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Summary of research 

We research a method to extract information, from sampled data, about the degree and 

the spread of contamination in a marine environment. The data set consists of heavy 

metal concentrations in sediments sampled in Liverpool bay. As a benchmark of a 

"clean" environment, Morecambe bay was used for comparison in a preliminary study. 

Based on fuzzy set theory, we formulated a mathematical approach and apply it on both 

environmental regions. 

Before applying the fuzzy set approach, it was first necessary to investigate 

subjective (e.g., human error, physical limitation of field equipment) and statistical 

evidence for the existence of missing and outlying observations. Two statistical tests 

were used for the detection of outliers: Grubb's test and Chebyshev's inequality. 

Using the concept of fuzzy sets, an appropriate function was chosen to present the 

concept of contamination with respect to increasing rates of metal concentrations. Two 

methods for designing and generating n-place aggregation operators were suggested and 

a variety of fuzzy aggregation operations were then explored to formulate a set of 

possible indices of contamination, called here "loading indices". The concept of 

similarity measures was used to quantify the degree of similarity between the various 

loading indices. The availability of annually sampled data from Liverpool bay between 

the years of 1986 until 1992 inclusive, presented us with the opportunity to compare the 

annual fluctuation of metal contamination levels over seven years. In addition to this, the 

temporal changes of clean and highly contaminated areas, in a sampled region, were 

studied. 

The results were presented in the form of coloured plots, with overlayed contours, 

separately for each loading index. Grouping of similarity measures between all thirteen 

loading indices was done using hierarchical relational clustering and a similarity tree. 

Five distinct groups of indices were found, from which one index representative, from 

each group, was chosen. These were the Minimum, Maximum, Average, Fuzzy integral 

and Weighted average. Therefore, by using different aggregation operators, we can 

highlight different aspects of the spatial distribution of contamination by overall heavy 

metal loading in a marine environment. 



Finally, our analysis lead us to conclude that there is no evidence to support that the 

area of Liverpool bay, during the period from 1986-1992, was not contaminated 

overtime with heavy metal loading. 
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Chapter 1 

Introduction 

Two marine environmental regions will be introduced in this chapter which shall 

be the focus of this study. Our general aim is to mathemat ically model an 

environmental region with respect to metal distribut ion. 

1.1 Environmental Regions 

As an introduction, two environmental regions from which the studying blocks for 

this research were obtained are presented. The regions, Liverpool bay and More­

cambe bay, were selected based on the domain expert 's scient ific knowledge of both 

regions. 

1.1.1 Liverpool bay 

Liverpool bay is an area within the Irish Sea whose precise limits have not been 

defined. At most t imes it is often used to describe that part of the Irish Sea limited 

to the south by the North Wales coast, east of Great Ormes Head, and to the east 

by the Lancashire coast as far north as the estuary of the Ribble River (Figure 

1.1) . T he seaward boundaries are not precise but are generally taken to be some 

50 kilometres to the north and west of the two coasts [15] which can be considered 

as the general description of the bay. As for a precise descript ion, Liverpool bay is 

10 
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Figure 1.1: Study area including depth contours(m). The waste disposal sites in 

Liverpool bay are indicated by SI (sewage and industrial wastes) , Y and Z (dredged 

spoil sites). The polygon off the Mersey and the North Wales coast indicates the 

perimeter of the sampling grid. 
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considered to be a relatively shallow, semi-enclosed water body. Most of the area is 

seen to lie within the 40m isobath, whereas the depth over the sewage disposal area 

(site SI 1 ) is said to be between 25 and 30m. To help in interpreting the results, 

an understanding of some of the geophysical and industrial activities that occur in 

Liverpool bay may be needed. 

First, we shall look the geophysical aspects that characterize the bay. The dis­

charges into Liverpool bay are mainly from the rivers Mersey, Ribble, Dee and 

Clwyd. The influences of these freshwater discharges upon the waters of Liverpool 

bay have been found to vary seasonally, with considerable enhancement during the 

winter months and with higher precipitation and fluvial discharges than the sum­

mer. Although water circulation in the bay, in general, depends on several factors 

such as tides, winds, and freshwater inputs, there is a well established estuarine-like 

circulation induced by the low-density freshwater inputs from the rivers, the Mersey 

in particular, and by higher density seawater from the Irish Sea. In this circula­

tion, low-density water moves offshore on the surface and high-density water moves 

inshore near the bottom. This density-driven inshore movement of bottom water, 

coupled with tidal asymmetry producing stronger flood than ebb tides induces, a 

net sediment transport directed east and south-east toward the Mersey. The direc­

tion of net sediment transport has been confirmed by studies using sea-bed drifters, 

radio-labelled sewage and by the grain-size distribution in the bay. 

According to a number of studies [16, 15], Liverpool bay is considered to be 

an area of sandy sediments, although irregular patches of mud have been found in 

some places. Another important characteristic is the net directional transportation 

of sediments. There exist two directions of sediment transport in Liverpool bay, 

one from NW to SE and another from west to east. Very fine sand (62.5 to 125.0 

µm) is the fraction more easily transported in the easterly direction whereas coarser 

sediment (fine sand, 125-250 µm) is preferentially moved towards the south-east 

(see Camacho-Ibar,1992). In summary, there is a general trend to observe in the 

1 Site SI includes stations: K8-Kll , L10-L12 and Jg 
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Figure 1.2: Location of stations in Liverpool bay in which superficial sediment sam­

ples were taken for study. 
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distribution of fine sediments, with intermediate values between 5-10 percent in the 

northern region of the sampling grid that decreases towards the North Wales Coast 

where they reach values less than one percent. The distribution of muddy deposits 

was seen to be erratic throughout the region, although muddy banks near the Burba 

Bight (10-20 percent) appeared to be a permanent feature. 

A wide range of commercial and leisure activities is carried out in Liverpool bay. 

