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Abstract 

Reaction times (RTs) have been of interest to empirical psychology for as long as the 
discipline has existed. However, most studies summarise RTs using measures of central tendency, 
ignoring high levels of intra-subject variability (ISV). ISV has recently become an important 
topic in neuroscience and differential psychology in its own right, showing strong associations 
with intelligence, cognitive ageing, and several psychiatric and neurological disorders. The 
present thesis describes a programme of research into the measurement of individual differences 
in ISV, using a mixture of psychometric and psychophysiological techniques. 

Study One explores measurement issues, comparing various metrics of ISV in 
terms of their reliability and statistical redundancy. Study Two compares the single-trial event­
related potentials of participants with high and low levels ofISV on a working memory oddball 
task. Study Three looks at the cross-task and cross-modal structure ofISV, using a latent variable 
approach. Study Four integrates approaches from the previous three chapters, deriving supra-task 
latent variables for ISV and several single-trial P3b parameters, and exploring the latent variable 
correlations between these constructs. 

These studies suggest that a latent variable framework may be a promising 
framework for studying ISV, not just in behavioural studies but in also psychophysiological 
research. Possible implications for future research are discussed, based on the empirical and 
theoretical portions of the thesis. 
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Chapter One 

An Introduction to Reaction Times 
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One of the principal aims of psychology has long been to gain insight into the black box 

of human cognition. In recent years psychologists and neuroscientists have made huge strides by 

using neurophysiological techniques to measure the brain correlates of mental operations. 

However these approaches, fascinating as they are, have not, and probably cannot hope to, 

replace measurements of unambiguously observable behaviour. These direct measurements of 

behaviour form the foundations of empirical psychology, and are evidence that other measures 

we take are functionally relevant and not mere epiphenomena of cognition. 

One of the oldest and most important of these measures of cognition is reaction 

time (RT). An RT is a measurement of the latency between a cue to respond, generally the onset 

of a stimulus, and a participant's response. Assuming that the participant attempts to respond 

promptly, an RT represents a measurement of the speed of a cognitive operation. Franciscus 

Cornelius Danders, one of the fathers of empirical psychology, is generally credited with 

introducing the use of RTs to the field in 1868 but the idea of RTs is older still. The concept is 

clearly present in the writing of the Islamic polymath Abu Rayhan Biruni at the turn of the 

second millennium AD: 

"Not only is eve,y sensation attended by a corresponding change localized in the sense­
organ, which demands a certain time, but also, between the stimulation of the organ and 
consciousness of the perception an interval of time must elapse, corresponding to the 
transmission of stimulus for some distance along the nerves." (Biruni, as cited in Iqbal, 
1930.) 

While the latency Biruni described was between sensory stimulation and conscious 

perception, and thus was not an RT in the strictest sense of the word, Biruni captured most 

aspects of the modern conceptualisation of an RT. While Biruni explicitly attributed this latency 

to nerve conduction, the transfonnation he described between the stimulation of a sensory organ 

to perceptual consciousness suggested cognition. It is this aspect of an RT that most interests 
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empirical psychology. Measuring the speed at which a participant can carry out a cognitive 

operation is generally taken as a measurement of the complexity of this operation, and of the 

processing speed of the participant. The early work on RTs found that when participants had to 

respond differentially to two types of stimuli, implicitly requiring stimuli to be distinguished 

from one another and classified, they took longer than when they merely had to respond to the 

presence of a stimulus (Danders, 1868). This approach laid the bedrock of empirical psychology 

for years to come; by manipulating the demands of a task and recording the changes in RT, 

inferences could be drawn regarding the complexity of the cognitive operations underpinning a 

task (see Posner, 1976). While simple, this paradigm proved remarkably effective and can 

probably be credited with no small amount of the progress made on research into cognition over 

the last century. 

A standard experiment does not collect just one measurement of RT, rather the task is 

repeated a number of times. The logic here, according to classical test theory (Novick, 1966), is 

that individual RTs are unreliable and noisy, but that by aggregating a number of RTs a reliable 

measurement can be made (Spearman, 1910; Brown, 1910). The most obvious way to aggregate 

several RTs is a measure of central tendency such as taking the mean or median RT. Such a 

measure gives an indication of how long the average RT was and thus gives a robust measure of 

the speed of a cognitive process. An assumption implicit in this approach is that the variation in 

the individual R Ts is residual noise and measurement error, which must be cleaned away from 

the data before it can be safely interpreted. This assumption, however, hides a hugely important 

question. 

Consider a participant in the simplest kind of RT task: the participant sits watching a 

computer monitor with their finger on a response key. A light appears on the screen periodically 

and the participant's task is to wait until they sees the light and then to press the response key as 

fast as possible. The situation is identical in every trial of the task, the stimulus is identical every 
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time, and the response demands are fixed. Nevertheless, RTs vary from trial to trial and these 

variations are substantial. The standard deviation of an individual's raw RTs on such a task might 

easily be 60ms. This sounds like a trivial period of time but with a median RT for such a task in 

the region of 250ms1
, this level of variability is notable. Such a level of variability is certainly 

beyond what might be expected as a result of instrumental error. Additionally mean condition 

effects have been shown to explain only around 10% of intraindividual variance in RTs in a 

number of simple decision tasks (Gilden, 1997). The scale of intra-subject variability in RTs 

(ISV), relative to average RT and experimental effects on RT, suggests that dismissing such 

variability as meaningless noise is unconvincing. 

To summarise, the use of RTs has provided a window onto cognition for over a century. 

The use of measures of central tendency alone, however, hides a great deal of variability, which 

will be the subject of this thesis. Chapter 2 will discuss measurement issues regarding ISV, 

Chapter 3 will cover literature on the relevance ofISV to psychology and neuroscience, Chapter 

4 will review evidence on the neural bases ofISV, and Chapter 5 will introduce 

electroencephalography, a key approach used in this thesis. Chapters 6 to 9 will then describe the 

empirical work undertaken over the project, before Chapter 10 discusses the thesis as a whole. 

1 These figures are based on data reported in Chapter Eight of this thes is. 
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Chapter Two 

Taxonomic and Measurement Issues in the Study of Intra-Subject Variability of Reaction 

Times 
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Before reviewing the empirical literature, it is important first to identify the different 

types of ISV, and how they can be quantified. This chapter will first cover some taxonomic 

assumptions of the field, before moving on to describe the issues surrounding the measurement of 

ISV. 

Taxonomy 

It is possible to conceive of more than one form ofISV, and taxonomic distinctions 

between these different kinds of variability are crucial to research. One strand ofISV research, 

stemming mainly from the developmental field, categorises variability as diversity, dispersion, 

and inconsistency (Hultsch, MacDonald, & Dixon, 2002). Diversity is variability on the group 

level; dispersion is variability in an individual's level of perfonnance on different tasks; while 

inconsistency is variability on the same task on multiple occasions or trials. Inconsistency is thus 

the type of variability with which this thesis will be concerned. It is, however, interesting to note 

that certain groups that show increased ISV, such as older adults (Hultsch et al., 2002) and 

ADHD patients (Klein, Wendling, Huettner, Ruder, & Peper, 2006), also show increased 

diversity and dispersion. 

Fiske and Rice (1955) suggested the earliest taxonomic system ofISV. They classified 

Type One variability, or spontaneous variability, as where two observations of behaviour, taken 

in objectively identical circumstances, varied. The authors explicitly state that the order of the 

two trials must be immaterial. Type Two variability, on the other hand, is variability where 

observations show some sort of temporal pattern. Fiske and Rice claim that such variability is 

usually reactive. A final form of variability, Type Three, contains all instances of variability 

where the situation varies in a dimension other than time, and is thus comparable to Hultsch et 

al's (2002) concept of dispersion. 
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It is probably fair to say that modem taxonomic assumptions of the field have quietly 

dropped the idea that ISV with some fo1m of temporal structure is non-spontaneous. As will be 

discussed in Chapter Four, neural activity shows apparently endogenous oscillations. It is 

however still worth making the distinction between periodic and aperiodic conceptions of ISV 

because they differ markedly in how they are measured. Variability which is assumed to be 

aperiodic is generally measured using distributional approaches, while periodic variability is 

measured using time series methods. 

Distributional Approaches to Reaction Times 

As mentioned in the previous chapter, many RTs are recorded in the course of 

experimental tasks, and so these RTs can be understood as a statistical distribution. The most 

often used distribution is the Gaussian or normal distribution. Gaussian distributions can be 

summarised perfectly using only two independent parameters: mu, representing the central 

tendency of the distribution (its position on the x-axis), and sigma, representing the degree of 

dispersal around this point. A distribution with a low sigma value shows little variance around 

mu while one with a large sigma value shows great variation around mu. In empirically observed 

distributions, however, mu and sigma are not known and instead must be estimated. The most 

conunon way of doing so is to take either the mean or median value as a proxy for mu, and to use 

the standard deviation of the values as a proxy for sigma. Accordingly, the most common 

approach in ISV research has been to employ standard deviations ofreaction times (SDRT) as a 

measure of variance. 

While the use of standard deviations has proven largely successful , it is not without 

problems. One key issue is that the median and standard deviation of RT distributions tend to be 

substantially positively con-elated: participants who produce high median RT (MnRT) also tend 
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to produce high SDRT (Wagenmakers & Brown, 2007). This raises the possibility that 

measurements ofISV are implicitly also measurements of average RT. Some researchers attempt 

to remove the variance shared with the mean using statistical corrections. This can be 

accomplished in a number of ways. One possibility is to divide the standard deviation by the 

mean to produce a coefficient of variation: the amount of variance that exists for each unit of the 

mean (CVRT; e.g. Flehmig, Steinborn, Langner, Scholz, & Westoff, 2007). Alternative 

approaches involve regressing or partialling out the variance associated with the mean, or 

variables which may affect the mean such as age, (e.g. Bunce et al., 2007). Other researchers 

argue that attributing shared variance to the mean is merely another example of the implicit 

primacy given to measures of the mean that is so common in empirical psychology. In contrast, 

Jensen ( 1992) makes a case for the primacy of the variance. RT distributions, he notes, are 

effectively capped at the fast tail by basic physiological limits - nerve conduction velocity and 

movement time - but uncapped at the slow tail. Thus a mean RT is often detern1ined to a great 

extent by the slower RTs in a distribution (cf Larson & Alderton, 1990), namely the variance. 

The perspective of this thesis on the matter is that attributing all variance shared between 

median RT and SDRT to the median is largely theoretically unjustified, and is primarily done for 

historical reasons: the perceived primacy of the median over SDRT. However, while it is possible 

to argue that ISV is a more fundamental measure than median RT (eg. Jensen, 1992), such 

disputes are largely unproductive. Recognising the importance of the higher moments of the RT 

distribution need not de-emphasise the importance of the first moment. 

As stated above, the mu and sigma of a Gaussian distribution are fonnally independent. 

The mu should tell one nothing about the sigma. The mean and standard deviation of RT 

distributions, however, are highly correlated. This raises an important point: RT distributions are 

in fact not Gaussian. RT distributions instead exhibit positive skew: a tendency for the 'centre of 

mass' of the distribution to be above the modal value. 
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This poses an issue for using standard deviations for the measurement of ISV. Standard 

deviations treat deviation from the mean in both directions identically, a property which may be 

inappropriate for skewed RT distributions. There are three main approaches to this problem: 

alternative distributions, statistical transformations, and what could be described as the 'agnostic ' 

approach. 

Alternative distribution approaches address the non-Gaussianicity of RT distributions by 

fitting distributions other than the Gaussian to RT data. A number of distributions have been used 

but the most popular is the ex-Gaussian. An ex-Gaussian is the convolution of a Gaussian 

distribution, summa1ised by the parameters of mu and sigma, and an exponential distribution, 

summarised by the parameter tau. The distribution obtained by convolving these components has 

the characteristic rightward skew shown by RTs, and appears to be a good fit for RT data. What 

is less clear is whether the three parameters of the ex-Gaussian represent physiologically distinct 

prope1ties of RTs, or whether the ex-Gaussian is merely superficially similar to an RT 

distribution. This remains an open question. 

Statistical transformations represent an alternative approach to handling RT distributions. 

These involve mathematical operations on groups of raw RTs that render the distribution 

Gaussian, while preserving other infom1ation. Of course transforming data merely so that it fits a 

nonnal distribution is questionable and any such transfonnation is only as worthwhile as its 

rationale is plausible. One successful approach to RTs, coming from the eye movement literature, 

is the reciprocal transformation. Carpenter ( 1981) argues that viewing RTs as latencies is 

somewhat erroneous and that they are better understood as representing the rate at which a 

process occurs. Rates are conventionally measured using reciprocals and, when reciprocally 

transformed, RT distributions are indeed approximately Gaussian. 

It is worth noting here that the ex-Gaussian and reciprocal approaches both provide good 

fits to RT data, but imply different underlying processes. Carpenter's reciprocal approach 
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suggests a single, essentially Gaussian, process underlying RT while the ex-Gaussian approach 

implies that two separate processes, one Gaussian and one exponentially distributed, underpin 

RTs. Thus while obtaining a good fit to the data is clearly a necessary criterion for any 

distributional model of ISV, showing superficial similarities between an empirical and a 

theoretical distribution does not prove that the two distributions are underpinned by similar 

dynamics. 

The 'agnostic' approach to non-Gaussianicity rests on the argument that, while means and 

standard deviations have many interesting and statistically desirable qualities when the 

underlying distribution is Gaussian, this does not necessarily invalidate their use in summarising 

non-Gaussian distributions. The use of a standard deviation, in short, does not necessarily rely 

upon Gaussianicity. Indeed a standard deviation will quantify the variance in a sample of data 

regardless of the distribution, which is not necessarily the case for other ISV parameters. While 

arguably less analytically appropriate, this stance has a number of advantages. The type of 

distribution from which RTs are drawn remains unknown. Indeed it is reasonable to speculate 

that different types of task may produce different distributions of RTs. Furthermore, as noted 

above, mutually exclusive models of RT distributions can both provide adequate fits to the same 

data. This being the case, when simply seeking to quantify variance, it may be better to use a 

robust, well understood parameter such as the standard deviation, rather than using a more 

theory-laden measure such as tau. This agnostic approach has been taken by most ISV 

researchers - albeit generally more implicitly than explicitly. 

Time Series Approaches to Reaction Times 

Distributional approaches to RTs assume that each RT is drawn at random from a 

distribution, an idea that assumes that the order of RTs is essentially immaterial. RTs can also be 
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understood as a time series, with systematic trends in RTs over time. The distributional 

approaches described above assume no temporal structure, and so different analysis methods 

must be used in order to identify such trends. 

The simplest kind of time series in RT data is a linear trend. As a participant becomes 

more used to a task, they may become faster at responding. Alternatively, they may become tired 

and bored, leading to slower RTs. Such time-on-task effects, for example due to practice or 

fatigue, are clearly reactive, in the language of Fiske and Rice (1956), and as such do not reflect 

the kind of spontaneous variability that ISV is thought to represent. Indeed such linear trends are 

often removed from data before the data are analysed further, using regression-based approaches 

( e.g. Hultsch, MacDonald, & Dixon, 2002). 

Other methods can identify periodicities in time series data that are more complex than 

linear trends. One such approach is the autocorrelation. Given n observations of two variables 

(xl.. .. xn andyl.. .. yn), the extent to which the two variables co-vary can be obtained by 

computing a correlation coefficient, a standardised measure of covariance. This will give an 

indication of whether the two variables tend to vary together across observations, and can help to 

indicate whether a relationship exists between x and y. It is also possible to explore the extent to 

which the variable xis related to previous observations of itself, by correlating (xl, x2), (x2, 

x3), .. . , (xn-1, xn). Such a correlation is termed the lag one autocorrelation. Autocorrelations can 

be computed for any lag greater than one (a zero lag autocorrelation will of course always giver 

= 1), although Chatfield (1980) suggests that autocorrelations where lag> n/4 are not generally 

useful. 

Autocorrelations are a useful way of assessing the periodic structure of a time series. A 

genuinely random time series (often called white noise) will show an autocorrelation of r = ~Oat 

all lags, while the presence of temporal structure is suggested by non-zero autocorrelation 

coefficients. RT distributions typically show at least short term autocorrelation, indicative of 
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autoregressive structure (Kelly, Heathcote, Heath, & Longstaff, 2001). There are however a 

number of issues to consider when using autocorrelations, raised by Chatfield (1980). Firstly, 

autoconelations, like any other use of correlation, can give spuriously high values by chance. The 

use of a series of autoc01Telations at various lags across a number of pa11icipants increases the 

risk of finding high correlation coefficients by chance. Secondly, correlations are vulnerable to 

extreme outliers and autoco1Telations are, if anything, particularly vulnerable. Outliers will 

generally depress the strength of association between two time series, but the existence of more 

than one extreme value can lead to a spurious autoconelational peak or trough at the lag that 

'pairs' the two extreme values. Thirdly, the existence of a non-stationary trend, such as the linear 

trends described above, can inflate the strength of autoconelations as an observation that deviates 

from the mean in one direction will tend to be followed by other values that deviate in the same 

direction. This renders the apparent autocorrelational structure misleading. 

An alternative approach to identify periodicities in a time series is by use of Fourier 

analysis. The Fourier transform, based upon Jean-Baptiste Joseph Fourier's pioneering 1822 

work into the conduction of heat, decomposes a time series into sets of sine and cosine waves of 

various frequencies. Convolution of a time series with a sine wave of a certain frequency will 

only yield non-zero values if the time series contains periodicities at the frequency in question. 

Thus convolving a time series with sine waves of many different frequencies will identify which 

frequencies are present in a time series, and how much of the variance in the time series each 

accounts for. Modem Fourier algorithms, such as the Fast Fourier Transform (e.g. Cooley and 

Tukey, 1965), provide more efficient ways of decomposing the signal, sparing researchers from 

manually convolving a signal with many different sine waves. 

Fourier analytic approaches to RT data have begun to appear in the literature in recent 

years ( e.g. Johnson, et al., 2007), and may be a helpful way of identifying the frequencies that 
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contribute most to overall ISV. It is worth stating that autocorrelation and power spectra contain 

the same information, and simply differ in the way they express it (Chatfield, 1980). 

Two major assumptions of Fourier analysis are that the signal should be infinite in 

duration, and that it should be stationary. The former is clearly an impossible criterion for any 

real signal to meet, as thus is routinely violated, but the duration of the signal does place a limit 

on the frequency resolution. The assumption of stationarity is again possible to violate, but can 

lead to misleading results, as the spectra produced by a Fourier transform does not give any 

indication of how a signal is evolving over time. These two related assumptions are the two sides 

of the trade-off between resolution in the time and frequency domains - the result of a kind of 

uncertainty principle in Fourier mathematics. These assumptions do not invalidate the use of 

Fourier approaches with RTs, but the possibility of the RT series being too short or non­

stationary should be assessed before using these approaches. 

Reliability of Reaction Time Parameters 

Another important issue is that of psychometric reliability - the proportion of variance in 

an observed variable that represents the true score of the underlying latent variable rather than 

error variance (Observed score = True score+ Error; see Spearman, 1910; Brown, 1910; & 

Novick, 1966). Reliability is often tested by taking two measurements of the same trait and 

seeing to what extent the two measures differ. Assuming the true score remains the same, any 

difference will be due to error variance, so the extent to which the measurements vary is an index 

of the relative proportions of true score variance and error. 

Reliability is especially important to ISV as the latter was long regarded as mere noise. 

Stable individual differences in ISV are important in establishing ISV as a bona fide cognitive 

trait construct. Reliability is also important beyond establishing construct validity for ISV, it is 
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also a key issue in measurement. The reliability of a variable determines the strength of 

association which can be drawn between it and other variables. Thus besides satisfying the 

criterion of construct validity, a metric ofISV must also exhibit acceptable reliability. 

A factor influencing reliability is the number of homogeneous trials a metric is derived 

from. This is also the case with means and medians and is predominantly a matter of data 

aggregation: basing a summary statistic on a greater number of observations of the same process 

or phenomenon leads to more robust measurement (Spearman, 1910; Brown, 1910). However 

measures of variability, by definition, require multiple measurements; if it were possible to record 

a perfectly accurate RT with one trial ( observ~d RT= true RT + e1Tor), this would suffice to 

measure speed of reaction but clearly would not suffice to measure ISV. Estimating higher 

moments of distributions requires more observations than relatively simple measures of central 

tendency, and the number of trials used to measure MnRT may not be appropriate for measuring 

SDRT. 

Another sampling issue, primarily for time series approaches, is the Nyquist-Shannon 

sampling criterion (Nyquist, 1928; Shannon, 1949). Oscillations can of course occur on an 

essentially infinite number of scales and to identify an oscillation it is necessary to sample with 

sufficient frequency, and to record for a sufficient duration. Specifically, the sampling rate must 

be greater than twice the bandwidth of the highest frequency in the signal. These requirements 

are formalised by Shannon's proof (Shannon, 1949). To apply the same logic to ISV, certain 

oscillations in attention will be too high in frequency to be captured by the rate of stimulus 

presentation that is feasible in an RT experiment. Likewise short experiments will fail to capture 

slow oscillations. Therefore, even where the level of data aggregation provides reasonable 

reliability, a task may sample too sparsely or be too short to capture certain important dynamics. 

While this issue is predominantly an issue for Fourier approaches, it is also worth considering as 

a theoretical issue for distributional approaches. The ISV dynamics captured by a twenty trial 
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task may be qualitatively different to those captured by a five hundred trial task. Even if a task 

has adequate reliability in a psychometric sense, it may not be measuring the phenomena that 

underlie low frequency RT oscillations. 

Conclusion 

The reliability and equivalence of different metrics of ISV will be taken up empirically in 

Chapter Six. However, to summarise: a raw RT distribution is non-Gaussian, and a number of 

approaches exist for dealing with this. These approaches, except the agnostic approach, carry 

mutually exclusive assumptions about the process underlying RTs, but it is difficult to make a 

conclusive a priori case for which is most appropriate, as such a case essentially comes down to 

construct validity. RTs can also be understood as a time series, autocoffelational and Fourier 

analytic approaches being the most common approaches used to accomplish this. An important 

characteristic for ISV is psychometric reliability, without which, from a trait-theoretic perspective, 

such metrics are theoretically inelevant and practically useless. Psychometric reliability 

demands a certain level of data aggregation, but further demands are placed on the sampling rate 

and duration of RT tasks by Nyquist's theorem. 
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Chapter Three 

The Relevance of Intra-Subject Variability in Reaction Times 
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Chapter One addressed reasons why ISV is an interesting area for research, namely the 

high variance of RTs relative to both median RTs and experimental effect sizes, as well as the 

more fundamental question of why RTs vary at all. Chapter Two focused on measmement, the 

summary statistics that best characterise the RT distribution. There is, however, a difference 

between identifying a primafacie reason why ISV might be philosophically interesting and 

showing that ISV can be mathematically well characterised on the one hand, and on the other 

hand demonstrating that ISV is relevant to empirical psychology at large. This chapter will 

review three areas of research where ISV has become a key topic: intelligence, psychiatry, and 

gerontology. A notable omission here is the brain lesion literature, which will be covered in the 

following chapter on the neural bases of ISV. 

