
Bangor University

DOCTOR OF PHILOSOPHY

Analysis and design of organic semiconductor lasers

Barlow, Guy F.

Award date:
2001

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/analysis-and-design-of-organic-semiconductor-lasers(f484b837-2d68-492c-a9c4-60b55806caff).html


Analysis and Design of Organic 

Semiconductor Lasers 

Submitted by Guy F. Barlow for the degree of PhD 

University of Wales, Bangor 

April 20, 2001 

' . t l • < I 
'J ·: 



Summary 

There is much current interest in the use of organic materials for applications 

in the opto-electronics industry. This thesis is concerned with the investiga­

tion into the theoretical properties of so called Organic Semiconductor Lasers 

(OSLs), which may have applications in display technologies and low-power 

communications as a low cost alternative to inorganic devices. 

The work presented in this thesis represents, to the best knowledge of 

the author, the only theoretical investigation of OSL's to date. Many of 

the physical processes associated with the electrical excitation of OSLs are 

yet to be understood completely, the analyses in this thesis are therefore 

mainly concerned with the optical properties and lasing thresholds of the 

OSL structures, demonstrating how the differing optical properties of organic 

compared to in-organic materials effect the performance of various device con­

figurations. This analysis is extended to theoretical devices such as Circular 

Grating CG-DFB OSLs, which are yet to be demonstrated experimentally. 

Due to well published and thorough experimental investigation of a cer­

tain group of materials, the Alq3 : DCM combination, it has recently become 

possible to begin to investigate the lasing thresholds of these lasers in terms of 

t he amount of current they would require under electrical pumping schemes. 

Initial data showing how the threshold current is affected by changes in the 

geometry of a range of devices is also presented. 
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Chapter 1 

Introduction 
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1.1 Organic Materials and Their Properties 

1.1.1 Definition of Organic Semiconductor Materials 

The Organic Semiconductor materials referred to in this thesis are com­

posed of low molecular weight 1 organic molecules. The structure of tris­

(8-Hydroxyquinolene) Aluminium (Alq3), the material of most interest in 

this thesis, is shown in Figure 1.1. The molecule is constructed around a 

central Aluminium atom, with three Quinolate ligands arranged symmetri­

cally around it. Each ligand is ident ical, being composed of two adjoined 

carbon rings. 

Alq3 

Figure 1.1: Molecular structure of Alq3 

The Organic Semiconductor Laser (OSL) devices discussed in this thesis 

use amorphous organic semiconductor materials, the molecules are not ar­

ranged in any order in the bulk material and only relatively weak intermolec­

ular forces allow interaction between adjacent molecules. Unlike crystalline 

materials therefore , the properties of the bulk material are largely governed 
1i.e. of small physical size compared to polymer materials for example, which are said 

to be of large molecular weight 
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by the propert ies of the individual molecules. The random orientation of 

the molecules ensures that the electromagnetic properties of the material are 

isotropic. 

Figure 1.1 shows that each ligand is composed primarily of carbon atoms, 

with alternating single and double bonds between them. The alternating 

bond structure, known as conjugation, results in de-localisation of the bond­

ing (valence) elect rons in the molecule. Each molecule can therefore be 

thought of as a miniature crystal, and the allowed electronic wave-functions 

( or molecular orbitals) correspond approximately to the energy levels of 

a crystalline semiconductor material. Depending on the structure of the 

molecule, a 'band gap' may result between the Highest Occupied Molecu­

lar Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), 

which can be compared to the valence and conduction band of a semicon­

ductor crystal. 

1.1.2 Optoelectronic Properties of Organic Materials 

In comparison to in-organic semiconductor materials, organic semiconduc­

tors exhibit considerably lower indexes of refraction, typically of about 1.5. 

The other opt ical properties of organic semiconductor materials are there­

fore largely a result of the arrangement of the HOMO and LUMO. As these 

energy levels are created by the formulation of the molecule, and even the 

physical orientation of the atoms from which it is comprised, it is theoret­

ically possible to alter the spacing of the HOMO and LUMO by adjusting 

the chemistry of the molecule, which is an att ractive advantage of organic 
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materials for the design of low cost lasers operating at wavelengths difficult 

to obtain using crystalline in-organic semiconductors. 

Excited 
Singlet State 

Ground State 

Emission 

HOMO 

Excited 
Triplet State 

-- Radiative Transitions 

Non-Radiative Internal Conversion 

··········· Non-Radiative Inter System Crossing 

Intermolecular Separation 

Figure 1.2: Energy levels in an organic semiconductor material. 

Absorption and emission of photons is accompanied by upward or down­

ward transitions of available electrons in the molecule between the HOMO 

and LUMO levels (Figure 1.2). The HOMO and LUMO are broadened by 

numerous energy levels representing vibrionic states of the molecule and tran­

sitions between these states are non-radiative. An electron excited from the 

bottom of the HOMO to the top of the LUMO energy level decays rapidly 

to the bottom of the LUMO via vibrionic (phonon) transitions in a process 

known as Internal Conversion (IC). Emission of radiation is then accompa­

nied by a downward transition from the bottom of the LUMO to the top of 

the HOMO. The result of non-radiative IC is a significant difference in the 
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absorption and emission energies, resulting in a large Stokes shift between 

the singlet absorption and emission spectra of organic semiconductors. The 

allowed energies of an organic semiconductor molecule therefore form a nat­

ural four level laser system, and very little of the emission radiation of the 

laser is re- absorbed into the material under stimulated emission. 

There is approximately a 70% probability that, instead of decaying ra­

diatively to the ground state orbital, an excited molecule will decay non­

radiatively into a triplet state via a non-radiative process known as Inter 

System Crossing (ISC). The decay time of the triplet state is comparatively 

long and triplet absorption results in the quenching of any optical gain if the 

pump is constant. Even optically pumped Organic Semiconductor Lasers 

(OSLs) are generally operated on a pulsed basis. In [16], for example, a 

337nm nitrogen gas laser is used to supply the pump energy in Ins pulses at 

a rate of 40H z. 

Although it had been previously stated that little interaction occurs be­

tween the molecules of the bulk material, energy transfer between molecules 

may take place from one molecular dipole to another via electromagnetic 

coupling trough the weak intermolecular forces. This is a non-radiative 

processes, and gives rise to Forster [18] energy transfer between molecules 

within a 5-lOnm radius of each other. Forster transfer is a highly efficient 

energy transfer process, requiring that the emission and absorption spec­

tra of the molecules involved overlap. Forster transfer is commonly used 

in OSLs to further decrease the degree of re-absorption of emission radia­

tion. In the laser systems of interest in this work, Alq3 molecules form the 

bulk of the active material, doped with 4-(Dicyanomethylene}-2-methyl-6-(p-

lO 



dimethylaminostyryl)-4H-pyran (DCM) dye in a concentration of about 2%. 

This combination results in an absorption peak at around 440nm and an 

emission peak at around 640nm, ensuring that re-absorption is minimised. 

Problems with implement ing electrically pumped OSLs arise due to in­

duced losses in the material quenching the output. Current thinking suggests 

that this results from polaron absorption [28], which occurs due to the in­

jected charge carriers altering the electronic states of individual molecules. 

This creates charged molecular species (polarons) which have different atomic 

t ransitions available to them than the bulk Alq3 and are able to absorb the 

emitted radiation. The exact nature of this process is not well understood 

however, and the effects may be greatly reduced by the inclusion of thin 

buffer layers in the laser multi-layer to inhibit their diffusion into the active 

layer of the laser. 

Charge transport and conduct ion in an amorphous Organic Semiconduc­

tor has been likened [29] to that in a crystalline semiconductor containing 

a large number of traps and defects, resulting in very low carrier mobili­

ties. Such Trap Charge Limited (TCL) conduction in organic semiconductor 

materials is known to lead to a power law relat ionship between current and 

voltage at current densities normally associated with lasing. 

In the following analysis, it will be seen how t he unusual opto-electronic 

properties of organic materials effect the design and performance of Organic 

Semiconductor Lasers. 
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1.2 Structure of This Thesis 

The chapters of this thesis have been arranged in the same order as the 

work that they represent was performed. Where possible a theory chapter 

is followed by a chapter documenting results. The work can be divided into 

three parts: 

Analysis and Design of a Fabry-Perot Cavity OSL 

This part of the thesis (Chapters 2 and 3) describes an investigation into the 

lasing threshold of an experimental OSL [16]. In Chapter 2, techniques are 

presented that are later used in the analysis of the laser modes. Chapter 3 

presents the results of the analysis. 

Analysis and Design of DFB OSLs 

In Chapters 4 and 5, the suitability of Distributed Feed-Back (DFB) gratings 

for use in the design of Organic Semiconductor Lasers is assessed. 

Chapter 4 explains the techniques used to analyse the modes of such a 

laser. An analysis of a number of possible configurations of a DFB-OSL is 

performed in Chapter 5 using the techniques previously derived. 

Chapter 6 documents a threshold current analysis of the linear (parallel) 

grating DFB discussed in the previous section and includes details on the 

analysis method used. 
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Analysis and Design of CG-DFB OSLs 

In Chapter 7, techniques by which the modes of Circular Grating DFB (CG­

DFB) lasers may be analysed are presented. Chapter 8 uses these methods 

to investigate the properties of theoretical CG-DFB OSLs. Both threshold 

gain, and threshold current analyses are performed. 
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Chapter 2 

Analysis of Multilayer Optical 

Waveguides 
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2.1 Introduction 

Methods by which the analysis of semiconductor waveguides consisting of a 

few layers of homogeneous material are well documented [1]. For the sub­

sequent analysis of semiconductor lasers however, techniques must be used 

that are applicable to channel waveguides composed of many homogeneous 

regions. To examine the result of stimulated emission on the properties of 

the waveguide, it is also a requirement that the effects of optical gain are 

accounted for in the analysis. 

In this chapter, techniques suitable for the investigation of channel waveg­

uides in semiconductor lasers are discussed. 

2.2 Optical Propagation in a Waveguide 

A planar or slab waveguide is a theoretical structure comprised of several 

semi-infinite layers of homogeneous material. A typical three layer structure 

is depicted in Figure 2 .1. 

Dz 

y 

X 

Cover 

Core J-------z 

Il3 Substrate 

Figure 2.1: A three layer planar waveguide, with Cartesian axes superimposed 

The waveguide is characterised only by the refractive indices (n1 , n2 and 
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n3 ) of the layers and the thicknesses of the layers between the cover and 

substrate. Assuming a harmonic time dependence for the electromagnetic 

field (see Appendix A), light propagating in the waveguide must satisfy the 

time-independent wave equation; 

(2.1) 

in each of the j = 1, 2, 3 layers, where nj represents the refractive index of 

the jth layer. 

A Cartesian coordinate system is adopted where the transverse plane is 

taken to be the plane formed by the x and y coordinates and the z direction is 

chosen as the direction of propagation. The optical field is assumed invariant 

in the y direction. The z dependence of the wave may be considered to be 

harmonic and characterised by a propagation constant, /3, so that; 

E(x, y, z) = E(x, y)e-jf3z (2.2) 

The actual electromagnetic field in the structure is a summation of com­

ponents having harmonic dependence on the z coordinate. The harmonic 

components are characterised by a value of /3, and are known as the modes 

of the waveguide. 

In a planar waveguide having three layers, the spatial dependence of the 

refractive index is limited to the x coordinate only. By substitution of (2.2) 

into (2.1) and setting 8/8y = 0, wave equations for the homogeneous regions 

of the waveguide can then be written 

16 



::2 E(x, y) + (/32 
- k~nf)E(x, y) = 0 (2.3) 

(2.4) 

(2.5) 

Solutions to these equations may be sought as values of (3 that correspond 

to the allowed field distributions, E(x, y), in the waveguide. 

2.2.1 TE and TM Modes in a Planar Waveguide 

In the planar waveguide, Maxwells equations can be written in the following 

form; 

/3Ey = wµHx (2.6) 

a 
(2.7) f3Ex + OXEz = wµHy 

!Ey = -jwµHz (2.8) 

/3Hy = WEEx (2.9) 

jf3Hx + ! Hz= -jwEEy (2.10) 

a . 
OX Hy= JWEEz (2.11) 

An inspection of the above equations reveals that there are two separa­

ble, self consistent groups of components: Transverse Electric or TE modes, 
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consisting of Ey, Hx and Hz, and Transverse Magnetic or TM modes having 

Hy, Ex and Ez components. 

The TE solutions require that Ez = 0 and the TM require Hz = 0. By 

seeking the TE and TM mode solutions separately, the wave equations for 

the planar waveguide may be cast in a scalar form, known as the Helmholtz 

equations; 

::2 Ey(x, y) + (j3fE - k5n2(x))Ey(x, y) = 0 

for the TE modes and 

(2.12) 

(2.13) 

for the TM modes, where n(x) is the x dependent refractive index. The TE 

and TM modes are found in a similar manner and initial discussion will be 

restricted to the case of TE modes. 

2.2.2 The Complex Dielectric Constant 

The time independent electric field component of a TE mode in a planar 

waveguide has the form: 

(2.14) 

If t he refractive index, n, is complex, the imaginary part of n will represent 

exponential growth or decay of the wave amplitude in the z direction. It 

is useful to use complex dielectric constants when analysing active devices, 

as the optical gain or loss can be incorporated in the imaginary part of the 

18 



refractive index of the material. Assuming the refractive index to be of the 

form; n = n' + jn", the imaginary part of the refractive index is related to 

the field loss coefficient, a/2, by the relation 

II a_ 
n =-

2ko 
(2.15) 

The complex propagation constant, /3, is then related to the complex refrac­

tive index by; /3 = k0(n' + jn"). 

2.3 Solving The Wave Equation 

For the three layer case of Figure 2.1, solutions can be sought by deriving 

transcendental equations using the continuity of the electric and magnetic 

fields at the interfaces [1] [2]. The use of explicit transcendental equations 

is limited, however, to waveguides of just a few layers before the analysis 

becomes unwieldy. The requirement that a single equation be derived de­

scribing the matching of the field and its derivative at each interface makes 

the entirely analytic approach time consuming and exceptionally tedious as 

the number of layers increases. 

2.3.1 Transfer Matrix Techniques 

The use of transfer matrix techniques to analyse multi-layered optical waveg­

uides is used in [4] as a means of reducing the complexity of matching the 

boundary conditions of the fields at the layer interfaces. 

For a multi-layered planar waveguide having only an x dependent refrac­

tive index variation, as shown in Figure 2.2, a general solution to TE wave 
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Figure 2.2: Multilayer Waveguide Structure 

X 

equation (2.12) in the j'th layer may take the form of the wave function; 

(2.16) 

where ai = J {32 - k5n; and ti is the position of the interface of the j'th 

layer, as seen in Figure 2.2. Ai and Bi are complex constants for each layer. 

Using equations (2.6-2.11), the boundary conditions for the continuity of 

the electromagnetic field at the interfaces can be written as; 

(2.17) 

for the Ey field. Using equations (2.6) and (2.8); 

_f!_E·(t·) = _ /3_E+1 (t·) 
w µj J J w µ j+l J J 

(2.18) 

is obtained for the for the Hx component and; 
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-j ~E-(t-) = ~~E- 1 (t-) 
wµj ax J J Wµj+l ax J+ J 

(2.19) 

for the Hz component. With µi = µj+i, the above expressions reduce to 

two equations matching the c(x) field and its derivative at the j'th interface. 

Equation (2.16) may then be substituted into the boundary conditions to 

give; 

(2.20) 

(2.21) 

where di+l = ti -ti+1 is the thickness of the next layer. The above equations 

may be re-arranged into a form relating the A and B coefficients of the current 

layer to those of the subsequent layer; 

(2.22) 

(2.23) 

which may be written in a matrix form as; 

(2.24) 

where; 
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.!. (l _ ai+i )e-ai+1dj+1 l 
2 a · 

½(1 + a~~! )e-Oj+1dj+1 
J 

(2.25) 

with the aj 's defined as; 

(2.26) 

For a multi-layer structure having N homogeneous layers, a transfer matrix 

for the entire waveguide can be defined as the product, T, of the intermediate 

mj layer matrices.: 

N-1 

T(fJ) = IT mj({J) (2.27) 
j=l 

The T matrix thus connects the A and B coefficients of the first and last 

layers, that is; Ao to AN and B0 to B N: 

(2.28) 

Setting the A or B coefficient in (2.16) to zero in the cover or substrate layer 

results in a field growing or decaying exponentially away from the centre of 

the structure, corresponding to leaky or confined modes of the waveguide. 

In the most common case of confined mode solutions, the field is required to 

decay exponentially in layers 1 and N, requiring B1 = 0 and AN = 0. In 

terms of the matrix, T({J) 

(2.29) 
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Multiplying out the matrices reveals that equation (2.29) is only satisfied 

when T22 = 0. The expression T22 (/3) = 0 therefore has solutions in terms 

of discrete values for /3 that represent the confined modes of the waveguide. 

T22 (/3) = 0 is therefore the dispersion relation of the multi-layer structure. 

