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SUMMARY 

Entanglement is perhaps the single-most important resource of quantum infor
mation theory. The first part of this thesis deals with the creation of optical 
event-ready entanglement with a specific class of optical circuits. These circuits 
include passive components such as beam-splitters and phase-shifters, and active 
components such as optical parametric down-converters and optical squeezers. 
Furthermore, the entangled-state preparation may be conditioned on one or more 
detector outcomes. In this context, I discuss the statistics of down-converters and 
give a quantitative comparison between realistic detectors and detector cascades, 
using the confidence of the detection. The outgoing states of the optical circuits 
can be expressed in terms of multi-dimensional Hermite polynomials. Event
ready entanglement cannot be created when the outgoing state is conditioned 
on two detected photons. For six detected photons using ideal photo-detectors a 
scheme is known to exist. 

Part two of this thesis includes two applications of optical entanglement. 
First, I discuss quantum teleportation and entanglement swapping using down
conversion. It is shown that higher-order photon-pair production degrades the 
fidelity of the teleported ( or swapped) states. The interpretation of these states 
proved controversial, and I have attempted to settle this controversy. As a second 
application, quantum lithography uses optical ('which-way') entanglement of mul
tiple photons to beat the classical diffraction limit. Given a suitable photo-resist, 
this technique results in sub-wavelength optical resolution and can be used to 
write features much smaller than is possible with classical lithography. I present 
classes of states which can be used to create patterns in one and two dimensions 
with sub-wavelength resolution. 
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I 

INTRODUCTION 

The closing decade of the twentieth century has witnessed the coming-of-age of 
a new field , called quantum information theory. This field includes the devel
opment of quantum computation and quantum communication. At this point 
a fully scalable quantum computer has not been built, but there are numerous 
experimental and theoretical proposals to achieve this [36]. At the same time, 
the quest for quantum algorithms continues. So far, we have Shor's algorithm to 
factor large numbers into primes [156], the Deutsch-Jozsa algorithm [47, 48] and 
Grovers search algorithm [7 4]. The possibility of quantum error correction was 
discovered [159], which is very important to any practical application of quantum 
computation. 

Considerable progress has also been made in quantum communication. It is 
a generic term for communication protocols based on quantum mechanical prin
ciples and includes cryptography [12, 57], teleportation [14], entanglement swap
ping [183], dense coding [13], quantum clock synchronisation [92], entanglement 
purification [15] and quantum networks [75, 58] . Another recent application of 
quantum mechanics is quantum lithography [22]. The common divisor of nearly 
all elements of quantum information is quantum entanglement [34] . In this thesis 
I study the creation of entanglement in quantum optics, and some of its applica
tions. 

This introduction will provide the motivation and physical background for the 
thesis. I discuss entanglement, teleportation and lithography. It will be largely 
non-mathematical and aimed at an audience of non-specialists. The subsequent 
chapters will then develop these issues in a rigorous mathematical way. 

1 QUANTUM ENTANGLEMENT 

In order to explain what quantum entanglement is about, I will first discuss the 
double slit experiment as presented by Richard Feynman [61]. Suppose we have 
a gun firing bullets at a screen with two holes which are close to each other. Most 
of the bullets will hit the screen and fall on the floor , but some of them will pass 
through the holes and hit a wall of clay. In effect , this wall records the position 
of impact of the bullets which passed through the holes. 

When we inspect the wall, we will see that the bullets are spread around the 
centre of the clay wall in a straight line behind the gun and the holes in the 
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Figure I.l: The double slit experiment a) with particles and b) with waves. 

screen. Each bullet must have passed through either hole to make it to the wall. 
When we record the process with a high-speed camera we can see the bullets 
going through the holes. In fact , we can mount paint sprayers next to the holes, 
colouring the bullets which pass through the left hole red, and the bullets which 
pass through the right hole blue. The clay wall will be peppered with red and 
blue bullets, with the red bullets shifted slightly to the left and the blue bullets 
slightly to the right ( see figure I. la). 

Let us now repeat this experiment with waves instead of bullets. Suppose we 
have a shallow tray of water with a screen containing two narrow openings close 
to each other at the waterline. On one side of the screen a pin is moving up and 
down in the water, creating a wave which spreads out in all directions. When 
the wave reaches the screen, the two slits start to act as if they were vertically 
moving pins themselves! The slits thus create two waves which spread out in all 
directions behind the screen. 

These two waves will soon start to interfere: when a wave-crest meets another 
crest, the result will be a crest twice as high; when a trough meets another trough, 
the result will be a trough twice as deep. And finally, when a crest meets a trough 
they cancel each other. When we record the vertical displacement of the water 
at the far end of the tray of water, we will find an interference pattern1 of peaks 
and troughs (see figure I.lb). 

The difference with bullets is obvious: the bullets arrive in a spread area with 
its bullet density falling off uniformly with the distance from the centre, whereas 
waves will show an intensity pattern which rises and falls in alternation with 
increasing distance from the centre. The simple ( classical) picture is: waves give 
interference and particles (bullets) don't. 

Now let's take a look at light. Suppose we have again a screen with two slits, 
and a laser which is aimed at the slits. The light which passes through the slits is 
recorded on a photographic plate. After development, we will see an interference 
pattern on the photographic plate: light seems to be a wave. 

1 More precisely, the interference pattern is given by the square of the displacement: the 
intensity. 
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When we weaken the intensity of the laser enough, we will see ( using very 
sensitive equipment) that the light is no longer a continuous stream, but that 
instead, it is a succession of small 'bursts'. We call these bursts photons, and they 
are described by quantum theory. It thus seems that light consists of particles 
which interact to give an interference pattern just like waves. 

We now attenuate the laser so that we fire individual photons at the dou
ble slit. This way, the photons cannot interact to give an interference pattern 
since at any time there is only one photon travelling between the laser and the 
photographic plate. The photons which make it past the double slit will give a 
dot on the photographic plate, analogous to the bullets in the clay wall. If the 
photons are truly classical particles, they should pass through either slit, just like 
the bullets, and they should not make an interference pattern. 

However, when we develop the photographic plate after a long exposure time 
we do find an interference pattern! We have set up this experiment in such a way 
that the photons, which seem to behave like particles (indivisible, giving dots on a 
screen), are passing the slits one at a time so they don't interact with each other. 
The only way to get an interference pattern is thus when the photon somehow 
interferes with itself. Has the photon gone through both slits simultaneously? 
Let 's test this. 

Again, we fire individual photons at a double slit and record the pattern on a 
photographic plate. But this time we place a detector behind both slits. These 
detectors tell us through which slit the photon passes. While running this exper
iment, the detectors are clicking when a photon passes through its corresponding 
slit, giving us information about the paths of the successive photons. They really 
go through one slit at a time. 

But when we now develop the photographic plate, the interference pattern 
has gone! Instead, we have a concentration of dots, its density decreasing with 
increasing distance from the centre. This is the bullet pattern. Apparently, 
when we know through which slit the photons pass, we do not get an interference 
pattern. When we do not look, it is meaningless to ask through which slit the 
photons pass. In describing the path of the photons without detection, we need 
to include both possibilities: the path is a superposition of going through the left 
and the right slit. 

Feynman elevated this to a general principle: when an event can occur in 
several different ways, we need to describe the event in terms of a superposition 
of these ways [61]. The superposition principle is responsible for many of the 
counterintuitive aspects of quantum mechanics. This simple thought-experiment 
thus takes us straight into the heart of the theory. 

Let's now consider entanglement. Photons have an extra internal property 
called polarisation. A photon which reflects off this paper towards your eye 
( which can be represented graphically as 0) vibrates in the plane of the paper 
perpendicular to the direction of travelling (t or B, or a combination of these 
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two. Technically, we also have circular polarisation). The polarisation of the 
photon is determined by the angle of this vibration direction. 

When we want to measure the polarisation of a photon, we place a polarising 
beam-splitter, or polariser in the path of the photon. This is essentially a piece 
of glass which reflects horizontally polarised photons and transmits vertically 
polarised photons. When we place photo-detectors in the paths of reflected and 
transmitted photons, a detector click will tell us the polarisation of that photon. 
When a horizontally (vertically) polarised photon encounters the polariser, it 
will always be reflected (transmitted). But what if the photon has a diagonal 
polarisation? 

When a diagonally polarised photon encounters the polariser it will be either 
reflected or transmitted. We can only make a probabilistic prediction as to which 
path the photon will take. When we rotate the polariser so that its horizontal 
orientation is turned parallel to the (diagonal) polarisation of the photon, the 
photon will be reflected with certainty. We now consider two polarised photons. 

Suppose we have two photons originating from a common source and heading 
off in opposite directions. One photon is received by Alice, and the other by Bob. 
Furthermore, Alice and Bob are far away from each other, possibly in different 
galaxies. 

First, we consider the case where both photons are horizontally polarised ( +-+). 
When Alice and Bob measure the polarisation of the photon in the horizontal and 
vertical direction using polarisers, both will find with certainty that the photons 
have horizontal polarisation. When Alice rotates her polariser by 45 degrees, 
the probability that either detector signals the detection of a photon is one half. 
This situation is similar to the measurement of a single photon since the photons 
received by Alice and Bob behave completely independent from each other. 

Now suppose that the two photons are prepared in the following way: either 
Alice's photon is horizontally polarised and Bob's photon is vertically polarised, 
or Alice's photon is vertically polarised and Bob's photon is horizontally po
larised. Furthermore, the photons are prepared in a superposition of these two 
possibilities. When Alice and Bob measure the polarisation of these photons they 
will find that their photons always have opposite polarisations: when Alice de
tects a horizontally polarised photon, Bob will find a vertically polarised photon 
and vice versa. This means that given a measurement outcome, Bob knows what 
Alice's measurement outcome will be, even though she might be light years away. 
The measurement results are said to be correlated. 

So far, nothing strange has happened. We know these correlations from clas
sical physics. Suppose Alice and Bob meet in Amsterdam. They blindly draw 
a marble from a vase containing only one black and one white marble. Alice 
travels to New York and Bob travels to Tokyo. When Alice looks at her marble 
and finds that it is white, she immediately knows that Bob's marble is black. 
These outcomes are also correlated. 

There is, however, a difference in the case of polarised photons. Suppose 
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crystal 
laser 

Figure I.2: A down-converter. 

Alice and Bob both rotate their polariser over 45 degrees. According to the 
classical picture, both photons have a 50:50 chance to end up in either detector. 
That means that with 50% probability the photons have equal polarisation. But 
this is not what they find: Alice and Bob always find that they have opposite 
polarisations! Clearly, this is not just a classical correlation. The two photons 
are said to be entangled. 

The question is now: how can we make entangled photons? One way of doing 
it is to use a so-called down-converter. In a down-converter, a high-powered laser 
is sent into a special crystal. A photon of the laser interacts with the crystal and 
breaks up into two photons with half the energy. The photons will travel away 
from the central axis ( defined by the path of the laser light) under a fixed angle. 
The photons thus travel on the surface of a cone originating from the crystal (see 
figure I. 2) . 

Furthermore, we can set up the down-converter in such a· way that the pho
tons have opposite polarisations. This is where the crystal performs its special 
trick: the refraction index of the crystal is different for horizontally and verti
cally polarised photons. This means that the cone corresponding to the possible 
paths of horizontally polarised photons is tilted upwards from the central axis. 
Similarly, the cone for vertically polarised photons is tilted slightly downwards. 

Due to momentum conservation, the two photons are always travel on different 
cones along lines opposite of each other with respect to the central axis. The cones 
intersect each other at two opposite lines, and as a consequence, we find a photon 
in one of those lines if and only if there is a photon in the other line. Furthermore, 
we cannot tell to which cone the photons on the intersecting lines belong. Either 
the left photon belongs to the upper cone and the right photon to the lower, or 
the other way around. By virtue of Feynman's principle we have to take the 
superposition of these two possibilities. 

The down-converter only produces two entangled photons probabilistically; 
not every laser pulse results in two down-converted photons. Furthermore, since 
we select only the intersection of the two cones, we lose all the instances where 
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photons were not produced along the intersecting lines. This means that most 
of the time we fire the laser into the crystal we do not produce entanglement. In 
this thesis I study whether and how we can minimise the number of cases where 
no photons are produced. 

2 TELEPORTATION 

Another subject of this thesis is quantum teleportation, in particular the telepor
tation of a photon. In this procedure, the (unknown) polarisation of one photon 
is transferred to another photon far away. It is not true that the photon itself 
is magically transported from Alice to Bob, only the polarisation direction ( or, 
more generally, the state of the photon) is transferred. 

The same is true for other types of matter: we can teleport atoms, but that 
does not mean we can make an atom appear somewhere in the distance. I will 
now present the general protocol, using polarised photons. 

Suppose Alice received a photon with a polarisation direction which is un
known to her. We assume that she has some way of storing it without distur
bance. In other words, she has a device called a 'quantum memory'. Now she 
wants to transfer the polarisation direction of the photon to Bob. When she has 
only measurements and a telephone at her disposal to tell Bob the results, she 
has a problem. Since she doesn't know what the polarisation direction is, she 
cannot choose her polariser to be parallel to this direction. Therefore, when she 
measures the polarisation of the photon in a chosen direction and tells Bob the 
result, his reconstruction of the polarisation direction will generally be off by a 
certain angle. Faithful teleportation cannot be performed this way. 

However, the story changes when Alice and Bob share entanglement (pro
duced, for example, by the down-converter of the previous section). Alice and 
Bob both hold one part of an entangled photon pair. Remember that these 
photons are correlated: whatever the polarisation direction measured by Alice, 
Bob will always find the opposite polarisation. Alice proceeds by making a joint 
measurement of her part of the entanglement and the the incoming photon with 
unknown polarisation. Such a measurement does not give any information about 
the individual photons, but determines the relation of the photons relative to each 
other. It is a carefully chosen measurement which will correlate the incoming pho
ton with unknown polarisation to Alice's part of the entangled photon-pair. In 
the case of polarisation we consider here, the outcome of Alice's measurement 
has four possible outcomes. These outcomes correspond to four different ways 
the two photons can be correlated ( technically, we have four orthogonal ways). 

Let's pause for a second to contemplate the current state of affairs. Alice 
has just correlated the unknown incoming photon with her half of the entangled 
photon-pair. She cannot choose or predict how she correlates them, every one of 
the four possibilities is equally likely. But her half of the entangled photon-pair is 
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already correlated with the other half. It then follows that the unknown incoming 
photon is now correlated with Bob's half of the entangled pair. 

The only thing Bob does not know is the exact nature of the correlation. Ev
ery one of the four possible correlations will give a different polarisation direction 
in Bob's photon. That is why Alice has to tell him. She picks up the phone 
and gives one of four possibilities (i.e., she sends two classical bits) corresponding 
to her measurement outcome. The beautiful thing about teleportation is now 
that Bob has to perform a polarisation rotation corresponding to the measure
ment outcome, which is independent of the unknown polarisation direction of the 
incoming photon! His photon now has the same polarisation direction as the 
incoming photon and teleportation is complete. 

We have to note three things. First of all, neither Alice, nor Bob gains any 
information about the direction of the polarisation of the incoming photon. Sec
ondly, no photon magically appears at Bob's site; he already held a photon during 
the whole procedure. In this respect, quantum teleportation is quite unlike the 
Star Trek version. And finally, teleportation cannot be used for superluminal sig
nalling. If Alice does not tell Bob her measurement outcome (which is a classical 
message and thus restricted by the speed of light), teleportation will fail since 
Bob does not know what polarisation rotation he has to perform. 

The entanglement shared by Alice and Bob is typically produced with a down
converter. In this thesis I study the effects of the down-conversion characteristics 
on the quality of teleportation. 

3 LITHOGRAPHY 

The second application of optical quantum entanglement I study in this thesis 
is quantum lithography. This technique may be used to write components on 
micro-chips which are smaller than possible with classical optical lithography. It 
works as follows. 

Consider again the double slit experiment with photons, given in section 1. 

When photons are fired at the slits one at a time without looking through which 
slit they pass, we obtain an interference pattern on the photographic plate. In 
this case the photon can travel along two possible paths: either through the left 
slit or through the right. 

Suppose we now fire two photons per shot at the slits. If we assume that 
· all photons pass the slits we now have three possible paths: both photons may 
pass through the left slit; one may pass through the left and the other though 
the right; or both may pass through the right slit. In this case the interference 
pattern will be twice as bright, because we use twice as much light. 

But now we can ask what happens if we suppress one of these three possible 
paths. What will the interference pattern look like when the photons do not 
separate, that is, what happens when the photons either both pass through the 
left slit, or both through the right slit? The answer is that the interference 
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pattern, which is an array of bright and dark lines, will become twice as narrow: 
the distance between two bright lines is halved. The reason why this happens is 
because the photons 'stick together', thus effectively acting as a single particle 
with twice the momentum. The De Broglie wavelength (which determines the line 
spacing of the interference pattern) is inversely proportional to the momentum 
of the particle. The higher the momentum, the shorter this wavelength and 
the narrower the interference pattern. Since photons also have momentum, this 
means that the more photons we can make acting as a single particle, the smaller 
the interference pattern. Note that in general, we need a special surface which is 
sensitive to two photons (a 'two-photon resist') to record these patterns. 

Classically, light cannot resolve features which are much smaller than its wave
length. As a consequence, classical optical lithography, in which light is used to 
etch a surface, cannot write features much smaller that its wavelength. This is 
Rayleigh's diffraction limit. It is derived from the interference between two waves. 
We have seen that we can narrow this interference pattern using the quantum 
properties of light, which means that the Rayleigh limit is a classical limit. Quan
tum lithography can therefore be used to create sub-wavelength patterns, to be 
used in, for example, the micro-chip industry. 

So far, quantum lithography is still a theoretical method. Only the two
photon case described above has been experimentally tested. It is not easy to see 
how more exotic patterns may be produced, and what the requirements for the 
surface are. Nevertheless, it gives us a new insight in the nature of light. In this 
thesis I study how we can create arbitrary sub-wavelength patterns in one and 
two dimensions. 

4 THESIS OUTLINE 

This thesis is organised in two parts. The first part , called 'Quantum State 
Preparation' is divided in four chapters.- Chapter II gives the general quantum 
mechanical background. It includes the postulates of quantum mechanics, the 
quantisation of the electro-magnetic field and some topics from quantum infor
mation theory such as the Von Neumann entropy and the fidelity. 

In chapter III, I study a limited set of optical circuits for creating near maxi
mal polarisation entanglement without the usual large vacuum contribution. The 
optical circuits I consider involve passive interferometers, feed-forward detection, 
down-converters and squeezers. For input vacuum fields the creation of max
imal entanglement using such circuits is impossible when conditioned on two 
detected auxiliary photons. Furthermore, I derive the statistical properties of 
down-converters and show that coincidences between photon-pairs from paramet
ric down-conversion automatically probe the non-Poissonian structure of these 
sources. 

So far , the photo-detectors I considered are ideal. In chapter IV I study the 
use of detection devices in entanglement-based state preparation. In particu-
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lar I consider realistic optical detection devices such as single-photon sensitivity 
detectors, single-photon resolution detectors and detector cascades (with a lim
ited efficiency). I develop an extensive theory for the use of these devices. In 
entanglement-based state preparation we perform measurements on subsystems, 
and we therefore need precise bounds on the distinguishability of these measure
ments. To this end, I introduce the confidence of preparation, which may also 
be used to quantify the performance of detection devices in entanglement-based 
preparation. I give a general expression for detector cascades of arbitrary size 
for the detection up to two photons. I show that , contrary to the general belief, 
cascading does not give a practical advantage over detectors with single-photon 
resolution in entanglement-based state preparation. 

Finally, in chapter V, I study a special class of optical circuits and show 
that the outgoing state leaving the optical circuit can be expressed in terms 
of so-called multi-dimensional Hermite polynomials and give their recursion and 
orthogonality relations. I show how quantum teleportation of photon polarisation 
can be modelled using this description. 

The second part is called 'Some Applications' and covers two chapters. In 
chapter VI, I study the experimental realisation of quantum teleportation as 
performed by Bouwmeester et al. [23] and the adjustments to it suggested by 
Braunstein and Kimble [32]. These suggestions include the employment of a 
detector cascade and a relative slow-down of one of the two down-converters. 
Furthermore, I discuss entanglement swapping and the creation of GHZ states 
within this context. 

Chapter VII gives the theory of quantum lithography. I generalise the lithog
raphy procedure in order to create patterns in one and two dimensions. This 
renders quantum lithography a potentially useful tool in nano-technology. 
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II 

QUANTUM THEORY 

This chapter presents the mathematical background theory for the understanding 
of this thesis. It does not contain new results. First, I present quantum mechanics 
in the Hilbert space formalism. The second section discusses the quantisation of 
the electro-magnetic field and quantum optics, and in the last section I treat some 
aspects of quantum information theory, such as entropy, fidelity and non-locality. 

1 QUANTUM MECHANICS IN A NUTSHELL 

What is quantum mechanics all about? Initially, the theory was developed to 
describe the physical world of atoms, that is, to explain the observed spectral 
lines in spectrometers. In 1913, Niels Bohr, then at the Cavendish laboratory 
in Cambridge, developed what is now called the 'old quantum theory' , in which 
he presented a model explaining the spectral lines of hydrogen [18, 82]. As the 
theory was developed further ( culminating in the work of Schrodinger and subse
quently Heisenberg) it became clear that quantum mechanics is a mathematical 
t heory which describes measurement outcomes, rather than the underlying phys
ical processes [131]. 

Von Neumann proved the equivalence of Schrodingers wave mechanics and 
Heisenberg's matrix mechanics in Mathematical foundations of quantum mechan
ics [122] and introduced the Hilbert space formalism still in use today. Dirac 
[51] developed his own version of the theory (of which, incidentally, Von Neu
mann did not approve1

), and his bracket notation has become the standard. In 
accordance with the convention, I will follow Von Neumann's framework and use 
Dirac's bracket notation. 

This section is organised as follows: first I will give the postulates for quan
tum mechanics. Then I discuss mixed states and composite systems. Finally, 
this section ends with measurement theory according to Von Neumann and its 
generalisation to projection operator valued measures (POVM's). 

a The postulates of quantum mechanics 

Using some properties of complex vector spaces (see appendix A), we can for
mulate the postulates of quantum mechanics [28, 45, 85] . More properties of 
operators on Hilbert spaces can be found in appendix B. 

1 The preface of his book makes very enjoyable reading. 
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Postulate 1 For every physical system there is a corresponding Hilbert space JJF. 
The accessible (pure) ·states of the system are completely determined by 
rays with unit length in Jr. 

A ray in Hilbert space is a set of unit vectors which differ only by an arbitrary 
( complex) phase. A physical state corresponds to a ray. Thus, a state 11P) is 
physically equivalent to ei"°J'lf') with 0 ::; cp ::; 271'. A complete set of orthonormal 
states (rays) form a basis of Jr. I will use the terms 'ray', 'vector' and 'state' 
interchangeably, while remembering that an overall phase does not change the 
physical state. Later, in section c, this class of states is extended to mixed states. 

Since the Hilbert space 3F is a (complex) vector space, if any two normalised 
rays 11P) and 1¢) in 3F are accessible states to the system, then their superposition 
al1P) + ,Bl¢) is also an accessible state to the system. Normalisation then requires 
laJ 2 + l,8J2 = 1. A superposition of this type is sometimes called a coherent 
superposition. Note that in this case the phase of a ray does have a physical 
meaning. Consider two orthonormal states 11P) and Jef>) (i.e., (1Pl1P) = (¢1¢) = 1 
and (1PI¢) = 0) , and consider the two superpositions 

~ (11P) + 1¢)) 

~ (11P) - 1¢)) (II.1) 

then it is easy to verify that (v1 Jv2 ) = 0, i.e. , they are orthogonal (in fact, they 
are orthonormal). The two superpositions differ only in a relative phase, but they 
yield two physically distinct ( orthonormal) states. 

Postulate 2 For every physical observable of the system there is a unique corre
sponding self-adjoint (Hermitian) operator A in JJF. 

An operator A is called self-adjoint if and only if At = A. An operator 
is Hermitian if and only if its eigenvalues are real. I will now prove that (for 
finite-dimensional Hilbert spaces) any operator is self-adjoint if and only if it is 
Hermitian. 

To show that self-adjointness implies Hermiticity, observe that according to 
the eigenvalue equation Al1P) = a J'lf') in Eq. (A.l) we have 

(II.2) 

Substituting At = A immediately yields a* = a, i.e., a real eigenvalue. The 
second implication is proved by running the argument backwards. In this thesis I 
will use the terms Hermitian and self-adjoint interchangeably. Also, I will use the 
convention that Greek letters ( a, ,8 . . . ) denote complex numbers and Roman 
letters ( a, b . . . ) denote real numbers. The fact that self-adjoint operators have 
real eigenvalues lead to the next postulate. 



1 QUANTUM ME CHANICS IN A NUT SHE LL 15 

Postulate 3 T he only possible measurement outcomes obtainable from the mea
surement of an observable are the eigenvalues of its corresponding self
adjoint operator A. If the state of the system is l1P), then the probabil
ity p( ai) of finding the da;-fold degenerate eigenvalue ai of the observable 
A is equal to the probability of finding the system in the corresponding 
eigenspace: 

de., 

p(ai) = ~ l(aijl1P)l 2
, (II.3) 

j=l 

where laij) are the eigenvectors corresponding to the da;-fold degenerate 
eigenvalue ai. 

The outcome of a measurement in the laboratory can only yield a real num
ber, and since the measurement outcomes are the eigenvalues of operators, t hese 
operators must be Hermitian. Postulate 2 ensures that there is a one-to-one 
correspondence between self-adjoint operators and physical observables, and pos
tulate 3 determines the possible measurement outcomes for these observables. 
Eq. (II.3) is the so-called Born rule [85] . 

Postulate 4 The evolution of a system is governed by a unitary t ransformation 
U: 

l'1j; (0')) = U(0 , 0' ) i'lj;(0)) , 

where 0 and 0' are (vectors of) real parameters. 

Any operator U on a Hilbert space Jr' for which ut = u- 1 is called a unitary 
operator on JfP. In general, every unitary operator can be written as 

U(0) = exp (iA0) , (II.5) 

with A a self-adjoint operator on Jr'. To prove this statement, note that ut = 
exp(-iAt0) = exp(- iA0) . Thus utu = uut = ]., and ut = u-1 . Unitary 
operators in matrix representation always have determinant 1, and t hey can be 
viewed as rotations in a complex vector space. 

A special choice for U(0 , 0') in Eq. (II.4) is the infinitesimal time evolut ion 
where 0 = t and 0' = t + dt: 

U(t, t + dt) = exp [iHt/!i - iH (t + dt)/!i] = exp(- iH dt/!i) , (II.6) 

and H the Hamiltonian of t he system. It is the observable associated with the to
tal energy of the system. Substituting this evolution into Eq. (II.4) and neglecting 
higher-order powers of dt , we obtain in the Taylor expansion 
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l'lfa(t)) + dj-zµ(t)) 

in :t l'lfa(t)) 

( 1 - {Hdt) l'lfa(t)) ¢:} 

Hl'lfa(t) ) . (II. 7) 

This is the famous Schrodinger equation. 
In this thesis I will not use the Schrodinger equation. Instead, I will use the 

fact that the self-adjoint operator A in Eq. (II.5) acts as a generator of the group 
of unitary evolutions parametrised by 0. This approach will have great benefits 
in chapter III. The theory of (Lie) groups and their generators is treated in 
appendix C. 

Unitary transformations not only govern the evolution of quantum states, 
they also constitute basis transformations. If A and U are a linear operator 
and a unitary transformation on JJtP respectively, then there exist another linear 
operator A' on JJtP such that 

A'= utAu. (II.8) 

In particular, if A is self-adjoint there always exist a unitary transformation such 
that A' is diagonal. 

Postulate 5 When a measurement of an observable A yields the (non-degenerate) 
eigenvalue ai, the state of the system immediately after the measurement 
will be the eigenstate jai) corresponding to ai. 

This is the so-called projection postulate. It is often referred to as state col
lapse, since a measurement can induce a discontinuous jump from a superposition 
to an eigenstate of the measured observable. This postulate has caused severe 
problems for interpretations of quantum mechanics which assign some form of 're
ality' to the state. Such interpretations suffer from what has become generically 
known as the 'measurement problem' [141, 85]. In this thesis I will ignore this 
problem, since it does not seem to have any effect on the experimental success of 
quantum mechanics2 . The general theory of measurements is discussed in section 
d. 

So far, I have presented quantum mechanics in the so-called Schrodinger pic
ture. In this picture the time dependence is captured in the state: l'lfa(t)) . Alter
natively, we can choose the states to be time independent, and have all the time 
dependence in the operators. This is called the Heisenberg picture: 

(II.9) 

2The reader should note that, although I will not discuss the measurement problem, this 
does not imply that there is no measurement problem. This is still very much open to debate 
[66]. 
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where AH denotes the operator in the Heisenberg picture and As the operator in 
the Schrodinger picture. When part of the time dependence is in the states and 
part is in the operators, we speak of the interaction picture. 

Another alternative formulation of quantum mechanics is Feynman's path 
integral formalism. This is particularly useful in the formulation of quantum 
field theories, but I will not discuss it here. 

b The linear harmonic oscillator 

One application of quantum mechanics which deserves attention in the context 
of this thesis is the description of the linear harmonic oscillator. I will treat this 
in a telegraphic manner, since this is a well known example. For a full derivation 
see, for example, Merzbacher [119]. 

We start by defining a quadratic potential V(x) for a classical particle with 
mass m, position x and momentum p: 

1 
V(x) = 2mw2x2 , (II.IO) 

where w is, loosely speaking, the classical frequency of the oscillator. The classical 
Hamiltonian is then given by the sum of the kinet ic and potential energy: 

p2 mw2x2 
H c1assical = 2m + 2 

(II.11) 

In quantum mechanics the observables x and p have to be replaced by self-adjoint 
operators. This procedure is called 'quantisation'3 . The quantum mechanical 
Hamiltonian thus becomes 

(II.12) 

where p -+ p = -ind/ dx and X -+ X = X with [x, .P] = in. When the quantum 
mechanical state of the harmonic oscillator is denoted by 'l/J(x) = (xl'l/J) , with 
Ix) the position eigenvector corresponding to the position x, then we obtain the 
differential (Schrodinger) equation ( see postulate 4) : 

d2dx~x) - (~w) 2 x2 'l/J(x) = E'lj)(x) . (II.13) 

This equat ion is satisfied by the following class of wave-functions: 

(II .14) 

3Or first quantisation. Indeed, there is something called 'second' quantisation, in which 
the fields are written in the operators formalism. We will encounter this in section 2, where I 
introduce quantum optics and the quantisation of the electro-magnetic field. 
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corresponding to energies 

(II.15) 

The Hn(x) are the so-called Hermite polynomials (see appendix G). 
The Hamiltonian of the harmonic oscillator can also be expressed in terms of 

so-called raising and lowering operators a,t and a respectively: 

and (II.16) 

(remember that xt = x and 'f} = ft since position and momentum are physical 
observables) . It is easily found that [a, at] = 1. The eigenstate corresponding to 
the energy En of the linear harmonic oscillator is now symbolically denoted by 
Jn), and we have 

(II.17) 

The operator at a in the last equation is also called the number operator n. The 
Hamiltonian of the linear harmonic oscillator in terms of the raising and lowering 
operators is then given by 

(II.18) 

The raising and lowering operators will return in section 2 as creation and anni
hilation operators. 

c Composite and mixed states 

After this brief, but necessary digression I now return to the definition of states 
of composite systems. Postulate 1 tells us that with every physical system corre
sponds a Hilbert space. Two systems, 1 and 2, therefore have two Hilbert spaces 
Jf" 1 and Jf" 2 . However, the composite system 1 + 2 is also a physical system. The 
question is thus which Hilbert space corresponds to system 1 + 2. 

Let {l'it'i)i} be an orthonormal basis for Jf"1 and let {14>j)2 } be an orthonor
mal basis for Jf"2 • When the two systems are independent of each other, every 
basis vector in Jf"1 can be paired with every basis vector in Jf"2 and still give a 
mathematically legitimate description of the composite system. Therefore, one 
possible orthonormal basis for the Hilbert space of the composite system is given 
by the set of ordered pairs {J1j;i)i, 14>})2}. This is a basis of the tensor product, or 
direct product of the two Hilbert spaces of the subsystems: 

(II.19) 
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An orthonormal basis is given by {l?/\)i ® /¢})2}. 
From postulate 1 and the fact that a Hilbert space is a complex vector space 

we immediately see that any tensor product of two superpositions is again a 
superposition of tensor product states (see appendix A): 

(II.20) 
j ij 

i.e. , the tensor product is linear. Note that the right-hand side can in general not 
be written as a state l(k)i ® /( 1)2. This exemplifies the fact that two systems need 
not be independent of each other. This property, called entanglement is crucial 
to quantum information theory. It will be discussed in detail later on in chapter 
III. 

The total state of two systems can always be written in a special form, 
called the Schmidt decomposition. The most general composite state is given 
by Eq. (II.20), which involves a double sum over the indices i and j. In the 
Schmidt decomposition the state is written as a single sum [122]: 

(II.21) 

where ci can be chosen real and {l?/J;) i} and {1¢>~)2} are two orthonormal bases 
for the two subsystems. The bases of the subsystems in eqs. (II.20) and (II.21) 
are transformed into each other by a unitary transformation: 

(II.22) 
k l 

The Schmidt decomposition is unique ( up to phase factors) if and only if the ci 
are non-degenerate. If the dimensions of the Hilbert spaces of the two subsystems 
are d1 and d2 respectively, the sum in Eq. (II.21) the index i runs up to the 
dimension of the smallest Hilbert space [122, 131]. A Schmidt decomposition of 
the state of three or more subsystems exists only in special circumstances [132]. 

When a state is in a superposition /'11) = Li ai/?/Ji) with Li /ai/ 2 = 1, the 
operator /'11)('111 is a so-called projection operator (see appendix A): 

(:~;:C,,a; I ,P,) ( ,P; I) 
2 

= ~ a,aj a,a;I ,P,) ( \b; I \b,) ( ,P,I 

L aia;aka7/'l/ii)(?/id8jk = L /aj/ 2 L aia71?/Ji)('l/id 
ij~ j il 

L aia7l?/Ji)(?/Jzl = /'11)('111 • 
il 

(II.23) 

We can now extend our notion of states for a system. In particular, suppose that 
we have a classical probability distribution over a set of states. We write this as 

(II.24) 
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where Pi is the probability to find the system in state l'l,Vi). This is sometimes 
called an incoherent superposition. Since the Pi are probabilities, we have :Z:i Pi = 
1. The operator pis called the density operator of the system. It is also referred 
to as a mixed state. It has the following properties: 

1. pt= p; 

3. Trp = 1. 

In a complex Hilbert space, properties 1 and 2 are equivalent. 

d Measurements 

I will now consider the effect of a measurement on the state of a system. Ac
cording to the projection postulate, immediately after the measurement of an 
observable A, the state of the system is in the eigenstate j'l,Vi) corresponding to 
the eigenvalue ai found in the measurement outcome. With the knowledge of 
projection operators given in appendix A we can now model this as follows. 

Suppose that the system under consideration is in a mixed state p. Let the 
eigenvalues of A be given by {ai}- Then the probability p(ai) that we obtain 
outcome ai in a measurement of A is given by 

(II.25) 

The right-hand side can be shown to equal the centre term by using the cyclic 
property of the trace. This type of measurement is called a Von Neumann mea
surement or ideal measurement [85, 119, 122]. The underlying assumption in 
this model is that the measurement outcome faithfully identifies the state of the 
system immediately after the measuring process. 

In practice, this is of course not always the case. Instead, due to the imperfec
tions of the measurement apparatus there might be a whole family of projectors 
{l'l,l;k)('l,Vkl} which, with some probability 1Jk > 0, give rise to the measurement out
come p(ai)- Rather than a projection operator j'l,Vi)('l,Vil in Eq. (II.25) we include 
a projection operator valued measure, or POVM: 

Pi,P;) = l'l,Vi)('l,Vd --+ Eµ = ~ 17f 1'1,Vk)('l,Vkl ' (II.26) 
k 

with I:µ Eµ = n.. When { 1'1,Vk)} is an orthonormal basis, this implies I:µ 77f = 1. 
In chapters IV and VI, I will use these POVM's to model non-ideal measurements 
in the context of quantum optics. A more formal presentation of POVM's is given 
in appendix B. 
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In this section I present quantum optics; the quantum theory of light. First, the 
electro-magnetic field is quantised and given a particle interpretation, yielding 
the concept of photons. Then I describe various optical components in terms of 
unitary evolutions and their generators. 

a Quantisation of the electro-magnetic field 

Quantum mechanics, as presented in the previous section, can describe a particle 
in an electro-magnetic field given by a vector potential A(r, t) by making the 
following substitution: 

p --+ p - e.A(:r, t) , (II.27) 

where e is the charge of the particle and A is the vector potential operator 
obtained by replacing the coordinates r by their corresponding operator :r. 

Alternatively, the quantisation of the electro-magnetic field can be derived 
from the Maxwell equations for the electric and magnetic field E and B respec
ti vely4: 

1 aE 
V x B- -- =0 

c2 at 
aB 

v x E+ at = o V-E=O, (II.28) 

with c the velocity of light in free space. For the fully quantum mechanical 
description of the electro-magnetic field in free space, I will follow the derivation 
of Scully and Zubairy [148]. Other books on quantum optics include Loudon 
[112] and Walls and Milburn [171]. 

Suppose we want to quantise the electro-magnetic field in a cavity with length 
L and volume V . Classically, we can describe the electric field in terms of the 
transverse modes in the x-direction: 

Ex(z, t) = L Ajqj (t) sin kjz , 
j 

(II.29) 

where z is the propagation direction, qj(t) the mode amplitude, kj = j1r / L the 
wave number and Aj a proportionality constant: 

(II.30) 

41 avoid the notation H, because its components may be confused with the Hamiltonian H 
later on. 
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The Vj are the eigenfrequencies of the cavity. The constant mj is a dummy mass, 
included to make the subsequent argument more suggestive [148]. 

