

Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial

COV Boost Study group; Green, Christopher A.

# The Lancet

DOI: https://doi.org/10.1016/S0140-6736(21)02717-3

Published: 18/12/2021

Publisher's PDF, also known as Version of record

Cyswllt i'r cyhoeddiad / Link to publication

*Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):* COV Boost Study group, & Green, C. A. (2021). Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. The Lancet, 398(10318), 2258-2276. https://doi.org/10.1016/S0140-6736(21)02717-3

## Hawliau Cyffredinol / General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

## Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.



# $\mathbf{H}_{\mathbf{W}}$ Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial



Alasdair P S Munro\*, Leila Janani\*, Victoria Cornelius\*, Parvinder K Aley, Gavin Babbage, David Baxter, Marcin Bula, Katrina Cathie, Krishna Chatterjee, Kate Dodd, Yvanne Enever, Karishma Gokani, Anna L Goodman, Christopher A Green, Linda Harndahl, John Haughney, Alexander Hicks, Agatha A van der Klaauw, Jonathan Kwok, Teresa Lambe, Vincenzo Libri, Martin J Llewelyn, Alastair C McGreaor, Anaela M Minassian, Patrick Moore, Mehmood Muahal, Yama F Muiadidi, Iennifer Murira, Orod Osanlou, Rostam Osanlou, Daniel R Owens, Mihaela Pacurar, Adrian Palfreeman, Daniel Pan, Tommy Rampling, Karen Regan, Stephen Saich, Jo Salkeld, Dinesh Saralaya, Sunil Sharma, Ray Sheridan, Ann Sturdy, Emma C Thomson, Shirley Todd, Chris Twelves, Robert C Read, Sue Charlton, Bassam Hallis, Mary Ramsay, Nick Andrews, Jonathan S Nguyen-Van-Tam, Matthew D Snape†, Xinxue Liu†, Saul N Faust†, on behalf of the COV-BOOST study group‡

## Summary

## Lancet 2021; 398: 2258-76

Published Online December 2, 2021 https://doi.org/10.1016/ S0140-6736(21)02717-3

This online publication has been corrected. The corrected version first appeared at thelancet.com on December 16, 2021

> See Comment page 2209 \*Contributed equally +Contributed equally

#Members listed in appendix 1 (p 42)

NIHR Southampton Clinical **Research Facility and Biomedical Research Centre**, University Hospital Southampton NHS Foundation Trust, Southampton, UK (A P S Munro MRCPCH. G Babbage MPhil, K Cathie MD, D R Owens MRCPCH, M Pacurar MBBS, S Saich BA, Prof R C Read PhD. Prof S N Faust PhD); Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK (A P S Munro, K Cathie, D R Owens, M Pacurar, Prof R C Read, Prof S N Faust); Imperial Clinical Trials Unit, Imperial College London, London, UK (L. Janani PhD. V Cornelius PhD); Oxford Vaccine Group, Department of Paediatrics (P K Aley PhD, Prof T Lambe PhD A M Minassian DPhil, Y F Mujadidi MSc, Prof M D Snape MD, X Liu PhD), Cancer Research UK Oxford Centre (| Kwok MB BChir), and lenner Institute, Nuffield Department of Medicine

Background Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT).

Methods COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY) control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26. COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intentionto-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130.

Findings Between June 1 and June 30, 2021, 3498 people were screened. 2878 participants met eligibility criteria and received COVID-19 vaccine or control. The median ages of ChAd/ChAd-primed participants were 53 years (IQR 44-61) in the younger age group and 76 years (73-78) in the older age group. In the BNT/BNT-primed participants, the median ages were 51 years (41-59) in the younger age group and 78 years (75-82) in the older age group. In the ChAd/ChAD-primed group, 676 (46.7%) participants were female and 1380 (95.4%) were White, and in the BNT/ BNT-primed group 770 (53.6%) participants were female and 1321 (91.9%) were White. Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT. For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1.8 (99% CI 1.5-2.3) in the half VLA group to 32.3 (24.8-42.0) in the m1273 group. GMRs for wildtype cellular responses compared with controls ranged from 1.1 (95% CI 0.7-1.6) for ChAd to 3.6 (2.4-5.5) for m1273. For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1.3 (99% CI 1.0-1.5) in the half VLA group to 11.5 (9.4-14.1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1.0 (95% CI 0.7-1.6) for half VLA to 4.7 (3.1-7.1) for m1273. The results were similar between those aged 30-69 years and those aged 70 years and older. Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30-69 years than those aged 70 years or older. Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group (two in control group A, three in control group B, and zero in control group C), two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273.

Interpretation All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns. Substantial differences in humoral and cellular responses, and vaccine availability will influence policy choices for booster vaccination.

Funding UK Vaccine Taskforce and National Institute for Health Research.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

# Introduction

Although most studies suggest well preserved protection against severe COVID-19 disease and death from deployed vaccines, even with the delta (B.1.617.2) strain predominant,<sup>1</sup> observational data suggest there is a progressive reduction in protection against any infection or symptomatic infection.<sup>2-5</sup>

As protection against SARS-CoV-2 infection has waned after a two-dose schedule of COVID-19 vaccines, policy makers have begun to consider the implications for periodic or seasonal third dose, also known as a booster, vaccination against COVID-19 to protect the most vulnerable patients, and mitigate health-care and economic impacts. Decisions regarding when and which populations to whom boosters should be administered are made based on real-world data and cohort studies.<sup>13,67</sup> We set out to generate data to optimise selection of booster vaccines after two doses of ChAdOx1 nCov-19 (Oxford–AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer–BioNtech, hearafter referred to as BNT). There are theoretical reasons why providing a mixed schedule might provide greater protection. The UK COMCOV trial demonstrated that a heterologous prime-boost schedule can be more immunogenic than a homologous schedule,<sup>8,9</sup> albeit with increased reactogenicity in some combinations.<sup>10</sup> We also investigated the effect of reduced (ie, fractional) dosing for third doses of three vaccines on reactogenicity and immunogencity. If viral killing can be maintained despite using a reduced dose compared with that previously tested in phase 3 trials,<sup>11–13</sup> it might be possible to reduce reactogenicity for third dose recipients and increase global reach of finite vaccine supply.

The importance of both cellular and humoral immunity in vaccine effectiveness is evident from real-world studies

# **Research in context**

## Evidence before this study

We searched PubMed for randomised controlled trials in non-immunocompromised adults published between database inception and Nov 3, 2021, using the terms "(COVID) AND (vaccin\*) AND (booster OR third dose)" with no language restrictions. We identified three published clinical trials of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd), BNT162b2 (Pfizer-BioNtech; hearafter referred to as BNT), and mRNA1273 (Moderna) homologous third dose boosters. For all vaccines, neutralising antibody titres were significantly boosted by a third dose of vaccine, including against the delta variant for mRNA1273 and BNT. Reactogenicity was reported as similar to after dose two of BNT, and lower than after dose two of ChAd. T-cell responses were significantly boosted by a third dose of ChAd, and not reported for mRNA1273 or BNT. We also identified two preprints, including a small trial of homologous and heterologous third dose boosters for BNT, mRNA1273, and Ad26.COV2.S (Janssen; hereafter referred to as Ad26), which demonstrated similar reactogenicity to the original immunisation series, and improved neutralising antibody titres for heterologous boosting. A small Chinese trial of Convidecia (CanSino Biologicals) or CoronaVac (Sinovac Biotech) following a primary immunisation series with CoronaVac demonstrated increased reactogenicity with a heterologous third dose, with accompanying increased neutralising antibody titers. Cellular immunity was not reported for either study.

#### Added value of this study

This was, to our knowledge, the first randomised trial of third dose booster vaccines given 10–12 weeks after an initial course of ChAd/ChAd or BNT/BNT COVID-19 immunisation. This trial has demonstrated the potential of all vaccines tested (ChAd, BNT, mRNA1273, NVX-CoV2373 [Novavax; hereafter referred to as NVX], Ad26, CVnCov [CureVac; hereafter referred to as CVn], and VLA2001 [Valneva; hereafter referred to as VLA]) to boost immunity after an initial course of ChAd/ChAd and of six vaccines (ChAd, BNT, mRNA1273, NVX, Ad26, and CVn) after an initial course of BNT/BNT. All vaccines showed acceptable side-effect profiles, although some schedules were more reactogenic than others.

## Implications of all the available evidence

Policy makers and national immunisation advisory committees should establish criteria for choosing which booster vaccines to use in their populations. This decision should be based on immunological considerations, known side-effect profiles, in-country availability, and ultimately a decision on what level of boost is sufficient in the context of national strategic disease control objectives. Data from our study and others suggest that current mRNA doses might be higher than required to provide adequate boost to immunity after a third dose. Interpretation should avoid focus on the headline spike IgG levels or antibody boost ratios because the relationship between antibody levels at day 28 and long-term protection and immunological memory is unknown.

(A M Minassian), University of Oxford, Oxford, UK: NIHR Oxford Biomedical Research Centre, Oxford, UK (P K Aley, Prof T Lambe; Prof M D Snape); Stockport NHS Foundation Trust, Stockport, UK (Prof D Baxter PhD, M Mughal MBBS): NIHR Liverpool and Broadgreen Clinical Research Facility, Liverpool, UK (M Bula FRCP, K Dodd MSc): NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK (Prof K Chatterjee FRCP); PHARMExcel, Welwyn Garden City, Hertfordshire, UK (Y Enever BSc[Hons]); NIHR/ Wellcome Clinical Research Facility, University Hospitals **Birmingham NHS Foundation** Trust, Birmingham, UK (K Gokani MBBS, C A Green DPhil): Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK (A L Goodman DPhil, | Salkeld BMBS); MRC Clinical Trials Unit, University College London, London, UK (A L Goodman): Portsmouth Hospitals University NHS Trust, Portsmouth, UK (L Harndahl PhD, A Hicks PhD); **Oueen Elizabeth University** Hospital, NHS Greater Glasgow & Clyde, Glasgow, UK (| Haughney FRCGP, Prof E C Thomson PhD); Wellcome-MRC Institute of Metabolic Science, Department of Clinical Biochemistry. University of Cambridge, Cambridge, UK (A A van der Klaauw PhD): NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University **College London Hospitals NHS** Foundation Trust, London, UK (Prof V Libri MD T Rampling DPhil); University Hospitals Sussex NHS Foundation Trust, Brighton, UK (Prof M J Llewelyn PhD, S Sharma FRCPath); Department of Infectious Diseases and Tropical Medicine, London Northwest University Healthcare, London, UK (A C McGregor FRCPath, A Sturdy MBBS); The Adam Practice Poole UK (P Moore MRCGP); NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK (| Murira BM, Prof C Twelves MD); North Wales Clinical Research Facility, Betsi Cadwaladr University Health Board and Bangor University, Bangor, UK (O Osanlou FRCP); Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK (R Osanlou MBChB); University Hospitals of Leicester, NHS Trust, University of Leicester, UK (A Palfreeman FRCP, D Pan MRCP); Bradford

D Pan MKCP); Bradford Institute for Health Research and Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK (K Regan BSc,

Prof D Saralaya MD); Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK (R Sheridan MRCP, S ToddMSc); MRC University of Glasgow Centre for Virus Research, Glasgow, UK (Prof E C Thomson); UK Health Security Agency, Porton Down, UK (S Charlton PhD, B Hallis PhD); UK Health Security Agency, Colindale, London, UK

that have demonstrated little difference in initial protection from infection<sup>14</sup> or from severe disease and death<sup>1,3</sup> after ChAd/ChAd or BNT/BNT, despite BNT generating levels of neutralising antibodies many times higher than ChAd.8 The importance of antibody-mediated immunity in protection against SARS-CoV-2 infection has been demonstrated in non-human primates and humans from both infection and immunisation, although correlates of protection against asymptomatic infection are not yet clear.15-18 T cells are important in controlling disease severity, although correlates of protection against symptomatic disease have not vet been demonstrated.19 T-cell activity appears minimally affected by spike antigen mutations<sup>20</sup> and responses remain against variants of concern, even though neutralising antibody levels are reduced.<sup>21</sup> Although neutralising antibody titres after mRNA vaccination are higher compared with adenovirus vector vaccines, there are much smaller differences in T-cell responses.8 T-cell responses have also been shown to be higher in heterologous schedules compared with homologousmRNA second dose after adenoviral vector prime.8

In this The Evaluating COVID-19 Vaccination Boosters (COV-BOOST) trial, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines, with three at full and half dose, as a third dose after ChAd/ChAd or BNT/BNT.

|                                                                                                      | Mechanism of action                                                                                                         | Administration                                                                           |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ChAdOx-nCov19 (ChAd;<br>AZD1222, AstraZeneca)                                                        | Replication-deficient chimpanzee<br>adenovirus vectored vaccine,<br>expressing the SARS-CoV-2 spike<br>surface glycoprotein | 5 × 10 <sup>10</sup> viral particles per 0·5 mL via<br>intramuscular injection           |
| NVX-CoV2373 (NVX; Novavax)                                                                           | Nanoparticle vaccine containing purified spike glycoprotein                                                                 | 5 μg with Matrix-M1 50 μg<br>adjuvant in 0·5 mL via<br>intramuscular injection           |
| NVX-CoV2373 (NVX half;<br>Novavax)                                                                   | Nanoparticle vaccine containing purified spike glycoprotein                                                                 | 2·5 μg with Matrix-M1 25 μg<br>adjuvant in 0·25 mL via<br>intramuscular injection        |
| BNT162b2 (BNT; Pfizer-<br>BioNTech)                                                                  | mRNA vaccine encoding<br>SARS-CoV-2 spike glycoprotein                                                                      | 30 μg in 0·3 mL via intramuscular<br>injection                                           |
| BNT162b2 (BNT half; Pfizer-<br>BioNTech)                                                             | mRNA vaccine encoding<br>SARS-CoV-2 spike glycoprotein                                                                      | 15 μg in 0·15 mL via intramuscular<br>injection                                          |
| VLA2001 (VLA; Valneva)                                                                               | Whole, inactivated SARS-CoV-2 virus                                                                                         | 33 antigen units with 1 mg CpG<br>adjuvant in 0·5 mL via<br>intramuscular injection      |
| VLA2001 (VLA half; Valneva)                                                                          | Whole, inactivated SARS-CoV-2 virus                                                                                         | 16·5 antigen units with 0·5 mg CpG<br>adjuvant in 0·25 mL via<br>intramuscular injection |
| Ad26.COV2.S (Ad26; Janssen)                                                                          | Replication-deficient adenovirus<br>vector vaccine constructed to<br>encode a full-length spike protein                     | 5×10 <sup>™</sup> viral particles per mL in<br>0·5 mL via intramuscular injection        |
| mRNA1273 (m1273; Moderna)                                                                            | mRNA vaccine encoding<br>SARS-CoV-2 spike glycoprotein                                                                      | 100 µg administered via 0·5 mL via<br>intramuscular injection                            |
| CVnCoV (CVn; Curevac),<br>withdrawn from further clinical<br>development October, 2021 <sup>22</sup> | mRNA vaccine encoding<br>SARS-CoV-2 spike glycoprotein                                                                      | 12 µg administered via 0·6 mL via<br>intramuscular injection                             |
| MenACWY (Pfizer) control                                                                             | Quadrivalent meningococcal<br>conjugate vaccine                                                                             | 0.5 mL via intramuscular injection                                                       |

# Methods Trial design

COV-BOOST is a multicentre, randomised, phase 2 trial of third dose booster vaccination against COVID-19, with a subgroup to investigate detailed immunology. The study was conducted at 18 UK sites, in a mixture of community and secondary care settings. To reduce the risk of vaccine administration error and delays if there were problems in the supply of one or more vaccines, the ten experimental vaccine and control groups (seven vaccines with three also at half dose and controls) were split into three groups with six sites per group.

The trial was reviewed and approved by the South-Central Berkshire Research Ethics Committee, University Hospital Southampton, and the Medicines and Healthcare Products Regulatory Agency (EudraCT 2021–002175–19, IRAS 299180, REC reference 21/SC/0171). The study protocol is provided in appendix 2 (pp 2–103).

# Participants

Participants were adults aged 30 years or older, in good physical health (mild to moderate well controlled comorbidities were permitted), who had received two doses of either BNT or ChAd (first dose in December, 2020, January, 2021, or February, 2021), and were at least 84 days post second dose by the time of enrolment. Due to timelines of UK vaccine deployment, some sites were permitted to enrol participants who were at least 70 days post second dose of ChAd. The timing of the trial meant that enrolment included people aged 75 years or older, health and social care workers, and people residing in care homes. Enrolment was managed so that approximately half of participants had received two doses of ChAd and half two doses of BNT, and approximately half of people were aged 70 years or older. Full exclusion and inclusion criteria listed in appendix 2 (pp 33-35). Participants provided written informed consent.

## Randomisation and masking

An unblinded statistician created the computer-generated randomisation list. Randomisation schedules were prepared separately for participants primed with ChAd/ ChAd and BNT/BNT and stratified by study site, age (<70 years and ≥70 years) and subgroup (general and immunology). Permuted random blocks were used, and participants were randomly assigned to the study groups with equal probability within groups A-C. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or control guadrivalent meningococcal conjugate vaccine (MenACWY; 1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or

MenACWY (1:1:1:1). Each cohort (A, B, and C) had their own control group and recruited two separate populations, those receiving ChAd/ChAd and those receiving BNT/BNT. Randomisation was done in the electronic data capture system REDCap, version 10.6.13.

Participants, laboratory staff, and the clinical study team not delivering the vaccines were blind to treatment allocation, including those undertaking adverse event assessments. Participant blinding to vaccines was maintained by concealing randomisation pages, preparing vaccines out of sight, and applying masking tape to vaccine syringes to conceal dose, volume, and appearance. The analysing statisticians remained blind until the statistical analysis plan was signed off.

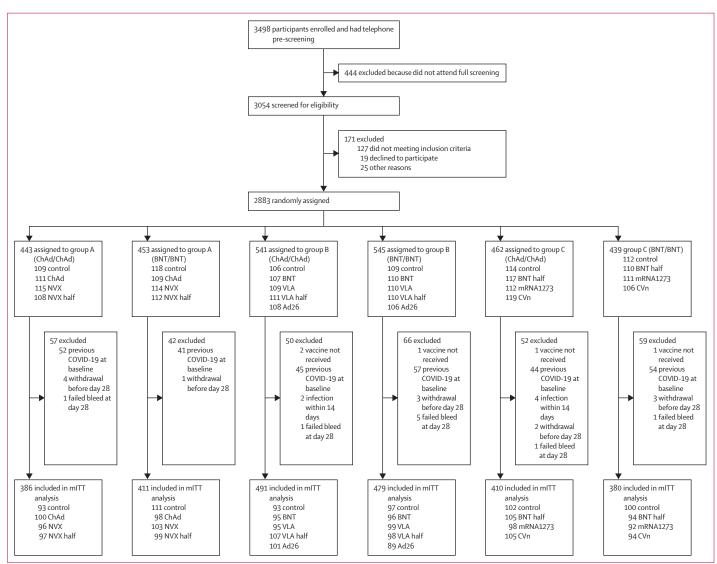
# Procedures

Participants who met the inclusion and exclusion criteria via the online screening or the telephone screening (or both) were invited to a baseline visit (day 0). Participants who passed the final eligibility assessment were randomly assigned to a study group.

Seven COVID-19 vaccines, and three with a half dose, were used (table 1); all vaccines were administered via intramuscular injection into the upper arm.

Participants attended screening and vaccination at day 0. Blood was taken for immunogenicity analyses at days 28, 84, and 365. A separate immunology subgroup comprised of 25 individuals from each treatment group (n=650 participants) attended additional visits to have blood taken at day 7 (to detect evidence of previous

(Prof M Ramsay FFPH,


Prof N Andrews PhD); Division of Epidemiology and Public Health, University of Nottingham School of Medicine, Nottingham, UK (Prof J S Nguyen-Van-Tam DM)

Correspondence to: Prof Saul N Faust, NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK

#### s.faust@soton.ac.uk

See Online for appendix 1

See Online for appendix 2



## Figure 1: Trial profile

Control=quadrivalent meningococcal conjugate vaccine. ChAd=ChAdOx1 nCoV-19 vaccine, Oxford–AstraZeneca. NVX=NVX-CoV2373 vaccine, Novavax. NVX half=half dose of NVX-CoV2373 vaccine. BNT=BNT162b2 vaccine, Pfizer–BioNTech. VLA=VLA2001 vaccine, Valneva. VLA half=half dose of VLA2001 vaccine. Ad26=Ad26.COV2.S vaccine, Janssen. BNT half=half dose of BNT162b2 vaccine. m1273=mRNA1273 vaccine, Moderna. CVn=CVnCoV vaccine, Curevac. mITT=modified intention to treat. immunological priming via rapid spike IgG responses) and day 14 (to detect the peak T-cell response). The cellular immunology samples were collected from nine sites based on logistical reasons (proximity to external laboratory). The immunology subgroup was allocated at six of these sites, including three sites recruiting immunology subgroup only and the other three sites enrolling participants up to the required number.

Vaccines were administered by appropriately trained trial staff at trial sites. Participants were observed for at least 15 min after vaccination. During the baseline visit, participants were given an oral thermometer, tape measure, and diary card (electronic or paper) to record solicited adverse events on day 7, unsolicited adverse events on day 28, and medically attended adverse events on day 84. The study sites' physicians reviewed the diary card regularly to record adverse events, adverse events of special interest, and serious adverse events. The timepoints for subsequent visits for immunogenicity blood sampling are shown in the protocol (appendix 2 p 81). During the study visits, adverse events, adverse events of special interest, and serious adverse events that had not been recorded in the diary card were also collected.

Participants who tested positive for SARS-CoV-2 in the community were invited for an additional visit for clinical assessment, collection of blood samples, and throat swab, and completion of a COVID-19 symptom diary.

Detailed methods for SARS-CoV-2 anti-spike IgG concentrations by ELISA (reported as ELISA laboratory units [ELU]/mL) and SARS-CoV-2 pseudotype virus neutralisation (PNA) assays (Nexelis, Laval, QC, Canada) and for T-cell assays (Oxford Immunotec Abingdon, UK) are provided in appendix 1 (p 41).