Modes which are exponentially increasing away from the centre of the 

wave-guide (so-called lossy or anti-guiding modes) may be located by selec­

tion of a different element of the T matrix. By selecting A1 = 0 and BN = 0 

in 2.29, corresponding to having exponentially growing fields in the cover and 

substrate, it can be proven that a suitable dispersion relation for anti-guiding 

modes would be T11 = 0. 

The derivation of the TM mode dispersion relation is similar to that of 

the TE case. In practical terms, the only difference is seen in the individual 

elements of the mj layer matrix. The dispersion relation for TM modes is 

derived in Appendix B. 

2.3.2 The Dispersion Relation Described using Rie­

mann Constructs 

For a waveguide having complex refractive indices, and therefore complex 

propagation constants, the computation of the O:j coefficients for the mj 

layer matrices involves the evaluation of a complex square root function. The 

implications of the complex square roots in the evaluation of the dispersion 

relation will now be discussed. 

It is well known that the square root of a real number is bi-valued. Al­

though both solutions are valid the choice of solution to a square root func-
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tion is often a matter of whether one requires continuity of the function at 

its singular point, the origin. Many computer implementations of the square 

root function use a simple rule whereby the solution is always taken to be 

positive. Although for most cases this assumption is adequate, it does mean 

that the function is only piecewise-continuous about the origin (the solid line 

in Figure 2.3). 

Square Root Function of a Real Number 
4 ,----,----,-----,---,------.----r---,----,---,-----, 

~o~---- -------+-------------, 

- 1 

- 2 

- 3 , 

I 0 
I \ 

I \ , ' , ' 
, , , ... ... ... Y=I-Xt/21 

, ...... 

-4'---'---'----'-----'--~--'----'-----'-----'------' 
- 10 -8 -6 -4 - 2 0 

X 
2 4 6 8 

Figure 2.3: Square root of a real number. 

10 

Mathematically, this is hard to justify, the exponential function, xn, is 

continuous for n > l , so the function x 112 must also be continuous. For 

proper implementation of the square root function on a computer, the sign 

of the result should be manually inverted every time the origin is crossed. 

An expression such as y = f ( z) , where f ( z) is the complex function may 

be visualised as a Riemann surface on the complex plane. The features of 

the surface are then a result of the variation in amplitude of the dependent 

variable, y, with real and imaginary parts of z. For the complex square root 
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y = Jz, y will reside simultaneously on two surfaces, corresponding to the 

positive and negative roots of the previous example (Figure 2.4). 

z 1/2 

1 

0.5 

0 

-0.5 

-1 
1 

Figure 2.4: Riemann surface for the complex square root function. 

As seen in Figure 2.4, for t he complex square root, the discontinuity 

arises not only at the origin, but also along the line section formed along 

the negative real axis. It is also important to note that, if cont inuity of 

the function is maintained, any contour encircling the origin must make two 

revolutions in order to close. A Riemann surfa ce is shown for the complex 

square root function in Figure (2.4). 

By inspection of the layer matrices (2.25) of which the dispersion function 

is composed, it can be seen that, with complex refractive indices assumed, 

the waveguide matrix, T , contains complex square roots in its four elements. 

The complex roots in the individual mj layer matrices make aj bi-valued for 
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all values of (3 except at the singular point (32 = k0 n; . 
The way in which the multi-valued nature of the ai coefficients affects 

the multi-layer waveguide dispersion relation is addressed in [5], where it 

was noted that during multiplication of the layer matrices, the intermediate 

ai singular points are removable in the solut ion space of the elements of 

the dispersion matrix, T, leaving only the singular points of a 1 and aN to 

characterise the function. The elements of T are found to be four-valued as 

a result of the combination of the two complex square root functions a 1 and 

O!N. 

It was shown in [5] how the nature of the solutions changes depending on 

which surface they occupy, and their position in relation to the two singular 

points. The four valued dispersion function results from the ambiguity of 

the sign of two complex square root functions in a 1 and aN appearing in the 

argument and magnitude of the exponentials forming the T matrix elements. 

However a mult iplication of several of the mi matrices demonstrates that 

t he T matrix elements only differ from one another in terms of the signs 

of their arguments and magnitudes, in a similar manner to the mi matrix 

elements. It is therefore apparent that any element of T may be chosen as 

t he dispersion relation and may be used to find solutions of a bound or lossy 

nature. Selecting a different element of T as the dispersion relation therefore 

merely changes which region of the four sheeted Riemann surface contains the 

required solut ions. For example, by selecting the dispersion relation as T22 , 

the bound mode solutions lie near the line segment extending in a positive 

direction parallel with the real axis from the singular point aN = 0. Using 

the T11 element as the dispersion relation places the bound solutions on the 
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line segment between the two singular points, a 1 = 0 and aN = 0 

2.3.3 Unfolding The Multi-valued Dispersion Relation 

In order to locate the zeros of the dispersion relation more easily, it is possible 

to map the multi-valued dispersion relation onto a single complex plane. 

This is achieved by employing a variable substitution to ensuring that the 

complex square root functions are removed. The elements of the T matrix 

for the waveguide are four-valued by virtue of the complex square roots in 

a 1 and aN. By selecting V to be the new independent variable, making the 

substit ution; 

(2.30) 

The elements of Tare now just two-valued by virtue of the complex square 

root in aN. The substitution, known as a conformal mapping, unfolds the 

four valued function in (3 onto a bi-valued solution space, V. In a similar 

manner, the technique described in [6] unfolds the four valued solution space 

onto a single plane by means of the conformal mapping substitution; 

(2.31) 

where U is the new independent variable after the unfolding. This mapping 

projects the multi-valued dispersion relation onto a single complex plane of 

the variable U. Using this approach, solutions can be more conveniently 

observed as they move across the chosen region of interest. Unfolding the 

dispersion function also greatly simplifies any root-finding algorithms by re-
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moving the need to impose branch cuts on the complex root functions. The 

various regions of the four-sheeted dispersion relation yielding different types 

of solutions are mapped onto the unfolded, U, plane as shown in Figure (2.5) 

after [6]. It can be seen from the figure that the origin of the unfolded dis­

persion function corresponds to the singular point 132 = k5n5. Solutions that 

are lossy or bound in both the cover and substrate are found outside a circu­

lar region enclosing the origin, having a radius defined by the singular point 

132 = k5n7v. Therefore when n0 = nN, and the waveguide is symmetric, only 

symmetric solutions will exist. The region of interest for bound modes lies 

close to 132 = k5n7v and is indicated by a dotted line on the figure. 

lm(U) 

Re(U) 

___ ... . ___ Region of interest 

·--... for bound modes. 
2 · .. 

(konN) . 

"=i ~ ~ ~ 

Figure 2.5: Conformal mapping of the dispersion relation onto a single plain, 

The forms of the fields found as solutions to the dispersion relation in each 

region are shown. 
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2.3.4 Discussion 

In the preceding analysis, it has been demonstrated how the transfer matrix 

method may be applied to the analysis of a multi-layered planar waveguide 

structure to yield a single transfer matrix, the elements of which have ze­

ros representing the bound or guided mode solut ions of the waveguide. The 

dispersion relation of the waveguide is obtained from the elements of the 

transfer matrix, T , and has been shown to be four-valued in the solution 

space representing values of the complex propagation constant, {3. A method 

of unfolding the dispersion relation using a conformal mapping variable sub­

stitut ion may then be employed to avoid the problems associated with main­

taining the continuity of the function over its branch points. The problem of 

finding the modes of a multi-layer waveguide with complex refractive indices 

has therefore been reduced to that of locating the zeros of a complex function 

in the unfolding variable, U. 

2.4 The Effective Index Method (EIM) 

The effective index method is a technique allowing the analysis of two di­

mensional channel or rib waveguides where the refractive index has variation 

in both x and y transverse coordinates. The EIM method makes a number 

of approximations concerning the form of the optical field but is known to 

be reasonably accurate for a wide range of structures. 

29 



2.4.1 Plane Wave Approximation of a Channel Waveg­

uide 

The first assumption of the EIM is that the optical field is a combination of 

two orthogonal planar waveguide modes, as shown in figure(2.6); 

X 
F (x) 

y 

G(y) 
y 

0 y 

Figure 2.6: Two dimensional waveguide cross section. 

(2.32) 

Substitution of (2.32) into (2.12) gives; 

The wave equation may be separated into two planar wave equations pro­

vided that the refractive index and propagation constant may be decomposed 

into a combination of x and y dependent components: 

n(x, y) 2 = n(x)2 + n(y)2 (2.34) 

(2.35) 
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The approximation is made that the refractive index of the waveguide 

components varying only in they direction, n(y), are effective indices derived 

from the analysis of the orthogonal planar waveguide, having a refractive 

index n(x). 

{32 
n(y) ~ k~ 

Where {3; has been found previously as a solut ion to 

(2.36) 

(2.37) 

and n(x )2 is taken to be the actual refractive index variation of the 

n 12 , n22 , n32waveguide with x. Substituting (2.36) into (2.33) then yields 

Comparison of (2.38) with (2.33) reveals that f3; ~ f3~y with the effective 

index assumption of (2.36) made. It is also an implication from equation 

(2.38) that n(x, y) ~ n(x). This suggests that the effective index approxima­

tion is more accurate when variation of the refractive index in the y direction 

is negligible compared to index variation in the x direction. For this reason 

it is advantageous to choose the order of the calculation in such a way as to 

ensure that the planar waveguide component having the most variation in 

refractive index is solved first, before the assumption of (2.36) is made. 

If Fy(x) and Gy(y) are mode solutions to the corresponding orthogonal 

planar waveguides (a) and (b) in Figure (2.7), then for modes having the 
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electric field component in they direction, Fy(x) is the electric field compo­

nent of the TE solution to the planar waveguide (b) characterised by ;Y = 0, 

and Gy(y) must be the electric field component of the TM solut ion to the 

planar waveguide (a) where Ix = 0. The solutions for this combination are 

normally denoted E½m modes, where n and m are the mode orders of the 

x and y dependent waveguide solutions respectively. Similarly E;,m modes 

may be approximated by a combination of TM modes to the x dependent 

waveguide component and TE solutions to the y dependent waveguide. 

Of particular interest here is the analysis of rib or channel waveguides. 

An example is shown in Figure (2.6). The waveguide can be separated into 

three regions in the y coordinate, labelled I, II and III. For each region there 

can be defined a planar structure having a refractive index variation only in 

the x direction. Typically, the width-of the active region in the y (lateral) 

direction is much larger than its width in the x (transverse) direction. 
,x 

- y 
I II III 

z 
Figure 2.7: Example of a multilayer channel waveguide. 

To obtain the E;m modes of this structure, the TE solutions to the three 
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x dependent waveguides in regions I, II and III are sought. This provides 

three values of effective index neff,I,x, neff,II,x and neff,III,x via the approx­

imation of (2.36). The number of modes found in the centre region (II), is 

taken as the integer n in E;m. Locating the TM modes of the three layer 

waveguide formed by neff,I,x, neff,II,x and neff,III,x then yields the propaga­

tion constants of the waveguide. The number of TM solutions found is taken 

to be min E;m. 

The Ex modes may be similarly located by substituting the TM solu­

tion for the x dependent waveguide and a TE solution for the y dependent 

component. 

2.4.2 Accuracy of the EIM 

It is known [8]-[12] that the effective index approximation can overestimate 

the propagation constant for the lateral waveguide by a considerable amount. 

Various improvements have been suggested to improve the accuracy of this 

technique [13][14]. Alternative techniques, such as the spectral index method 

[15] can be used if more accurate results are required. These alternative 

methods may be of particular interest in structures where the lateral mode 

is near cut-off, which is known to be the region of highest error in effective 

index calculations. Rib waveguides having an exceptionally high index step 

are also prone to error because of the effect of the corners of the rib on the 

field profile. 

The effective index method is most accurate when analysing structures 

having comparatively small variations in refractive index. The maximum 
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refractive index variation in a semiconductor laser is usually found at the 

air interface. A typical index step at the air interface of an organic laser is 

6..n ~ 1, whereas for an in-organic material like InGaAs, 6..n > 2 is typical. 

The basic EIM method should therefore provide results to a greater accuracy 

in the analysis of organic laser waveguides than in-organic structures. 

2.5 Determining Solutions of the Dispersion 

Relation 

There are many ways of efficiently finding the zeros of a complex function 

and the selection of a suitable technique is highly dependent upon the nature 

of the problem. To locate the solutions of the unfolded dispersion relation, 

it is more convenient to use an algorithm that operates within a fixed region 

of interest on the complex plane, rather than requiring an initial estimate 

of the propagation constant. For the analysis of the waveguide modes in a 

semiconductor laser, it is also an advantage if all the solutions within that 

region of interest are sought simultaneously rather than consecutively, so 

that the modes can be seen to move across the solution space as changes in 

the device geometry are made. The Argument Principle Method (APM) was 

first suggested in [3] and fulfils all of these criteria whilst offering reasonable 

execution times and required accuracy on a desktop PC. 
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2.5.1 The Argument Principle Method (APM) 

The Argument Principle Method [3], is based on the argument principle 

theorem in complex analysis. The argument principle theorem states that, 

for any closed curve, C on a complex plane, z; 

_l 1 f'(z) dz= n 
27ri lc f (z) 

(2.39) 

where n is the number of zeros of f(z) within the contour, C, and f'( z) is 

the derivative of the function. 

It is possible to obtain a summation of the values of the complex variable 

at the zeros of the function by evaluating; 

- 1 i mf'(z) - n m 
Sm - -2. z -f ( ) dz - L zi 

7f'I, c z i=l 
(2.40) 

where Zi are the i = 1, 2, ... , n zeros of f (z) inside C. From (2.39) the 

integral in (2.40) returns the number of zeros, n, within C when m = 0. The 

summations given by (2.40) for m = 1, ... , n, can then be used to evaluate 

the coefficients of a polynomial p(z), having the same roots, Z1 , ... , Zn as the 

function f ( z) . 

(2.41) 

After [5], the coefficients C1 , ... , Cn are then found using the recurrence 

relation: 
l k 

ck = (k - n) J; SjCk+j (2.42) 

By setting Cn = l, all of the coefficients of (2.41) can be found by recursive 
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application of (2.42). The roots of the polynomial can then be located using 

any well known root finding algorithm, such as Laguerres method. 

2.5.2 Application of the APM 

The APM may be applied to locating the zeros of the dispersion relation 

within a particular region of the unfolded complex plane, U. Where the 

contour integral used in the calculation becomes; 

(2.43) 

where U is the unfolded complex variable given by (2.31) and the derivative 

of the dispersion function, T{1 (U) , is obtained by a simple application of the 

chain rule to the individual mj layer matrices. 

In a waveguide, the contour for the integral may be selected so as to 

enclose a region within which the confined mode solutions are to be found. 

Using the matrix element Tn (U) as the dispersion relation, the confined 

modes reside near the line segment between (3 = konN (U = ✓k5n}{ - k5n?) 

and (3 = konmax (where nmax is the highest refractive index in the structure) 

as seen in Figure (2.5). 

2.6 Summary 

It has been shown how the Transfer Matrix Method (TMM) , the Argument 

Principle Method (APM) and the Effective Index Method (EIM) may be used 

to find solut ions to the Helmholtz wave equation for a two dimensional op­

tical field in a channel waveguide having material gain or absorption. In 
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the following section, these methods will be applied to a prototype Organic 

Semiconductor Laser structure. 
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Chapter 3 

Investigation of an Organic 

Semiconductor Laser (OSL) 
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3.1 A Prototype OSL 

In the preceding chapter, it was shown how various analytic and semi-analytic 

techniques may be combined to extract the optical modes of planar and chan­

nel waveguides. In the following, a prototype OSL is analysed using these 

methods. The optical modes supported by the OSL are found, leading to 

an analysis of the material gain required to operate the laser under optical 

pumping (the threshold gain). Variations in the device geometry are consid­

ered with a view to reducing the threshold gain. 

3.1.1 Structure 

Attention is given to the organic semiconductor laser structure described in 

[16]. The laser is an optically pumped device with an operating wavelength 

of around 630nm. 

The OSL in [16] is constructed from a tris-(8-hydroxyquinoline) aluminium 

(Alq3) multilayer that has been vapour deposited onto an SiO2 cladding. The 

laser is of the double heterostructure1 (DH) type and has parallel reflective 

facets at either end forming a Fabry-Perot resonant cavity. The facets are 

formed by the deposited layers of organic material conforming to the shape 

of the underlying InP substrate, which is cleaved prior to vapour deposition 

of the Alq3. The structure of the laser waveguide is shown in Figure 3.1. 

