88.91(8)	$\mathrm{P}(2)-\operatorname{Re}(1)-\operatorname{Br}(1)$	93.157(14)
$\mathrm{P}(1)-\operatorname{Re}(1)-\operatorname{Br}(1)$	81.048(14)		
$\mathrm{O}(1)-\mathrm{C}(1)-\operatorname{Re}(1)$	172.8(2)	$\mathrm{O}(2)-\mathrm{C}(2)-\operatorname{Re}(1)$	173.4(2)
$\mathrm{O}(3)-\mathrm{C}(3)-\operatorname{Re}(1)$	176.4(2)		
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	103.72(10)	$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(131)$	102.08(10)
$\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{C}(131)$	104.14(10)	$\mathrm{C}(111)-\mathrm{P}(1)-\operatorname{Re}(1)$	120.69(7)
$\mathrm{C}(121)-\mathrm{P}(1)-\operatorname{Re}(1)$	114.15(7)	$\mathrm{C}(131)-\mathrm{P}(1)-\operatorname{Re}(1)$	110.25(7)
$\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{P}(1)$	116.9(2)	$\mathrm{C}(117)-\mathrm{C}(112)-\mathrm{C}(113)$	117.8(2)
$\mathrm{C}(117)-\mathrm{C}(112)-\mathrm{C}(111)$	120.5(2)	C(113)-C(112)-C(111)	121.6(2)
$\mathrm{C}(114)-\mathrm{C}(113)-\mathrm{C}(112)$	121.2(2)	$\mathrm{C}(115)-\mathrm{C}(114)-\mathrm{C}(113)$	119.9(2)
$\mathrm{C}(114)-\mathrm{C}(115)-\mathrm{C}(116)$	120.0(2)	$\mathrm{C}(115)-\mathrm{C}(116)-\mathrm{C}(117)$	119.8(2)
C(112)-C(117)-C(116)	121.2(2)	$\mathrm{C}(122)-\mathrm{C}(121)-\mathrm{P}(1)$	117.0(2)
$\mathrm{C}(123)-\mathrm{C}(122)-\mathrm{C}(127)$	118.1(2)	$\mathrm{C}(123)-\mathrm{C}(122)-\mathrm{C}(121)$	122.3(2)
$\mathrm{C}(127)-\mathrm{C}(122)-\mathrm{C}(121)$	119.5(2)	$\mathrm{C}(122)-\mathrm{C}(123)-\mathrm{C}(124)$	120.8(2)
$\mathrm{C}(125)-\mathrm{C}(124)-\mathrm{C}(123)$	120.1(2)	$\mathrm{C}(126)-\mathrm{C}(125)-\mathrm{C}(124)$	119.8(2)
$\mathrm{C}(125)-\mathrm{C}(126)-\mathrm{C}(127)$	120.0(2)	$\mathrm{C}(126)-\mathrm{C}(127)-\mathrm{C}(122)$	121.2(2)
$\mathrm{C}(132)-\mathrm{C}(131)-\mathrm{P}(1)$	115.6(2)	$\mathrm{C}(133)-\mathrm{C}(132)-\mathrm{C}(137)$	120.0(3)
C(133)-C(132)-C(131)	121.0(2)	$\mathrm{C}(137)-\mathrm{C}(132)-\mathrm{C}(131)$	119.0(2)
$\mathrm{C}(132)-\mathrm{C}(133)-\mathrm{C}(134)$	119.0(3)	$\mathrm{C}(135)-\mathrm{C}(134)-\mathrm{C}(133)$	119.0(3)
C(136)-C(135)-C(134)	121.5(3)	$\mathrm{C}(135)-\mathrm{C}(136)-\mathrm{C}(137)$	119.8(4)
$\mathrm{C}(136)-\mathrm{C}(137)-\mathrm{C}(132)$	120.7(4)		
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(231)$	104.73(11)	$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	103.11(11)
$\mathrm{C}(231)-\mathrm{P}(2)-\mathrm{C}(221)$	103.43(10)	$\mathrm{C}(211)-\mathrm{P}(2)-\operatorname{Re}(1)$	117.48(7)
$\mathrm{C}(231)-\mathrm{P}(2)-\operatorname{Re}(1)$	112.77(8)	$\mathrm{C}(221)-\mathrm{P}(2)-\operatorname{Re}(1)$	113.83(8)
$\mathrm{C}(212)-\mathrm{C}(211)-\mathrm{P}(2)$	117.5(2)	$\mathrm{C}(217)-\mathrm{C}(212)-\mathrm{C}(213)$	118.3(2)
$\mathrm{C}(217)-\mathrm{C}(212)-\mathrm{C}(211)$	122.4(2)	C(213)-C(212)-C(211)	119.4(2)
C(214)-C(213)-C(212)	120.9(2)	C(215)-C(214)-C(213)	120.2(2)
C(214)-C(215)-C(216)	119.5(2)	$\mathrm{C}(215)-\mathrm{C}(216)-\mathrm{C}(217)$	120.3(2)
$\mathrm{C}(216)-\mathrm{C}(217)-\mathrm{C}(212)$	120.7(2)	$\mathrm{C}(222)-\mathrm{C}(221)-\mathrm{P}(2)$	117.9(2)
$\mathrm{C}(223)-\mathrm{C}(222)-\mathrm{C}(227)$	117.8(2)	C(223)-C(222)-C(221)	121.9(2)
C(227)-C(222)-C(221)	120.3(2)	C(224)-C(223)-C(222)	121.1(2)
C(225)-C(224)-C(223)	120.5(3)	$\mathrm{C}(224)-\mathrm{C}(225)-\mathrm{C}(226)$	119.4(3)
C(225)-C(226)-C(227)	120.2(3)	C(226)-C(227)-C(222)	121.1(3)
$\mathrm{C}(232)-\mathrm{C}(231)-\mathrm{P}(2)$	116.3(2)	C(233)-C(232)-C(237)	118.0(2)
C(233)-C(232)-C(231)	122.6(2)	C(237)-C(232)-C(231)	119.4(2)
C(234)-C(233)-C(232)	121.1(2)	C(235)-C(234)-C(233)	120.0(3)
C(234)-C(235)-C(236)	120.0(2)	$\mathrm{C}(235)-\mathrm{C}(236)-\mathrm{C}(237)$	120.0(3)
C(236)-C(237)-C(232)	120.9(3)		

Appendix D

Crystal tables for $\mathbf{2 j}$

Table 1. Crystal data and structure refinement for $\mathrm{Mn}(\mathrm{CO})_{3} \mathrm{Br}(\mathrm{dppe}) \mathrm{CHCl}_{3}$.

Identification code	99SRC056
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{Br} \mathrm{Cl}_{3} \mathrm{Mn} \mathrm{O}_{3} \mathrm{P}_{2}$
Formula weight	736.64
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=11.2561$ (7) \AA
	$\mathrm{b}=19.5844(11) \AA$
	$\mathrm{c}=14.7549(9) \AA$
	$\beta=108.075(3)^{\circ}$.
Volume	3092.1(3) \AA^{3}
Z	4
Density (calculated)	$1.582 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.113 \mathrm{~mm}^{-1}$
F(000)	1480
Crystal size	$0.20 \times 0.05 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	2.92 to 24.71°.
Index ranges	$-13<=\mathrm{h}<=13,-23<=\mathrm{k}<=23,-17<=1<=17$
Reflections collected	49193
Independent reflections	5257 [R(int) $=0.1412]$
Completeness to theta $=24.71^{\circ}$	96.6 \%
Max. and min. transmission	0.9017 and 0.6773
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5257 / 0 / 361
Goodness-of-fit on F^{2}	1.040
Final R indices [$\mathrm{l}>2 \operatorname{sigma}(\mathrm{l})$]	$\mathrm{R} 1=0.0567, \mathrm{wR} 2=0.1357$ -
R indices (all data)	$\mathrm{R} 1=0.1023, \mathrm{wR} 2=0.1574$
Largest diff. peak and hole	1.133 and -0.531 e. \AA^{-3}

Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for $\mathrm{Mn}(\mathrm{CO})_{3} \mathrm{Br}($ dppe $) \mathrm{CHCl}_{3}$.

$\mathrm{Br}(1)-\mathrm{Mn}(1)$	2.5198(10)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.398(8)
$\mathrm{Mn}(1)-\mathrm{C}(2)$	1.818(7)	C(8)-C(9)	1.366 (10)
$\mathrm{Mn}(1)-\mathrm{C}(1)$	1.827(6)	C(8)-C(7)	$1.374(9)$
$\mathrm{Mn}(1)-\mathrm{C}(3)$	1.953(9)	$\mathrm{Cl}(3)-\mathrm{C}(30)$	$1.736(7)$
$\mathrm{Mn}(1)-\mathrm{P}(1)$	2.3206(17)	C(23)-C(22)	1.397(8)
$\mathrm{Mn}(1)-\mathrm{P}(2)$	2.3325(17)	C(19)-C(20)	$1.374(9)$
$\mathrm{P}(2)-\mathrm{C}(5)$	1.821(6)	C(22)-C(21)	1.370 (9)
$\mathrm{P}(2)-\mathrm{C}(12)$	1.830(5)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.381(9)
$\mathrm{P}(2)-\mathrm{C}(6)$	1.832(6)	$\mathrm{O}(3)-\mathrm{C}(3)$	0.955(7)
$\mathrm{P}(1)-\mathrm{C}(24)$	1.823(6)		
$\mathrm{P}(1)-\mathrm{C}(4)$	1.828(5)	$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(1)$	93.0(2)
$\mathrm{P}(1)-\mathrm{C}(18)$	1.836(6)	$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	90.1(2)
$\mathrm{Cl}(1)-\mathrm{C}(30)$	1.761(7)	$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	90.7(2)
$\mathrm{Cl}(2)-\mathrm{C}(30)$	1.767(6)	$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{P}(1)$	90.06(17)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.121(6)	$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{P}(1)$	90.56(18)
$\mathrm{O}(2)-\mathrm{C}(2)$	1.126(7)	$\mathrm{C}(3)-\mathrm{Mn}(1)-\mathrm{P}(1)$	178.69(17)
C(11)-C(10)	1.372(9)	$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{P}(2)$	92.72(17)
$\mathrm{C}(11)-\mathrm{C}(6)$	1.377(8)	$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{P}(2)$	172.58(19)
$\mathrm{C}(18)-\mathrm{C}(23)$	1.369(8)	$\mathrm{C}(3)-\mathrm{Mn}(1)-\mathrm{P}(2)$	93.96(17)
C(18)-C(19)	1.382(8)	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{P}(2)$	84.74(6)
C(5)-C(4)	1.528(8)	$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	177.56(17)
C(25)-C(24)	1.382(8)	$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	89.26(18)
C(25)-C(26)	1.392(8)	$\mathrm{C}(3)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	90.70(16)
C(24)-C(29)	1.395(8)	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	89.05(5)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.384(9)	$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	84.94(5)
C(26)-C(27)	1.377(9)	$\mathrm{C}(5)-\mathrm{P}(2)-\mathrm{C}(12)$	105.9(3)
$\mathrm{C}(12)-\mathrm{C}(17)$	1.388(8)	$\mathrm{C}(5)-\mathrm{P}(2)-\mathrm{C}(6)$	104.2(3)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.397(8)	$\mathrm{C}(12)-\mathrm{P}(2)-\mathrm{C}(6)$	101.4(3)
C(29)-C(28)	1.376(9)	$\mathrm{C}(5)-\mathrm{P}(2)-\mathrm{Mn}(1)$	107.05(19)
C(15)-C(14)	1.372(8)	$\mathrm{C}(12)-\mathrm{P}(2)-\mathrm{Mn}(1)$	113.74(18)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.379(8)	$\mathrm{C}(6)-\mathrm{P}(2)-\mathrm{Mn}(1)$	123.11(19)
C(10)-C(9)	1.370(9)	$\mathrm{C}(24)-\mathrm{P}(1)-\mathrm{C}(4)$	106.8(3)
C(14)-C(13)	1.382(8)	$\mathrm{C}(24)-\mathrm{P}(1)-\mathrm{C}(18)$	100.5(3)
C(27)-C(28)	1.380(9)	$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(18)$	103.6(3)

$\mathrm{C}(24)-\mathrm{P}(1)-\mathrm{Mn}(1)$	$117.08(19)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.0(6)$
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{Mn}(1)$	$107.80(19)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.6(6)$
$\mathrm{C}(18)-\mathrm{P}(1)-\mathrm{Mn}(1)$	$119.75(19)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$120.7(6)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$122.1(6)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.4(5)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)$	$119.4(5)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$120.1(6)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{P}(1)$	$121.3(4)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{P}(1)$	$110.4(4)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{P}(1)$	$119.2(4)$	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$119.4(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{P}(2)$	$109.8(4)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$119.8(6)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Mn}(1)$	$179.0(5)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$120.8(7)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$120.1(6)$	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	$120.7(6)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Mn}(1)$	$179.0(5)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.4(6)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(29)$	$118.5(5)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$120.8(7)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{P}(1)$	$122.6(4)$	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$120.3(6)$
$\mathrm{C}(29)-\mathrm{C}(24)-\mathrm{P}(1)$	$118.8(5)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$120.6(6)$
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	$117.3(6)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$119.6(6)$
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{P}(2)$	$120.9(5)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119.9(6)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{P}(2)$	$121.8(5)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$120.2(6)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$120.4(6)$	$\mathrm{Cl}(3)-\mathrm{C}(30)-\mathrm{Cl}(1)$	$111.5(4)$
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)$	$118.4(5)$	$\mathrm{Cl}(3)-\mathrm{C}(30)-\mathrm{Cl}(2)$	$110.6(4)$
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{P}(2)$	$124.0(4)$	$\mathrm{Cl}(1)-\mathrm{C}(30)-\mathrm{Cl}(2)$	$108.9(4)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{P}(2)$	$117.5(4)$	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Mn}(1)$	$176.6(6)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(24)$	$121.5(6)$		

Symmetry transformations used to generate equivalent atoms:

Appendix E

Crystal tables for $\mathbf{2 m}$

EPSRC National Crystallography Service

Table 1. Crystal data and structure refinement.

Identification code	99src306
Empirical formula	$\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{BrFeMnO}_{3} \mathrm{P}_{2}$
Formula weight	773.23
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$P 21 / c$
Unit cell dimensions	$a=11.515(2) \AA \quad \alpha=90^{\circ}$
	$b=19.546(4) \AA \quad \beta=93.26(3)^{\circ}$
	$c=14.169(3) \AA \quad \gamma=90^{\circ}$
Volume	3183.9(11) \AA^{3}
Z	4
Density (calculated)	$1.613 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.245 \mathrm{~mm}^{-1}$
$F(000)$	1560
Crystal	Block; orange
Crystal size	$0.15 \times 0.125 \times 0.1 \mathrm{~mm}^{3}$
θ range for data collection	$1.77-27.49^{\circ}$
Index ranges	$-14 \leq h \leq 14,-21 \leq k \leq 25,-18 \leq l \leq 17$
Reflections collected	36700
Independent reflections	7273 [$\left.R_{\text {int }}=0.0652\right]$
Completeness to $\theta=27.49^{\circ}$	96.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.804 and 0.668
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$7273 / 0 / 406$
Goodness-of-fit on F^{2}	1.099
Final R indices [$F^{2}>2 \sigma\left(F^{2}\right)$]	$R I=0.0494, w R 2=0.1433$
R indices (all data)	$R 1=0.0663, w R 2=0.1549$
Largest diff. peak and hole	1.049 and -1.726 e \AA^{-3}

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm
Special details:

Table 2. Atomic coordinates [$\times 10^{4}$], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right.$] and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{\text {eq }}$	S.o.f.
br1	$2534(1)$	$2387(1)$	$7072(1)$	$36(1)$	1
fe1	$3382(1)$	$1017(1)$	$9575(1)$	$18(1)$	1
mn1	$2037(1)$	$1187(1)$	$6572(1)$	$18(1)$	1
p1	$996(1)$	$886(1)$	$7932(1)$	$17(1)$	1
p2	$3886(1)$	$853(1)$	$7250(1)$	$16(1)$	1
o1	$2985(2)$	$1661(2)$	$4787(2)$	$41(1)$	1
o2	$-136(2)$	$1764(2)$	$5685(2)$	$42(1)$	1
o3	$1604(3)$	$-98(2)$	$5685(2)$	$38(1)$	1
c1	$4937(3)$	$690(2)$	$9127(2)$	$20(1)$	1
c2	$5118(3)$	$1063(2)$	$9982(2)$	$24(1)$	1
c3	$4677(3)$	$1734(2)$	$9830(2)$	$26(1)$	1
c4	$4191(3)$	$1777(2)$	$8885(2)$	$24(1)$	1
c5	$4347(3)$	$1124(2)$	$8439(2)$	$18(1)$	1
c6	$1715(3)$	$1329(2)$	$9788(2)$	$25(1)$	1
c7	$2268(3)$	$1088(2)$	$10646(2)$	$31(1)$	1
c8	$2601(3)$	$402(2)$	$10518(2)$	$26(1)$	1
c9	$2275(3)$	$208(2)$	$9572(2)$	$23(1)$	1
c10	$1703(3)$	$783(2)$	$9106(2)$	$20(1)$	1
c11	$165(3)$	$99(2)$	$7675(2)$	$21(1)$	1
c12	$314(3)$	$-525(2)$	$8143(2)$	$23(1)$	1
c13	$-301(3)$	$-1098(2)$	$7836(3)$	$28(1)$	1
c14	$-1105(3)$	$-1062(2)$	$7067(3)$	$27(1)$	1
c15	$-1302(3)$	$-441(2)$	$6629(3)$	$33(1)$	1
c16	$-675(3)$	$135(2)$	$6922(3)$	$29(1)$	1
c17	$-205(3)$	$1444(2)$	$8270(2)$	$21(1)$	1
c18	$-1085(3)$	$1155(2)$	$8780(3)$	$29(1)$	1
c19	$-1979(3)$	$1556(2)$	$9086(3)$	$33(1)$	1
c20	$-1996(3)$	$2253(2)$	$8888(3)$	$32(1)$	1
c21	$-1126(3)$	$2545(2)$	$8415(3)$	$30(1)$	1
c22	$-228(3)$	$2137(2)$	$8086(3)$	$26(1)$	1
c23	$4186(3)$	$-72(2)$	$7326(2)$	$18(1)$	1
c24	$5300(3)$	$-338(2)$	$7243(2)$	$23(1)$	1
c25	$5507(3)$	$-1034(2)$	$7314(2)$	$28(1)$	1
c26	$4608(3)$	$-1479(2)$	$7493(3)$	$28(1)$	1
c27	$3504(3)$	$-1225(2)$	$7586(2)$	$27(1)$	1
c28	$3285(3)$	$-527(2)$	$7496(2)$	$19(1)$	1
c29	$5102(3)$	$1123(2)$	$6561(2)$	$20(1)$	1
c30	$5999(3)$	$1527(2)$	$6938(2)$	$23(1)$	1
c31	$6959(3)$	$1669(2)$	$6412(3)$	$30(1)$	1
c32	$7017(3)$	$1397(2)$	$5512(3)$	$30(1)$	1
c33	$6114(3)$	$1001(2)$	$5126(2)$	$28(1)$	1
c34	$5162(3)$	$868(2)$	$5647(2)$	$24(1)$	1
c35	$2678(3)$	$1472(2)$	$5494(2)$	$26(1)$	1
c36	$675(3)$	$1532(2)$	$6051(2)$	$26(1)$	1
c37	$1758(3)$	$311(2)$	$5960(3)$	$26(1)$	1
					1
			1	1	

Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$].

