

A spatially implicit model fails to predict the structure of spatially explicit metacommunities under high dispersal

Ai, Dexiecuo; Ellwood, M. D. Farnon

Ecological Modelling

DOI: https://doi.org/10.1016/j.ecolmodel.2022.110151

Published: 01/12/2022

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Ai, D., & Ellwood, M. D. F. (2022). A spatially implicit model fails to predict the structure of spatially explicit metacommunities under high dispersal. *Ecological Modelling*, *474*, Article 110151. https://doi.org/10.1016/j.ecolmodel.2022.110151

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	A spatially implicit model fails to predict the structure of spatially explicit							
2	metacommunities under high dispersal							
3								
4 5	Dexiecuo Ai ^{1*} and M. D. Farnon Ellwood ²							
6	¹ State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology,							
7	Lanzhou University, Lanzhou, 730000, China. E-mail: aidxc@lzu.edu.cn							
8	² School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG,							
9	United Kingdom. E-mail: farnon.ellwood@bangor.ac.uk							
10	*Corresponding author							
11								
12								

13 Abstract

14	Metacommunities are the product of species dispersal and topology. Metacommunity
15	studies often use spatially <i>implicit</i> models, implemented by fully connected topologies,
16	in which the precise spatial arrangement of habitat patches is not specified. Few
17	studies use spatially explicit models, even though real-world metacommunities are
18	likely structured by topology. Here, we test whether a spatially implicit resource
19	consumption model based on a fully connected topology could predict the structure of
20	spatially explicit metacommunities. Having controlled for environmental
21	heterogeneity, we focus specifically on the effects of species dispersal and topology
22	on metacommunity structure. We classified the topologies according to the shortest
23	path between the most distant nodes (i.e. the graph diameter). Topologies with small
24	diameters are tightly connected, whereas large diameter graphs are loosely connected.
25	Some general trends emerged with increasing dispersal rate, such as a hump-shaped
26	pattern in α -diversity, and a plateau followed by a decline in γ - diversity. However,
27	the importance of topology was also apparent: α -diversity peaked at low dispersal
28	rates in small diameter topologies, but at high dispersal rates in large diameter
29	topologies. At low dispersal rates, α -diversity was higher in spatially implicit than in
30	spatially explicit metacommunities. At medium dispersal we detected stronger species

31	sorting in the small diameter than in the large diameter topologies. Increasing
32	dispersal caused α -diversity to decline more dramatically in small diameter topologies.
33	Smaller metacommunities were dominated by regional competitors, whereas larger
34	communities exhibited patterns of species biomass distribution leading to emergent
35	niche structures. Increasing dispersal caused the mean productivity of each patch to
36	undergo partial declines in spatially implicit metacommunities but continue to decline
37	sharply in spatially explicit metacommunities. We conclude that spatially implicit
38	models should be used cautiously when predicting the biodiversity, community
39	composition or ecosystem functions of spatially explicit metacommunities at medium,
40	and especially at high dispersal rates.
41	Key words: spatially implicit, spatially explicit, metacommunity, topology, dispersal,
42	diversity, productivity, community composition, resource-consumption model
43	

1. Introduction

45	Metacommunity theory integrates local and regional community dynamics, relating
46	biodiversity and ecosystem functions at different spatial scales (Leibold & Chase
47	2018; Thompson et al. 2020). Fundamental tenets of metacommunity theory include
48	species dispersal and topology, which describes the spatial arrangement of patches
49	(Leibold & Chase 2018).
50	Species dispersal determines the rate of species movement within and between
51	ecological communities (Massol et al. 2017; Thompson & Fronhofer 2019; Thompson
52	et al. 2020; Vilmi et al. 2021; Zhang et al. 2021). Leibold et al. (2017) conceptualized
53	three types of dispersal: dispersal limitation, dispersal sufficiency and dispersal
54	surplus. Dispersal limitation prevents species from reaching patches where their
55	productivity is the highest (Mouquet et al. 2002; Leibold et al. 2017). Dispersal
56	sufficiency, the product of species sorting, allows each species to find its optimum
57	patch, which increases the α -diversity of individual patches and leads to high
58	productivity (Loreau et al. 2003; Mouquet & Loreau 2003; Leibold et al. 2017).
59	Dispersal surplus counteracts the effects of dispersal limitation and dispersal
60	sufficiency: in the short term poor competitors are able to coexist within patches, but
61	eventually mass effects allow the best overall competitors to dominate individual

62	patches, causing dramatic declines in both α - and γ - diversity, and reducing mean
63	productivity (Loreau et al. 2003; Mouquet & Loreau 2003; Leibold et al. 2017). A key
64	point is that theoretical studies of dispersal limitation, dispersal sufficiency and
65	dispersal surplus have all been based on spatially implicit models, in which the
66	precise spatial location of habitat patches was not specified in the model (Leibold et al.
67	2017; Suzuki & Economo 2021).
68	In theoretical studies, if the dispersal rate is set to zero, all patches are
69	isolated from each other, no information is transferred, and the system is closed.
70	When the system is open, dispersal depends on topology (Economo & Keitt 2008).
71	Topology determines how patches are arranged in relation to one another (Economo
72	2011; Suzuki & Economo 2021). In the real world, topology describes the spatial
73	distribution and connectedness of landscape patches, informing conservation
74	strategies such as reserve size (Minor & Urban 2008; Van Teeffelen et al. 2012), and
75	explaining spatial insurance effects, where species escape from competition in
76	heterogeneous landscapes (Thompson et al. 2014). A second key point is that spatially
77	implicit models always use fully-connected topologies in which all patches are
78	connected directly with other patches (Loreau et al. 2003; Mouquet & Loreau 2003;
79	Suzuki & Economo 2021). Real-world metacommunities, even those of relatively