ISV and Intelligence 

Intelligence was probably the earliest psychometric trait to be linked to ISV. Baumeister 

and Kelas (1968) compared a group of healthy student volunteers to a group of men from a 

'residential institution for the retarded' on a warned RT task and found significantly increased 

MnRT and SDRT in the intellectually disabled group. The authors drew a distinction between a 

participant's optimal level of performance and their ability to maintain perfonnance at that level, 

and suggested that ISV may be at least as important as median RT in understanding impaired 

perfonnance. 

This link between inconsistent performance and intellectual ability was substantiated and 

extended by later work. Jensen (1982, 1992) reported that not only were correlation coefficients 

between ISV and IQ substantial, they were in many cases larger than those between MnRT and 

IQ. This was in spite of the generally poorer psychometric reliability ofISV as compared to 

MnRT. 
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Larson and Alderton (1990) took a different approach by dividing RTs into 16 quantile bands, 

averaging the RTs in these bands, and correlating all 16 scores with the participants' IQ scores. 

The correlation coefficient between the fastest band, measuring optimal perfonnance, and IQ was 

modest (rho=.20) but coefficients increased steadily with successively slow bands, reaching their 

maximum for the final band (rho=.37). Thus when participants were grouped by IQ, RTs for the 

fastest bands were similar but diverged at slower bands. These results imply that the correlation 

between IQ and ISV reported by other authors was primarily driven by the slower RTs, 

supporting speculation by Baumeister and Kellas (1968) that participants with low IQ may not be 

impaired in their optimal level of perfonnance so much as their inability to maintain perfom1ance 

at this level. Larson and Alderton's findings were dubbed the worst performance rule. This 

pattern of results has been replicated by several groups, using various tasks, with IQ showing a 

generally stronger relationship with a participant's slowest RTs than with their fastest (Kranzler, 

1992; Diascro & Brody, 1993; Coyle, 2001; but see Salthouse, 1998 for a counterexample. See 

Coyle, 2003 for a review). 

Schmiedek, Oberauer, Wilhelm, Sii~, and Wittmann (2007) approached the relationship 

between general mental ability and separable features of the RT distribution in another way, but 

arrived at similar conclusions. They fitted an ex-Gaussian distribution to RT data, and found that 

it was tau, and thus the slow tail, that best correlated with differences in general mental abilities. 

The pictme emerging from the IQ literature suggests that individuals with low IQ and 

individuals with high IQ may be fairly similar in their optimal level of speed of processing, but 

that those with low IQ have difficulty maintaining this level of performance. Thus measurements 

that are sensitive to failures in perfomrnnce maintenance are also sensitive to IQ differences. The 

study of ISV may have imp011ant implications for how we conceptualise and measure IQ. 
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ISV and Biological Psychiatry 

The second area where ISV has become a key topic is biological psychiatry. At present 

psychiatric diagnoses are made on the basis of clinician-appraised symptoms. These symptoms 

are, according to a widely held opinion in biological psychiatry, necessarily somewhat removed 

from the biological underpinnings of the disorders. The hope, therefore, is that by focussing on 

neurocognitive and physiological differences between probands and healthy controls, it will be 

possible to identify characteristic features of psychiatric disorders on a scale closer to their neural 

bases. These features could then serve both to improve understanding of the pathophysiology of 

these disorders and as biological markers of a disorder 's presence and its severity. One such 

putative marker of several psychiatric conditions is increased ISV. A broadening of the RT 

distribution has been found in schizophrenia (Birkett et al. , 2007), chronic fatigue syndrome 

(Fuentes, Hunter, Strauss, & Hultsch, 2001), bipolar disorder (Brotman, Rooney, Skup, Pine, & 

Leibenluft, 2009), and attention deficit hyperactivity disorder (ADHD; Klein, Wendling, 

Huettner, Ruder, & Peper, 2006), relative to healthy controls. The majority of research in this 

area, however, has been on schizophrenia and ADHD, and so this is where this section will focus. 

ISV has long been known to be elevated in patients with schizophrenia (Shakow, 1977), a 

finding which appears to be specifically linked to the syndrome of schizophrenia, rather than 

psychotic symptomology (Schwartz et al., 1989). Interestingly there is evidence that while 

schizophrenic patients and their first-degree relatives both show increased mean RT, only patients 

show an increase in ISV (Birkett et al. , 2007). From the analysis by Birkett et al. of the 

distribution of RTs, it appears that the difference between patients and non-patients is strongest in 

the slowest RTs, in a manner reminiscent of the worst performance rule described above. It is 

worth noting, however, that this effect does not appear to be driven by intelligence, as Rentrop et 

al. (2010) found differences in ex-Gaussian tau between high functioning schizophrenic patients 
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and controls in the absence of differences in intelligence. This effect is also not due to mean RT, 

as Birkett et al. (2007) found differences between probands and controls in CVRT. 

In addition to differentiating between those with schizophrenia and those without, ISV 

appears to respond to psychophannacological treatment. Cleghorn, Kaplan, Szechtman, 

Szechtman, and Brown (1990) found reduced ISV (the metric used was unspecified) in patients 

treated with neuroleptic medication, relative to untreated patients. Both groups of patients, 

however, still showed higher ISV than controls. 

Likewise, ADHD has been linked to elevated ISV by a number of studies. Klein et al. 

(2006) found that ISV, measured by SDRT and coefficient of variation, better discriminated 

between patients and controls than a number of other measures, including commission errors, 

omission errors, and mean RTs. Again, similarly to schizophrenia, this effect appears to be driven 

largely by the slower RTs in the distribution, with a number of studies (Leth-Steensen, King 

Elbaz, & Douglas, 2000; Hervey et al., 2006; Buzy, Medoff, & Schweitzer, 2009) showing 

increases in ex-Gaussian tau. Williams, Strauss, Hultsch, Hunter, and Tannock (2007) argue that 

increased variability is present in both the fast and slow end of ADHD patients' RT distributions, 

but the ir findings were based on a very small number of trials and it is not clear if these findings 

would apply to larger datasets. 

There is also strong evidence for at least a partial normalisation ofISV following 

treatment with psychostimulants. Spencer et al. (2009) showed a reduction in skewness of RT 

distributions following treatment with methylphenidate. Castellanos et al. (2005) found that ISV, 

measured both as standard deviation of reaction times and as power in a frequency band centred 

on .05Hz, was attenuated by treatment with methylphenidate, relative to treatment with placebo. 

ISV (metric unspecified) appears to be sensitive to therapeutic approaches other than 

phannacotherapy, showing reduction following neurofeedback training (Egner & Gruzelier, 

2004). Interestingly however, despite ISV showing a response to treatment, there is evidence that 
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high ISV is predictive of poor treatment response to methylphenidate, Lee et al. (2009) found that 

high SDRT at baseline was predictive of non-response to treatment, despite showing that ISV 

was reduced by treatment in both responders and non-responders. 

ISV and Ageing 

Another area of research where ISV has proved to be important is the study of cognitive 

ageing. Both cross-sectional (Hultsch, MacDonald, & Dixon, 2002) and longitudinal studies 

(Lovden, Li, Shing, & Lindenberger, 2007) have found increasing CVRT with advancing age, 

while Burton, Strauss, Hultsch, Moll, and Hunter (2006) found a relationship between the 

severity of cognitive decline and ISV, suggesting that ISV may be a measure of cognitive ageing. 

What makes ISV particularly intriguing as a measure of cognitive ageing is that ISV increases 

appear to precede and predict subsequent declines in other measures of neurocognitive 

performance (Lovden et al., 2007), suggesting that ISV may be a useful 'canary down the 

mineshaft ' . More drama"tically, increases in SDRT appear to predict impending death in 

longitudinal designs (MacDonald, Hultsch, & Dixon, 2008) suggesting that ISV may be an early 

indicator of terminal decline, although it must be stated that high ISV appears to be predictive of 

mortality in young as well as older adults, suggesting that this predictive characteristic may not 

purely be an index of cognitive decline (Shipley, Der, Taylor, & Deary, 2006). 

The relationship between ISV and age is also not a linear one. Williams, Hultsch, Strauss, Hunter, 

and Tannock (2005) found a quadratic relationship between ISV and age, with young children 

and older adults exhibiting higher ISV than young adults. It remains unclear, however, whether 

the causes for the high ISV at both extremes of age are the same. 

33 



Overview 

The emerging picture from the intelligence, psychiatric, and gerontological literature is 

that ISV appears to be sensitive to a number of important conditions, and herein lies the problem. 

The lack of specificity of high ISV renders it unlikely to be useful as a diagnostically useful 

marker. There is a possibility that emerging approaches to ISV, such as model fitting and spectral 

approaches, may reveal differences between the increased ISV seen in different conditions, but 

these differences, if they indeed exist, have yet to be identified. On a brighter note, the study of 

ISV may be helpful in identifying neurophysiolgical characteristics which these different 

conditions share. Indeed the specificity criterion may be unreasonable if nosologically distinct 

disorders overlap etiologically. 

What ISV lacks in specificity, it makes up for in sensitivity. ISV appears to be a highly 

sensitive early indicator for cognitive decline (Lovden et al. , 2007; MacDonald, Hultsch, & 

Dixon, 2008), with increases in ISV preceding more traditional indicators of cognitive decline. 

ISV appears to be sensitive to treatment (Cleghorn et al., 1990; Spencer et al., 2009; Egner & 

Gruzelier, 2004) and symptom severity (Burton et al. , 2006), which suggest a possible role for 

ISV in measuring the time and course of a disorder. 

One intriguing possibility is that ISV is an index of some general neurocompuational function of 

the brain, which is aberrant in a number of conditions. Put another way, ISV could reveal 

commonalities between different psychiatric and neurological states. Writers in the ageing (Li, 

Lindenberger, & Frensch, 1999) and the schizophrenia literature (Winterer et al. , 2006) have 

posited disordered dopaminergic neuromodulation as a possible neural substrate ofISV, which 

would fit with certain models of pathophysiology in these conditions. The subject of the 

biological bases ofISV wi II be taken up in the next chapter. 
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To conclude, ISV research has moved beyond an abstract effort to understand 

neurobehavioural detenninism and has become a topic of great interest in a number of clinical 

and applied psychometric research domains. ISV appears to err on the side of sensitivity, as 

opposed to specificity, being a marker for a number of psychiatric conditions, cognitive ageing, 

and low IQ. This may point to generalities between these conditions, and the study ofISV may 

help to illuminate the physiological underpinnings of more general computational properties of 

the brain. 
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Chapter Four 

Neural Bases of Intra-Subject Variability of Reaction Times 
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In the previous chapter it was claimed that ISV represents a promising line of enquiry as 

to the neural underpinnings of a number of psychiatric conditions, cognitive aging, and 

intelligence. Such promise, however, can only be realised if it is clear what the neural 

underpinnings ofISV itself might be. There is a growing neuroscientific literature on the topic, 

which this chapter will review. The relationship between new-al structure and ISV will be 

addressed, before findings on ISV and haemodynamic, electrophysiological, 

psychopharmacological, and computational neural functioning are reviewed. The major 

theoretical models ofISV will then be covered in the final section of the chapter. 

Empirical Findings 

Structural neuroanatomy 

Probably the most well documented structmal finding on ISV is the relationship between 

ISV and brain lesions. Stuss and colleagues (1989) found that traumatic brain injury patients 

showed higher SDRT than matched controls on a number of tasks. There is evidence that 

increased ISV is specifically associated with injuries to the frontal lobes. Stuss, Murphy, Binns, 

and Alexander (2003) compared patients with frontal lesions to those with more posterior injmies 

and found that abnormal RTSD and CVRT were only present in frontal lobe patients. This 

finding is supported by Bunce et al. (2007), who find that white matter hyperintensities are 

associated with increased mean-independent variation (mean absolute variation with mean RT 

regressed out), but only when they are located in frontal regions. 

The second major structural finding is an apparent link between white matter volume and 

ISV. Walhovd and Fjell (2007) measured white matter volume using magnetic resonance imaging 

(MRI) in a sample of 71 healthy participants. White matter volume was negatively correlated 

with SDRT, independently of mean RT. Mean RT itself showed a trend level correlation with 
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grey matter, suggesting that mean RT and SDRT may have partially separable neural bases. 

Anstey et al. (2007) found a link between the volume of the corpus callosum, a large white matter 

structure, and mean independent variation in patticipants with mild cognitive impaitment. The 

same relationship was not present in healthy controls. 

Functional neuroanatomy 

Haemodynamic imaging 

Moving to functional neuroimaging research, the haemoimaging literature on ISV fits 

well with the lesion literature. Two studies used functional MRI to study the relationship between 

haemodynamic measures and ISV. Bellgrove, Hester, and Garavan (2004) found a positive 

correlation between CVRT and activation in medial-frontal, thalamic, and parietal regions. 

Simmonds and colleagues (2007) found a similar positive relationship between CVRT and 

prefrontal and caudate areas. Both sets of authors interpret these results as a greater reliance on 

prefrontal executive and inhibitory function to maintain adequate perforn1ance in participants 

with high ISV than those with more stable RTs. It should of course be noted that the go-no go 

tasks employed by these studies primarily tap inhibitory and cognitive control, and as such the 

relationship between ISV and inhibition suggested by these studies may not be specific as a 

shallow reading of this literature would suggest. 

Electrophysiology 

A number of studies have related ISV to electrophysiological measures of cognition. 

Segalowitz, Dywan, and Unsal (1997) found a negative correlation between SDRT (mean RT 

regressed out) and the amplitudes of the P3 and contingent negative variation components of the 

event-related potential (ERP) in brain injured patients, but not in healthy controls. Di Russo and 
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Spinelli similarly found reduced P3 amplitude and increased CVRT in boxers (putatively due to 

their exposure to chronic head trauma) relative to non-athletic and fencer control groups. 

Other electrophysiological studies have examined ISV using non-ERP methodologies. 

McIntosh, Kovacevic, and !tier (2008) examined the relationship between behavioural variability 

and neural variability (measured using multiscale entropy) and found, somewhat paradoxically, 

that they were negatively cotTelated. They argue that this increase in neural variability does not 

represent noise so much as complexity, and that this complexity provides a level of behavioural 

metastability. Gerson, PatTa, and Sajda (2005) approached ISV from a different angle by 

investigating evoked components which discriminated between trials where a target was present 

and trials where it was absent on individual trials of a rapid serial visual presentation task. They 

identified a component, which they suggested was similar to a P3, which covaried in latency with 

RT. 

Psychopharmacology 

Several studies have linked ISV to the catecholaminergic neuromodulatory systems. 

MacDonald, Cervenka, Farde, Nyberg, and Backman (2009) measured dopamine D2 receptor 

binding using positron emission tomography and found that SDRT was negatively associated 

with extrastriatal D2 binding. Stefanis et al. (2005) employed a gene association approach to 

examine the influence of catecholamines on ISV, and found that an allele associated with a 

higher rate of catecholamine metabolism (the val allele of the COMT Val158Met polymorphism) 

led to higher levels of SDRT in its carriers. 

Invasive electrophysiology studies also observe an association between ISV and the firing 

mode of the locus coeruleus, the origin of the norepinephrine system. High tonic activity of the 

locus coeruleus is associated with reduced phasic firing in response to stimuli and an increase in 

RT distribution width, while moderate tonic activation is associated with a more marked phasic 
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response and reduced RT distribution width (Usher, Cohen, Servan-Schreiber, Rajkowski, & 

Aston-Jones, 1999). 

As stated in previous chapters, increased ISV is also a hallmark of a number of 

neuropsychiatric conditions, several of which (ADHD, schizophrenia) are strongly associated 

with catecholaminergic abnonnalities. Indeed Spencer et al. (2009) found that treatment using 

methylphenidate, a catecholamine agonist, normalised increased RT skewness in ADHD patients. 

Computational 

The computational literature strongly compliments the psychopharmacological findings 

described above. A number of influential models of catecholamine function find a relationship 

between catecholaminergic neuromodulation and ISV. 

Li, Lindenberger, and Frensch (2000) modelled catecholamine activity as a gain 

parameter that amplified a system's sensitivity to sensory input, relative to background noise. 

Lower levels of 'catecholaminergic' gain were associated with increased ISV, while higher levels 

of gain were associated with reduced ISV. 

Usher et al. 's (1999) model of locus coeruleus activity is in close agreement with invasive 

electrophysiological work on monkeys; showing increased ISV when tonic activity is high and 

reduced ISV with a more phasic mode of noradrenergic neuromodulation. This relationship 

appears to be mediated by changes in the electrotonic coupling of locus coeruleus neurons, with 

high coupling being related to high phasic activity and low ISV, and low coupling being 

associated with increased tonic activity and high ISV. Taken together with the invasive 

electrophysiology, these findings suggest a more nuanced relationship between 

catecholaminergic neuromodulation and ISV than a simple negative correlation between ISV and 

catecholamine levels. 

40 



These results are especially compelling when one considers that these models were not 

expressly devised to explain ISV, rather the changes in ISV resulting from changes to the 

catecholaminergic parameters of the model emerged naturally. 

Theoretical Perspectives 

The major theoretical stances as to the neural origins of ISV can be broadly divided into 

those citing neural noise as the cause ofISV, those that view ISV as representing an oscillatory 

signal, and those that view ISV as the consequence of attentional lapses. 

The neural noise model 

One possible conceptualisation of ISV is as representing neural noise. Hendrickson 

(1982), writing on the neural coITelates of intelligence, first suggested that ISV could represent 

failures in neural transmission, leading to delays in the delivery of infonnation and thus delays in 

the mental operations that underpin RTs. Jensen (1992) suggested that these transmission failures 

could be related to faulty myelination of axonal tracts, a theory which ties in well with literature 

suggesting a relationship between volumetric white matter and ISV (e.g. Waldhovd & Fjell, 

2007). 

More recent incarnations of this model have tended to relate ISV to neurocomputational 

deficits due to dysregulaton of the catecholaminergic system. Aston-Jones and Cohen (2005) 

posit a role for norepinephrine in tuning behavioural flexibility. With high tonic noradrenergic 

activation, an organism is sensitive to all environmental stimuli. This creates a noisy neural 

decision-making environment and leads to increased ISV and greater distractibility. Moderate 

tonic activity allows greater phasic tuning of attention and allows attention to be concentrated on 

particular stimuli, with low ISV at the cost of behavioural flexibility. F inally low tonic activity 
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leads to low responsiveness to all stimuli and is conducive to sleep. Thus ISV could represent an 

indicator of the noradrenergically mediated attentional state of an organism. 

Neural noise can of course stem from a variety of sources in the brain. Synaptic failures, 

faulty myelination, and disordered catecholaminergic neuromodulation could all result in 

increased behavioural output. ISV may in fact be sensitive to neural noise, regardless of its 

specific physiological underpinnings, making measures of ISV more of a functionalist measure 

than one associated with a certain biological property. 

The oscillatory model 

An alternative class of models views ISV as having a temporal structure, rather than 

representing white noise (see Chapter 2). RTs, by this model, show oscillations at certain 

frequencies, which are indicative of underlying neural oscillations. Probably the earliest version 

of this model was Surwillo's (1975) EEG gating-signal hypothesis which suggested that ISV was 

moderated by two factors: the frequency of cortical oscillations and neural recovery periods. If a 

signal arrived at the unresponsive phase of a neuron's oscillatory cycle, it would have to wait 

until the neuron was responsive again before the impulse could proceed. Thus natural 

periodicities would occur in RT distributions. 

These periodicities would be relatively high frequency, but other work has found 

oscillations in performance on a number of different scales, reflecting the fractal nature of the 

brain's oscillatory dynamics. Aue, Arruda, Kass, and Stanny (2009) found periodicities with 

wavelengths of 1.5 minutes in longer attention tasks. This low frequency spectral activity may be 

an important feature of RTs - van Ordem, Holden, and Turvey (2003) found the liffrequency 

distribution that is common to biological systems in RTs, and suggested that is indicative of self­

organisational dynamics thought to underpin goal oriented behaviour. Interestingly, Gilden and 

42 



Hancock (2007) showed that participants high in ADHD symptoms demonstrate a deviation from 

the 1/f distribution noise found in those low in such symptoms. 

One recent oscillatory model of ISV and sustained attention is the default mode 

interference hypothesis (Sonuga-Barke & Castellanos, 2007). This model cites the default 

network, a self-organising group of brain regions first described by Raichle et al. (2001), as the 

cause of periodic attentional failures. The default network is hypothesised to have two wings that 

exist in a state of dynamic tension. One wing directs attention externally to the outside world, 

while one promotes an introspective mode of attention. The two wings show substantial 

anticorrelation, with the network oscillating between a default mode and a task-positive mode, 

and this system has been hailed as a means of explaining directed attention without resort to an 

executive homunculus. Kelly, Uddin, Biswal, Castellanos, and Milham (2008) found that the 

strength of the anticorrelation was negatively related to ISV, suggesting that the dynamic tension 

of the network was important in regulating attention. 

The oscillatory class of models are exciting because they appear to offer a glimpse of the 

elusive self-organisation of neural behaviour that is increasingly believed to underpin cognition. 

That variance in RTs appears to show the 1/f spectral properties common to a number of 

biological signals, including EEG, also supports the idea that ISV is a meaningful index of 

functioning. However it is important to note that RTs showing temporal structure is not 

necessarily indicative of oscillatory self-organisation. It is possible to view certain oscillatory 

neural signals as interfering with unrelated processes, rather than having an organisational role 

perse. 
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The lapse model 

The final conceptualisation ofISV is that slow RTs represent attentional lapses. Unsworth 

Redick, Lakey, and Young (2009) found that measures of executive control were negatively 

con-elated with RT parameters sensitive to the slowest RTs of a distribution, suggesting that 

failures in fronto-executive systems may lead to these lapses. The prefrontal cortices are of 

course already implicated in ISV by the literature mentioned above. Weissman, Roberts, Visscher, 

and W oldorff (2006) explored the neural bases of these lapses and found that reduced prefrontal 

and cingulate activity tended to precede lapses, while increased activity in regions thought to be 

part of the default network was seen during these lapses. Schrniedek , Oberauer, Wilhelm, Si.i~, 

and Wittmann (2007) however examined the relationship between IQ and various RT 

distributional parameters, and found that lapses were not necessary to explain the relationship. 

Lapse models have an undeniable intuitive appeal, but lack strong explanatory power on a 

neural level - it is not clear what the neural underpinnings of a lapse might be. A number of 

models that make reference to lapses do so within the framework of catecholaminergic 

neuromodulation or default network-based oscillatory behaviour leading one to question what 

exactly the concept of lapses are contributing to our understanding. Lapses may be at best the 

subjective con-elates of neural delays that are more fundamentally explained by noise or 

oscillation-based dynamics. 

Synthesising different conceptualisations of ISV 

It is worth considering the implications of this last idea. These three classes of explanation 

are by no means mutually exclusive. For example, periodic fluctuations in levels of 

catecholaminergic neurotransmitter activity could be understood in tem1s of neural noise or 

oscillatory activity, and indeed an explanation synthesising both of these ideas may lead to a 
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fuller understanding of the phenomenon. However it is also possible that these models may 

represent the same phenomenon on different neural scales, in such a way that one explanation is 

clearly more fundamental. As mentioned, the increased responsiveness to irrelevant stimuli 

brought about by increased tonic levels of norepinephrine could be understood as a lapse of 

attention, but the phenomenon is clearly noradrenergic at its core. 