br1-mn1	2.5068(8)
fe1-c5	2.018(3)
fel-c4	2.032(4)
fe1-c9	2.031(3)
fe1-cl	2.037(3)
fel-c8	2.044(3)
fel-c7	2.047(4)
fe1-c2	2.051(3)
fel-c6	2.052(3)
fel-c10	2.059(3)
fe1-c3	2.063(4)
mn1-c35	1.821(4)
mn1-c36	1.824(4)
mn1-c37	$1.938(5)$
$\mathrm{mn} 1-\mathrm{p} 2$	$2.3769(11)$
$\mathrm{mn} 1-\mathrm{p} 1$	2.4000 (11)
pl-c10	1.822(3)
p1-c11	1.837(3)
p1-c17	1.846(3)
p2-c5	1.817(3)
p2-c29	$1.829(3)$
p2-c23	1.842(3)
o1-c35	1.143(4)
o2-c36	$1.136(4)$
o3-c37	0.903(4)
c1-c2	1.420(5)
c1-c5	1.435(5)
c2-c3	1.418(5)
c3-c4	1.424(5)
c4-c5	1.438(5)
c6-c7	1.421 (5)
c6-c10	$1.439(5)$
c7-c8	$1.409(6)$
c8-c9	1.422(5)
c9-c10	1.443(5)
c11-c12	$1.394(5)$
c11-cl6	1.400(5)
c12-cl3	1.381 (5)
c13-c14	1.391 (5)
c14-c15	$1.376(6)$
c15-c16	$1.389(5)$
c17-c22	$1.381(5)$
c17-c18	$1.395(5)$
c18-c19	$1.383(5)$
c19-c20	1.391 (6)
c20-c21	1.362(6)
c21-c22	$1.406(5)$
c23-c24	$1.396(5)$
c23-c28	$1.397(5)$
c24-c25	1.383(5)
c25-c26	$1.386(5)$
c26-c27	$1.378(5)$
c27-c28	1.393 (5)
c29-c30	1.383(5)
c29-c34	1.394(5)
c30-c31	1.397 (5)
c31-c32	1.387(5)
c32-c33	$1.384(5)$
c33-c34	1.381 (5)

c5-fe1-c4	41.61(13)
c5-fe1-c9	116.92(14)
c4-fe1-c9	150.74(14)
c5-fel-c1	41.44(13)
c4-fel-cl	69.16(14)
c9-fel-cl	108.49(14)
c5-fe1-c8	149.88(14)
c4-fe1-c8	167.19(14)
c9-fel-c8	40.86(14)
cl-fel-c8	116.48(14)
c5-fel-c7	168.88(15)
c4-fe1-c7	129.17(16)
c9-fe1-c7	68.56(15)
c1-fe1-c7	148.34(14)
c8-fe1-c7	40.29(16)
c5-fe1-c2	69.37(13)
c4-fe1-c2	68.71(14)
c9-fe1-c2	129.52(14)
c1-fe1-c2	40.65(13)
c8-fe1-c2	107.46(14)
c7-fe1-c2	115.48(14)
c5-fe1-c6	130.42(14)
c4-fe1-c6	108.20(15)
c9-fe1-c6	68.87(14)
c1-fe1-c6	170.15(13)
c8-fe1-c6	68.21(15)
c7-fe1-c6	40.57(15)
c2-fe1-c6	148.26(14)
c5-fe1-c10	108.38(13)
c4-fel-cl0	117.07(14)
c9-fe1-c10	41.29(13)
cl-fel-c10	130.94(13)
c8-fe1-c10	68.89(13)
c7-fe1-c10	68.77(14)
c2-fe1-c10	169.26(14)
c6-fe1-c10	40.96(13)
c5-fe1-c3	69.16(13)
c4-fe1-c3	40.69(14)
c9-fe1-c3	167.55(14)
c1-fe1-c3	68.21(14)
c8-fe1-c3	128.73(14)
c7-fe1-c3	107.54(15)
c2-fe1-c3	40.33(15)
c6-fe1-c3	116.44(15)
c10-fe1-c3	149.70(14)
c35-mn1-c36	85.85(16)
c35-mn1-c37	87.71(17)
c36-mn1-c37	91.62(15)
c35-mn1-p2	91.50(11)
c36-mn1-p2	174.17(12)
c37-mnl-p2	93.46(10)
c35-mn1-p1	173.36(11)
c36-mn1-pl	87.62(11)
c37-mn1-pl	93.72(12)
p2-mn1-pl	94.88(4)
c35-mn1-brl	81.56(12)
c36-mn1-br1	86.90(12)
c37-mn1-br1	169.25(12)
p2-mn1-br1	87.58(3)
pl-mn $1-\mathrm{br} 1$	96.85(3)

cl0-pl-cll	106.84(16)
c10-pl-c17	97.49(15)
c11-pl-c17	99.02(15)
c10-pl-mnl	122.86(11)
cl1-pl-mnl	108.95(11)
$\mathrm{cl} 1-\mathrm{pl}$-mn1	118.65(11)
c5-p2-c29	102.61(15)
c5-p2-c23	100.87(14)
c29-p2-c23	99.67(15)
c5-p2-mn1	120.16(11)
c29-p2-mn1	113.60(11)
c23-p2-mn1	116.96(11)
c2-cl-c5	108.4(3)
c2-cl-fel	70.21(19)
c5-c1-fel	68.57(18)
c3-c2-c1	108.2(3)
c3-c2-fel	70.3(2)
c1-c2-fel	69.14(19)
c2-c3-c4	108.3(3)
c2-c3-fel	69.4(2)
c4-c3-fel	68.5(2)
c3-c4-c5	108.0(3)
c3-c4-fel	70.8(2)
c5-c4-fel	68.66(19)
cl-c5-c4	107.0(3)
cl-c5-p2	124.0(2)
c4-c5-p2	129.0(3)
cl-c5-fe 1	69.99(18)
c4-c5-fe1	69.73(18)
p2-c5-fel	124.37(17)
c7-c6-c10	108.4(3)
c7-c6-fe 1	69.5(2)
c10-c6-fe1	69.81(19)
c8-c7-c6	108.5(3)
c8-c7-fel	69.8(2)
c6-c7-fe1	69.9(2)
c7-c8-c9	108.4(3)
c7-c8-fel	69.9(2)
c9-c8-fel	69.08(19)
c8-c9-c10	108.2(3)
c8-c9-fel	70.1(2)
c10-c9-fel	70.41(19)
c6-c10-c9	106.5(3)
c6-c10-p1	121.2(3)
c9-c10-pl	132.2(3)
c6-c10-fel	69.23(19)
c9-c10-fel	68.30(18)
pl-c10-fel	129.25(17)
c12-c11-c16	117.9(3)
c12-c11-p1	126.1(3)
c16-c11-pl	116.0(3)
cl3-c12-c11	120.8(3)
c12-c13-c14	120.8(3)
c15-c14-cl3	118.9(3)
c14-c15-c16	120.7(4)
c15-c16-cl1	120.8(4)
c22-c17-c18	119.2(3)
c22-c17-p1	122.5(3)
c18-c17-pl	118.2(3)
c19-c18-c17	120.6(3)
c18-c19-c20	119.6(3)

$\mathrm{c} 21-\mathrm{c} 20-\mathrm{c} 19$	$120.6(3)$
$\mathrm{c} 20-\mathrm{c} 21-\mathrm{c} 22$	$120.0(4)$
$\mathrm{c} 17-\mathrm{c} 22-\mathrm{c} 21$	$120.0(3)$
$\mathrm{c} 24-\mathrm{c} 23-\mathrm{c} 28$	$118.2(3)$
$\mathrm{c} 24-\mathrm{c} 23-\mathrm{p} 2$	$122.1(3)$
$\mathrm{c} 28-\mathrm{c} 23-\mathrm{p} 2$	$119.7(2)$
$\mathrm{c} 25-\mathrm{c} 24-\mathrm{c} 23$	$121.0(3)$
$\mathrm{c} 24-\mathrm{c} 25-\mathrm{c} 26$	$120.2(3)$
$\mathrm{c} 27-\mathrm{c} 26-\mathrm{c} 25$	$119.6(3)$
$\mathrm{c} 26-\mathrm{c} 27-\mathrm{c} 28$	$120.4(3)$
$\mathrm{c} 27-\mathrm{c} 28-\mathrm{c} 23$	$120.5(3)$
$\mathrm{c} 30-\mathrm{c} 29-\mathrm{c} 34$	$119.2(3)$
$\mathrm{c} 30-\mathrm{c} 29-\mathrm{p} 2$	$122.5(3)$
$\mathrm{c} 34-\mathrm{c} 29-\mathrm{p} 2$	$118.2(3)$
$\mathrm{c} 29-\mathrm{c} 30-\mathrm{c} 31$	$120.3(3)$
$\mathrm{c} 32-\mathrm{c} 31-\mathrm{c} 30$	$119.7(3)$
$\mathrm{c} 33-\mathrm{c} 32-\mathrm{c} 31$	$120.3(3)$
$\mathrm{c} 32-\mathrm{c} 33-\mathrm{c} 34$	$119.7(3)$
$\mathrm{c} 33-\mathrm{c} 34-\mathrm{c} 29$	$120.8(3)$
$\mathrm{c} 1-\mathrm{c} 35-\mathrm{mn} 1$	$174.1(3)$
$\mathrm{c} 2-\mathrm{c} 36-\mathrm{mn} 1$	$175.9(3)$
$\mathrm{o} 3-\mathrm{c} 37-\mathrm{mn} 1$	$178.0(4)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
br1	$34(1)$	$24(1)$	$50(1)$	$2(1)$	$0(1)$	$-1(1)$
fe1	$19(1)$	$19(1)$	$16(1)$	$-2(1)$	$2(1)$	$0(1)$
mn1	$17(1)$	$18(1)$	$20(1)$	$4(1)$	$1(1)$	$0(1)$
p1	$16(1)$	$14(1)$	$19(1)$	$1(1)$	$2(1)$	$0(1)$
p2	$16(1)$	$16(1)$	$17(1)$	$0(1)$	$2(1)$	$-1(1)$
o1	$38(2)$	$56(2)$	$29(1)$	$16(1)$	$3(1)$	$-4(1)$
c2	$26(1)$	$51(2)$	$47(2)$	$18(2)$	$-7(1)$	$5(1)$
o3	$29(2)$	$68(2)$	$15(1)$	$2(1)$	$3(1)$	$20(2)$
c1	$17(2)$	$23(2)$	$21(2)$	$0(1)$	$3(1)$	$1(1)$
c2	$20(2)$	$32(2)$	$20(2)$	$2(1)$	$0(1)$	$-3(1)$
c3	$30(2)$	$24(2)$	$25(2)$	$-8(2)$	$3(1)$	$-7(2)$
c4	$28(2)$	$21(2)$	$23(2)$	$-3(1)$	$4(1)$	$-3(1)$
c5	$18(2)$	$19(2)$	$18(2)$	$0(1)$	$2(1)$	$-2(1)$
c6	$24(2)$	$26(2)$	$27(2)$	$-7(2)$	$5(1)$	$2(1)$
c7	$24(2)$	$49(2)$	$19(2)$	$-9(2)$	$5(1)$	$-1(2)$
c8	$22(2)$	$33(2)$	$22(2)$	$8(2)$	$2(1)$	$-2(1)$
c9	$19(2)$	$24(2)$	$24(2)$	$5(1)$	$2(1)$	$-4(1)$
c10	$16(2)$	$23(2)$	$20(2)$	$0(1)$	$4(1)$	$1(1)$
c11	$18(2)$	$19(2)$	$25(2)$	$-2(1)$	$5(1)$	$-4(1)$
c12	$23(2)$	$18(2)$	$30(2)$	$3(1)$	$1(1)$	$-1(1)$
c13	$29(2)$	$19(2)$	$38(2)$	$0(2)$	$8(2)$	$-1(1)$
c14	$29(2)$	$25(2)$	$28(2)$	$-9(2)$	$9(1)$	$-11(2)$
c15	$35(2)$	$39(2)$	$26(2)$	$1(2)$	$-4(2)$	$-17(2)$
c16	$32(2)$	$26(2)$	$28(2)$	$7(2)$	$-6(1)$	$-12(2)$
c17	$18(2)$	$19(2)$	$24(2)$	$-2(1)$	$1(1)$	$2(1)$
c18	$28(2)$	$23(2)$	$37(2)$	$4(2)$	$7(2)$	$1(2)$
c19	$24(2)$	$39(2)$	$37(2)$	$-1(2)$	$14(2)$	$1(2)$
c20	$24(2)$	$33(2)$	$37(2)$	$-12(2)$	$4(2)$	$7(2)$
c21	$28(2)$	$21(2)$	$40(2)$	$-1(2)$	$0(2)$	$6(2)$
c22	$24(2)$	$22(2)$	$31(2)$	$1(2)$	$5(1)$	$0(1)$
c23	$23(2)$	$17(2)$	$14(1)$	$-3(1)$	$1(1)$	$1(1)$
c24	$23(2)$	$23(2)$	$24(2)$	$0(1)$	$1(1)$	$3(1)$
c25	$28(2)$	$30(2)$	$24(2)$	$-3(2)$	$-3(1)$	$9(2)$
c26	$38(2)$	$19(2)$	$26(2)$	$-3(1)$	$-5(2)$	$2(2)$
c27	$32(2)$	$22(2)$	$26(2)$	$-1(1)$	$-1(1)$	$-5(2)$
c28	$17(2)$	$22(2)$	$18(2)$	$-3(1)$	$1(1)$	$0(1)$
c29	$19(2)$	$21(2)$	$20(2)$	$2(1)$	$0(1)$	$0(1)$
c30	$24(2)$	$22(2)$	$24(2)$	$-1(1)$	$5(1)$	$-1(1)$
c31	$24(2)$	$32(2)$	$35(2)$	$1(2)$	$2(2)$	$-10(2)$
c32	$24(2)$	$37(2)$	$31(2)$	$7(2)$	$9(1)$	$-5(2)$
c33	$28(2)$	$37(2)$	$19(2)$	$0(2)$	$5(1)$	$0(2)$
c34	$26(2)$	$27(2)$	$19(2)$	$-1(1)$	$1(1)$	$-5(1)$
c35	$24(2)$	$31(2)$	$24(2)$	$3(2)$	$-3(1)$	$3(2)$
c36	$28(2)$	$26(2)$	$25(2)$	$4(2)$	$2(1)$	$-2(2)$
c37	$3(2)$	$22(2)$	$51(3)$	$31(2)$	$-8(1)$	$-6(1)$

Appendix F

Crystal tables for $\mathbf{2 r}$

Table 1. Crystal data and structure refinement.

Identification code	00 src 068	
Empirical formula	$\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{BrFeO}_{3} \mathrm{P}_{2} \mathrm{Re}$	
Formula weight	904.49	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	$\alpha=90^{\circ}$
Space group	$P 2_{1} / c$	$\beta=111.999(3)^{\circ}$
Unit cell dimensions	$a=9.21530(1) \AA$	$\gamma=90^{\circ}$
	$b=54.1758(3) \AA$	
Volume	$c=21.76700(2) \AA$	
Z	$10075.9(6) \AA^{3}$	
Density (calculated)	12	
Absorption coefficient	$1.789 \mathrm{Mg}^{\circ} / \mathrm{m}^{3}$	
$F(000)$	$5.353 \mathrm{~mm}^{-1}$	
Crystal	5280	
Crystal size	$\mathrm{Block} ;$ yellow	
θ range for data collection	$0.07 \times 0.07 \times 0.05 \mathrm{~mm}^{3}$	
Index ranges	$2.94-25.05^{\circ}$	
Reflections collected	$-10 \leq h \leq 10,-64 \leq k \leq 64,-25 \leq l \leq 25$	
Independent reflections	56559	
Completeness to $\theta=25.05^{\circ}$	$17103\left[R_{\text {int }}=0.0604\right]$	
Max. and min. transmission	96.1%	
Refinement method	0.7756 and 0.7057	
Data / restraints $/$ parameters	Full-matrix least-squares on F^{2}	
Goodness-of-fit on F^{2}	$17103 / 1 / 1240$	
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	1.000	
R indices (all data)	$R 1=0.0454, w R 2=0.0928$	
Largest diff. peak and hole	$R 1=0.0715, w R 2=0.1007$	

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

Special details:

The asymmetric unit contains 3 independent molecules. The final structure was checked for additional crystallographic symmetry using the Platon program package. The comparison of the three independent molecules I (Re1), II (Re2) and III(Re3) shows that I and $\mathrm{II}_{\text {inverted }}$ have approximate the same geometry. In contrast, there are considerable geometric differences between I and III $_{\text {invered }}$ and between III and II.
In each molecule the axial positions of the Re co-ordination occupied by Br and CO was found to be disordered. Partial occupancies for the major components were refined to $0.59,0.56$ and 0.75 .
The CHCl_{3} solvate (19 e/cell) was treated in the manner described by Sluis and Spek (Acta Cryst. A46 (1990), 194.

Table 2. Atomic coordinates [$\times 10^{4}$], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right.$] and site occupancy factors. $U_{r q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{\text {eq }}$	S.o.f.	
Rel	3205(1)	-1095(1)	3304(1)	18(1)	1	
Fe 1	-453(1)	-541(1)	2504(1)	22(1)	1	
Brl	4624(2)	-965(1)	2530(1)	25(1)	$0.586(4)$	
C1	2330(16)	-1201(3)	3899(8)	42(4)	$0.586(4)$	
O1	1717(13)	-1264(2)	4277(5)	32(3)	0.586(4)	
BriA	2176(3)	-1259(1)	4187(1)	27(1)	$0.414(4)$	
C1A	4180(30)	-1004(5)	2745(13)	48(9)	0.414(4)	
O1A	4810(20)	-923(4)	2383(10)	34(8)	0.414(4)	
P2	708(2)	-1105(1)	2265(1)	19(1)	1	
P1	2958(2)	-670(1)	3728(1)	19(1)	1	
O2	6519(6)	-1144(1)	4373(3)	57(2)	1	
O3	3860(6)	-1628(1)	3004(2)	33(1)	1	
C2	5273(9)	-1111(1)	3986(3)	31(2)	1	
C3	3531(8)	-1434(2)	3093(3)	22(2)	1	
C21	-91(7)	-810(1)	1918(3)	20(2)	1	
C22	813(8)	-598(1)	1934(3)	24(2)	1	
C11	987(7)	-554(1)	3467(3)	21(2)	1	
C12	-374(8)	-703(2)	3360(3)	32(2)	1	
C13	-1698(8)	-548(2)	3110(3)	34(2)	1	
C14	-1195(8)	-304(2)	3061(3)	31(2)	1	
C15	482(8)	-306(1)	3291(3)	25(2)	1	
C23	-189(8)	-393(1)	1679(3)	26(2)	1	
C24	-1742(8)	-473(1)	1526(3)	28(2)	1	
C25	-1706(8)	-731(1)	1660(3)	30(2)	1	
C31	3972(7)	-391(1)	3611(3)	20(2)	1	
C32	4170(8)	-193(1)	4029(3)	30(2)	1	
C33	4769(9)	25(1)	3916(4)	39(2)	1	
C34	5177(8)	52(2)	3377(4)	36(2)	1	
C35	4969(8)	-140(2)	2948(4)	31(2)	1	
C36	4415(7)	-365(1)	3063(3)	25(2)	1	
C41	3635(8)	-673(1)	4640(3)	20(2)	1	
C42	5252(9)	-692(1)	5012(3)	36(2)	1	
C43	5761(10)	-692(1)	5697(4)	42(2)	1	
C44	4742(10)	-683(1)	6015(4)	41(2)	1	
C45	3179(10)	-660(1)	5651(4)	38(2)	1	
C46	2632(8)	-658(1)	4962(3)	27(2)	1	
C51	1142(7)	-1253(1)	1595(3)	18(2)	1	
C52	1399(7)	-1119(1)	1095(3)	23(2)	1	
C53	1799(8)	-1241(2)	616(3)	28(2)	1	
C54	1944(7)	-1489(2)	632(3)	30(2)	1	
C55	1703(8)	-1629(1)	1124(3)	27(2)	1	
C56	1307(8)	-1507(1)	1596(3)	25(2)	1	
C61	-1064(7)	-1275(1)	2201(3)	19(2)	1	
C62	-2212(8)	-1313(1)	1575(3)	25(2)	1	
C63	-3606(8)	-1428(1)	1501(3)	32(2)	1	
C64	-3880(8)	-1515(1)	2037(3)	29(2)	1	
C65	-2720(8)	-1488(1)	2664(3)	29(2)	1	
C66	-1341(7)	-1366(1)	2743(3)	23(2)	1	
Re 2	2114(1)	-698(1)	-1732(1)	19(1)	1	
Fe 2	5932(1)	-1245(1)	-1099(1)	21(1)	1	
Br 2	2900(2)	-543(1)	-2697(1)	30(1)	$0.562(4)$	
Cl'	1320(20)	-777(3)	-1074(8)	43(5)	$0.562(4)$	
O1'	782(16)	-830(3)	-673(7)	37(4)	0.562(4)	
Br 2 A	865(4)	-811(1)	-882(2)	25(1)	$0.438(4)$	
C1'A	2830(20)	-611(4)	-2417(10)	25(5)	$0.438(4)$	
O1'A	3250(20)	-564(4)	-2852(9)	42(7)	$0.438(4)$	
P1'	2289(2)	-1122(1)	-2171(1)	19(1)	1	