80	simple natural microcosms such as ponds or epiphytes, are rarely this interconnected,
81	which raises the question of whether spatially implicit models can be used to predict
82	the structure of spatially explicit metacommunities. While some theoretical studies
83	have applied complicated topologies to fit experimental metacommunities (e.g.Hubert
84	et al. 2015; Thompson & Gonzalez 2017; Thompson et al. 2017), these topologies
85	were highly susceptible to disturbance, and extensions or modifications were
86	impossible.
87	An effective way to model the spatial topologies of metacommunities would
88	be to use graph theory (Newman 2003; Minor & Urban 2008). Relatively new to
89	metacommunity ecology, graph theory has been used extensively for the study of
90	computer networks (Minor & Urban 2008). Given that most studies of
91	metacommunities are based on resource consumption models (Loreau et al. 2003;
92	Shanafelt et al. 2015; Thompson & Gonzalez 2017; Thompson et al. 2017; Leibold &
93	Chase 2018), we used a resource consumption model and six simple topologies taken
94	from computing networks, i.e. fully connected (spatially implicit), star, line, ring,
95	lattice and tree structures (Fig.1). We asked whether, under different levels of species
96	dispersal, a spatially implicit model could predict trends in α - and γ - diversity,
97	community composition, ecosystem function, and even spatial variations in the α -

98 diversity and ecosystem function of different patches in any of the six different

99	topologies.	
----	-------------	--

100	Whilst environmental heterogeneity affects the structure of metacommunities
101	(Leibold & Chase 2018; Ben-Hur & Kadmon 2020; Suzuki & Economo 2021;
102	Thompson et al. 2021), that is outside the scope of this study, and we therefore
103	controlled for environmental effects by assuming that, although environmental
104	conditions differ between patches, overall environmental heterogeneity would be the
105	same for all topologies. We anticipated that our spatially implicit model would predict
106	diversity, ecosystem function and community composition under low and high
107	dispersal rates. Species sorting under low dispersal would result in patches with
108	similar environmental conditions being dominated by the best competitor, leading to
109	consistent species composition, whereas dispersal surplus under high dispersal would
110	result in superior competitors dominating all metacommunities, again leading to
111	consistent composition (Loreau et al. 2003; Mouquet & Loreau 2003). Consequently,
112	mean productivity within each patch would also be consistent for all topologies with
113	similar environmental conditions. We believe relatively low dispersal rates prevented
114	local diversity from declining in the spatially explicit topologies of Suzuki and
115	Economo (2021) when they asked similar questions to us, but measured species

116	diversity patterns only. However, we also anticipated that our spatially implicit model
117	would fail to predict diversity, ecosystem function, and community composition at
118	intermediate dispersal rates because of variations in the relative strength of species
119	sorting and mass effects in different topologies.
120	2. Methods
121	We use the resource-consumption model (Loreau et al. 2003; Gonzalez 2009;
122	Gonzalez et al. 2009; Shanafelt et al. 2015), which allows environmental conditions
123	to fluctuate with time, whilst maintaining species diversity. As in previous studies, we
124	assume that all species compete for a single limited resource, such as nitrogen, and
125	convert it into new biomass. Unlike previous studies, our model allows environmental
126	conditions to differ between patches, as though each patch was a different landscape,
127	but overall environmental conditions remain constant. Each species has an optimal
128	environmental value. Superior competitors exhibit a close match between their
129	optimal environmental values and the environmental conditions of a patch and will
130	therefore consume large amounts of resource. All metacommunities consisted of the
131	same number of patches, with the same levels of environmental heterogeneity.
132	Different topologies differed only in the connections between patches in various
133	topologies. We set the unit of each parameter as Shanafelt et al. (2015).

2.1 Resource-consumption model

- 152 where the baseline maximum consumption rate is $0.15(1/(g^*h))$, and it is scaled down
- 153 based on the difference between H_i and E_j .
- 154 E_j (dimensionless) is environmental condition of patch *j*, defined as:

155
$$E_j = \begin{cases} 1, & j = 1 \\ E_{j-1} - 1/(N-1), & 2 \le j \le N \end{cases}$$
 (4)

156 H_i (dimensionless) is the optimal environmental value of species *i*, defined as:

157
$$H_i = \begin{cases} 1, & i = 1\\ H_{i-1} - 1/(S-1), & 2 \le i \le S \end{cases}$$
(5)

158 I_i (ml/h) and l_i (1/h) are the resource input and loss rate, respectively; m_{ij} (1/h) is the

159 loss rate of biomass of species i on patch j; a(1/h) is the dispersal rate of species; for

- 160 the sake of simplicity we assume that all species have the same a which determines
- 161 the fraction of dispersers at each time interval; M_i is the number of patches connected
- 162 with patch *j*.
- 163 Another popular, spatially implicit metacommunity model is Mouquet and
- 164 Loreau (2003); the main difference between this model and our model is that in their
- 165 model reproduction depends on dispersal rate, and only new species disperse. In our
- 166 model, reproduction depends on the available resource, and all species have a chance

167 to disperse.