In this example structure, a 2µm layer of SiO2 is used for the cladding 

which acts as a buffer between the confining layers and the substrate. Light 
1 DH lasers are characterised by having separate homogeneous layers above and below 

the active region, typically to assist in charge transport 
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Figure 3.1: Structure _of the laser waveguide; the transverse composition of 

the OSL is shown with associated refractive indices for the layers 

is confined to a 0.3µm t hick film of Alq3 , with the middle 0.05µm be­

ing doped with 4-(Dicyanomethylene}-2-methyl-6-(p-dimethylaminostyryl)-

4H-pyran (DCM) dye to act as the active region. Initial measurements de­

scribed in [16] reported the end facets to have a reflectivity of approximately 

7%. 

In [16], the laser waveguide is optically pumped using a 337nm nitrogen 

laser focussed, using a cylindrical lens, onto a 50µm wide stripe perpendicular 

to the plane of the facets. A schematic diagram showing the structure of the 

laser cavity is shown in Figure 3.2. In [16] The operating wavelength of the 

laser was reported to be 632nm, with a gain threshold of around lµJ /cm2 . 
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The laser was also seen to support a single t ransverse mode. 

Transverse single mode or monomode operation is desirable in lasers de­

signed for a wide variety of applications where narrow band emission and 

small spot size may be required. 

Optical 

Active Layer 

Figure 3.2: Structure of the laser cavity 

3.1.2 Modal Gain 

The gain threshold in a laser is defined as the level of gain required to over­

come the total optical losses in the structure. The modal gain threshold of 

the OSL can be estimated using the standard expression for the losses in a 

Fabry-Perot cavity, derived by a consideration of the repeated reflection of 

the electro-magnetic waves at the end reflectors [1],[2): 

1 1 ,= - ln-+a 
L R 
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where Lis the length of the cavity, R is the reflectivity of the end mirrors 

and a represents internal losses due to absorption and scattering in the bulk 

material. 1 may be considered to approximate the gain required to overcome 

material losses in the cavity and the partial transmission of light at the 

end facets. The name modal gain refers to the fact that I is the gain of a 

particular transverse mode supported by the laser waveguide. 

As well as losses at the reflectors, the other main cause of loss arises from 

imperfect confinement of the light as it propagates along the waveguide. 

Account may be taken of this by means of a confinement factor, r, obtained 

numerically from the transverse mode field profile as: 

r = f A le(x, y)l2dxdy 
J00 le(x, y) l2dxdy 

(3.2) 

Where A is the active region area and e(x, y) is the transverse field profile. 

A confinement factor, r , of unity thus implies a well confined mode in the 

t ransverse direction, and may be a reasonable approximation for lower order 

modes far from cut-off in a multi-mode structure. The material gain required 

to overcome the total cavity losses in the structure, gth, is thus given by: 

'Y 
9th= -r (3.3) 

In [2] the total loss (and therefore total threshold gain) in a laser cavity 

is defined as a sum of the modal, scattering and re-absorption losses in the 

laser waveguide. In the Alq3:DCM material used in the OSL of reference 

[16] however, the large upward shift in wavelength between the peaks of the 

absorption and emission spectra ( ~ 300nm) ensures that the wavelength of 

42 



the emission radiation is beyond the maximum absorption wavelength for the 

Alq3 host material and so re-absorption of radiation in the laser is negligible. 

Scattering losses at the interfaces between the thin films are usually small in 

comparison to modal losses, and are disregarded in this analysis. 

3.1.3 Gain Guiding 

In the prototype OSL, optical confinement to the pump stripe is provided by 

gain guiding, in which the presence of optical gain over the pump stripe width 

gives rise to a weak confinement of the light due to the greater extinction of 

the electromagnetic field in the surrounding material. 

Although in an in-organic semiconductor both the real and imaginary 

parts of the refractive index are affected by the presence of gain, the variation 

in the real part can be less than 1 % and in most cases be assumed to be 

zero as it does not affect the waveguiding of the laser significantly. This 

assumption is especially valid for organic, optically pumped lasers, where 

changes in refractive index due to optical pumping have yet to be observed 

in experiment. 

To design a laser to operate at gain levels just above threshold, the min­

imum gain over the active stripe is made equal to the threshold gain of the 

fundamental mode. However, as the threshold gain is dependent upon the 

confinement of the gain-guided laser, minimum values for the threshold gain 

must be sought by successive approximation. 

This is achieved by initially setting the confinement of the gain guiding 

waveguide to unity. The material gain of the laser is then found using (3.1) 
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and (3.3) with the reflectivity of the end facets of the laser calculated as 0.07 

using the expression: 

R = (na - 1)2 

1 + na 
(3.4) 

Where na = 1.72 is the refractive index of the Alq3:DCM material. Sub-

stituting this value into equation (3.1) for a laser of length 500µm, results in 

a gain value of g = 53cm-1 and a value for the imaginary refractive index of 

Im(n)=2.7x10-4 using the relation: 

I m(n) = 2t (3.5) 

The fundamental modes of the waveguide are then sought to give a con­

finement factor for the waveguide. A more accurate value of threshold gain 

for the laser is then calculated using (3.3) . This procedure may be repeated 

until the confinement factors of subsequent calculations are identical, where­

upon the threshold gain calculated from (3.3) is at a minimum. 

3.1.4 Calculated Modes of the Prototype OSL 

Figure 3.3 shows the transverse structure used for the modal investigation. 

Consideration is given to E~(x, y) modes having the electric component in 

the x direction. Similarly, modes having the electric field component in the 

lateral, y, plane will be denoted E½(x, y). 

The Ex or quasi-TE fundamental modes normally have higher values of 

confinement than the EY modes. As the maximum levels of confinement pos­

sible are being sought, further discussion will focus on the E~(x, y) solutions. 
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Figure 3.3: Transverse structure of the channel OSL waveguide 

In the Effective Index Method (EIM), described previously, the two di­

mensional field is separated into one dimensional x and y dependent com­

ponents. The quasi-TE modes are therefore decomposed into orthoganol 

components E0(x) and E0(y) . 

Using the effective index method (EIM) and the Argument Principal Method 

(APM), the E0(x) modes for the OSL in [16] are calculated for a wavelength 

of 632nm as: neJtJcladding) = 1.6083; nefJ'"(core) = 1.6083 + j5.33x10- 5 

The effective index for the fundamental lateral mode is found to be, E0(y) : 

neffy = 1.6083 + j5.04x10- 5• Both the transverse and lateral fundamental 

modes are depicted in Figure (3.4) . Although no higher order modes are 

supported for the x component of the waveguide, modes of beyond the tenth 

order are supported by the y dependent waveguide at a wavelength of 632nm. 

In general, higher order modes are less well confined than the fundamental. 

In this analysis, where the minimum threshold gain of the laser is sought, 
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Figure 3.4: x and y dependent components of E~(x, y) mode. 

attention is given to the fundamental mode of the y dependent waveguide, 

as it provides the lowest threshold gain. 

3.1.5 Optical Confinement in the Transverse Direction 

The confinement factors of the transverse E~(x) and E~(y) modes shown in 

Figure (3.4) are evaluated from the obtained field profiles as r~ = 0.2 and 

rg = 0.95 respectively. The much lower confinement of the transverse mode is 

due to the thin (0.05µm) active layer thickness used. The confinement factor 

of the fundamental mode is found to be r~g ~ 0.2. Substituting this value 

for confinement into (3.1) gives a revised value for the threshold gain of g = 

265cm-1, higher than the initial value. Optical confinement in the transverse, 

x direction is due to variation in the real refractive indices of the layers of 

the heterostructure, and is essentially independent of the optical gain. Also, 

as the lateral waveguide is multi-moded and the fundamental mode is far 
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from cutoff, changing the threshold gain does not alter the confinement of 

the lateral waveguide fundamental mode by a significant amount. 

3.2 Optimising The Waveguide Geometry 

The preceding investigation illustrates the lower transverse confinement of 

the fundamental mode of the OSL structure compared with confinement 

of the fundamental mode of the gain-guided lateral structure. In order to 

minimise gain threshold it is of interest to increase, as much as possible, 

the confinement in the transverse and lateral coordinates. It is also desirable 

that single mode operation in the transverse direction is maintained, and it is 

known that higher order transverse modes will be supported by a waveguide 

having a greater confinement layer width. It is therefore of interest to increase 

the thickness of the active (confinement) layer whilst avoiding the cut-in 

of higher order transverse modes. It is recognised, however, that practical 

problems such as imperfections in the growth of the ALq3 :DCM film may 

limit the thickness of the active layer. 

3.2.1 Varying the Active Layer Thickness 

Transverse confinement can be improved by simply increasing the thickness 

of the active layer. Fig. 3.5 shows a graph of optical confinement versus 

active layer thickness for the fundamental Et(x) mode of the OSL. It can be 

seen from Figure 3.5 that the thickness of the active layer can be increased 

to 0.17 µm whilst maintaining single mode operation. This increases the 

confinement to around 0.5. Calculations show that such a change in thickness 
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Figure 3.5: Effect of varying active layer thickness on confinement for a laser 

having (a)7% and {b} 90% reflectors. 

would give the following modal characteristics: ne11Jcladding) = 1.6678 ; 

ne11,,(core) = l.6678+jl.534x10- 4 ; r J = 0.54, resulting in an effective index 

for the fundamental lateral mode of: neffy = 1.6678 + jl.513x10-5
• 

Higher order bound modes also exist for the lateral waveguide given in this 

configuration. Confinement of the fundamental mode is calculated as: r~ = 

0.99. 

The overall confinement for the fundamental mode of the waveguide is there­

fore r xy = 0.54 which, used in (3.1), gives a value for the threshold gain 

of g = 98cm- 1, a significant decrease from the initially estimated value of 

265cm- 1. 
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3.2.2 Varying the Pump Stripe Width 

Lateral optical confinement in the OSL is provided by gain-guiding arising 

from the optically pumping of the laser. It has been shown in the previous 

section that lateral wave-guide operation is highly multi-mode and confine­

ment of the fundamental approaches unity. The high confinement of a multi­

mode waveguide is of benefit to the efficiency of the laser and minimises the 

threshold gain. However, it is of interest to re-design the laser for single mode 

operation in the lateral direction whilst maintaining as high a confinement 

as possible. 

For various values of gain, it was found that first order mode cut-in 

occurred when lateral confinement of the fundamental exceeded about 0.7. 

Choosing a minimum value for the lateral confinement of 0.6, the gain thresh­

old of the laser is, from (3.1): g = 164cm- 1. 

The confinement curve for the fundamental lateral mode at this level of 

gain is shown in Figure 3.6. From the figure, it can be seen that a pump 

beam width of about 6µm would be required for a single mode operation 

with a confinement of 0.6. 

Reducing the gain will reduce the imaginary effective index of the active 

stripe, and hence the confinement of the fundamental will be optimum at 

broader pump widths. This is desirable because optical pump beam widths 

of below a few tens of microns are physically difficult to achieve. 

The threshold gain can be lowered by increasing the reflectivity of the 

mirrors defining the laser cavity. High reflectivity is obtainable by the use of 

distributed Bragg reflectors (DBR) , which may exhibit reflectivities in excess 
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Figure 3.6: Effect of varying active stripe width on confinement 

of 90%. 

Recent reports show favourable results from DBR lasers with both Alq 

[17] and conjugated polymer [22] gain media. Using a typical value of 90% 

for the reflectivity, R, in (3.1) gives a threshold gain value of 4cm- 1 for the 

OSL with an assumed minimum confinement factor of 0.6. The effect on 

confinement of this much lower gain threshold can be seen in Figure 3.6(b) . 

The active stripe width at which the optical confinement reaches 0.6 is shown 

to be around 40µm. 

It is recognised that the lateral optical pump profile across the active 

region will not give rise to an abrupt step in the gain ( and hence the imaginary 

part of the refractive index). It is likely that the intensity of the pump beam 
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will follow some profile having a maxima along the centre of the active stripe. 

If the profile of the pump intensity is known, the accuracy of the analysis 

may be improved slightly by adopting a multi-layer structure for the lateral 

waveguide having quantised values of imaginary index following the pump 

profile. 

3.3 Designing a Ridge Guided OSL 

Figure 3.7: Structure of the Ridge-Waveguide OSL 

To increase the lateral confinement of the OSL while retaining single mode 

operation, a ridge waveguide configuration (Figure 3.7) can be employed. A 

ridge waveguide has an increase in the thickness of the structure over the 

intended guiding region. This gives rise to an increase in the effective index 

over the pump stripe width. The variation in the effective index in the y 

direction thus forms a waveguide, and the electromagnetic wave is confined 
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totally to an area of the transverse (x,y) plane. 

Figure 3.8. shows how the effective index of the transverse mode E0 
varies as the thickness of the top layer is increased by flh, the ridge height. 

A previously optimised active layer thickness of 0.15µm is assumed. 

3.3.1 Changing the Ridge Dimensions 
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Figure 3.8: Effect of varying rib height flh on optical confinement of the 

E0(y) mode 

From Figure (3.8), it is seen that for rib height, flh, greater than~ 0.04µm, 

the waveguide structure becomes multi-mode in the transverse plane. Figure 

(3.9) shows the effect of varying the capping layer thickness on lateral con­

finement. Choosing a required lateral confinement of ry = 0.5, it can be seen 
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from Figure (3.9) that 6.h ~ 0.025µm is required. f Y > 0.5 is possible with 

this configuration, but may lead to multi-mode operation in the transverse 

coordinate. 

As seen in Section 3.1, the presence of gain in the active region gives 

rise to a difference in the imaginary part of the refractive index of around 

6.lm(n) ~ 5 x 10-5, The difference in the real refractive index in the rib laser 

is of order, 6.Re(n) ~ 10-2. In the rib-waveguide laser, 6.Re(n) >> 6.Im(n) 

and so the imaginary part of the refractive index variation is negligible. The 

propagation constants of the mode are therefore unaffected by changes in 

gain due to optical pumping. 
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Figure 3.9: Effect of varying the thickness on optical confinement 
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3.4 Summary 

In the above analysis the OSL design suggested in [16] has been optimised 

in terms of optical confinement. The effects of using both gain-guided and 

ridge guided configurations for lateral confinement have been explored. It 

has been seen that the gain guided structures offer higher confinement, but 

require a significant reduction in gain for single mode operation at larger 

pump beam widths. 

Rib wave-guide configurations provide comparable confinement in the y 

direction that is independent of gain. For an active region width of lµm , 

optical confinement of fY = 0.5 can be achieved using a rib height of 6.h = 

0.025µm over the active area (Figure 3.6.) . 

The dependence of the threshold gain of a laser on confinement has been 

discussed. The most striking improvement in confinement was seen in the 

transverse mode. By increasing the active layer thickness from 0.05µm to 

0.15µm , the transverse confinement is increased from 0.2 to 0.5. This suggests 

that there is a considerable advantage in increasing the active layer thickness 

in optically pumped lasers. 
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Chapter 4 

Analysis of Parallel Grating 

DFB lasers 
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4.1 Analysis of DBR Reflectors 

It is widely known that low threshold gain lasers may be fabricated using 

Distributed Bragg Reflectors (DBRs), also known as Bragg mirrors. 

The most common method of implementing Bragg reflectors in semicon­

ductor lasers is by a periodic variation in the thickness of one of the planar 

layers comprising the laser waveguide. A DBR grating reflects light inci­

dent at an angle normal to the plane of the perturbation provided the Bragg 

condition is satisfied; 

lX 
A=-

2 
( 4.1) 

where A is the grating period, >.' = >../n is the wavelength of light inside the 

medium of refractive index n and l is a positive integer. 

The wavelength selectivity of Bragg gratings is of considerable importance 

in their application to the design of semiconductor laser systems. By using 

Bragg reflectors of specific wavelengths, it is possible to select the allowed 

frequency of oscillation in the laser. Alternatively, DBR gratings may be 

used to select allowed angles of emission or absorption of radiation into or 

out of the laser. 

4.1.1 Maxwell's Wave Equation in a Perturbed Waveg­

uide 

A planar, or slab waveguide is considered having a periodic perturbation in 

the thickness of the guiding layer, as seen in Figure 4.1. The waveguide is 
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assumed to be semi-infinite in the y and z directions, and the perturbation 

occurs only in the z direction. 

X Bound transverse mode profile 
E (x) 

y 

n
3 

)f ~~TL[LLJ_~_Q _L]_Q_[La 
.. . . . · · · · · · · Guiding layer Refractive 'ndex perturbation 

ti 

z 
Propagation 

Figure 4.1: Slab waveguide with a refractive index perturbation farming a 

DFB grating. 

Assuming a harmonic time dependence, light in the waveguide propagates 

as a linearly polarised wave obeying: 

(4.2) 

The refractive index perturbation is represented by: 

(4.3) 

It is expected that the amplitude of the electromagnetic wave oscillation 

will vary as it propagates along the z direction in the structure, therefore for 
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the TE modes, the field takes the form of the general solution; 

E(x, z) = Ey(x)(A(z)ej,Bz + B(z)e-j,Bz) (4.4) 

with A(z) and B(z) as constants to be determined. 

The variation in refractive index is not so large as to significantly alter 

the transverse mode profile from that of an 'unperturbed ' structure. The 

planar wave equation is therefore still satisfied; 

(4.5) 

Variation of the field amplitude in the z direction due to the refractive 

index perturbation is very much less than the periodic variation of the prop­

agating wave, so that; 

a2 a2 
fJz2 A(z) ~ f]z2 B(z) ~ 0 (4.6) 

Using ( 4.6) and ( 4.5) in ( 4.2) and substitution of ( 4.3) and ( 4.4) into ( 4.2) 

leads, after multiplication by Ey(x) and integration over all x to: 

%zA(z)e-j,6z - %zB(z)ej,6z = 

g;~ J 6.n2(x, z)E;(x)(A(z)ej,Bz + B(z)e-jt3z)dx 

Where C is a normalisation constant given by; 
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4.1.2 The Refractive Index Perturbation 

The unperturbed refractive index profile shown in Figure 4.1 may be de­

scribed outside the grating depth, d, by; 

n1 (x < t1) 

n'2(x, z) = n2 (t1 < x < O) 

n3 (0 < x) 

(4.9) 

The index perturbation, 6.n2(x, z), is zero everywhere outside the region 

x < -d < 0. Within the grating region, the refractive index perturbation is 

periodic in y and for the rectangular perturbation shown in Figure 4.1 can 

be expressed as a Fourier series having harmonic components of order m . : 

6.n2(x , z) = L 6.n2(x, y)ejm(21r/J\)z (4.10) 
m;iO 

Substitution of (4.10) into (4.7) with m = l and equating coefficients of 

the backward and forward travelling waves gives: 

( 4.11) 

(4.12) 

Where 6./3 = /3 - 1
; is the detuning of the grating from the propagation 

constant at the Bragg wavelength, l1r / A. l is the diffraction order of the 

grating, defined as the harmonic order of the grating coupling the backward 

and forward propagating waves. A is chosen so as to ensure that, for a 

particular value of l, 6./3 is zero. The contributions to the coupling from 
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other grating orders is then negligible) as they are far from satisfying the 

Bragg condition. The coupling coefficient) Kt) for the lth diffraction order is 

given by: 

k5 J .6.n2 (x) z)E;(x)dx 
Kt = 2(3 J EJ(x)dx (4.13) 

4.1.3 Calculating the Coupling Coefficient 

The Fourier coefficient .6.n2(x) for the lth diffraction order may be calculated 

as: 

1 [ A 2 - 21ri/z 

.6.n2 (x) = A lo .6.n (x) z)e t. dz (4.14) 

For the planar waveguide with a rectangular index perturbation shown 

in Figure 4.1) .6.n2 (x) z) = n~ - n~ when - d < x < 0 and O < z < A. The 

integral of (4.14)) when (-d < x < 0), can thus be evaluated analytically as: 

A 2( ) _ ( 2 _ 2)sin(1rlA'/A) 
un x - n2 n3 1rl (4.15) 

The coupling coefficient of the lth harmonic of the rectangular grating is 

thus given by substitution of (4.15) into (4.13): 

= k;(n~ - n~) f[E ( )]2 . (1rmA')d 
Kt 21rfJi Jd y x sin A x (4.16) 

The integral in ( 4.16) is evaluated numerically using a Gaussian quadra-

ture. A variety of symmetric grating shapes may be analysed by replacing 

the constant A' by an x dependent function describing the required profile. 

For a sinusoidal grating; 
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(4.17) 

is adopted, and for a symmetric triangular grating the expression; 

(4.18) 

is substituted for A in (4.16). 

4.1.4 The DBR Reflectivity Function 

Equations ( 4.11) and ( 4.12) describe the coupling of the counter propagating 

electromagnetic waves. By assuming a general solution for the equations and 

integrating over the length of the grating, L, an expression is derived for the 

complex reflectivity of the perturbed waveguide after [1]. 

R(t:::.{3) = jK,zsinh(SL) 
l:::.{3sinh(SL) - jScosh(SL) 

(4.19) 

Where S = ✓ K,
2 - l:::.{32 and the complex reflectivity takes the form; 

( 4.20) 

With r(l:::./3) describing the amplitude reflectivity and 8(!:::./3) representing 

the change in phase of the reflected wave. 

The reflectivity of the DBR grating decreases rapidly with increasing de­

tuning from the Bragg condition. The reflectivity of a typical DBR grating 

is shown in Figure 4.2. 

In DBRs it is more convenient to consider the longitudinal modes of the 

optical field as standing waves. In this way, the DBR analysis is exactly 
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Figure 4.2: Reflectivity function r(6.fJ) for a DFB grating having r;,L = 2.0. 

equivalent to that of an electron wave-function in a one dimensional semi­

conductor crystal. The periodicity of the potential function of such a crystal 

restricts the propagation of the electronic wave-function to certain energy 

levels, with stop bands in between. In a similar manner a DBR grating 

imposes a 'stop band' around the Bragg wavelength. 

4.2 DBR and DFB Laser Configurations 

There are two ways in which DBRs are commonly used to construct semi­

conductor lasers, known as DBR and DFB configurations; 
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Figure 4.3: Structure geometry of typical DFB and DBR lasers, showing the 

different grating configurations used to achieve feed-back. 

4.2.1 DBR Lasers 

The first method, shown in Figure 4.3(a), is to fabricate the DBR reflectors 

as distinct un-pumped sections at either end of a central active section. Here, 

the DBR gratings act as a replacement for the end facet reflectors used to 

form a Fabry-Perot laser. From [1] the analysis of round-trip cavity losses 

in a Fabry-Perot laser cavity of length, L , results in the following threshold 

gain condit ion; 
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(4.21) 

where r1 (fl/3) and r 2 (fl/3) are the amplitude reflectivities of the two end 

gratings and 0 1 (6./3) and 0 2 (6./3) are the amount by which they alter the 

phase of the incoming wave. 

The complex propagation constant {3, where k0 

wavenumber, is given by; 

{3 = kon + j( 

21r / >. is the free space 

( 4.22) 

n is the refractive index of the medium and ( is the sum of the gain and loss 

in the media, so that; 

( 4.23) 

if, is the material gain and a the material loss. 

The real and imaginary parts of (4.21) can be separated to give the fol­

lowing expressions for the gain and phase detuning (fl/3) values at threshold. 

From the real part; 

( 4.24) 

and from the imaginary components: 

( 4.25) 

m is any non-zero integer. The locations of the discrete longitudinal 

modes are therefore found at points on the fl/3 axis of the gain function 
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where (4.25) is also satisfied. It can be seen by inspection of (4.25) that the 

spacing of the modes along the detuning axis is dependent upon the phase 

change of the wave as it is reflected by the gratings. 

4.2.2 DFB Lasers 

Another method exists by which a laser may be constructed using DBR 

gratings, as seen in Figure 4.3. Unlike the DBR design, a Distributed Feed­

Back (DFB) laser consists of a single longitudinal section. An analysis of a 

DFB structure may therefore be achieved via the reflectivity function for a 

single DBR mirror (4.19) by substituting l:::./3 with a complex independent 

parameter; 

( 4.26) 

It can be seen from (4.11) and (4.12) that the substitution of (4.26) is 

consistent with an exponential change in the amplitude of the propagating 

wave with distance, z, where I is the gain coefficient. 

The magnitude of the complex function R(l:::./3') with K,L = 1 is shown 

in Figure 4.4 for normalised values of gain and detuning. The peaks rep­

resent poles of the function\ suggesting that for certain values of gain and 

detuning, the reflectivity of the grating becomes infinite. In physical terms, 

the singularities arise due to the gain I overcoming the losses in the grating, 

resulting in stable oscillation of the electromagnetic wave within the grating 

1 Although the poles appear to have finite values of Reflectivity in Figure 4.4, this is 

due to the finite resolution of the graphing function 

65 



200 

~50 en. 
s, 
er: 
~00 ...... ·s: 
TI 
~ 50 
Q) 

er: 

0 
6 

KL=1 
/j. W=/j. f3+jy 

L=30µm 

Normalised 4 
Gain, yl 

Fundamental 
Mode 

0 -10 

10 
Normalised 
Detuning, jj.f3L 

Figure 4.4: Plot of the reflectivity function, R, showing six singularities rep­

resenting the longitudinal modes of the structure. 

region. The poles of Figure 4.4 therefore represent the longitudinal modes of 

the DFB laser. 

It is evident from Figure 4.4 that the modes appear degenerate around 

the Bragg frequency, with the mode spectra being symmetrical around 6./3 = 

0. The modes are not quite degenerate however as there will be a minute 

difference between the threshold gains of the modes. this is because of the 

slightly weaker confinement of even modes, and will be ignored. 

As they are composed of a single grating section, DFB designs are more 

straightforward to fabricate than DBR lasers and have the advantages of low 

lasing threshold and compact size. It can be seen from Figure 4.4 however, 
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that the fundamental longitudinal mode is one of a degenerate pair. More 

than one mode can therefore oscillate simultaneously at threshold. As with 

DBR lasers, the location of the modes is determined by the phase shift ex­

perienced by a wave reflected by the grating. It is common practice [1] to 

include a quarter period phase shift in the grating to give single mode lasing 

at the Bragg wavelength. 

4.3 APM Method for Locating the Longitu­

dinal Modes of a DFB Laser 

It is only the poles of t he complex reflectivity function that are of interest 

in locating the longitudinal modes of the DFB laser. An inspection of (4.19) 

with the substitution of ( 4.26) reveals that the numerator contributes no 

additional poles to those attributed to the zeros of the denominator. The 

longitudinal modes may therefore be sought as the zeros of the function: 

R(6./3 + ja) = (6./3 + ja)sinh(SL) - iScosh(SL) 

Where S = JIKl2 - (6./3 + ja)2
. 

( 4.27) 

The solutions are conveniently located using an adaptation of the Argu­

ment Principle Method (APM) technique used to find the transverse waveg-

uide modes in the previous chapter. For the location of the longitudinal 

modes, a rectangular contour is used that resides entirely on the positive 

side of the gain axis. The region of interest is defined by a maximum detun­

ing range and maximum gain. 
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If necessary, the singularity of ( 4.27) at S = K, may be excluded from 

the contour using a construction such as the one shown in Figure 4.5. The 

contour consists of an inner circle enclosing the singularity and connected to 

the (rectangular) outer perimeter by parallel paths. The contributions to the 

APM contour integral from the connecting bridges is zero, as the same path 

is traversed in opposite directions. 

Im(z) 

Singularity 

Re(z) 

Figure 4.5: Integration contour used to exclude the singularity at s = 0. The 

contour is bound by both inner and outer loops connected by a single bridge. 

In the limit as the radius of the inner contour tends to zero, the relevant 

contribution can be evaluated exactly as Sm = K,m. Only the contribution 

from the outer contour must then be evaluated numerically. As for the loca­

tion of transverse modes described in Section 2.5, the locations of the modes 

may then be found as the solutions to a polynomial; 

So 

p(z) = IT (z - zi) = C1z1 + C2z2 + C3z3 + ... + Cs0 z80 ( 4.28) 
i=l 

where the Zi are the zeros off (z), with i = 1, 2, ... , S 0. T he coefficients Cn 
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are found, as before, using the recurrence relation: 

(4.29) 

Although normalised data exists giving values of threshold and detuning 

for a range of values of "', extension of the APM to calculate longitudinal 

modes where it is already employed to locate transverse modes is relatively 

st raightforward and yields a large number of solut ions in a relatively short 

t ime. 

The high-gain approximation (HGA) [1) is a common method of locating 

the modes analytically. Using the HGA, the assumption is made that the 

order of the gain greatly exceeds that of the coupling coefficient, "', and 

detuning, ~ {J. It is then possible to derive equations giving the wavelengths 

and gains of the modes. For a large number of applications, however, it 

is a requirement that the gain in the laser is kept to a minimum and the 

assumption of the high gain approximation may be invalid. 

A more accurate, but less convenient technique is to use an iterative 

downhill technique. This large class of numerical methods, including Mullers 

m ethod and Newtons method as well as some less formal methods. An exam­

ple of an appropriate technique not requiring the derivative of the function 

to be known is used in [4). Although the accuracy of these methods is only 

restricted by the accuracy of the computer upon which they are executed, 

they do require an initial guess to be made. The provision of an init ial guess 

is not always convenient, particularly if a large number of modes are to be 

found. The APM, however, requires no initial guess and can locate a large 

number of modes simultaneously. As the density of the longitudinal modes 
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Figure 4.6: Plot of the error in S0 with increasing sampling. The distribu­

tion of the data can be attributed to the accumulation of overflow during the 

quadrature. 

is likely to be large due to the long length of the grating compared to the op­

erating wavelength, the APM is chosen as the analysis technique for locating 

the modes of DFB lasers. 

4.3.1 Application of the APM to a DFB Laser 

Considering an in-organic DFB double-heterostructure laser structure, op­

erating at l.55µm, a typical value for K,L, obtained by the coupled mode 

analysis described previously, is about 2.5. 

The argument principle technique described in the previous section can 

be applied to give exact values for the modes using a rectangular contour 
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Figure 4.7: Modes found by the APM. As expected, the Argument Principle 

Method locates all solutions of the function R(z) exactly whereas the high 

gain approximation is only valid for 1 > > K,. 

enclosing the area shown. The success of the APM is greatly dependent on 

the accuracy of the numerical evaluation of Sm. A simple measure of the 

accuracy of the quadrature is the speed of convergence to an integer value in 

the evaluation of S0 , the contour integral used to determine the number of 

solutions present. 

Figure 4.6 shows how the accuracy of the quadrature follows an inverse 

logarithmic relationship with the number of samples used in the evaluation. 

The locations of the modes converge to a resolution within 6.z1 ~ 10- 5 

with 6.S0 < 10- 5 (where 6.z1 is the error in the first mode) requiring~ 2500 

samples for each side of the rectangular contour. 

71 



The APM found three longitudinal cavity modes within the contour, 

having values for 6./JL + i,L of 3.7570 + i0.7748, 6.5042 + il.5252 and 

9.5330 + il.9690. All three modes were found simultaneously within five 

seconds on a Sun Workstation. 

Figure 4. 7 shows a plot of the modes in the solution space. For compari­

son, the locations of the modes provided by the analytic high gain approxi­

mation [1] are also shown. 

It can be seen in Figure 4. 7 that the high gain approximation may not 

provide sufficiently accurate solutions. For the lower order modes, the ap­

proximation may not even be of sufficient accuracy for use as the initial 

guesses of an iterative down-hill technique. 

4.4 Discussion 

It has been seen in this chapter how the high reflectivities characteristic of 

Distributed Bragg Reflector (DBR) gratings may be utilised in the design of 

semiconductor lasers. 

A method for the analysis of DBR gratings, based on the the Coupled 

Mode Theory (CMT), has been presented. 

An advantage of the CMT is that it is relatively straightforward to im­

plement as an extension to the analysis of transverse waveguide modes. The 

CMT is also capable of analysing a wide range of designs involving DFB 

gratings, including non-rectangular gratings. As the transverse analysis is 

performed separately, and only the resultant wave-function describing the 

intensity of the optical field is required for the CMT analysis, the longitudi-
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nal modes may be sought for any index guided transverse waveguide. 

However as the CMT makes the approximation that the shape of the 

transverse mode profile does not change as material gain over the guiding 

section is increased, CMT analysis is most appropriately applied to strongly 

index guided channel waveguide structures, where this assumption is most 

accurate. Gain guided lasers may be analysed using the CMT provided that 

the lateral structure is highly multi-mode, where it is appropriate to adopt 

a planar approximation for the waveguide. 

The use of the Argument Principle Method (APM) for the location of 

longitudinal cavity modes of a DFB/DBR structure, described in Section 

3.3, is unique. The advantages of using the APM compared to more usual 

methods such as the High Gain Approximation (HGA) have been discussed. 

In the next chapter, it will be seen how the methods presented here may 

be applied to the analysis of organic semiconductor DFB lasers. 
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Chapter 5 

Investigation of DFB-OSL 

Designs 
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5.1 Introduction 

DFB lasers are particularly attractive in the design of Organic Semiconduc­

tor Lasers for two reasons. Firstly, they offer a means by which the threshold 

gain required to operate the laser can be reduced by minimising optical power 

losses from facets of the laser cavity. Secondly, the mechanical properties of 

organic materials enable an alternative group of highly cost-effective and ver­

satile fabrication techniques, known as "soft lithographic techniques" (SLTs), 

to be considered. 

Soft lithography is still being developed as a practical manufacturing 

process [17] [19]. Of particular interest for cost-effective mass production of 

organic DFB lasers are the contact imprinting processes [17]. These are nor­

mally applied to polymeric materials that can be partially cured and shaped 

by contact with a pre-shaped mould or dye under pressure. The mould is usu­

ally manufactured using some durable material such as Si02 . Although not 

readily applicable to amorphous organic semiconducting materials like Alq3 , 

that are comprised of weakly bonded small molecules and are therefore me­

chanically brittle, imprinting may be used to form gratings in thin polymeric 

films spin-coated between deposited layers of organic semiconductor. Sub­

sequent to performing this analysis, considerable success was demonstrated 

using a grating imprinted onto the Bromochlorophenol Blue (BCB) substrate 

of an Alq3 :DCM laser [20] . 