P2'	4753(2)	-693(1)	-774(1)	19(1)	1
O1'	-1349(6)	-646(1)	-2664(3)	51(2)	1
O2'	1852(7)	-141(1)	-1516(2)	47(2)	1
C1'	-80(9)	-675(1)	-2344(4)	33(2)	1
C2'	1973(8)	-350(2)	-1563(3)	32(2)	1
C11 ${ }^{1}$	5701(8)	-987(1)	-475(3)	$20(2)$	1
C12'	7321(8)	-1054(1)	-287(3)	25(2)	1
C13'	7457(8)	-1308(2)	-140(3)	33(2)	1
C14'	5971(8)	-1405(1)	-234(3)	23(2)	1
C15'	4872(8)	-1208(1)	-440(3)	23(2)	1
C21'	4243(7)	-1227(1)	-2020(3)	18(2)	1
C22'	4826(8)	-1475(1)	-1886(3)	25(2)	1
C23'	6453(8)	-1467(2)	-1754(3)	29(2)	1
C24'	6908(8)	-1220(2)	-1806(3)	29(2)	1
C25'	5553(7)	-1068(1)	-1968(3)	27(2)	1
C31'	1393(7)	-1397(1)	-1960(3)	22(2)	1
C32'	1025(7)	-1403(1)	-1397(3)	23(2)	1
C33'	452(8)	-1621(1)	-1235(3)	30(2)	1
C34'	196(8)	-1828(1)	-1628(4)	31(2)	1
C35'	524(8)	-1817(1)	-2202(3)	30(2)	1
C36'	1125(7)	-1605(1)	-2369(3)	25(2)	1
C41	1408(8)	-1134(1)	-3084(3)	20(2)	1
C42'	-212(8)	-1108(1)	-3393(3)	29(2)	1
C43'	-873(9)	-1109(1)	-4084(3)	35(2)	1
C44'	30(10)	-1134(1)	-4456(3)	37(2)	1
C45'	1616(9)	-1166(1)	-4146(3)	30(2)	1
C46'	2310(8)	-1170(1)	-3461(3)	26(2)	1
C51'	4443(7)	-568(1)	-57(3)	18(2)	1
C52'	4172(8)	-317(1)	-18(3)	28(2)	1
C53'	3810(8)	-218(1)	489(3)	31(2)	1
C54'	3726(8)	-377(2)	984(3)	34(2)	1
C55'	4044(8)	-621(2)	977(3)	30(2)	1
C56'	4398(7)	-719(1)	457(3)	25(2)	1
C61'	6399(8)	-502(1)	-784(3)	22(2)	1
C62'	6437(8)	-402(1)	-1359(3)	28(2)	1
C63'	7713(9)	-269(1)	-1355(4)	34(2)	1
C64'	9017(9)	-241(1)	-764(4)	35(2)	1
C65'	8958(8)	-337(1)	-183(4)	33(2)	1
C66'	7659(8)	-467(1)	-194(3)	28(2)	1
Re3	2581(1)	-2572(1)	-461(1)	20(1)	1
Fe 3	-820(1)	-3068(1)	-1(1)	19(1)	1
Br3	3142(2)	-2973(1)	-1004(1)	28(1)	0.750(4)
C1"	2367(13)	-2251(3)	-144(5)	27(3)	0.750(4)
O1"	2239(12)	-2058(2)	64(5)	48(4)	0.750(4)
Br3A	2508(7)	-2119(1)	-63(3)	33(2)	0.250(4)
C1"A	2850(50)	-2880(4)	-820(20)	59(14)	0.250(4)
O1"A	3240(40)	-3071(6)	-1002(16)	42(14)	0.250(4)
P1"	-245(2)	-2665(1)	-1087(1)	19(1)	1
P2"	2708(2)	-2755(1)	624(1)	20(1)	1
O2"	2529(5)	-2301(1)	-1713(2)	40(1)	1
O3"	6176(6).	-2517(1)	136(2)	38(1)	1
C2"	2552(8)	-2408(1)	-1250(4)	27(2)	1
C3"	4854(8)	-2534(1)	-65(3)	25(2)	1
C11"	-1053(7)	-2944(1)	-917(3)	19(2)	1
C12"	-304(8)	-3184(1)	-787(3)	19(2)	1
C14"	-2730(8)	-3227(1)	-718(3)	24(2)	1
C13"	-1332(8)	-3354(1)	-672(3)	23(2)	1
C15"	-2573(7)	-2975(1)	-881(3)	22(2)	1
C21"	1023(7)	-2899(1)	713(3)	16(2)	1
C22"	935(7)	-3152(1)	895(3)	22(2)	1
C23"	-575(8)	-3188(1)	931(3)	23(2)	1

C24"	$-1414(8)$	$-2964(1)$	$774(3)$	$23(2)$	1
C25"	$-436(7)$	$-2783(1)$	$638(3)$	$20(2)$	1
C31"	$-1655(7)$	$-2426(1)$	$-1065(3)$	$21(2)$	1
C32"	$-1273(8)$	$-2276(1)$	$-522(3)$	$24(2)$	1
C33"	$-2322(8)$	$-2088(1)$	$-493(4)$	$30(2)$	1
C34"	$-3710(8)$	$-2060(1)$	$-1015(4)$	$32(2)$	1
C35"	$-4097(8)$	$-2212(2)$	$-1570(4)$	$35(2)$	1
C36"	$-3084(8)$	$-2394(1)$	$-1588(3)$	$25(2)$	1
C41"	$-674(7)$	$-2701(1)$	$-1975(3)$	$17(2)$	1
C42"	$-944(7)$	$-2493(1)$	$-2396(3)$	$25(2)$	1
C43"	$-1274(8)$	$-2522(1)$	$-3064(3)$	$27(2)$	1
C44"	$-1298(8)$	$-2753(2)$	$-3333(4)$	$32(2)$	1
C45"	$-1008(8)$	$-2958(1)$	$-2919(3)$	$27(2)$	1
C46"	$-696(7)$	$-2932(1)$	$-2248(3)$	$24(2)$	1
C51"	$3270(7)$	$-2524(1)$	$1292(3)$	$20(2)$	1
C52"	$2480(8)$	$-2496(1)$	$1715(3)$	$28(2)$	1
C53"	$2925(8)$	$-2313(1)$	$2207(3)$	$31(2)$	1
C54"	$4159(8)$	$-2162(1)$	$2276(3)$	$27(2)$	1
C55"	$4964(8)$	$-2190(1)$	$1867(3)$	$29(2)$	1
C56"	$4507(8)$	$-2364(1)$	$1362(3)$	$27(2)$	1
C61"	$4188(8)$	$-2994(1)$	$963(3)$	$24(2)$	1
C62"	$4167(8)$	$-3207(1)$	$592(3)$	$31(2)$	1
C63"	$5210(9)$	$-3399(2)$	$858(4)$	$40(2)$	1
C64"	$6294(9)$	$-3384(2)$	$1498(4)$	$39(2)$	1
C65"	$6351(8)$	$-3175(2)$	$1862(4)$	$39(2)$	1
C66"	$5306(8)$	$-2981(2)$	$1610(3)$	$32(2)$	1

Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$].

Rel-C1A	1.83(3)
Rel-C1	1.855(19)
Rel-C2	1.930(7)
Rel-C3	1.943 (8)
Rel-P1	2.5180(18)
Rel-P2	2.5520(16)
Rel-Brl	2.586(3)
Rel-Br1A	$2.597(3)$
Fel-C22	2.018(7)
Fel-C11	2.020(6)
$\mathrm{Fe} 1-\mathrm{C} 12$	$2.035(7)$
$\mathrm{Fe} 1-\mathrm{C} 25$	2.043(7)
Fe1-C21	2.044(6)
$\mathrm{Fe} 1-\mathrm{C} 24$	2.046 (6)
Fel-C15	2.049(6)
Fe1-C13	2.047 (7)
Fel-C14	$2.055(7)$
$\mathrm{Fe} 1-\mathrm{C} 23$	$2.063(7)$
$\mathrm{Cl}-\mathrm{Ol}$	1.21(2)
C1A-O1A	1.23(3)
P2-C21	1.803(7)
P2-C51	1.833(6)
P2-C61	1.833(7)
P1-C11	1.802(7)
P1-C41	1.846(6)
P1-C31	1.847(7)
O2-C2	1.155(7)
O3-C3	$1.135(7)$
C21-C22	1.411(9)
C21-C25	1.446(9)
C22-C23	1.419(9)
C22-H22	0.9500
C11-C15	1.426(9)
C11-C12	1.434(9)
C12-C13	1.413(10)
C12-H12	0.9500
C13-C14	1.418(10)
C13-H13	0.9500
C14-C15	1.436(9)
C14-H14	0.9500
C15-H15	0.9500
C23-C24	1.410(9)
C23-H23	0.9500
C24-C25	1.425(9)
C24-H24	0.9500
C25-H25	0.9500
C31-C32	1.373(9)
C31-C36	$1.405(8)$
C32-C33	1.362(9)
C32-H32	0.9500
C33-C34	1.368(9)
C33-H33	0.9500
C34-C35	1.361(10)
C34-H34	0.9500
C35-C36	1.380(9)
C35-H35	0.9500
C36-H36	0.9500
C41-C46	1.355(9)
C41-C42	1.408(9)

C42-C43	1.386(9)
C42-H42	0.9500
C43-C44	1.362(11)
C43-H43	0.9500
C44-C45	1.365(10)
C44-H44	0.9500
C45-C46	1.391(9)
C45-H45	0.9500
C46-H46	0.9500
C51-C56	1.386(9)
C51-C52	1.400(9)
C52-C53	1.396(9)
C52-H52	0.9500
C53-C54	1.351(9)
C53-H53	0.9500
C54-C55	1.397(9)
C54-H54	0.9500
C55-C56	1.382(9)
C55-H55	0.9500
C56-H56	0.9500
C61-C66	1.387(8)
C61-C62	1.391(8)
C62-C63	1.382(9)
C62-H62	0.9500
C63-C64	1.366(9)
C63-H63	0.9500
C64-C65	1.390(9)
C64-H64	0.9500
C65-C66	1.384(9)
C65-H65	0.9500
C66-H66	0.9500
Re2-Cl'A	1.90(2)
Re2-C2'	1.932(9)
$\mathrm{Re} 2-\mathrm{Cl}{ }^{\prime}$	1.89(2)
$\mathrm{Re} 2-\mathrm{Cl}{ }^{\prime}$	1.965(8)
Re2-P1'	2.5191(18)
Re2-P2'	2.5428(17)
$\mathrm{Re} 2-\mathrm{Br} 2 \mathrm{~A}$	2.591 (3)
$\mathrm{Re} 2-\mathrm{Br} 2$	2.604(2)
Fe2-C11'	2.018(7)
$\mathrm{Fe} 2-\mathrm{C} 21{ }^{\prime}$	2.027(6)
Fe2-C15'	2.027(7)
Fe2-C25'	2.032(7)
Fe2-C12'	2.037 (6)
Fe2-C22'	2.052(7)
Fe2-C23'	2.054(7)
Fe2-C24'	2.057(7)
Fe2-C14'	2.060(6)
Fe2-C13'	2.062(6)
C1'-O1'	1.19(3)
Cl'A-O1'A	1.17(3)
P1'-C21'	1.797(7)
P1'-C31'	1.841(7)
P1'-C41'	1.846 (6)
P2'-C11'	1.815(7)
P2'-C51'	1.817(7)
P2'-C61'	1.844(7)
$\mathrm{Ol}^{\prime}-\mathrm{Cl}{ }^{\prime}$	$1.126(8)$
O2'-C2'	1.148(8)
C11'-C15'	1.437(9)
C11'-C12'	1.439(9)

C12'-C13'	1.410(10)
C12'-H12'	0.9500
C13'-C14'	1.408(9)
C13'-H13'	0.9500
C14'-C15'	1.422(9)
C14'-H14'	0.9500
C15'-H15'	0.9500
C21'-C22'	1.437(9)
C21'-C25'	1.454(9)
C22'-C23'	1.418(9)
C22'-H22'	0.9500
C23'-C24'	1.421(10)
C23'-H23'	0.9500
C24'-C25'	1.427(9)
C24'-H24'	0.9500
C25'-H25'	0.9500
C31'-C32'	1.389(8)
C31'-C36'	1.399(9)
C32'-C33'	1.394(9)
C32'-H32'	0.9500
C33'-C34'	1.377(10)
C33'-H33'	0.9500
C34'-C35'	1.394(9)
C34'-H34'	0.9500
C35'-C36'	1.382(9)
C35'-H35'	0.9500
C36'-H36'	0.9500
C41'-C46'	1.383(9)
C41'-C42'	1.396(9)
C42'-C43'	1.397(9)
C42'-H42'	0.9500
C43'-C44'	1.367(10)
C43'-H43'	0.9500
C44'--C45'	1.372(10)
C44'-H44'	0.9500
C45'-C46'	$1.384(8)$
C45'-H45'	0.9500
C46'-H46'	0.9500
C51'-C52'	1.393(9)
C51'-C56'	1.398(9)
C52'-C53'	1.375(9)
C52'-H52	0.9500
C53'-C54'	1.403(10)
C53'-H53'	0.9500
C54'-C55'	1.360(10)
C54'-H54'	0.9500
C55'-C56'	1.395(9)
C55'-H55'	0.9500
C56'-H56'	0.9500
C61'-C62'	1.377(9)
C61'-C66'	1.385(9)
C62'-C63'	1.375(9)
C62'-H62'	0.9500
C63'-C64'	1.402(10)
C63'-H63'	0.9500
C64'--C65 ${ }^{\prime}$	1.387(9)
C64'-H64'	0.9500
C65'-C66'	1.382(9)
C65'-H65'	0.9500
C66'-H66'	0.9500
Re3-Cl"A	1.900(3)

Re3-C2"	1.927(8)
Re3-C1"	1.909(14)
Re3-C3"	1.954(7)
Re3-P1"	2.4961 (17)
Re3-P2"	2.5223 (17)
$\mathrm{Re} 3-\mathrm{Br} 3$	2.6171(18)
$\mathrm{Re} 3-\mathrm{Br} 3 \mathrm{~A}$	2.615(7)
Fe3-C25"	2.022(6)
Fe3-C12"	2.037(6)
Fe3-C11"	2.036(6)
$\mathrm{Fe} 3-\mathrm{C} 24{ }^{\prime \prime}$	2.038(7)
$\mathrm{Fe} 3-\mathrm{C} 21{ }^{\prime \prime}$	2.040(6)
Fe3-C15"	2.052(6)
Fe3-C14"	2.052(6)
Fe3-C13"	2.056(6)
Fe3-C23"	2.061(6)
Fe3-C22"	2.064(6)
$\mathrm{Cl}{ }^{\prime \prime-} \mathrm{Ol}{ }^{\prime}$	1.16(2)
C1"A-O1"A	1.21(3)
P1"-C11"	1.788(7)
P1"-C41"	1.832(6)
P1"-C31"	1.845(7)
P2"-C21"	1.812(7)
P2"-C61"	1.824(7)
P2"-C51"	1.840(7)
O2"-C2"	1.154(8)
O3"-C3"	1.134(7)
C11"-C15"	1.441(9)
C11"-C12"	1.446 (9)
$\mathrm{C} 12{ }^{\prime \prime}-\mathrm{C} 13$ "	1.409(9)
C 12 "-H12"	0.9500
C14"-C15"	1.427(9)
C14"-C13"	1.430(9)
C14"-H13"	0.9500
C13"-H14"	0.9500
C15"-H15"	0.9500
C21"-C22"	1.436(9)
C21"-C25"	1.438(9)
C22"-C23"	1.437(9)
$\mathrm{C} 22^{\prime \prime}-\mathrm{H} 22$ "	0.9500
C23"-C24"	1.409(9)
C 23 "-H23"	0.9500
C24"-C25"	1.436(9)
C24"-H24"	0.9500
C25"-H25"	0.9500
C31"-C32"	1.371(9)
C31"-C36"	1.392(8)
C32"-C33"	1.420(9)
C32"-H32"	0.9500
C33"-C34"	1.364(9)
C33"-H33"	0.9500
C34"-C35"	1.393(10)
C34"-H34"	0.9500
C35"-C36"	1.371(9)
C35"-H35"	0.9500
C36"-H36"	0.9500
C41"-C46"	1.383(9)
C41"-C42"	1.414 (9)
C42"-C43"	$1.380(9)$
C42"-H42"	0.9500
C43"-C44"	1.378(9)

C43"-H43"	0.9500
C44"-C45"	1.391(9)
C44"-H44"	0.9500
C45"-C46"	1.387(8)
C45"-H45"	0.9500
C46"-H46"	0.9500
C51"-C52"	1.379(9)
C51"-C56"	1.394(9)
C52"-C53"	1.400(9)
C52"-H52"	0.9500
C53"-C54"	1.363(9)
C53"-H53"	0.9500
C54"-C55"	1.365(9)
C54"-H54"	0.9500
C55"-C56"	1.387(9)
C55"-H55"	0.9500
C56"-H56"	0.9500
C61"-C66"	1.401(9)
C61"-C62"	1.405(9)
C62"-C63"	1.387(9)
C62"-H62"	0.9500
C63"-C64"	1.380(10)
C63"-H63"	0.9500
C64"-C65"	1.371(10)
C64"-H64"	0.9500
C65"-C66"	1.392(10)
C65"-H65"	0.9500
C66"-H66"	0.9500
C1A-Rel-C1	176.1(9)
C1A-Re1-C2	86.4(8)
C1-Re1-C2	90.6(5)
C1A-Re1-C3	86.5(8)
C1-Re1-C3	91.0(5)
C2-Re1-C3	86.7(3)
C1A-Rel-P1	97.7(8)
C1-Rel-P1	84.6(5)
C2-Re1-P1	87.7(2)
C3-Re1-P1	172.76(19)
C1A-Re1-P2	85.4(7)
C1-Re1-P2	97.4(4)
C2-Re1-P2	169.6(2)
C3-Re1-P2	86.42(19)
P1-Re1-P2	99.79(6)
C1A-Rel-Brl	1.0(8)
$\mathrm{Cl}-\mathrm{Re} 1-\mathrm{Brl}$	175.4(5)
C2-Re1-Brl	85.4(2)
C3-Rel-Brl	86.7(2)
$\mathrm{P} 1-\mathrm{Re} 1-\mathrm{Br} 1$	97.33(6)
P2-Rel-Brl	86.41(6)
C1A-Rel-BrlA	172.0(8)
C1-Rel-BrlA	4.2(5)
C2-Rel-BrlA	86.7(2)
C3-Rel-BrlA	89.0(2)
P1-Re1-BrlA	86.15(6)
P2-Re1-BrlA	100.95(6)
$\mathrm{Br} 1-\mathrm{Rel} 1-\mathrm{Br} 1 \mathrm{~A}$	171.25(6)
$\mathrm{C} 22-\mathrm{Fe} 1-\mathrm{Cl} 1$	109.0(3)
C22-Fel-C12	131.7(3)
$\mathrm{C} 11-\mathrm{Fel}-\mathrm{Cl} 2$	41.4(3)
C22-Fel-C25	68.5(3)