These activities include fishing, gravel extraction, sailing and boating, swimming 

and the use of amenity beaches, and most importantly, the bay is used as a site for 

the disposal of sewage sludge and dredged spoil. Disposal activities of sewage sludge 

in Liverpool bay started after the construction of the first sewage treatment plants 

near Manchester and Salford in the early 1890s. Sludge disposal has continued until 

19982 inclusively at a designated area (site SI) shown in Figure 1.2. Disposal of 

industrial wastes has taken place at the same site since the late 1960s. The bay also 

receives direct discharges of domestic and industrial wastes from coastal outfalls, 

and indirectly from the discharges of effluents into the rivers flowing into Liverpool 

bay. These discharges are mainly organic in composition, with metallic compounds 

included in its inorganic content, and its constituents are present both in suspension 

and in solution [l]. The main riverine contributions are from the rivers Mersey, 

Dee, and Ribble. 

All of these disposal operations occur inside an area licensed by the Ministry 

of Agriculture, Fisheries and Food (MAFF). This Ministry is responsible for the 

control of disposal of wastes at sea, including the licensing of all disposal operations. 

MAFF does the predischarge control on wastes, enforces the licensing conditions, 

and carries out surveys of the areas licensed for the disposal of wastes to ensure that 

the marine environment and its resources are being protected. [14] 

2 Reference: personal communication 
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1.1.2 Morecambe bay 

Morecambe bay is a large macro-tidal estuary with important wildlife resources. It 

is located on the eastern shore of the Irish Sea, north-west of England. Of particular 

relevance in the bay are the Grange and Heysham Channels at the landward end of 

the Lune Deep (itself an interesting feature of glacial origin) and other channels lying 

between Yeoman Wharf, Furness Bank and Mort Bank. Also of particular interest 

is the dredged access channel leading to the port of Barrow-in-Furness. Figure 1.3 

shows the stations of the sampled area from Morecambe bay taken in 1988. 

The distribution of mean sediment size was noted by [4] as follows. Within the 

bay, the bed material is almost exclusively sand, with a mean diameter of approx­

imately 0.1mm (fine sand). Along the Lune Dune, southern region of Morecambe 

bay, and out into the Irish Sea, some muddy sediments are found. The Morecambe 

Flats which are exposed at low tide (located along the western boundary of the bay) 

together with an area extending offshore to the south west, appear to be primarily 

stoney grounds. The bay is relatively open to wave action from the south-west, and 

therefore it is likely that waves could play a significant role in suspending material in 

addition to the tidal flow. On the tidal flats further into the bay, the net transport 

was found predominantly in a landward direction. 

1.2 Research Assignment: General A im 

The dynamic nature of coastal waters presents a severe challenge to environmental 

assessment of disposal activities in near shore waters. Liverpool bay has received 

large quantities of sludge-input (industrial waste) on regular basis since the late 

1960's. Heavy metal concentrations are measured annually on a grid of locations in 

order to detect and monitor the changes in the ecological structure of Liverpool bay. 

On the other hand, unlike Liverpool bay, Morecambe bay with its important wildlife 

resources is not extensively used for such industrial activities. The geographical 

locations of the two regions are shown in Figure 1.4. 

15 
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Liverpool Bay 

Figure 1.4: Liverpool Bay and Morecambe Bay location in the United Kingdom 
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Both regions are of importance with respect to the presence of heavy metal 

concentrations. Morecambe bay is assumed to contain lower levels of metal concen­

trations compared to Liverpool bay. Therefore, Morecambe bay was suggested as 

a benchmark for a relatively clean marine region. An important difference between 

Morecambe bay and Liverpool bay is that metal concentrations within Liverpool bay 

are "point-wise" (i.e., there is a designated disposal site), whereas Morecambe bay 

obtains a diffused input. See [17, 18] for additional information on monitoring and 

surveillance of contaminants in the aquatic environment. Liverpool bay also receives 

heavy metal discharges from continuous sources (Mersey and Dee Estuaries) as well 

as through erosion [14]. 

1.2.1 Heavy metals 

'Heavy metals' is a general collective term applying to the group of metals and met­

alloids with an atomic density greater than 6 g / cm3 . Although it is scientifically 

only taken to be a loosely defined term, it is widely recognized and usually applied 

to the elements such as Cd, Cr, Cu, Hg, Ni, Pb and Zn which are commonly asso­

ciated with pollution and toxicity problems. Unlike most organic pollutants, such 

as organohalides, heavy metals occur naturally in rock-forming and ore minerals 

and so there is a range of normal background concentrations of these elements in 

soils, sediments, waters and living organisms. When talking about 'contamination', 

'contamination' is a term used when concentrations of substances in an environment 

give rise to inconsistently high concentrations of the metal relative to the normal 

background levels; therefore, the presence of the metal is insufficient evidence of 

pollution, the relative concentration is all important (see Table 1.1, [5]) . Examples 

of critical (trigger) concentrations of heavy metals used in the U.K. and another 

European country are given in Tables 1.1 and 1.2. The critical values for soils given 

in Table 1.1 for the U.K. by the Department of the Environment Inter-departmental 

Committee for the Reclamation of Contaminated Land List of 'Ir-igger Concentra­

tions for Contaminants are pragmatic and based mainly on the risk to human health. 
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Table 1.1: UK Department of the Environment Inter-departmental Committee for 

the Reclamation of Contaminated Land List of trigger concentrations for environ-

mental metal contaminants (total concentrations except where indicated, UK De-

partment of Environment, 1987). 

Contaminant Proposed usages Threshold trigger Background 

concentration reference 

(µg/g) [29, 70] 

Contaminants which 

may pose hazards 

to human health 

Cd Gardens, allotments 3 0.3 

Parks, playing fields, 15 

& open space 

Cr Gardens, allotments 25 90 

Parks, playing fields, 

& open space 

Pb Gardens, allotments 500 20 

Parks, playing fields, 2000 

& open space 

Hg Gardens, allotments 1 0.4 

Parks, playing fields , 20 

& open space 

Phyotoxic contaminants 

not normally hazardous 

to health 

Cu Any uses where plants grow 130 45 

Ni Any uses where plants grow 70 68 

Zn Any uses where plants grow 300 95 
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Table 1.2: Guide values and quality standards used in The Netherlands for assessing 

soil and water contamination by heavy metals (Netherlands Ministry of Housing, 

Physical Planning and Environment, 1991). 