It is envisaged that, when the process of contact imprinting is perfected, 

the mould used to shape the underlying polymer could be re-used many times. 

As a result, non-rectangular grating shapes that are normally only obtainable 
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through complicated and expensive ablation and etching techniques are more 

economically viable. 

In this chapter the design of a linear grating DFB organic semiconduc­

tor laser is approached using the analysis techniques described in Section 4.3. 

The effects on threshold gain of using various grating shapes as well as differ­

ent positions of the grating in the layer structure are quantified theoretically. 

5.2 DFB OSL Construction 

The transverse structure of the DFB OSL described in this theoretical anal­

ysis is based on the practical device detailed in [16] and analysed in Sec­

tion 3.1. The OSL is constructed from tris-(8-hydroxyquinoline) aluminium 

(Alq3) vapour deposited onto SiO2 where the emission is confined to a 0.3µm 

thick film of Alq3 , with the middle 0.05µm being doped with DCM dye to 

act as t he active region. 

Figure 5.1 shows the transverse waveguide after the adjustments to the 

layer dimensions recommended as a result of the analysis of Section 5.3 to 

maximise optical confinement. A periodic refractive index perturbation at 

the air/cover interface of the OSL is also shown in Figure 5.1. This initial 

location for the grating is selected as the most convenient for contact imprint­

ing, alternative positions for the grating will be discussed in the analysis. 

76 



Air 

n=l 
------ --

G_~a~i~~ <!_e~th 
Cover/Capping 

Al~ layer 0.125 µm 
n=l.72 

------
Core/Active 

Layer Alq
3

:DCM n=l.77 0.15 µm 

-- ·----

Al~ 0.125 µm 
n=l.72 

------

SiO2 2.0 µm 
n=l.46 

------

Substrate 

Figure 5.1: Structure of the optimised OSL. The Active layer has increased 

width and the periodic grating at the air/ cover interface is shown. 

5.3 Analysis of the DFB Structure 

The threshold gain required to operate a laser is directly related to the 

amount of total optical loss from the active region. As well as reducing 

the loss in the transverse plane (by improving confinement to the active re­

gion), threshold gain may also be lowered by reducing the loss from the end 

facets of the laser cavity. In a DFB laser, optical confinement in the lateral 

direction may be improved by increasing the degree of coupling of the forward 

travelling wave to the reflected wave travelling in the opposite direction. A 

convenient parameter representing the coupling strength of a particular grat-
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ing is the coupling coefficient, K, which was seen in the previous chapter to 

be a function of an integration of the transverse mode field over the cross 

section of the grating. 

5.3.1 Grating Shape and Thickness 

By consideration of the Bragg condition (A = m1r/f3s), a period of A = 

190nm is necessary to couple via the fundamental harmonic of the grating 

with the laser operating at 632nm. 

Figures 5.2-5.4 show the effect of increasing the grating depth or tooth 

height, d, of the grating upon the coupling coefficient, K, for the first three 

harmonics of rectangular, sinusoidal and triangular gratings respectively. 

Although it can be seen that a rectangular grating profile provides a 

slightly better first order response, higher order harmonic rejection is im­

proved with a sinusoidal or triangular grating. In practice, even a grating 

imprinted using a rectangular cast will have a significant degree of distortion. 

Figure 5.3 therefore shows both sinusoidal and rectangular grating data as 

effective upper and lower bounds of the true response of a practical rectan­

gular structure. A grating depth of 50nm is selected for the DFB, a value 

well within an assumed practical limit of A/2 for imprinted gratings and yet 

giving a coupling coefficient of around 350cm- 1 for a sinusoidal grating. Fig­

ure 5.5 shows the longitudinal modes of a 50µm long organic semiconductor 

DFB laser. The gain threshold of the fundamental mode is around 200cm-1 

for a 50µm long grating, with a detuning of around 1.5 nm from the Bragg 

condition. This level of gain is comparable to that required to operate the 
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Figure 5.2: Variation of coupling coefficient, i'i,1 with tooth height for a rect­

angular grating imposed at the air/cover interface of a DFB OSL. Results 

are shown form= 1 and m = 3, even order rectangular gratings produce no 

coupling. 

500µm long FP-OSL described in Section 3.1. The DFB design therefore 

represents a considerable improvement in performance. 

Substrate Gratings 

Figures 5.6-5.8 shows the results of an analysis of the case where the grating 

is imposed upon the Si02 substrate of the device, which is a more typical 

configuration in many DFB OSLs to date [17]. 

It can be seen that the values of ri, are generally lower, due to the lower 

index step either side of the corrugation. The longitudinal mode threshold 
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Figure 5.3: Variation of coupling coefficient, "', with tooth height for a sinu­

soidal grating at the air/cover interface of a DFB OSL. Results are shown for 

the first three values of grating order m. The dotted line shows the rectangular 

grating curve for comparison 

gains of a 50nm deep, 50µm long grating structure can be seen on figure 5.9. 

The gain thresholds of the modes are, as expected, slightly higher than for 

the surface imprinted grating. 

5.3.2 Deeply Buried Gratings 

Another common configuration for in-organic DFB lasers is to position the 

grating at the active region/ cladding interface. This configuration is useful as 

it moves the grating near to the intensity peak of the transverse field profile, 

so affording greater overlap of the field with the grating. Calculations show 
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Figure 5.4: Variation of coupling coefficient, "', with tooth height for a trian-

gular grating imposed at the air/cover interface of a DFB OSL. Results are 
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that for the OSL structure, however, this configuration yields a coupling 

coefficient of just 170cm- 1
, and a threshold gain in the region of 400cm-1 for 

a 50nm deep grating and a 50µm long cavity. In OSLs, t he low index step 

(.6.n2
) between the doped active region and undoped cladding counteracts 

any benefit gained by having a greater overlap with the field profile. In fact 

.6.n2 at the active layer interface is just 10% of the index step at the air 

interface, whereas the overlap between the field and grating is improved by 

only 50% the total effect is therefore to reduce coupling by around 40-50%. 

The decrease in coupling efficiency is compounded by the fact that the lower 

index step at the air/cover interface gives a much smoother roll-off for the 
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Figure 5.5: Threshold gains of a 50µm OSL DFB with a 50nm deep grating 

at the air/ cover interface. 

field profile and thus a higher overlap than is normally seen using a surface 

relief grating on an in-organic laser. By comparison, an in-organic DH laser 

typically has a relatively large index step at the active layer interface and 

a steep roll off at the surface, giving better coupling for gratings positioned 

deeply in the structure. 

5.4 DBR Organic Semiconductor Lasers 

In figures 5.10-5.11 the case is considered of a Organic Semiconductor DBR 

laser, having a central unperturbed length of active waveguide between two 

un-pumped gratings of length 50µm. 

The gain is obtained by inclusion of the perturbed waveguide reflectivity 
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Figure 5.6: Variation of coupling coefficient, K,, with tooth height for a rect­

angular grating imposed at the substrate interface of a DFB OSL. Results 

are shown form= l and m = 3, even order rectangular gratings produce no 

coupling. 

function into the threshold condition for a Fabry Perot cavity. Figure 5.10 

shows the gain of the DBR laser with several different lengths of centre 

section, Le. The first order mode oscillating at the Bragg wavelength is 

shown to be dominant, with the gain threshold decreasing with each increase 

in Le. Figure 5.11 shows a more detailed view of the first order mode peak. 

In both figures, the response for both sinusoidal and rectangular gratings is 

shown as an upper and lower bound on expected values. 

Due to the 50% transverse confinement of the structure, the values for 

the gain threshold of both the DFB and DBR lasers may be assumed to be 
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Figure 5. 7: Variation of coupling coefficient, K, with tooth height for a sinu-

soidal grating at the substrate interface of a DFB OSL. Results are shown for 

the first three values of grating order m. The dotted line shows the rectangular 

grating curve for comparison. 

approximately twice that of the modal gain values given in the figures. 

5.5 Discussion 

The results of the previous section demonstrate the feasibility of using dis­

tributed feedback structures in the construction of low-threshold organic 

semiconductor lasers operating at 630nm. Modal gain values of around 

200cm- 1 are seen. 

The lower index step at the air/ cover interface might be expected to 

reduce the performance of any surface grating compared with the equivalent 
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in-organic semiconductor structure. However, in an in-organic semiconductor 

laser, the transverse field profile rolls off much more sharply at the cover due 

to the high index step there (.6.n ~3.0), thus reducing the result of the overlap 

integral in the calculation of K, the coupling coefficient. The advantages of 

having a surface grating in terms of a high index step are, in in-organic 

lasers, often sacrificed in favour of a higher overlap, as might be obtained 

by placing the grating deeper in the structure or at the substrate interface. 

With the much lower refractive indices of organic materials, gratings can be 

placed at the air/cover interface, giving a high index step and improving the 

convenience of manufacture, whilst maintaining a large coupling coefficient. 
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Figure 5.9: Threshold gains of a S0µm OSL DFB with a 50nm deep grating 

at the air/ cover interface. 

The combined advantages of a high coupling coefficient and long grating 

period for the operating wavelength, indicate that surface relief structures are 

an effective way of improving confinement in organic semiconductor lasers. 

To compare with the 500µm unperturbed Fabry Perot OSL discussed in 

[16], the observed o:L product of the organic DFB laser with a 50nm deep 

rectangular/sinusoidal grating is ~2, giving a modal threshold gain of 40cm-1 

compared to the value of l00cm-1 given for the laser analysed in [16] . 

Although offering a significant improvement over the performance of lasers 

employing Fabry Perot cavities, the DFB and DBR lasers described in this 

chapter use parallel gratings to provide feedback in one direction only. It is 

perceived that further advantages may be obtained by using more complex 
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grating shapes obtainable via contact imprinting. 

a,'­
z 
~ 
0 

0 10
2 

:c 
ffl 
a: :c .... 

-8 -6 - 4 -2 0 2 4 
WAVELENGTH DETUNING"' (,m) 

6 8 

X 10-3 

Figure 5.10: Threshold gain for an OSL DER structure having an unperturbed 

gain region of length Le, bound by two 50µm Bragg reflectors. Although 

symetric about the origin, the gain curves for each value of Le are shown on 

one side of the detuning axis origin only as an aid to clarity. 
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Chapter 6 

Threshold Current Analysis of 

Parallel Grating DFB-OSLs 
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6 .1 Introduction 

In the previous chapters, it has been seen how a threshold gain analysis of 

an Organic Semiconductor Laser (OSL) may be performed in order to gauge 

the performance of a particular design. Until very recently [26], all practical 

Organic Semiconductor Lasers were optically pumped. Therefore the de­

vices and designs so far discussed have been analysed under the assumption 

that they utilise optical pumping schemes. The problems arising from the 

electrical excitation of OSLs were discussed briefly in Section 1.1.2. 

Recent experimental work [20) has provided sufficient information on the 

operating characteristics of practical DFB OSLs to enable initial optimisa­

tions of threshold current to be performed. 

In this chapter, such an analysis is performed for a parallel grating DFB­

OSL, to yield initial data on the optimum device geometries. 

6.2 Phenomenological Gain Model of an OSL 

In the standard phenomenological model of a semiconductor laser [2], a linear 

relationship between gain and carrier density is assumed, with the local gain 

coefficient, g, being defined as; 

g = A0 (n - no) (6.1) 

where n is the density of charge carriers, n0 represents the carrier density 

required to reach transparency and A0 is the gain coefficient. 

As mentioned previously, in an operational laser, the gain must overcome 
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losses in the resonant cavity, so that; 

r 9th = O!ct + O!m (6.2) 

Where r is the transverse optical confinement to the active region, ac1 

represents the resonant cavity losses and am is the sum of other losses expe­

rienced by the optical mode. 

For an Alq3:DCM laser, it is expected that the optical absorption of the 

mixture will be dominated by the absorption of Alq3 at the DCM emission 

wavelength of 632nm. From [10] the optical absorption of Alq3 at 630nm is 

taken to be negligible, hence n0 can be assumed to be zero. am mainly repre­

sents losses due to scattering of light from impurities and defects in the bulk 

material and from facets formed by imperfections at the layer boundaries. 

Such losses are not expected to be important and are difficult to quantify 

theoretically. Losses not due to re-absorption or resonant cavity effects are 

therefore omitted from the present analysis. 

Because electrons (and holes) are bound to individual molecules in Or­

ganic Semiconductors, transportation of charge may be thought of as a re­

sult of the motion of neutrally charged excitons. The phenomenological gain 

model may therefore be applied to the case of organic materials if the the 

density of excitons in the device is taken as the charge carrier density. Com­

bining equations (6.1) and (6.2) gives the following simple expression relating 

the carrier (exciton) density to the cavity losses: 

(6.3) 
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Where nth is the carrier density at threshold and d is the thickness of the 

active region. 

Optical confinement in the transverse plane r may be obtained by the 

waveguide analysis of Chapter 2. The cavity losses at threshold, a~1 are 

found as the result of the threshold gain analysis of a DFB laser, described 

in Chapter 4. 

6.3 Threshold current analysis of an OSL 

In an optically pumped OSL, each pump photon absorbed in the Alq3 :DCM 

layer gives rise to a local excitation ( exciton) consisting of an associated elec­

tron/hole pair, in an Alq3 ligand. Neglecting the possibility of delocalisation 

of the electrons/holes from the ligand, the density of excitons in the active 

layer is therefore equivalent to the density of photons absorbed. In [20], an 

approximate expression is given relating the exciton density to an injection 

current density. This can be used to provide an estimated current threshold: 

(6.4) 

Where nth is the density of excitons, the carrier density introduced in 

the previous equations, e is the electronic charge (with a factor of two to 

account for the charge pair needed to form an exciton), 'l/; = 1/4 is the ratio 

of excitons capable of radiative transitions to the total number of excitons 

formed by electrical injection and T = 5ns is the DCM radiative lifetime. 

By inspection of equations (6.1-6.4), it is apparent that, if the gain coeffi­

cient relating local gain to exciton density in an organic material were to be 
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determined, static structural analysis of Alq3:DCM lasers may be extended 

to include a threshold current calculation. The determination of injection 

current thresholds is a critical task in designing optimum cavity geometries. 

Although no direct analysis of Ao has been documented, measurements 

providing the exciton density in the active layer of an optically pumped 

Alq3 :DCM DFB laser have been performed in [20]. Furthermore the descrip­

tion of the device structure provided in [20] is sufficiently complete to allow a 

comparison between the experimental values of threshold exciton density and 

the theoretical values of threshold gain for an identical structure. Equation 

(6.2) may then be employed to provide an estimate for the gain coefficient, 

A0 , of an Alq3:DCM laser operating at 630nm. Once found, the Ao parame­

ter is valid for any structure employing similar Alq3:DCM formulations as a 

lasing material. 

6 .3.1 Obtaining the Gain Coefficient of Alq3:DCM 

The transverse layer structure of the DFB OSL device documented in [20] is 

shown in Figure 6.1. The OSL is optically pumped at 337nm over a 50µm 

wide and 2cm long stripe. Feedback is provided by a 200nm period DFB 

grating etched into the SiO2 substrate prior to deposition of the organic 

films. 

Measurements undertaken in [20] of the output pulse energy showed the 

onset of lasing to occur at surface pump energies of around 0.2µJ/cm2 . As­

suming the photon distribution to be uniform through the transverse layer 

structure, the absorbed photon density is approximately 3x1011cm-2 . The 
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Figure 6.1: Structure of the OSL DFB waveguide after reference {20]. The 

transverse composition of the OSL is shown. 

absorption of photons leads to an estimate of nth 3x1011cm-2 excitons 

generated in the Alq3:DCM active region. 

Using the techniques detailed in the previous chapters, the lasing modes 

of an equivalent theoretical structure can be sought. The coupling coefficient, 

"' of the substrate grating is measured to be approximately 334cm-1, giving 

an exceptionally high "'L product of around 668 for the 2cm long structure. 

Figure 6.2. shows the locations of modes on a plot of gain and detuning 

for "'L = 668. Assuming that the majority of the excitation is init ially 

coupled into the fundamental mode of the cavity> lasing should occur at 

o:c1 = 1.12cm- 1
, with a detuning of around 0.004nm. The confinement factor, 

r is then calculated numerically from the t ransverse field profile resulting 
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Figure 6.2: Calculated longitudinal cavity mode spectra of the DFB OSL laser. 

The first order mode can be seen to commence lasing at low threshold gain 

values (,;::::, l.lcm-1
) by virtue of the 2cm long cavity length. 

from the effective index method. For t he equivalent OSL structure, r is 

calculated to be around 19%. Using t he calculated values of r and a~? 
with the measured value, nth, in equation (6.2) gives an estimated value of 

Ao= l x10- 18cm2 . 

6.3.2 Optimisation of a DFB OSL 

Figure 6.3 shows a threshold current density as a function of active region 

thickness of the equivalent 081 for the fundamental lasing mode. It can 

clearly be seen from t he figure that the experimental layer thickness of 50nm 
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Figure 6.3: Threshold current density optimisation curve for the active layer 

thickness of OSL DFB laser. The optimum width of the Alq3 :DCM layer lies 

around 30nm. 

lies close to the optimum value on the curve at 30nm. With the 50nm active 

width reported in [11], the optimised current threshold is calculated by this 

method to be of order 77 Acm- 2 . 

Care must be taken during the analysis to account for the variations in 

the active layer by adjusting the widths of the upper and lower cladding 

regions to maintain a constant position in respect to the optical field profile 

(see Figure 6.4). Failure to do this results in the gain threshold being affected 

primarily by the coupling of the grating, thus eliminating the opportunity 

for optimisation of the active layer thickness. 
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A similar optimisation can be performed on the upper cladding region. 

Varying the t hickness of this layer does not affect the grating coupling di­

rectly, but does alter the shape of the confined transverse mode significantly. 

Air 

u Alq Upper Cladding U+(A-B)/2 

A Alq:DCM Active Layer B 

L Alq Lower Cladding L+(A-B)/2 

SI~ Substrate 

Figure 6.4: Schematic diagram showing how the thickness of the cladding 

layers is adjusted to maintain the relative position of the active region in the 

structure during the optimisation (where A is the original thickness of the 

active region, B is the new thickness of the active region and U and L are 

the thicknesses of the upper and lower cladding respectively). This allows 

the separation of waveguide confinement and grating coupling effects on the 

threshold current density. 

The presence of the cladding avoids the reduction in active layer con­

finement seen when the active layer is interfaced directly to air. Beyond an 

optimum value, however, the cladding layer merely acts to broaden the mode 
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profile, weakening the overall confinement of the optical mode. 
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Figure 6.5: Optimisation curve for the top cladding layer of OSL structures 

having varying active region thickness, d. Optimum values for the curves can 

be seen between thicknesses of 50 and 70 nm. 

Figure 6.5 shows the effect of varying the cladding thickness for DFB 

OSLs having active regions of 70, 50 and 30nm. The apparent offset is due 

to the effect of changing the active region width on the thickness of the 

cladding layer, and the optimum value for the active layer thickness does 

not significantly alter in relation to the optical field profile. The optimum 

thickness of the top cladding layer for a 50nm active region is around 60nm, 

approximately half the thickness used in the experimental design. 

Figure 6.6 shows the effect of varying the thickness of the lower cladding 
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Figure 6.6: Effect of varying the bottom cladding layer thickness of OSL 

structures having varying active region thicknesses, d and top cladding layer 

thicknesses duel· An optimum for the lower cladding layer lies at a thickness 

of about 60nm for these structures. 

region for the original OSL [20], a structure having a 60nm thick top-cladding 

layer optimised for a 50nm active region and an OSL having a 75nm top 

cladding layer and a 30nm active region. For the published OSL, design, the 

threshold current is mostly affected by the grating coupling, and minimum 

threshold is achieved when the grating is as close as possible to the active 

region. With regard to the possibility of electrical pumping, however, it is 

highly beneficial to retain a lower Alq3 cladding layer to assist with charge 

transport across the device. For both of the structures having altered ge-
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ometries, a lower cladding region of around 60nm gives the lowest current 

threshold density of around 50Acm-1
. 
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Figure 6.7: Optical field profile for the single TE mode of the un-optimised 

DFB OSL. Shown for comparison, it can be seen that the grating region lies 

at a considerable distance from the optical field maximum. 

The effects of the optimisations on the optical field profile are shown 

in Figure 6.7 and Figure 6.8. F igure 6.7 shows t he optical field of the un­

optimised OSL for comparison with the optimised OSL field, shown in Figure 

6.8. It can be seen from the two figures t hat the field peak of the optimised 

structure is shared more evenly between the active region and feed-back 

grating, thus affording optimum confinement to the active layer and feedback 

grating simultaneously. The new coupling coefficient provided by t he grating 
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Figure 6.8: Optical field profile for the single TE mode of the optimised DFB 

OSL having a 30nm thick active layer, a 75nm thick top cladding layer and 

a 60nm thick bottom cladding layer. 

was calculated to be 640cm-1
, an improvement by a factor of two over the 

value of 1,, obtained for the un-optimised OSL. 

The net effect of the optimisations described is to improve the threshold 

current density required to achieve laser action from 80Acm-2 found in [20] 

to the value of 50Acm-2 found here, a reduction of approximately 35%. 
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6.4 Discussion 

It has been shown how the standard analysis technique of current threshold 

optimisation may be adapted to improve the design of Organic Semiconduc­

tor Lasers. An improvement of 35% has been seen in the current threshold 

and carrier density required for lasing in the OSL design investigated. It 

is likely that this is the optimum value obtainable from this device design. 

Although the optical confinement to the active region was reduced, the ne­

cessity for high coupling coefficients via the feed-back grating was improved 

by over 50%, high enough to overcome the optical mode losses and provide 

the overall reduction in threshold. This illustrates the point that, in OSL 

lasers employing distributed feed-back, effective grating positioning in the 

transverse structure is frequently of greater importance than high optical 

mode confinement. 

Adopting the widely used phenomenological gain model of in-organic 

semiconductor laser design [2] provides an estimate for the gain/current re­

lationship within organic materials. It is appreciated that the estimate of 

the current density as a function of carrier density, equation (6.4), is very 

approximate. However, although the magnitude of current density may be 

inaccurate, provided there is an approximately linear relationship between 

the number of excitons and the injected current, the changes in device ge­

ometry indicated in the optimisation will provide the same degree of overall 

improvement for the threshold current density. 

The estimated value for the gain coefficient, A0 , in the analysis is appro­

priate for Alq3 :DCM OSLs operating at wavelengths of around 630nm. It 
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is therefore possible to use this value for analysis of a number of Alq3:DCM 

OSL configurations subject to a more accurate value being determined exper­

imentally. Furthermore, given similar experimental data regarding the pump 

power density at threshold, it is to be expected that the gain coefficient of 

lasers consisting of other organic materials can be estimated in a similar 

manner. Polymer materials in particular are an attractive alternative to low 

molecular weight organic semiconductors and sufficient data regarding their 

optical and electroluminescent properties is becoming available [21],[22]. 
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Chapter 7 

Analysis of Circular Grating 

DFB-OSLs 
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7.1 Introduction 

It has been shown that using Distributed Feed-Back (DFB) designs for the 

manufacture of Organic Semiconductor Lasers (OSLs) offers considerable ad­

vantages in terms of the lowering the threshold gain. Specifically, DFB lasers 

made with gratings consisting of linear grooves, cut parallel to each other 

have been discussed. The use of organic materials and soft lithographic fab­

rication processes allow a wider scope of designs to be considered, however, 

including circularly symmetric gratings. The analysis of circularly symmetric 

lasers, known as Circular Grating, Distributed Feed-Back (CG-DFB) lasers, 

is the subject of this chapter. 

For the analysis of CG-DFB lasers, it is convenient to adopt a cylindrical 

coordinate system, having radial (r), azimuthal (0) and axial (z) compo­

nents. A CG-DFB laser consists of a series of circular, concentric grooves 

(Figure 7.1) forming a periodic index perturbation dependent upon the radial 

coordinate, r. 

In a similar manner to the linear grating, the circularly symmetric per­

turbation confines the emitted light of the laser in the radial direction. The 

circular grating therefore has the added advantage of confining the light si­

multaneously to the entire plane of the device, whilst confinement in the 

axial direction is achieved by the planar structure of the device. 
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Planar 
Waveguide 

z 
Circular Index 

Figure 7.1: A simple three layer planar waveguide with a circular index per­

turbation. The cylindrical coordinate system adopted is shown. 

7.2 Coupled mode analysis of CG-DFB struc­

tures 

7.2.1 Cylindrical waves in a planar waveguide 

Attent ion is given to the dielectric waveguide of Figure (7.1). Given that the 

Laplacian operator in cylindrical coordinates is: 

fJ 1 8 fJ 
v =-+--+ -or r 80 f)z 

Maxwells curl equations can be expanded to: 

j 1 8 fJ 
Er= -(- ~

0
Hz - 7lHr) 

WE r u uz 
j f) f) 

Ee= - (-Hz - -Hr) 
WE fJr OZ 
j fJ 1 8 

Ez = - (- Ho - - -Hr) 
WE fJr r 80 
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(7.2) 

(7.3) 

(7.4) 



j 8 1 8 
Hr = -( ~Er - - ~

0
Ez) 

wµ uz r u 
(7.5) 

j 8 8 
Ho= -(-Er - -Ez) 

wµ oz or 
(7.6) 

j l 8 8 
Hz= -(--Er - -Eo) 

wµ r 80 or 
(7.7) 

A time dependence of ejwt is implicit in (7.2-7.7). The four radial (r) 

and azimuthal (0) field components can be obtained provided the transverse 

components Ez and Hz are known; 

1 82 ,µw 8 
Er= 132(8r8zEz - J7 80Hz) (7.8) 

1 1 a2 . a 
Eo = 132 (-:;: 80oz Ez + Jµw or Hz) (7.9) 

1 ,WE O 82 

Hr = 132 (J 7 80Ez + 8r8z Hz) (7.10) 

1. 8 182 

Ho= 132 (-JWE or Ez +-:;: 80oz Hz) (7.11) 

where /3 is a constant to be determined. The reduction to two independent 

variables, Ez and Hz, is a feature of Maxwells equations in cylindrical coor­

dinates, and is often utilised in the analysis of cylindrical waveguides such as 

optical fibres [1]. 

From the analysis in Section 2.2, it is known that there are two kinds 

of mode supported by a planar waveguide; Transverse Electric (TE) and 

Transverse Magnetic (TM) modes. The TE and TM waves are characterised 

by Ez = 0 and Hz = 0 respectively. So that, for the TE waves; 

(7.12) 
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E - jwµo~H 
0 - JJ2 ar z 

1 a2 

Hr = 132 8r8z Hz 

1 1 a2 

He = 132-;: 808z Hz 

(7.13) 

(7.14) 

(7.15) 

The TE modes of the planar waveguide having a z dependent refractive index, 

n(z), may therefore be found as solutions to the scalar wave equation; 

(7.16) 

with 'lj;(r, 0, z) = Hz(r, 0, z), and: 

1 a a 1 a2 a2 

"v
2 =-;: ar (r ar) + r 2 802 + 8z2 

(7.17) 

The solutions to (7.16) thus take the form: 

'lj;(r, 0, z) = R(r)Z(z)8(0) (7.18) 

Substitution of (7.18) into (7.16) and performing a separation of variables 

leads to; 

(7.19) 

a2 
802 0(0) + !2- 8(0) = o (7.20) 

(7.21) 
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where /3 and l are the constants of separation. (7.19) therefore defines the 

transverse modes of the slab waveguide, with /3 as the propagation constant of 

the modes. It was seen in previous chapters that a mono-mode planar waveg­

uide is more commonly required in low-threshold DFB lasers. The analysis 

of lasers supporting only a single mode in the z direction also simplifies the 

coupling equations considerably, therefore it is useful to assume that there 

is a single solution to (7.19). (7.20) describes the azimuthal modes, which 

must be periodic such that 8(0 + 21r) = 8(0). A solution for the azimuthal 

modes is therefore: 

(7.22) 

n = l , 2, 3 ... etc. and is the integer order of the cylindrical waves. (7.21) 

is recognised as Bessel's equation describing the radial propagation of cylin­

drical waves. Solutions to (7.21) therefore take the form of Hankel functions 

of the first and second kind for the inward and outward propagating waves 

respectively. If /3r > > l the large argument approximation for the Hankel 

functions applies, and the solutions for the lth azimuthal mode take the form: 

R(/3r) = H(l) ~ J2ej(/3r - l1r/2- n - 1T/4) 
l y~ (7.23) 

R(/3r) = H(2) ~ J2e- j(/3r-l7r/2-n-7r/4) 
l y~ (7.24) 

Substituting (7.23), (7.24) and (7.22) into (7.18) and assuming a single 

mode solution to the planar wave equation gives the general solution; 
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(7.25) 

where Aip)u is a normalisation constant, p is the propagation sign (positive 

for outward travelling wave, negative for inward travelling waves) and CJ is 

the polarisation, so that CJ = TE or CJ = TM, thus allowing coupling between 

modes of differing polarisations to be accounted for . Substituting (7.25) into 

(7.12-7.15) and recalling that the wavefunction is defined as '1/J = Hz, the 

field distribution of the TE field may be written: 

(7.26) 

(7.27) 

E (p)TE = A(p)TE lwµo !R(p)(/3TE )zTE( ) jlO 
lr l (f3TE)2 r l r Z e (7.28) 

E (p)TE = A(p)TE jwµo [~R(p)(/3TE )]zTE( ) jlO 
lB l (f3TE)2 dr l r Z e (7.29) 

H(p)TE = A(p)TE 1 [~R(p)(/3TEr)][~zTE(z)]ejlB 
lr l (f3TE)2 dr l dz (7.30) 

H (p)TE = A(p)TE jl !R(p)(f3TE )[~zTE( )] jlB 
lB l (f3TE)2 r l r dz z e (7.31) 

Using (7.26-7.31) it can be shown that; 

E1~)TE l Rf(/3TEr) 

I Ei~)TE I = ( f3TEr I Rf' (f3TEr) I) (7.32) 

110 



(7.32) indicates that the radially dependent component E1~)TE is nonzero for 

all values of l except l = 0. As there is no radial component of the electric 

field in the definition of a TE wave, only the zeroth order cylindrical TE wave 

resembles the equivalent slab mode. At higher values of the radial coordinate 

r, the ratio of (7.32) becomes much smaller, and tends to zero in the limit 

as r ➔ oo. This can be interpreted in physical terms as the tendency of 

the curvature of the cylindrical coordinate system to reduce at higher radii. 

It will be revealed subsequently that the coupling of fields by the circularly 

symmetric grating comes to resemble closely the coupling in parallel gratings 

when r is assumed to be large. 

7.2.2 Excitation of Cylindrical Waves 

To analyse the coupling effect of a grating on the waves, it is useful to consider 

the case where the modes supported by the structure are excited by sources. 

Following the line of reasoning in [23], the source of excitation of the modes 

is represented by an induced polarisation, P(r, 0, z). Maxwells equations are 

then: 

V x E = -jµw H (7.33) 

V x H = jwcE + P jw (7.34) 

Two such induced polarisations, P 1 and P 2 , thus drive two separate fields 

E 1 and E2, 

It is possible to verify using (7.33) and (7.34) that: 
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As there will be only one 'source' (the grating), P 2 may be set to zero, so 

that the coupling between the waves may be studied. Integrating (7.35) over 

a cylindrical surface of radius r, the following expression is derived consisting 

of a driving term containing P 1 and the transverse field components of the 

magnetic and electric fields: 

lo27r loo 8 fn27r l oo ~ [r(E1t + H;t + E;t +Hu) · f]d0dz = -jw r(P1 · E2 )d0dz 
o -oo ur o -oo 

(7.36) 

The subscript, t, in (7.36) denotes the cylindrical (0, z) components of the 

fields. Expanding field 1 gives; 

qrm 

H1t(r, 0, z) = L a~)r(r)H~t(r, 0, z) 
qrm 

(7.37) 

(7.38) 

where q = +or- is the direction of propagation, T = TE or TM is the 

polarity of the field and m is the cylindrical order of wave 1. Let field 2 be 

one of the infinite number of cylindrical waves; 

(7.39) 

(7.40) 
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p = + or - is defined as the propagation direction, a = TE or TM and l 

is the cylindrical mode number of wave 2. Substitution of (7.39) and (7.40) 

into (7.36) leads, after manipulation, to; 

where use is made of the orthogonality relations given in [23]; 

(7.42) 

With Q a constant defined in [23] as the product of the Kronecker deltas 

describing the coupling between waves of different wave number, polarisation 

and direction. It can be seen from (7.41) that, as is to be expected, there 

is no change in the amplitude of the cylindrical waves when P 1 = 0, which 

represents the case of no sources being present. 

7.2.3 Cylindrical Refractive index Perturbation 

To assess the effect of a circular DFB grating imposed on the waveguide, the 

induced polarisation is assumed to be the result of a circular refractive index 

perturbation: 

(7.43) 

It can be easily proved by consideration of Maxwells equations that the radial 

component E 1r of the field can be expressed using the cylindrical (0, z) 

components: 
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Making use of (7.38) and Maxwells equations then leads to: 

E 1r = cr L a~)T(r)E~t 
cr + .6.c(r, z) qTm 

(7.45) 

Combining (7.45) and (7.37) to give the field E1 (r, 0, z) and substituting 

into (7.43) gives: 

P 1 = co.6.c(r, z) L a~)T(r) [E~t + ; .6. E~tT] (7.46) 
qTm cr c 

(7.41) and (7.46) then combine to give the general coupling equation; 

(7.47) 

where K.t,m are t he coupling coefficients given by; 

Equations (7.47) and (7.48) can therefore be used to analyse a wide variety 

of mode couplings in the circular grating. 

7.2.4 TE-TE coupling in a CG-DFB grating 

By substitution of the field distributions (7.26-7.30) into (7.48), the coeffi­

cients for coupling between TE modes can be shown to be the product of a 
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Kronecker delta and the coupling coefficient for fields of the same cylindrical 

wave order: 

(p)TE(q)TE _ (5 (p,q)TE,TE 
K,m,l - lmK,l (7.49) 

6nm is given by; 

(7.50) 

and the coupling coefficient between modes of the same order, ,.,,}p,q)TE,TE is 

defined as; 

(7.51) 

By writing down the field distributions for the TM field in a similar manner 

to t he TE field of (7.26-7.30), and substituting into (7.48) it can be seen that, 

in general; 

(7.52) 

The coupling coefficients for TE-TM and TM-TM coupling can also be de­

rived in a similar manner to (7.51). Substituting (7.52) into (7.47) results in 

t he following coupling equations describing mode coupling between the TE 

and TM fields; 

d +TE -a' -
dr 1 -

'[ (+,+)TE,TE (+)TE + (+,-)TE,TE (- }TE+ 
-J~ ~ ~ ~ 
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d -- a ,TE 
dr 1 

+ (+,+)TE,TM (+)TM + (+,-)TE,TM (-)TM] 
~ ~ ~ ~ 

.[ (+,+)TE,TE (+)TE + (-,-)TE,TE (-)TE+ 
-J~ ~ ~ ~ 

+ j-,+)TE,TM (+)TM + (-, - )TE,TM (-)TM] 
~ ~ ~ ~ 

(7.53) 

(7.54) 

It is evident from inspection of (7.53) and (7.54) that only cylindrical waves of 

the same order are coupled in a circularly symmetric grating. The coupling of 

TE to TM modes is dissimilar to mode coupling in parallel DFBs, where there 

is no cross coupling between modes of different polarisation. Interestingly, by 

consideration of the coupling coefficients for the TE-TM coupling, it can be 

seen that cross polarisation coupling of zeroth order modes ( where m = l = 0) 

gives Kf;;;)TE,TM = 0, and the cross coupling terms vanish. Even for non­

zero mode orders can also be proven [24] that inter polarisation t erms become 

negligible under the large radius approximation, ((Jr>> 1) and the coupled 

wave equat ions describing TE-TE coupling then reduce to; 

(7.55) 

(7.56) 

With the coupling coefficient, K(r), being defined as: 

k2 Joo 
K(r) = 

2
(3°cJ _

00 
6E(r, z)IZ(z)j2dz (7.57) 

where C is the normalisation constant given by; 
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(7.58) 

7.3 Modes of a CG-DFB laser 

Consideration is given to the CG-DFB laser of Figure 7.2. 

' ' ' ' 
R2 ' 

t4 R1 Ea 
' ' 

A £+ 1·i::" C C 

-,-
' 

' Ec1 ' ' ' 
,, 

t 3--' ,· 
t ;- - ' 

-
' ' ' Ee+ j£t ' ' ' ' ' ' 

f 2---: ' 

' Ec1 ' ' ' 
t r -: 

r 
7 

Figure 7.2: CG-DFB Laser Structure, shown in plan and section. The grating 

wavelength (A) and tooth-width (vV) are shown in the insert. 

The structure is composed of a multilayered slab waveguide with a circularly 
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symmetric refractive index perturbation of radius R2 , formed by concentri­

cally arranged channels in the surface of the top layer of the device. The 

channels forming the perturbation are chosen to have a rectangular profile. 

A small, unperturbed central section is included, which may avoid fabrica­

tion problems as the radius of the grooves tends to zero. T he active region 

of the laser is taken to include both the unperturbed centre section as well 

as the grating, consistent with optical pumping of the device. 

7.3.1 Dielectric Perturbation of the CG-DFB Laser 

The dielectric constant in the unperturbed centre section is; 

€ct (t1 > Z < t2) 

E(z, r) = 
€c + )€~ (t2 < Z < t3) 

(7.59) 
€ct (t3<z<t4) 

€0 (t4 < z) 

The imaginary part of the complex permittivity over the active layer may be 

included as an index perturbation, so that; 

(7.60) 

7.3.2 Coupling Coefficients in the CG-DFB laser 

By substitution for l:l.€ into (7.57), the coupling coefficient for (0 < r < R1 ) 

is therefore; 

~(r) = ja (7.61) 
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where; 

k5 ,, 
a= 2,1/ere (7.62) 

re is thus the confinement of the light to the active region of the transverse 

planar waveguide, obtained by solving the planar waveguide problem in the 

manner discussed in Chapter 2 . 

For the circularly symmetric perturbation (R1 > r > R2), the dielectric 

constant takes the form; 

Eel (z < ti) 

Ee+ JE~ (t1 < Z < t2) 

E(z, r) = Ed 

E9 (z, r) (t3 < z < t;) 

Eo (t3<z<t4) 

(7.63) 

where the dielectric perturbation of the grating may be expressed as a Fourier 

series: 

00 

( ) '°' "'gm(z)ej(21r/A)m(r-R1) Eg z, r = L..J .._ (7.64) 
m=-oo 

with m the grating diffraction order, and where, for non-zero grating orders: 

(7.65) 

Substitution of (7.64) and (7.65) into (7.57) leads to the following expression 

for the coupling of the grating for (R1 > r > R2 ); 

K:(r) = ja - L K:me-j(0.1-(21r/A)lr 

l;i,l 
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where 

(7.67) 

represents the change in phase of the coupled wave due to the centre sec­

tion. "'m in equation (7.66) is calculated numerically from the planar waveg­

uide field profile in an identical manner to the coupling coefficient of a one­

dimensional perturbed waveguide, which was discussed in Section 4.1. 

7.3.3 Transfer Matrices for the CG-DFB Sections 

Similar to the analysis in [25], transfer matrix techniques may be used to 

analyse structures having more than one section. For the unperturbed central 

region, (7.61) can be substituted into (7.55) and (7.56) to give; 

[at:(r) l = [ear O l [at1 (0) l (7.68) 

a1 (r) 0 e-ar a1
1 

(0) 

where a;·-' (r) is the amplitude of the cylindrical wave in the unperturbed 

region. Over the grating radius (R1 > r > R2), substitution of (7.66) into 

(7.55) may be performed. After neglecting non-resonant and fast oscillating 

terms from the resulting expression, as is performed in the standard Coupled 

Mode Theory (CMT) analysis of parallel gratings, (7.56) leads to: 

(7.69) 

(7.70) 
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{J is defined as the propagation constant of the mode supported by the planar 

waveguide and 6./3 represents the detuning from the Bragg frequency of the 

mode, so that 6./3 = {J - m1r / A. The solution of (7.69) and (7. 70) may be 

written in the following matrix form; 

(7.71) 

where 

. 6.f}( ) 0: - j 6./3 . T11 (r) = eJ r-R, {cosh[s(z)(r -R1)] + (--- )sinh[,(r -R1)]} (7.72) 
'Y 

. ( ) 0: - j6.f3 . 
T22 = e-J6./3r-R, {cosh[s(z)(r-R1)]+( s(z) )sinh[s(z)(r -R1)]} (7.75) 

(7.76) 

z = 6./3 + jo: (7.77) 
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7.3.4 Gain Threshold Condition of the CG-DFB laser 

In the present case, the only difference between the waveguide of the grating 

region and that of the unperturbed centre is a small periodic perturbation, 

the field therefore sees no discontinuity at the boundary r = R1 and the 

matrix relating the field amplitudes at the centre of the structure to those 

at r = R2 is derived from a multiplication of (7.68) and (7.71) as: 

[at(R1)] = [e°'R1 

O l [at'(o)l (7.78) 
a1(R1) 0 e- °'R1 a1' (0) 

It is known [25] that in order to create self-sustaining oscillations, the ratio 

of the outgoing to the in-going waves must be zero at r = R2 , so that: 

a1(R1) _ O 
+ -a1 (R1) 

(7.79) 

Combining (7.79) and (7.78) results in the following equation for the thresh-

old condition; 

where O = *m(W1 + 2Ri) is the total phase shift of the grating and: 

at(0) 
Po = a1(0) 

T21 jnm 
PR1 = --e 

T 22 

(7.80) 

(7.81) 

(7.82) 

Therefore Po and PR1 are the reflectivities at the centre of the grating and at 

r = R1 respectively. 

122 



The reflectivity at R1 is then given by substitution of (7.78) and (7.76) 

into (7.80) to give; 

PRi = s(z)cosh[s(z)~R] - zsinh[s(z)~R] 
(7.83) 

where ~R = R2 - R1 . With the requirement t hat a!(0) = a~(0), necessary 

to ensure a finite field at r = 0, the threshold condition is obtained using 

(7.83) and (7.80) as: 

fc9 (z) = [(-l)t~me2R1z - jD. + z]sinh[s(z)~R] - s(z)cosh[s(z)~R] = 0 

(7.84) 

With z as the independent variable, zeros of the complex function (7.84) may 

be sought. The modes of the CG-DFB laser in terms of particular values for 

gain (a) and detuning (~/3) satisfying the threshold condition then follow 

directly. 

7.3.5 Locating the Modes of a CG-DFB laser 

The contours of the complex function (7.84) representing the threshold con­

dition for a sample CG-DFB laser are shown in Figure 7.3, where m = 1, 

~mR1 = 1, R2 = 0, n = even and O = 1r/2. 

From the figure, the function fcg(z) can be seen to have a number of 

poles near to the zeros representing the modes. By inspection of (7.84), the 

locations of the poles match those of the zeros of the function: 

P(z) = s(z)cosh[s(z)~,B] + jzsinh[s(z)~,B] (7.85) 
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Figure 7.3: Contour plot of Ln( lc(z)l2
). The poles are the upper most fea­

tures in the figure, and are symmetrical around the Bragg wavelength (De­

tuning=O ). The zeros of the function are, for this case, asymmetric around 

the Bragg frequency and are seen in the lower portion of the contour. 

Locating the zeros of the threshold function fcg(z) (7.84) may therefore 

be undertaken using the Argument Principle Method (APM) of Section 2.5. 

This is achieved by first performing the APM using (7.85) to locate the 

poles of fcg(z). For each pole found, a contour integral may be evaluated 

numerically around a circular path, c0 , of small radius enclosing the 0th 

singularity. The result of the integration may then be subtracted from the 

integral used in the APM computation, so that 
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Sm= i_(f zmf'(z) dz - t j zmf~g(z) dz) 
27r f(z) o=O fco fcg(z) 

(7.86) 

Where P is the number of poles of fc9 (z) within the region bound by C, 

obtained by a numerical evaluation of the integral: 

i j P'(z) 
p = 21r Jc P(z) dz (7.87) 

7 .4 Discussion 

It has been shown in this chapter, how the coupling of modes in a circu­

larly symmetric grating structure may be analysed. The field in a CG-DFB 

structure may be decomposed into a axially variant profile similar to that of 

a one dimensional planar waveguide, a periodic azimuthal component, and 

a radially variant field described by Bessel functions. The mode orders of 

the three components are independent of each other. Unlike coupling in a 

linear(parallel) grating DFB structure, TE-TM mode coupling is a feature of 

circular DFBs at cylindrical mode orders higher than the fundamental. This 

arises because, at small radii, the modes are dissimilar to the TE and TM 

modes of Cartesian planar structures, having non-zero Ez and Hz compo­

nents respectively. As the radius increases however, and the curvature of the 

structure becomes less severe, the modes behave more like those in a parallel 

grating. If a large grating radius is assumed, the Bessel form of the radial 

field component may be replaced by an exponential approximation, and the 

corresponding equations for the coupling of the grating simplify considerably. 

A single complex expression describing the threshold condition of a CG-DFB 
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laser may then be derived, the zeros of which correspond to the oscillating 

modes. The modes are then sought using an adaptation of the APM method 

used in the analysis of parallel grating structures. 
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Chapter 8 

Investigation of Optimum 

geometries for CG-DFB OSLs 
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8 .1 Introduction 

In the preceding chapters it has been seen how the use of particular litho­

graphic techniques unique to organic materials leads to the consideration of 

non-parallel DFB gratings as a practical means of fabricating low volume, 

low threshold gain organic DFB lasers. Circularly symmetric DFB gratings 

are of particular interest due to their ability to confine emission in the plane 

of the laser. This is expected to lead to lower gain thresholds for smaller 

devices. It has also been suggested [27] that so-called Circular Grating Dis­

tributed Feed-Back Organic Semiconductor Lasers (CG-DFB OSLs) may also 

be fabricated using a second order grating leading to emission vertically from 

the cavity. Vertical emission and low volume make CG-DFB OSLs attractive 

for use in low-cost VCSEL arrays. 

In this chapter, the techniques examined in Chapters 6 and 7 are employed 

in the analysis of a CG-DFB OSL design. 

8.2 CG-DFB OSL Construction 

The transverse structure of the CG-DFB OSL is shown in Figure 8.1. The 

layer structure is composed of Alq3 , with an Alq3:DCM active region. The 

operating wavelength of the laser is taken to be around 630nm. 

Consideration is given to a CG-DFB OSL having an annular grating with 

an outer radius, R1 an inner radius R2 and an unperturbed centre section. 

The air or substrate interface is the most likely location for the grating using 

soft lithographic fabrication techniques, as the grating may be formed either 
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F igure 8.1: Transverse Structure of the CG-DFB OSL. The grating is shown 

at the two most likely sites for fabrication, the air and substrate interfaces. 

prior to or after deposition of the laser multilayer, reducing the complexity 

of fabricating the device. 

8.3 Threshold Gain Analysis of the CG-DFB 

OSL 

8.3.1 Transverse Modes 

In Section 7.2, it was shown how the field in the CG-OSL may be sepa­

rated into Transverse (z dependent) , Azimuthal (0 dependent) and Radial (r 
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dependent) components. The transverse modes can therefore be calculated 

separately as plane wave solutions to the Helmholtz equation for TE or TM 

modes of a slab waveguide, as in Chapter 2. 

The use of Alq3:DCM as the lasing materials permits the results of the 

threshold gain and threshold current analysis of previous chapters to be used 

in the analysis of the transverse ( z dependent) waveguide. The transverse 

structure shown in Figure 8.1 is therefore known to support a single trans­

verse TE mode, with a confinement of r z = 0.18 and an effective index of 

neff,z = 1.6083. 

8.3.2 Coupling of the Grating 

It was noted in Section 7.2 that the coupling coefficient for the TE-TE mode 

coupling of a circularly symmetric grating in a single transverse mode CG­

DFB laser is calculated in precisely the same manner as for a parallel (linear) 

grating DFB. Furthermore, under the large radius approximation, coupling 

between modes of differing polarisation (i.e. TE-TM and TM-TE mode cou­

pling) is negligible. The TE-TE coupling coefficients for an air interface and 

substrate interface grating can therefore be obtained from the analysis of 

Chapter 4 as; 

K,sg = 352cm-1 (8.1) 

for the substrate grating, and 

(8.2) 
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for the grating at the air interface. A sinusoidal grating of wavelength A = 

200nm and a depth (tooth-height) of d = 30nm is adopted for a first order 

l = 1 grating. 

The coupling coefficients for the two grating positions are not significantly 

different, and in the remaining analysis r;, = r;,a9 ~ r;,59 = 350cm-1 is chosen 

as the TE-TE coupling coefficient. 

8.3.3 Radial and Azimuthal Modes 

To locate the cylindrical modes of the laser, roots are sought to the threshold 

gain equation; 

fc9 (z) = [( - 1)1r;,me2R1 z - jD, + z]sinh[s(z).6.R] - s(z)cosh[s(z).6.R] (8.3) 

using the adaptation of the APM described in Section 7.3. 

Figure 8.2 shows the mode spectrum for a grating having an outer radius 

of R 1 = 20µm. The inner radius R 2 << R1 , so that R2 may be set to be 

zero in the analysis. As the geometry at the centre of the grating will still 

effect the phase n of the grating, mode spectra for n = 21r and n = 1r /2 are 

shown in the figure. 

It may be seen in (8.3) that, due to the presence of the term (-1 )l, the 

even and odd order modes ( of order l) will have different threshold gain 

conditions, and are sought separately. The even and odd order modes are 

distinguished on Figure 8.2, where it can be seen that they are degenerate for 

n = 1r /2. In fact, the degeneracy of the modes is broken by the slightly better 

spatial confinement of the odd order modes resulting in a marginally lower 
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Figure 8.2: Mode Spectra for a circular grating DFB having R1 = 20µm . 

Spectra are shown for gratings having 1r /2 and 21r phase shifts at the centre 

of the grating. 

threshold gain. With n = 21r, a single fundamental mode is seen oscillating 

at the Bragg wavelength with a threshold gain of 9th= 200cm-1. 