C11-Fel-C25	147.9(3)
$\mathrm{C} 12-\mathrm{Fe} 1-\mathrm{C} 25$	114.9(3)
$\mathrm{C} 22-\mathrm{Fe} 1-\mathrm{C} 21$	40.6(3)
$\mathrm{C} 11-\mathrm{Fe} 1-\mathrm{C} 21$	115.2(3)
$\mathrm{C} 12-\mathrm{Fe} 1-\mathrm{C} 21$	107.8(3)
$\mathrm{C} 25-\mathrm{Fe} 1-\mathrm{C} 21$	41.4(2)
$\mathrm{C} 22-\mathrm{Fe} 1-\mathrm{C} 24$	68.4(3)
$\mathrm{C} 11-\mathrm{Fe} 1-\mathrm{C} 24$	170.5(3)
$\mathrm{C} 12-\mathrm{Fe} 1-\mathrm{C} 24$	147.0(3)
C25-Fel-C24	40.8(3)
C21-Fel-C24	69.3(3)
$\mathrm{C} 22-\mathrm{Fe} 1-\mathrm{C} 15$	116.7(3)
C11-Fel-C15	41.0(3)
C12-Fe1-C15	69.0(3)
C25-Fel-C15	169.7(3)
C21-Fel-C15	148.1(3)
C24-Fe1-C15	131.0(3)
C22-Fe1-C13	170.1(3)
C11-Fel-C13	68.8(3)
C12-Fel-C13	40.5(3)
C25-Fe1-Cl3	107.9(3)
C21-Fe1-C13	130.7(3)
C24-Fe1-C13	115.3(3)
C15-Fel-Cl3	68.5(3)
C22-Fel-C14	148.8(3)
C11-Fe1-C14	69.0(3)
C12-Fe1-C14	68.6(3)
C25-Fel-C14	130.2(3)
C21-Fel-C14	169.6(3)
C24-Fel-C14	108.0(3)
C15-Fe1-C14	41.0(3)
C13-Fel-C14	40.4(3)
$\mathrm{C} 22-\mathrm{Fe} 1-\mathrm{C} 23$	40.7(2)
$\mathrm{C} 11-\mathrm{Fe} 1-\mathrm{C} 23$	132.2(3)
$\mathrm{C} 12-\mathrm{Fe} 1-\mathrm{C} 23$	171.5(3)
$\mathrm{C} 25-\mathrm{Fe} 1-\mathrm{C} 23$	68.0(3)
$\mathrm{C} 21-\mathrm{Fe} 1-\mathrm{C} 23$	68.6(3)
$\mathrm{C} 24-\mathrm{Fe} 1-\mathrm{C} 23$	40.1(3)
C15-Fe1-C23	109.6(3)
$\mathrm{C} 13-\mathrm{Fe} 1-\mathrm{C} 23$	147.6(3)
$\mathrm{C} 14-\mathrm{Fe} 1-\mathrm{C} 23$	116.3(3)
O1-C1-Rel	177.6(14)
O1A-C1A-Rel	175(2)
C21-P2-C51	103.2(3)
C21-P2-C61	101.6(3)
C51-P2-C61	100.0(3)
C21-P2-Rel	116.3(2)
C51-P2-Rel	108.8(2)
C61-P2-Rel	124.1(2)
C11-P1-C41	103.6(3)
C11-P1-C31	99.9(3)
C41-P1-C31	99.8(3)
C11-P1-Rel	115.0(2)
C41-P1-Rel	110.2(2)
C31-P1-Rel	125.4(2)
O2-C2-Rel	173.4(6)
O3-C3-Rel	173.9(6)
C22-C21-C25	106.2(6)
C22-C21-P2	124.5(5)
C25-C21-P2	128.7(6)
C22-C21-Fel	68.7(4)

C25-C21-Fel	69.2(4)
$\mathrm{P} 2-\mathrm{C} 21-\mathrm{Fe} 1$	120.4(3)
C21-C22-C23	109.7(6)
C21-C22-Fel	70.7(4)
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{Fel}$	71.4(4)
C21-C22-H22	125.2
C23-C22-H22	125.2
Fe1-C22-H22	124.4
C15-C11-C12	108.0(6)
C15-C11-P1	127.0(5)
C12-C11-P1	124.8(6)
C15-C11-Fel	70.6(4)
$\mathrm{C} 12-\mathrm{Cl1-Fel}$	69.8(4)
$\mathrm{P} 1-\mathrm{C} 11-\mathrm{Fe} 1$	122.1(3)
C13-C12-C11	107.7(7)
C13-C12-Fel	70.2(4)
C11-C12-Fel	68.7(4)
C13-C12-H12	126.2
C11-C12-H12	126.2
$\mathrm{Fe} 1-\mathrm{C} 12-\mathrm{H} 12$	126.5
C12-C13-C14	109.0(7)
$\mathrm{C} 12-\mathrm{Cl} 3-\mathrm{Fe} 1$	69.3(4)
C14-C13-Fel	70.1(4)
C12-C13-H13	125.5
C14-C13-H13	125.5
Fe1-C13-H13	126.7
C13-C14-C15	107.7(6)
C13-C14-Fel	69.5(4)
C15-C14-Fel	69.3(4)
C13-C14-H14	126.2
C15-C14-H14	126.2
Fe1-C14-H14	126.6
C11-C15-C14	107.6(6)
C11-C15-Fel	68.4(4)
C14-C15-Fel	69.7(4)
C11-C15-H15	126.2
C14-C15-H15	126.2
Fel-C15-H15	127.2
C24-C23-C22	107.8(7)
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{Fel}$	69.3(4)
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{Fel}$	68.0(4)
C24-C23-H23	126.1
C22-C23-H23	126.1
$\mathrm{Fe} 1-\mathrm{C} 23-\mathrm{H} 23$	128.2
C23-C24-C25	108.0(6)
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{Fe} 1$	70.6(4)
C25-C24-Fel	69.5(4)
C23-C24-H24	126.0
C25-C24-H24	126.0
$\mathrm{Fe} 1-\mathrm{C} 24-\mathrm{H} 24$	125.5
C24-C25-C21	108.2(6)
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{Fe} 1$	69.7(4)
C21-C25--Fel	69.4(4)
C24-C25-H25	125.9
C21-C25-H25	125.9
$\mathrm{Fe} 1-\mathrm{C} 25-\mathrm{H} 25$	126.6
C32-C31-C36	118.3(7)
C32-C31-P1	119.9(5)
C36-C31-P1	121.5(5)
C33-C32-C31	121.2(7)
C33-C32-H32	119.4

C31-C32-H32	119.4
C32-C33-C34	120.7(7)
C32-C33-H33	119.7
C34-C33-H33	119.7
C35-C34-C33	119.4(7)
C35-C34-H34	120.3
C33-C34-H34	120.3
C34-C35-C36	121.1(7)
C34-C35-H35	119.5
C36-C35-H35	119.5
C35-C36-C31	119.2(7)
C35-C36-H36	120.4
C31-C36-H36	120.4
C46-C41-C42	119.2(6)
C46-C41-P1	122.3(5)
C42-C41-P1	118.5(5)
C43-C42-C41	118.4(7)
C43-C42-H42	120.8
C41-C42-H42	120.8
C44-C43-C42	121.9(8)
C44-C43-H43	119.1
C42-C43-H43	119.1
C43-C44-C45	119.1(7)
C43-C44-H44	120.4
C45-C44-H44	120.5
C44-C45-C46	120.3(7)
C44-C45-H45	119.8
C46-C45-H45	119.8
C41-C46-C45	121.0(7)
C41-C46-H46	119.5
C45-C46-H46	119.5
C56-C51-C52	117.7(6)
C56-C51-P2	119.2(5)
C52-C51-P2	123.0(5)
C53-C52-C51	120.4(7)
C53-C52-H52	119.8
C51-C52-H52	119.8
C54-C53-C52	120.1(7)
C54-C53-H53	119.9
C52-C53-H53	119.9
C53-C54-C55	121.3(7)
C53-C54-H54	119.4
C55-C54-H54	119.4
C56-C55-C54	118.1(7)
C56-C55-H55	120.9
C54-C55-H55	120.9
C55-C56-C51	122.4(7)
C55-C56-H56	118.8
C51-C56-H56	118.8
C66-C61-C62	117.7(6)
C66-C61-P2	123.7(5)
C62-C61-P2	118.5(5)
C63-C62-C61	120.9(6)
C63-C62-H62	119.5
C61-C62-H62	119.5
C64-C63-C62	121.0(6)
C64-C63-H63	119.5
C62-C63-H63	119.5
C63-C64-C65	118.9(7)
C63-C64-H64	120.6
C65-C64-H64	120.6

C66-C65-C64	120.3(7)
C66-C65-H65	119.9
C64-C65-H65	119.9
C65-C66-C61	121.1(6)
C65-C66-H66	119.5
C61-C66-H66	119.5
C1'A-Re2-C2'	88.6(6)
C1'A-Re2-C1'	177.6(7)
C2'-Re2-C1'	90.3(5)
C1'A-Re2-C1'	91.5(6)
C2'-Re2-C1'	86.8(3)
$\mathrm{Cl}^{\prime}-\mathrm{Re} 2-\mathrm{Cl}{ }^{\prime}$	86.3(5)
C1'A-Re2-P1'	80.7(6)
C2'-Re2-P1'	168.6(2)
C1'-Re2-P1'	100.2(5)
C1'-Re2-P1'	89.7(2)
C1'A-Re2-P2'	97.6(5)
C2'-Re2-P2'	87.0(2)
C1'-Re2-P2'	84.5(5)
C1'-Re2-P2'	168.8(2)
P1'-Re2-P2'	98.16(6)
C1'A-Re2-Br2A	174.6(6)
C2'-Re2-Br2A	91.0(2)
C1'-Re2-Br2A	3.3(5)
C1'-Re2-Br2A	83.1(2)
P1'-Re2-Br2A	99.32(9)
P2'-Re2-Br2A	87.77(9)
C1'A-Re2-Br2	5.7(6)
C 2 '-Re2-Br2	84.2(2)
$\mathrm{Cl} 1-\mathrm{Re} 2-\mathrm{Br} 2$	172.1(5)
$\mathrm{C} 11-\mathrm{Re} 2-\mathrm{Br} 2$	87.7(2)
$\mathrm{P} 1{ }^{\prime}-\mathrm{Re} 2-\mathrm{Br} 2$	84.85(6)
P2'-Re2-Br2	100.90(6)
$\mathrm{Br} 2 \mathrm{~A}-\mathrm{Re} 2-\mathrm{Br} 2$	169.80(9)
$\mathrm{C} 11^{\prime}-\mathrm{Fe} 2-\mathrm{C} 21{ }^{\prime}$	113.3(3)
$\mathrm{C} 11^{\prime}-\mathrm{Fe} 2-\mathrm{C} 15{ }^{\prime}$	41.6(3)
$\mathrm{C} 21^{\prime}-\mathrm{Fe} 2-\mathrm{C} 15{ }^{\prime}$	107.4(3)
C11'-Fe2-C25'	105.9(3)
$\mathrm{C} 21^{\prime}-\mathrm{Fe} 2-\mathrm{C} 25^{\prime}$	42.0(3)
C15'-Fe2-C25'	130.7(3)
C11'-Fe2-C12'	41.6(2)
$\mathrm{C} 21^{\prime}-\mathrm{Fe} 2-\mathrm{C} 12{ }^{\prime}$	146.4(3)
C15'-Fe2-C12'	69.3(3)
$\mathrm{C} 25^{\prime}-\mathrm{Fe} 2-\mathrm{C} 12{ }^{\prime}$	113.5(3)
C11'-Fe2-C22'	146.9(3)
$\mathrm{C} 21{ }^{\prime}-\mathrm{Fe} 2-\mathrm{C} 22 \prime$	41.3(2)
$\mathrm{C} 15^{\prime}-\mathrm{Fe} 2-\mathrm{C} 22^{\prime}$	115.5(3)
C25'-Fe2-C22'	69.7(3)
$\mathrm{C} 12^{\prime}-\mathrm{Fe} 2-\mathrm{C} 22^{\prime}$	171.0(3)
C11'-Fe2-C23'	170.0(3)
$\mathrm{C} 21^{\prime}-\mathrm{Fe} 2-\mathrm{C} 23{ }^{\prime}$	68.7(3)
C15'-Fe2-C23'	148.2(3)
C25'-Fe2-C23'	68.6(3)
$\mathrm{C} 12{ }^{\prime}-\mathrm{Fe} 2-\mathrm{C} 23{ }^{\prime}$	131.8(3)
$\mathrm{C} 22^{\prime}-\mathrm{Fe} 2-\mathrm{C} 23{ }^{\prime}$	40.4(3)
$\mathrm{C} 11^{\prime}-\mathrm{Fe} 2-\mathrm{C} 24{ }^{\prime}$	130.1(3)
$\mathrm{C} 21^{\prime}-\mathrm{Fe} 2-\mathrm{C} 24{ }^{\prime}$	69.3(3)
C15'-Fe2-C24'	170.1(3)
$\mathrm{C} 25{ }^{-}-\mathrm{Fe} 2-\mathrm{C} 24{ }^{\prime}$	40.8(3)
$\mathrm{C} 12{ }^{\prime}-\mathrm{Fe} 2-\mathrm{C} 24^{\prime}$	107.8(3)
C22'-Fe2-C24'	68.7(3)

$\mathrm{C} 23{ }^{\prime}-\mathrm{Fe} 2-\mathrm{C} 24^{\prime}$	40.4(3)
$\mathrm{Cl} 1^{\prime}-\mathrm{Fe} 2-\mathrm{Cl} 4^{\prime}$	69.2(3)
C21'-Fe2-C14'	131.9(3)
$\mathrm{Cl} 5^{\prime}-\mathrm{Fe} 2-\mathrm{Cl} 4^{\prime}$	40.7(2)
C25'-Fe2-C14'	170.9(3)
$\mathrm{C}_{12}{ }^{-} \mathrm{Fe} 2-\mathrm{C} 14^{\prime}$	68.3(3)
C 22 --Fe2-C14'	109.9(3)
C23'-Fe2-C14'	117.4(3)
C24'-Fe2-C14'	148.1(3)
C11'-Fe2-C13'	68.6(3)
C21'-Fe2-C13'	171.3(3)
$\mathrm{C}_{15}{ }^{-} \mathrm{Fe} 2-\mathrm{Cl} 3^{\prime}$	68.0(3)
$\mathrm{C} 25{ }^{\prime}-\mathrm{Fe} 2-\mathrm{C} 13{ }^{\prime}$	146.6(3)
C12'-Fe2-C13'	40.2(3)
C22'-Fe2-C13'	133.0(3)
C23'-Fe2-C13'	111.0(3)
C24'-Fe2-C13'	116.4(3)
C14'-Fe2-C13'	39.9(3)
O1'-C1'-Re2	178.2(14)
O1'A-Cl'A-Re2	177.5(19)
C21'-P1'-C31'	102.2(3)
C21'-P1'-C41'	101.1(3)
C31'-P1'-C41'	100.5(3)
C21'-P1'-Re2	114.9(2)
C31'-P1'-Re2	123.0(2)
C41'-P1'-Re2	112.0(2)
C11'-P2'-C51'	103.2(3)
C11'-P2'-C61'	102.1(3)
C51'-P2'-C61'	101.3(3)
C11'-P2'-Re2	118.0(2)
C51'-P2'-Re2	107.3(2)
C61'-P2'-Re2	122.2(2)
O1'-C1'-Re2	174.0(7)
O2'-C2'-Re2	174.7(6)
C15'-C11'-C12'	107.0(6)
C15'-C11'-P2'	123.8(5)
C12'-C11'-P2'	129.0(5)
$\mathrm{C} 15{ }^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{Fe} 2$	69.5(4)
C 12 - $\mathrm{C} 11^{\prime}-\mathrm{Fe} 2$	69.9(4)
P2'-C11'-Fe2	121.6(3)
C13'-C12'-C11'	107.6(7)
C13'-C12'-Fe2	70.8(4)
C11'-C12'-Fe2	68.5(4)
C13'-C12'-H12'	126.2
C11'-C12'-H12'	126.2
$\mathrm{Fe} 2-\mathrm{C} 12^{\prime}-\mathrm{H} 12^{\prime}$	126.1
C14'-C13'-C12'	109.4(7)
C14'-C13'-Fe2	70.0(4)
$\mathrm{Cl} 2^{\prime}-\mathrm{C} 13^{\prime}-\mathrm{Fe} 2$	68.9(4)
C14'-C13'-H13'	125.3
C12'-C13'-H13'	125.3
Fe2-C13'-H13'	127.4
C13'-C14'-C15'	107.8(6)
C13'-C14'-Fe2	70.1(4)
C15'-C14'-Fe2	68.4(4)
C13'-C14'-H14'	126.1
C15'-C14'-H14'	126.1
$\mathrm{Fe} 2-\mathrm{Cl} 4^{\prime}-\mathrm{H} 14{ }^{\prime}$	127.0
C14'-C15'-C11'	108.1(6)
C14'-C15'-Fe2	70.9(4)
C11'-C15'-Fe2	68.9(4)

C14'-C15'-H15'	125.9
C11'-C15'-H15'	125.9
Fe2-C15'-H15'	125.9
C22'-C21'-C25'	107.6(6)
C22'-C21'-P1'	127.2(5)
C25'-C21'-P1'	125.0(5)
C22'-C21'-Fe2	70.3(3)
C25'-C21'-Fe2	69.2(3)
P1'-C21'-Fe2	122.9(3)
C23'-C22'-C21'	107.4(6)
C23'-C22'-Fe2	69.9(4)
$\mathrm{C} 21{ }^{\prime}-\mathrm{C} 22^{\prime}-\mathrm{Fe} 2$	68.4(3)
C23'-C22'-H22'	126.3
C21'-C22'-H22'	126.3
Fe2-C22'-H22'	127.0
C24'-C23'-C22'	109.5(6)
C24'-C23'-Fe2	69.9(4)
$\mathrm{C} 22^{\prime}-\mathrm{C} 23{ }^{\prime}-\mathrm{Fe} 2$	69.7(4)
C24'-C23'-H23'	125.2
C22'-C23'-H23'	125.2
Fe2-C23'-H23'	126.7
C23'-C24'-C25'	107.9(7)
C23'-C24'-Fe2	69.7(4)
C25'-C24'-Fe2	68.6(4)
C23'-C24'-H24'	126.0
C25'-C24'-H24'	126.0
Fe2-C24'-H24'	127.2
C24'-C25'-C21'	107.5(7)
C24'-C25'-Fe2	70.5(4)
$\mathrm{C} 21{ }^{-}-\mathrm{C} 25{ }^{\prime}-\mathrm{Fe} 2$	68.8(4)
C24'-C25'-H25'	126.3
C21'-C25'-H25'	126.3
Fe2-C25'-H25'	126.0
C32'-C31'-C36'	120.0(7)
C32'-C31'-P1'	121.2(5)
C36'-C31'-P1'	118.7(5)
C31'-C32'-C33'	118.9(7)
C31'-C32'-H32'	120.6
C33'-C32'-H32'	120.6
C34'-C33'-C32'	121.9(7)
C34'-C33'-H33'	119.0
C32'-C33'-H33'	119.0
C33'-C34'-C35'	118.4(7)
C33'-C34'-H34'	120.8
C35'-C34'-H34'	120.8
C36'-C35'-C34'	121.2(7)
C36'-C35'-H35'	119.4
C34'-C35'-H35'	119.4
C35'-C36'-C31'	119.6(7)
C35'-C36'-H36'	120.2
C31'-C36'-H36'	120.2
C46'-C41'-C42'	120.1(6)
C46'-C41'-P1'	121.6(5)
C42'-C41'-P1'	118.3(5)
C41'-C42'-C43'	118.3(7)
C41'-C42'-H42'	120.9
C43'-C42'-H42'	120.9
C44'-C43'-C42'	121.5(7)
C44'-C43'-H43'	119.3
C42'-C43'-H43'	119.3
C45'-C44'-C43'	119.5(6)