# Outcomes

The coprimary outcomes were safety and reactogenicity, and immunogenicity. Safety and reactogenicity were determined by the occurrence of solicited, unsolicited

| Prime with ChAd/ | ChAd                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prime with BNT/BN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IT                                                    |                                                       |                                                        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| Control (n=109)  | ChAd (n=111)                                                                                                                                                                                                                      | NVX (n=115)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NVX half (n=108)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control (n=118)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ChAd (n=109)                                          | NVX (n=114)                                           | NVX half (n=112)                                       |
|                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |                                                        |
| 64.0 (14.0)      | 63.7 (14.1)                                                                                                                                                                                                                       | 63.5 (13.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61.8 (15.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63.1 (16.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61.9 (16.6)                                           | 62.1 (16.4)                                           | 62.9 (16.0)                                            |
| 68.1 (55.1–75.9) | 67.8 (52.2–75.7)                                                                                                                                                                                                                  | 65·3 (52·6–74·1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65.8 (49.9–75.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62.4 (49.4–78.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61.9 (46.5–76.3)                                      | 62.7 (48.0–75.5)                                      | 62.2 (49.9-77.3)                                       |
| 68.0 (59.0–76.0) | 69.0 (61.0-76.0)                                                                                                                                                                                                                  | 68.0 (60.0–76.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.0 (62.8–77.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.0 (21.0-68.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.0 (21.0-65.0)                                      | 42.0 (23.2-65.5)                                      | 56.0 (28.0–70.0)                                       |
| 78.0 (72.0-86.0) | 78.0 (73.0-84.5)                                                                                                                                                                                                                  | 76.0 (72.0-84.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77.0 (71.0–85.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104.5 (95.2–146.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.0 (92.0–148.0)                                    | 104.5 (93.0–146.8)                                    | 100-0 (91-8–134-8)                                     |
|                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |                                                        |
| 57 (52·3%)       | 59 (53·2%)                                                                                                                                                                                                                        | 63 (54.8%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59 (54.6%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66 (55·9%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64 (58.7%)                                            | 65 (57.0%)                                            | 67 (59.8%)                                             |
| 52 (47.7%)       | 52 (46.8%)                                                                                                                                                                                                                        | 52 (45·2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49 (45·4%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52 (44·1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45 (41·3%)                                            | 49 (43.0%)                                            | 45 (40·2%)                                             |
|                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |                                                        |
| 54 (49.5%)       | 54 (48.6%)                                                                                                                                                                                                                        | 61 (53.0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58 (53.7%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69 (58.5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57 (52·3%)                                            | 65 (57.0%)                                            | 67 (59.8%)                                             |
| 55 (50·5%)       | 57 (51·4%)                                                                                                                                                                                                                        | 54 (47.0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 (46·3%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49 (41.5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52 (47·7%)                                            | 49 (43.0%)                                            | 45 (40·2%)                                             |
|                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |                                                        |
| 31 (28.4%)       | 31 (27·9%)                                                                                                                                                                                                                        | 40 (34.8%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40 (37·0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57 (48·3%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53 (48.6%)                                            | 59 (51.8%)                                            | 53 (47·3%)                                             |
| 78 (71.6%)       | 80 (72·1%)                                                                                                                                                                                                                        | 75 (65·2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68 (63.0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61 (51.7%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56 (51·4%)                                            | 55 (48·2%)                                            | 59 (52·7%)                                             |
|                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |                                                        |
| 107 (98-2%)      | 105 (94.6%)                                                                                                                                                                                                                       | 107 (93.0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103 (95·4%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106 (89.8%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102 (93.6%)                                           | 109 (95·6%)                                           | 107 (95.5%)                                            |
| 0                | 0                                                                                                                                                                                                                                 | 1 (0.9%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1(0.9%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1(0.8%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                     | 0                                                     | 0                                                      |
| 2 (1.8%)         | 4 (3.6%)                                                                                                                                                                                                                          | 3 (2.6%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 (1.9%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 (8.5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 (5.5%)                                              | 5 (4·4%)                                              | 2 (1.8%)                                               |
| 0                | 2 (1.8%)                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1(0.8%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 (0.9%)                                              | 0                                                     | 0                                                      |
| 0                | 0                                                                                                                                                                                                                                 | 3 (2.6%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 (1.9%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                     | 0                                                     | 3 (2.7%)                                               |
| 0                | 0                                                                                                                                                                                                                                 | 1 (0.9%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                     | 0                                                     | 0                                                      |
|                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |                                                        |
| 36 (33.0%)       | 36 (32·4%)                                                                                                                                                                                                                        | 41 (35.7%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35 (32·4%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37 (31.4%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31 (28.4%)                                            | 35 (30.7%)                                            | 35 (31·2%)                                             |
| 19 (17·4%)       | 13 (11.7%)                                                                                                                                                                                                                        | 15 (13.0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 (22·2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 (11·9%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13 (11·9%)                                            | 15 (13·2%)                                            | 18 (16·1%)                                             |
| 8 (7·3%)         | 12 (10.8%)                                                                                                                                                                                                                        | 14 (12·2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 (10·2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 (9·3%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 (6.4%)                                              | 7 (6·1%)                                              | 12 (10.7%)                                             |
|                  | 64-0 (14-0)<br>68-1 (55-1-75-9)<br>68-0 (59-0-76-0)<br>78-0 (72-0-86-0)<br>57 (52-3%)<br>52 (47-7%)<br>54 (49-5%)<br>55 (50-5%)<br>31 (28-4%)<br>78 (71-6%)<br>107 (98-2%)<br>0<br>2 (1-8%)<br>0<br>0<br>36 (33-0%)<br>19 (17-4%) | 64.0 (14.0)         63.7 (14.1)           68.1 (55.1-75.9)         67.8 (52.2-75.7)           68.0 (59.0-76.0)         69.0 (61.0-76.0)           78.0 (72.0-86.0)         78.0 (73.0-84.5)           57 (52.3%)         59 (53.2%)           52 (47.7%)         52 (46.8%)           54 (49.5%)         54 (48.6%)           55 (50.5%)         57 (51.4%)           31 (28.4%)         31 (27.9%)           78 (71.6%)         80 (72.1%)           107 (98.2%)         105 (94.6%)           0         0           2 (1.8%)         4 (3.6%)           0         0           36 (33.0%)         36 (32.4%)           19 (17.4%)         13 (11.7%) | 64 0 (14 0)         63 · 7 (14 · 1)         63 · 5 (13 · 7)           68 1 (55 · 1 - 75 · 9)         67 · 8 (52 · 2 - 75 · 7)         65 · 3 (52 · 6 - 74 · 1)           68 0 (59 · 0 - 76 · 0)         69 · 0 (61 · 0 - 76 · 0)         68 · 0 (60 · 0 - 76 · 0)           78 · 0 (72 · 0 - 86 · 0)         78 · 0 (73 · 0 - 84 · 5)         76 · 0 (72 · 0 - 84 · 5)           57 (52 · 3%)         59 (53 · 2%)         63 (54 · 8%)           52 (47 · 7%)         52 (46 · 8%)         52 (45 · 2%)           54 (49 · 5%)         54 (48 · 6%)         61 (53 · 0%)           55 (50 · 5%)         57 (51 · 4%)         54 (47 · 0%)           31 (28 · 4%)         31 (27 · 9%)         40 (34 · 8%)           78 (71 · 6%)         105 (94 · 6%)         107 (93 · 0%)           0         0         1 (0 · 9%)           2 (1 · 8%)         4 (3 · 6%)         3 (2 · 6%)           0         0         3 (2 · 6%)           0         0         3 (2 · 6%)           0         0         1 (0 · 9%)           36 (33 · 0%)         36 (32 · 4%)         41 (35 · 7%)           19 (17 · 4%)         13 (11 · 7%)         15 (13 · 0%) | 64.0 (14.0) $63.7 (14.1)$ $63.5 (13.7)$ $61.8 (15.1)$ $68.1 (55.1-75.9)$ $67.8 (52.2-75.7)$ $65.3 (52.6-74.1)$ $65.8 (49.9-75.6)$ $68.0 (59.0-76.0)$ $69.0 (61.0-76.0)$ $68.0 (60.0-76.0)$ $70.0 (62.8-77.0)$ $78.0 (72.0-86.0)$ $78.0 (73.0-84.5)$ $76.0 (72.0-84.5)$ $77.0 (71.0-85.0)$ $57 (52.3%)$ $59 (53.2%)$ $63 (54.8%)$ $59 (54.6%)$ $52 (47.7%)$ $52 (46.8%)$ $52 (45.2%)$ $49 (45.4%)$ $54 (49.5%)$ $54 (48.6%)$ $61 (53.0%)$ $58 (53.7%)$ $55 (50.5%)$ $57 (51.4%)$ $54 (47.0%)$ $50 (46.3%)$ $31 (28.4%)$ $31 (27.9%)$ $40 (34.8%)$ $40 (37.0%)$ $78 (71.6%)$ $80 (72.1%)$ $75 (65.2%)$ $68 (63.0%)$ $107 (98.2%)$ $105 (94.6%)$ $107 (93.0%)$ $103 (95.4%)$ $0$ $0$ $1 (0.9%)$ $2 (1.9%)$ $0$ $2 (1.8%)$ $0$ $0$ $0$ $0$ $1 (0.9%)$ $2 (1.9%)$ $0$ $0$ $1 (0.9%)$ $2 (1.9%)$ $0$ $1 (0.9%)$ $2 (1.9%)$ $0$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Data are median (IQR) or n (%), unless otherwise stated. There were three participants missing on occupation and five participants missing on ethnicity, which were not included in this table. ChAd=ChAdOx1 nCoV-19 vaccine, Oxford–AstraZeneca. BNT=BNT162b2 vaccine, Pfizer–BioNTech. Control=quadrivalent meningococcal conjugate vaccine. NVX=NVX-CoV2373 vaccine, Novavax. NVX half=half dose of NVX-CoV2373 vaccine.

Table 2: Baseline characteristics by third dose vaccine allocation and priming vaccine schedule, group A

adverse events, adverse events of special interest, or serious adverse events following vaccination, as recorded in participant electronic diaries or ascertained at followup visits. Immunogenicity outcome was anti-spike protein IgG at day 28 follow-up.

Secondary endpoints included other immunogenicity assays such as neutralising antibody titres against wild-type (ie, the original strain identified in Wuhan), and pseudovirus neutralisation, and T-cell response (measured by ELISpot) against wild-type and SARS-CoV-2 virus variants of concern: alpha (B.1.1.7), beta (B.1.351), and delta. A complete list of secondary endpoints is provided in appendix 2 (pp 17–20).

# Statistical analysis

We powered on the immunogenicity outcome and designed to have 90% power to compare the geometric mean concentration (GMC) of anti-spike IgG between each COVID-19 vaccine group with the MenACWY group within each of the three groups (A and C [three comparisons], and B [four comparisons]) and populations (ChAd/ChAd and BNT/BNT). Since we made, at most, four comparisons within a cohort, using a Bonferroni correction would need to adjust for a significance level of 0.05/4=0.0125. To account for multiple testing within each cohort a conservative twosided significance level of 0.01 was used. We required 83 participants per group to detect an established minimum clinically important difference of 1.75-times difference in GMC assuming a log10-SD of 0.4. The minimum clinical important difference was chosen based on the discussions with UK policy makers and regulatory agency. We inflated the required sample size by 25% to take account of participants who would be seropositive at baseline or lost to follow-up, recruiting n=111 per group. A subset of n=25 per group were included in the immunology substudy, as the purpose of this substudy was descriptive we did not undertake a power calculation.

|                                                      | Prime with Ch       | nAd/ChAd            |                     |                     |                     | Prime with BI         | NT/BNT                |                       |                       |                       |
|------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                                      | Control<br>(n=106)  | BNT<br>(n=107)      | VLA<br>(n=109)      | VLA half<br>(n=111) | Ad26<br>(n=108)     | Control<br>(n=109)    | BNT<br>(n=110)        | VLA<br>(n=110)        | VLA half<br>(n=110)   | Ad26<br>(n=106)       |
| Age, years                                           |                     |                     |                     |                     |                     |                       |                       |                       |                       |                       |
| Mean (SD)                                            | 66·0 (14·3)         | 65.1 (15.3)         | 64·4 (15·3)         | 64.0 (14.9)         | 65.0 (14.9)         | 62.9 (16.9)           | 62.6 (17.1)           | 60.9 (18.1)           | 62.4 (16.7)           | 62.0 (17.4)           |
| Median (IQR)                                         | 72·6<br>(57·6–77·2) | 71·4<br>(53·8–77·0) | 71·8<br>(51·2–76·5) | 71·0<br>(51·2–75·9) | 71·9<br>(51·0–76·4) | 63·5<br>(50·4–78·3)   | 64·2<br>(49·8–77·4)   | 61·2<br>(46·2–77·7)   | 62·0<br>(51·8–76·2)   | 61·6<br>(49·2–78·3)   |
| Intervals between first<br>and second doses, days    | 68·5<br>(63·0–77·0) | 73·0<br>(66·0–77·0) | 70·0<br>(63·0–77·0) | 72·0<br>(64·0–77·0) | 74·5<br>(68·0–77·0) | 64·0<br>(24·0–74·0)   | 65·0<br>(28·0–74·0)   | 64·5<br>(27·2–73·0)   | 63·5<br>(27·2–74·0)   | 62·0<br>(25·2–74·0)   |
| Intervals between<br>second and third doses,<br>days | 78·0<br>(75·0–84·0) | 77·0<br>(73·0–84·8) | 79·0<br>(73·0–85·0) | 77·0<br>(73·0–84·0) | 77·0<br>(72·0–83·0) | 101·0<br>(89·0–147·0) | 100·0<br>(91·0–135·0) | 100·5<br>(91·0–146·8) | 101·5<br>(90·2–141·5) | 106·0<br>(91·0–143·8) |
| Age groups, years                                    |                     |                     |                     |                     |                     |                       |                       |                       |                       |                       |
| <70                                                  | 48 (45·3%)          | 50 (46.7%)          | 51 (46.8%)          | 51 (45.9%)          | 50 (46·3%)          | 62 (56.9%)            | 60 (54·5%)            | 63 (57.3%)            | 61 (55·5%)            | 59 (55·7%)            |
| ≥70                                                  | 58 (54·7%)          | 57 (53·3%)          | 58 (53·2%)          | 60 (54·1%)          | 58 (53·7%)          | 47 (43·1%)            | 50 (45·5%)            | 47 (42.7%)            | 49 (44·5%)            | 47 (44·3%)            |
| Gender                                               |                     |                     |                     |                     |                     |                       |                       |                       |                       |                       |
| Female                                               | 53 (50.0%)          | 50 (46.7%)          | 50 (45.9%)          | 54 (48.6%)          | 48 (44.4%)          | 52 (47.7%)            | 61 (55·5%)            | 59 (53.6%)            | 49 (44·5%)            | 60 (56.6%)            |
| Male                                                 | 53 (50.0%)          | 57 (53·3%)          | 59 (54·1%)          | 57 (51·4%)          | 60 (55.6%)          | 57 (52·3%)            | 49 (44·5%)            | 51 (46·4%)            | 61 (55·5%)            | 46 (43.4%)            |
| Occupation                                           |                     |                     |                     |                     |                     |                       |                       |                       |                       |                       |
| Health worker                                        | 24 (22.6%)          | 28 (26·2%)          | 33 (30·3%)          | 32 (28.8%)          | 29 (26.9%)          | 54 (49·5%)            | 55 (50.0%)            | 51 (46·4%)            | 48 (43.6%)            | 55 (51.9%)            |
| Other                                                | 82 (77·4%)          | 79 (73·8%)          | 76 (69.7%)          | 78 (70·3%)          | 79 (73·1%)          | 55 (50.5%)            | 55 (50.0%)            | 59 (53.6%)            | 62 (56-4%)            | 51 (48·1%)            |
| Ethnicity                                            |                     |                     |                     |                     |                     |                       |                       |                       |                       |                       |
| White                                                | 103 (97·2%)         | 104 (97·2%)         | 100 (91.7%)         | 107 (96.4%)         | 100 (92.6%)         | 101 (92.7%)           | 105 (95·5%)           | 99 (90.0%)            | 102 (92.7%)           | 103 (97·2%)           |
| Black                                                | 0                   | 0                   | 2 (1.8%)            | 1 (0.9%)            | 0                   | 0                     | 1(0.9%)               | 2 (1.8%)              | 0                     | 0                     |
| Asian                                                | 1(0.9%)             | 3 (2.8%)            | 5 (4.6%)            | 2 (1.8%)            | 5 (4.6%)            | 4 (3.7%)              | 3 (2.7%)              | 7 (6.4%)              | 6 (5.5%)              | 2 (1.9%)              |
| Mixed                                                | 1(0.9%)             | 0                   | 0                   | 0                   | 0                   | 2 (1.8%)              | 0                     | 1(0.9%)               | 2 (1.8%)              | 1(0.9%)               |
| Other                                                | 1(0.9%)             | 0                   | 1(0.9%)             | 0                   | 2 (1.9%)            | 2 (1.8%)              | 1(0.9%)               | 1(0.9%)               | 0(0.0%)               | 0                     |
| Not given                                            | 0                   | 0                   | 1(0.9%)             | 0                   | 1(0.9%)             | 0                     | 0                     | 0                     | 0                     | 0                     |
| Comorbidities                                        |                     |                     |                     |                     |                     |                       |                       |                       |                       |                       |
| Cardiovascular                                       | 33 (31·4%)          | 39 (36·4%)          | 39 (35.8%)          | 30 (27.0%)          | 42 (38·9%)          | 25 (22.9%)            | 30 (27.3%)            | 29 (26·4%)            | 27 (24·5%)            | 30 (28.3%)            |
| Respiratory                                          | 18 (17·1%)          | 10 (9·3%)           | 15 (13.8%)          | 14 (12.6%)          | 20 (18.5%)          | 10 (9·2%)             | 12 (10·9%)            | 16 (14·5%)            | 13 (11.8%)            | 17 (16.0%)            |
| Diabetes                                             | 4 (3.8%)            | 7 (6.5%)            | 8 (7.3%)            | 6 (5.4%)            | 7 (6.5%)            | 5 (4.6%)              | 6 (5.5%)              | 5 (4.5%)              | 5 (4·5%)              | 4 (3.8%)              |

Data are median (IQR) or n (%), unless otherwise stated. There were three participants missing on occupation and five participants missing on ethnicity, which were not included in this table. ChAd=ChAdOx1 nCoV-19 vaccine, Oxford-AstraZeneca. Control=quadrivalent meningococcal conjugate vaccine. BNT=BNT162b2 vaccine, Pfizer-BioNTech. VLA=VLA2001 vaccine, Valneva. VLA half=half dose of VLA2001 vaccine. Ad26=Ad26.COV2.S vaccine, Janssen.

Table 3: Baseline characteristics by third dose vaccine allocation and priming vaccine schedule, group B

All analyses were stratified by prime series of vaccination (ChAd/ChAd and BNT/BNT). The primary analysis for immunogenicity outcomes was on a modified intention-to-treat (mITT) basis to include all participants who were seronegative at baseline (defined by the Roche Elecsys anti-Sars-CoV-2 assay) with no confirmed SARS-CoV-2 infection within 14 days post third dose, and with endpoint data available. The primary immunogenicity outcome of anti-spike IgG at day 28 in each group was reported as GMC and 95% CI. The geometric mean ratio (GMR) and 99% CIs (to account for multiple comparisons) of anti-spike IgG between each experimental group and the corresponding control group was also reported. The GMR was calculated as the antilogarithm of the difference between the mean of the log10 transformed anti-spike IgG in the experimental group and that in the control group. The original analysis plan included use of a linear mixed effect model with site as a random effect, but due to model convergence, a

linear regression with site as a fixed effect was used. The model computed the difference of log10 transformed anti-spike IgG after adjusting for baseline immunogenicity and randomisation design variables (ie, study site and age group), duration between first and second vaccine, and the duration between second to third dose vaccine. Residual analysis was done to examine model assumptions.

The analysis population for reactogenicity and safety included all randomly assigned participants who received a study vaccine, including both seronegative and seropositive populations at baseline. The primary outcome of reactogenicity examined solicited adverse events (local and systemic) within the first 7 days. The proportion with at least one severe episode (grade 3 and grade 4) are presented for each of the groups (A, B, and C) and priming vaccine by vaccine group. An additional view of reactogenicity outcomes displays severity of the event by vaccine group and stratified by priming vaccine and

|                                                      | Prime with Ch       | nAd/ChAd            |                     |                     | Prime with BN        | IT/BNT                |                       |                      |
|------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|----------------------|-----------------------|-----------------------|----------------------|
|                                                      | Control<br>(n=114)  | BNT half<br>(n=117) | m1273<br>(n=112)    | CVn<br>(n=119)      | Control<br>(n=112)   | BNT half<br>(n=110)   | m1273<br>(n=111)      | CVn<br>(n=106)       |
| Age, years                                           |                     |                     |                     |                     |                      |                       |                       |                      |
| Mean (SD)                                            | 64.0 (13.2)         | 64.6 (13.6)         | 63.8 (14.1)         | 64·4 (13·5)         | 63.6 (16.3)          | 62.6 (17.3)           | 63.0 (15.3)           | 62.7 (16.4)          |
| Median (IQR)                                         | 70·3<br>(54·4–75·1) | 71·0<br>(55·8–75·3) | 70·2<br>(53·0–75·3) | 70·3<br>(54·8–75·1) | 66·8<br>(51·9–78·0)  | 64·4<br>(47·7–78·2)   | 65·0<br>(50·3–75·5)   | 63·4<br>(47·3–76·6)  |
| Intervals between first and second doses, days       | 72·0<br>(65·0–77·0) | 74·0<br>(66·0–77·0) | 70·0<br>(63·0–77·0) | 72·0<br>(65·0–77·0) | 70·0<br>(45·0–76·0)  | 60·5<br>(22·2–74·8)   | 66·0<br>(23·0–76·0)   | 66·0<br>(23·0–73·8)  |
| Intervals between<br>second and third doses,<br>days | 77·5<br>(73·0–85·0) | 78·0<br>(73·0–84·2) | 79·0<br>(74·0–86·0) | 78·0<br>(73·5–85·0) | 93·5<br>(87·0–116·0) | 107·5<br>(90·0–157·5) | 101·5<br>(89·0–152·2) | 98·0<br>(88·0–151·8) |
| Age groups, years                                    |                     |                     |                     |                     |                      |                       |                       |                      |
| <70                                                  | 54 (47·4%)          | 55 (47.0%)          | 55 (49·1%)          | 58 (48.7%)          | 60 (53.6%)           | 62 (56-4%)            | 62 (55·9%)            | 58 (54·7%)           |
| ≥70                                                  | 60 (52.6%)          | 62 (53·0%)          | 57 (50·9%)          | 61 (51.3%)          | 52 (46·4%)           | 48 (43.6%)            | 49 (44·1%)            | 48 (45·3%)           |
| Gender                                               |                     |                     |                     |                     |                      |                       |                       |                      |
| Female                                               | 47 (41·2%)          | 48 (41.0%)          | 45 (40·2%)          | 54 (45·4%)          | 60 (53.6%)           | 52 (47·3%)            | 63 (56.8%)            | 56 (52.8%)           |
| Male                                                 | 67 (58.8%)          | 69 (59.0%)          | 67 (59.8%)          | 65 (54.6%)          | 52 (46·4%)           | 58 (52·7%)            | 48 (43·2%)            | 50 (47·2%)           |
| Occupation                                           |                     |                     |                     |                     |                      |                       |                       |                      |
| Health worker                                        | 29 (25·4%)          | 28 (23.9%)          | 26 (23·2%)          | 26 (21.8%)          | 48 (42.9%)           | 58 (52·7%)            | 59 (53·2%)            | 55 (51.9%)           |
| Other                                                | 85 (74.6%)          | 89 (76·1%)          | 85 (75.9%)          | 92 (77·3%)          | 64 (57·1%)           | 52 (47·3%)            | 52 (46.8%)            | 51 (48·1%)           |
| Ethnicity                                            |                     |                     |                     |                     |                      |                       |                       |                      |
| White                                                | 108 (94.7%)         | 115 (98.3%)         | 108 (96.4%)         | 113 (95.0%)         | 105 (92.9%)          | 93 (84·5%)            | 103 (92.8%)           | 87 (82.1%)           |
| Black                                                | 1 (0.9%)            | 0                   | 0                   | 0                   | 0                    | 2 (1.8%)              | 0                     | 1(0.9%)              |
| Asian                                                | 2 (1.8%)            | 1(0.9%)             | 2 (1.8%)            | 5 (4·2%)            | 7 (6·2%)             | 9 (8·2%)              | 4 (3.6%)              | 14 (13·2%)           |
| Mixed                                                | 1 (0.9%)            | 0                   | 1(0.9%)             | 0                   | 1 (0.9%)             | 3 (2.7%)              | 3 (2.7%)              | 2 (1.9%)             |
| Other                                                | 1 (0.9%)            | 0                   | 0                   | 0                   | 0                    | 2 (1.8%)              | 0                     | 1(0.9%)              |
| Not given                                            | 0                   | 1 (0.9%)            | 0                   | 0                   | 0                    | 1 (0.9%)              | 0                     | 1(0.9%)              |
| Comorbidities                                        |                     |                     |                     |                     |                      |                       |                       |                      |
| Cardiovascular                                       | 39 (34·2%)          | 35 (29.9%)          | 36 (32·1%)          | 36 (30·3%)          | 43 (38·4%)           | 35 (31·8%)            | 29 (26·1%)            | 35 (33.0%)           |
| Respiratory                                          | 14 (12·3%)          | 17 (14·5%)          | 12 (10.7%)          | 12 (10.1%)          | 12 (10.6%)           | 17 (15·5%)            | 17 (15·3%)            | 9 (8.5%)             |
| Diabetes                                             | 5 (4.4%)            | 4 (3.4%)            | 7 (6.2%)            | 11 (9.2%)           | 7 (6·2%)             | 11 (10.0%)            | 3 (2.7%)              | 8 (7.5%)             |

Data are median (IQR) or n (%), unless otherwise stated. There were three participants missing on occupation and five participants missing on ethnicity, which were not included in this table. ChAd=ChAdOx1 nCoV-19 vaccine, Oxford–AstraZeneca. Control=quadrivalent meningococcal conjugate vaccine. BNT=BNT162b2 vaccine, Pfizer-BioNTech. BNT half=half dose of BNT162b2 vaccine. m1273=mRNA1273 vaccine, Moderna. CVn=CVnCoV vaccine, Curevac.

Table 4: Baseline characteristics by third dose vaccine allocation and priming vaccine schedule, group C

age group. Unsolicited adverse events reported within 28 days post third dose were coded according to the Medical Dictionary for Regulatory Activities and tabulated at System Organ Class level across vaccine groups. Adverse events of special interest and serious adverse events were reported until the data lock date of Aug 19, 2021, by line listing.

Secondary immunogenicity outcomes were analysed with the same approach as for the primary immunogenicity outcome. We repeated the analyses for primary and secondary outcomes in the group aged 30–69 years and the group aged 70 years and older separately, as subgroup analysis. For descriptive statistics, secondary outcomes, and subgroup analysis, we reported GMRs with 95% CIs.

## Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

# Results

Between June 1 and June 30, 2021, 3498 people were screened, of whom 2883 were recruited (figure 1). Five participants withdrew before vaccination, leading to 2878 participants receiving a third dose vaccine.

The median age of ChAd/ChAd-primed participants was 53 years (IQR 44-61) in the younger age group and 76 years (73-78) in the older age group (tables 2-4). In the BNT/BNT-primed participants, the median age was 51 years (41-59) in the younger age group and 78 years (75-82) in the older age group. In the ChAd/ChADprimed group 676 (46.7%) participants were female and 1380 (95.4%) were White, and in the BNT/BNT-primed group, 770 (53.6%) participants were female and 1321 (91.9%) were White. In the younger age group, 409 (57.6%) were female, 665 (93.7%) were White in the ChAD/ChAD-primed group, and 518 (64.0%) were female, and 709 (87.6%) were White in the BNT/BNTprimed group. In the older age group, 267 (36 · 3%) were female and 715 (97.1%) were White in the ChAD/ChADprimed group, and 252 (40.1%) were female and 612 (97.5%) were White in the BNT/BNT-primed group. Because BNT was rolled out at a 3-week interdose interval at the beginning of the UK vaccination campaign, mainly in older people and health-care workers, and before ChAd was deployed, we observed expected differences in baseline characteristics between the ChAd/ChAd-primed group and the BNT/BNTprimed group. Within the ChAd/ChAd-primed or BNT/ BNT-primed populations, the baseline characteristics were well balanced between the randomly assigned groups for each group of A-C.

The profiles of any grade local and systemic reactions within 7 days after all vaccines were similar, with fatigue and headache the most common systemic reactions, and pain the most frequent local reaction (appendix 1 pp 22–25). Overall, reactogenicity was greater in people aged 30–69 years compared with older participants regardless of the first vaccines received (appendix 1 pp 22–32). Participants primed with BNT/BNT reported more frequent local and systemic reactions after receiving m1273, CVn, ChAd, and Ad26 as a third dose, compared with other vaccines and control. Participants receiving mRNA vaccines or Ad26 after ChAd/ChAd also showed increased systemic and local adverse events. Among all mRNA vaccines, m1273 was the most reactogenic. Moderate or severe pain was reported to a similar degree in BNT and half BNT groups with some reduction in systemic adverse events, although these

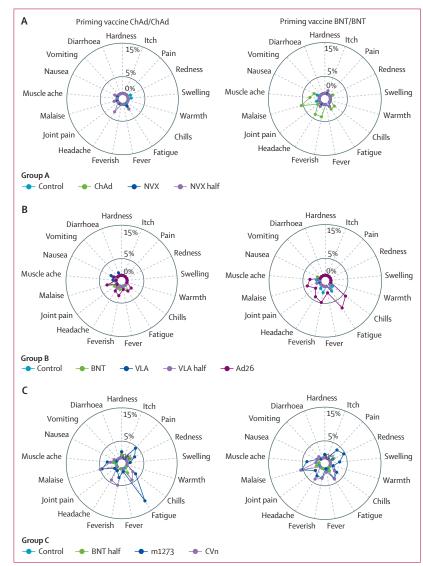



Figure 2: Radial graph for the occurrence of severe local and solicited adverse events in the first 7 days post vaccination in groups A, B, and C

Control=quadrivalent meningococcal conjugate vaccine. ChAd=ChAdOx1 nCoV-19 vaccine, Oxford-AstraZeneca. NVX=NVX-CoV2373 vaccine, Novavax. NVX half=half dose of NVX-CoV2373 vaccine. BNT=BNT162b2 vaccine, Pfizer-BioNTech. VLA=VLA2001 vaccine, Valneva. VLA half=half dose of VLA2001 vaccine. Ad26=Ad26.COV2.S vaccine, Janssen. m1273=mRNA1273 vaccine, Moderna. CVn=CVnCoV vaccine, Curevac.

observations were in different groups. Ad26, m1273, and CVn recipients also reported feverishness frequently, which was not seen among BNT or half BNT participants.

For ChAd/ChAd, the frequencies of severe local and systemic reactions were less than 5% for all vaccine groups except severe fatigue, which was reported in 13 (11.6%) of 112 m1273 recipients (figure 2). For the BNT/BNT group, malaise was reported in six (5.6%) of 108 ChAd recipients, six (5.5%) of 109 m1273 recipients, and six (5.8%) of 104 CVn recipients, whereas six (5.8%)

of 103 participants boosted with Ad26 reported chills and eight (7.8%) of 103 reported fatigue. All the other severe reactions were reported in less than 5% of participants across all vaccine groups.

Between study enrolment and the data lock on Aug 19, 2021, there were 1306 adverse events reported from 912 participants (appendix 1 pp 2–10). 20 adverse events of special interest occurred after excluding SARS-CoV-2 infection in the 14 days immediately after third dose and serious adverse events, among which six were deemed as possibly related to the study vaccine (appendix 1 pp 11–12).

|          | Prime with ChAd/              | ChAd                      |                                    |                               | Prime with BNT/BNT         |                                 |                              |                             |
|----------|-------------------------------|---------------------------|------------------------------------|-------------------------------|----------------------------|---------------------------------|------------------------------|-----------------------------|
|          | Control (n=93)                | ChAd (n=100)              | NVX (n=96)                         | NVX half (n=97)               | Control (n=111)            | ChAd (n=98)                     | NVX (n=103)                  | NVX half (n=99)             |
| SARS-C   | oV-2 anti-spike IgG,          | ELU/mL                    |                                    |                               |                            |                                 |                              |                             |
| GMC*     | 801<br>(664-967; n=91)        | 2457<br>(2058–2933; n=99) | 6975<br>(5829-8347; n=95)          | 4634<br>(3794–5660; n=97)     | 2541<br>(2110-3060; n=111) | 13 424<br>(11 702–15 399; n=97) | 10862<br>(9009-13097; n=101) | 8550<br>(7210–10 138; n=98) |
| GMR†     | Ref                           | 3·25<br>(2·52-4·20)       | 8·75<br>(6·77–11·31)               | 5·82<br>(4·50–7·51)           | Ref                        | 5·33<br>(4·23–6·73)             | 4·78<br>(3·80–6·02)          | 3·07<br>(2·43-3·88)         |
| Pseudo   | type virus neutralisi         | ng antibody (wild-ty      | γpe), NT <sub>50</sub>             |                               |                            |                                 |                              |                             |
| GMT*     | 84·9<br>(68·7-105·0;<br>n=90) | 193<br>(161–231; n=98)    | 727<br>(598-883; n=87)             | 470<br>(378-583; n=86)        | 157<br>(129–192; n=111)    | 950<br>(802–1126; n=98)         | 766<br>(624–939; n=94)       | 606<br>(495-743; n=89)      |
| GMR†     | Ref                           | 2·47<br>(1·96–3·11)       | 8·86<br>(7·00–11·22)               | 5·89<br>(4·64–7·46)           | Ref                        | 6·01<br>(4·87–7·41)             | 5·39<br>(4·35–6·67)          | 3·50<br>(2·81–4·36)         |
| Pseudo   | type virus neutralisi         | ng antibody (delta),      | NT <sub>50</sub>                   |                               |                            |                                 |                              |                             |
| GMT*     | 20·0<br>(15·6-25·7; n=91)     | 48·9<br>(39·7-60·2; n=99) | 124<br>(99–156; n=84)              | 87·2<br>(68·5–111·0; n=83)    | 37·9<br>(30·5–47·1; n=111) | 260<br>(217-313; n=98)          | 165<br>(131–209; n=89)       | 131<br>(106–163; n=88)      |
| GMR†     | Ref                           | 2·58<br>(1·92–3·47)       | 6·25<br>(4·60–8·50)                | 4·40<br>(3·23–6·00)           | Ref                        | 6·84<br>(5·39–8·68)             | 4·94<br>(3·86–6·31)          | 3·27<br>(2·55–4·20)         |
| Live vir | us neutralising antil         | oody, normalised NT       | 30                                 |                               |                            |                                 |                              |                             |
| GMT*     | 146<br>(111–191; n=32)        | 346<br>(263-454; n=31)    | 837<br>(536-1307; n=18)            | 713<br>(490–1038; n=20)       | 531<br>(377-748; n=38)     | 2614<br>(2075-3294; n=40)       | 1454<br>(1060-1995; n=24)    | 1792<br>(1261–2547; n=21)   |
| GMR†     | Ref                           | 2·57<br>(1·86–3·56)       | 6·29<br>(4·22–9·37)                | 5·30<br>(3·59–7·80)           | Ref                        | 5·01<br>(3·59–7·01)             | 2·65<br>(1·77–3·98)          | 2·81<br>(1·85-4·26)         |
| Cellular | response (wild-type           | e), spot forming cells    | per 10 <sup>6</sup> peripheral blo | ood mononuclear cell          | 5                          |                                 |                              |                             |
| GM*      | 48·1<br>(35·0-66·3; n=45)     | 53·0<br>(37·9–74·2; n=47) | 113·7<br>(78·7-164·2; n=46)        | 98·4<br>(73·9–131·1; n=48)    | 34·5<br>(23·8–50·0; n=53)  | 95·8<br>(66·6–137·7; n=48)      | 56·6<br>(37·2-86·2; n=49)    | 35·3<br>(23·7–52·7; n=48)   |
| GMR‡     | Ref                           | 1·08<br>(0·74–1·57)       | 3·23<br>(2·20-4·76)                | 2·43<br>(1·66–3·56)           | Ref                        | 2·55<br>(1·64–3·96)             | 1·79<br>(1·15–2·77)          | 1·40<br>(0·89–2·18)         |
| Cellular | response (delta), sp          | ot forming cells per      | 10º peripheral blood r             | nononuclear cells             |                            |                                 |                              |                             |
| GM*      | 38·1<br>(27·0–54·0; n=45)     | 44·9<br>(30·6−65·7; n=47) | 117·9<br>(85·5-162·7; n=46)        | 86·3<br>(64·8-114·9;<br>n=48) | 35·7<br>(25·1-50·9; n=53)  | 108·0<br>(78·7–148·2; n=48)     | 56·9<br>(37·9-85·4; n=49)    | 41·6<br>(28·7-60·4; n=48)   |
| GMR‡     | Ref                           | 1·13<br>(0·76–1·68)       | 4·26<br>(2·84–6·39)                | 2·71<br>(1·81-4·05)           | Ref                        | 2·74<br>(1·85–4·05)             | 1·71<br>(1·16–2·53)          | 1·56<br>(1·05-2·33)         |
| Cellular | response (beta), sp           | ot forming cells per 1    | .0 <sup>6</sup> peripheral blood n | nononuclear cells             |                            |                                 |                              |                             |
| GM*      | 50·0<br>(36·1–69·0; n=45)     | 53·0<br>(38·0–73·8; n=47) | 117·0<br>(82·8–165·4;<br>n=46)     | 91·1<br>(68·7–120·9; n=48)    | 32·4<br>(22·4-46·9; n=53)  | 101·2<br>(69·9–146·4; n=48)     | 51·2<br>(34·7-75·4; n=49)    | 37·2<br>(25·7-53·9; n=48)   |
| GMR‡     | Ref                           | 1·03<br>(0·71–1·51)       | 3·26<br>(2·21–4·81)                | 2·20<br>(1·50-3·23)           | Ref                        | 2·97<br>(1·95-4·51)             | 1·78<br>(1·18–2·71)          | 1·65<br>(1·08–2·52)         |
|          |                               |                           |                                    |                               |                            |                                 |                              |                             |

ChAd=ChAdOx1 nCoV-19 vaccine, Oxford-AstraZeneca. BNT=BNT162b2 vaccine, Pfizer-BioNTech. Control=quadrivalent meningococcal conjugate vaccine. NVX=NVX-CoV2373 vaccine, Novavax. NVX half=half dose of NVX-CoV2373 vaccine. ELU=ELISA laboratory units. GMC=geometric mean concentration. GMR=geometric mean ratio. GM=geometric mean. GMT=geometric mean rative. NT<sub>50</sub>=50% neutralising antibody titre. NT<sub>50</sub>=80% neutralising antibody titre. \*Data are GM (95% CI; number of samples available). †GMRs of the study vaccines were calculated by comparing to their corresponding controls in group A, B, or C, after adjusting for age group, site, baseline anti-spike IgG, interval between first and second dose, and interval between second and third dose; for primary endpoint of anti-spike IgG, 99% CIs were presented to account for multiple comparisons; for the secondary endpoints, 95% CIs were presented. ‡GMRs of the study vaccines were calculated by comparing to their corresponding controls in group A, B, or C, after adjusting for age group, site, baseline cellular response against wild-type, interval between first and second dose, and interval between second and third dose; 95% CIs were presented.

Table 5: Immune responses by third dose vaccine allocation and priming vaccine schedule at 28 days post boost dose among the COVID-19-naive modified intention-to-treat population, group A

| U                                                           |                                                                                      |                                                                                                                                                                   |                                                                                                                   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                             |                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | Control (n=93)                                                                       | BNT (n=95)                                                                                                                                                        | VLA (n=95)                                                                                                        | VLA half (n=107)                                                                                       | Ad26 (n=101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Control (n=97)                                                                                                                        | BNT (n=96)                                                                                                                  | VLA (n=99)                                                                                                    | VLA half (n=98)                                                                                                       | Ad26 (n=89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SARS-CoV-                                                   | SARS-CoV-2 anti-spike lgG, ELU/mL                                                    | ELU/mL                                                                                                                                                            |                                                                                                                   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                             |                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GMC* 763<br>(630                                            | 763<br>(630–924; n=91)                                                               | 20517<br>(17718-23757;<br>n=93)                                                                                                                                   | 1835<br>(1514-2224;<br>n=93)                                                                                      | 1430<br>(1198–1707;<br>n=103)                                                                          | 5517<br>(4647–6548; n=98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3197<br>(2714-3767;<br>n=94)                                                                                                          | 27 242<br>(24 148-30 731;<br>n=96)                                                                                          | 4204<br>(3640-4856;<br>n=98)                                                                                  | 3721<br>(3200-4326;<br>n=98)                                                                                          | 17079<br>(14488–20133; n=87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GMR† Ref                                                    | ef                                                                                   | 24·48<br>(19·50–30·79)                                                                                                                                            | 2·20<br>(1·75-2·77)                                                                                               | 1.81<br>(1.45-2.27)                                                                                    | 5.84<br>(4.65–7.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref                                                                                                                                   | 8.11<br>(6.59–9.99)                                                                                                         | 1.31<br>(1.07–1.62)                                                                                           | 1.25<br>(1:01–1:54)                                                                                                   | 5.63<br>(4.55–6.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pseudotyp                                                   | e virus neutralisi.                                                                  | Pseudotype virus neutralising antibody (wild-type), $NT_{\mathrm{s}}$                                                                                             | ie), NT <sub>50</sub>                                                                                             |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                             |                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GMT* 69<br>(57                                              | 69.6<br>(57·2-84·6; n=91)                                                            | 1621<br>(1314-1998; n=93)                                                                                                                                         | 202<br>(166-247; n=89)                                                                                            | 147<br>(124-174; n=95)                                                                                 | 563<br>(454-698; n=95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 205<br>(167–253; n=93)                                                                                                                | 1789<br>(1520-2107; n=95)                                                                                                   | 289<br>(244-342; n=91)                                                                                        | 234<br>(200-272; n=87)                                                                                                | 1441<br>(1188-1749; n=75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GMR† Ref                                                    | ef                                                                                   | 21.58<br>(16·93–27·51)                                                                                                                                            | 2.68<br>(2.10–3.43)                                                                                               | 2.01<br>(1.57–2.55)                                                                                    | 6.85<br>(5·37–8·73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref                                                                                                                                   | 8.35<br>(6.88-10.14)                                                                                                        | 1-38<br>(1-14-1-68)                                                                                           | 1.22<br>(1.00–1.49)                                                                                                   | 7.84<br>(6.37–9.64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pseudotyp                                                   | ie virus neutralisi                                                                  | Pseudotype virus neutralising antibody (delta), $NT_{\scriptscriptstyle{50}}$                                                                                     | IT <sub>50</sub>                                                                                                  |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                             |                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GMT* 20.4<br>(16.4                                          | 20·4<br>(16·4-25·5; n=91)                                                            | 315<br>(254–391; n=93)                                                                                                                                            | 35.2<br>(28·4-43·7; n=89)                                                                                         | 31·1<br>(25·6-37·7; n=95)                                                                              | 125<br>(99–159; n=90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56·5<br>(43·6-73·3; n=92)                                                                                                             | 392<br>(320-479; n=95)                                                                                                      | 67.1<br>(55.4-81.2; n=94)                                                                                     | 54·7<br>(45·1-66·4; n=92)                                                                                             | 418<br>(330-530; n=78)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GMR† Ref                                                    | ٩f                                                                                   | 14·43<br>(10·97–18·98)                                                                                                                                            | 1.65<br>(1.25–2.17)                                                                                               | 1·50<br>(1·14–1·96)                                                                                    | 5·33<br>(4·04–7·03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref                                                                                                                                   | 6.60<br>(5·10–8·53)                                                                                                         | 1·19<br>(0·92–1·54)                                                                                           | 1.02<br>(0.79–1.32)                                                                                                   | 8.02<br>(6.12–10.50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Live virus r                                                | neutralising antik                                                                   | Live virus neutralising antibody, normalised NT <sup>80</sup>                                                                                                     |                                                                                                                   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                             |                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GMT* 174<br>(139                                            | 174<br>(139-218; n=30)                                                               | 4899<br>(3955-6069; n=38)                                                                                                                                         | 354<br>(215-584; n=21)                                                                                            | 301<br>(212-427; n=25)                                                                                 | 1053<br>(691-1605; n=23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 756<br>(568-1007; n=34)                                                                                                               | 4603<br>(3685–5749; n=36)                                                                                                   | 836<br>(580-1207; n=20)                                                                                       | 555<br>(407–756; n=23)                                                                                                | 3535<br>(2459-5080; n=19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GMR† Ref                                                    | ef                                                                                   | 25·61<br>(18·07–36·31)                                                                                                                                            | 2·04<br>(1·37–3·05)                                                                                               | 1.81<br>(1·23-2·65)                                                                                    | 5·97<br>(4·03–8·84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref                                                                                                                                   | 5·79<br>(4·25-7·90)                                                                                                         | 1.42<br>(0.98–2.06)                                                                                           | 0·93<br>(0·65–1·33)                                                                                                   | 5·36<br>(3·67–7·83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cellular res                                                | sponse (wild-type                                                                    | Cellular response (wild-type), spot forming cells per 10 <sup>6</sup> peripheral b                                                                                | ber 106 peripheral blo                                                                                            | lood mononuclear cells                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                             |                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GM* 42<br>(3(                                               | 42.6<br>(30-9-58-8; n=49)                                                            | 115.5<br>(81.7–163.3; n=50)                                                                                                                                       | 52·2<br>(36·3-75·0; n=47)                                                                                         | 55·5<br>(40·4-76·3; n=53)                                                                              | 106·0<br>(80·1–140·4; n=53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29-4<br>(21-0-41-2; n=50)                                                                                                             | 83.8<br>(65.4–107.2; n=49)                                                                                                  | 33·5<br>(24·7-45·4; n=51)                                                                                     | 38·1<br>(26·1–55·5; n=51)                                                                                             | 111.0<br>(71.8–171.6; n=43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GMR‡ Ref                                                    | 5f                                                                                   | 3·15<br>(2·08–4·76)                                                                                                                                               | 1·39<br>(0·92-2·11)                                                                                               | 1·40<br>(0·93–2·11)                                                                                    | 2·74<br>(1·82-4·12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref                                                                                                                                   | 2.65<br>(1.78–3.95)                                                                                                         | 1.04<br>(0.69–1.55)                                                                                           | 1·12<br>(0·75-1·66)                                                                                                   | 2·93<br>(1·93-4·44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cellular res                                                | sponse (delta), sp                                                                   | Cellular response (delta), spot forming cells per ${\bf 10}^6$ peripheral blood                                                                                   | 0 <sup>6</sup> peripheral blood m                                                                                 | mononuclear cells                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                             |                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GM* 42<br>(30                                               | 42.2<br>(30·5–58·3; n=49)                                                            | 123·2<br>(93·0-163·3; n=50)                                                                                                                                       | 52.8<br>(36·9–75·6; n=47)                                                                                         | 54·7<br>(41·5-72·0; n=53)                                                                              | 102·1<br>(74·4-140·2; n=53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.2<br>(19·9-39·9; n=50)                                                                                                             | 82·1<br>(65·7–102·7; n=49)                                                                                                  | 29·6<br>(20·9-42·0; n=51)                                                                                     | 39.2<br>(27·2-56·6; n=51)                                                                                             | 121-5<br>(78-9-187-0; n=43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GMR‡ Ref                                                    | ٩                                                                                    | 3-23<br>(2-15-4-86)                                                                                                                                               | 1.40<br>(0.93–2.12)                                                                                               | 1·39<br>(0·93–2·08)                                                                                    | 2.67<br>(1·79-4·00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref                                                                                                                                   | 2.71<br>(1.78-4.13)                                                                                                         | 0.96<br>(0.63–1.47)                                                                                           | 1.22<br>(0.80–1.85)                                                                                                   | 3·29<br>(2·12–5·11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cellular res                                                | sponse (beta), spo                                                                   | Cellular response (beta), spot forming cells per 10 <sup>6</sup> peripheral blood                                                                                 | <sup>6</sup> peripheral blood m                                                                                   | mononuclear cells                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                             |                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GM* 47<br>(35                                               | 47.6<br>(35·2-64·4; n=49)                                                            | 120·5<br>(88·0–165·0; n=50)                                                                                                                                       | 52·6<br>(36·3-76·3; n=47)                                                                                         | 56.8<br>(41.0-78.7; n=53)                                                                              | 99·9<br>(72·6–137·6; n=53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.6<br>(19·9-38·5; n=50)                                                                                                             | 85·2<br>(69·8-103·9; n=49)                                                                                                  | 31·1<br>(22·5-42·9; n=51)                                                                                     | 40·3<br>(28·1-57·7; n=51)                                                                                             | 118-6<br>(78-3-179-7; n=43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GMR‡ Ref                                                    | ٩f                                                                                   | 2.88<br>(1.89-4.38)                                                                                                                                               | 1.25<br>(0.82-1.90)                                                                                               | 1.28<br>(0.85–1.94)                                                                                    | 2·30<br>(1·52–3·48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref                                                                                                                                   | 2.86<br>(1·92-4·28)                                                                                                         | 1.05<br>(0.70–1.56)                                                                                           | 1.27<br>(0.85–1.89)                                                                                                   | 3·36<br>(2·21–5·10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| hAd=ChAdC<br>accine, Janss<br>M (95% Cl; r<br>nd interval b | Dx1 nCoV-19 vaccin<br>sen. ELU=ELISA labo<br>number of samples<br>petween second and | ie, Oxford–AstraZeneca. C<br>pratory units. GMC=geom<br>available). †GMRs of the i<br>at third dose; for primary e<br>construction of the interval of a primary e | Control=quadrivalent m<br>hetric mean concentrati<br>study vaccines were cal<br>andpoint of anti-spike <u>(</u> c | teningococcal conjugate<br>ion. GMR=geometric me<br>culated by comparing to<br>gG, 99% CIs were preser | ChAd=ChAdOx1 nCoV-19 vaccine, Oxford–AstraZeneca. Control=quadrivalent meningococcal conjugate vaccine. BNT=BNTJ62b2 vaccine, Pfizer-BioNTech. VLA=VLA2001 vaccine, VLA half=half dose of VLA2001 vaccine. Ad26=Ad26. COV2.<br>vaccine, Janssen. ELU=ELISA laboratory units. GMC=geometric mean ratio. GMR=geometric mean GMT=geometric mean titre. NT <sub>30</sub> =50% neutralising antibody titre. *Data.<br>GM (95% Cl; number of samples available). †GMRs of the study vaccines were calculated by comparing to their corresponding controls in group A, B, or C, after adjusting for age group, site, baseline anti-spike lgG, interval between first and second do<br>and interval between second and third dose for primary endpoints to the second to account for number of same are calculated by and interval between distractions. Applied 50, 30% Gl; secret primary for othe study vaccines were calculated by<br>and interval between second and third dose for primary endpoints. Dec 2000 20% Gl; secret primary and the dose of the dose of the second and the dose for primary endpoints. | vaccine, Pfizer-BioNTee<br>mean. GMT=geometricr<br>rrols in group A, B, or C,<br>le comparisons; for the<br>wild theo iscons, for the | ch. VLA=VLA2001 vaccine<br>mean titre. NT <sub>50</sub> =50% neu<br>after adjusting for age gri<br>secondary endpoints, 955 | e, Valneva. VLA half=hau<br>Jtralising antibody titre<br>oup, site, baseline anti-<br>% CIs were presented. ‡ | alf dose of VLA2001 var<br>e. NT <sub>30</sub> =80% neutralisit<br>-spike IgG, interval bet<br>#GMRs of the study vac | ChAd=ChAdOX1 nCoV-19 vaccine, Oxford–AstraZeneca. Control=quadrivalent meningococcal conjugate vaccine. BNT=BNT162b2 vaccine, Pfraer-BioNTech, VLA=VLA2001 vaccine, Valneva. VLA half–half dose of VLA2001 vaccine. Ad26=Ad26.COV2.5 vaccine, Janssen. ELU=ELISA laboratory units. GMC=geometric mean ratio. GMR=geometric mean. GMT=geometric mean. GMT_g=50% neutralising antibody titre. Nata are GM (95% CI, number of samples available). 1GMRs of the study vaccines were calculated by comparing to their corresponding controls in group A, B, or C, after adjusting for age group, site, baseline anti-spike IgG, interval between first and second dose, and interval between first and provide presented to account for multiple comparis provides were accound the rule provers. GM of the supplex and interval between first and second to account for multiple comparis provides and the secondary endpoints 15% for primary endpoint of a direct-director distroctine. Account for multiple comparis provers and interval between first due to account for multiple comparis provers. Suppose the director doe of the suppose |
|                                                             |                                                                                      | ים יש להסול ווו פוסוויווסי לו                                                                                                                                     |                                                                                                                   | aye yroup, arte, baaeiii                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wind-type, intervaluety                                                                                                               |                                                                                                                             |                                                                                                               |                                                                                                                       | יבי שם אי רוש איבור באו בשבווובים.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                                                                           | Prime with ChAd/ChAd                                                                                                                                                                                                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                                 | Prime with BNT/BNT                                                                                                                                            |                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                       |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           | Control (n=102)                                                                                                                                                                                                         | BNT half (n=105)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m1273 (n=98)                                                                                                                                                    | CVn (n=105)                                                                                                                                                     | Control (n=100)                                                                                                                                               | BNT half (n=94)                                                                                                                                                                      | m1273 (n=92)                                                                                                                                                           | CVn (n=94)                                                                                                                                                                                            |
| SARS-C                                                                    | SARS-CoV-2 anti-spike lgG, ELU/mL                                                                                                                                                                                       | /mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                       |
| GMC*                                                                      | 852<br>(697-1041; n=101)                                                                                                                                                                                                | 16 045<br>(13 449-19 143; n=103)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31111<br>(26 363-36 714; n=97)                                                                                                                                  | 3996<br>(3397-4700; n=103)                                                                                                                                      | 3029<br>(2556-3589; n=98)                                                                                                                                     | 23 082<br>(19 971–26 678; n=92)                                                                                                                                                      | 33 768<br>(27 816-40 993; n=91)                                                                                                                                        | 7613<br>(6515-8897; n=91)                                                                                                                                                                             |
| GMR†                                                                      | Ref                                                                                                                                                                                                                     | 16·80<br>(12·97–21·76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32·30<br>(24·84-42·01)                                                                                                                                          | 5.05<br>(3.90-6.54)                                                                                                                                             | Ref                                                                                                                                                           | 6.78<br>(5·51–8·35)                                                                                                                                                                  | 11.49<br>(9.36–14.12)                                                                                                                                                  | 2.30<br>(1.87–2.83)                                                                                                                                                                                   |
| Pseudo                                                                    | type virus neutralising a                                                                                                                                                                                               | Pseudotype virus neutralising antibody (wild-type), $NT_{so}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                       |
| GMT*                                                                      | 80-4<br>(65-6-98-5; n=101)                                                                                                                                                                                              | 1344<br>(1131–1596; n=103)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2368<br>(2054-2730; n=97)                                                                                                                                       | 373<br>(310-448; n=99)                                                                                                                                          | 175<br>(144-212; n=98)                                                                                                                                        | 1339<br>(1123–1596; n=92)                                                                                                                                                            | 2019<br>(1621–2513; n=91)                                                                                                                                              | 487<br>(411–577; n=91)                                                                                                                                                                                |
| GMR†                                                                      | Ref                                                                                                                                                                                                                     | 15·14<br>(12·32–18·60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26·98<br>(21·88-33·26)                                                                                                                                          | 5.06<br>(4.11-6.23)                                                                                                                                             | Ref                                                                                                                                                           | 6.91<br>(5.70–8.37)                                                                                                                                                                  | 12·04<br>(9·95–14·58)                                                                                                                                                  | 2·57<br>(2·13-3·12)                                                                                                                                                                                   |
| Pseudo                                                                    | Pseudotype virus neutralising antibody (delta), $NT_{so}$                                                                                                                                                               | ntibody (delta), NT <sub>50</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                       |
| GMT*                                                                      | 18·6<br>(14·7-23·5; n=101)                                                                                                                                                                                              | 321∙3<br>(262∙4-393∙5; n=103)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 559·7<br>(441·3-709·9; n=96)                                                                                                                                    | 64·5<br>(54·2-76·7; n=93)                                                                                                                                       | 41.6<br>(33·7-51·4; n=98)                                                                                                                                     | 352·6<br>(286·7–433·6; n=91)                                                                                                                                                         | 508·7<br>(408·6-633·4; n=91)                                                                                                                                           | 119·1<br>(96·1–147·5; n=89)                                                                                                                                                                           |
| GMR†                                                                      | Ref                                                                                                                                                                                                                     | 15·71<br>(12·09–20·41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.17<br>(20.81–35.47)                                                                                                                                          | 3.76<br>(2.87-4.91)                                                                                                                                             | Ref                                                                                                                                                           | 7·39<br>(5·88–9·29)                                                                                                                                                                  | 12.58<br>(10.03-15.77)                                                                                                                                                 | 2·59<br>(2·07–3·26)                                                                                                                                                                                   |
| Live vir                                                                  | Live virus neutralising antibody, normalised $NT_{\mathrm{ss}}$                                                                                                                                                         | ι, normalised NT <sub>80</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                       |
| GMT*                                                                      | 152<br>(106–218; n=38)                                                                                                                                                                                                  | 2501<br>(1978–3163; n=40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5421<br>(4248-6918; n=24)                                                                                                                                       | 774<br>(485-1235; n=20)                                                                                                                                         | 469<br>(332-664; n=37)                                                                                                                                        | 3263<br>(2601-4093; n=37)                                                                                                                                                            | 5354<br>(4195-6833; n=23)                                                                                                                                              | 1960<br>(1199-3205; n=18)                                                                                                                                                                             |
| GMR†                                                                      | Ref                                                                                                                                                                                                                     | 12·93<br>(9·51–17·57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28·26<br>(19·66–40·63)                                                                                                                                          | 5.00<br>(3.42-7.32)                                                                                                                                             | Ref                                                                                                                                                           | 5·18<br>(3·72-7·21)                                                                                                                                                                  | 9.32<br>(6.37–13.66)                                                                                                                                                   | 3.26<br>(2.15-4.95)                                                                                                                                                                                   |
| Cellular                                                                  | r response (wild-type), s                                                                                                                                                                                               | Cellular response (wild-type), spot forming cells per $10^{\circ}$ peripheral blood mononuclear cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pheral blood mononuclea                                                                                                                                         | ar cells                                                                                                                                                        |                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                       |
| GM*                                                                       | 39.5<br>(27.8–56.2; n=50)                                                                                                                                                                                               | 135.9<br>(99.1-186.2; n=53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 148·9<br>(103·6-213·9; n=44)                                                                                                                                    | 47.8<br>(34·4-66·3; n=50)                                                                                                                                       | 22·0<br>(14·9-32·4; n=47)                                                                                                                                     | 78.4<br>(55.1-111.5; n=44)                                                                                                                                                           | 112·0<br>(72·8–172·3; n=44)                                                                                                                                            | 46.7<br>(32·5-67·0; n=45)                                                                                                                                                                             |
| GMR‡                                                                      | Ref                                                                                                                                                                                                                     | 3·31<br>(2·22-4·93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3·59<br>(2·36–5·45)                                                                                                                                             | 1.51<br>(1.01–2.27)                                                                                                                                             | Ref                                                                                                                                                           | 3.01<br>(1.98-4.57)                                                                                                                                                                  | 4·66<br>(3·07–7·08)                                                                                                                                                    | 2.10<br>(1.38–3.18)                                                                                                                                                                                   |
| Cellular                                                                  | r response (delta), spot fi                                                                                                                                                                                             | Cellular response (delta), spot forming cells per $10^{\circ}$ peripheral blood mononuclear cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al blood mononuclear cell                                                                                                                                       | ls                                                                                                                                                              |                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                       |
| eM*                                                                       | 35·2<br>(24·6-50·4; n=50)                                                                                                                                                                                               | 139·1<br>(104·1-185·9; n=53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 152·1<br>(109·3-211·7; n=44)                                                                                                                                    | 45 ·5<br>(33·0-62·8; n=50)                                                                                                                                      | 25·9<br>(17·6-38·1; n=47)                                                                                                                                     | 93·0<br>(68·0-127·1; n=44)                                                                                                                                                           | 118·3<br>(79·8-175·4; n=44)                                                                                                                                            | 52·2<br>(37·0-73·6; n=45)                                                                                                                                                                             |
| GMR‡                                                                      | Ref                                                                                                                                                                                                                     | 3·91<br>(2·62–5·83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4·25<br>(2·79-6·47)                                                                                                                                             | 1.67<br>(1:11-2.51)                                                                                                                                             | Ref                                                                                                                                                           | 3.04<br>(2.01-4.58)                                                                                                                                                                  | 4·14<br>(2·75–6·23)                                                                                                                                                    | 1·90<br>(1·27–2·86)                                                                                                                                                                                   |
| Cellular                                                                  | r response (beta), spot fc                                                                                                                                                                                              | Cellular response (beta), spot forming cells per 10 <sup>6</sup> peripheral blood mononuclear cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | il blood mononuclear cell                                                                                                                                       | 2                                                                                                                                                               |                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                       |
| €M*                                                                       | 41:1<br>(28·3-59·7; n=50)                                                                                                                                                                                               | 127·5<br>(91·4-178·0; n=53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128·9<br>(85·2-195·2; n=44)                                                                                                                                     | 38·3<br>(26·0-56·4; n=50)                                                                                                                                       | 25.8<br>(17·6–37·7; n=47)                                                                                                                                     | 80·9<br>(56·0-116·9; n=44)                                                                                                                                                           | 102·4<br>(64·7–162·0; n=44)                                                                                                                                            | 42·2<br>(28·9–61·5; n=45)                                                                                                                                                                             |
| GMR‡                                                                      | Ref                                                                                                                                                                                                                     | 2·94<br>(1·82-4·76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3·10<br>(1·87–5·14)                                                                                                                                             | 1.17<br>(0.71-1.91)                                                                                                                                             | Ref                                                                                                                                                           | 2.62<br>(1.65-4.17)                                                                                                                                                                  | 3-57<br>(2-25-5-67)                                                                                                                                                    | 1.61<br>(1.02–2.55)                                                                                                                                                                                   |
| ChAd=Ch<br>CVn=CVn<br>titre. *Dat<br>and secor<br>were calcu<br>95% CIs w | ChAd=ChAdOX1 nCoV-19 vaccine, O)<br>CVn=CVnCoVvaccine, Curevac. ELU=<br>titre. *Data are GM (95 % CJ; number<br>and second dose, and interval betwee<br>were calculated by comparing to thei<br>95% CIs were presented. | ChAd-ChAdOX1 nCoV-19 vaccine, Oxford-AstraZeneca. Control=quadrivalent meningococcal conjugate vaccine. BNTa63b2 vaccine, Pfizer-BioNTech. BNT half-half dose of BNT162b2 vaccine. m1273-warcine, MOderna.<br>CVn=CVnCoV vaccine, Curevac. ELU=EUSA laboratory units. GMC=geometric mean ratio. GM=geometric mean. GMT=geometric mean titre. NT <sub>30</sub> =50% neutralising antibody titre. NT <sub>30</sub> =80% neutralising antibody titre. NT <sub>30</sub> =80% neutralising antibody titre. NT <sub>30</sub> =80% neutralising antibody titre. NT <sub>30</sub> =50% of the study vaccines were calculated by comparing to their corresponding controls in group A, B, or C, after adjusting for imany endpoint of anti-spike lgG, j9% Gs were presented to account for multiple comparisons; for the second and third dose; for primary endpoint of anti-spike lgG, j9% Gs were presented to account for multiple comparisons; for the second and third dose, for primary endpoint of anti-spike lgG, j9% Gs were presented to account for multiple comparisons; for the second dose, and interval between second and third dose, for primary endpoint of anti-spike lgG, j9% Gs were presented to account for multiple comparisons; for the second dose, and interval between second and third dose, for primary endpoint of anti-spike lgG, j9% Gs were presented. | drivalent meningococcal con<br>ometric mean concentration<br>the study vaccines were calcu<br>mary endpoint of anti-spike I<br>p A, B, or C, after adjusting fo | jugate vaccine. BNT=5NT162<br>. GMR=geometric maan ratio.<br>Jated by comparing to their or<br>lgG, 99% Gs were presented t<br>or age group, site, baseline cel | b2 vaccine, Pfizer-BioNTech.<br>GM=geometric mean. GMT=,<br>orresponding controls in grou<br>or account for multiple compa<br>lular response against wild-ty. | BNT half–half dose of BNT162b:<br>geometric mean titre. $NT_{s=50\%}$<br>p A, B, or C, after adjusting for a<br>risons, for the secondary endpoi<br>risons, for the secondary endpoi | 2 vaccine. m1273=mRNA1273,<br>neutralising antibody titre. N1<br>ge group, site, baseline anti-spi<br>nts, 95% Cls were presented. ‡<br>cond dose, and interval betwee | vactine, Moderna. $T_{\eta_{\rm eff}}=80\%$ neutralising antibody $T_{\eta_{\rm eff}}=80\%$ neutralising antibodi ke lgG, interval between first GMRs of the study vactines on second and third dose; |
| Table 7: I                                                                | Immune responses by th                                                                                                                                                                                                  | Table 7: Immune responses by third dose vaccine allocation and priming vaccine schedule at 28 days post boost dose among the COVID-19-naive modified intention-to-treat population, group C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd priming vaccine sched                                                                                                                                        | ule at 28 days post boost c                                                                                                                                     | dose among the COVID-19                                                                                                                                       | -naive modified intention-t                                                                                                                                                          | o-treat population, group C                                                                                                                                            |                                                                                                                                                                                                       |

|                                                                                                                              | Age<br>(years)                                                                               | Geometric mean                                                                                                                                                                                                                                                                                                                                                                                                                    | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Geometric mean rati<br>(95% CI)                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anti-spike Ig                                                                                                                | G. ELU/mL                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Group A                                                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Control                                                                                                                      | <70                                                                                          | 800 (629-1016)                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref                                                                                                                                                                                                                                                                                                                                                                                                                   |
| control                                                                                                                      | ≥70                                                                                          | 774 (579–1034)                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ChAd                                                                                                                         | <70                                                                                          | 2828 (2246-3560)                                                                                                                                                                                                                                                                                                                                                                                                                  | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6 (2.7-4.8)                                                                                                                                                                                                                                                                                                                                                                                                         |
| CIAu                                                                                                                         |                                                                                              | 2152 (1653-2802)                                                                                                                                                                                                                                                                                                                                                                                                                  | 40<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , ,                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND 07                                                                                                                        | ≥70                                                                                          | , ,                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0 (2.4-3.9)                                                                                                                                                                                                                                                                                                                                                                                                         |
| NVX                                                                                                                          | <70                                                                                          | 8389 (6599–10665)                                                                                                                                                                                                                                                                                                                                                                                                                 | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.5 (7.8–14.2)                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                              | ≥70                                                                                          | 5822 (4495-7541)                                                                                                                                                                                                                                                                                                                                                                                                                  | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.5 (5.8–9.7)                                                                                                                                                                                                                                                                                                                                                                                                         |
| NVX half                                                                                                                     | <70                                                                                          | 6222 (4660-8309)                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.3 (5.4–9.8)                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                              | ≥70                                                                                          | 3387 (2643-4341)                                                                                                                                                                                                                                                                                                                                                                                                                  | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.7 (3.6–6.0)                                                                                                                                                                                                                                                                                                                                                                                                         |
| roup B                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Control                                                                                                                      | <70                                                                                          | 815 (638-1041)                                                                                                                                                                                                                                                                                                                                                                                                                    | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                              | ≥70                                                                                          | 731 (555-962)                                                                                                                                                                                                                                                                                                                                                                                                                     | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BNT                                                                                                                          | <70                                                                                          | 22479 (18276-27648)                                                                                                                                                                                                                                                                                                                                                                                                               | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.0 (18.6-30.9)                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                              | ≥70                                                                                          | 19091 (15554-23432)                                                                                                                                                                                                                                                                                                                                                                                                               | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.0 (20.0-32.0)                                                                                                                                                                                                                                                                                                                                                                                                      |
| VLA                                                                                                                          | <70                                                                                          | 1679 (1280-2203)                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1 (1.6–2.7)                                                                                                                                                                                                                                                                                                                                                                                                         |
| V L/ (                                                                                                                       | ≥70                                                                                          | 1974 (1505-2589)                                                                                                                                                                                                                                                                                                                                                                                                                  | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3 (1.8–3.0)                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VLA half                                                                                                                     | <70                                                                                          | 1702 (1337–2166)                                                                                                                                                                                                                                                                                                                                                                                                                  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>T</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8 (1.4–2.4)                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                              | ≥70                                                                                          | 1250 (975-1602)                                                                                                                                                                                                                                                                                                                                                                                                                   | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7 (1.4–2.2)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ad26                                                                                                                         | <70                                                                                          | 5582 (4415-7057)                                                                                                                                                                                                                                                                                                                                                                                                                  | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.2 (4.0-6.7)                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                              | ≥70                                                                                          | 5464 (4266–6998)                                                                                                                                                                                                                                                                                                                                                                                                                  | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3 (4.9–8.1)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Group C                                                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Control                                                                                                                      | <70                                                                                          | 853 (649-1121)                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                              | ≥70                                                                                          | 851 (637-1138)                                                                                                                                                                                                                                                                                                                                                                                                                    | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BNT half                                                                                                                     | <70                                                                                          | 17228 (14300-20755)                                                                                                                                                                                                                                                                                                                                                                                                               | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.0 (14.6-22.2)                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                              | ≥70                                                                                          | 15217 (11549-20049)                                                                                                                                                                                                                                                                                                                                                                                                               | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.6 (11.4–21.5)                                                                                                                                                                                                                                                                                                                                                                                                      |
| m1273                                                                                                                        | <70                                                                                          | 35522 (29205-43204)                                                                                                                                                                                                                                                                                                                                                                                                               | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | → 34.5 (28.0-42.6)                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11112/3                                                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 01                                                                                                                           | ≥70                                                                                          | 27702 (21337-35966)                                                                                                                                                                                                                                                                                                                                                                                                               | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | → 29.8 (21.4-41.4)                                                                                                                                                                                                                                                                                                                                                                                                    |
| CVn                                                                                                                          | <70<br>≥70                                                                                   | 4000 (3363–4757)<br>3992 (3052–5220)                                                                                                                                                                                                                                                                                                                                                                                              | 49<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5·0 (4·1–6·2)<br>5·2 (3·8–7·2)                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Group A<br>Control                                                                                                           | <70                                                                                          | 50 (32-77)                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                              | <70<br>≥70                                                                                   | 50 (32–77)<br>47 (29–74)                                                                                                                                                                                                                                                                                                                                                                                                          | 21<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref<br>Ref                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                              |                                                                                              | 47 (29-74)                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Control                                                                                                                      | ≥70<br><70                                                                                   | 47 (29–74)<br>51 (31–82)                                                                                                                                                                                                                                                                                                                                                                                                          | 24<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref<br>1·4 (0·74–2·6)                                                                                                                                                                                                                                                                                                                                                                                                 |
| Control<br>ChAd                                                                                                              | ≥70<br><70<br>≥70                                                                            | 47 (29–74)<br>51 (31–82)<br>55 (35–89)                                                                                                                                                                                                                                                                                                                                                                                            | 24<br>22<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref<br>1·4 (0·74–2·6)<br>0·96 (0·59–1·6)                                                                                                                                                                                                                                                                                                                                                                              |
| Control                                                                                                                      | ≥70<br><70<br>≥70<br><70                                                                     | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)                                                                                                                                                                                                                                                                                                                                                                            | 24<br>22<br>25<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ■-<br>■<br>■                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref<br>1·4 (0·74–2·6)<br>0·96 (0·59–1·6)<br>4·2 (2·2–7·7)                                                                                                                                                                                                                                                                                                                                                             |
| Control<br>ChAd<br>NVX                                                                                                       | ≥70<br><70<br>≥70<br><70<br>≥70                                                              | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)                                                                                                                                                                                                                                                                                                                                                             | 24<br>22<br>25<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref<br>1·4 (0·74-2·6)<br>0·96 (0·59-1·6)<br>4·2 (2·2-7·7)<br>2·6 (1·5-4·4)                                                                                                                                                                                                                                                                                                                                            |
| Control<br>ChAd<br>NVX                                                                                                       | ≥70<br><70<br>≥70<br><70<br>≥70<br><70                                                       | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)                                                                                                                                                                                                                                                                                                                                              | 24<br>22<br>25<br>23<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *<br>*<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref<br>1·4 (0·74-2·6)<br>0·96 (0·59-1·6)<br>4·2 (2·2-7·7)<br>2·6 (1·5-4·4)<br>2·9 (1·5-5·3)                                                                                                                                                                                                                                                                                                                           |
| Control<br>ChAd<br>NVX<br>NVX half                                                                                           | ≥70<br><70<br>≥70<br><70<br>≥70                                                              | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)                                                                                                                                                                                                                                                                                                                                                             | 24<br>22<br>25<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≠-<br>+<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref<br>1·4 (0·74-2·6)<br>0·96 (0·59-1·6)<br>4·2 (2·2-7·7)<br>2·6 (1·5-4·4)                                                                                                                                                                                                                                                                                                                                            |
| Control<br>ChAd<br>NVX<br>NVX half<br>iroup B                                                                                | ≥70<br>≥70<br><70<br>≥70<br>≥70<br><70<br>≥70                                                | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)                                                                                                                                                                                                                                                                                                                              | 24<br>22<br>25<br>23<br>23<br>23<br>23<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≠-<br>•<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref<br>1·4 (0·74-2·6)<br>0·96 (0·59-1·6)<br>4·2 (2·2-7·7)<br>2·6 (1·5-4·4)<br>2·9 (1·5-5·3)<br>2·3 (1·4-3·7)                                                                                                                                                                                                                                                                                                          |
| Control<br>ChAd<br>NVX<br>NVX half<br>iroup B                                                                                | ≥70<br><70<br>≥70<br><70<br>≥70<br><70<br>≥70                                                | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)                                                                                                                                                                                                                                                                                                                | 24<br>22<br>25<br>23<br>23<br>23<br>23<br>25<br>21                                                                                                                                                                                                                                                                                                                                                                                                                               | ₽-<br>₩<br>∎<br>-₩<br>-₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2.2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref                                                                                                                                                                                                                                                                                                   |
| Control<br>ChAd<br>NVX<br>NVX half<br>Group B<br>Control                                                                     | ≥70<br><70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70<br>≥70                                  | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)                                                                                                                                                                                                                                                                                                  | 24<br>22<br>25<br>23<br>23<br>23<br>23<br>25<br>21<br>28                                                                                                                                                                                                                                                                                                                                                                                                                         | ₽-<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2.2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref                                                                                                                                                                                                                                                                                            |
| Control<br>ChAd<br>NVX<br>NVX half<br>iroup B                                                                                | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70                           | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)                                                                                                                                                                                                                                                                                  | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23                                                                                                                                                                                                                                                                                                                                                                                                                         | ≠-<br>+<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2.2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8.2)                                                                                                                                                                                                                                                                           |
| Control<br>ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT                                                              | ≥70<br><70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70<br>≥70                                  | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)                                                                                                                                                                                                                                                                  | 24<br>22<br>25<br>23<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27                                                                                                                                                                                                                                                                                                                                                                                                             | ►<br>•<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2.2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8.2)<br>2.3 (1.3-4.1)                                                                                                                                                                                                                                                          |
| Control<br>ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT                                                              | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70                           | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)                                                                                                                                                                                                                                                                                  | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23                                                                                                                                                                                                                                                                                                                                                                                                                         | ≠-<br>+<br>-=<br>-=<br>-=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2-2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8.2)                                                                                                                                                                                                                                                                           |
| Control<br>ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT                                                              | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70<br>≥70                    | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)                                                                                                                                                                                                                                                                  | 24<br>22<br>25<br>23<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27                                                                                                                                                                                                                                                                                                                                                                                                             | ≠-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2.2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8-2)<br>2.3 (1.3-4.1)                                                                                                                                                                                                                                                          |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA                                                        | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)                                                                                                                                                                                                                                     | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>27<br>22<br>25                                                                                                                                                                                                                                                                                                                                                                                                 | ►<br>•<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2-2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8.2)<br>2.3 (1.3-4.1)<br>1.9 (1.0-3.6)<br>1.0 (0.58-1.8)                                                                                                                                                                                                                       |
| Control<br>ChAd<br>NVX<br>NVX half<br>iroup B<br>Control<br>BNT<br>VLA                                                       | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)                                                                                                                                                                                                                       | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>22<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>►</li> <li>►</li></ul> | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2.2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8.2)<br>2.3 (1.3-4.1)<br>1.9 (1.0-3.6)<br>1.0 (0.58-1.8)<br>1.7 (0.92-3.0)                                                                                                                                                                                                     |
| Control<br>ChAd<br>NVX<br>NVX half<br>iroup B<br>Control<br>BNT<br>VLA<br>VLA half                                           | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 47 (29-74) \\ 51 (31-82) \\ 55 (35-89) \\ 137 (88-213) \\ 94 (52-170) \\ 97 (64-147) \\ 100 (67-149) \\ \hline \\ 34 (20-59) \\ 50 (34-74) \\ 119 (83-169) \\ 113 (64-200) \\ 47 (30-74) \\ 57 (32-100) \\ 52 (31-86) \\ 59 (39-89) \\ \hline \end{array}$                                                                                                                                                      | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>28                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>→</li> <li>→</li></ul> | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2-2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8.2)<br>2.3 (1.3-4.1)<br>1.9 (1.0-3.6)<br>1.0 (0.58-1.8)<br>1.7 (0.92-3.0)<br>1.2 (0.71-2.2)                                                                                                                                                                                   |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA<br>VLA half                                            | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)<br>59 (39-89)<br>141 (100-200)                                                                                                                                                                                        | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                           | <ul> <li>►</li> <li>►</li></ul> | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2-2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8.2)<br>2.3 (1.3-4.1)<br>1.9 (1.0-3.6)<br>1.0 (0.58-1.8)<br>1.7 (0.92-3.0)<br>1.2 (0.71-2.2)<br>4.5 (2.5-8.1)                                                                                                                                                                  |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA<br>VLA half<br>Ad26                                    | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 47 (29-74) \\ 51 (31-82) \\ 55 (35-89) \\ 137 (88-213) \\ 94 (52-170) \\ 97 (64-147) \\ 100 (67-149) \\ \hline \\ 34 (20-59) \\ 50 (34-74) \\ 119 (83-169) \\ 113 (64-200) \\ 47 (30-74) \\ 57 (32-100) \\ 52 (31-86) \\ 59 (39-89) \\ \hline \end{array}$                                                                                                                                                      | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>28                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>►</li> <li>►</li></ul> | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2-2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8.2)<br>2.3 (1.3-4.1)<br>1.9 (1.0-3.6)<br>1.0 (0.58-1.8)<br>1.7 (0.92-3.0)<br>1.2 (0.71-2.2)                                                                                                                                                                                   |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA<br>NULA half<br>Ad26<br>roup C                         | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 47 (29-74) \\ 51 (31-82) \\ 55 (35-89) \\ 137 (88-213) \\ 94 (52-170) \\ 97 (64-147) \\ 100 (67-149) \\ \hline \\ 34 (20-59) \\ 50 (34-74) \\ 119 (83-169) \\ 113 (64-200) \\ 47 (30-74) \\ 57 (32-100) \\ 52 (31-86) \\ 59 (39-89) \\ 141 (100-200) \\ 82 (54-124) \\ \hline \end{array}$                                                                                                                      | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>28<br>25<br>28<br>25<br>28                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>≠</li> <li>→</li> <li>→</li></ul> | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2.2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8.2)<br>2.3 (1.3-4.1)<br>1.9 (1.0-3.6)<br>1.0 (0.58-1.8)<br>1.7 (0.92-3.0)<br>1.2 (0.71-2.2)<br>4.5 (2-5-8.1)<br>2.0 (1.1-3.5)                                                                                                                                                 |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA<br>NVLA half<br>Ad26<br>roup C                         | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)<br>59 (39-89)<br>141 (100-200)<br>82 (54-124)<br>43 (27-69)                                                                                                                                                           | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>25<br>28<br>25<br>28<br>25<br>28<br>23                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>■</li> <li>■</li></ul> | Ref<br>1-4 (0-74-2-6)<br>0-96 (0-59-1-6)<br>4-2 (2-2-7-7)<br>2-6 (1-5-4-4)<br>2-9 (1-5-5-3)<br>2-3 (1-4-3-7)<br>Ref<br>Ref<br>4-4 (2-3-8-2)<br>2-3 (1-3-4-1)<br>1-9 (1-0-3-6)<br>1-0 (0-58-1-8)<br>1-7 (0-92-3-0)<br>1-2 (0-71-2-2)<br>4-5 (2-5-8-1)<br>2-0 (1-1-3-5)<br>Ref                                                                                                                                          |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA<br>NULA half<br>Ad26<br>roup C<br>Control              | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)<br>59 (39-89)<br>141 (100-200)<br>82 (54-124)<br>43 (27-69)<br>37 (22-62)                                                                                                                                             | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>25<br>28<br>23<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29                                                                                                                                     | <ul> <li>₽-</li> <li>P-</li> <li>P-</li></ul>       | Ref<br>1.4 $(0.74-2.6)$<br>0.96 $(0.59-1.6)$<br>4.2 $(2.2-7.7)$<br>2.6 $(1.5-4.4)$<br>2.9 $(1.5-5.3)$<br>2.3 $(1.4-3.7)$<br>Ref<br>Ref<br>4.4 $(2.3-8.2)$<br>2.3 $(1.3-4.1)$<br>1.9 $(1.0-3.6)$<br>1.0 $(0.58-1.8)$<br>1.7 $(0.92-3.0)$<br>1.2 $(0.71-2.2)$<br>4.5 $(2.5-8.1)$<br>2.0 $(1.1-3.5)$<br>Ref<br>Ref<br>Ref<br>Ref                                                                                         |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA<br>NULA half<br>Ad26<br>roup C<br>Control              | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)<br>59 (39-89)<br>141 (100-200)<br>82 (54-124)<br>43 (27-69)<br>37 (22-62)<br>144 (97-212)                                                                                                                             | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>28<br>25<br>28<br>25<br>28<br>225<br>28<br>23<br>27<br>23                                                                                                                                                                                                                                                                                                                                    | <ul> <li>▼</li> <li>♥</li> <li>♥</li></ul> | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2.2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8-2)<br>2.3 (1.3-4.1)<br>1.9 (1.0-3.6)<br>1.0 (0.58-1.8)<br>1.7 (0.92-3.0)<br>1.2 (0.71-2.2)<br>4.5 (2.5-8.1)<br>2.0 (1.1-3.5)<br>Ref<br>Ref<br>3.7 (2.2-6.2)                                                                                                                  |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA<br>NUA half<br>Ad26<br>roup C<br>Control               | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)<br>59 (39-89)<br>141 (100-200)<br>82 (54-124)<br>43 (27-69)<br>37 (22-62)<br>144 (97-212)<br>130 (81-210)                                                                                                             | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>25<br>28<br>23<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29                                                                                                                                     | <ul> <li>►</li> <li>►</li></ul> | Ref<br>1.4 $(0.74-2.6)$<br>0.96 $(0.59-1.6)$<br>4.2 $(2.2-7.7)$<br>2.6 $(1.5-4.4)$<br>2.9 $(1.5-5.3)$<br>2.3 $(1.4-3.7)$<br>Ref<br>Ref<br>4.4 $(2.3-8.2)$<br>2.3 $(1.3-4.1)$<br>1.9 $(1.0-3.6)$<br>1.0 $(0.58-1.8)$<br>1.7 $(0.92-3.0)$<br>1.2 $(0.71-2.2)$<br>4.5 $(2.5-8.1)$<br>2.0 $(1.1-3.5)$<br>Ref<br>Ref<br>Ref<br>Ref                                                                                         |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA<br>Ad26<br>VLA half<br>Ad26<br>Control<br>BNT half     | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)<br>59 (39-89)<br>141 (100-200)<br>82 (54-124)<br>43 (27-69)<br>37 (22-62)<br>144 (97-212)                                                                                                                             | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>28<br>25<br>28<br>25<br>28<br>225<br>28<br>23<br>27<br>23                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2.2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2.3-8-2)<br>2.3 (1.3-4.1)<br>1.9 (1.0-3.6)<br>1.0 (0.58-1.8)<br>1.7 (0.92-3.0)<br>1.2 (0.71-2.2)<br>4.5 (2.5-8.1)<br>2.0 (1.1-3.5)<br>Ref<br>Ref<br>3.7 (2.2-6.2)                                                                                                                  |
| Control<br>ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>VLA half<br>Ad26                                   | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)<br>59 (39-89)<br>141 (100-200)<br>82 (54-124)<br>43 (27-69)<br>37 (22-62)<br>144 (97-212)<br>130 (81-210)                                                                                                             | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>25<br>28<br>25<br>28<br>25<br>28<br>23<br>27<br>23<br>27<br>23<br>30<br>21                                                                                                                                                                                                                                                                                                                   | <ul> <li>₽</li> <li>₽</li></ul> | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2-2-7.7)<br>2.6 (1-5-4.4)<br>2.9 (1-5-5.3)<br>2.3 (1-4-3.7)<br>Ref<br>Ref<br>4.4 (2-3-8.2)<br>2.3 (1-3-4.1)<br>1.9 (1-0-3.6)<br>1.0 (0-58-1.8)<br>1.7 (0-92-3.0)<br>1.2 (0.71-2.2)<br>4.5 (2-5-8.1)<br>2.0 (1-1-3.5)<br>Ref<br>Ref<br>3.7 (2-2-6.2)<br>3.0 (1.7-5.2)                                                                                                 |
| Control<br>ChAd<br>NVX<br>NVX half<br>Goutp B<br>Control<br>BNT<br>VLA half<br>Ad26<br>Gontrol<br>BNT half<br>m1273          | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)<br>59 (39-89)<br>141 (100-200)<br>82 (54-124)<br>43 (27-69)<br>37 (22-62)<br>144 (97-212)<br>130 (81-210)<br>228 (177-294)<br>101 (54-187)                                                                            | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>23<br>23<br>23<br>23<br>25<br>25<br>23<br>23<br>23<br>23<br>25<br>25<br>23<br>23<br>25<br>25<br>23<br>23<br>23<br>25<br>25<br>25<br>23<br>23<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref<br>1.4 $(0.74-2.6)$<br>0.96 $(0.59-1.6)$<br>4.2 $(2-2-7.7)$<br>2.6 $(1.5-4.4)$<br>2.9 $(1.5-5.3)$<br>2.3 $(1.4-3.7)$<br>Ref<br>Ref<br>4.4 $(2\cdot3-8\cdot2)$<br>2.3 $(1.3-4.1)$<br>1.9 $(1.0-3.6)$<br>1.0 $(0.58-1.8)$<br>1.7 $(0.92-3.0)$<br>1.2 $(0.71-2.2)$<br>4.5 $(2\cdot5-8.1)$<br>2.0 $(1.1-3.5)$<br>Ref<br>Ref<br>Ref<br>3.7 $(2\cdot2-6.2)$<br>3.0 $(1.7-5.2)$<br>6.1 $(3\cdot5-10)$<br>2.2 $(1.2-4.2)$ |
| Control<br>ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>Ad26<br>Group C<br>Control<br>BNT half             | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | $\begin{array}{c} 47 (29-74) \\ 51 (31-82) \\ 55 (35-89) \\ 137 (88-213) \\ 94 (52-170) \\ 97 (64-147) \\ 100 (67-149) \\ \hline \\ 34 (20-59) \\ 50 (34-74) \\ 119 (83-169) \\ 113 (64-200) \\ 47 (30-74) \\ 57 (32-100) \\ 52 (31-86) \\ 59 (39-89) \\ 141 (100-200) \\ 82 (54-124) \\ \hline \\ 43 (27-69) \\ 37 (22-62) \\ 144 (97-212) \\ 130 (81-210) \\ 228 (177-294) \\ 101 (54-187) \\ 53 (32-88) \\ \hline \end{array}$ | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>28<br>25<br>28<br>28<br>23<br>27<br>23<br>30<br>21<br>23<br>24                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref<br>1.4 $(0.74-2.6)$<br>0.96 $(0.59-1.6)$<br>4.2 $(2.2-7.7)$<br>2.6 $(1.5-4.4)$<br>2.9 $(1.5-5.3)$<br>2.3 $(1.4-3.7)$<br>Ref<br>Ref<br>4.4 $(2.3-8.2)$<br>2.3 $(1.3-4.1)$<br>1.9 $(1.0-3.6)$<br>1.0 $(0.58-1.8)$<br>1.7 $(0.92-3.0)$<br>1.2 $(0.71-2.2)$<br>4.5 $(2.5-8.1)$<br>2.0 $(1.1-3.5)$<br>Ref<br>Ref<br>3.7 $(2.2-6.2)$<br>3.0 $(1.7-5.2)$<br>6.1 $(3.5-10)$<br>2.2 $(1.2-4.2)$<br>1.7 $(1.0-2.9)$         |
| Control<br>ChAd<br>NVX<br>NVX half<br>roup B<br>Control<br>BNT<br>VLA half<br>Ad26<br>roup C<br>Control<br>BNT half<br>m1273 | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | 47 (29-74)<br>51 (31-82)<br>55 (35-89)<br>137 (88-213)<br>94 (52-170)<br>97 (64-147)<br>100 (67-149)<br>34 (20-59)<br>50 (34-74)<br>119 (83-169)<br>113 (64-200)<br>47 (30-74)<br>57 (32-100)<br>52 (31-86)<br>59 (39-89)<br>141 (100-200)<br>82 (54-124)<br>43 (27-69)<br>37 (22-62)<br>144 (97-212)<br>130 (81-210)<br>228 (177-294)<br>101 (54-187)                                                                            | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>25<br>28<br>23<br>23<br>23<br>23<br>25<br>25<br>23<br>23<br>23<br>23<br>25<br>25<br>23<br>23<br>25<br>25<br>23<br>23<br>23<br>25<br>25<br>25<br>23<br>23<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref<br>1.4 (0.74-2.6)<br>0.96 (0.59-1.6)<br>4.2 (2-2-7.7)<br>2.6 (1.5-4.4)<br>2.9 (1.5-5.3)<br>2.3 (1.4-3.7)<br>Ref<br>Ref<br>4.4 (2-3-8-2)<br>2.3 (1.3-4.1)<br>1.9 (1.0-3.6)<br>1.0 (0.58-1.8)<br>1.7 (0.92-3.0)<br>1.2 (0.71-2.2)<br>4.5 (2.5-8.1)<br>2.0 (1.1-3.5)<br>Ref<br>Ref<br>3.7 (2.2-6.2)<br>3.0 (1.7-5.2)<br>6.1 (3.5-10)<br>2.2 (1.2-4.2)<br>1.4 (0.78-2.6)                                              |
| Control<br>ChAd<br>VVX<br>VVX half<br>Control<br>BNT<br>/LA half<br>Ad26<br>Control<br>SNT half<br>m1273                     | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | $\begin{array}{c} 47 (29-74) \\ 51 (31-82) \\ 55 (35-89) \\ 137 (88-213) \\ 94 (52-170) \\ 97 (64-147) \\ 100 (67-149) \\ \hline \\ 34 (20-59) \\ 50 (34-74) \\ 119 (83-169) \\ 113 (64-200) \\ 47 (30-74) \\ 57 (32-100) \\ 52 (31-86) \\ 59 (39-89) \\ 141 (100-200) \\ 82 (54-124) \\ \hline \\ 43 (27-69) \\ 37 (22-62) \\ 144 (97-212) \\ 130 (81-210) \\ 228 (177-294) \\ 101 (54-187) \\ 53 (32-88) \\ \hline \end{array}$ | 24<br>22<br>25<br>23<br>23<br>23<br>25<br>21<br>28<br>23<br>27<br>22<br>25<br>28<br>25<br>28<br>28<br>23<br>27<br>23<br>30<br>21<br>23<br>24                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref<br>1.4 $(0.74-2.6)$<br>0.96 $(0.59-1.6)$<br>4.2 $(2-2-7.7)$<br>2.6 $(1.5-4.4)$<br>2.9 $(1.5-5.3)$<br>2.3 $(1.4-3.7)$<br>Ref<br>Ref<br>4.4 $(2.3-8.2)$<br>2.3 $(1.3-4.1)$<br>1.9 $(1.0-3.6)$<br>1.0 $(0.58-1.8)$<br>1.7 $(0.92-3.0)$<br>1.2 $(0.71-2.2)$<br>4.5 $(2.5-8.1)$<br>2.0 $(1.1-3.5)$<br>Ref<br>Ref<br>3.7 $(2.2-6.2)$<br>3.0 $(1.7-5.2)$<br>6.1 $(3.5-10)$<br>2.2 $(1.2-4.2)$<br>1.7 $(1.0-2.9)$         |

(Figure 3 continues on next page)

21 participants reported a PCR test result positive for SARS-CoV-2 with no hospitalisation (appendix 1 p 13). Description of the 24 serious adverse events including four suspected unexpected serious adverse reactions are listed in appendix 1 (pp 14–16).

Among participants primed with ChAd/ChAd, all COVID-19 vaccines given as the third dose induced significantly higher anti-spike IgG at 28 days post boost, compared with their corresponding controls (tables 5–7; figure 3). The GMRs between study vaccines and controls

|                                                                                                                     | Age<br>(years)                                                                                             | Geometric mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                                                                                                                                                              |                                                                                             | Geometric mean ratic<br>(95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                                                                                                                   |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                             | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Anti-spike l</b><br>Group A                                                                                      | gG, ELU/mL                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Control                                                                                                             | <70                                                                                                        | 3160 (2603-3835)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59                                                                                                                                                             |                                                                                             | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Control                                                                                                             | <70<br>≥70                                                                                                 | 1954 (1413-2702)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59                                                                                                                                                             |                                                                                             | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ChAd                                                                                                                |                                                                                                            | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                | _                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ChAd                                                                                                                | <70                                                                                                        | 12440 (10420-14852)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57                                                                                                                                                             |                                                                                             | 4.2 (3.4-5.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NIV/V                                                                                                               | ≥70                                                                                                        | 14961 (12065-18551)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                             |                                                                                             | 6.8 (5.1-9.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NVX                                                                                                                 | <70                                                                                                        | 12635 (10032-15915)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54                                                                                                                                                             | -#-                                                                                         | 4.5 (3.6–5.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NR OVI 16                                                                                                           | ≥70                                                                                                        | 9130 (6783-12289)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47                                                                                                                                                             |                                                                                             | 4.7 (3.6–6.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NVX half                                                                                                            | <70                                                                                                        | 9054 (7281-11260)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                             | <b>₽</b>                                                                                    | 2.7 (2.2–3.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                     | ≥70                                                                                                        | 7920 (6031–10401)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                                                                                                                                             | *                                                                                           | 3.4 (2.6–4.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Group B                                                                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Control                                                                                                             | <70                                                                                                        | 3843 (3095-4770)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                                                                                                                                                             |                                                                                             | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                     | ≥70                                                                                                        | 2571 (2029-3257)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43                                                                                                                                                             |                                                                                             | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BNT                                                                                                                 | <70                                                                                                        | 24781 (21353-28760)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51                                                                                                                                                             | -#                                                                                          | 6.8 (5.7–8.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                     | ≥70                                                                                                        | 30326 (25054-36709)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                             |                                                                                             | 10.2 (7.8–13.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VLA                                                                                                                 | <70                                                                                                        | 4996 (4189–5959)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                                                                                                                                                             | •                                                                                           | 1.3 (1.1–1.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                     | ≥70                                                                                                        | 3365 (2703-4189)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44                                                                                                                                                             |                                                                                             | 1.3 (1-1.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VLA half                                                                                                            | <70                                                                                                        | 3766 (3183-4457)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53                                                                                                                                                             |                                                                                             | 1.2 (0.98–1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                     | ≥70                                                                                                        | 3668 (2817-4775)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                             | P                                                                                           | 1.3 (1-1.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ad26                                                                                                                | <70                                                                                                        | 17312 (13678-21911)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43                                                                                                                                                             |                                                                                             | 5.0 (4.1–6.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                     | ≥70                                                                                                        | 16855 (13360-21264)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44                                                                                                                                                             |                                                                                             | 6.4 (4.9-8.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Group C                                                                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Control                                                                                                             | <70                                                                                                        | 3194 (2492-4094)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                                                                                                                             |                                                                                             | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                     | ≥70                                                                                                        | 2865 (2271-3615)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48                                                                                                                                                             |                                                                                             | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BNT half                                                                                                            | <70                                                                                                        | 25583 (20932-31268)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51                                                                                                                                                             | -#                                                                                          | 6.7 (5.5-8.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                     | ≥70                                                                                                        | 20310 (16564-24903)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41                                                                                                                                                             | -#                                                                                          | 6.4 (5.1–8.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| m1273                                                                                                               | <70                                                                                                        | 44547 (38424-51645)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47                                                                                                                                                             | -                                                                                           | 13.0 (10.6–16.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , 5                                                                                                                 | ≥70                                                                                                        | 25118 (17698-35650)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44                                                                                                                                                             | _                                                                                           | 10.4 (8.3–13.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CVn                                                                                                                 | <70                                                                                                        | 8224 (6983-9685)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49                                                                                                                                                             |                                                                                             | 2.4 (2.0–3.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CVII                                                                                                                | ≥70                                                                                                        | 6958 (5266-9193)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42                                                                                                                                                             |                                                                                             | 2.2 (1.8–2.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Group A                                                                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Control                                                                                                             | <70                                                                                                        | 38 (25-59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                                                                                             |                                                                                             | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Control                                                                                                             | <70<br>≥70                                                                                                 | 38 (25–59)<br>30 (16–57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29<br>24                                                                                                                                                       |                                                                                             | Ref<br>Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Control<br>ChAd                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                     | ≥70                                                                                                        | 30 (16-57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                                                                             | - <b>-</b>                                                                                  | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                     | ≥70<br><70                                                                                                 | 30 (16–57)<br>105 (67–164)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24<br>28                                                                                                                                                       | -a<br>-a                                                                                    | Ref<br>2·4 (1·3-4·3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ChAd                                                                                                                | ≥70<br><70<br>≥70                                                                                          | 30 (16–57)<br>105 (67–164)<br>84 (45–156)<br>69 (42–111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24<br>28<br>20                                                                                                                                                 | - <b>a</b><br>                                                                              | Ref<br>2·4 (1·3-4·3)<br>2·7 (1·3-5·6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ChAd                                                                                                                | ≥70<br><70<br>≥70<br><70<br>≥70                                                                            | 30 (16-57)<br>105 (67-164)<br>84 (45-156)<br>69 (42-111)<br>45 (22-92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>28<br>20<br>27<br>22                                                                                                                                     | -#<br>-#<br>#<br>#-                                                                         | Ref<br>2·4 (1·3-4·3)<br>2·7 (1·3-5·6)<br>2·0 (1·1-3·7)<br>1·3 (0·66-2·7)                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ChAd<br>NVX                                                                                                         | ≥70<br><70<br>≥70<br><70<br>≥70<br><70                                                                     | 30 (16-57)<br>105 (67-164)<br>84 (45-156)<br>69 (42-111)<br>45 (22-92)<br>46 (27-78)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24<br>28<br>20<br>27                                                                                                                                           | -=                                                                                          | Ref<br>2·4 (1·3-4·3)<br>2·7 (1·3-5·6)<br>2·0 (1·1-3·7)<br>1·3 (0·66-2·7)<br>1·5 (0·86-2·8)                                                                                                                                                                                                                                                                                                                                                                                                           |
| ChAd<br>NVX<br>NVX half                                                                                             | ≥70<br><70<br>≥70<br><70<br>≥70                                                                            | 30 (16-57)<br>105 (67-164)<br>84 (45-156)<br>69 (42-111)<br>45 (22-92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>28<br>20<br>27<br>22<br>27                                                                                                                               | -=                                                                                          | Ref<br>2·4 (1·3-4·3)<br>2·7 (1·3-5·6)<br>2·0 (1·1-3·7)<br>1·3 (0·66-2·7)                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ChAd<br>NVX<br>NVX half<br>Group B                                                                                  | ≥70<br><70<br>≥70<br><70<br>≥70<br><70<br>≥70                                                              | 30 (16-57)<br>105 (67-164)<br>84 (45-156)<br>69 (42-111)<br>45 (22-92)<br>46 (27-78)<br>25 (14-46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24<br>28<br>20<br>27<br>22<br>27<br>21                                                                                                                         | -B                                                                                          | Ref<br>2·4 (1:3-4·3)<br>2·7 (1:3-5·6)<br>2·0 (1:1-3·7)<br>1·3 (0·66-2·7)<br>1·5 (0.86-2·8)<br>1·3 (0·62-2·6)                                                                                                                                                                                                                                                                                                                                                                                         |
| ChAd<br>NVX<br>NVX half                                                                                             | ≥70<br><70<br>≥70<br>≥70<br>≥70<br><70<br>≥70                                                              | 30 (16-57)<br>105 (67-164)<br>84 (45-156)<br>69 (42-111)<br>45 (22-92)<br>46 (27-78)<br>25 (14-46)<br>39 (25-59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24                                                                                                                   | - <b>8</b><br>- <b>8</b><br><b>8</b> -<br><b>8</b> -<br><b>9</b> -                          | Ref<br>2·4 (1:3-4·3)<br>2·7 (1:3-5·6)<br>2·0 (1:1-3·7)<br>1·3 (0·66-2·7)<br>1·5 (0·86-2·8)<br>1·3 (0·62-2·6)<br>Ref                                                                                                                                                                                                                                                                                                                                                                                  |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control                                                                       | ≥70<br><70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70<br>≥70                                                | 30 (16-57)<br>105 (67-164)<br>84 (45-156)<br>69 (42-111)<br>45 (22-92)<br>46 (27-78)<br>25 (14-46)<br>39 (25-59)<br>23 (14-38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26                                                                                                             | -=<br>-=<br>=-<br>=-<br>=-                                                                  | Ref<br>2·4 (13-4·3)<br>2·7 (1-3-5·6)<br>2·0 (1-1-3·7)<br>1·3 (0·66-2·7)<br>1·5 (0·86-2·8)<br>1·3 (0·62-2·6)<br>Ref<br>Ref                                                                                                                                                                                                                                                                                                                                                                            |
| ChAd<br>NVX<br>NVX half<br>Group B                                                                                  | ≥70<br><70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70<br>≥70<br><70                                         | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \hline \\ 39  (25{-}59) \\ 23  (14{-}38) \\ 92  (67{-}127) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24                                                                                                       | -=                                                                                          | Ref<br>2·4 (1·3-4·3)<br>2·7 (1·3-5·6)<br>2·0 (1·1-3·7)<br>1·3 (0·66-2·7)<br>1·5 (0·86-2·8)<br>1·3 (0·62-2·6)<br>Ref<br>Ref<br>Ref<br>2·9 (1·6-5·3)                                                                                                                                                                                                                                                                                                                                                   |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT                                                                | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70                                  | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \hline \\ 39  (25{-}59) \\ 23  (14{-}38) \\ 92  (67{-}127) \\ 76  (53{-}111) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25                                                                                                 | -B                                                                                          | Ref<br>$2 \cdot 4 (1 \cdot 3 - 4 \cdot 3)$<br>$2 \cdot 7 (1 \cdot 3 - 5 \cdot 6)$<br>$2 \cdot 0 (1 \cdot 1 - 3 \cdot 7)$<br>$1 \cdot 3 (0 \cdot 66 - 2 \cdot 7)$<br>$1 \cdot 5 (0 \cdot 86 - 2 \cdot 8)$<br>$1 \cdot 3 (0 \cdot 62 - 2 \cdot 6)$<br>Ref<br>Ref<br>$2 \cdot 9 (1 \cdot 6 - 5 \cdot 3)$<br>$2 \cdot 6 (1 \cdot 5 - 4 \cdot 6)$                                                                                                                                                         |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control                                                                       | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70<br>≥70<br><70                    | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \hline \\ 39  (25{-}59) \\ 23  (14{-}38) \\ 92  (67{-}127) \\ 76  (53{-}111) \\ 47  (31{-}72) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>26<br>24<br>25<br>25                                                                               | - <b>a</b>                                                                                  | Ref<br>$2 \cdot 4 (13 - 4 \cdot 3)$<br>$2 \cdot 7 (13 - 5 \cdot 6)$<br>$2 \cdot 0 (11 - 3 \cdot 7)$<br>$1 \cdot 3 (0 \cdot 66 - 2 \cdot 7)$<br>$1 \cdot 5 (0 \cdot 86 - 2 \cdot 8)$<br>$1 \cdot 3 (0 \cdot 62 - 2 \cdot 6)$<br>Ref<br>Ref<br>$2 \cdot 9 (1 \cdot 6 - 5 \cdot 3)$<br>$2 \cdot 6 (1 \cdot 5 - 4 \cdot 6)$<br>$1 \cdot 1 (0 \cdot 63 - 2)$                                                                                                                                              |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA                                                         | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \hline \\ 39  (25{-}59) \\ 23  (14{-}38) \\ 92  (67{-}127) \\ 76  (53{-}111) \\ 47  (31{-}72) \\ 24  (16{-}36) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>26<br>24<br>25<br>25<br>26                                                                         | -=<br>-=<br>=                                                                               | Ref<br>2.4 $(13-34-3)$<br>2.7 $(1-3-5-6)$<br>2.0 $(1-1-3-7)$<br>1.3 $(0-66-2-7)$<br>1.5 $(0.86-2-8)$<br>1.3 $(0-62-2-6)$<br>Ref<br>Ref<br>2.9 $(1-6-5-3)$<br>2.6 $(15-4-6)$<br>1.1 $(0-63-2)$<br>1.0 $(0-58-1-7)$                                                                                                                                                                                                                                                                                    |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT                                                                | >70<br><70<br>>70<br>>70<br>>70<br>>70<br>>70<br>>70<br>>70<br>>70<br>>70<br>>                             | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \hline \\ 39  (25{-}59) \\ 23  (14{-}38) \\ 92  (67{-}127) \\ 76  (53{-}111) \\ 47  (31{-}72) \\ 24  (16{-}36) \\ 37  (22{-}64) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                  | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25<br>25<br>25<br>26<br>25                                                                         | -=<br>-=<br>=-<br>=-<br>=-<br>=-<br>=-<br>=-<br>=-<br>=-                                    | Ref<br>2.4 (1.3-4.3)<br>2.7 (1.3-5.6)<br>2.0 (1.1-3.7)<br>1.3 (0.66-2.7)<br>1.5 (0.86-2.8)<br>1.3 (0.62-2.6)<br>Ref<br>Ref<br>2.9 (1.6-5.3)<br>2.6 (1.5-4.6)<br>1.1 (0.63-2)<br>1.0 (0.58-1.7)<br>0.89 (0.5-1.6)                                                                                                                                                                                                                                                                                     |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>VLA half                                             | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70<br>≥70<br><70<br>≥70<br>≥70      | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25<br>25<br>25<br>26<br>25<br>26                                                                   | -B<br><br><br><br><br><br><br><br><br><br><br><br>                                          | Ref<br>2.4 (1.3-4.3)<br>2.7 (1.3-5.6)<br>2.0 (1.1-3.7)<br>1.3 (0.66-2.7)<br>1.5 (0.86-2.8)<br>1.3 (0.62-2.6)<br>Ref<br>Ref<br>2.9 (1.6-5.3)<br>2.6 (1.5-4.6)<br>1.1 (0.63-2)<br>1.0 (0.58-1.7)<br>0.89 (0.5-1.6)<br>1.4 (0.79-2.4)                                                                                                                                                                                                                                                                   |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA                                                         | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥                             | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>26<br>25<br>25<br>26<br>25<br>26<br>25<br>26<br>19                                                 | -=<br>-=<br>=-<br>=-<br>=-<br>=-<br>=-<br>=-<br>=-<br>=-<br>=-<br>=                         | Ref<br>2.4 $(1.3-4.3)$<br>2.7 $(1.3-5.6)$<br>2.0 $(1.1-3.7)$<br>1.3 $(0.66-2.7)$<br>1.5 $(0.86-2.8)$<br>1.3 $(0.62-2.6)$<br>Ref<br>Ref<br>2.9 $(1.6-5.3)$<br>2.6 $(1.5-4.6)$<br>1.1 $(0.63-2)$<br>1.0 $(0.58-1.7)$<br>0.89 $(0.5-1.6)$<br>1.4 $(0.79-2.4)$<br>2.8 $(1.5-5.3)$                                                                                                                                                                                                                        |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>VLA half<br>Ad26                                     | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br><70<br>≥70<br><70<br>≥70<br><70<br>≥70<br>≥70      | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25<br>25<br>25<br>26<br>25<br>26                                                                   | -#<br>-#<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-                        | Ref<br>$2 \cdot 4 (1 \cdot 3 - 4 \cdot 3)$<br>$2 \cdot 7 (1 \cdot 3 - 5 \cdot 6)$<br>$2 \cdot 0 (1 \cdot 1 - 3 \cdot 7)$<br>$1 \cdot 3 (0 \cdot 66 - 2 \cdot 7)$<br>$1 \cdot 5 (0 \cdot 86 - 2 \cdot 8)$<br>$1 \cdot 3 (0 \cdot 62 - 2 \cdot 6)$<br>Ref<br>Ref<br>$2 \cdot 9 (1 \cdot 6 - 5 \cdot 3)$<br>$2 \cdot 6 (1 \cdot 5 - 4 \cdot 6)$<br>$1 \cdot 1 (0 \cdot 63 - 2)$<br>$1 \cdot 0 (0 \cdot 58 - 1 \cdot 7)$<br>$0 \cdot 89 (0 \cdot 5 - 1 \cdot 6)$<br>$1 \cdot 4 (0 \cdot 79 - 2 \cdot 4)$ |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>VLA half<br>Ad26<br>Group C                          | ≥70<br><70<br>≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥ | $\begin{array}{c} 30 \left(16{-}57\right) \\ 105 \left(67{-}164\right) \\ 84 \left(45{-}156\right) \\ 69 \left(42{-}111\right) \\ 45 \left(22{-}92\right) \\ 46 \left(27{-}78\right) \\ 25 \left(14{-}46\right) \\ \hline \end{array} \\ \begin{array}{c} 39 \left(25{-}59\right) \\ 23 \left(14{-}38\right) \\ 92 \left(67{-}127\right) \\ 76 \left(53{-}111\right) \\ 47 \left(31{-}72\right) \\ 24 \left(16{-}36\right) \\ 37 \left(22{-}64\right) \\ 39 \left(23{-}66\right) \\ 114 \left(55{-}236\right) \\ 109 \left(64{-}187\right) \\ \end{array}$                                                                                                                                                    | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>26<br>24<br>25<br>26<br>25<br>26<br>19<br>24                                                       |                                                                                             | Ref<br>2.4 $(13-43)$<br>2.7 $(13-5-6)$<br>2.0 $(11-3-7)$<br>1.3 $(0-66-2-7)$<br>1.5 $(0.86-2-8)$<br>1.3 $(0-62-2-6)$<br>Ref<br>Ref<br>2.9 $(1-6-53)$<br>2.6 $(15-4-6)$<br>1.1 $(0-63-2)$<br>1.0 $(0-58-1-7)$<br>0.89 $(0-5-1-6)$<br>1.4 $(0.79-2-4)$<br>2.8 $(15-5-3)$<br>3.1 $(1-8-5-5)$                                                                                                                                                                                                            |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>VLA half<br>Ad26                                     | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25<br>26<br>25<br>26<br>25<br>26<br>19<br>24<br>23                                                 | -B<br><br><br><br><br><br><br><br><br><br><br><br>                                          | Ref<br>2.4 (13-4-3)<br>2.7 (13-5-6)<br>2.0 (11-3-7)<br>1.3 (0.66-2-7)<br>1.5 (0.86-2-8)<br>1.3 (0.62-2-6)<br>Ref<br>Ref<br>2.9 (1-6-5-3)<br>2.6 (1-5-4.6)<br>1.1 (0.63-2)<br>1.0 (0-58-1.7)<br>0.89 (0.5-1.6)<br>1.4 (0.79-2-4)<br>2.8 (1-5-53)<br>3.1 (1.8-5-5)<br>Ref                                                                                                                                                                                                                              |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>VLA half<br>Ad26<br>Group C<br>Control               | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥                                           | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \end{array}$ $\begin{array}{c} 39  (25{-}59) \\ 23  (14{-}38) \\ 92  (67{-}127) \\ 76  (53{-}111) \\ 47  (31{-}72) \\ 24  (16{-}36) \\ 37  (22{-}64) \\ 39  (23{-}66) \\ 114  (55{-}236) \\ 109  (64{-}187) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                      | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25<br>25<br>26<br>25<br>26<br>19<br>24<br>23<br>24                                                 | - #<br>- #<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-<br>#-          | Ref<br>2.4 (13-4-3)<br>2.7 (13-5-6)<br>2.0 (11-3-7)<br>1.3 (0-66-2-7)<br>1.5 (0-86-2-8)<br>1.3 (0-62-2-6)<br>Ref<br>Ref<br>2.9 (16-5-3)<br>2.6 (1-5-4-6)<br>1.1 (0-63-2)<br>1.0 (0-58-1.7)<br>0.89 (0-5-1.6)<br>1.4 (0.79-2-4)<br>2.8 (1-5-5-3)<br>3.1 (1-8-5-5)<br>Ref<br>Ref                                                                                                                                                                                                                       |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>VLA half<br>Ad26<br>Group C                          | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25<br>25<br>26<br>25<br>26<br>25<br>26<br>25<br>26<br>19<br>24<br>23<br>24<br>23<br>24<br>26       | -B<br><br><br>                                                                              | Ref<br>2.4 (13-3-6)<br>2.7 (13-5-6)<br>2.0 (11-3-7)<br>1.3 (0.66-2.7)<br>1.5 (0.86-2.8)<br>1.3 (0.62-2.6)<br>Ref<br>Ref<br>2.9 (1.6-5.3)<br>2.6 (15-4-6)<br>1.1 (0.63-2)<br>1.0 (0.58-1.7)<br>0.89 (0.5-1.6)<br>1.4 (0.79-2.4)<br>2.8 (15-5-3)<br>3.1 (1.8-5-5)<br>Ref<br>Ref<br>3.4 (2-5-9)                                                                                                                                                                                                         |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>Ad26<br>Group C<br>Control<br>BNT half               | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 30 \left(16{-}57\right) \\ 105 \left(67{-}164\right) \\ 84 \left(45{-}156\right) \\ 69 \left(42{-}111\right) \\ 45 \left(22{-}92\right) \\ 46 \left(27{-}78\right) \\ 25 \left(14{-}46\right) \\ \hline \end{array} \\ \begin{array}{c} 39 \left(25{-}59\right) \\ 23 \left(14{-}38\right) \\ 92 \left(67{-}127\right) \\ 76 \left(53{-}111\right) \\ 47 \left(31{-}72\right) \\ 24 \left(16{-}36\right) \\ 37 \left(22{-}64\right) \\ 39 \left(23{-}66\right) \\ 114 \left(55{-}236\right) \\ 109 \left(64{-}187\right) \\ \hline \end{array} \\ \begin{array}{c} 25 \left(13{-}47\right) \\ 19 \left(12{-}31\right) \\ 101 \left(70{-}146\right) \\ 54 \left(28{-}105\right) \end{array}$ | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25<br>26<br>25<br>26<br>25<br>26<br>25<br>26<br>19<br>24<br>23<br>24<br>26<br>18                   |                                                                                             | Ref<br>2.4 $(13-43)$<br>2.7 $(13-5-6)$<br>2.0 $(11-3-7)$<br>1.3 $(0-66-2-7)$<br>1.5 $(0.86-2-8)$<br>1.3 $(0-62-2-6)$<br>Ref<br>Ref<br>2.9 $(1-6-5-3)$<br>2.6 $(15-4-6)$<br>1.1 $(0-63-2)$<br>1.0 $(0-58-1-7)$<br>0.89 $(0-5-1-6)$<br>1.4 $(0-79-2.4)$<br>2.8 $(15-5-3)$<br>3.1 $(1-8-5-5)$<br>Ref<br>Ref<br>3.4 $(2-5-9)$<br>2.9 $(1-4-5-8)$                                                                                                                                                         |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>VLA half<br>Ad26<br>Group C<br>Control               | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>26<br>25<br>26<br>25<br>26<br>25<br>26<br>19<br>24<br>23<br>24<br>23<br>24<br>23<br>24<br>26<br>18<br>22 | -B<br>                                                                                      | Ref<br>2.4 $(13-4-3)$<br>2.7 $(13-5-6)$<br>2.0 $(11-3-7)$<br>1.3 $(0-66-2-7)$<br>1.5 $(0.86-2-8)$<br>1.3 $(0-62-2-6)$<br>Ref<br>Ref<br>2.9 $(1-6-5-3)$<br>2.6 $(15-4-6)$<br>1.1 $(0-63-2)$<br>1.0 $(0-58-1-7)$<br>0.89 $(0-5-1-6)$<br>1.4 $(0-79-2-4)$<br>2.8 $(1-5-5)$<br>Ref<br>Ref<br>Ref<br>3.4 $(2-5-9)$<br>2.9 $(1-4-5-8)$<br>5.1 $(2-9-9)$                                                                                                                                                    |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA half<br>Ad26<br>Group C<br>Control<br>BNT half<br>m1273 | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25<br>26<br>25<br>26<br>25<br>26<br>25<br>26<br>19<br>24<br>23<br>24<br>26<br>18                   |                                                                                             | Ref<br>2.4 (13-43)<br>2.7 (13-5-6)<br>2.0 (11-3-7)<br>1.3 (0.66-2.7)<br>1.5 (0.86-2.8)<br>1.3 (0.62-2.6)<br>Ref<br>Ref<br>2.9 (16-5-3)<br>2.6 (15-4-6)<br>1.1 (0.63-2)<br>1.0 (0.58-1.7)<br>0.89 (0.5-1.6)<br>1.4 (0.79-2.4)<br>2.8 (15-5-3)<br>3.1 (18-5-5)<br>Ref<br>Ref<br>3.4 (2-5-9)<br>2.9 (14-5-8)<br>5.1 (29-9)<br>4.2 (22-8.1)                                                                                                                                                              |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA<br>Ad26<br>Group C<br>Control<br>BNT half               | ≥70<br><70<br>≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥               | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>26<br>25<br>26<br>25<br>26<br>25<br>26<br>19<br>24<br>23<br>24<br>23<br>24<br>23<br>24<br>26<br>18<br>22 | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Ref<br>2.4 $(13-4-3)$<br>2.7 $(13-5-6)$<br>2.0 $(11-3-7)$<br>1.3 $(0-66-2-7)$<br>1.5 $(0.86-2-8)$<br>1.3 $(0-62-2-6)$<br>Ref<br>Ref<br>2.9 $(1-6-5-3)$<br>2.6 $(15-4-6)$<br>1.1 $(0-63-2)$<br>1.0 $(0-58-1-7)$<br>0.89 $(0-5-1-6)$<br>1.4 $(0-79-2-4)$<br>2.8 $(1-5-5)$<br>Ref<br>Ref<br>Ref<br>3.4 $(2-5-9)$<br>2.9 $(1-4-5-8)$<br>5.1 $(2-9-9)$                                                                                                                                                    |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA half<br>Ad26<br>Group C<br>Control<br>BNT half<br>m1273 | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥                                           | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24<br>28<br>20<br>27<br>21<br>24<br>26<br>24<br>25<br>25<br>26<br>25<br>26<br>19<br>24<br>23<br>24<br>23<br>24<br>26<br>18<br>22<br>22                         |                                                                                             | Ref<br>2.4 (13-43)<br>2.7 (13-5-6)<br>2.0 (11-3-7)<br>1.3 (0.66-2.7)<br>1.5 (0.86-2.8)<br>1.3 (0.62-2.6)<br>Ref<br>Ref<br>2.9 (16-5-3)<br>2.6 (15-4-6)<br>1.1 (0.63-2)<br>1.0 (0.58-1.7)<br>0.89 (0.5-1.6)<br>1.4 (0.79-2.4)<br>2.8 (15-5-3)<br>3.1 (18-5-5)<br>Ref<br>Ref<br>3.4 (2-5-9)<br>2.9 (14-5-8)<br>5.1 (29-9)<br>4.2 (22-8.1)                                                                                                                                                              |
| ChAd<br>NVX<br>NVX half<br>Group B<br>Control<br>BNT<br>VLA half<br>Ad26<br>Group C<br>Control<br>BNT half<br>m1273 | ≥70<br><70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥70<br>≥                                           | $\begin{array}{c} 30  (16{-}57) \\ 105  (67{-}164) \\ 84  (45{-}156) \\ 69  (42{-}111) \\ 45  (22{-}92) \\ 46  (27{-}78) \\ 25  (14{-}46) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24<br>28<br>20<br>27<br>22<br>27<br>21<br>24<br>26<br>24<br>25<br>25<br>26<br>25<br>26<br>19<br>24<br>23<br>24<br>26<br>18<br>22<br>22<br>22<br>22             |                                                                                             | Ref<br>2.4 (13-43)<br>2.7 (13-5-6)<br>2.0 (11-3-7)<br>1.3 (0.66-2.7)<br>1.5 (0.86-2.8)<br>1.3 (0.62-2.6)<br>Ref<br>Ref<br>2.9 (1-6-5.3)<br>2.6 (15-4-6)<br>1.1 (0.63-2)<br>1.0 (0.58-1.7)<br>0.89 (0.5-1.6)<br>1.4 (0.79-2.4)<br>2.8 (15-5-3)<br>3.1 (18-5-5)<br>Ref<br>Ref<br>3.4 (2-5-9)<br>2.9 (1.4-5.8)<br>5.1 (2-9-9)<br>4.2 (2-2-8.1)<br>2.4 (1.3-4.1)                                                                                                                                         |

Figure 3: Subgroup immunogenicity analyses by age for anti-spike IgG and cellular response at 28 days post third dose between study vaccines and controls for the ChAd/ChAd-primed population (A) and BNT/BNT-primed population (B)

ELU=ELISA laboratory units. Control=quadrivalent meningococcal conjugate vaccine. ChAd=ChAdOx1 nCoV-19 vaccine, Oxford-AstraZeneca. NVX=NVX-CoV2373 vaccine, Novavax. NVX half=half dose of NVX-CoV2373 vaccine. BNT=BNT162b2 vaccine, Pfizer-BioNTech. VLA=VLA2001 vaccine, Valneva. VLA half=half dose of VLA2001 vaccine. Ad26=Ad26.COV2.S vaccine, Janssen. BNT half=half dose of BNT162b2 vaccine. m1273=mRNA1273 vaccine, Moderna. CVn=CVnCoV vaccine, Curevac.

|          | Prime with ChAd/Ch     | hAd                    |                                     |                     | Prime with BNT/BN | т                     |                    |                     |
|----------|------------------------|------------------------|-------------------------------------|---------------------|-------------------|-----------------------|--------------------|---------------------|
|          | Control (n=18)         | ChAd (n=16)            | NVX (n=19)                          | NVX half (n=21)     | Control (n=26)    | ChAd (n=24)           | NVX (n=24)         | NVX half (n=21)     |
| SARS-Co  | oV-2 anti-spike IgG, E | LU/mL                  |                                     |                     |                   |                       |                    |                     |
| Day 0    | 1237                   | 786                    | 1053                                | 1073                | 3482              | 3196                  | 3512               | 4469                |
|          | (835–1833; n=18)       | (593-1041; n=16)       | (610–1818; n=19)                    | (702–1641; n=21)    | (2482–4886; n=26) | (2142-4769; n=24)     | (2454–5026; n=24)  | (2836-7043; n=21)   |
| Day 7    | 1177                   | 1242                   | 2935                                | 3543                | 3124              | 8624                  | 5080               | 4881                |
|          | (750-1849; n=14)       | (942–1637; n=15)       | (1932-4457; n=18)                   | (2521–4979; n=20)   | (2216-4404; n=25) | (6664-11 160; n=24)   | (3585–7199; n=23)  | (3207-7428; n=20)   |
| Day 28   | 841                    | 1321                   | 4791                                | 4959                | 2415              | 13708                 | 8754               | 10 171              |
|          | (538-1313; n=16)       | (995–1752; n=15)       | (3390-6769; n=18)                   | (3413-7206; n=21)   | (1751–3330; n=26) | (10 368–18 125; n=24) | (6262–12236; n=24) | (6892–15 010; n=21) |
| Cellular | response (wild-type)   | , spot forming cells p | er 10 <sup>6</sup> peripheral blood | mononuclear cells   |                   |                       |                    |                     |
| Day 0    | 52·8                   | 61·7                   | 25·3                                | 37·1                | 37·9              | 57·9                  | 56·9               | 25·8                |
|          | (34·4-81·0; n=18)      | (37·2–102·4; n=16)     | (13·9-46·0; n=19)                   | (24·2-56·8; n=20)   | (23·8–60·5; n=25) | (32·1–104·3; n=23)    | (35·2–91·9; n=23)  | (14·7-45·1; n=20)   |
| Day 14   | 48·7                   | 91·1                   | 239·6                               | 133·0               | 33·7              | 134·9                 | 85·8               | 69·5                |
|          | (24·1–98·3; n=14)      | (48·7–170·6; n=13)     | (156·0-368·0; n=18)                 | (76·8–230·4; n=20)  | (20·2–56·1; n=25) | (75·9–239·9; n=24)    | (52·4–140·7; n=23) | (40·9–118·1; n=20)  |
| Day 28   | 56·1                   | 72·4                   | 104·5                               | 171·5               | 33·2              | 116·4                 | 75·0               | 39·8                |
|          | (30·6–103·1; n=16)     | (43·8–119·5; n=15)     | (59·2–184·3; n=17)                  | (126·7-232·0; n=19) | (20·8–53·0; n=25) | (67·8–199·7; n=23)    | (40·6–138·4; n=23) | (19·3-82·3; n=20)   |

Table 8: Kinetics of immune responses post third dose by study vaccine and priming vaccine schedule among the modified intention-to-treat population of immunology cohort, group A

ranged from 1.8 (99% CI 1.5-2.3) in the half VLA group to 32.3 (24.8–42.0) in the m1273 group. GMRs for pseudotype virus neutralising antibodies against wild-type were consistent with those of anti-spike IgG. All the study vaccines except ChAd, VLA, and half VLA, given as the third dose, significantly induced cellular responses by T-cell ELISpot in ChAd/ChAd-primed participants. The GMRs compared with control groups ranged from 1.1 (95% CI 0.7-1.6) in the ChAd group to 3.6 (2.4–5.5) in the m1273 group.

In participants who received BNT/BNT as the initial schedule, significant GMRs were also observed in all study vaccine groups compared with controls for antispike IgG at 28 days post boost, ranging from 1.3 (99% CI 1.0–1.5) in the half VLA group to 11.5 (9.4–14.1) in the m1273 group (tables 5-7; figure 3). However, the upper limit of the 99% CI for VLA and half VLA did not reach the pre-established minimum clinically important difference of 1.75. Similarly, GMRs for pseudotype virus neutralising antibodies and anti-spike IgG antibodies were also consistent in the BNT/BNT participants. For the cellular responses, we observed a significant GMR for ChAd (2.6, 95% CI 1.6-4.0) following BNT/BNT, which was not seen for ChAd following ChAd/ChAd (1.1, 0.7-1.6). The T-cell-boosting effects of NVX and half NVX were lower in people who had received BNT/BNT compared with those who previously received ChAd/ChAd. The geometric mean of T-cell responses in the half NVX group was not significantly higher than control (1.4, 95% CI 0.89-2.2). All the other vaccines showed higher cellular responses compared with controls among participants who had previously received BNT/BNT.

The kinetics of binding antibodies are presented in tables 8–10 and appendix 1 (p 33), and the fold-rise of immunogencity between days 0 and 28 is presented in

appendix 1 (pp 17-20). We observed a higher level of baseline anti-spike IgG concentrations in participants who had received BNT/BNT compared with participants who had received ChAd/ChAd. The GMCs at baseline were 3921 (95% CI 3721-4132; n=1266) in the participants primed with BNT/BNT and 1166 (1105-1230; n=1279) in the participants primed with ChAd/ChAd. An increase in anti-spike IgG concentrations at day 7 compared with baseline was observed in all study vaccine groups, except VLA and half VLA. BNT, half BNT, and m1273 concentrations did not rise further from day 7 to day 28 irrespective of the initial vaccines received (tables 8-10; appendix 1 p 33). Excepting people who received ChAd after ChAd/ChAd, we observed a further increase from day 7 to day 28 in people who received ChAd, NVX, half NVX, Ad26, and CVn following ChAd/ChAd and BNT/ BNT. All vaccines that boosted cellular responses showed a peak at day 14 (tables 8–10; appendix 1 p 33).

Pseudoneutralising antibodies (NT<sub>50</sub>) were reduced for delta variant, relative to wild-type, across all vaccines after ChAd/ChAd and BNT/BNT (table 5–7; appendix 1 pp 17–20). Although there was minor variation in the degree of drop in the GMT, no vaccine showed better cross-protective immunity than others (ie, similar GMRs were observed for delta and wild-type for all study vaccines, when comparing with control groups). T-cell responses against delta and beta were similar to wild-type (table 5–7; appendix 1 p 17).

The median intervals between second and third doses in the group younger than 70 years and the group aged 70 years and older were similar in both the ChAd/ChAd (<70 years 78 days  $vs \ge$ 70 years 77 days) and BNT/BNT (<70 years 106 days  $vs \ge$ 70 years 97 days). Higher antispike IgG pre-third dose was observed in the people younger than 70 years with 1262 (95% CI 1171–1359; n=593) versus 1089 (1010–1175; n=686) in the group aged

|                      | Prime with ChAd/ChAd                               | (ChAd                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                     |                                      | Prime with BNT/BNT                                | Ц                                                                          |                           |                                                          |                                    |
|----------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|---------------------------|----------------------------------------------------------|------------------------------------|
|                      | Control (n=23)                                     | BNT (n=23)                                                                                                                                                                                                                                                                                                                                        | VLA (n=23)                                       | VLA half (n=27)                                     | Ad26 (n=24)                          | Control (n=23)                                    | BNT (n=23)                                                                 | VLA (n=20)                | VLA half (n=24)                                          | Ad26 (n=19)                        |
| SARS-                | SARS-CoV-2 anti-spike lgG, ELU/mL                  | t, ELU/mL                                                                                                                                                                                                                                                                                                                                         |                                                  |                                                     |                                      |                                                   |                                                                            |                           |                                                          |                                    |
| Day 0                | Day 0 1276<br>(945-1723; n=23)                     | 1276 1443<br>(945-1723; n=23) (1051-1982; n=23)                                                                                                                                                                                                                                                                                                   | 1211<br>(744–1971; n=23)                         | 1334<br>(899-1981; n=27)                            | 1555<br>(1037-2331; n=24)            | 4483 5422<br>(3153-6374; n=23) (3781-7776; n=23)  | 5422<br>(3781-7776; n=23)                                                  | 3352<br>(1814-6194; n=20) | 3460<br>(2322-5156; n=24)                                | 4181<br>(3037–5756; n=19)          |
| Day 7                |                                                    | 1080 15524 1299<br>(808-1443:n=23) (10938-22033;n=23) (829-2036;n=23)                                                                                                                                                                                                                                                                             | 1299<br>(829–2036; n=23)                         | 1292<br>(912-1830; n=27)                            | 2735<br>(2023-3697; n=24)            | 3852<br>(2797–5303; n=23)                         | 3852 27551 3829<br>(2797-5303; n=23) (21016-36118; n=23) (2620-5595; n=20) | 3829<br>(2620-5595; n=20) | 3415 7726<br>(2506-4653; n=24) (5592-10 675;<br>n=19)    | 7726<br>(5592-10 675;<br>n=19)     |
| Day 28               |                                                    | 867 21824 1599<br>(634-1186; n=23 (16 938-28 119; n=23) (988-2589;                                                                                                                                                                                                                                                                                | 1599<br>(988-2589; n=23)                         | 1537<br>(1054-2243; n=27)                           | 5673<br>(4078-7892; n=24)            | 3209<br>(2338-4404; n=23)                         | 26171 4428<br>(21245-32239; n=23) (3264-6008; n=20)                        | 4428<br>(3264-6008; n=20) | 3500 18 631<br>(2599-4714; n=24) (11767-29 499;<br>n=19) | 18 631<br>(11 767-29 499;<br>n=19) |
| Cellula              | ir response (wild-typ                              | Cellular response (wild-type), spot forming cells per 10 <sup>6</sup> periphe                                                                                                                                                                                                                                                                     | er 106 peripheral bloo                           | ral blood mononuclear cells                         |                                      |                                                   |                                                                            |                           |                                                          |                                    |
| Day 0                |                                                    | 56·6 44·2<br>(33·4-95·9; n=23) (25·3-77·4; n=21)                                                                                                                                                                                                                                                                                                  | 31.7<br>(17.3-58.2; n=23)                        | 35.9<br>(22·4-57·4; n=27)                           | 36·7<br>(21·8–61·9; n=24)            | 36·6<br>(22·9–58·6; n=22)                         | 32.9<br>(19·5-55·3; n=23)                                                  | 21.6<br>(11.1-42.0; n=19) | 31.5<br>(18·3-54·3; n=24)                                | 42.1<br>(22·4-79·0; n=18)          |
| Day 14               | t 73.6<br>(44.1–123.0;<br>n=22)                    | 131.0<br>(81·7–210·1; n=23)                                                                                                                                                                                                                                                                                                                       | 72:2<br>(45·9-113·7; n=23)                       | 49-8<br>(31-1-79-7; n=25)                           | 123.4<br>(70.2-217.0; n=22)          | 38.2<br>(25.8–56.7; n=22)                         | 94·6<br>(59·6–150·2; n=22)                                                 | 24·3<br>(13·8-42·8; n=19) | 34.9<br>(21·0–58·0; n=24)                                | 114·1<br>(66·7–195·4; n=19)        |
| Day 2{               | Day 28 50.0<br>(30:3-82:5; n=23)                   | 50∙0 129∙4<br>(30·3-82·5; n=23) (76·4-219·2; n=23)                                                                                                                                                                                                                                                                                                | 54·2<br>(32·3-91·2; n=22)                        | 64·4<br>(44·6-93·0; n=27)                           | 102.7<br>(64:3-164.2; n=24)          | 35.7 88.6<br>(19.2-66.2; n=21) (65.7-119.4; n=22) | 88.6<br>(65.7–119.4; n=22)                                                 | 34·5<br>(23·3-51·0; n=20) | 39.1<br>(22·5-68·1; n=24)                                | 153.2<br>(72·3-324·6; n=19)        |
| Data are<br>Valneva. | : geometric mean (95%<br>. VLA half=half dose of \ | Data are geometric mean (95% Cl; number of samples available). ChAd=ChAdOX1 nCoV-19 vaccine, Oxford-AstraZeneca. BNT=BNT162b2 vaccine, Pfizer-BioNTech. Control=quadrivalent meningococcal conjugate vaccine. VLA=VLA2001 vaccine, Valneva. VLA half=half dose of VLA2001 vaccine. Ad26=Ad26.COV2.S vaccine, Janssen. ELU=ELISA laboratory units. | ilable). ChAd=ChAdOx1<br>126.COV2.S vaccine, Jan | nCoV-19 vaccine, Oxforu<br>1ssen. ELU=ELISA laborat | d-AstraZeneca. BNT=BN<br>:ory units. | IT162b2 vaccine, Pfizer-I                         | BioNTech. Control=quadriv                                                  | alent meningococcal cc    | mjugate vaccine. VLA=V                                   | /LA2001 vaccine,                   |
| Table 9:             | Kinetics of immune                                 | Table 9: Kinetics of immune responses post third dose by study vaccine and priming vaccine schedule among the modified intention-to-treat population of immunology cohort, group                                                                                                                                                                  | ise by study vaccine a                           | und priming vaccine so                              | chedule among the m                  | odified intention-to-                             | treat population of imn                                                    | nunology cohort, gro      | oup B                                                    |                                    |

70 years and older for ChAd/ChAd, and 4500 (4211-4808, n=679) versus 3344 (3083-3627; n=587) in the older group for BNT/BNT. Similar levels of pre-third dose cellular responses between two age groups were found in the ChAd/ChAd population (<70 years GM 38, 95% CI 33–43 [n=300] *vs* ≥70 years 36, 31–41 [n=336]), but not the BNT/BNT population (<70 years 47, 42-53 [n=324] vs ≥70 years 25, 22–29 [n=304]). At day 28 post third dose, similar levels of boost effect on anti-spike IgG and cellular responses were seen between the two age groups for all the study vaccines (figure 3).