- 168 **2.2** Six simple topologies
- 169 We apply six simple topologies often seen in computer networks (Fig.1). A brief

170 introduction for each of them is as follows:

171	Fully connected topology All patches are connected, meaning that species from a
172	patch can disperse to other patches via an edge. In the real world, constructing a fully
173	connected metacommunity would be laborious and expensive because of the large
174	number of edges $(\frac{N(N-1)}{2})$, and fully connected metacommunities are not easy to
175	extend or modify. However, a fully-connected topology is the most reliable structure
176	in the event that patches or edges are disturbed. We use this topology to represent a
177	spatially implicit structure.
178	Star topology All patches are connected to a central patch (e.g. patch 1 in Fig.1), and
179	species disperse from one patch to another through the central patch, meaning the
180	central patch plays a buffering role. With the exception of the central patch, this
181	topology is easy to extend and modify. The number of edges is $(N-1)$. The star
182	topology is less resistant to disturbance than the fully connected topology, because
183	when an edge or the central patch is removed, connectivity is lost.
184	Lattice topology This type of topology is rarely seen in computer networks but is easy
185	to design in experimental metacommunity studies. Lattice topologies are essentially
186	grids, with patches located at the intersection of each edge. Patches are connected via
187	several paths. If N patches are distributed as an $N_r \times N_c$ lattice (where N_r and N_c are

188	the number of patches in each row and column, respectively), then the number of
189	edges in this lattice is $N_r \times (N_c - 1) + (N_r - 1) \times N_c$. The lattice topology is more
190	resistant to disturbance because the system remains connected even when several
191	patches or edges are damaged.
192	Tree topology The tree topology has root patches, and each root patch has two child
193	patches in our model (see Fig. 1). Child patches can be added to a root patch which
194	has fewer than two child patches, but the child patches will become unconnected if
195	any root patches or edges are removed. The number of edges in this topology is N-1.
196	Ring topology Each patch connects with two neighboring patches, which together
197	form a ring shape. Species can disperse clockwise or counterclockwise (Meador 2008).
198	Either way, dispersers must pass through all patches located between the patch they
199	emigrate from and the patch they immigrate to (Meador 2008). This topology is easy
200	to set up, but the ring is temporarily broken during extension of the ring topology. The
201	number of edges is N . If more than one patch or edge are removed, the system
202	becomes unconnected.
203	Line topology In the line topology, the first and last patch are unconnected, so there is
204	only one route along which species can disperse. This structure is easy to extend but
205	less resistant to disturbance since it becomes unconnected when any of the

20	6	intermediate	patches of	r edges a	are removed.	The number	of edges	is <i>N</i> -1	•
----	---	--------------	------------	-----------	--------------	------------	----------	----------------	---

207	Topologies can be classified according to the number of edges of the shortest
208	path between the most distant nodes, known as the graph diameter (West 2001). The
209	diameters of our topologies can be classified into small, medium, and large groups:
210	the fully connected and star topologies had graph diameters of 1 and 2; the tree and
211	lattice topologies had diameters of 8 and 9; the ring and line topologies had diameters
212	of 15 and 29. Topologies with small diameters consist of a series of tight connections,
213	whereas larger graph diameters consist of loose connections.
214	2.3 Simulations
215	We set the number of patches to $N=30$ in all topologies and numbered each patch as in
216	Fig. 1. Environmental conditions, defined by equation (4), were consistent within
217	patches of a similar color, or numbered sequentially for different topologies. We set
218	the initial species richness to $S=30$ and numbered the species from 1 to 30, setting the
219	optimal environmental value of each species according to equation (5). All species
220	had the same e_{ij} and m_{ij} (both values set to 0.2) for all patches (Loreau <i>et al.</i> 2003;
221	Gonzalez <i>et al.</i> 2009), and all patches had the same I_j and l_j , values set to 165 and 10
222	respectively (Gonzalez et al. 2009). We set these parameters based on previous
223	studies which applied the resource-consumption model. We set the dispersal rate a to