C45'-C44'-H44'	120.2
C43'-C44'-H44'	120.2
C44'-C45'-C46'	120.6(7)
C44'-C45'-H45'	119.7
C46'-C45'-H45'	119.7
C45'-C46'-C41'	119.9(7)
C45'-C46'-H46'	120.0
C41'-C46'-H46'	120.0
C52'-C51'-C56'	117.4(6)
C52'-C51'-P2'	120.5(5)
C56'-C51'-P2'	122.0(5)
C53'-C52'-C51'	122.3(7)
C53'-C52'-H52'	118.8
C51'-C52'-H52'	118.8
C52'-C53'-C54'	118.4(7)
C52'-C53'-H53'	120.8
C54'-C53'-H53'	120.8
C55'-C54'-C53'	121.0(7)
C55'-C54'-H54'	119.5
C53'-C54'-H54'	119.5
C54'-C55'-C56'	119.7(7)
C54'-C55'-H55'	120.2
C56'-C55'-H55'	120.2
C55'-C56'-C51'	121.0(7)
C55'-C56'-H56'	119.5
C51'-C56'-H56'	119.5
C62'-C61'-C66'	119.4(6)
C62'-C61'-P2'	122.3(5)
C66'-C61'-P2'	118.2(5)
C61'-C62'-C63'	120.9(6)
C61'-C62'-H62'	119.6
C63'-C62'-H62'	119.6
C62'-C63'-C64'	120.0(7)
C62'-C63'-H63'	120.0
C64'-C63'-H63'	120.0
C65'-C64'-C63'	119.0(7)
C65'-C64'-H64'	120.5
C63'-C64'-H64'	120.5
C66'-C65'-C64'	120.3(7)
C66'-C65'-H65'	119.9
C64'-C65'-H65'	119.9
C65'-C66'-C61'	120.4(7)
C65'-C66'-H66'	119.8
C61'-C66'-H66'	119.8
C1"A-Re3-C2"	89.9(14)
C1"A-Re3-C1"	175.7(14)
C2"-Re3-C1"	86.1(4)
C1"A-Re3-C3"	89.3(13)
C2"-Re3-C3"	90.0(3)
C1"-Re3-C3"	89.1(4)
C1 "A-Re3-P1"	82.6(13)
C2"-Re3-P1"	86.7(2)
C1"-Re3-P1"	98.8(3)
C3"-Re3-P1"	171.3(2)
C1"A-Re3-P2"	94.3(14)
C2"-Re3-P2"	175.2(2)
C1"-Re3-P2"	89.6(3)
C3"-Re3-P2"	87.8(2)
P1"-Re3-P2"	96.05(6)
C 1 "A-Re3-Br3	5.7(14)
C2"-Re3-Br3	85.5(2)

C1"-Re3-Br3	170.1(4)
C3"-Re3-Br3	85.7(2)
P1"-Re3-Br3	85.93(5)
P2"-Re3-Br3	98.59(6)
C1"A-Re3-Br3A	170.3(14)
C2"-Re3-Br3A	82.3(3)
Cl 1 --Re3-Br3A	5.6(4)
C3"-Re3-Br3A	84.9(2)
P1"-Re3-Br3A	102.62(14)
P2"-Re3-Br3A	93.24(15
$\mathrm{Br} 3-\mathrm{Re} 3-\mathrm{Br} 3 \mathrm{~A}$	164.62(14)
C25"-Fe3-C12"	141.0(3)
C 25 "-Fe3-C11"	110.4(3)
C12"-Fe3-C11"	41.6(2)
C 25 "-Fe3-C24"	41.4(3)
C 12 "-Fe3-C24"	177.4(3)
C11"-Fe3-C24"	139.1(3)
C 25 "-Fe3-C21"	41.5(2)
C 12 "-Fe3-C21"	112.8(3)
C11"-Fe3-C21"	$110.5(3)$
C24"-Fe3-C21"	69.5(3)
C25"-Fe3-C15"	109.2(3)
C12"-Fe3-C15"	69.0(3)
C11"-Fe3-C15"	41.3(2)
C 24 "-Fe3-C15"	110.0(3)
C21"-Fe3-C15"	137.8(3)
C25"-Fe3-C14"	136.2(3)
C12"-Fe3-C14"	68.7(3)
C11"-Fe3-C14"	69.4(3)
C24"-Fe3-C14"	109.0(3)
C21"-Fe3-C14"	177.7(3)
C15"-Fe3-C14"	40.7(2)
C 25 "-Fe3-C13"	177.0(3)
C12"-Fe3-C13"	40.3(2)
C11"-Fe3-C13"	69.0(3)
C24"-Fe3-C13"	137.2(3)
C21"--Fe3-C13"	141.5(3)
C15"-Fe3-C13"	68.3(3)
C14"-Fe3-C13"	40.7(3)
C 25 "-Fe3-C23"	68.6(3)
C 12 "-Fe3-C23"	139.2(3)
$\mathrm{C} 11{ }^{\prime \prime}-\mathrm{Fe} 3-\mathrm{C} 23 "$	179.0(3)
C 24 "-Fe3-C23"	40.2(2)
C 21 "-Fe3-C23"	68.8(3)
C15"-Fe3-C23"	138.9(3)
C14"-Fe3-C23"	111.3(3)
C13"-Fe3-C23"	112.03)
C25"-Fe3-C22"	69.2(3)
C12"-Fe3-C22"	112.3(3)
C11"-Fe3-C22"	139.0(3)
C 24 "-Fe3-C22"	68.7(3)
C21"-Fe3-C22"	41.0(2)
C15"-Fe3-C22"	178.3(3)
C14"-Fe3-C22"	140.5(3)
C13"-Fe3-C22"	113.3(3)
C 23 "-Fe3-C22"	40.8(2)
$\mathrm{O1}$ "-C1"-Re3	178.3(11)
O1"A-Cl"A-Re3	171(4)
C11"-P1"-C41"	100.8(3)
C11"-P1"-C31"	103.6(3)
C41"-P1"-C31"	103.1(3)

C11"-P1"-Re3	119.2(2)
C41"-P1"-Re3	111.5(2)
C31"-P1"-Re3	116.5(2)
C21"-P2"-C61"	101.0(3)
C21"-P2"--C51"	102.0(3)
C61"-P2"-C51"	102.4(3)
C21"-P2"-Re3	121.89(19
C61"-P2"-Re3	115.0(2)
C51"-P2"-Re3	112.0(2)
O2"-C2"-Re3	177.5(7)
O3"-C3"-Re3	176.6(6)
C15"-C11"-C12"	106.6(6)
C15"-C11"-P1"	126.8(5)
C12"-C11"-P1"	126.5(5)
C15"-C11"-Fe3	69.9(4)
C 12 "-C11"-Fe3	69.2(3)
P1"-C11"-Fe3	125.7(3)
C13"-C12"-C11"	108.5(6)
C 13 "-C12"-Fe3	70.6(4)
C11"-C12"-Fe3	69.2(4)
$\mathrm{C} 13{ }^{\prime \prime}-\mathrm{C} 12$ "-H12"	125.8
C11"-C12"-H12"	125.8
Fe3-C12"-H12"	126.0
C15"-C14"-C13"	107.7(6)
C15"-C14"-Fe3	69.7(4)
C13"-C14"-Fe3	69.8(4)
C15"-C14"-H13"	126.2
C13"-C14"-H13"	126.2
Fe3-C14"-H13"	126.0
C12"-C13"-C14"	108.7(6)
C12"-C13"-Fe3	69.1(4)
C14"-C13"-Fe3	69.5(4)
C12"-C13"-H14"	125.6
C14"-C13"-H14"	125.6
Fe3-C13"-H14"	127.3
C14"-C15"-C11"	108.4(6)
C14"-C15"-Fe3	69.6(4)
C11"-C15"-Fe3	68.8(3)
C14"-C15"-H15"	125.8
C11"-C15"-H15"	125.8
$\mathrm{Fe} 3-\mathrm{C} 15{ }^{\prime \prime}-\mathrm{H} 15{ }^{\prime \prime}$	127.4
C22"-C21"-C25"	107.6(6)
C22"-C21"-P2"	125.4(5)
C25"-C21"-P2"	126.9(5)
C 22 "-C21"-Fe3	70.4(3)
C 25 "-C21"-Fe3	68.6(3)
P2"-C21"-Fe3	127.9(3)
C23"-C22"-C21"	107.5(6)
C 23 "-C22"-Fe3	69.5(3)
C 21 "-C22"-Fe3	68.6(3)
C 23 "-C22"-H22"	126.3
C21"-C22"-H22"	126.3
Fe3-C22"-H22"	127.2
C24"-C23"-C22"	109.0(6)
C 24 "-C23"-Fe3	69.0(4)
C 22 "-C23"-Fe3	69.7(3)
C24"-C23"-H23"	125.5
C22"-C23"-H23"	125.5
Fe3-C23"-H23"	127.3
C23"-C24"-C25"	108.0(6)
C 23 "-C24"-Fe3	70.8(4)

C 25 "--C24"-Fe3	68.7(4)
C 23 "-C24"-H24"	126.0
C25"-C24"-H24"	126.0
$\mathrm{Fe} 3-\mathrm{C} 24{ }^{\prime \prime}-\mathrm{H} 24{ }^{\prime \prime}$	126.1
C24"-C25"-C21"	108.0(6)
C 24 "-C25"-Fe3	69.9(4)
$\mathrm{C} 21{ }^{\prime \prime}-\mathrm{C} 25$ "-Fe3	69.9(4)
C24"-C25"-H25"	126.0
C21"-C25"-H25"	126.0
Fe3-C25"-H25"	125.8
C32"-C31"-C36"	119.3(6)
C32"-C31"-P1"	118.9(5)
C36"-C31"-P1"	121.7(5)
C31"-C32"-C33"	120.4(6)
C31"-C32"-H32"	119.8
C33"-C32"-H32"	119.8
C34"-C33"-C32"	118.9(7)
C34"-C33"-H33"	120.5
C32"-C33"-H33"	120.5
C33"-C34"-C35"	120.9(7)
C33"-C34"-H34"	119.6
C35"-C34"-H34"	119.6
C36"-C35"-C34"	119.6(7)
C36"-C35"-H35"	120.2
C34"-C35"-H35"	120.2
C35"-C36"-C31"	120.9(7)
C35"-C36"-H36"	119.6
C31"-C36"-H36"	119.6
C46"-C41"-C42"	118.3(6)
C46"-C41"-P1"	120.8(5)
C42"-C41"-P1"	120.9(5)
C43"-C42"-C41"	120.4(7)
C43"-C42"-H42"	119.8
C41"-C42"-H42"	119.8
C44"-C43"-C42"	121.0(7)
C44"-C43"-H43"	119.5
C42"-C43"-H43"	119.5
C43"-C44"-C45"	118.7(7)
C43"-C44"-H44"	120.6
C45"-C44"-H44"	120.6
C46"-C45"-C44"	121.0(7)
C46"-C45"-H45"	119.5
C44"-C45"-H45"	119.5
C41"-C46"-C45"	120.6(7)
C41"-C46"-H46"	119.7
C45"-C46"-H46"	119.7
C52"-C51"-C56"	118.2(6)
C52"-C51"-P2"	122.7(5)
C56"-C51"-P2"	119.0(5)
C51"-C52"-C53"	120.8(7)
C51"-C52"-H52"	119.6
C53"-C52"-H52"	119.6
C54"-C53"-C52"	120.2(7)
C54"-C53"-H53"	119.9
C52"-C53"-H53"	119.9
C55"-C54"-C53"	119.6(7)
C55"-C54"-H54"	120.2
C53"-C54"-H54"	120.2
C54"-C55"-C56"	121.0(7)
C54"-C55"-H55"	119.5
C56"-C55"-H55"	119.5

C55"-C56"-C51"	$120.1(7)$
C55"-C56"-H56"	119.9
C51"-C56"-H56"	119.9
C66"-C61"-C62"	$117.7(7)$
C66"-C61"-P2"	$121.9(6)$
C62"-C61"-P2"	$120.2(5)$
C63"-C62"-C61"	$121.2(7)$
C63"-C62"-H62"	119.4
C61"-C62"-H62"	119.4
C64"-C63"-C62"	$120.2(8)$
C64"-C63"-H63"	119.9
C62"-C63"-H63"	119.9
C65"-C64"-C63"	$119.3(7)$
C65"-C64"-H64"	120.4
C63"-C64"-H64"	120.4
C64"-C65"-C66"	$121.7(7)$
C64"-C65"-H65"	119.2
C66"-C65"-H65"	119.2
C65"-C66"-C61"	$119.8(7)$
C65"-C66"-H66"	120.1
C61"-C66"-H66"	120.1

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*^{2}} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Rel	21(1)	20(1)	13(1)	0 (1)	4(1)	1(1)
Fel	18(1)	24(1)	20(1)	-1(1)	3(1)	2(1)
Br 1	23(1)	26(1)	25(1)	1(1)	$9(1)$	-2(1)
P2	21(1)	22(1)	14(1)	0 (1)	5(1)	O(1)
P1	19(1)	22(1)	15(1)	-2(1)	6(1)	0 (1)
O2	36(3)	62(5)	45(4)	-20(3)	-17(3)	22(3)
O3	46(3)	27(4)	27(3)	0 (2)	14(2)	2 (3)
C2	33(5)	30(5)	20(4)	-12(3)	-2(3)	14(4)
C3	24(4)	30(5)	11(4)	0 (3)	8(3)	$0(4)$
C21	23(4)	21(5)	13(4)	-3(3)	4(3)	2 (3)
C22	28(4)	24(5)	16(4)	0 (3)	5(3)	3(3)
C11	17(4)	27(5)	17(4)	-8(3)	5(3)	-2(3)
C12	30(4)	42(6)	24(4)	-5(4)	12(3)	-3(4)
C13	21(4)	49(6)	33(4)	-12(4)	11(3)	-1(4)
C14	28(4)	30(5)	34(4)	-6(4)	12(4)	7(4)
C15	25(4)	24(5)	22(4)	-8(3)	4(3)	-1(3)
C23	34(4)	22(5)	25(4)	0(3)	15(3)	1(3)
C24	29(4)	24(5)	24(4)	3(3)	2(3)	3(3)
C25	21(4)	37(6)	25(4)	-4(3)	1(3)	-2(4)
C31	15(4)	20(5)	23(4)	-3(3)	6 (3)	4(3)
C32	35(5)	22(5)	33(4)	-1(4)	13(4)	-4(4)
C33	46(5)	23(5)	46(5)	-7(4)	16(4)	-10(4)
C34	40(5)	28(5)	46(5)	6(4)	25(4)	-5(4)
C35	22(4)	41(6)	33(4)	3(4)	14(3)	-3(4)
C36	10(4)	35(5)	28(4)	-5(3)	6(3)	-2(3)
C41	23(4)	17(4)	16(4)	-4(3)	2(3)	0 (3)
C42	38(5)	42(6)	19(4)	-11(3)	0(4)	7(4)
C43	52(6)	36(6)	22(4)	-7(4)	-7(4)	19(4)
C44	69(6)	36(6)	16(4)	0(4)	13(4)	13(5)
C45	54(6)	38(6)	28(5)	-2(4)	23(4)	-9(4)
C46	30(4)	30(5)	19(4)	-4(3)	7(3)	-5(4)
C 51	13(3)	25(5)	15(4)	-7(3)	5(3)	-2(3)
C52	23(4)	29(5)	16(4)	7(3)	5(3)	-3(3)
C53	32(4)	33(5)	18(4)	1(3)	10(3)	-9(4)
C54	18(4)	51(6)	20(4)	-7(4)	6 (3)	-3(4)
C55	26(4)	24(5)	24(4)	-9(3)	1(3)	2(3)
C56	29(4)	29(5)	17(4)	0(3)	10(3)	0(3)
C61	18(4)	18(4)	22(4)	-1(3)	9(3)	2(3)
C62	30(4)	36(5)	17(4)	2(3)	17(3)	-6(4)
C63	28(4)	37(5)	22(4)	-2(3)	-2(3)	-5(4)
C64	21(4)	31(5)	30(4)	2(3)	5(3)	-7(3)
C65	29(4)	36(5)	19(4)	8 (3)	7(3)	0 (4)
C66	19(4)	28(5)	18(4)	-1(3)	4(3)	-2(3)
Re2	20(1)	21(1)	15(1)	1(1)	5(1)	1(1)
Fe 2	18(1)	25(1)	15(1)	-2(1)	3(1)	2(1)
Br 2	40(1)	32(1)	21(1)	1(1)	13(1)	-5(1)
O1'	33(7)	43(8)	30(9)	-3(7)	5(7)	-8(5)
P1'	17(1)	24(1)	13(1)	-1(1)	3(1)	-1(1)
P2'	21(1)	22(1)	14(1)	-1(1)	6(1)	0 (1)
O1'	28(3)	64(5)	45(4)	-10(3)	-5(3)	12(3)
O2'	63(4)	28(4)	43(3)	1 (3)	12(3)	8(3)
Cl^{1}	42(5)	31(5)	27(4)	-6(3)	13(4)	12(4)
C2'	32(5)	45(6)	19(4)	7(4)	9(3)	6(4)
C11	24(4)	26(5)	$5(3)$	-3(3)	0 (3)	-6(3)
C12'	25(4)	28(5)	14(4)	-4(3)	0 (3)	6(3)
C13'	31(5)	46(6)	10(4)	-7(3)	-4(3)	11(4)
C14'	38(5)	18(5)	13(4)	-3(3)	9 (3)	-3(3)
C15'	27(4)	30(5)	12(4)	1(3)	5(3)	3(4)

C21 ${ }^{\prime}$	19(4)	24(5)	8(3)	-5(3)	1(3)	1(3)
C22'	18(4)	26(5)	24(4)	-7(3)	2(3)	5(3)
C23'	28(4)	38(6)	19(4)	-11(3)	7 (3)	8(4)
C24'	19(4)	44(6)	25(4)	-7(4)	11(3)	3(4)
C25'	20(4)	44(5)	13(4)	-6(3)	3(3)	1(4)
C31'	17(4)	28(5)	19(4)	4(3)	4(3)	-1(3)
C32'	18(4)	28(5)	22(4)	2(3)	7(3)	2(3)
C33'	31(4)	40(6)	19(4)	8(4)	7 (3)	-2(4)
C34'	23(4)	27(5)	36(5)	6(4)	4(4)	-3(3)
C35'	36(5)	21(5)	29(4)	-2(3)	6(4)	-2(4)
C36'	24(4)	33(5)	16(4)	-2(3)	7(3)	-4(3)
C41 ${ }^{\prime}$	24(4)	15(4)	15(4)	-1(3)	3(3)	-4(3)
C42'	32(4)	30(5)	18(4)	-5(3)	2(3)	-5(4)
C43'	31(4)	35(5)	22(4)	-7(3)	-11(4)	-2(4)
C44'	63(6)	25(5)	8(4)	-4(3)	-3(4)	$0(4)$
C45'	46(5)	28(5)	13(4)	-5(3)	9(4)	-9(4)
C46'	27(4)	28(5)	22(4)	0(3)	8(3)	2(3)
C51'	16(4)	24(5)	11(3)	-2(3)	1(3)	-2(3)
C52'	30(4)	30(5)	20(4)	-2(3)	6 (3)	-4(4)
C53'	41(5)	22(5)	32(4)	-10(3)	16(4)	-7(4)
C54'	29(4)	55(6)	22(4)	-7(4)	15(3)	-3(4)
C55'	35(5)	38(6)	19(4)	4(4)	12(3)	0(4)
C56'	25(4)	27(5)	17(4)	-3(3)	2(3)	-5(3)
C61'	27(4)	18(4)	26(4)	-3(3)	15(3)	1(3)
C62'	29(4)	33(5)	18(4)	3(3)	4(3)	-2(4)
C63'	54(5)	34(5)	25(4)	2(4)	25(4)	-11(4)
C64'	37(5)	30(5)	50(5)	-9(4)	30(4)	-9(4)
C65'	26(4)	33(5)	38(5)	-7(4)	8(4)	3(4)
C66'	32(4)	35(5)	19(4)	-8(3)	14(3)	-10(4)
Re3	16(1)	26(1)	17(1)	0 (1)	7(1)	0 (1)
Fe 3	20(1)	23(1)	13(1)	-1(1)	5(1)	-2(1)
Br3	26(1)	33(1)	29(1)	-4(1)	13(1)	6(1)
C1"	23(6)	34(9)	18(6)	6(6)	2(4)	15(6)
O1"	41(6)	62(9)	44(6)	3(5)	18(5)	22(5)
P1"	19(1)	24(1)	13(1)	1(1)	6(1)	0 (1)
P2"	15(1)	26(1)	16(1)	-1(1)	4(1)	1(1)
O2"	31(3)	60(4)	31(3)	14(3)	15(3)	2(3)
O3"	21(3)	55(4)	35(3)	0 (3)	9(2)	0 (3)
C2"	17(4)	36(5)	29(4)	-6(4)	11(3)	-1(3)
C3"	23(4)	30(5)	27(4)	-4(3)	14(3)	-11(4)
C11"	18(4)	23(5)	$9(3)$	-1(3)	-2(3)	-1(3)
C12"	22(4)	25(5)	10(3)	5(3)	5(3)	$-3(3)$
C14"	28(4)	31 (5)	11(3)	-3(3)	3(3)	-15(4)
C13"	31(4)	22(5)	15(4)	-7(3)	9 (3)	-2(3)
C15"	20(4)	25(5)	16(4)	-1(3)	1(3)	0(3)
C21"	16(4)	25(5)	5(3)	-1(3)	2(3)	1 (3)
C22"	19(4)	26(5)	18(4)	4(3)	3(3)	6 (3)
C23"	35(4)	30(5)	6(3)	1 (3)	9 (3)	-9(4)
C24"	24(4)	31(5)	15(4)	-1(3)	8(3)	2(4)
C25"	22(4)	24(5)	$8(3)$	-1(3)	-1(3)	1(3)
C31"	22(4)	18(4)	26(4)	2(3)	14(3)	3(3)
C32"	28(4)	24(5)	23(4)	$1(3)$	13(3)	5(3)
C33"	34(5)	24(5)	36(5)	-2(3)	17(4)	0(4)
C34"	34(5)	$31(5)$	37(5)	9(4)	20(4)	17(4)
C35"	21(4)	54(6)	33(5)	20(4)	13(4)	10(4)
C36"	22(4)	31(5)	21(4)	5(3)	9(3)	-1(3)
C41"	10(3)	27(5)	14(4)	-1(3)	6 (3)	-5(3)
C42"	21(4)	31(5)	26(4)	1(3)	14(3)	-7(3)
C43"	35(4)	29(5)	18(4)	8 (3)	13(3)	2(4)
C44"	30(4)	45(6)	25(4)	1(4)	18(3)	2(4)
C45"	33(4)	28(5)	22(4)	-4(3)	$11(3)$	8(4)
C46"	26(4)	28(5)	17(4)	4(3)	7(3)	4(3)