From the Maxwell equations (Eq. (II.28)), we can derive the magnetic field 
( which is only non-zero in the y-direction): 

(II.31) 

where qj(t) denotes the time derivative of the mode amplitude qj. The classical 
Hamiltonian then reads 

I { ( 2 -1 2) 
Hc1assical = 2 Jv dv EoEx + µo By (II.32) 

After substitution of Eqs. (II.29) and (II.31) in the classical Hamiltonian and 
integrating over the cavity volume we obtain 

Hc1assical = ~ L (mjvJqJ(t) + mjqJ(t)) 
j 

(II.33) 

When we write Pj = mjqj, this has exactly the same form as the classical Hamil
tonian of the harmonic oscillator. Therefore, when we want to quantise the 
electro-magnetic field we proceed in a similar fashion as in section I.e. We re
place the variables qj and Pj by their respective operators qj and 'Pj = ilia/ aqj. 

There are, however, several subtleties. The variables qj are amplitudes of the 
field modes, and not coordinates, as is the case in the linear harmonic oscilla
tor. The variables IJj are their corresponding conjugate variables, which facilitate 
the position-momentum interpretation since [ii. , q] = I. But this is really field 
quantisation, or second quantisation. Secondly, the masses mj do not have any 
physical meaning. They are removed by changing our description from qj and /]j 
to creation and annihilation operators a} and aj , as I shall now show. 

b Creation and annihilation operators 

Starting with the classical Hamiltonian of the free field in Eq. (II.33) and replacing 
the variables qj and Pj with the quantum mechanical operators qj and 'Pj, we 
obtain the quantum mechanical Hamiltonian 

(II.34) 

where 

and (II.35) 
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\Ve can now make ~he canonical transformation to the operators a} and aJ: 

(II.36) 

The Hamiltonian in terms of the creation and annihilation operators thus becomes 

(II.37) 

With every operator a} corresponds a mode aJ . This is a Hamiltonian for a 
massless quantum field. At this point I should briefly clarify my notation. Since 
the creation and annihilation operators are closely related to the modes they 
act upon, I make the distinction between modes and operators by writing the 
operators with a hat. Although observables like the Hamiltonian and unitary 
transformations are also operators, they do not yield such a potential ambiguity, 
and I will not write them with hats. 

Using the canonical commutation relations given by Eq. (II.35) we immedi
ately see that 

and (II.38) 

The electric and magnetic fields after second quantisation thus read 

(II.39) 

with the field strength 

. - ( fivj ) 1/2 
£J - V . Eo 

(II.40) 

Just as in the case of the linear harmonic oscillator, we can write the energy 
eigenstates of one mode of the electro-magnetic field as In): 

Hi n) = fiv (ata + 1) = Enln) . (II.41) 

By applying the annihilation operator on the last two sides of this equation and 
using the commutation relations we easily find [148]: 

aln) = vnln - 1) , atln) = Jri+Iln + 1) , ataln) = nln) = nln) , (II.42) 
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with En = !iv(n + 1/2). The eigenstates are orthonormal: (min) = c5mn · 

Rather than interpreting the eigenstates In) as the energy levels for a fixed 
system, in quantum optics the state In) denotes a state of n quanta. The quanta 
corresponding to the electro-magnetic field are the light-quanta or photons. The 
operators at and a thus create and destroy photons. Generally, in quantum field 
theory a field or a wave function is quantised, and the excited modes is given a 
particle interpretation [37, 144]. 

At this point I would like to stress that a single photon does not have a wave 
function [123]. It is the excitation of the electro-magnetic field (see also Ref. 
[148]). In the rest of this thesis I let Jn)ai denote the state of the field , giving the 
number of photons n in mode aj. 

In quantum mechanics, with every physical system corresponds a Hilbert 
space. An orthonormal basis for a single-mode system a is given by {In)} , which 
spans an infinite dimensional Hilbert space. When we have several modes { a1} in 
our system, the total Hilbert space of the system is a tensor product of the Hilbert 
spaces of the separate modes with orthonormal basis {In) = ln1 , ... , nN) }. This 
total Hilbert space can be uniquely decomposed into subspaces with fixed photon 
number. A Hilbert space with this property is called a Fock space Y : 

(II.43) 

where J'F k denotes the subspace spanned by the vectors I n1, . . . , n N) with I:i ni = 
k for an N-mode system. The states In) are also called Fack states. The subspace 
Jf"0 is a one-dimensional subspace, better known as the vacuum. 

As a last remark, a tensor product state having a total of k photons may in
volve one or more modes in vacuum. For example In, 0, m), where JO) denotes the 
vacuum. The state In, 0, m) is part of the basis spanning the subspace Jf"k=n+m· 

The second mode is also said to be in the vacuum state. This ambiguity is further 
explored in section d. 

c Coherent and squeezed states 

The creation and annihilation operators are very important in quantum optics. 
We can therefore ask what the eigenstates of, e.g., the annihilation operator are. 
Consider the eigenvalue equation for the annihilation operator: 

ala)= ala) . (II.44) 

The eigenstate can be expanded in terms of number states [148]: 

(II.45) 

which can be written as 

(II.46) 
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The corresponding displacement operator can then be written as 

la) = D(a) IO) = e-loi2 /2eaaLa·alO) ' 

25 

(II.47) 

since the second term in the exponential does not change its behaviour when 
applied to the vacuum. The operator D(a) is unitary, with Dt(a) = D(-a) = 
n-1 (a) . When acting on a creation or annihilation operator, we have 

n-1(a)aD(a) = a+ a' 
n-1(a)atD(a) = at+ a* . (II.48) 

The states ja) are called coherent states. On a single mode, there are no two 
coherent states which are orthogonal: 

(ala')= exp (-~lal2 + a
1
a* -1ja'l2) . (II.49) 

This is only zero when a = a' = 0. 
The creation and annihilation operators do not commute, and as a conse

quence, ( exponential) functions of these operators generally cannot be rewritten 
according to the rules of normal arithmetic. In particular, when [A, B] #- 0 we 
have eA+B #- eAe8

. From a computational point of view, it is often convenient 
to deal with the annihilation operators first , and then the creation operators. 
Especially when the state acted upon is the vacuum, the annihilation operators 
will yield zero, thus simplifying the task. A function of these operators which is 
written as 

J(at, a1, ... , ai , aN) = I: gj(at, ... , ai) hj(, a1, ... , aN) (II.SO) 
j 

is said to be in normal ordered form. For every term in the sum, the annihilation 
operators are placed on the right and the creation operators on the left. When 
the positions of these operators are reversed (i.e., creation operators on the right), 
we speak of anti-normal ordering. 

Let me consider a simple example. The second order term in the displacement 
operator (with a real for simplicity) is proportional to (at -a)2. In normal ordered 
form, this is equal to (at)2 + a2 - 2ata - 1. Note the -1 in this expression. For 
higher order terms, the 'non-arithmetic' addition becomes more complicated, 
until finally, we arrive at [148]: 

(II.51) 

Later in this section I will return to the normal ordering in more general terms. 

Just as the displacement operator creates coherent states, we can construct a 
squeezing operator which creates so-called squeezed states [170, 113, 148]: 

(II.52) 
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This operator is also unitary: st(~) = S(-~) = s-1 
(~). It transforms the creation 

and annihilation operators according to ( ~ = rei
9

) 

s-1(~)aS(~) = acoshr -ati0 sinhr, 
s-1 (~) at S(~) = at cosh r - a e-io sinh r . (II.53) 

The squeezing operator can also be written in normal ordered form [60]: 

S(~) = exp [e;
0 

tanhr(at) 2
] exp [-ln(coshr) (ata+ t)] 

X exp ( - e~iO tanh ra2) . (II.54) 

Rather than deriving this formula, I will now concentrate on the so-called Baker
Campbell-Hausdorff formula. 

We have seen that for non-commuting operators A and B we have eAeB =I= 
eA+B. The natural question to ask is then: what is eAeB? The relationship 
between the two is given by a Baker-Campbell-Hausdorff formula. There are 
several ways in which we can write this formula, and here I will give two (without 
proof; the interested reader is referred to, e.g., Gilmore [69]): 

eAeB eA+B+½[A,B]+fi[A,[A,Bl]+fi[[A,B],B]+-·· 
' 1 1 

e-B AeB = A+ [A, B] + 
2
! [[A, B], B] + 

3
! [[[A, B], B], B] + · · · . (II.55) 

When A= aat and B = a*a, the first BCH formula immediately gives the normal 
ordered form for the displacement operator: [A, B] = lo:12 , which is a constant. 
Therefore, repeated commutators are zero and the BCH formula terminates. 

The sum over repeated commutators does not terminate in general, in par
ticular when A and B form a Lie algebra (possibly with a set of other operators 
C, D , ... ). When A and B generate an su(l, 1) or an su(2) algebra (with 
C = ±[A, B]/2 the third generator of the respective algebras) the BCH formula 
consists of an infinite number of terms, which converge to exponential functions 
of the generators A , B and C [164]. But even this convergence is not guaran
teed. In some cases it is just not possible to write a function of operators in 
a concise normal ordered form. In appendix D I further discuss the squeezing 
operator in connection with the su(l, 1) algebra. Because of the particular non
compactness for the group SU(l, 1), we recognise a one-to-one correspondence 
between squeezing and SU(l, 1). 

More properties of the squeezing and displacement operators can be found in 
Ref. [148]. I will now turn my attention to so-called multi-mode squeezing. 

Eq. (II.52) is defined for a single mode a. However, we can apply this single
mode squeezing operator to several distinct modes 
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(II .56) 

After an N-mode basis transformation U we obtain 

(II.57) 

The last operator S1 can in general be written as 

S
1

(() = exp [1 t ( A;kaJak + BJka]ak - AJka]at)j , 
J,k=l 

(II.58) 

with A and B complex symmetric matrices. This is multi-mode squeezing. It has 
been studied among others by Caves [40], Barnett and Knight [10], and Caves and 
Schumaker [41, 147]. The normal-ordering of these operators has been studied 
by Yuen [180], Fisher et al. [60] and Truax [164]. 

Mult i-mode squeezing is of fundamental importance to this thesis. In the 
next chapter I study whether operators of the form of Eq. (II.58) can yield so
called event-ready entanglement. In chapter V I determine the general state 
of Eq. (II.58) when, in addition, conditional measurements are included. Also 
parametric down-conversion, a technique which will appear frequently in this 
thesis, can be described by this evolution. It is now also clear why I present 
unitary evolutions in terms of generators rather than the Schrodinger equation. 
Eq. (II.58) is not necessarily an interaction Hamiltonian, but we can still consider 
the evolution it yields. 

d Optical components 

The multi-mode displacement and squeezing operators are not just mathematical 
inventions, they correspond to physical devices. A coherent displacement of the 
vacuum yields a state which can be generated by a laser. Squeezed states can 
be generated by, for instance, optical parametric oscillators [171] or parametric 
down-conversion [109]. 

Another type of optical components is given by unitary evolutions, the gener
ator of which leaves the photon number invariant. T he most important one is the 
beam-splitter. Physically, the beam-splitter consists of a semi-reflective mirror: 
when light falls on this mirror part will be reflected and ~part will be transmitted. 

Let the two incoming modes be denoted by ain and bin respectively. The out
going modes are denoted by iiout and bout· There are four global modes, depicted 
in figure IL I. 

When a photon is incident on a beam-splitter, it has a certain probability 
of being reflected and a certain probability that it is transmitted. When we 
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bout 

BS 

Figure II.I: The four global modes of the beam-splitter. 

parametrise the probability amplitudes of these possibilities as cos 0 and sin 0, 
then in operator form the beam-splitter yields an evolution 

At 0 At . 0 bAt 
aout cos ain + sm in ' 
At - • At At 
bout - sm 0 ain - cos 0 bin , (II.59) 

and similar relations for the annihilation operators. The reflection and transmis
sion coefficients R and T of the beam-splitter are R = cos2 0 and T = l - R = 
sin2 0. The relative phase shift in the second relation ensures that the transfor
mation is unitary. This means that the beam-splitter is an asymmetric device. 

Alternatively, we can write the beam-splitter evolution in terms of a unitary 
operator generated by an Hermitian operator. Eq. (II.59) can be interpreted as 
the beam-splitter version of Eqs. (II.48) and (II.53). The question is therefore 
what the corresponding unitary transformation is (analogous to D(a) and S(~)). 
Using the second line in Eq. (II.55) we can easily verify that 

e( •t fi • fit ) At e( • t 6 · fit ) t At e ain in - ain in b. e- ain in - ain in = sin 0 a. - cos 0 b-
m m m · (II.60) 

In general, the generator Has of the beam-splitter evolution U = exp(iHas) is 



3 QUANTUM INFORMATION 

given by 

(II.61 ) 

Since the photon-number is conserved in the beam-splitter, the operator HBs 
commutes wit h the number operator: [HBs, n] = 0. Furthermore, HBs is a gen
erator of an su(2) algebra. 

The same mathematical description applies to the evolution due to a polari
sation rotation. Instead of having two different spatial modes ain and bin , the two 
incoming modes have different polarisations. We write &in ➔ ax and bin ➔ ay, 
for some rectilinear set of coordinates x and y. The parameter 0 is now the angle 
of rotation: 

(II.62) 

This evolution has the same generator as the beam-splitter, except that the angle 
0 is real for t he polarisation rotation, whereas for the beam-splitter we admit 
complex ).'s in Eq. (II.61). 

Another important optical component is the single-mode phase shift: 

(II.63) 

It is easily verified that 

(II.64) 

The corresponding generator is given by H'P = <p ii/nain · It also commutes with 
the number operator. 

In general, when some unitary evolution leaves the photon number invariant, 
t hat evolution corresponds to some passive optical circuit. Alternatively, when 
a unitary evolution does not conserves the photon number, we speak of active 
optical devices or photon sources. 

3 QUANTUM INFORMATION 

Quantum information theory delivers the foundations for quantum computation, 
and in order to perform a quantum computation we need to be able to, among 
other things, prepare certain quantum states. In this thesis, I will not consider any 
quantum computation algorithms, but I do consider state preparation. In later 
chapters, I will need some concepts from quantum information theory, such as 
the fidelity, to assess various aspects of a state preparation process. Furthermore, 
since this thesis revolves around states, I have to develop an understanding of 
what subt leties are involved when talking about quantum states. 
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a The computational basis and alphabets 

Suppose we have a single system with a corresponding Hilbert space of dimension 
N. Rather than giving an orthonormal basis of a system as wave functions in 
configuration space (like, for instance the eigenstates of the harmonic oscillator 
in Eq. (II.14)), we can ignore the particular spatial behaviour of these states 
and enumerate them from O to N - 1. The corresponding basis { lj) } , with 
j E { 0, ... , N - 1}, is then called the computational basis. When we have a 
two-level system (N = 2), the computational basis states are I0) and 11), and we 
speak of a qubit. 

The advantage of the computational basis is that it is independent of the 
physical representation. Any quantum mechanical two-level system is a qubit, 
for example an electron in a magnetic field, a polarised photon or a SQUID with 
clockwise or counter-clockwise current. 

When we have two or more systems, the computational basis can be ex
tended accordingly. If we have M systems, we can choose a computational basis 
{IJ1,••· ,jM}, where ji E {O, ... ,Ni -1}, with Ni the dimensionality of the 
ith system. For instance, the computational basis for two qubits is given by 
{ I0, 0), I0, 1), I 1, 0) , I 1, 1) }. In most of the rest of this thesis, I will concentrate on 
qubits. 

As a final point in this section, I present the concept of an alphabet of states. 
It is a finite set of possibly non-orthogonal states. It may be over-complete or 
it may not span the total Hilbert space. Furthermore, an alphabet of states can 
generate a POVM, corresponding to a generalised measurement. I am now ready 
to discuss some information-theoretic aspects of quantum states. 

b Shannon entropy and quantum information 

Prior to the measurement of a system (in, for example, the computational basis) , 
we have a probability distribution {Pj} with ~j P} = 1 over all possible outcomes. 
We do not know the measurement outcome beforehand. Can we quantify our 
ignorance of this measurement outcome? 

Obviously, when one probability Pk is 1 and the others are all 0, there is no 
ignorance about the measurement outcome: we will find the system in the state 
I k), corresponding to the probability Pk = 1. On the other hand, when all pj's 
are equal, our ignorance about the measurement outcome is maximal. We are 
looking for a function of the set of probabilities {pj} which is zero when one of 
the pj's is zero, and maximal when all pj's are equal. Such a function is given by 

N-1 

Sshannon = - I: P} log P} . 
j=O 

(II.65) 

This is called the Shannon entropy of a probability distribution [151, 131]. It 
is immediately verified that Sshannon = 0 if all pj's are 0, except Pk = 1, and 
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by differentiation 8Sshannon/8pk we find that the only extremum (a maximum) 
occurs when all pj's are equal. 

The Shannon entropy is a classical entropy. Quantum mechanically, we can 
a lso define an entropy which gives a measure for our ignorance of a state. Suppose 
t he state can be written as a mixture p: 

N-l 

p = LPilj)(jl' (II.66) 
j=O 

with { lj) } some suitable basis. The Shannon entropy can be calculated according 
to Eq. (II.65) using the probability distribution {Pi}- Quantum mechanically, our 
ignorance of t he state is given by the Von Neumann entropy: 

SvonNeumann = - Tr (p log p) , (II.67) 

When pis pure, it is easy to verify that SvonNeumann = 0 by using the fact that basis 
transformations inside the t race leave SvonNeumann invariant. Therefore Sshannon 2: 
SvonNeumann, the Von Neumann entropy is a lower bound on our ignorance of the 
state. 

As an example, consider a source which produces pure right-handedly po
larised photons. In the linear polarisation basis this state is given by 

1 . Io)= J2 (I tt) + ii t)) . (II.68) 

A measurement in the basis { I B), I t)} would yield a probability distribution 
over the measurement outcomes P++ = Pt = 1/2, so the Shannon entropy is 
maximal. However, since we could have measured in the circular basis, the prob
ability distribution would have been {Po = l ,p0 = O}, with a corresponding 
Sshannon = 0. In both cases the Von .Neumann entropy is 0, corresponding to the 
lower bound of the Shannon entropy. 

Massar and Popescu [118] proved that the minimal ignorance about a state 
after a measurement is given by t he Von Neumann entropy. For more details on 
the Shannon entropy in quantum t heory I refer the reader to Peres [131]. 

c Fidelity and the partition ensemble fallacy 

In the previous section, we used the knowledge of the probability distribution to 
quantify our ignorance of the measurement outcomes prior to the measurement. 
However , in general this probability distribution is not known. When we measure 
the polarisation of a photon we will find definite outcomes, not probabilities. In 
this section, I ask the question how much information can be gained in a single
shot measurement when the state of t he system is not known beforehand. One 
measure of the information we can extract from a state is given by t he fidelity 
~3, 86, 63, 64, 11~. 
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Suppose we want to measure an unknown state and use the knowledge gained 
by the measurement outcome to reconstruct that state. We then need a measure 
quantifying the accuracy of the reconstruction. Such a measure is given by the 
fidelity. Suppose further that the initial unknown state is given by 17P). We 
now measure this state along 1¢)(¢15, which is our estimate. We can define the 
measure of success of our estimate by [118] 

(II.69) 

This is not the only possible measure, but for our present purposes it is the 
simplest. When we have a probability distribution over a set of initial states (i.e. , 
we have a mixed state p = L iPil7Pi)(7Pil), and a POVM Ek= L j µjk l<Pj)(<Pj l, we 
can average Ftfn/J over the two alphabets of states: 

(II.70) 

where Pj[i is the probability of estimating the state 1¢j) when the prepared state 
is 17Pi). F is called the average fidelity of state reconstruction. 

Consider a source which creates either randomly polarised photons, or linearly 
polarised photons I H) and I t) with equal probabilities in a given coordinate 
frame. When we measure the polarisation in { I +-+), I t)}, the outcomes will 
always be a horizontally or vertically polarised photon for both randomly and 
linearly polarised photons. We now reconstruct the photon state according to 
this measurement outcome ( creating a photon in the direction corresponding to 
the measurement outcome). If the photons are linearly polarised, the fidelity 
of the reconstruction is equal to 1, whereas in the case of randomly polarised 
photons the fidelity is 2/3 [117]. In the last case we recognise the state very well 
(F = 1), and in the former, we recognise the state quite badly. Therefore, the 
same measurement with the same outcomes (with the same relative frequencies) 
yield a different fidelity. As a consequence, this fidelity is a measure of the 
information we extract from the state [118]. 

Let's now ask a slightly different question: what is the probability that a state 
p is mistaken for another 'estimated' state 1¢)? This probability is given by the 
overlap between the two states: 

F = Tr[pl¢)(¢1] . (II. 71) 

This equation gives the definition of fidelity in a different context. It corresponds 
to the lower bound for the probability of mistaking p for 1¢) in any possible 
(single) measurement [63]. When p is an exact replica of 1¢) then F = l, and 
when p is an imprecise copy of 1¢) then F < l. Finally, when p is completely 
orthogonal to 1¢) the fidelity is zero. 

51n general, 1¢)(¢1 is part of a POVM, yielding a generalised measurement. 
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In the above discussion I constructed a mixed state p for randomly polarised 
photons. Consider a polarisation state 

l'lj,(0)) = cos01 H) + sin01 t). (II.72) 

The mixed state of randomly polarised photons is obtained by integrating over 
all 0 which yield a different state l'lj,(0)): 

11.,,. 1 1 
p = - d0 l'lj,(0))('1j,(0)1 = - I H)(H I+ -I t)(t I· 

7f O 2 2 
(II.73) 

But this mixture is equal to that which we would have obtained by randomly 
choosing only horizontally and vertically polarised photons. In other words, a 
mixed state does not contain information about the preparation process! In gen
eral, we can construct infinitely many physically different sources which generate 
the same mixed outgoing state. Or equivalently, there exist infinitely many de
compositions, or partitions, of any given mixed state. 

Another example. Consider the state p of the form of 

(II.74) 

It is the sum of two pure states. Again, this is not a unique partition. Whereas in 
a chemical mixture of, say, nitrogen and oxygen there is a unique partition (into 
N2 and 0 2), a quantum mixture can be decomposed in many ways. For instance, 
p can equally be written in terms of 

(II.75) 

as 

(IL 76) 

This is just one of an infinite number of possible decompositions. Quantum 
mechanics dictates that all partitions are equivalent to each other [131]. They 
are indistinguishable. To elevate one partition over another is to commit the 
'Partition Ensemble Fallacy. ' 

Why is this so important? Suppose we have a mixture of the vacuum IO)(OI 
·and a single-photon state 11)(11, yielding p = alO)(Ol+ /31 1)(11. It is very tempting 
to interpret such a mixture as: 'with probability l,812 there is a photon, and 
with probability lal2 there is no photon'. However, quantum theory does not 
say anything about what is without referring to measurement outcomes. If we 
were to measure an observable whose eigenstates are not number states (like, for 
instance, coherent states), the outcome would not involve any reference to photon 
numbers. Therefore, in the context of quantum mechanics, the above statement 
is meaningless. These considerations will become important in chapter VI. 
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d Non-locality issues 

Quantum theory is a local theory, in the sense that space-like and time-like sepa
rated operators A(xµ,) and B(x~) always commute: [A(xµ,), B(x~)] ex 84 (xµ, - x~) 
[76]. However, when one seeks a classical deterministic underlying explanation 
for the correlations observed in quantum mechanics, one has to allow non-local 
influences. This was first noted by Bell [11], who formulated his now famous 
inequalities [ 85, 141]. 

Let me set up a simple version of Bell's argument. Alice and Bob, who 
are sufficiently far away from each other, both receive a photon with some un
known polarisation. Alice randomly chooses a polarisation measurement out of 
two possible directions a and a'. Similarly, Bob randomly chooses a polarisation 
measurement out of b and b'. Let's denote the two possible measurement out
comes of a polarisation measurement by ±1. Then the eigenvalues a, a', b and b' 
are all either + 1 or -1. We repeat this procedure a large number of times. 

We now define the expression [141] 

(II. 77) 

where the subscript n indicates the nth trial. The value of 'Yn is an integer between 
-2 and +2. The absolute value of the average of 'Yn over all the N trials is given 
by 

(II. 78) 

When we define the correlation coefficients 

l N 

c(x , y) = lim .N L XnYn, 
N--too 

n=l 

(II.79) 

the above inequality becomes 

!c(a, b) + c(a', b) + c(a, b') - c(a', b') I ~ 2. (11.80) 

This is one form of the Bell inequality. We can calculate these correlat ion 
coefficients for the case where the two photons are part of the singlet state 
(! +-+,t) - 1 t,+-+))/v'2, which yields c(a, b) = -cos(0ab/2). For suitably cho
sen angles 0ab , the Bell inequality is violated by quantum mechanics. 

What does this mean? All I assumed in the above derivation of the inequality 
was statistical independence of the measurement outcomes obtained by Alice 
and Bob. The violation therefore implies that the measurements performed by 
Alice and Bob, though possibly in different galaxies, and thus well and truly 
separated, can not be considered statistically independent! This has led to wild 
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speculations about superluminal signalling, but all quantum mechanics predicts 
are correlations which cannot be given a local realistic interpretation. If we want 
a classical picture, we therefore have to give up either realism or locality. The 
choice is yours. 

Suppose we have a bi-partite state which violates a Bell inequality. Then that 
state is said to be entangled. The contrary is not necessarily true: a state which 
is entangled does not have to violate any Bell inequalities [136] (see also appendix 
B). Several different Bell inequalities have been experimentally verified by many 
groups, the first of which was led by Aspect [7, 8]. Nowadays, experimental tests 
of the violation of a Bell inequality is used mostly to indicate whether a state is 
entangled. Alternatively, tests of non-locality without Bell inequalities have been 
proposed by DiGiuseppe and Boschi [50, 19]. 

In the context of quantum optics, there are nonlocal effects in Fock space 
which are of some interest in this thesis. Hardy and Peres showed that a single 
photon can exhibit non-local properties, following the work by Tan, Walls and 
Collett [160, 161, 145]. Here, I will follow Peres' argument [78, 79, 165, 72, 133]. 

Consider a pure one-particle state 

(II.81) 

where IO) is the vacuum and 11) a single-photon state. The subscripts a and 
b denote the different modes, possibly spatially separated over a large distance. 
Note that this state has the same mathematical structure as a singlet state. Alice 
and Bob can demonstrate a violation of a Bell inequality6 using the strategy 
described above: Alice and Bob both randomly choose an observable from a 
set of two non-commuting observables. The first observable for both parties is 
obviously the one spanned by {I0)(0I , 11)(11}, i.e., whether there is a photon in 
mode a orb respectively. Let Pa denote the projector ll)a(ll and Pb the projector 
11)&(11. 

Another observable for Alice might include the projector Pa, along the eigen
vector (ll)a + v13I0)a)/2 and Bob can choose to measure along the projector A, 
along the eigenvector (ll)& - v13I0)&)/2. Given Eq. (II.81) quantum theory yields 
[133, 73]: 

(Pa,)= (A,)= 0.5, 

(PaPb) = 0, 

(PaPb' ) = (Pa1 P&) = 0.375 , 

(Pa,?&1 ) = 0.375, 

6More precisely, a Clauser-Horne inequality. 

(II.82) 
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which violates the inequality 

(II.83) 

This proves non-locality. However, the fact that Pa, and Pb, do not conserve 
photon number means that active detection devices, i.e., detectors which can 
create photons, have to be used. This has provoked many comments [145, 166, 
72, 73), but treating them all would lead me too far from the main subject of 
this thesis. Let us therefore move on to the creation of maximal entanglement in 
quantum optics, the subject of the next chapter. 



III 

CREATION OF MAXIMAL ENTANGLEMENT 

That's the wacky thing about these entangled 
photon pairs-They're sort of the Bill Clinton and 
Monica Lewinsky of the quantum world: they're 
heavily entangled until somebody 'looks' at them. 

-Jonathan P. Dowling 

Entanglement is one of the key ingredients in quantum communication and in
formation. For instance, quantum protocols such as dense coding [13], quantum 
error correction [159, 155] and quantum teleportation [14] rely on the non-classical 
correlations provided by entanglement. Currently, substantial efforts are being 
made to use optical implementations for quantum communication. 

The advantages of this are obvious: light travels at high speed and it weakly 
interacts with the environment. However, exactly this weak interaction poses 
serious drawbacks. The fact that photons do not interact with each other makes 
it hard to manipulate them. For example, it has recently been shown that it is 
impossible to perform so-called complete Bell measurements on two-mode polar
isation states in linear quantum optics [114, 167] (although theoretical schemes 
involving Kerr media [149] and atomic coherence [128] have been reported). Fur
thermore, maximally polarisation-entangled two-photon states have not been un
conditionally produced. In this chapter I investigate the possibility of creating 
such states with linear optics and a specific class of non-linear elements. 

Before that, however, I will have to introduce the terminology I will use in this 
chapter (and throughout this thesis). In the next section I will discuss various 
issues connected to entanglement, such as separability, maximal entanglement, 
multi-partite entanglement and purification. In section 2 I will study parametric 
down-conversion, currently the most common entanglement source in quantum 
optics. Finally, I give limitations for the creation of maximal entanglement with 
a special class of optical circuits. This chapter is based on Kok and Braunstein 
[99, 100]. 

1 SEPARABILITY AND ENTANGLEMENT 

In this section I discuss the concept of entanglement. First , I define separable and 
entangled states, and then I introduce event-ready entanglement. Three-particle 
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entanglement is briefly considered, and finally, I discuss the entanglement measure 
for pure states and entanglement purification. 

a What is maximal entanglement? 

Two quantum systems in a pure state, labelled by x 1 and x 2 respectively, are 
called entangled when the state '1t(x1 , x2 ) describing the total system cannot be 
factorised into two separate states 1/!1(xi) and 'l/;2(x2): 

(III. l) 

All possible states '1t(x1 , x2 ) accessible to the combined state of the two quantum 
systems form a set S. These states are generally entangled. Only in extreme cases 
is '1t(x1 , x2 ) separable, i.e., it can be written as a product of states describing the 
separate systems. The set of separable states form a subset of S with measure 
zero. 

We arrive at another extremum when the states w(x1 , x2) are maximally en
tangled. The set of maximally entangled states also forms a subset of S with 
measure zero. I will now give a definition of maximal entanglement for two 
finite-dimensional systems. 

Definition: Two N-level systems are called maximally entangled when their total 
state 1'11) in the Schmidt decomposition can be written as 

(III.2) 

with {Ink)} and {lmk)} two orthonormal bases and {0k} a set of arbitrary 
phases. 

Suppose we have two (not necessarily identical) two-level systems, I and 2, 
whose states can be written in the orthonormal basis {I0)k, ll)k} (where k = I, 2). 
This is defined as the computational basis for these two systems. Physically, those 
systems could be for example polarised photons or electrons in a magnetic field. 
Every possible state of the two systems together can be written on the basis of 
four orthonormal states I0, 0)i2, I0, I)i2, 11 , 0)i2 and II , I)i2. These basis states 
generate a four-dimensional Hilbert space. Another possible basis for this space 
is given by the so-called Bell states: 

1w±)i2 (I0, I)i2 ± II,O)i2) /-J2, 
lct>±)i2 = (I0, 0)i2 ± II, I)i2)/v2 · (III.3) 

These states are also orthonormal. They are examples of maximally entangled 
states. The Bell states are not the only maximally entangled states (as an al
ternative, we can include a relative phase ei0 in one of the branches; see also 
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the definition on this page), but they are a convenient and common choice. All 
maximally entangled states can be transformed into each other by a local unitary 
transformation (see Appendix E). 

If we want to conduct an experiment which makes use of maximal entangle
ment, in particular l'1'-)i2 , we would most straightforwardly like to have a source 
which produces these states at the push of a button. In practice, this might be a 
bit much to ask. A second option might be to have a source which only produces 
!'1'-)i2 randomly, but flashes a red light when it happens. Such a source would 
create so-called event-ready entanglement1 : it produces !'1'-) 12 only part of the 
time, but when it does, it tells you. 

More formally, the outgoing state l'l,boutfred light flashes) conditioned on the red 
light flashing is said to exhibit event-ready entanglement if it can be written as 

(III.4) 

where f;, « 1. In what follows I shall omit the subscript ' Ired light flashes' since 
it is clear that we can only speak of event-ready entanglement conditioned on the 
red light flashing. 

Non-maximal entanglement has been created in the context of quantum optics 
by means of parametric down-conversion [153]. Rather than a (near) maximally 
entangled state, as in Eq. (III.4) , this process produces states with a large vacuum 
contribution. Only a minor part consists of an entangled photon state. Every 
time parametric down-conversion is employed, there is only a small probability2 

of creating an entangled photon-pair (notice my use of PEF; see chapter II). We 
will call this randomly produced entanglement. 

b Tri-partite entanglement 

So far, I have only considered the entanglement of two systems. But quantum 
mechanics does not give a limit to the number of systems which can be entangled. 
For instance, we can define a maximally entangled state for three systems 1, 2 
and 3: 

1 
IGHZ)i23 = v'2 (IO, 0, O)i23 + 11, 1, l)i23) . (III.5) 

Such multi-partite entangled states are called Greenberger-Horne-Zeilinger- or 
GHZ-states [71]. They also represent a particular state of three maximally en
tangled systems. Post-selected three-particle GHZ entanglement was observed 
experimentally by Bouwmeester et al. in 1999 [26]. In chapter VI I will exten
sively discuss the post-selected nature of this and related experiments. 

1The term first seems to appear in the context of detector efficiencies [183] in 1993, and 
subsequently with the meaning used here by Pavicic [130] in 1996. 

2This probability is kept small so that the occurrence of higher order double photon-pairs 
is negligible. 
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The state IGHZ) can also be interpreted as a Schmidt decomposition for three 
systems (i.e., it can be written as a single sum over orthonormal basis states). 
Contrary to the bi-partite case, it is not true that a Schmidt decomposition exists 
for any three-partite state. The Schmidt decomposition for two systems follows 
from the existence of the unitary transformations U1 and U2 which diagonalise a 
matrix T according to A= U1TU2 , giving [l] 

(III.6) 

with {Ii)}, {lj)} and {Iµ)} orthonormal bases and Aµ the eigenvalues of the 
diagonal matrix A. For the general three-system case this is no longer true: 

(III. 7) 
i ,j,k µ ,v 

by virtue of the Schmidt decomposition (again with {Iµ)} and {Iv)} orthonormal 
bases). This is converted to a single sum if and only if [132] 

lv)23 = ,2)Dµ)jklj)2lk)J = 1(µ)21~µ)3 , (III.8) 
j,k 

or ntnv = Dµnt = 0 with (µ # v). 
For multi-partite entanglement, we can no longer completely define maximal 

entanglement in terms of the Schmidt decomposition. For example, it can easily 
be verified that the state 

1 
IW) = v'3 (I0, 0, 1) + 10, 1, 0) + 11, 0, 0)) ' (III.9) 

although representing three maximally entangled systems, cannot be written in 
terms of the Schmidt decomposition in Eq. (III.5) (the number of linear inde
pendent terms exceeds the number of orthonormal basis states of the separate 
systems). More specifically, Diir et al. prove that ensembles of three-partite en
tangled states of qubits can be transformed either to the state IGHZ) or to the 
state IW) by stochastic3 local operations and classical communication (SLOCC) 
alone [55]. That is, under SLOCC, IGHZ) and IW) generate two distinct invariant 
subspaces of the total Hilbert space (Jf13)®00 spanned by the three qubits. In 
conclusion, the definition of maximally entangled states in terms of the Schmidt 
decomposition given on page 38 only works for bi-partite systems. However, in 
the rest of this chapter ( and indeed, this thesis) I will concentrate on entangle
ment between two systems, and this definition is sufficient. 

3 'Stochastic' meaning that the transformation is successful with non-zero probability. 
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c Purification 

In this section, I will define a measure of entanglement E for (pure) states which 
are non-maximally entangled [15, 16]4

. The natural measure of entanglement is 
defined by the Von Neumann entropy of the reduced density matrix of the subsys
tems. Suppose we have two systems 1 and 2 held by Alice and Bob respectively 
in a (non-maximally) entangled state lw)i2 . The reduced density matrices of the 
two subsystems are 

and (III.IO) 

In chapter II we defined the Von Neumann entropy of a density matrix pas 

S(p) = - Tr [plogp] . (III.11) 

The measure of entanglement E(w) is now defined as 

(III.12) 

This measure has a number of pleasant properties: it is zero for separable states 
and maximal for maximally entangled states. Furthermore, E remains the same 
whether we trace out system 1 or system 2. 

Can we in some way increase the entanglement in non-maximally entangled 
(pure) states? The answer to this question is the domain of entanglement purifi
cation. I will now briefly discuss the general idea behind purification. 

Suppose we distribute a set of singlet states among Alice and Bob for quan
tum communication purposes. After the distribution, however, the actual states 
held by Alice and Bob will in general no longer be maximally entangled. This 
is because noise and decoherence in the distribution process degrade the entan
glement. In order to obtain singlet states again we have to purify the ensemble 
of states shared between Alice and Bob with only local operations [15]. Because 
operations of this kind cannot increase the amount of entanglement, the total 
entanglement shared by Alice and Bob remains the same or decreases. However, 
we still have the possibility of converting several copies of poorly entangled states 
into a few highly entangled states. In general, when we have N non-maximally 
entangled initial states lw) with entanglement content E(w), we wish to obtain 
M < N entangled states l<I>) with E(<I>) > E(w) using a restricted class of oper
ations. The local operations can be divided into three groups [27]: 

1. Local transformations and measurements. These can be modelled in general 
by local POVM's, i.e., POVM's acting on only one subsystem, 

2. classical communication. This creates the opportunity to classically corre
late the actions of the two (distant) parties holding the entanglement, 

4There are subtleties in defining measures of entanglement for mixed states; see Ref. [27] 
and references therein. 



42 III CREATION OF MAXIMAL ENTANGLEMENT 

3. post-selection. Depending on the outcome of local measurements and clas-
sical communication, we can select a subset from our ensemble of states. 