224	37 different values, ranging from 0.0001 to 0.001 with intervals of 0.0001, ranging
225	from 0.001 to 0.01 with intervals of 0.001, ranging from 0.01 to 0.1 with intervals of
226	0.01, and ranging from 0.1 to 1 with intervals of 0.1. Hence, we have 37 (dispersal
227	rates) *6 (topologies) = 222 simulations, with each simulation run for $2*10^{7}$ time
228	steps to reach equilibrium. We set a dynamic cutoff at $P_{ij}(t) = 0.01(g)$, meaning that
229	species became extinct from a patch if their biomass fell below this value. The
230	differential equations of (1) and (2) are simulated by using the forward Euler method
231	with $dt=0.001$. We also tested the results for different dt , observing the same patterns
232	when dt was relatively large, such as 0.005 and 0.01 (see the results of $dt=0.01$ in the
233	Appendices), but the system was not at steady state when dt increased, for example
234	greater than 0.1. We controlled for spatial heterogeneity using the fully connected
235	(spatially implicit) topology, in which all patches were connected directly.
236	2.4 Metrics
237	We used the Bray-Curtis dissimilarity index to measure the community composition
238	of each patch, comparing patches of the fully-connected topology with all other
239	topologies. In addition, we measured the total biomass of each species (summing the
240	biomass of that species across all patches) in the whole metacommunity, the α -
241	diversity (number of species) within each patch, the γ -diversity of the

242	metacommunities, and the coefficient of variation (hereafter CV, defined as standard
243	deviation/mean) of α -diversity across patches. We also measured the productivity of
244	each patch <i>j</i> defined as the production of new biomass per unit time (g/h, Loreau <i>et al</i> .
245	2003):
246	$\varphi_j(t) = R_j(t) \sum_{i=1}^{S} e_{ij} C_{ij}(t) P_{ij}(t).$ (6)
247	As well as productivity per patch, we measured the cv of productivity between
248	patches. Similations were implemented in Java, topologies and similarity of
249	community composition were generated using the "igraph" and "vegan" packages in
250	R, and data were analysed in R 4.0.4 (R 2021). All codes can be found in the
251	Appendices.
252	3. Results
253	3.1 Community composition
253 254	<i>3.1 Community composition</i> Under low dispersal, strong species sorting appeared in all topologies (see <i>a</i> =0.0001
253254255	3.1 Community compositionUnder low dispersal, strong species sorting appeared in all topologies (see a=0.0001and a=0.001 in Fig.2). Under medium dispersal, mass effects increased the biomass of
253254255256	 3.1 Community composition Under low dispersal, strong species sorting appeared in all topologies (see a=0.0001 and a=0.001 in Fig.2). Under medium dispersal, mass effects increased the biomass of the inferior species, resulting in slight differences in community composition between
 253 254 255 256 257 	 3.1 Community composition Under low dispersal, strong species sorting appeared in all topologies (see a=0.0001 and a=0.001 in Fig.2). Under medium dispersal, mass effects increased the biomass of the inferior species, resulting in slight differences in community composition between topologies (see a=0.01 in Fig.2). However, the best competitor of the central patch in
 253 254 255 256 257 258 	 3.1 Community composition Under low dispersal, strong species sorting appeared in all topologies (see a=0.0001 and a=0.001 in Fig.2). Under medium dispersal, mass effects increased the biomass of the inferior species, resulting in slight differences in community composition between topologies (see a=0.01 in Fig.2). However, the best competitor of the central patch in the star topology went extinct (i.e. in Fig.2 the color of the first species on the first
 253 254 255 256 257 258 259 	3.1 Community composition Under low dispersal, strong species sorting appeared in all topologies (see $a=0.0001$ and $a=0.001$ in Fig.2). Under medium dispersal, mass effects increased the biomass of the inferior species, resulting in slight differences in community composition between topologies (see $a=0.01$ in Fig.2). However, the best competitor of the central patch in the star topology went extinct (i.e. in Fig.2 the color of the first species on the first patch is white when $a=0.0001$, but is red on all patches where $a=0.01$). Under high

260	dispersal in the fully connected, star, tree, and lattice topologies, whole
261	metacommunities were dominated by a few species, and the optimal environmental
262	values of these dominant species were located more centrally between 0 and 1 in the
263	fully-connected topology than in the other topologies. In the line and ring topologies,
264	species with extreme environmental values dominated the patches with extreme
265	environmental conditions, whereas species with medium environmental values
266	showed dominance in the patches with intermediate environmental conditions (see
267	a=1 in Fig. 2). Overall, as the diameters of the topologies increased, dominant species
268	exhibited more extreme environmental values.
269	We compared community composition between two patches with the same
270	environmental conditions; one from the fully-connected topology, and the other from
271	one of the other topologies. In all topologies, increasing disperal rates caused reduced
272	similarity in community composition (Fig. 3). Low dispersal rates resulted in almost
273	the same community composition within patches across all topologies ($a=0.0001$ in
274	Fig. 3). Medium dispersal rates (e.g. $a=0.01$) increased the similarity between patches
275	with extreme environmental conditions more than other patches. High dispersal rates
276	(e.g. $a=0.1$) caused patches with intermediate environmental conditions to become

278	dispersal rate was 1, the overall similarity was zero (Fig. 3). However, similarity was
279	greater than zero in the line and ring topologies ($a=1$ in Fig. 3). In contrast with the
280	other topologies, the similarity of patch 1 in the star topology was lowest when
281	dispersal rate was low, and highest when dispersal rate was 1 (Fig. 3).
282	At around 100, total biomass of each species in the whole metacommunity was
283	almost identical under low dispersal rates for all topologies (see $a=0.0001$ in Fig. 4).
284	It differed slightly under medium dispersal rates for the large-diameter topologies, but
285	remained the same for the fully-connected topology (see $a=0.01$ in Fig. 4). For the
286	star topology, the total biomass of species with environmental values of H=1 was zero
287	since they had been outcompeted as the best competitors of the central patch (patch 1,
288	see also Fig. 2). Total biomass differed greatly under high dispersal, especially for the
289	topologies with medium to large diameters, with clumps of species appearing as one
290	would expect from niche partitioning. The number of clumps increased from one to
291	four in the tree, lattice, ring and line topologies, respectively ($a=1$ in Fig. 4).
292	3.2 Diversity
293	In line with other studies (Loreau et al. 2003; Mouquet & Loreau 2003; Shanafelt et
294	al. 2015), increasing dispersal first increased and then decreased α -diversity, whereas
295	γ - diversity remained constant before eventually decreasing in all topologies (Fig.5A

296	and B). Exact trends of α - and γ -diversity varied between topologies. α -diversity was
297	highest (30 species) in the widest dispersal window of the fully-connected topology,
298	where the logarithm governing dispersal rates was between -7.5 to -2.5 (Fig.5A). The
299	same result could be seen in the star topology, but with a narrower dispersal window
300	(from -5.0 to -2.3) and a lower α -diversity (29 species). For the lattice and tree
301	topologies, medium dispersal rates gave the highest α -diversity, whereas in the line
302	and ring topologies α -diversity peaked at relatively higher dispersal rates. Also
303	dependent on topology were the tipping points at which γ - diversity started to decline.
304	At high rates of dispersal, both α - and γ - diversity were higher in the line and ring
305	topologies than in other topologies (Fig 5A and B).
306	α -diversity varied between patches in the different topologies (Fig.5C and Fig.
307	A.1). In all but the star topology, dispersal caused the cv of α -diversity to increase at
308	first and then decrease (Fig. 5C). The key difference between the topologies was the
309	point at which increasing dispersal caused the cv of α -diversity to peak. This peak
310	occurred at low dispersal in the fully-connected topology, intermediate dispersal in the
311	lattice and tree topologies, and high dispersal in the line and ring topologies (see
312	insert panels in Fig. 5C). In the star topology, which differed completely from the

313 other topologies, increasing dispersal caused a decline in the cv of α -diversity within

314 patches (Fig. 5C).

315 *3.3 Productivity*

- 316 Increasing dispersal caused the mean productivity of each patch to decrease in all
- 317 topologies, and the rate of decline became steeper at higher dispersal rates (Fig.6A,
- 318 see also the productivity of each patch across all topologies in Fig. A.2). In the fully
- 319 connected topology, even under very high dispersal rates, mean productivity remained
- 320 constant, whereas it declined sharply for the star topology, and remained relatively flat
- 321 in the line and ring topologies.
- 322 As with mean productivity, the cv of productivity between patches remained
- 323 constant at first, but then increased with dispersal in all but the fully-connected
- 324 topology (Fig. 6B), in which it declined slightly at very high dispersal rates. Under
- 325 high dispersal rates, the cv of productivity increased sharply in the star topology, and
- 326 remained flat in the line and ring topologies.

327 4. Discussion

- 328 We applied a resource-consumption model to six simple topologies: fully connected
- 329 (spatially implicit), star, tree, lattice, ring, and line structures with different diameters
- 330 to investigate whether a spatially implicit model could consistently predict the

331	structures of spatially explicit metacommunities. Under high dispersal, our spatially
332	implicit model failed to predict the structure of spatially explicit metacommunities,
333	including community composition, exact α - and γ - diversity, patterns of total species
334	biomass distribution, productivity, and cv of α -diversity and productivity. Some
335	trends were apparent across all models, for example at low dispersal, strong
336	environmental filtering led each patch to be dominated by its best competitor, whereas
337	more inferior competitors appeared in all patches at medium dispersal, and whole
338	metacommunities were dominated by several species due to mass effects at high
339	dispersal. Consequently, α -diversity first increased and then decreased, and γ -
340	diversity remained constant and then decreased.
341	At low dispersal (e.g. $a=0.0001$), community compositions of given patches
342	were consistent across topologies (Fig. 2-4) due to strong environmental filtering
343	which allowed each patch to be dominated by its best competitor (Suzuki & Economo
344	2021). γ - diversity and mean productivity were also consistent across all topologies,
345	and the cv of α -diversity between patches was low (Fig. 5 and 6). However, the high
346	levels of connectedness between patches in the fully connected topology allowed
347	more inferior species to appear in all patches even under very low dispersal rates,
348	which is why the α -diversity was higher under the fully connected topology than in

349	other topologies (Fig. 5). Our spatially implicit model could not predict the α -
350	diversity of spatially explicit metacommunities, even under very low dispersal rates.
351	Hence, α -diversity remained highest over the greatest range of dispersal in the fully
352	connected topology than in other topologies. At medium dispersal ($a=0.01$), the
353	number and identity of inferior species which appeared in each patch differed between
354	patches and between topologies, which led the diversity and community composition
355	to fluctuate within patches and topologies (Fig. 2-5), resulting in variable declines in
356	productivity (Fig. 6, Mouquet & Loreau 2003; Leibold & Chase 2018). The central
357	patch (patch 1) of the star topology represented a hub, meaning that all dispersers had
358	to pass through this patch before reaching their destination, and these transient species
359	converted resource and outcompeted the best competitor of the central patch.
360	At high dispersal, the smallest diameter topologies were dominated by
361	generalist species with medium environmental values (Fig. 2). These species were
362	also the best competitors at the regional scale, consistent with other studies (Mouquet
363	& Loreau 2002; Loreau et al. 2003; Mouquet & Loreau 2003; Gonzalez et al. 2009;
364	Shanafelt et al. 2015). Contrary to our expectations, increasing dispersal caused
365	extreme shifts in the community compositions of medium to large diameter topologies.
366	For example, the patches with extreme environmental conditions in the large-diameter

367	topologies were completely dominated by a few species with extreme environmental
368	values (Fig. 2). Fewer connections between patches meant that species could disperse
369	only to neighboring patches, particularly at high dispersal rates. This process led to
370	the emergent niche structure (Rael et al. 2018) observed in the large-diameter
371	topologies (Fig. 4). Patches with medium environmental conditions had similarities
372	greater than zero between the fully connected topology and the line and ring
373	topologies (Fig. 3), because generalist species with medium environmental values also
374	achieved greater biomass in patches with medium environmental conditions in the
375	line and ring topologies (Fig. 2). As we predicted, both α - and γ -diversity declined at
376	very high dispersal rates in all topologies, but greater numbers of species could be
377	maintained in the line and ring than in other topologies (Fig. 5), delaying the
378	reduction in productivity (Fig. 6). In the fully connected topology, the best regional
379	competitors dominated all patches at relative to very high dispersal rates, which kept
380	mean productivity constant and caused slight declines in the cv of productivity (Fig.
381	6).
382	Metacommunities are the product of complex interconnections between
383	species dispersal and network topologies, governed by environmental factors. Without
384	these interconnections, metacommunities would exist as random patches, rather than

385	being the products of species sorting and mass effects (Leibold et al. 2004; Suzuki &
386	Economo 2021). Species sorting and mass effects work together, and the relative
387	importance of these mechanisms for diversity is contingent upon dispersal rates and
388	environmental filtering (Suzuki & Economo 2021). Environmental filtering and
389	dispersal play opposite roles in community assembly: environmental filtering
390	strengthens interspecific competition, allowing the best competitors to exclude less
391	competitive species and dominante in each patch (Ben-Hur & Kadmon 2020);
392	dispersal allows species to escape from competitive exclusion, appearing in patches
393	where they could not survive without dispersal (Amarasekare & Nisbet 2001; Leibold
394	et al. 2017). Regardless of topology, mass effects are proportional to species dispersal,
395	whereas species sorting is the opposite in our model. Suzuki and Economo (2021)
396	proposed that topologies with few loops promote species sorting, and we have
397	confirmed this at high dispersal rates (Fig.2, Fig 4 and Fig. A.3). On the contrary,
398	under medium dispersal rates (e.g., $a=0.01$ in Fig. 2 and 4), we found species sorting
399	to be stronger in the small-diameter topologies such as the fully connected and star
400	topologies than in the large-diameter topologies (see Fig.2, Fig 4 and Fig. A.3). Under
401	high dispersal, the emergent niche structure of species biomass distribution patterns
402	(Rael et al. 2018) appeared in topologies with large diameters, a similar feature to that

403	mentioned in Suzuki and Economo (2021). In previous studies, species traits dictated
404	whether niche structures emerged, further strengthening the heterogeneity of species
405	interactions (Rael et al. 2018). In our model, species trait differences were consistent
406	between topologies, but the spatial structure of the topologies altered the species
407	interactions.
408	Neither dispersal limitation nor dispersal sufficiency played a role in our
409	model. Only dispersal surplus was occurring, with all species appearing in all patches
410	from the start. Species sorting was at its most powerful when dispersal rate was zero
411	(Leibold & Chase 2018), and environmental conditions were filtering out the best
412	competitors from each patch. Our results appear to conflict with previous studies, in
413	which dispersal sufficiency always caused species sorting, and dispersal surplus
414	generated mass effects (Leibold et al. 2017; Leibold & Chase 2018). However, in
415	these studies, species were distributed randomly between patches, meaning that the
416	best competitors may not have existed in their preferred patches from the start. In
417	models like ours, all species have equal opportunities to appear in all patches from the
418	beginning.
419	Conclusion Our spatially implicit model successfully predicted community
420	composition, γ -diversity, and productivity at low dispersal rates for all topologies,