C51"	$15(4)$	$25(5)$	$15(4)$	$-2(3)$	$0(3)$	$2(3)$
C52"	$21(4)$	$42(6)$	$19(4)$	$-6(3)$	$5(3)$	$0(3)$
C53"	$29(4)$	$50(6)$	$13(4)$	$-10(3)$	$8(3)$	$-2(4)$
C54"	$30(4)$	$21(5)$	$22(4)$	$-11(3)$	$0(3)$	$2(4)$
C55"	$29(4)$	$24(5)$	$34(4)$	$-7(4)$	$11(4)$	$-11(3)$
C56"	$26(4)$	$34(5)$	$23(4)$	$-4(3)$	$11(3)$	$-4(4)$
C61"	$24(4)$	$27(5)$	$21(4)$	$0(3)$	$10(3)$	$-3(3)$
C62"	$28(4)$	$34(5)$	$28(4)$	$9(4)$	$6(3)$	$4(4)$
C63"	$48(5)$	$46(6)$	$33(5)$	$4(4)$	$24(4)$	$14(4)$
C64"	$34(5)$	$45(6)$	$47(5)$	$21(4)$	$25(4)$	$16(4)$
C65"	$28(5)$	$52(6)$	$32(5)$	$18(4)$	$7(4)$	$14(4)$
C66"	$26(4)$	$44(6)$	$23(4)$	$7(4)$	$7(3)$	$7(4)$

Table 5. Hydrogen coordinates $\left[\times 10^{4}\right]$ and isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$.

H13"	-3605	-3297	-652	29	1
H14"	-1131	-3524	-579	27	1
H15"	-3340	-2850	-953	26	1
H22"	1730	-3273	976	26	1
H23"	-948	-3338	1044	28	1
H24"	-2446	-2938	759	28	1
H25"	-706	-2615	521	23	1
H32"	-300	-2296	-163	29	1
H33"	-2061	-1984	-116	36	1
H34"	-4422	-1936	-999	38	1
H35"	-5058	-2188	-1935	42	1
H36"	-3360	-2500	-1962	30	1
H42"	-899	-2331	-2217	30	1
H43"	-1487	-2381	-3343	32	1
H44"	-1508	-2772	-3792	38	1
H45"	-1025	-3118	-3099	33	1
H46"	-495	-3074	-1973	29	1
H52"	1623	-2601	1672	34	1
H53"	2365	-2295	2492	37	1
H54"	4456	-2037	2608	33	1
H55"	5852	-2090	1929	35	1
H56"	5037	-2374	1064	32	1
H62"	3424	-3220	151	37	1
H63"	5177	-3541	598	48	1
H64"	6995	-3516	1684	47	1
H65"	7122	-3162	2297	46	1
H66"	5352	-2840	1877	38	1

Appendix G

Crystal tables for 3b

Table 1. Crystal data and structure refinement.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=27.45^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
R indices (all data)
Largest diff. peak and hole

```
s%2 G9SKC 307
C28}\mp@subsup{\textrm{H}}{32}{}\mp@subsup{\textrm{B}}{3}{}\mp@subsup{\textrm{MnO}}{2}{}\mp@subsup{\textrm{P}}{2}{
549.85
150(2) K
0.71073 \AA
Orthorhombic
Pbca
a=17.123(3)\AA}\quad\alpha=9\mp@subsup{0}{}{\circ
b=12.328(2) \AA
c=26.170(5)\AA
5524.3(17) \AA $
8
1.322 Mg / m
0.618 mm-1
2288
Plate; orange
0.2 }\times0.15\times0.02\mp@subsup{\textrm{mm}}{}{3
1.96-27.45
-16\leqh\leq22,-13\leqk\leq15,-33\leql\leq25
37761
6296[ R Rint }=0.0810
90.7 %
Semi-empirical from equivalents
0 . 9 9 2 \text { and } 0 . 9 2 5
Full-matrix least-squares on }\mp@subsup{F}{}{2
6296 / 0/357
0.830
RI=0.0432,wR2=0.11112
RI=0.0774,wR2=0.1326
0.434 and -0.391 e }\mp@subsup{\AA}{}{-3
```

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm
Special details:

Table 2. Atomic coordinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{x q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{\text {el }}$	S.o.f.
Mn1	$-56(1)$	$3860(1)$	$3647(1)$	$19(1)$	1
P1	$-238(1)$	$3376(1)$	$2827(1)$	$21(1)$	1
P2	$-677(1)$	$2312(1)$	$3851(1)$	$20(1)$	1
O1	$1459(1)$	$2681(1)$	$3640(1)$	$31(1)$	1
O2	$-1623(1)$	$4911(1)$	$3687(1)$	$34(1)$	1
B1	$509(2)$	$4790(2)$	$4328(1)$	$27(1)$	1
B2	$681(2)$	$5443(2)$	$3742(1)$	$29(1)$	1
B3	$188(2)$	$6161(2)$	$4255(1)$	$35(1)$	1
C1	$590(1)$	$3405(2)$	$2384(1)$	$21(1)$	1
C2	$575(2)$	$2793(2)$	$1934(1)$	$29(1)$	1
C3	$1186(2)$	$2820(2)$	$1594(1)$	$33(1)$	1
C4	$1829(2)$	$3473(2)$	$1690(1)$	$30(1)$	1
C5	$1856(2)$	$4085(2)$	$2131(1)$	$27(1)$	1
C6	$1244(2)$	$4047(2)$	$2477(1)$	$24(1)$	1
C7	$-982(1)$	$4079(2)$	$2448(1)$	$25(1)$	1
C8	$-1422(2)$	$3581(2)$	$2065(1)$	$33(1)$	1
C9	$-1928(2)$	$4181(2)$	$1764(1)$	$41(1)$	1
C10	$-2006(2)$	$5285(2)$	$1840(1)$	$42(1)$	1
C11	$-1587(2)$	$5789(2)$	$2221(1)$	$36(1)$	1
C12	$-1079(2)$	$5190(2)$	$2522(1)$	$28(1)$	1
C13	$-544(2)$	$1942(2)$	$2827(1)$	$24(1)$	1
C14	$-1123(2)$	$1781(2)$	$3263(1)$	$24(1)$	1
C15	$-1490(1)$	$2316(2)$	$4304(1)$	$22(1)$	1
C16	$-2031(2)$	$1466(2)$	$4308(1)$	$31(1)$	1
C17	$-2626(2)$	$1447(2)$	$4660(1)$	$36(1)$	1
C18	$-2700(2)$	$2260(2)$	$5018(1)$	$35(1)$	1
C19	$-2170(2)$	$3109(2)$	$5018(1)$	$38(1)$	1
C20	$-1576(2)$	$3138(2)$	$4663(1)$	$28(1)$	1
C21	$-77(1)$	$1207(2)$	$4101(1)$	$21(1)$	1
C22	$373(2)$	$1418(2)$	$4531(1)$	$32(1)$	1
C23	$842(2)$	$612(2)$	$4745(1)$	$37(1)$	1
C24	$859(2)$	$-401(2)$	$4525(1)$	$39(1)$	1
C25	$415(2)$	$-623(2)$	$4101(1)$	$39(1)$	1
C26	$-51(2)$	$176(2)$	$3885(1)$	$31(1)$	1
C27	$882(2)$	$3125(2)$	$3635(1)$	$22(1)$	1
C28	$-1012(2)$	$4530(2)$	$3676(1)$	$22(1)$	1

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

Mnl-C28	1.835(3)
$\mathrm{Mnl}-\mathrm{C} 27$	1.844(3)
Mnl-P1	2.2480 (8)
$\mathrm{Mn} 1-\mathrm{P} 2$	2.2495 (7)
Mnl-B1	2.330 (3)
Mn1-B2	2.336(3)
P1-Cl	1.831(3)
Pl-C7	1.832(3)
$\mathrm{Pl}-\mathrm{Cl} 3$	1.843(2)
P2-C15	1.827(2)
P2-C21	$1.828(2)$
P2-C14	1.840(2)
O1-C27	1.130(3)
O2-C28	1.147(3)
B1-B2	$1.756(4)$
B1-B3	$1.788(4)$
B2-B3	$1.815(5)$
C1-C6	$1.394(3)$
$\mathrm{C} 1-\mathrm{C} 2$	1.398(3)
C2-C3	$1.376(4)$
C3-C4	$1.387(4)$
C4-C5	$1.381(4)$
C5-C6	1.386(3)
C7-C12	1.393(3)
C7-C8	1.398(3)
C8-C9	1.384(4)
C9-C10	1.381(4)
C10-C11	1.377(4)
C11-C12	$1.386(4)$
C13-C14	$1.525(3)$
C15-C20	1.390(3)
C15-C16	1.399 (3)
C16-C17	1.373(4)
C17-C18	1.380(4)
C18-C19	1.384(4)
C19-C20	1.379(4)
C21-C22	1.389(4)
C21-C26	$1.391(3)$
C22-C23	1.395(4)
C23-C24	1.375(4)
C24-C25	$1.374(4)$
C25-C26	1.387(4)
C28-Mn1-C27	176.96(10)
$\mathrm{C} 28-\mathrm{Mn} 1-\mathrm{Pl}$	91.99(7)
C27-Mn1-P1	88.55(7)
$\mathrm{C} 28-\mathrm{Mn} 1-\mathrm{P} 2$	87.10(7)
C27-Mn1-P2	89.95(7)
$\mathrm{P} 1-\mathrm{Mn} 1-\mathrm{P} 2$	86.34(3)
$\mathrm{C} 28-\mathrm{Mn} 1-\mathrm{B} 1$	96.76(11)
C27-Mn1-B1	83.86(11)
$\mathrm{P} 1-\mathrm{Mnl}-\mathrm{B} 1$	156.69(8)
P2-Mn1-B1	115.57(8)
$\mathrm{C} 28-\mathrm{Mn} 1-\mathrm{B} 2$	95.84(11)
$\mathrm{C} 27-\mathrm{Mn} 1-\mathrm{B} 2$	86.69(11)
$\mathrm{Pl} 1-\mathrm{Mn} 1-\mathrm{B} 2$	113.50(8)
$\mathrm{P} 2-\mathrm{Mn} 1-\mathrm{B} 2$	159.75(8)
$\mathrm{B} 1-\mathrm{Mnl}-\mathrm{B} 2$	44.22(11)
$\mathrm{Cl}-\mathrm{Pl} 1-\mathrm{C} 7$	100.73(11)

C1-P1-C13	103.76(11)
C7-P1-C13	104.83(12)
$\mathrm{Cl}-\mathrm{P} 1-\mathrm{Mn} 1$	119.42(8)
C7-P1-Mnl	119.17(9)
C13-P1-Mn1	107.14(8)
C15-P2-C21	101.50(10)
C15-P2-Cl4	103.12(11)
C21-P2-C14	105.46(11)
C15-P2-Mn1	120.82(8)
C21-P2-Mn1	116.83(8)
C14-P2-Mnl	107.42(8)
B2-B1-B3	61.59(18)
$\mathrm{B} 2-\mathrm{B} 1-\mathrm{Mn} 1$	68.08(14)
B3-B1-Mn1	104.78(17)
B1-B2-B3	60.07(17)
B1-B2-Mn1	67.70(14)
B3-B2-Mn1	103.64(18)
B1-B3-B2	58.34(17)
C6-C1-C2	117.9(2)
C6-C1-P1	121.50(18)
C2-C1-P1	120.55(19)
C3-C2-C1	121.2(2)
C2-C3-C4	120.1(2)
C5-C4-C3	119.7(2)
C4-C5-C6	120.3(2)
C5-C6-C1	120.8(2)
C12-C7-C8	117.7(2)
C12-C7-P1	118.30(19)
C8-C7-P1	123.8(2)
C9-C8-C7	120.8(3)
C10-C9-C8	120.3(3)
C11-C10-C9	119.9(3)
C10-C11-C12	119.9(3)
C11-C12-C7	121.4(3)
C14-C13-P1	108.02(16)
C13-C14-P2	108.05(17)
C20-C15-C16	118.1(2)
C20-C15-P2	121.37(19)
C16-C15-P2	120.52(18)
C17-C16-C15	120.7(2)
C16-C17-C18	120.7(2)
C17-C18-C19	119.3(3)
C20-C19-C18	120.3(2)
C19-C20-C15	121.0(2)
C22-C21-C26	118.8(2)
C22-C21-P2	117.47(18)
C26-C21-P2	123.7(2)
C21-C22-C23	120.7(2)
C24-C23-C22	119.5 (3)
C25-C24-C23	120.4(3)
C24-C25-C26	120.4(3)
C25-C26-C21	120.1(3)
O1-C27-Mn1	178.3(2)
O2-C28-Mnl	177.3(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Mn1	$18(1)$	$19(1)$	$19(1)$	$0(1)$	$0(1)$	$-2(1)$
P1	$19(1)$	$23(1)$	$20(1)$	$-1(1)$	$-1(1)$	$-4(1)$
P2	$18(1)$	$20(1)$	$21(1)$	$0(1)$	$1(1)$	$-2(1)$
O1	$24(1)$	$32(1)$	$37(1)$	$-1(1)$	$0(1)$	$3(1)$
O2	$25(1)$	$37(1)$	$39(1)$	$-2(1)$	$0(1)$	$6(1)$
B1	$28(2)$	$29(2)$	$24(2)$	$0(1)$	$-6(1)$	$0(1)$
B2	$25(2)$	$22(1)$	$41(2)$	$-4(1)$	$-7(1)$	$-4(1)$
B3	$46(2)$	$25(2)$	$33(2)$	$-2(1)$	$-11(2)$	$1(1)$
C1	$21(1)$	$23(1)$	$19(1)$	$2(1)$	$-2(1)$	$-1(1)$
C2	$28(2)$	$30(1)$	$28(2)$	$-6(1)$	$0(1)$	$-7(1)$
C3	$35(2)$	$36(1)$	$28(2)$	$-8(1)$	$5(1)$	$-5(1)$
C4	$24(2)$	$36(1)$	$29(2)$	$1(1)$	$6(1)$	$1(1)$
C5	$21(1)$	$33(1)$	$28(1)$	$3(1)$	$0(1)$	$-5(1)$
C6	$24(1)$	$25(1)$	$24(1)$	$-1(1)$	$-2(1)$	$-1(1)$
C7	$17(1)$	$35(1)$	$23(1)$	$6(1)$	$1(1)$	$-5(1)$
C8	$26(2)$	$43(2)$	$29(2)$	$-1(1)$	$-3(1)$	$-5(1)$
C9	$24(2)$	$67(2)$	$30(2)$	$4(1)$	$-10(1)$	$-13(1)$
C10	$24(2)$	$59(2)$	$43(2)$	$23(1)$	$-7(1)$	$-3(1)$
C11	$27(2)$	$36(1)$	$45(2)$	$17(1)$	$-2(1)$	$-1(1)$
C12	$21(1)$	$34(1)$	$30(1)$	$6(1)$	$-1(1)$	$-5(1)$
C13	$27(1)$	$23(1)$	$22(1)$	$-3(1)$	$0(1)$	$-5(1)$
C14	$23(1)$	$22(1)$	$25(1)$	$-1(1)$	$0(1)$	$-5(1)$
C15	$18(1)$	$28(1)$	$22(1)$	$2(1)$	$0(1)$	$-1(1)$
C16	$29(2)$	$31(1)$	$32(2)$	$-2(1)$	$3(1)$	$-6(1)$
C17	$26(2)$	$41(2)$	$39(2)$	$3(1)$	$6(1)$	$-10(1)$
C18	$29(2)$	$43(2)$	$35(2)$	$5(1)$	$11(1)$	$3(1)$
C19	$38(2)$	$37(2)$	$37(2)$	$-5(1)$	$12(1)$	$4(1)$
C20	$25(2)$	$29(1)$	$30(1)$	$-2(1)$	$2(1)$	$-2(1)$
C21	$17(1)$	$22(1)$	$23(1)$	$7(1)$	$5(1)$	$-2(1)$
C22	$30(2)$	$29(1)$	$35(2)$	$5(1)$	$-3(1)$	$-6(1)$
C23	$29(2)$	$44(2)$	$39(2)$	$15(1)$	$-7(1)$	$-6(1)$
C24	$34(2)$	$37(2)$	$47(2)$	$16(1)$	$7(1)$	$12(1)$
C25	$47(2)$	$30(1)$	$38(2)$	$3(1)$	$6(1)$	$13(1)$
C26	$35(2)$	$29(1)$	$29(2)$	$0(1)$	$2(1)$	$4(1)$
C27	$24(1)$	$24(1)$	$18(1)$	$-2(1)$	$0(1)$	$-6(1)$
C28	$24(1)$	$20(1)$	$23(1)$	$0(1)$	$-4(1)$	$-4(1)$

Appendix H

Crystal tables for $\mathbf{3 m}$

Table 1. Crystal data and structure refinement.

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo) (Z. Otwinowski \& W. Minor, Methods in Enzymulogy (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Program used to solve structure: DIRDIF-96 (P. T. Beurskens, G. Beurskens, W. P. Bosman, R. de Gelder, S. Garcia-Granda, R. O. Gould, R. Israël \& J. M. M. Smits (1996). Crystallography Laboratory, University of Nijmegen, The Netherlands. Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/-xservice/strat.htm

Special details:

The two alternative positions of the disordered B2 atom are related by $-x, y,-z+1 / 2$

Table 2. Atomic coordinates $\left[\times 10^{4}\right.$], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{\text {rq }}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{\text {rel }}$	S.o.f.
Re1	0	$1836(1)$	2500	$24(1)$	1
Fe1	0	$-886(1)$	2500	$26(1)$	1
P1	$1400(1)$	$878(1)$	$2471(1)$	$22(1)$	1
O1	$-72(2)$	$1772(2)$	$573(2)$	$59(1)$	1
B1	$-663(4)$	$3271(3)$	$2530(4)$	$54(1)$	1
B2	$-163(8)$	$3832(6)$	$1774(7)$	$64(3)$	0.50
C1	$1216(2)$	$-189(2)$	$2846(2)$	$27(1)$	1
C2	$1544(2)$	$-1003(2)$	$2558(2)$	$36(1)$	1
C3	$1090(3)$	$-1631(2)$	$3052(2)$	$45(1)$	1
C4	$511(3)$	$-1231(2)$	$3662(2)$	$41(1)$	1
C5	$584(2)$	$-348(2)$	$3547(2)$	$31(1)$	1
C6	$-46(3)$	$1805(2)$	$1277(2)$	$37(1)$	1
C11	$2518(2)$	$1199(2)$	$3110(2)$	$33(1)$	1
C12	$3385(3)$	$710(3)$	$3086(2)$	$52(1)$	1
C13	$4224(3)$	$940(5)$	$3576(3)$	$80(2)$	1
C14	$4204(4)$	$1617(4)$	$4090(3)$	$78(2)$	1
C15	$3355(4)$	$2101(4)$	$4112(3)$	$64(1)$	1
C16	$2510(3)$	$1901(2)$	$3626(2)$	$42(1)$	1
C21	$1982(2)$	$794(2)$	$1446(2)$	$25(1)$	1
C22	$1890(2)$	$108(2)$	$908(2)$	$33(1)$	1
C23	$2347(3)$	$122(2)$	$142(2)$	$41(1)$	1
C24	$2883(3)$	$825(3)$	$-106(2)$	$47(1)$	1
C25	$2958(3)$	$1512(3)$	$407(2)$	$43(1)$	1
C26	$2505(2)$	$1502(2)$	$1176(2)$	$34(1)$	1

Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$.