Soils (µg/ g) 

Metals A B C STV 

Cd 1 5 20 0.8 

Cr 100 250 800 100 

Cu 50 100 500 36 

Hg 0.5 2 10 0.3 

Ni 50 100 500 35 

Pb 50 150 600 85 

Zn 200 500 3000 140 

Soil value: A = reference value, B = test requirements, C = intervention value; 

STV = target value for soils. Target values for soils are based on 'standard soil' 

(10 % organic matter and 25% clay) . 

Table 1.3: Estimated inputs (in tons) of some metals to the North Sea in 1990 

Source Mercury Cadmium Copper Lead Zinc 

Rivers 25 43 1200 1000 6400 

Atmosphere 6.9 74 740 1700 5500 

Dredging spoil 19 71 1300 2700 7900 

Direct discharges 1.8 17 290 160 1300 

Industrial disposal 0.2 0.3 180 220 440 

Sewage sludge (ceased by 1998) 0.7 1.2 76 77 160 
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Table 1.2 shows the critical concentrations used in the Netherlands for contaminated 

soils. These are: A, the 'normal' reference value; B, the test value to determine the 

need for further investigations; C, the intervention value above which the soil def­

initely needs cleaning-up; and STV, the target value for soils which represents the 

final environmental quality goal for the Netherlands. See also [69] for more infor­

mation on heavy metal contamination. 

According to [23] metal input routes can be classified into three groups: atmo­

spheric inputs, river inputs and other inputs. Most rivers make a major contribution 

of metals to the sea, the nature of the input depending on the occurrence of metal 

and ore-bearing deposits in the catchment area. Intense sedimentation in estuaries 

traps large quantities of metals which become adsorbed on to sediment particles 

and carried to the bottom. Sediments in industrialized estuaries with major ports 

contain the legacy of a century or more of waste discharges. Regular dredging of 

shipping channels in such areas produces large quantities of contaminated dredg­

ing spoil, which, except for the most heavily contaminated dredgings, are usually 

disposed at sea. Much smaller quantities of metals are added to the sea by direct dis­

charges of industrial and other wastes by pipe line, and by disposing sewage sludge 

and industrial wastes at sea. Although relatively small, these inputs may be locally 

significant if they are added to sea areas with restricted water circulation. The fol­

lowing is a brief introduction to five specific heavy metals (i.e., mercury, cadmium, 

copper, nickel, and lead) out of the seven and there importance to the environment 

[23]. Table 1.3 shows the estimated inputs of some metals to the North Sea3 in 1990. 

Mercury (Hg): Annual global input of mercury to the sea is estimated at 

6000-7500 tons, of which 50-75% is the result of human activities, but the 

industrial use of mercury has been progressively reduced. Mercury is the only 

contaminant introduced by humans into the sea that has been responsible for 
3The North Sea is bounded by the Straits of Dover to the south , Denmark to the east, the 

eastern coast of the UK to the west, and bounded by an invisible line stretching from Shetland to 

the Norwegian coast to the north. It is intensively used by the surrounding, largely industrialized 

population of 31 million (plus summer visitors), for shipping, fishing, waste disposal, etc. [23). 
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human deaths (e.g., 'Minamata disease' in Japan). Natural inputs of mercury 

to the sea are from weathering of mercury-bearing rocks and degassing of 

the earths crust, particularly through volcanic activity. As far as is known, 

human exposure to organic mercury occurs only through the consumption 

of contaminated fish and sea food. The World Health Organization (WHO) 

recommended a maximum tolerable consumption of mercury in food of 0.3mg 

of total mercury per week. 

Cadmium (Cd): Annual global input of cadmium to the sea is 8000 tons, of 

which half is from human sources. Some marine organisms accumulate large 

concentrations of cadmium, but no environmental effect has been detected. 

Cadmium was associated with 'itai itai' disease in Japan, but this has not 

been confirmed elsewhere. Even so, cadmium is included in the 'blacklist' 

of substances that should not be discharged to sea. The amount of cadmium 

released to the environment cannot be quantified but are of a variety of diffused 

sources including sewage sludge. 

Copper (Cu): 325000t/year of copper enter the sea annually from the ero­

sion of ore-bearing rocks. About 7.5 million tons per year are used in industrial 

processes. Copper is mostly adsorbed onto particles and most inputs become 

incorporated in bottom sediments . Copper is the most toxic metal after mer­

cury and silver. 

Lead (Pb): Lead contamination in the sea increased dramatically after 1750 

(industrial revolution) and especially after 1950 (lead additives to petrol) 

largely from atmospheric sources. Lead is not particularly toxic to marine 

organisms and has had no environmental impact . The total world production 

of lead is about 43 million t/year. 

Nickel (Ni): Nickel is a heavy metal that is a significant contaminant of 

sediments in industrialized areas and serious attempts have been made to 

reduce inputs of nickel to the sea. 
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Industrial plants have been disposing of waste in Liverpool bay for the past several 

years at specified licensed sites. Surface sediment samples have been collected from 

both regions at specified coordinates in the bays, shown in Figures 1.2 and 1.3. The 

annual data were measured at a specified time, mainly between the 14th and 16th of 

September, by means of a 0.1 m2 Day grab. This type of grab has been extensively 

used for sediment surveys by MAFF and UCNW because of its reliability and ease 

of operation. This technique permits seabed sampling down to a maximum depth 

of 15 cm. The fine fraction was analysed for concentration of heavy metals, namely, 

• Mercury (Hg) 

• Cadmium (Cd) 

• Chromium (Cr) 

• Copper (Cu) 

• Nickel (Ni) 

• Lead (Pb) 

• Zinc (Zn) 

which were all measured in units of µg/ g (parts per million, ppm) 4 . 