Conclusion 

To summarise, an increasing body of work has begun to elucidate both the possible neural 

mechanisms by which ISV may arise, and the biological substrates of individual differences in 

ISV. The empirical literature points mainly to fronto-executive, axonal, and catecholaminergic 

determinants of ISV. The findings have been interpreted in a number of ways but it may be 

helpful to loosely categorise them as neural noise, oscillatory, and lapse models. These models 

are largely compatible, and it may be that some fusion of these concepts is necessary to explain 

ISV. 
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Chapter Five 

An Introduction to Electroencephalographic Data Analysis 
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Discovered by Richard Caton in 18752
, and first applied to humans by Hans Berger in 

1929, electroencephalography (EEG) is the oldest non-invasive functional neurophysiological 

measurement approach used in neuroscience. Despite its age, EEG has enjoyed largely 

continuous use since its discovery, and advances in computing and signal processing methods 

have lead to something of a renaissance in the approach in recent years. The empirical work 

described in this thesis makes extensive use of EEG and this chapter aims to provide a short 

primer in the technique. EEG methods, however, are highly varied, so this chapter will focus on 

the approaches used in later chapters. Specific description of the analysis techniques used in this 

thesis will follow in Chapters Seven and Nine, and some important aspects of these analyses will 

be evaluated in Chapter Ten. The present chapter is intended to give a more general overview of 

EEG analysis as a technique. 

Recording Principles 

EEG is the recording of the electrical activity of the brain using electrodes on the scalp. 

The neurnl signal is tiny compared to the electrical noise present in the recording enviromnent, 

and thus common to all electrodes, so at least three scalp electrodes are needed to record EEG: a 

recording electrode (ERec), a reference electrode (ERer), and a ground electrode (Eanct)- EEG is the 

signal given by: (ERec - Eanct) - (ERef - Eanct), which is amplified many thousands of times before 

being digitised and stored electronically. This process of differential amplification allows the 

signal of interest to be disentangled from environmental noise. 

2 It should be noted that Richard Caton recorded electrical activity from the cortices of animals, rather than the scalp, 

so this was thus strictly speaking e lectrocorticography rather than electroencephalography. Hans Berger was the first 

to use the technique non-invasively, and the first to apply it in humans. 

47 



Most modem research EEG uses a number ofrecording electrodes, referred to ground and 

reference electrodes, in order to capture activity from across the scalp, but the basic recording 

principles are the same. With a multi-channel recording there is the option of moving away from 

using a single electrode as a reference channel (called a common reference), to using the average 

of all electrodes (called a common average reference) or a system where electrodes are 

referenced to mathematical functions of groups of nearby electrodes (a class of approaches called 

Laplacian referencing). For a thorough treatment of referencing issues, the reader is directed to 

Nunez and Srinivasan ( 1981; 2006). 

Biological Underpinnings 

When EEG was discovered it was initially unclear exactly what aspect of neural activity it 

was sensitive to. Neurons are induced to fire by a depolarisation of a post-synaptic membrane, 

effected by the flow of ions through gated channels; and it is possible to measure the change in 

voltage using an extracellular microelectrode. This change in voltage can be modelled as a dipole, 

a paired current source and current sink. In EEG however, macroelectrodes are used at the scalp. 

Each EEG electrode measures the sununed activity of up to a billion neurons; surely such a 

number of tiny voltage changes would average to zero? Fortunately, cortical neurons do not 

operate independently; they are embedded in densely interconnected columns. The manner of this 

interconnection leads neurons to fall into synclu·ony, firing together rhythmically (see Singer, 

1993). Voltage changes in human tissue at the frequencies relevant to EEG ( conventionally 

<1 00Hz) obey Olun ' s law, and thus voltages from smaller circuit elements, such as individual 

neurons, can be linearly summed (Nunez & Srinivasan, 1981). This means that rather than 

modelling brain activity on the level of individual microsources generated by individual synaptic 

membranes, it is possible to summarise this low level activity using mesosources: aggregations of 
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a number of coherent sources that can be modelled as a single dipole. Moving up in scale, 

individual columns fall into synchrony with neighbouring columns until widespread areas of 

cortex are synchronous. It is this property of synchronisation that allows the recording of scalp 

EEG. In fact, approximately 6cnl, some sixty million neurons, of cortex must be synchronised in 

order to be measurable in raw EEG (Cooper, Winter, Crow, & Walter, 1965), although signal 

processing approaches, such as averaging, can reduce this. The generators of EEG are therefore, 

formally speaking, better characterised by a dipole layer than a point dipole. Once again though, 

it is possible to abstract dipole layers into single equivalent dipoles. 

The amplitude of the EEG signal is thus a measure of short range coherence between 

groups of neurons. This is one reason why EEG is an index of membrane potentials rather than of 

action potentials - action potentials are simply too brief for large areas of cortex to produce them 

in synchrony. The longer membrane potentials allow enough margin of error for the EEG to 

identify synchrony. The same reason explains the lif power distribution observed in EEG data 

(Singer, 1993). It is easier for large areas of cortex to synchronise at low frequencies than it is at 

high frequencies, and so there tends to be an inverse relationship between frequency and power 

(Schaul, 1998). 

Another reason such a large number of synchronous neurons are needed to generate 

measureable scalp EEG has to do with the properties of the skull. The skull acts as a spatial low 

pass filter, limiting the ability of EEG to resolve high spatial frequencies and register small areas 

of coherent cortex. It also acts as a temporal low pass filter, strongly attenuating the amplitude of 

the EEG signal - especially at high frequencies. A final factor affecting measurement of EEG at 

the scalp is the orientation of electrical fields. Areas of cortex on the crests of gyri, produce 

radial dipoles which are best oriented for their electrical fields to project through the scalp. 

Sources on gyral walls instead produce tangential dipoles which are relatively de-emphasised by 
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scalp EEG. In practice however, the area of co1tical tissue required to produce measurable EEG is 

likely to minimise the importance of this concern. 

Event-Related Potentials 

The most common use of EEG in cognitive neuroscience is to compute event-related 

potentials (ERPs). This involves cutting an EEG recording, taken while a participant performs 

repeated trials of the same task, into segments that are time-locked to an observed event, such as 

the participant making a response or a stimulus appearing onscreen. These segments can then be 

averaged together time point by time point. The rationale is that ongoing EEG contains activity 

that is relevant to the task, as well as activity which is incidental. As EEG can be positive or 

negative, and is centred on zero, activity that is not consistently related to the task will average to 

zero, given sufficient trials. Activity which occurs consistently at the same time on every trial, 

however, will remain in the average ERP. This approach has proven highly successful and has 

identified a number of features ofERPs that appear to occur predictably under certain 

circumstances. These ERP components have been widely studied, and ever since the first ERP 

component, the contingent negative variation, was discovered by Grey Walter (Walter, Cooper, 

Aldridge, McCall um, & Winter, 1964)), their functional roles have been matters of wide debate 

in neuroscience. As Gaillard (1988) points out, these controversies are exacerbated by issues of 

component classification and consistency across paradigms. 

Despite much to recommend them, ERPs have their drawbacks. ERPs are highly sensitive 

to time-locked and phase-locked EEG, generally referred to as evoked activity. If a component 

occurs in every trial, but with varying latency (i.e. shows poor time-locking to the event used for 

segmentation), the ERP will smear the activity out in time, reducing its amplitude (Spencer, 
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2005). Worse still, if a component is oscillatory but its phase does not line up perfectly across 

trials, the component will self-cancel in the average. 

ERPs are also unusual in that the signal is averaged before summary statistics such as 

amplitudes and peak latencies are taken. This contrasts with measures such as RTs, where 

measurements are taken on a trial-by-trial basis and then averaged, an issue that will be taken up 

below. 

Source Localisation Approaches 

Another issue with standard ERP approaches is that the data remain on the electrode level. 

While EEG is recorded at the scalp, these measurements are, in effect, proxy measurements for 

the intra-cerebral sources of this activity: the dipole layers mentioned above. Some applications 

of EEG use the scalp data to quantitatively estimate the location and strength of the underlying 

dipoles, an approach which is called source localisation. Such an application has much intuitive 

appeal, the locus of the neural generators of a certain EEG component could be of theoretical 

importance. There are, however, sizeable technical issues to confront before such ambitions can 

be realised. 

Imagine the opposite problem. A dipole of known location is active in the cortex and we 

want to predict its scalp projections. This situation is called the forward problem, and, using basic 

physical principles, it is possible to solve this and calculate the projections of this dipole to the 

scalp. The inverse solution, the localisation of a dipole given its scalp projections, is however 

mathematically intractable. Unless an infinite number of sites on the scalp are measured, a clearly 

impossible criterion, it is possible for an infinite number of dipole configurations to lead to the 

observed scalp projections (Plonsey, 1963). 
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This is less of an impediment than it might appear. Clearly some dipole configurations are 

implausible: those which involve dipoles inside ventricles, within the skull, or outside the head, 

for example, can be eliminated. A wide range of source localisation algorithms now exist (see 

Koles, 1998 for a review) and, using a variety of criteria, have shown promising levels of 

agreement with other neuroscientific methods, such as magnetic resonance imaging, which do not 

have equivalent localisation problems (see Linden, 2005 for a review). The intractability of the 

inverse solution, however, remains a fundamental problem for EEG source localisation. 

Factor-Based Approaches 

A way of moving beyond electrode-level analyses, without having to confront the issues 

that apply to source localisation, is the growing area of factor3 -based approaches. EEG data can 

be viewed as a linear mixture of different neural sources, with each source measured in different 

proportions at different electrodes (Parra, Spence, Gerson, & Sajda, 2005). Standard EEG 

approaches analyse individual electrodes separately, relying on choosing the electrodes that are in 

the closest proximity to the source of interest to preferentially measure the source they are 

interested in. This approach is somewhat crude as the activity recorded at any single electrode 

still represents a mixture of different sources. Fmthermore remaining at the sensor level means 

that any physical noise specific to a single electrode is also present. Factor-based approaches 

instead take advantage of the statistics of the observed data to create linearly weighted sums of 

the activity of all electrodes. If the correct weighting of electrodes can be identified then it is 

possible to measure a signal that is closer to the underlying sources of interest than any one 

3 Traditionally the tenn component is used to refer to constructs representing linearly weighted sums of observed 

variables, whilefaclor is used to refer to constructs estimated from observed variables using a least-squares or 

equivalent approach. This thesis will however use the term/actor, in order to avoid confusion with ERP components. 
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electrode. Unlike source localisation however, these methods do not attempt to solve the inverse 

problem, and so make far fewer neurophysical assumptions. 

Consider two adjacent electrodes E 1 and E2. Both measure activity from a single EEG 

source Sas well as electrode-specific noise sources N, and N2. So E, = S + N, and E2 = S + N2. 

As Ohm's law applies in neural tissue, we can linearly sum E, and E2, to give factor F = (E, = S + 

N 1) + (E1 = S + N 1), or stated differently F = 2S + N 1 + N2). Assuming Gaussian noise, this results 

in an improvement in signal-to-noise ratio compared to analysing each electrode separately. One 

problem with this is that giving electrodes equal weighting will often not be the optimal approach. 

If E 1 were directly over S, while E2 were further away, giving E, a greater weighting than E2 may 

yield a better estimate of S. But how can one tell whether E 1 or E2 better measures S? And even if 

we know this, how can one derive specific weights for E, and E2? Will a 60:40 or a 90: 10 ratio 

better represent S? These issues become all the more pressing when one considers that EEG 

montages generally contain far more than two e lectrodes. With electrodes covering the whole 

scalp, giving each electrode equal weighting for a source that appears to be maximal at the vertex 

makes little sense, as EEG sources behave like dipoles, some electrodes record the cw-rent source 

while others measure the current sink, and summing these electrodes using equal weightings 

could amount to modelling F as F = S - S + N, + N2, namely measuring only, admittedly 

attenuated, noise4
. 

Fortunately, a number of statistical approaches exist to identify an optimal set of electrode 

weightings; with each approach optimising weightings using a different set of criteria (see Parra, 

Spence, Gerson, & Sajda, 2005). One possibility is the use of regression to identify the weighting 

4 An example whereby only a sing le source exists, and its projections to the recording electrodes entirely cancel may 

seem somewhat fanciful, but were it possible to record with infinite electrodes, granting perfect spherical coverage of 

the brain, an unweighted sum of these electrodes would cancel due to current conservation. 
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of electrodes that optimally predicts another variable, either continuous, such as RT, or 

categorical, such as whether data come from one trial type or another. Such an approach is 

comparable to the difference waves computed in some traditional ERP applications, but with the 

aforementioned advantages for signal-to-noise associated with data aggregation. 

A second possibility is the use of principal components analysis (PCA; see Dien, 2009) or 

independent components analysis (ICA; see Makeig, Bell, Jung, & Sejnowski, 1996) to identify 

weightings using the inter-electrode covariance matrix, or factor correlation matrix respectively. 

PCA is a multivariate statistical approach which reduced a number of variables into a smaller set 

of axes, called principal components, which summarise the variance. These principal components 

are sequentially subtracted from the data until a predetem1ined number of factors have been 

extracted, with any residual variance being discarded. PCA is closely related to the similar 

technique of factor analysis; the major difference being that while factor analysis only works on 

shared variance, in order to estimate a latent variable, PCA works on all variance, directly 

calculating a linear combination of observed variables. While the relative advantages and 

disadvantages of factor analysis and PCA are beyond the scope of the present work, it is wo1th 

noting that almost all variance present in EEG data is shared, and so both approaches will 

generally arrive at similar solutions. PCA is primarily chosen above factor analysis for reasons of 

computational efficiency - a key concern when working with the en01mous datasets common in 

EEG research. 

The Infomax rotation algorithm (Bell & Sejnowski, 1995), is the most popular for ICA in 

EEG analysis, and has proven particularly effective at identifying sets of weightings that 

correspond to functional networks (Dien, Khoe, & Mangun, 2007). Infomax rotation works by 

creating factors which load on each electrode and iteratively adjusting these weightings in order 

to minimise both the factor correlation coefficients and the Gaussianicity of each factor. The 

logic of the latter criterion is that, according to the central limit theorem, genuinely separate 
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factors will be less Gaussian than combinations of factors. These two criteria work to slowly 

separate the factors until they show maximum statistical independence. 

Single-Trial Approaches 

Pham, Mocks, Kohler, and Gasser ( 1987) forn1alise the standard model assumed by 

average ERPs, xj(t) = s(t) + ej(t), where Xj(t) is the EEG recorded at time t for the }th trial of an 

ERP task, s(t) is the EEG activity reliably evoked by the stimulus, and ej(t) is the ongoing EEG 

activity which is not related to the task. Single trials have poor signal-to-noise ratio (s:e), 

preventing reliable estimates of s(t). However, as this model assumes ej(t) to be Gaussian, taking 

the average of all trials will attenuate ej(t) while preserving s(t), thus improving the signal-to­

noise ratio. 

While this model may approximate early sensory components, there is evidence that later, 

more cognitive components, such as the P3b, show substantial variability in latency (Kutas, 

McCarthy, & Donchin, 1977). Pham et al. thus modify this model by adding the parameter •j 

which represents trial-to-trial changes in the latency of s(t), (latency jitter) to give the model xj(t) 

= s(t + Tj) + ej(t). According to this second model, the cross-trial average of xj(t) will not give an 

unbiased estimate of s(t). Instead such latency jitter leads to a smearing of the ERP peak in the 

time domain, with a corresponding fall in peak amplitude (see Spencer, 2005). Such distortions 

can make averaged ERPs misleading estimates of the amplitude, latency, and morphology of an 

ERP component. 

An alternative to averaging ERPs is to calculate parameters from the EEG of single trials, 

thus allowing trial-by trial estimates of EEG activity, and preventing distortions that can arise 

from averaging. Without averaging, however, the signal-to-noise ratio remains low, and it can be 

difficult to differentiate peaks from the ongoing EEG. 
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Fortunately, alternatives to averaging exist for improving signal-to-noise ratio. As stated 

above, factor-based approaches improve signal-to-noise ratio by integrating information across 

electrodes, rather than across trials. Another option is to identify the frequency band in which the 

EEG phenomenon of interest is supported, and isolating it. This can be accomplished using time­

frequency transformations, or by employing band-pass filtering to attenuate power in other 

frequencies. 

Once the signal has been denoised it is necessary to identify component amplitudes and 

latencies in single trials. There are four main approaches to do this: visual inspection, peak 

picking, template matching, and maximum-likelihood estimation. Visual inspection is as it 

sounds: each trial is inspected by an experienced observer and latency and amplitude are 

estimated in single trials. While a trained eye is not to be underestimated, this approach clearly 

lacks transparent criteria, is time consuming, and may introduce unintended biases into the data. 

Peak picking identifies the timepoint with the highest or lowest amplitude within a certain latency 

range. This approach relies upon stringent low-pass filtering ( ~3.4Hz) in order to avoid picking 

spurious peaks (Smulders, Kenemans, & Kok, 1994). Template matching involves passing a 

template, generally a sinusoidal half-wave or the averaged ERP, across each trial and identifying 

the point of maximum cross-correlation or covariance. The most well known application of this 

technique is the Woody filter (Woody, 1967), an iterative approach which starts with the average 

ERP as a template, before using the new average, derived from the picked timepoints, and 

repeating the process. There is evidence that using cross-covariance gives better results than 

cross-con-elation (Smulders, Kenemans, & Kok, 1994), presumably as this allows amplitude 

information to be used. Finally, Pham, Mocks, Kohler, and Gasser (1987) describe a method for 

identifying peaks using maximum likelihood estimation. The model Xj(t) = s(t + -rj) + ej(t) is 

Fourier transformed and •i can be estimated using iterative Fisher scoring. The advantage of this 
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approach is that rather than attempting to identify the latency of s in spite of ej(t), maximum 

likelihood estimation is able to take advantage of the noise to help estimates. 

Jaskowski and Verleger (2000) tested Pham et al' s method against template matching and 

peak picking, and found some advantage for maximum likelihood estimation where levels of 

jitter were low, but that all approaches performed equally with levels of jitter that would be 

realistic in a P3b task. Smulders et al. (1994) compared the reliability of peak picking and 

template-matching, and found an advantage for peak picking with low-pass filtering. Both 

Jaskowski and Verleger (2000) and Smulders et al. (1994) found that these methods were all 

highly contingent on the signal-to-noise ratio, so it is worth reiterating that successful single-trial 

analysis is at least as reliant upon employing an effective denoising technique as it is on the 

choice of peak identification approach. 

Conclusions 

To summarise, while EEG is principally similar to the 19th century science practised by 

Catton and Berger, huge changes in computer technology, biophysics, and signal processing have 

led to continued innovation in the field. While the ERP approaches pioneered by researchers such 

as Grey Walter continue to serve new-oscientists well, technical advances and the sh011comings 

of ERPs under certain conditions have driven many neuroscientists to experiment with new 

approaches to EEG data. These approaches include attempts to identify and estimate the dipolar 

sources that underlie EEG, using source localisation algorithms, as well as approaches for finding 

linear combinations of electrodes that better characterise the underlying sources, but stop short of 

attempting to locate them in the brain. Future analytic developments will hopefully allow EEG's 

recent renaissance to continue, including the growing area of single-trial analysis, where 

alternative processing approaches to the averaging used by ERPs are needed. 
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Research programme 

The preceding five chapters described the current literature on ISV. Controversies exist on 

every level of the field, from measurement issues to putative aetiology, but some consistent 

themes exist. ISV appears to be a common correlate of several psychiatric and neurological 

conditions, particularly those which putatively affect catecholaminergic neuromodulation, 

cerebral white matter, or the frontal cortices. This has led to neural noise and 'lapse' models of 

ISV, while the conceptualisation ofISV as representing low frequency neural oscillations stems 

from time series approaches to RTs. 

The position of this thesis is that ISV represents a general and global construct in two 

ways. Firstly, ISV is thought to represent a global construct, which affects perfomrnnce on a 

supra-task level. This makes it an ideal candidate for a latent variable approach, allowing task­

specific variance (which may largely represent measurement error) to be removed from estimates 

of true scores. This should lead to more accurate and reliable estimations of 'trait ISV' . Secondly, 

as ISV has been empirically linked to a number of aetiological factors, it may be that ISV 

represents a functional neurocomputational property of the brain, rather than any aetiological 

factor in particular. This second assumption is not explicitly tested by this thesis, but is discussed 

in greater detail during Chapter 10. 

The following four chapters describe the empirical work conducted as part of this thesis. 

These studies use a variety of methodologies, including psychometrics, electroencephalography, 

and latent variable modelling. In doing so, they show the development of a distinct approach to 

the study of ISV, starting with measurement issues and the measurement of ISV on the observed 

variable level, and ending by using a latent variable approach to explore true score correlations 

between ISV and electroencephalographic variables. 
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Study One focuses on the measurement ofISV. A number of metrics are used to quantify 

ISV and it is not clear to what extent they provide different information from one another. It is 

also not clear how these measures compare in tenns of their reliability, an important issue for 

measurement. This study assesses the test-retest and odd-even reliability, and redundancy, of a 

number of RT parameters. The differential impact of trial number on measures ofISV and 

measures of central tendency is also explored. 

In Study Two high and low ISV participants, recruited from Study One, can-y out a 

working memory oddball task while having an EEG recording. A principal components analysis 

based approach is used to compose the data, allowing P3b latency and amplitude to be identified 

in single trials, and latency jitter-free parameters to be computed for both groups. This allows the 

two groups to be compared on measures of latency jitter and on jitter-free measurements of P3b 

amplitude, unlike previous ERP work in the area. 

Study Tlu·ee examines the extent to which individual differences co-vary across tasks and 

modalities, in order to test the assumption, implicit in the literature, that ISV represents a unitary 

and global trait. This is accomplished using latent variable modelling to identify the psychometric 

dimensionality oflSV across two tasks, each performed in two modalities. 

The final empirical chapter, Study Four combines approaches from the four preceding 

chapters. By employing a latent variable approach, supra-task parameters are derived for a 

number of RT and P3b parameters. and latent variable correlations between these parameters are 

estimated. 

Lastly, Chapter Ten discusses the methodological and theoretical implications of this 

thesis, drawing on the empirical data and the reviewed literature to suggest future directions for 

the field. 
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Chapter Six 

On the Stability of Instability: 

Optimising the Reliability of Intra-Subject Variability of Reaction Times 
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Abstract 

While reaction times have been traditionally aggregated using measures of central 

tendency, interest in higher moments of the reaction time distribution, particularly intra­

subject variability (ISV) has grown in recent years. However it is unclear to what extent 

individual differences in these higher moments are stable across time, reflecting trait-like 

features. The present study compares the reliability of a number of metrics for higher 

moments of the reaction time distribution on a battery of speeded tasks. The reliability ofISV 

is shown to be dependent on both the metric used and the number of trials used to calculate 

them. However, when using sufficient trials and appropriate metrics, ISV shows good test­

retest reliability. This study has important practical implications for the design and analysis of 

studies into ISV, as well as theoretical importance for the trait concept of ISV. 
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Introduction 

Experimental psychology has a long tradition of using speed of processing, measured 

using reaction times (RTs), in order to identify the mechanisms that underpin mental 

operations. In order to obtain reliable measurements, most cognitive experiments involve 

many trials so require summary statistics in order to make sense of the data. Generally a 

measure of central tendency, such as the mean or median, is used to characterise the RT 

distribution. This provides an easily interpretable, and generally robust, measure of a 

participant's RT. However, RTs come from multi-parameter distributions and the use of 

means and medians to the exclusion of measures of intra-subject variability distract 

researchers from the observation that variation around the mean may be more than mere noise, 

and instead may be another facet of the signal. 