Rel-C6 ${ }^{\text {i }}$	$1.968(4)$
Rel-C6	$1.968(4)$
Rel-P1 ${ }^{\text {i }}$	2.3911 (7)
Rel-P1	$2.3911(7)$
Rel-B1 ${ }^{\text {i }}$	2.432 (4)
Rel-B1	2.432(4)
Rel-H1B	1.83(3)
$\mathrm{Fel}-\mathrm{Cl}^{1}$	2.017(3)
$\mathrm{Fel}-\mathrm{Cl}$	2.017(3)
$\mathrm{Fe} 1-\mathrm{C} 5{ }^{\text {i }}$	2.026(3)
Fel-C5	2.026(3)
$\mathrm{Fe} 1-\mathrm{C} 2{ }^{\text {i }}$	2.046(3)
Fel-C2	2.046(3)
$\mathrm{Fel}-\mathrm{C} 4{ }^{\text {i }}$	2.048(3)
Fel-C4	2.048(3)
$\mathrm{Fe} 1-\mathrm{C} 3{ }^{\text {i }}$	2.049(3)
Fel-C3	2.049(3)
P1-C1	1.809(3)
P1-C21	1.837(3)
P1-Cl1	1.853(3)
O1-C6	1.134(4)
B1-B2	1.653(11)
B1-B1 ${ }^{\text {i }}$	1.754(10)
B1-H1B	1.21(3)
B1-H2B	1.06(5)
B1-H3B	1.10 (5)
B2-B1 ${ }^{\text {i }}$	1.784(12)
B2-H3B	1.31(5)
B2-H4B	1.258(8)
B2-H5B	1.247(8)
C1-C2	1.437(4)
C1-C5	1.437(4)
C2-C3	1.412(5)
C2-H2	0.96(4)
C3-C4	1.404(5)
C3-H3	0.93(4)
C4-C5	1.412(5)
C4-H4	0.87(4)
C5-H5	0.89(3)
C11-C12	1.382(5)
C11-C16	1.385(5)
C12-C13	1.396(6)
C12-H12	0.88(3)
C13-C14	1.353(8)
C13-H13	0.82(4)
C14-C15	1.359(8)
C14-H14	0.91 (6)
C15-C16	$1.386(5)$
C15-H15	0.80(4)
C16-H16	0.92(4)
C21-C26	$1.389(4)$
C21-C22	$1.392(4)$
C22-C23	$1.381(4)$
C22-H22	0.93(3)
C23-C24	1.381(6)
C23-H23	0.97(4)
C24-C25	$1.366(6)$
C24-H24	0.91(4)
C25-C26	1.384(5)

C25-H25	0.92(4)
C26-H26	0.90(3)
C6 ${ }^{\text {i }}$-Rel-C6	177.17(17)
C6-Rel-P1 ${ }^{\text {i }}$	88.57(9)
C6-Rel-P1 ${ }^{\text {i }}$	89.64(10)
C6 ${ }^{\text {i }}$-Rel-Pl	89.64(10)
C6-Rel-P1	88.57(9)
P1 ${ }^{\text {i-Rel-Pl }}$	101.34(3)
C6i-Rel-B1 ${ }^{\text {i }}$	92.19(17)
C6-Rel-B1 ${ }^{\text {i }}$	90.45(17)
P1 ${ }^{\text {i }}$-Rel-B1 $1^{\text {i }}$	150.46(12)
P1-Rel-B1 ${ }^{\text {i }}$	108.20(12)
C6 ${ }^{\text {i }}$-Rel-B1	90.45(17)
C6-Rel-B1	92.19(17)
P1-Rel-B1	108.20(12)
P1-Rel-B1	150.46(12)
B1 ${ }^{\text {i }}$-Rel-B1	42.3(2)
C6 ${ }^{\text {i }}$-Rel-H1B	89.4(10)
C6-Rel-H1B	92.4(10)
P1 ${ }^{\text {i}}$-Rel-H1B	79.3(10)
P1-Rel-H1B	178.9(10)
B1-Re1-H1B	$71.2(10)$
B1-Rel-H1B	28.9(10)
$\mathrm{Cl}^{1}-\mathrm{Fe} 1-\mathrm{Cl}$	113.79(17)
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{C} 5{ }^{\text {i }}$	41.63(12)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 5{ }^{\text {i }}$	106.77(13)
C1 ${ }^{\text {i }} \mathrm{Fe} 1-\mathrm{C} 5$	106.77(13)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 5$	41.63(12)
C5 ${ }^{\text {i }} \mathrm{Fe} 1-\mathrm{C} 5$	130.31(18)
$\mathrm{C} 1^{\text {i}}-\mathrm{Fe} 1-\mathrm{C} 2{ }^{\text {i }}$	41.40(12)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 2{ }^{\text {i }}$	148.08(12)
$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 2^{\text {i }}$	68.71(14)
$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 2{ }^{\text {i }}$	116.04(13)
$\mathrm{Cl}^{\text {i }}-\mathrm{Fe} 1-\mathrm{C} 2$	148.08(12)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 2$	41.40(12)
$\mathrm{C} 5{ }^{\text {i }}-\mathrm{Fe} 1-\mathrm{C} 2$	116.04(13)
$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 2$	68.71(14)
$\mathrm{C} 2{ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{C} 2$	169.63(18)
$\mathrm{C} 1^{\text {i}}-\mathrm{Fe} 1-\mathrm{C} 4{ }^{\text {i }}$	69.30(12)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 4{ }^{\text {i }}$	130.11(14)
C5 ${ }^{\text {i }} \mathrm{Fe} 1-\mathrm{C} 4{ }^{\text {i }}$	40.55(13)
$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 4{ }^{\text {i }}$	169.57(14)
$\mathrm{C} 2 \mathrm{i}-\mathrm{Fe} 1-\mathrm{C} 4{ }^{\text {i }}$	67.87(14)
C2-Fel-C4 ${ }^{\text {i }}$	109.18(14)
$\mathrm{Cl}^{\text {i }}-\mathrm{Fe} 1-\mathrm{C} 4$	130.11(14)
$\mathrm{C} 1-\mathrm{Fel}-\mathrm{C} 4$	69.30(12)
C5 ${ }^{\text {i }} \mathrm{Fe}$ - -C 4	169.57(14)
C5-Fel-C4	40.55(13)
C2 ${ }^{\text {i }} \mathrm{Fe}$ - -C 4	109.18(14)
C2-Fel-C4	67.87(14)
C4i-Fel-C4	149.1(2)
$\mathrm{C} 1^{\text {i }}-\mathrm{Fel}-\mathrm{C} 3{ }^{\text {i }}$	69.23(13)
$\mathrm{C} 1-\mathrm{Fel}-\mathrm{C} 3^{\text {i }}$	169.27(14)
$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 3{ }^{\text {i }}$	68.18(15)
$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 3^{\text {i }}$	148.75(14)
$\mathrm{C} 2{ }^{\text {i }}-\mathrm{Fe} 1-\mathrm{C} 3{ }^{\text {i }}$	40.34(14)
$\mathrm{C} 2-\mathrm{Fel}-\mathrm{C} 3{ }^{\text {i }}$	131.17(14)
$\mathrm{C} 4{ }^{\text {i }}-\mathrm{Fel}-\mathrm{C} 3{ }^{\text {i }}$	40.09(15)
$\mathrm{C} 4-\mathrm{Fe} 1-\mathrm{C} 3^{\text {i }}$	117.33(15)
$\mathrm{Cl}^{1}-\mathrm{Fe} 1-\mathrm{C} 3$	169.27(14)

C1-Fel-C3	69.23(13)
C5i-Fel-C3	148.75(14)
$\mathrm{C} 5-\mathrm{Fe} 1-\mathrm{C} 3$	68.18(15)
$\mathrm{C} 2^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{C} 3$	131.17(14)
C2-Fel-C3	40.34(14)
C4i-Fel-C3	117.33(15)
C4-Fel-C3	40.09(15)
C 3 - $\mathrm{Fe} 1-\mathrm{C} 3$	109.8(2)
C1-P1-C21	107.03(13)
C1-P1-C11	100.43(13)
C21-P1-C11	100.10(13)
$\mathrm{Cl} 1-\mathrm{Pl}-\mathrm{Re} 1$	118.43(9)
C21-P1-Rel	113.52(9)
C11-P1-Rel	115.06(11)
B2-B1-B1 ${ }^{\text {i }}$	63.1(5)
B2-B1-Rel	109.7(4)
B1-B1-Rel	68.86(12)
B2-B1-H1B	132.3(16)
B1 ${ }^{\text {i }}$ - $1-\mathrm{H} 1 \mathrm{~B}$	115.8(15)
Re1-B1-H1B	46.9(15)
B2-B1-H2B	122(3)
$\mathrm{B} 1^{\text {i }}$ - $11-\mathrm{H} 2 \mathrm{~B}$	119(3)
Rel-B1-H2B	125(3)
H1B-B1-H2B	100(3)
B2-B1-H3B	52(3)
B1 ${ }^{\text {i }}$ - $1-\mathrm{H} 3 \mathrm{~B}$	114(3)
Rel-B1-H3B	120(3)
H1B-B1-H3B	99(3)
H2B-B1-H3B	107(4)
B1-B2-B1 $1^{\text {i }}$	61.3(5)
B1-B2-H3B	41(2)
B1 ${ }^{\text {i }}$ - $2-\mathrm{H} 3 \mathrm{~B}$	102(2)
B1-B2-H4B	88(3)
B1 ${ }^{\text {i }}$ - $22-\mathrm{H} 4 \mathrm{~B}$	87(3)
H3B-B2-H4B	100(4)
B1-B2-H5B	120(4)
B1 ${ }^{\text {i }}$ - ${ }^{-} 2-\mathrm{H} 5 \mathrm{~B}$	113(4)
H3B--B2-H5B	97(5)
H4B-B2-H5B	151(5)
C2-C1-C5	106.2(3)
C2-C1-P1	133.2(2)
C5-C1-P1	120.5(2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Fe} 1$	70.40(18)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{Fel}$	69.52(17)
$\mathrm{Pl} 1-\mathrm{C} 1-\mathrm{Fel}$	121.88(14)
C3-C2-C1	108.4(3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Fel}$	69.9(2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Fel}$	68.20(17)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	127(2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	125(2)
$\mathrm{Fe} 1-\mathrm{C} 2-\mathrm{H} 2$	126(2)
C4-C3-C2	108.5(3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Fel}$	69.94(19)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Fel}$	69.74(19)
C4-C3-H3	127(2)
C2-C3-H3	124(2)
$\mathrm{Fe} 1-\mathrm{C} 3-\mathrm{H} 3$	122(2)
C3-C4-C5	108.4(3)
C3-C4-Fel	70.0(2)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Fe} 1$	68.88(18)
C3-C4-H4	129(3)

C5-C4-H4	122(3)
Fel-C4-H4	125(3)
C4-C5-C1	108.5(3)
C4-C5-Fel	70.57(19)
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{Fel}$	68.84(17)
C4-C5-H5	127(2)
C1-C5-H5	124(2)
Fel-C5-H5	124(2)
O1-C6-Rel	178.7(3)
C12-C11-C16	118.7(3)
C12-C11-P1	118.8(3)
C16-C11-P1	122.5(3)
C11-C12-C13	$119.2(5)$
C11-C12-H12	120(2)
C13-C12-H12	121(2)
C14-C13-C12	121.8(5)
C14-C13-H13	128(3)
C12-C13-H13	110(3)
C13-C14-C15	119.1(4)
C13-C14-H14	120(3)
C15-C14-H14	121(3)
C14-C15-C16	120.8(5)
C14-C15-H15	118(3)
C16-C15-H15	121(3)
C11-C16-C15	120.4(4)
C11-C16-H16	119(2)
C15-C16-H16	121(2)
C26-C21-C22	118.1(3)
C26-C21-P1	116.2(2)
C22-C21-P1	125.6(2)
C23-C22-C21	120.5(3)
C23-C22-H22	117.7(19)
C21-C22-H22	121.8(19)
C24-C23-C22	120.3(3)
C24-C23-H23	121(2)
C22-C23-H23	119(2)
C25-C24-C23	119.9(3)
C25-C24-H24	121(3)
C23-C24-H24	119(3)
C24-C25-C26	120.2(3)
C24-C25-H25	121(3)
C26-C25-H25	119(3)
C25-C26-C21	121.0(3)
C25-C26-H26	120(2)
C21-C26-H26	119(2)

[^1](i) $-x, y,-z+1 / 2$

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*^{2}} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Re1	$28(1)$	$22(1)$	$20(1)$	0	$6(1)$	0
Fe1	$29(1)$	$23(1)$	$27(1)$	0	$-1(1)$	0
P1	$21(1)$	$26(1)$	$19(1)$	$1(1)$	$2(1)$	$-2(1)$
O1	$71(2)$	$86(2)$	$22(1)$	$10(1)$	$10(1)$	$38(2)$
B1	$55(3)$	$25(2)$	$81(4)$	$-5(2)$	$8(3)$	$6(2)$
B2	$65(6)$	$31(4)$	$98(8)$	$20(5)$	$37(6)$	$12(4)$
C1	$22(1)$	$32(2)$	$26(1)$	$4(1)$	$-3(1)$	$1(1)$
C2	$31(2)$	$33(2)$	$44(2)$	$9(1)$	$-1(1)$	$10(1)$
C3	$46(2)$	$29(2)$	$58(2)$	$13(2)$	$-5(2)$	$6(2)$
C4	$45(2)$	$42(2)$	$37(2)$	$17(2)$	$-6(2)$	$-10(2)$
C5	$32(2)$	$38(2)$	$23(2)$	$5(1)$	$-2(1)$	$-5(1)$
C6	$34(2)$	$40(2)$	$37(2)$	$7(1)$	$10(1)$	$15(1)$
C11	$27(2)$	$47(2)$	$24(1)$	$4(1)$	$1)$	$-12(1)$
C12	$30(2)$	$89(3)$	$36(2)$	$-5(2)$	$-5(1)$	$1(2)$
C13	$28(2)$	$151(6)$	$59(3)$	$6(3)$	$-11(2)$	$4(3)$
C14	$47(3)$	$144(5)$	$42(2)$	$4(3)$	$-17(2)$	$-42(3)$
C15	$62(3)$	$94(3)$	$37(2)$	$-5(2)$	$-10(2)$	$-47(3)$
C16	$42(2)$	$51(2)$	$33(2)$	$1(2)$	$0(2)$	$-22(2)$
C21	$21(1)$	$33(2)$	$21(1)$	$2(1)$	$2(1)$	$2(1)$
C22	$32(2)$	$35(2)$	$31(2)$	$-2(1)$	$4(1)$	$2(1)$
C23	$42(2)$	$53(2)$	$28(2)$	$-9(2)$	$7(1)$	$5(2)$
C24	$41(2)$	$72(3)$	$27(2)$	$4(2)$	$13(1)$	$3(2)$
C25	$37(2)$	$55(2)$	$36(2)$	$12(2)$	$9(1)$	$-9(2)$
C26	$34(2)$	$40(2)$	$29(2)$	$-2(2)$	$4(1)$	$-6(2)$

Table 5. Hydrogen coordinates [$\times 10^{4}$] and isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$.

Atom	x	y	z	$U_{\text {eq }}$	S.o.f.
H2	$1980(30)$	$-1090(20)$	$2100(20)$	$53(11)$	1
H3	$1130(30)$	$-2210(20)$	$2950(20)$	$40(9)$	1
H4	$140(30)$	$-1450(30)$	$4040(20)$	$49(11)$	1
H5	$280(20)$	$50(20)$	$3837(19)$	$26(8)$	1
H12	$3410(20)$	$280(20)$	$2740(20)$	$33(9)$	1
H13	$4660(30)$	$570(20)$	$3550(30)$	$49(12)$	1
H14	$4740(40)$	$1730(30)$	$4430(40)$	$99(19)$	1
H15	$3340(30)$	$2480(30)$	$4440(30)$	$57(13)$	1
H16	$1940(30)$	$2240(20)$	$3630(20)$	$40(10)$	1
H22	$1530(20)$	$-370(20)$	$1047(19)$	$24(8)$	1
H23	$2260(30)$	$-360(20)$	$-230(20)$	$40(9)$	1
H24	$3140(30)$	$840(30)$	$-620(30)$	$62(12)$	1
H25	$3280(30)$	$2000(20)$	$240(20)$	$52(11)$	1
H26	$2540(20)$	$1960(19)$	$1510(20)$	$24(8)$	1
H1B	$-1060(20)$	$2580(20)$	$2541(19)$	$35(8)$	1
H2B	$-1000(30)$	$3560(30)$	$3060(30)$	$82(14)$	1
H3B	$-1050(40)$	$3530(30)$	$1980(30)$	$94(16)$	1
H4B	$-100(60)$	$4440(20)$	$2270(30)$	30	0.50
H5B	$-160(70)$	$3540(60)$	$1050(20)$	$80(30)$	0.50

Appendix I

Crystal tables for $\mathbf{4 c}$

Table 1. Crystal data and structure refinement.