1.2.2 Aim of Study 

In this study, the objective has been, mathematically, to construct and 

represent the geographical (spatial) distribution of overall metal loading 

in a marine environmental region. In other words, our aim is to use a mathe­

matical approach, and apply it on the available metal data sets to produce various 

informative data sets of metal loading. These sets should reflect specific overall 

distribution of metal concentrations in an aquatic environment. 
4 micrograms per gram of sediment 
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In [59], McBratney (1992) discusses information in environmental soil manage­

ment, how the quality and quantity of soil information may be modified by various 

kinds of uncertainty (stochastic, deterministic and semantic), and how its presenta­

tion may be enhanced by the use of information technology. One of these types of 

uncertainty of soil information that is of interest to us is uncertainty due to vague­

ness . There are many occasions in soil science especially in soil description when 

the data represent a concept that is somewhat vague or is qualitative. Fuzzy set or 

possibility theory deals with this type. 

The problem of finding geographical distribution of heavy metals is addressed in 

Markus and McBratney, 1996 [56]. The authors investigated the occurrence of some 

metals in urban soil by using Statistical Analysis, Generalized Linear Models and 

Fuzzy c-means clustering. Fuzzy c-means classified the sampled points into a number 

of classes according to the level of soil contamination by the metals. Specifically, the 

aim of the study was to determine the total concentration and spatial distribution of 

four metals (Pb, Zn, Cu and Cd) in an Australian urban environment. The following 

is a summary of the three statistical and mathematical analytical approaches used 

to find the solution. 

• Geostatistical Analysis: Two types of kriging5 were used, lognormal and in­

dicator kriging, to generate plots of metal concentrations and probabilities of 

concentrations that were above environmental limits, respectively. 

• Generalized Linear Models: These models were incorporated to determine 

which factors, among the underlying three: soil, geology and distance from 

the road, influenced the concentration of total metals from the sampled top­

soil. 

• Fuzzy c-means Clustering: A fuzzy c-means analysis was first applied to the 

original data (i.e. the data of the four chosen metals) to determine the spatial 

5 Kriging is a geostatis tical gridding method of spatial interpolation and contouring for irregularly 

spaced data. For more information see [24, 40] 
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distribution of each point in relation to another. It was then used to clus­

ter objects of similar variables numerically. For this data, five clusters were 

formed. Fuzzy c-means was specified for four clusters, but later formed the 

fifth. A minimum membership grade of 0.5 was selected as a threshold value 

such that data points with membership greater than 0.5 were visually repre­

sented via a map (i.e. these points made up 4 out of the 5 clusters). While 

points with memberships far less than 0.5 and did not fit any particular class 

were characterised as an 'extragrade' class, and formed class 5. 

Finally, it was concluded that the results of these analysis only quantified, i.e., 

showed the amount of increasing levels of contaminants in the sampled environ­

ment, and confirmed the presence of each metal concentration in this sampled urban 

environment. 

Also, Lehn and Temme (1996) [52] considered the field of research, "handling 

sites suspected of being contaminated" . They recognised that there exists a high 

demand for formal methods and computer systems that maintain site data and assist 

in the estimation of hazard. This need for such systems was found to arise as a result 

of the large number of sites and therefore the large amount of data to be worked on. 

One of their approaches to this problem, was that they considered applying fuzzy 

clustering to estimate the hazard of sites suspected of being contaminated. 

Hence, we find that there is no straightforward solution to the general task at 

hand. Therefore, using the concept of Fuzzy Set Theory we hope to generate a 

number of concentration indices (not necessarily similar) to represent the loading 

distribution in a region. In summary, the tasks of the study are to: 

1. Summarize the mathematical method (Fuzzy Aggregation Rules) which will 

be used to design the loading indices. (Note that, a 'loading' of a site refers 

to the natural and unnatural concentration of metals found in the sediments 

of the sampled sites.) 

2. Apply the above method on the data sampled from the marine environmental 
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regions, and calculate the indices. 

3. Verify the resulting loading indices using both subjective and objective ap­

proaches. 

1.3 Previous Research 

A number of studies have already been carried out with metal concentrations sam­

pled from Liverpool bay, over the years [3, 14, 16]. 

A study on metal data sampled from Liverpool bay in 1988 was conducted in 

the area of mathematical modeling, i.e., [3]. Techniques such as cluster analysis, 

principal component analysis (PCA) and fuzzy aggregation rules were used to study 

the distribution of metals within that year. The problem was to find an overall 

distribution of metal concentrations ( or contaminations) given that the metals have 

different concentration scales and the way of combining the concentrations is not 

prescribed. Cluster analysis and PCA have been typical choices for this kind of 

problems [56], but results of both methods are difficult to interpret, unless the 

data has favorable structure and characteristics. During this study we found that, 

the difficulty in devising one single loading index comes from the fact that there is 

no true contamination distribution which we should try to match. Finally, fuzzy 

modeling was employed, and an analysis of the overall contamination of Liverpool 

bay with the seven metals was carried out using six aggregating operators. As a 

result we were able to conclude that using different aggregating operators, we can 

highlight different aspects of spatial distribution of heavy metal loading in Liverpool 

bay within that year (1988). 

In the current study, we continue modeling environmental data sampled from 

Liverpool bay. With the large amount of environmental data available, further re­

search to construct a mathematical model capable of processing or aggregating all 

seven metal data sets over a number of years, to produce one informative set, is 

required. A variety of aggregating operators are researched. Then, loading indices 
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are produced for each year and compared with respect to the type of information 

contained by each. The most informative and distinct indices are chosen with the 

aid of what are called Similarity Measures. The following is an outline of chapters 

to come. In the next chapter, we preprocess the data for missing and outlying ob­

servations. Chapter 3 introduces the concept of fuzzy set theory and research some 

applications of fuzzy set theory to the field of environmental science. Examples 

of extending 2-place aggregation operators to n-place ones is given in Chapter 4. 