421	although α -diversity was higher in the spatially implicit than in any of the spatially
422	explicit topologies. At high dispersal rates, and given that the success of each
423	topology depends on the exact structure of metacommunities, none of these
424	characteristics were successfully predicted. Our aim was to test the resource-
425	consumption model under various assumptions, in the hope of suggesting a general
426	level of accuracy for this one spatially implicit model, and further tests involving
427	various other models and parameters are needed. In the meantime, we tentatively
428	conclude that spatially implicit models may be problematic in the study of spatially
429	explicit metacommunities, especially at high dispersal rates.
120	
430	5. Acknowledgements
430 431	5. Acknowledgements This study was supported by the National Natural Science Foundation of China
430431432	5. Acknowledgements This study was supported by the National Natural Science Foundation of China (No.31500336) and the Supercomputing Center of Lanzhou University. We thank
430431432433	5. Acknowledgements This study was supported by the National Natural Science Foundation of China (No.31500336) and the Supercomputing Center of Lanzhou University. We thank Juan A. Blanco and two anonymous reviewers for comments that improved the
 430 431 432 433 434 	5. Acknowledgements This study was supported by the National Natural Science Foundation of China (No.31500336) and the Supercomputing Center of Lanzhou University. We thank Juan A. Blanco and two anonymous reviewers for comments that improved the manuscript.
 430 431 432 433 434 435 	 5. Acknowledgements This study was supported by the National Natural Science Foundation of China (No.31500336) and the Supercomputing Center of Lanzhou University. We thank Juan A. Blanco and two anonymous reviewers for comments that improved the manuscript. 6. References
 430 431 432 433 434 435 436 	 S. Acknowledgements This study was supported by the National Natural Science Foundation of China (No.31500336) and the Supercomputing Center of Lanzhou University. We thank Juan A. Blanco and two anonymous reviewers for comments that improved the manuscript. 6. References Amarasekare, P. & Nisbet, R.M. (2001). Spatial heterogeneity, source-sink dynamics,
 430 431 432 433 433 434 435 436 437 	 S. Acknowledgements This study was supported by the National Natural Science Foundation of China (No.31500336) and the Supercomputing Center of Lanzhou University. We thank Juan A. Blanco and two anonymous reviewers for comments that improved the manuscript. 6. References Amarasekare, P. & Nisbet, R.M. (2001). Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. <i>Am Nat</i>, 158, 572-584.

439	organisms: a unified framework. <i>Ecology Letters</i> , 23, 193-207.
440	Economo, E.P. (2011). Biodiversity Conservation in Metacommunity Networks:
441	Linking Pattern and Persistence. The American Naturalist, 177, E167-E180.
442	Economo, E.P. & Keitt, T.H. (2008). Species diversity in neutral metacommunities: a
443	network approach. Ecology Letters, 11, 52-62.
444	Gonzalez, A. (2009). Metacommunities: Spatial Community Ecology. eLS.
445	Gonzalez, A., Mouquet, N. & Loreau, M. (2009). Biodiversity as spatial insurance the
446	effects of habitat fragmentation and dispersal on ecosystem functioning. In:
447	Biodiversity, Ecosystem Functioning, and Human Wellbeing (eds. Naeem, S,
448	Bunker, D, Hector, A, Loreau, M & Perrings, C). Oxford University Press, pp.
449	134-146.
450	Hubert, N., Calcagno, V., Etienne, R.S. & Mouquet, N. (2015). Metacommunity
451	speciation models and their implications for diversification theory. Ecology
452	Letters, 18, 864-881.
453	Leibold, M., Chase, J.M. & Ernest, S.K.M. (2017). Community assembly and the
454	functioning of ecosystems: how metacommunity processes alter ecosystems
455	attributes. <i>Ecology</i> , 98, 909-919.
456	Leibold, M.A. & Chase, J.M. (2018). Metacommunity Ecology, Volume 59. Princeton

457 University Press.

458	Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes,
459	M.F. et al. (2004). The metacommunity concept: a framework for multi-scale
460	community ecology. Ecology Letters, 7, 601-613.
461	Loreau, M., Mouquet, N. & Gonzalez, A. (2003). Biodiversity as spatial insurance in
462	heterogeneous landscapes. Proceedings of the National Academy of Sciences,
463	100, 12765-12770.
464	Massol, F., Altermatt, F., Gounand, I., Gravel, D., Leibold, M.A. & Mouquet, N.
465	(2017). How life-history traits affect ecosystem properties: effects of dispersal
466	in meta-ecosystems. Oikos, 126, 532-546.
467	Meador, B. (2008). A Survey of Computer Network Topology and Analysis Examples.
468	Available at: https://www.cse.wustl.edu/~jain/cse567-
469	08/ftp/topology/index.html.
470	Minor, E.S. & Urban, D.L. (2008). A Graph-Theory Framework for Evaluating
471	Landscape Connectivity and Conservation Planning. Conservation Biology, 22,
472	297-307.
473	Mouquet, N. & Loreau, M. (2002). Coexistence in Metacommunities: The Regional
474	Similarity Hypothesis The American Naturalist, 159, 420-426.