While the study of higher moments of the RT distribution has yet to find widespread 

favour in mainstream experimental psychology, the topic is rapidly gaining importance within 

differential psychology and neuroscience. Intra-subject variability (ISV) ofreaction times, 

reflecting the intra-individual variation of response times around the mean and thus the 

second moment of the RT distribution, has been shown to exhibit strong relationships with a 

number of neurological and neuropsychiatric conditions, including attention deficit 

hyperactivity disorder (ADHD, Klein, Wendling, Huettner, Ruder, & Peper, 2006), 

schizophrenia (Birkett et al., 2007), Alzheimer's (Burton, Strauss, Hultsch, Moll, & Hunter, 

2006) as well as old age (Hultsch, MacDonald, & Dixon, 2002) and terminal decline 

(MacDonald, Hultsch, & Dixon, 2008). It is also related to psychometric intelligence, with 

correlations between ISV and intelligence surpassing those between mean RT (MRT) and 

intelligence (Jensen, 1992). Investigating the higher moments of RT distributions is, however, 

not without complications. A great many measures ofISV exist, and there are few studies 
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comparing them. There is also the issue of reliability, which is of cardinal importance in 

differential psychology 

Choice of parameter 

Firstly there is the choice of parameter. The majority ofISV research focuses on 

measures of variance, such as the standard deviation (SD) or the mean absolute deviation 

(MAD). These parameters measure the spread of observations around the mean, irrespective 

of the direction of the deviation. RT distributions, however, are not Gaussian and show 

significant rightward skew. It is thus questionable whether such measures ofISV are 

appropriate, or whether they are making an implicit but erroneous assumption of 

Gaussianicity. 

Indeed there is evidence to suggest that this asymmetry, characterised by an extended 

tail at the slow end of the RT distribution, may be important. Larson and Alderton (1990) 

coined the worst performance rule by showing that RTs in the slow tail of the RT distribution 

are more highly correlated with IQ than those in the fast tail. These right-tail RTs also seem to 

discriminate between children with and without ADHD (Leth-Steensen, King Elbaz, & 

Douglas, 2000), and thus may be of special interest to differential psychologists. 

In order to address this problem, a number of parameters have been suggested to 

quantify the right tail of the distribution. Skewness is the third moment of a distribution, and 

captures the distribution's asymmetry, with positive values indicating a longer or denser tail at 

the high, right-handed, end of the distribution and negative values indicating that the left­

handed end is more densely populated. As a higher moment however, it may require a large 

number of observations to be reliably estimated, and so most researchers use other approaches. 

The tau parameter of the ex-Gaussian distribution is another important measure of skewness. 

The ex-Gaussian is a convolution of a Gaussian and an exponential distribution, with the 

parameters mu and sigma respectively representing the mean and standard deviation of the 
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Gaussian component, and tau representing the mean and standard deviation of the exponential 

component, which gives the ex-Gaussian its positive skew. For these parameters to be derived 

from the RT data, a model must be fitted to the data that is reliant on not only having enough 

observations (at least 40; Heathcote, Brown, & Cousineau, 2004), but also on the data 

approximating an ex-Gaussian distribution. 

While ex-Gaussian parameters represent one conceptual framework for characterising 

RT distributions, namely by treating the skewness as a meaningful parameter to be measured 

in its own right, other approaches exist. Carpenter (1981) makes an interesting case for 

carrying out analyses on the reciprocals ofRTs, rather than on raw values. Standard RT 

distributions, Carpenter argues, are non-Gaussian not because the underlying process is non­

Gaussian, but because we misunderstand what an RT represents. By taking the reciprocal of 

an RT, we no longer treat it as a measurement of latency, but of a rate. When plotted, 

reciprocal RTs appear Gaussian, and do not show the skewness that characterises raw RT 

plots (Carpenter, 1981 ). The first two moments of this distribution can be measured by taking 

the mean and standard deviations of the reciprocals of the RTs, or by more explicitly fitting 

Carpenter's Linear Approach to Threshold with Ergodic Rate (LATER) model, which gives 

the mean and standard deviation of the best-fitting Gaussian distribution of the reciprocal RTs. 

This model, however, has as yet largely been used in saccadic RT research only. 

The question of whether these different parameters are measuring separate aspects of 

ISV, or whether they render one another largely redundant has not been widely addressed in 

the literature (but see Schmiedek, Oberauer, Wilhelm, Su~, & Wittmann, 2007). Our lack of 

knowledge in how interchangeable these metrics are raises problems when making 

comparisons across studies using different measures of ISV. On one hand, we may be 

glossing over genuine differences in what various parameters measure; on the other, we may 

be overemphasising the differences between metrics that are essentially measuring the same 

thing. 
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Reliability of ISV 

A second key issue in the measurement of ISV for research into individual differences 

is that of reliability. All measurements, according to test theory (Novick, 1966) represent a 

true score, plus additional error variance. The reliability of a measurement is the extent to 

which it measures the true score, rather than error. ISV was long thought to represent error 

variance, rather than a trait construct, and it is in part the apparent reliability of ISV (Flehmig, 

Steinborn, Langner, Scholz, & Westoff, 2007; Kuntsi , Stevenson, Oosterlaan, & Sonuga­

Barke, 2001) which led to its recognition as a variable of interest. ISV does, however, appear 

to have poorer reliability than measures of central tendency (Jensen, 1992) raising the concern 

that reliability may be something of an issue for ISV. This is of particular concern as there is 

hope that ISV may represent a marker for ADHD, schizophrenia, cognitive aging, intelligence, 

and tenninal decline. ISV can clearly only be of use as a marker if it exhibits adequate 

reliability. 

Although there is work suggesting that ISV may be reliable, albeit less so than 

measures of central tendency, this work is restricted to a small number of metrics. It remains 

unknown how other measures, such as ex-Gaussian and LATER parameters, compare to more 

common measures like standard deviations and coefficients of variation. 

One key factor that detennines the reliability ofISV is the number of trials it is based 

upon. According to the Speannan-Brown fonnula (Speannan, 1910; Brown, 1910), the 

Gaussian distribution of en·or variance leads to this error cancelling itself out with increasing 

aggregation of data, leaving the true score intact. 

Such a conceptualisation of data aggregation is however strongly tied to the idea of a 

true score being analogous to a measure of central tendency of the distribution. Estimating the 

variance of a distribution may show a less transparent relationship between data aggregation 

and reliability. Measures ofISV could need greater numbers of RTs to 'settle' than first 
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moments such as means and medians, and be more vulnerable to outlier observations. 

Furthermore, ISV, by definition, must be estimated from a number of RTs, whereas average 

RT could, assuming perfect reliability, be measured from a single RT. This implies that the 

relationship between number of trials and ISV may go beyond simple data aggregation. 

Despite this, at present many researchers use similar numbers of trials for estimating ISV as 

they would for estimating measures of central tendency, a practice which may yield unreliable 

measures ofISV. 

The aims of the present study are therefore threefold. Firstly, we set out to derive a 

large set of different ISV metrics from standard neuropsychological tasks that are popular in 

clinical research and explore the relationships between these measures. Do different measures 

of ISV seem redundant with regard to each other, or do they offer different information? 

Secondly, we detennined the instrumental (odd-even) and test-retest reliabilities of these 

measures to assess their appropriateness as trait correlates in differential research. Which 

measures ofISV are most reliable? Finally, we conducted a Monte Carlo analysis of the test­

retest reliability of the mean and standard deviation ofRTs with different numbers of trials. Is 

the increase in reliability that the Spearman-Brown formula predicts with increasing trials 

slower for ISV than mean RT? 

Methodology 

Ethical approval was obtained from the School of Psychology ethics and research 

governance committee at Bangor University. 

Participants 

Ethical approval was obtained Eighty-seven student volunteers from Bangor University 

participated in exchange for printer credits and course credit. Twelve participants' data were 

excluded due to non-completion of the second testing session and a further ten participants' 
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data were excluded due to responding correctly on fewer than 30% of trials on any condition 

on any of the six tasks (list-wise exclusion). This left N=65 participants which all reported 

analyses are based upon. 

Apparatus 

Participants were tested on Pentium IV personal computers running Windows. Stimuli 

were presented on liquid crystal display monitors measuring 382x300 mm and refreshing at 

60 Hz, and participants responded using Qwerty keyboards. 

Design 

The study used a within-subject test-retest correlational design. 

Procedure 

Participants were tested on two occasions exactly one week apart. On both occasions 

they carried out the six tasks, described below, used by Klein et al. (2006). Each session was 

held in the same location, at the same time of day, and was overseen by the same 

experimenter in order to maximise consistency between testing sessions. 

In the Zero-Back Task (0BT) participants watched a series of letters (100 trials) appear 

on the screen. They were instructed to press the F key every time a letter appeared, unless it 

was the letter E (occurring in 20% of trials), in which case they were to press the J key. The 

One-Back Task (lBT) was identical to the 0BT, except that instead of pressing J when an E 

appeared, they pressed J whenever a letter matched the preceding letter. The Two-Back Task 

(2BT) was identical to the above tasks, but the J key was to be pressed when a letter matched 

the last but one letter. Henceforth, trials requiring an F response will be termed non-events 
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and those requiring a J response will be tenned events. These tasks will also be referred to 

collectively as n-back tasks (NBTs) 

In the Continuous Performance Task (CPT), participants watched a series of letters (300 

trials) appear on the screen and pressed the space key whenever an X appeared (46 trials). To 

all other letters they were instructed to withhold any response. The Go-No Go Task (GNG) 

was the opposite of the CPT; participants were asked to respond to every letter, only 

withholding responses to the letter X (thus there were 254 trials requiring a response). 

In the Stop Signal Task (SST), participants watched a series (300 trials) of Ls and Rs 

appear on the screen, and were asked to press the F key in response to Ls and the J key in 

response to Rs. In 75 trials, however, a red stop sign appeared. Participants were instructed to 

withhold responses on trials when this happened. The stop sign was presented 150ms post­

stimulus on the first stop trial, and this latency was increased by 25ms every time the 

participant successfully withheld their response and was decreased by 25ms every time they 

responded. 

In all tasks the participants were asked to respond as quickly and accurately as possible 

to every letter. 

Data analysis 

In order to assess the reliability oflSV, a number of parameters were computed. Unless 

stated, all parameters were computed separately for each participant on each task, session, 

and, where appropriate, condition. 

Firstly, an accuracy measure (correct responses/total number of trials) was computed. 

After this, trials where responses were either incorrect or were made within 120ms (and thus 

were presumably pre-emptive) were removed from the data before RT parameters (see below) 

were computed. 
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The parameters fell into four main groups, corresponding to the first four moments of a 

statistical distribution. The first group consisted of measures of central tendency: Mean RT 

(MRT), median RT(MnRT), the mu parameter of the ex-Gaussian distribution, the mean 

reciprocal RT (RecipMRT), and the mu parameter of the LATER model. 

The second group was made up of measures of variance: Standard deviation (SDRT) is 

probably the most familiar measure of variability. Due to its squaring of deviations in order to 

obtain uniformly positive values, it gives a somewhat disproportionately high weighting to 

extreme scores. Coefficient of variation (CVRT), defined as SDRT/MRT, is a measure of how 

much variability exists per unit of MRT. Mean Absolute Deviation (MAD) is the mean 

deviation from the MRT, rectified so that opposite signed deviations do not cancel. As MAD 

uses absolute rather than squared values it should be less influenced by extreme values than 

SDRT. Range is simply the difference between the fastest and slowest RT. Interquartile range 

(IQR) is the difference between the first and third quartile of the RT distribution. Sigma is the 

estimated standard deviation of the Gaussian component of the ex-Gaussian distribution. 

Finally the standard deviation of reciprocal RTs (RecipSDRT) and Sigma parameter of the 

LATER model were used. 

The third group consisted of measures of asymmetry and of the size of the right-handed 

tail of the distribution: Skewness is a measure of a distribution's asymmetry. RT distributions 

are generally positively skewed, possibly because RTs are effectively capped at the fast end, 

but largely uncapped in terms of how slow a response can be. Thus a high positive skew is 

indicative of these very slow responses. Tau is the estimated mean and standard deviation of 

the exponential component of the ex-Gaussian distribution. 

The final measure was Kurtosis, a measure of peakedness of a distribution, which 

indexes the extent to which the variance results from infrequent outliers, as opposed to more 

frequent smaller deviations from the average. 
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The three ex-Gaussian parameters were computed using Heathcote, Brown, and 

Cousineau's (2004) quantile maximum probability estimation (QMPE) software, available 

freely from the University of Newcastle Software Repository (http://www.newcl.org/). The 

authors suggest that meaningful parameters can be calculated from as few as 40 observations. 

The NB Ts only had 20 event trials however, and so ex-Gaussian parameters are not 

calculated for these trials. 

The LATER model was fitted using SPIC, a freely available software package 

(Carpenter, 1994; http://www.cudos.ac.uk/spic.htm). As it is inadvisable to fit the LATER 

model using fewer than 100 trials (Carpenter, personal communication), the two LATER 

parameters were only derived for the GNG. 

Pearson's r coefficients were computed between session one and two for each parameter 

in order to estimate test-retest reliability. Pearson's r coefficients were also derived for odd 

and even trials, for session one only, in order to measure instrumental reliability. Due to 

insufficient trials, odd-even reliability coefficients were not computed for NBT event trials on 

any parameter, or for the NBTs or CPT on the ex-Gaussian and LATER parameters. 

In order to assess the extent to which different ISV parameters provided different 

information, correlation matrices were computed for the parameters from the GNG (the task 

with the most trials) R Ts across each occasion. The correlation coefficients were then 

averaged across sessions to obtain a single matrix. 

While comparing the test-retest correlations for tasks with different numbers of trials 

will give some indication of the relationship between reliability and the number of trials used 

to compute a metric, this is a rather indirect measurement of the relationship between number 

of trials and reliability. Monte Carlo approaches represent a far more rigorous method to 

explore this question. We sampled random (with replacement) subsets of trials from each 

participant's performance on the GNG, separately for sessions one and two, derived ISV 

parameters from these trials and computed test-retest correlation coefficients. This was 
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carried out 100 times for each number of trials, which ranged from 10 to 300 in 10 trial 

increments. 

Results 

Test-retest reliability coefficients for the various tasks and parameters can be seen in 

Table 1. The data show that the event trials of the NB Ts exhibited the lowest levels of 

reliability, paiiicularly for the 0BT. This is likely due to the relatively small number of these 

trials (20). In contrast the GNG, which required 254 responses, shows good reliability across 

most measures ofISV. 

Odd-even reliability coefficients are presented in Table 2. Most parameters show very 

good reliability, again especially on the GNG - the task with the most trials - where 

reliability coefficients are mainly at .90 or above. 

Table 3 shows the conelation matrix of the thirteen parameters for the GNG task, 

averaged across sessions. There are substantial correlations between most of the parameters, 

even between parameters that ostensibly measure different moments of the distribution. For 

example, ex-Gaussian tau, generally thought of as a measure of skewness, is extremely highly 

correlated (r=.96) with SDRT, a measure of variance. It appears that some of the most 

reliable ISV parameters (SDRT, MAD, range) are so highly correlated that they are 

essentially redundant with regard to one another. 

Figure 1 shows reliability on the Y-axis graphed against number of trials on the X-axis 

for MRT and SDRT. While MRT begins to reach a plateau after as few as 50 trials, SDRT 

does not reach a comparable plateau until as many as 200 trials, showing that SDRT needs a 

much greater level of data aggregation to achieve adequate reliability than MRT. 
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Table 2. Odd-Even reliabilities for tasks and RT parameters. 
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Table 3. Intercorrelations for RT parameters on the GNG task. 
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Discussion 

The present psychometric study on different metrics of ISV, assessed for six established 

neuropsychological tests with a sample of 65 undergraduate students, yielded the following main 

results. First, given sufficient levels of data aggregation (i.e. based on the GNG task), most 

measures of variability exhibited good to excellent instrumental reliabilities, with odd-even 

correlations reaching as high .95 for MAD, and around the .90 mark for many other parameters. 

Measures of the higher moments of the distribution, namely skewness and kurtosis, however 

exhibited poor levels of reliability. Second, these metrics also showed good test-retest 

reliabilities, reaching as high as .92 for LATER sigma, with most measures surpassing the .80 

mark. Thirdly, most of these metrics showed substantial inter-correlations, reaching the point 

where a number of metrics could be argued to be redundant with one another. This was true for 

metrics that might be expected to be largely statistically interdependent (e.g. SDRT and MAD), 

but, more surprisingly, also true for SDRT and tau, metrics which theoretically measure different 

moments of the RT distribution. 

The key finding of the present study is that metrics of ISV show good test-retest and odd­

even reliability, and are thus suitable for individual differences research. These metrics ofISV 

did vary somewhat in reliability however, and our results suggest that SDRT, CVRT, MAD, the 

ex-Gaussian parameters, and the reciprocal and LATER parameters were the best choices in 

tenns of reliability. These data do however draw attention to the importance of the number of 

trials used to compute such metrics. Our Monte Carlo simulation shows a striking difference 

between MRT and SDRT in the number of trials needed to achieve equivalent reliability. We 

thus encourage researchers utilising measures of ISV to consider using a greater number of trials 

than they would normally use in an RT experiment, as these parameters require a greater number 

of trials than the measures of central tendency which psychologists are used to. 

75 



Another important upshot of the high test-retest reliability ofISV metrics observed in the 

present study is that it provides further evidence that ISV shows trait-like characteristics. This is 

important for the idea ofISV as a suitable topic for differential psychology, but also as a possible 

endophenotype for psychiatric disorders - a key topic in ISV research. These data also suggest 

that ISV is a relatively stable trait in healthy participants, rather than only being a feature of 

pathological states such as psychosis or terminal decline. 

Our data also suggest that the majority ofISV metrics are largely redundant with regard to 

one another. Indeed, even measures that theoretically measure different moments of the RT 

distribution, e.g. SDRT and tau, are highly intercoITelated. This has two important implications. 

Firstly, it may support the idea that the right tail of the distribution is of great theoretical 

importance. Tail RTs may be the source of much of the variance usually attributed to the second 

moment of a distribution, a notion supported by the stronger coITelation between SDRT and tau 

than SDRT and sigma. Secondly, however, a pragmatic case may be made that if the previous 

point is c01Tect, the SDRT or MAD may still be the best choice of parameter for measuring ISV. 

In the light of the high intercoITelation between these measures, a researcher could do worse than 

to choose their parameter based on psychometric reliability, and many of the most reliable 

measures, like SDRT, MAD, and CVRT, were relatively simple variance measures. 

It is however important to address some of the limitations of the present study. It is likely 

that the reliability of RT parameters are somewhat task dependent, and while the battery of tasks 

used includes some of the more common RT paradigms, it is far from exhaustive. The disparity 

in number of trials between the different tasks also makes it difficult to compare the different 

tasks in tenns of their reliability. It is also unclear to what extent these data can be extrapolated 

beyond the group of healthy students investigated here. Further work is necessary to explore 

whether comparable levels of reliability can be found in clinical and developmental populations. 
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In conclusion, it appears that ISV can be reliably measured across occasions. It also appears 

that, due to the high redundancy between many of these measures, psychometric reliability 

should be a key criterion when deciding how to operationalise ISV. These data also make a 

strong claim for the importance of using sufficient trials when studying ISV, as trial numbers 

which have proved adequate in research using first moment parameters may prove inadequate 

when studying the higher moments of the RT distribution. 
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Chapter Seven 

Electrocortical Correlates of Intra-Subject Variability in Reaction Times: 

Average and Single-Trial Analyses 
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Abstract 

Intra-subject variability of reaction times (ISV), long passed over in favour of measures of 

central tendency, has become increasingly important for cognitive neuroscience. Event-related 

potentials (ERPs) have identified an inverse relationship between ISV and P3b amplitude; 

however ERP methods' reliance on averaged waveforms may be unsuitable for studying ISV due 

to potentially distorting effects of latency jitter. The present study investigates the neural bases of 

ISV through single-trial analysis of P3bs in groups with low and high ISV, using Infomax-rotated 

principal components analysis of ERP data. Results indicate that while latency jitter contributes 

to the reduced P3b amplitude seen in average ERPs of high ISV participants, amplitude 

differences exist using a single-trial approach that was robust to such artefacts. A decoupling of 

P3b and RT was also seen in the high ISV group. The results are discussed in the context of the 

P3b's dimensionality, and its possible catecholaminergic underpinnings. 
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Introduction 

Recent years have witnessed a steep increase in research into intra-subject variability 

(ISV), that is, the moment-to-moment fluctuations of behavioural performance, typically assessed 

with the intra-individual standard deviation of reaction times (SDRT). What had been dismissed 

as meaningless noise under the primacy of information theory (Shannon & Weaver 1949) in the 

cognitive sciences, has proved a robust predictor of individual differences in general mental 

abilities (Larson & Alderton, 1990; Schmiedek, Oberauer, Wilhelm, Suess, & Wittmann, 2007); 

psychiatric (Klein, Wendling, Huettner, Ruder, Peper, 2006; Vinogradov, Poole, Willis-Shore, 

Ober, & Shenault, 1998) and neurological health (Burton, Strauss, Hultsch, Moll, & Hunter, 

2006); as well as cognitive aging (Hultsch, MacDonald, & Dixon 2002) and terminal decline 

(MacDonald, Hultsch, & Dixon, 2008). 

However, controversy about ISV's neural underpinnings was apparent even in early 

neuroscientific accounts of individual differences in intelligence. While Eysenck (I 982; also see 

Jensen, 1992) thought of SDRT as an indicator of neural noise: poor fidelity neural transmission, 

possibly related to myelination or synaptic conununication failures, Jensen considered SDRT to 

be a reflection of an "inherent periodicity in the nervous system", related to the refractory period 

of neurons (Jensen 1982), and, as such, a proper signal. Despite this fundamental difference in the 

conceptualisation ofISV, Eysenck and Jensen's theories have two key commonalities. First, in 

relating SDRT to the highly stable trait of general intelligence, both theories assume that ISV is 

itself a trait. Second, in relating ISV to neural noise or neural periodicities, both theories 

conceptualise ISV as reflecting a global property of the nervous system. 

Regarding the trait-like character of SDRT, investigations of individual differences in this 

measure have yielded equivocal results. Despite finding reliability coefficients in the range of .90 

for median RT (MnRT), Jensen (1992) reports mediocre reliability for ISV, with coefficients in 
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the range of .30-.40. More recent work, however, has found rather more encouraging stability of 

ISV. Flehmig, Steinborn, Langner, Scholz, & Westhoff (2007) tested a large sample of healthy 

participants on a battery of multi-modal speeded tasks on two occasions one week apart. They 

found that, although reliability estimates for ISV still trailed those of mean RT (MRT), they 

achieved reliability coefficients in the range of .80. Kuntsi, Stevenson, Oosterlan, and Sonuga­

Barke (2001) also report SDRT reliability data for a stop-signal task. In this study, reliability 

coefficients for SDRT (.74) exceeded those for MRT (.66). Johnson et al. (2008) also find test­

retest correlation coefficients of .75 for ISV on a task measuring sustained attention in healthy 

children. Our own data (see Chapter Six) also suggest promisingly high test-retest coefficients for 

a number of metrics of ISV across a variety of tasks, with reliability estimates as high as .92. 

Interestingly, Rabbitt, Osman, Moore, and Stollery's (2001) findings suggest that some of the 

unreliability of these measures is caused by the variability itself: higher ISV patticipants showed 

poorer test-retest reliability than low ISV participants. 

The limited but growing body of literature into the neural bases of ISV can be grouped 

into anatomical, physiological, and pharmacological evidence (see Kuntsi & Klein, in revision). 

Anatomically, increased ISV has been found following lesions of the prefrontal cortex, but not 

following more posterior lesions (Stuss et al., 2003). A negative correlation has also been 

identified between ISV and white matter volume (Waldhovd & Fjell, 2007), a finding that is 

compatible with Eysenck's conception ofISV as representing noise in neural transmission. 

Physiologically, Bellgrove and colleagues (2004) found that activation in left pre-central, 

right inferior frontal, bilateral middle frontal, right inferior parietal, and thalamic regions was 

positively related to ISV during successful response inhibition in a go no-go task. Simmonds et 

al. (2007) employed a similar approach in 8-12 year-old children, finding that inhibition-related 

activation of the post-central gyrus, anterior supplementary motor area, anterior cerebellum, and 

inferior parietal lobule correlated negatively, while prefrontal cortex and caudate activity 
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correlated positively with ISV. These findings sit well with Stuss et al. 's (2003) anatomical 

findings, suggesting that prefrontal areas are important in maintaining behavioural consistency. 

Phannacologically, ISV appears to by modulated by the catecholaminergic system. 

Increased ISV has been linked to the Val allele of the Catechol-O-methyltransferase gene 

(Stefanis et al. , 2005), a polymorphism that leads to faster metabolising of catecholamines and 

thus weaker catecholamine neuromodulation. Reduced RT variability under methylphenidate is 

another frequently reported finding (Spencer et al., 2009, Heiser et al., 2004; Teicher, Lowen, 

Polcari, Foley, & McGreenery, 2004) suggesting catecholamine involvement in detem1ining ISV. 

ISV has also been linked to dopaminergic activity by MacDonald, Cervenka, Parde, Nyberg, and 

Backman (2009) who used PET in 16 healthy adults. ISV was inversely related to D2 receptor 

binding in the anterior cingulate, hippocampus and orbitofrontal cortex, but not the striatum, 

suggesting the involvement of extra-striatal dopaminergic neurotransmission in the modulation of 

rsv. 

Computational models of catecholamine function (Li, Lindenberger, & Frensch, 2000; 

Usher, Cohen, Servan-Schreiber, Rajkowski, & Aston-Jones, 1999), as well as invasive 

electrophysiology (Aston-Jones, Rajkowski, Kubiak, & Alexinsky, 1994), suggest that one role 

of catecholamines is to modulate signal-to-noise ratio, a finding that links back to the idea ofISV 

as neural noise. Interestingly, said studies also find that decreased phasic catecholamine action 

can lead to increased output variability. 

Not all phannacological effects on ISV directly involve catecholamines however. Pouget 

et al. (2009) injected GABAergic agonists and antagonists into the dorsolateral prefrontal cortex 

(DLPFC) of monkeys performing a pro-saccade task. While the agonist, muscimol, had no effect 

on ISV or the auto-correlational structure of the RT series, the antagonist, bicuculline, resulted in 

the increased occurrence of slow RTs, reducing RT auto-correlations up to lag 6. These effects 

appeared to be specific to the DLPFC and could not be replicated by injecting bicuculline into VI 
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or subcortical structures. 

While the previously cited studies identify brain systems, such as the prefrontal cortices 

and catecholaminergic system, that appear to have a role in regulating behavioural variability, 

none of these studies established direct and functionally relevant intra-individual brain-behaviour 

relationships in humans. Given that reaction times only vary in the range of a few hundred 

milliseconds, only neurophysiological techniques that have an equivalent temporal resolution can 

identify such direct brain-behaviour relationships (Gerson, Parra, & Sadja, 2005). While we are 

not aware of any magneto-encephalographic study on ISV, there are, to our knowledge, three 

studies that exploited the high temporal resolution of electroencephalography (EEG) in the 

investigation of ISV. Segalowitz, Dywan, and Unsal (1997) analyzed ERP components in head 

injury patients who performed two tasks: a two-stimulus auditory oddball and an S 1-S2 cuing 

task. They found that P3 and contingent negative variation (CNV) amplitude (in the oddball task 

and cuing task respectively) explained 83% of the ISV variance in their sample of head injury 

patients, with reduced amplitudes associated with high ISV. However, maybe due to the 

restriction of the range of variability in the control sample, no such relationship was found in the 

healthy control group. Gerson et al. (2005) employed a rapid serial visual presentation paradigm 

and found that a component in the P3 time-range best predicted RT. This study, however, did not 

focus on individual differences in ISV, focussing more on the functional significance of the P3. 

Finally, Di Russo and Spinelli (2010) investigated the neuropsychological deficits arising from 

chronic brain trauma in boxers, as compared to non-athletic and fencing control groups. They 

found reduced P3 amplitude, P3 latency delay, and increased ISV in the boxer group, relative to 

both control groups. 

These findings suggest that the P3b is an important ERP component for ISV research. The 

P3b, a late parietal component, has been suggested to reflect a primarily ' strategic' context 

updating process (Donchin, 1981 ), but this view is controversial, with Verleger, Jaskowsi, and 
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Wascher (2005) suggesting a more 'tactical' role for the P3b in reflecting response selection. 

Somewhat intennediate views suggest that the P3b is made up of separate subcomponents 

representing stimulus evaluation and response selection (Pritchard, Houlihan, & Robinson, 1999), 

although this position is itself disputed (Dien, Spencer, & Donchin, 2004). 

More recent models have taken a different approach to explaining the P3b, with 

Nieuwenhuis, Aston-Jones, and Cohen (2005) suggesting that the P3b reflects the proliferation of 

a decision signal originating in the locus coeruleus, the origin of the noradrenergic system. This 

explicit link between the P3b and a major catecholaminergic system is particularly interesting in 

this context, due to the apparent influence of catecholamines on ISV and signal-to-noise ratio in 

neural communication. 

While the above findings suggest that the P3b provides a promising area for the study of 

ISV, there are features of the P3b that raise practical problems for such an approach. The P3b is 

an unusual component in that it appears, to similar degrees (Verleger, Jaskowsi, & Wascher, 

2005), in both stimulus- and response-locked average ERPs presumably because the P3b 

represents a process intermediate between stimulus processing and response planning, and is 

dependent on some but not all of the factors that determine RT (Kutas, McCarthy, & Donchin, 

1977). As the P3b shows significant response-locking, this suggests that participants with 

increased ISV may show greater variability of P3b latency. Such increased latency variability, or 

latency jitter, presents problems for standard average ERP approaches, as latency jitter can distort 

not only measures of latency, but also of amplitude and morphology (see Spencer, 2005). This 

raises the possibility that the apparent relationship between P3b amplitude and ISV could be an 

artefact of a relationship between ISV and latency jitter. For this reason, this study will employ a 

single-trial approach to ERP analysis. 

Based on these considerations, the present study aims at investigating the 

neurophysiological basis of ISV in a two-fold manner. First, considering ISV as a behavioural 
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trait we investigate the electro-cortical correlates of this trait, hypothesising that highly 

behaviourally variable as opposed to relatively stable participants will exhibit reduced P3b 

amplitudes that will be robust to control of the increased P3b peak latency jitter that we expect to 

see in high ISV participants, relative to that of the low scorers. Second, considering behavioural 

variability as an emergent feature of dynamic brain systems, potentially involv ing 

catecholaminergic fronto-striata\ systems and linked to neural noise, we investigate these intra­

individual brain-behaviour relationships by linking the catecholaminergically sensitive single­

trial P 3bs to RT on a trial-by-trial basis. 

Methodology 

Ethical approval was obtained from the School of Psychology ethics and research 

governance committee at Bangor University. 

Participants 

Participant recruitment was accomplished on the basis of the procedure described in 

Chapter Six, in which a sample of 87 students performed a battery of neuropsychological tasks on 

two occasions one week apart. Participants were recruited for the present study on the basis of 

having particularly high or low ISV, quantified using standard deviations of reaction times 

(SDRT), for a visual 1-Back Task (lBT; see below) on both sessions of behavioural screening. 

Participants were ranked in order of SDRT and were invited on the basis of this list. Those with 

the highest SDRT fonned the high-scorer group and those with the lowest SDRT formed the low­

scorer group. Participants were excluded if they had any psychiatric or neurological diagnoses (1 

with multiple sclerosis, 1 with epilepsy, both were high scorers), if their SDRT in the present task 

fell into the opposite group's range (1 high scorer, 2 low scorers), or if their EEG data contained 
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too many artefacts to compute averages (1 high scorer, 1 low scorer). This left 13 high scorers 

(mean age: 22.9 ± 3.5 years, 5 males, 1 left-handed) and 13 low scorers (mean age: 20.8 ± 2.2 

years, 6 males, 3 left-handed). Table 1 summarises each group's performance on the screening 

tasks. All participants gave written infom1ed consent to participate after being fully briefed on the 

study. 

Group RTSD Pretest 1 RTSD Pretest 2 

Mean SD Min Max Mean SD Min Max 

Low Scorers 75.86 13.98 50.06 100.02 62.49 13.92 41 .71 86.55 

High Scorers 167.88 51.35 116.32 274.12 170.59 52.51 112.39 331.57 

Table 1. Reaction time standard deviations for both groups on screening phase. 

Apparatus and Materials 

Stimuli were presented on a 17" monitor (with a copper-shielded power unit), connected 

to a stimulation PC running E-Prime V. 1.2 (Psychology Software Tools, USA). EEG activity 

was recorded with a sampling rate of 500Hz and a low pass filter of 250Hz, using 63 Ag/ AgCl 

electrodes (Falk Minow, Munich) of the international 10-10 system (American 

Electroencephalographic Society, 1991) attached over both hemispheres, with Cz as the recording 

reference, AFz as ground, as well as two infra-orbital electrodes for a total of 65 electrodes. 

Impendences were reduced to < 5kQ and electrodes were connected to two BrainAmp DC 

amplifiers (0.1 µv resolution, Brain Products Ge1many), which were connected to a recording PC 

running Brain Vision Recorder (Brain Products, Germany). Data were collected inside a sound­

attenuated Faraday cage. 
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Stimuli and Procedure 

Participants performed a 1-back working memory task. Here, participants watched a 

series of letters appear on the screen, responding to each with a left-handed key press unless a 

letter matched the preceding letter, in which case they responded with a right-handed key press. 

Non-repeated letters (80% of trials) will be called "non-events" and repeated letters (20% of 

trials) will be called "events". Participants were asked to respond as quickly and as accurately as 

possible. 

Stimuli were white letters in Arial typeface (visual angle approx. 3°), presented on a black 

background. Stimulus duration was 500ms and stimulus-onset asynchrony was 2,000ms. The 

experiment was divided into ten blocks, each containing 150 pseudo-randomly fixed-ordered 

trials, for a total of 1,500 trials, plus 20 practice trials given before the first block. Participants 

were given a ten-minute break after the fifth block. 

Data Analysis 

EEG analysis was primarily carried out using Brain Vision Analyzer (Version 2.0, Brain 

Products, Germany) while Dien's ERP-PCA toolkit (Dien, 2009) was used for the principal 

components analysis. Due to the complexity and number of processing steps, the analysis is 

summarised in Table 2 below. 

Data were average referenced and 0.1-50.0Hz filtered with symmetrical 24dB per octave 

slopes. Any data contaminated by direct cun-ent offset corTections made during recording were 

rejected before an Infomax independent component analysis, trained on 200s of data starting 

from 100s into each dataset, was applied to the data. Components representing eye activity, 

heartbeats, muscle activity, movement a1tefacts, or bad channels were removed before back­

projection (Jung et al., 2000). 
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Process Details 

1 Compute average ERPs Raw data preprocessed and stimulus-locked and 

response-locked average ERPs derived. 

2 lnfomax-PCA PCA with Infomax rotation applied to 

concatenated stimulus-locked averages, to identify 

e lectrode weightings for P3b factor. 

3 Single-trial analyses Single-trial P3bs identified for P3b factor. 

Medians and SDs, of amp. & lat., and correlation 

coefficients with RT for amp. and lat., calculated 

for each partic ipant. This process conducted 

separately for stimulus- locked and response-

locked P3bs. 

Table 2. Summary of analysis steps. 

Any sections of data where amplitude still ranged by more than l00µv , or less than 0.5µv, 

within 200ms were marked as bad. The data were then filtered 0.5-4Hz, and data for event trials 

were initially segmented into stimulus-locked epochs of 1300ms pre-stimulus to l 650ms post­

stimulus, with the period between -600 and -400ms in each epoch used as a baseline. Epochs 

containing any data marked as bad, those based around an incorrect response, or those where the 

response was faster than 120ms or slower than 1400ms were discarded. Separate stimulus-locked 

and response-locked segments were then cut from the initial segments, so that the baseline would 

be the same for stimulus and response-locked segments. The stimulus-locked segments ranged 

from -600 to 1400ms, relative to stimulus-onset, while the response-locked segments ranged from 
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-1400 to 600ms, relative to response. Trials that featured only as stimulus or response-locked 

segments, but not both, were removed so that analyses were canied out on the same trials. 

Conventional average ERPs were first derived by separately averaging stimulus-locked 

and response-locked trials. The individual average P3b peaks were defined as the maximum 

positive voltage between 250 and 750ms post-stimulus, while average P3b peaks were defined as 

the maximum positive voltage between 250ms pre-response and 250ms post-reponse. Latency 

and amplitude (measured as the mean amplitude of a 20ms window centred on the peak) 

measurements were obtained for each participant at channels Cz, CPz, Pz, and POz. Separate 

latency and amplitude measurements were made for stimulus and response-locked averages (Step 

1 in Table 2). 

The data were then prepared for single-trial analysis. Due to volume conduction, recorded 

EEG represents a mixture of signals originating from all over the brain. This activity includes not 

only the evoked activity that is the subject of most ERP research, but also spontaneous EEG, 

muscle activity, eye movements, and all manner of miscellaneous electrical noise. This means 

that the signal-to-noise ratio of single-trial ERPs is generally very poor. While this problem has 

been traditionally overcome by averaging activity from single electrodes that is time-locked to a 

certain event, this approach is obviously unsuitable for single-trial analysis. Instead of 

aggregating information across trials, we sought to integrate infom1ation across electrodes, and 

measure activity that is closer to the underlying EEG sources. 

A statistical signal processing approach that has shown promising results for isolating 

independent sources of activity in EEG data is the Infomax algoritlun (Bell & Sejnowski, 

1995).The Infomax linearly transforms recorded channels into maximally independent factors5 of 

Whi le the term components is generally used to refer to the latent variables derived from Infomax rotation, 

we will follow Dien et al's (2007) lead and use the term factors, to avoid confusion with the standard meaning of the 
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the data. This essentially operates as a principal components analysis (PCA) rotation, although it 

is not necessary to carry out a PCA before applying the algorithm. Unlike more conventional 

PCA rotations however, the Infomax does not optimise the amount of variance explained, but 

rather optimises the statistical independence of the data. 

While it is perfectly legitimate to apply the lnfomax to raw data, we decided to use PCA 

as a pre-processing step (Dien, Khoe, & Mangun, 2007). This decision was made for several 

reasons. Firstly, as Eichele et al. (2008) point out, the Infornax is not best suited for deriving 

general factors across participants, but rather is generally used on a participant-by-participant 

basis to identify 'bespoke' sets of factors. Employing a PCA beforehand allows the Infomax to 

operate on the data in factor space, rather than electrode space, allowing the same factors to be 

identified for the whole group. Secondly, where more ' traditional' PCA rotations, such as the 

Prom ax, tends to err on the side of parsimony, the Info max will tend to separate factors wherever 

it can. Thus where the Promax runs the risk of conflating genuinely separate factors, the lnfomax 

runs the risk of 'over-splitting' factors (Dien et al., 2007). Sarela and Vigario (2000) suggest 

PCA as a possible pre-processing step for dimensionality reduction where over-splitting may 

occur, and we also used PCA for this reason. 

Stimulus-locked participant averages were concatenated before a spatial PCA was run on 

the data using Dien's ERP-PCA toolkit (Dien, 2009). Based on a parallel Scree test (Horn, 1965), 

seven factors were extracted and rotated using the lnfomax algorithm. Figure 1 shows factor 

topographies, with the depth of colour representing the strength of the weighting of each 

electrode given by the factor pattern matrix. Only factor 1 shows a clear P3b topography and so 

all further analyses are based upon this factor (Step 2 in Table 2). 

word component in ERP research 
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Fig. l. Topographic maps oflnfomax rotated factors. Depth of colow- represents strength of 
weighting at each electrode with positive weightings in green and negative weightings in black 
(Lambda =0.0001). 

The factor pattern matrix for factor 1 was then applied to the singl.e-trial data. This 

transforms the data from the electrode space to factor space, with the amplitude at each timepoint 

now representing a linear sum of the voltage of all 65 electrodes, weighted by the loadings of the 

factor matrix. P3b peaks were then picked for each trial, defined as the time-point with the 

maximum voltage (the Infomax rotation renders polarity arbitrary, so the decision of whether to 

pick positive or negative voltages was based upon the direction of the P3b in the average ERP for 

factor 1) between 250 and 750ms post-stimulus. Latency and amplitude information for each trial 

were recorded and used to create 'jitter-free' amplitude and latency measurements (median 

single-trial amplitude and latency), as well as measurements of amplitude and latency variability 

(intra-participant standard deviation of amplitude and latency). The relationship between single­

trial ERP parameters and RT was measured by computing within-participant Pearson' s 

correlation coefficients between RT and peak latency and amplitude. 
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In order to assess whether any potential group differences in latency jitter could be 

explained purely by response-locking of the P3b, the factor pattern matrix was also applied to the 

response-locked segments, and peaks were picked from 250ms pre-response to 250ms post­

response. Analogous measures to the stimulus-lock single-trial analysis were derived, with 

latency in this case being relative to response rather than stimulus onset (Step 3 on Table 2). 

Inferential statistics 

SPSS version 16.0 (SPSS Inc., USA) was used to conduct inferential statistics on the data. 

A repeated measures ANOV A was carried out for the behavioural variables, GROUP was the 

between-participants factor, TRIAL TYPE was the within-participants variable, and MRT, MnRT, 

SDRT, coefficient of variation in reaction times (CVRT = SDRT/MRT) and accuracy (correct 

trials/total trials) were the dependent variables. This analysis was then rerun as an ANCOVA, 

with SDRT and CVRT as dependent variables and MnRT as a covariate, in order to confirm that 

the differences in ISV were not dependent on MnRT. 

A repeated measures ANOV A was run on the traditional averaged ERPs, with GROUP as 

the between-participants factor, LOCKING (stimulus and response) ELECTRODE (Cz, CPz, Pz, 

and POz) as within-participants factors, and P3 amplitude and latency as dependent variables. 

Greenhouse-Geisser correction was used where appropriate. 

A MANOV A was run on the single-trial ERP data, with GROUP as a between-participants 

factor and medians and standard deviations of latency and amplitude, intra-participant Pearson's 

correlation coefficients between RT and latency, and RT and amplitude; and finally the number 

of trials used in each STA as dependent variables. Separate versions of each variable were 

included for stimulus and response-locked data. 
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In order to avoid an increased risk of Type I Errors stemming from multiple comparisons, 

the Holm-Bonferroni procedure (Holm, 1979) was used to modify the significance criterion. 

Results 

Behavioural data 

Low Hi h 

Event Non-event Event Non-event 

Accuracy 0.73 ± .125 0.97 ± .007 0.74±.153 0.97 ± .009 

MRT 413 ± 29 341 ± 29 555 ± 105 463 ± 134 

SDRT 69 ± 17 71 ± 14 121 ± 31 124 ± 22 

CVRT .16 ± .04 .21 ± .04 .22 ± .04 .27 ± .04 

Table 3. Descriptive statistics for behavioural data. 

As Table 3 shows, high-scorers responded significantly slower (MRT: F(l ,24)=15.576, 

p=.001 , h/=.394; MnRT: F{l ,24>=10.526,p=.003, h/=.305) and more variably (SDRT: 

F c1,24i=53.923, p<.001, h/ =.692; CVRT: F(l ,24)=20.357, p<.001 , h/=.459) than low-scorers, 

confirming that the groups were distinct in terms of ISV. There were no significant differences 

between groups on accuracy (F(l ,24)= .033,p = .857, h/=.001). Both groups were significantly 

slower (Fc1,24i=100.469,p<.001, h/=.807) and less accurate (F(l,24J=72.845,p<.001 , h/=.752) for 

events than non-events. TRIAL TYPE had no effect on SDRT (F<l), but CVRT was significantly 

higher for non-events than events (F(l ,24i=24.600,p <.001, h/=.506). No behavioural variables 

showed significant GROUP x TRIAL TYPE interactions. 

Group differences remained highly significant for both variables after controlling for 

MnRT with the ANCOVA (SDRT: F c1 ,23J=30.298,p<.001, b/ =.568; CVRT: F(l,23)=27.361, 

p<.001 , h/=.543), confinning that there were genuine differences in ISV between groups that 

were not attributable to MnRT. 
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Electroencephalographic data 

Figures 2 and 3 respectively show the traditional average stimulus-locked and response­

locked waveforms for each group at all four electrodes, as well as topography maps. P3b 

amplitudes were greater for low scorers and maximal at Pz for both sets of averages. Table 4, 

displaying descriptive statistics for the average P3bs, confirms these findings. The ANOV A for 

the average ERPs found a significant effect of GROUP on amplitude (Fc1,24)= l l. l 03, p =.003, 

h/=.316), but not latency (F(l,24)=1.320, p=.262, h/=.052). 
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Fig. 2. Standard stimulus-locked P3bs for low and high scorers. 
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Fig. 3. Standard response-locked P3bs for low and high scorers 

Low 

Stimulus-locked Latency (ms) 396 ± 35 

Cz Voltage (µv) 5.94 ± 2.78 

Response-locked 
Latency (ms) .9 ± 29 

Voltage (µv) 6.95 ± 3.01 

Stimulus-locked Latency (ms) 396 ± 35 

CPz Voltage (µv) 8.03 ± 3.18 

Response-locked Latency (ms) .9 ± 29 

Voltage (µv) 8.96 ± 3.62 

Stimulus-locked Latency (ms) 396 ± 35 

Pz Voltage (µv) 9.23 ± 3.62 

Response-locked Latency (ms) -9 ± 29 

Voltage (µv) 9.67 ± 3.91 

Stimulus-locked Latency (ms) 396± 35 

POz Voltage (µv) 7.36 ± 3.86 

Response-locked 
Latency (ms) .9 ± 29 

Voltage (µv) 7.35 ± 3.86 

Table 4. Descriptive statistics for traditional averaged P3bs. 