A procedure which manages to increase the entanglement in a subset of the N ini
tial states using only operations from these three classes is called an entanglement 
purification protocol. 

As an example, I consider the original purification protocol5 [15]. We dis
tribute (at least) two singlets, written in the computational basis { IO)k, ll)k} 
with k = 1, 2, between Alice and Bob: 

(III.13) 

Similarly, the other Bell states are given by 1w+)i2 and l<I>±)i2 . A simple model 
of the noise due to the distribution implies that upon arrival the singlets have 
become Werner states6 [174) p: 

(III.14) 

Note that there is a singlet contribution in the maximally mixed part 11. as well. 
Two states with equal density matrices cannot be distinguished in any physical 
way, which means that the method of preparation of p is irrelevant. In other 
words, we do not care how decoherence took place in the distribution process, 
the occurrence of 11. defines a class of noise types which give rise to Eq. (III.14). 
The noise gain is parametrised by c. 

In order to purify p12 we need at least two such systems in a total state 
P12 0 p12 . As a first step, Bob operates with the Pauli matrix a2y on his part of 
the density matrix, yielding a transformation 

(III.15) 

This transformation is equivalent to the symbol swapping w± f-r q,=t= in the Bell 
states given in Eq. (III.3). 

Next, Bob applies the 'controlled NOT ' to his two subsystems, after which 
both Alice and Bob measure the target in the computational basis. They compare 
their measurement outcome by means of classical communication, and if the two 
outcomes are the same (00 or 11), Bob again applies the Cly operator to his 
remaining state. If the measurement outcomes are not the same, the purification 
failed. This is the post-selection stage. Note the probabilistic character of the 
purification protocol. After a successful purification run, Alice and Bob share a 

. d ,, m1xe state p12 . 

5In chapter VI we will encounter another purification protocol. 
6Decoherence tends to evolve pure states towards (maximally) mixed states. 
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Before purification the fidelity of the distributed system was 

After a successful purification round the new fidelity r is [15] 

F' = (w-1 ,, 1w-) = 1 + 2c + 5c2 
P12 4(l+c) 
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(III.16) 

(III.17) 

For purification to be meaningful we need F' > F, or c > ½- In other words, 
if the decoherence is too strong, this type of purification cannot increase the 
entanglement in a subset of the distributed ensemble. 

Numerous other purification protocols have been proposed (see Ref. [27] and 
references therein). In general, it provides a procedure to obtain (near) maxi
mal entanglement. Also called distillation, entanglement purification reduces an 
ensemble of poorly entangled states to a few highly entangled states. 

By contrast, in this thesis I study the creation of event-ready entanglement, 
in particular with quantum optics. The difference with purification is that it is 
dynamic: an event-ready entangler does not need to store entanglement (some
thing which is very difficult for photons) , it tries a (large) number of times and 
'flashes a red light ' upon success. In the next section I will study a more modest 
device, called a parametric down-converter. It produces entanglement randomly. 

2 ENTANGLEMENT SOURCES IN QUANTUM OPTICS 

In this section I will look at a particular class of devices capable of creating 
entanglement in quantum optics. These devices are commonly known as down
converters, since they convert a high-energy photon into two lower-energy pho
tons. Physically, in parametric down-conversion a crystal is pumped by a high
intensity laser, which we will treat classically (the parametric approximation). 
The crystal is special in the sense that it has different refractive indices for hor
izontally and vertically polarised light. In the case of degenerate ( type II) para
metric down-conversion a photon from the pump is split into two photons with 
half the energy of the pump photon. Furthermore, the process can be set up such 
that the two photons have orthogonal polarisations. The outgoing modes of the 
crystal constitute two intersecting cones with orthogonal polarisations I t) and 
I +-+) as depicted in Fig. III .1. 

Due to the conservation of momentum, the two produced photons are always 
in opposite modes with respect to the central axis ( determined by the direction 
of the pump). In the two spatial modes where the different polarisation cones 
intersect we can no longer infer the polarisation of the photons, and as a con
sequence the two photons become entangled in their polarisation. Parametric 
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It) 
crystal 

pump 

Figure III. 1: A schematic representation of type II parametric down
conversion. A high-intensity laser pumps a non-linear crystal. With some 
probability a photon in the pump beam will be split into two photons with 
orthogonal polarisation I t) and I +-+) along the surface of the two respec
tive cones. Depending on the optical axis of the crystal, the two cones are 
slightly tilted from each other. Selecting the spatial modes at the intersec
tion of the two cones yields the outgoing state (1-e)IO) +~1w- ) + o(e) . 

down-conversion as a device to create entangled photons was introduced by Shih 
and Alley in 1988 [153] and is being continuously improved [154, 109, 111, 94, 125]. 

However, parametric down-converters do not produce pure Bell-states [183, 
32, 99]. Because of the spontaneous nature of the down-conversion process, only 
a in a small number of cases (i.e., a fraction of the trials) will a photon from 
the pump be split into two photons. We thus have randomly produced entangle
ment. Furthermore, there is an even smaller probability of creating more photon 
pairs, originating from several pump photons. The probability of this happen
ing decreases with the number of created pairs. I will derive the value of these 
probabilities in due course. 

The outgoing state of the parametric down-converter I am interested in here 
is 

(III.18) 

where~« 1 is a parameter indicating the strength of the down-conversion. Note 
that !O) denotes the vacuum here, rather than a computational basis state. In 
the next section I will give a mathematical description of down-converters and 
subsequently I will determine the statistical properties of these devices. 

a The physics of down-converters 

In this section I will describe the physical properties of parametric down-con
version. Consider a down-converter with outgoing field modes ai and bi. The 
indices denote the particular polarisation along the x- and y-axis of a given co
ordinate system. We are working in the interaction picture of the Hamiltonian 
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which governs the dynamics of creating two entangled field modes a and b us
ing weak parametric down-conversion. In the rotating wave approximation this 
Hamiltonian reads (Ii= 1): 

(III.19) 

In this equation H.c. means Hermitian conjugate, and r., is the product of the 
pump amplitude and the coupling constant between the electro-magnetic field 
and the crystal. The operators a!, b! and ai, bi are creation and annihilation 
operators for polarisations i E { x, y} respectively. They satisfy the following 
commutation relations: 

(III.20) 

where i , j E { x, y}. The time evolution due to this Hamiltonian is given by 

U(t) exp(-iHt) , (III.21) 

where t is the time it takes for the pulse to travel through the crystal. By applying 
this unitary transformation to the vacuum IO) the state l\ll'src) is obtained: 

JWsrc) = U(t) JO) = exp(-iHt) JO) . (III.22) 

We are interested in the properties of JWsrc)- Define the L+ and the L _ 
operator to be 

(III.23) 

This will render Eqs. (III.19) and (III.21) into: 

and (III.24) 

Applying L+ to the vacuum will yield a singlet state (up to a normalisation 
factor) in modes a and b: 

L+IO) = l+-+,t)ab-lt,+-+)ab 
= 11 , O; 0, l)a,,ayb:z:by - IO, 1; 1, O)a,,aybxby , (III.25) 

we henceforth use the latter notation where Ii, j; k , l)a,,ayb,,by is shorthand for 
li)a,, 0 IJ)ay 0 lk)b,, 0 ll)by , a tensor product of photon number states. Applying 
this operator n times gives a state l<I>n) (where we have included a normalisation 
factor Nn, so that (<I>nl<l>n) = 1): 



III CREATION OF MAXIMAL ENTANGLEMENT 

where the normalisation constant Nn is given by 

N2= 1 
n n!(n + l)! · 

(III.27) 

We interpret !<I>n) as the state of n entangled photon-pairs on two spatial modes 
a and b. 

We want the unitary operator U(t) in Eq. (III.24) to be in a normal ordered 
form, because then the annihilation operators will 'act' on the vacuum first , in 
which case Eq. (III.22) simplifies. In order to obtain the normal ordered form of 
U(t) we examine the properties of L+ and L_. Given the commutation relations 
(III.20), it is straightforward to show that: 

AtA AtA AtA AtA -
[L_, L+J = axax + ayay + bxbx + biy + 2 = 2Lo and 
[Lo, L±] = ±L± . (III.28) 

An algebra which satisfies these commutation relations (together with the prop
erties L_ = L~ and Lo= Lb) is an su(l, 1) algebra7

. The normal ordering for this 
algebra is known [164] (with f = T /Ir!) (see also appendix D for more details): 

(III.29) 

The scaled timer is defined as r = K,t . Without loss of generality we can take T 

to be real. Since the 'lowering' operator L_ is placed on the right, it will yield 
zero when applied to the vacuum and the exponential reduces to the identity. 
Similarly, the exponential containing L0 will yield a c-number, contributing only 
an overall phase. 

Parametric down-conversion is an example of so-called multi-mode squeezed 
vacuum. The photon-statistics of two-mode squeezed states have been studied 
in Refs. [42, 6, 146] . Here, I study the particular case of the down-conversion 
process used to create randomly produced maximal entanglement. 

Are the pairs formed in parametric down-conversion independent of each 
other? If they are, the number of pairs should give a Poisson distribution. I 
will now calculate whether this is the case. 

Suppose PPDc(n) is the probability of creating n photon-pairs with parametric 
down-conversion and let 

r = tanh r and q - 2 ln ( cosh r) , (III.30) 

then the probability of finding n entangled photon-pairs is: 

7The interaction Hamiltonian from Eq. (III.19) thus generates unitary evolutions which are 
closely related to the group elements of SU(l, 1). 
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l(0I (L7:_Nn) (erL+e- qLoe-rL-) I0)J2 

- e-''l(OIL~Nn [t, ~: L~] IO)I' 
(n + l)r2ne-2q . 
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(III.31) 

It should be noted that this is a normalised probability distribution in the limit 
of r, q ➔ 0. 

Given Eqs. (III.30) Ppoc(n) deviates from the Poisson distribution, and the 
pairs are therefore not independent. For weak sources, however, one might expect 
that Ppoc(n) approaches the Poisson distribution sufficiently closely. This hy
pothesis can be tested by studying the distinguishability of the two distributions. 

b Statistical properties of down-converters 

Here, I study the distinguishability between the pair distribution calculated in 
the previous section and the Poisson distribution. The Poisson distribution for 
independently created objects is given by 

pne-P 
Ppoisson ( n) = --1 - -

n. 
Furthermore, rewrite the pair distribution in Eq. (III.31) as 

Ppoc(n) = (n + 1) (~) n e-P , for p « 1 , 

(III.32) 

(III.33) 

using q ~ r2 and p = 2r2 = 2 tanh2 r for small scaled times. Here p/2 is the 
probability of creating one entangled photon-pair. Are these probability distri
butions distinguishable? Naively one would say that for sufficiently weak down
conversion (i.e. , when p « 1) these distributions largely coincide, so that instead 
of the complicated pair-distribution (III.33) we can use the Poisson distribution, 
which is much easier from a mathematical point of view. The distributions are 
distinguishable when the 'difference' between them is larger than the size of an 
average statistical fluctuation of the difference. This fluctuation depends on the 
number of samplings. 

Consider two nearby discrete probability distributions {Pj} and {pj + dpj}. A 
natural difference between these distributions is given by the so-called (infinites
imal) statistical distance ds [177, 29, 84] (see also appendix F): 

ds2 = L dp;. 
j P} 

(III.34) 

When the typical statistical fluctuation after N samplings is 1/ ./N, the two 
probability distributions are distinguishable if: 

1 
ds > - {=} N ds2 ?. 1 . ~ ./N ·- (III.35) 
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The statistical distance between (III.32) and (III.33) , and therefore the distin
guishability criterion is: 

p2 
ds2 ex -

8 
(III.36) 

On the other hand, the average number of trials in the teleportation experiment 
required to get one photon-pair from both down-converters is: 

(III.37) 

The minimum number of trials in the experiment thus almost immediately ren
ders the two probability distributions distinguishable, and we therefore cannot 
approximate the actual probability distribution with the Poisson distribution. 

Since the Poisson distribution in Eq. (III.32) is derived by requiring statistical 
independence of n pairs and the pair distribution is distinguishable from the 
Poisson distribution, the photon-pairs cannot be considered to be independently 
produced, even in the weak limit. 

This concludes my study of parametric down-conversion here. I will now 
return to the problem of maximal entanglement creation in quantum optics. 

3 THE CREATION OF MAXIMAL ENTANGLEMENT 

Now that I have investigated the properties of one of the most common entan
glement sources, i.e., down-conversion, I am ready to consider the creation of 
maximal, or event-ready, entanglement. The optical circuits discussed here con
sist of so-called passive and active components. The passive components leave 
the photon-number invariant, i.e., they correspond to unitary operators which 
commute with the number operator. Examples of such components are beam
splitters, phase-shifters and polarisation rotators. 

Active components correspond to unitary evolutions which do not commute 
with the photon-number operator, like the parametric down-converter. Other 
examples of active components are single-mode squeezers and pumped xC3

) media 
[5]. They can generally be characterised by an interaction Hamiltonian which is a 
polynomial function of creation and annihilation operators. Later in this chapter 
I will restrict the discussion to interaction Hamiltonians which are quadratic in 
these operators. 

In this section, I will first show that the creation of maximal entanglement 
with only passive components from a pure separable state is impossible. Then, 
a general condition for an optical setup is derived, which should be satisfied in 
order to yield event-ready entanglement. I subsequently examine this condition 
for a specific class of optical circuits. 
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a Passive optical components 

So far, I have hardly paid attention to passive optical components. In this sec
tion I will show that they cannot transform a completely separable state of two 
photons into a maximally entangled state. 

Suppose we have a linear interferometer which consists only of passive com
ponents. Such an interferometer is described by a unitary matrix U [140], which 
t ransforms the creation operators of the electro-magnetic field according to 

ai ➔ z= ujJj 
j 

and a! ➔ Z:: u;i&}, (III.38) 
j 

where the Uij are the components of U and i, j enumerate both the modes and po
larisations. There is no mixing between the creation and annihilation operators, 
because photons do not interact with each other. I will now show that we can
not create maximal (event-ready) entanglement with such linear interferometers 
when the input state is a separable state. 

Without loss of generality I consider the separable state Ix, y) = &!btlO). In 
order to create maximal entanglement, the creation operators should be trans
formed according to 

(III.39) 

Relabel the modes ax , ay, bx and by as a1 to a4 respectively. Without loss of 
generality (and leaving the normalisation aside for the moment) we can then 
write 

AtAt Art AtAt 
a1 a2 ➔ b1 b2 - b3b4 . (III.40) 

Substituting Eq. (III.38) into Eq. (III.40) generates ten equations for eight vari
ables u;{ 

0 

0 
0 

1 
-1. (III.41) 

It can be easily verified that there are no solutions for the u;i which satisfy t hese 
ten equations simultaneously: since ui1 u21 = 0, choose ui1 = 0 and u21 i= 0. 
From the fourth line above follows that ui2 i= 0. Hence u22 = 0. The second line 
(second equation) then determines ui4 = 0, which (third line, second equation) 
implies that ui2u24 = 0. We already set ui2 i= 0, so we obtain u24 = 0. We 
now derive a contradiction between ui4 = 0, u24 = 0 and the last line of the set 
of equations above. This means that there is no passive interferometer which 
transforms pure separable states into maximal (event-ready) entangled states. 
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Figure III.2: If an optical circuit with feed-forward detection (a) produces a 
specific state, the same output can be obtained by an optical circuit where 
detection of the auxiliary modes takes place at the end (b) . The efficiency 
of the latter, however, will generally be smaller. 

b General optical circuits 

In order to make 1w-), I will assume that we have several resources at our dis
posal. The class of elements will consist of beam-splitters, phase-shifters, photo
detectors and non-linear components such as down-converters, squeezers, etc. 
These elements are then arranged to give a specific optical circuit (see Fig. III.2) . 
Part of this setup might be so-called feed-forward detection. In this scheme the 
outcome of the detection of a number of modes dynamically chooses the internal 
configuration of the subsequent optical circuit based on the interim detection re
sults (see also Ref. [114]). Conditioned on these detections we want to obtain a 
freely propagating I w- ) Bell state in the remaining undetected modes. 

I now introduce two simplifications for such an optical circuit. First, I will 
show that we can discard feed-forward detection. Secondly, we only have to 
consider the detection of modes with at most one photon. 

Theorem 1: In order to show that it is possible to produce a specific outgoing 
state, any optical circuit with feed-forward detection can be replaced by a 
fixed optical circuit where detection only takes place at the end. 

Proof Suppose a feed-forward optical circuit (like the one depicted in Fig. III.2a) 
giving 1w- ) exists. That means that the circuit creates 1w-) conditioned 
on one of potentially many patterns of detector responses. It is sufficient to 
consider a single successful pattern. We can then take every interferometer 
to be fixed and postpone all detections of the auxiliary modes to the very 
end (Fig. III.2b). Note that this procedure selects generally only one setup 
in which entanglement is produced, whereas a feed-forward optical circuit 
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potentially allows more setups. It therefore might reduce the efficiency 
of the process. However, since we are only interested in the possibility of 
creating 1w-), the efficiency is irrelevant. D 

Theorem 2: Suppose an optical circuit produces a specific outgoing state condi
tioned on n 1 detected photons in mode 1, n2 detected photons in mode 2, 
etc. (with ni = 0, 1, 2, . . . ). The same output can be obtained by a circuit 
where in every detected mode at most one photon is found. 

Proof: If there are more photons in a mode, we can replace the corresponding 
detector by a so-called detector cascade [103]. This device splits the mode 
into many modes which are all detected ( see also chapter IV). For a suf
ficiently large cascade there is always a non-vanishing probability to have 
at most one photon in each outgoing mode. In that case, the same state 
is created while at most one photon enters each detector. Note that this 
again yields a lower efficiency. D 

Applying these results to the creation of 1w-), it is sufficient to consider a 
single fixed interferometer acting on an incoming state, followed at the end by 
detection of the so-called auxiliary modes. Jw-) is signalled by at least one fixed 
detection pattern with at most one photon in each detector. 

How do I proceed in trying to make the 1w-) Bell state? Let the t ime inde
pendent interaction Hamiltonian H1 incorporate both the interferometer U and 
the creation of IV'in) (see Fig. III.2b). The outgoing state prior to the detection 
can be formally written as 

IV'out) = UJV'in) - exp ( - itH1) IO) , (III.42) 

with IO) the vacuum. This defines an effective Hamiltonian H1 which is generally 
not unique. 

c The Bargmann representation 

At this point it is useful to change the description. Since the creation and an
nihilation operators satisfy the same commutation relations as c-numbers and 
their derivatives, we can make the substitution a! ➔ o:i and ai ➔ oi, where 
oi 8 / oo:i. Furthermore, we define 5 = ( o:1 , .. . , aN). Quantum states are then 
represented by functions of c-numbers and their derivatives. This is called the 
Bargmann representation [9]. 

Furthermore, suppose we can normal order the operator exp( - itH 1 ) in Eq. 
(III.42). This would yield a function of only the creation operators, acting on the 
vacuum. In the Bargmann representation we then obtain a function of complex 
numbers without their derivatives. In particular , an optical circuit consisting of 
N distinct modes (for notational convenience I treat distinct polarisations like, 
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for instance, x and y as separate modes), can be written as a function 'l/Jout ( &) 
after the unitary evolution U and normal ordering. The normal ordering of the 
evolution operator in conjunction with the vacuum input state is crucial, since it 
allows a significant simplification of the problem. 

I now treat the (ideal) detection of the auxiliary modes in the Bargmann rep
resentation. Suppose the outgoing state after the detection of M photons emerges 
in modes a1 , a2 , a3 and a4. After a suitable reordering of the detected modes 
the state which is responsible for the detector coincidence indicating success can 
be written as 115 , ..• , 1M+4, OM+s, . . . ) (possibly on a countably infinite number 
of modes). We then obtain the post-selected state l'l/Jpost) 

l'l/Jpost)l..4 CX: (ls,•• •, 1M+4, OM+5 , • • - l'l/Jout) 
(OI 0,5 · · · a,M+4 l'l/Jout) · 

In the Bargmann representation the right-hand side of Eq. (III.43) is 

where I have written&'= (a5, ... , aM+4, .. . ). 

(III.43) 

(III.44) 

Writing out the entanglement explicitly in the four modes (treating the po
larisation implicitly), I arrived at the following condition for the creation of two 
photons in the antisymmetric Bell state: 

(III.45) 

The term O(~) will allow for a small pollution(~« 1) in the outgoing state. I will 
show that for certain special classes of interaction Hamiltonians this condition is 
very hard (if not impossible) to satisfy. This renders the experimental realisation 
of two maximally polarisation entangled photons at least highly impractical. 

d Physical limitations on event-ready entanglement 

I am now ready to shape 'l/Jout in more detail. Consider optical circuits includ
ing mode-mixing, squeezers and down-converters. The corresponding interaction 
Hamiltonians H1 are quadratic in the creation operators. There are no linear 
terms, so there are no coherent displacements. More formally 

(III.46) 
i ,j =l i ,j=l 

With A (l) and A (2) complex matrices (see also Appendix D for more details 
about the dependence of Hon A). According to Braunstein [35], such an active 
interferometer is equivalent to a passive interferometer V , followed by a set of 
single-mode squeezers and another passive interferometer U'. The photon source 
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U' 

s 

IO) 

Figure III.3: The unitary interferometer U' with conditional photo
detection and single-mode squeezers which should transform IO) into l'l'-). 

described by Eq. (III.46) can be viewed as an active bilinear component of an 
interferometer. For vacuum input and after normal ordering [164], the optical 
setup then gives rise to 

'I/Jout(&) =exp[(&, B&)] , (III.4 7) 

with (&, Ba) = I:i o:iBijO:.j . Such an optical setup would correspond to a collec
tion of single-mode squeezers acting on the vacuum, followed by a passive optical 
interferometer U' . Here, B is a complex symmetric matrix determined by the 
interaction Hamiltonian H1 and t he interferometer U'. We take B to be propor
tional to a common coupling constant r The outgoing auxiliary modes a5 to aN 
are detected (see Fig. III.3). I will now investigate whether the production of 
jw-) conditioned on a given number of detected photons is possible. 

In the case of a bilinear interaction Hamiltonian (see Eq. (III.46)) , photons are 
always created in pairs. In addition, we seek to create two maximally entangled 
photons. An odd number of detected photons can never give jw-) and the number 
of detected photons should therefore be even. The lowest even number is zero. 
In this case no photons are detected and '1/Jout in Eq. (III.47) is proportional to 
1 + O(~), which corresponds to the vacuum state. 

The next case involves two detected photons. To have entanglement in modes 
o:.1 to o:4 after detecting two photons requires 

The left-hand side of Eq. (III.48) is equal to 

4 

( Bs6 + L o:iBi5Bj60:j) e(ii ,Bii ) lo'=O 
i ,j=l 

(III.48) 

(III.49) 

To satisfy Eq. (III.48) , the vacuum contribution B56 would have to be negligi
ble. I now investigate whether the second term can give us entanglement. The 
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right hand side of Eq. (III.48) can be rewritten according to a1a2 - a3a4 

~i,j=l aiEijO:j, where Eij are the elements of a symmetric matrix E: 

(

0 1 0 0 ) 
E= 1 0 0 0 

0 · 0 0 -1 
0 0 -1 0 

(III.50) 

from which it is immediate that seen that <let E = 1. 
Let Mij = BisBj6. Since only the symmetric part of M contributes, consider 

Mij = (Mij + Mji)/2. The condition for two detected photons now yields 

4 4 

L aiMijO:j = L aiEijO:j + O(~), (III.51) 
i,j=l i,j=l 

If this equality i~o hol~we need <let E = <let M + O(~) = 1. However, it can be 
shown that <let M = 0. M can therefore never have the same form as E for small 
~' so it is not possible to create maximal polarisation entanglement conditioned 
upon two detected photons. 

Finally, consider the outgoing state conditioned on four detected photons. 
Define Xi= ~j Bijaj. The left-hand side of Eq. (III.45) for four detected photons 
then gives 

(Bs6B1s + Bs1B6s + BssB61 + Bs5X1Xs + Bs1X5Xs + BssX5X1 

+B51XsXs + B5sXsX1 + B78XsX6 + XsX5X1Xs) e(a,Bo) la'=O 

I have not been able either to prove or disprove that 1w-) can be made this way. 
The number of terms which contribute to the bilinear part in a rapidly increases 
for more detected photons. 

Suppose we could create maximal entanglement conditioned upon four de
tected photons, how efficient would this process be? For four detected photons 
yielding 1-w-) we need at least three photon-pairs. These are created with a prob
ability of the order of 1~1 6 . Currently, 1~12

, the probability per mode, has a value 
of 10- 4 [173]. For experiments operating at a repetition rate of 100 MHz using 
ideal detectors, the procedure conditioned on four detected photons will amount 
to approximately one maximally entangled pair every few hours. For realistic 
detectors this is much less. 

So far, there have been no experiments which exceeded the detection of more 
than two auxiliary photons (not including the actual detection of the maximally 
entangled state). This, and the estimation of the above efficiency appears to 
place strong practical limitations on the creation of maximal entanglement. 
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e Six detected photons 

Recently, Knill, Laflamme and Milburn have discovered a method which allows 
us to create event-ready entanglement conditioned on six detected photons [98]. 
This method involves the construction of the C-SIGN operator 

Uc-SIGN=(~ ~ l n (III.52) 

on the basis {/0, 0), /0, 1), /1, 0), /1 , 1) }. In quantum optics, these two qubits are 
defined on four distinct modes a1, a2, a3 and a4. 

The C-NOT Uc-NOT is then defined using the Hadamard transform H on 
modes a3 and a4 as 

Uc-NOT = H13 ,a4 Uc-SIGNHa3,a4 

(1 1 0 0) (1 0 0 n (~ 1 0 

n ! 1 - 1 0 0 0 1 0 -1 0 
2 0 0 1 1 0 0 1 0 1 

0 0 1 -1 0 0 0 0 1 

(~ 
0 0 

l) 
1 0 

(III.53) 0 0 
0 1 

Applying the C-NOT and the Hadamard transformation on a separable state 
yields a maximally entangled state. 

How do we construct the C-SIGN operator? Following Knill et al. this amounts 
to the construction of the operator 

(III.54) 

First, we apply a beam-splitter Be: 

B = ( cos0 sin0) 
0 

- sin 0 cos 0 ' 
(III.55) 

with 0 = 7i /4 to modes a1 and a3 , which transforms /1, 1) into (/2, 0) - /0, 2)) /v'2. 
Subsequently, we apply the operator A to modes a1 and a3 , and finally, we apply 
a beam-splitter B - 1r;4 again to these modes. 

The operator A is defined as a unitary transformation U A on three modes, 
one main mode and two auxiliary modes which are detected: 

(III.56) 
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a2 H H1r/4 B-1r/4 H 
JO) 

® Jl) a3 
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Figure III.4: Circuit for event-ready entanglement conditioned on six de
tected photons. Here, UA is given by Eq. (III.56), H is the Hadamard 
transform and Bo is a beam-splitter. The encircled numbers denote the 
number of detected photons needed to create the corresponding states. 

This transformation can be explicitly constructed using the techniques developed 
by Reck et al. [140]. The input state on the two auxiliary modes b1 and b2 is Jl, 0), 
and the operator is conditioned on a state Jl, 0) in the outgoing auxiliary modes. 
This post-selection means that A is a probabilistic operator with a probability of 
success of 1/4. 

Event-ready entanglement can now be created using the setup shown in figure 
III.4. The incoming state is given by [1, 0, 1, 0), which can be made conditioned 
on two detected photons. The input states on the auxiliary modes can be created 
conditioned on one detected photon and the outgoing auxiliary modes also involve 
one detected photon. Therefore the total number of detected photons is six. 

4 SUMMARY 

I have demonstrated strong limitations on the possibility of creating maximal 
entanglement with quantum optics. To this end, I introduced two simplifications 
to the hypothetical optical circuit: I replaced feed-forward detection by a fixed 
set of detectors at the end, and secondly, every detector needs to detect at most 
one photon. Conditioned on two detected photons, multi-mode squeezed vacuum 
fails to create maximal entanglement. 

What happens when we have a combination of squeezing and coherent dis
placements? In that case the approach taken here fails due to the more complex 
normal ordering of the interaction Hamiltonian. Also, I have only considered 
ideal detections, but how do realistic detectors affect the outgoing state? This is 
the subject of the next chapter. 



IV 

AUXILIARY RESOURCES: DETECTION DEVICES 

Wouldn't it be nice to have a machine which creates the ·quantum states of your 
choice at the push of a button? Unfortunately, these machines do not yet exist1 . 

There are currently machines which create certain specific states, like for instance 
lasers ( creating coherent states) and down-converters ( creating squeezed states), 
but notwithstanding their importance for scientific and technological applications, 
these devices create only a limited class of quantum states. 

When we want to create more exotic quantum states, we need to extend 
our resources: in addition to the devices mentioned above we may use passive 
transformations (like, for instance, beam-splitters and phase-shifters in quantum 
optics) and measurements. With this new set of tools we can build more sophis
ticated state preparation devices, or 'circuits'. As I have shown in the previous 
chapter, depending on the particular physical implementation of these circuits 
we can create more exotic quantum states. State preparation has been studied 
among others by Vogel et al. [168], Harel et al. [81], Dakna et al. [46] and Rubin 
[143]. 

Having extended our resources to state preparation circuitry, the next issue is 
the quality of the state preparation. Suppose we want to create a particular state. 
In practice, we can never obtain this state perfectly, due to uncontrollable effects 
like decoherence and measurement errors. Nevertheless, we want our maximise 
the quality of the state preparation process. 

Formulating this more precisely, we want to prepare a single (pure) state I 1>) 
by means of some process, and we want the resulting state p to be as 'close' to 11>) 
as possible. In chapter II we have seen that a measure of resemblance between 
states is given by the fidelity F: 

F = Tr[pl</>)(1>1] . (IV.l) 

The quality of a state preparation process can therefore be measured by the 
fidelity. When F = 1, the process gives exactly 11>) and when F = 0, the prepared 
state is orthogonal to I</>) . In practice, the fidelity will not reach these extreme 
measures, but will lie between O and 1. 

In short, we have a state preparation circuit which creates states with some 
fidelity. Generally, the preparation process is conditioned on measurements [97]. 

1 Quantum computers will be able to make such states for qubits. 
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For example, if we want to prepare a single-photon state 11) in quantum optics 
we can use the following process: a parametric down-converter creates a state 
l'/P)ab on two spatial modes a and b (see chapter III): 

(IV.2) 

where IO) denotes the vacuum state and we assume ( « l. The higher order 
terms (included in O(e)) consist of states with more than two photons. We now 
place a photo-detector in mode a, which 'clicks' when it sees one or more pho
tons ( typically, standard detectors can see single photons, but fail to distinguish 
between one and two photons). Conditioned on such a click, mode b will be in a 
state 

(IV.3) 

The fidelity of this process is high: F = (llpll) :::: 1, and this is therefore typi
cally a very good single-photon state preparation process (although the situation 
changes drastically when multiple down-converters are considered [32, 99]). Due 
to the large vacuum contribution, however, the probability of the detector giving 
a 'click' will be small (of order 0(1(12

)). When the detector does not click, that 
particular trial is dismissed, hence the conditional character of the detection. 

In this example the outcome of the detection is used to either accept or reject 
a particular run of the state preparation device. However, in general the outcome 
of the detector can be used to determine a more complicated operation on the 
remainder of the state preparation process. This is detection plus feed-forward, 
since the outcome is used further on in the process. An example of this is quantum 
teleportation, where the outcome of the Bell measurement determines the unitary 
transformation needed to retrieve the original input state. 

When the measurements in the state .preparation process are prone to errors, 
the state we want to create may not be the state we actually create. This means 
that errors in the detection devices can lead to reduced fidelities. In this chapter 
I study the effect of detection errors on state preparation. To this end I introduce 
the concept of the confidence of preparation. Using this measure I evaluate dif
ferent types of detection devices. This chapter is based on Kok and Braunstein 
[103]. 

1 CONFIDENCE 

Consider a preparation device which prepares a state conditioned on a single 
measurement. For simplicity, I employ two subsystems. One subsystem will be 
measured, leaving a quantum state in the other. It is clear that prior to the 
measurement the two systems have to be entangled. Otherwise conditioning on 
the measurement does not have any effect on the state of the second system. 



1 CONFIDENCE 59 

Figure IV.I: A schematic representation of state preparation conditioned 
on a measurement. One branch of the entanglement 1¢) is detected, yielding 
an eigenvalue ak. The other branch is now in a state Pak . 

We can write the total state j'1j;)i2 prior to the measurement in the Schmidt 
decomposition: 

l1Ph2 = L ckiak)i lbk)2 , (IV.4) 
k 

with {!ak)} and {!bk)} orthonormal sets of states for system 1 and 2 respectively. 
T hese states correspond to eigenstates of observables A and B with sets of eigen
values { ak} and {bk} respectively. We now measure the observable A in system 
1, yielding an outcome ak (see Fig. IV.l). 

We can model this measurement using so-called projection operator valued 
measures, or POVM's for short. For ideal measurements, we can describe the 
measurement of mode 1 as a projection Pk = lak)(ak l operating on the state 
j'1j;)i2 . When we trace out the first system the (normalised) state of the second 
system will be 

(IV.5) 

For non-ideal measurements we do not use a projection operator, but rather 
a projection operator valued measure. In general, a POVM Ev can be written as 

(IV.6) 

where the P µ,'s form a set2 of projection operators {jµ)(µ!}w We also require a 
completeness relation 

(IV.7) 
V 

a more general definition of POVM's is given by (see appendix B): 

µ, µ, µ, 

2This set is possibly over-complete, hence the difference in notation from Pk. 
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(IV.8) 
µ µ 

The operator Aµv is generally not unique. These POVM's are used to model 
non-ideal measurements. 

As mentioned before, a measurement outcome ak in mode 1 gives rise to an 
outgoing state Pak in mode 2. We cannot describe a non-ideal measurement with 
the projection Pk = lak)(akl- Instead, we have a POVM Ek (corresponding to 
the outcome ak), which reduces to Pk in the case of an ideal measurement. Let 
P12 = l'¢h2(7/il, the entangled state prior to the measurement. The outgoing state 
in mode b will then be 

Tri[(Ek ® n)P12] 
Pak = Tr[(Ek (8) n)P12] ' 

(IV.9) 

where the total trace over both systems in the denominator gives the proper 
normalisation. 

If we had an ideal detector (corresponding to Ek = !ak)(akl), the outgoing 
state would be Pak = lbk)(bkl- However, with the general POVM Ek, this will 
not be the case. The resulting state will be different. In order to quantify the 
reliability of a state preparation process I introduce the confidence of a process. 

Definition: The confidence in the preparation of a particular state is given by the 
fidelity of the preparation process. 

That means that using Eqs. (IV.4) and (IV.9) the confidence C is given by 

C = Tr[(Ek ® lbk)(bkl)P12] = lck l2 (ak1Eklak) 
Tr[(Ek 0 n)pl2] I:1 lczl 2 (adEk lat) ' 

(IV.10) 

where the icd2 are the diagonal elements of the density matrix. The confidence C 
can be interpreted as the probability of obtaining outcome ak from the 'branch' 
containing jak) in Eq. (IV.4) divided by the unconditional probability of obtaining 
outcome ak· We will also call this the 'confidence of state preparation'. 

This interpretation suggests that there does not need to be a second system 
to give the idea of confidence meaning. Suppose, for instance, that we have an 
'electron factory' which produces electrons with random spin. A Stern-Gerlach 
apparatus in the path of such an electron will make a spin measurement along 
a certain direction r . Suppose we find that the electron has spin 'up' along 
r. Before this measurement the electron was in a state of random spin (Pin = 
½I t)(t I+ ½I-!-)(-!- I), and after the measurement the electron is in the 'spin up ' 
state (Pout= I t)(t 1)- The state of the electron has collapsed into the 'spin up ' 
state. I will now investigate how we can define the confidence of the detection of 
a single system. 

Formally, we can model state collapse by means of the super-operator i=ak, 
where ak is again the outcome of the measurement of observable A ('spin up' 
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in the above example). In general, a super-operator yields a (non-normalised) 
mapping p--+ iµ(p). In the POVM representation used above (see Eq. (IV.8)) 
we can write this as 

(IV.11) 
V 

When the eigenstate corresponding to ak is given by Jak), we can define the 
confidence of this measurement as 

Cm = (akJF~k(p)Jak) = Tr[Fak(~)Jak)(akJ] , 
Tr[Fak (p)] Tr[Fak (p)] 

(IV.12) 

with Tr[Fak (p)] the proper normalisation. However, this expression depends 
strongly on the details of the family of operators A µv · This is a more complicated 
generalisation than the POVM's Ek. The confidence of state preparation, on the 
other hand, is a function of the POVM Ek. Furthermore, Cm will in general not 
be equal to the confidence of state preparation derived in Eq. (IV.10). 

In conclusion, there are two distinct versions of the confidence: t he confidence 
of measurement and the confidence of state preparation. Later in this chapter I 
will use the concept of the confidence to make a quantitative comparison between 
different detection devices. This suggests that we need to calculate the confidence 
of measurement with all its difficulties. One way to circumvent this problem is to 
calculate the the confidence of state preparation using a fixed state. Instead of 
concentrating on the state preparation process we now choose a standard input 
state and calculate the confidence for different types of measurement devices. 
One such choice might be the maximally entangled state 

l N-1 

J'11)i2 = r,:;, L Jak, ak) . 
vN k=O 

(IV.13) 

When N --+ oo, t his is perhaps not t he ideal choice and another state may 
be preferred. For any choice, the confidence offers a quantitative measure of 
performance for different types of measurement devices. 