475	Mouquet, N. & Loreau, M. (2003). Community Patterns in Source - Sink
476	Metacommunities. The American Naturalist, 162, 544-557.
477	Mouquet, N., Moore, J.L. & Loreau, M. (2002). Plant species richness and
478	community productivity: why the mechanism that promotes coexistence
479	matters. <i>Ecology Letters</i> , 5, 56-65.
480	Newman, M.E.J. (2003). The Structure and Function of Complex Networks. SIAM
481	<i>Review</i> , 45, 167-256.
482	R, C.T. (2021). R: A language and environment for statistical computing. R
483	Foundation for Statistical Computing, Vienna, Austria. Available at: URL
484	https:// <u>www.R-project.org/</u> .
485	Rael, R.C., D'Andrea, R., Barabás, G. & Ostling, A. (2018). Emergent niche
486	structuring leads to increased differences from neutrality in species abundance
487	distributions. Ecology, 99, 1633-1643.
488	Shanafelt, D.W., Dieckmann, U., Jonas, M., Franklin, O., Loreau, M. & Perrings, C.
489	(2015). Biodiversity, productivity, and the spatial insurance hypothesis
490	revisited. J Theor Biol, 380, 426-435.
491	Suzuki, Y. & Economo, E.P. (2021). From species sorting to mass effects: spatial
492	network structure mediates the shift between metacommunity archetypes.

Ecography, 44, 715-726.

494	Thompson, P.L. & Fronhofer, E.A. (2019). The conflict between adaptation and
495	dispersal for maintaining biodiversity in changing environments. Proceedings
496	of the National Academy of Sciences, 116, 21061.
497	Thompson, P.L. & Gonzalez, A. (2017). Dispersal governs the reorganization of
498	ecological networks under environmental change. Nature Ecology & Evolution
499	1, 0162.
500	Thompson, P.L., Guzman, L.M., De Meester, L., Horváth, Z., Ptacnik, R.,
501	Vanschoenwinkel, B. et al. (2020). A process-based metacommunity
502	framework linking local and regional scale community ecology. Ecology
503	Letters, 23, 1314-1329.
504	Thompson, P.L., Kéfi, S., Zelnik, Y.R., Dee, L.E., Wang, S., de Mazancourt, C. et al.
505	(2021). Scaling up biodiversity-ecosystem functioning relationships: the role
506	of environmental heterogeneity in space and time. Proceedings. Biological
507	sciences, 288, 20202779.
508	Thompson, P.L., Rayfield, B. & Gonzalez, A. (2014). Robustness of the spatial
509	insurance effects of biodiversity to habitat loss. Evolutionary Ecology
510	Research, 16, 445-460.

511	Thompson, P.L., Rayfield, B. & Gonzalez, A. (2017). Loss of habitat and connectivity
512	erodes species diversity, ecosystem functioning, and stability in
513	metacommunity networks. <i>Ecography</i> , 40, 98-108.
514	Van Teeffelen, A.J.A., Vos, C.C. & Opdam, P. (2012). Species in a dynamic world:
515	Consequences of habitat network dynamics on conservation planning.
516	Biological Conservation, 153, 239-253.
517	Vilmi, A., Gibert, C., Escarguel, G., Happonen, K., Heino, J., Jamoneau, A. et al.
518	(2021). Dispersal-niche continuum index: a new quantitative metric for
519	assessing the relative importance of dispersal versus niche processes in
520	community assembly. <i>Ecography</i> , 44, 370-379.
521	West, D.B. (2001). Introduction to Graph Theory. 2nd Edition, Prentice-Hall, Inc.,
522	Upper Saddle River, 82-83.
523	Zhang, H., Bearup, D., Nijs, I., Wang, S., Barabás, G., Tao, Y. et al. (2021). Dispersal
524	network heterogeneity promotes species coexistence in hierarchical
525	competitive communities. Ecology Letters, 24, 50-59.
526	
527	

528 7. Figure captions

529	Figure 1 Six simple topologies were applied in our model; the number on each patch
530	determines its environmental conditions, and the patches with similar colors have
531	similar environmental conditions. Environmental conditions were consistent for all
532	patches across all topologies. All topologies were classified into small diameter (fully
533	connected and star topologies), medium diameter (lattice and tree topologies) and
534	large diameter (line and ring topologies). D is the diameter of each topology.
535	
536	Figure 2 The distribution of biomass of each species in each patch under various
537	topologies and dispersal rates. The x-axis represents the patch and the y-axis is the
538	species. White color denotes high biomass, whereas red color denotes low biomass.
539	
540	Figure 3 The similarity of community composition between two patches with the
541	same envionmental conditions under several dispersal rates; one patch is from the
542	fully-connected topology and the other is from the other topologies.
543	
544	Figure 4 The distribution of total biomass across species environmental values under
545	various topologies and dispersal rates.

547	Figure 5 Effects of dispersal on α -diversity (A), γ - diversity (B) and the coefficient of
548	variation of α -diversity across patches (C) in various topologies. To illustrate the
549	trends in cv of α -diversity for the line, ring, lattice and tree topologies, we replot a
550	nonlinear regression (P<0.001), inserted in panel C. The red, green and blue lines are
551	for topologies with small, medium and large diameters, respectively. The x-axis is
552	\log_{10} .
553	
554	Figure 6 Trends in mean productivity of each patch (A) and coefficient of variation of
555	productivity within patches (B) with dispersal for all topologies. The color scheme of
556	the lines is the same as in Figure 5. The x-axis is log ₁₀ .

558 Figure 1