Methods to measure similarities or differenes between the information held in the 

aggregated sets are presented in Chapter 5. Data sampled from Liverpool and More­

cambe bay (in 1988) are then used as templates to find the best consistent similarity 

measure and most informative indices. A temporal change of metal concentrations 

in Liverpool bay is studied and presented in Chapter 6, over the years, 1986-1992. 

We conclude our findings in a mathematical and environmental context, in Chapter 

7. 

The concept of Fuzzy set theory is chosen to mathematically interpret the spa­

tial distribution of overall metal loading in two marine environmental regions, 

Liverpool bay and Morecambe bay. 
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Chapter 2 

Data Preprocessing 

In this chapter we examine the raw data for missing values and outliers, both of 

which are pertinent characteristics to ecological data of the type considered here. 

2.1 Introduction 

In the first chapter, we introduced two ecologically studied systems, Liverpool and 

Morecambe bay, in the U.K. In this chapter, we shall screen the environmental data 

sampled from both Liverpool and Morecambe bay for any peculiarities. Here we 

find it important to understand the limitations of the tools used to collect the data 

from an ecosystem, in order to deal with measurement errors within the data as best 

as possible. Afterwards, outlier testing is carried out to locate extreme observations 

within the data. As a result, a finalized and acceptable version of the environmental 

data is obtained. 

It is very unusual for real or observational data to arrive without problems. Most 

of the time, the process of screening or sifting data can consume considerably more 

time and effort than the primary analysis of interest. A typical problem in real 

data are the missing observations. One solution is to discard the data point and all 

entries associated with it, at which this missing value occurs. But in observational 

data analysis, scientists who collect the data, are uncomfortable about discarding 

existing information, possibly due to the unavailability of an alternative sample that 
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can be used in the place of the missing one. It might be difficult to obtain another 

sample due to: i) the complexity of the sampling procedure or ii) the specific time of 

the sampling. In our case, the sampling from the sediment of the bottom of the bay 

at a certain location (station) cannot be easily repeated (see Chapter 1). T herefore, 

if discarding data points containing the missing observations is not favored, the 

only alternative is by way of estimation. Since this solution covers a wide range of 

methods, the researcher must try to understand the reason behind the occurrence 

of missing observations before choosing the method of estimation. 

It is usually assumed that quantitative data follow a normal distribution. Often, 

however , observational data do not meet this assumption. Assessing data distribu­

tion is also important since it can assist the analyst in identifying and discarding 

outliers, [43]. 

2.2 Choice of Base Data: Original metals or relative to 

Aluminum content? 

We start by considering which type of base metal data is more appropriate for our 

mathematical research. It was pointed out that although heavy metal concentrations 

were measured in the same unit, the scale range as well as the ecological effect 

of a metal is specific and different for each metal. For example, Mercury (Hg) 

has detectable values ranging from 0.02 to 2.09 µgg-1 , while lead (Pb) has values 

ranging between 70 and 1214 µgg- 1 . On the other hand, this large difference in scales 

between the metals, does not indicate the "harmfulness" or degree of pollution of a 

metal in Liverpool Bay, (i.e., a small amount of Mercury can be more harmful than 

a large amount of, say, Chromium). 

Also, in our initial research [3], relative concentrations of heavy metals to alu­

minum content was suggested by the domain expert. This computation is done by 

dividing the concentrations of each metal at the lh station by the aluminum con­

tent at that station. In ocean science, aluminum is called a 'normalizing factor'. 
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This method of normalization is used to "strip off" the terrestrial effect of Liver­

pool bay sediment from the sampled data. In other words, if the sediment naturally 

absorbs a relatively high amount of aluminum, it also absorbs other metals. Thus, 

increased metal concentrations at that particular station might not be indicative 

for contamination but may be the expected background concentration. Normalizing 

using aluminum content would eliminate this uncertainty. In [16], the choice of 

using data relative to aluminum is used to study the geochemistry of heavy metals 

in the environment1 or aid in estimating the degTee of trace element enrichment in 

sediments. 

In [3], the normalization of metal concentration with aluminum content did 

NOT have a significant effect on the final result, compared to that when using the 

original metal data. Hence, we shall consider the original metal data suitable and 

sufficient for this mathematical research. 

2.3 Missing Observations 

One of the common problems in multivariate data analysis, is the presence of missing 

values. This was the case with the Liverpool bay data used in [3] . Therefore, 

scanning all metals for missing observations, is an important step (annually sampled 

data sets in Appendix (A)). 

In our case, values were registered as missing because they were not detected 

during trace metal analysis [14, 15], of sediment samples. T hat is, the instrument 

used in trace metal analysis can only detect values above a certain minimum level 

for each metal. Accordingly, concentrations less than the minimum detected level 

are considered undetectable and NOT missing. So, it seemed reasonable to replace 

the undetectable concentrations of a metal by the minimum concentration of the 

same metal. Station P09 had no record of any concentrations for the 7 metals and 

was removed from the 1986 data set. 

1That is, the relationship between where a metal is concentrated and the type of sediment it 

deposits in. 
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a e .. tat1st1ca T bl 2 1 S . . 1 d escnptors o f . . 1 d ongma ata w1 m1Ssmg o servat10ns 'th .. b 

Liverpool bay 1986 Hg Cd Cr Cu Ni Pb Zn 

N 60 60 60 60 60 60 60 

Mean 1.10 0.21 22.51 83.79 32.6 161.9 325.92 

StDev 0.47 0.15 7.23 229.25 7.02 150.72 134.31 

Ql 0.79 0.1 18.28 45.23 28 101.25 247 

Median 1.04 0.19 22.5 55 31.35 120.5 309.5 

Q3 1.4 0.28 25.15 64.8 35 175.5 356.25 

Minimum 0.3 0.05 0.05 1.31 22 27.5 126 

Maximum 2.45 0.79 48.3 1826 59 1105 952 

Skewness 0.68 1.47 0.68 7.69 1.54 4.73 2.69 

Kurtosis 0.27 3.03 3.4 59.43 3.31 26.98 9.83 

1987 

N 57 57 57 57 57 57 57 

Mean 1.16 3.7 91.78 79.06 42.17 233.49 386.16 

StDev 0.41 10.02 95.68 30.4 5.57 191.42 158.85 

Ql 0.9 0.7 65.6 62.55 38.05 157 297.5 

Median 1.1 1.1 76.4 73.3 41.1 186 351 

Q3 1.4 2.1 93.85 84.7 44.45 224 405.5 

Minimum 0.4 0 41.4 43.6 33.7 87 222 

Maximum 2.1 61.8 788.8 206.1 58.6 1196 1103 

Skewness 0.51 4.82 7.14 2.72 1.1 3.79 2.59 

Kurtosis -0.36 24.34 52.83 8.99 0.81 15.12 8.06 
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Continued, Table 2.1: Statistical descriptors of original data with missing observations 

Liverpool bay 1988 Hg Cd Cr Cu Ni Pb Zn 

N 70 70 70 70 70 70 70 

Mean 0.54 0.65 65.36 70.7 40.69 234.2 280.39 

StDev 0.49 0.47 13.91 48.25 9.23 224.55 126.53 

Ql 0.16 0.36 54 42.5 34 103.5 195 

Median 0.36 0.51 65 51 39 135.5 246 

Q3 0.78 0.76 74.25 73.5 45 260.5 318 

Minimum 0.02 0.11 38 23 25 70 135 

Maximum 2.09 2.46 96 225 68 1214 904 

Skewness 1.16 2.11 0.37 1.64 1.2 2.47 2.44 

Kurtosis 0.62 5.62 -0.4 1.58 1.7 6.58 8.28 

1989 

N 61 61 61 61 61 61 61 

Mean 0.47 0.52 67.58 77.32 27.22 146.48 246.72 

StDev 0.18 0.56 17.26 48.68 4.63 126.92 90.35 

Ql 0.34 0.24 61.95 44.8 24.8 73.5 180.6 

Median 0.45 0.31 69.3 59.4 26.6 96.1 218.1 

Q3 0.54 0.66 75.55 95.85 29.35 144.35 295.15 

Minimum 0.1 0.09 0.2 23.3 14.1 45.7 137.1 

Maximum 1.19 2.99 98.4 264 44.8 624.3 531.1 

Skewness 1.37 3 -1.35 1.68 0.78 2.32 1.33 

Kurtosis 3.59 10.05 3.87 3.1 3.46 4.98 1.58 
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Co t" d T bl 2 1 St t" t" 1 d . t n mue, a e . . a 1s 1ca escnp ors o ongma a a wit mISsmg o ser f .. ldt 'h .. b vations 

Liverpool bay 1990 Hg Cd Cr Cu Ni Pb Zn 

N 26 26 26 26 26 26 26 

Mean 0.44 0.23 29.57 24.83 22.08 92.01 122.88 

StDev 0.31 0.16 17.77 14.54 5.7 76.77 56.46 

Ql 0.21 0.11 19.38 15.18 18.85 54 73.68 

Median 0.43 0.19 23.8 20.55 22.05 74.45 109.65 

Q3 0.68 0.33 33 29.25 25.78 92.65 176.7 

Minimum 0.02 0.05 8 5.5 7.3 40 52.9 

Maximum 1.08 0.6 76.6 67.4 34.2 413.1 231.1 

Skewness 0.46 0.99 1.59 1.6 -0.19 3.44 0.53 

Kmtosis -0.65 0.14 2.21 2.68 0.84 13.01 -1.04 

1991 

N 40 40 40 40 40 40 40 

Mean 0.64 0.06 59.1 92.08 35.73 96.08 139.83 

StDev 0.63 .05 18.5 380.05 10.86 89.52 101.87 

Ql 0.34 0.03 47.33 13.08 30.3 46.95 85.05 

Median 0.46 0.05 52.7 18.35 33.45 58.45 104.45 

Q3 0.7 0.07 65.15 23.58 37 93.83 151.73 

Minimum 0.19 0.01 38.5 9.7 25 37.1 46.9 

Maximum 4.06 0.22 129 2397.6 78 415.6 624.6 

Skewness 4.35 1.86 2.1 6.04 2.73 2.34 3.25 

Kurtosis 22.43 3.1 5.2 37.28 8.56 4.83 13.11 
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Co t' d T bl 2 1 St t' t' 1 d . t n 1nue , a e .. a 1s 1ca escnp ors o ongma a a w1 f . . 1 d t 'th b ations mISsmg o serv 

Liverpool bay 1992 Hg Cd Cr Cu Ni Pb Zn 

N 40 40 40 40 40 40 40 

Mean 0.64 0.06 2.37 82.14 35.73 96.08 139.83 

StDev 0.63 0.05 2.81 318.4 10.86 89.52 101.87 

Ql 0.34 0.03 1.3 13.08 30.3 46.95 85.05 

Median 0.46 0.05 1.6 18.35 33.45 58.45 104.45 

Q3 0.7 0.07 2.3 23.58 37 93.83 151.73 

Minimum 0.19 0.01 0.5 9.7 25 37.1 46.9 

Maximum 4.06 0.22 17.4 2000 78 415.6 624.6 

Skewness 4.35 1.86 4.36 5.93 2.73 2.34 3.25 

Kurtosis 22.43 3.1 21.74 36.18 8.56 4.83 13.11 

Morecambe bay 

1988 

N 201 201 201 201 201 201 201 

Mean 0. 11 0.2 28.58 19.14 10.63 66.48 71.33 

StDev. 0.07 0.42 12.65 18.08 4.55 52.34 33.05 

Ql 0.04 0.09 18.3 11.80 7.74 45 48.7 

Median 0.09 0.14 28.2 14.9 10.3 56.6 69.6 

Q3 0.17 0.19 37.2 20.75 12.85 71.95 89.8 

Minimum 0 0.02 6.63 2.19 2.43 0.2 0.56 

Maximum 0.34 5.69 98.80 170 54.5 505 261 

Skewness 0.47 11.38 1.07 5.03 4.64 4.83 1.29 

Kurtosis -0.74 146.11 3.54 34.23 42.36 31.77 4.92 

Table 2.1 summarizes the data sets with the aid of some statistical descriptors. As 

mentioned in Chapter 1, the heavy metal concentrations were measured in the same 

units, µg / g of sediment, keeping in mind that the scale range for each metal is specific 

and different for most metals. This difference in the magnitude of concentrations 

is chemically established between the metals and can be seen clearly in all sampled 
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Table 2.2: Anderson Darling normality test of data with missing observations 

Liverpool bay Hg Cd Cr Cu Ni Pb Zn 

1986 P-Value 0.117 0 0 0 0 0 0 

A-Squared 0.592 1.769 1.578 18.918 1.8 8.281 3.821 

1987 P -Value 0.021 0 0 0 0 0 0 

A-Squared 0.896 14.79 12.879 4.365 1.794 9.689 4.618 

1988 P-Value 0 0 0.285 0 0 0 0 

A-Squared 3.227 3.639 0.439 7.542 1.654 7.738 4.157 

1989 P -Value 0.002 0 0 0 0.015 0 0 

A-Squared 1.335 6.404 1.556 3.158 0.957 7.375 2.175 

1990 P-Value 0.509 0.017 0 0.002 0.889 0 0.038 

A-Squared 0.323 0.918 1.752 1.307 0.19 3.915 0.775 

1991 P -Value 0 0 0 0 0 0 0 

A-Squared 4.953 3.105 2.555 13.005 3.507 6.14 4.087 

1992 P-Value 0 0 0 0 0 0 0 

A-Squared 4.953 3.105 6.923 12.757 3.507 6.14 4.087 

Morecambe bay Hg Cd Cr Cu Ni Pb Zn 

1988 P -Value 0 0 0 0 0 0 0.001 

A-Squared 4.93 43.94 1.59 21.03 5.02 21.2 1.41 
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years. Also clear is the difference between the size of annually sampled data. Finally, 

the Anderson Darling test is used to check the assumption of normality. A p-value 

> 0.05, illustrated in Table 2.2. We found that most variables did not have a 

normal distribution, as usually assumed for observational data. In the next section, 

we search for outliers. 

2.4 Outlier Detection 

An observation is an "outlier", if it appears to deviate markedly from other members 

of the sample in which it occurs. Outliers are usually caused by imprecision in the 

data collection. An outlying observation may be merely an extreme manifestation of 

the random variability inherent in the data. If this is the case, the values should be 

retained and processed in the same manner as the other observations in the sample. 

On the other hand, an outlying observation may be the result of gross deviation 

from prescribed experimental procedure, or an error in calculating or recording the 

numerical value, i.e., human error, or the actual physical limitation of field or labo­

ratory equipment [35, 37]. Although an outlier may not be immediately apparent on 

examination of the data, its presence will affect the accuracy of a study. Therefore, 

as in our case, it may be desirable to investigate the reason behind this aberrant 

value. Also, a statistical test may always be used to lend support to a judgment 

that a physical reason does exist for an outlier. 

There are a number of criteria for testing outliers [34, 37, 38]. It should be 

pointed out that almost all criteria for detecting outliers are based on an assumed 

underlying normal distribution of the data, e.g., Dixon's test (for small data samples 

n < 25) and Grubbs test (n > 25). When the data are not approximately normally 

distributed, it is stated that the probabilities associated with these tests will be 

different. So, what if the sample fails to approximate to normality after the analyst 

exhausts all possible transformation of the data to a normal distribution? In this 

case, Chebyshevs ' Inequality can be used as a procedure to check for the presence 

of suspected outliers in non-normally distributed samples. 
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2.4.1 Grubbs' Test 

The following procedure is a test which is used to detect outlying observations in 

approximately normalized samples, introduced by Grubbs' [37, 38]. This test is 

considered to be a modified 't' test. It enables the researcher to compute the statistics 

for the largest and the smallest values, within the data samples. 

In this test, the doubtful observation is included in the calculation of a numerical 

value of the sample criterion (or statistic). The statistical value is then compared 

with a critical value, based on the theory of random sampling, to determine whether 

the doubtful observation is to be retained or rejected. The critical value is that 

value of the sample criterion, which would be exceeded by chance with a specified 

small probability. This is on the assumption that all the observations did indeed 

constitute a random sample from a common system of causes. This significance level 

can be thought of as the risk of mistakenly rejecting a good observation. Therefore, 

if there exists a real change in the value of an observation that arises from non­

random causes (human error, loss of calibration instruments, change of measuring 

instrument, or even change of time measurements) then the observed (or calculated) 

value would exceed the "critical value" based on random sampling theory. Tables of 

critical values are available for several different significance levels, for example, 5% 

and 1 %. For statistical tests of outlying observations, it is generally recommended 

that a low significance level, such as 1 %, be used and that significance levels greater 

than 5% should not be common practice. 

Criteria For Single Samples: 

The following is a summary of Grubbs criteria. Let the sample of n observations be 

denoted in order of increasing magnitude by xi ::; x2 ::; x3 ::; · · · ::; Xn. Then apply 

the following steps. 

1. Select the level of significance. 

2. Calculate the observed criteria. For the doubtful value X n or x1 , i.e., the 
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largest and smallest value respectively, compute 

with mean and standard deviation 
""i=l X = L..,n X; 

n 

respectively. The critical values of 'T ' for testing the largest or smallest val­

ues at a = 1 %, 2.5% and 5%, i.e., one-sided significance levels, are given in 

Appendix (B ). 