Identification code	00 src161
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{OP}$
Formula weight	646.14
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	$a=10.344(2) \AA \quad \alpha=74.39(3)^{\circ}$
	$b=11.174(2) \AA \quad \beta=89.09(3)^{\circ}$
	$c=11.553(2) \AA \quad \gamma=84.29(3)^{\circ}$
Volume	1279.5(4) \AA^{3}
Z	2
Density (calculated)	$1.677 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.236 \mathrm{~mm}^{-1}$
F(000)	644
Crystal	Prism; colourless
Crystal size	$0.30 \times 0.15 \times 0.15 \mathrm{~mm}^{3}$
θ range for data collection	$2.26-27.55^{\circ}$
Index ranges	$-13 \leq h \leq 11,-14 \leq k \leq 14,-15 \leq l \leq 15$
Reflections collected	19170
Independent reflections	$5853\left[R_{\text {int }}=0.0499\right]$
Completeness to $\theta=27.55^{\circ}$	99.1 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9655 and 0.9327
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5853 / 0 / 382
Goodness-of-fit on F^{2}	0.891
Final R indices [$\left.F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0506, w R 2=0.1286$
R indices (all data)	$R 1=0.1150, w R 2=0.1604$
Largest diff. peak and hole	0.296 and -0.303 e \AA^{-3}

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Program used to solve structure:
SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm
Special details:

Table 2. Atomic coordinates $\left[\times 10^{4}\right.$], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors.
$U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{\text {eq }}$	S.o.f.
P1	$3407(1)$	$6943(1)$	$1423(1)$	$52(1)$	1
F1	$5573(1)$	$9003(2)$	$1411(1)$	$68(1)$	1
F2	$8132(2)$	$8627(2)$	$1702(2)$	$97(1)$	1
F3	$9193(2)$	$7636(2)$	$3941(2)$	$99(1)$	1
F4	$7621(2)$	$7040(2)$	$5863(2)$	$90(1)$	1
F5	$5077(2)$	$7405(2)$	$5602(1)$	$76(1)$	1
F6	$3037(2)$	$5824(1)$	$4494(2)$	$81(1)$	1
F7	$1391(2)$	$5191(2)$	$6274(2)$	$96(1)$	1
F8	$219(2)$	$6925(2)$	$7304(2)$	$94(1)$	1
F9	$727(2)$	$9334(2)$	$6471(2)$	$101(1)$	1
F10	$2332(2)$	$10008(2)$	$4663(2)$	$93(1)$	1
F11	$4855(2)$	$10831(1)$	$2826(2)$	$76(1)$	1
F12	$3872(2)$	$13048(1)$	$1526(2)$	$85(1)$	1
F13	$1539(2)$	$13334(2)$	$412(2)$	$99(1)$	1
F14	$161(2)$	$11318(1)$	$682(2)$	$94(1)$	1
F15	$1107(1)$	$9093(1)$	$2008(2)$	$71(1)$	1
O1	$3369(2)$	$7520(2)$	$24532(1)$	$52(1)$	1
B1	$3606(3)$	$8403(2)$	$3222(2)$	$46(1)$	1
C1	$6044(2)$	$8494(2)$	$2550(2)$	$52(1)$	1
C2	$7366(3)$	$8316(3)$	$2668(2)$	$62(1)$	1
C3	$7910(3)$	$7821(3)$	$3797(3)$	$67(1)$	1
C4	$7103(3)$	$7526(2)$	$4758(2)$	$60(1)$	1
C5	$5775(2)$	$7727(2)$	$4592(2)$	$54(1)$	1
C6	$5168(2)$	$8218(2)$	$3488(2)$	$47(1)$	1
C7	$2710(2)$	$7973(2)$	$4414(2)$	$48(1)$	1
C8	$2434(2)$	$6762(2)$	$4907(2)$	$54(1)$	1
C9	$1613(3)$	$6395(3)$	$5854(2)$	$62(1)$	1
C10	$1027(3)$	$7259(3)$	$6375(2)$	$64(1)$	1
C11	$1284(3)$	$8467(3)$	$5951(2)$	$65(1)$	1
C12	$2106(3)$	$8796(2)$	$5006(2)$	$58(1)$	1
C13	$3067(2)$	$9819(2)$	$2437(2)$	$46(1)$	1
C14	$3688(2)$	$10883(2)$	$2287(2)$	$54(1)$	1
C15	$3194(3)$	$12046(2)$	$1621(2)$	$61(1)$	1
C16	$2025(3)$	$12204(2)$	$1073(2)$	$65(1)$	1
C17	$1339(3)$	$1183(3)$	$1203(2)$	$63(1)$	1
C18	$1857(2)$	$10042(2)$	$1881(2)$	$53(1)$	1
C19	$5010(3)$	$6186(3)$	$1276(3)$	$80(1)$	1
C20	$5548(4)$	$5278(3)$	$2411(4)$	$104(1)$	1
C21	$2324(3)$	$5778(3)$	$1680(3)$	$80(1)$	1
C22	$964(3)$	$6216(3)$	$1885(4)$	$102(1)$	1
C23	$3030(3)$	$8082(3)$	$38(2)$	$66(1)$	1
C24	$2881(3)$	$7594(4)$	$-1061(3)$	$93(1)$	1
				1	

Table 3. Bond lengths $[\AA]$ and angles [${ }^{\circ}$].

Pl-O1	1.4973(17)
P1-C21	1.763(3)
$\mathrm{P} 1-\mathrm{C} 23$	1.776(3)
$\mathrm{Pl}-\mathrm{Cl} 9$	1.811(3)
F1-C1	1.361(3)
F2-C2	1.347(3)
F3-C3	1.329(3)
F4-C4	1.343(3)
F5-C5	1.346(3)
F6-C8	1.358(3)
F7-C9	1.344(3)
F8-C10	1.344 (3)
F9-C11	1.350(3)
F10-C12	1.348(3)
F11-C14	1.356 (3)
F12-C15	1.358(3)
F13-C16	1.340(3)
F14-C17	1.344(3)
F15-C18	1.351(3)
O1-B1	1.533(3)
B1-C6	1.632(4)
B1-C7	$1.636(4)$
B1-C13	1.645(3)
$\mathrm{C} 1-\mathrm{C} 2$	1.366(4)
C1-C6	1.391(3)
C2-C3	1.377(4)
C3-C4	$1.366(4)$
C4-C5	1.377(4)
C5-C6	1.379(3)
C7-C8	1.376(3)
C7-C12	1.384(3)
C8-C9	1.373(4)
C9-C10	1.359(4)
C10-C11	$1.358(4)$
C11-C12	$1.366(4)$
C13-C14	1.376(3)
C13-C18	1.384(3)
C14-C15	1.373(3)
C15-C16	1.348(4)
C16-C17	1.376(4)
C17-C18	1.366(4)
C19-C20	1.501(4)
C21-C22	1.479(4)
C23-C24	1.526(4)
O1-P1-C21	109.81(13)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 23$	111.50(12)
C21-P1-C23	110.52(15)
O1-P1-C19	110.97(13)
C21-P1-C19	106.86(15)
C23-P1-C19	107.07(15)
P1-O1-B1	161.04(16)
O1-B1-C6	105.70(19)
O1-B1-C7	105.30(18)
C6-B1-C7	114.79(19)
$\mathrm{O} 1-\mathrm{B1}-\mathrm{C} 13$	106.79(18)
C6-B1-C13	113.8(2)
C7-B1-C13	109.66(19)
$\mathrm{F} 1-\mathrm{C} 1-\mathrm{C} 2$	115.9(2)

F1-C1-C6	118.8(2)
C2-C1-C6	125.4(2)
F2-C2-C1	120.8(2)
$\mathrm{F} 2-\mathrm{C} 2-\mathrm{C} 3$	120.2(2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.0(3)
F3-C3-C4	121.1(3)
F3-C3-C2	120.4(3)
C4-C3-C2	118.6(2)
F4-C4-C3	119.1(2)
F4-C4-C5	120.6(3)
C3-C4-C5	120.3(2)
F5-C5-C4	115.1(2)
F5-C5-C6	120.8(2)
C4-C5-C6	124.1(2)
C5-C6-C1	112.7(2)
C5-C6-B1	126.5(2)
C1-C6-B1	120.7(2)
C8-C7-C12	112.7(2)
C8-C7-B1	123.6(2)
C12-C7-B1	123.6(2)
F6-C8-C9	115.3(2)
F6-C8-C7	120.0(2)
C9-C8-C7	124.6(2)
F7-C9-C10	119.8(2)
F7-C9-C8	120.6(3)
C10-C9-C8	119.6(2)
F8-C10-C9	120.8(3)
F8-C10-C11	120.4(3)
C9-C10-C11	118.8(2)
F9-C11-C10	119.6(2)
F9-C11-C12	120.5(3)
C10-C11-C12	119.9(3)
F10-C12-C11	115.9(2)
F10-C12-C7	119.7(2)
C11-C12-C7	124.4(2)
C14-C13-C18	113.1(2)
C14-C13-B1	126.4(2)
C18-C13-B1	120.4(2)
F11-C14-C15	115.5(2)
F11-C14-C13	120.4(2)
C15-C14-C13	124.1(2)
C16-C15-F12	119.6(2)
C16-C15-C14	120.2(3)
F12-C15-C14	120.2(3)
F13-C16-C15	120.7(3)
F13-C16-C17	120.6(3)
C15-C16-C17	118.8(2)
F14-C17-C18	120.6(3)
F14-C17-C16	120.0(2)
C18-C17-C16	119.3(3)
F15-C18-C17	116.0(2)
F15-C18-C13	119.6(2)
C17-C18-C13	124.4(3)
C20-C19-P1	114.5(3)
C22-C21-P1	114.5(2)
C24-C23-P1	116.5(2)

[^2]Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
P1	$61(1)$	$49(1)$	$46(1)$	$-16(1)$	$-3(1)$	$-2(1)$
F1	$61(1)$	$91(1)$	$44(1)$	$-6(1)$	$3(1)$	$-9(1)$
F2	$57(1)$	$148(2)$	$82(1)$	$-25(1)$	$19(1)$	$-15(1)$
F3	$50(1)$	$134(2)$	$108(1)$	$-30(1)$	$-14(1)$	$0(1)$
F4	$84(1)$	$108(1)$	$68(1)$	$-5(1)$	$-30(1)$	$-4(1)$
F5	$73(1)$	$105(1)$	$45(1)$	$-7(1)$	$-1(1)$	$-15(1)$
F6	$120(1)$	$47(1)$	$71(1)$	$-12(1)$	$27(1)$	$0(1)$
F7	$123(2)$	$77(1)$	$85(1)$	$-6(1)$	$31(1)$	$-40(1)$
F8	$83(1)$	$129(2)$	$67(1)$	$-18(1)$	$31(1)$	$-22(1)$
F9	$130(2)$	$101(1)$	$73(1)$	$-37(1)$	$37(1)$	$11(1)$
F10	$157(2)$	$60(1)$	$71(1)$	$-31(1)$	$37(1)$	$-21(1)$
F11	$73(1)$	$56(1)$	$99(1)$	$-21(1)$	$-16(1)$	$-10(1)$
F12	$99(1)$	$47(1)$	$106(1)$	$-12(1)$	$14(1)$	$-12(1)$
F13	$115(2)$	$63(1)$	$99(1)$	$4(1)$	$-8(1)$	$23(1)$
F14	$67(1)$	$103(1)$	$101(1)$	$-20(1)$	$-24(1)$	$22(1)$
F15	$50(1)$	$72(1)$	$91(1)$	$-24(1)$	$-1(1)$	$-7(1)$
O1	$61(1)$	$54(1)$	$46(1)$	$-20(1)$	$2(1)$	$-7(1)$
B1	$54(2)$	$44(1)$	$41(1)$	$-13(1)$	$1(1)$	$-6(1)$
C1	$53(2)$	$57(1)$	$47(1)$	$-14(1)$	$-2(1)$	$-4(1)$
C2	$55(2)$	$74(2)$	$60(2)$	$-22(1)$	$8(1)$	$-8(1)$
C3	$47(2)$	$72(2)$	$84(2)$	$-25(2)$	$-9(1)$	$1(1)$
C4	$62(2)$	$59(2)$	$59(2)$	$-13(1)$	$-18(1)$	$-2(1)$
C5	$61(2)$	$51(1)$	$50(1)$	$-14(1)$	$-2(1)$	$-6(1)$
C6	$51(1)$	$43(1)$	$47(1)$	$-13(1)$	$-1(1)$	$-3(1)$
C7	$51(1)$	$52(1)$	$41(1)$	$-14(1)$	$1(1)$	$-7(1)$
C8	$59(2)$	$52(2)$	$51(1)$	$-13(1)$	$3(1)$	$-5(1)$
C9	$65(2)$	$65(2)$	$53(2)$	$-5(1)$	$6(1)$	$-17(1)$
C10	$54(2)$	$92(2)$	$46(1)$	$-13(1)$	$11(1)$	$-14(2)$
C11	$71(2)$	$77(2)$	$50(2)$	$-24(1)$	$11(1)$	$2(2)$
C12	$74(2)$	$52(2)$	$50(1)$	$-16(1)$	$8(1)$	$-7(1)$
C13	$49(1)$	$49(1)$	$40(1)$	$-13(1)$	$7(1)$	$-3(1)$
C14	$58(2)$	$49(1)$	$54(1)$	$-14(1)$	$3(1)$	$-3(1)$
C15	$73(2)$	$46(2)$	$62(2)$	$-12(1)$	$14(1)$	$-3(1)$
C16	$76(2)$	$51(2)$	$57(2)$	$-2(1)$	$6(1)$	$12(1)$
C17	$56(2)$	$72(2)$	$58(2)$	$-16(1)$	$-2(1)$	$14(1)$
C18	$50(1)$	$59(2)$	$53(1)$	$-21(1)$	$8(1)$	$-2(1)$
C19	$85(2)$	$80(2)$	$80(2)$	$-37(2)$	$-1(2)$	$14(2)$
C20	$100(3)$	$91(3)$	$117(3)$	$-37(2)$	$-31(2)$	$33(2)$
C21	$100(2)$	$65(2)$	$79(2)$	$-24(2)$	$-3(2)$	$-17(2)$
C22	$80(2)$	$95(3)$	$126(3)$	$-20(2)$	$5(2)$	$-18(2)$
C23	$67(2)$	$79(2)$	$49(1)$	$-10(1)$	$-4(1)$	$-9(1)$
C24	$84(2)$	$141(3)$	$56(2)$	$-35(2)$	$-10(2)$	$5(2)$

Table 5. Hydrogen coordinates [$\times 10^{4}$] and isotropic displacement parameters [$\AA^{2} \times 10^{3}$].

Atom	x	y	z	$U_{\text {eq }}$	S.o.f.
H19A	4975	5748	660	96	1
H19B	5603	6823	1007	96	1
H20A	5584	5700	3030	156	1
H20B	6407	4939	2268	156	1
H20C	4997	4614	2660	156	1
H21A	2341	5434	993	95	1
H21B	2629	5109	2375	95	1
H22A	902	6380	2659	153	1
H22B	410	5584	1856	153	1
H22C	699	6968	1273	153	1
H23A	2227	8570	135	79	1
H23B	3708	8643	-123	79	1
H24A	3683	7144	-1198	140	1
H24B	2664	8283	-1752	140	1
H24C	2202	7047	-924	140	1

Appendix J

Crystal tables for $\mathbf{4 f}$

Table 1. Crystal data and structure refinement.

Identification code

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=25.03^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

00SRC095
$\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{OP}$
790.26

150(2) K
$0.71073 \AA$
Monoclinic
C2/c
$a=31.0247(4) \AA$
$b=9.4124(2) \AA \quad \beta=105.9570(9)^{\circ}$
$c=22.5961(3) \AA$
6344.19(18) \AA^{3}

8
$1.655 \mathrm{Mg} / \mathrm{m}^{3}$
$0.207 \mathrm{~mm}^{-1}$
3152
Colourless block
$0.10 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$
$2.95-25.03^{\circ}$
$-36 \leq h \leq 36,-11 \leq k \leq 11,-26 \leq l \leq 25$
31694
$5572\left[R_{\text {int }}=0.0690\right]$
99.5%
Multiscan, SORTAV
0.9897 and 0.9796

Full-matrix least-squares on F^{2}
5572 / 0 / 548
1.036
$R 1=0.0395, w R 2=0.0934$
$R 1=0.0620, w R 2=0.1031$
0.00049(11)
0.265 and -0.381 e \AA^{-3}

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Program used to solve structure: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Program used to refine structure: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm
Special details: All hydrogen atoms were located from the difference map and fully refined.

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

P1-O1	$1.4971(15)$	C1-C6	$1.388(3)$
P1-C13	$1.783(2)$	C1-C2	$1.390(3)$
P1-C1	$1.791(2)$	C24-C23	$1.368(3)$
P1-C7	$1.791(2)$	C33-C32	$1.373(3)$
F11-C32	$1.355(2)$	C33-C34	$1.374(3)$
F12-C33	$1.345(2)$	C36-C35	$1.382(3)$
F14-C35	$1.345(3)$	C13-C14	$1.390(3)$
F5-C24	$1.357(3)$	C13-C18	$1.398(3)$
F6-C26	$1.353(2)$	C30-C29	$1.375(3)$
F15-C36	$1.357(2)$	C30-C25	$1.388(3)$
O1-B1	$1.538(3)$	C34-C35	$1.365(3)$
F9-C29	$1.346(3)$	C18-C17	$1.375(3)$
F1-C20	$1.353(2)$	C25-B1	$1.639(3)$
F2-C21	$1.346(3)$	C28-C27	$1.374(3)$
F8-C28	$1.347(3)$	C28-C29	$1.374(4)$
F7-C27	$1.345(3)$	C23-C22	$1.376(4)$
F10-C30	$1.355(3)$	C9-C10	$1.371(4)$
F4-C23	$1.347(3)$	C9-C8	$1.393(3)$
F13-C34	$1.350(2)$	C20-C21	$1.381(3)$
F3-C22	$1.347(3)$	C12-C11	$1.380(3)$
C26-C27	$1.375(3)$	C21-C22	$1.368(3)$
C26-C25	$1.389(3)$	C6-C5	$1.392(4)$
C7-C8	$1.383(3)$	C10-C11	$1.381(4)$
C7-C12	$1.395(3)$	C3-C2	$1.379(4)$
C31-C36	$1.382(3)$	C3-C4	$1.388(4)$
C31-C32	$1.393(3)$	C16-C15	$1.380(3)$
C31-B1	$1.643(3)$	C16-C17	$1.384(3)$
C19-C20	$1.385(3)$	C15-C14	$1.383(4)$
C19-C24	$1.395(3)$	C4-C5	$1.369(4)$
C19-B1	$1.632(3)$		

$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 13$	$109.85(9)$	$\mathrm{C} 36-\mathrm{C} 31-\mathrm{C} 32$	$113.50(18)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 1$	$109.52(9)$	C36-C31-B1	$126.09(19)$
C13-P1-C1	$108.89(10)$	C32-C31-B1	$120.39(19)$
O1-P1-C7	$109.63(9)$	C20-C19-C24	$113.3(2)$
C13-P1-C7	$108.70(10)$	C20-C19-B1	$126.15(18)$
C1-P1-C7	$110.23(10)$	C24-C19-B1	$120.49(19)$
P1-O1-B1	$178.66(16)$	C6-C1-C2	$120.2(2)$
F6-C26-C27	$116.4(2)$	C6-C1-P1	$120.99(19)$
F6-C26-C25	$119.37(19)$	C2-C1-P1	$118.70(17)$
C27-C26-C25	$124.3(2)$	F5-C24-C23	$116.46(19)$
C8-C7-C12	$120.3(2)$	F5-C24-C19	$118.90(19)$
C8-C7-P1	$122.12(17)$	C23-C24-C19	$124.6(2)$
C12-C7-P1	$117.60(17)$	F12-C33-C32	$121.2(2)$

F12-C33-C34	119.73(18)	C21-C20-C19	124.0(2)
C32-C33-C34	119.1(2)	C11-C12-C7	119.6(2)
F15-C36-C31	120.96(18)	F7-C27-C28	119.7(2)
F15-C36-C35	115.03(19)	F7-C27-C26	121.0(2)
C31-C36-C35	124.0(2)	C28-C27-C26	119.3(2)
C14-C13-C18	119.3(2)	F2-C21-C22	120.1(2)
C14-C13-P1	121.66(16)	F2-C21-C20	120.4(2)
C18-C13-P1	119.03(17)	C22-C21-C20	119.5(2)
F10-C30-C29	115.52(19)	F3-C22-C21	120.1(2)
F10-C30-C25	120.7(2)	- F3-C22-C23	120.5(2)
C29-C30-C25	123.8(2)	C21-C22-C23	119.4(2)
F13-C34-C35	120.2(2)	C1-C6-C5	119.0(3)
F13-C34-C33	120.3(2)	F9-C29-C28	119.5(2)
C35-C34-C33	119.49(19)	F9-C29-C30	120.8(2)
C17-C18-C13	120.2(2)	C28-C29-C30	119.7(2)
F11-C32-C33	116.11(19)	C9-C10-C11	120.3(2)
F11-C32-C31	119.53(18)	C7-C8-C9	119.2(2)
C33-C32-C31	124.4(2)	C2-C3-C4	119.5(3)
C30-C25-C26	113.7(2)	C3-C2-C1	120.2(3)
C30-C25-B1	126.03(19)	O1-B1-C19	104.91(17)
C26-C25-B1	120.12(18)	O1-B1-C25	105.12(17)
F8-C28-C27	119.9(2)	C19-B1-C25	113.67(17)
F8-C28-C29	121.0(2)	O1-B1-C31	105.06(16)
C27-C28-C29	119.1(2)	C19-B1-C31	112.69(18)
F14-C35-C34	119.99(19)	C25-B1-C31	114.21(18)
F14-C35-C36	120.5(2)	C15-C16-C17	120.4(2)
C34-C35-C36	119.5(2)	C18-C17-C16	120.0(2)
F4-C23-C24	121.2(2)	C16-C15-C14	119.9(2)
F4-C23-C22	119.6(2)	C15-C14-C13	120.2(2)
C24-C23-C22	119.1(2)	C12-C11-C10	120.2(3)
C10-C9-C8	120.5(2)	C5-C4-C3	120.5(3)
F1-C20-C21	115.3(2)	C4-C5-C6	120.6(3)
F1-C20-C19	120.69(19)		

[^3]
[^0]: Special details:

[^1]: Symmetry transformations used to generate equivalent atoms:

[^2]: Symmetry transformations used to generate equivalent atoms:

[^3]: Symmetry transformations used to generate equivalent atoms:

