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Summary 

Summary 

The research presented here considers automatic diagnosis support for skin can­
cer. The role of computer-based diagnosis, and its value within a primary care 
situation are examined resulting in synthesis of aims, requirements and properties 
for an effective system - a system based on digital optical images captured and 
processed using low-cost commercial computer technology. 

The issues involved in acquisition of lesion boundaries are discussed. The value 
of accurate and robust boundaries, in terms of both directly obtainable diagnos­
tic features and in enabling lesion property evaluation, is identified. Previous 
research has proposed the edge focusing process. This work has addressed the 
improvement , in terms of potential for future development, evaluation and re­
use, of this process through porting it to a highly modular form in the Khoros 
environment. 

The role of colour analysis and its value in terms of provision of diagnostically 
useful features is investigated, and the central importance of segmentation is 
identified. The fundamental properties of effective segmentation of lesion image 
colours are identified as a need to reflect human perception of colour similarity 
and a basis on local regions. A new region-based segmentation technique using 
data transformed to a perception-uniform colour-space is presented and shown to 
yield promising results. 

Finally the use of texture information is discussed. The nature and properties 
of the large-scale texture of skin patterning and its disrupt ion are investigated 
and an abstracted representation proposed. A new technique is presented and 
shown to be effective in extracting the qualities of the skin patterning. Methods 
for analysing this representation of the patterning to quantify the disruption 
attributable to the lesion are proposed and developed. The combination of these 
extraction, analysis and disruption evaluation techniques is shown to be effective 
in relation to both visual assessment of disruption and diagnostic performance. 

lll 



Contents 

1 

2 

Acknowledgements 

Statements 

Summary 

Contents . 

Introduction 

1.1 Motivation . 

1.2 Previous Research . 

1.3 Thesis Out line . 

1.3.1 Aims .. 

1.3.2 Structure 

1.3.3 Contributions 

Background 

2.1 Skin . . . . . . . . . 

2.1.1 The Structure of Skin . 

2.2 Skin Cancer .. . . . .. 

2.2.1 Basal Cell Cancer (BCC) . 

ii 

iii 

iv 

1 

1 

2 

4 

4 

4 

7 

9 

9 

10 

12 

13 



2.2.2 Squamous Cell Cancer (SCC) 

2.2.3 Malignant Melanoma (MM) 

2.3 UV-Radiation and the skin . 

2.4 Benign Lesions 

2.5 Conclusions . . 

3 Diagnosis & System Concept 

3.1 Diagnosis .. . . . . . . 

3.2 Current Medical Guidelines 

3.3 Computer Based Diagnosis . 

3.4 A Computer-Based System . 

3.5 Conclusions 

4 Boundary Finding 

4.1 Lesion Boundaries . 

4.2 Edge Focusing . .. 

4.3 Porting To Khoros 

4.4 Discussion . . . . . 

4.4.1 Evaluation of the Khoros Conversion 

4.4.2 Limitations of the Edge Focusing Technique 

4.4.3 Improvements . . . . . . 

4.4.4 Boundary Definition Policy 

4.5 Conclusions . . . . . . . . . . 

Contents 

14 

14 

16 

18 

21 

22 

22 

23 

27 

33 

34 

35 

36 

39 

42 

45 

45 

47 

49 

52 

53 

V 



5 Colour 

5.1 Colour Imaging 

5.2 Colour-spaces 

5.3 Colour as a Diagnostic Indicator . 

5.4 Previous Research in Colour Segmentation 

5.5 Segmentation of Colour Images 

5.5.1 Regions . . . . . 

5.5.2 Colour Similarity 

5.6 Multi- stage Region Agglomerative 
Clustering (mRAC) . . . . . . 

5.6.1 The mRAC Algorithm 

5.7 Evaluating mRAC . 

5.7.1 Results .. . 

5.8 Colour-spaces and Colour Difference 
Metrics .... .. . .. . 

5.8.1 Colour-space Use 

5.9 Evaluating the mRAC- L *u *v * Combination 

5.9.1 Results . 

5.10 Conclusions .. 

6 Texture - Skin Pattern Modelling 

6.1 Texture in Image Processing . . . 

6.2 Texture for Lesion Classification . 

6.3 Skin Patterning Texture ..... 

Contents 

55 

56 

56 

65 

67 

71 

72 

73 

75 

75 

78 

79 

80 

81 

86 

87 

90 

93 

93 

96 

97 

vi 



6.3.1 Existing Techniques ... .. . .. . 

6.3.2 Related Line Pattern Applications . 

6.3.3 Profiling by Orientat ion of Linear features 

6.3.4 Detecting Skin Line Patterning: Overview 

6.4 Enhancing Skin Patterning . . ... 

6.4.1 Exposing The Raw Pattern 

6.4.2 Cleaning The Exposed Pattern 

6.5 Regional Profiling for Skin Patterning . 

6.5.1 Patch Based Processing . 

6.5.2 Line Strength Estimators . 

6.5.3 Demonstration of P rofiling . 

6.6 Conclusions . . . . . . . . . . . .. 

Contents 

97 

99 

99 

101 

101 

102 

104 

105 

106 

108 

114 

116 

7 Texture - Skin Pattern Analysis & Disruption Evaluation 117 

7.1 Analysing Skin Pattern Profile Results: 
Initial work . . . . . . 117 

7.1.1 Local Variance 

7.1.2 Adaptive Resonance Theory 

7.1.3 Self Organizing Feature Map . 

7.1.4 Multi- stage Region Agglomerative 
Clustering (mRAC) . ... . . . . . 

7.1.5 Demonstration of Classification Techniques . 

7.2 Evaluating the Classification Results: 
Initial Work . . . . . . 

7.2.1 mRAC evaluation 

118 

118 

119 

120 

121 

122 

123 

vii 



7.2.2 SOFM evaluation .. . .. 

7.2.3 Local Variance Evaluation 

7.3 Results and Discussion: Initial Work 

7.4 Developing Profile Analysis and Evaluat ion . 

7.4.1 Profile Enhancement and Noise Reduction 

7.4.2 Similarity measures 

7.4.3 Local Variability Analysis and Evaluat ion 

7.4.4 Using CB-distance in Classifiers 

7.4.5 Unifying Classifier Evaluations . 

7.4.6 Re-considering ART .. 

7.5 Final Results and Discussion . 

7.5.1 Local Variability Measure Results 

7.5.2 mRAC Fragmentation Results 

7.5.3 SOFM Results . 

7.5.4 ART Results . 

7.6 Conclusions .. .. . 

8 Conclusions 

8.1 Overview . 

8.2 Detail .. 

8.3 Further Work 

References 

Contents 

. .... 

124 

125 

125 

127 

127 

131 

134 

137 

138 

145 

148 

149 

153 

154 

160 

163 

167 

167 

168 

175 

180 

viii 



Chapter 1 

Introduction 

1.1 Motivation 

The incidence of skin cancer is rapidly increasing throughout the world and cur­

rently rivals that of all other forms of cancer put together [1- 3]. Malignant 

melanoma is the most lethal of the skin cancers, account ing for only about 5% of 

cases but 80-85% of fatalities [2- 4] . 

Early recognition and treatment of skin cancer is vital as malignant lesions, es­

pecially invasive melanomas have a much increased fatality rate as the lesions 

develop [1, 5- 7]. Simple surgical excision is well known to be highly effective 

where lesions are treated early [1, 3- 5] and can effect a complete cure [8]. Effec­

tive diagnosis must therefore be widely available, rapid and able to discriminate 

using early indicators. 

Histological analysis is often regarded as the only truly reliable method for estab­

lishing the nature of a lesion [6], however the use of this invasive technique for all 

lesions is impractical in terms of time, cost and patient inconvenience. Identifica­

tion and differential diagnosis of skin lesions is normally carried out visually, the 

skin being naturally readily accessible to this simple form of inspection. Accu­

racy of such diagnosis is however not assured, difficulties are caused as each lesion 

type does not present a unique appearance [5]. Experienced dermatologists are 
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generally not more than 65-70% accurate for non-typical pigmented lesions [5, 9] 

and the likely first point of contact for a patient, the GP, is unlikely to match 

this accuracy [9, 10], the broad expertise required of a GP naturally excluding 

the specific depth required for skin lesions. 

Early recognition has been pursued through campaigns aimed at GPs and the 

general public increasing awareness of signs and aiming to reduce the time taken 

before presentation to a GP and referral to a dermatologist. The simplicity and 

brevity required for the information content of such campaigns however entails a 

limit on the possible accuracy, as does the importance of avoiding false indications 

of cancers as benign. In addition, the subjective quality inherent in human as­

sessment of indicators naturally results in inter and intra observer inconsistencies 

and consequently a further reduction in accuracy. 

There is a need then, for a means of effectively servicing first presentations of 

'suspect lesions' both quickly and accurately and with minimal inconvenience to 

the patient. A computer based system could provide a means of encapsulating the 

specifics of lesion diagnosis, and automated acquisition of diagnostic indicators 

will provide consistency. The majority of quantifiable, and non-invasively avail­

able, indicators currently used in lesion diagnosis are available in an image of the 

lesion. A computer system based on standard digital video capture technology 

has the advantages of both low capital and running costs, as well as causing a 

minimum of patient inconvenience. 

1. 2 Previous Research 

The value of an automatic diagnosis support system for skin lesions is reflected 

in the considerable research interest in this area - particularly concerning lesion 

boundary identification and colour analysis. 

Many of the important diagnostic indicators identified for the clinical assessment 

of malignancy in melanoma can be obtained from boundary informat ion alone. 

Well known indicators in this category include size, border irregularity, notching 

and asymmetry. The extent of the lesion is also a vital prerequisite for analysis of 

2 
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features of the lesion area and for comparative measures between propert ies of the 

lesion and the surrounding skin. Much of the current research has consequently 

concentrated on techniques for boundary identification and a wide variety of 

techniques have been proposed ( e.g. [11-15]). As part of a previous study here 

at Bangor, a process has been developed [16, 17] which can provide an accurate 

boundary in a manner robust to many image imperfections. 

The importance of colour in diagnosis of skin lesions is widely recognized. Not 

only does colour provide valuable information for the identification of lesion 

boundaries, colour features, such as the presence of certain shades and variability 

of lesion colour, also provide vital diagnostic information, as reflected in their 

inclusion in both skin cancer checklists and in different ial diagnosis descriptions. 

Colour has consequently been important in research into automated diagnosis 

both as part of boundary identification methods and in detection of colour fea­

tures. 

Texture analysis has not attracted the same level of interest as have boundaries 

and colour, perhaps because such features do not commonly appear in skin cancer 

public information. Texture information can be considered at different scales; 

small-scale texture where pixel level variations follow recognizable patterns, and 

large scale texture where features, rather than pixels form patterns. Small-scale 

colour-texture analysis has been used as part of a segmentation scheme [14] and 

has also been used in the generation of synthetic test images [18]. Large-scale 

texture analysis has at t racted more attention - such patterns are identifiable 

by humans as features. The surface of most areas of skin ( except palms and 

soles) is covered in a network of fine lines that are a product of the structure of 

the top layer of the epidermis. Clinical features for differential diagnosis include 

disrupt ion of the skin surface ( erosion or crusting) and the presence of irregular 

clumps of abnormal cells in the upper dermis [1 , 5] . These features can be seen 

in the disrupt ion of the skin line patterning across the lesion, for example, the 

consensus statement of the USA National Institutes of Health [6] states t hat 

earliest melanoma can alter these skin markings. Consideration however of loss 

or accentuation of skin markings are controversial as indicators of early melanoma 

[19, 20]. Skin patterning has previously only been investigated in terms of changes 

in roughness of the skin surface topology perpendicular to the primary skin line 
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direction [20, 21] rather than changes in the pattern itself. 

1.3 Thesis Outline 

1.3.1 Aims 

This work forms part of a programme which aims to provide a low cost image­

based diagnosis support system. The programme will develop image processing 

techniques that will allow the formation of a vector of feature estimates relating 

to the identification of skin cancer from an image alone. Specifically, this project 

will: 

• analyse the needs and role of computer based skin lesion analysis and to 

ident ify implications in terms of the system to be developed; 

• improve the accessibility, for improvement and integration, of the 'edge 

focusing' boundary finding technique which was proposed and developed as 

part of previous research; 

• investigate the possibilities for the development of metrics based on both 

colour and texture which would provide diagnostically useful information. 

1.3.2 Structure 

In order to appreciate the importance and challenge of pursuing automated di­

agnosis of skin cancer it is first necessary t o discuss the high and rising incidence 

and the reasons suggesting that this will cont inue, as well as the nature of these 

cancers. Chapter 2 describes the nature and function of skin, details the most 

common forms of skin cancer showing why melanomas need special attention, 

briefly discusses their most significant cause and why this leads us to believe that 

the rate will continue to rise, and finally introduces the other features found on 

the skin which are most commonly confused with pigmented skin cancer. 

4 
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Chapter 3 concentrates on the diagnosis of skin lesions and current methods used 

in the recognition of skin cancer. Existing medical guidelines for the identifica­

tion of suspicious lesions are detailed together with their strengths, weaknesses 

and specific aims. Computer based diagnosis of skin lesions is introduced and dis­

cussed in terms of the need that such methods are intending to address. A review 

of research towards, and the current status of, such systems is made. Finally the 

aims and goals of a diagnosis support system for skin cancer are analysed and 

an outline description of the requirements and proposed structure for an effective 

system are synthesized. 

Chapter 4 concerns the identification of lesion extent. The importance of this in­

formation in terms of directly obtainable diagnostic indicators and the enabling 

of both lesion area, and comparative lesion/surrounding skin evaluations is ex­

plained. The inherent problems and difficulties encountered in identifying the 

border are highlighted. A brief overview of research into boundary finding for 

skin lesion images is given as a prelude to the description of the Edge Focusing 

process which was the product of earlier research [16, 17]. In order to facilitate 

the further development, improvement, evaluation and integration of the edge 

focusing technique, the existing process was reconstructed in the Khoros II envi­

ronment [22, 23]. The process and results of this porting into the highly modular 

and more intuitively accessible form within Khoros II are described and discussed. 

Finally, the limitations of the edge focusing technique are reviewed in relation to 

its use in the later sections of this study, the possibilities for improvements are 

discussed and the boundary definition policy employed in this work is presented. 

Chapter 5 details the research undertaken into the possibilities for obtaining di­

agnostic feature information through the use of colour data. The importance of 

colour in diagnosis of skin lesions is widely recognized and reflected in the inclu­

sion of colour features in both skin cancer checklists and in differential diagnosis 

descriptions. The concept of colour is introduced and the implications in terms 

of colour model resulting from requirements of the envisaged diagnosis-support 

system are discussed. The particular features pursued in image based diagnosis 

of skin lesions are identified together with the different methodologies used in 

their detection and computer based analysis. Current research into colour image 

analysis (the methodology most suited to the envisaged system) particularly for 

5 
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skin lesion images and their segmentation is reviewed. The underlying goals of 

segmentation, particularly in relation to lesion images, are investigated in detail 

and conclusions are drawn resulting in the development of a new region-based 

technique. Initial results prompt a detailed consideration of other colour-spaces 

together with suitable colour similarity measures and patterns of lesion data dis­

t ribution for them. Finally the segmentation performance on the new transformed 

data is presented and discussed. 

Chapter 6 and 7 consider texture. Chapter 6 begins with an analysis of the 

possibilities for obtaining diagnostic feature information through the study of 

this data. The nature and concept of texture in image processing is discussed 

and the different analysis paradigms are analysed with reference to the type 

of texture they aim to model. The analysis of the large-scale texture of skin 

patterning forms the focus of the investigation; existing techniques are found to 

be inadequate for the description of this texture. A detailed investigation of the 

nature of skin patterning in lesion images is undertaken from which conclusions 

as to the requirements for modelling of this line segment based pattern are drawn. 

The abstracted representation is constructed in view of the need to capture the 

essential properties which would allow the measurement of disruption. A new 

technique is presented which is effective in extracting a representation of the 

quality of the skin line patterning. 

Chapter 7 adresses feature analysis and evaluation using the skin pattern repre­

sentation. Quantitative interpretation of the patterning information is vital if it 

is to be useful in an automated detection system. The provision of a metric for 

the quantification of disruption is therefore considered. Preliminary results for a 

number of analysis techniques prompt a number of changes and enhancements to 

both the extraction, analysis and evaluation methods. The final results show the 

effectiveness of this texture analysis and disruption feature evaluation in relat ion 

to both visual assessment and diagnostic performance. 

Finally, chapter 8 draws general conclusions regarding the work presented and 

possibilities for the direction and specifics of future work are given. 

6 



Chapter 1 Introduction 

1.3.3 Contributions 

In the investigation of the role of computer systems in skin cancer diagnosis 

support and in the development of image processing techniques to provide quan­

t ification of diagnostically valuable indicators t his thesis makes the following con­

t ributions: 

• A review of the current skin cancer situation and an analysis of need for, and 

role of, computer based diagnosis support . This part of the study culminates 

in the synthesis of a set of aims and requirements for an effective system 

and a concept for the nature of such a system. 

• The conversion of the edge focusing system for accurate and robust lesion 

boundary identification into a more modular and accessible form for fut ure 

development and use. The evaluation of t his system showing the success of 

the conversion in relation to these goals, and the price in terms of compu­

tational efficiency. 

• An investigation into the role of colour analysis for skin lesions which results 

in both the identificat ion of segmentation as the heart of such processing, 

and the fundamental propert ies of effective segmentation for work with 

lesion images. 

• The development and implementation of a region based colour segmentation 

technique designed to cater for the identified need for locality consideration. 

The new technique differs from existing techniques used for lesion image 

segmentation as these focus on the classification of each pixel as a separate 

entity. 

• A study of colour representations in relation to the identified need to re­

flect human judgment of colour consistency and an analysis of lesion image 

colour propert ies viewed in these spaces. The improvement in segmenta­

tion effectiveness when using the region based technique on a colour-space 

designed to be consistent with human perception. 

• The ident ification of t he large-scale texture of skin patterning and its dis­

ruption as a source of diagnost ically useful information. The proposal for 

7 
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an abstracted representation for this pattern which allows detection of its 

disruption. 

• The development and implementation of a new technique for the extraction 

of skin patterning information from lesion images together with methods 

for analysing this pattern in terms of disruption which can be related to 

skin structure distortion by the lesion. The complete extraction, analysis 

and evaluation process is demonstrated to be effective in reflecting human 

appraisal of patterning disruption and in terms of diagnostic performance. 

• Contributions to published literature. 

- A. J . Round, P. J. Fish, and A. W. G. Duller, "Khoros implementation 

of edge focusing system for skin lesion analysis," in Proc. 18th Annual 

Int. Conj. of the IEEE Engineering in Medicine and Biology Society, 

pp. 1187- 1189 ( 4.5.4- 7), 1996. 

- A. J. Round, A. W. G. Duller, and P. J. Fish, "Lesion classification 

using skin line texture," in Proc. Medical Image Understanding and 

Analysis, pp. 169- 172, University of Oxford, July 1997. 

- A. J. Round, A. W. G. Duller, and P. J. Fish, "Colour segmentation 

for lesion classification," in Proc. 19th Annual Int. Conj. of the IEEE 

Engineering in Medicine and Biology Society, pp. 582-585 (2.3.4- 3), 

Nov. 1997. 

- A. J. Round, A. W. G. Duller, and P. J. Fish, "Skin patterning analysis 

for lesion classification and segmentation," in Proc. 9th Int. Conj. on 

Biomedical Engineering, pp. 448- 450, Singapore, Dec. 1997. 

- A. J. Round, A. W. G. Duller, and P. J. Fish, "A comparison of skin 

patterning feature analysis methods for lesion classification," in Proc. 

SPIE (K. M. Hanson, ed.), vol. 3338, Medical Imaging 1998: Image 

Processing (part 1), pp. 202- 210, Feb. 1998. 
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Chapter 2 

Background 

In order to appreciate the importance and challenge of pursuing automated di­

agnosis of skin cancer it is first necessary to discuss the high and rising incidence 

and the reasons suggesting that this will continue, as well as the nature of these 

cancers. This chapter describes the nature and function of skin, details the most 

common forms of skin cancer showing why melanomas need special attent ion, 

briefly discusses their most significant cause and why t his leads us to believe that 

the rate will continue to rise, and finally introduces the other features found on 

the skin which are most commonly confused with pigmented skin cancer. 

2.1 Skin 

The importance of the skin in the function of the human body is often underesti­

mated, being viewed as simply the covering for the important organs. The t ruth 

is that the skin is one of the largest and most complex organs of the human body, 

performing an impressive range of functions and upon which we are absolutely 

dependent. 

The skin has a typical surface area of l.8m2 and accounts for some 16% of body 

weight [1]. It performs functions of sensing, vitamin D production, cooling and 

insulating and of course it forms the first line of defense against biological, chem-
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ical, UV-radiation and physical damage. In order to perform such an array of 

functions the skin contains many cell types and this in turn means that there are 

many ways in which it can misfunction leading to a multiplicity of skin diseases 

(5] . 

Skin disease accounts for 10-15% of the general-practitioner's work in the UK and 

as such is one of the most common causes of loss of work (1, 5]. 

2.1.1 The Structure of Skin 

Skin is composed of three layers: epidermis, dermis and subcutis (figure 2.1) the 

character and functions of each are outlined below (1, 5]. Exact structure and 

thicknesses are dependent upon location. 

f -or&......,,.of.,..,... ____ _,,._..._~ 

sweat gland• 

Figure 2.1: Diagram of the skin (adapted from New Scientist [24]) 

Epidermis. The epidermis is the outer-most part of the skin and perhaps the 

most complex in structure. Typically it is about 0.1mm thick (but may be up to 

1.4mm on the palms and soles of the feet). The epidermis is a stratified structure 

10 



Chapter 2 Background 

composed (from surface inwards) of the horny, granular cell, prickle cell and basal 

layers ( figure 2. 2) . 

Horney Layer 

Prickle 
Cell Layer 

Langerhans cell 

Melanocyte 
Keratinocyte 

Aete ridge 

t l)aquamdon 

~GE 
Horny (ayer 

t 

t 

~® 
Prickle cell layer f 

@N§) 
BnaJ cell la)'!!'. 

Figure 2.2: Diagram of the epidermis and the keratinocyte maturation process 
( adapted from Gawkrodger [1]) 

The epidermis is constantly undergoing a sequence of cell maturation which begins 

at the basal layer and ends with shedding ( desquamation) from the horny layer. 

The basal layer (stratum basale) is mostly composed of Keratinocyte cells which 

are constantly dividing to provide new (squamous) cells for the other layers, 

and melanocytes ( one per 10 to 20 basal cells) which synthesize melanin - a 

dark pigment which acts as a natural sun-screen. The prickle cell layer (stratum 

spinosum) contains polygonal rather than columnar keratinocyte cells strongly 

connected to distribute structural stresses, and Langerhans cells which are part of 

the immune system. In the granular layer ( stratum granulosum) the keratinocyte 

cells become flatt.ened and loose their nuclei. These cells are strengthened and 

bonded together to form the horny layer (stratum corneum) which is composed of 

overlapping sheets of dead, flattened cornified cells with no nuclei ( corneocytes). 

The pattern of criss-crossing lines on the skin surface (figure 2.3) is formed by 

these overlapping sheets of horn cells. When the process that forms the horny 

layer (keratinization) is disturbed, the horn cells no longer shed normally and 

the skin patterning is disrupted. The horn cells are strongly bonded together 

and form an effective first line of defense barrier against mechanical, chemical, 

biological and UV-radiation damage. 

11 
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Figure 2.3: The surface of the epidermis (horny layer) showing skin patterning 
typical of the forearm. (adapted from Marks [5]) 

Dermis. The dermis is defined as a strong and elastic supportive matrix of 

connective tissue and contains specialized structures such as and concerned with 

hair follicles, sweat glands, blood vessels, immune cells and nerve fibres. The 

dermis is responsible for much of the skin's functions of mechanical protection 

and thermoregulation with the combination of sweat production and regulation 

of blood flow in the outer dermis. 

Subcutis. The subcutis consists of loose connective tissue and fat which provides 

insulation. 

2.2 Skin Cancer 

The current incidence of skin cancer rivals that of all the other forms put together 

[1- 3]. In the US there are about a million new cases of skin cancer annually [2, 3]. 
It is most common in light-skinned people exposed to intense sunlight [1, 2], white 

Australians have the highest rate of skin cancer in the world [2, 4] - only 0.3% 

of the world's population accounting for 6% cent of all the lethal forms of skin 

cancer diagnosed globally [4]. 

Skin cancer typically takes on one of three forms corresponding to the three major 
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types of cells in the epidermis: basal cells, squamous cells and melanocytes [1,2]. 

2.2.1 Basal Cell Cancer (BCC) 

Basal cell cancer1 (figure 2.4) is the most common form [1, 2, 4, 5, 25] and accounts 

for about 80% of all skin cancer cases [3, 4]. By far the most common type is 

initially seen as small, pinkish raised area which grows slowly but relentlessly 

sometimes becoming darkly pigmented and eventually forming a central ulcerated 

region with an adherent crust [1, 5]. They occur most often in the elderly and 

middle-aged on skin that receives the greatest exposure to ultraviolet radiation -

the face, ears and neck [1, 4, 5]. These cancers are aggressive and locally invasive, 

but rarely metastasize2 and as a result a simple excision generally (95% [1, 3, 5]) 

effects a complete cure. 

Figure 2.4: Left: Basal Cell Carcinoma. Right: Squamous Cell Carcinoma. 
(from Matrix/Loyola online [26) and http://biomed.nus.sg) 

1 basal cell cancer is also known as basal cell carcinoma, basalioma and basal cell epithelioma. 
carcinoma: malignant tumour of skin, epithelioma: skin cancer (from epithelium - epidermis) 

2 metastasize: movement of malignant cells to other parts of the body 

13 
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2.2.2 Squamous Cell Cancer (SCC) 

Squamous cell cancer3 (figure 2.4) is the second most common skin cancer [4, 25] 

accounting for about 10 to 20 per cent of skin cancers [4] . They mostly appear 

as irregular dome-shaped nodules4 which can ulcerate5 and form a crust [1 , 4, 5]. 

They typically affect the elderly and middle-aged, but unlike BCC an appreciable 

portion occur earlier. This cancer is most closely related to exposure to the sun 

[5, 25] and appears on the face, ears, the top of a bald head, and on the hands and 

arms [1 , 4] often arising in areas of damaged skin [1, 26]. These are more dangerous 

than BCC; they grow faster and if allowed to develop, can metastasize, spread to 

surrounding lymph glands and be fatal [1, 4, 5]. Surgical excision is a successful 

cure in about 95% of cases [3, 5] . 

2.2.3 Malignant Melanoma (MM) 

Malignant melanoma6 is the most lethal of the skin cancers, accounting for only 

about 5% of cases but 80-85% of fatalities [2- 4]. Incidence is increasing at 7% 

or more per annum [1, 3, 5] with British deaths doubling every 10 years [24]. 

These pigmented cancers have an irregular margin and often display a marked 

variation in colouring7 together with erosion/crusting of the surface [5]. They 

can occur anywhere on the body but are most common on the trunk and lower 

legs [1, 4, 5, 8], often occur (about 50% [5]) on the site of a pre-existing benign 

melanocytic naevi, but can also spontaneously appear [1 , 5, 8]. Solar UV-radiation 

is believed to be the single most important causative factor [4, 5, 27] but up to 

50% occur in sites not normally exposed to the sun and although these may 

be attributed to occasional (holiday) intense exposure with sunburn [4, 5] , other 

factors (such as developmental anomalies) may be involved [5]. If left unt reated, 

a malignant melanoma is usually fatal [4]. 

3 Squamous cell cancer is also known as squamous cell carcinoma/epithelioma 
4 nodule,papule: a raised area on the skin (not caused by free fluid or puss). Nodule when 

diameter is over 5mm, papule if smaller. 
5 ulcer: an area of skin loss extending through the epidermis and into the dermis 
6 Malignant melanoma is also referred to as just Melanoma 
7 variation in colouring is often termed variegated colouring 
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Malignant Melanomas have been subdivided by their patterns of growth and 

invasion, and hence their prognosis. The types, and their properties are: (figure 

2.5) 

Superficial Spreading Malignant Melanoma (SSM) is the most common 

form of melanoma, accounting for 50+% of cases in the UK [1, 7, 8, 26] . It affects 

ages 20-60 [1] but primarily 40-60 [8]. It is twice as likely in women [1, 8] where 

it is most common on the lower legs. In men it is most common on the trunk, 

especially the back. The tumour is macular8
, has an irregular outline which 

may be notched, and has pigmentation that is often haphazard with tan, brown, 

black and even pink and white in areas of regression. Early growth is radial and 

confined to the epidermis, later vertical invasion can occur and it is then that 

prognosis rapidly decreases. Lesions are unlikely to show substantial distortion 

of skin creases until there is significant tumour activity in the dermis [8] . 

Nodular Malignant Melanoma (NM) is the second most common form, 

accounting for 25% of cases in the UK [1, 8] . It is more common in middle age and 

in men. This form is often diagnosed quite late (perhaps because the documented 

characteristic features tend to be those of late stages in development - large blue­

black nodule with ulceration and bleeding) [8]. Early lesions (sometimes called 

Papular rather than Nodular MM) are characterised by a small raised, darkly 

pigmented area which will continue to grow, sometimes rapidly. At first glance 

they appear regular, but closer examination shows notching or a streak of pigment 

at one edge. These lesions can sometimes be mostly de-pigmented but still usually 

show a rim of pigment [7, 8]. They quickly invade downward, often metastasize, 

and have generally poor prognosis. 

Lentigo Malignant Melanoma (LMM) accounts for 15% of UK cases [1, 7] 

and most of ten occurs on sun-damaged skin on the face of persons aged 70+ [ 1, 8]. 

It has a slow radial growing pre-malignant phase referred to as Lentigo Maligna 

(LM) and Hutchinson's Melanotic Freckle or Hutchinson's Lentigo which can 

last up to 10 or 20 years [5, 7]. The LM stage starts as a tan-coloured macule 

resembling a stain which slowly evolves with dark brown and black and sometimes 

( due to regression) blue-grey and even white patches within the well defined but 

8 macule: a localised area of colour change without elevation or infiltration 
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highly irregular border of the lesion. If left untreated a true MM often develops 

within the LM which is then an LMM and has the characteristics described above 

[1, 5, 8]. 

Acral Lentiginous Malignant Melanoma (ALM) is the least common form 

in whites (accounting for about 7% [1, 8] of UK cases) but is the most common in 

black and oriental populations [1 , 5, 8] who have a lower incidence of melanoma 

in general [5] . The tumour affects the palms soles and (rarely) nail beds, and can 

display any of the features of the other types [8] but is often diagnosed late [1, 8] 

when bigger , nodular and ulcerating [8] and hence has poor prognosis [1, 5]. 

Melanoma In Situ (MIS) has only relatively recently become a recognized 

melanoma type [6, 8]. These lesions are confined to the full thickness of the 

epidermis and do not invade vertically. Their appearance is similar to SSM being 

flat, asymmetrical lesions with notched, scalloped or jagged borders and a mottled 

brown pigmentation which can be tinged with blue, black or pink [8] . MIS can 

occur in any location [8] and can be treated effectively by conservative surgery 

[6]. 

2.3 UV-Radiation and the skin 

Solar UV-radiation can cause all three main cancer forms in the skin: It is quite 

clear that most BCC and SCC are caused by chronic solar UV exposure [5], 

but perhaps more importantly, solar UV is believed to be the single most im­

portant causative factor [5, 6] in the most dangerous of these cancers, Malignant 

Melanoma. 

UV radiation is part of the spectrum of EM radiation that penetrates the atmo­

sphere (figure 2.6) . It is divided into bands, A,B and C of decreasing wavelength. 

All three cause damage to the skin known as photoaging; photoaged skin is coarse, 

wrinkled, pale yellow and irregularly pigmented and more prone to biological at­

tack and malignant lesion development [1]. UV-Chas the most energy and is the 

most harmful, however very little currently reaches us because of absorption by 

atmospheric ozone. Some exposure to UV-Bis important as it promotes the syn-
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Figure 2.5: Malignant Melanomas: Top: Nodular MM and Superficial Spread­
ing MM. Centre: Lentigo MM and Acral Lentiginous MM. (from Matrix/Loyola 
online [26]) Bottom: Melanoma in situ (from sample image set) 

thesis of vitamin D3 in the skin, however UV-Bis much more damaging (about 

1000 fold [5]) than UV-A. (even though most (90%) of UV-Bis absorbed by the 

epidermis [1]). A suntan is the skin's shield against the sun's harmful rays. It 

is caused by both UV-A and UV-B and is mostly a UV-absorbing blanket of 

melanin in the horny layer of the epidermis [1]. 

One aspect of photoaging that is of particular importance in the study of skin can­

cer is the formation of actinic(/ solar/senile) keratosis (SK). It is a pre-malignant 

form of squamous cell cancer, and although transformation is rare9 [1, 5], they 

indicate that chronic solar UV exposure has occurred and that cancerous lesions 

9 Although the majority of sources say that transformation is rare, it is also viewed as slow 
but not rare [28]. 
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Figure 2.6: UV radiation reaching the earth's surface (adapted from New Scientist 
(24] and Gawkrodger (1]) 

are more likely to arise [5]. SK lesions are mostly multiple scaly or warty plaques 

or papules 2-5mm in diameter and are accompanied by other signs of sun damage. 

They occur on exposed sites and are most common in fair-complexioned elderly 

males [5] but can occur as young as 20, becoming progressively more common 

with age. In subtropical Australia SK is found in more than half of the population 

over 40 [5]. 

2.4 Benign Lesions 

All malignant lesions offer improved prognosis if treated early, and this is espe­

cially true of Melanomas where a matter of 6 months can bring five-year survival 

prognosis from 95% down to 40% [7]. Unfortunately, early cancerous lesions 

( especially pigmented forms) often resemble benign lesions such as moles, fea­

tures that are both extremely common, and can spontaneously arise and alter in 

appearance [1, 5, 7, 8]. 

The most common of the benign pigmented lesions necessary for differential di­

agnosis with cancer lesions are Melanocytic Naevus, Basal Cell Papilloma, Der­

matofibroma and Vascular Malformation [1, 5, 7] (figure 2.7). 

Melanocytic Naevus (mole) is very common, especially in whites who are 

likely to have several. They are generally small, have even brown colour and 
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smooth outlines. A naevus is a benign proliferation of the normal skin cells, most 

commonly the melanocytes [ 1] . The type of mole is often defined by depth and in­

cludes - junctional (epidermis/dermis junction) a flat light or dark brown, round 

or oval region 2-lOmm diameter mostly on palms, soles or genitalia, intradermal 

(in dermis) a skin coloured or pigmented dome shaped papule or nodule mostly 

on the face and neck, and compound10(both places) a smooth11 papule usually 

less than 10mm diameter often tan or brown that can occur anywhere [1]. 

Figure 2.7: Benign Skin Lesions: Top: Benign Melanocytic Naevi (moles) and 
Basal Cell Papilloma. Bottom: A Vascular Malformation Lesion and Dermatofi­
broma. (moles from Gawkrodger [1] rest from Marks [5]) 

Dysplastic12 naevi show unusual features of irregular outline, irregular pigmen­

tation and size over 7mm diameter [1, 5], they should be carefully watched or 

removed and indicate an increased likelihood for development of melanoma [1, 5, 

6,8]. Moles can be present at birth (congenital) or can develop later, (acquired) 

mostly before the mid 20's. The congenital type is rare, affecting about 1 % of 

lO Compound Naevus is often abbreviated as CN 
11 Small CN are generally smooth but large lesions can be warty 
12 Dysplastic, conveys a "funny looking" appearance and means having "heterogeneity of 

cell and nuclear size shape and staining" [5] 
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whites, however the lesion can be large, is sometimes disfiguring and can in some 

cases develop melanoma cancer later in life. The acquired type is much more 

common with the average white young adult having 20 or more [1, 7], and can be 

mistaken for the first appearance of melanoma. 

Freckles and Lentigines are not true naevi, but share many characteristics. They 

are both small light brown macular regions, but freckles are regions with more 

melanin which darken in the sun while lentigines have more melanocytes rather 

than melanin and do not darken [1]. 

Basal Cell Papilloma (BCP)13 [1, 5, 7} is an extremely common lesion in aging 

skin (most people over 40 have a couple, some have hundreds[5]). They start as 

a small papule, often light tan or yellow and will grow becoming a dark brown 

and warty nodule 1-6cm diameter with a "stuck on" appearance and well defined 

edges[l]. They are often (but not always) multiple and appear on the t runk (par­

ticularly on normally covered skin[7]) , neck and face. They are totally benign[71, 

but dark lesions can resemble melanomas. 

Vascular Malformation14 [1, 5] covers a multitude of different lesions arising 

from the skin's blood vessels and capillaries. The majority of these lesions are 

not serious and many will heal quickly without intervention. Some formations 

resemble early melanomas, such as Capillary Aneurysm which suddenly appears 

as small black region and Pyogenic Granuloma, which develops in about a week 

but fades in about a month and is seen as a glazed or blood crusted red papule 

which can be mistaken for nodular MM. Vascular lesions are generally more red 

than brown and unlike melanocytic lesions they will blanche with pressure ( unless 

thrombosed). 

Dermatofibroma15 [1, 5] is a common dermal nodule 5-lOmm in diameter with 

a rough or warty surface due to thickening of the epidermis above the lesion. 

They are most common on the lower legs of young adults, especially women. 

13 BCP is also known as seborrhoeic wart or seborrhoeic keratosis (:;,!: SK!) 
14 Vascular malformations are also referred to as vascular naevi, angiomas and haemangiomas 

and include vascular dilation lesions such as stork mark,port wine stain and venous lake, and 
vascular proliferations such as strawberry mark, senile angioma(Campbell-de-Morgan spot) , 
cherry angioma and other capillary angiomas 

15 Dermatofibroma is also known as Histiocytoma and Sclerosing Haemangioma 
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They enlarge slowly if at all but are generally pigmented and so resemble early 

melanoma, however they are of no serious clinical significance themselves. 

2.5 Conclusions 

The incidence of skin cancer is high and rising across the world, a trend which is 

likely to continue given the importance of solar UV as a cause and the modern 

propensity to indoor lifestyle with sun-seeking holidays. 

Malignant Melanoma is the most deadly form due to its rapid development, in­

vasion and metastasis cycle. Early diagnosis is paramount as prognosis is hugely 

improved where the tumour is excised quickly. Many common benign pigmented 

skin lesions can resemble early melanomas which means that diagnosis in situ is 

both necessary, as it is not pract ical to excise all such lesions, and difficult as the 

early differential signs are hard to detect without detailed expert inspection. 
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Diagnosis & System Concept 

This chapter concentrates on the diagnosis of skin lesions and current methods 

used in the recognition of skin cancer. Existing medical guidelines for the identifi­

cation of suspicious lesions are detailed together with their strengths, weaknesses 

and specific aims. Computer based diagnosis of skin lesions is introduced and dis­

cussed in terms of the need that such methods are intending to address. A review 

of research towards, and the current status of, such systems is made. Finally the 

aims and goals of a diagnosis support system for skin cancer are analysed and 

an outline description of the requirements and proposed structure for an effective 

system are synthesised. 

3.1 Diagnosis 

Medical diagnosis of skin lesions involves the use of two distinct classes of ex­

amination, invasive and non-invasive. Histology1 is often regarded as the only 

truly reliable method for establishing the nature of a lesion [6], however it in­

volves the examination of samples taken from the lesion or the removal of the 

whole lesion [9]. Such invasive forms of identification are obviously unsuitable 

for routine identification due to the time, cost and inconvenience to the patient. 

1 Histology is the study of organic tissue. Histopathology is study of change in skin due to 
disease. 
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Non-invasive examination is traditionally carried out by simple visual inspection 

although other methods such as ultrasound [29] and optical spectroscopy [30] 

have been applied. 

Although simplest in application, visual inspection is not always conclusive -

experienced dermatologists are generally around 70% accurate in the clinical di­

agnosis of non-typical pigmented lesions [5, 9] (although for experts with over 

10 years experience accuracy is reported to reach 80% [95]). The complexity 

of the skin and the large number of cell and tissue types it contains results in 

an enormous number of lesion types. Effective differential diagnosis is difficult 

as these lesions present only a limited number of clinical appearances and often 

share visual characteristic features [5]. 

Diagnosis of skin lesions is further complicated by the desire for early diagnosis. 

Malignant lesions, especially invasive melanomas have a much increased fatality 

rate as the lesions develop [1, 5- 7] and hence malignant lesions needs to be iden­

tified as early as possible in their development. Early detection and diagnosis 

is probably the most critical factor accounting for increasing melanoma patient 

survival rates [31]. It is important then, that diagnosis from early indicators is 

taken as a key consideration for the development of any diagnostic guidelines or 

system as the features commonly used in the description of malignant lesion types 

are often those of later development - new and clever methods are not needed to 

identify large ulcerating or bleeding lesions. 

3. 2 Current Medical Guidelines 

Perhaps the most significant recent advance in the treatment of skin cancer has 

been the understanding that prompt excision of early tumours such as melanomas 

can effect a complete cure [8]. A large portion of recent efforts in this area have 

consequently been directed to improving the accuracy of initial diagnosis and 

speed of referral of suspect lesions to a specialist. There are two main obstacles 

to this aim: the patient must first be aware of the signs to look for and the GP 

(likely first point of contact) must be well informed or assisted in diagnosis (it 

is unlikely that a family doctor will encounter more than one melanoma in 10 
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years [8]). Information campaigns have been used throughout the world with the 

aims of increasing awareness of the risks of exposure to sunlight, encouragement 

of the public to self-examine and details for a variety of audiences of the features 

to look for. 

Checklists have been proposed to aid in diagnosis by highlighting the most im­

portant indicators. MacKie [7] originally proposed a seven point list below which 

was adopted by the Cancer Research Campaign. 

1. Itch 

2. Size 

3. Increasing Size 

4. Shape 

5. Colour Variation 

6. Inflammation 

7. Crusting or Bleeding 

Itching or other change in sensation. 

Length of largest diameter greater than 1cm. 

Growth of a lesion. 

Irregular outline, notch in border. 

Speckling and other variation in colours, esp. 

red, and blue-white. 

Inflammation at the edge of the lesion. 

Slight oozing causing crusting. 

The presence of three of the features is considered suspicious and if four or more 

are found the lesion is cancerous in over 90% of cases [7]. Emphasis on change in 

a lesion was introduced when the list was revised as this was found to increase the 

usefulness of the checklist as well as make it more memorable [32]. The presence 

of one or more of the major signs warrants referral and one or more minor signs 

suggests further consideration. 

Major signs 

change in size 

change in shape 

change in colour 

Minor signs 

inflammation 

crusting or bleeding 

sensory change 

diameter 7mm or more 

Other checklists have also been proposed such as the ABCDE system of the 

American Cancer Society. 
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Asymmetry Two halves of a lesion do not match. 

Border Irregularity Edges are ragged, notched or blurred. 

Colour 

Diameter 

Elevation 

Pigmentation is non-uniform. Shades of tan, brown and 

black with dashes of red, white and blue adding to the 

mottled appearance. 

Greater than 6mm and growing. 

Elevated by 2mm or more compared to surrounding skin. 

This system is widely quoted in public information sources (such as the web pages 

of the American Academy of Dermatology and Skin and Cancer Foundation of 

Australia) but without the final Elevation feature. The "ABCD's of melanoma" 

is also advocated in the USA National Institutes of Health {NIH) consensus state­

ment on melanoma [6] which adds that earliest melanoma lesions are flat or mac­

ular and may have altered skin markings, but that rapid change in any otherwise 

benign-appearing macular or palpable lesion can represent melanoma. 

Although these checklists have been successful in many respects it has been noted 

that not only do they tend to be biased toward the detection of Superficial spread­

ing melanoma and less sensitive to the biologically more aggressive nodular form 

[8], but that clinicians are inconsistent and have great difficulty in agreeing about 

the presence or absence of lesion features [33]. 

Activities such as the many information campaigns warning the public about the 

dangers of excessive exposure to sunlight and illustrating the signs that indicate 

a cancerous lesion are perhaps the only effective measure that can be taken at 

the population level. Although the advantages of earlier detection in many ways 

make melanoma an ideal candidate for screening [6, 8], the role of generalised 

screening is controversial [10] due to the prohibitive scale, cost and complexity 

of any effective programme. The whole body would have to be examined as 

malignant lesions can occur on any site, the average person has a large number 

of benign skin lesions each of which would have to be assessed and the screening 

would have to be very regular and comparative to previous data as change is a 

vital indicator and serious development in melanoma can occur in a few months. 

Such problems with screening activities have been found in free cancer screening 

clinics held at outdoor social events in the USA where the published results 
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suggest that they are labour intensive and expensive exercises for their yield [9]. 

It is also worth noting that such events are not true screening activities as it is 

reasonable to suppose that the people who ask for examination regard the mole(s) 

they have as suspicious and so screening of a population is likely to have an even 

lower yield. 

Encouraging self referral is much more practical, where personal responsibility 

is taken for detection of change or other suspicious features. This does however 

require that such referrals can be dealt with both quickly and accurately and 

with minimal inconvenience to the patient. In addition, surveillance activities 

are sensible (and advised) on a strictly limited population deemed to be high­

risk, such as patients with dysplastic naevi or a personal or family history of 

melanoma. Even in these cases attempts to detect change in lesions often cause 

problems of information overload in terms of both storage and management [29]. 

Whatever the debate concerning the most effective form for public or GP infor­

mation it is generally accepted that the most common signs of early melanoma 

are increase in size, change in colour or shape and itching or increased awareness 

[31]. Hall [8] provides a good summary of the difficulties involved with melanoma 

identification and the general signs to be looked for by saying: 

"The majority of us acquire new moles through childhood into early 
adult life. These lesion will grow in diameter and height , become 
darker or lighter and may even regress and disappear by the time we 
are in our forties (Fitzsimmons 1984). Any new mole arising in the late 
twenties and early thirties and any mole growing out of step compared 
with other pre-existing naevi at any age including childhood should 
arouse suspicion. sudden new growth in a previously dormant mole 
clearly must be regarded as abnormal. Disorder in growth, border or 
pattern of pigmentation are the things to watch for (Sober 1985)." 

Tumour thickness is widely regarded as the single best indicator for prognosis 

[1, 5- 7, 34]. The standard measure, Breslow thickness, is defined as the distance in 

millimeters between the nominal skin surface and the deepest part of the tumour 

[34]. Invasion is also measured in terms of the Clark staging method. The five 

stages correspond to the stratified structure of the skin with a stage I tumour 

confined to the epidermis, stage V indicating infiltration of the subcutaneous fat 
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and stages II-IV reflecting progress t hrough the dermis. These measurements 

are normally obtained by microscopic analysis of stained lesion section samples. 

Attempts have been made to estimate the t umour thickness non-invasively from 

high-frequency ultrasound images [8, 29] , however only Clark stages IV and V 

can be reliably detected and ultrasound based thicknesses can differ considerably 

from histologically derived values [29] . 

3.3 Computer Based Diagnosis 

Placing The Need 

The gains in terms of improved prognosis where a malignant lesion is treated early 

in its development demand that every effort is made to reduce the time taken in 

the process of discovery, first diagnosis, expert diagnosis and intervention. Im­

provements in the initial discovery phase beyond campaigns of public information 

for self examination have been shown to have many practical difficulties whilst 

surgical intervention by excision is both quick and effective as a treatment. This 

suggests that improvements are most likely and valuable in the diagnosis chain. 

It is widely recognized that differential diagnosis of pigmented lesions is a difficult 

enterprise even for specialist dermatologists. The role of the GP demands an ex­

tremely broad expertise covering the whole range of ailments that are presented 

at a local surgery. The heavy requirement for specific depth in the diagnosis of 

skin lesions is t herefore not one that the family doctor can be expected to meet 

and yet they must deal with the cases presented to them. The accuracy of the 

family doctor is unlikely match that of the dermatologist [9, 10] (although no 

study of this has yet been published perhaps due to the difficulty of ensuring 

statistical reliability). It would seem then, that t he most effective way of improv­

ing the efficiency in the diagnosis chain would be to target the initial diagnosis 

in the local surgery, and that a diagnosis support system could aid the GP by 

embodying the specific details of pigmented lesion diagnosis which the breadth 

of their discipline denies them. The increase in self referral due to public infor­

mation efforts could then be serviced more effectively by an improvement in the 

speed and accuracy of t he initial diagnosis and therefore a reduction in the load 

on expert dermatologists. 
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Computer Based 

Computer based analysis and diagnosis may well provide an avenue for the im­

provement of diagnostic accuracy and the speed with which it can be achieved. 

Computers offer objectivity and can provide consistent quantitative results, they 

can also offer benefits in storing records and cross-referencing as well as possibil­

ities for enhancing and combining multiple sensing modes such as UV, IR and 

ultrasound as well as visual images. It has been noted, for example, that com­

puters are ideally suited to the tasks involved in dysplastic mole surveillance -

change detection, quantitative measurement and deduction [29]. There has been 

considerable effort toward the development of systems to perform differential di­

agnosis of melanoma and other pigmented lesions including artificial intelligence 

and neural networks for diagnosis ( e.g. [35, 36]) and work directly on colour ( e.g. 

[13,37,38]), shape and edge-finding (e.g. [15, 17]). Such systems often reach a 

comparable accuracy to that of the dermatologists on their test data sets, how­

ever diagnosis is often restricted to a binary separation of two specific lesion types 

due to the complexity and number of possible diagnoses when dealing with the 

full range of pigmented lesions. 

Image Based 

It is possible for computers to be used only in the encapsulation of the knowl­

edge for differentiation, with an operator supplying measurements and observa­

tions as prompted and the computer making decisions based on this information 

(e.g. AI/DERM [29,39,40]). However, this mode of operation does not utilize the 

full potential of the computer to provide a valuable service on several counts: the 

system requires a trained operator with understanding of how to quantify obser­

vations such as variegated colour, the complete process may take a considerable 

amount of dedicated time, the objectivity and consistency of any quantitative re­

sults could be questioned (it depends on operator skill) and finally the diagnosis 

cannot be viewed as truly independent where the GP is the operator. 

The use of electronic digital imaging allows the required diagnostic measurements 

to be obtained directly by the computer from raw data. The operator no longer 

needs to be highly skilled or trained beyond proper use of the acquisition tool and 

the results can be viewed as an true independent analysis. The process would 

also take less time and involve less inconvenience to the patient as the need for 
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many measurements is avoided. In addition the advantages of data storage, cross­

referencing and change detection are enhanced as new measurements from existing 

raw image data can be taken as required without the necessity of re-examination 

of the patient. 

Visible Light Imaging 

Electronic imaging offers the possibility of multiple imaging modes beyond that 

of visible light. Ultrasound, MRI, X-rays, UV and IR have all been used in 

dermatological analysis [29] with high-resolution ultrasound providing useful in­

formation especially on tumour thickness [8]. A combination of imaging modes 

may well prove essential for sufficiently accurate diagnosis, however much of the 

medical information on differential diagnosis of pigmented skin lesions relies on 

visual inspection. This is understandable since the skin is visible to the naked 

eye and is illustrated by the high proportion of the checklist indicators that are 

based on visible features. A consequence of the emphasis on visual inspection is 

that a large proportion of the features needed for differentiation can be obtained 

from a simple visible light image, features such as size, shape, border irregularity 

and asymmetry and variegated colour can all be directly obtained. 

A system based on digitally captured visible light imaging has many advantages 

in the context of diagnosis support based in a local surgery. It satisfies the 

requirements of low capital and running expense; The home computer market 

has provided low cost video capture devices as well as personal computers of 

considerable power and the "cost" of an image is only seen in terms of disk space 

use. It has been shown that digitized images are no less informative in terms of 

diagnosis than are slides [41], which are often the current image storage medium 

and which are comparatively expensive, bulky and fragile. Digital capture time 

is close to instantaneous and patient inconvenience is minimal with visible light 

imaging, as there is no need for preparation or contact ( except perhaps a bar to 

fix the range and provide a scale and colour matching chart). Use of the system 

would require very little training, especially with a fixed-focus and exposure. In 

addition (providing accurate calibration and known frequency rendering are not 

required) effectiveness of the equipment and acquisition can be checked without 

expert knowledge or training by simply checking for a good visual reproduction. 
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Recently there has been a great deal of interest in Epiluminescence Microscopy 

(ELM) . This technique also uses visible light for imaging but the skin surface is 

rendered translucent by applying immersion oil and then covering the area with 

a glass slide. A new set of features is revealed by this process and t he specular 

reflections which often hamper image analysis are avoided. Unfortunately the 

image quality is often reduced by the presence of small air bubbles in the oil 

particularly where the lesion is elevated or hairs are present. The new features 

revealed are complex - there is a significant learning curve involved in interpreta­

tion of the image observed (8]. This is reflected in evidence that, without t raining, 

the use of ELM images actually reduces diagnostic performance (10, 42]. In addi­

tion, the existence of any diagnostic advantage over a normal clinical images is 

controversial [32, 42]. 

A commercial hand held ELM imaging device called the dermatoscope is available 

and is being evaluated by many dermatologists and two systems, the Skin Po­

larprobe [43] and MoleMax II (44] , use digital ELM images. Another instrument, 

the Nevoscope [45], has been developed which can provide the equivalent of ELM 

images without oil by using trans-illumination. This commercial device also pro­

vides standard images and several side and angle views and has associated image 

processing software [46] to calculate other features, however it has a small field 

of view and is bulky and expensive. 

The disadvantages of ELM in relation to the identified diagnosis support system 

for GPs lie in the complication of the image acquisition, increase in patient in­

convenience (albeit small) , need for more training (especially if the quality of the 

acquisition is to be verified), and the possibility that well known medical diagnos­

tic features will be altered or lost. Development of a system based on standard 

visible light images is therefore indicated and pursued here. 

Vector of Independent Diagnostic Features 

Design of systems based on a set of diagnostic features is not a new concept -

the majority of current systems are based on indicators similar to those in the 

checklists above, although other features such as textural roughness [20] have 

been used. The formation of the set of estimates is however rarely promoted as 

a goal, the emphasis generally lying in the performance of evaluations from new 
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or improved quantification methods for one or more of a small set of particularly 

powerful or well known features. The performance is most often gauged in terms 

of discrimination of a set of two lesion types ( often melanoma and benign nae­

vus), an approach which is understandable given the complexity of the diagnosis 

situation, the many types of lesion and the desire to assess performance in terms 

clearly related to the system domain of application. 

This situation has several negative impacts on progress toward a truly effective 

solution. Combination of features before evaluation precludes comparison with 

later work except in terms of effectiveness as a complete system or when consider­

ing the same set of indicators. The need for valid comparison drives the repeated 

investigation of the same indicators ( e.g. size, border irregularity and variegated 

colouring) . The desire for favourable comparison then results in particularly con­

centrated attention being given to indicators known to be particularly effective 

- starting with a less powerful indicator will reduce performance where this is 

measured as direct discriminative power and hence encouraging results are less 

likely. Finally, evaluation based on discrimination of a binary set of examples can 

be unhelpful or misleading in terms of the effectiveness of feature quantification 

as a certain feature may not divide the set exactly by lesion type any yet still be 

of considerable value in practice, for example surface disruption ( e.g. crusting) 

seen in melanoma is also found in dysplastic yet nonetheless benign naevi. 

The alternative approach of constructing piece by piece a vector of independent 

features offers many advantages and it would seem that every effort should be 

made to structure current and future work in this way. Under this paradigm the 

problem of diagnosis becomes separated from identification and development of 

feature estimators - there are many standard classification and reasoning meth­

ods and investigation of the relative merits of each is a large enough task in 

itself. Research into new features and the evaluation of improvements on existing 

features is also facilitated by this split and by the independent study of each fea­

ture - each element can be more thoroughly investigated, tested and evaluated 

and features need not provide a clean binary discrimination of medically defined 

types. Finally, the latest features can be more simply linked into existing final 

diagnosis implementations where these have been constructed with an abstracted 

and separate view of the feature vector and its compilation. 
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When constructing a vector of feature estimated, a number of considerations 

should be borne in mind: 

• A global aim of high sensitivity must be maintained; it is essential that the 

final system keep to an absolute minimum the proportion of malignant le­

sions classified as benign - even if this is at the expense of some specificity, 

i.e. even if this results in more benign lesions being classified as malignant. 

This suggests the use of a larger number of features and the importance 

of a level of independence between them to avoid a single unusual aspect 

in a given case affecting all the estimates. The importance of multiple 

acquisitions via independent avenues of vital features is also highlighted, 

an example being boundary confirmation through comparison of texture, 

colour and intensity based methods as size, symmetry and boundary irreg­

ularity as well in-lesion ( colour presence and variegation) and differential 

(lesion- surrounding skin) measurements and all rely on this information. 

• The focus should be on distinguishing features which are effective on early 

lesions - analysis of very large, ulcerated and bleeding lesions should be 

de-emphasised and these should perhaps not appear in test sets for assess­

ment of indicators (such lesions would probably warrant specialist attention 

regardless of diagnosis). 

• It is desirable that the reasoning behind a diagnosis be humanly accessible 

- indicators should reflect a known medial indicator or at least have visual 

meaning wherever possible. In this way confidence in the diagnosis can be 

increased by human verification that the features do indeed appear and, of 

course, it allows the diagnosis to be explained to a patient. 

• It is desirable that diagnosis can be presented as a case of recognizable 

features (related to the above point). Medical texts [1, 5] often approach 

differential diagnosis by proposing likely alternatives - a case-based best 

match approach. Transfer of knowledge from texts and experts would be 

facilitated with such a system and the diagnosis is made more accessible 

to professionals by reflecting standard medical practice. In addition case 

development can be compared over time allowing new developmental anal­

ysis. 
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The checklists provide an obvious first source of indicators and, as mentioned be­

fore, much research and many current systems are essentially based upon a subset 

of these. Direct utilization of just the checklist features for diagnosis is however 

questionable since they have been specifically designed with the overriding aims 

of both simplicity and of detecting all malignancies regardless of cost in terms 

of specificity. However, given the known effectiveness of these indicators and the 

importance of both explainable diagnosis and high sensitivity in the primary care 

situation of the envisaged system, these indicators should obviously should form 

a valuable part of a more complete feature list . 

3.4 A Computer-Based System 

From the considerations discussed above an outline descript ion of an effective 

diagnosis support system for pigmented skin lesions has been synthesised: 

Aim: 

Requirements: 

To provide differential diagnosis support for pigmented 

skin lesions in the primary care setting. 

1. minimum capital and operational cost 

2. minimum patient inconvenience (also time) 

3. minimum training for operation 

4. robust and explainable diagnosis 

From this basis conclusions have been drawn concerning the nature of a sys­

tem best suited to the identified need and the structure of research towards this 

system. 

Conclusion 

i. Based on normal visible light imaging. 

11. Using Off-the-shelf technology 

iii. Tolerance to non-ideal capture 

iv. High sensitivity to malignancy and good specificity 

v. Vector of independent feature estimates 

v1. Using visually verifiable features 

drawn from 

(1,2,3,4) 

(1,i) 

(1,3,4,ii) 

(4) 

( 4,iii,iv) 

(4) 
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3. 5 Con cl us ions 

The task of providing diagnosis support to aid in the fight against skin cancers 

is far from simple. The discrimination task itself is widely recognized as dif­

ficult even for experts in the field - no simple set of non-invasively obtainable 

information is known which allows even a near perfect diagnosis. Information 

campaigns for the public and GP's have presented many valuable indicators and 

several systems to aid in diagnosis. 

Skin cancer, part icularly melanoma shows hugely improved prognosis with rel­

atively simple surgical intervention when t he lesion is removed early in its de­

velopmental cycle, before invasion and metastasis. Earlier diagnosis and quicker 

referral times are therefore a priority and this suggests a focus on improving the 

speed and accuracy of primary care diagnosis. The breadth of knowledge de­

manded of a GP precludes the specific depth required given the difficulty and 

highly skilled nature of the discrimination task and this suggests the need for a 

diagnosis support tool. 

An effective diagnosis support tool for the primary care sector must satisfy the 

key requirements of minimum capital cost, minimum t raining for operation, and 

minimum operating t ime, cost and fuss. The diagnosis needs to be highly sensit ive 

so as to avoid missing any cancers whilst retaining a satisfactory specificity to 

avoid excessive referrals. 

An image based system avoiding specific requirements on image capture and 

using simple off-the-shelf and therefore low cost home PC technology is indicated. 

The complex nature of the discrimination task suggests the development of a 

wide range of mutually independent feature estimates. These should be related 

to known medical indicators or visible features in order that confidence in the 

diagnosis can be boosted through interrogation of the "reasoning" underlying the 

final diagnosis. 
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Boundary Finding 

This chapter concerns the identification of lesion extent. The importance of this 

information in terms of directly obtainable diagnostic indicators and the enabling 

of both lesion area, and comparative lesion/surrounding skin evaluations is ex­

plained. The inherent problems and difficulties encountered in identifying the 

border are highlighted. A brief overview of research into boundary finding for 

skin lesion images is given as a prelude to the description of the Edge Focusing 

process which was the product of earlier research [16, 17]. In order to facilitate 

the further development , improvement, evaluation and integration of the edge 

focusing technique, the existing process was reconstructed in the Khoros II en­

vironment [22, 23]. In Khoros, the entire process is decomposed and presented 

in a highly visual manner with the basic processing actions linked by data flow 

lines. This presentation is ideal for experimentation since elements can be readily 

exchanged, allowing for simple evaluation of alternatives and for reuse of elements 

in future projects. The process and results of this porting into the highly modular 

and more intuitively accessible form within Khoros II are described and discussed. 

Finally, the limitations of the edge focusing technique are reviewed in relation to 

its use in the later sections of this study, the possibilities for improvements are 

discussed and the boundary definition policy employed in t his work is presented. 
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4 .1 Lesion Boundaries 

Many of the important diagnostic indicators identified for the clinical assessment 

of malignancy in melanoma can be obtained from boundary information alone. 

Well known indicators in this category include size, border irregularity, notching 

and asymmetry (6, 7, 32]. The extent of the lesion is also a vital prerequisite for 

analysis of other features of the lesion such as texture and colour indicators [47], 

allowing for example the quant ification of variegated colouring in the lesion and 

texture difference between the lesion and surrounding skin. 

The ident ification of the lesion extent is however far from t rivial. In order to 

retain diagnostic accuracy of features that directly or indirectly rely upon it, the 

acquired border must be of dependable accuracy, reliability and consistency. This 

means that the boundary must be correctly identified and reflect a consistent at­

tention to detail in a manner robust to a wide range of image imperfections. This 

is perhaps especially important given the diagnosis support system as envisaged 

and its requirement to work with low cost equipment and minimal operator train­

ing. Images may include features such as rulers, image calibration scales, skin 

hairs and the edges of limbs, and the boundary needs to be ident ified in spite of 

these as well variations in light ing and camera position and orientation [16] . 

In addition to all these complications there is also considerable difficulty in pro­

viding a good definition of the lesion boundary: A poorly defined or 'blurred' edge 

is an indicator associated wit h malignancy as is inflammation - where should 

the boundary lie when the lesion fades into the skin, and should the lesion be 

taken to include a surrounding inflamed area? Specific types of lesion such as 

halo naevi (is the halo part of the lesion?) also present problems as do areas of re­

gression in tumours ( especially where these are adjacent to the surrounding skin) 

and tumours which are only part pigmented. In most cases the 'gold standard' 

used in analysis of performance relates to either outlines drawn by dermatologists 

or to simple visual inspection. 

The importance in terms of diagnosis of, and the difficulties involved in obtaining, 

accurate and reliable boundary information has naturally been reflected in con­

siderable research interest in this topic. Some research directly uses boundaries 
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drawn by an operator [48, 49] however this approach is both time consuming and 

heavily subjective. Automatic detection would be much more valuable for use in 

a diagnosis support system. A wide variety of automatic methods have been pro­

posed, based on grey-scale intensity, colour or texture data. Multi-channel tech­

niques are also used, merging information from more than one of these sources, 

and it is common to begin with colour data and pre-process this to provide a more 

useful single element data image than the simple grey-scale intensity, intending 

to capture the essence of the colour information. 

Claridge et al [11] used a semi-automatic thresholding technique on grey-scale in­

tensity images with operator confirmation of suitability being required. A thresh­

old approach has many problems with the less distinct cases and may result in 

the identified lesion area being composed of multiple regions or containing holes 

where the threshold is too high, or in non-lesion areas being identified as lesion if 

the threshold is too low. Often there is no threshold which provides a truly suc­

cessful result although the application of binary morphological closing can rectify 

some of the problems with holes and breaks caused by higher thresholds. 

Umbaugh et al [12] and Ercal et al [13] present more sophisticated techniques 

based on colour data. These techniques transform the original colour-space and 

then use colour quantization and thresholding with region growing respectively 

to identify the lesion extent. Hance et al [37] compared a wide range of border 

identification techniques and conclude that of those tested, that of Umbaugh et al 

[12] performed best. Dhawan et al [14] propose a complex algorithm combining 

a pyramid segmentation scheme using intensity data, and co-occurance matrix 

evaluation of colour texture information. All these techniques and the review 

are considered in more detail in the chapter on colour analysis, and the texture 

element of Dhawan et al [14] in the chapter on texture. 

Segmentation can be pursued not only by identification of homogeneous region 

extent, but also by finding edges (points of rapid change in image value) directly. 

Such techniques generally use a single element image data (such as grey-scale 

intensity) to avoid the complex issues of inter-element interactions. By looking 

for change across the lesion boundary problems of sensitivity to overall intensity 

variations are reduced. Perednia et al [50] used a fixed size Laplacian of Gaussian 
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(LoG) filter (LoG filters are described later in this chapter) on an image taken 

at low resolution in order to avoid unwanted small image features. Interpolation 

was used to find the lesion to sub-pixel accuracy. Golston et al [15] present an 

alternative method which uses a 'radial search' concept on a intensity image to 

find a boundary as part of a multi-channel approach combining colour, luminance 

and texture based boundaries in relation to confidence measures. The radial 

search algorithm considers data on radial lines extending from the image centre, 

which is assumed to be the approximate centroid of the lesion. The lesion border 

is detected as a sustained jump in grey level on these radial lines. The identified 

boundary points (excluding those significantly different to their neighbours) are 

joined using a B-spline curve. The method is computationally inexpensive but it 

requires that the lesion boundary cross each radial line only once. 

Although not for lesion images specifically, snakes (also called active contours) 

[51] have often been proposed for the segmentation of medical images. The fol­

lowing are some recently published examples. Yezzi et al [52] propose a geometric 

snake method for segmentation of MRI, CT and ultrasound medical imagery. The 

method uses feature-based metrics and unifies curve evolution and classical en­

ergy minimization approaches and its effectiveness on relatively noisy images is 

illustrated for examples in each of the three imaging modalities mentioned above. 

Mikic et al [53] focus on dynamic segmentation for image sequences. They review 

some of the existing snake models before describing their new model which intro­

duces optical flow estimates into the snake technique to aid in tracking moving 

boundaries in the image sequence. The technique is used to track cardiac struc­

tures in ultrasound image sequences and found to be generally successful even 

where large between-frame displacements occur. Although snakes are often effec­

tive, the success of these methods depends upon the choice of an energy equation 

which clearly reflects the boundary to be found. The difficulties in obtaining an 

exact definition of what constitutes a lesion boundary, as discussed earlier in this 

section, therefore significantly hamper the use of snakes for this application. 
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4.2 Edge Focusing 

The Edge Focusing technique for lesion boundary identification forms a major 

part of previous PhD research [16] concerning medical image analysis at the 

University of Wales, Bangor. Edge focusing provides a means by which a detailed 

boundary can be obtained which is robust to many forms of contaminating image 

feature and image capture imperfections. In essence the technique, which is based 

on that proposed by Bergholm [54], works by selecting an optimal border from a 

sequence of increasingly fine scale estimates for the boundary of the most lesion­

like object in the image. 

The complete edge focusing system can be broadly divided into three stages; pre­

processing, generation of an edge estimate sequence, and optimal edge selection. 

Preprocessing 

The goal of the preprocessor is to provide the approximate size and location of 

the most lesion-like object in the image. This is achieved by the sequence of 

operations illustrated in figure 4.1. The stages involved are: Smoothing with 

a 7x7 window median filter to remove small scale noise features, thresholding 

using the Kittler [55] process which automatically selects an 'ideal' t hreshold, in 

this case based on pixels of high gradient, morphological closing to remove very 

small regions and holes in the 'lesion' areas, tracing to convert the binary image 

into coordinate sets representing the separate objects identified in the image, and 

finally identification of the most lesion-like object by the application of a set of 

heuristics covering size, shape and location properties. 

Image ~--c>-•~ Kittler 
~ Threshold 

Identify 
Lesion 

Boundary 

Morphological 
Closing 

Trace 
Boundary 

Space Constant 
& 

Initial Region 
Clipped Image 

Figure 4.1: Preprocessor: find most lesion-like object. 

A later version of this stage first applies tilt removal by least-squares fitting a 
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plane to the image, and subtracting a zero-mean version of this from the original 

image. This helps reduce some problems with the thresholding process caused by 

inconsistent illumination, however the research in this study did not include this 

stage. 

Edge Sequence Generation 

The essence of the edge focusing process is contained in the edge sequence gen­

eration stage. The sequence is generated by an iterative process which begins by 

detecting large scale edges and then reduces the scale of detection step by step, 

but searching for edges only close to that found in the previous step. There are 

two reasons for limiting the search in this manner: firstly the computational bur­

den of the actual edge detection is reduced, and secondly the confusion of edges 

that results from the sensitivity of a smaller scale detector to small image 'noise' 

features is avoided. The result is a sequence of edges that adhere to increasingly 

fine variations in the lesion outline. 

This conceptual process can be used with any scalable edge detector. Two such 

detectors, LoG and Canny [56] were used with lesion images in [16] and both 

were found to be effective. The LoG detector was used to create the boundaries 

used in this study. The LoG edge detector consists of two stages, convolution 

of the image with a LoG filter followed by identification of zero-crossings. The 

Laplacian is a second order differential filter and combination with a Gaussian 

'window' results in a radially symmetric two-dimensional kernel which finds the 

edges in a smoothed version of the image. The LoG filter kernel is defined as 

follows and the two dimensional representation to the right clearly shows its 

characteristic 'Mexican hat' shape: 

(
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The second order nature of the detector means that edges are indicated by lo­

cations where the output changes from positive to negative values, called zero­

crossings. 
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Figure 4.2 illust rates the process of edge sequence generation using the LoG edge 

detector. LoG convolution and zero-crossing detection are denoted by LoG and 

ZC. The detection is followed by edge tracing to reduce the image information 

to coordinate form and edge cleaning to provide a single closed boundary, these 

two steps are respectively denoted by TR and CL. GenM denotes the conversion 

of boundary coordinates into the two mask image types (fA and fB) required for 

the next iteration. 
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Figure 4.2: Edge estimate sequence generation. 
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The initial scale of the LoG filter is calculated so that only features of the size 

as estimated by the preprocessing stage for the lesion will be detected. The 

process works on a sub-image provided by the preprocessor which is centred on 

the identified lesion object and which is DC padded (replication of the outermost 

pixels of the image) so that the initial LoG filter can correctly function for all 

the pixels near to the preprocessor's estimate of the lesion boundary. Subsequent 

(frames' in the edge sequence use filters on a linearly decreasing scale (the space 

constant <Jsc is reduced by 0.5) chosen so that theoretically the edge will move at 

most one pixel between each frame. 

Boundary Selection 

The boundary selection stage simply aims to identify the optimal edge in the 

sequence. The notion of optimality in terms of edges for lesions is not a trivial 
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matter as discussed earlier. However, the simple definition of 'boundary quality' 

as the degree of separation between dark lesion and light skin allows the automatic 

selection of a visually sensible frame from the sequence. This definition is also 

reasonable considering that the edge focusing process is designed to find the lesion 

boundary in a grey-scale intensity image based on rapid change in image value 

(the notion of an 'edge') . 

Figure 4.3 gives a representation of the process applied to each frame in the 

sequence. The boundary quality estimate is calculated as the ratio of the mean 

value for the strip of pixels just inside the boundary and the mean value for the 

strip of pixels just outside the boundary. The minimum of these values then 

indicates the optimal boundary. 

-------- , 
Edge __..: M~e r--' ----1:>1 Mean 

: Inside : 
Edge Info~. & : (inside) I 

: Outside I ~a , ;JI Separation 
: _ Masks _ : -----=► Ratio 

Mean 
Clipped Image --------< (outside) 

Figure 4.3: Boundary selection: select optimal edge from sequence. 

4.3 Porting To Khoros 

Image processing systems, regardless of their application domain, often essen­

tially consist of a number of elemental processes, such as edge detection or image 

smoothing, applied in a certain order to an input image. Moreover, a substantial 

proportion of these processes can be achieved through various methodologies, for 

example, edge detection via Laplacian of Gaussian, Sobel, or texture operators 

and pixel classification by K-means, Bayesian statistical analysis or various neural 

network architectures. The advantages of developing a system in an environment 

designed on the principle of data flow between stand-alone processing elements 

are therefore clear. This principle, together with automatic code management, 

a library of image processing elements and a visual programming language form 

the basis of the Khoros [22, 57] environment. 

42 



Chapter 4 Boundary Finding 

In order to facilitate both the further development, improvement and evaluation, 

as well as the integration into further work, of the edge focusing technique, the 

existing system was reconstructed within the Khoros environment1 using its vi­

sual programming environment, Cantata [23]. As a result, the entire process is 

decomposed and presented in a highly visual manner with the basic processing 

actions linked by data flow lines. This presentation is ideal for experimentation 

since it is not only highly modular and more intuitively accessible, but also allows 

elements of the process to be readily exchanged, allowing for simple evaluation 

of alternatives and for reuse of elements in future projects. 

The Re-Implementation Process 

The process of re-implementation within Khoros' Cantata follows the pattern of: 

selecting elements, defining their interfaces, encapsulating them within Khoros 

glyphs and finally linking these together to reconstruct process as a Cantata 

workspace. 

As discussed above, The edge focusing system can be broadly divided into three 

stages; preprocessing, generation of an edge estimate sequence, and optimal edge 

selection. These stages are intuitively separate being pre, main and post process­

ing and were implemented as separate workspaces. Within each of these stages 

the system must be decomposed into units that represent the various elements of 

the process. These units can then be presented as Khoros glyphs from which the 

process stages can be rebuilt by linking them together to indicate the data-flow. 

The process of deciding the extent (functionality content) of each glyph is anal­

ogous to designing a flow-chart; too much in one element and understanding is 

impaired and the workspace will not display its own function, too little and the 

flow becomes over complex and the overall picture cannot be seen. An additional 

consideration for glyphs is the reduction in re-use potential for large (and hence 

highly specific) glyphs versus the overhead incurred in data transfer between 

overly small glyphs. 

The edge focusing stage illustrations in figures 4.1, 4.2 and 4.3 of section 4.2 are in 

fact directly modeled on the workspaces which resulted from re-implementation 

1 Khoros II (version 2.2.0) was in use at time of writing 
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of the system within Khoros. Figure 4.4 shows the actual appearance within 

Cantata of the edge estimate sequence generation stage - the contents of the 

loop ( corresponding to the lower half of the process illustration in figure 4.2) are 

displayed by clicking on the 'While Loop' glyph. 

----ii 
,._.._...., Out(info) 

copy_ktran 

ln(info) 

Figure 4.4: The Khoros workspace for edge estimate sequence generation. 

Many of the elements required for the conversion of the preprocessor stage exist 

as pre-defined glyphs from the Khoros standard distribution. New glyphs were 

required for the Kittler thresholding algorithm and the heuristic lesion object 

selector, Identify Lesion Boundary. The existing C code for Kittler thresholding 

was inserted into a glyph simply using the Khoros data transport functions as 

a shell surrounding it . The lesion object selector however, was re-implemented 

in order to allow for greater flexibility and transparency in the heuristic process. 

This decision was proved to be advantageous when, during final testing stages, 

it was discovered that changing the final selection heuristic (from 'smallest bulk­

iness' to 'most central' of those regions remaining) yielded a greatly increased 

robustness in identification of the lesion object. 

The edge sequence generation stage required four main elements to perform the 

LoG convolution, zero-crossing detection, edge tracing and edge cleaning. These 

were created by wrapping the relevant C code from the existing system with 

Khoros data transport functions as with the Kittler thresholding. The only other 

element or glyph required was one which could generate the required masks for the 
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next iteration from the coordinate file output of CL. Such a tool had already been 

partially devised for the testing of the glyphs mentioned above. The addition of 

some control over the draw format was all that was required to make the existing 

glyph perform the required task. 

All the elements required for the optimal edge selection stage were available as 

pre-defined Khoros glyphs or had been created for use in the other stages. 

4.4 Discussion 

This section begins by evaluating the Khoros implementation of the edge focusing 

system both in terms of results and performance relative to the existing system, as 

well as in relation to the goals motivating the conversion. Next the performance 

in relation to the image set used in this study of the edge focusing technique in 

general is considered and particular limitations are highlighted. Some possibilities 

for improvements to this general performance are then discussed, and finally the 

boundary definition policy used in the remainder of t his study is presented. 

4.4.1 Evaluation of the Khoros Conversion 

Evaluation of the reconstructed system was undertaken using two differing mea­

sures. Firstly results and stability were compared with the existing system and 

secondly the envisaged improvements in adaptability, accessibility to experimen­

tal change, and reuse potential were investigated. 

Over a range of initial input images, the new system was seen to consistently 

duplicate the results obtained from the original both in terms of the generated 

edge sequence and the selection of best boundary made. However, the new system 

was seen to be slightly less stable than the original - failures occurred in some 

cases resulting from underestimation of lesion object size by the pre-processing 

section. A variety of contributing factors to this underestimation were identified, 

an example being a different definitions of morphological operators in the Khoros 
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contributed toolbox MMACH. 

The new system was appreciably slower than the original, mostly due to the 

Khoros data-flow paradigm resulting in the reading and writing to files between 

each glyph element. The implementation of the edge sequence generation stage 

has however been improved over that discussed in [23] which 'stacked' the coor­

dinate information for each frame into a single file. The reading and writing of 

this growing file for each frame was found to involve a considerable time penalty, 

the current implementation (termed non-stacking, ns) avoids this by using sep­

arate files whose name contains the frame number. The implementation of the 

optimal selection stage did not require the creation of any new glyphs, however it 

does consequently involve a large number of glyphs so that the execution time for 

the stage is dominated by file transport between glyphs. The speed of this stage 

could be dramatically improved by merging the functionality of a number of these 

glyphs into a new single glyph. The general speed issue has also been addressed 

directly in the current version of Khoros which now allows inter-glyph data flow 

to be carried out using faster transports such as pipes and shared memory, use 

of which may well considerably reduce this speed difference. 

In terms of the envisaged accessibility improvements, the process of testing re­

peatedly demonstrated the advantages of access to all data passed between the 

glyphs - the faster, but transitory, transports now available in Khoros are not 

used in the current version for this reason. The availability of a variety of data 

visualization and analysis tools which can simply be 'plugged in' to the output 

of any glyph greatly increases development prototyping and testing turnover. 

The displayed workspaces describe the method for the system they contain nearly 

as well as a separately prepared flow-chart, which is a great advantage in terms 

of reuse and development potential for the system. In addition, a number of the 

glyphs developed during this project have already been reused in other research 

undertaken by this group. 

In all the new system satisfies the aim of making the edge focusing boundary gen­

eration system much more accessible for use in the development of the envisaged 

lesion diagnosis support package. 
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4.4.2 Limitations of the Edge Focusing Technique 

The difficulties involved in providing even a reliable definition of what constitutes 

the boundary of a lesion make generalized evaluations of the performance of 

the edge focusing technique difficult. The generation of synthetic lesion images, 

where the true border location is a known parameter of the generation process, 

therefore provides an important tool for detailed evaluation of performance [18] 

and this technique has been used to supplement trials on real lesion images in 

the research which originally produced the lesion boundary edge focusing method 

[16]. This combination of evaluating both synthetic images in relation to their 

known boundaries, and real images in relation to manually defined boundaries is 

perhaps the most reliable method available. 

The discussion here however, concentrates on the performance of the edge focusing 

technique in relation to the particular image set used in this study. Four main 

problems exist for the technique: 

Not enough surrounding skin. Some of the images used in this work contain 

lesions whose borders come very close to, or even touch the edge of the 

image. As noted in the description of the edge focusing algorithm earlier 

in this chapter, the proper function of the LoG filter requires a sufficient 

area of data surrounding the boundary location so that the whole filter, 

when centred on the boundary location, will fit into the image. In most 

cases where the lesion only comes close to the edge of the image, the use 

of DC padding allows the process to proceed effectively, however in cases 

where the boundary is too close to the image edge the gradient informat ion 

is critically corrupted by the padding and where the boundary actually 

touches the edge of the image padding is always ineffective. The malignant 

melanoma shown in figure 4.5 top left is such a case. 

Lesion boundary poorly defined. Lesion boundaries are not always well 

defined 'edges'. The proper function of any edge detection based boundary 

finding method requires that the boundary can be seen as a clear gradient 

in the image data being analysed. Furthermore, correct localization of the 

border requires the consistent identification of a feature of the edge (for 
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example its maximum gradient) with the lesion boundary. Lesions such as 

the benign naevus shown in figure 4.5 (top right) with 'fade in' boundaries 

can cause difficulties relating to these requirements: The smoother hand 

drawn boundary (shown in green) is the outline of the discernibly different 

light brown lesion area, which is considerably different in some areas to the 

generated boundary (shown in red) . 

Lesion 'colours'. Lesions often show a number of different colours, for example, 

variegated colouring is a widely recognized indicator of melanoma, halo 

naevi derive their name from their de-pigmented border and lesions may 

well show inflamed borders. Different colours cause problems both because 

edges exist between each area of differing colour, and in normal grey-scale 

intensity images some different colours are seen as the same grey level. The 

benign naevus shown in figure 4.5 centre left and centre right, provides a 

good illustration of such problems. In the colour version, the edge of the 

central dark brown area is more pronounced than the edge of the entire 

lesion. Furthermore whilst the pink area to the left of centre is clearly 

distinguishable from the light brown below it in the colour version, in the 

grey-scale version there is no apparent difference. In addition some lesions 

clearly extend beyond the pigmented area, as in figure 4.5 bottom left. 

Non-uniform illumination and loss of focus. Non-uniform illumination 

can cause problems in boundary detection as the pixels corresponding to a 

single image area such as the skin can, as a result, show 'false' variation in 

intensity. The top left image in figure 4.5 has a clearly brighter band across 

the centre. The original lesion image edge focus process used illumination 

tilt compensation to tackle this problem, however it is evident that the 

technique as used, which fitted a plane to the illumination, would not be 

successful in cases similar to the example which would require the fitting 

of a more flexible surface. The band of increased brightness in the example 

could have been the product of curvature in the subject, such as resulting 

from the lesion being located on the arm or leg. Subject curvature can 

also cause loss of focus, and consequently loss of fine detail in areas of the 

image. Although this is generally not problematic for techniques such as 

the LoG edge detector which employ smoothing and therefore remove the 

fine detail anyway, it can cause problems for pixel similarity segmentation 
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techniques as the different areas will fade into each-other, for small-scale 

texture techniques as the properties of pixel value variations are changed 

by blurring, and for large-scale texture techniques such as that presented 

later, which analyses fine linear features which are lost by blurring. 

Image 'noise' features - hairs. Image features also exist such as scales, 

rulers and hairs, which essentially can be classified as noise in terms of 

boundary detection. For the image set used here the only such feature that 

has proved significant has been the presence of hairs. Dark hairs are seen as 

highly significant edges and consequently they cause 'glitches' in the line of 

the boundary where the detector attempts to include the linear hair feature 

as part of the lesion. 

4.4.3 Improvements 

The first of the identified problems can only be realistically solved by better 

control in the acquisition of the images. The resolution of even relatively inex­

pensive modern digital cameras would allow t he use of a relatively wide field of 

view whilst maintaining the level of spatial resolution used in this research. The 

full edge focusing technique is designed to be tolerant to image features such as 

limb edges which may result from the adoption of a wider field of view. The 

addition of a means of identifying the skin areas would of course be necessary 

for skin/ lesion differential measures, however simple procedural control at the 

capture stage (such as the use of a bright blue cloth backdrop) should make this 

information readily accessible. 

There is no simple solution to the lack of a good definition for what constitutes 

the edge of a lesion. 

The problem of different lesion colours can be addressed by the development of a 

better mapping from colour information to values which more clearly represent the 

lesion/skin distinction. Several such transforms have been proposed as mentioned 

earlier and discussed in detail in the Colour chapter. However, it is not clear 

whether a 'perfect' transform even exists and furthermore, the problem of part-
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Figure 4.5: Example images illustrating performance issues for the edge focusing 
technique. 

pigmented lesions still remains. It is likely that a multi-channel approach merging 

boundaries obtained from different initial data ( edge, colour, texture and possibly 

even other image modalities such as UV, IR and ultrasound) would be required 

to obtain a truly reliable boundary. 

Non-uniform illumination could be addressed through illumination surface cor­

rection. As identified above, a simple planar surface as used in the original edge 

focus process would not always be sufficient, however more flexible surfaces could 

cause problems by 'correcting' for the darker lesion area as an illumination surface 

artifact. Loss of focus may be correctible using techniques such as de-convolution, 
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however this would involve calculation of the correct point-spread function as it 

varies over an image. Neither of these issues could be investigated in any detail 

in the time available for this study. 

The difficulties which can be caused by hairs obscuring lesion images has been 

recognized by Lee et al [58] who propose the Dull Razor algorithm as a possible 

solution to this problem. In essence the process simply locates strong and ex­

tended linear features and then uses interpolation between values either side of the 

hair to 'erase' the hair from the image. The linear feature detection is performed 

using grey-scale morphological closing with linear structuring elements oriented 

at 0°, 45° and 90° combined by taking the maximum of these three results. The 

red, green and blue bands are processed separately and the 'hair mask' for band 

x , Mx is defined by thresholding the absolute difference between the combined 

morphological result and the original values for the band. The final mask M is 

the union of Mn, Ma, and M 8 . M is then refined by accepting only extended 

linear regions. The length of the longest line segment within M, for each of the 

eight major directions radiating from each pixel in M is calculated. Only pixels 

for which the maximum of these lengths is greater than 50 and the minimum less 

than 10 pixels are accepted. The hair pixels defined by M are then replaced by 

interpolation between the value 11 pixels beyond either side of the hair area along 

the direction of the shortest length. In the resulting image at this stage thin and 

relatively faint lines are still often seen marking each side of the hairs. These are 

removed by performing adaptive median filtering for all pixels within M dilated 

by a 5 x 5 square structuring element. 

Figure 4.6 shows an example of Dull Razor application to a grey-scale image. 

The original image (left) has a number of significant hairs which are removed 

effectively in the processed version (right). The use of Dull Razor, in combination 

with the research into colour analysis, was not pursued as the impact of hairs in 

the images used in that work was not significant. The smoothing performed as 

part of the Dull Razor process made this technique inapplicable to the work on 

texture analysis as it removed the fine detail needed for that analysis in some 

parts of the image. This can clearly be seen in the processed example shown, 

especially in the skin to the left of the lesion. In terms of future work however, 

the impact of Dull Razor as a pre-processing step for the edge focusing technique 
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should nevertheless be addressed. 

Figure 4.6: An example of Dull Razor hair removal processing. 

4.4.4 Boundary Definition Policy 

Boundary information is used in both the colour and texture analysis sections 

of this study. In the former the boundaries are used to identify lesion and skin 

in the analysis of colour properties and in the latter for lesion/skin comparative 

evaluation of a texture based feature. 

The boundaries used in this study were, wherever possible, generated using the 

edge focusing system (using the Khoros version and starting with standard grey­

scale intensity image). However, the problems outlined above meant that some 

boundaries were not obtainable via this automatic method. The automatic pro­

cess was deemed to have 'failed' where the edge focusing process could not be 

applied (such as where the lesion touches the edge of the image) or the final 

boundary was considerably different from that of a visual estimate as defined be­

low (as can result from, for example, indistinct boundaries and boundaries which 

come too close to the edge of the image). In failure cases a boundary has been 

constructed by hand from grey-scale intensity images so as to correspond with the 

the limit of the first reasonably different intensity from that of the surrounding 

skin. This means that the lesion is identified as the extent of the noticeably darker 

grey area (including any areas ofregression inside the notional lesion). Grey-scale 

intensity images were used so as to better resemble the results obtained using the 

current implementation of the edge focusing system. 
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The construction of boundaries by hand is both highly time consuming and nat­

urally prone to problems of subjectivity and inconsistency, with the final result 

often less faithful to small scale boundary irregularities. The part automatic, part 

hand constructed boundary set is sufficient for the purposes of this work as the 

extreme accuracy and consistency required to perform analysis such as boundary 

irregularity are not vital for the colour property analysis, and small variations in 

boundary location are likely only to produce small variations in the comparative 

texture feature analysis presented in this study. 

4.5 Conclusions 

Robust and accurate identification of the extent of a lesion is a vital element of any 

image based skin lesion diagnosis support system. Boundary information directly 

enables the estimat ion of a variety of important diagnostic indicators such as size, 

shape, asymmetry and irregularity. In addition, and directly relating to the main 

body of the research presented in this study, boundary information enables the 

evaluation of features and properties both for the lesion area in isolation, and 

comparatively between the lesion and surrounding skin. 

Boundaries drawn by hand suffer from both inter and intra-observer inconsistency 

and are further hampered by the difficulty in providing even a good definition of 

exactly what constitutes the boundary of a lesion. Naturally the desire for an 

automated boundary detection method is strong and consequently much research 

has been directed toward this aim. In previous research, the edge focusing tech­

nique has been proposed and shown to be effective and reasonably robust as a 

means of accurate automatic lesion boundary detection. 

The existing edge focusing system was reconstructed in the Khoros II environment 

in order to facilitate the further development , improvement, evaluation and inte­

gration of the technique. To achieve this the entire process was decomposed into 

its functional elements and then rebuilt within the Cantata visual programming 

environment of Khoros. Within Khoros, the implementation the edge focusing 

process is presented in a highly visual manner with the basic processing actions 
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linked by data flow lines. Evaluation in terms of the goals driving the conversion 

have shown the value of this presentation; it is ideal for experimentation since 

elements can be readily exchanged, allowing for simple evaluation of alternatives 

and for reuse of elements in future projects, and it greatly increases development 

prototyping and testing turnover by allowing access to all data passed between 

the process elements and by providing a variety of data visualization and analysis 

tools which can simply be 'plugged in' to examine the data at any point. The 

re-implemented system has a significantly longer execution time due to the over­

head involved in data flow using permanent files. However if speed becomes an 

important issue, Khoros provides the option of using much faster, non-permanent 

(but consequently non-interrogable) data transports. 

In general the edge focusing technique is effective in providing robust and ac­

curate lesion boundaries, however certain situations (such as lesions with highly 

indistinct boundaries and lesions which extend to the edge of the image) can 

cause poor results or failure. Possible solutions are proposed for some of the 

identified problems including the use of the Dull Razor technique for removing 

hair features from the image. The boundaries used in this study are governed by 

a boundary definition policy which is in essence that: boundaries are obtained, 

wherever possible, from the edge focusing system, but where the automatic sys­

tem is ineffective or fails, boundaries are constructed by hand. 
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Colour 

This chapter details the research undertaken into the possibilities for obtaining 

diagnostic feature information through the use of colour data. The importance of 

colour in diagnosis of skin lesions is widely recognized and reflected in the inclu­

sion of colour features in both skin cancer checklists and in differential diagnosis 

descriptions. The concept of colour is introduced and the implications in terms 

of colour model resulting from requirements of the envisaged diagnosis-support 

system are discussed. The particular features pursued in image based diagnosis 

of skin lesions are identified together with the different methodologies used in 

their detection and computer based analysis. Current research into colour image 

analysis (the methodology most suited to the envisaged system) particularly for 

skin lesion images and their segmentation is reviewed. The underlying goals of 

segmentation, particularly in relation to lesion images, are investigated in detail 

and conclusions are drawn resulting in the development of a new region-based 

technique. Initial results prompt a detailed consideration of other colour-spaces 

together with suitable colour similarity measures and patterns of lesion data dis­

tribution for them. Finally the segmentation performance on the new transformed 

data is presented and discussed. 



Chapter 5 Colour 

5 .1 Colour Imaging 

Although colour seems at first to be a simple concept, expression of exactly what 

the term means in practice is far from simple. In an abstracted sense the colour 

of an object is the combination of the intensity of reflected radiation over the 

range of frequencies known as visible light. The colour of an object is therefore a 

product of both t he intensity of illumination across this entire spectrum coupled 

with the reflectance and scattering properties of the materials from which the 

object is composed. 

Consideration of colour in terms of such a model of complex interactions would 

however be awkward and confusing for the purpose of the discussions which follow. 

A much simpler model will be used in which colour is described as a combination 

of intensity of reflected light in the three bands of red, green and blue (RGB). 

This model reflects human colour perception and is widely used in the represen­

tation of colour images and especially so for digital imaging and computer based 

applications. 

The requirement, in the overall diagnosis support programme, for a low cost sys­

tem indicates the need to use inexpensive commercial (digital camera) technology 

in image acquisition. Such digital cameras are obviously designed and developed 

with the aim of 'accurate' reproduction of a scene where accuracy simply relates 

to human perception. The starting point for this investigation of colour analy­

sis for lesion diagnosis is consequently assumed to be a digital RGB image whose 

'quality' relates only to visual fidelity in reproduction of the scene. In other words 

it will be assumed that the images ' look like' the lesion being imaged. 

5. 2 Colour-spaces 

A colour-space is a model which is used to specify colours in a useful and stan­

dardized manner. Many colour-spaces have been used in image processing and 

the most useful representation of colour is often directly task dependent; the 

use of the RGB representation is clearly valuable where hardware is concerned, 
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whereas other spaces such as IHS and L*u*v* (described in detail below) more 

closely relate to a human characterization of colour properties. 

Decoupling 

As previously described, the RGB colour-space defines colours by the intensity of 

light in the three bands of red, green and blue. It is often much more useful to 

decouple the "brightness" of a colour from the underlying "colour". The bright­

ness is often described by the terms intensity or luminosity and the underlying 

colour as chromaticity. 

Intensity - Chromaticity 

The intensity is defined as the mean of the red, green and blue values. This relates 

to the overall stimulation of the three colour detectors of the human eye. The 

chromaticity can then be described by the relative levels of each of the red, green 

and blue intensities, which are then written as lower case r, g and b. Using the 

definitions (given in equations 5.1, 5.2, 5.3 and 5.4) it is clear that r + g + b = 1 

so that these three coordinates describe a plane in their 3D space and that only 

two of the three is necessary for complete description (e.g. b = 1- (r + g)). As a 

consequence chromaticity can also be described with 2D coordinates (which will 

be called cX and cY or together as chromaXY here) as given in equations 5.5 

and 5.6. 

I 

r 

g 

b 

cX 

cY 

(R+G+B) 
G 

(R+G+B) 
B 

(R+G+B) 

1 
r - 2(g + b) 

v'3 (g - b) 
2 

note: this chromaXY definition has been chosen 
to orient the data to match that produced by 
the IHS conversion given in this document. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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The chromaticity coordinates describe a triangular space with the primary colours 

at the three vertices and the secondary colours at the mid-points of each side. The 

pure colour wavelengths are represented at the edge of the triangle and moving to­

wards the centre that same colour is increasingly diluted with achromatic (white) 

colour. Figure 5.1 shows (left) a conceptual view of the intensity-chromaticity 

space with its bi-tetrahedral shape and (right) an illustration of the chromaXY 

space formed by taking colour values spaced equally throughout the RGB cube 

and mapping them to the chromaXY space. 

.,..._.;.;.;;.._....:.,..j...,_;,;,~ Red 

Black 

I\ 
I 

0.8 •-.• " 

> 
"-0.4 

-0.6 

-0.8 / ~--~--~--~ 
- 0.5 0 0.5 

cX (cyan<--> red) 

Figure 5.1: The intensity-chromaticity space: Left, a conceptual view of the 
whole space, and right, a colour view of the chromaticity space 

IHS Intensity Hue and Saturation 

The IHS colour-space is an obvious development from the intensity-chromaticity 

model. The I stands for Intensity and H and S for Hue and Saturation respec­

tively. Hue and saturation provide a clearer description of chromaticity where the 

dominant colour is decoupled from the "purity" of the colour. Fully saturated 

colours are those of single wavelengths and zero saturation indicates achromatic 

colour. Considering the chromaticity triangle, if w is the white point at the cen­

tre, p the given colour, and p, the fully saturated version of that colour ( the 

point where a line from w through p intersects the edge of the triangle) , then the 

saturation is given by the ratio of the distance w ---+ p and w ---+ p,. The Hue 

represents the dominant wavelength as an angle which by convention has red at 

0° and moves through green at 120° and blue at 240° and then through purples 

back to red. IHS values can be calculated as given in equations 5.7, 5.8 and 5.9 
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which provide values in the same range as the input data for I , 0 - 21r radians 

for H, and O - 1 for S. 

I 
1 
3(R+ G + B ) (5.7) 

H { 
H' where B / 1 ~ G/1 

21r - H' otherwise 
(5.8) 

where H ' cos - 1 [ (R - G) + (R - B) l 
2J(R- G)2 + (R - B)(G - B) 

s = 1 
_ min{R, G, B} 

I 
(5.9) 

Technically H remains undefined if S = 0 and S remains undefined 
if I = 0. However, in order that all values may be defined for 
the purposes of the processing in this work, H = 0 and S = O 
respectively are substituted in these cases. 

[59] 

The derivation of the formulae for IHS is not trivial. Many sources use 
tan- 1 on two dimensional x,y chromaticity coordinates (which can be 
simply derived from r,g,b chromaticity coordinates) in the calculation of 
H, ignoring the fact that this form requires many special cases. The S 
value is also often wrongly derived, for example, in Pratt [60] the satu­
ration is given as the simple distance between the white point ((0,0) in 
x,y chromaticity coordinates) and the (x,y) point for the given colour, 
rather than the ratio of this length to that of the equivalent saturated 
colour - the practical result of which being that a fully saturated sec­
ondary colour such as yellow would be attributed with a S figure of 1/2. 
The formulae given here are presented with full derivation in Gonzalez 
and Woods [59]. 

Figure 5.2 (left) shows a conceptual view of the IHS space showing the cylinder 

form. A comparison of this diagram and that for intensity-chromaticity in figure 

5.1 shows that this space will be increasingly less densely populated moving to­

ward either extreme of I , with zero and maximum intensity both having only one 

possible point representing black and white respectively. Figure 5.2 (right) gives 

an illustration of the IHS Hue-Saturation space again formed by taking colour 

values spaced equally throughout the RGB cube and mapping them to IHS. 

It is important to recognise that the use of an angle to represent Hue requires 

a colour similarity measure on IHS space to account for the effective identity of 
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Figure 5.2: The IHS space: Left, a conceptual view of the whole space, and 
right, a colour view of the Hue-Saturation space 

0° and 360°. In addition it is unclear exactly what distance measure should be 

used to reflect the properties of the human visual system for this space, or even 

if any simple measure could be constructed, however the IHS colour-space is a 

widely used and powerful representation of colour data [59] so that the properties 

of lesion image colour information in this space should be investigated. 

CIE L*u*v* 

The L*u*v* colour-space [60, 61] was developed by the Commission Internationale 

d'Eclairage (CIE) and became a CIE standard in 1976. L*u*v* evolved from the 

L*a*b* and u•v•w• colour-spaces (definitions for these can be found in [60]) 

specifically with the aim that the distance between two colours would directly 

reflect human perception of colour difference. 

The construction of such a uniform colour-space involves the concept of a 'just 

noticeable colour difference' (jncd). Plotting the locus of 1 jncd about a certain 

colour generally forms an ellipsoid ( often referred to as a MacAdam 's ellipse) . In 

a uniform colour-space, all such ellipsoids should be spheres. It is known that, 

in general, no linear transform to such a uniform space exists [62] (although a 

complex non-linear transform has been developed [60]). 

L*u*v• is the CIE standard for a uniform colour-space where the colour difference 
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is defined as in equation 5.10 

(5.10) 

Which is simply the L2 distance between two colours in that space. 

The conversion from RGB to L*u*v* first requires transformation of the RGB 

values to CIE XYZ. Both RGB and CIE XYZ are three-primary or tristimulus 

colour systems. RGB uses the three real primaries, red, green and blue (the 

exact definition of these primaries determines the particular "flavour" of RGB) . 

Positive combinations of real primaries are however only able to produce a subset 

(the gamut of the primaries) of all visible colours - those contained within the 

triangle formed by these primaries - and this situation is exacerbated by the 

need for these to be available as phosphor colours. The XY Z system uses three 

artificial primaries X , Y and Z chosen such that all visible colours fall within 

their gamut and the Y value is equivalent to the luminance of the colour. Figure 

5.3 shows the gamut of RGBNrsc1 and XY Z colours together with that of all 

visible colours. The curving line is the locus of real pure colour wavelengths 

(red::::::::700nm, green::::::::546nm and blue::::::::436nm) and encloses the gamut of real 

colours. 

Conversion between tristimulus systems can always be achieved by a simple ma­

trix operation. Equation 5.11 gives the transformation for RGB109D6s2. RGB7o9D6s 

is used here as the lesion images used in this work are stored on Kodak Photo-CD, 

the digitization process for which uses ITU Rec 709 and D65 reference white [64]. 

[ 

0.412411 

0.212649 

0.019332 

0.357585 0.180454 l [ R l 
0.715169 0.072182 G 

0.119195 0.950390 B 

This assumes RGB109D6s 

The derivation of this transformation matrix is as follows: 
1 National Television Systems Committee (NTSC) receiver phosphor standard 

(5.11) 

[63] 

2 RGB7o9D65 is used here to stand for International Telecommunication Union (ITU) 
(http: //www.itu.ch/) Recommendation 709 primaries with D65 reference white. ITU Rec 709 
is the new designation for CCIR 709, after the CCIR (Comite Consultatif International des 
Radiocommunications) was absorbed into its parent body the ITU [63] 
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1.5 

N.T.S.C. Colours 

-2.0 -1.5 -1.0 

XPrimary 
-0.5 

Figure 5.3: Chromaticity diagram showing the gamut for XYZ RGBNrsc and 
real colours. (NOTE: in this diagram the axes represent red and green chromaticity 
coordinates in terms of CIE 1931 standard primaries. The NTSC gamut includes 
negative values as that system uses the different NTSC primaries.) (adapted from 
Pratt [60]) 

The CIE xyY space is derived from the XY Z space and the xyz 

chromaticity coordinates of this space. Chromaticity coordinates are 

the normalized values of the tristimulus, i.e. [x y z] = x+i+z [X Y Z]. 

Since, by definition, x + y + z = 1, z = 1 - (x + y), only x and y 

are required to describe the chromaticity and so, together with the 

luminosity Y they provide a full description of colour. The XY Z 

tristimulus values can be recovered from xy Y coordinates: [X Y Z] = 
[ x; y z: ] = [ x: y (1-(x:y))Y ]. 
RGB109D65 assumes the D65 (W D65) as the reference white which is 

defined in xy Y coordinates as: 

WD65 = [xo Yo Yo] = [3.12713 0.329016 1] (Y is always 1 for white). 

The formula above allows the calculation of XY Z values for W D65 

and since the R=G= B= l for this white, the transformation matrix 
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must satisfy the matrix equation: 

(5.12) 

The [x y z] chromaticity coordinates of the three primary colours are 

also needed in the construction of the conversion matrix. RGB709v65 

uses the ITU Rec 709 primaries: 

red 

green 

blue 

[xr Yr Zr] 

[x9 y9 z9] 

[xb Yb zb] 

[0.64 0.33 0.03] 

[0.30 0.60 0.10] 

[0.15 0.06 0.79] 

By invoking the white balance condition, equation 5.12 can be re­

written as: 

[ 

arXr agXg abXb j [ 1 j _ [ Xr Xg Xb j [ ar j 
arYr a 9y9 abYb 1 - Yr Y9 Yb a 9 

arZr a 9z9 abZb 1 Zr Zg Zb ab 

(5.13) 

by substitution of the x's for red, green and blue, ar a 9 and ab can be 

calculated and hence the matrix [mi,j] can be found. 

[60, 63] 

The conversion to the L*u*v* colour-space from XY Z tristimulus values is given 

by equations 5.14-5.16. The L* value represents the luminosity of the colour and 

the u* and v* are chromaticity coordinates which for increasing values approxi­

mat ely relate to cyan ➔ red and blue ➔ green respectively. 

r 5 [10;~l -16 if ~ 2: 0. 008856 
L* (5.14) 

0.903y
0 

otherwise 

u* 13L*(u' - u~) (5 .15) 

v* 13L*(v' - v~) (5.16) 
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Where: 

u' 

v' 

and 

4X 
X + 15Y +3Z 

gy 

X + 15Y +3Z 

u~ and v~ are obtained by the substitution of 

the tristimulus values X 0 , Y0 and Z0 of the 

reference white. 

Colour 

[60] 

Figure 5.4 shows an illustration of the L*u*v* colour-space again formed by tak­

ing colour values spaced equally throughout the RGB cube and mapping them 

to L *u*v*. Left is a view of the u*v* chromaticity plane which clearly shows the 

distortions applied to obtain the colour difference uniformity when compared to 

the other chromaticity diagrams. Centre and right are views of u* vs L* and v* 

vs L * respectively. These views clearly show a much smaller range of luminosity 

when compared with the chromaticity information. Since the L2 distance corre­

sponds (approximately) with human perception of colour difference these relative 

ranges indicate that the chromaticity information of a colour has a greater im­

portance than the luminosity. This observation has clear implications in terms of 

the previous colour work in lesion image analysis since, as discussed previously, 

the dimensionality reduction often applied as the initial step in processing the 

RGB colour extracts data corresponding approximately to intensity only. Such 

processing is therefore in effect performing the opposite of t he L*u*v* transform 

in terms of manipulation of the colour difference properties for the output space, 

by placing increased rather than decreased relative importance of luminosity. 

Whilst many other colour-spaces have been developed, the three presented here 

represent a cross section of the most valuable and widely used spaces. The RGB 

space is arguably the most widely used colour-space for digital comput ing, the IHS 

space has proved immensely valuable in image processing through its separation 

of 'colour' into its abstract components, and the L*u*v* space is the current 

international (CIE) standard for a uniform colour-space in relation to human 

perception. 
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Figure 5.4: The L*u•v• space: Left, the u•v• chromaticity plane, right top a 
view of u• vs L • and right bottom a view of v• vs L •. The graphs are all to 
approximately the same scale. 

5.3 Colour as a Diagnostic Indicator 

Irregularity of pigmentation in a lesion is widely noted as a major feature for the 

differential diagnosis of melanoma [5, 7] as can clearly be seen by its importance 

in each of the published checklists described previously. Colour information has 

consequently been important in research into automated diagnosis. For example, 

simple methods for quantifying variegated colouring based on variances of each 

of the three components of RGB together with, amongst other indicators, the 

colour difference (relative RGB component values) between the lesion and skin 

areas have been used in trials of automated decision techniques for classification 

[35, 36]. In addition to irregularity in colouring, the presence of certain colours 

such as red, white and blue can also provide diagnostic information. The con­

sideration of colour presence seems particularly important in diagnosis based on 

ELM images where a 'blue-grey ( or blue-white) veil' for example is often cited as a 

significant indicator for melanoma [65- 67]. Figure 5.5 contains two melanoma im­

age examples showing variegated colouring in a clinical image (left) and blue-grey 
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veil in an ELM image (right). 

Figure 5.5: Colour in melanoma diagnosis: Left, a clinical image showing 
colour variegation and right, an ELM image showing blue-grey veil. (from Matrix 
Dermatology Resources Online [26] and CMIS-CSIRO Online [67] respectively) 

Colour can also be used in skin lesion diagnosis through the consideration of the 

spectral properties of the reflected light. Research of this type can be divided 

into two categories: In the first, true optical reflectance spectra are obtained 

for a small number of points for each lesion with the aim of finding common 

characteristics for a given lesion type. A probe is used to direct light from a known 

source to a point on the skin surface and to collect the reflected light for analysis. 

Research in this area has shown that consideration of such spectra can allow 

discrimination between malignant melanoma and benign naevi [30, 68, 69]. The 

second category uses the information contained in normal colour images. Analysis 

of different lesion types is again made, this time with respect to the colour 

properties (such as the individual or relative intensities of the RGB components) 

of the image. Consideration of colour images in relation to a light scattering 

model of the skin has been shown to provide a means of quantification for features 

such as the level of epidermal melanin and depth of invasion of melanocytes 

[38, 70]. Although such information will not distinguish between malignant and 

benign lesions directly, it is nonetheless useful in differential diagnosis. Such 

techniques however, inherently rely on the calibrations of the colour image and 

even on the acquisition of supporting data as in the case of the light scattering 

model research which requires additional images taken in two infra-red bands. 

Diagnostic features based on absolute colour values are particularly sensitive to 

poor calibration, one such apparently effective indicator for melanoma was later 

found to be detecting nothing more than a capture process artifact [71]. The 
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requirements of this project to work with simple clinical images obtained from 

low-cost commercial video capture equipment, with calibration resting only on 

the assumption of subjective fidelity therefore all but precludes the use of spectral 

analysis techniques. 

Colour data can also provide invaluable information in the identification of the 

lesion extent as the boundary between lesion and skin is often better defined 

in a colour image, especially where the lesion contains regions of light tan and 

grey which result in a similar grey-scale intensity to that of normal Caucasian 

skin. The colour information can be utilized directly with pixels being analysed 

in terms of their colour, or indirectly by the application of a pre-processing step 

manipulating the colour information to extract certain properties and provide an 

'enhanced' image for processing. The accurate and robust identification of the 

lesion boundary is a vital element in the image-based analysis of skin lesions for 

both the diagnostic information it can supply directly, and in the assessment of 

lesion area features. 

Identification from colour information of either irregularity in pigmentation, spe­

cific colours or the lesion extent can all be essentially reduced to the same image 

processing goal - the segmentation of the image into regions of distinct colour. 

It is with this goal in mind then, that the research presented below proceeds. 

5.4 Previous Research in Colour Segmentation 

The importance of colour in the diagnosis of skin cancer has naturally caused 

colour analysis to attract considerable attention from researchers in the field of 

image-based skin lesion analysis. The work falls into two categories with the 

emphasis on either the generation of a boundary for the whole lesion, or the 

detection of colour variation within the lesion. 

Dhawan et al [14] describe a colour and texture approach that aims to generate 

a boundary as well as segmentation within the lesions. They use a transformed 

colour- space which aims to extract the three components of intensity (11), coarse 

colour variation (12) , and fine colour texture (13) which are defined as: 
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Ii= ½(R + G + B) 12 = R - B 13 = ½(2G - R - B) 

A multi-channel approach is then used; the intensity is processed using a pyra­

mid segmentation scheme while Generalized Co-occurrence Matrices are used to 

evaluate the texture information contained in 12 and 13 planes. The information 

is merged with the intensity segmentation to form the final segmentation. 

Dhawan et al [46] also describe the application of this method to images obtained 

using the Nevoscope. The segmentation data can then be combined with 3D 

information available via this device in order to improve prospects for accurate 

diagnosis. 

Umbaugh et al have published a number of articles concerning colour processing 

of skin lesion images. The first of these [39] reviewed here concerns the detection 

of variegated colouring. The need for automated identification of features demon­

strated by the AI/DERM [40] system is discussed together with the consequent 

demand for an effective method of colour segmentation. A detailed treatment of 

the background to colour representation is given and a number of colour-spaces 

are explained and discussed. The spherical coordinate transform (SCT) of RGB 

data is introduced which is defined as in figure 5.6. 

Red 

Blue 

L = J R2 + c2 + B2 

A = cos-I [£] 

B = cos-I [Lsi:(A)] 

Figure 5.6: Definition of the SCT colour-space. 

Segmentation is performed on only the A and B angle data, the L (brightness) was 

not used in order to avoid shadows causing regions to be split falsely. The maxi­

mum and minimum of A and B for the image are found and the two ranges thus 

defined are split into equal portions depending on the number of final 'colours' de­

sired. Object filtering and labeling stages then remove small objects and identify 

connected colour areas. A simple test was used to convert the segmentation into 
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presence/absence decision on variegated colouring. The method was tested on a 

set of images classified by a dermatologist ( cases identified as possibly showing 

variegated colour were excluded) and the technique was shown to be reasonably 

effective. 

In the second paper, Umbaugh et al [12] present a border finding technique based 

on colour segmentation employing the Karhunen-Loeve or Principal Component 

Transform (PcT) together with an automatic colour quantization technique. The 

process begins by creating a sub-sampled version of the original for both data and 

noise reduction. This is achieved by t aking the mean of each 8x8 pixel block to 

yield a 64x64 colour image. The PCT is then performed. The three components 

of the PCT space are experimentally found to contain approximately 91 %, 6% and 

3% respectively of the variance of lesion images. Segmentation is performed on 

the PCT space by the median-split method: 

The axis with the greatest variation is determined and the points are then 

divided into two equal sized groups ( divided by the plane perpendicular to 

the axis which passes through the median value on the axis). This process 

is repeated until the desired number of output colours is reached. Averages 

are then calculated for each of the regions formed and each pixel is mapped 

to the nearest of these averages. 

Results in relation to 'feature scores' made by dermatologists are compared for 

a number of original colour-spaces, with spherical coordinates found to yield the 

greatest success rate and RGB chromaticity to have the lowest error rate. 

In another paper Umbaugh et al [72] this work is extended from binary segmen­

tation (border finding) to colour feature identification. The performance of the 

PCT /median-split algorithm reviewed above is compared to the SCT / centre-split 

algorithm (four or nine colour regions). The detection performance on six features 

(tumour, crust, hair, scale, shiny and ulcer) forms the basis for the evaluation 

and is compared to feature maps produced by dermatologists. PCT/median-split 

results are given for six colour-spaces including the three described later in this 

chapter. The SGT/centre-split algorithm is only defined for the original RGB 

space. The results show that PCT /median-split performs best using t he chromatic­

ity space with L*u*v* having the second highest success rate. PCT/median-split 

on any of the six colour-spaces out-performed the SCT / centre-split method. 
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Ercal et al [13] focus on creating a boundary and use a transformation to reduce 

the RGB colour-space to a single component and then apply a threshold. They re­

view a number of colour systems including the colour-space described by Dhawan 

above. The transformation they elect to use is X = wrR + wbG + wbB where 

the weights are calculated to maximize lesion/ skin discrimination by comparing 

the colour character of two small regions extracted from the image, one from the 

lesion and the other from the surrounding skin. They show that the component 

plane X from this transform is consistently close to the first component obtained 

from the PCT, but that it requires less computation. 

Hance et al [37] completed a comparison of a wide range of approaches for the 

generation of a border outlining the lesion. They find the PCT/ median cut (de­

scribed by Umbaugh and reviewed above) produces the most promising results, 

with adaptive thresholding and fuzzy c-means (algorithm described in detail in 

Lim and Lee [73]) showing potential. One of the methods they investigate, and 

which shows relatively poor performance, is the basic quad-tree split and merge 

algorithm, performed on the principal component of the colour data. Although 

part of the work presented in this chapter also uses a quad- tree it should be 

noted that this structure is only used in the early stages of the technique, with 

the majority of the processing being performed on a Region Adjacency Graph 

(RAG) constructed from the quad- tree. 

Colour based image segmentation naturally attracts research interest beyond the 

analysis of skin lesion images. A particularly interesting approach to natural 

scene segmentation is presented by Panjwani et al [7 4) who propose a general 

colour-texture segmentation method using region merging with uniformity judged 

through Gaussian Markov Random Field Models. The region-based segmenta­

tion technique presented later in this chapter is similar to this method in that 

both methods use splitting followed by an agglomerative clustering phase where 

this consists of conservative followed by optimal merging on a RAG. However, 

amongst other things,the mechanics of the uniformity measures and the conser­

vative merging stage used differ from those presented here. 

The use of ELM images in colour analysis of skin lesions is common as ELM 

image acquisition avoids the specular reflections from the stratum corneum which 
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plague normal clinical images. Specular reflections effectively result in anomalous 

data disrupting otherwise homogeneous regions of colour so that ELM images are 

'cleaner' and therefore more amenable to colour-based segmentation. It is also 

important to realize however that images acquired using ELM are fundamentally 

different in character to normal clinical images; By rendering the skin surface 

semi-translucent, a whole new set of features is revealed. The differences between 

the two imaging methods mean that techniques which are effective for colour 

segmentation and feature extraction in ELM images are not necessarily useful for 

clinical images, and further, conclusions concerning the performance of techniques 

and diagnoses are certainly not transferable. With such considerations in mind 

however, the techniques and insights gained from such research may still be 

useful. 

In general, the colour segmentation techniques which have been previously used 

for lesion image analysis can be seen to consider each pixel in the image as an 

individual entity and often require the number of output 'colours' to be specified 

in advance. Both of these features are in conflict with the aims of lesion image 

segmentation as discussed in the following section. 

5.5 Segmentation of Colour Images 

This section explores the aims and goals underlying the segmentation of skin 

lesion images based on colour information. A clear understanding of the elements 

that constitute good performance in a segmentation outcome is essential for the 

development of any useful scheme for lesion analysis. 

The goal of colour based segmentation is to divide the image into areas of homo­

geneous colour. The precise meaning of this statement is however unclear on two 

counts: Neither the term 'areas' nor what is meant by 'homogeneous colour' is 

well defined. The derived system concept for this project requires that the indi­

cators used to construct a diagnosis are amenable to explanation to the patient 

and visual verification. In terms of the segmentation of lesion images, and espe­

cially given these project requirements, it is clear that the value of a segmentation 
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relates directly to human perception. The following two sections discuss each of 

the two terms in relation to this measure of value. 

5.5.1 Regions 

Given an image of a lesion it is clear that a statement that the lesion contains 

'different colours' is intended to convey the situation where the lesion is composed 

of a number of areas that have internally consistent, but mutually different colour. 

The colour of the individual pixels is clearly not what is t ruly important, for 

example, scattered but isolated white pixels in the lesion area would not equate 

to the statement that the lesion contains areas of white. Such observations reveal 

that the term 'areas' is, in this application, better expressed as 'regions'. A useful 

segmentation of a lesion image should then aim to show local connected regions 

of homogeneous colour. 

Many approaches to image segmentation, such as K-means [75] and standard 

neural network implementations [76] as well as most of the techniques investigated 

in the literature as outlined above, follow the pattern of classification of each 

individual pixel as a separate entity. This view of the image data is clearly 

unhelpful since the lack of consideration of locality between pixels runs against 

the aim of reflecting human perception of colour regions. Individual classification 

is therefore far from ideal. Some of the problems of loss of locality information can 

be offset by the inclusion of smoothing prior to classification; by making pixels 

more similar to their neighbours, classes that are more spatially coherent are 

obtained and this in turn results in segmentations which are easier to interpret 

visually. Such processing is however undesirable due to the blurring effect at 

boundaries caused by the combination of different colours. 

Furthermore, the majority of the techniques reported in the literature also re­

quire the advance specification of the number of 'colours' to divide the image 

into. This situation is obviously counter-productive since the variegated colour­

ing differential indicator inherently entails that melanoma images are likely to 

have many more different 'colours' than benign moles. Consequently a number 

of 'colours' large enough to perform well with such melanomas will cause false 
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'colour' divisions in a benign mole. 

A process which embodies the idea of locality in segmentation, and which divides 

the image in relation to a given degree of colour difference, is therefore most 

suited to this task. 

5.5.2 Colour Similarity 

The second term needing clarification in the statement of the goal of lesion image 

segmentation is that of 'homogeneous colour'. When the aim is to divide the 

image based on differences in colour it is vital to identify what exactly is different 

about the colours that should be separated and similar for those that make up 

homogeneous regions. 

Much of the work that has been done in colour analysis of skin lesions has used 

the RGB colour-space, and given the ease in obtaining data in this form from the 

type of commercial camera envisaged for this project, it seems sensible to begin 

by examining this colour-space. 

In many cases this three dimensional colour-space is immediately processed with 

the aim of reducing the colour information to a single dimension to simplify 

processing. This is often achieved by taking the actual, or an equivalent to, the 

first dimension after the application of the PCT, in other words the first principal 

component (PcT1) [13, 37]. The effect of the PCT can be viewed as finding a new 

basis for a multi-dimensional space in which the new basis vectors are aligned with 

respect to the greatest variance in the data. In the new basis, the dimensions 

(or components) are selected in order so as to reflect the greatest variance in 

the remaining dimensionality of the space given all the previously selected basis 

vectors. The selection of PCT1 then reflects the projection of the RGB colour data 

points onto the line of greatest variance in the data as a whole. This action can 

be justified through the observation that the RGB data for a skin lesion image 

normally has an obvious variance maximum orientation and little variance outside 

of this axis so that the majority of the information content is reflected in PCT1. 
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An analysis of the distribution of the RGB colour points for several lesions has 

demonstrated however that this is perhaps a mistaken simplification as the PCT1 

axis is often surprisingly close to the intensity axis, so that the result is lit tle 

different from processing a grey-scale version of the image. Furthermore it is 

clear that a single dimension obtained from any linear transform of the RGB space 

would be unable to capture all the main modes of variation found in the image 

data as the data generally occupies a distinctly curved lozenge-shaped subspace. 

Figure 5.7 shows representations of the RGB colour-space for two example lesion 

images. The orientation of greatest variance is clear in both cases as is the 

fact that the PCT1 will be close to the intensity axis and the curved nature of the 

subspace occupied is also readily apparent. These observations indicate then that 

the analysis of PCT1 alone is perhaps a mistaken simplification as the evidence 

shows that much of the colour information is being discarded. 

Reducing the dimensionality of the colour information has many problems as 

identified above. These problems prompted the development of a region-based 

technique for the segmentation using the original full three dimensional RGB 

data. 

Whatever the representation chosen for colour information the need to detect 

regions of 'homogeneous colour' requires a method for assessing the similarity 

of two colours as represented in that space. Perhaps the most obvious measure 

for a simple space such as RGB is the Euclidean distance or L2 distance which is 

defined as, L2(p, q) = J I:i (Pi - qi) 2 . This measure is both widely used and well 
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understood and quantifies the actual distance between two points in a Euclidean 

space such as RGB. 

In summary, section 5.5 has examined in detail the issues and underlying goals 

of segmentation for lesion image analysis. The importance of a clear definition of 

the terms in the phrase 'areas of uniform colour' was exposed. The term 'areas' 

has been seen to entail a need for locality consideration when classifying pixels. 

Consideration of colour similarity has demonstrated that common dimensionality 

reducing preprocessing does in fact discard much of the colour information. 

5.6 Multi-stage Region Agglomerative 

Clustering (mRAc) 

This section describes a novel agglomerative clustering technique, mRAC [77), 

developed in response to the identified need for a region-based approach to colour 

segmentation of skin lesions. 

Clustering methods aim to partition data into groups consisting of elements which 

possess similarity. The mRAC process has two criteria for similarity; the first is 

explicit and is explained below, the second is implicit - two clusters must be 

spatially adjacent to be considered uniform. This is not usually considered to 

be a uniformity criterion, however it is an important defining influence on the 

character of the final clustering solution produced. Here, clusters will be called 

regions. 

5.6.1 The mRAC Algorithm 

This algorithm is similar in some respects to that described in Panjwani et al 

[74] which presents a general colour- texture segmentation method using region 

merging with uniformity judged through Gaussian Markov Random Field Mod­

els. Both methods use splitting followed by an agglomerative clustering phase 

where this consists of conservative followed by optimal merging on a Region Ad-
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jacency Graph (RAG) . However, the mechanics of the uniformity measures and 

the conservative merging stage used differ from those presented here. 

The uniformity criterion used relates to the Euclidean distance d between the 

three vector means (mean colours) of two regions i and j and their union. Two 

regions are "uniform" and will be merged if dis small. The valued will be referred 

to as the "distance" between the regions, and is given by: 

d(i,j ) = max{Jµi - µii, Jµi - µk l, Jµi - µkl} 

where k = {i Uj} 

and µi = [µi1 ••• µin] is the vector mean for region i 

(5.17) 

The process begins splitting the image into small regions which will be joined 

together as the clustering proceeds. This is achieved by creating an extended 

quad- tree representation of the image, the extension being that where a region is 

not exactly divisible into four sub- regions, the top left sub- region (at every level 

in the t ree) is allowed to be larger by one pixel in either direction. This allows 

the representation to proceed down to regions of the smallest possible size ( either 

width or height of 1 pixel) regardless of the original image size. 

Splitting for the initialisation cont inues to one level before the limit, i.e. when a 

region has a smallest side length of just two pixels. Each region is then tested 

to ensure that its vector mean ( colour mean) is similar to that of each of the 

four sub regions it contains. If any one difference is above a small threshold ts 

then the region is split. This is superior to the simple approach of taking the 

initialisation right to the limit ( dividing the image into the smallest possible re­

gions) as it produces a smaller number of regions to be considered whilst ensuring 

representation is equally good. A good representation cannot be guaranteed if 

splitting begins at a higher level as very small features might not be sufficient ly 

significant to cause a large and generally uniform region to be split at that level. 

Once this step has been completed a RAG is constructed which lists all the con­

nections between regions, where a region is considered to be connected to another 
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if it shares a common boundary (in a 4-connected sense). This RAG is then the 

basis of an agglomerative clustering process that forms the final segmentation. 

RAG 
• nodes represent 

1 '-.,/ regions 
I 

\~ arcs represent 
• region adjacencies 

Figure 5.8: Regions and a Region Adjacency Graph 

The conservative merging phase is necessary to reduce the number of regions and 

hence the number of candidate merges in order that the optimal merging phase 

becomes computationally realistic. 

Each adjacency is tested for uniformity using the same measure as above. For 

every adjacency where the distance between vector mean (colour mean) is less 

than a threshold the regions are merged. The phase is executed in three passes 

with the threshold increasing in even steps up to tcm, t his ensures early region 

formation based on strict similarity, allowing the means to stabilize. Without this 

step-wise increase many merges of tiny regions that have differences close to the 

threshold can cause a large drift in the mean and the formation of a non-uniform 

region. 

In the optimal merging phase the same test is used, however this time the process 

is iterative and only the single best possible merge is performed. The best merge 

is defined as the joining of the two adjacent regions k and l whose vector means 

( colour means) are closest, given by, 

let A be the set of all adjacent region pairs, then 

optimal merge is (k, l) such that 

d(k,l) = ~ind(i,j). 
i ,JEA 

(5.18) 

The step-wise approach is necessary as each iteration alters both the list of pos­

sible merges and the distances associated with them ( the new combined region 

having a new vector mean) . The optimal merging phase stops when the best 

possible merge has a distance which exceeds a threshold, taptm· 
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Finally, the segmentation is cleaned when the distance for the optimal merge nears 

toptm · This cleaning involves forcing the merge of all very small regions (less than 

0.1 %, say, of the image area) to the adjacent region that is most similar. The 

premise for this forced merging is that any small region that has not yet merged 

must be an anomaly in the data. The addition of this phase makes the final 

segmentation easier to interpret. 

5.7 Evaluating maAc 

In order to assess the potential of mRAC for the segmentation of lesion images, 

the method was applied to a set of example images and the performance evaluated 

in terms of visual quality of colour separation. 

The images used in the trials of the technique 3 include examples of several 

types of lesion including malignant melanoma and compound naevi. The original 

images are 24-bit full colour digitized from slides with approximately 4 micron 

pixels. Each image is sub-sampled to produce 350x230 source images. 

All parameters were kept constant for all the results presented in this section. 

The exact parameter settings are not critical, different but similar parameter 

sets generate results differing in character but not in validity. The setting of 

toptm obviously has the greatest effect on the final segmentation. The thresholds 

used were; splitting ts ::::::: 7.5, conservative merge tern ::::::: 10 and optimal merge 

toptm ::::::: 38. These thresholds relate to the expected range of the uniformity 

criterion d which theoretically (for the 24bit 3-element colour data) had a range 

of O - J3 x (255)2 (::::::: 440). The segmentation was cleaned when the optimal 

merge phase reached 90% of the toptm threshold for regions less than 0.15% of the 

image area. 

The fixed thresholds used here are valuable in that they ensure comparability 

between the results for different lesion images. Regardless of the properties of the 

3 The images were provided by V. Wallace and Dr. J. Bamber of the Physics Department, 
Clinical Research Centre, Royal Marsden Hospital, Sutton, permission to use them is gratefully 
acknowledged. 
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current image being analysed, the same degree of difference between the colours 

of two regions should be required for the regions to be considered distinct. This 

is important as it would be undesirable to label two regions of similar colour as 

distance simply because the lesion as a whole shows little variation, as would be 

the result of a variable or adaptive methods for determining thresholds. 

Results are presented for five images, three containing a malignant melanoma MM 

and two containing a benign lesion (Compound/ Blue Naevus) . These examples, 

especially the malignant melanoma images, were selected from the test set to best 

illustrate the performance of the method, having a rich variation of pigmentation 

or showing other colour features . 

5.7.1 Results 

Figure 5.9 shows the segmentation performance which can be achieved through 

this method for the five example images, the green lines show the boundaries 

between the identified colour regions. The third example in the figure shows an 

unusual failure where the colour mean of much of the lesion area is not sufficiently 

different to that of the surrounding skin to produce a good result. 

The mRAC method shows clear potential for the detection of regions of differing 

pigmentation colour in images of malignant melanoma using RGB data. This 

information could be used together with a boundary detection method to provide 

an indicator for differential diagnosis. The method could also provide useful 

lesion/skin segmentation data which could be used to support the validity of a 

previously acquired boundary segmentation. 

In some cases regions of apparent ly different colour have been unexpectedly 

merged into a single region. This indicates that the Euclidean distance similarity 

measure on RGB triples is perhaps not the best measure for colour uniformity in 

lesions. As noted previously, lesion images consist mostly of variations through 

white- red- brown- black which is a narrow band diagonally through t he RGB 

colour-space. This necessarily limits the discriminative power of the Euclidean 

distance measure. 
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Figure 5.9: Examples of mRAC segmentation using RGB data: Left to right 
and top to bottom: MM with colour variation in surrounding border, non-MM with 
little colour variation, MM with many patches of differing colour, MM with colour 
variation in surrounding skin, and non- MM with red inflamed surrounding skin. 

5.8 Colour-spaces and Colour Difference 

Metrics 

The results of the initial trial of the mRAC region based classifier were promising 

in the segmentation of the lesion images. It is however apparent that there are 

some considerable differences between the colour grouping which results from 

the use of the 12 distance measure on the raw RGB data and that of the human 

observer, especially in the area which comprises the transition from lesion to skin. 
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The conclusions drawn from the RGB mRAC trials highlight the problems caused 

by the presence of only a small subset of the full colour range in lesion images. The 

segmentation performance obtained with the standard 12 measure is significantly 

reduced when applied to this lozenge-shaped subspace. Such difficulties prompted 

the investigation of alternative colour-spaces and colour distance measures with 

the aim of better reflecting colour differences as perceived by the human observer. 

5.8.1 Colour-space Use 

The goal of colour based segmentation, as identified earlier, is to divide an im­

age into areas of homogeneous colour. In order to obtain a good segmentation, 

perceptually similar colours should form identifiable clusters in the colour-space. 

Perhaps the most intuitive interpretation of this statement is that of a spatial 

cluster for each perceptual 'colour' where the colour data is viewed as points in 

a three dimensional Euclidean space. The actual clustering desired for a certain 

application could of course correspond to other cluster forms in the colour-space, 

for example as ellipsoids or even concentric spheres. It is vital then to examine 

the distribution of the colour data within the colour-spaces in order to identify 

cluster forms which would result in the properties desired for the final segmenta­

tion. In the domain of lesion image analysis for example, it is desirable for the 

entire skin area to be classified as a single region, with the lesion divided into one 

or more regions of differing colour. 

This section examines the colour distributions for lesion images in the three 

colour-spaces identified in section 5.2. for each colour-space several example im­

ages are shown as 3D scatter plots with red points representing the colours in 

the lesion area and blue points representing the skin. For IHS and L *u*v* 2D 

chromaticity plane plots are also presented in which the points are shown in their 

original colour. The colour images were sub-sampled to 20% of their original size 

to obtain a manageable number of points . 

RGB 

The distribution of colour data in the RGB space has already been touched on in 

section 5.5.2. Figure 5.10 shows two typical scatters in the RGB space. The skin 
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colours clearly occupy an extended region approximately following the intensity 

axis, corresponding to a range of relatively high intensity colours from light tan 

to white-pinks. The lesion is represented by a range of darker colours extending 

from dark browns (which occupy a region extending on the same axis as the 

skin colours) to blue-blacks. The blue-black colours are not seen in all lesions, 

and correspond to the presence of melanin in the dermis [38]. Although the blue­

black colours are a common feature of melanoma, this is by no means an exclusive 

property; Blue naevi, for example, derives its name from this blue colour . 
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Figure 5.10: RGB colour-space scatters for two images. Red points are from 
the lesion area and blue points are from the skin. 

IHS 

Consistent with the underlying motivation for this colour-space, the distribution 

colour lesion image data is simpler to explain in this space. Figure 5.11 shows 

scatters for the same two typical images as used above, with the chromaticity 

plane horizontal and intensity as the vertical together with hue-saturation plane 

views ( effectively looking at the 3D scatter from above) where the points are 

shown in their original colour. In the 2D hue-saturation space, the skin colours are 

clearly seen as a compact group just to the right and slightly above the achromatic 

centre of the plane. These white-pink skin tones appear as the vertical spike in the 

3D view showing that the skin consists of varying intensities of a single colour. 

The darker brown lesion colours can be seen to be an extension of this same 

chromaticity (with an increasing variation (more often an increase in saturation 

i.e. further right and up from the achromatic point.) The blue-black lesion colour 
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( of which there is little in the right-hand example) is seen as a long tongue away 

from this vertical skin-and-brown-lesion region. In the chromaticity plane, the 

blue-black lesion colours extend to the left and slightly below the achromatic 

point. 
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Figure 5.11: IHS colour-space views for two images: Top and centre, a 3D 
scatter representation and a hue - saturation plane view respectively where red 
points are from the lesion area and blue points are from the skin. Bottom, a 
second hue - saturation plane view where the points are shown in their original 
colours. 
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CIE L*u*v* 

The spatial distribution of the colour points in the L*u*v* colour-space has many 

features in common with the IHS space. Both are based on the separation of 

the chromaticity from brightness and it is this common underlying concept which 

results in the similarities seen. Figure 5.11 shows scatters for t he same images 

as before. As with the IHS data, the chromaticity plane is the 'horizontal' plane 

of the 3D projections and luminosity is shown as the vertical. The chromaticity 

plane is again shown separately as a 2D plot in which the points are shown in 

their original colour. 

The most striking differences between the IHS and L *u*v* data is the way that 

the skin colours have been collapsed from the extended lozenge-shaped region to 

one much more closely resembling a sphere. Since L*u*v* is intended to be a 

'uniform' colour-space t he spatial relationships in the 3D scatter of the different 

lesion colours should in general be seen as spherical clusters. It is also apparent 

that the constituent colours of the lesion image are generally more spread out 

in L *u*v* than in IHS, with the skin and lesion points showing a much clearer 

separation (seen clearly in the right-hand example). The long blue-black tail in 

the left-hand example is also noticeably less pointed. 

In conclusion then, the IHS space presents a platform through which it is much 

easier to identify and describe the clusters that correspond to the constit uent 

'colours' of the lesion images than in RGB. The L*u*v* colour-space presents the 

data in a similar way to the IHS space (they are both brightness-chromaticity 

decoupled spaces) and seems to retain all the advantages over RGB offered by 

IHS. Moreover L*u*v* shows a better separation of the identified colour clusters, 

and perhaps most importantly, the white-pink-tan skin tones are concentrated 

into a single near-spherical region in the space. The value of this last property 

being that the skin is generally seen as having a single colour (human observers 

rarely identify more than one colour in the skin area). 

The IHS space, when compared to RGB undoubtedly offers a platform from which 

more effective and useful colour segmentation of the lesion image data could be 

obtained. However, an effective colour difference measure for this application 

would have to be developed which could account for the non-spherical clusters 
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Figure 5.12: L*u*v* colour-space views for two images: Top and centre, a 3D 
scatter representation and a u*v* plane view respectively where red points are 
from the lesion area and blue points are from the skin. Bottom, u*v* plane views 
where the points are shown in their original colours. 

formed in this space. The advantages offered by the L*u*v* colour-space identified 

above when taken together with its basis on a simple pre-defined measure of 
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colour similarity known to approximate human perception, clearly indicate that 

this space should provide an effective starting point for segmentation to identify 

the regions of different colour in a lesion image. 

5.9 Evaluating the mRAc-L*u*v* Combination 

The investigation of colour-space representations and colour difference metrics 

demonstrated the suitability of the L*u*v* space and its associated 12 difference 

measure for the colour analysis of skin lesion images. After transformation of the 

colour data to the L*u*v* space the mRAC region-based segmentation technique 

was applied. 

The new data requires a reconsideration of the parameter set for mRAC. A sin­

gle set of parameters was desired (and used) for all the sample images; The 

advantages of fixed threshold parameters being identified in the processing of 

the original RGB data with mRAC. In the L*u*v* colour-space the 'component 

colours' have been seen to be, at least to a certain extent, identifiable as spherical 

clusters in the 3D projection of the space (consistent with the 'uniform' nature of 

the L*u*v* colour-space under the 12 distance measure). In particular the 'skin 

colour' is generally identifiable as a single distinct spherical cluster. Since this 

skin colour is normally perceived as a single 'colour' it is reasonable to obtain a 

first estimate for the final stopping threshold toptm so as to include the skin clus­

ter as a single colour region. In general the skin cluster forms a near-sphere with 

a diameter around 15 units (for 0-255 original RGB data), as can be confirmed 

by considering the scatters in figure 5.12. In practice, a lower toptrn was found 

to be more effective in separating the colours perceived as different in the lesion 

area. The setting of toptrn has a much greater effect than that of ts and tern· ts 

should be set so as to ensure that only genuinely uniform regions remain un-split 

at that stage and tern so as to reduce the number of regions to a computationally 

manageable number for the final stage. The thresholds used here are; splitting 

ts ~ 2.5, conservative merge t ern ~ 3 and optimal merge toptrn ~ 9. The segmen­

tation is cleaned when the optimal merging phase is complete - any regions less 

than 0.15% of the image area are force-merged into their most similar neighbour. 

86 



Chapter 5 Colour 

5.9.1 Results 

Results are presented for the same five images used in t he mRAC-RGB test (fig­

ure 5.9) for comparison purposes although a much larger number of images have 

been processed. Figure 5.13 shows these examples of the segmentation perfor­

mance which can be achieved through this method. In general, and as expected 

the segmentation corresponds much better to human perception of the differ­

ent colours and t heir extent than the RGB based results. Examples of clearly 

improved performance are: 

In the top-left image: The upper limit of the lesion regions now follows closely 

the boundary between the brown lesion and the skin. 

The central blue-black region is now identified as a different colour. 

The orange-brown outermost parts of the lesion and the darker brown re­

gions within this are now identified separately along a division t hat agrees 

well with visual inspection. 

In the top-right image: The lesion border regions follow more closely the edge 

of the lesion. 

In the middle-right image: The skin is now a single region and the lesion region 

extents correspond better to the limits of the two colours there. 

In t he bottom image: Again, the skin now falls into a single region and is not 

divided by the brighter areas at either side. 

The different colours surrounding the central blue-black region are detected. 

The red inflamed region extent is more clearly matched and the similar red 

region at t he top of the image is detected. 

T he segmentation performance on t he middle-left example has however shown 

little improvement with the new process. In fact the two methods produce seg­

mentations with surprisingly similar properties - the regions at the bottom left 

and right-hand edge identify the same image features. It is clear that the original 

image in this case is much darker than t he others in the example set and t here is 

little brightness range in the image. This situation could well be the result of a 
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Figure 5.13: Examples of mRAC segmentation using L*u*v* data: Left to right 
and top to bottom: MM with colour variation in surrounding border, non- MM with 
little colour variation, MM with many patches of differing colour, MM with colour 
variation in surrounding skin, and non- MM with red inflamed surrounding skin. 

poor acquisition of the actual scene, in which case the use of a simple calibration 

card in-shot would provide a means to avoid this poor performance. 

An examination of the colour-space use for this particular image (figure 5.14 left) 

indicates clearly why such problems have arisen with this particular example; All 

the data is concentrated in a single region in the space, with little variation in 

either luminosity or chromaticity. In spite of this, a useful segmentation can be 

obtained simply by reducing the final threshold toptm to 6 (figure 5.14 right). Such 

a segmentation cannot be obtained using the RGB based processing as, when the 
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thresholds are set sufficiently low to ensure a good treatment of the lesion area, 

the overall segmentation becomes confused with many regions representing the 

skin area. This shows a further advantage of the L•u•v• colour-space over RGB 

for lesion image segmentation. 
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Figure 5.14: A problematic example: Left, L•u•v• colour-space scatter showing 
unusually limited variation, and right, a good segmentation obtained by reducing 
toptm• 

It is important to note that a potential problem exists in the assessment of seg­

mentation performance by the simple means of visual inspection; Visual assess­

ment of performance tends to prefer clean segmentation ( one with few regions). 

Simpler results are often initially seen as better than the more complex solutions 

which upon detailed inspection are often seen to more faithfully represent the dif­

ferent colours in the image. Naturally, the more divided the image is, the better 

the separation of colours will be, however the differences found in the course of 

this investigation seem to go beyond this simple explanation. 

The level of division required in the final segmentation is obviously directly af­

fected by the aims and implementation of the process which is to use the data. 

For example, a binary division of the image based on colour would provide useful 

data for skin-lesion boundary confidence checking whereas a relatively fine divi­

sion would be needed to investigate variegation in colouring. The setting of toptm 

must then be considered in the light of the goals for the segmentation data. 
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5.10 Conclusions 

Colour, a simple concept in essence, is found to be a complex concept when 

examined in detail. However, colour can be usefully (and much more simply) 

expressed and manipulated in terms of combinations of three fixed primaries; 

The RGB system, for example, forms the conceptual basis for much of current 

image capture, communication and display technology, with the red, green and 

blue primaries used having significance in relation to human vision. 

Colour information is widely recognized as an important diagnostic feature in the 

analysis of skin lesions, and this is reflected in its prominence in the skin cancer 

identification checklists. The colour-based indicators used mainly relate to either 

the variegation of colouring or the presence of specific colours. Research into 

colour-based lesion diagnosis falls into the three categories of spectral analysis of 

accurately calibrated reflectance spectra, analysis of spectral properties of image­

based information, and finally, the analysis of colour images. The envisaged 

primary-care diagnosis support system ( considering its demands for low capital 

and running cost, minimal training for operation and explainable diagnosis) have 

already been shown to indicate an image based system. These requirements 

suggest the use of techniques only of the third category since special equipment 

is required by the first and the second demands not only accurate calibration, 

but often additional supplementary data. 

Colour image processing for skin lesion images involves identification of either 

irregularity in pigmentation, specific colours, or the lesion extent. All these goals 

essentially reduce to segmentation of the image into regions of distinct colour. 

Due to the importance of colour as an indicator for skin cancer there has been 

considerable interest in colour-based segmentation for lesion images aimed at ei­

ther finding a binary lesion/skin segmentation or detecting variegated colouring. 

The reported methods generally begin the analysis by reducing the dimension­

ality of the colour data, often to a single dimension oriented either in relation 

to maximum data variation or to maximize the distinction between identified 

lesion and skin sample regions. A variety of segmentation techniques have been 

employed on this transformed data with varying degrees of success. 
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The underlying goals of segmentat ion for lesion image analysis were examined in 

detail and the importance of a clear definition of the t erms in the phrase 'areas of 

uniform colour' was exposed. The majority of the segmentation methods which 

have been used on lesion images consider the pixels as individual entities ignoring 

their location in the image, and require the number of output 'colours' to be 

specified in advance. The former is contrary to the goal of identifying contiguous 

regions in that t he spatial position of the pixels is not being considered , whilst 

the latter is obviously problematic since variegated colour is a known differential 

indicator. The notion of uniform colour is usually related to proximity between 

colour data points in the colour-space. Consideration of the distribution in RGB 

space for lesion images indicates that mapping to a single dimension based on 

maximized variation (such as obtained from PCT1) would discard the majority of 

the colour information. 

The demand for consideration of spatial information prompted the development of 

a region-based approach to lesion image segmentation. The mRAC agglomerative 

clustering technique was developed and shown to be effective in identifying regions 

of homogeneous colour using the full RGB data and the L2 distance measure for 

colour similarity. 

Although the results from the mRAC- RGB- L2 t rials were promising, it was ap­

parent that t here were considerable differences between the colour grouping given 

by L2 on RGB data and that of the human observer. Many other colour-spaces 

have been used in image processing to satisfy the requirements of a wide variety 

of applications. Three colour-spaces were seen to be particularly relevant to the 

need for approximation to human perception, RGB, IHS and L*u*v*. An inves­

tigation the general properties of and the distribution of the colour information 

from lesion images in t hese spaces clearly indicated the value of L*u*v* with its 

decoupling of luminosity and chromaticity information and its construction on the 

principle of consistency between L2 distance in the space and perceived colour 

difference. 

The final results show the distinct improvement in segmentation performance ob­

tained using mRAC with t he L *u*v*- L2 combination of colour-space and colour 

difference measure. Clear examples of better visual quality of segmentation are 
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seen in all but one of the presented t est image results. The desire to ensure consis­

tency in what is considered to be a 'different colour' demands the use of the same 

segmentation process parameter set for all images. The use of a single parameter 

set prevents the technique from producing a satisfactory result in all cases, how­

ever lowering just the final toptm parameter, the L *u*v*- L2 combination is able 

able to produce a good segmentation even in the difficult ( dark and low contrast) 

example. No such solution can be obtained using the RGB- L2 combination as 

separation of the apparent colours in the lesion is only maintained in a highly 

complicated and confused segmentation. 

The promising results obtained with the new method suggest that the segmenta­

tion information should be used not only for the quantification of variegation and 

presence of lesion colours , but also to provide support in boundary identification. 

However, the development required to convert the multi-region segmentation to 

a binary lesion/skin division and for investigation of combination methods and 

confidence rating using multiple boundary estimates could not be addressed in 

the time available. 

In summary, the importance of colour as an indicator in skin lesion analysis re­

quires its consideration for inclusion in any feature set for a diagnosis support 

system. The requirements of the particular low-cost system envisaged limit such 

analysis to processing of a st andard colour image with calibration based only on 

visually confirmed fidelity between the captured image and scene. The analysis 

of such images requires their segmentation into regions of perceptually uniform 

colour. The requirements of such segmentation have been analysed and a tech­

nique is presented which performs well on the majority of the sample images used 

in this study. 
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Texture - Skin Pattern Modelling 

This chapter examines the possibilities for obtaining diagnostic feature informa­

tion through the study of texture data. The nature and concept of texture in 

image processing is discussed and the different analysis paradigms are analysed 

with reference to the type of texture they aim to model. The analysis of the 

large-scale texture of skin patterning forms the focus of the investigation; exist­

ing techniques are found to be inadequate for the description of this texture. A 

det ailed investigation of the nature of skin patterning in lesion images is under­

taken from which conclusions as to the requirements for modelling of this line 

segment based pattern are drawn. The abstracted representation is constructed 

in view of the need to capture the essential properties which would allow the 

measurement of disruption. A new technique is presented which is effective in 

extracting a representation of the quality of the skin line patterning. 

6 .1 Texture in Image Processing 

The term texture in digital image processing generally refers to local spatial vari­

ations in image values, and aims to describe propert ies such as smoothness, 

coarseness and regularity. It is difficult to completely describe this notion ei­

ther qualitatively or quantitatively [60, 78, 79]. Texture analysis can be divided 

into five methodologies as detailed below. The first three categories reflect early 
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(such techniques are still widely used and researched however, for example Liu 

et al 1996 [80] proposed a texture modelling strategy based on "periodicity di­

rectionality and randomness") research which sought to characterize the texture 

by quantification of 'properties' as described above. The fourth category aims to 

produce an analytical model of the texture and in the final category the texture is 

considered as a composite of primitive elements. In more detail the five categories 

are: 

Statistical The texture is modeled as a statistical interaction of the values 

in a local area. Once a statistical texture description has been created a 

particular region can be tested for consistency with that texture by exam­

ining the difference between the area and the statistical expected values. 

Examples of this class of texture method are co-occurrence matrices and 

two-dimensional autocorrelation [81]. Statistical techniques have been ex­

tensively used in remote sensing applications and for land use classification 

[79, 81]. 

Spectral The texture is examined in the frequency or sequency domain ( e.g. 

via the Fourier or Hadamard transform) [79]. In the transformed domain 

texture features are revealed, e.g. fine textures are characterised by high 

frequencies, coarse textures show as lower frequencies. In practice however, 

spectral methods are not very effective where the texture is not very regular 

in period or orientation [60]. Spectral techniques have been widely used for 

classification of remote sensed ( e.g. LANDSAT) data [79] . 

Micro Structure The texture is defined by the response to a set of local area 

filter kernels. The kernels are convolved with the image, each serving to ac­

centuate specific features of microstructure such as lines, spots and ridges. 

Parameterization of the texture is achieved by taking the windowed stan­

dard deviation over an area containing several cycles of the texture for each 

of the kernel convolut ion results. This scheme was developed by Laws [82], 

vvho proposed a set of nine 3x3 kernels but many other kernel sets have 

been suggested including the 3x3 Chebyschev and Sobel gradients [60] . 

The kernel convolution results can be analysed in terms of total texture 

energy in a local region as used by Laws, or as a texture themselves, for 
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example using a statistical analysis method, the co-occurrence properties of 

micro-structures could be analysed. 

Model Based The observed texture is assumed to be the product of a certain 

set of parameters under an analytical model. The parameter set defines 

the properties of the observed texture. Parameter sets can be estimated 

from a given neighbourhood using the least squares method and then these 

are compared to known parameter sets for classification. Markov random 

fields have been studied extensively as such a model of texture, the discrete 

Gaussian version of the model being a simple linear combination of the grey 

levels in the neighbourhood plus additive noise [79, 81]. Linear autoregres­

sive [79] and Fractal [81, 83] models also fit into this class, the former being 

useful where a causal neighbourhood for texture generation is required [16] 

and the latter where the texture has the property of self-similarity at differ­

ent scales [81]. This form of texture analysis has been applied to a variety 

of natural scene segmentation tasks [74], however it is perhaps most useful 

where generation of artificial texture is required as in the generation of syn­

thetic lesion images for verification of boundary identification performance 

[18]. 

Primitives and Building Rules The texture is assumed to consist of a number 

of primitive elements (sometimes called texels such as triangles and lines, 

and the spatial arrangement and orientation of these primitives forms the 

texture [79, 81]. The primitives are essentially arranged according to a set 

of rules. The rules can be expressed as a grammar over the alphabet of the 

primitive set, or can be described as a texture themselves, for example by 

using the co-occurrence matrices over the primitive set rather than pixel 

values, or by considering qualities such as periodicity and directionality. 

These techniques can be particularly useful in recovering 3D object shape 

from an image, the variations in size shape and density of the texels on the 

object in the image indicating its 3D shape [81] . 

Most existing techniques for texture analysis consider only grey-scale values how­

ever there have been some attempts to extend the notion of texture to use colour. 

Two distinct approaches have been described, the first simply applies standard 
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techniques to a number of colour bands in turn and combines the results [14] 

whereas more recently the interactions between colour planes have been included 

within the model [74] . Unfortunately the consideration of three planes (e.g. red, 

green and blue) vastly increases the complexity of the t exture analysis, so only 

relatively simple methods and small neighbourhoods have been used. 

6.2 Texture for Lesion Classification 

The use of texture analysis for the analysis and classification of skin lesion images 

has not been widely investigated, however texture has been used in an attempt to 

improve segment ation results for skin lesions [14]. In this case co-occurrence ma­

trices are used to evaluate the texture separately for two bands of a transformed 

colour-space which removes intensity for consideration by another method. Tex­

ture work has also been undertaken for the purpose of generation of synthetic 

lesion images for the evaluation of boundary finding techniques for skin lesions 

[18] . This work found linear autoregressive models to be the most effective texture 

method for the generation of skin and lesion texture which was visually similar 

to skin and lesion texture. 

Much more work has been done in characterization of difference in textural rough­

ness between the lesion and surrounding skin, where surface topography (pro­

filometry) is measured in linear traces perpendicular to the first order skin fur­

rows [20]. Profiles are often taken from imprint replicas of the skin surface using 

a mechanical profilometer which by necessity must move a stylus very slowly over 

the replica, an optical profilometer is under development which should greatly 

increase the speed of this process as well as allowing profiles t o be t aken direct 

from the patient 's skin [21]. The texture of the surface topography can then be 

analysed using a number of st andard methods such as kurtosis and fractal dimen­

sion in addition to measures such as peak count, profile depth and average peak 

distance and classification calculated from a combination of these measures. 

None of the above techniques allows for even a part ially complete descript ion of 

the skin surface patterning in terms of skin lines. The image based texture tech-
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niques described, concentrate on small neighbourhoods and consequently cannot 

model the skin lines as is well illustrated by their absence in the generated skin 

textures in [18] . Although surface roughness comparisons have proved effective 

in discriminat ing between benign naevi and melanomas [20] it is clear that this 

analysis is only considering a small part of the "skin line pattern" text ure. Ma­

lignant lesions disrupt the surface pat tern in more ways than simply altering the 

roughness or coarseness that has so far been investigated. 

6.3 Skin Patterning Texture 

The surface of most areas of skin (except palms and soles) is covered in a network 

of fine lines that are a product of the structure of the top layer of the epidermis. 

Clinical features that distinguish malignant melanoma from melanocytic naevus 

include disrupt ion of the skin surface ( erosion or crusting) and the presence of 

irregular clumps of abnormal cells in the upper dermis [1, 5]. These features can 

be seen in the disruption of the skin line pattern across the lesion, for example, 

the consensus statement of the USA National Institutes of Health [6] st ates that 

earliest melanoma can alter these skin markings. 

It has been argued ([8]) that serious disrupt ion of the skin pat terning will only 

occur when there is significant disturbance of the structure of the dermis by a 

malignant lesion, however small scale disruption does seem to be detectable even 

for early malignant melanomas with little vert ical invasion as seen in the results 

(section 7.5) of chapter 7. 

6.3.1 Existing Techniques 

Most existing techniques for texture analysis consider the intensity fluctuations 

in a neighbourhood as texture. Skin lines are macroscopic features composed of 

fine linear elements, this means that a relatively high resolution is needed for 

them to become visible. A neighbourhood for the detection of skin lines will then 

be relatively large, with the skin lines only featuring in a small portion of the 
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data. In addition, skin lines are not perfectly regular in orientation, spacing and 

thickness, and hence form only a pseudo-pattern in the neighbourhood. 

Statistical and model based techniques will, by definition, consider sparse irreg­

ular features such as skin lines to be noise rather than part of the texture. The 

result of analysis by such methods is a model of the texture for unlined skin 

- as illustrated by synthetic image generation results [18]. Such techniques are 

most effective in characterizing the texture when the elements from which it is 

composed are small, otherwise it is necessary to extract the properties of the 

macroscopic texture elements by other methods [81]. 

Microstructure methods, for example, Laws [82], rely on the response to pre­

defined kernels and suffer from their scale dependence, recognizing structures of 

fixed pixel size, and hence a change of scale or skin line thickness/separation 

will significantly alter the results. Similar issues also affect spectral methods. 

Under these methods skin lines could conceivably be examined by considering 

only a small frequency range relating to the line thickness. The position of peaks 

corresponding to these frequencies in the Fourier spectrum would then provide 

the orientation structure of the skin pattern. Spectral techniques are however 

inherently reliant on high regularity in the texture structure so that the differ­

ing thickness and separation of lines together with the considerable variation in 

orientation would make them unsuitable for this application. 

Primitive and building rule texture analysis methods1 are different to those de­

scribed above as they do not explicitly examine a neighbourhood, however, the 

requirement for high resolution still applies as does the observation concerning 

the relatively small area influence of the skin patterning. Although the crossing 

of skin lines forms triangles and other polygons, these shapes cannot be easily 

described by a small set of primitives due to their inherent irregularity and con­

sequently, primitive and building rule methods are difficult to apply to skin line 

detection. 

Skin lines are poorly described by the normal definition of texture and poorly 

detected by the existing techniques. A different method is needed to analyse this 

form of texture. 
1 The skin pattern detection method proposed in this study most closely relates to this 

category in that line primitives are considered and their properties analysed. 
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6.3.2 Related Line Pattern Applications 

The detection of patterns formed by the interaction of linear components is also 

important in mammography where malignant lesions are often characterised by 

architectural distortions such as radiating linear structures [84]. The line patterns 

found in these cases are similar to skin patt erning in that they only exhibit limited 

forms of regularity, however the focused radiating patterns that are often at the 

heart of such detection techniques are not relevant to skin pat tern indicators. The 

techniques that have been employed in this field are still of considerable interest 

where they are less specific in terms of the patterns they detect . A method 

based on multi-scale directional feature extraction followed by factor analysis 

has been shown to be effective in detection of stellate lesions whilst remaining 

uncommitted to a particular pat tern [85] . At each scale the method assigns a 

single orientation to patches spaced evenly over the image as the orientation 

of the pixel in the locality of t he grid point wit h the maximum response from 

the directional det ector. Such an approach is not suitable for skin patterning 

analysis as more than one orientation is likely in skin patterning in each patch 

- this is discussed in more detail in section 6.3.3. The factor analysis approach 

would not be effective in detecting malignant skin lesions as the most common 

form of pat terning disruption is randomization of orientations. Factor analysis 

could perhaps be used t o generate a model for normal skin, however is should be 

noted that the patterning in skin has been found to be highly variable between 

examples and no simple common construct (equivalent to the radiating structure 

of a stellate lesion) has been found . Skin lesion analysis is better suited by 

methods that can be used to detect a disruption over the lesion area relative to 

the patterning found in the surrounding skin. 

6.3.3 Profiling by Orientation of Linear features 

Skin patterning is a result of the complex interaction of fine linear features and 

as noted before, the pattern is far from being regular in most senses. In order 

to detect when this pattern has been disrupted some characteristics of "normal" 

patterning must be identified. Although typical skin patterning has been de-
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scribed as forming a rhomboidal pattern [5] visualization of this pattern requires 

only a subset of the lines to be considered, in fact in many cases it is perhaps 

more accurate to say that the pattern consists of rhomboids divided into two tri­

angles (see figure 2.3) . In addition t he scale of the shapes seen varies considerably 

depending on body site, being much larger on the back of the hand than on the 

forearm, for example. A feature of skin patterning that does show consistency 

is the prevalence of a number of directions over an extended local area. These 

"preferred orientations" often extend over the entire skin area of a typical clinical 

image of a lesion. Where a lesion has disrupted the skin surface this consistency 

is lost, some lesion areas then have no features like skin lines but most showing 

a random arrangement of orientations. Skin line patterning is then a form of 

texture that needs a new detection and analysis method. 

A measure of skin patterning disruption can t hen be conceived as the comparison 

of consistency of preferred orientations over the lesion area when compared to the 

surrounding skin. The comparison to the surrounding skin allows some tolerance 

to the many variables in image acquisition (such as scale, orientation, lighting and 

even skin type) assuming of course that the skin lines are still visible in the given 

situation! A static model of preferred orientation relationships in "normal skin" 

is certainly conceivable and, if nothing else could be used to provide a measure 

of confidence in any acquisition of skin patterning in skin regions. 

The disruption measure indicated above can be calculated by forming an ab­

stracted representation of the patterning properties of neighbourhoods spaced 

right across an image of a suspect lesion and comparing some sort of model for 

the properties of those found in the skin with those found in the lesion. This task 

can be divided into four sections: 

enhancement by highlighting the pattern and removing as much and as many 

of the unwanted background features as possible. 

profiling by reduction of a region to a description of preferred orientations. 

consistency analysis by comparing profiles in a locality and either forming 

classes of similar profiles or characterizing that locality by self consistency. 
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evaluation by comparing the characteristics that represent the lesion area with 

those of the surrounding skin. 

The first two are discussed in t he remainder of this chapter and fall naturally 

under the heading of profile acquisition , the other two are the subject of chapter 

7. 

6.3.4 Detecting Skin Line Patterning: Overview 

The first stage in the design of an effective detector for a feature is an under­

standing of the nature of that feature; what properties can be attributed to t he 

feature and thus used in its detection? The skin lines that form the patterning to 

be detected have very little to offer in this respect ; they have an inherent variable 

t hickness and spacing which is accentuated by the requirement for some scale tol­

erance, a variable intensity which is only a slight deviation from the background 

and which is again affected by a tolerance requirement to variable lighting, and 

a variable orientation which needs to be detected . 

The process described here addresses this lack of recognizable properties by re­

ducing the "model" used to the simplest form, where a linear feature is simply a 

consistency of value at an orientation and highlights the skin lines by their small 

negative deviation from the local background intensity in a grey-scale image. 

6 .4 Enhancing Skin Patterning 

In an unmodified image the skin patterning "texture" is only faintly visible as fine 

lines of slightly lower intensity t han the skin or lesion they are passing through. 

The first st age in analysing t his t exture is to highlight t his skin patterning and to 

remove the variation in local mean caused by features such as a dark lesion. The 

enhancement process was addressed in two parts, firstly the extraction of t he raw 

skin line features was investigated , and secondly possible methods for improving 

the quality of t he revealed pattern were considered . 
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6.4.1 Exposing The Raw Pattern 

The skin line pattern was exposed by removing features which are the wrong scale 

to be skin lines. The two most effective methods found to perform this processing 

are as follows: 

Smooth Model Subtraction The essence of this method is the creation of a 

template for gross feature removal. The template is created from t he image by 

convolving with a 9x9 window mean smoothing kernel and this template is then 

subtracted from the original. The result (similar to high pass filtered version of 

the original) is then enhanced by histogram equalization and the values inverted 

so that the skin lines are seen as high intensities. The method is simple, quick 

and provides an adequate depiction of the skin lines network. 

Figure 6.1: Skin line highlighting processing result for benign (left) and malig­
nant (right) example lesions. 

Figure 6.1 shows two examples of the preprocessing result. Unfortunately this 

step is sensitive to loss of contrast between the skin lines and their neighbourhood. 

Loss of focus causes loss of contrast and fine detail as discussed in section 4.4.2 

and hence curvature in the subject, such as on an arm or ankle can affect the 

quality of the enhancement. 
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FFT based band-pass filtering Conceptually this is also a simple method as it 

simply involves identifying a range of frequencies that describe the skin lines and 

then using band-pass filtering to extract them from the image. Figure 6.2 gives 

an indication of the structure of a typical image by frequency. The application 

of low and high cutoffs of 0.22 and 0.55 respectively isolate the skin lines to 

provide a similar enhancement quality to that obtained using the smooth model 

subtraction technique. 
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Figure 6.2: Structure by frequency for FFT filtering (0=frequency of zero (con-
stant) l=Nyquist frequency, ~0.0365mrn pixels) 

This technique does not provide significant improvement over the smooth model 

subtraction and due to the computational complexity of the FFT transforma­

tions, this method was eventually discarded. The FFT transformation is in itself 

computationally expensive and furthermore requires that the region width and 

height are 2n for some n E N. For the main image set used this implies a large 

amount of wasted calculation and a prohibitively long completion time. 

The first method, smooth model subtraction, was selected and is used m the 

remainder of this study. However, as hardware performance improves, a re­

consideration of the FFT method should be undertaken as it is perhaps more 

robust to, and amenable to adjustment for, image scale changes. It is also inter­

esting to note that standard texture representations could also possibly be used 

to highlight the skin lines as a direct result of their inability to model them ef­

fectively. The deviation from the generated or expected value from the texture 

model ought perhaps to reveal skin patterning, however in practice this method 
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may be ineffective as the generated texture might not be well registered (i.e. syn­

chronised) with that of the image. This method has not been investigated further 

as, aside from the synchronization issue, it would be far more computationally 

complex than the selected method which already produces seemingly adequate 

results. 

6.4.2 Cleaning The Exposed Pattern 

The raw skin line structure, as revealed, is still noisy and hence further cleaning of 

the result with the aim of producing a binary skeleton for the skin line pattern was 

addressed (figure 6.3). Skin patterning is often composed of more than one 'level' 

of structure, with more pronounced skin lines forming a pattern of rhomboids 

and half-rhomboid triangles, which are then further divided by finer lines into 

smaller triangles and other shapes. In many cases the most pronounced primary 

skin lines clearly follow only one approximate orientation, and the rhomboid­

triangle shapes are seen only by also considering a secondary level of skin lines. 

The patterns formed by even finer lines are complex and preferred orientations 

become less consistent and harder to identify. In the ideal case extraction of only 

the more consistent larger scale (primary and secondary line) patterning is desired 

but such separation is difficult due to the natural variability of the skin surface. 

The lines from which the pattern is composed often have small breaks and are 

sometimes much less distinct than their contemporaries, and thus of comparable 

strength to those of the finer structures. 

Original Image Enhanced Skin Pattern Extracted Pattern 

Figure 6.3: Illustration of skin patterning extraction concepts 

Thresholding is simple to implement, but is not effective as it only accentuates 

the problems of faint components and breaks. The formation of the binary image 
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effectively makes small breaks more distinct and involves promotion or removal 

of the faint components. Using a global threshold, this process obviously cannot 

be performed in a manner consistent with the patterning level to which the faint 

components essentially belong, and a local approach cannot provide the solution 

as it is an understanding of the overall skin pattern and not local image properties 

which defines the correct action for a given line element . 

Standard morphological routines for skeletonization were applied but perhaps 

unsurprisingly resulted in eit her an over complex pattern ( due to the raising of 

all faint lines to the same importance as the main skin pattern) or a broken 

pattern (due to the small breaks and the removal of faint components) . The 

non-uniformity of the line spacing is perhaps t he most significant cause of this 

behaviour. 

A method which traces ridge maximum values at the pixel level horizontally, ver­

tically and at the two diagonal directions was devised. The final results, although 

showing some promise, shared many of the drawbacks of the morphological meth­

ods; especially in terms of the conflict between det ecting faint components and 

ignoring the finer structure. Small breaks in the lines could be bridged by search­

ing ahead a small number of pixels for a continuing line, however , this had a 

tendency to also bridge between many short curving line segments and form a 

false straight line from them. 

None of the methods investigated were sufficiently robust and faithful t o the skin 

patterning over a range of sample images to be used as part of the final process, 

and instead the results of the smooth model subtraction highlighting method 

were used directly. However , the clarity of the resulting pat tern obtained where 

cleaning had been successful clearly indicated the potent ial of such processing 

and the value of future research in this area. 

6.5 Regional Profiling for Skin Patterning 

Once the skin line pat terning has been highlighted and much of the background 

feature content has been suppressed the next st age in profile acquisition is t hen 
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to reduce the skin line patterning to an abstract representation that embodies the 

required property of local "preferred orientations" which can then be processed 

to produce a disruption measure. 

6.5.1 Patch Based Processing 

In the regional profiling process, small square patches of the enhanced image are 

processed separately. The patches are centred at points spaced evenly across the 

entire image and cover partially overlapping areas. 

The ident ification of orientation in the patches, for the simple type of linear 

structure previously identified as the "model" for lines in the skin patterning, 

can be approached in two distinct ways: Two dimensional processing followed by 

analysis of the result over a range of angles or formation of a rotated version of the 

patch for each of the range of angles followed by single orientation analysis. Both 

methods will achieve the same results given that the understanding of sampling at 

an angle is consistent . The latter method was chosen as it is conceptually simpler, 

easier to verify that the process is functioning correctly and the construction of 

linear detectors is simpler. It should also be noted that this method has obvious 

potential for parallel calculation, with a separate process creating and analysing 

the rotated image for each angle in the range. 

The patches are spaced finely enough that the data obtained reflects most of the 

variation in the image and yet coarse enough to avoid redundancy (measuring of 

the same information) and to keep the volume of data to a realistic size. The 

size of a patch is affected by similar criteria in that it must be large enough to 

include identifiable lines of the major skin pattern and not to be too sensitive 

to local faint lines and anomalies yet not so large that the profiles for adjacent 

areas are unlikely to differ significantly. Suitable values for the spacing and size 

are dependent on the capture resolution, however the effect of the variable scale 

seen in skin patterning should also be considered and it was found that in most 

cases skin patterning was best described by an area with side between 0.5 and 

0.9mm. The majority of the testing was performed on images covering a 12.7mm 

x 8.5mm area digitized using 350x230 pixels of side approximately 0.0365mm. 

106 



Chapter 6 Texture - Skin Pat tern Modelling 

Testing with patches ranging from 0.5mm to 0.9mm showed little qualitative 

difference and therefore patches of side 19 pixels corresponding to approximately 

0.7mm were used in all of the results presented. 

The choice of angular sampling frequency is influenced by the need both to re­

spond to the finest skin lines and to limit the number of the computationally 

expensive rotation operations which have to be performed and the size of the 

profile data for a whole image. The frequency needs to be sufficiently high to 

ensure that the skin lines will be close horizontal at some point in the rotation 

sequence. This need can be addressed by choosing an angle increment which 

results in a movement equivalent to a single pixel at the edge of the patch. For 

patches of side 19 pixels then, taking 1 = r0 ⇒ 0 = 
9

\ radians ~ 6°. An 

increment of 5° was actually used in all the results in this study. 

The underlying method used for the linear profiling of a patch is then as follows: 

The presence of skin lines at angle 0 in the patch is evaluated by assessing the line 

strength in the patch viewed as a set of lines of data at this angle (figure 6.4) . 

The term line strength is used here to reflect the level of evidence to suggests 

the presence of skin lines crossing the patch at this angle, and for the enhanced 

images this means the presence of a line of high intensity pixels. The result for 

a patch will be termed a response profile being a profile by angle of the level of 

evidence, given by the response of an estimator, for skin lines at that angle. 

F igure 6.4: Assessing line-strength at an angle (curve shows autocorrelation of 
data - line strength by self-similarity) 

This assessment is achieved by the following method: let I be a square patch 

of side d in the enhanced image. A slightly larger 2 area R (side -/2d) centred 

around I is then rotated by 0, about its centre. An area !0 the size of I is then 
2 The rotated area is expanded to ensure that there will always be enough data to fill the 

extracted area le 
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extracted from the rotated image R, and the rows of 10 are assessed for similarity. 

u:t 
~ la,y 

Figure 6.5: Method for re- sampling the image patch at an angle 

6 .5 .2 Line Strength Estimators 

Two estimators have shown promise in the assessment of line strength in the ro­

tated patches: the first uses the lD autocorrelation and the second looks directly 

for consistent values in the rows of the rotated image. For the purpose of the 

discussion of these methods it is worth noting that the requirements for selecting 

a patch size together with the irregularity and sparseness of skin lines means that 

it is unlikely that patches will contain many skin lines and it is unlikely that these 

lines will exactly match in orientation. 