\OµV 

\OµV 

10 µV 

10µV 

Hi h 

437 ± 125 

2.58 ± 2.48 

.54 ± 89 

2.80 ± 3.28 
437 ± 125 

4.62 ± 3.35 

.54 ± 89 

5.01 ± 3.83 

437 ± 125 

5.12 ± 3.15 
.54 ± 89 

5.36 ± 3.63 

437 ± 125 

3.71 ± 3.05 
.54 ± 89 

3.67 ± 3.36 

Figure 4 shows the grand average waveforms for each group on factor 1. The top 

waveform presents a standard stimulus-locked average, the middle waveform presents a latency­

adjusted average - where trials were time-locked to peak amplitude before averaging, and the 
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bottom waveform represents a response-locked average. The stimulus-locked and response­

locked averages (top and bottom respectively) show what appears to be a group amplitude 

difference, but the apparently increased P3b duration in high scorers could be indicative of 

distortion caused by latency jitter. The latency-adjusted average (middle) suggests, however, that 

this amplitude difference is not just an artefact of latency jitter. 
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Fig. 4. Stimulus-locked, latency-adjusted, and response-locked group average waveforms for 
factor 1. Amplitudes represent the sum of voltage at all electrodes, weighted by the factor pattern 
matrix 

The inferential statistics for the single-trial analysis found group effects on median 

latency, with shorter latencies for low scorers (F(l ,z4J=4.5 l 8, p=.044, h/ =.158); median amplitude, 

with larger amplitudes for low scorers (F(l ,Z4)=5.082, p=.034, hp 2=. 175); standard deviation of 

latency, with greater latency jitter in high scorers (F(l ,24)=13.411, p=.001, h/=.358); and 

amplitude variability, with the unexpected finding of increased variability in low scorers 

(F(l ,24)=4,865,p=.037, hp2=.169). 
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There was also a medium to large correlation between P3b latency and RT in low scorers 

(average correlation=.34) but only a weak correlation between these variables in high scorers 

(.16), a group difference which reached statistical significance (F(t,24)=4. 796, p=.038, h/=.167). 

Coefficients between P3b amplitude and RT, however, were close to zero for both groups, and as 

such no group differences were found (F<l).6 

Results for the response-locked data were similar to stimulus-locked results (see Table 5). 

Interestingly the increased standard deviation of P3b latency seen in the stimulus-locked data of 

the high ISV group was also found in the response-locked data (F(l ,24i=14.607, p=.001, h/=.378). 

Correlations between response-locked P3b latency and RT were slightly higher for low scorers 

(average co1Telation=.12) than high scorers (.04), but this difference did not reach significance. 

P3b amplitude and RT were again weakly associated in both groups. Finally, there were no 

differences between groups in terms of the number of trials used (F< 1 ), suggesting comparable 

signal-to-noise ratio. Descriptive statistics for stimulus-locked and response-locked single-trial 

data can be found in Tables 4 and 5 respectively. 

Discussion 

To our knowledge, the present study is the first to identify differences in ERPs between 

healthy participants grouped on the basis of temporally stable individual differences in reaction 

time variability. Significantly increased P3b latency jitter was seen in participants with high ISV 

6 As the range which we picked P3bs from was from 250-750ms, and high scorers would have a greater number of 

RTs after 750ms, this could be seen as placing an artificial limit of the strength of the correlation coeffic ients 

between RT and P3b latency in high scorers. In order to assess the impact of this, we recomputed correlations after 

removing trials where RTs were longer than 750ms. This only increased high scorer coefficients from .16 to .18, 

suggesting that the group difference is not merely an artefact of peak picking range. 
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compared to those with low ISV. Despite rigorous measures to control for the confounding 

effects of latency jitter, significant differences between high and low ISV participants in 

amplitude were found in the P3 time range for several latent variables within the data. Our 

findings extend work by Segalowitz et al. ( 1997), showing that a relationship between ISV and 

P3b amplitude can be found in healthy patticipants, and that such a relationship, while 

exaggerated by latency jitter distortion, is not merely an artefact of it. Reduced correlation 

coefficients were also found between RT and P3b latency in the high ISV group, compared to 

low ISV participants. No systematic relationship was seen in either group between RT and P3b 

amplitude however. This discussion will examine what these results suggest about the neural 

correlates ofISV, and evaluate the strengths and weakness of our methodology. 

What can we infer about the neural correlates of ISV? 

The data show reduced amplitude of P3b in high ISV participants, even when controlling 

for latency jitter with the single-trial analysis. One explanation for this comes from computational 

models of catecholaminergic modulation of signal-to-noise ratio in neural networks. Li et al. 's 

(2000) model of catecholamine function found that by reducing catecholamine activity, modelled 

as a gain parameter, output became more variable, possibly analogous to an increase in ISV, and 

within-network variability also increased. Usher et al. (1999) similarly found that in order to 

mimic empirical findings with their model of noradrenergic attention it was necessary to simulate 

electrotonic coupling, thereby increasing spatial coherence. These findings become important 

when we consider than the P3b, like all EEG measureable at the scalp, is generated by the 

synchronised firing of thousands of cortical macrocolumns. Simulations, such as Nunez and 

Srinivasan' s (2006), show that a key determinant of the scalp potential amplitude is the degree of 

spatial aggregation; holding the overall level of activity constant and varying the degree of spatial 
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coherence has dramatic effects on scalp amplitude. Taken together, the putative increase in 

within-system variability and the dependence of ERP amplitude on spatial coherence could well 

explain the reduced P3b amplitude seen in the high ISV group. 

Another possibility is that high scorers found the task more difficult than low scorers. 

There is evidence that P3 amplitude is reduced by increasing task difficulty (Comerchero & 

Polich, 1999), increasing working memory load (Watter, Geffen & Geffen, 2001), and by 

introducing concurrent tasks (Nash & Fernandez, 1996). Johnson (1986) links these effects to 

attention allocation and equivocation, an information theoretic concept measuring the fidelity of 

information transfer. While we did not directly manipulate task load or difficulty in the present 

study, our grouping strategy may have had this effect implicitly. It is, however, important to note 

that P3 reduction as a result of poor information transfer is generally found when task difficulty is 

increased enough to impact performance (Comerchero & Polich, 1999), whereas the present 

study found differences in the absence of accuracy differences. 

A final explanation, similar to the first account but on a higher scale, is that the apparent 

fall in P3b amplitude is best viewed as a decoupling of stimulus and response-related 

subcomponents of the P3. It has been hypothesised that the P3b is composed of separate 

'subroutines', some related to stimulus-evaluation and others related to response-selection 

(Falkenstein, Hohnsbein, & Hoom1ann, 1994). When ISV is high, these subcomponents may 

overlap less than usual, and due to the presumably similarly positioned and aligned dipoles that 

putatively underpin these subcomponents, this may result in an apparent fall in amplitude. 

No less important is our finding that variability of P3b latency is increased for high 

scorers in both stimulus and response-locked single-trial analyses. Indeed the effect size 

(h/=.358) was comparable to that found between the ISV scores of ADHD patients and controls 

by Klein et al. (2006). If ISV affected only stimulus evaluation, we might expect to see increased 

latency jitter in stimulus-locked P3bs alone. If, on the other hand, ISV affected only response 
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selection, we might expect to just see increased latency jitter in response-locked P3bs. Finding 

increased jitter in both suggests that individual differences that modulate ISV affect both 

stimulus-evaluation and response-selection processes. This pattern of results may suggest that 

ISV is determined by a fairly global property of the nervous system, such as neuromodulation, as 

suggested above, or myelination (Walhovd & Fjell, 2007). 

Another interesting finding, potentially related to the previous one was the group 

difference in the strength of the correlation between P3b latency and RT. While low scorers 

showed a robust relationship between P3b latency and RT with medium-to-large effect sizes, 

suggesting functional significance of P3b latency, this relationship was far weaker in high scorers. 

This finding, taken together with the finding of increased latency jitter in stimulus and response­

locked P3bs, is suggestive of a global increase in neural noise. An increase in noise in either 

stimulus evaluation or response selection alone could not have led to our latency jitter findings, 

while general fluctuations affecting both processes equally would be inconsistent with the 

reduced high scorer correlation coefficients. 

Finally our data revealed an unhypothesised greater P3b amplitude variability in low 

scorers. This could fit with work by McIntosh et al. (2008), who found a negative correlation 

between behavioural ISV and multiscale entropy and dimensionality in EEG activity, measures 

which could also be viewed as reflecting increased amplitude variability. This raises interesting 

questions on the role of neural variability in promoting higher order stability in behaviour. That 

said, the lack of correlation between P3b amplitude and RT casts doubt on the functional 

significance of P3b amplitude in determining RT. 
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What were the strengths and weaknesses of the methodology? 

The present study employed a PCA and filter-based approach to denoising the data for 

single-trial analysis. We feel that this analytic strategy distinguished between latency and 

amplitude effects that were confounded in the traditional average ERPs. That being said, there 

remain details of our approach that warrant further evaluation. 

Chief among these is our decision to carry out the PCA on average ERPs, rather than on 

single-trial data. We justify this as a more conservative strategy than applying PCA to single-trial 

data, an approach which has not been veiified by the literature. It is however, important to 

acknowledge the assumption that is implicit in basing our spatial filters on averaged wavefon11S, 

namely that the single-trial topography of the ERPs of interest is captured by the average 

waveform. We would argue that while potentially interesting induced activity would presumably 

be poorly characterised by time-domain average ERPs, the P3b is an evoked component and its 

topography in average ERPs should at least be a good approximation of its topography in single 

trials. 

A second important feature of our analysis was that a single set of spatial filters was 

derived for all participants. A case can be made for carrying out separate PCAs for the two 

groups, or even for each individual participant, as these 'bespoke' spatial filters would 

presumably be an optimal fit for each group or participant's data. Equating the factors derived 

from such an approach across groups and participants would however be fraught with ambiguity 

and the ' one-size-fits-all' approach was chosen on the grounds of clarity, interpretability, and 

ease of comparison between groups. 

Finally, drawing a link between ISV, its electro-cortical correlates and one of the best 

established cognitive correlates ofISV, psychometric intelligence (e.g., Schmiedek et al., 2007) 

would have provided another approach to the neural basis of human intelligence. This attempt 
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was not undertaken, however, as our participant sample comprised of samples of highly pre­

selected and rather IQ-homogeneous university students, and because the participants tested here 

already participated in a rather demanding series of three testing sessions. 

Conclusion 

Measuring the ERPs of participants who, by definition, show unusually high variability in 

the timing of cognitive processes is something of a technical challenge, as most ERP techniques 

assume strong time-locking of cognition to stimulus or response. We controlled for this by 

conducting a PCA-denoised single-trial analysis to obtain 'jitter-free' amplitude measurements, 

as well as estimates of latency jitter. High ISV was found to be associated with not only increased 

latency jitter, but also reduced amplitude of a factor with P3b topography. These findings are 

consistent with the idea ofISV as a measure of noise in neural processing. We believe this paper 

makes a strong case for implementing single-trial analyses, not just in studies ofISV, but also in 

ERP studies comparing populations where ISV has been shown to be elevated (ADHD, 

schizophrenia, older adults etc.) to controls. 
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Chapter Eight 

On the Unity of Variability: 

Structuring Individual Differences in Intra-Subject Variability of Reaction Times Across 

Cognitive Tasks and Sensory Modalities 
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Abstract 

While most reaction time research uses measures of central tendency (e.g. means, 

medians), there is evidence that intra-subject variability ofreaction times (ISV) has the potential 

to reveal additional infonnation about neural processing. While most research has assumed that 

ISV is a relatively unitary construct, this assumption has not been extensively tested. This study 

employed a factor analytic approach to assess the validity of this assumption. Seventy-one 

participants carried out visual and auditory versions of simple and choice reaction time tasks. A 

single factor explained the majority of the variance in ISV, suggesting that ISV was largely 

unitary, with only minor secondary factors dividing auditory and visual tasks, and explaining 

additional variance in simple reaction times. The present study suggests that while the source of 

individual differences in ISV may interact with the brain's sensory systems, it should be 

investigated primarily at a supra-modal level. 
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Introduction 

While the study of inter-individual differences has been key to empirical psychology ever 

since Galton (1869/1881) and Stern's (1911) seminal publications, the systematic investigation of 

intra-individual variability has proven less popular, despite programmatic suggestions (Fiske & 

Rice, 1955) and recurrent calls to focus on the subject (e.g., Jensen 1992). This neglect is 

possibly a consequence of the long tradition in empirical psychology of focussing on the central 

tendencies of behavioural measures such as reaction times (RTs; Posner, 1978) which considers 

within-person variability in RTs as noise that is unrelated to the phenomena under investigation. 

Time and again, however, psychological theorists have emphasised that RTs carry meaningful 

infonnation in addition to what is conveyed by measures of central tendency such as arithmetic 

mean or median (henceforth collectively called AvRT), and that intra-subject variability of 

reaction times (ISV), measuring inconsistency in performance across time, may reflect important 

cognitive and neural processes underlying RTs (e.g., Jensen, 1992). 

Indeed, outside the domain of traditional experimental research, ISV has recently become 

a key topic. Increased ISV, relative to controls, has been found in a number of psychiatric 

disorders, including attention deficit hyperactivity disorder (ADHD; Klein, Wendling, Buettner, 

Ruder, & Peper, 2006), schizopluenia (Vinogradov, Poole Willis-Shore, Ober, & Shenault, 1998) 

and Alzheimer's dementia (Burton, Strauss, Hultsch, Moll, & Hunter, 2006). Its importance has 

been demonstrated in relation to a variety of cognitive constructs such as IQ (Larson & Alderton, 

1990), working memory (Schmiedek, Oberauer, Wilhelm, Su~, & Wittmann, 2007), and 

executive function (Unsworth, Redick, Lakey, & Young, 2009). ISV is also a key area in 

gerontologic research, where it is thought to be a marker of cognitive ageing (Hultsch, 

MacDonald, & Dixon, 2002; MacDonald, Nyberg, Sandblom, Fischer, & Backman, 2008) and 
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even a predictor of impending death in longitudinal designs (MacDonald, Hultsch, & Dixon, 

2008). 

Sceptics might suggest that increased ISV in low IQ, psychiatric disorders, and cognitive 

ageing is merely an artefact of increased AvRT, and thus at best of secondary interest. The 

evidence suggests otherwise. Jensen (1992) carried out a principal components analysis (PCA) on 

RT data. He found that while the largest component included the variance shared by MnRT and 

SDRT, the second largest showed bipolar loading on these variables, suggesting that they 

measure correlated but independent constructs. This second component loaded more heavily on 

SDRT than MnRT, suggesting that SDRT was capturing additional variance. Jensen (1992) and 

Klein et al. (2006) argue that differences in ISV drive differences in Av RT. Due to RTs being 

capped at the fast end of the distribution by physiological constraints but largely uncapped at the 

slow end, an increase in variability can lead to an increase in AvRT, but not vice versa. 

Furthermore, it appears that individual differences in RTs are much larger in the tail of the RT 

distribution than in the faster end (Unsworth et al., 2009). Measures of dispersion, such as the 

standard deviation, are inherently more sensitive to extreme scores than measures of central 

tendency and thus such measures better represent these tail RTs. 

There is, however, a lack of consensus on whether ISV represents a unitary construct or 

not. Are individual differences in ISV caused largely by a single factor, or several separable 

factors? Is ISV a global property of the central nervous system, or is it local to specific networks? 

A number of neuroscientific models ofISV: myelination (Jensen, 1992; Russell et al., 2006), 

Signal-to-noise ratio (Li, Lindenberger, & Frensch, 2000), and default mode interference 

(Sonuga-Barke & Castellanos, 2007) accounts; assume fairly unitary causes ofISV, implying that 

the construct has a certain general unity. In contrast, several articles from the aging and head 

injury literatures have argued explicitly that ISV is not unitary (Stuss, Pogue, Buckle, & Bandar, 

1994; Shammi, Bosman, & Stuss, 1998; & Strauss, MacDonald, Hunter, Moll, & Hultsch, 2002). 
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While much of this disagreement may stem from different operational definitions of ISV - all 

three papers look at variability across occasion, as well as or instead of within occasion, while 

other areas of the ISV literature tend to focus on within occasion - it remains an open question. 

The issue ofISV's unity, or lack thereof, is a question well suited for psychometric approaches, 

but there has been a paucity of studies employing these approaches to ISV. MacDonald, Hultsch, 

and Dixon (2003) report using a factor-weighted composite of ISV scores for data reduction 

purposes, suggesting that ISV can be meaningfully reduced to a single factor, but do not provide 

details on the factorial structure uncovered. Klein et al. (2006), however, found that although one 

component explained the variability data across tasks in ADHD patients, two were needed in 

controls. 

Another issue with the assumption that ISV is unitary is that previous ISV research has 

employed tasks using only stimuli from only one sensory modality (usually vision). When only 

one modality is used to deliver stimuli, it is possible that the variability of interest enters at a 

modality-specific stage of processing, rather than centrally. If this were the case, one could argue 

that ISV is local to specific subsystems, rather than a global or central property of the brain. 

It is also important for the question of unity to assess whether ISV from different types of 

speeded task load onto the same factor, although MacDonald et al's (2003) use of a data 

reduction approach suggests that it does. Both cognitive modelling (Ratcliff & Tuerlinckx, 2002) 

and event-related potential (Vogel & Luck, 2000) approaches suggest that tasks featuring a 

decision component involve different processes than those that do not. While these processes 

may be more central than the early modality-specific processing mentioned above, the lack of a 

common ISV factor related to both of these types of response would cast doubt on the view of 

ISV as a global construct. 

The present study seeks to assess whether ISV can be considered a global and unitary 

construct. This will be achieved by employing a latent variable approach to the structure ofISV 
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across modalities (vision and audition) and tasks (simple and choice RT). IfISV represents a 

unitary construct, a single factor should explain variance not only across different tasks, but also 

across different sensory modalities. However, if multiple significant factors emerge, this may 

indicate that there are multiple sources ofISV that may be task- and modality-specific, which 

future theories ofISV would need to account for. 

Methodology 

Participants 

Seventy-six students from Bangor University participated in exchange for course credit. 

Five participants were excluded due to performing at below chance accuracy on one or more 

tasks leaving 71 participants (age 21.9 ± 4.8 years, 70 right-handed, 28 male) in the final sample. 

Permission to conduct the study was obtained from the school ethics and research governance 

committee. All participants gave informed consent prior to participating and were debriefed 

afterwards. 

Apparatus and materials 

The experiment was conducted on a PC rmming E-Prime (Psychology Software Tools 

Inc., Pittsburgh, U.S.) Visual stimuli were presented on a 17" monitor and auditory stimuli were 

presented using closed-back headphones. Responses were made using a standard QWERTY 

keyboard . 
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Stimuli and procedure 

Participants carried out visual and auditory versions of two tasks, a simple reaction time 

task (SRT) and choice reaction time task (CRT) for a total of four tasks (task order was 

counterbalanced). All tasks had 150 pseudorandomly ordered trials (the CRTs also had five 

practice trials). In all tasks, stimuli were presented for 500ms and the participant had until the 

subsequent stimulus appeared to respond. Stimulus onset asynchrony varied randomly between 

1500ms and 2500ms, with a mean asynchrony of 2000ms. Participants were asked to respond to 

all stimuli as quickly and as accurately as possible. 

In the auditory SRT (AS), participants listened to a series of 640Hz sinusoidal pure tones, 

and responded to each with a press of the space bar. In the visual SRT (VS) participants watched 

a series of white circles (visual angle approximately 3°) and responded to each with a press of the 

space bar. 

In the auditory CRT (AC) patticipants listened to a series of 840Hz and 440Hz sinusoidal 

pure tones and responded with a different key to each (response hands were counterbalanced 

across participants). In the visual CRT (VC) participants watched a series of blue (L= l 00, A=8, 

B=-60) and yellow (L= l00, A=8, B=60) circles (visual angle approx. 3°) and responded with a 

different key to each (response hands were counterbalanced across participants). 

Data Analysis 

An accuracy measure was derived for each participant on each task (con-ect trials/all 

trials) before trials where responses were inconect, absent, or pre-emptive (RT<120ms) were 

filtered out of the data. MnRTs, and SDRTs were then computed for each participant on each 

task. 
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Repeated measures ANOVAs were run with MODALITY (auditory and visual) and TASK 

(simple and choice) as within subject factors and MnRT and SDRT as dependent variables. 

To assess the internal reliability of the measures, separate MnRTs, and SDRTs were 

derived for odd and even trials, and odd-even correlation co-efficients were computed for each 

variable on each task. SDRTs for the four tasks were then correlated with one another and a 

principal axis factoring with oblimin rotation (kappa = 0) was run on the resulting correlation 

matrix (normal Q-Q plots of all SDRT variables suggested non-normal distributions, so principal 

axis factoring was used rather than maximum likelihood estimation, as not to violate the 

normality assumption of the latter technique). An oblique method of rotation was chosen as the 

factors underlying ISV could plausibly be cotTelated and under these circumstances an oblique 

rotation would give more accurate results. 

The question of how many factors to extract is a controversial one. The Guttman-Kaiser 

criterion (Guttman, 1954; Kaiser, 1960) recommends extracting only those factors which have 

eigenvalues greater than one, while Jolliffe (1986) suggests 0.7 as a cut-off. Another approach is 

to identify the point of inflection on a scree plot and extract all preceding factors (Cattell, 1966). 

These approaches, however, are primarily useful for conducting psychometrically sound data 

reduction, and as our study was concerned with whether ISV was unitary or not, it seemed more 

appropriate to extract the maximum number of factors (in this case three), assess whether a single 

factor explained the vast majority of the variance, and identify where the remaining variance 

loaded. 

Results 

Table 1 shows medians and standard deviations for the four tasks. The repeated measures 

ANOVAs confirmed that participants were slower (F(l,70) = 702.827, p = .000, h/ = .909) and 
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more variable (F(l,70) = 83.444, p = .000, h/ = .544) in their responses to CRTs than they were 

to SRTs. They also appeared to have responded slower (F(l ,70) = 5.469,p = .022, h/ = .072) 

and more variably (F( 1,70) = 33.412, p = .000, h/ = .323) to the auditory tasks than the visual 

tasks, which may have been due to a minority of participants who responded much slower to 

auditory than visual tasks. There was also a significant MODALITY* TASK interaction on SDRT 

(F(l,70) = 10.108, p = .002, h/ = .126) but not MnRT (Fs<l), reflecting the high SDRTs for the 

AC task. 

MnRT SDRT 
AS 280.02 ± 20.63 70.24 ± 35.76 
vs 262.75 ± 30.1 I 60.77 ± 27.72 
AC 420.01 ± 93.48 106.59 ± 42.98 
vc 400.23 ± 47.53 80.69 ± 23.88 

Table 1. Descriptive statistics for reaction time parameters. 

MnRT SORT 
AS .996 .567 
vs .959 .608 
AC .989 .878 
vc .960 .785 

Table 2. Odd-even reliability coefficients for trimmed and w1trimmed reaction time parameters. 

Table 2 shows odd-even reliability coefficients for MnRT and SDRT on each of the four 

tasks. MnRTs were uniformly higher than SDRTs, showing reliability coefficients above 0.95 

reliability on all tasks. SDRT reliability coefficients are adequate for CRTs, but mediocre for 

SRTs - presumably due to the large impact of a few very slow trials on the SDRT falling into 

either the odd or even halves and reducing the reliability. Correlation coefficients, shown in 

Table 3, were significant between SDRTs on all tasks. 