2 O PTICAL DETECTION DEVICES 

Having set the stage for state preparation conditioned on measurement outcomes, 
I will now restrict the remainder of this chapter to optical implementations. Let's 
consider the measurement of optical Fock states using photo-detectors. In order 
to classify different types of detectors I use the following terminology: a detector 
is said to have a single-photon sensitivity when it is sensitive enough to detect 
a single-photon wave-packet. When a detector can distinguish between n- and 
(n + 1)-photon wave-packets, it is said to have a single-photon resolution. 
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Figure IV.2: An N-port with unit-efficiency, non-resolving detectors. The 
N incoming modes are unitarily transformed into N output modes. The 
N-ports considered here consist of mirrors and beam-splitters and do not 
mix creation operators with annihilation operators. 

Real detectors have a variety of characteristics. Most common detectors do 
not have single-photon resolution, although they can distinguish between a few 
and many photons. When small photon numbers are detected, however, these 
are single-photon sensitivity detectors to a good approximation. There are also 
single-photon resolution detectors [93, 162]. Currently, these detectors require 
demanding operating conditions. 

When we need single-photon resolution but do not have the resources to em
ploy single-photon resolution detectors, we can use a so-called detector cascade 
[158]. In a detector cascade an incoming mode (populated by a number of pho
tons) is split into N output modes with equal amplitude which are all detected 
with single-photon sensitivity detectors. The idea is to choose the number of 
output modes large enough, so that the probability that two photons enter the 
same detector becomes small. In general, an optical setup which transforms N 
incoming modes into N outgoing modes is called an N-port (see Fig. IV.2) [140). 
A detector cascade is a symmetric N-port with detectors at the outgoing modes 
and vacuum states in all input modes except the first mode. In the next section 
I will study the statistics of symmetric N-ports, but first I need to elaborate on 
the types of errors which occur in detectors. 

There are two sources of errors for a detector: it might fail to detect a photon, 
or it might give a signal although there wasn't actually a photon present. The 
former may be characterised as a 'detector loss' and the latter as a 'dark count'. 
Here, the emphasis will be on detector losses. Later I will give a model for 
incorporating dark counts in a realistic detector model. In some experiments 
(like the Innsbruck teleportation experiment [23]) the detectors operate within 
short gated time intervals. This greatly reduces the effect of dark counts. 

Detector losses are not so easily dismissed. Every photon entering a detector 
has a certain probability of triggering it. This probability is called the efficiency 
of the detector. For the purposes of brevity, when a detector is perfectly efficient, 
we will call it a unit-efficiency detector. When it has some lower efficiency, we 
speak of a finite-efficiency detector. Here, I study detector cascading with unit
efficiency detectors, as well as cascading with finite-efficiency detectors [181]. I 
am interested in the case where cascading distinguishes between photon-number 
states Jk) and Jk') with k '.::::'. k' . 
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3 N-PORTS 

In this section I treat the properties of detector cascades, or symmetric N-ports 
with single-photon sensitivity detectors in the outgoing modes. Symmetric N
ports yield a (unitary) transformation U of the spatial field modes ak , with j, k = 
1, ... ,N: 

N 

bk --+ L ujkaj and (IV.14) 
j=l 

where the incoming modes of the N-port are denoted by aj and the outgoing 
modes by bi. Here, aJ and aj are the respective creation and annihilation opera
tors of mode aj. Similarly for mode bk. The unitary matrix U can be chosen to 
be 

1 Ujk = y'N exp[21ri(j - l)(k - 1)/N] (IV.15) 

without loss of generality up to an overall phase-factor. Paul et al. have studied 
such devices in the context of tomography and homodyne detection [157, 4, 129]. 

Here, I study N-ports in the context of optical state preparation, where only 
one copy of a state is given, instead of an ensemble. I will use the concept of the 
confidence, introduced in section 1. 

a Statistics of N-ports 

Suppose we have a detector cascade, consisting of a symmetric N-port with single
photon sensitivity detectors in the outgoing modes. According to Eqs. (IV.14) 
and (IV.15) incoming photons will be redistributed over the outgoing modes. In 
this section I study the photon statistics of this device. In particular, I study the 
case where k photons enter a single input mode of the N-port, with vacuum in all 
other input modes. This device (i.e. , the detector cascade) will act as a sub-ideal 
single-photon resolution detector since there is a probability that some of the 
photons .end up in the same outgoing mode, thus triggering the same detector. 

To quantify the single-photon resolution of the cascade we use the confidence 
given by Eq. (IV.10). Suppose we have two spatially separated entangled modes 
of the electro-magnetic field a and b with number states jm) in a and some other 
orthogonal states !¢m) in b: 

(IV.16) 
m 

where the second mode is used only to give the confidence an operational meaning. 
The POVM governing the detection can be written as Ek= LmPN(k jm)lm)(ml, 
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since we assume that the photons are not lost in the N-port. In this expres
sion PN(klm) is the probability that m incoming photons cause a k-fold detector 
coincidence in the N-port cascade. The confidence can then be written as 

C = 1,kl2 (k1Eklk) - l,kl 2PN(klk) 
~1 l1ml2(mJEk lm) ~m l,ml2PN(kJm) · 

(IV.17) 

In order to find the confidence, I therefore first have to calculate the probability 
distribution PN· This will allow us to compare single-photon resolution detectors 
with various arrangements (N-ports) of single-photon sensitivity detectors. 

Suppose k photons enter the first input mode and all other input modes are 
in the vacuum state. The density matrix of the pure input state Po= Jk)(kl will 
be transformed according to p = UNpoUt with UN the unitary transformation 
associated with the symmetric N-port. Let n be the N-tuple of the photon 
number in every outgoing mode: n = (n1 , n 2, . .. , nN ). The probability of finding 
n 1 photons in mode 1 and n2 photons in mode 2, et cetera, is given by Pn = 
(nJpln). Using the N-port transformation this probability yields 

(IV.18) 

where k = (k, 0, ... , 0) , since only the first input mode inhabits photons and the 
rest are vacuum. From Refs. [53] and [54] we find that this can be rewritten as 

(IV.19) 

Here, Hfn_(x) is a so-called multi-dimensional Hermite polynomial (MDHP) [52] 
(this is a non-trivial result; see appendix G for a comprehensive treatment of 
multi-dimensional Hermite polynomials) and the matrix R is defined as 

(IV.20) 

For our present purposes it is convenient to characterise the N-port by its trans
formation of the field modes given by Eqs. (IV.14) and (IV.15). I therefore 
concentrate on U rather than UN· 

Since there is a one-to-one correspondence between the N-port (U) and the 
matrix R, knowledge of U is sufficient to calculate the confidence of a given event 
using the N-port. The MDHP for N input modes with k photons in the first 
mode and zero in the others (giving an N-tuple k) and N output modes n is 
given by 

(IV.21) 
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The number of photons in the input mode is equal to the total number of photons 
in the output modes. The dimension of i obeys dim i = dim k + dim ii = 2N. 
For example, for a two-photon input state we have 

(IV.22) 

There are many different ways in which k incoming photons can trigger a 
k-fold detector coincidence. These different ways correspond to different photon 
distributions in the outgoing ( detected) modes, and are labelled by iir. The 
probability that all k photons enter a different detector is found by determining 
the Pnrs where every ni in iir is at most one. The sum over all these Pnr 'sis equal 
to the probability PN(klk) of a k-fold coincidence in an N-port conditioned on k 
incoming photons: 

(IV.23) 

Finally, in order to find the probability of a k-fold detector coincidence con
ditioned on m photons in the input state ( with m 2 k) we need to sum all 
probabilities in Eq. (IV.19) with k non-zero entries in the N-tuple ii: 

(IV.24) 

where Sk is the set of all ii with exactly k non-zero entries. 

b Realistic N-ports 

I now consider a symmetric N-port cascade with finite-efficiency single-photon 
sensitivity detectors. Every one of the N detectors has a certain loss, which 
means that some photons do not trigger the detector they enter. We can model 
this situation by putting a beam-splitter with intensity transmission coefficient 
rJ2 in front of the ideal detectors [181]. The reflected photons are sent into the 
environment and can be associated with the loss. The transmitted photons are 
detected (see Fig. IV.3). 

Before I continue with the description of realistic detector cascades, let me 
return to the question of the dark counts. In the model for detectors with finite 
efficiency I assumed a beam-splitter with intensity transmission coefficient rJ2 and 
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Figure IV.3: A 2N-port with N modes which are detected with ideal de
tectors and N undetected modes. These modes are associated with the 
detector losses. 

vacuum in the second input mode. We can now model dark counts by replacing 
this vacuum state with a thermal input state Pth [148]: 

~ 100 

[ ( -!iv )] (-n!iv) Pth = ~ dvf(v) 1 - exp k T. exp kT: ln)(nl , 
n = O O B eff B eff 

(IV.25) 

with v the frequency, f(v) the appropriate frequency distribution Ut dv f (v) = 
1), ks Boltzmann's constant and Teff the effective temperature 'seen' by the 
detector. However, for the remainder of this chapter I will assume that there are 
no dark counts (Teff = 0). 

Let us now consider cascades with finite-efficiency detectors. The implementa
tion of the beam-splitters responsible for the detector losses transform our N-port 
into a 2N-port and the unitary transformation U of the field modes in this N
port now becomes a 2N x 2N unitary matrix U --t U 0 ll.2 (where ll.2 is the 
two dimensional unit matrix). Applying a transformation V77 to implement the 
beam-splitters with transmission coefficient f/2 will give a new unitary transfor
mation governing the behaviour of the 2N-port. Although nothing holds us from 
considering detectors with different efficiencies, for simplicity I will assume that 
all detectors have the same efficiency 'T/2 . In terms of the original unitary matrix 
U from Eq. (IV.15) the new unitary matrix fJ becomes 

This changes the matrix R of the MDHP accordingly: 

R --t R = -- ( O _fjt) 
-ut o 

(IV.26) 

and R is now a 4N x 4N matrix dependent on rJ. The probability of finding 
a k-fold detector coincidence in an N-port cascade with finite-efficient detectors 
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then becomes 

(IV.27) 

where Sk is the set of all ii with exactly k non-zero entries in the detected modes 
(note that I still call it an N-port although technically it is a 2N-port). The 
confidence of having a total of k photons in a k-fold detector coincidence is 
again given by Eq. (IV.17). The variables of the MDHP will be a 2N-tuple 
k = (k , 0, ... 0). The output photon number 2N-tuple can now be written as 
n = (nf , nt . .. n<j.,, nf, ... n1f.. ), where the superscripts d and u again denote the 
detected and undetected modes respectively. Furthermore we have ~:1 nf _ Nd 
and ~:1 nf - Nu. 

Using Eq. (IV.23) and observing that every detected photon carries a factor 'r/2 

it is quite straightforward to obtain the probability that k photons give a k-fold 
coincidence in an efficient N-port cascade: 

'r/2k N! 
PN(klk) = Nk(N - k)! . (IV.28) 

c The single-photon resolution of N-ports 

Having determined the probability distribution PN, I can now calculate the con
fidence of detector cascading. First of all, in order to obtain a high confidence 
in the outcome of a detector cascade, the possible number of photons should be 
much smaller than the number of modes in the cascade: N » k. In practice 
there is a limit to the number of detectors we can build a cascade with, so I only 
look at the lowest order: distinguishing between one and two photons. 

I will calculate the confidence of having outgoing state 1¢1 ) conditioned a 
single detector giving a 'click' in the detector cascade when the input state is 
given by 

(IV.29) 

This state corresponds, for example, to the output of a down-converter when we 
ignore higher-order terms. The confidence is then 

(IV.30) 

Eqs. (IV.27) and (IV.22) allow us to calculate the probabilities of a zero-, one
and two-fold detector coincidence conditioned on one or two incoming photons: 

PN(0I0) - 1 

PN(lj0) 0 

(IV.31) 

(IV.32) 
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PN(Oll) 1- r,2 (IV.33) 

PN(lll ) r,2 (IV.34) 

PN(Ol2) (1 - rJ2) 2 (IV.35) 

PN(ll2) 
'T/4 

(IV.36) - - + 2r;2(1 - 'T/2) 
N 
N-1 

(IV.37) PN(212) 'T/4 
N 

For example, using these probabilities, together with Eq. (IV.29), gives us an 
expression for the confidence that a single detector hit was triggered by one 
photon (5 = 1,12 /l,812): 

N 
C = N + 5[r;2 + 2N(l - r;2)] ' 

(IV.38) 

where, for simplicity, we omitted the functional dependence of C on the incoming 
state, the size of the cascade and the order of the detector coincidence. 

A close look at Eq. (IV.36) shows us that PN(l l2) includes a term which is 
independent of the number of modes in the N-port cascade. This term takes on 
a maximum value of 1/2 for r;2 = ½- However, the confidence is a monotonously 
increasing function of r;2. As expected, for small 5's the confidence C N ( 1, I \JJ')) 
approaches 1. Detector cascading thus turns a collection of single-photon sen
sitivity detectors into a device with some single-photon resolution. In the next 
section I will give a quantitative estimation of this resolution. 

4 COMPARING DETECTION DEVICES 

Let's return again to the schematic state preparation process depicted in figure 
IV.l. There we had two modes, one of which was detected, giving the prepared 
outgoing state in the other. I argued that different detection devices yield differ
ent output states, and the comparison of these states with the ideal case (where 
we used an ideal detector) led to the introduction of the confidence of a state 
preparation process. Here, I will use the confidence to make a comparison of dif
ferent detection devices, rather than output states. This can be done by choosing 
a fixed entangled input state. The confidence then quantifies the performance of 
these detection devices. 

Consider the state preparation process in the setting of quantum optics. We 
have two spatial modes of the electro-magnetic field, one of which is detected. 
In this thesis I am mostly interested in states containing a few photons, and the 
detection devices I consider therefore include single-photon sensitivity detectors, 
single-photon resolution detectors and detector cascades. As an example, I set 
the task of distinguishing between one and two photons. Since single-photon 
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sensitivity detectors are not capable of doing this, I will compare the performance 
of detector cascading with that of a single-photon resolution detector. Let the 
state prior to the detection be given by 

(IV.39) 

This state is maximally entangled and will serve as our 'benchmark' state. It 
corresponds to the choice b = 1 in the previous section. Suppose the outgoing 
stat e conditioned on a 'one-photon' indication in the detection device is p. The 
confidence is then again given by C = ( ¢1 I pf ¢1). 

First , consider the single-photon resolution detector described in Refs. [93, 
162]. This detector can distinguish between one and two photons very well, but 
it does suffer from detector losses (the efficiency was determined at 88%). That 
means that a two-photon state can be identified as a single-photon state when 
one photon is lost. The confidence of t his detector is therefore not perfect. 

In order to model the finite efficiency of the single-photon resolution detector 
we employ the beam-splitter model from section b. We write the input state as 

(IV.40) 

When we make the substitution at ➔ rybt + JI - rpct we obtain a state p. The 
outgoing density matrix conditioned on a single photon in mode b is then 

With ry2 = 0.88 the confidence of the single-photon resolution detector is easily 
calculated to be C = 0.65. 

Now we consider a detector cascade with single-photon sensitivity detectors. 
In Fig. IV.4 the confidence of a single-photon detection with N-port cascades is 
depicted. When the cascade consists of four detectors (N = 4) it can be easily 
calculated from Eq. (IV.38) that the detectors need an efficiency of 0.84 to achieve 
a 0.65 confidence. In the case of infinite cascading (N = oo) the single-photon 
confidence of 0.65 is met only if the efficiency is roughly 0.73. This puts a severe 

· practical limit on the efficiency of the single-photon sensitivity detectors in the 
cascade. 

Detector cascading would be practically useful if a reasonably small number of 
finite-efficiency detectors yields a high confidence. In particular when cascading 
is viewed as an economical alternative to a detector with single-photon resolution 
the number of detectors in the cascade should be small. Additionally, cascading 
should yield a confidence similar to single-photon resolution detectors. Unfor
tunately, as a practical application, detector cascading only appears to yield a 
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-N=l 
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C 
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Figure IV.4: The single-photon confidence C [Eq. (IV.38)] as a function of 
the detector efficiency r,P. The solid line corresponds to a single-detector 
cascade (no cascading: N = 1), the dashed lines correspond to N = 4, 
N = 16 and N = oo in ascending order. We consider a maximally entangled 
input state jw) = (IO)l</>o) + jl)l</>1 ) + 12)14>2))/}3 to serve as a benchmark. 

modest boost in resolution, unless the detectors with single-photon sensitivity 
have a very high efficiency. Real single-photon resolution detectors are therefore 
superior to detector cascading with currently available detectors, notwithstanding 
the demanding operating conditions. 

5 SUMMARY 

In this chapter I have studied the use of detection devices in entanglement based 
state preparation. In particular I considered optical devices such as single-photon 
sensitivity detectors, single-photon resolution detectors and detector cascades. 

Detector cascading has generally been regarded as a good way to enhance 
single-photon resolution and consequently the fidelity of a state preparation pro
cess [158]. However, an extensive theory for the use of these detection devices 
has not been available so far. The statistics of N-ports have been considered 
in the context of tomography [129], which relies on the availability of a large 
number of copies of a quantum state. In state preparation, however, we perform 
measurements on single systems, and we therefore need precise bounds on the 
distinguishability of these measurements. 

To this end, I introduced the confidence of preparation, which can also be used 
to quantify the performance of a detection device. Thus, I compared a single
photon resolution detector with a cascade of single-photon sensitivity detectors 
and found that cascading does not give a practical advantage over detectors with 
single-photon resolution. 



V 

MATHEMATICAL DESCRIPTION OF OPTICAL 

CIRCUITS 

In the previous chapters, I have discussed st ate preparation in quantum optics 
with realistic detectors. I now .ask what the general outgoing state of an optical 
circuit is. 

Suppose we have an optical circuit, that is, a collection of connected optical 
components. It is usually important to know what the outgoing state of this cir
cuit is. In this chapter, I give a description of the outgoing state for a special class 
of optical circuits. First, in section 1, I define this class of optical circuits and 
show that they can be described by so-called multi-dimensional Hermite poly
nomials. In section 2, I give an example of this description. Section 3 discusses 
the Hermite polynomials, and finally, in section 4, I briefly consider the effect 
of imperfect detectors on the outgoing state. This chapter is based on Kok and 
Braunstein [106]. 

1 THE OPTICAL CIRCUIT 

What do we mean by an optical circuit? We can think of a black box with incom
ing and outgoing modes of the electro-magnetic field. The black box transforms 
a state of the incoming modes into a (different) state of the outgoing modes. The 
black box is what we call an optical circuit. We can now take a more detailed 
look inside the black box. Vve will consider three types of components. 

First, the modes might be mixed by beam-splitters, or they may pick up a 
relative phase shift or polarisation rotation. These operations all belong to a class 
of optical components which preserve the photon number. We call t hem passive 
optical components. 

Secondly, we may find optical components such as lasers, down-converters 
or ( optical) parametric amplifiers in the black box. These components can be 
viewed as photon sources, since they do not leave the photon number invariant. 
We will call these components active optical components. 

And finally, the box will generally include measurement devices, the outcomes 
of which may modify optical components on the remaining modes depending on 
the detection outcomes. This is called feed-forward detection. We can imme
diately simplify optical circuits using feed-forward detection, by considering the 
family of fixed circuits corresponding to the set of measurement outcomes (see 
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also Ref. [100]) . In addition, we can postpone the measurement to the end, where 
all the optical components have 'acted' on the modes. 

These three component types have their own characteristic mathematical de
scription. A passive component yields a unitary evolution Ui, which can be 
written as 

(V.1) 

where H.c. denotes the Hermitian conjugate. This unitary evolution commutes 
with the total number operator n = I:i &jaj. 

Active components also corresfond to unitary transformations, which can be 
written as exp(-itH;i)). Here H;i is the interaction Hamiltonian associated with 
the Ph active component in a sequence. This Hamiltonian does not necessarily 
commute with the total number operator. To make a typographical distinction 
between passive and active components, we denote the ith passive component 
by Ui, and the Ph active component by its evolution in terms of the interac
tion Hamiltonian. The mathematical description of the (ideal) measurement will 
correspond to taking the inner product of the outgoing state prior to the mea
surement with the eigenstate corresponding to the measurement. 

a The state prior to detection 

Now that we have the components of an optical circuit of N modes, we have 
to combine them into an actual circuit. Mathematically, this corresponds to 
applying the unitary evolutions of the successive components to the input state. 
Let l7Pin) be the input state and 17Pprior) the output state prior to the measurement. 
We then have (with K > 0 some integer) 

(V.2) 

where it should be noted that Ui might be the identity operator 11 or a product 
of unitary transformations corresponding to passive components: 

(V.3) 

When the (multi-mode) eigenstate corresponding to the measurement outcome 
for a limited set of modes labelled 1, ... , M with M < N is given by h') = 
!n1, n2, . .. , nM) with M the number of detected modes out of a total of N modes, 
and ni the number of photons found in mode i , the state leaving the optical circuit 
in the undetected modes is given by 

l7Pout)M+l, ... ,N = l, ... ,M(, l7µpriorh, ... ,N · (V.4) 
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In this chapter, I study the outgoing states l7Pout) for a special class of optical 
circuits. First, I assume that the input state is the vacuum on all modes. Thus, 
I effectively study optical circuits as state preparation devices. Secondly, our 
class of optical circuits include all possible passive components, but only active 
components with quadratic interaction Hamiltonians: 

H(i) - ""'aAtRU)aAt + ""'aA RU)*aA 
I - L.., k kl l L.., k kl l , (V.5) 

kl kl 

where RU) is some complex symmetric matrix. This matrix determines the be
haviour of the Ph active component, which can be any combination of down
converters and squeezers. Finally, we consider ideal photo-detection, where the 
eigenstate corresponding to the measurement outcome can be written as J,) = 
Jn1, ... , nM)-

The class of optical circuits I consider here is not the most general class, but 
it still includes important experiments like quantum teleportation [23], entangle
ment swapping [126] and the demonstration of GHZ correlations [26]. In section 
2, I show how teleportation can be modelled using the methods presented here. 

The state 1¢) prior to the photo-detection can be written in terms of the 
components of the optical circuit as 

(V.6) 

The creation and annihilation operators a! and iii for mode i satisfy the standard 
canonical commutation relations 

and 

with i, j = I ... N. 
For any unitary evolution U, we have the relation 

00 uR1ut 00 (URut)1 
UeRut = ""' --- = ""'-'---~ = eURut 

L.., l! L.., l! 
l=O l = O 

(V.7) 

(V.8) 

Furthermore, if U is due to a collection of only passive components, such an 
evolution leaves the vacuum invariant: UJO) = JO). Using these two properties it 
can be shown that Eq. (V.6) can be written as 

1¢) = exp [-1 t a!A!ia} + 1 .t aiAijaj + 1 .t a!Bijaj] Jo), (V.9) 
i,J=l i,J=l i,;=l 

where A is some complex symmetric matrix and B = Bt. I will now simplify this 
expression by normal-ordering this evolution. 
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Define (a, Aa) = Eij aiAij<lj- As shown by Braunstein [35], we can rewrite 
Eq. (V.9) using two passive unitary transformations U and V as: 

(V.10) 

where A is a diagonal matrix with real non-negative eigenvalues .. \. This means 
that, starting from vacuum, the class of optical circuits I consider here is equiva
lent to a set of single-mode squeezers, followed by a passive unitary transformation 
U and photo-detection. Since A is diagonal, we can write Eq. (V.10) as 

(V.11) 

We can now determine the normal ordering of every factor exp[-¥(a!)2 + ta;J 
separately. Note that the operators af, (a!)2 and 2a!ai + 1 generate an su(l,1) 
algebra. According to Refs. [180, 60, 164], this may be normal-ordered as 

(V.12) 

where .\ = .. \/J>.il• In general, when L± and £ 0 are generators of an su(l, 1) 
algebra (i.e., when A is unitary) we find [164] 

(V.13) 

with r a complex coupling constant and f- its orientation in the complex plane. 
When we now apply this operator to the vacuum, the annihilation operators will 
vanish, leaving only the exponential function of the creation operators. We thus 
have 

(V.14) 

with B = U A*Ut, again by virtue of the invariance property of the vacuum. 
This is the state of the interferometer prior to photo-detection. It corresponds to 
multi-mode squeezed vacuum. 

b Photo-detection and Bargmann representation 

The photo-detection itself can be modelled by successive application of annihila
tion operators. Every annihilation operator ai removes a photon in mode i from 
the state J1,f,,). Suppose the optical circuit employs N distinct modes. We will now 
detect M modes, finding n 1 + ... + nM = Ntot photons (with M < N). These 
modes can be relabelled 1 to M. The vector n denotes the particular detector 
'signature': n = (n1 , . .. , nM) means that n 1 photons are detected in mode 1, n 2 
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in mode 2, and so on. The freely propagating outgoing state l1Pn) can then be 
described as 

(V.15) 

I 
Here, Cn = (n1! · · ·nM!)-2. 

At this point it is convenient to introduce the N-mode Bargmann representa
tion we encountered in chapter III [9]. The creation and annihilation operators 
obey the commutation relations given in Eq. (V. 7) . We can replace these opera
tors with c-numbers and their derivatives according to 

a! -+ a i and ai -+ [Ji = / . 
uai 

The commutation relations then read 

(V.16) 

(V.17) 

Note that the actual values of ai are irrelevant (the creation and annihilation op
erators do not have numerical values either); what matters here is the functional 
relationship between ai and Ber;. 

The state created by the optical circuit in this representation (prior to the 
detections, analogous to Eq. (V.14)) in the Bargmann representation is 

(V.18) 

Returning to Eq. (V.15), we can write the freely propagating state after detection 
of the auxiliary modes in the Bargmann representation as 

(V.19) 

up to some normalisation factor, where a'= (a1 , ... , aM ). By setting a'= 0 we 
ensure that no more than ni photons are present in mode i. It plays the role of 
the vacuum bra in Eq. (V.15). 

c The outgoing state in terms of Hermite polynomials 

Now that we have an expression for the freely propagating state emerging from 
our optical setup after detection, we seek to simplify it. We can multiply '/Pn(a) 
by the identity operator n., written as 

(V.20) 
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where Ntot is the total number of detected photons. We then find the following 
expression for the unnormalised freely propagating state created by our optical 
circuit: 

(V.21) 

Now I introduce the so-called multi-dimensional Hermite polynomial, or MDHP 
for short: 

(V.22) 

The use of multi-dimensional Hermite polynomials and Hermite polynomials of 
two variables have previously been used to describe N-dimensional first-order 
systems [52, 96] and photon statistics [169, 53, 103] (see also chapter IV). Here, 
I have shown that the lowest order of the outgoing state of optical circuits 
with quadratic components (as described by Eq. (V.9)) and conditional photo
detection can be expressed directly in terms of an MDHP. 

In physical systems, the coupling constants (the ,Vs) are usually very small 
(i.e., Ai « 1 or possibly Ai ;S 1). This means that for all practical purposes only 
the first order term in Eq. (V.21) is important (i.e. , for small A/s we can ap
proximate the exponential by 1). Consequently, studying the multi-dimensional 
Hermite polynomials yields knowledge about the typical states we can produce 
using Gaussian sources without coherent displacements. In section 3 I take a 
closer look at these polynomials, but first I consider the description of quantum 
teleportation in this representation. 

2 EXAMPLE: QUANTUM TELEPORTATION 

As an example of how to determine the outgoing state of an optical circuit, con
sider the teleportation experiment by Bouwmeester et al. [23]. The optical circuit 
corresponding to this experiment consists of eight incoming modes, all in the vac
uum state. Physically, there are four spatial modes a, b, c and d, all with two 
polarisation components x and y. Two down-converters create entangled polar
isation states; they belong to the class of active Gaussian components without 
coherent displacements. Mode a undergoes a polarisation rotation over an angle 
0 and modes b and c are mixed in a 50:50 beam-splitter. Finally, modes b and 
c emerging from the beam-splitter are detected with polarisation insensitive de
tectors and mode a is detected using a polarisation sensitive detector. The state 
which is to be teleported is therefore given by 

1'11) = cos 0lx) - sin 0ly) . (V.23) 
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The state prior to the detection and normal ordering ( corresponding to Eq. 
(V.2)) is given by (-r is a coupling constant) 

with 

1
. / , . ) _ U r r er(ut,Lu.t)/2+r"(u,Lu)/2+r(ut,Lut)/2+r· (v,Lv)/2/0) 
'f/pnor - BSU0 , 

L=-1 0 0 1 0 

(

0 0 0 1 ) 

J2 0 1 0 0 
1 0 0 0 

with a - (ax, .. . 'dy) and A the (symmetric) matrix 

0 0 -sin0 cos0 -sin0 cos0 0 0 
0 cos0 sin0 cos0 sin0 0 0 

0 0 0 0 0 -1 

A=-1 0 0 0 -1 0 

v'2 0 0 0 1 
0 1 0 

0 0 
0 

(V.24) 

(V.25) 

(V.26) 

(V.27) 

We now have to find the normal ordering of Eq. (V.26) . Since A is unitary, 
the polynomial (at, Aat) is a generator of an su(l, 1) algebra. According to Truax 
[164], the normal ordering of the exponential thus yields a state 

(V.28) 

with ~ = (-rtanh /-rl)/1-rl. The lowest order contribution after three detected 
photons is due to the t erm e(at,Aa"t)2 /8. However, first I write Eq. (V.28) in 
the Bargmann representation: 

(V.29) 

where 5. = ( n-ax, . .. , ady) and 5.' = ( n-a,,, ... , acy) . The polarisation independent 
photo-detection (the Bell measurement) is then modelled by the differentiation 
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(obxOcy - ObyocJ- Given a detector hit in mode ax, the polarisation sensitive 
detection of mode a is modelled by Oax: 

The outgoing state in the Bargmann representation is thus given by 

'lpout(ii) = (cos0adx +sin0ady) e~(a,Aa), 

(V.30) 

(V.31) 

which is the state teleported from mode a to mode d in the Bargmann represen
tation. This procedure essentially amounts to evaluating the multi-dimensional 
Hermite polynomial Ht(ii). Note that the polarisation independent Bell-detection 
of modes band c yield a superposition of the MDHP's. 

3 THE HERMITE POLYNOMIALS 

The one-dimensional Hermite polynomials are of course well known from the 
description of the linear harmonic oscillator in quantum mechanics. These poly
nomials may be obtained from a generating function G (see appendix G). Fur
thermore, there exist two recursion relations and an orthogonality relation be
tween them. The theory of multi-dimensional Hermite polynomials with real 
variables has been developed by Appell and Kempe de Feriet [3] and in the 
Bateman project [59]. Mizrahi derived an expression for real MDHP's from an 
n-dimensional generalisation of the Rodriguez formula [121]. I will now give the 
generating function for the complex MDHP's given by Eq. (V.22) and consecu
tively derive the recursion relations and the orthogonality relation (see also Ref. 
[96]). 

a Generating functions and recursion relations 

Define the generating function G 8 ( ii, /J) to be 

GB(ii,/J) = e(a,B/J)-½(/J,B/J) = ~ ,Bfl ... ,er;r Hf(ii). 
~ n1! nM! 

n 

(V.32) 

G 8 ( ii, /J) gives rise to the MDHP in Eq. (V.22), which determines this particu
lar choice. Note that the inner product (ii, Bf]) does not involve any complex 
conjugation. If complex conjugation was involved, we would have obtained dif
ferent polynomials (which we could also have called multi-dimensional Hermite 
polynomials, but they would not bear the same relationship to optical circuits). 

In the rest of the chapter I use the following notation: by n - ej I mean that 
the Ph entry of the vector n = (n1, ... , nM) is lowered by one, thus becoming 
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nj - l. By differentiation of both sides of the generating function in Eq. (V.32) 
we can thus show that the first recursion relation becomes 

M 

a
a Hf (a) = '°' BiiniHf_e_ (a) . (V.33) 
Q · ~ i 

i j=l 

The second recursion relation is given by 

M M 

Hf+e;(a) - LBijQjHf(a) + LBijnjHf-ej(a) = 0, (V.34) 
j=l j=l 

which can be proved by mathematical induction using 

M M 

LBiknkHf_ek+e;(a) -BiiHf(a) = L BikmkH:fi+e;(a) . (V.35) 
k=l k=l 

Here, I have set m = n - ek. 

b Orthogonality relation 

The orthogonality relation is somewhat more involved. Ultimately, we want to 
use this relation to determine the normalisation constant of the states given by 
Eq. (V.21) . To find this normalisation we have to evaluate the integral 

f da 1/)fi(a)1/Jm(5) . 
J•_N 

The state 1/Jn includes lo'=O, which translates into a delta-function o(a') in the 
integrand. The relevant integral thus becomes 

r da e-Re(o,Bo) [Hf(a)]* H:/i(a)o(a'). 
l c_N 

From the orthonormality of different quantum states we know that this integral 
must be proportional to On,m· 

Since in the Bargmann representation we are only concerned with the func
tional relationship between Qi and 80 ; and not the actual values, we can choose 
Qi to be real. To stress this, we write Qi ➔ Xi- The orthogonality relation is thus 
derived from 

f dx1/Jfi(x)1/Jm(x) = f dxe- (i,Re(B)i)Hf"(x)H:/i(x)o(x'). (V.36) 
)RN }RN 

where o(x') is the real version of o(a'). Following Klauderer [96] we find that 

J dx e - (i,Re(B)i) Hf (x)H:/i (x) = 

(-l)Ntot J dx e-½(x,Bx)a; [e - ½(x,B*i)] H:/i (x), (V.37) 
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where 81 is the differential operator o;; • • • o;i acting solely on the exponential 
function. We now integrate the right-hand side by parts, yielding 

(-l)Ntot J dx e-½(x,Bx)a: e-½(x,B"i) H#Jx) = 

(-l)Ntot I d'x e-½(x,Bx)a;-ei e-½(x,B"i) H!(i) i::_00 
- (-l)Ntot J di e-½(x,Bx)a;-ei e-½(x,B"x)ax;H!(i) , (V.38) 

with d'i = dx1 · • • dxi_1dxi+I · · · dxN. The left-hand term is equal to zero when 
Re(B) is positive definite, i.e., when (i, Re(B)x) > 0 for all non-zero i. Repeating 
this procedure ni times yields 

I di e- (i,Re(B)i) Hf (i)H! (i) = 

(-l)Ntot+n, I die-½(x,Bx)a;-niei e-½(x,B"x)a;:H!(i). (V.39) 

When there is at least one ni > mi, differentiating the MDHP ni times to Xi will 
yield zero. Thus we have 

I die-(i,Re(B)i)Hf (i)H!(i) = 0 for n -1, m (V.40) 

when Re(B) is positive definite and ni -1- mi for any i. The case where n equals 
mis given by 

I die-½(x,Re(B)i)Hf (i)H!(i) = 6nmN, (V.41) 

where 6nm denotes the product of 6n,m, with 1 :Si :S N. Here, N is equal to 

I 

N - 2Ntot Bn1 BnN n ' n ' 1,,,.-lB/_2 . = 11 . . . NN I ·... N· 11 (V.42) 

For the proof of this identity I refer to Ref. [96]. 

4 IMPERFECT DETECTORS 

So far , I only considered the use of ideal photo-detection. That is, I assumed 
that the detectors tell us exactly and with unit efficiency how many photons 
were present in the detected mode. However, in reality such detectors do not 
exist. In particular we have to incorporate losses (non-perfect efficiency) and 
dark counts (see chapter IV). Furthermore, we have to take into account the 
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fact that most detectors do not have a single-photon resolution (i.e., they cannot 
distinguish a single photon from two photons) [103] . 

This model is not suitable when we want to include dark counts. These 
unwanted light sources provide thermal light, which is not of the form of Eq. (V.9) 
but given by Eq. (IV.25). In single-shot experiments, however, dark counts can 
be neglected when the detectors operate only within a narrow time interval. 

We can model the efficiency of a detector by placing a beam-splitter with 
transmission amplitude 77 in front of a perfect detector [103]. The part of the 
signal which is reflected by the beam-splitter ( and which will therefore never 
reach the detector) is the loss due to the imperfect detector. Since beam-splitters 
are part of the set of optical devices we allow, we can make this generalisation 
without any problem. We now trace out all the reflected modes (they are truly 
'lost'), and end up with a mixture in the remaining undetected modes. 

Next, we can model the lack of single-photon resolution by using the relative 
probabilities p(nlk) and p(mlk) of the actual number norm of detected photons 
conditioned on the indication of k photons in the detector (as described in Ref. 
[103] and chapter IV). We can determine the pure states according to n and 
m detected photons, and add them with relative weights p(nlk) and p(mlk) . 
This method is trivially generalised for more than two possible detected photon 
numbers. 

Finally, we should note that my description of this class of optical circuits 
(in terms of multi-dimensional Hermite polynomials) is essentially a one-way 
function. Given a certain setup, it is relatively straightforward to determine the 
outgoing state of the circuit. The other way around, however, is very difficult. As 
exemplified by our efforts in Ref. [100] and chapter III, it is almost impossible to 
obtain the matrix B associated with an optical circuit which produces a particular 
predetermined state from a Gaussian source. 

5 SUMMARY 

In this chapter, I have derived the general form of squeezed multi-mode vacuum 
states conditioned on photo-detection of some of the modes. To lowest order, 
the outgoing states in the Bargmann representation are proportional to multi
dimensional Hermite polynomials. As an example, I showed how teleportation 
can be described this way. 
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VI 

TELEPORTATION AND ENTANGLEMENT SWAPPING 

In this chapter I study the experimental realisations of quantum teleportation 
by Bouwmeester et al. [23], entanglement swapping by Pan et al. [126] and the 
observation of three-photon GHZ-entanglement by Bouwmeester et al. [26] . I will 
show that these experiments heavily relied on post-selection. 

In section 1 I briefly discuss the issues concerned with post-selection. Then, in 
section 2 the quantum teleportation experiment performed in Innsbruck will be 
studied. This section is based on Ref. [99]. Section 3 is based on Refs. [101, 102], 
and discusses entanglement swapping and entanglement purification. Finally, I 
briefly consider the experimental observation of three-photon GHZ-entanglement 
in section 4. This chapter is based on Kok and Braunstein [99, 101, 102]. 

1 POST-SELECTION IN QUANT UM OPTICS 

In this section, I will discuss the concept of post-selection. Suppose we measure 
an observable A with respect to an ensemble of systems in a state I¢) . In general 
we have a set of different measurement outcomes { ak} , where the ak 's denote the 
eigenvalues of A. We speak of post-selection when a subset of the set of outcomes 
{ ak} is discarded. The remaining post-selected set of outcomes may be used for 
subsequent data-analysis. 

For example, if we had a tri-partite optical system in the state 

14>) ex: 10, 1, 1) + 11, 0, 1) + 11, 1, 0) + 11, 1, 1) ' (VI.1) 

we could place three photo-detectors1 in the t hree outgoing modes. For ideal 
detectors, there are four possible measurement outcomes: one photon in any two 
of t he three detectors , or one photon in all three detectors. When we repeat this 
'experiment ' a large number of times, we might discard all the measurements 
which do not yield a three-fold detector coincidence. This would correspond to 
post-selecting our data set on a three-fold coincidence. (Admittedly, this is not a 
very interesting experiment. However, later we will see that using post-selection 
we can even partially perform a Bell measurement. ) 

Note that there is a fundamental difference between a conditional measure
ment and post-selection. In chapter IV I discussed entanglement-based st ate 

1 Here we use three measurements of the same observable, i.e. , photon number. There is, 
however, no reason why we can't measure three different observables in the respective modes. 
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preparation, in which one subsystem was measured, the outcome of which was 
used to accept or reject the state of the remaining system. The crucial property 
of such a conditional measurement is that at the end of the procedure, there is a 
physically propagating state remaining. Post-selection offers a completely differ
ent type of control to the experimenter. Since all the subsystems are measured 
there is no physically propagating state left over, but a subset of the data can be 
selected for further analysis. 

The question is now whether in our 'experiment' above we have demonstrated 
the existence of the state 11, 1, 1). The answer has to be 'no': immediately before 
the measurement the state had the form of Eq. (VI.l), whereas afterwards, there 
was no state left at all. 

Post-selection can be very powerful, though. In section 4 we will see that non
local correlations can be inferred from post-selected data which was obtained 
in an experiment designed to create a three-photon GHZ-state. In addition, 
it does not necessarily mean that a post-selected state cannot be used further 
in, say, a quantum computer. As long as the post-selection can be made in 
the end, the relevant branch ( or branches) in the superposition undergo( es) the 
quantum computation. With this in mind, we can now consider the experimental 
demonstration of quantum teleportation and entanglement swapping. 

2 QUANTUM TELEPORTATION 

We speak of quantum teleportation when a (possibly unknown) quantum state 1¢) 
held by Alice is sent to Bob without actually traversing the intermediate space. 
The protocol uses an entangled state of two systems which is shared between Alice 
and Bob. In the next section I will present the teleportation protocol for discrete 
variables. In the subsequent sections I confine the discussion to the teleportation 
experiment performed by Bouwmeester et al., and study the difficulties which 
arise using its particular experimental setup. 

a The discrete teleportation protocol 

Quantum teleportation was first introduced by Bennett et al. in 1993 [14]. In 
this protocol, a quantum state held by Alice is sent to Bob by means of what the 
authors called 'dual classical and Einstein-Podolsky-Rosen channels'. How does 
this work? 

Suppose we have a set of three two-level systems, or qubits, the states of 
which can be written in the computational basis {IO)k, ll)k}, where k = 1, 2, 3 
denotes the system. Let Alice and Bob share a maximally entangled state ( the 
Einstein-Podolsky-Rosen channel [56]), for instance one of the Bell states 1w-) 
in systems 2 and 3: 

(VI.2) 
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System 1 is in an unknown state I¢) 1 , which can be written as 

lc/>h = alO) + ,Bi l ) . (VI.3) 

The other three Bell states are given by 

1 v12 (JO, 1) + Jl , 0)) 

1 v12 (JO, 0) - Jl , 1)) 

1 v12 (JO, 0) + Jl, 1)) . (VI.4) 

We can write the total state of the three systems as 

1 
J¢)iJw-)2s = v12 (aJO, 0, l)i2s - aJO, 1, O)i2s 

+ ,BJl, 0, l)i2s - ,BJl , 1, O)i2s) . (VI.5) 

The computational basis states of two qubits can also be written in the Bell basis: 

JO, 0) ~ (14>+) + J<l>-)) ' 

JO, 1) ~ (1w+) + 1w-)) 

11, 0) ~ (Jw+) - 1w-)) 

11, 1) ~ (14>+) - J4>-)) . 

When we make this substitution for qubits 1 and 2, Eq. (VI.5) becomes 

1 
1¢)i 1w-)2s = 2 [l<1>+)i2 (all)s - ,BIO)s) + l4>- )i2 (all)s + ,BIO)s) 

(VI.6) 

-1w+)i2 (alO)s - ,Bllh) - 1w-)i2 (a+ ,Bll)s)] . (VI.7) 

Alice is in possession of qubits 1 and 2, while Bob holds qubit 3. When Alice 
now performs a Bell measurement, Bob's qubit is transformed into the unknown 
state up to one of four unitary transformations. Alice's measurement outcome 
determines which one of these transformations should be inverted on Bob's qubit 
to return it to the original state 1¢). This completes the teleportation protocol. 

Quantum teleportation is not restricted to qubits. For example, suppose we 
have an N -level system2 in the state 

1¢)i = L ailj)i , (VI.8) 
j 

2Sometimes called a 'quNit' or 'qudit'. 
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and a maximally entangled state shared between Alice and Bob: 

(VI.9) 

We measure system 1 and 2, held by Alice, in the basis { l'l/Jnmh2}, with 

lo/, ) 1 ~ 21rijn/NI · · ) 'I/nm 12 = -/N L- e J, J EB m 12 . 

k 

(VI.10) 

In this notation we have j EBm = j +m mod N. Conditioned on the measurement 
outcome (n, m) corresponding to l'l/Jnmh2 , Bob's system 3 is transformed into l</>)3 
after a transformation [14]: 

Unm = L e21rikn/Nlk)J(k EB ml . 
k 

(VI.11) 

Thus the state of system 1 is transferred to system 3. System 1 can itself be 
mixed or part of an entangled state. Note that, since Bob needs the measurement 
outcome, Alice has to send a classical message of 2 log2 N classical bits. Sending 
this classical message is, like all classical communication, bounded by the speed 
of light. Therefore, quantum teleportation does not yield an information transfer 
faster than light. 

After the invention of discrete quantum teleportation, Vaidman and Braun
stein and Kimble introduced teleportation for states of dynamical variables with 
continuous spectra [165, 33]. In 1997, teleportation was experimentally realised 
by Bouwmeester et al. in Innsbruck [23] and Boschi et al. in Rome [20] , followed 
by Furusawa et al. in Pasadena [67] in 1998. This last experiment involved the 
teleportation of continuous variables. Quantum teleportation was also reported 
using nuclear magnetic resonance by Nielsen et al. in 1998 [124]. In 2000, Kim 
et al. performed quantum teleportation of polarised single-photon states using 
complete Bell detection [95]. 

In this chapter, however, I will focus mainly on the teleportation experiment 
of Bouwmeester et al. 

b The 'Innsbruck Experiment' 

In this section, I study the experimental realisation of quantum teleportation 
of a single polarised photon as performed in Innsbruck, henceforth called the 
'Innsbruck experiment' (Bouwmeester et al. [23]) . In the Innsbruck experiment, 
parametric down-conversion is used to create two entangled photon-pairs. One 
pair constitutes the entangled state shared between Alice and Bob, while the 
other is used by Victor to create an 'unknown' single-photon polarisation state 
1¢) : Victor detects mode a, shown in figure VI.I to prepare the single-photon 
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Alice 

b BS C 

UV-pulse mirrors 

a d 

() 
Bob 

Figure VI. I: Schematic representation of the teleportation experiment con
ducted in Innsbruck. A UV-pulse is sent into a non-linear crystal, thus 
creating an entangled photon-pair. The UV-pulse is reflected by a mirror 
and returned into the crystal again. This reflected pulse creates the second 
photon-pair. Photons band care sent into a beam-splitter and are detected. 
This is the Bell measurement. Photon a is detected to prepare the input 
state and photon d is the teleported output state Bob receives. In order to 
rule out the possibility that there are no photons in mode d, Bob detects 
this mode as well. 
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input state in mode b. This mode is sent to Alice. A coincidence in the detection 
of the two outgoing modes of the beam-splitter (Alice's - incomplete - Bell 
measurement) tells us that Alice's two photons are in a 1-w-) Bell state [172, 30, 
31]. The remaining photon (held by Bob) is now in the same unknown state as 
the photon prepared by Victor because in this case the unitary transformation 
Bob has to apply coincides with the identity, i.e., doing nothing. Bob verifies this 
by detecting his state along the same polarisation axis which was used by Victor. 
A four-fold coincidence in the detectors of Victor's state preparation, Alice's Bell 
measurement and Bob's outgoing state indicate that quantum teleportation of a 
single-photon state is complete. 

There is however a complication which gave rise to a different interpretation of 
the experiment [32, 24, 25, 99]. Analysis shows that the state before detection by 
Bob (but conditioned on the other three detector 'hits') is a mixture of the vacuum 
and the original state [23, 32] (to lowest order). This vacuum contribution occurs 
when the down-converter responsible for creating the input state 14>) yields two 
photon-pairs, while the other gives nothing. The detectors used in the experiment 
cannot distinguish between one or several photons coming in, so Victor's detection 
of mode a in figure VI.1 will not reveal the presence of more than one photon. A 
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three-fold coincidence in the detectors of Victor and Alice alone is still possible, 
but Bob has not received a photon and quantum teleportation has not been 
achieved. Bob therefore needs to detect his state in order to identify successful 
quantum teleportation. Were Victor to use a detector which can distinguish 
between one or several photons this problem would disappear. However, currently 
such detectors require an operating environment of roughly 6K [108, 110, 93, 162]. 

I evaluate the suggestions to 'improve' the experiment in order to yield non
post-selected operation, as made by Braunstein and Kimble [32] (I will discuss 
the reply by Bouwmeester et al. [24, 25] in section g). These suggestions include 
the employment of a detector cascade ( as proposed in chapter IV) in the state 
preparation mode, and enhancement of the down-converter responsible for the 
entanglement channel (see chapter III) relative to the one responsible for the 
initial state preparation. Subsequently, I hope to clarify some of the differences 
in the interpretation of the Innsbruck experiment [99]. 

As pointed out by Braunstein and Kimble [32], to lowest order the teleported 
state in the Innsbruck experiment is a mixture of the vacuum and a single-photon 
state. However, we cannot interpret this state as a low-efficiency teleported state, 
where sometimes a photon emerges from the apparatus and sometimes not. This 
reasoning is based on the so-called 'Partition Ensemble Fallacy', or PEF3 for 
short. It will be studied more extensively in section g. PEF relies on a par
ticular partition of the outgoing density matrix, and this is not consistent with 
quantum mechanics [131]. Circumventing PEF leads to the notion of post-selected 
teleportation, in which the teleported state is detected. The post-selected tele
portation indeed has a high fidelity and a low efficiency. Although generally PEF 
is harmless (it might even be considered a useful tool in understanding aspects 
of quantum theory), to my knowledge, this is the first instance where it leads to 
a quantitatively different evaluation of an experiment. 

It will turn out that the suggested improvements require near perfect effi
ciency photo-detectors or a considerable increase in the time needed to run the 
experiment. The remaining practical alternative in order to obtain non-post
selected quantum teleportation (i.e., teleportation without the need for detecting 
the teleported photon) is to employ a single-photon resolution detector in the 
state-preparation mode (a technology currently requiring approximately 6K op
erating conditions) [93, 162] (see also chapter IV). 

c The generalised experiment 

In the rest of this section I consider a generalised scheme for the Innsbruck exper
iment which enables us to establish the requirements to obtain non-post-selected 
quantum teleportation (based on a three-fold coincidence of Victor and Alice's de
tectors). The generalisation consists of a detector cascade ( Chapter IV and Ref. 

3This term was coined by Samuel L. Braunstein and first appeared in Kok and Braunstein 
[99). 
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Alice 
state-preparation Bell-detection 

(7 C7 ~ 

u V 

b C d 

Source 1 Source 2 

Bob 

Figure VI.2: Schematic 'unfolded' representation of the teleportation ex
periment with two independent down-converters (Source 1 and Source 2) 
and a polarisation rotation 0 in mode a. The state-preparation detector is 
actually a detector cascade and Bob does not detect the mode he receives. 
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[158) for Victor's state preparation detection and parametric down-converters 
with different specifications, rather than two identical down-converters. Further
more, an arbitrary polarisation rotation in the state-preparation mode allows us 
to consider any superposition of x- and y-polarisation. I calculate the output 
state and give an expression for the teleportation fidelity in terms of the detec
tor efficiencies and down-conversion rates. To this end, I consider a simplified 
'unfolded' schematic representation of the experiment, shown in figure VI.2. 

d Detectors 

As explained in chapter IV, there are two sources of errors for a detector: losses 
and dark counts. Dark counts are negligible in the teleportation experiment be
cause the uv-pump is fired during very short time intervals and the probability 
of finding a dark count in such a small interval is negligible. Consequently, the 
model for real, finite-efficiency detectors I presented in chapter IV only takes 
into account detector losses. Furthermore, the detectors cannot distinguish be
tween one or several photons. In my terminology: finite-efficiency single-photon 
sensitivity detectors ( see page 61). 

To simulate a realistic detector I make use of projection operator valued mea
sures, or POVM's for short [107] (see also appendix B). Consider a beam-splitter 
in the mode which is to be detected so that part of the signal is reflected (see 
figure VI.3). The second incoming mode of the beam-splitter is the vacuum (I 
neglect higher photon number states because they hardly contribute at room tem
perature). The transmitted signal c is sent into an ideal detector. We identify 
mode d with the detector loss. 



92 VI TELEPORTATION AND ENTANGLEMENT SWAPPING 
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d 

Figure VI.3: A model of an inefficient detector. The beam-splitter with 
transmission amplitude rt will reflect part of the incoming mode a to mode 
d, which is thrown away. The transmitted part c will be sent into a ideal 
detector. Mode bis vacuum. 

Suppose in mode a there are n x-polarised and my-polarised photons. Fur
thermore, let these photons all be reflected by the beam-splitter. The projector 
for finding these photons in the d-mode is given by: 

(VI.12) 

The beam-splitter equations are taken to be (rj = Jl - r/2): 

C = rJO, + rjb and (VI.13) 

Substituting these equations in (VI.12), summing over all n and m and using the 
binomial expansion yields 

Since the b-mode is the vacuum, the only contributing term is k = l = 0. So the 
POVM Ei0

) of finding no detector counts in mode a is 

E
(O) -_ L r;n(at)nr;m(at)m 

-----"-- IO)axay(OI r;na~r;mamy = '°"' f(n+m)ln,m)axay(n,m l . 
a n!m! L-

n~ n~ 

(VI.15) 

The required POVM for finding a detector count is 

E(l) = n - E(o) = '°"'[1 - ;;;2(n+m)] In m) (n ml a a L__ ·, , ax ay , , (VI.16) 
n,m 

where n. is the identity operator, rJ2 is the detector efficiency and rj2 _ 1 - rJ2 the 
detector loss. When we let Ei1

) act on the total state and trace out mode a, we 
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have modelled the inefficient detection of this mode. In the case of continuous 
detection we need a more elaborate model ( see for example Ref. [1 75]). 

In order for Victor to distinguish between one or more photons in the state 
preparation mode a, I consider a detector cascade (Victor doesn't have a detector 
which can distinguish between one or several photons coming in). When there 
is a detector coincidence in the cascade, more than one photon was present in 
mode a, and the event should be dismissed. In the case of ideal detectors, this will 
improve the fidelity of the teleportation up to an arbitrary level (we assume there 
are no beam-splitter losses). Since we employ the cascade in the a-mode (which 
was used by Victor to project mode b onto a superposition in the polarisation 
basis) we need to perform a polarisation sensitive detection. 

In order to model this I separate the incoming state In, m)axay of mode a into 
two spatially separated modes jn)a:r and jm)ay by means of a polarisation beam
splitter. The modes ax and ay will now be detected. The POVM's corresponding 
to inefficient detectors are derived along the same lines as in the previous section 
and read: 

L fnln)ai (nl and 
n 

L[l - fn]ln)ai(nl. (VI.17) 
n 

with j E {x,y}. we choose to detect the x-polarised mode. This means that we 
only have to make sure that there are no photons in the y-mode. The output 
state will include a product of the two POVM's: one for finding a photon in mode 
ax, and one for finding no photons in mode ay: Ei:) Ei~). 

To make a cascade with two detectors in ax and one in ay employ another 
50:50 beam-splitter in mode ax and repeat the above procedure of detecting the 
outgoing modes c and d (VI.17). Since we can detect a photon in either one of 
the modes, we have to include the sum of the corresponding POVM's, yielding a 
transformation E~!) E~~) + E~~) E~~). This is easily expandable to larger cascades 
by using more beam-splitters and summing over all possible detector hits. 

e Output state 

In this section I incorporate the finite-efficiency detectors and the detector cascade 
in the calculation of the undetected teleported output state. This calculation 
includes the creation of two photon-pairs (lowest order) and three photon pairs 
(higher order corrections due to four or more photon-pairs in the experiment are 
highly negligible). A formula for the vacuum contribution to the teleportation 
fidelity is given for double-pair production (lowest order). 

Let the two down-converters in the generalised experimental setup yield evo
lut ions Usrcl and Usrc2 on modes a, b and c, d respectively (see figures VI.1 and 
VI.2) according to Eq. (III.22). The beam-splitter which transforms modes band 
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c into u and v (see figure VI.2) is incorporated by a suitable unitary transfor
mation U8 s, as is the polarisation rotation U8 over an angle 0 in mode a. The 
N-cascade will be modelled by N -1 beam-splitters in the x-polarisation branch 
of the cascade, and can therefore be expressed in terms of a unitary transforma
tion Ua

1 
••• aN on the Hilbert space corresponding to modes a 1 to aN (i.e. , replace 

mode a with modes a1 to aN ): 

(VI.18) 

Detecting modes a1 ... aN, u and v with real (inefficient) detectors means tak
ing the partial trace over the detected modes, including the POVM's derived in 
section d: 

(VI.19) 

with EN-cas the superposition of POVM's for a polarisation sensitive detector 
cascade having n detectors with finite efficiency. In the case N = 2 this expression 
reduces to the 2-cascade POVM-superposition derived in the previous section. 
Eq. (VI.19) is an analytic expression of the undetected outgoing state in the 
generalisation of the Innsbruck experiment. 

The evolutions Usrcl and Usrc2 are exponentials of creation operators. In the 
computer simulation (using MATHEMATICA, see appendix H) I truncated these 
exponentials at first and second order. The terms that remain correspond to 
double and triple pair production in the experimental setup. To preserve the 
order of the creation operators we put them as arguments in a function f. I 
defined the following algebraic rules for f (see appendix H): 

f[x __ , Y-- + w __ , z __ ] - f [x, y, z] + f [x, w, z] 
f [x __ , n a __ , y __ J - n f [x, a, y] 
f[x __ , n - adagger __ , y __ J - n f [x, adagger, y] 

where x, y, z and w are arbitrary expressions including creation and annihilation 
operators (adagger and a) and n some expression not depending on creation or 
annihilation operators. The last entry of f is always a photon number state 
(including the initial vacuum state). 

Since we now have functions of creation and annihilation operators, it is quite 
straightforward to define (lists of) substitution rules for a beam-splitter (see also 
Eq. (VI.13)) , polarisation rotation, POVM's and the trace operation. I then use 
these substitution rules to 'build' a model of the generalised experimental setup. 

f Results 

The probability of creating one entangled photon-pair using the weak parametric 
down-conversion source 1 or 2 is p1 or p2 respectively (see figure VI.2). I calculated 
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the output state both for an N-cascade up to order p2 (i.e. Pi or p1p2) and for a 
I-cascade up to the order p3 (pr, PiP2 or p1p~)- The results are given below. For 
brevity, we take: 

cos 010, 1) + ei'P sin 011, 0) 
ei'P sin 0 IO, I) - cos 0 I I , 0) 

and 
(VI.20) 

as the ideally prepared state and the state orthogonal to it. Suppose 77; and 77; are 
the efficiencies of the detectors in mode u and v respectively, and 77; the efficiency 
of the detectors in the cascade (for simplicity I assume · that the detectors in the 
cascade have the same efficiency). Define 9uvc = 77;77;77;. The detectors in modes 
u and v are polarisation insensitive, whereas the cascade consists of polarisation 
sensitive detectors. Bearing this in mind, we have up to order p2 for an N-cascade 
in mode ax and finding no detector click in the ay-mode: 

where the vacuum contribution formula was calculated and found to be correct 
for N:::; 4 (and N-=/- 0). 

In order to have non-post-selected quantum teleportation, the fidelity F must 
be larger than 3/4 [117, 118, 65]. Since I only estimated the two lowest order 
contributions (to p2 and p3

) , the fidelity is also correct up to p2 and p3, and I 
write p(2) and p(3) respectively. Using Eqs. (VI.35) and (VI.21) we have: 

F (2) _ Np2 ~ ------------- > ) 
P1[l + (5N - 3)(1 - 77D] + Np2 - 4 

(VI.22) 

2 (15N - 6)P1 - Np2 
77c ~ (15N - 9)p1 . 

(VI.23) 

This means that in the limit of infinite detector cascading ( N ➔ oo) and p1 = p2 

the efficiency of the detectors must be better than ~: or 93.3% to achieve non
post-selected quantum teleportation. When we have detectors with efficiencies of 
98%, we need at least four detectors in the cascade to get unequivocal quantum 
teleportation. The necessity of a lower bound on the efficiency of the detectors 

· used in the cascade might seem surprising, but this can be explained as follows. 
Suppose the detector efficiencies become smaller than a certain value x. Then 
upon a two-photon state entering the detector, finding only one click becomes 
more likely than finding a coincidence, and 'wrong' events end up contributing 
to the output state. Eq. (VI.23) places a severe limitation on the practical use of 
detector cascades in this situat ion. 

In the experiment in Innsbruck, no detector cascade was employed and also 
the ay-mode was left undetected. The state entering Bob's detector therefore was 
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(up to order p2): 

2 

Pout ex~ 9uvc [(3 - 77~)10)(01 + I\Jro)(\Jrol] + O(p3
) . (VI.24) 

Remember that p1 = p2 since the experiment involves one source which is pumped 
twice. The detector efficiency 77~ in the Innsbruck experiment was 10% [173], 
and the fidelity without detecting the outgoing mode therefore would have been 
F<2) ~ 26% (conditioned only on successful Bell detection and state preparation). 
This clearly exemplifies the need for Bob's detection. Braunstein and Kimble [32] 
predicted a theoretical maximum of 50% for the teleportation fidelity, which was 
conditioned upon (perfect) detection of both the ax- and the ay-mode. 

Rather than improving the detector efficiencies and using a detector cascade, 
Eq. (VI.22) can be satisfied by adjusting the probabilities p1 and p2 of creating 
entangled photon-pairs [32] . From Eq. (VI.22) we have 

N 
Pl ::; 3[1 + (5N - 3)(1 - 77nJP2 · 

(VI.25) 

Experimentally, p1 can be diminished by employing a beam-splitter with a suit
able reflection coefficient rather than a mirror to reverse the pump beam (see 
figure VI.l). Bearing in mind that K is proportional to the pump amplitude, the 
equation Pi = 2 tanh2(Kit) [see the discussion following Eq. (III.33) with i = 1, 2] 
gives a relation between the pump amplitude and the probability of creating a 
photon-pair. In particular when p2 = xp1: 

(VI.26) 

Decreasing the production rate of one photon-pair source will increase the time 
needed to run the experiment. In particular, we have from Eq. (VI.24) that 

(VI.27) 

With 77~ = 10%, we obtain p2 ~ 8.7p1. Using Eq. (III.37) I estimated that 
diminishing the probability p1 by a factor 8.7 will increase the running time 
by that same factor (i.e., running the experiment about nine days, rather than 
twenty four hours). 

The third-order contribution to the outgoing density matrix without cascading 
and without detecting the ay-mode is 

Pout ex ~
1

9uvc(4 - 77; - 77;) 
1

1

6 
[6Pi(6 - 477~ + 77;) I0)(0I 

+ 2P1P2(2 - 77~) (lwo)(Wol + 1wt)(wt1) + 
8P1P2(3 - 77~)P1 + 12p~p2] (VI.28) 
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with (we assume from now on that the phase factor eicp in 1'1'0) is real) 

1 
PI = 2 (11, 0)(1, 01 + 10, 1)(0, II) ' 

1 6 [ (2 + cos 20) 10, 2) (0, 21 + (2 - cos 20) 12, 0) (2, 01 

1 + 211, 1) (1, 11 + 2/2 sin 20 (12, 0)(1, 1 I 
+ 11, 1)(2, 01 + 10, 2)(1, 11 + 11, 1)(0, 21)] 
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(VI.29) 

(VI.30) 

I have explicitly extracted the state which is to be teleported (l'1'0)('1'0J) from the 
density matrix contribution p1 (this is not necessarily the decomposition with the 
largest 1'1'0)("'1'01 contribution). As expected, this term is less important in the 
third order than it is in the second4 . 

The teleportation fidelity including the third-order contribution (VI.28) can 
be derived along the same lines as (VI.22). Assuming that all detectors have the 
same efficiency 'T}2 and p1 = p2 = p, the teleportation fidelity up to third order is 

p(3) = 4 + p(2 - 'TJ2)2 

4( 4 - 'T]2) + p(80 - 76'T}2 + 34r]4 - 3rJ6) 
(VI.31) 

With p = 10- 4 and a detector efficiency of 'T}2 = 0.1, this fidelity differs from 
(VI.22) with only a few parts in ten thousand: 

p(2) _ p (3) 
ex: p ~ 10-4 . 

p (2) 
(VI.32) 

4The density matrix consists of several distinct parts: a vacuum contribution, a contribution 
due to one photon in mode d, two photons, and so on. Suppose there are n photon-pairs created 
in the whole system, and m photon-pairs out of n are produced by the second source (modes c 
and d). The outgoing mode must then contain m photons. Reversing this argument, when we 
find m photons in the outgoing mode the probability of creating this particular contribution 
must be proportional to pr-mpr:J". Expanding then-th order output state into parts of definite 
photon number we can write 

n-1 

P(n) = ~ pn-mpmp(n) 
out L.,; 1 2 m , 

m=O 

where p~) is the (unnormalised) n-th order contribution containing all terms with m photons. 
An immediate corollary of this argument is that all the cross-terms between different photon 

number states in the density matrix must vanish. The cross-terms are present in Eq. (VI.18), 
and I must therefore show that the partial trace in Eq. (VI.19) makes them vanish. Suppose 
there are n photons in the total system. A cross-term in the density matrix will have the form 

Jj, k, l, m)auvdU'' k', l'' m'l ' 
with m-/, m'. We also know that j + k + l + m = j' + k' + l' + m' = n, so that at least one 
of the other modes must have the cross-term property as well. Suppose k is not equal to k'. 
Since we have Tr[[k)(k'l] = bk,k', the cross-terms must vanish. 
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On the other hand, let me compare two gedanken experiments in which the 
cascades have different detector efficiencies (but all the detectors in one cascade 
still have the same efficiency). The ratio between the teleportation fidelity with 
detector efficiencies r/:. and 77! (with 77'2__ and 77! the lower and higher detector 
efficiencies respectively) up to lowest order is 

F.(2) _ F(2) 
95% 10% 

F.(2) 
95% 

ex: 
D.1,J2 

_ __;__2 ~ 0.1 ' 
2-'T]_ 

(VI.33) 

where D..772 is the difference between these efficiencies. This shows that detector 
efficiencies have a considerably larger influence on the teleportation fidelity than 
the higher-order pair production, as expected. 

To summarise my results, I have found that detector cascading is only useful 
for this realisation of quantum teleportation when the detectors in the cascade 
have near unit efficiency, in accordance with the results of chapter IV. In par
ticular, there is a lower bound to the efficiency below which an increase in the 
number of detectors in the cascade actually decreases the ability to distinguish 
between one or several photons entering the cascade. Finally, enhancement of 
the photon-pair source responsible for the entanglement channel relative to the 
one responsible for the state preparation increases the time needed to run the 
experiment by roughly an order of magnitude. 

g Fidelity versus efli.ciency 

In the context of the Innsbruck experiment, the fidelity is used to distinguish 
between quantum teleportation and teleportation which could have been achieved 
'classically' . Here, classical teleportation is the disembodied transport of some 
quantum state from Alice to Bob by means of a classical communication channel 
alone. There is no shared entanglement between Alice and Bob. Since classical 
communication can be duplicated, such a scheme can lead to many copies of the 
transported output state (so-called clones). Classical teleportation with perfect 
fidelity (i.e., F = 1) would then lead to the possibility of perfect cloning, thus 
violating the no-cloning theorem [178, 49]. This means that the maximum fidelity 
for classical teleportation has an upper bound which is less than one. 

Quantum teleportation, on the other hand, can achieve perfect fidelity ( and 
circumvents the no-cloning theorem by disrupting the original). To demonstrate 
quantum teleportation therefore means that the teleported state should have a 
higher fidelity than possible for a state obtained by any scheme involving classical 
communication alone5

. 

For classical teleportation of randomly sampled polarisations, the maximum 
attainable fidelity is F = 2/3 [63, 65). When only linear polarisations are to be 

5The fidelity captures this one particular feature of quantum teleportation very well and is 
already extensively studied. 
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teleported, the maximum attainable fidelity is F = 3 / 4 [117, 118]. These are the 
values which the fidelity of true quantum teleportation should exceed. 

In the case of the Innsbruck experiment, 14>) denotes the 'unknown' linear 
polarisation state of the photon issued by Victor. I can write the undetected 
outgoing state (to lowest order and conditioned on a successful Bell state mea
surement) as 

(VI.34) 

where IO) is the vacuum state. The overlap between 14>) and Pout is given by Eq. 
(II. 71). In the Innsbruck experiment the fidelity F is then given by 

- l,Bl2 

F = Tr[Poutl4>)(4>1] = lal2 + l,812 • (VI.35) 

This should be larger than 3/4 in order to demonstrate quantum teleportation. 
The vacuum contribution in Eq. (VI.34) arises from the fact that Victor cannot 
distinguish between one or several photons entering his detector, i.e., Victor's 
inability to properly prepare a single-photon state. 

As pointed out by Braunstein and Kimble [32], the fidelity of the Innsbruck 
experiment remains well below the lower bound of 3/4 due to the vacuum contri
bution. Replying to this , Bouwmeester et al. [24, 25] argued that 'when a photon 
appears, it has all the properties required by the teleportation protocol'. The 
vacuum contribution in Eq. (VI.34) should therefore only affect the efficiency of 
the experiment, with a consequently high fidelity. However, this is a potentially 
ambiguous statement. If by 'appear' we mean 'appearing in a photo-detector', I 
agree that a high fidelity (and low efficiency) can be inferred. However, this yields 
a so-called post-selected fidelity, where the detection destroys the teleported state. 
The fidelity prior to ( or without) Bob's detection is called the non-post-selected 
fidelity. The question is now whether we can say that a photon appears when no 
detection is made, thus yielding a high non-post-selected fidelity. 

This turns out not to be the case. Making an ontological distinction between 
a photon and no photon in a mixed state (without a detection) is based on what 
we call the 'Partition Ensemble Fallacy,' introduced in chapter II. In the absence 
of Bob's detection, the density matrix of the teleported state (i.e. , the non-post
selected state) may be decomposed into an infinite number of partitions. These 
partitions do not necessarily include the vacuum state at all. It would therefore 
be incorrect to say that teleportation did or did not occur except through some 
operational means (e.g., a detection performed by Bob). 

Bob's detection thus leads to a high post-selected fidelity. However, the vac
uum term in Eq. (VI.34) contributes to the non-post-selected fidelity, decreasing 
it well below the lower bound of 3/4. Due to this vacuum contribution, the Inns
bruck experiment did not demonstrate non-post-selected quantum teleportation. 
Nonetheless, teleportation was demonstrated using post-selected data obtained 
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by detecting the teleported state. By selecting events where a photon was ob
served in the teleported state, a post-selected fidelity higher than 3/4 could be 
inferred ( estimated at roughly 80% [25])6 . 

3 ENTANGLEMENT SWAPPING AND PURIFICATION 

a Teleportation of entanglement: swapping 

In the previous section, I discussed quantum teleportation [14], in which a quan
tum state is sent from Alice to Bob using (maximal) entanglement. If this quan
tum state is itself part of an entangled state, i.e., if Alice's system is entangled 
with Charlie 's system, this entanglement is 'transferred' from Alice to Bob. In 
other words, Bob's system becomes entangled with Charlie's system, even though 
these two systems might never have physically interacted. This is called entan

glement swapping [183]. 
For example, suppose we have a system of two independent polarisation en

tangled photon-pairs in modes a, b and c, d respectively. If we restrict ourselves 
to the Bell states, we have 

However, on a different basis this state can be written as: 

l'11)abcd = t,w-)ad@ 1w-)bc + ~1w+)ad@ 1w+hc 

+t l<P-)ad ® l<P-)bc + ~ j<I>+)ad ® l<I>+)bc · 

(VI.36) 

(VI.37) 

This can be easily checked by writing out the Bell states. The non-cancelling 
terms can be rewritten as Eq. (VI.36). 

If we make a Bell measurement on modes band c, we can see from Eq. (VI.37) 
that the undetected remaining modes a and d become entangled. For instance, 
when we find modes b and c in a j<t>+) Bell state, the remaining modes a and d 
must be in the j<t>+) state as well. In appendix E I show that a suitably chosen 
unitary transformation of Bob's branch can return the state to 1'11-)ad, just as in 
the teleportation of a single state. 

Entanglement swapping was performed in Innsbruck by Pan et al. in 1998 
[126]. In this experiment two parametric down-converters were employed to cre
ate polarisation entanglement7 . The schematics of the experimental setup are 
depicted in Fig. VI.4. One branch of each down-converter is sent into a 50:50 

6We recall that this entire discussion is restricted to the subset of events where successful 
Bell-state and state-preparation have occurred. 

71n the experiment, the two down-converters were implemented by a single BBO crystal 
pumped twice in opposite directions. The experiment thus closely resembled the quantum 
teleportation experiment six months earlier [23] (see also chapter II). 
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THE PHYSICAL STATE 

a 

PDCl PDC2 

Figure VI.4: A schematic representation of the entanglement swapping 
setup. Two parametric down-converters (PDC) create states which exhibit 
polarisation entanglement. One branch of each source is sent into a beam 
splitter (as) , after which the polarisation beam splitters (PBS) select par
ticular polarisation settings. A coincidence in detectors Du and Dv ideally 
identify the 1w-) Bell state. However, since there is a possibility that one 
down-converter produces two photon-pairs while the other produces noth
ing, the detectors Du and Dv no longer constitute a Bell-detection, and the 
freely propagating PHYSICAL STATE is no longer a pure Bell state. 
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beam-splitter. The outgoing modes of the beam-splitter are detected. A detector 
coincidence indicates that the state 1w-) was present, and thus acts as an (in
complete) Bell measurement. I have included two polarisation beam-splitters in 
the outgoing modes of the beam-splitter. These were not present in the actual 
experiment, but they play an important role in the subsequent discussion [184]. 

Since entanglement swapping is formally the teleportation of one branch of an 
entangled state, it should not come as a surprise that the entanglement swapping 
experiment performed by Pan et al. suffers from the same complication as the 
quantum teleportation experiment performed by Bouwmeester et al. [23]: apart 
from both down-converters creating a single pair, there is also the possibility that 
one of the down-converters creates two pairs, while nothing happens in the other. 

Now I use the extra information about the detected photons due to the polar
isation beam-splitters in figure VI.4. Conditioned on the polarisation (j , k ), with 
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j, k E { x, y }, of the detected photons we obtain the outgoing states 

l1'(x,y))i4 

IY(y,x)}14 

IY(y,y)h4 

- ~ (10,y2
) - IY2,o)) , 

1 
2 (jxy,0)- lx,y) + jy,x) - IO,xy)), 

1 

2 (lxy, 0) + Ix, y) - IY, x) - IO, xy)) , 

~ (IO, x2
) - lx2

, 0)) . (VI.38) 

The outgoing state of the entanglement swapping experiment (without the po
larisation beam-splitter) is a random mixture of these four states. 

Let me define the following states: 

l<I>xy) 
1 v'2 (lxy, 0) - IO, xy)) 

l<I>x2) 1 ( 2 2 ) v'2 Ix , 0) - IO, x ) , 

I <I> y2) l ( 2 2 ) v'2 IY '0) - 10, y ) 

1w-) 1 v'2 (Ix, y) - IY , x)) (VI.39) 

After some involved, but essentially straightforward algebra it can be shown that 
the outgoing state of the entanglement swapping experiment performed by Pan 
et al. can also be written as the mixed state p: 

(VI.40) 

to lowest order. Conditioned on detected photons in the outgoing modes a high 
entanglement swapping fidelity can be inferred (F ~ 1). However, the fidelity for 
non-post-selected entanglement swapping is F = ¼- This argument is completely 
analogous to the argument presented in section 2g. 

b Entanglement swapping as purification 

The non-post-selected fidelity F = ¼ of having a maximally entangled state I'¥-) 
as the output of the entanglement swapping experiment is much higher than the 
that of the down-converter output state, where F ~ 10-4 . This suggests that 
entanglement swapping can be viewed as a purification protocol (see also chapter 
III). Indeed, this has been suggested by Bose et al. [21] . This protocol was 
subsequently extended by Shi et al. [152]. 

The Bose protocol works as follows: let x and y denote photons with polari
sations in the x- and y-direction of a Cartesian coordinate system. We consider 
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(an ensemble of) non-maximally entangled states for two systems 1 and 2 

l<I>(0))i2 = cos 0lx, x)i2 + sin 0Jy, Y)12 , 

and similarly for systems 3 and 4: 

l<I>(0))J4 = cos0Jx,x)J4 +sin0ly,y)J4. 

(VI.41) 

(VI.42) 

The purification protocol now employs entanglement swapping from systems 1, 
2 and 3, 4 to the two systems 1 and 4. These two systems were previously unen
tangled. Making a Bell measurement of system 2 and 3 entangles the remaining 
syst ems 1 and 4. 

There are four different outcomes of the Bell measurement, which give rise to 
four different entangled states in systems 1 and 4. These are [21] 

l<I>+)23 : 

l<I>-)23 : 

1-w+)23 : 

l'11outh4 = ~ ( cos2 0lx , x)i4 + sin2 0ly, y)i4) , 

l'11outh4 = ~ (cos2 0lx, x)i4 - sin2 0ly, y)i4) , 

1 
l'11outh4 = v'2 (Ix, y)i4 + IY, x)i4) , 

1 
l'11out)i4 = v'2 (Ix, y)i4 - IY , x)i4) (VI.43) 

The normalisation factor N is given by N = ✓cos4 0 + sin4 0. It is easily seen 
that the measurement outcomes l<I>+)23 and l<I>-)23 actually degrade the entan
glement compared to the entanglement of the systems 1 and 2 or 3 and 4. In the 
case of m easurement outcomes 1w+)23 and Jw-)23 , however, the resulting (pure) 
states are maximally entangled. With probability v'2 cos 0 sin 0 we will obtain a 
maximally entangled state, and with probability ✓ cos4 0 + sin4 0 we degrade the 
entanglement. 

When we compare this protocol with the swapping experiment by Pan et al., 
we note that there is a crucial difference: The outgoing state of the experiment is 
not confined to the Hilbert space spanned by the basis {Ix, x), Ix, y), IY, x), IY, y) }, 
contrary to the protocol by Bose et al. In addition , we have to include states like 
the vacuum (IO)) and two-photon states (lx2), IY2) and lxy) ). 

However, if the swapping protocol used by P an et al. can increase the en
tanglement content upon repetition of the procedure in this larger Hilbert space 
(or, more precisely, t his truncated Fock space), we can still call it a purification 
protocol. I will now investigate this. 

First, I have to determine precisely what I mean by a repetition of the swap
ping procedure. It means that the outgoing states of two distinct entanglement 
swapping setups are again used as an entanglement source for a swapping exper
iment. Repeating this N times, we can depict this as a string of down-converters 
connected by beam-splitters (see figure VI.5) . Such a string can consist of an even 
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photo-detections 

(7 ~ (? ~ 

1 2 3 N 

Figure VI.5: A series of parametric down-converters 1 to N, of which the 
outgoing modes are connected by beam-splitters to form a string. The 
photo-detections are essentially polarisation sensitive photo-detectors ( an 
incomplete Bell measurement would require the loss of the polarisation 
information). This can be interpreted as repeated entanglement swapping. 
However, is it also a repeated purification protocol? 

or an odd number of down-converters. When N is odd, we have a string of 'entan
glement swappers' the outgoing states of which are again used in entanglement 
swapping. 

Instead of Bell detections, we consider polarisation sensitive photo-detection. 
This allows us to condition the outgoing state on x- and y-polarised photons in 
the detectors. In the case N = l this led to the outgoing state 

1 
li(x,y)) = v'2 (lxy, 0) - IO, xy)) . (VI.44) 

In the case of N down-converters, we can keep track of the single- and double-pair 
production in the following table: 

PDC 1 2 3 N 
# pairs 1 1 1 ... 1 

0 2 0 . .. 0/2 (odd/even) 
2 0 2 . . . 2/0 (odd/even) 

In the top row the parametric down-converters are enumerated (in accordance 
with figure VI.5). The entries in the lower rows identify the number of photon
pairs created by the associated down-converter. These rows identify the only 
three possibilities in which the detectors (from left to right) signal the detection 
of polarised photons in the direction x, y , x, y ... 

There are several things to be noted. First of all, depending on the parity of 
N , the bottom three rows correspond to different orders of pair-creation. The 
lowest order corresponds to no created pairs (vacuum), the next order is one 
created pair, and so on. Since parametric down-conversion has such a small 
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probability of creating an entangled photon-pair, the lowest order is always by 
far the leading order. 

Secondly, we can easily verify that the possibility of every down-converter 
creating exactly one photon-pair never occurs alone. We can always construct a 
different photon-pair configuration of the same order which triggers the detectors 
in the same way, thus preventing the creation of maximal entanglement ( this 
is, of course, not the proof I was looking for in section 3 of chapter III). At 
the same time, it is easily verified that (for ideal detections) the possibility that 
one down-converter creates three pairs is dismissed, since it would mean that 
some detectors see at least two photons. Furthermore, this procedure can be 
immediately repeated for other polarisation choices in the detectors. 

Finally, we should note that the entanglement content alternates between 
almost nothing (F ~ 10-4

) and about one quarter (F = ¼)- This behaviour 
occurs because for an odd number of down-converters, the detectors in the setup 
can be triggered by (N - 1)/2 down-converters creating a double-pair. The total 
number of pairs is then N - 1, which is the lowest order. 

When we have an even number of down-converters we have three possibilities 
given in the table above. When every down-converter creates one photon-pair, 
the outgoing state will be (up to lowest order) the anti-symmetric Bell state. In 
this case, all down-converter modes are connected by means of the beam-splitter 
operations and entanglement swapping is successful. On the other hand when the 
down-converters create two and zero photon pairs in alternation, the left-hand 
outgoing mode is independent from the right-hand outgoing mode. There is only 
a classical correlation between them: if on the left there are two photons, then 
we have the vacuum state on the right and vice versa. 

The outgoing state is 

1 
IT)= 2 (I0,xy)-,, lx,y) + ly,x) - jxy,0)) , (VI.45) 

conditioned on a detector sequence x, y, x, y ... This is independent of the 
number of down-converters, as long as it is even. As a consequence, we cannot 
interpret entanglement swapping as performed by Pan et al. as a purification 
protocol. 

c Entanglement content of output states 

I will now return to the states given by Eq. (VI.38). These states can also be 
obtained by running the states jx, ~) , jx, y), IY, x) and jy, y) through a 50:50 beam
splitter. This raises the question what the entanglement content of the states of 
Eq. (VI.38) is. After all, the states jj, k) (with j , k E {x, y}) are separable. 

The non-locality of single photons has been studied by Hardy [79, 80] and 
Peres [133] (see also chapter II). Let a and b denote different spatial modes, j0) is 
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the vacuum and 11) is a single-photon state. The essential idea is that the state 

(VI.46) 

can be used to construct the violation of the Clauser-Horne-Shimony-Holt, or 
CHSH inequality [44, 131] (this is a variant of a Bell inequality [11]). Conse
quently, a single-photon state can exhibit non-local properties. This point was 
debated by Vaidman [166] and Greenberger, Horne and Zeilinger [72, 73]. 

Here, I will discuss the entanglement content of the two-photon states which 
are obtained by mixing two single-photon states at a 50:50 beam-splitter. To this 
end I use the so-called Peres-Horodecki partial transpose criterion for density 
matrices [87, 134] (see appendix B). Using the partial transpose criterion I will 
examine the entanglement content of the state (lx2

, 0) - IO, x2
)) /-/2 and the 

density matrix p, which is a mixture of the states given in Eq. (VI.38). 
We can write the density matrix of the state ( I x2

, 0) - IO, x2
)) / -J2 as 

1 
p = 2 (IO, x2 )(0, x21- IO, x2 )(x2

, OI - lx2
, 0)(0, x21 + lx2

, O)(x2
, OI) . (VI.47) 

We obtain the partial transpose by exchanging the second entries of the bras and 
kets, yielding 

In matrix representation on the basis { IO, 0), IO, x2
), Jx2

, 0), lx2
, x2

), } this be
comes8 

( 

0 0 0 -1) 
'=! 0 1 0 0 

P 2 0 0 1 0 
-1 0 0 0 

(VI.49) 

The eigenvalues of this matrix are 1/2 (with multiplicity 3) and - 1/2. As proved 
in appendix B, the negative eigenvalues imply that the state (IO, x2

) - lx2
, 0) )/-/2 

is entangled. 
In the experiment performed by Pan et al., no polarisation beam-splitters 

were used, and the outgoing state before post-selection was a mixture of the 
states given in Eq. (VI.39). The density matrix can be written as 

P = i [10, x2
) (0, x2 I - IO, x2

) (x2
, OI - jx2

, 0) (0, x2
1 

+lx2
, O)(x2

, OI + IO, Y2)(0, Y21- IO, Y2)(y2
, OI - IY2

, 0)(0, Y21 
8This is a matrix on a truncated Fock space corresponding to the gi~en basis. 
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+ly2,0)(y2,0I + lxy,0)(xy,0l - lxy,0)(0,xyl- I0,xy)(xy,0I 
+10,xy)(0,xyl + lx,y)(x,yl - lx,y)(y,xl 
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-ly,x)(x,yl+ly,x)(y,xl ] . (VI.50) 

The partial transpose then becomes 

p' = l [10, x2
) (0, x2 I - IO, 0) (x2

, x2 I - lx2
, x2

) (0, OI 

+lx2 ,0)(x2 , 0I + IO,y2)(0,y21- IO,O)(y2,Y21- IY2 ,Y2)(0,0I 
+ ly2,0)(y2,0I + lxy,O)(xy,01-lxy,xy)(O,OI- I0,0)(xy,xyl 
+10,xy)(O,xyl + lx,y)(x,yl- lx,x)(y,yj 

-ly,y)(x,xl+ly,x)(y,xl] . (VI.51) 

In matrix representation on the basis 

{IO, 0), IO, x2
), lx2

, 0), lx2
, x2

), IO, y2
), jy2

, 0), ly2, y2
), 

lxy, 0), IO, xy), lxy, xy), Ix, y), IY, x), Ix, x), IY, y)}, 

the partial transpose p' becomes9 

0 0 0 -1 0 0 -1 0 0 - 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 

I 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 
(VI.52) p=-

0 0 0 0 0 0 0 1 0 0 0 0 0 0 8 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 

. The eigenvalues of this matrix are given by O (multiplicity 2), 1/8 (multiplicity 9) , 
-1/8 (multiplicity 1), ./3/8 (multiplicity 1) and -./3/8 (multiplicity 1). Since 
p' has negative eigenvalues, p is an entangled state [134, 87]. This means t hat 
entanglement swapping as it was originally proposed really does work, although 
maximally entangled (Bell) states can only be seen in a post-selected manner. 

This teaches us something interesting about entanglement. It is generally 
believed that when two systems are entangled, they have somehow interacted 

9 Again on a truncated Fock space. 
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Figure VI.6: Schematic representation of the experimental setup which was 
used to demonstrate the existence of three-photon GHZ-states in a post
selected manner. A BBO crystal is pumped to create two photon pairs. The 
subsequent interferometer is arranged such that conditioned on a detection 
event in detector T , the detectors Di, D2 and D3 signal the detection of 
a GHZ-state. Furthermore, the interferometer includes polarisation beam
splitters (PBSi and PBS2), a beam-splitter (BS) and a >../2 phase plate 
which transforms IY) into (Ix)+ IY))//2. 

in the past. However, in the beam-splitter the two photons do not interact with 
each other, and yet the outgoing state (given a separable input state) is entangled. 
This shows that entanglement does not necessarily originates from an interaction. 

4 THREE-PARTICLE ENTANGLEMENT 

Three-particle maximally entangled states have also been produced in a post
selected manner [26]. In figure VI.6 a schematic representation of this experiment 
is shown [182]. As in the teleportation and entanglement swapping experiments, 
a non-linear crystal is pumped with a short-pulsed high-intensity laser. However, 
this time the setup is chosen such that the down-converter directly creates two 
photon-pairs in modes a and b. The lowest order of the created state which can 
trigger the four detectors (T, Di, D2 and D3 ) is given by 

(VI.53) 

with~<< 1. 
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It is clear that only the branch lxy, xy)ab can trigger all detectors due to the 
polarisation beam-splitter PBS1 (up to lowest order). This polarisation beam
splitter transmits x-polarised photons (which trigger T) and the retardation plate 
transforms the reflected photon IY) into (Ix) + IY)) / y'2. The part of the outgoing 
state (i.e., before detection) due to the input lxy,xy)ab and conditioned on a 
photon in detector T is thus 

l<I>) ex: lxy, x, 0) + Ix, x, y) + lxy, 0, x) + Ix, 0, xy) 
+IY, xy, 0) + I0, xy, y) + IY, Y, x) + IO, Y, xy) . (VI.54) 

From this state it is easily seen that three-photon entanglement can only be 
observed in a post-selected manner by discarding the branches which include the 
vacuum I0). A three-fold coincidence in the detectors D1 , D2 and· D3 can thus 
only come from the branches Ix, x, y) and IY, y, x). 

As I argued in section 1, this experiment does not demonstrate the existence 
of the GHZ-state Ix, x, y) + IY, y, x). However, using post-selection of the data-set 
on a four-fold detector coincidence, non-local correlations could be inferred. This 
was demonstrated by Pan et al. in 2000 [127). In the first experiment [26] two 
tests were made: first it was shown that only the branches Ix, x, y) and IY, y , x) 
contributed to a four-fold coincidence. Secondly it had to be shown that the two 
branches were in a coherent superposition, since the post-selected events could 
be due to a statistical mixture of the two branches. This was done by rotating 
the polarisation over ±45° before detection. The observed visibility in these 
experiments was 75% [26]. 

5 SUMMARY 

In this chapter I studied the optical implementations of quantum teleportation, 
entanglement swapping and the creation of three-photon Greenberger-Horne-Zei
linger entanglement. All these experiments succeeded in a post-selected manner 
and demonstrated their respective non-local features. 

The undetected outgoing state of the teleportation experiment is a mixture 
of the teleported state and the vacuum. As we have shown, this vacuum con
tribution degrades the non-post-selected fidelity, rather than the efficiency of 
the experiment. The outgoing state of the entanglement swapping experiment 
is more complicated, since it is not simply a mixture of the vacuum and the 
swapped state. Here, the photo-detection post-selects particular branches from 
a superposition. 

The same happens in the creation of the three-photon GHZ-state. Further
more, since no physically propagating state left the apparatus after detection, 
we cannot say that the state Ix, x, y) + IY, y, x) was created. However, non-local 
correlations using post-selected data can be observed. 





VII 

QUANTUM LITHOGRAPHY 

Optical lithography is a widely used printing method. In this process light is 
used to etch a substrate. The (un)exposed areas on the substrate then define 
the pattern. In particular, the micro-chip industry uses lithography to produce 
smaller and smaller processors. However, classical optical lithography can only 
achieve a resolution comparable to the wavelength of the used light [38, 115, 116). 
It therefore limits the scale of the patterns. To create smaller patterns we need 
to venture beyond this classical boundary [179]. Here, I investigate how we can 
beat this boundary. This chapter is based on a collaboration with Agedi N. 
Boto, Daniel S. Abrams, Colin P. Williams and Jonathan P. Dowling at the Jet 
Propulsion Laboratory, Pasadena [22, 104, 105]. Recently, similar work was done 
by Bjork, Sanchez Soto and Soderholm [17]. 

In Ref. [22] we introduced a procedure called quantum lithography which 
offers an increase in resolution without an upper bound. This enables us to use 
quantum lithography to write closely spaced lines in one dimension. However, for 
practical purposes (like, e.g. , optical surface etching) we need the ability to create 
more complicated patterns in both one and two dimensions. Here, we study how 
quantum lithography allows us to create these patterns. 

This chapter is organised as follows: first I derive the classical resolution limit 
in section 1. Section 2 reiterates the method introduced in Ref. [22]. Then, in 
section 3, I consider a generalised version of this procedure and show how we 
can tailor arbitrary one-dimensional patterns. Section 4 shows how a further 
generalisation of this procedure leads to arbitrary patterns in two dimensions. 
Finally, section 5 addresses the issues concerning the physical implementation of 
quantum lithography. 

1 CLASSICAL RESOLUTION LIMIT 

Classically, we can only resolve details of finite size. In this section we give a 
derivation of this classical resolution limit using the so-called Rayleigh criterion 
[139]. Suppose two plane waves characterised by k1 and k2 hit a surface under 
an angle 0 from the normal vector. The wave vectors are given by 

k1 = k( cos 0, sin 0) and k2 = k( cos 0, - sin 0) , (VII.l) 
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Figure VII.l: a) Schematic representation of two light beams k1 and k2 
incident on a surface, yielding an interference pattern. b) The interference 
pattern for <p = ky sin 0. 

where we used lk11 = lk21 = k. The wave number k is related to the wavelength 
of the light according to k = 21r / >.. 

In order to find the interference pattern in the intensity, we sum the two plane 
waves at position f' at the amplitude level: 

I(r) <X leiki·f" + eikz·fr = 4cos2 [1(k1 - k2). r] . (VII.2) 

When we calculate the inner product (k1 - k2 ) · f'/2 from Eq. (VII.l) we obtain 
the expression 

I (x ) ex cos2 (kxsin0) (VII.3) 

for the intensity along the substrate in direction x. 
The Rayleigh criterion states that the minimal resolvable feature size t::..x 

corresponds to the distance between an intensity maximum and an adjacent min
imum (see figure VII.l). From Eq. (VII.3) we obtain 

kt::..xsin0 = ~ 2 . 

This means that the maximum resolution is given by 

t::..x = 1f - 1f 

2ksin0 2 (2; sin0) 

(VII.4) 

(VII.5) 

where >. is the wavelength of the light. The maximum resolution is therefore 
proportional to the wavelength and inversely proportional to the sine of the an
gle between the incoming plane waves and the normal. The resolution is thus 
maximal (t::..x is minimal) when sin 0 = l , or 0 = 1r /2. This is the grazing limit. 
The classical diffraction limit is therefore t::..x = >./ 4. 
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a 20 b 

substrate 

Figure VII.2: Two light beams a and b cross each other at the surface of 
a photosensitive substrate. The angle between them is 20 and they have a 
relative phase difference cp. We consider the limit case of 20 -+ 1r. 
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In this section we briefly reiterate our method of Ref. (22]. Suppose we have two 
intersecting light beams a and b. We place some suitable substrate at the position 
where the two beams meet, such that the interference pattern is recorded. For 
simplicity, we consider the grazing limit in which the angle 0 off axis for the 
two beams is 1r /2 (see figure VII.2). Classically, the interference pattern on the 
substrate has a resolution of the order of >../ 4, where ,\ is the wavelength of 
the light. However, by using entangled photon-number states (i.e., inherently 
non-classical states) we can increase the resolution well into the sub-wavelength 
regime [90, 138, 163, 62]. 

How does quantum lithography work? Let the two counter-propagating light 
beams a and b be in the combined entangled number state 

(VII.6) 

where cp = kx /2, with k = 21r / .\. We define the mode operator e = ( a + b) / -/2 
and its adjoint et= (at +ht)/-/2. The deposition rate I:::,, on a substrate sensitive 
to N photons with wavelength >. (a so-called N-photon resist) is then given by 

with (VII.7) 

i.e., we look at the higher moments of the electric field operator [70, 91, 135]. The 
deposition rate I:::,, is measured in units of intensity. Leaving the substrate exposed 
for a time t to the light source will result in an exposure pattern P( r.p) = !:::,,Nt. 

After a straightforward calculation we see that 

l:::,,N ex (1 + cosNcp). (VII.8) 

We interpret this as follows. A path-differential phase-shift cp in light beam b 
results in a displacement x of the interference pattern on the substrate. Using 
two classical waves, a phase-shift of 21r will return the pattern to its original 
position. However, according to Eq. (VII.8) , one cycle is completed after a shift 
of 21r / N. This means that a shift of 21r will displace the pattern N times. In other 
words, we have N times more maxima in the interference pattern. These need 
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to be closely spaced, yielding an effective Rayleigh resolution of .6.x = >../4N, a 
factor of N below the classieal interferometric result of .6.x = >../ 4 [38]. 

Physically, we can interpret this result as follows: instead of having a state of 
N single photons, Eq. (VII.6) describes an N-photon state. Since the momentum 
of this state is N times as large as the momentum for a single photon, the 
corresponding De Broglie wavelength is N times smaller. The interference of this 
N-photon state with itself on a substrate thus gives a periodic pattern with a 
characteristic resolution dimension of .6.x = >../ 4N. 

3 GENERAL PATTERNS IN lD 

So far, we have described a method to print a simple pattern of evenly spaced 
lines of sub-wavelength resolution. However, for any practical application we need 
the ability to produce more complicated patterns. To this end, we introduce the 
state 

(VII.9) 

This is a generalised version of Eq. (VII.6). In particular, Eq. (VII.9) reduces to 
Eq. (VII.6) when m = 0 and 0m = 0. Note that we included a relative phase 
ei8m, which will turn out to be crucial in the creation of arbitrary one-dimensional 
patterns. 

We can calculate the deposition rate again according to the procedure in 
section 2. As we shall see later, in general, we can have superpositions of the 
states given by Eq. (VII.9). We therefore have to take into account the possibility 
of different values of m, yielding a quantity 

(VII.10) 

Note that this deposition rate depends not only on the parameter <p, but also on 
the relative phases 0m and 0m'. The deposition rate then becomes 

A Nm' 
uNm OC (:) (;) [ei(m' -m)IO + i(N- m-m')cpei0m, + 

e-i(N-m-m')IOe- i0m + e-i(m'-m)cpei(0m1-0m)] (VII.11) 

Obviously, (1f!Nml6tl'l/JN'm') = 0 when l (/. {N, N'} . Form= m', the deposition 
rate takes on the form 

(VII.12) 

which, in the case of m = 0 and 0m = 0, coincides with Eq. (VII.8). When 0m is 
suitably chosen, we see that we also have access to deposition rates (1 - cos N <p) 
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and (1 ± sinN<p). Apart from this extra phase freedom, Eq. (VII.12) does not 
look like an improvement over Eq. (VII.8), since N - 2m::; N, which means that 
the resolution decreases. However, we will show later how these states can be 
used to produce non-trivial patterns. 

First, we look at a few special cases of 0m and 0m'· When we write fl~:' = 
fl~:' (0m, 0m') we have 

fl Nm' (0 0) nm , ex: ( N - 2m ) ( N - 2m' ) cos 
2 

<p cos 
2 

<p , (VII.13) 

fl~:' (0, 1r) ex: ( N - 2m ) ( N - 2m' ) cos 
2 

<p sin 
2 

<p , (VII.14) 

fl~:' ( 7r, 0) ex: ( N - 2m ) ( N - 2m' ) sin 
2 

<p cos 
2 

<p , (VII.15) 

fl~:'(1r,1r) ex: ( N - 2m ) ( N - 2m' ) sin 
2 

<p sin 
2 

<p . (VII.16) 

These relations give the dependence of the matrix elements fl~:' on 0m and 0m, 
in a more intuitive way than Eq. (VII.11) does. Finally, when 0m = 0m' = 0 we 
obtain 

"Nm' [(N - 2m)<p + 0] [(N - 2m')<p - 0] u Nm CX: COS 
2 

COS 
2 

. (VII.17) 

So far we have only considered generalised deposition rates given by Eq. 
(VII.9) , with special values of their parameters. We will now turn our atten
t ion to the problem of creating more arbitrary patterns. 

Note that there are two main, though fundamentally different, ways we can 
superpose t he states given by Eq. (VII.9) . We can superpose states with different 
photon numbers n and a fixed distribution mover the two modes: 

N 

/Wm) = L an/'lj;nm) • (VII.18) 
n=O 

Alternatively, we can superpose states with a fixed photon number N, but with 
different distributions m: 

LN/2J 

/\JIN)= L am /'lf;Nm), (VII.19) 
m=O 

where lN /2 J denotes the largest integer l with l ::; N /2. 
These two different superposit ions can be used to tailor patterns which are 

more complicated than just closely spaced lines. We will now study these two 
different methods. 
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a The Pseudo-Fourier Method 

The first method, corresponding to the superposition given by Eq. (VII.18), 
we will call the pseudo-Fourier method (this choice of name will become clear 
shortly). When we calculate the deposition rate 6..m according to the state l'1'm) 
we immediately see that branches with different photon numbers n and n' do not 
exhibit interference: ' 

n=O n=O 

Using Eq. (VII.12) the exposure pattern P(cp) = 6..mt becomes 

N 

P(cp) = (L ½ {1 + cos[(n - 2m)<p + 0n]} , 
n=O 

(VII.20) 

(VII.21) 

where t is the exposure time and the en are positive. Since m < n and m is fixed, 
we have m = 0. I will now prove that this is a Fourier series up to a constant. 

A general Fourier expansion of p( <p) can be written as 

N 

P ( <p) = I) an cos n<p + bn sin n<p) . (VII.22) 
n=O 

Writing Eq. (VII.21) as 

N N 

P(cp) = t L Cn + t L Cn cos(n<p + 0n) , (VII.23) 
n=O n=O 

where t ~ :=o en is a constant. If we ignore this constant (its contribution to the 
deposition rate will give a general uniform background exposure of the substrate, 
since it is independent of <p) we see that we need 

½ cos( n<p + 0n) = an cos n<p + bn sin n<p (VII.24) 

with Cn positive, 0n E [O, 27r) and an, bn real. Expanding the left-hand side and 
equating terms in cos n<p and sin n<p we find 

and (VII.25) 

This is essentially a co-ordinate change from Cartesian to polar co-ordinates. 
Thus, Eq. (VII.21) is equivalent to a Fourier series up to an additive constant. 
Since in the limit of N ➔ oo a Fourier series can converge to any well-behaved 
pattern P(cp), this procedure allows us to approximate arbitrary patterns in one 
dimension (up to a constant). It is now clear why we call this procedure the 
pseudo-Fourier method. 
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However, there is a drawback with this procedure. The deposition rate .6. is 
a positive definite quantity, which means that once the substrate is exposed at a 
particular Fourier component, there is no way this can be undone. Technically, 
Eq. (VII.21) can be written as 

N 

P ( <p) = Q · t + (2:) an cos n<p + bn sin n<p) , (VII.26) 
n=O 

where Q is the uniform background 'penalty exposure rate' Q = ~:=o ½i we 
mentioned earlier. The second term on the right-hand side is a true Fourier series. 
Thus in the pseudo-Fourier method there is always a minimum exposure of the 
substrate. Ultimately, this penalty can be traced to the absence of interference 
between the terms with different photon number in Eq. (VII.18). Next, we will 
investigate whether our second method of tailoring patterns can remove this 
penalty exposure. 

b The Superposition Method 

We will now study our second method of tailoring patterns, which we call the 
'superposition method' (lacking a better name). Here we keep the total number 
of photons N constant, and change how the photons are distributed between 
the two beams in each branch [see Eq. (VII.19)]. A distinct advantage of this 
method is that it does exhibit interference between the different branches in the 
superposition, which eliminates the uniform background penalty exposure. 

Take for instance a superposition of two distinct terms 

(VII.27) 

with laml2 + lam, 12 = 1 and hL<m) ·given by Eq. (VII.11). After some algebraic 
manipulation the deposition rate can be written as 

/::,.N ex: laml2 
(:) {1 + cos[(N - 2m)<p + 0ml} 

+lam, 12 
(;) {l ~ cos[(N - 2m')cp + 0m']} 

+sr;t (:)(:,) cos (
0
; ' -

0
; + <;~') 

x cost [(N - 2m)<p + 0m] cost [(N - 2m')<p + 0m,] , (VII.28) 

where the deposition rate /::,. is now a function of am and am', where we have 
chosen the real numbers r:' and i;;;:' to satisfy a::nam' = r;;:' exp(i<;;;:

1

) . For the 
special values N = 20, m = 9, m' = 5 and 0m = 0m' = 0 we obtain the pattern 
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Figure VII.3: A simple superposition of two states containing 20 photons 
with distributions m = 9 and m' = 5 (0m = 0m' = O). The deposition rate 
at cp = -,r /2 and cp = 3-,r /2 is zero, which means that there is no general 
uniform background exposure using the superposition method. 

shown in figure VII.3. Clearly, there is no uniform background penalty exposure 
here. 

For more than two branches in the superposition this becomes a complicated 
function, which is not nearly as well understood as a Fourier series. The general 
expression for the deposition rate can be written as 

LN/2J LN/2J m' (N) (N) (0m, 0m m') 
6.N ex ~ L rm m m' cos 2 - 2 + ~m 

m=O m'=O 

x cos 1 [(N - 2m)r.p + 0m] cost [(N - 2m')r.p + 0m,] (VII.29) 

where we have chosen r~;' and ~;;:' real to satisfy o::no:m, = r~' exp(i~;;:') . Note 
that ~;;: = 0. 

If we want to tailor a pattern F( r.p), it might be the case that this type of 
superposition will also converge to the required pattern. We will now compare 
the superposition method with the pseudo-Fourier method. 

c Comparing the two methods 

So far, we discussed two methods of creating non-trivial patterns in one dimen
sion. The pseudo-Fourier method is simple but yields a uniform background 
penalty exposure. The superposition method is far more complicated, but seems 
to get around the background exposure. Before we make a comparison between 
the two methods we will discuss the creation of 'arbitrary' patterns. 

It is well known that any sufficiently well-behaved periodic function can be 
written as an infinite Fourier series (we ignore such subtleties which arise when 
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two functions differ only at a finite number of points, etc.) . However, when we 
create patterns with the pseudo-Fourier lithography method we do not have access 
to every component of the Fourier expansion, since this would involve an infinite 
number of photons (n ➔ oo). This means that we can only employ truncated 
Fourier series, and these can merely approximate arbitrary patterns. 

The Fourier expansion has the nice property that when a series is truncated 
at N, the remaining terms still give the best Fourier expansion of the function up 
to N . In other words, the coefficients of a truncated Fourier series are equal to 
the first N coefficients of a full Fourier series. If the full .Fourier series is denoted 
by F and the truncated series by FN, we can define the normed-distance quantity 
DN: 

(VII.30) 

which can be interpreted as a distance between F and FN. If quantum lithog
raphy yields a pattern PN( t.p) = 6-Nt, we can introduce the following definition: 
quantum lithography can approximate arbitrary patterns if 

(VII.31) 

with c some proportionality constant. This definition gives the concept of ap
proximating patterns a solid basis. 

We compare the pseudo-Fourier and the superposition method for one special 
case. We choose the test function 

F = I -2 <t.p<2, 
{ 

h 'f 7r 7r 

( t.p) 0 otherwise . (VII.32) 

With up to ten photons, we ask how well the pseudo-Fourier and the superposition 
method approximate this pattern. 

In the case of the pseudo-Fourier method the solution is immediate. The 
Fourier expansion of the 'trench' function given by Eq. (VII.32) is well known: 

oo ( l)q 
F(t.p) = L 

2 
- cos[(2q + l) t.p]. 

q=O q + l 
(VII.33) 

Using up to n = 10 photons we include terms up to q = 4, since 2q + 1 ~ 10. The 
Fourier method thus yields a pattern P(cp) (the two patterns P(t.p) and F(t.p) are 
generally not the same) which can be written as 

(VII.34) 



120 VII QUANTUM LITHOGRAPHY 

·-- -, 1/\ 
\ 

\ I 

\ 
\ 

"-._.,,---..___,,,....._____/ 

penalty 
+-------,..~::::::::,,-=:::::::;:::,,,-:::::::~~.J,_--,-,--'- 'P 

1r/2 7f 7f 

Figure VII.4: The deposition rate on the substrate resulting from a super
position of states with n = 10 and different m (black curve) and resulting 
from a superposition of states with different n and m = 0 (grey curve). 
The coefficients of the superposition yielding the black curve are optimised 
using a genetic algorithm [137], while the grey curve is a truncated Fourier 
series. Notice the 'penalty' (displaced from zero) deposition rate of the 
Fourier series between 1r /2 and 31r /2. 

where Cq is a constant depending on the proportionality constant of 6..2q+1, the 
rate of production of l'l/Jnm) and the coupling between the light field and the 
substrate. The term Kq is defined to accommodate for the minus signs in Eq. 
(VII.33): it is zero when q is even and one when q is odd. Note the uniform 
background penalty exposure rate I:!=o cq/(2q + 1). The result of this method 
is shown in figure VII.3. 

Alternatively, the superposition method employs a state 

LN/2J 

I\J!N) = L aml:it'Nm) · (VII.35) 
m=O 

The procedure of finding the best fit with the test function is more complicated. 
We have to minimise the absolute difference between the deposition rate 6..N(a) 
times the exposure time t and the test function F(cp). We have chosen a = 
(a0 , ... , an;z). Mathematically, we have to evaluate the a and t which minimise 
dN: 

with 

(VII.36) 

We have to fit both t and a. Using a genetic optimalisation algorithm [137] 
(with h = l, a normalised height of the test function; see appendix I) we found 
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Figure VII.5: Four light beams a, b, c and d cross each other at the surface 
of a photosensitive substrate. The angles between a and b and c and d are 
again taken in the grazing limit of 1r. The relative phase difference between 
a and b is <p and the relative phase difference between c and d is 0. 
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that the deposition rate is actually very close to zero in the interval 7T /2 ::; 
cp ::; 31r /2, unlike the pseudo-Fourier method, where we have to pay a uniform 
background penalty. This result implies that in this case a superposition of 
different photon distributions m, given a fixed total number of photons N, works 
better than a superposition of different photon number states (see figure VII.3). 
In particular, the fixed photon number method allows for the substrate to remain 
virtually unexposed in certain areas. 

We stress that this is merely a comparison for a specific example, namely 
that of the trench target function F( cp). We conjecture that the superposition 
method can approximate other arbitrary patterns equally well, but we have not 
yet found a proof. Besides the ability to fit an arbitrary pattern, another criterion 
of comparison between the pseudo-Fourier method and the superposition method, 
is the time needed to create the N-photon entangled states. 

Until now, we have only considered sub-wavelength resolution in one direction, 
namely parallel to the direction of the beams. However, for practical applications 
we would like sub-wavelength resolution in both directions on the substrate. This 
is the subject of the next section. 

4 GENERAL PATTERNS IN 2D 

In this section we study how to create two-dimensional patterns on a suitable 
substrate using the quantum lithography techniques developed in the previous 
sections. As we have seen, the phase shift cp, in the setup given by figure VII.I , 
acts as a parametrisation for the deposition rate in one dimension. Let's call this 
the x-direction. 

We can now do the same for they-direction, employing two counter-propagating 
beams (c and d) in the y-direction (see figure VII.4) . The same conditions apply: 
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we consider the limit where the spatial angle 0 off axis approaches 1r /2, thus 
grazing along the substrate's surface. 

Consider the region where the four beams a, b, c and d overlap. For real 
lithography we have to take into account the mode shapes, but when we confine 
ourselves to an area with side lengths .X ( where A is the wavelength of the used 
light) this problem does not arise. 

The class of states on modes a to d that we consider here are of the form 

! [im'PjN - m m· 0 0) + ei(N-m),pei(m Im N - m· 0 0) 2 ) ) ) ' . )) 

+ eikBI 0 , 0; N - k , k) + ei(N-k )xei(k j0, 0; k, N - k)] ,(VII.37) 

where (m and (k are two relative phases. This is by no means the only class of 
states, but we will restrict our discussion to this one for now. Observe that this 
is a superposition on the amplitude level, which allows destructive interference in 
the deposition rate in order to create dark spots on the substrate. Alternatively, 
we could have used the one-dimensional method [with states given by Eq. (VII.9)] 
in the x- and y-direction, but this cannot give interference effects between the 
modes a, b and c, d. 

The phase-shifts r.p and x in the light beams band d (see figure VII.4) result 
in respective displacements x and y of the interference pattern on the substrate. 
A phase-shift of 21r in a given direction will displace the pattern, say, N times. 
This means that the maxima are closer together, yielding an effective resolution 
equal to .6.x = .6.y = .X/4N. This happens in both the x- and they-direction. 

We proceed again as in section 2 by evaluating the N th order moment JN of 
the electric field operator [see Eq. (VII.7)] . On a substrate sensitive to N photons 
this gives the deposition rate .6.W'.;:l' = (1P}ml<5Nl7P%m') [with l1P}m) given by Eq. 
(VII.37)]: 

ANm'k' 
UNmk CX: 

(:) (;) ( e-im,peim',p + e-im,pei(N-m'),pei(m, + e-i(N-m),peim'cpe-i(m 

+ e-i(N- m),p ei(N-m')cp e - i((m - (m,) ) 

+ (:) ( ; ) ( e - imcpeik'x + e-imcpei(N-k')xei(k, + e-i(N- m),peik'xe-i(m 

+ e-i(N-m)<p ei(N- k')Xe-i((m-(k,) ) 

+ (:) (; ) ( e-ikxeim'cp + e-ikxei(N- m'),pei(m, + e-i(N- k)xeim'cpe-i(k 

+e-i(N- k)Xei(N-m')cp e - i((k-(m,) ) 

+ ( :) ( ;) ( e - ikxeik'x + e-ikxei(N- k')xei(k, + e-i(N-k)xeik'xe-i(k 

+e-i(N- k)xei(N- k')xe- i((k-(k,) ) . (VII.38) 
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For the special choice of m' = m and k' = k we have 

(VII.39) 

We can again generalise this method and use superpositions of the states given 
in Eq. (VII.37). Note that there are now three numbers N, m and k which can be 
varied. Furthermore, as we have seen in the one-dimensional case, superpositions 
of different n do not give interference terms in the deposition rate. 

Suppose we want to approximate a pattern F( <p, x), with { <p, x} E [O, 21r). 
This pattern can always be written in a Fourier expansion: 

00 

F( <p, x) = L apq cos p<p cos qx + bpq cos p<p sin qxx 
p,q=O 

cpq sin p<p cos qx + dpq sin p<p sin qx . (VII.40) 

with ap, bp, Cq and dq real. In the previous section we showed that quantum 
lithography could approximate the Fourier series of a one-dimensional pattern up 
to a constant displacement. This relied on absence of interference between the 
terms with different photon numbers. The question is now whether we can do the 
same for patterns in two dimensions. Or alternatively, can general superpositions 
of the state l'lfitm) approximate the pattern F(ep, x)? 

From Eq. (VII.38) it is not obvious that we can obtain the four trigonometric 
terms given by the Fourier expansion of Eq. (VII.40): 

6. ex cos pep cos qx , (VII.41) 

6. ex cos pep sin qx , (VII.42) 

6. ex sin pep cos qx ' (VII.43) 

6. ex sin pep sin qx . (VII.44) 

We can therefore not claim that two-dimensional quantum lithography can ap
proximate arbitrary patterns in the sense of one-dimensional lithography. Only 
simple patterns like the one given in figure VII.5 can be inferred from Eq. (VII.38). 
In order to find the best fit to an arbitrary pattern one has to use a minimisation 
procedure. 

For example, we calculate the total deposition rate due to the quantum state 
[1liN), where 

LN/2J LN/2J 

liiiN) = L L amk ['lf!tm) · (VII.45) 
m=O k=O 
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Figure VII.6: A simulation of a two-dimensional intensity pattern on an 
area >.2, where>. denotes the wavelength of the used light. Here, I modelled 
a square area with sharp edges. The pattern was generated by a Fourier 
series of up to ten photons (see also figure VII.4 for the one-dimensional 
case) . 

Here, amk are complex coefficients. We now proceed by choosing a particular 
intensity pattern F( <p, x) and optimising the coefficients amk for a chosen number 
of photons. The deposition rate due to the state I \ll' N) is now 

LN/2J LN/2J 

'6.N(a) = L L a':nkam1k 1'6.~:t ' (VII.46) 
m,m'=O k,k'=O 

with a= (a0,0, a 0,1 ... , aN;2,N;2) . We again have to evaluate the a and t which 
minimise 

(VII.47) 

The values of a and t can again be found using a genetic algorithm. 

5 PHYSICAL IMPLEMENTATION 

With current experimental capabilities, the physical implementation of quantum 
lithography is very challenging. In particular, there are two major issues to be 
dealt with before quantum lithography can become a mature technology. First 
of all, we not only need the ability to create the entangled photon states given 
by Eqs. (VII.9) and (VII.37), but we should also be able to create coherent 
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superpositions of these states. One possibility might be to use optical components 
like parametric down-converters. Contrary to the results of Ref. [100], we are not 
concerned with the usually large vacuum contribution of these processes, since 
the vacuum will not contribute to the spatial profile of the deposition [see Eqs. 
(VII.6) and (VII.7)]. 

Secondly, we need substrates which are sensitive to the higher moments of the 
electric field operator. When we want to use the pseudo-Fourier method, up to 
N photons for quantum lithography in one dimension, the substrate needs to be 
reasonably sensitive to all the higher moments up to N, the maximum photon 
number. Alternatively, we can use the superposition method for N photons when 
the substrate is sensitive to predominantly one higher moment corresponding to 
N photons. Generally, the method of lithography determines the requirements 
of the substrate. 

There are also some considerations about the approximation of patterns. For 
example, we might not need arbitrary patterns. It might be the case that it is 
sufficient to have a set of patterns which can then be used to generate any desired 
circuit. This is analogous to having a universal set of logical gates, permitting 
any conceivable logical expression. In that case we only need to determine this 
elementary (universal) set of patterns. 

Furthermore, we have to study whether the uniform background penalty ex
posure really presents a practical problem. One might argue that a sufficient 
difference between the maximum deposition rate and the uniform background 
penalty exposure is enough to accommodate lithography. This depends on the 
details of the substrate's reaction to the electro-magnetic field. 

Before quantum lithography can be physically implemented and used in the 
production of nano circuits, these issues have to be addressed satisfactorily. 

6 SUMMARY 

In this chapter I have generalised the theory of quantum lithography as first 
outlined in Ref. (22]. In particular, I have shown how we can create arbitrary 
patterns in one dimension, albeit with a uniform background penalty exposure. 
We can also create some patterns in two dimensions, but we have no proof that 
this method can be extended to give arbitrary patterns. 

For lithography in one dimension we distinguish two methods: the pseudo
Fourier method' and the superposition method. The pseudo-Fourier method is 
conceptually easier since it depends on Fourier analysis, but it also involves a 
finite amount of unwanted exposure of the substrate. More specifically, the depo
sit ion rate equals the pattern in its Fourier basis plus a term yielding unwanted 
background exposure. The superposition method gets around this problem and 
seems to give better results, but lacks the intuitive clarity of the Fourier method. 
Furthermore, we do not have a proof that this method can approximate arbitrary 
patterns. 



126 VII QUANTUM LITHOGRAPHY 

Quantum lithography in two dimensions is more involved. Starting with a 
superposition of states, given by Eq. (VII.37), we found that we can indeed 
create two-dimensional patterns with sub-wavelength resolution, but we do not 
have a proof that we can create arbitrary patterns. Nevertheless, we might be 
able to create a certain set of elementary basis patterns. 

There are several issues to be addressed in the future. First, we need to study 
the specific restrictions on the substrate and how we can physically realize them. 
Secondly, we need to create the various entangled states involved in the quantum 
lithography protocol. 

Finally, G.S. Agarwal and R. Boyd have called to our attention that quantum 
lithography works also if the weak parametric down-converter source, described in 
Ref. [22] is replaced by a high-flux optical parametric amplifier [2]. The visibility 
saturates at 20% in the limit of large gain, but this is quite sufficient for some 
lithography purposes, as well as for 3D optical holography used for data storage. 
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COMPLEX VECTOR SPACES 

In this appendix I review some properties of complex vector spaces, since quantum 
mechanics is defined in terms of a complex vector space. 

1 VECTOR SPACES 

A vector space V consists of a set of vectors { vi} on which two operations are 
defined: 

Addition: for every x, y EV the vector x + y is an element of V. 

Scalar multiplication: for every a E C and x E V there is a unique element ax 
in V. 

Furthermore, for every ( complex) vector space the following conditions hold: 

l. For all x, y EV, x + y = y + x (commutativity of addition); 

2. for all x, y , z E V, (x + y) + z = x + (y + z) (associativity of addition); 

3. there exists an element O in V such that x + 0 = x for every x E V; 

4. for each element x in V there exists an element y in V such that x + y = O; 

5. for each element x in V, lx = x ; 

6. for each pair a and /3 in C and each x E V we have (a/J) x = a(/Jx); 

7. for each a EC and each pair x, y E V we have a(x + y) =ax+ ay; 

8. for each pair a and /3 in <C and each x E V we have ( a + f]) x = ax+ f]x. 

On a vector space we can also define an inner product (sometimes called the 
scalar product, not to be confused with scalar multiplication). When two vectors 
in V are denoted by x and y , their inner product is a (complex) number written 
as (x, y) . For all x, y, z E V and a E <C the inner product obeys the following 
rules 

l. (x+z,y)=(x,y)+(z,y); 
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2. (ax, y) = a(x, y); 

3. (x, y)* = (y, x), where * denotes complex conjugation; 

4. (x, x) > 0 if x =I= 0. 

A complex vector space with an inner product is called a Hilbert space. Note that 
we only defined algebraic rules for the inner product, the actual form of (x, y) 
depends on the representation. 

In Dirac's bracket notation, the elements of the Hilbert space ~ are written 
as so-called kets: l'lf'), 1¢) E Jr. The adjoints of these kets are called bras: ('lf'I, (¢1. 
The inner product is given by (1PI¢). It necessarily obeys all the conditions given 
above. Two vectors l'lf') and 1¢) in Hilbert space are orthogonal if and only if 
their inner product vanishes: (1PI¢) = 0. 

In a Hilbert space Jr of dimension d we can construct a set of d orthogonal 
vectors, called an orthogonal basis of Jr. When the vectors in the basis have 
unit length, i.e., if for every basis vector l'IPi) we have ('IPil'lf'i) = 1, then the basis 
is orthonormal. 

Next, we define linear operators on ~ - Consider a transformation A:~➔ 
~- A is called a linear operator on Jr if for every l'lf'), 1¢) E Jr and a EC 

1. A(!'lf') + 1¢)) = Al1P) + Al¢); 

2. A(a!'lj,,)) = a(Al'lf') ). 

A linear operator transforms one vector in Hilbert space to another: Al'lf') = !'IP') . 
In matrix notation A corresponds to a matrix, while kets correspond to column 
vectors and bras to row vectors. 

Linear operators do not necessarily commute. That is, when we have two 
linear operators A and Bon ~, their commutation relation [A, B] = AB - BA 
is not necessarily zero. Non-zero commutation relations play an important role 
in quantum mechanics. For example, non-commuting operators lie at the heart 
of quantum cryptography. 

Suppose a linear operator A obeys the following relation: 

(A.l) 

where !'If') is a vector in Jr and a a complex number. This is called an eigenvalue 
equation for A, where a is the eigenvalue and !'If') the corresponding eigenvector. 
When the dimension of Jr is d, every linear operator on ~ has d eigenvalue 
equations. An eigenvalue a might be d0 -fold degenerate, in which case a generates 
a d0 -dimensional eigenspace: there are d0 orthogonal vectors 11Pa) which obey 
Eq. (A.l), thus forming a basis for a d0 -dimensional subspace of ~ -

There also exists a property called the trace of an operator A. We write 

(A.2) 
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where {1-1/Ji)} can be any complete orthonormal basis. The trace has the following 
properties: 

1. if At = A then TrA is real; 

2. Tr(aA) = aTrA; 

3. Tr(A + B) = TrA + TrB; 

4. Tr(AB) = Tr(BA), the cyclic property. 

These properties are easily proved using the knowledge that the trace as defined 
in Eq. (A.2) is independent of the basis { 17/'i) }. 

2 TENSOR PRODUCT SPACES 

A tensor product of two operators A and B is defined as follows: 

(A.3) 

which is equivalent to (A@ B)(C@ D) = (AC @ ED). In other words, every 
operator sticks to its own Hilbert space. It should be noted, however, that not 
every operator on Jf-71 @ Jr2 is of the form A@ B. The fact that this is not 
the case is also of fundamental importance to quantum information theory, as we 
shall see in the remainder of this thesis (see also appendix B). 

Other properties of the tensor product of operators are [85] 

2. ]. @ ]. = li , 

3. (A1 + A2)@ B = (A1@ B) + (A2@ B) , 

4. aA@/3B = af](A@B) , 

5. (A@B)-1 =A- 1 @B-1, 

6. (A@ B)t=At@Bt, 

7. Tr(A@B) = TrA · TrB. 

For notational brevity the tensor product symbol @ is often omitted, yielding, 
e.g., 17P)@ 1¢) = 17P)I¢) = 17P, ¢) . When this abbreviated notation is used, one 
should always remember which state or operator is defined on which Hilbert 
space. 
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3 PROJECTION OPERATORS 

So far, we have only considered tensor products of Hilbert spaces. However, there 
is also an operation 'EB', called the direct sum of two vector spaces. The direct 
sum of two vector spaces W = V1 EB V2 is again a vector space, and Vi and V2 are 
called its subspaces. We can write a vector in W as w = (v1 , v2), where v1 and 
v 2 are vectors in the respective subspaces V1 and V2 . The subspaces are linear if 

(A.4) 

Here, I will only consider linear subspaces. 
Suppose we have a Hilbert space which can be written as the direct sum of 

two subspaces. These are again Hilbert spaces: 

(A.5) 

A state 17,U) in J}'f? can then be written as 

(A.6) 

where l?,U1) and l?,U2) are restricted to their respective subspaces and lal2+l,Bl2 = 1. 
We can define an operator Pi which yields 

(A.7) 

In other words, Pi projects the state j?,U) onto the linear subspace J}'f?1 . Pi is said 
to be a projection operator or projector [85]. An operator is a projection operator 
if and only if 

p2 = p =pt . (A.8) 

Projection operators have the following properties: 

1. two projection operators P and Q are called orthogonal projections if and 
only if [P, Q] = 0, they project onto linearly independent subspaces; 

2. the sum of two ( orthogonal) projectors is again a projector; 

3. the sum over all orthogonal projectors in J}'f? is the identity operator n.; 

4. the orthocomplement of a projector P in J}'f? is given by n. - P ; 

5. the eigenvalues of a projector are 1 and 0. 

When viewed as measurement outcomes (see postulate 3), the eigenvalues of a 
projection operator indicate whether the state is in the subspace spanned by P 
or not. 
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It is easily checked that for any state 11,b) in 3f7 a projector on the subspace 
spanned by 11,b) can be written as 

(A.9) 

When {IV'i)} is a complete orthonormal basis of 3f7, the identity operator can 
then be written as 

(A.10) 

This is called the completeness relation. An operator A with eigenvalues ai whose 
eigenvectors are given by the basis { IV'i)} can then be written as 

(A.11) 

This is sometimes called the spectral decomposition of A. In general, when the 
eigenvectors of an operator A are not given by this basis, A can be written as 

A= L l¥ijlV'i)(1,bjl . 
ij 

When A is Hermitian (At= A) , we have aij = aJi • 

(A.12) 
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STATES, OPERATORS AND MAPS 

In this appendix I summarise some background knowledge about states, operators 
and maps in the context of quantum mechanics. This knowledge is important 
for the understanding of the Peres-Horodecki partial transpose criterion for the 
separability of bi-partite density matrices, and it also lays the foundations for the 
definition of positive operator valued measures. For this appendix I am indebted 
to professor Rajiah Simon, who guided me through Hilbert space. 

1 SINGLE SYSTEMS 

Suppose we have a physical system which is described by a set of accessible states 
{1¢i) }. The superposition principle and the linearity of quantum mechanics imply 
that this set spans a Hilbert space ~ of dimension d. This is a complex vector 
space with an orthonormal basis 

1 
0 

0 

0 
1 

0 

' . .. ' 

0 
0 

1 

We can define a set of linear operators { Ak} on ~ , the elements of which trans
form one state to another: 

A : 1¢) ---+ 1¢') , (B.1) 

where !¢') is again a state in ~ - Hermiticity of A (At = A) implies that all the 
eigenvalues of A are real. When for all!¢) we have (¢IA!¢) ~ 0, A is non-negative. 
A non-negative operator with trace 1 (Tr[A] = 1) is called a density operator, 
usually denoted by p. Note that all non-negative operators are also Hermitian, 
and have non-negative eigenvalues. A choice of a basis in ~ puts Hermitian non
negative operators into a one-to-one correspondence with Hermitian non-negative 
matrices. 

The set of all linear operators { Ak} in turn define a Hilbert space ~ ® ~ of 
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dimension d2, one orthonormal basis of which can be written as 

1 0 0 0 1 0 0 0 0 

0 0 0 (B.2) ' ... ' 

0 0 0 0 0 0 0 0 1 

We can now define an even higher set of objects called maps, denoted by {.C} , 
the elements of which linearly transform the set of linear operators into itself: 

.C : A ~ A' = .C(A) . (B.3) 

These linear maps are sometimes called super-operators. They are operators on 
the Hilbert space JF ® JF, but we give them a different name to avoid confusion. 
A simple example of a map corresponds to a unitary transformation U : A -+ 
A' = ut AU. The corresponding map .Cu may be written as .Cu = ut ® U. The set 
of all maps thus constitutes a Hilbert space d'JF®4 of dimension d4

• The concept 
of non-negative operators lead us to define positive maps. 

Definition: a map .C is called positive if for every non-negative operator A the 
operator A'= .C(A) is again a non-negative operator. 

When Tr[A'] = Tr[A] for every A, the map .C is a trace-preserving map. Trace
preserving positive maps are important in quantum mechanics, since they trans
form the ·set of density operators to itself. This property may lead one to expect 
that these maps correspond to physical processes or symmetries. It is an inter
esting aspect of quantum mechanics that not all positive maps can be associated 
with physical processes. This subtle fact becomes important when we consider 
composite systems. 

2 COMPOSITE SYSTEMS 

Suppose we have two systems 1 and 2 with respective accessible states {1¢;1))} and 

{1-1/{2)) }. These states span two Hilbert spaces JF(l) and JF(
2
) with dimensions d1 

and d2 respectively. The accessible states of the composite system can be written 
on the basis of the tensor product of the states 1¢}1

) ) ® 17Pk2
)), generating a Hilbert 

space JF(l) ® JF(2) of dimension d1 x d2. Similarly, the set of linear operators 
{ Aj} on JF(l) ® JF(2) generates a Hilbert space of dimension ( d1 x d2)2, and the 
set of maps generates a Hilbert space of dimension ( d1 x d2)

4
. 

Consider a map .C1 , defined for subsystem 1. When this map is positive (and 
trace-preserving) it transforms density operators of the subsystem to density 
operators. When system 1 is part of a composite system 1 + 2, we want to know 
when a positive map of system 1 (leaving system 2 unchanged) would transform 
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a density operator defined on the composite system again into a density operator. 
In other words, we ask when the extended map £ 12 = £ 1 ® n. 2 , with n.2 the identity 
map of system 2, is again positive. 

Definition: a map £ 1 is called completely positive if all its extensions are positive. 

There exist maps which are positive, but not completely positive. One such 
map is the transpose. Take, for example, the singlet state of a two-level bi-partite 
system (written in the computational basis): 

1 
lw) = v'2 (lo, 1) -11, o)) . (B.4) 

The density operator of this state can be written as 

P = lw)(wl = 1 (lo, 1)(0, 11-10, 1)(1, 01 - 11, o)(o, 11 + 11, 0)(1, 01) (B.5) 

The transpose of a general density operator for a single system in this notation 
is given by 

T: alO)(0I + bJ0)(lJ + cjl)(0I + djl)(lJ 
-+ al0)(0I + bJl)(0I + cl0)(ll + dll)(l l , (B.6) 

that is, we exchange the entries of the bras and kets. This is a positive map. The 
extended transpose (or part·ial transpose) on a compound system PT= T1 ® n.2 , 

however, is not positive. To see this, apply the extended transpose to the density 
operator given in Eq. (B.5) , we obtain 

PT: p -+ p' = 1 (I0, 1)(0, 11- I0,0)(1, 11-11, 1)(0,0I + I1,0)(1,0J). (B.7) 

If the eigenvalues of p' are non-negative, p' is again a density operator. In order 
to find the eigenvalues of this operator we write p' in matrix representation on 
the computational basis: 

( 
0 0 0 -1) 

'=! 0 1 0 0 
p 2 0 01 0 . 

- 1 0 0 0 

(B.8) 

It is easily found that this matrix has eigenvalues 1 (with multiplicity 3) and 
-1. Therefore, p' is not a density operator, and T, although positive, is not a 
completely positive map. 

I will now present an important class of completely positive maps. Consider 
the general map 

£: A -+A' = £(A) , (B.9) 
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with A and A' linear operators on the system Hilbert space. An important special 
case of such a map is given by 

.c : A --r A' = L AkBkABt , 
k 

(B.10) 

where the Bk's are again linear operators. In particular, we can define a family of 
such maps, as given by Eq. (IV.11). When Ak ~ 0 for all k, the map in Eq. (B.10) 
is again a positive map. To prove this statement, note that 

(B.11) 

for all Bk and /¢>) if A is non-negative. We then have 

(B.12) 
k k 

The right-hand side of this equation is positive for all Bk's, Ak ~ O's and non
negative operators A. Hence A' is a non-negative operator and .C is positive. 

Furthermore, when Ak ~ 0 such an .C is completely positive. To prove this 
statement, let .C be a map on system 1 (henceforth denoted by £ 1 ) and consider a 
second system 2. Recall that £ 1 is completely positive if all its extensions £ 1 @ll.2 
are positive. I will now show that this is the case. 

Define the extension £ 12 = £ 1@ ll.2. System 2 can have arbitrary dimension, 
and may itself be composite. We thus have to show that £ 12 is positive. Let A12 
be a non-negative operator on the composite syst em 1 + 2: 

A12 = L ajk,lm/<P1h/'l/Jk)2('l/Jm/i(c;i>zl, 
j,k;l,m 

with ajk,Lm = aim,jk• and define the operator Bi on system 1 as 

p,q 

The map £ 1 0 ].2 is then given by the transformation 

L Ai(Bi@ ll.2)A12(Bi 0 ll.2)t 
i 

(B.13) 

(B.14) 

L Ai L L ajk,lmbtq/c;i>p)i (c;i>q/c;i>j)i /VJk)2(VJm/1 (<Pzl <Prh (<Ps/b~r * 
i p,q;r,s j,k;l,m 

L Ai L L ajk,lmbpj/c;i>p)i /'l/Jk)2('l/Jm/i (<Ps/b~/ 
p,s j,k;l,m 

L Ai L ajk,lm /<Pj)i /VJk)2(VJm/i (c;i>~/ , (B.15) 
j,k;l ,m 
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where I defined 1<1>1) = L p bpj 1¢p) . Since this is a convex sum over non-negative 
operators, the resulting operator is again non-negative and .C is completely posi
tive. This completes the proof. 

The fact that positive but not completely positive maps on a subsystem do 
not necessarily transform density operators on the composite system to density 
operators can be exploited to detect ( or witness) quantum entanglement. This is 
the subject of the next section. 

3 PARTIAL TRANSPOSE CRITERION 

In quantum information theory, it is important to know whether a composite 
system, characterised by a density operator p is separable or not. One way to 
test this is to use the Peres-Horodecki partial transpose criterion [134, 87]. 

A density operator p of two systems 1 + 2 is separable if and only if it can be 
written as 

P = LPkPk
1

) 0 pf) , (B.16) 
k 

with Pk > 0 and Lk Pk = l. The density operator p~) is defined on system 
j = l , 2. Consider again the transpose of an operator A: 

T: A--+ Ar. (B.17) 

As we have seen, this is a trace-preserving positive, but not completely positive 
map. We extended this map to the partial transpose PT = T1 0 112 . The partial 
transpose is not positive on the composite system. 

Under the partial transpose, the separable density operator from Eq. (B.16) 
will transform according to 

PT: P--+ p' = L Pk (Pk1) ) T 0 Pk2) . (B.18) 
k 

However, T is positive and (pk1lf is again a density operator. Therefore p' is 
another (separable) density operator. Now look at the eigenvalues of p' . Clearly, 
if p is separable, then p' has positive eigenvalues. Therefore, if p' has one or more 
negative eigenvalues, the original density operator p must have been entangled. 
This is the Peres-Horodecki partial transpose criterion. Clearly, it is only a 
necessary condition for separability. 

It has been proved [87] that for the Hilbert spaces ,!Jff'2 @,!Jff'2 and ,!Jff'2 @,!Jff'3 the 
partial transpose criterion is both necessary and sufficient. In other words, p is 
separable if and only if the eigenvalues of its partial transpose p' are positive. For 
higher dimensional Hilbert spaces this is no longer true. In that case there can 
exist density operators which are not separable, but for which the eigenvalues of 
p' are non-negative. Such states are said to exhibit bound entanglement [88, 89] . 
It is generally believed that this form of entanglement cannot be purified. 
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4 PROJECTION OPERATOR VALUED MEASURES 

Let us now return to the case of a single system and the states, operators and 
maps defined on it. Consider a projection operator P defined by 

pt =P and p2 =P. (B.19) 

In terms of the states {!<Pi)} this operator can be written as 

(B.20) 

Suppose we have a set of projection operators {Plµ)}, with the states Iµ) not 
necessarily orthogonal. We can define a generalised projection operator Ev as a 
weighted measure over this set: 

(B.21) 

with ,\~ > 0 and 

(B.22) 
V 

The operator Ek is called a projection operator valued measure or POVM for short 
[107]. 

This can be generalised further by observing that 

>,.~.Pjµ) = a~lµ)(vjv)(µj(a~)*, (B.23) 

with Iv) E {Iµ)} and la~l2 = >,.~. When we define the operator A: 

(B.24) 
µ,v 

we can write the POVM as 

(B.25) 
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ELEMENTARY GROUP THEORY 

In this appendix I give some background theory of Lie groups. I am indebted to 
the book by De Wit and Smith [176), which gives a good and concise exposition 
of the subject. Further Lie group theory in particle physics is presented in Halzen 
and Martin [77). For group theory in quantum mechanics, see also Chaichian and 
Hagedorn [43]. For a formal treatment of Lie groups, see Gilmore [69). 

A set G is called a group when G satisfies the following requirements: 

• There exists a multiplication rule ( ·) such that for every two elements g1 

and g2 of the group, their product g1 · g2 is again an element of the group; 

• the multiplication rule is associative, i.e., 91 · (g2 · 93) = (91 · 92) · g3 for all 
91, 92, 93 E G; 

• there exists an element e E G, called the unit element, for which the product 
e • 9 = 9 · e = 9, with 9 any element of G; 

• for every 9 E G there exists an element 9-1 E G, called the inverse element 
of 9, such that g • 9-1 = 9-1 . 9 = e. 

When 91 · 92 = 92 · 91, the group is called Abelian. In other words, the elements of 
G commute. A subset H of G is called a subgroup of G if the group requirements 
above hold for H. This is written as H c G. 

1 LIE GROUPS 

If a group G has a finite number of elements, this number is called the order of 
G. For finite groups, see e.g., Serre [150). When the group has an infinite number 
of elements, the group can be either continuous or discontinuous. In the context 
of this thesis I am mostly interested in continuous groups. If the elements of a 
continuous group G depend analytically on a (finite) set of parameters (g = 9(() ), 
we speak of a Lie group1

. The dimension of the Lie group is given by the number 
of independent parameters: if ( = (6, ... , ~N ), we have dim G = N. The N
dimensional space generated by the parameters is called parameter space. 

1 After the Norwegian mathematician Marius Sophus Lie (1842- 1899). 
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Let G be a one-dimensional Lie group with elements g((). We can always 
choose the parametrisation such that [176) 

(C.l) 

with 

g(O) - e and (C.2) 

If we interpret the group elements as operators ( acting on other group ele
ments), the unit element is the identity operator: e = n.. In the neighbourhood 
of the identity, a group element can thus be written as an expansion 

(C.3) 

where Tis some operator. 
Since G is a continuous group, we can write the transformation from the 

identity [written as g(O)] tog(() in terms of n small steps g((/n): 

g(() = [g((/n)t . (C.4) 

If I now take the limit of n ➔ oo the higher-order terms vanish and we obtain 

[ 
(T ] n [ (T] n g(() = lim g(O) + - + ... = lim ll. + - = exp [(T) . 

n➔oo n n➔oo n 
(C.5) 

The operator T is said to be the generator of the group G because it generates 
the elements of G. This can be generalised immediately to N-dimensional Lie 
groups, yielding 

9(8 = exp [t, S(I';] , (C.6) 

where the (i's are the independent parameters of the group and the Ti's the 
generators. There are as many different generators as there are parameters. 

In terms of the generators, the group multiplication can be written as 

(C.7) 

The right-hand side can be expressed as the argument of a single exponent by 
means of the Baker-Campbell-Hausdorff formula: 

exp [ t, S,T.] exp [ t, s;r.] = exp [t, ( S, + s;)T. + ~ ,t, S,Sj[T., T; I + • • • l , 
(C.8) 
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where [~, Tj] denotes the commutator between ~ and Tj, and the dots indicate 
a series of terms with higher-order commutators of the T 's (like, for example 
[~, [Tj, Tk]]). This series does not necessarily terminate. 

I started with the condition that G is a group, which implies that the right
hand side of Eq. (C.8) is again an element of G and thus can be written as 
eI:f:1 (;'T;. In turn, this means that the generators are closed under commutation: 

N 

[Ti, Tj] = L ctTk , (C.9) 
k=l 

with the ( complex) numbers ct the so-called structure constants. To see that 
this equation must hold, suppose that the argument of the right-hand side of Eq. 
(C.8) does not imply Eq. (C.9). There is then a commutator [Ti, Tm] which cannot 
be written as a sum over the generators: [Ti, Tm] = X. Repeated commutators 
should then cancel X , because the right-hand side of Eq. (C.8) is a group element. 
This can only happen when repeated commutators yield X. By definition, X is 
then a member of the set of generators. This contradicts our assumption. 

The structure constants cfj define a so-called Lie algebra. They obey the 
Jacobi identity for structure constants: 

(C.10) 

This is easily proved using the Jacobi identity for any three operators A, B and 
C: 

[[A, B], C] + [[B, C], A]+ [[C, A] , B] = 0 . (C.11) 

2 REPRESENTATIONS 

When we have a set of matrices Mi with i = 1, ... , N , and the commutation 
relations between these matrices are given by 

N 

[Mi,Mj] = L ctMk, (C.12) 
k=l 

then this set of mat rices is said to form a representation of the Lie algebra defined 
in Eq. (C.9). When these matrices are multiplied by 0i and exponentiated, they 
define a representation of the group G, denoted by D(G): 

(C.13) 
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The matrices Mi form a basis of the representation. For N matrices the repre
sentation is said to be N-dimensional. If there exists a non-trivial subspace of V 
spanned by the basis { Mi} (i.e., a subspace other than O and V itself) which is 
invariant under the group transformations, the representation is called reducible. 
If no such invariant subspace exists, the representation is irreducible. The theory 
of representations is important for many applications in physics. 

3 EXAMPLES OF LIE GROUPS 

One of the most important Lie groups in quantum mechanics must be the group 
of 2 x 2 unitary matrices. This group is called SU(2) . The corresponding Lie 
algebra su(2) is given by three generators (i,j,k E {x,y,z}): 

[Ji, Jj] = L iEtJk' (C.14) 
k 

where Et are the entries of the Levi-Ci vita tensor of rank three ( entries with 
even permutations of the indices are 1, odd permutations give -1, and repeated 
indices give 0). The generators are given by Ji = ½o-i, with 

(
0 -i) 

O'y = i O ' (C.15) 

the so-called Pauli matrices. Representations of this group are used in the de
scription of angular momentum, spin and iso-spin, as well as in quantum optics 
(see appendix D for a relation between Lie algebras and optical devices). If the 
parameters are given by ~x, ~Y and ~z, a general SU(2) group element in the funda
mental (two-dimensional) representation can be written as (~ = ✓~~ + ~; + ~;) 

(C.16) 

Since the group elements depend periodically on~' we have~= J~~ + ~; + ~; :::; 
21r, which means that the parameter space of SU(2) is compact; it can be re
stricted to a sphere with radius 21r. 

The group SU(2) is closely related to the group S0(3) , the group of orthog
onal 3 x 3 matrices, better known as the rotation group in three dimensions. 

We know that a rotation [in S0(3)] over 21r is equal to the identity. However, 
when~= 21r in Eq. (C.16), we see that the SU(2) group element is equal to - JI.. 
This behaviour is the reason why SU(2), rather than S0(3), is used to describe 
particles with spin. After all, spin ½ particles need a rotation over 41r in order 
to return to their original state. The group SU(2) is called the covering group of 
S0(3). 
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Another Lie group which is important in the context of this thesis is the group 
SU(l, 1). Its Lie algebra is given by 

(C.17) 

and the elements of the fundamental (two-dimensional) representation are gen
erated by the matrices Ji = ½Pi, with 

(0 -1) 
Px = 1 0 ' (C.18) 

The group elements can be written in the fundamental representation as 

(C.19) 

with ( = ((1, ( 2, ( 3) and ( _ J(~ - (i - (f- There is no periodicity in (, and 
the parameter space is therefore not compact. In quantum optics, this group is 
associated with squeezing. 
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BILINEAR AND QUADRATIC FORMS 

In many problems in quantum optics we are faced with a unitary evolution U 
due to a Hermitian operator 1-l (with U = exp[-it1-l/n]) , generally an interaction 
Hamiltonian. For computational simplicity we often wish that this evolution is 
in normal ordered form. This form ( or, consequently, the corresponding Baker
Campbell-Hausdorff formula) is usually very complicated, if it exists at all. In 
this appendix I present two important classes of operators for which the normal 
ordered form of the unitary evolution can be derived. 

I first define the so-called bilinear and quadratic forms for the creation and 
annihilation operators. We will present the normal ordering for evolutions gener
ated by the Hermitian operators which can be written in terms of these bilinear 
and quadratic forms. 

Suppose we have two vectors i = (xi, ... , Xn) and fl = (Yi, ... , Yn) - The 
scalar product between these vectors is denoted by (x, fl). Furthermore, let C be 
an n x n matrix. With C we associate the quadratic form [59] 

<t>(x, x) = (x, Cx) , (D.1) 

and the bilinear form 

<t>(x, g) = (x, cm . (D.2) 

We have made no assumptions about the nature of the vector components, 
and it is possible to define bilinear and quadratic forms in terms of creation and 
annihilation operators at and a. These operators obey the well-known commu
tation relations 

(D.3) 

The quadratic form now reads (a, Ca) or (at, Cat), with a= (ai , . . . , an) and 
at = (at , .. . , at ). The bilinear form can be chosen many ways ( according to Eq. 
(D.2)) , but for our present purposes I write it as (at , Ca). 

In quantum optics, the bilinear and quadratic form of creation and annihila
tion operators occurs very often. Take, for instance, the interaction Hamiltonian 
for the beam-splitter in modes ai and a2 : 

(D.4) 
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where /<i, is a coupling constant. This Hamiltonian is a bilinear form which may . 
be written as 

(D.5) 

Another example is the interaction Hamiltonian due to parametric down
conversion in two modes a1 and a2 . This is a sum of two quadratic forms ( one 
for the creation and one for the annihilation operators): 

(D.6) 

where v is a coupling constant. In symmetric form, the quadratic form of the 
creation operators reads 

(D.7) 

Usually, these interaction Hamiltonians are exponentiated to generate the 
unitary evolution of a system, and studying the behaviour of the bilinear and 
quadratic forms might simplify our computational task. In particular, we would 
like to find the normal ordered form of exp[-it1l[/n], where 1lr is given by Eq. 
(D.4) or Eq. (D.6). 

In the next two sections I will establish relations between the bilinear and 
quadratic forms and the Lie algebras of SU(2) and SU(l, 1) respectively. The 
two resulting theorems place restrictions on the matrix C in the bilinear and 
quadratic forms. 

1 BILINEAR FORMS AND SU(2) 

In quantum optics, linear unitary operations like beam-splitters, half- and quar
ter-wave plates, phase-shifters, polarisation rotations, etc. all preserve the number 
of photons. When we write these operations as U = exp[-it1l/n], with 1l some 
Hermitian operator (an interaction Hamiltonian) , it is clear that every term in 1l 
should be a product of an equal number of creation and annihilation operators 
(i.e., for every photon which is created, another will be destroyed). The low
est order interaction Hamiltonian which satisfies this requirement has a bilinear 
form (see, e.g., Eq. (D.4)). Furthermore, the resulting unitary operations form 
representations of the group SU(2) , and I therefore study the relation between 
bilinear forms and SU(2). 

Define K_(A) to be 

K_(A) = I: a!Aijaj - (at, Aa) , 
ij 

(D.8) 
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a bilinear form. Let K+(A) be the adjoint of K_(A): 

K+(A) = K!(A) = (atA,a). (D.9) 

I can now define a third operator K0 (A) in such a way that the three operators 
generate an su(2) algebra1 : 

(D.10) 

Using Eqs. (D.8) and (D.9), and normal ordering the commutator in Eq. (D.10) 
yields 

Ko(A) = -1 I: a![A, At]ijaj = Kj(A). 
ij 

(D.11) 

With M = [A, At] this can be written as 

Ko(M) = -1 L a!µijaj = -l(at, Ma) . 
ij 

(D.12) 

The last commutation relation which, together with Eq. (D.10) and K _ = Kt, 
K0 = KJ constitutes the su(2) algebra is 

(D.13) 

This equation places a constraint on the allowed matrices A ( all the other commu
tation relations so far have not placed any restrictions on the form of A). Using 
Eqs. (D.8) , (D.9) and (D.11) yields 

[Ko , K_] = - K_ 

[K0,K+J = K + 

This can be summarised in the following theorem: 

(D.14) 

Theorem 1 Consider a bilinear operator of the form K (A) = (at, Aa). K and Kt 
define a third operator Ko= -½[K, Kt]. These operators are generators of 
an su(2) algebra if and only if A= ½[M, A], with Ivf = [A, Atj. 

Suppose that the interaction Hamiltonian can be written as 

(D.15) 

1Traditionally, the group is denoted by capital letters, e.g., SU(2), whereas t he corresponding 
algebra is written with lowercase letters, e.g., su(2). 
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with "' again a coupling constant. Note that this is now a sum of two bilinear 
forms, unlike in Eq. (D.5). • Since K+ and K_ generate an su(2) algebra, we 
know what the normal ordering for the unitary evolution U associated with this 
interaction Hamiltonian is (r = -i"'t/li and f is the unit vector in the direction 
of r) [164] : 

U(r) = exp[rK+(A) - r* K_(A)] 
= exp[f tan lrlK+J exp[-2 ln cos Ir I Ko] exp[-f* tan lrlK-] . (D.16) 

This is the Baker-Campbell-Hausdorff formula for su(2) [69]. 

2 QUADRATIC FORMS AND SU(l,l) 

In quantum optics, squeezers and down-converters are described by interaction 
Hamiltonians which are quadratic in the creation and annihilation operators. 
These Hamiltonians generate unitary transformations which do not conserve the 
photon number. In particular, these transformations can be viewed as photon 
sources. 

Write the unitary evolution of these sources as U = exp[-itH/n], with 1l a 
Hermitian operator (the interaction Hamiltonian). Here, every term in 1{ is pro
portional to a product of either two creation or two annihilation operators, i.e., 1l 
is proportional to a sum of quadratic forms. Subsequently we know that squeez
ing and parametric down-conversion are representations of the group SU(l, 1), 
and I therefore study the relation between this group and quadratic forms. 

Let L_(A) be a quadratic form: 

L_(A) = 1 ~ G,iAijaj _ 1(a, Aa) . (D.17) 
tJ 

Since the annihilation operators commute, it is clear that A can always be chosen 
symmetric. The adjoint of L_ (A) is given by 

L+(A) = L~(A) = 1 I:a!>.;ja} = 1(atAt,at). 
ij 

(D.18) 

When we want to construct an su(l, 1) algebra with these operators we need 
to show that there exists an operator L0(A) which satisfies the commutation 
relations 

[L_, L+J = 2L0 and [Lo, L±] = ±L± . (D.19) 

The first relation in Eq. (D.19) defines L0 (A) : 

Lo(A) = 1 { (Aa)t . (Aa) + 1Tr(AtA)} = Lb(A) . (D.20) 
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The second relation in Eq. (D.19) places a constraint on A: 

[Lo,L+J = L+ ¢> At= AtAAt 
[Lo, L_] = -L_ ¢> A= AAtA. 

The matrix A is unitary if it is invertible. 
I can now formulate these results in terms of a theorem: 

(D.21) 

Theorem 2 Consider a quadratic operator of the form L(A) = (a, Aa). Land Lt 
define a third operator Lo = ½[L, Lt]. These operators are generators of an 
su(l, 1) algebra if and only if At= AtAAt. Such a A is unitary if and only 
if it is invertible. 

Suppose that the interaction Hamiltonian can be written as 

(D.22) 

with II the coupling constant. Since L+ and L_ generate an su(l, 1) algebra, we 
know what the normal ordering for the unitary evolution U associated with this 
interaction Hamiltonian is (r = -ivt/n) [164]: 

U(r) = exp [rL+(A) - r*L_(A)] 
= exp[f tanh lrlL+J exp[- 2 ln cosh Ir I Lo] exp[-f* tanh Ir IL-] . (D.23) 

This is the Baker-Campbell-Hausdorff formula for su(l , 1). 
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TRANSFORMATION PROPERTIES OF MAXIMAL 

ENTANGLEMENT 

In this appendix I will show1 that any maximally entangled state can be trans
formed into any other maximally entangled state by means of a unitary trans
formation on only one of the subsystems. I will treat this in a formal way by 
considering an arbitrary maximally entangled state of two N-level systems in the 
Schmidt decomposition: 

(E.1) 

that is, a state with equal amplitudes on all possible branches. There always exist 
two orthonormal bases {lni) } and { lmi)} such that Eq. (E.1) can be written this 
way, by virtue of the definition for maximal entanglement. Clearly, we can obtain 
any maximally entangled state by applying the (bi-local) unitary transformation 
U1 0 U2 . That is, each maximally entangled state can be transformed into any 
other by a pair of local unitary transformations on each of the subsystems. We 
will now show that any two maximally entangled states 17P) and 17P') are connected 
by a local unitary transformation on one subsystem alone: 

11P) = u 0 ].l'lj;') =]. 0 U'l'lj;') . (E.2) 

First, I will prove that any transformation U1 0 U2 on a particular maximally 
entangled state 1¢) can be written as V@ ]. 1¢), where V = U1U'{. To this end I 
will give the proofs for two theorems. Take the special maximally entangled state 

(E.3) 

Theorem 1: For any state 1¢) given by Eq. (E.3) and any unitary operator U we 
have 

U 0 U* I¢) = I¢) . (E.4) 

1This is not new material, it is included here for reasons of completeness. 



154E TRANSFORMATION PROPERTIES OF MAXIMAL ENTANGLEMENT 

Proof Using the completeness relation 

N 

on both subsystems we have 

N 

L lnk)(nkl = li 
k=l 

(E.5) 

U Q9 U*l<t>) = L Ink, m1)(nk, mil (U 0 li) (li (8) U*) 14>) . (E.6) 
k,l=l 

By writing out 14>) explicitly according to Eq. (E.3) we obtain 

(E.7) 

which is just 14>). □ 

Theorem 2: Every unitary transformation U1 (8) U2 acting on the state 14>) given 
by Eq. (E.3) is equivalent to a transformation V (8) n acting on 14>), where 
V = U1U'f. 

Proof: The equality 

(E.8) 

together with theorem 1 immediately gives us 

From Eq. (E.9) we obtain 

]. 0 Uri¢) and 

li 0 UI¢) . (E.9) 

(U1 0 li) (li (8) U2) 14>) 

(U1 0 li) (U[ (8) li) 1¢) 

U1 U[ Q9 lil¢) · (E.10) 
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Similarly, 

(E.11) 

We therefore obtain that U1 0 U214>) is equal to V ® lll ef>) with V = U1U'{, 
and similarly that it is equal to Jl. 0 V'/4>) with V' = U[U2 . □ 

Since every maximally entangled state can be obtained by applying U1 0 U2 

to 14>), two maximally entangled states I?/!) and I?/!') can be transformed into any 
other by choosing 

(E.12) 

which gives 

I?/!) = uvt ® ll I?/!') . (E.13) 

Thus each maximally entangled two-system state can be obtained from any other 
by means of a local unitary transformation on one subsystem alone. 
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STATISTICAL DISTANCE 

In this appendix I review the concept of the statistical distance. It is first and 
foremost a concept form classical probability theory, which has been extended to 
quantum theory by Wootters [177], Hilgevoord and Uffink [84] and Braunstein 
and Caves [29]. 

Suppose we have a vase containing red, blue and green marbles in some pro
portion. We can draw a marble from the vase and register its colour. When the 
proportion of red, blue and green marbles is known, we can predict that we will 
draw a red marble with some probability Pred· In this situation the probability 
quantifies our uncertainty of prediction. 

Alternatively, we might be in a different situation where the proportion of red, 
blue and green marbles is not known. When we draw a marble, it gives us extra 
knowledge which can be used to estimate the proportion of·marbles. We do not 
know for certain what the proportion is until we have drawn all the marbles from 
the vase, but every new draw will yield extra information about the proportion. 
The number of drawn red, blue and green marbles estimates the probability 
distribution of drawing red, blue and green marbles, and the uncertainty after a 
number of draws is the uncertainty of inference. There are therefore two kinds 
of uncertainty: one associated with the prediction of the outcome of a stochastic 
process and one associated with the inference of a probability distribution based 
on a set of outcomes [84] . 

The statistical distance quantifies the distinguishability of two probability dis
tributions, and is therefore closely related to the uncertainty of inference. Since 
it is a distance, it obeys the four well-known requirements (39]: 

1. A distance s(x, y) between two points x and y is positive; 

2. s(x, y) = 0 if and only if x = y; 

3. the distance is symmetric: s(x, y) = s(y, x); 

4. the distance obeys the triangle inequality: s(x, z ) ~ s(x, y) + s(y, z) . 

The points x, y and z are elements of some (continuous) space. In the case of the 
statistical distance, these points are probability distributions, which are elements 
of the so-called probability simplex ( see figure F .1). 
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Figure F.l: The probability simplex corresponding to three possible out
comes 'red', 'green' and 'blue'. The two dots correspond to normalised 
probability distributions. Their uncertainty regions after N trials is de
picted by the circle around the dots. The distance between the two distri
butions is the shortest path in the simplex, measured in units of the typical 
statistical fluctuation. 

The distance function in a space (in this case the simplex) is defined by the 
so-called metric. The metric g is a real symmetric matrix which obeys Lk 9jk · 
gkl = b;, where b; is the Kronecker delta. Furthermore, it transforms covariant 
vectors Xj to contravariant vectors xJ, distinguished by lower and upper indices 
respectively1 : 

and · Xj = L9jkXk . 
k 

(F.l) 

The contraction Lj Xjyj yields a scalar (which is invariant under all transforma
tions) . 

In general, an (incremental) distance ds on the simplex separating points pJ 
and pJ + dpJ can be written as a quadratic form 

ds2 = L 9jkdp3 dpk . 
jk 

(F.2) 

This is a scalar which is invariant under all coordinate transformations. The dpJ 
are the components of the incremental tangent vector dp along the shortest path 
between the two probability distributions in the probability simplex. We now 
aim to find the metric g of the simplex. 

1To avoid confusion, I will not use Einstein's summation convention. 
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To this end, we define the dual A to dp, i.e., every component Aj is paired 
with the component dpl: 

{A) = L Ajr} , (F.3) 
j 

where {A) can be interpreted as the mean value of A. In order to find the metric, 
we look at the two-point correlation function of A: 

(F.4) 
jk j 

The last equality is obtained by using Eq. (F.3). From this we immediately obtain 
the contravariant form of the metric: 

(F.5) 

with Jjk the Kronecker delta. Since L-k 9jk · gk1 = Oj, the covariant metric is 
9jk = Ojk/pl and the statistical distan~e becomes 

ds2 = L dpl dpl - L ( dpl) 2 

j pJ j pJ 
(F.6) 

This is the incremental statistical distance used in chapter II. When we make 
the substitution pl = rJ, we find the Euclidean distance ds2 = 4 I:,j drJ. 

Note that ds2 tends to infinity when one of the probabilities Pj equals zero. 
This is expected since a probability distribution 'j}-1

) with pj = 0 is perfectly 
distinguishable from a distribution 'j}-2

) with Pj =f. 0: one outcome corresponding 
to Pj will immediately tell us that we have the probability distribution 'j}-2). 

In order to find the statistical distance between two well separated probability 
distributions, we have to integrate Eq. (F.6). Following Wootters [177) , we find 

s(P<1l, ji<2I) = arccos ( 2t p)11p)' 1
) . (F.7) 

In other words, the statistical distance is the angle between two vectors with 

coordinates jlfi and /Jf. Wootters [177] proved that this distance measure 
is the only Riemannian distance measure in a Hilbert space, which is invariant 
under all transformations. It should be noted that we only assumed classical 
probability theory in our derivation, which makes the appearance of probability 
amplitudes even more surprising. 

An alternative way to arrive at the statistical distance is by using the Gaussian 
distribution for the observed frequencies Jj in a large number (N) of trials [142, 
29): 

(F.8) 
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Two probability distributions p(l) and p(l) can then be distinguished if and only 

if the Gaussian function exp [-~ Li (vliJP~~;2))
2

] is small. In other words, if 

P;1) - P;2) - dpi we need 

(F.9) 

or 

(F.10) 

which is consistent with Eq. (III.35). 
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MULTI-DIMENSIONAL HERMITE POLYNOMIALS 

In this appendix I will give the background of multi-dimensional Hermite poly
nomials. Early introductions to the subject were presented by P. Appell and J. 
Kampe de Feriet [3], and in the Bateman Manuscript Project [59]. M.M. Mizrahi 
[121] and M. Klauderer [96] further developed the mathematical theory, and in 
the context of quantum optics multi-dimensional Hermite polynomials have been 
applied by V.V. Dodonov, V.I. Man'ko, O.V. Man'ko, V.V. Semjonov, A. Vourdas 
and R.M. Weiner [52, 53, 54, 169]. 

1 ORDINARY HERMITE POLYNOMIALS 

First, let me revisit the case of the ordinary Hermite polynomials, which are 
known to physicists as (part of) the eigenfunctions of the linear harmonic oscil
lator in quantum mechanics (see, for example Merzbacher [119]). 

The definition of the Hermite polynomials can be obtained by the construction 
of a so-called generating function G(x, s): 

G( ) _ x2-(s-x)2 _ ~ Hn(x) n 
x, s - e - ~ 

1 
s . 

n=O n. 
(G.l) 

The last equality will give rise to our definition of the Hermite polynomials Hn(x). 
In order to arrive at this definition we use Taylors expansion: 

f ( X + S) = 1 + S- + - - + · · · f ( X) = e5 
dx j ( X) , 

[ 
d 

8
2 

( d ) 
2 l d 

dx 2! dx 
(G.2) 

where d~ denotes the derivative taken with respect to x . The second equality 
collects the derivatives in the exponential function exp[sd~]- Using this relation 
we write the generating function as 

(G.3) 

By expanding the exponential exp[-s d~] and comparing with Eq. (G.l) we obtain 
the definition of the Hermite polynomials Hn(x): 

(G.4) 
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Every Hn(x) is a polynomial with n real roots and traditionally normalised in 
such a way that the leading term xn has pre-factor 2n. 

There are several relations connecting Hermite polynomials. For instance, the 
Hermite polynomials obey the orthogonality relation: 

0 for n =/- m. (G.5) 

This relation ensures that the eigenfunctions of the harmonic oscillator are or
thonormal. 

Furthermore, there are two types of recursion relations connecting Hermite 
polynomials of different order. From the generating function in Eq. (G.l) it is 
relatively straightforward to derive the recursion relations 

d 
dxHn(x) 2nHn-i(x), (G.6) 

Hn+i(x) - 2xHn(x) + 2nHn-i(x) - 0. (G.7) 

Combining these two relations yields a second-order homogeneous differential 
equation called the Hermite equation: 

(G.8) 

2 REAL MULTI-DIMENSIONAL HERMITE POLYNOMIALS 

The ordinary Hermite polynomials are functions of one variable x. The obvi
ous way to generalise this is taking x to be a vector x = (x1 ... , XN) in an 
N-dimensional vector space. The generating function of the multi-dimensional 
Hermite polynomial (henceforth called MDHP) then has to change accordingly: 
G(x, s) -t G(x, s). 

However, rather than replacing s2 by (s, s) and sx by (s, x) (where we denote 
the inner product of two vectors a and bby (a, b)) , we take the generating function 
to be [59] 

(G.9) 

where A is a positive definite N x N matrix, called the defining matrix. We can 
always choose A symmetric. The reason we choose this generating function is 
that we now also include cross-terms SiSj and siXJ- Without these cross-terms 
the generalisation would be trivial. When we define ii as an N-tuple (n1, ... , nN) 
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with ni a non-negative integer, GA (x, s) generates the multi-dimensional Hermite 
polynomials: 

(G.10) 

In this equation, I:n means the sum over all possible N-tuples ii. 
The generating function leads to the following definition of the real multi

dimensional Hermite polynomial: 

1 - - f}I:; n; 
H1(x) = ( -l)I:;nie2(x,Ax) -------c:- e-½(x,Ai). (G.11) 

n 8x~1 
• • • 8x1J: 

This definition is derived analogous to the one-dimensional case, which was pre
sented above. 

3 REDUCTION THEOREM 

In order to simplify the derivation of the orthogonality and recursion relations 
for the real MDHP's, I derived a Reduction Theorem: 

Reduction Theorem: For any real N-dimensional generating function G A(x, s) 
with positive definite defining matrix A there exists a linear transformation 
T which transforms GA into a product of N - M generating functions of 
one-dimensional Hermite polynomials: 

N-M 

GA(x,s) ~T II G(zi,vi)' (G.12) 
i=l 

where Mis the number of zero eigenvalues of A. 

Proof: This theorem is proved by explicit construction of T. The transformation 
has two parts: an orthogonal transformation and a rescaling. The N x N 
matrix A is real and symmetric. It can therefore be diagonalised by an 
orthogonal matrix O [68]: 

(G.13) 

and 

(G.14) 

This last term can be written as I:i AiUiYi· The generating function of a 
real MD HP then transforms as 

GA(i , s) ->o GA(Y, it) - exp [ z;> ( u,y, - ~u/)] . (G:15) 
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We can now rescale the transformed coordinates y and u: 

and (G.16) 

This rescaled transformation of the generating function of a real MD HP 
then gives 

N-M 

GA(x, s) -'tr G(z, v) = II exp [2zivi - vl] , (G.17) 
i=l 

where Mis the number of zero eigenvalues of A. This is the transformation 
T whose existence we had to prove. D 

Since the new variables in Eq. (G.12) are linearly independent, the reduced 
generating function trivially generates the ordinary Hermite polynomials. We 
can now derive the orthogonality relation of the real MDHP's. 

4 ORTHOGONALITY RELATION 

The Reduction Theorem yields the diagonalised form: 

(G.18) 

Since the Jacobian J of an orthogonal transformation O is equal to 1, I omit 
it here. We can now transform Eq. (G.18) back to the non-diagonalised case. 
This yields 

(G.19) 

The orthogonality relations for the real MDHP's are then: 

for n =I= m. (G.20) 
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5 RECURSION RELATIONS 

There are two classes of recursion relations for the real multi-dimensional Hermite 
polynomials. First, we present the differential recursion relations, which form 
a generalisation of Eq. (G.6) . Subsequently, we present the type of recursion 
relations which form a generalisation of Eq. ( G. 7). 

In the generalised form of the Hermite polynomials, we wish to evaluate the 
derivative ax;H1(x). We proceed again from the generating function G(x, s): 

N 

_i_G(x s' = _i_e-½(s,As)+(s,Ax) = "'A' ·S ·G(x s' ax. ' ~) ax. ~ tJ J ' ~) • 
t t j=l 

(G.21) 

Furthermore, from Eq. (G.10) we obtain 

a n 1 n,v ~HA(-) 
- G(x s) = ""'~ .. . sN u ii x 
axi ' ~ n1! nN! OXi 

n 

(G.22) 

Expanding the right-hand side of Eq. (G.21) into Hermite polynomials and 
equating it with the right-hand side in Eq. (G.22) yields 

(G.23) 

where n - ei denotes the vector ii with ni replaced by ni - l. Comparing the 
terms with equal powers in nk yields the generalised differential recursion relation 

(G.24) 

This relation is easily generalised for multiple derivatives on H1(x). 
The second recursion relation is given by 

N N 

HJ+e; (x) - L AijXjHj(x) + L, AijnjHJ_ej (x) = 0. (G.25) 
j = l j = l 

This relation can be proved by taking the derivative to Xi and using the recursion 
relation ( G. 24). 
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MATHEMATICA CODE FOR TELEPORTATION 

MODELLING 

In this appendix, I present the MATHEMATICA code I used to derive the results 
of chapter VI. 

Krondelta [j_ , k_] .- If[ j == k, Return [ 1 ], Return [ 0 J J 

f [ ) := 1 
f [OJ := 0 
f [y ___ , 1, x ___ J := f[y,x) 

f[x ___ , y_ + z_, w ___ J f[x, y, w) + f[x, z, w] 

Let's define annihilation ops for polarisation k = "x" or "y" 
on mode j = 1, 2, 3, 4, or "a", "u", "v", "d" as a[k,j] 
and the creation ops as ad[k,j] 

f[ x ___ , n_ a[k_ ,j_], w ___ ] : = n f [ x, a[k, j ), w J 
f[ x ___ , n ad[k_ ,j_ J, w ___ J : = n f [ x, ad[k, j ), w J 

The normal ordering rule preserves commutator algebra. 

normOrder : = f [ x ___ , a[k_, j_ ], ad[kk_, jj_ ], w ___ J :> 
f [ x , ad [kk , j j ] , a [k , j ] , w ] + 

Krondelta [ k, kk J Krondelta [ j, jj J f[x, w) 

f[ x ___ , n_. f[y ___ ), w ___ J := n f[ x, y, w J 

To what order do we expand the exponential. 

expandExpl := myExp1[ x __ J :> g[ x J + g[ x, x ]/2 

expandExp2 : = myExp2[ x __ J :> g [ 1 J + g[ x J 

cutEnd : = { g [ x_] : > ExpandAll[ x ] , 
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g [ y ___ , x_] : > f[ g [ y ], ExpandAll [ x] ] } 

(* Calculate the creation and annihilation results*) 

numReduce := { f[ x ___ , ad[k_, 11_), aa __ ket [k_ , 11_, n_] ] :> 
Sqrt[n+l] f[ x, aa ket[ k, 11, n+l] ] , 

f [ x ___ , a [k_, 11_ ] , aa __ ket [k_, 11_, n_ ] ] : > 
Sqrt[n] f[ x, aa ket[ k, 11, n-1]] , 

(* and the adjoint *) 

f[ bra[k_, 11_, n_] aa __ , ad[k_, 11_], x ___ ] :> 
Sqrt[n] f[ aa bra[ k, 11, n-1 ], x ], 

f[ bra[k_, 11_, n_] aa __ , a[k_, 11_], x ___ ] :> 
Sqrt[n+l] f[ aa bra[ k, 11, n+l ], x] 

} 

(* The concise Form*) 

consiseForm := f[ket["x", h3_, o_] ket["y", h3_, p_)] * 
f [bra ["x", bh3_, bo_] bra ["y", bh3_, bp_) ] : > 

Inf ix [ {" I " 'o' " ' 11 , p' " > < " , bo, " ' II 'bp' " 1 •1} , "" ] 

The beam-splitter has five entries: the first two are the input modes, 
the third and the fourth are the respective output modes and the fifth 
entry gives the beam-splitters coefficient. 

*) 

beamSpli tter [ am_, bm_, cm_, dm_, eta_ ] := 

{ ad[ "x"' am ] :> Sqrt[eta] ad[ "x"' cm] + Sqrt [1 - eta] ad[ "xu' dm], 

a[ "x", am ] :> Sqrt [eta] a[ 11x 11
, cm] + Sqrt [1 - eta] a[ "xu, dm], 

ad[ "x"' bm ] :> Sqrt [1 - eta] ad[ "x", cm ] - Sqrt [eta] ad[ "x11, dm], 

a[ "x"' bm ] :> Sqrt [1 - eta] a[ "x", cm J - Sqrt [eta] a[ IIXlt' dm ] ' 
ad[ "y", am ] :> Sqrt [eta] ad [ "y"' cm] + Sqrt [1 - eta] ad[ llylf, dm J ' 
a[ "y"' am ] :> Sqrt [eta] a[ "y"' cm] + Sqrt [1 - eta] a[ llyll J dm J ' 

ad[ "y'•' bm ] :> Sqrt [1 - eta] ad[ "y", cm ] - Sqrt [eta] ad[ 11y11 J dm J , 
a[ "y"' bm] : > Sqrt [1 - eta] a[ "y"' cm J - Sqrt [eta] a[ "y" , dm J , 
ket[ "x"' am, n_ ] :> ket[ 11XII J cm, n J' 
ket [ llytt, am, n_ J : > ket [ "y", cm, n J' 
ket [ IIXII, bm, n_ ] : > ket [ "x"' dm, n J' 
ket [ llylt J bm, n ] :> ket[ llyfl J dm, n J 

} 

The polarisation filter performs a rotation over an angle theta (the 
second entry) on mode am (the first entry). The two directions of 
polarisation are called "x" and "y". 

polarizeFilter[ am_, theta_, aam_ J .- { 



ad["x", am] :> Cos [theta] ad["x", aam J + Sin[theta] 
a["x", am] :> Cos [theta] a[nx"' aam ] + Sin[theta] 

ad["y", am] :> - Sin[theta] ad["x", aam ] + Cos [theta] 
a["y"' am] :> - Sin[theta] a[ 11 x 11

, aam ] + Cos [theta] 
ket [ IIXIJ, am, n J :> ket [ IIXlt' aam, n J' 
ket [ "y"' am, m_ J : > ket [ "y", aam, m J 

} 

(* The takeAdjoint rule changes kets into bras. *) 

takeAdjoint .- ket[ k_ , l_, n_] :> bra[ k, 1, n] 
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ad["y", aam J ' 
a["y"' aam ] ' 

ad["y", aam ] ' 
a["y"' aam ], 

Polarisation insensitive detector. It assumes detectors cannot distinguish 
between a pulse containing one or more photons. The POVM acts on mode 1 and 
loss is Sqrt[l-efficiency-2]. The perfect detector therefore corresponds to 
loss=O. Loss is the AMPLITUDE loss . 

povMeasure[ b_, loss _ J := f[ z __ ket[ "x", b, n_] ket[ "y", b, m_ ]] :> 
Sqrt[l-loss~( 2(n + m) )] f[z ket[ "x", b, n] ket[ "y", b, m ]] 

povAngle [ mode_, loss_ J { 

f[ z __ ket ["x", mode, n_ ]] :> loss~n f[ z ket ["x", mode, n]J, 
f [ z ket ["y", mode, m_ ]] :> loss~m f[ z ket ["y" , mode, m]] 

} 

povHit[pol_ , mode_, loss_] := 
f[ z __ ket[pol, mode, m_ ]] :> Sqrt[1-loss-(2m)] f[ z ket [pol, mode, m]] 

povMiss[pol_, mode_, loss_] := 
f[ z __ ket[pol, mode, m_ ]] :> loss~m f[ z ket[pol, mode, m]] 

(* partial Trace[ mode_ ] takes the partial trace of mode "mode". *) 

partial Trace [ mode_ J .- { 

f [l __ bra[ "y"' mode, n_ J u __ J f [w __ ket [ "y"' mode, m_ J v __ J :> 
f [l u] f [w v] Krondelta[ n, m ] ' 

f [l __ bra[ "x", mode, n_ J u __ J f [w __ ket [ "x"' mode, m_ J V ] :> 
f[l u] f [w v] Krondelta[ n, m J 

} 

xTrace[ mode_] := { 

f[l __ bra[ "x", mode, n_] u __ ] f[w __ ket[ "x", mode, m_] v J :> 
f[l u] f[w v] Krondelta[ n, m J 

} 

yTrace[ mode_ J := { 
f[l __ bra[ "y", mode, n Ju __ J f[w __ ket[ "y", mode, m_ J v J :> 
f[l u] f[w v] Krondelta[ n, m] 
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} 

In the procedure "myCalc", ketval is assigned the function corresponding 
to the unitary transformation of creating EPR-pairs. After expansion to a 
certain order the beam-splitter on modes "b" and "c" is applied, the 
polarisation rotation on mode "a" is performed and the creation operators 
are calculated. Then the Hermitian conjugate is computed. With this we 
can define the density operator (densval). But first we apply the POVM on 
"u" and "v" . After expanding the density operator we take the partial 
traces of "a", "u" and "v", which gives us the output mode "d". 

In the line "ketval = f [ myExp [ .. . ", tau corresponds to the normal 
ordered function tau/ltaul tanh(ltaul), and NOT the tau due to the 
Hamiltonian. 

myCalc := Block[ {ketval, braval, densval, myval}, 
ketval = f [ myExpl [ tau f [ ad[ ltXfl, "a"], ad [ "y"' "b"] 

tau f [ ad[ "y", "a"]' ad [ "x", "b"] J J' 
myExp2 [ tau f [ad["x", "c"], ad [ IIYJI, "d"] J -

tau f [ad["y", "c"]' ad [ "x", "d"J J J' 
ket [ "x", "a" , 0 J ket [ "x"' "b", OJ * 
ket [ "y", "a"' 0 J ket [ 11y", llb", OJ * 
ket [ ux", lie", 0 J ket [ "x"' "d", OJ * 
ket [ "y", "c", 0 J ket [ "y'1, "d", OJ J; 

ketval = ketval /. beamSplitter[ "b", "c", "u", "v", 1/2 J; 
ketval = ketval /. polarizeFilter ["a", theta, "al" J; 
Print [ "<< beamSplitters and polarizeFilter »" ] ; 

ketval = ketval /. expandExpl; 
ketval = ExpandAll[ ketval /. cutEnd ]; 
ketval = ketval //. numReduce; 
ketval = ExpandAll[ ketval /. cutEnd J ; 
ketval = ketval // . numReduce; 
Print [ "<< expandExpl >>" J; 

ketval = ketval /. expandExp2; 
ketval ExpandAll[ ketval /. cutEnd]; 
ketval = ketval //. numReduce; 
Print [ "<< expandExp2 >>" J ; 

Save[ "ketval.m", ketval ] ; 

ketval 
ketval 

ketval 

ketval /. povMeasure[ "u", l oss l J; 
ketval /. povMeasure[ "v", loss2 J; 

ketval /. povHi t [ "x", "al", loss3J; 

J -



ketval = ketval /. povMiss [ "y", "al", loss3]; 

Print[ "<< P0VM's >>" ] ; 

ketval = ExpandAll[ ketval]; 

Print [ "<< expansion >>" ] ; 

braval ketval /. takeAdjoint; 

ketlen = Length [ ketval ] ; 
bralen = Length [ braval J; 
Print["<< ketlen = ", ketlen, ">>" ]; 

densval = Sum [ 
Print [ N[ 100. jj / ketlen, 3] , " %" ] ; 
Sum [ 

myval = ketval [[jj]] braval [ [kk]]; 
myval = myval /. {tau~6 -> O}; 

myval = myval //. partial Trace [ 
myval = myval //. partialTrace[ 

myval = myval //. partial Trace [ "al"], 
{ kk, 1, bralen } 

J' 
{ jj' 1' ketlen } 

J ; 

Save[ "densval4cas1.m", densval ]; 

densva1 Collect [ densval, tau J; 
densval = densval / . consiseForm; 

"u" J ; 
"v" J ; 

densval = Simplify[ densval, TimeConstraint -> Infinity J 
J 
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GENETIC ALGORITHMS 

In this appendix I review genetic algorithms. In the first section I present the 
basics behind these algorithms [120], and in the second section I describe the 
so-called differential evolution-approach by Price and Storn [137]. It was this 
method I used in chapter VII. The fortran code of this application is given in 
the last section. 

1 GENETIC ALGORITHMS 

Genetic algorithms can be used to find the best solution to a given problem. As 
the name already suggests, it is based on 'natural selection' over several genera
tions of a 'population' of solutions to the problem. It works as follows. 

Suppose we have a problem with a set of possible solutions. This set generally 
spans a high dimensional solution space. For instance, when the solutions to a 
particular problem are given by x(0; a, b, c) = a cos 0+b sin 0+c (with 0 its variable 
and a, b and c constants) , the solution space is a three-dimensional space spanned 
by the vectors (a, b, c). In addition, we have a selection criterion which gives us 
a measure of the 'fi tness' of a solution. For example, we might define the fitness 
of a solution as a distance measure between a function y and a solution x . The 
smaller this distance, the fitter the solution. One such fitness measure for the 
example above may be given by 

1
21T 

f(a, b, c) = 
0 

ly(0) - x(0; a, b, c)l 2d0. (I.I) 

In the genetic representation, the numbers a, b and c are the genes of a particular 
solution. 

In any genetic algorithm, we first select a population of n solutions 

(I.2) 

where P is the population (taken at the initial time t0) and x~0 a candidate 
solution to the problem. The solut ions are evaluated using the fitness measure, 
yielding a measure set F (t0 ) = {Jf0

, ... , f~0 }, where Jf0 is a number associated 
with the fitness of solution x~0

• 

Depending on the details of our problem, we are looking for the smallest or the 
largest number Jf0

• Suppose better fitness means a smaller f, then we choose the 
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~ P(t) 

Crossover & 
I BF I Mutations 

~ P(t + 1) 

Figure I.1: F lowchart for genetic algorithms. At time t the fitness of the 
members of a population P(t) is evaluated according to some criterion. 
The best fitting member (BF) of P(t) is recorded. Subsequently, a new 
population (the next generation) P(t+ 1) is formed from P(t). In addition, 
crossover and mutations diversify the next generation. This generation is 
again tested for the best fitting member, which is recorded as the fittest if 
it defeats the previous fittest. 

solution xt0 corresponding to the smallest f~0 in our measure set. Let xt0 be the 
best solution for this population. It will be stored in the memory. This memory 
slot is reserved for the best solution, and it will be updated if some solution xf 
from a later generation outperforms xt0 . 

The next step is the crucial step of genetic algorithms. The old generation, the 
population P(t0) , will now determine the next generation P(t) of solutions. Low 
fitness solutions from P(t0 ) , however, will be discarded: evolution has destined 
them to die. Thus only the fittest individuals from a population will generate a 
new population: they are making babies. 

Just as in the offspring of real populations, the children inherit the traits of 
their parents. But they differ too. In biology, organisms often produce genetically 
different offspring by using crossover, in which genes of the parents are mixed. 
In a population of solutions to a mathematical problem, we can also introduce 
crossover. For example, when two solutions Xi0 and x~0 are determined by the 
vectors 

and 

crossover can produce a child-solution x; = (a1, b2, c2, d1, e1) , where 'genes' a, d 
and e are taken from parent 1 and 'genes' b and c from parent 2. 

A second mechanism for inducing changes in subsequent generations is mu
tation. In real life, background radioactivity or free radicals induce changes in 
the DNA structure which will affect future generations. Most of the time these 
changes are a setback and will be eliminated in the next generation, but once in 
a while it increases an individual's fitness. 

Using crossover and mutation, a new population is formed. This is the next 
generation. The population size is usually held constant, but this is not nee-



2 DIFFERENTIAL EVOLUTION 1 75 

essary. The new population is again evaluated, yielding a measure set F(t) = 
{ff, ... , f~}- The fittest solution of this generation is chosen, and will replace 
the previous one if it is better. 

Next, the process of offspring generation using crossover and mutation is re
peated to generate a population P(t + 1), the members of which are again tested 
for their fitness, and so on. This process terminates after a given number of 
generations ( see also figure I. 1). 

Since less fit members of the parent population do not make children, the 
genetic algorithm does not conduct a random search in the solution space. Also, 
since the best overall solution is recorded, it is not necessarily a member of the 
final population. For example, looking for artistic and scientific traits in the 
human population, The genetic algorithm would probably select Leonardo da 
Vinci, even though he died in 1519. 

In short, an optimisation algorithm is a genetic algorithm if it meets the 
following criteria: 

1. The problem must allow a genetic representation for potential solutions. 
For example, a vector has a genetic representation, in which the entries 
correspond to genes. As we have seen, crossover exchanges these genes. 

2. An initial population has to be created and a mechanism for producing the 
next generation must be given. 

3. A fitness measure has to be defined in order to guide the evolution. It plays 
the role of the environment in the sense that it induces 'natural selection'. 

4. The algorithm needs a crossover and mutation mechanisms to allow the 
generations to evolve. 

5. Finally, the algorithm needs parameters like population size, number of 
generations, mutation probabilities, etc. 

In the next section, I will take a closer look at differential evolution. 

2 DIFFERENTIAL EVOLUTION 

The main difference between genetic algorithms and differential evolution lies 
in the parent-child relationship. In genetic algorithms described in the previous 
section, two1 parents pass their genes on to a child by means of uniform crossover. 
This means that all parents have equal probability to pass on their genes to 
their children (note the distinction with the unequal probability for members of 
a population of having offspring at all). 

1Or more: why let biology restrict this mathematical protocol? 
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In differential evolution, however, a fitter parent has a higher probability of 
passing on its genes to the, child. The child is thus more closely related to its 
fitter parent, and is likely to have a good fitness rating. This accommodates a 
more directed evolution, in which successful branches are biased [137]. 

3 FORTRAN CODE FOR LITHOGRAPHY 

I used a genetic algorithm to optimise one-dimensional quantum lithography used 
in the creation of a trench function. I have omitted the fitness function because 
it is quite lengthy. It can easily be generated using MATHEMATICA. 

program genetic 
c uses a GENETIC search algorithm 

implicit real*8 (a-h, o-z) 
integer time 
real RAN 
external time, RAN 

c number of parameters to fit 
parameter (n = 21) 

c maximum number of generations 
parameter ( gen_max = 1000 ) 

c population size 
parameter (NP= n*10) 

c scaling mutation parameter 
parameter ( Fscale = 0.5) 

c recombination parameter 
parameter (CR= 0.1) 
real*8 x1(n, NP), x2(n, NP), trial(n), cost(NP), psmallest(n) 

C 

c set the random seed 
iseed = time() 

c iseed = 950015448 
C 

c initialization 
do 800 i = 1, NP 

do 700 j = 1, n-1 
trial(j) = 2.0d0*RAN(iseed) - 1.0d0 
x1(j,i) = trial(j) 

700 continue 
c initialise t he exposure time parameter 

trial(21) = 1.0d-2*RAN(iseed) 
x1(21,i) = trial(21) 
cost(i) = f( n, trial) 

c write(*,*) i, trial, cost(i) 
800 continue 
c initialise 'smallest' 

j smallest = 1 
smallest= cost(1)*10 
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c halt after 'gen_max' generations 
do 2000 jgen = 1, gen_max 

c loop through the population 
do 1800 i = 1, NP 

c mutate and recombine. 
c randomly generate three *different* vectors from each other and 'i' 
1001 ia = 1. 0 + NP*RAN(iseed) 

if ( ia.eq.i) goto 1001 
1002 ib = 1.0 + NP*RAN(iseed) 

if ( (ib.eq.i) .or. (ib.eq.ia)) goto 1002 
1003 ic = 1.0 + NP*RAN(iseed) 

if ( (ic.eq.i) .or . (ic.eq.ia) .or. (ic .eq.ib)) goto 1003 
c randomly pick the first parameter 

j = 1.0 + RAN(iseed)*n 
c load n parameters into trial; perform n - 1 binomial trials 

do 1300 k = 1, n 
if ( (RAN(iseed).le . CR) .or . (k.eq.n)) then 

177 

c source for 'trial(j)' is a random vector plus weighted differential .. 
trial(j) = xl(j,ic)+Fscale*( xl(j,ia) - xl(j,ib) ) 

else 
c or the trial parameter comes from 'xl (j ,i)' itself. 

trial(j) = xl(j,i) 
end if 

c get the next 'j' modulo n 
j = j + 1 
if ( j.gt.n) j = 1 

c last parameter 'k=n' comes from noisy random vector . 
1300 continue 
c evaluate/select. 
c score this trial 

score= f ( n, trial) 
if ( score.le.cost(i)) then 

do 1400 j = 1, n 
c move trial to secondary vector (for next generation) . . 

1400 

C 

x2(j,i) = trial (j) 
continue 
cost(i) = score 

else 
do 1450 j = 1, n 

or place the old population member there 
x2(j,i) = xl(j,i) 

1450 continue 
end if 

1800 continue 

c end of population, swap arrays; move x2 onto xi for next round 
do 1500 i = 1, NP 

do 1490 j = 1, n 
xl(j,i) = x2(j,i) 

1490 continue 



1500 continue 

c keep a record of progress so far 
do 1900 j = 1, NP 

if ( cost(j).lt. smallest) then 
smallest= cost(j) 
j smallest = j 
do 1600 kkk = 1, n 
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psmallest(kkk) = x1(kkk,jsmallest) 
1600 continue 

end if 
c write(*,*) jgen, j, cost(j) 
1900 continue 
c display the progress each generation 

write(*,*) " gen", jgen, " score=", float(smallest) 

2000 continue 
xnorm = 0.0d0 
do 2050 i = 1, n 

xnorm = xnorm + psmallest(i)**2 
2050 continue 

xnorm = dsqrt(xnorm) 
do 2100 i = 1, n 

psmallest(i) = psmallest(i) / xnorm 
2100 continue 

write(*,*) "parameters:" 

stop 
end 

real*8 function f( n, trial) 
implicit real*8 (a-h, o-z) 
integer n 
rea1*8 trial (n) 
xnorm = 0.0d0 
do 100 i = 1, n-1 

xnorm = xnorm + trial(i)**2 
100 continue 

xnorm = dsqrt ( xnorm) 
c renormalise the trials 

do 200 i = 1, n-1 
trial(i) = trial(i) / xnorm 

200 continue 

c f = fitness function to be minimised 
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