Autocorrelation method The autocorrelation function can be viewed as mea­

suring the degree of similarity of the data when compared to a copy of itself shifted 

over a range of displacements. The autocorrelation function <l>s (k) is given by 

1 N-1 

<l>s(k) = - L s(i - k)s(i) 
Ps i = k 

N-1 

where Ps = L s(i)2 and s(x) : 0 ~ x < N - 1 
i= O 

(6.1) 

For a given signal s, the "width", w of the function <l>s is a measure of the 

self-similarity of s. Thus w( ¢18 ) is a measure of the similarity of row y in I 

re- sampled at angle 0. 

The width of ¢s is currently evaluated as the point where the function first crosses 

0.6 (issues concerning width evaluation and the choice of this threshold are dis­

cussed later in this section). Since c/>s is a discrete function of only a small number 
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of points, simply defining the width as the smallest k such that <l>s(k) < 0.6 will 

not allow for much variation. For that reason linear interpolation is used between 

k and k - l and is given by, 

w(</>(s)) = ! ( (k - 1) + </>(k - l ) - </>(k) ) . 
d </>(k - 1) - 0.6 

A single patch at a single angle therefore results in a set of d autocorrelation 

widths. These values are sorted into decreasing order and the lower half ( con­

taining the results for the 'noise' between the sparse skin lines) is discarded. The 

median of the remaining data is then taken to represent the strength of skin lines 

in the patch at the angle. The output is a vector of these strengths which forms 

the profile for skin line strength versus angle. 

Figure 6.6 shows response graphs for sample patches from one of the malignant 

melanoma trial images (the MIS as shown in figure 2.5). A profile for some 

neighbouring patches is shown in each case. The first graph shows data from 

a normal area of lined skin with only one major preferred orientation close to 

horizontal (seen as a peak in response at either end of the plot ). These skin area 

responses show the marked similarity that indicates that the patterning has not 

been disrupted. The second graph illust rates the behaviour found in malignant 

lesion areas, the three responses shown differ in character showing random 'noise' 

patterning. 
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Figure 6.6: Sample responses for autocorrelation method: patterned skin (left) 
and malignant lesion (right ). 

Evaluation of the self-similarity expressed by the autocorrelation of the oriented 

rows is a complex issue as it is not easy to construct a width measure which will 
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extract the information relating only to our desired concept of similarity. The 

general form for output from the autocorrelation of a single row "signal" can be 

viewed as a decreasing graph starting at 1 and then decreasing rapidly at first 

and eventually reaching (almost) zero. High self-similarity manifests itself as less 

rapid decrease with a row of identical values producing a linear result (figure 6.7). 

Autocorrelation 
value 

·-~--~-.:,,, ,,,------ Self-identical (row with values all the same) 

I ··· ... ', ..(K - High self-similarity 

\ ·····...... '''{:, Low self-similarity 

\ ··. -·. -
\ '- ·· ........ ····· ....... ----, ____ _ 

........ - ·················· ......... 

0 ..L...--------=--·-····=·· ''--♦ 
Displacement 

Figure 6.7: Basic autocorrelation function properties. 

Unfortunately (for this application) this is not the whole story, autocorrelation 

responds to any form of periodic self-similarity and in such a way that the func­

tion does not smoothly decrease and can even increase. Figure 6.8 shows the 

autocorrelation result for two artificial rows containing periodic data together 

with the linear result of uniform data. The maximum value for discrete peak 

data is also shown. The metric employed to quantify the width w was chosen in 

an attempt to minimize t he effect of this response to periodicity. Many standard 

width metrics such as RMS width are seriously affected by the periodic surges as 

all the data is used , including that for higher displacements where the surges be­

come more dominant. The threshold-based metric does not suffer as greatly from 

the periodicity providing t he threshold chosen is sufficiently high that the auto­

correla tion value meets the threshold before the surges are significant. However, 

the threshold must be low enough that there is detect able variation in the width 

value it provides given the normal situation of high but decreasing init ial slope. 

The value of 0.6 seems to provide the best balance between these requirements 

(see figure 6.8). 

The method as a whole performs quite well in terms of profiling line structure, 

producing a good response to the type of similarity we wish to detect, however it 

suffers from two major categories of drawback, undesirable high response in low 

contrast patches and "false" response related to the way autocorrelation responds 
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Autocorrelation result for artificial row data 
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Figure 6.8: Periodic properties of autocorrelation. 

to periodic similarity. 

Low contrast patches result in a high response at all angles, simply because such 

patches are indeed self-similar at all angles. This is most undesirable in such 

areas of the enhanced image that are dark as detection of skin lines there would 

be misleading. Low contrast in a patch is simple to detect so this problem could 

be dealt with by marking such data as suspect or invalid. A related problem 

which again has a simple solution is the fact that the autocorrelation of a row of 

constant zeros is constant zero rather than the linear ramp of any other constant, 

again this is easily dealt with by manipulating the input data range or by masking, 

but nonetheless it demands mention. 

The second major category relates to the effects of the periodicity response. Al­

though the threshold method does greatly improve matters there are real-image 

situat ions in which "false" response attributable to periodicity does occur. A 

good example of such a situation is where skin lines with only one significant 

orientation and similar spacing are rotated to a vertical orientation. When the 

horizontal autocorrelation is evaluated, this results in rows with a wave-like pat­

tern of consistent frequency and therefore a periodic surge in the autocorrelation 

response (similar to, although less pronounced than, that of the modified sine in 

figure 6.8) and hence the likelihood of a large width result and false high response 

recorded at that orientation. This effect can be clearly seen for the example in 
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figure 6.10 which shows response corresponding to the lines in t he patch at ~ 

47° together with significant response at ~ 47+90° - perpendicular to the lines. 

Furthermore, false response can occur at orientations cutting across two or more 

lines where the wave-like pattern is formed as an oriented row encounters each 

line in turn, thus a patch containing three lines can have two such "harmonic" 

responses either side of the true response. These responses are not so dependent 

on regular spacing of the multiple lines as the false perpendicular range is, and 

so would be a greater problem were they not at a much lower level since only a 

limited number of rows are affected. These "harmonic" responses may explain 

the "shoulders" seen eit her side of t he t rue response in the figure. 

Consistent Value method The consistent value approach looks directly at 

the values t hat make up the rows of the rotated patches. The investigation of 

the nature of skin patterning and the lines from which it is composed suggested 

that a detector should respond to consistent values of pixels rather than any 

more detailed model of a line and it is t his that prompted the experimentation 

wit h the consistent value method. Consistency of value implies a low range and 

so 1 - range(Io,y) (where range(l) is the difference between the maximum and 

minimum values in t he data line l normalized to lie between O and 1) can be 

considered a measure of consistency. 

This produced results that were surprisingly similar to the autocorrelation method 

but highlighted the problem with detection of smooth dark areas as skin lines; 

Low intensity smooth regions tend to have less variation than high intensity 

smooth regions and therefore result in a lower range and a higher response, the 

effect of which is the apparent detection of strong skin lines at most orientations 

in a dark smooth region. 

A re-examination of the aims for the detector provides a simple but effective 

solut ion to these problems; The skin line highlighting stage aims to produce 

bright lines to represent skin patterning and so we should restrict our detector 

to bright lines with little variation. This can be achieved by simply taking a 

minimum value for a particular row as its line strength - when this is high , the 

entire row must be a bright line and when it is low, t here is no line or the line 

is broken at some point. This method will be referred to as Consistent High-
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value Profiling ( CHP). Small breaks in the lines must be allowed for and this 

is achieved by taking the mean of the lowest three values as the line strength. 

Several other break compensation ideas were tried including simply taking the 

lowest-but-one value, taking the mean of more values and taking the Gaussian­

weighted mean of the lower values, the first was not as effective in compensating 

for breaks, whereas the second over-compensated and began to detect portions of 

two separate lines as a whole, Gaussian weighting gave no noticeable advantage 

and involved considerable computation overhead. 

As with the autocorrelation method, a single patch will result in a set of d line 

strength evaluations - one for each row of the rotated patch. Again these values 

are sorted into decreasing order, but this time a much larger portion of the lower 

values are discarded. This is because the detector now only responds to consis­

tency of high value and not consistency at any value. The response for the patch 

is calculated as the mean of the highest ¼ of the row responses, the rationale for 

this figure being that only a small number ( one or two) of skin lines are expected 

in a patch and these are usually less than three pixels in width, therefore a patch 

of side 19 pixels containing two lines should be expected to produce 2 x 2 = 
4 rows of bright pixels at the orientation, ~ ¼ of the rows. The mean value is 

used rather than the median as it is computationally less expensive and produces 

com parable results ( since outliers are rare with this strength measure). 

Figure 6.9 shows response graphs for the CHP method for the same melanoma 

image used for the autocorrelation examples in figure 6.6. Again a profile for 

some neighbouring patches is shown in each case. The first graph shows data 

from a normal area of lined skin, the responses show the marked similarity that 

indicates that the patterning has not been disrupted. The second graph illustrates 

the behaviour found in malignant lesion areas, the three responses shown differ 

in character showing random 'noise' patterning. 

Figure 6.10 shows a comparison, for a patch in the skin area of a different example 

(from the top left quadrant of the melanoma example in the top left of figure 

4.5) of the profiles obtained through the CHP method and the autocorrelation 

method skin area in another melanoma example. The CHP method provides 

a profile clearly reflecting the major line orientation structure expected from a 
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Figure 6.9: Sample responses for CHP method: patterned skin (left) and 
malignant lesion (right) . 

visual inspection of the pattern enhancement stage and of much increased quality 

when compared to the autocorrelation method. The orientations are more reliably 

detected and there is less apparent noise and spurious detection. 
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F igure 6.10: Response comparison for a given patch of patterned skin: The 
patch analysed and the profiles from CHP and autocorrelation methods. 

6.5 .3 Demonstration of Profiling 

Once a profile has been constructed for patches spaced evenly over a whole image, 

the profiles can be reconstructed into an image showing the characteristics that 

were detected3
. This provides an effective demonstration of the validity of the 

3 For the pictures shown here the profiles for the individual patches are individually contrast 
stretched, this improves the visual quality but in cases where no linear feature is found (rare) 
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process when applied to artificial and real images ( figure 6 .11). 

Figure 6.11: Profile representation: original line image and reconstructed profile 
image for: top, an artificial image, middle, a malignant melanoma and bottom a 
benign compound naevus. (The original lesion images are shown in the top left 
of figure 4.5 and figure 7.18 respectively.) 

The artificial lines image is mapped successfully even where more than one di­

rection of line is present in the source image and when the reconstruction does 

not use local enhancement a clear relationship between line strength and profile 

strength is seen. In the real image cases the skin line pattern profile is also ex­

tracted successfully - clearly seen as the diagonal lines for the skin surrounding 

the melanoma and the near horizontal lines over the majority of the benign case. 

can lead to presentation of minute features and noise as true linear features. 
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6.6 Conclusions 

The pattern of fine lines criss-crossing the surface of normal skin forms a macro­

scale texture. Changes in this skin patterning texture have been identified as 

indicative of early melanoma. A measure of disruption of skin line patterning 

would then clearly be of benefit for a computer based diagnosis support system. 

Existing research relating to skin patterning texture extends only to changes in 

properties of skin surface profiles taken perpendicular to the direction of the 

main skin lines. It is clear however that considerable potential for diagnostic 

information exists in the disruption of the directional pattern formed by the skin 

lines. 

The nature of skin patterning means that it is poorly described by existing texture 

techniques and consequently a new skin patterning detection method has been 

developed. An abstracted representation is proposed for this patterning and 

the linear elements from which it is composed. This model aims to capture 

the essential properties of the pattern and highlight the loss of order seen over 

disruptive lesions. 

The new detection method forms a matrix of profiles (by angle) of 'line strength', 

in effect a map for the preferred orientations of the patterning on the image. The 

process begins with a simple method to highlight the skin lines in the lesion images 

by removing large scale features such as a dark lesion. Patches spaced evenly over 

the entire image are then analysed and each produces a profile representing the 

character of the local skin patterning. This process has been shown to be effective 

in relation to test patterns and in reflecting the observed skin patterning in real 

lesion images. 

The next chapter addresses the analysis of skin pattern profile map data to pro­

vide the quantitative feature data needed for the automatic diagnosis support 

system. 

116 



Chapter 7 

Texture - Skin Pattern Analysis 

& Disruption Evaluation 

This chapter addresses feature analysis and evaluation using the skin pattern 

representation extracted by the method in chapter 6. Quantitative interpreta­

t ion of the patterning information is vital if it is to be useful in an automated 

detection system. The provision of a metric for the quant ification of disruption 

is therefore considered. Preliminary results for a number of analysis techniques 

prompt a number of changes and enhancements to both the extraction, analysis 

and evaluation methods. The final results show the effectiveness of this texture 

analysis and disruption feature evaluation in relation to both visual assessment 

and diagnost ic performance. 

7 .1 Analysing Skin Pattern Profile Results: 

Initial work 

The methods described in the previous section produce a vector for each area 

of the image which represents the characteristics of the skin lines found there 

([86]). A visual representation of t he skin patterning data acquired through the 

method can be simply generated (figure 6.11). This pictorial representation shows 
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the regularity expected in normal skin areas, its continuation over most benign 

lesions and its marked disruption over malignant lesions. However, automated 

analysis and quantification of the disruption is not simple - the matrix of pro­

files is difficult to interpret and an analysis method is required [87]. An indication 

of the potential for automatic evaluation of pattern disruption was required and 

this was pursued utilizing the earlier autocorrelation based profile technique ( all 

results later in this chapter use CHP data) . Four classification methods were 

investigated at this stage, two neural networks, a region agglomerative classifier 

and a variance based measure. The two neural networks, the Self Organizing Fea­

ture Map and ART-2a, were chosen as well known examples of unsupervised, self 

organizing classifier networks. This type of network was required as the profile 

properties considered as characteristic of 'normal' skin patterning relate to sim­

ilarity between neighbouring profiles rather than to fixed features of individual 

profiles, the specific networks were chosen as examples of pre-defined and dynami­

cally created output class configurations respectively. Each of the four methods is 

composed of two distinct stages: t he analysis/classification stage where the pro­

files are compared locally or grouped by similarity and the evaluation stage where 

this data is converted into a meaningful measure of disruption or non-conformity 

between skin and lesion area profiles. 

7 .1.1 Local Variance 

The first method uses the local variance in each plane as a measure of the neigh­

bourhood similarity in response for a given angle. The mean of these variance 

results for a given patch provides the metric for an overall similarity measure. The 

3x3 windowed variance is calculated for each plane (all profile values at a partic­

ular angle) and t he mean of all the variance results for a given patch provides the 

metric for the similarity of responses in the neighbourhood of that patch. 

7 .1.2 Adaptive Resonance Theory 

The ART networks [88] have also been considered as a method for categorizing 

the output from the skin line detector. In particular t he ART-2a version is used. 
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It performs unsupervised on-line categorization of input patterns into a number 

of classes. 

It is a two layer network in which the input layer performs normalization and 

noise reduction on the input data. The two layers are connected by two sets of 

weights which fully connect each input node to each output node. The normalized 

input data is passed to the output nodes via one set of weights and the output 

nodes "compete" with each other to determine the one which best represents 

the input. All except the winning node are then "switched off" and hypothesis 

testing is performed within the output layer to ensure that the chosen output 

node sufficiently well represents the input ( the other set of weights are used for 

this). If the hypothesis test fails then the chosen output node is switched off and 

the competition repeated without this previously chosen node. This process is 

repeated until either a matching node is found or all available nodes have been 

tested. In either case a learning procedure is started. If a matching output node 

is found then the weights between that node and the input nodes are adjusted to 

make the node more closely represent the input. If no sufficiently well matched 

output node is found a new node is recruited and its weights are made to represent 

the input data. This method uses the cosine of the angle between vectors as the 

measure of similarity and as stated has built in normalization prior to comparison. 

7.1.3 Self Organizing Feature Map 

The Self Organizing Feature Map (SOFM) [89] is a single layer neural network 

in which each output node is connected to all of the inputs. It makes use of 

competit ive learning to produce a single activated node in the output layer for a 

given input vector. The effect is to cluster similar input vectors together, with 

similar numbers of vectors being "attributed" to each of the output nodes. 

The process is iterative; classification begins with the production of a global 

ordering of the data and then processing becomes progressively more localised 

as the iteration proceeds. This is achieved through a shrinking "neighbourhood" 

of network weight alterations in the learning process. The output class for each 

output node is taken to be the set of input samples which are best represented 
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by the weights associated with that node. 

In this application a 1-D SOFM with Euclidean distance as the similarity measure 

has been used. The SOFM requires the number of output nodes to be fixed. This 

number of output classes must be chosen so as to sufficiently, but not overly, 

divide the number of profiles in a matrix for an image (as discussed further in 

section 7. 2), and this was set at 32 for all the lesion image processing and results 

presented. 

7.1.4 Multi- stage Region Agglomerative 

Clustering ( mRAC) 

The final classification technique applied is the novel agglomerative clustering 

technique presented in chapter 5. Although the mRAC [77] process was origi­

nally developed for analysing colour images it can be used to cluster any image 

composed of vector data. 

Clustering methods aim to partition data into groups consisting of elements which 

possess similarity. The mRAC process differs from the others presented here as 

it has two criteria for similarity; the first is explicit - the distance measure used 

in judging the similarity of two clusters, and the second is implicit - two clus­

ters must be spatially adjacent to be considered uniform. This implicit similarity 

criterion has an important defining influence on the final clustering solution pro­

duced. In discussions concerning mRAC, clusters are called regions. 

The uniformity criterion initially used for the profile data relates to the Euclidean 

distance as before. All parameters were kept constant for all the disruption 

evaluation results given in section 7.2. The exact parameter settings for profile 

data are not critical, different but similar parameter sets generate results differing 

in character but not in validity. The setting of toptm obviously has the greatest 

effect on the final segmentation. The thresholds used here were; split ting ts ,:::; 80, 

conservative merge tcm ~ 90 and optimal merge toptm ,:::; 230. These thresholds 

relate to the expected range of the uniformity criterion d which theoretically 

(for the 37-element profile data) had a range of O - ✓37x(255)2 (~ 1550). The 
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cleaning stage was employed for all regions smaller than 0.1 % of the image area. 

7.1.5 Demonstration of Classification Techniques 

In order to illustrate the intended operation of the technique a test image of hand­

drawn lines in various orientations was created. The line response profile was 

calculated and the analysis methods applied. Figure 7.1 shows the segmentations 

obtained superimposed over the test image. 

Figure 7.1: Segmentation of a test image containing had drawn lines at various 
orientations. Left: mRAC, centre: SOFM with 8 classes and right ART 

Initial testing of the ART method on the artificial line data produced acceptable 

results apart from poor classification in areas where many consistent regions met 

( as seen in the centre of the image above). However, when ART was applied to the 

autocorrelation based profile data produced from real skin images it was found 

that the loss of the magnitude information during the normalization process made 

the resulting segmentation confused and difficult to interpret visually and lead 

to inconclusive results in automatic evaluation of pattern disruption. As a result 

ART was not considered further in this early evaluation phase. Investigation since 

then ( and discussed later) has shown that ART is effective in the interpretation of 

the much "purer" profile data produced through the CHP (section 7.4.6) method 

especially where the internal normalization is controlled. 
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7.2 Evaluating the Classification Results: 

Initial Work 

A quantitative measure of the actual disruption to the skin patterning caused 

by the lesion is required. This measure is based on the relationship between the 

classification results and a mask which defines the lesion and skin areas (obtained 

automatically via the intensity based edge-focusing segmentation algorithm where 

possible) . In general, the essence of the disruption measure can be described as: 

where the texture based segmentation reveals the lesion then the skin structure 

has been changed by the lesion. 

Each of the three successful profile analysis techniques (local variance, mRAC 

and SOFM) produce results with significantly different characteristics. As a re­

sult, each requires a different evaluation method. Figure 7.2 shows from left to 

right, the original image, mRAC, SOFM and local variance process results for two 

melanomas and two compound naevi from the test set. In general the points to 

note are: 

... , . - . . -
1 ,. 

yr 
# - ,._- -

I 

. .,. : ... 
# 

Figure 7.2: Top to bottom: two example melanomas, two example benign 
naevi, Left to right: original, mRAC, SOFM (32 classes), local variance. 
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mRAC. Malignant lesions appear as a group of regions that are distinct from 

those that make up the skin area. In benign cases much of the lesion ( often 85% 

or more) is classed with the surrounding skin. 

SOFM. The SOFM classifications are characterised by the skin and lesion areas 

being most distinct where the lesion is a melanoma. In some cases the skin lines 

are actually lost altogether over the lesion (rather than being disrupted) . 

Local variance. Malignant lesions are seen as areas of high variance in com­

parison to the surrounding skin area, indicating that the skin line patterning has 

been disrupted. In benign cases this contrast is not found. 

7 .2 .1 mRAC evaluation 

The evaluation of the mRAC classification needs to detect the presence of regions 

in the lesion area that are not skin classes. For this purpose the concept of a 

true-skin class is introduced and defined as any class that accounts for more than 

tts % of the skin area. The lesion disruption figure is then calculated as the area 

of the lesion that is not accounted for by a true-skin class, and expressed as a 

percentage of the lesion area. The setting of tts does not seem to be critical, the 

value 10% was used for the test set. 

There are several situations that reduce the confidence that can be placed in this 

measure: if the area of either lesion or skin is insignificant in the image and if the 

t rue-skin classes do not describe a sufficient portion of the skin area. The latter 

situation did not arise in the image set used, 71.5% being the minimum, however 

in several images the lesion is relatively small. 

Although it cannot be seen in the static results, it should be noted that for 

melanoma lesions the method produces regions corresponding to skin areas before 

(at a lower threshold) those corresponding to lesion areas. This may provide 

another method for obtaining the skin line disruption information, but has not 

been investigated in this study. 
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7.2 .2 SOFM evaluation 

The SOFM evaluat ion needs to detect where the lesion area uses classes distinct 

from those that make up the skin. This is different to the measure for mRAC 

because SOFM has to work with a fixed number of classes even where there is 

lit tle variation in the data. The effect of t his limitation is seen in benign cases 

where the skin and lesion (which are generally a single class under mRAC) are 

distributed randomly between the 32 classes. In addition, the limitation requires 

that the number of classes be set to sufficiently, but not overly, divide the number 

of samples. 

The region numbers (seen as different intensities) assigned by the SOFM form a 

continuum and as such the fact that the lesion is bright (composed of regions 

with high numbers) and the skin is dark (low numbered regions) is meaningful. 

However, it is not clear exactly how the region number corresponds to the skin 

patterning and so for the current evaluation, any information in the relative 

numbering has been ignored. 

T he result aims to reflect the percentage of classes that have their only significant 

appearance in the lesion area. Where the lesion uses the same classes as t he skin 

this will produce a low result, and where the classes used are distinct the result 

will be high. The actual figure computed once again uses the concept of true-skin , 

however, this time the result is given by the percentage of classes that are not 

true-skin. Since the number of classes is fixed , each class must account for the 

same portion of the entire image, therefore, all classes that do not represent a 

sufficient portion of the skin to be considered true-skin can be viewed as having 

their only significant appearance in the lesion. 

Since each SOFM class will theoretically have the same number of members, it 

will cover the same area in the ent ire image. This means that the number of 

classes for SOFM can be chosen to produce a desired class coverage and the value 

of tts can be estimated to exclude all classes that are representing mostly lesion 

area. For the results below SOFM with 32 classes was used, this means a coverage 

of 3.1 % of the entire image for each class, and assuming the lesion covers ½ of the 

image, suggests a tts of 2% (actually 1.8 was used). 
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7.2.3 Local Variance Evaluation 

The local variance needs only a simple evaluation. The mean value for the dis­

ruption (local variance) is calculated for both the skin (µs) and the lesion (µL) 

areas, and the ratio i!:..L. then represents the contrast between the areas. A high 
µs 

value would indicate high disruption caused by the lesion. 

Due to the nature of the local variance operator, all the data points on the edge 

of the local variance image must be excluded. 

7 .3 Results and Discussion: Initial Work 

The images used in the trials of the skin pattern techniques throughout this 

chapter come from the same set described in section 5.7 which contains examples 

of several types of lesion including malignant melanoma and compound naevi. 

The original images are 24-bit full colour digitized from slides with approximately 

4 micron pixels. Each image is sub-sampled and converted to grey-level intensity 

to produce 350x230 source images. 

Results are presented for ten images, five containing a malignant melanoma and 

five containing a compound naevus. The images were chosen to have a reasonable 

skin area (visually showing patterning) surrounding the lesions. 

In order to properly evaluate the measures in relation to skin line patterning 

disruption, the results from each of t he three evaluations are compared to a visual 

estimate of the disruption as well as to the histologically diagnosed type. The 

comparison to the visual estimate is needed for two reasons: firstly, t he benign 

naevi in the test image set often have abnormal features ( the reason for them 

having been referred and therefore being available in the image set), features 

that can include surface disrupt ion and mean that the lesion perhaps should be 

mis-classified and secondly, the visual estimate comparison is vital in ensuring 

that the described measure does indeed quantify the skin patterning situation as 

it is visually perceived and not some other feature or combination. The scale 

used for this subjective estimate compares the patterning in the skin area to t hat 
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Figure 7.3: Evaluation results plotted as scatter against the visual estimate. 
In order; mRAC %lesion non-trueskin, SOFM %classes non-trueskin and local 
variance ratio of means. 

over the lesion and relates to land-marks descriptions as follows: 

disruption 
estimate 

0 
1 
2 
3 
4 

description 

no noticeable patterning difference 
slight pattern alteration apparent 
notable change in pattern qualities 
severe pattern disruption 
complete loss of any pattern regular­
ity over the lesion 

Mult iple observers were used and the mean of the scores (which were actually 

quite consistent) was taken as the final value. 

Figure 7.3 shows the result for mRAC, SOFM and local variance evaluations 

scattered against the visual estimate. The correlation between the measures 
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and the visual estimates are generally good, and particularly so for the SOFM 

evaluation. The separation of lesion types is always at least as successful as 

the visual estimate, and in the case of the variance evaluation, the separation is 

perfect for the image set used. 

In all, t hese results show that skin patt ern profiling can provide informat ion 

through local variability analysis or classification which can be reduced to a mean­

ingful measure of skin patterning disruption. Each of the three measures reflects 

visual estimation of disruption and achieves a good separation of malignant and 

benign lesion types [90]. 

7.4 Developing Profile Analysis and Evaluation 

The initial results demonstrated a promising correspondence between t he instinc­

tive visual appraisal of skin pattern consistency and disruption and the applica­

bility of the analysis-evaluation combinations as a diagnostic indicator. However, 

many issues and possible avenues for improvement were highlighted and an in­

vestigation of these together with the integration of the CHP method for profiling 

are the subject of this section. 

7.4.1 Profile Enhancement and Noise Reduction 

Prior to analysis of the matrix of profiles the possibilit ies of noise reduction 

and signal enhancement need to be addressed. Although the raw CHP data is 

effective in its representation of the observed skin patterning character it would 

nonetheless improve the quality of classifications and local difference analyses 

if this underlying character as reflected in the profile could be enhanced and 

background noise could be reduced. 

As previously noted, skin line patterning is a multi-level pattern in that some 

of t he lines from which it is composed are more prominent than others. The 

preferred orientations result from the combination of lines of similar prominence 
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(although sometimes a much fainter line is needed to complete the pattern in 

a given area). However, the absolute strength of lines in the enhanced images 

is not always constant between different regions due to imaging effects such as 

loss of contrast in the enhanced image resulting from loss of focus in the original 

for example. The patterning is usually still distinguishable in the sense that the 

orientation of t he most prominent "primary" lines in one region reflect those of 

other regions even where the relative strengths of these skin lines are considerably 

different in the enhanced image and the relative strengths are also preserved as 

in figure 7.4 where the skin patterning of strong lines (near vert ical) crossed by 

slightly fainter lines (near horizontal) remains in proportion regardless of the 

overall intensity of the region. 
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Figure 7.4: Response comparison for two skin areas of an example image 
showing differing absolute intensity levels of patterning in the enhanced image: 
The strong and faint patches analysed and the result ing profiles (CHP method). 

The proper detection of similarity requires that regions showing the same pattern­

ing should result in profiles that look the same regardless of the general intensity 

of t he region in the enhanced image. This requirement can be addressed under 

two differing paradigms (illustrated in figure 7.5): either all peaks in the profile 

deemed to be significant can be scaled so as to reach the same maximum strength 

or the single highest peak ( and lowest trough) can be used to re-scale the profile 

by a constant multiplier. The disadvantages of the first (variable scaling) method 

are plain: firstly, the observations above concerning the mult i-level nature of skin 

patterning and the conservation of relative proportion between skin line strength 

and the resulting profile mean that useful data would be lost in the reduction 
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of the profile to essentially "orientation only", and secondly such a process is 

complex compared to constant scaling and hence hard to justify given the lack of 

identified benefit. Using the constant scaling method the profile peak height for 

"primary" skin lines is kept constant over the whole image so that similar patches 

with similar composition of direction and relative strength result in similar profile 

shapes and scale. 

Original Profile 

Angle 

1J. 
C: 

8. 
~ 

er: 

Variable Scaled 

Angle 
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Angle 

Figure 7.5: 
measurements. 

Options for the manipulation of profiles to aid in comparative 

Profile fidelity to underlying skin pattern and the results of the stretching process 

are also affected by noise. Noise is a simple entity when described at an abstract 

level - it is simply the deviation of the observed from the actual. However, when 

examined in detail with the aims of understanding, modelling and compensation 

its hidden complexity becomes immediately apparent: it may be structured or 

random, it may be related to the data, capture device or environment or indepen­

dent from them. For the purpose of this discussion the deviation in the observed 

profile from a representation of the "true" skin pattern character, and particu­

larly the detection of background image variations as random weak skin lines, 

will be referred to as noise. 

Although it is effective in improving the similarity of profiles for similar skin pat­

terning, stretching does have two notable problems that need to be addressed: 

firstly, noise in the profile will also be magnified, and secondly ( and more impor-
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tantly) in cases where no significant skin lines exist ( or detection fails for some 

other reason) the multiplier will be based on the largest peak in the background 

noise and as such will be unusually large resulting in the apparent detection of 

"random" skin lines through extreme magnification of the noise. 

General noise perturbation of the profile could be reduced through the application 

of a smoothing filter such as a small one-dimensional gaussian, however the peaks 

reflecting skin lines are often quite sharp (as with the first peak in the profile graph 

for the strongly patterned area in figure 7.4) and hence any smoothing would cause 

a significant and undesirable reduction in the peak height. This adverse effect 

could be reduced by increasing the angular sampling frequency of the profiles, 

smoothing that data and then sub-sampling the result . This approach has not 

been followed since (as has been explained in section 6.5) the current sampling 

at 5° intervals is equivalent to just less than one pixel at the edge of the patch 

already hence no more true data is available, and in any case a higher sample 

rate would significantly increase the processing t ime especially with the addition 

of smoothing and sub-sampling steps. 

Background noise suppression is a more pressing concern given the desire to 

stretch the profiles as explained above. The two methods investigated for this 

purpose were non-linear scaling and thresholding. The scaling approach reduces 

the importance of lower values and hence the low-level noise by accentuating 

the peaks whereas thresholding maps those values that do not rise above the 

profile's minimum by a large enough margin to zero. The advantage of non­

linear scaling is that it does not involve a potentially sensitive parameter like the 

threshold, however the relative height of peaks is not maintained. The threshold­

stretch combination (equation 7.1) results in profiles with good fidelity to skin 

pattern character whilst eliminating the problem with random orientations being 

presented for regions with no patterning, and is defined as, 

let p be a profile, 

tn be the chosen noise threshold, 

mp, rp be the minimum value and range of p, 

and M be the required output maximum for "primary" skin lines, 

then the enhancement function e(p) is given by: 
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( ) 
{ 

0 if (p ( x) - mp) < tn ( ) 
e p = 7.1 

~ .(p(x) - mp) otherwise 

Figure 7.6 shows the result of applying this process with tn = 45 to the profiles 

in figure 7.4. A threshold of 35 (in relation to a profile maximum of 255) was 

found to be generally suitable and is used in all the results presented later. 
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Figure 7.6: 
process. 

P rofiles as in figure 7.4 after application of the threshold- stretch 

7.4.2 Similarity measures 

All the analysis techniques rely on comparison of profiles, either to determine 

the degree of consistency in a local neighbourhood or to divide the observed 

profiles into classes. These operations therefore require a measure which reflects 

t he similarity of two profiles. In the initial trials standard measures were used: 

for t he classification techniques the measure is explicit and the 12 or 'Euclidean 
n 

distance' (for s element vectors p and q, Ln (p, q) =✓ "I:f=o (Pi - qir) was used, 

for the local variance method it is implicit in the sense that pairs of profiles are not 

directly compared and is related to t he common statistical measure of variance. 

Although the measures used were certainly effective to some degree in quant ifying 

the similarity between profiles, consideration of the meaning of similarity when 
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dealing with skin patterning profiles suggests that 12 does not embody all of the 

salient features. Furthermore, in the case of the local variance, it is apparent 

that an implicit measure of similarity is unhelpful, since it is hard to explain in 

words exactly what a region showing a high local variance score means in terms of 

the local profiles. An investigation of the meaning of similarity when considering 

profiles and of possible metrics for its quantification was therefore required. 

Profiles should be seen as similar when the character of the skin line patterning 

each represents is visually consistent. In terms of profile graphs, and with all of 

the observations and processes of section 7.4.1 taken into account, similarity can 

be expressed in terms of the following elements: 

• corresponding peaks at similar angles 

• corresponding peaks of similar height 

The 12 measure partly satisfies both of these requirements, which perhaps ex­

plains its acceptable performance. 12 calculates the "distance" between two 

profiles in relation to the discrepancy between the response at each angle. Pro­

files with peaks of similar heights in similar locations will therefore result in a 

low distance. 