As expected, baseline seropositive participants had higher humoral and cellular response compared with seronegative participants in both ChAd/ChAd and BNT/BNT populations (appendix 1 p 21). For both populations, the difference of anti-spike IgG and cellular response between seropositive and seronegative participants became smaller after a third dose vaccination. Seropositive participants still had higher immunogenicity (appendix 1 pp 37-38) compared with seronegative participants.

# Discussion

All COVID-19 vaccines and doses tested showed acceptable reactogenicity (figure 2). In both age groups, four vaccines showed higher moderate or severe local and systemic side-effects in the first 7 days: ChAd after BNT/BNT in the group aged 30-69 years (consistent with ChAd after BNT in the COMCOV trial<sup>8</sup>); and m1273 and CVn in all ages for ChAd and ChAd prime and in the group aged younger than 70 years for BNT/BNT prime (consistent with m1273 as dose two in the COMCOV2 trial<sup>23</sup>); and Ad26 after ChAd/ChAd or BNT/BNT in people younger than 70 years (appendix 1 pp 22-25). These data are consistent with early data from other trials of homologous and heterologous third dose boosters.<sup>24-28</sup>

The analysis shows there was good correlation seen for all vaccines between the pseudoneutralising assay NT<sub>50</sub> against the wild-type and delta variants at days 0 and 28 (day 28 shown in appendix 1 p 34). Vaccines that produce antibodies against wild-type appear to neutralise delta effectively in vitro to a consistent, but slightly lesser degree, confirming the current public health strategy of using wild-type vaccines to control the currently predominant delta epidemic. Future analysis will investigate the in vitro killing against alpha and beta variants.

Findings from this trial demonstrate that the immunogenicity of homologous or heterologous third dose boost with all tested vaccines was superior to control regardless of which vaccine had been received in the initial course, apart from VLA, which did not achieve predefined criteria for minimum clinically important difference following BNT/BNT (figure 3).

Regarding spike IgG third dose response, it is important to recognise that, as yet, there is no established

|          | Prime with ChAd/     |                          |                                        |                    | Prime with BNT/BN |                       |                       |                   |
|----------|----------------------|--------------------------|----------------------------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|
|          | Control (n=21)       | BNT half (n=25)          | m1273 (n=21)                           | CVn (n=21)         | Control (n=21)    | BNT half (n=21)       | m1273 (n=18)          | CVn (n=18)        |
| SARS-Co  | oV-2 anti-spike IgG, | ELU/mL                   |                                        |                    |                   |                       |                       |                   |
| Day 0    | 712                  | 1485                     | 1265                                   | 920                | 2761              | 4060                  | 3271                  | 4175              |
|          | (466–1086; n=20)     | (994–2218; n=25)         | (907–1766; n=21)                       | (570–1486; n=21)   | (1759-4334; n=21) | (2505-6582; n=21)     | (1970-5432; n=18)     | (2914-5982; n=18  |
| Day 7    | 671                  | 13078                    | 22 134                                 | 2466               | 2403              | 24 315                | 20930                 | 6756              |
|          | (439–1027; n=21)     | (8708–19641; n=25)       | (15 902–30 809; n=21)                  | (1609–3780; n=20)  | (1493–3869; n=21) | (17 943-32 950; n=21) | (11594-37786; n=18)   | (4881-9351; n=18  |
| Day 28   | 600                  | 13 951                   | 23771                                  | 4241               | 2094              | 27 498                | 30 654                | 8385              |
|          | (376-957; n=21)      | (8978–21 679; n=25)      | (15092-37442; n=21)                    | (2718-6618; n=21)  | (1306-3359; n=20) | (20 109-37 602; n=21) | (22 916-41 004; n=18) | (5753–12222; n=18 |
| Cellular | response (wild-typ   | e), spot forming cells p | per 10 <sup>6</sup> peripheral blood ı | mononuclear cells  |                   |                       |                       |                   |
| Day 0    | 45·1                 | 47·1                     | 48·4                                   | 47·6               | 38·3              | 42·0                  | 28·3                  | 56·6              |
|          | (27·3-74·8; n=21)    | (30·1–73·6; n=25)        | (29·3-80·0; n=19)                      | (27·7-81·7; n=20)  | (24·0-61·2; n=21) | (25·1–70·2; n=20)     | (16·6-48·5; n=18)     | (35·8-89·5; n=17) |
| Day 14   | 30·5                 | 154·7                    | 140·7                                  | 40·1               | 23·1              | 96·3                  | 117·4                 | 74·2              |
|          | (16·1–57·8; n=21)    | (99·9–239·6; n=25)       | (75·0–263·8; n=19)                     | (19·4-82·8; n=20)  | (13·3-40·2; n=21) | (53·2–174·2; n=20)    | (68·7-200·5; n=18)    | (37·6–146·3; n=17 |
| Day 28   | 48·8                 | 123·5                    | 148·6                                  | 65·1               | 26·9              | 107·0                 | 140·4                 | 68·8              |
|          | (30·4–78·3; n=21)    | (79·4–192·3; n=25)       | (92·8–237·9; n=20)                     | (36·3–116·7; n=21) | (15·6−46·5; n=20) | (73·4–156·1; n=20)    | (85·3–231·1; n=17)    | (36·2–131·0; n=18 |

Table 10: Kinetics of immune responses post third dose by study vaccine and priming vaccine schedule among the modified intention-to-treat population of immunology cohort, group C

or well defined correlate of long-term protection. To date, both ChAd/ChAd (79%) and BNT/BNT (90%) have maintained highly effective real-world protection against hospitalisation and death after 6 months1 despite much higher absolute spike IgG levels for BNT/BNT than ChAd/ChAd.8 The relative role of T-cell or memory immunity is unclear, but is probably of great importance. The impact of dose interval remains to be fully elucidated—eg, there is better reported immunogenicity when a second dose of Ad26 is given at 6 months after the first dose of Ad26 compared with 2 months,29 and improved antibody responses when the initial BNT doses are spaced by 12 weeks rather than 3 weeks, although cellular response might be lower.30 There is potentially an important clinical impact of these changes, because people given initial ChAd doses spaced 3-4 weeks appear to have lower protection against infection than people receiving ChAd/ChAd 16 weeks apart.31

All vaccines tested (ChAd, BNT, m1273, NVX, Ad26, CVn, and VAL) boosted immunity after ChAd/ChAd as measured by anti-spike IgG and neutralising assays, and six vaccines (ChAd, BNT, m1273, NVX, Ad26, CVn) boosted immunity after BNT/BNT (table 5-7; figure 3). All of the vaccines that boosted immunity did so in older and younger people; however, there were marked differences in response between specific booster vaccines, consistent with other data from non-randomised studies.24 Therefore, these data endow immunisation advisory committees and policy makers with additional immunological and reactogenicity information, which will allow flexibility to deploy heterologous or homologous third doses after initial ChAd or BNT vaccines. These decisions will also be based on clinical, logistical, and supply considerations, targeted to the populations at greatest need.32

Cellular responses show that the mRNA vaccines and Ad26 show increased responses after ChAd/ChAd and BNT/BNT (table 5–7); however, as demonstrated elsewhere, ChAd does not boost cellular responses after ChAd/ChAd;<sup>8,26</sup> NVX boosts cellular responses better after ChAd/ChAd than BNT/BNT;<sup>23</sup> and VLA does not induce any significant cellular responses to spike protein at day 28 compared with control after ChAd/ChAd or BNT/BNT. Data obtained at 3 months and 1 year after third dose will provide further information on the impact of third doses on long-term protection and immunological memory.

Fractional doses can be indirectly compared for BNT and half BNT, although they were in different site groups; some reduction in systemic effects was demonstrated compared with controls, although there was no apparent reduction in pain by using a half dose. There was a minimal decrease on immunogenicity by anti-spike IgG and neutralising assays (table 5-7). Maximum spike IgG responses were seen at 7 days after the third dose of half BNT, also for full dose BNT and m1273 after ChAd/ChAd or BNT/BNT. For other vaccines including the low (12 mg) dose CVn mRNA vaccine, an increment was seen from day 7 IgG to day 28 IgG concentrations (table 8-10). Along with the finding of no reduction in pain and some reduction in systemic effects, this could suggest that currently approved mRNA vaccines are formulated at doses above the minimum needed for a third (booster) dose. If immunogenicity can be maintained in larger dose reduction studies this could significantly increase the numbers of doses available globally. Our data suggest that even half dose BNT produces a vigorous anti-spike IgG response at 7 days. No clinical trial could be powered to demonstrate the impact of dose reduction on rare side-effects that are seen during population deployment.

However, it is biologically plausible that lower fractional dosing for third dose boost could reduce inflammation and possibly rates of myocarditis seen after BNT or m1273 deployment. Of note, m1273 is now approved at 50% dose (50 µg) when used as a homologous third dose.<sup>33</sup>

Although neutralising responses can be predicted from spike IgG concentrations, we found that cellular responses do not correlate well (appendix 1 pp 35–36).

This study has a number of limitations. Due to pandemic timelines and the need to generate data to inform policy in September, 2021, the interval from second to third dose (given in June, 2021) was shorter in some participants than between their first two doses of ChAd/ChAd or BNT/BNT. This could lead to underestimates of boosting GMRs that would be achieved at longer dose intervals as immune responses of all types wane over time. The short interval to dose 3 might also mean the impact on T cells and immunological memory could be lower than if longer dose intervals had been used.34 This possibility is being investigated in a trial amendment that has offered COVID-19 third dose to people who previously received control vaccine. The age range (only recruiting people >30 years) limits the generalisability to younger populations, which might be particularly relevant with respect to reactogenicity, which was generally inversely proportional to age. The study also recruited a mostly White population. Due to the group design, not all vaccines were able to be randomised together, limiting the ability to compare vaccines between site groups. In particular, BNT was not able to be studied in the same group as half BNT; however, baseline characteristics between all site groups were all broadly comparable. Further analysis will be done comparing vaccines in different groups, adjusting for the difference between groups. It was also not possible to test half m1273 (currently now recommended as third dose of this vaccine<sup>33</sup>) or other approved vaccines due to logistical reasons at the timepoint of the decision to include fractional doses. A single laboratory was used to conduct all cell preparation and T-cell assays using the same protocols and reagents to avoid interlab variability and issues from cell freezing. Because of this, direct comparison with data from other studies conducted in different laboratories should review trends rather than compare absolute numbers. Finally, external laboratory capacity issues meant that this analysis did not include pseudoneutralising assay results against the alpha and beta variants, and there are currently no formally validated viral neutralisation assays against variants of concern.

ChAd has now been deployed in more than 180 countries and BNT in more than 145 countries.<sup>35</sup> This trial has demonstrated the potential of all vaccines tested (ChAd, BNT, m1273, NVX, Ad26, CVn, and VAL) to boost immunity following an initial course of ChAd/ChAd and of six vaccines (ChAd, BNT, m1273, NVX, Ad26, and CVn) following an initial course of BNT/BNT. All vaccines showed acceptable side-effect profiles, although some schedules were more reactogenic than others.

Policy makers and national immunisation advisory committees should establish criteria for choosing which booster vaccines to use in their populations. This decision should be based on immunological considerations, known side-effect profiles, in-country availability, and ultimately a decision on what level of boost is sufficient in the context of national strategic disease control objectives.

#### Contributors

SNF, MDS, and JSN-V-T conceived the trial. SNF was the chief investigator. SNF, APSM, MDS, and XL contributed to the protocol and design of the study. APSM, GB, and SSa led the implementation of the study. LJ, XL, and VC designed and conducted the statistical analysis, and accessed and verified the underlying data. APSM, LJ, VC, XL, and SNF drafted the report. All other authors contributed to the implementation and data collection. All authors reviewed and approved the final report.

#### **Declaration of interests**

KCa acts on behalf of University Hospital Southampton as an investigator on studies funded or sponsored by vaccine manufacturers including AstraZeneca, GlaxoSmithKline, Janssen, Medimmune, Merck, Pfizer, Sanofi, and Valneva. She receives no personal financial payment for this work. SNF acts on behalf of University Hospital Southampton National Health Service (NHS) Foundation Trust as an investigator or providing consultative advice, or both, on clinical trials and studies of COVID-19 and other vaccines funded or sponsored by vaccine manufacturers including Janssen, Pfizer, AstraZeneca, GlaxoSmithKline, Novavax, Seqirus, Sanofi, Medimmune, Merck, and Valneva. He receives no personal financial payment for this work. ALG is named as an inventor on a patent covering use of a particular promoter construct that is often used in ChAdOx1vectored vaccines and is incorporated in the ChAdOx1 nCoV-19 vaccine. ALG might benefit from royalty income paid to the University of Oxford from sales of this vaccine by AstraZeneca and its sublicensees under the University's revenue sharing policy. JH has received payments for presentations for AstraZeneca, Boehringer Ingelheim, Chiesi, Ciple, and Teva. VL acts on behalf of University College London Hospitals NHS Foundation Trust as an investigator on clinical trials of COVID-19 vaccines funded or sponsored by vaccine manufacturers including Pfizer, AstraZeneca, and Valneva. He receives no personal financial payment for this work. PM acts on behalf of University Hospital Southampton NHS Foundation Trust and The Adam Practice as an investigator on studies funded or sponsored by vaccine manufacturers including AstraZeneca, GlaxoSmithKline, Novavax, Medicago, and Sanofi. He received no personal financial payment for this work. JSN-V-T is seconded to the Department of Health and Social Care, England. MR has provided post marketing surveillance reports on vaccines for Pfizer and GlaxoSmithKline for which a cost recover charge is made. MDS acts on behalf of the University of Oxford as an investigator on studies funded or sponsored by vaccine manufacturers including AstraZeneca, GlaxoSmithKline, Pfizer, Novavax, Janssen, Medimmune, and MCM vaccines. He received no personal financial payment for this work. All other authors declare no competing interests.

#### Data sharing

Individual participant data will be made available when the study is complete, on reasonable requests made to the corresponding author; data can be shared through secure online platforms after proposals are approved. All the sequence datasets used in the T-cell analysis are available in the public GISAID database (https://www.gisaid.org).

## Acknowledgments

The study is funded by the UK Government through the National Institute for Health Research (NIHR) and the Vaccine Taskforce.

The study sponsor is University Hospital Southampton NHS Foundation Trust, Southampton, UK. ChAd, BNT, and m1273 used in this study were supplied by the UK Health Security Agency (previously Public Health England). NVX, VLA, Ad26, and CVn were supplied by the manufacturers, without charge. The research is supported by the NIHR Southampton Clinical Research Facility and Biomedical Research Centre, the NIHR Clinical Research Network, and the NIHR funded National Immunisation Schedule Evaluation Consortium. SNF and MDS are NIHR Senior Investigators. KC is a Wellcome Trust Investigator (210755/Z/18/Z) and NIHR Senior Investigator Emeritus. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. The investigators would like to thank the UK Medicines and Healthcare products Regulatory Agency (MHRA) and Heath Research Authority (HRA) for their extraordinary efforts in rapidly reviewing submissions, for their attention to detail and input into trial design. Specific thanks go to Kirsty Wydenbach, Lisa Campbell, David Jones, Graham McNaughton, Marie-Christine Bielsky, and David Brown at the MHRA; to David Carpenter and Mike Proven and all volunteer officers and members of the South Central, Berkshire Research Ethics Committee; and to Kevin Ahmed and all HRA staff who supported the trial. The investigators express their gratitude for the contribution of all trial participants, the UK Vaccine Taskforce (Jacinda Kemps, Kate Hilvard, and Kate Taylor) and the invaluable advice of the trial committees. Andrew Ustianowski, Chris Rogers, and Andrew Riordan served as the independent members of the data monitoring and safety committee. Robert Read is the chair of the trial steering committee.

#### References

- Andrews N, Tessier E, Stowe J, et al. Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild and severe COVID-19 in the UK. *medRxiv* 2021; published online Oct 6. https://doi.org/10.1101/2021.09.15.21263583 (preprint).
- 2 Singanayagam A, Hakki S, Dunning J, et al. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study. *Lancet Infect Dis* 2021; published online Oct 29. https://doi.org/10.1016/ S1473- 3099(21)00648-4.
- 3 Pouwels KB, Pritchard E, Matthews PC, et al. Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. *Nat Med* 2021; published online Oct 14. https://doi.org/10.1038/s41591-021-01548-7.
- 4 Tartof SY, Slezak JM, Fischer H, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. *Lancet* 2021; 398: 1407–16.
- 5 Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. N Engl J Med 2021; published online Oct 6. https://doi.org/10.1056/ NEJMoa2114114.
- 6 Bar-On YM, Goldberg Y, Mandel M, et al. Protection of BNT162b2 vaccine booster against COVID-19 in Israel. N *Engl J Med* 2021; 385: 1393–400.
- 7 Barda N, Dagan N, Cohen C, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. *Lancet* 2021; published online Oct 29. https://doi.org/10.1016/S0140- 6736(21)02249-2.
- 8 Liu X, Shaw RH, Stuart ASV, Greenland M, Aley PK, Andrews NJ, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. *Lancet* 2021; 398: 856–69.
- 9 Nordstrom P, Ballin M, Nordstrom A. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic COVID-19 infection in Sweden: a nationwide cohort study. Lancet Reg Health Eur 2021; published online Oct 17. https://doi.org/10.1016/j.lanepe.2021.100249.
- 10 Shaw RH, Stuart A, Greenland M, Liu X, Nguyen Van-Tam JS, Snape MD. Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data. *Lancet* 2021; **397**: 2043–46.
- 11 Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383: 2603–15.

- 12 Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; **384**: 403–16.
- 13 Heath PT, Galiza EP, Baxter DN, et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N Engl J Med 2021; 385: 1172–83.
- 14 Hulme WJ, Williamson EJ, Green AC, et al. Comparative effectiveness of ChAdOx1 versus BNT162b2 COVID-19 vaccines in health and social care workers in England: a cohort study using OpenSAFELY. *medRxiv* 2021; published online Oct 18. https://doi. org/10.1101/2021.10.13.21264937 (preprint).
- 15 Deng W, Bao L, Liu J, et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. *Science* 2020; 369: 818–23.
- 16 Corbett KS, Nason MC, Flach B, et al. Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. *Science* 2021; **373**: eabj0299.
- 17 Hall VJ, Foulkes S, Charlett A, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). *Lancet* 2021; 397: 1459–69.
- 18 Feng S, Phillips DJ, White T, et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. *Nat Med* 2021; 27: 2032–40.
- 19 Tan AT, Linster M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. *Cell Rep* 2021; 34: 108728.
- 20 Tarke A, Sidney J, Methot N, et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. *Cell Rep Med* 2021; 2: 100355.
- 21 Geers D, Shamier MC, Bogers S, et al. SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients. *Sci Immunol* 2021; 6: eabj1750.
- 22 CureVac. CureVac to shift focus of COVID-19 vaccine development to second-generation mRNA technology. 2021. https://www.curevac. com/en/2021/10/12/curevac-to-shift-focus-of-covid-19-vaccinedevelopment-to-second-generation-mrna-technology/ (accessed Nov 16, 2021).
- 23 Stuart ASV, Shaw RH, Liu X, et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. *Lancet* (in press).
- 24 Atmar RL, Lyke KE, Deming ME, et al. Heterologous SARS-CoV-2 booster vaccinations—preliminary Report. *medRxiv* 2021; published online Oct 13. https://doi.org/10.1101/2021.10.10.21264827v1 (preprint).
- 25 Li J, Hou L, Guo X, et al. Heterologous prime-boost immunization with CoronaVac and Convidecia. *med Rxiv* 2021; published online Sept 6. https://doi.org/10.1101/2021.09.03.21263062 (preprint).
- 26 Flaxman A, Marchevsky NG, Jenkin D, et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). *Lancet* 2021; **398**: 981–90.
- 27 Falsey AR, Frenck RW Jr, Walsh EE, et al. SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3. N Engl J Med 2021; 385: 1627–29.
- 28 Choi A, Koch M, Wu K, et al. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. *Nat Med* 2021; 27: 2025–31.
- 29 Advisory Committee on Immunisation Practices. Booster dose of Janssen COVID-19 vaccine (Ad26.COV2.S) following primary vaccination. 2021. https://www.cdc.gov/vaccines/acip/meetings/ downloads/slides-2021-10-20-21/03-COVID-Heaton-Douoguih-508. pdf (accessed Oct 29, 2021).
- 30 Parry H, Bruton R, Stephens C, et al. Extended interval BNT162b2 vaccination enhances peak antibody generation in older people. *medRxiv* 2021; published online May 17. https://doi.org/10.1101/ 2021.05.15.21257017 (preprint).
- 31 Quebec National Institute of Public Health. Effectiveness of two doses of vaccine against COVID-19 in adult citizens living in the community. 2021. https://www.inspq.qc.ca/covid-19/vaccination/ efficacite-2-doses (accessed Oct 29, 2021).
- 32 WHO. Interim statement on booster doses for COVID-19 vaccination. 2021. https://www.who.int/news/item/04-10-2021interim-statement-on-booster-doses-for-covid-19-vaccination (accessed Oct 29, 2021).

- 33 US Food and Drug Administration. Moderna COVID-19 vaccine. 2021. https://www.fda.gov/emergency-preparedness-and-response/ coronavirus-disease-2019-covid-19/moderna-covid-19vaccine#additional (accessed Nov 2, 2021).
- Sallusto F, Lanzavecchia A, Araki K, Ahmed R. From vaccines to memory and back. *Immunity* 2010; 33: 451–63.
- 35 Our World in Data. Coronavirus (COVID-19) vaccinations 2021. https://ourworldindata.org/covid-vaccinations (accessed Nov 1, 2021).