The situation is somewhat similar to that of a parallel (linear) grating 

DFB or DBR laser with a phase shift. As n is varied between 21r and 1r /2, the 

modes precess around a relatively simple line function. The threshold gain 

of the fundamental mode at n = 21r therefore has the lowest gain attainable 

for this grating. 

8.3.4 Grating Radius 

The relationship between the radius of the grating, R1 , and the threshold 

gain of the modes is shown in Figures 8.3 and 8.4. Results are shown for the 

lowest order odd and even modes of the laser . The fundamental even order 

mode at n = 21r retains the lowest gain threshold, however the difference 
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between the thresholds of the modes decreases as the R1 gets larger. 
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Figure 8.3: Variation in threshold gain of the modes of a CG-DFB OSL with 

radius R1 and a phase shift of O = 21r. 

8.3.5 Changing the Radius of the Inner Section 

As well as affecting the phase of the CG-DFB structure, the radius of the 

inner section, R2 , is also expected to alter the threshold gain characteristic 

of the laser. 

Figure 8.5 shows the mode spectrum of a CG-DFB laser with R1 = 20µm 

and R2 = lµm. Comparison with Figure 8.2 shows how the presence of 
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even a small unperturbed centre section results in an asymmetrical mode 

distribution around the Bragg wavelength. The modes lasing at wavelengths 

lower t han the Bragg wavelength are more widely spaced and have lower 

threshold gains while the modes on the positive side of t he detuning axis 

have higher threshold gain and are more narrowly spaced spectrally. 

The reason for the spectral distortion may be seen by consideration of the 

modes of a parallel grating DBR laser, which the CG-DFB closely resembles 

in behaviour. In a DBR laser, gain is normally present in the central, un-
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Figure 8.5: Mode Spectra for a circular grating DFB having R1 = 20µm and 

R 2 = lµm. Spectra are shown for gratings having 1r /2 and 21r phase shifts at 

the centre of the grating. 

perturbed region only, and the modes of this cavity form the mode spectrum 

of the laser. In the CG-DFB laser, the modes in the active grating region 

are the dominant modes of the device. As the size of the unperturbed sec­

tion becomes non-zero, however, DBR-like modes are possible, albeit highly 

detuned and with much higher gain thresholds than the CG-DFB modes. 

Although not the operational modes of the laser, the DBR-like modes do in­

fluence the mode spectra of the CG-DFB modes. The resulting asymmetry of 

the modes may thus be due to the detuning of the DBR-like mode, governed 

by the phase change of the cylindrical wave as it traverses the unperturbed 

cavity. 

Figure 8.6 shows how the threshold gains of the modes change with in­

creasing inner radius (R2). It can be seen in the figure that the negatively 

detuned modes are greatly affected by variations in R2 . As R2 is increased 
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Figure 8.6: Variation in threshold gain of the modes of a CG-DFB OSL with 

radius R2. 

to around 5µm the fundamental mode reaches cut-off at the origin of the 

gain axis. Whether the use of larger unperturbed centre sections to further 

reduce the threshold gains of detuned modes is a practical possibility is a 

matter for experimental investigation. 
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8.4 Threshold Current Analysis of the CG­

DFB OSL 

8.4.1 Threshold Current Optimisation of the Trans-

verse Structure 

The gain coefficient for the Alq3 DCM material of the CG-DFB OSL is 

given , from Section 6.3.1, as A0 = 1 x 10-18cm2 . As the transverse (z 

dependent) modes of the CG-OSL are separable from the cylindrical waves 

and resemble closely the modes of a simple planar waveguide, the current 

threshold optimisation of the t ransverse structure is identical to that for the 

linear (parallel) grating DFBs discussed in Chapters 4,5 and 6. 

8.4.2 Threshold Current Optimisation of the Grating 

Radius 

The dependence of the threshold current density on the radius of the grating 

R1 is shown in Figure 8. 7, where it is seen that for the fundamental radial 

mode, a threshold current density of around 80Acm- 2 is obtained using a 

radius of around lOOµm. This may be compared with the parallel grating 

device described in Section 6.3, which required a 2cm long grating to achieve 

similar values for the threshold current density. This illustrates the compact 

geometry of the CG-DFB design in comparison with linear structures. 

Unlike linear structures, where the area of the grating (and therefore the 

net threshold current) increases proportionally with its length, the area of 
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Figure 8.7: Effect of outer grating radius R1 on threshold gain of a CG-DFB 

OSL with n = 21r. The dashed line indicates the degenerate fundamental and 

first order m odes for a n = 1r /2 grating. 

a CG-DFB scales with Rr The greater increase in pump area with grat­

ing radius may possibly counteract the increase in coupling coefficient, it is 

therefore of interest to determine the effect of changing the grating radius on 

the net current applied to the device. 

Figure 8.8 shows how varying the radius R1 affects the net threshold 

current in the CG-DFB OSL. It can be seen that, for the fundamental mode of 

the laser, the net threshold current reaches a peak at around R1 = 20µm. For 
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higher order modes, the current peak appears at larger radii. In general, the 

maximum in the net current occurs when the reduced losses of a larger grating 

overcome the increase in pumping area. It can be seen from the fundamental 

mode that the net threshold current reduces approximately exponentially 

after R1 = 40nm. 
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Figure 8.8: Effect of the outer grating radius R1 on the net threshold current 

for the first three modes of a CG-DFB OSL with n = 21r . The dashed line 

represents the degenerate fundamental and first order modes of a similar 

structure having n = 1r /2 
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8.5 Discussion 

A gain threshold and current threshold analysis of a CG-DFB OSL design 

has been performed where the threshold gain and detuning of the cylindrical 

modes of the CG-DFB OSL are found using the APM technique discussed 

previously in Section 7.3.5. It has been shown that the threshold gains of the 

modes may be reduced by increasing the outer radius (R1 ) of the grating and 

that the mode spectra also depends greatly upon the total change in phase 

experienced by the cylindrical wave. The phase of the grating is dictated 

by varying the size of an unperturbed central section. Increasing the size 

of the inner section radius R2, however, to just a few microns results in an 

asymmetrical distortion of the mode spectra around the Bragg wavelength. 

The spectral distortion is possibly due to the influence of DBR-like modes 

arising from the presence of the unperturbed gain section at the centre. 

Designing the CG-DFB OSL using Alq3:DCM as the active material al­

lows the current threshold of the device to be estimated as the gain coefficient 

of Alq3 was calculated in Section 6.3. A threshold current density of 80Acm- 2 

is achieved using a grating radius of order lOOµm. This may be compared 

to the linear structure described in [20], which required a grating length of 

2cm to achieve similar results. As the surface area over which the current 

density must be maintained does not vary linearly with R1 , the net current 

at threshold for each cylindrical mode order peaks at particular value of R1 

where the reduction in losses in the laser begins to overcome the increase in 

surface area. 

From the preceding analysis, it is concluded that CG-DFB lasers are an 
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excellent candidate for the implementation of Organic Semiconductor lasers 

due to their low threshold gains and small size. The low threshold gain is 

attributed to the low loss confinement in the plane of the device and the 

particularly high coupling coefficients seen using DBR gratings in Organic 

Lasers. 
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Chapter 9 

Conclusion 
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9.1 Discussion 

In the preceding chapters, the characteristics of several designs of Organic 

Semiconductor Lasers have been investigated using a variety of numerical 

techniques. 

In Section 3.1 attention is initially given to a prototype, optically pumped, 

630nm Alq3:DCM OSL chosen from the literature [16]. Methods by which the 

modes of the OSL might be sought are discussed in Chapter 2 where a novel 

technique is described that uses the Argument Principle Method (APM), to 

determine the complex propagation constants of the modes of a mult i-layer 

planar waveguide. The APM method has the advantage that is requires no 

initial guess and locates all the modes within a defined region of the solution 

space. 

Using the APM method, the modes are sought for the gain guided OSL 

structure. It is shown in Section 3.2 that the 50µm wide pump region of this 

laser results in multi-mode operation at a gain threshold of lOOcm- 1. In order 

to achieve single mode operation, a Ridge ( or Rib) guiding configuration 

is considered in Section 3.3. The Rib guiding waveguide is single moded, 

but is found to have a lower lateral confinement than the multi-mode gain­

guided design. The height of the Rib may be altered to maximise the lateral 

confinement, however, and it is found that a maximum lateral confinement 

of around 70% may be obtained before cut-in of the first order mode. The 

Rib waveguide design also has the advantage that the lateral confinement 

becomes independent upon the degree of pumping , and although the width 

of the rib is small (~ 50µm) the pump can be focussed over a much wider 

143 



area without affecting the modes of the laser. 

As a result of the low refractive indices (:::::: 1.5) typical of organic semi­

conductor materials, the reflectivities of the end facets of the laser are found 

to be low (:::::: 7%), the use of DFB gratings as a means of further reducing 

the threshold gain is the subject of Chapters 4 and 5.It is shown in Chapter 4 

how the APM may be adapted to find the longitudinal modes of a DFB laser 

as an extension to the widely used Coupled Mode Theory. DFB gratings at 

the surface and substrate interfaces of the laser are of particular interest in 

the analysis as they may be fabricated using a novel, potentially low-cost 

'Contact Imprinting' technique particular to organic materials. 

The coupling of surface and substrate gratings is found to be particularly 

good in organic multi-layers due to the comparatively small index steps typ­

ically seen at these interfaces. Gratings having rectangular, sinusoidal and 

triangular profiles are analysed in Section 5.3, where it is seen that rectangu­

lar gratings offer slightly superior confinement than sinusoidal profiles, while 

the sinusoidal grating achieves better rejection of higher grating orders. 

Using a 30nm deep sinusoidal grating having a period of about 200nm, 

a laser cavity length of 50µm is required to give the same threshold gain 

as the 500µm Fabry-Perot OSL, demonstrating the much higher degree of 

longitudinal confinement of DFB lasers. 

A threshold current analysis of a DFB OSL is described in Chapter 6. 

The gain threshold of Alq3:DCM is calculated by a comparison of experi­

mental results on a 2cm long DFB-OSL documented in [20] with a numerical 

analysis of an equivalent structure performed using the techniques described 

in Chapter 4. The experimental device was predicted to achieve lasing under 
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electrical pumping at current densities of about 80Acm-2 • The transverse 

structure of the OSL can be optimised to give a ~ 30 - 40% reduction in 

threshold current. 

The high confinement of the longitudinal field in the DFB OSLs analysed 

in Chapters 5 and 6 is at the cost of useful emission from the structure. 

However, a Circular Grating (CG)-DFB OSL may avoid this problem by 

emitting light vertically, through the comparatively transparent transverse 

layer structure. The CG-DFB OSLs analysed in Chapters 7 and 8 offer lower 

lasing thresholds than linear DFBs and occupy a much smaller surface area, 

making them suitable for possible applications in organic VCSEL arrays. The 

initial analysis of this structures suggests that current thresholds of less than 

80Acm-2 are possible for CG-DFBs having a grating radius of just lOOµm. 

A consideration in the design of CG-DFB OSLs is the inner radius of the 

grating, causes distortion of the mode spectra when it is larger than a few 

microns. 

9.2 Review 

It has been seen that the geometry of Organic Semiconductor Lasers may 

be designed using a range of analytic techniques equally applicable to lasers 

made from in-organic materials. The main adaptations from traditional anal­

ysis techniques involve the use of unusually low refractive indices for the 

materials, and in the calculation of the threshold current. The exceptionally 

small gain coefficients seen in OSL lasers indicate that exceptionally low gain 

thresholds are required to achieve attainable levels of threshold current. The 
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provision of low gain threshold is achieved by the reduction of losses from 

the laser, which unfortunately also reduces the degree of emission. Although 

such operational characteristics are yet to be determined, it is anticipated 

that OSLs will be initially useful mainly in low-power applications. 

9.3 Future Work 

The work presented in this thesis has been concerned with Alq3 :DCM lasers 

because of the large amount of information available on this material sys­

tem. As experiments using other materials continue, it is becoming possible 

to perform similar analyses of lasers utilising Polymers and other organic 

materials. 

In lasers using the Alq3 :DCM material, the current analysis may be ex­

panded to include the creation of a dynamical model of an OSL. Such work 

would be of significant interest because of the various dynamical processes 

relating to inter system crossing and polaron absorption typically seen in 

these materials. These effects have recently been well characterised [20], and 

the required time constants, along with information from the static analysis 

covered in this work could be inserted into a rate equation model to yield a 

valuable insight into this aspect of OSL design. 

Further analysis of CG-DFB OSLs would also be a matter for future 

work, particularly in the area of using second order gratings to couple light 

out of the cavity. As CG-DFB OSLs have yet to be fabricated at the time 

of writing, it is also suggested that an experimental study of these lasers is 

timely. 
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Appendix A 

Maxwells Equations in 

Isotropic Media 
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The standard analysis of optical waveguides begins with Maxwells equations 

governing the interaction of the electric and magnetic fields in a dielectric 

media 

8D 
v x H = I+ at 

oB 
vxE=- ot 

(A.1) 

(A.2) 

Where V is the Laplacian operator, H is the vector field of magnetic 

flux, I is the current density vector through the media, E is the vector field 

of electric flux. D and B are the electrical and magnetic displacement vectors 

respectively, related to the vector fields by 

D = c0E+P (A.3) 

B = µo(H+M) (A.4) 

Where P and M are the electric and magnetic polarisations of the medium. 

The electric polarisation, P, can be described as the dipole moment per unit 

volume of the material and is defined as P = EoXeE. Where Xe is, in general, 

a tensor of rank two. For the case of an isotropic material however, Xe is 

scalar and substitution into (A.3) gives 

D = EoE(l + Xe) (A.5) 

A relative permittivity can then be defined as Er = 1 + Xe· The magnetic 

polarisation M = XhH can also be treated in a similar manner, with the 
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tensor Xh reducing to a scalar quantity in the case of an isotropic media. 

Making the substitutions E = EoEr and µ = µ0µr results in the following 

simplified forms for equations (A.3) and (A.4) 

D=cE (A.6) 

B =µH (A.7) 

Making the simplifying assumption that the current density in the media 

is zero, the substitution of (A.6) and (A.7) into (A.l) and (A.2) gives 

8E 
vxH=Eat 

8H 
7xE=-µ-

8t 

(A.8) 

(A.9) 

Taking the vector curl on both sides of each equation results in the ex­

pressions 

(A.10) 

and 

(A.11) 

The preceding may then be simplified using the vector identity 

'\7 X (v X F) = (v · F) '\7 - V 2 F (A.12) 
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It is a direct result of electrostatics that the divergence of an electric 

or magnetic field is zero in free space ( to be otherwise would require an 

elementary charge to exist in an infinitesimally small volume), hence v·E = 0 

and with the substitution of (A.6) and (A.7), the previous expression takes 

the form of the wave equations 

(A.13) 

and 

(A.14) 

Solutions to these equations, in the form of the H and E vector wave 

functions thus represent the state of the optical field throughout a a structure 

defined by spatial variations ofµ and t:. It can be seen from equations (A.8) 

and (A.9) that only one of the above two functions needs to be solved to 

describe both the magnetic and electric components of the optical field. As 

the two wave functions are identical in form, it is convenient to discuss only 

one component, conventionally the electric field. 

For the dielectric materials of interest in this work, only the dielectric 

constant er ( r) is taken to vary in an inhomogeneous structure. The vector 

field is a function of both the spatial coordinates, r, and time, t . The time de­

pendence of the field is normally taken to be of the form E(r, t) = e(r, t)eiwt, 

as arbitrarily time varying fields can be analysed as a Fourier synthesis of 

harmonic components. If the index of refraction is defined as n(r) = Jt:r(r), 

the wave-function becomes 
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(A.15) 

Where k0 = w-,fii€o is the free space wavenumber. In the case of a propa­

gating plane wave, k0 = 21r / >.. The time dependence of the E(r, t) field has 

been suppressed in (A.15), the wave-function e(r) is therefore taken to be an 

envelope function for the time varying field. 
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Appendix B 

TM Layer Matrices 
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For the evaluation of TM modes, the mj matrices for the layers of the waveg­

uide, are replaced with: 

The multiplication of these matrices to produce the dispersion matrix M 

then follows as for the TE solutions (Section 4.02). 

In Section 4.03, it is shown that the Cauchy integral used to locate the 

zero's of the dispersion relation requires the derivative of the function with 

respect to the independent variable, U. ~1;§ can be found by applying the 

product rule to the individual layer matrices providing the derivatives of the 

individual layer matrices, m/s are known. The derivatives of the m/s can 

be found via the chain rule and are:-

Where: 

For the TE modes; 

p=l 

!dand for the TM Modes: 
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(X· 
z = -J-

aj-1 
(B.3) 

(B.4) 



2 

C = 
nj-1 nj 1 p=---
2n · n2 

J J 

(B.5) 

The derivative of the a's with respect to U is obtained by differentiation 

of equation 4.19 in Section 4.03, and can be simplified to: 

(B.6) 
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