The main failing of this measure however relates to the requirement for similarity 

to reflect peaks at similar angles. Profiles should be seen as similar even if the 

preferred orientations are slightly different, or in other words it is desirable that 

two profiles which have matching peaks except that they are shifted by ± a few 

degrees (and therefore by one sample in either direction) should not be seen as 

different. A better measure should be flexible in allowing for a small movement 

of this type for each peak when performing the comparison. The 12 (and 1 n and 

cos(¢)) show a rapid decrease in measured similarity where peaks do not precisely 

line up - the parts of both peaks not matched by the other both contributing 

significantly to a high distance value. With these measures, each element (sample) 

in the vector is independent in the sense that a global re-ordering of elements will 

have no effect on the calculated result. Only the natural "bleed-over" to elements 

which are samples of adjacent angles brings any tolerance to peak movement, and 

given the sharpness of the peaks, even this source of tolerance is unusually limited. 
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A new distance measure was therefore needed which would reflect the requirement 

for a flexible comparison, and therefore use the information contained in the 

adjacency of vector elements being responses for similar angles. The simplest 

way of achieving this was to view the first of the two profiles as a template and 

to "flex" the second to find the best comparison. Since two preferred orientations 

of patterned skin could alter their angle in opposite directions, the necessary 

flexing is more than a simple shifting of the whole second profile. Each element is 

compared to find the best match with one of three candidates in the first profile: 

either its corresponding sample, or the one either side of this. In this operation 

the ends of the profile are joined circularly, so that the left-hand side of the first 

sample is the last sample. This is sensible in terms of orientations as lines at 

0° are identical to those at 180° and therefore the extreme ends of a profile are 

indeed adjacent in terms of orientation. The measure as described above can be 

expressed as in equation 7.2, however in this simple form the distance measure is 

flawed in two ways: Firstly, narrow peaks in the template profile can be partly 

"ignored" with the other profile being stretched to compare with the data either 

side of the peak. In the extreme case of a peak which is only one sample wide, 

that feature of t he template profile is completely ignored. Secondly, t he measure 

is not a reflexive relationship in that d(p, q) i= d(q,p) which raises the issue of 

which profile should be the template in each comparison and hence precludes 

its simple use in existing classification techniques. Both of these problems can 

however be resolved by the addition of t he simple condition that for each sample 

angle, the element in the profile with the greater response is compared for best 

match with the three possible positions in the other, which has therefore become 

the template for this particular angle. 

if p and q are s element vectors then, 

d(p,q) = ✓ta L~t11_{(Pi - qi+j)2}] (7.2) 

CBdist(p, q) = Jt [~tn { (Pi - qi+i): if (p(i) _> q(i) }] (7.3) 
i=O J- 1 ( qi - Pi+ i) otherwise 

This measure will be called Circularized Bungee Distance or CB-distance and is 

given by equation 7.3. Figure 7.7 illustrates the effectiveness of the new CB­

distance measure; profiles A and B are for patches of 'similar' skin patterning 

and profile C represents a different pattering, the CB-distance measure better 
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reflects the essential similarity of A and B (by yielding a lower distance value 

between them) than does 12 and yet maintains the same high distance figure as 

12 when comparing the 'different' profiles A and C. Figure 7.8 shows the improved 

tolerance to small differences in peak centre placements for a single peak example. 
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Figure 7.7: Improvement in quantifying profile similarity: Three profiles with 
distance calculations using CBdist and 12 - Profiles A and B form a "similar" 
pair and profiles A and C form a "non-similar" pair. 
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Figure 7.8: Variation in distance measure values with displacement of a single 
peak in a profile: CBdist showing improved tolerance to small shifts over 12. 

7.4.3 Local Variability Analysis and Evaluation 

As remarked in section 7.4.2, the use of an implicit measure of similarity in 

the local variance method is unhelpful when it comes to explaining in words 
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exactly what the local variance figure means. This consideration, together with 

the availability of the new CB-distance measure, prompted the adoption of a new 

method of evaluation to replace (local variance' . 

The new metric still quantifies the local variability in a 3x3 window centred on the 

current patch, but the value is obtained by taking the median of the CB-distances 

from the profile of the cent ral patch to those of each of the eight surrounding 

patches. The median (rather than mean) value is taken to avoid undue effects of 

isolated unusual patches in the window and to improve the performance (reduce 

blurring) at the edge of a consistent area. Where all eight neighbours are not 

available ( at the edges of the profile image) just the data that is available is used 

so that unlike for the local variance implementation the values at the edge of the 

local variability image can be used. The information given by these edge results 

is naturally less reliable, being based on less information ( although, except in the 

corners, more than half of the neighbours are always available). This edge data 

is used in spite of these problems as it still provides valuable information on local 

similarity in the skin area, especially in the sample image set used where there is 

not always a great deal of skin area surrounding the lesion. Figure 7.9 compares 

this new local variation result to that of the original local variance method on 

the artificial lines image. 

Figure 7.9: Local variation measures on test data: Test image (left) with 
new method (centre) showing reduced blurring at the boundaries and increased 
stability within consistent regions over the local variance method (right). 

Evaluation of disruption is performed in a similar fashion to that used for the 

(local variance' except that the median and difference are used rather than mean 

and ratio. The median value for the disruption (local CB-distance median) is 

calculated for both the skin (ms) and the lesion (mL) areas and the difference 

mL - ms then represents the contrast between t he areas. A high value indicates 

that the patterning is significant ly less consistent over the lesion than on the 
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surrounding skin, and hence that a high level of disruption has been caused by 

the lesion. Figure 7.10 shows the new local variability data overlayed with the 

lesion extent together with the results for the area medians and the final difference 

result. 

area medians of variability: 
naevus (left) lesion = 51.8 melanoma (right) lesion 88.2 

skin = 49.3 skin 50.3 
difference = 2.5 difference 37.9 

Figure 7.10: New local variability measure on real data with overlay of lesion 
extent: A benign lesion (left) showing consistency and a malignant lesion (right) 
showing marked increase in variability in the lesion area. 

The median value for the skin and lesion regions is used in preference to the 

mean in order to remove the effect of anomalous profiles in regions of otherwise 

consistent patterning. In practice little difference between the mean and median 

values is observed, although the median value is generally a little lower and where 

profiles are extremely consistent the median is indeed seen to be more faithful. 

The final disruption figure therefore shows very little change through the adoption 

of the median except in cases where the profiles are generally highly similar except 

for a few anomalies. 

The difference is used rather than the ratio for two main reasons: Firstly, the CB­

distance values reflect a constant scale of similarity so that two profiles p1 and p2 

with CB-distance dare as 'similar' as q1 and q2 with CB-distance d, hence where 

the lesion and skin regions have similar medians for their local similarity, the 

lesion should not be seen as having caused significant disruption. The problem 

with using the ratio measure is that as the median for the skin region rises, 

the same disruption measure results for lesion areas reflecting increasingly less 

'similarity' to the skin. This effect is highly significant where the skin area shows 
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an unusually low variability, in which case, a small increase over the lesion area 

is reflected in an exceptionally large disruption figure. Secondly, use of difference 

has the added advantage that the disruption figure retains a clear relationship to 

the values obtained from the distance measure. 

7 .4.4 Using CB-distance in Classifiers 

The increased effectiveness of the CB-distance measure in relation to quantify­

ing the important elements of similarity in profiles can also be employed in the 

classifiers, mRAC and SOFM. 

mRAC The adoption of the CHP profiling method together with the noise reduc­

tion and profile enhancement measures as discussed, and the new CB-distance 

measure requires a re-consideration of t he parameter set for the mRAC segmen­

tation. 

All parameters were kept constant for all the image and disruption evaluation 

results given below. Trial values for the parameters were set through consideration 

of CB-distance values between 'similar' and 'different' profiles (such as those 

displayed in figure 7. 7). The splitting ts and conservative merge tern parameters 

were again found to be non-critical where they are set with reference to the 

goals of the mRAC stages they control: ts should cause the split of all but the 

most uniform regions and then tern should merge only those regions that are 

highly uniform. The setting of toptrn obviously has the greatest effect on the 

final segmentation. The thresholds used for all the following results are; splitting 

ts ~ 30, conservative merge tern~ 60 and optimal merge toptrn ~ 306. 

Preliminary trials using the new data indicated problems with the validity of 

the cleaning stage of the process (which force-merges small regions to facilitate 

interpretation by simplifying the segmentation) and ult imately resulted in it being 

removed. When using the CHP method, many profiles in highly disrupted regions 

have no neighbour with a similar profile (a result of the increased sensitivity and 

fidelity of the method over autocorrelation). Since in such cases a profile may 

legitimately have no neighbouring partner profile ( a singleton class), force-merging 
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would create false regions rather than clean the segmentat ion by merging isolated 

anomalies into large neighbouring regions as intended. 

Figure 7.11: mRAC classification results (no cleaning) using the CHP data 
and the CB-distance measure for similarity with overlay of lesion extent: The 
classification for the melanoma (left) reveals the lesion whereas that for the two 
naevi ( centre and right) does not . 

Figure 7.11 shows the mRAC classification results using the CHP data with noise 

reduction and normalization and the CB-distance measure for similarity. The 

melanoma (left) shows a classification which reveals the lesion as a multitude 

of separate classes within surrounding skin which requires much fewer classes. 

This situation is in contrast to the two examples of naevi which have no obvious 

correlation between the classification and the overlayed lesion extent and a similar 

fragmentation of the lesion and skin areas. 

SOFM This classifier partitions the data into a fixed number of classes and hence 

the analysis of the processed CHP data dat a does not require a re-evaluation of a 

parameter set. The CB-distance measure was used in place of L2 in all the SOFM 

results below. 

7.4.5 Unifying Classifier Evaluations 

In the initial trials a separate evaluation technique was devised for each of the 

methods of analysing the profile data. This allowed the particular qualities of 

each to be used in the calculation of the final disrupt ion metric. With the excep­

tion of the local variation methods the analysis of the profile data begins with 

a classification stage where the profiles are grouped based on their similarity. 

The ability to compare the effectiveness of these classifiers on the profile data 

would obviously be of value, however since there is no obvious 'correct classifi-
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cation ' a quantitative comparison at this level is not available. Since the aim 

of the classification is to allow the quantification of skin patterning disruption, 

t he performance of the various classifiers is then best evaluated in terms of the 

suitability of the disruption results it yields. Unfortunately, the use of individual 

and ad-hoc evaluations for each effectively introduces another unknown param­

eter preventing the results from being a valid comparison of the classifier. In 

addition, the introduction of new classifiers is not only hindered by this difficulty 

in comparative assessment but also complicated by the need for t he development 

of an associated evaluation method. This situation of pairings of classifier and 

dedicated evaluation is undesirable t hen in terms of bot h testing and fut ure de­

velopment, a single method for evaluating any classification of profiles in relation 

to lesion / non-lesion regions was t herefore investigated. 

The main premise for the skin patterning work is t he existence of consistency 

in preferred directions in skin patterning, consequently the skin area of a lesion 

image should be reflected in profiles that show similarity over extended regions. 

Effective classifiers should then divide the majority of the skin area into a rela­

tively small number of classes (a few for legitimate skin pattern and some anomaly 

classes) . If a lesion is not disrupting the skin pattern then the same sit uation will 

continue there with the legitimate skin pattern classes also appearing over the 

majority of the lesion. The existing evaluation methods for mRAC and SOFM 

classifications both use the concept of a true-skin class where a class is designated 

true-skin if it accounts for more than than tts % of the skin area. All the t rue-skin 

classes taken together then form a 'model' for the local skin against which the 

lesion area can be compared. 

However, the true-skin classes cannot be effectively identified using t he same value 

for tts due to the differences in the mechanics of the classifiers. mRAC creates 

classes by merging regions in order of decreasing similarity until a threshold is 

reached, thus t he number of classes and their sizes are unconstrained whereas in 

SOFM the number of classes is fixed and each must have a similar size. In practice 

this means that a relatively large number of smaller classes must be designated 

as t rue-skin for SOFM and hence a much lower value of tts is needed. 

Since a single setting for tts will be ineffective for all classifiers a common eval-
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uation method needs to encapsulate the essence of true-skin without recourse to 

such a threshold parameter. Sorting the classes by their % contribution to the 

skin area and then plotting the cumulative % coverage of the skin and lesion 

areas allows a more detailed investigation of the character of the classification 

with respect to the skin and lesion regions (% coverage is used as it accounts 

for differences in the relative size of the lesion in the image) . Where the classes 

have comparable significance in the skin and lesion areas the lesion coverage will 

rise at a comparable rate to that of the skin, whereas when separate classes are 

being used for the lesion, area coverage will lag behind that of the skin unt il 

later. Figure 7.12 shows model and real examples for such contribution graphs 

for malignant and benign lesions and the 'area' which represents the degree of 

distinctness of classes in the lesion area. 
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Figure 7.12: Area difference concept based on t rue-skin classes: top: concep­
tual graphs for a benign lesion (left) and malignant lesion (right) and bottom: 
illustration of 'area' A and legend. 

In terms of such graphs the original mRAC evaluation is simply 100-l% at the 

point where 6s% falls below tts and the original SOFM evaluation is the difference 

between the class number at that point (for a different tts) and the total number 
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of classes which is a constant. The use of area A as the evaluation measure has 

the desired effect of removing the dependency on tts and unifying the evaluations, 

however there are two major factors affecting this area A evaluation: Firstly, it 

is unduly affected by differing numbers of classes as it takes no account of the 

importance ( overall size) of each class. Secondly, the difference resulting from 

an early class in the sorted list in effect persists from that point on and is 're­

counted' due to the cumulative nature of l% and s% . Simple area evaluations such 

as A= L /s% - l%/ performed on a class-by-class basis will suffer from 
'</ classes in order 

both these factors. The effect of the first can be removed through the addition 

of class size weighting (in terms of the graphical representation this means re­

placing class number on the x-axis with cumulative coverage of the whole image 

area, w%)- Both factors can be dealt with though if the individual class contribu­

tions are considered rather than the cumulative figure, the calculation then takes 

the form B = L /c5s% - 61% I, t he sum of the absolute differences between the 
'</ classes 

contributions of each individual class to the skin and lesion areas. Since this 

calculation is no longer based on cumulative figures the ordering of the classes 

is not important, however if the classes are still ordered by skin coverage, the 

information can be plotted meaningfully as in figure 7.13 which shows character­

istic graphs for malignant and benign cases and the new area B. In practice the 

contributions of each class to the lesion area can vary quite widely, however for 

the purpose of illustration a smoothed mean line is shown. 

Viewed from a different perspective the evaluation of the classification can be 

approached using the statistical technique of x2 likelihood. The x2 statistic mea­

sures the probability of there being a relationship between two different partitions 

of a set. The individual profiles form the set of observations, the lesion and skin 

areas form a primary classification for this set and the classifier result becomes 

a secondary classification. There are two main formulations for the statistic as 

given in equations 7.4 and 7.5 although both are essentially similar. Pearson's x; 
( eqn. 7.4) will be used in this discussion. 

x2 = i=n~ = n
2 

(Oi,j - Ei,j)
2 

(Pearson's) (7.4) 
p L., E-· 

i,j= O i,J 

i=n1,j=n2 Q . . 
x2 = -2 °" O· · ln ~ (Likelihood) (7.5) l L., i,J g . 

i,j= O i,J 
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Figure 7.13: Individual class contribution area difference: top: conceptual 
graphs for a benign lesion (left) and malignant lesion (right) and bottom: illus­
tration of 'area' B and legend. 

Where: The primary and secondary partitions are of n 1 and n2 classes 

respectively 

and O i,j is the number of actual observations in primary partition 

i and secondary j 

and E i,j is the expected number of observations in primary parti­

tion i and secondary j given the total number of observations 

primary i and the total in secondary j 

In essence the x2 statistic measures the strength of evidence against a hypothesis 

that the primary classification gives no information on the secondary. Under this 

hypothesis, the division of the observations in class j of the secondary classification 

between each class in the primary will be in exact proportion to the size of each of 

the primary classes. Any deviation from this expected pattern is evidence against 

the hypothesis and therefore shows a connection between t he classifications. The 
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strength of evidence for such a connection can be evaluated as: C = J x~T 

where T is the total number of observations. It is recognized that there are 

problems with this measure of strength, but it is widely used and provides useful 

information. 

The x2 statistic is in some ways similar to the evaluation of area B as described 

above where the deviation from an expected value for each (secondary) class is 

evidence for the skin and lesion areas not following the same pattern of classifica­

tion. The area B calculation assumes that if there is no relationship between the 

classification and the skin/lesion partition then the portion of these areas covered 

by each class will be the same, whereas x2 assumes that the skin and lesion area 

coverage for a given class would reflect the size of the skin and lesion regions 

respectively. 

The assumptions involved in both the area B and x2 calculations have two sig­

nificant problems in terms of their use as evaluations: Firstly, regardless of the 

classification technique used, singleton classes cannot satisfy the assumption for 

either method. A singleton class in the skin area for example will obviously not 

represent a similar portion of the lesion area and the skin and lesion area coverage 

will be greater and less than the expected values respectively; even if there was 

no real relationship, singleton classes will always indicate that there is. Taken to 

the extreme situation where all the classes are singletons, both the area B and x2 

evaluations will report a maximum evidence for skin and lesion area difference, 

whereas in truth the segmentation is providing no information at all. All small 

classes in fact have a similar problem similar to that of singletons, in that any 

small sample from a random process can be misleading, related to this situation, 

a class containing only three observations could easily fall only within the skin 

region simply by chance. Ignoring all very small classes would of course offer a 

solution to these problems providing that only a small number exist so that the 

impact of the 'holes' in the classification data remains small , however the small 

class problem only becomes important where there are many such classes, and in 

that situation they could not be ignored. 

The second problem with the assumptions is particular to the mRAC classifica­

tion. The region based property (regions forming by local merging) of the mRAC 
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process means that the final classification is inherently regional. This is a valu­

able property given the aim of identifying local similarity between profiles and 

that adjacency does entail an increased likelihood of two regions having similar 

skin patterning. It is however necessarily in conflict with any assumption that a 

single class would ever have a similar representation in different areas of the im­

age. Given a random matrix of profiles most regions are likely to be small (since 

no chain of similar profiles is likely to extend very far) and any class (which is 

in fact a small region) will therefore be most likely confined to one of the skin or 

lesion areas. In practice, the skin pattern is often both sufficiently consistent and 

well detected that large regions will form to represent the skin patterned area 

(connecting chains of profiles are indeed available) and these regions either ex­

tend over the lesion area if the pattern is not disrupted, or they stop close to the 

boundary between the lesion and the skin. However the underlying conflict for 

the mRAC classification remains and does indeed appear to affect the consistency 

of the evaluation. 

These observations indicate that a different evaluation suited to the propert ies of 

the mRAC classification is required. The desire to remove the dependence on a 

threshold still remains, consequently a return to the original true-skin based eval­

uat ion is not desirable. With reference to the properties of effective classifications 

described at the beginning of this section an alternat ive comparison for the skin 

and lesion areas can be formulated based on the difference in fragmentation of 

the two areas. Skin patterned areas will require a small number of classes when 

compared to areas where this pattern has been disrupted. The fragmentation of 

an area can be defined as the number of classes used for that area as a fraction of 

the number of profiles in the area ( equation 7.6). Disrupted lesion areas are then 

expected to have a higher fragmentation than the surrounding skin and a com­

parison t5frag can be obtained by simple subtraction of the fragmentation results 

( equation 7. 7). 
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For an area A of a matrix of profiles and a classification C the fragmen­
tation is defined as: 

fc(A) = #classes appearing in A 
#profiles in A 

and, for lesion area L and skin area S: 

6Jrag = f c(L ) - f c(S) 

(7.6) 

(7.7) 

Such an evaluation is obviously most suitable where the number of classes is 

variable as a fixed number of classes will cause a certain level of fragmentation 

even if all profiles were identical. The fragmentation measure is particularly 

suited to mRAC as it is a regional measure which makes no assumptions based 

on the distribution of class membership. In addition the measure works well even 

where the number of classes is large and the advent of many singleton ( or small) 

classes has no particular adverse effects on the result. These are both important 

since the regional nature of the mRAC process and the sensitivity of the new CHP 

profiling often results in relatively large numbers of small classes, particularly in 

disrupted lesion areas (see figure 7.11). 

In conclusion then, both the area B evaluation and x2 C strength are useful 

measures for comparing classifications given knowledge of the extent of t he skin 

and lesion areas. They would allow for comparison of the effectiveness of different 

classification techniques on the profile data given that these techniques are equally 

consistent with the required assumption that classes in a 'random' case will have 

representation in skin and lesion regions in proport ion to the size of these and that 

the problems of singleton/small classes are monitored or addressed . Neither of 

these techniques are however suitable for mRAC classifications, and the inherent 

nat ure of mRAC suggests instead the use of a measure based on difference in 

fragmentation . 

7.4.6 Re-considering ART 

The introduction of the CHP profiling method when taken together with the 

noise reduction and profile enhancement st eps and the new CB-distance measure 

145 



Chapter 7 Texture - Skin Pattern Analysis & Disruption Evaluation 

prompts a re-consideration of the ART classifier. One of the biggest problems 

with ART had been identified as its built-in normalization of profiles prior to 

classification. This feature when used in conjunction with less well detected skin 

patterning resulting from the autocorrelation method produced unusual classifi­

cations. Profiles that were essentially flat, indicating no clear detection of any 

skin patterning, were being stretched so that random noise was being identified 

as real patterning. Not only would the increased sensitivity and fidelity of the 

CHP profiling method reduce such problems, but the noise reduction and profile 

enhancement steps themselves perform normalization so that the effects of the 

internal normalization in ART are be significantly reduced. 

However it is important to recognise that the two methods of normalization are 

fundamentally different and as such the effects of the internal manipulation in 

ART cannot be ignored. The linear stretch normalization employed for profile 

enhancement scales each profile so that the largest peak is always of the same 

strength, consistent with the assumption that the strongest skin line in each patch 

represents the primary lines in the skin pattern. The ART classifier however, 

normalizes each input to a unit vector. Such processing introduces dependency 

on the overall level of each profile, such dependency is undesirable as illustrated 

by the following two examples. Firstly, given two profiles that are essentially 

identical in terms of the preferred orientations which they represent except that 

one shows wider peaks for each orientation, the latter will have all the peaks 

lowered, thus falsely increasing the calculated difference between them. Secondly, 

given two profiles representing the same preferred orientation, if the second also 

shows another orientation, this profile will be lowered with respect to the first 

again falsely increasing the calculated distance between them. 

Figure 7.14: ART classification results using the CHP data and the CB-distance 
measure for similarity with overlay of lesion extent: The classification for the 
melanoma (left) reveals the lesion where as that for the two naevi ( centre and 
right) does not. 
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In spite of these problems ART produces meaningful classifications of t he profile 

data as illustrated in figure 7.14 which shows the melanoma (left) revealed by 

the classification whereas the two benign naevi show similar structure and classes 

throughout the image. 

Each of the profiles extracted from the image are presented to the ART classifier 

in random order. For each profile, p, the most similar of the exemplar profiles for 

all classes created so far is found. If this class sufficiently well represents p then 

the exemplar is modified so as to be slightly closer to p, if not then a new class is 

created with p as exemplar. T he complete set of profiles are presented a number 

of t imes to allow the classes to stabilize. The two main parameters which control 

this process are the threshold deciding sufficient similarity (vigilance) and the 

modification (learning) rate. The number of presentations can also significantly 

alter the result. 

The vigilance parameter cannot be set directly in relation to empirical evidence 

of similarit ies as in mRAC due to the effect of the unit vector normalization, 

however a value of 0.8 relates to a CB-distance of around 300 (as used for mRAC) 

if a simple scaling to range 0-1 is assumed. The examples in figure 7.14 use 

a vigilance of 0.8 with a learning rate of 0.01 and 20 presentations. A slightly 

improved balance between division of disrupted areas and unification of consistent 

regions was achieved using a vigilance of 0. 795 and this value is used for the results 

presented later. 

Although the ART classifications are generally effective, the results for another 

run of the same data are not always consistent even with all parameters un­

changed. The random presentation of t he data means that the original exemplar 

for each class is likely to be different for each run. This in turn means that given 

the early presentation of all the extreme examples of profiles which would nor­

mally fall into a single class ( as in an undisrupted skin area), the result is the 

development of several classes essentially representing the same profile. 
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7.5 Final Results and Discussion 

This section shows the results obtained using the developments on the analysis­

evaluation process described on an expanded set of 22 trial images from the same 

source as for the init ial trials. This is a superset of that used before and contains 

all but one of the melanoma examples available in the 54 image set ( one had to 

be excluded since there was no significant skin area surrounding the lesion). The 

set contains 8 melanomas and 14 naevi (either compound or junctional). The 

melanomas are of various types, sizes and stages of development and the naevi 

include dysplastic and atypical examples. 

The final results are presented separately for each of the evaluation techniques 

using two main forms. The first shows the results separately for the individual 

histological diagnoses, and the second compares the results against a visual esti­

mate for the disruption in the skin patterning. This second comparison is vital 

since the aim is to demonstrate that the techniques are able to quantify the pat­

terning disruption so that the performance should not just be measured in terms 

of discriminant ability on lesion histology. A high correlation between the result 

and the visual disruption estimate indicates an effective acquisition, analysis and 

evaluation sequence. 

Finally a Receiver Operating Characteristic (ROC) curve is also shown for each 

evaluation. An ROC curve [91, 92] gives an indication of the effectiveness of a 

continuous measure in discriminating between two classes of example data: The 

greater the area under the curve, the more successful the measure is. The theory 

underlying ROC curves is as follows. Given a set of examples ( e.g. images) divided 

into two classes, 'positive' and 'negative', the accuracy of a binary indicator can 

be illustrated in the form of a table (figure 7.15). The sensit ivity of the indicator 

Truth 

positive negative 

Indicator 
positive a b 

negative C d 

Figure 7.15: Final results on a larger data set. 
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is then defined as a:c and the specificity as bfd; a useful indicator should have 

high sensitivity and specificity. Many indicators (such as those described here) 

can take on a continuous range of values indicating a degree of 'positiveness'. For 

such indicators each choice of threshold value produces new table, and a value for 

the sensit ivity and specificity. A plot of sensitivity ( true positive fraction) against 

1-specificity (false positive fract ion) is a ROC curve. The diagonal line represents 

chance whereas a curve that is well above the diagonal shows an accurate indicator 

and will have an area greater t han 0.5. 

7.5.1 Local Variability Measure Results 

The first set of results are for the new local variability measure and are shown 

in figure 7.16 (ROC curve and data in figure 7.19). A good correspondence with 

the visual estimate is achieved with a correlation coefficient of ~o. 79, and per­

formance with respect to the histological diagnosis is also generally good. 
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Figure 7.16: Final local variability metric results on a larger data set. 

An interesting example of the problems in evaluation of feature detection in re­

lation to lesion diagnosis is provided by the one melanoma which apparently 

produces an exceptionally low result (this example produces a low result under 

149 



Chapter 7 Texture - Skin Pattern Analysis & Disruption Evaluation 

all the methods). Although the lesion is cancerous, its low disruption result is 

not anomalous; the visual estimate of patterning disruption is also very low indi­

cating that the automatic estimate is accurately reflecting the feature if not the 

diagnosis. The melanoma is small and thin (0.4mm) and relatively early in its de­

velopment (Clark level II) which might explain its minimal interference with the 

skin pattern. Two of the example naevi however produce truly unusual results. 

The first of these (labelled 'surface crusting' on the scatter graph in figure 7.16) 

appears as the highest disruption value for all the examples and is an apparent 

failure in terms of diagnostic performance, however the estimated skin patterning 

disruption figure is also unusually high (for a naevus) so that the result does in 

fact show a valid detection of disruption. The image itself shows distinct crusting 

over the entire lesion area and a consequent large scale loss of patterning con­

sistency (figure 7.17). Such an example would be expected to result in a high 

disruption figure. 

Figure 7.17: Unusual example of a benign naevi: Original image (left) showing 
distinct crusting over the lesion area and illustration of the detected patterning 
overlayed with the lesion extent (right). 

The second (labelled 'image scratches') is most unusual in its deviation from a 

normal correlat ion with the estimated disruption. The source of this deviation can 

be traced to the presence of fine 'scratches' in the original image most ly over the 

lesion area (see figure 7.18 top left ). The scratches are seen as a bright central line 

with a dark line to either side (the latter being especially apparent in the darker 

lesion area), presumably the result of the pigment on the slide being removed 

from the scratch line and pushed to either side. These features have a double 

impact on the profile detection with the pattern lines of the preferred direction 

being completely broken by the scratches and the concentration of pigment either 
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side forming continuous lines and therefore false skin pattern lines at a completely 

different orientation. This results in a high local variability result in the region 

of the scratches, and since they are concentrated in the lesion area ( and besides 

have more impact there) the lesion area is found to have relatively low consistency 

of pattern compared to the surrounding skin and consequently a high pattern 

disruption result is reported. Figure 7.18 shows the original image and below it 

a second, manually altered ('touched up') version. The local variation results (to 

the right of the images) show bright (high local disruption) areas corresponding 

to the scratches indicated in the original and a distinct reduction in these for the 

altered image. The final disruption result for the altered image is 75.0 compared 

to 107.4 for the original. The new result better reflects the low visual disruption 

estimate although it is still a little high as a result of the remaining scratches. 

Figure 7.18: Image 'scratches' and their effect on the local variability measure: 
Top: Original image (left) with prominent scratches circled and local variability 
(right) showing corresponding high values. Bottom: Manually 'touched-up' ver­
sion (left) showing much reduced local variability results in the two edited regions 
(right). 

Is is important to note that the presence of a few hairs in the original image does 

not affect the local variation results in the same way or to the same degree as 

151 



Cl1apter 7 Texture - Skin Pattern Analysis & Disruption Evaluation 

the scratches described above. The problem with hairs in the image is again in 

their effect at the skin patterning enhancement stage, the hair is highlighted as a 

strong skin line and consequently is detected by the profiling stage, adding a false 

preferred direction to the profile at that point ( unless the hair falls in line with the 

true direction) . The key difference is that the hair adds to the underlying pattern 

rather than replacing it as with the scratches. The effect on the disrupt ion result 

is minimized by two elements of the local variability measure: Firstly, since the 

true pattern profile is still detected despite the presence of the hair and the hair 

therefore only adds an extra component to the profiles it influences, the profiles 

still retain significant similarity. Secondly, a hair will commonly only affect a 

small number of profiles in the measure's local window. The use of the median 

of the eight local distances then means that affected profiles will often have no 

influence on the final result . 

In spite of both of the unusual naevus results the ROC analysis (figure 7.19) still 

indicates that the measure is effective as a discriminator between the melanoma 

and naevi groups. With these two unusual examples removed the performance is 

extremely good with a ROC area and correlation coefficient both around 0.9. 
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Figure 7.19: ROC curve and analysis for the final local variability metric results 
on the larger data set. 
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7.5.2 mRAC Fragmentation Results 

The second set of results are for the fragmentation difference measure based on 

the mRAC classification using the CB-distance technique for the similarity cri­

terion and are shown in figure 7.20 (ROC curve and data in figure 7.22). The 

correspondence with the visual estimate is slightly improved over the local varia­

tion measure and has a correlation coefficient of ~0.86. Performance with respect 

to the histological diagnosis is also better with a clearer separation between the 

two categories. 
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Figure 7.20: Final mRAC fragmentation evaluation results on a larger data set. 

The two naevi examples which caused the unusual results when using the local 

variability measure are ident ified in the new scatter graph of figure 7.20. The 

example showing surface crusting again has a high figure for disruption although 

it is no longer the highest result and corresponds better with the visual estimate. 

The example with image scratches produces a less abnormal result under this 

measure although it is still arguably higher than expected. The locality of the 

scratches is classified separately from the normal skin pattern as would be ex­

pected, however the majority of the skin and lesion area are represented by a 

single class in spite of the scratches (figure 7.21 left). The presence of such large 

classes in both skin and lesion areas ensures that the fragmentation results are 

relatively low for both areas and hence that the difference is small. In addition, 
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the scratches themselves provide some degree of similarity so that scratch influ­

enced profiles are not always forced into singleton classes (figure 7.21 left) and 

hence the effect on the fragmentation result is reduced when compared to the 

presence of random pattern disruption. The scratches do still have a degree of 

influence though with the manually touched-up version of the image resulting in 

a cleaner classification in the lesion area (figure 7.21 right) and a fragmentation 

difference reduced from ~0.14 to ;:::j0.09. 

Figure 7.21: Image 'scratches' and their effect on the mRAC classification: 
Classification for the original image (left) showing greater fragmenta tion in the 
lesion area when compared that for the manually 'touched-up' version (right). 

The ROC analysis for the mRAC fragmentation evaluation (figure 7.22) indicates 

that the measure is again effective as a discriminator between the melanoma and 

naevi groups and that its performance is slightly better than the local variation 

measure on the full set of data. For the unusual naevus example with the surface 

crusting removed or re-classified as a melanoma, the ROC area becomes greater 

than 0.95. 

7.5.3 SOFM Results 

The third set of results are for the SOFM classification again using the CB­

distance technique for the similarity criterion. The x2 results are shown in figure 

7.23 (ROC curve and data in figure 7.24). The correspondence with the visual 

estimate is reasonable although the spread is greater than with the local variation 

and mRAC fragmentation measures and has a correlation coefficient of only ;:::j0.55. 

Performance with respect to the histological diagnosis is unimpressive with no 

clear separation between the two lesion categories. 
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Figure 7.22: ROC curve and analysis for the final mRAC fragmentation metric 
results on the larger data set. 
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Figure 7.23: Final SOFM x2 evaluation results on the larger data set. 

The ROC curve for this data shows clearly the poor performance with respect to 

discrimination between the lesion categories with an area of ~0.53, only slightly 

better than chance. Although the performance is generally poor it is important to 

recognise that this measure is still generally effective in showing a high disruption 

value for the examples showing severe disrupt ion and conversely a low figure for 

those with the least visually apparent disruption. This classification-evaluation 
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route does not seem to provide a sufficient efficiency in the detection of disruption 

to overcome the effects of other influences on the result, so that only the extreme 

cases are effectively charaterized. 
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Figure 7.24: ROC curve and analysis for the final SOFM classification x2 metric 
results on the larger data set. 

The area B evaluation was also performed on the SOFM classification and the 

results are similar to t hose shown in figures 7.23 and 7.24. The correlation co­

efficient is slightly higher ( ~0.56) as is the ROC area ( ~0.57) however these 

improvements are extremely small. 

The generally poor performance of the SOFM classification method may relate to 

the way in which the network responds to similar profiles. The SOFM network is 

based on the idea that the provided input data instances (in this case the profiles) 

can be viewed as occupying a form of continuum with similar profiles being close 

together and distinct profiles further apart. Not only does SOFM require the 

number of classes to be pre-specified, but the network will use more of these 

classes in areas of the continuum which have a greater density of observations. 

This property has a number of consequences in terms of the analysis of skin 

pattern profile data as detailed below. 