111 



AS SDRT VS SDRT ACSDRT VCSDRT 
AS SDRT .378 .514 .383 
VSSDRT 1 .476 .446 
ACSDRT .701 
VC SDRT 

Table 3. Raw correlation matrix for SDRTs. 

The principal axis factoring revealed that initial communalities were acceptable for CRTs 

(ACRT: 0.576, VCRT: 0.507) but were low for SRTs (ASRT: 0.287, VSRT: 0.273), probably 

reflecting the poor reliability of the untrimmed SDRTs. The Kaiser-Meyer-Olkin measure of 

0. 730 and significant Bartlett's test of sphericity suggested that the data were appropriate for 

factor analysis. The first factor had an eigenvalue of 2.464, and explained 61.592% of the 

variance. The following two factors had eigenvalues of 0.645 and 0.611 (16.127% and 15.286% 

of variance respectively) and the last had an eigenvalue of .280, explaining the remaining 6.994% 

of variance. Three factors were extracted and rotated obliquely. 

Table 4 shows the post-rotation factor loadings for the three extracted factoi·s and their 

intercorrelations. Loadings suggest that a single factor explains the majority of the variance of the 

CRTs, while a second, bipolar factor weakly separates the two modalities. A third factor seems to 

explain the common variance between the two SRTs, but is highly correlated with factor one. 

Factors 
I 2 3 

ASSORT 0.081 0.259 0.479 
VSSDRT 0.15 -0.078 0.655 
ACSDRT 0.859 0.169 0.002 
VCSDRT 0.808 -0.149 0.038 

Factor 1 I 0.181 0.816 
Factor 2 0.181 I 0.248 
Factor 3 0.816 0.248 

Table 4. Pattern matrix and factor correlation matrix for principal axis factoring of reaction time 
standard deviations. 
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Discussion 

The present study set out to asses to what extent individual differences in ISV were stable 

across tasks and sensory modalities. To that end we employed a primarily correlative and factor 

analytic approach, employing ANOV As to ensure that our tasks were somewhat heterogeneous. 

The ANOVAs supported our task selection, with significant effects of task and modality on 

SDRTs suggesting that our tasks were not excessively similar. Finally the correlations and factor 

analyses suggested that, using our selection of tasks and modalities at least, ISV is a unitary 

construct with 61 % of variance accounted for by a single factor. This has important theoretical 

implications, and also suggests that data reduction may be an appropriate technique in future ISV 

research. 

In addition to the large first factor, we found two small factors that seemed to represent 

modality and task-specific variance respectively. Despite our use of an oblique rotation, the 

modality factor appeared to be 01thogonal to the two other factors; suggesting that the main 

source ofISV appears to be relatively modality-independent. This is consistent with a unitary and 

global model ofISV and suggests that the modality-specific variance has a separate source from 

'factor 1' ISV. 

According to our pattern matrix, the primary factor in our data loaded onto the CRTs, 

while factor three loaded on the SRTs. This could be interpreted as evidence for a relationship 

between task complexity, akin to the relationship between g loading and ISV found by Kranzler 

(I 992).Unlike factor two, however, factor three was highly correlated with factor one. This, in 

addition to the small amount of variance it explains, makes it likely that factor three represents a 

case of overextraction, rather than a meaningful source of variance. 

We argue that the factorial structure identified by this study suggests that the main 

contribution to ISV is largely independent of modality and task. ISV is thus a relatively unitary 
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and global construct. Furthem1ore, this suggests that studies aiming to measure ISV should 

consider employing a latent variable approach in order to tap this modality and task-independent 

source of variance. By doing th.is, the key source of ISV variance can be disentangled from 

variance associated with specific tasks and methods, yielding theoretically and psychometrically 

'cleaner' dependent variables. 

Although our results are somewhat different to two previous studies using principal 

components analysis on ISV, this is easily accounted for. Jensen ( 1990) conducted a principle 

components analysis in order to assess the independence ofMnRT from SDRT, and the results 

are thus not comparable to our own. Klein et al. (2006) found a single major factor in ADHD 

patients, but two factors in controls. However, similarly to our study, the larger factor loaded on 

the tasks with two response alternatives while the smaller factor explained the tasks where 

participants e ither responded or inhibited their response, dependent on the stimuli. Their study 

only presented tasks in the visual domain and so there was no cross-modal variance to be 

explained. As the tasks used were also quite different, being generally more complex, to those in 

the present study, the samples were quite dissimilar, and the statistical approaches were different, 

differences between the results of these studies are easily explained. 

This study was not without limitations. ISV has become an important topic in a number of 

clinical areas and, as our data were collected from healthy university students, it is not clear how 

well they will generalise to the various clinical and neuropsychological populations where ISV is 

thought to be relevant. Klein et al. (2006) raise the possibility that there may be differences in the 

factorial structure of ISV between certain populations, but further work is needed to assess this. 

Also on the subject of generalisability, it is unclear whether ISV has the same structure 

across all cognitive domains. We examined ISV on a group of simple tasks, but future research 

could employ a similar methodology and assess whether variability in performance is unitary 

across more complex tasks. It would also be interesting to examine whether similar results would 
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be obtained using a more heterogeneous battery of tasks. A larger battery of tasks would also 

provide superior overdetermination for the factor analysis, which would improve the accuracy of 

factor extraction. 

On a more teclmical front, factor analysis calls for a large samples, and our sample of 71 

was smaller than many factor analytic designs. McCallum, Widaman, Zhang, and Hong (1999) 

found that with high communalities, sample sizes as low as 60 could achieve highly accurate 

factor recovery; it was cases of low communality where sample size and overdetermination 

became important. Our communalities were high for CRTs but somewhat mediocre for SRTs. 

However, our factors had face validity, lending further support to our approach. 

To conclude, ISV appears to be fairly unitary with respect to the comparison of tasks in 

the visual and auditory modalities, and only minor modality-specific sources of variance that 

could not be explained by the first factor were found. There is some evidence that correlated but 

separate factors underlie SRTs and CRTs, but it is unclear how meaningful this distinction may 

be. Future studies could build upon this work by investigating the structure of ISV across a larger 

and more heterogeneous battery of tasks, tapping a variety of cognitive, neuropsychological, and 

psychomotor domains. This would help to assess to what extent ISV could be considered a global 

property of the central nervous system. Future work might also consider employing factor­

analytic data reduction in order to measure the latent variable underpinning ISV, rather than using 

individual tasks. This would allow the investigation ofISV at a supra-modal and supra-task latent 

variable level, with associated psychometric advantages. 
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Chapter Nine 

A Supra-Task Latent Variable Approach to Intra-Subject Variability and 

Electroencephalographic Data 
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Abstract 

Individual differences in intra-subject variability in reaction times (ISV) have been 

attributed to global and unitary biological bases, such as catecholaminergic function, white matter 

volume, and the activity of the default mode. Such a conceptualisation of ISV lends itself to a 

latent variable modelling approach to measurement, but this bas so far only been used with 

behavioural data. In the present study, participants catTied out two oddball tasks, each repeated in 

two modalities, while having an EEG recording. Supra-task latent variables were derived for ISV, 

as well as several single-trial P3b parameters, and the true score coffelation coefficients between 

these constructs were estimated. These data supp01t previous work, showing strong connections 

between P3b latency and reaction times, and suggest that a latent variable approach to ISV may 

not just be useful with behavioural data, but also psychophysiological data. 
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Intra-subject variability in reaction times (ISV) has become an increasingly important 

topic in a number of areas of neuroscience. The trait has been identified as a possible marker for 

ADHD (Klein, Wendling, Huettner, Ruder, & Peper, 2006), brain trauma (Stuss, Murphy, Binns, 

& Alexander, 2003), and cognitive aging (Lovden, Li, Shing, & Lindenberger, 2007). 

A number of models have been posited regarding ISV's neural underpinnings, and can be 

broadly speaking categorised as neural noise, oscillatory, and lapse models (see Chapter 4). 

These models differ in what they assume ISV represents, but all of these models point towards a 

unitary and global source for individual differences in ISV. ISV is thus seen as a global property 

of the central nervous system, rather than being local to discrete networks such as sensory 

systems or cognitive domains. 

The conception of individual differences in ISV as being caused by global and unitary 

properties of the central nervous system fits with our own data. Data presented in the previous 

chapter suggest that a single factor, derived using principle axis factoring, can account for most 

of the variance in ISV over two tasks each catTied out in two sensory modalities. The high level 

of shared variance across tasks and modalities is consistent with this global and unitary model of 

ISV. 

If one takes the view of ISV as a global trait which manifests, albeit with some task­

specific variance, in any RT task, then the subject lends itself well to a latent variable approach 

(see Loehlin, 1987). ISV, in this conceptualisation is not measured directly but is instead a latent 

variable which must be estimated from observed variables. By measuring the common variance 

in ISV across a number of tasks, the underlying global trait can be more accurately measured than 

by using any single task. This approach has its roots in the 'hotchpotch principle' endorsed by 

Spearman (1904) for the study of psychometric intelligence. The advantage here is that it is 

possible to separate the common variance, thought to be due to the latent variable, from task-
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specific variance including measurement error, which is not, and so ISV can be measured more 

accurately (Loehlin, 1987). 

This approach to ISV has been employed before on behavioural data (e.g. Ram, Rabbitt, 

Stollery, & Nesselroade, 2005) but not to explore the relationship between ISV and EEG-derived 

variables that were described in Chapter 7 of this volume. EEG parameters, however, are equally 

vulnerable to sources of measurement error, indeed the sources that detennine EEG can be well 

described as latent variables that cause the observed variables on the scalp. The present study 

attempts to explore the link between ISV and certain parameters of the P3b, by modelling both 

ISV and single-trial P3b variables as latent variables, and determining canonical correlations 

between them. 

Methodology 

Ethical approval was obtained from the School of Psychology ethics and research 

governance committee at Bangor University. 

Participants 

Participants were 59 student volunteers from Bangor University. Participants were not 

tested if they reported any psychiatric or neurological conditions, and their data were excluded if 

fewer than 20 clean trials existed on any task (N= l). Data from 58 pa1ticipants (32 female, 3 left­

handed, mean age = 21.98, SD = 2.84) were used in the final analysis. 

All participants gave written informed consent to participate after being fully briefed on 

the study. 
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Apparatus and Materials 

Stimuli were presented on a 17" monitor (with a copper-shielded power unit), connected 

to a stimulation PC running E-Prime V. 1.2 (Psychology Software Tools, USA). EEG activity 

was recorded with a sampling rate of l000Hz and a low pass filter of250Hz, using 63 Ag/AgCl 

electrodes (Falk Minow, Munich) of the international 10-10 system (American 

Electroencephalographic Society, 1991) attached over both hemispheres, with Cz as the recording 

reference, AFz as ground, as well as two infra-orbital electrodes for a total of 65 electrodes. 

Impendence was reduced to < Skn and electrodes were connected to two BrainAmp DC 

amplifiers (0.1 µv resolution, Brain Products, Germany), which were connected to a recording PC 

running Brain Vision Recorder (Brain Products, Germany). Data were collected inside a sound­

attenuated Faraday cage. 

Stimuli and Procedure 

Participants perfonned four different oddball tasks: Visual and auditory versions of a two­

stimulus oddball task, and visual and auditory versions of a repeating oddball task. Stimuli for the 

visual tasks were circles of ~2° visual angle in light and dark shades of blue (Light blue: L=80, 

A=-60, B=-60; Dark blue: L=80, A=8, B=-60), while stimuli for the auditory tasks were high and 

low sinusoidal tones (740Hz and 440Hz respectively). 

In the two-stimulus oddball tasks, participants attended to a series of stimuli and were 

asked to respond to one type of stimuli (e.g. dark blue circles) with a key press using one hand 

and stimuli of the other type (e.g. light blue circles) with a key press using the other. 80% of 
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stimuli, hereafter called standards, were of one type while the remaining 20% of trials, hereafter 

called oddballs, were of the other. 

In the repeating oddball task, participants attended to a series of stimuli which on 80% of trials 

presented the stimulus that was not seen in the preceding trial. On the remaining 20% of trials 

however, the stimulus from the previous trial was presented. Participants were asked to respond 

to the two trial types, repeats and non-repeats, with a key press using a different hand. 

In both the two-stimulus oddball tasks, the colours and tones used as oddballs and 

standards were counterbalanced across participants, and for all tasks the response hands used for 

the two classes of response were counterbalanced across participants. Each task consisted of 500 

trials ( 400 standards and 100 oddballs) with a jittered stimulus-onset asynchronicity, averaging 

2000ms but ranging between 1250ms and l 750ms. Participants were asked to respond as quickly 

as possible to all stimuli. 

Data Analysis 

EEG analysis was primarily carried out using Brain Vision Analyzer (Version 2.0, Brain 

Products, Gem1any), but Dien's ERP-PCA toolkit (Dien, 2009) was used for the principal 

components analysis. The data analysis steps described below are summarised in Table 1 below. 

Data for each task were average referenced and 0.1-50.0Hz filtered with symmetrical 

24dB per octave slopes. Data contaminated by direct cunent offset conections made during 

recording were rejected, before an Infomax independent component analysis, trained on 200s of 

data starting from 100s into each dataset, was applied to the data. Weightings for components 

representing eye activity, heartbeats, muscle activity, movement artefacts, or bad channels were 

set to zero before back-projection (Jung et al., 2000). 
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Process Details 

1 Compute average ERPs Raw data preprocessed and standard average ERPs 

derived in order to characterise topography of P3b. 

2 Infomax-PCA PCA with Infomax rotatio n applied to 

concatenated averages of all tasks, to identify 

electrode weightings for P3b factor. 

3 Single-trial analysis Single-trial P3bs identified for P3b factor, and 

medians and SDs of amp. & lat. calculated for 

each participant on each task. 

4 Create supra-task latent variables. Principal axis factoring used to estimate supra-task 

latent variables fo r median and SDs of P3b lat. , 

P3b amp, and RT. 

5 Estimate latent variable corre lations The six supra-task factors were correlated with 

each other. 

Table 1. Summary of analysis steps. 

Any data where amplitude still ranged by more than 1 00µv, or less than 0.5µv, within 

200ms were marked as bad. The data were then filtered 0.5-4.0 Hz and data for oddball trials 

were segmented into stimulus-locked epochs of 600ms pre-stimulus to 1400ms post-stimulus, 

with the period between -600 and -400ms in each epoch used as a baseline. Epochs containing 

any data marked as bad, those based around an incon-ect response, or those where the response 

was faster than 120ms or slower than 1400ms were discarded. 
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Conventional average ERPs were first derived by averaging stimulus-locked oddball 

trials (Step I in Table 1). The data were then prepared for single-trial analysis in the manner 

described in Chapter Seven briefly summarised again below. 

Stimulus-locked participant averages for all four tasks were concatenated7 before Dien's 

ERP-PCA toolkit (Dien, 2009) was used to run spatial PCA on the data (Step 2 in Table 1). 

Previous studies have shown scalp topography of the P3b to be independent of modality ( e.g. 

Katayama & Polich, 1999), so we would argue the use of a single topography for these tasks is 

reasonable. Based on a parallel Scree test (Hom, 1965), we extracted six factors and Infomax­

rotated them. Figure 1 shows factor topographies, with the depth of colour representing the 

strength of the weighting of each electrode given by the factor pattern matrix. Factor 1 appears to 

have topography most similar to a standard P3b (midline parietal) and so all further analyses are 

based upon this factor. 

We then applied the factor pattern matrix for Factor 1 to the single-trial data. P3b peaks 

were picked for each trial (Step 3 in Table 1 ), defined as the time-point with the maximum 

voltage between 250 and 750ms post-stimulus. Latency and amplitude info1mation for each trial 

were recorded and used to create 'jitter-free' amplitude and latency measurements (median 

single-trial amplitude and latency), as well as measurements of amplitude and latency variability 

(intra-participant standard deviation of amplitude and latency). 

While the data were now in factor space, rather than electrode space, they were still on the 

within-task level. In order to examine the variance shared across tasks, principal axis factoring 

was used to produce supra-task latent variables of the RT and P3b measures (Step 4 in Table 1). 

7 Due to memory constraints, data were down sampled to 250Hz prior to being filtered, segmented, averaged, and 

exported for analysis using PCA. Due to the low-pass filter we employed, this should not lead to an appreciable loss 

of information. The spatial weightings derived were applied to data with the original sampling rate of !kHz. 
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Factor 1 Factor 2 Factor 3 

Factor 4 Factor 5 Factor 6 

Fig. 1. Infomax-rotated topographies for PCA components (Lambda = 0.0001). Positive 
weightings are in green and negative weightings are in black. 

Separate principal axis factorings were run on the following variables for each of the four tasks to 

reduce them down to a single factor: MnRT, SDRT, median P3b latency, standard deviation of 

P3b latency, median P3b amplitude, and standard deviation of P3b amplih1de. Proportions of 

variance explained by each factor for each task are summarised in Table 2. Correlation 

coefficients were then computed between each supra-task variable (Step 5 in Table 1 ). 

Median Latency 
SD Latency 
Median Amplitude 
SD Amplitude 
MnRT 
SDRT 

Variance Explained Factor Matrix for Factor I 
Factor I Factor 2 Factor 3 Factor 4 Aud. Rep. Aud. 2S Vis. Rep. Vis 2S 

61.656 16.389 13.934 8.020 0.751 0.639 0.732 0.675 
52.643 18.721 16.633 11.983 0.535 0.555 0.800 0.542 
77.137 9.067 8.286 5.510 0.865 0.868 0.806 0.797 
75.583 11.382 9.565 3.470 0.732 0.997 0.793 0.766 
70.252 15.091 8.440 6.217 0.856 0.672 0.734 0.845 
61.456 19. 159 13.234 6.151 0.563 0.643 0.796 0.785 

Table 2. Variance explained by principal axis factorings conducted separately on ERP and RT 
variables, and factor matrices for first factor for each variable. 
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Correlation coefficients were also computed for the observed parameters on each task and 

these coefficients were averaged across all four tasks for comparison with the latent variable 

approach. 

On the basis of our previous work, we hypothesised that SDRT would be positively 

conelated with median P3b latency, and P3b latency jitter; and negatively correlated with median 

P3b amplitude and P3b amplitude variability. 

Results 

For illustrative purposes, Figure 2 shows scalp topographies and waveforms from electrode Pz 

for all four tasks, whi le Figure 3 shows waveforms for all four tasks on Factor l. Table 3 shows 

correlation coefficients between the extracted latent variables and observed variables (with the 

latter Z-transfonned, averaged across all four tasks, and retransformed into Pearson 's r scores). 

As hypothesised, significant relationships are evident between SDRT and latency jitter, and 

SDRT and median P3b amplitude. There are also strong relationships between the ERP 

parameters, most notably a strong relationship between median P3b amplitude and latency jitter, 

mirroring the equivalent relationship between MnRT and ISV found in RTs; and the highly 

significant negative relationship between median P3b amplitude and P3b amplitude variability. 

The observed correlations show a similar pattern to the estimated latent variable correlations, but 

the latter are uniformly stronger. 
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Fig. 2. Stimulus-locked average ERPs for Pz, topography maps show mean amplitude between 
450 and 500ms post-stimulus (Lambda = 0.0001). 
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Fig. 3. Stimulus-locked average ERPs for Factor l of PCA. Factor l topography displayed in 
centre (Lambda = 0.0001). 
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SD P3b Lat. Mn P3b Amp. SD P3bAmp. MnRT Odd. SDRTOdd. 
Median P3b Latency Latent .621** .292* -.217 .727** .629** 

Observed .407* .239* -. I I 7 .601 ** .395** 
SD P3b Latency Latent .435** -.231 .646** .667** 

Observed .445** -.115 .494** .495** 
Median P3b Amplitude Latent -.866** .212 .231 

Observed - .754** .189 .183 
SD P3b Amplitude Latent -.I I 0 -.11 3 

Observed -.049 -.032 
MnRT Oddballs Latent .823** 

Observed .695** 
SDRT Oddballs Latent 

Observed 

Table 3. Correlation coefficients between supra-task latent variables, shown in the rows marked 
latent, and correlation coefficients for observed variables (Z-scaled, averaged across tasks, and 
retransfonned into Pearson's r scores) shown in the rows marked observed. A single asterisk 
denoted significance at the .05 level, a double asterisk denoted significance at the .01 level. 

Discussion 

The present study applied a latent variable approach to behavioural measures ofISV and 

their electroencephalographic single-trial P3b correlates, in order to more accurately measure the 

relationship between these constructs. Our data replicate some previous findings, showing a 

strong positive relationship between RT and P3b latency, but fai l to replicate others, finding no 

significant negative relationship between ISV and P3b amplitude (and indeed a trend in the 

opposite direction). A very strong negative relationship was also found between median P3b 

amplitude and P3b amplitude variability. The use of a latent variable approach was able to 

identify stronger inter-parameter relationships than raw intra-task correlations, suggesting that a 

latent variable framework may be a good way of approaching the study of ISV, both conceptually 

and methodologically. 

The results showed a strong relationship between the latency of the P3b and RT (also see 

Chapter 7). This is consistent with a long tradition of work suggesting that the P3b represents a 

subset of the cognitive operations that underpin making a correct response (e.g. Kutas McCarthy, 

& Donchin, 1977; Gerson, Pan-a, & Sajda, 2005). Indeed, while this is not the primary thrust of 
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the present line of research, comparing participants with high and low ISV may be a useful 

approach for research into the functional significance of the P3 b, and could perhaps help to settle 

the longstanding debate over its tactical and strategic roles. 

While traditional models of the role of the P3b posit that it represents a strategic working 

memory-updating process, unrelated to response-selection, contradictory accounts have long 

argued for a tactical role for the P3b. Verleger (1988) argues that the P3b represents the closing 

of a perceptual epoch following the identification of an anticipated stimulus. Pritchard, Houlihan, 

and Robinson ( 1999) argue that while P3 b onset may be a good index of the speed of stimulus 

processing, the P3 b itself partially represents response-selection processes, which shows a 

temporal relationship with stimulus-evaluation due to the dependence of response-selection on 

stimulus-evaluation. Nieuwenhuis, Aston-Jones, and Cohen's (2005) account places the P3b 

somewhere between stimulus-evaluation and response-selection, arguing that the P3b represents 

the cortical projections of a noradrenergic decision making process. Single-trial methods 

represent a useful approach for disentangling these options, as they allow the relationship 

between RT and P3b latency to move beyond measures of central tendency to higher moments of 

their respective distributions, giving important evidence for the likely underlying dynamics. 

The study did not replicate the inverse relationship between ISV and P3b median 

amplitude, described in Chapter Seven (also see Segalowitz, Dywan, and Unsal, 1997; and Di 

Russo and Spinelli, 2010). As the tasks employed were comparable and the analysis approach 

was highly similar, this suggests that the conflicting findings may be due to differences in the 

design of the study. Where Study Two compared groups from the opposite ends of the ISV 

continuum, the present study employed a correlational approach to the variables. This may imply 

that the relationship between ISV and P3b amplitude is non-linear, with a fall in P3b amplitude 

only at high levels ofISV. Conversely, the effect found in Chapter Seven was only of moderate 
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size, and the presence of a trend in the opposite direction in the present study may suggest that 

this is simply not a strong or stable effect. 