An image composed largely of undisturbed skin will result in large numbers of 
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similar profiles together with a few anomalies. The skin profiles then form a large 

density at one part of the continuum and the SOFM classification will respond 

to this by allocating a large number of classes for the representation of these 

essentially similar profiles. This then leaves relatively few classes which will model 

a large range of the anomalous profiles. The division of similar skin areas and the 

grouping together of infrequent profiles even where they are relatively different not 

only leads to classification images that are difficult to interpret visually, but also 

to other complications in terms of evaluation. Figure 7.25 shows this unwanted 

division of similar profiles for the test image of hand-drawn lines and a benign 

example: For the test image, the mRAC (centre) classification yeilds single classes 

for each consistent region, whereas the SOFM classification (right) always uses 

multiple classes. For the benign lesion example, the mRAC segmentation (left) 

shows most of the image in a single class, however the SOFM segmentation (right) 

is a confusion of classes. 

Figure 7.25: Top: Classifications for a test image contining several regions 
of consistent preferred orientations; From left to right the image, the mRAC 
classification and the SOFM classification. Bottom: Classifications for a benign 
lesion with large numbers of similar profiles. Left: mRAC classification showing 
a single large class. Right: SOFM classification, a confusion of many classes. 

Division of essentially similar profiles into several different classes has significant 

conseqences in terms of evaluation through the proposed x2 or area B analyses. 

A small but consistent difference between the profiles as detected over the lesion 
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area compared to those of the skin area will cause the lesion are to be represented 

by completely different classes to the skin, in spite of the fact that the skin pat­

terning and the profiles are essentially the same in both regions. The process 

of highlighting the skin lines for example, can result in the lesion area showing 

slightly more cont rast than the surrounding skin (see figure 6.11 bottom left). 

Such a differentiation in classes is catastrophic in terms of x2 or area B analysis 

as t he classification would then exhibit a significant correspondence to the skin 

and lesion areas resulting in a spurious high disruption estimate. 

Another source of difficulty in terms of x2 and area B analysis is the lack of any 

consideration of locality; Each profile is considered as a separate entity to be 

classified in relation to its content alone. Since the classifier does not use locality 

information, classes can ( and do) appear in many different places over the image. 

This class re-use means that the variety of profile types (and hence classes) in 

a disrupted lesion means that anomalous profiles in the skin area often fall into 

classes used over the lesion ( where they reflect a similar portion of their respective 

areas) and that some profiles from the lesion area will fall into the classes found 

in the skin simply by chance. Both cases result in a false reduction in the x2 

result for disruptive lesions only. 

Although the x2 and area B analyses are not effective for the SOFM classification, 

disruption information still seems to appear in t he classification images. Figure 

7.26 shows the SOFM classification result for a malignant and a benign lesion 

example (left top and bottom respectively) . The malignant lesion appears to use 

a different and much larger set of classes than the skin that surrounds it, whereas 

the benign example has no such correlation. These observations are however in 

many ways illusory; even in the particularly high disruption malignant case shown 

¾ of the classes still appear in the skin area so that although every class appears 

in the lesion area, this represents neither a radically different nor considerably 

larger set of classes. 

The observed differences between classifications for disrupted and non-disrupted 

skin patterning are actually a result of increased 'fragmentation' over the lesion 

area. This cannot of course be the same fragmentation as used in the mRAC 

evaluation for three main resons: Firstly, the overall number of classes is not 
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Figure 7.26: Local fragmentation results for a melanoma (top) and benign 
naevus (bottom). Left : SOFM segmentation result and right local fragmentation 
results (3x3 window class count). 

free to vary so that the number of classes used for disruptive lesions will be 

falsely low and where the skin pattern is highly similar throughout the number 

will be falsely high. Secondly, the SOFM density matching property previously 

described will cause areas of essentially consistent patterning to use many classes 

and disrupted areas to use fewer. Finally, global class re-use means that an area 

of disrupted pattern contains much fewer classes than is immediately apparent; 

although neighbouring profiles rarely fall into the same class, a similar profile 

often arises in several different places in the lesion area. 

The increased fragmentation observed in fact only reflects an increase m the 

number of classes used in a small local area. Figure 7.26 illustrates this property 

wit h an image showing the number of classes in a 3x3 window cent red at each 

point for both of the SOFM classifications shown. The top row is for a melanoma 

and shows a clear increase in local fragmentation corresponding with the lesion 

extent, the bottom is for a benign naevus which shows little difference between 

the two regions. 

The local class count information can be used as a disruption measure in much 
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the same way as the local variation measure, by taking an average value for the 

lesion and skin regions and looking at the difference. In this case, comparing t he 

median value is not effective as the local class count is a discrete result allowing 

only a small range of values. Comparing the means provides a continuous result 

albeit still only wit h a small range. Using this measure of disruption an ROC area 

of ~o.7 is obtained indicating that the SOFM classification is indeed capturing at 

least part of the desired information on disruption. The correlation to the visual 

estimate is however relatively poor, especially for the examples where the skin 

patterning is less well defined or detected. 

The many problems associated with the SOFM classification, together with its 

overall poor performance suggest that this classification- evaluation route would 

not be suitable as a measure of patterning disruption. 

7.5.4 ART Results 

The fourth set of results are for the ART classification again using the CB-distance 

technique for the similarity criterion. The x 2 results are shown in figure 7.27. The 

correspondence with the visual estimate is better than t hat obtained through 

the SOFM evaluation although the spread is still greater than with t he local 

variation and mRAC fragmentation measures. The resuting correlation coefficient 

is ~0.70. Performance with respect to the histological diagnosis is unimpressive in 

comparison with the local variation and mRAC fragmentation measures; No clear 

separation between the two lesion categories is achieved although the melanoma 

examples do show generally higher disruption figures than t he naevi. 

The ROC curve for t his data clearly reflects the lack of a clear distinction between 

t he results for the two lesion categories with an area of ~0.61. The performance 

is clearly better t han that for the SOFM evaluation and although the performance 

is still generally poor, in t his case not only is a good result being obtained for the 

examples visually classified as extremes, but also the two categories are showing 

different characteristics in t heir results. T he area B evaluation was also performed 

on the ART classification and the results are very similar to those shown in figure 

7.23. The correlation coefficient is slightly lower (~0.66) but the ROC area is 
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Figure 7.27: Final ART x2 evaluation results on the larger data set. 

unchanged (:::::0.67). In all, this classification-evaluation route does not seem to 

provide a sufficient 'efficiency' in the detection of disruption to overcome the 

effects of other influences on the result. 

The poor performance of the x2 and area B measures on the ART classification is 

perhaps due to the effects of class re-use as described above, where the classes used 

for a disrupted lesion are also found in the skin area where they are representing 

anomalous patterning and where skin classes are found in a disrupting lesion 

simply by chance. The ART network does not have the density matching property 

of SOFM and its consequent problems in terms of x2 or area B analysis and 

this may well explain the improvement in performance. The local class count 

evaluation is also applicable to the ART classification and the results are shown 

in figure 7.28 with the corresponding ROC curve in figure 7.29. These results 

clearly de!fionstrate the reduction in performance of the x2 and area B measures 

resulting from the absence of any consideration of locality. 

The correspondence with the visual estimate is good although there is a significant 

range of results for those cases visually showing low degrees of patterning disrup­

tion. The correlation coefficient is :::::0.83 which is comparable to that obtained 

using either the local variation or mRAC fragmentation measures. Performance 

with respect to the histological diagnosis is also good, however although there is 
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Figure 7.28: Final ART difference of mean local-class-count evaluation results 
on the larger data set. 

a clear difference in the response for the two categories there is also considerable 

overlap between the results for the more disrupting naevi and the melanoma ex­

amples. The ROC curve for this evaluation reflects the good separation between 

the less disruptive naevi and the melanoma examples with an area of ::::::::0.80. 
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Figure 7.29: ROC curve and analysis for the final ART classification local-class­
count metric results on the larger data set. 
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Although the local class count evaluation yields a reasonable discrimination per­

formance it is not immediately clear what benefit this more complex route offers 

over the more direct local variation measure. The ART classification step adds 

more parameters and computation in addition to any effects of the peculiarities 

of the ART system without a clear improvement in performance. The use of a 

number of conceptually different and separate classification- evaluation routes is 

however desirable in order to improve robustness, so that given developments in 

other parts of the skin patterning acquisition system would warrant the inclusion 

of ART in testing of evaluation methods. 

The four sets of results clearly indicate that the consideration of locality in a 

measure of disruption is essential. The consistency of normal skin pattern struc­

ture apparent to the human observer seems to relate to the small local regions 

having the same profile of preferred orientations and although to the human eye 

the patterning often remains similar over extended regions of skin, a non-region 

based classifier like SOFM or ART ( when set to be sufficiently sensitive to separate 

the different classes due to a disruptive lesion) detects the presence of several dif­

ferent classes of profile which share this skin area. The region-based property of 

mRAC allows the use of a less stringent threshold so that these small differences 

in the skin are less influential whilst still maintaining separate classification for 

profiles with no similar neighbours as in regions of patterning disruption. The 

use of locality information is also clearly inherent in the local variation measure. 

However, this evaluation only considers the local information and so cannot ac­

count for the observed consistency of skin patterning over extended areas. The 

use of both immediate and extended regional consistency information as found 

in the mRAC fragmentation evaluation seems to be the key to successful analysis 

of skin patterning disruption. 

7 .6 Conclusions 

Quantitative interpretation of the profile matrix is a major issue if this process is 

to be useful in an automated detection system. Methods based on local variabil­

ity and on classification of the profile matrix obtained from mRAC and SOFM 
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revealed the differences expected between malignant and benign lesion examples. 

This information can be used together with the boundary detection methods 

to provide information about the disruption of the skin surface within t he le­

sion. Initial trials based on the autocorreltation profiling method indicated that 

metrics for skin patterning disruption could be obtained which were useful in 

discriminating between melanoma and naevi lesions. 

Detailed analysis of the profiling stage resulted in the development of a replace­

ment for the autocorrelation method. The new CHP profiling method provided 

improvement in both sensitivity and fidelity to the underlying skin pattern. Sim­

ple enhancement and noise reduction measures were developed to improve the 

quality of representation and to account for variations in enhanced image quality 

(from effects such as loss of focus). The final threshold- stretch scheme is effective 

in removing noise and variability in profiles whilst preserving the detection of the 

skin patterning character. 

The analysis and evaluation of the matrix of profiles relies on the notion of simi­

larity. In terms of the skin patterning represented, the comparison of two profiles 

using standard vector distance measures such as L2 ignores important aspects of 

the information they embody. A new measure was developed to account for the 

toroidal nature of the profile vector and to reduce the effect of small differences in 

orientation. The new CB-distance measure was integrated into a replacement for 

the original variance based analysis of local variability. The new technique results 

in a more faithful representation of local pattern variability, avoids the blurring 

of the variance technique and allows a better explanation of exactly what this 

result means in terms of the skin patterning. 

The analysis of a classification is an important part of the majority of the tech­

niques investigated for the extraction of a metric of patterning disruption from 

a matrix of profiles. In order to facilitate the comparison of different classifiers 

and the assessment of new techniques, the possibility of a single parameterless 

evaluation for any classification was investigated. The area B evaluation was 

developed from the concepts employed in the individual evaluations used in the 

initial trials and its conceptual similarity to the standard statistical x2 measure 

was discussed. The problems relating to inherent assumptions concerning the 
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nature of the classification common to both these measures were analysed and 

the consequent unsuitability of both for the region-based mRAC classification was 

detailed. A simple replacement suitable for the mRAC classifications of the new 

enhanced CHP data was presented. 

The ART classifier dismissed due to confusing classification results in the early 

trials, was re-tried on the enhanced CHP profile data since the adverse effects 

of the internal normalization would be reduced by the individual stretching of 

profiles performed in profile enhancement. The resulting classifications showed 

promise although the instability of the ART classification between runs on the 

same data was noted. 

Final results for an expanded set of example melanoma and naevus images showed 

the local variation and mRAC fragmentation metrics performing well both in 

classification of the two lesion types and particularly in comparison to a visual 

estimate of the level of patterning disruption caused by the lesions. A partic­

ularly good separation of the two lesion diagnoses is obtained using the mRAC 

fragmentation evaluation. The results for the SOFM classification with both x2 

and area B evaluations are poor. This failure can be traced to the unsuitabil­

ity of the SOFM 'density matching' property and the problems of classification 

without consideration of locality information. A simple locality based evaluation 

which considers the consistency of classification in a small neighbourhood shows 

that some diagnostically useful information is still apparently available when the 

importance of locality is included in the analysis of a profile matrix. The ART 

classification also yields generally poor results with both x2 and area B evalua­

tions, although some improvement over the SOFM results is apparent. Use of the 

locality measure employed on the SOFM classification results in a metric which 

performs comparably to the mRAC fragmentation and local variability measures, 

however the instability noted for ART together with the lack of clear advantage 

for this evaluation compared with the simpler and less computationally intensive 

local variation metric casts doubt on the inclusion of ART in further trials. 

In all, the acquisition and modelling of skin line patterning from clinical images of 

skin lesions has been successfully achieved and the analysis of the resulting data 

has been shown to provide an assessment of pattern disruption which is both 
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consistent with visual inspection and effective in presenting information useful 

for discrimination between melanoma and benign naevi lesion examples. 

166 



Chapter 8 

Conclusions 

8 .1 Overview 

The research presented here has considered automatic skin cancer diagnosis. The 

role of computer-based diagnosis, and its value within a primary care situation 

were examined resulting in synthesis of aims, requirements and properties for 

an effective system - a system based on digital optical images captured and 

processed using low-cost, commercial computer technology. 

The issues involved in acquisition of lesion boundaries were discussed. The value 

of accurate and robust boundaries, in terms of both directly obtainable diagnos­

t ic features and in enabling lesion property evaluation, was identified. Previous 

research proposed the edge focusing process. This work has addressed the im­

provement, in terms of potential for future development, evaluation and re-use, 

of this process through porting it to a highly modular form in the Khoros envi­

ronment. 

The role of colour analysis and its value in terms of provision of diagnostically use­

ful features was investigated, and the central importance of segmentation identi­

fied. The fundamental properties of effective segmentation of lesion image colours 

were identified as a need to reflect human perception of colour similarity and a 

basis on local regions. A new region-based segmentation technique using data 
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transformed to a perception-uniform colour-space was presented and shown to 

yield promising results. 

Finally the use of texture information was discussed. The nature and properties 

of the large-scale texture of skin patterning and its disruption were investigated 

and an abstracted representation proposed. A new technique was presented and 

shown to be effective in extracting the qualities of the skin patterning. Methods 

for analysing this representation of the patterning to quantify the disruption 

attributable to the lesion were proposed and developed. The combination of 

these extraction, analysis and disruption evaluation techniques was shown to 

be effective in relation to both visual assessment of disruption and diagnostic 

performance. 

8.2 Detail 

Background 

The incidence of skin cancer is high and rising across the world, a trend which is 

likely to continue given the importance of solar UV as a cause and the modern 

propensity to indoor lifestyle with sun-seeking holidays. Malignant Melanoma is 

the most deadly form due to its rapid development, invasion and metastasis cycle. 

Early diagnosis is paramount as prognosis is greatly improved where the tumour 

is excised quickly. Many common benign pigmented skin lesions can resemble 

early melanomas which means that diagnosis in situ is both necessary, as it is 

not practical to excise all such lesions, and difficult as the early differential signs 

are hard to detect without detailed expert inspection. 

System Concept Analysis 

The task of providing diagnosis support to aid in the fight against skin cancers 

is far from simple. The discrimination task itself is widely recognized as difficult 

even for experts in the field, and more so for early lesions. The priorities of 

earlier diagnosis and quicker referral suggested a focus on improving the speed 

and accuracy of primary care diagnosis. The breadth of knowledge demanded of 

a GP precludes the specific depth required given the difficulty and highly skilled 
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nature of the discrimination task and this indicated the need for a diagnosis 

support tool. 

An effective diagnosis support tool for the primary care sector must satisfy the 

key requirements of minimum capital cost, minimum training for operation, and 

minimum operating t ime, cost and fuss. These factors indicated an image based 

system avoiding specific requirements on image capture and using simple off-the­

shelf and therefore low cost PC technology. The diagnosis needs to be highly 

sensitive so as to avoid missing any cancers whilst retaining a satisfactory speci­

ficity to avoid excessive referrals. The complex nature of the discrimination task 

suggested the development of a wide range of mutually independent feature es­

t imates. These should be related to known medical indicators or visible features 

in order that confidence in the diagnosis can be boosted through interrogation of 

the "reasoning" underlying the final diagnosis. 

Boundary Finding, Edge Focusing and Khoros 

Robust and accurate identification of the extent of a lesion is a vital element of any 

image based skin lesion diagnosis support system. Boundary information directly 

enables the estimation of a variety of important diagnostic indicators such as size, 

shape, asymmetry and irregularity. In addit ion, boundary information enables 

the evaluation of features and properties both for the lesion area in isolation, 

and comparatively to the surrounding skin. Boundaries drawn by hand suffer 

from both inter and intra-observer inconsistency and are further hampered by 

the difficulty in providing even a good definition of exactly what constitutes the 

boundary of a lesion. Automatic boundary detection has consequently attracted 

considerable research interest. In previous research the edge focusing technique 

has been proposed and shown to be effective and reasonably robust as a means 

of accurate automatic lesion boundary detection. 

The existing edge focusing system was reconstructed in the Khoros environment in 

order to facilitate the further development, improvement, evaluation and integra­

t ion of the technique. The entire process has been decomposed into its functional 

elements and then rebuilt within the Cantata visual programming environment. 

Within Khoros, the implementation the edge focusing process is presented in a 

highly visual manner with the basic processing actions linked by data flow lines. 
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Evaluation in terms of the goals driving the conversion have shown the value of 

this presentation; it is ideal for experimentation since elements can be readily 

exchanged, allowing for simple evaluation of alternatives and for reuse of ele­

ments in future projects, and it greatly increases development prototyping and 

testing turnover by allowing access to all data passed between the process ele­

ments and by providing a variety of data visualization and analysis tools which 

can simply be 'plugged in' to examine the data at any point. It was noted that 

the re-implemented system had a significantly longer execut ion time due to the 

overhead involved in data flow using permanent files. However if speed were to 

become an important issue, Khoros provides the option of using much faster, 

non-permanent (but consequently non-interrogable) data transports. 

In general the edge focusing technique is effective in providing robust and ac­

curate lesion boundaries, however certain situations (such as lesions with highly 

indistinct boundaries and lesions which extend to the edge of the image) can 

cause poor results or failure. Solutions were proposed for some of the identified 

problems including the use of the Dull Razor technique for removing hair features 

from the image. The boundaries used in this study were governed by a boundary 

definition policy which is in essence that: boundaries were obtained, wherever 

possible, from the edge focusing system, but where the automatic system is inef­

fective or fails, boundaries were constructed by hand. 

Colour Analysis and Segmentation 

Colour information is widely recognized as an important diagnostic feature in the 

analysis of skin lesions, and this is reflected in its prominence in the skin cancer 

identification checklists. The colour-based indicators used for diagnosis mainly 

relate to either the variegation of colouring or the presence of specific colours. Re­

search into colour-based lesion diagnosis falls into the three categories of spectral 

analysis of accurately calibrated reflectance spectra, analysis of spectral prop­

erties of image-based informat ion, or the analysis of colour images. The aims 

and requirements of the envisaged diagnosis support system indicated an image 

based system using techniques of the third category, since special equipment is 

required by the first and the second demands not only accurate calibration, but 

often additional supplementary data. 
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Colour image processing for skin lesion images involves identification of either 

irregularity in pigmentation, specific colours, or the lesion extent. All these goals 

essentially reduce to segmentation of the image into regions of distinct colour. 

There has been considerable interest in colour-based segmentation for lesion im­

ages aimed at either finding a binary lesion/skin division, or detecting variegated 

colouring. The reported methods often begin by reducing the dimensionality of 

the colour data, the methods used (e.g. PCT1) however have been shown to result 

in much of the colour information being lost. The underlying goals of segmenta­

tion for lesion image analysis were examined in detail and the importance of a 

clear definition of the terms in the phrase 'areas of uniform colour' was exposed. 

The majority of the segmentation methods which have been used on lesion images 

consider the pixels as individual entities ignoring their location in the image, and 

require the number of output 'colours' to be specified in advance. The former is 

contrary to the goal of identifying contiguous regions in that the spatial position 

of the pixels is not being considered, whilst the latter is obviously problematic 

since variegated colour is a known differential indicator. 

The demand for consideration of spatial information prompted the development 

of a region-based approach to lesion image segmentation. The mRAC agglom­

erative clustering technique was developed and was shown to be promising in 

identification of homogeneous regions of colour using the full RGB data and the 

L2 distance measure for colour similarity. There were however identifiable dis­

crepancies between the colour grouping given by L2 on RGB data and that of 

the human observer. Many colour-spaces have been used in image processing to 

satisfy the requirements of a wide variety of applications. T hree colour-spaces 

were seen to be particularly relevant to the need for approximation to human 

perception: RGB, IHS and L *u*v* . An investigation the general properties of, 

and the distribution of the colour information from lesion images in, these spaces 

clearly indicated the value of L *u*v* with its decoupling of luminosity and chro­

maticity information and its construction on the principle of consistency between 

L2 distance in the space and perceived colour difference. 

Using mRAC with the L *u*v*- L2 combination of colour-space and colour differ­

ence measure, a good segmentation was achieved on the majority of the sample 

images available for this study, with distinct identifiable improvements over the 
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previous results in all but one of t he illustrative examples. The desire to ensure 

consistency in what is considered to be a 'different colour' suggested t he use of 

a fixed parameter set, however this prevented the current implementation from 

producing a satisfactory result in some (apparently) dark, low contrast cases. 

The L*u*v*-L2 combination was able able to produce a good segmentation for 

such difficult cases simply by changing a single parameter to make the merging 

process stop earlier i.e. be more 'fussy' in terms of colour similarity. This fur­

ther demonstrated the value of the transformed colour-space as no such solution 

could be obtained using t he RGB- L2 combination - separation of the appar­

ent 'colours' in the lesion can only be maintained in a highly complicated and 

confused segmentation. 

The promising results obtained with the new method suggest that the segmenta­

tion information should be used not only for the quant ification of variegation and 

presence of lesion colours, but also to provide support in boundary ident ification. 

However, the development required to convert the multi-region segmentation to 

a binary lesion/skin division and for investigation of combination methods and 

confidence rating using multiple boundary estimates could not be addressed in 

the time available. 

Texture - Skin Patterning 

The pattern of fine lines criss-crossing the surface of normal skin forms a macro­

scale texture. Changes in the skin patterning texture have been identified as in­

dicative of early melanoma. A measure of disruption of skin line patterning would 

then clearly be of benefit. Existing research relating to skin patterning t exture 

extends only to changes in properties of skin surface profiles taken perpendicular 

to the direction of the main skin lines. It is clear however that considerable poten­

tial for diagnostic information exists in the disruption of the directional pattern 

formed by the skin lines. 

The nature of skin patterning means that it is poorly described by existing texture 

techniques and consequently a new skin patterning detection method has been 

developed. A matrix of profiles (by angle) of linear element strength is created, 

in effect a map for the preferred orientations of t he patterning on the image. The 

process begins with a simple pre-processing method to highlight the skin lines in 
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the lesion images. Patches spaced evenly over the ent ire image are then analysed 

and each produces a profile representing the character of the local skin patterning. 

This process has been shown to be effective in relation t o test patterns and in 

reflecting the observed skin patterning in real lesion images. 

Quant itative interpretation of the profile matrix is a major issue if this process is 

to be useful in an automated detection system. Methods based on local variability 

and on classification of the profile matrix obtained from mRAC and SOFM provide 

patterning similarity information which can be combined with boundary data to 

yield a measure of the disruption of the skin surface within the lesion. Initial 

t rials based on the autocorrelation profiling method showed promising results. 

A detailed analysis of the profiling stage resulted in the development of a replace­

ment for the autocorrelation method. The new CHP profiling method provided 

improvement in both sensitivity and fidelity to the underlying skin pattern. Sim­

ple enhancement and noise reduction measures were developed to improve the 

quality of representation and to account for variations in enhanced image quality 

(from effects such as loss of focus) . The final threshold- stretch scheme was effec­

t ive in removing noise and variability in profiles whilst preserving the detection 

of the skin patterning character. 

The analysis and evaluation of the matrix of profiles relies on the notion of simi­

larity. In terms of the skin patterning represented, the comparison of two profiles 

using standard vector distance measures such as 12 ignores important aspects of 

the information they embody. A new measure was developed to account for the 

toroidal nature of the profile vector and to reduce the effect of small differences in 

orientation. The new CB-distance measure was integrated into a replacement for 

the original variance based analysis of local variability. The new technique results 

in a more faithful representation of local pattern variability, avoids the blurring 

of the variance technique and allows a better explanation of exactly what this 

result means in terms of the skin patterning. 

The analysis of a classification is an important part of the majority of the tech­

niques investigated for the extraction of a metric of patterning disruption from 

a matrix of profiles. In order to facilitate the comparison of different classifiers 

and the assessment of new techniques, the possibility of a single parameterless 
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evaluation for any classification was investigated. The area B evaluation was 

developed from the concepts employed in the individual evaluations used in the 

initial trials and its conceptual similarity to the standard statistical x2 measure 

was discussed. The problems relating to inherent assumptions concerning the 

nature of the classification common to both these measures were analysed and 

t he consequent unsuitability of both for the region-based mRAC classification was 

detailed. A simple replacement suitable for the mRAC classifications of the new 

enhanced CHP data was presented. 

The ART classifier dismissed due to confusing classification results in the early 

trials, was re-tried on the enhanced CHP profile data since the adverse effects 

of the internal normalization would be reduced by the individual stretching of 

profiles performed in profile enhancement. The resulting classifications showed 

promise although the instability of the ART classification between runs on the 

same data was noted. 

Final results for an expanded set of example melanoma and naevus images showed 

the local variation and mRAC fragmentation metrics performing well both in 

classification of the two lesion types and particularly in comparison to a visual 

estimate of the level of patterning disrupt ion caused by the lesions. A particu­

larly good separation of the two lesion diagnoses was obtained using the mRAC 

fragmentation evaluation. The results for the SOFM classification with both x2 

and area B evaluations were poor. This failure can be traced to the unsuitabil­

ity of the SOFM 'density matching' property and the problems of classification 

without consideration of locality information. A simple locality based evaluation 

which considers the consistency of classification in a small neighbourhood shows 

that some diagnostically useful information is still apparently available when the 

importance of locality is included in the analysis of a profile matrix. The ART 

classification also yielded generally poor results with both x2 and area B eval­

uations, although some improvement over the SOFM results was apparent. Use 

of the locality measure employed on the SOFM classification resulted in a met­

ric which performs comparably to the mRAC fragmentation and local variability 

measures, however the instability noted for ART together with the lack of clear 

advantage for this evaluation compared with the simpler and less computation­

ally intensive local variation metric casts doubt on the inclusion of ART in further 
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t rials. 

In all, the acquisition and modelling of skin line patterning from clinical images of 

skin lesions has been successfully achieved and the analysis of the resulting data 

has been shown to provide an assessment of pattern disruption which is both 

consistent with visual inspection and effective in presenting information useful 

for discrimination between melanoma and benign naevi lesion examples. 

8.3 Further Work 

This work has highlighted a number of key areas for future consideration in 

relation to the construction of the diagnosis support system in general, and for 

future research in relation to the specific colour and texture techniques presented. 

General system issues. 

Problems with the initial image have been seen to have an impact on boundary 

finding, colour and texture processing. Simple controls on the initial image cap­

ture would be the ideal solution for many of these problems; the adoption of a 

fixed, but wider field of view and the addition of colour and intensity matching 

charts into the image would ensure a reasonable area surrounding the lesion and 

avoid generally dark and low contrast images. 

A standard sequence of processing to improve the quality of the captured image 

should also be considered. The impact of non-uniform illumination and variations 

in focus could be reduced with illumination surface correction and re-focusing 

techniques, and additional image processing to remove 'noise features' would also 

be valuable. It is however important to ensure that quality improvement pro­

cessing preserves all t he required data in the image; the DullRazor hair removing 

technique for example, employs smoothing and hence results loss of fine detail in 

parts of the image. Careful construction of an effective but 'safe' image improve­

ment sequence including a modified DullRazor would however be invaluable, and 

research and development with this aim would form a vital part of t he diagnosis 

support system programme. 
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Performance evaluation is a complex issue in lesion image analysis. Evaluation 

of the techniques presented in this study has often been in relation to human 

visual assessment of the feature in question. This form of assessment is essential 

in view of diagnosis support system requirements for visually verifiable features 

and explainable diagnosis, in relation to the essential properties of good colour 

segmentation, and especially in ensuring that the intended feature is indeed be­

ing assessed by the technique as with the skin patterning disruption measure. 

However such assessment is problematic in terms of comparative performance 

evaluations due to its inherent subjectivity. Quantitative feature evaluations are 

however hampered by the need for a 'gold standard' both in feature definition and 

quantification, i.e. the need to know the correct response for the given feature. 

Furthermore, comparative performance evaluation for different processes in terms 

of features requires a standard set of images with accompanying feature data for 

each image to be generally available. Without a fixed test set performance differ­

ences could simply be the result of differing imaging processes, feature definitions 

or feature assessment. Evaluation in relation to lesion type given by histological 

diagnosis is common and avoids the feature definition and assessment problems, 

however features generally do not have a perfect correspondence to diagnosis 

( clearly shown by the overall score from a list of features being used to signify 

diagnosis in published checklists) so that diagnostic performance does not neces­

sarily quantify performance concerning the feature in question. An image library 

with associated 'feature files' has been used in several studies by Umbaugh et al 

e.g. [72] and Lee et al [58] use a set of lesion images compiled with scored feature 

data. Neither of the image sets is generally available, the latter cannot be released 

for legal reasons. A more general dermatology image atlas, DOIA [93] offers open 

access but only has general feature data and uses JPEG image compression which 

results in corruption of fine detail features such as skin patterning. Other lesion 

specific image libraries which may provide a solution are being established by the 

American Academy of Dermatology and by the UK Melanoma Study Group [33]. 

A full investigation of performance evaluation issues, and feature definition and 

assessment in test image sets would again be a vital part of the diagnosis support 

system programme. 

Colour Analysis . 

The identified importance of locality information for colour segmentation of lesion 
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images was addressed in this work through the development of the mRAC region­

based process. An alternative could exist in the encoding of the location as part of 

each pixel value. This would allow limited locality consideration within the many 

segmentation algorithms which consider each pixel as separate entit ies ( those 

which do not require pre-specification of the number of classes would be most 

suitable). Simple location encoding may not be successful as it would normally 

introduce a bias toward circular regions (where each pixel is 'close' to the mean 

location of the class), investigation of more complex encoding including the notion 

of connectivity as part of 'nearness' could yield a more successful result. Such 

trials would be of greatest importance if much higher resolution images need to 

be segmented as the iterative nature of the mRAC process makes it relatively 

computationally intensive. 

Most colour segmentation schemes begin with smoothing. The mRAC process 

does not require such pre-processing with the consequent advantage of avoiding 

the associated blurring of edges. The application of smoothing may however 

allow a greater sensitivity to colour difference by reducing the relative noise level 

and hence allowing the merge phase to stop earlier. Any smoothing applied 

should be sensitive to the blurring problem, small window iterative median (or less 

computationally expensive psuedo-median) filters suppress noise with relatively 

little blurring impact [37], however adaptive shape filtering by taking the median 

of the least variable contiguous segment of the filter window may be more effective. 

Filtering applied to a higher resolution version of the image before sub-sampling 

could also be a valuable approach. 

The assessment of colour similarity formed an important element of this study. 

Consideration of the distribution of image data in the colour-space allows the 

investigation of the correspondence between areas of perceptually similar colour 

and groupings in the colour-space and consequently the identification of suitable 

colour similarity measures. Such analysis could be expanded from the selection 

of a suitable colour-space and distance measure pair, to the formulation of a 

dedicated colour difference measure specifically tailored to the needs of lesion 

analysis, for example differences in blue-black shades may be more important 

than differences in shades of pink. The concept of colour-texture could also 

provide a means of better distinguishing between perceived colours, since skin 
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colour, for example, is obviously a perceptual combination of different colours. 

The colour segmentation information should be used not only for the quantifica­

tion of variegation and presence of lesion colours, but also to provide support in 

boundary identification. Conversion of the multi-region segmentation to a binary 

lesion/skin division and investigation of combinat ion methods and confidence rat­

ing using multiple boundary estimates should be addressed. Texture data may 

also provide new boundary data, a multi-channel approach for the estimation of 

a feature provides increased robustness and a means to quantify of confidence a 

feature measure. A full investigation of the issues and techniques, and an aware­

ness of the value of cross-channel support would form an important part of the 

programme as a whole. 

Texture Analysis 

The skin patterning texture analysis begins with highlighting of the skin lines per­

formed by a smooth model subtraction method. Although this has been shown to 

provide an adequate representation, a refinement of this stage may yield increased 

robustness to poor image quality. In terms of initial pattern highlighting, since 

small scale texture models must consider skin patterning as noise, subtraction 

of the texture generated from such a model ought perhaps to be effective in re­

vealing the patterning, however in practice this method may be ineffective as the 

generated texture might not be well registered (i.e. synchronized) with that of 

the image. The FFT based processing should also be re-considered when faster 

hardware is available. Cleaning of the highlighted pattern is perhaps the most 

likely area for improvement. An adaptation of a morphological skeletonization 

technique may be successful and trials of the logical/ linear operator technique 

proposed by Iverson et al [94], in view of the impressive results they present 

for fingerprint line tracing with their L/L posit ive contrast operator, should be 

undertaken. 

An increase in robustness may also be possible by modifying the profile enhance­

ment threshold-stretch process to use an adaptive noise threshold in proportion 

to the range of the raw data. This would allow more consistent patterning pro­

file detection for areas of low contrast in the pattern highlighted image whilst 

maintaining the profile shape properties in sharp defined areas, based on the as-
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sumption t hat the noise content of low contrast areas (often the result of loss of 

focus in the original image) is smaller than that of high contrast areas. 

Finally in the evaluation stage, the impact of introducing a ' transition zone' at 

the lesion border which is viewed as neither lesion nor skin, should be assessed. 

This would improve tolerance to a poorly localised boundary or to situations 

where the extent of the impact of the lesion on skin patterning does not precisely 

match that of the pigmentation ( assuming boundary identification is based on 

pigmentation extent as in this study). The transition zone must remain small 

however to avoid unnecessary discarding of data, especially where the lesion itself 

is small. 
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