Median P3b amplitude and variability in P3b amplitude show a large unhypothesised 

negative relationship. This is perhaps analogous to the relationship between MnRT and ISV, but 

with a different direction of skew. Since this relationship was unhypothesised, it will require 

replication before spe~ulations can be made as to its possible significance. 

One detail of our method that warrants further discussion is the decision to derive one set 

of PCA weightings for all four tasks, rather than a set of weightings for each task individually. 

Like the decision to derive one set of components for all participants, rather than a set for each 

participant (see Chapter Seven and Chapter Ten), this amounts to a trade off between specificity 

and comparability. Separate sets of weightings for each task may better characterise the precise 

topography of the P3bs associated with each task, but will lead to ambiguities when comparing 

results across tasks. This decision was, however, not only about this trade off. While the 

topography of a P3b is thought not to vary radically across modalities (Katayama & Polich, 1999), 

subtle topographic differences may occur due to the specific demands of each task. As the aim of 

the present study is to explore the relationships between the common latent variables that 

underpin different tasks, it seemed more appropriate to choose a single set of weightings that 

characterise the 'supra-task' P3b, and by implication its neural generators. 

The study supports the use of latent variable approaches in neuroscience. The use of 

supra-task latent variables to measure these constructs fits well with the conceptualisation of ISV 

as a global property of the brain and the larger correlation coefficients found using these latent 

variables, as compared to the raw con elation coefficients, could be taken as possible evidence for 

the appropriateness of such a conceptualisation. Indeed a single-factor solution fitting the major 

variables is itself an argument for such an approach. Such latent variable approaches are not new 

in ISV research (e.g. Schmiedek et al. , 2007), but remain rare in neuroimaging and 
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psychophysiological studies, probably due to the relatively large sample sizes necessary to 

conduct these analyses. Such approaches may represent a useful alternative to the ANOV A-based 

approaches more common in these areas of research. 

To conclude, by moving from the observed variable domain, to the supra-task, latent 

variable domain, the relationship between RT and ERP parameters can be more accurately 

evaluated. This not only represents a potentially fruitful methodological approach for the study of 

the neural bases ofISV, but also suppotis the idea of ISV as a pervasive supra-modal trait. 
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Chapter Ten 

Overall Discussion. 
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The present thesis describes a series of studies into the subject of intra-subject variability 

of reaction times and its electroencephalographic correlates. This final chapter will first 

summarise the main findings of each of the four empirical chapters, before reviewing and 

evaluating the various methodologies employed, and discussing some of the theoretical 

implications and future directions of this work. 

Study One 

A key initial concern for any empirical endeavour is establishing the reliability of 

measurement techniques. This is particularly pressing for the current programme of research as 

ISV was long viewed as meaningless error variance, in line with infornrntion theory (Shannon & 

Weaver 1949) and classical test theory (Novick, 1966). Furthermore, a great many approaches 

exist for quantifying ISV; it is not clear how they compare in tem1s of their reliability, and to 

what extent these measures are largely redundant with regard to one another. A third issue for 

ISV measurement is the level of data aggregation needed to obtain reliable measurements. 

Quantities of RTs that are adequate to produce reliable estimates of measures of central tendency 

may not be adequate for measures of ISV. 

Study One thus compared the test-retest and odd-even reliabilities of a selection ofISV 

metrics, on a battery of widely used cognitive tasks. The intercorrelations, and thus redundancy, 

of these metrics were also assessed on the task with the greatest number of available trials - the 

go-no go task. Finally a Monte Carlo simulation was run to establish the relationship between 

number of trials used to compute a metric and its reliability for SDRT and MRT. 

The results of this first study identified good reliability for a number of measures of ISV. 

This level of reliability appeared, however, to be highly contingent on the number of trials used 

132 



to compute these measures, with some of the tasks with the fewest trials showing inadequate 

levels of reliability. The measures ofISV that did show adequate reliability appeared to be highly 

intercorrelated, and thus arguably redundant to one another. This was not just the case for 

measures that were obviously mathematically similar, such as SDRT and MAD, but also for 

measures that theoretically measured different aspects of the RT distribution, such as SDRT and 

ex-Gaussian tau. The Monte Carlo simulation verified the apparent relationship between trial 

number and reliability, and also showed a much slower rise in reliability for SDRT as compared 

to MRT. This suggests that levels of data aggregation that have proved sufficient for measures of 

central tendency may yield unreliable estimates ofISV, a fact underappreciated in the literature. 

Study Two 

The second study addressed the neural co1Telates ofISV. A number of studies have found 

reduced P3b amplitude in populations with increased ISV stemming from brain injuries 

(Segalowitz, Dywan, & Unsal, 1997; Di Russo & Spinelli, 2009). It was unclear, however, 

whether ISV and P3b amplitude would be related in non-brain injured populations, or whether 

increased ISV and reduced P3b amplitude were unrelated consequences of brain injury. A second 

open question from these studies was the extent to which the apparent reduction in ISV was in 

fact an artefact of latency jitter. 

This study recruited participants who had shown particularly high or low ISV in the first 

study to carry out a working memory oddball task while having an EEG recording. Principal 

components analysis was employed in order to denoise the data, allowing P3b amplitude and 

latency to be identified in single trials. 

Increased latency jitter was indeed found in the high ISV group, but the jitter-free 

measurements of P3b amplitude also showed a significant between groups difference, with lower 
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amplitude in high ISV than low ISV participants. A reduced correlation was also found between 

RT and P3b latency in high ISV participants, suggesting that ISV may be adding delays to both 

stimulus evaluation and response selection processes, a speculation also consistent with the 

increased latency jitter in response-locked P3bs identified in high scorers. 

Study Three 

Most neural models of ISV assume a unitary and global cause to individual differences in 

ISV, an assumption which Study Three set out to test. If ISV is relatively global, or at least 

central, individual differences in ISV should be relatively consistent across sensory modalities 

and tasks. In contrast, the presence of separable ISV factors in different modalities and tasks 

would suggest that ISV is relatively domain-specific and plural. 

In Study Three, participants carried out a simple RT task and a choice RT task in the 

visual and auditory domains. Principal axis factoring was then carried out on participants' SDRTs 

in order to assess the cross-modal and cross-task structure of individual differences in ISV. 

The results of the principal axis factoring were consistent with a single factor model of 

ISV, with only very weak factors representing modality and task. Such results are consistent with 

a unitary model ofISV, suggesting that individual differences generally enter at the supra-task, 

supra-modality level. The results of this study also suggest that a latent variable approach may be 

appropriate for the study ofISV. 

Study Four 

The fourth and final study of the present thesis drew on the results of the prior three 

studies to synthesise psychometric and EEG methods in the study of ISV. Modelling both ISV 

and the P3b parameters as latent variables, a relatively large sample of 58 participants were tested 
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on a battery of oddball RT tasks while having an EEG recording, and the single-trial approach 

developed for Study Two was applied to the data. Several RT and P3b parameters were computed 

for each task and the observed variable for each parameter on the four tasks were separately 

principal axis factored, giving a supra-task latent variable for each parameter. Correlation 

coefficients were then computed between all of these latent variables in order to estimate their 

true score correlation coefficients. These latent variable coITelation coefficients were then 

compared to coefficients computed using the observed variables, in order to compare the two 

approaches. 

Latent variable correlation coefficients found strong relationships between the parameters, 

replicating the results of Study Two. A strong relationship was found between SDRT and P3b 

latency variability, and between MnRT and median P3b latency. Stronger correlation coefficients 

were found between latent variables than between observed variables, demonstrating the 

advantage of the teclmique. This latent variable approach to both RT and neurophysiological data 

represents a promising option for futw-e work into ISV. 

Evaluation of methodologies 

The present thesis employed a variety of methodological approaches over the fow- studies. 

In this section, the advantages and limitations of the approaches will be discussed, and potential 

refinements will be explored. The first set of methods to be discussed is the principle 

components-denoised single-trial analysis, employed in Studies Two and Four. The latent 

variable approach used in Studies Three and Four will then be evaluated. 
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Principal components-denoised single-trial analysis 

The use of averaged ERPs can lead to misleading results when a significant level of 

latency jitter exists in evoked potential. This can be particularly misleading when an experiment 

compares pa1ticipants with different levels of latency jitter in their evoked responses. As there 

was strong reason to expect latency jitter to covary with ISV, Studies Two and Four were 

analysed on a single trial basis, using an lnfomax-rotated PCA pattern matrix to reduce the signal 

to a single channel, and to improve the signal-to-noise ratio. This approach yielded interesting 

results, but it is w01th scrutinising some of the decisions made when designing the analysis 

protocol. 

While the approach used employed the Infomax rotation algorithm, which has proven 

highly successful in EEG research, the manner of implemention was somewhat different to the 

way it is conventionally applied. The Infomax algoritlun is essentially no different to any other 

PCA rotation procedure. Where it is unusual is that it is generally applied without the initial step 

of a PCA. The Infomax is instead usually run on sphered data, where higher order con-elations 

have been removed from the data in order to speed up and stabilise convergence but the data is 

left at the sensor level. 

When the Infomax is can-ied out on the sensor level, the assumption of stationarity 

implies that a separate ICA must be run for each pa1ticipant. Any attempt to compare across 

participants involves identifying comparable factors8 for each participant, either by 'eyeballing' 

the data or by use of some fom1 of statistical clustering approach. The Infomax is also prone to 

making fine distinctions between factors which may in fact represent the same underlying 

construct, in contrast to more traditional PCA rotations which tend to erroneously combine 

Again the term/actor will be used instead to refer to the statistical constructs derived by PCA, rather than 

the traditional term component. This is to avo id confusion with ERP components. 
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distinct sources of variance. This means that, without prior data reduction, some participants are 

likely to have multiple factors representing the same construct while others have one, or indeed 

none. This can make comparisons highly ambiguous. 

Furthermore, the sheer volume of factors yielded by a separate ICA of each participant 

raises practical difficulties with making factor-selection decisions transparent to a reader. With 

more than a few participants, it is simply unfeasible to present all factors in an academic journal 

article. Even if this were possible, it is doubtful if such decisions would receive the necessary 

scrutiny. 

Our approach instead applied a PCA as a preprocessing step, before applying the Infomax 

as a rotation procedure to data on the factor level for all participants simultaneously, an approach 

described by Dien, Khoe, and Mangun (2007). The substantial reduction in data accomplished by 

this initial PCA, as well as the application of the Infomax to factor-level data give this approach 

substantial advantages, and some disadvantages, over the approach described above. 

Firstly moving the data from the sensor domain to the factor domain allows the Infomax 

rotation to be carried out on all participants at once. This has obvious advantages over having to 

identify comparable factors in each participant's data as one and the same set of weightings can 

be used for each participant. The small number of factors yielded is also compatible with the 

space limitations of academic journals and allows readers to easily evaluate the writer's choice of 

factors. Most importantly of course, the factors selected will be, by definition, comparable across 

participants, allowing generalities to be drawn without the risk of 'comparing apples and oranges'. 

Secondly the data reduction carried out by the PCA makes oversplitting of factors, a 

common problem with the Infomax algorithm, much less likely. This also facilitates the 

application of the rotation to the whole sample at once, without an initial PCA step, it is likely 

that separate versions of factors would be identified for each participant, invalidating the whole 

premise of group ICA. 
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There are of course drawbacks to the PCA approach. Firstly there are advantages to 

creating bespoke filters for each participant - the filters may be a better fit for the peculiarities of 

their data, and there may be qualitative differences between scalp topographies in different 

groups. It is crucial to remember that the end product of the procedure is a set of spatial 

weightings, so if participants have different topographies there may be no single set of weightings 

which effectively characterises all participants' topographies. Additionally data reduction is 

something of a double edged sword; large highly distinct components, such as the P3b studied 

here, are unlikely to be lost in data reduction but the same may not be the case for more subtle 

components. 

Finally it is important to reiterate that, although they were later applied to single-trial data, 

the PCA approach derived its spatial weightings from averaged ERPs. This means that EEG 

phenomena that were poorly time or phase-locked to stimulus-onset would be poorly 

characterised by this approach. Again, this is unlikely to be a problem for the P3b, but may be for 

other components. It may be possible to modify this approach to allow factors to be derived from 

single-trial data, although computer memory issues may need to be overcome here. 

In short, one's choice of factor decomposition approach should depend on the details of 

the study in question. Running a more traditional ICA approach will yield as many factors as 

there are channels and thus give a wide view of the components present in the data. This makes 

such an approach useful for data-driven exploratory analysis. Also, running a separate ICA on 

each paiiicipant can be more appropriate in settings where a single bespoke set of weightings for 

each participant may lead to better results, certain brain-computer interface applications for 

example. 
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The PCA approach, in contrast, has advantages when there is a clear component of interest. Here 

it is easy to identify a single factor, representing a component such as the P3b, across a number of 

participants, and to relatively unambiguously compare participants on this factor. 9 

Besides factor derivation, there is also the issue of peak detection approach to consider. 

This is an impo1tant issue in single-trial analysis, as the poor signal-to-noise ratio of single trials 

leads to ambiguities with peak identification. The approach used here once the desired factor had 

been obtained was relatively simple - stringent filtering followed by maximum amplitude 

detection in a time window where the P3b was likely to manifest. 

Such an approach is not the most sophisticated one available - curve fitting and signal­

noise discrimination approaches exist (see Jaskowski & Verleger, 2000) - but, given the high 

amplitude of the P3b and the highly stringent low-pass filter employed, such an approach 

appeared sufficient. Visual inspection of the identified peaks suggested that the obvious peak was 

picked in the vast majority of trials, and it is not clear that a more complicated approach would 

have perfo1111ed better here. Given this, it seemed reasonable to employ an approach that most 

closely mimicked the peak detection approaches common in the average ERP literature. That said, 

in order to employ this approach on lower amplitude ERP components, which may not be as easy 

to isolate with low-pass filtering, it would be interesting to experiment with different peak 

detection approaches. 

The choice of time window is also an important choice. Most of what is known about the 

time course of the P3b comes from the average ERP literature, but single-trial P3bs may show 

It is worth noting that nothing about employing a PCA as a preprocess ing step prevents the running of 

separate Infomax-PCAs to create separate filters for different groups or participants. This of course does not take 

advantage of being able to run Infomax rotations on group level data, but there are certain instances where this may 

still be des irable, such as where factors are likely to be oversplit. 
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more latency variability than standard approaches suggest. Setting a suitable time window is a 

trade-off: too short and there is the risk of missing early or late P3bs, too wide and one both 

stretches the reader's credibility as to what can be reasonably called a P3b and risks introducing 

spurious peaks into the analysis. The time window (250-750ms post-stimulus) was intended as a 

happy medium between too long and too short, but future work may want to more closely 

examine the time ranges in which P3bs may occur in single-trials. 

Latent variable approach to ISV 

The other main methodological approach taken in this thesis was the use of a latent 

variable approach to measuring ISV. Latent variable methods have become a highly successful 

technique in modern behavioural science, allowing estimation of constructs that are difficult to 

measure directly, but can be measured indirectly through several observed variables (Loehlin, 

1987). Such an approach fits well with a conceptualisation of ISV as a global characteristic of the 

nervous system. ISV is present in every task which records RTs, but each different task will 

contain task-specific variance and measurement en-or. Latent variable modelling can extract the 

conununal variance across a number of tasks, and calculate supra-task estimates of ISV, which 

are less subject to measurement error. 

Such an approach has great potential in the study of ISV, but it is important to address 

some of the caveats. Firstly, one must note that while latent variable methods may be able to 

identify similar patterns in ISV (i.e. unity, modality-specificity etc.), it cannot show that such ISV 

has the same neural underpinnings in all participants. For example, while one participant's high 

ISV may reflect poor axonal myelination, another participant's might reflect catecholaminergic 

dysregulation. If these neural bases led to similar profiles of task performance, factor analysis 

would group these as a single factor. 
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Secondly, such methods tend to require large samples. This can prove problematic if the 

populations of interest are rare or otherwise difficult to recruit, such as participants with a certain 

psychiatric or neurological disorder. This can also be difficult to orchestrate for 

psychophysiological or neuroimaging studies, where data can be time-consuming and costly to 

collect. 

Thirdly, while latent variable approaches can remove measurement eJTors from estimates 

of latent variables, high levels of measurement en-or have a negative impact on the c01mnunality 

- a measure of shared variance. McCall um, Widaman, Zhang, and Hong (1999) have shown that 

one of the most important determining factors of the sample size needed to accurately recover 

latent variables is the level of communality. Thus in order to avoid needing a, possibly 

prohibitively, large number of participants, accurate and reliable measurements ofISV are 

impo1tant. This goes back to comments made in the discussion of Study One that, in light of the 

high intercon-elation of most metrics ofISV, reliability may be a good criterion to choose metrics 

by. 

Theoretical implications 

This thesis has a number of theoretical implications. These can be grouped into trait­

theoretic and electrophysiological implications. 

Trait-theoretic implications 

The psychometric work in this thesis develops the concept of ISV as a trait. Study One 

showed that ISV shows good levels of stability of individual differences, at least in the short term. 

Study Three showed that in addition to temporal stability, ISV showed a good level of cross-task 

and cross-modal consistency. Study Four showed that this supra-task construct was closely 
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related to supra-task electroencephalographic parameters. While this latent variable approach is 

clearly a methodological decision, it is also implicitly a statement of a certain theoretical 

conceptualisation ofISV. Modelling ISV as a single latent variable implies that ISV is a 

pervasive, global, and stable property of a person, which manifests in all RT tasks, and perhaps in 

all situations where attention is sustained. By this view, the specific task may be viewed as being 

of secondary importance to the global trait. This is a bold claim, and one which will require 

stringent verification across a number of cognitive domains. Future work should investigate to 

what extent individual differences in variability parameters are consistent across disparate 

cognitive domains. If this context-free view ofISV appears to be vindicated, latent variable 

approaches will represent a powerful approach to future work on ISV. 

Neural implications 

The other main strand of this thesis was the study of the electroencephalograpic correlates 

ofISV, specifically the P3b component of the ERP. The results of Studies Two and Four suggest 

a strong relationship between RT and P3b latency. Study Two showed a modest correlation 

between single-trial RTs and P3b latencies in pa1ticipants with low ISV, which was substantially 

attenuated in participants with high ISV. The more highly aggregated and less measurement error 

prone latent variables found in Study Four found strikingly high correlation coefficients between 

RT and P3b latency parameters. 

The P3b is one of the most widely studied ERP components, with a number of models 

claiming to explain what it represents. Most of these models, however, are primarily cognitive, 

rather than neurophysiological, such as Donchin's ( 1981) model of the P3b representing "context 

updating" to unexpected events and Verleger's (1988) explanation of the P3b as the "closing" of a 

perceptual epoch after an expected event. Other frameworks, such as Johnson's (1986) triarchic 
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model, have focussed more on identifying factors that modulate P3b amplitude than what it 

represents per se. Physiological models of the P3b have largely been confined to lesion studies 

and attempts to localise its neural generators. A recent model by Nieuwenhuis, Aston-Jones, and 

Cohen (2005) has made a strong case that the P3b may represent a downstream cortical 

manifestation of phasic firing of noradrenergic neurons in the locus coeruleus. This hypothesis 

has strong support from invasive electrophysiology research in primates, which has shown that 

these neurons respond to stimuli in much the same way as a P3b (e.g. Usher, Cohen, Servan­

Schreiber, Rajkowski, & Aston-Jones, 1999). Nieuwenhuis et al. argue that this activity 

represents the response of the locus coeruleus to a neural decision making process. This view has 

parallels with Carpenter's LATER model (1981 ), and suggests that future attempts to model P3b 

latencies in the same ways that RTs are beginning to be modelled (such as with the LATER 

model and the ex-Gaussian distribution) may prove illuminating. 

To return to the present data, it appears that participants with high ISV show a weaker 

relationship between P3b latency and RT. The fact that higher latency jitter is seen relative to 

both stimulus onset and response, points to increased variability in both stimulus-evaluation and 

response-selection. This in turn points to a general increase in noise, rather than noise added to a 

specific neurocognitive process, an explanation which fits well with the psychometric results of 

this thesis. 

The aetiology of increased ISV 

While the work in this thesis, linking ISV to the P3b, is compatible with a noradrenergic 

model ofISV, it is important not to consider these results in isolation. The literature reviewed in 

Chapter Four details a number of possible aetiological factors, including catecholaminergic 

dysregulation (Stefanis et al., 2005), white matter abnormalities (Walhovd & Fjell, 2007), and 
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structural damage to the prefrontal cortex (Stuss, Murphy, Binns, & Alexander, 2003). Without a 

theoretical account for why such characteristics should co-occur, it seems reasonable to posit that 

a number of biological factors can lead to high ISV. It may accordingly make sense to think of 

ISV as being an index of neurocomputational noise, rather than of a specific biological property 

per se. By this functionalist account, ISV represents noisy neural processing, which can result 

from deficient catecholaminergic neuromodulation, decreased myelination, other factors, or 

indeed combinations of factors. Thus participants with unifonnly high ISV may show 

considerable aetiological heterogeneity. 

Where would such an explanation leave ISV research? Is it not contradictory to argue that 

ISV is a unitary construct, before hypothesising that it represents a non-specific noise parameter 

in the brain? The argument made by this thesis is that there is no contradiction. ISV may 

represent a helpful measure of signal-to-noise ratio in neural processing, independent of its 

aetiology from person to person. While participants with high ISV may vary on a neural scale, on 

the system-wide scale, they may be largely indistinguishable. ISV, and neural noise by extension, 

may thus represent a functional property rather a biological property. 

Alternatively, perhaps different causes do lead to subtle behavioural differences. While 

standard measures such as SDRT, used in the majority ofISV research, may be similarly 

influenced by different biological sources of noise, perhaps other metrics will find differences. 

Time series measures may find periodicities at different frequencies for ISV stemming from 

white matter abnonnalities than catecholaminergic deficits. Emerging non-linear analysis 

methods for understanding neural data (e.g. Kelly, Heathcote, Heath, & Longstaff, 2001) may 

find differences in fractality or in the 'colour' of noise spectra of RT data. Perhaps simply the 

extent to which ISV is increased will show aetiological differences, with certain causal factors 

being associated with more substantial increases in ISV (see Geurts et al., 2008). Future 

investigations should employ multimodal methods, in neuroimaging and psychopharmacology to 
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identify different aetiologies, and in quantification of ISV in order to identify behavioural 

differences between different aetiologies. 

Conclusion 

To sum up, the study ofISV seems at first glance rather esoteric, but addresses 

many of the pressing issues of modern neuroscience: the clash between traditional fronto­

executive model of focussed attention and modem accounts of dynamic self-organisation; the 

computational role of neurotransmitters; and neurometric diagnosis of psychiatric disorders to 

mention but a few. 

Perhaps as a result of the wide-ranging relevance ofISV, the literature has a tendency 

towards being somewhat parochial. Future investigations of ISV should attempt to explore the 

generalities between different manifestations of high ISV. Conversely, attempts should be made 

to falsify the hypothesis put forward in this thesis that ISV represents a general prope1ty, by 

comparing different aetiologies ofISV in a more fme-grained fashion. Such an approach could 

yield interesting results for computational neuroscience, psychiatric diagnostics, and the 

philosophy of psychology. 
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