3. If the observed criterion, Tn or Ti, at the chosen significance level a is equal 

to or exceeds the critical value, Tk 2'.: T(a,n), fork= lorn, 

then the doubtful value Xn (or xi) is an outlier according to this criterion. 

4. Grubbs test can also be used to determine whether or not the 2n d smallest, 

2nd largest or any other value is an outlying observation. The only difference 

is that each time an outlier has been detected and rejected, the observations 

must be re-numbered and used to compute a new mean and standard deviation 

before proceeding with the above test criterion. 

Grubbs [37] pointed out that selecting a significance level a, sometimes depends 

on whether the researcher believes that outliers can or cannot occur simultaneously 

on both sides of a sample. For instance, suppose we are interested in outliers oc­

curring on either side, but do not believe that outliers can occur on both sides, 

simultaneously. This is because, we believe that at some time during the exper­

iment something possibly happened to cause an extraneous variation on the high 

side or on the low side, but that it was very unlikely that two or more such events 

could have occurred. That is, one being an extraneous variation on the high side 

and the other an extraneous variation on the low side. If in this case the researcher 

uses the a= 0.05 point from the table in Appendix (B) as the critical value, the true 

significance level would be twice 0.05, or 0.10. So, if we wish a significance level of 

0.05 and not 0.10, we must in this case use as a critical value the 0.025 point. 
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2.4.2 Chebyshev Inequality 

Sometimes, even with the help of transformation functions, the data samples may 

not approximate a normal distribution. In this case, Grubbs test is not applicable. 

Therefore, we turned to a method that did not rely on the assumed normality of 

the data sample, the Chebyshev Inequality. The inequality is valid for all data 

distributions [42] . It states the following: 

If a random variable X has a mean µ and variance u 2 , then for every ~ 2 1, 

0"2 

P(I X - µ 12 E) ~ 2 
E 

(2.1) 

In words, Chebyshev's inequality states that the probability that X differs from its 

mean by at least E, is less than or equal to~- The inequality (2.1) can then be used 

to determine an interval, I = [µ - E, µ + 1:], such that the probability that a random 

observation falls outside I is at most ~ - Selecting a level of significance a = 0.05 

or 0.01, the researcher is able to compute E from ~ =a=> E = Jo· 
Outliers in this case are determined as the values outside the interval I. 

Example (2.4 .2): Let a sample X with any distribution have µ = 25 and 

variance, <J
2 = 16. Then, P(I X - 25 12 1:) ~ ~-

To test that an observation x = 100 differs from a mean of 25 by E is at most 

a = 0.01, we compute, E = fo = 40. 

Then, for any data set with µ = 25 and u = 4, at least a fraction 1 - a of the data 

are within 4 standard deviations on either side of the mean, i.e., in the interval 

[µ - Jo,µ- Jal= [-15,65]. 

In other words, 1-a= 0.99 or 99% of the data can be expected to lie within ten 

standard deviations on either side ofµ. But, for a random observation X = 100, 

we can say that the probability that it differs from a mean of 25 by 4 standard 

deviations is greater than 0.01. Hence, X = 100 is an outlier. 

Finally, with observational data it is sometimes helpful to enlist the aid of a 

domain expert when conducting any outlier testing. 
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2.4.3 Outlier Testing: Results 

Transformation of data samples that did not approximate to a normal distribut ion 

was carried out on all observations sampled from Liverpool bay (1986-1992) and 

Morecambe bay (1988). This was done to modify the scale upon which the data 

were measured, so that the assumption of normality was made valid and a search 

for outliers was done, using Grubbs test. In some cases, transformation of the 

data did not validate the assumption of normality, and in this case we relied on 

Chebyshevs inequality. 

The logarithmic transformation, F(X) = log X, in addit ion to functions from a 

family of power transformations on X, were chosen. The latter was of the form 

F (X) = X>. (2.2) 

where the parameter >- E ~ - The value of>- could be adjusted so t hat F(X) was as 

close as possible to an approximate normal distribution, i.e., P-value > 0.05. At first, 

typical power functions for>. = -2, - 1, - 0.5, 0.5, 1, 2 and log X were tried. Tuning of 

>- values in equation (2.2) was done to find the best transformation with the highest 

P-value, by manually increasing or decreasing >- by 0.1. After each transformation 

(for each value of>-) , each metal sample was tested again for normality for all years. 

Outlier testing was then conducted on all metals collected in Liverpool and More­

cambe bay. Testing of suspected outliers of the largest and smallest observations 

was done. Metal samples that were successfully transformed to an approximately 

normal distribution were tested using Grubbs test, whereas samples that failed to 

satisfy the normality assumption were tested using Chebyshevs inequality. In all, 

only three data samples registered outliers, i.e., Liverpool bay in 1986 and 1987, 

and Morecambe bay in 1988. Outliers were only found for the largest observations. 

Table 2.3 summarizes the outlying observations. 

Stations with detected outliers were removed from the respective annually sam­

pled data sets. Descriptive statistics were calculated for the three new data samples 

in Appendix (B ) . Further outlier testing of the 2nd largest observations of normally 
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Table 2.3: Outliers detected in the two environmental regions using Grubbs Test for 

normal samples and Chebyshevs Inequality for non-normal samples. 

Sampling Normality Largest Sampling New 

Data Y/N observation station sample size 

Liverpool bay 

1986 58 

Cadmium N 1826 MIO 

Lead N 1105 M09 

Zinc N 952 M09 

1987 54 

Cadmium y 61.8 KOS 

Chromium N 788.8 N09 

Lead N 1196 M09 

Morecambe bay 1988 198 

Zinc y 381 485 

Cadmium N 5.69 33 

Chromium N 98.8 485 

Copper N 170 485 

Nickel N 54.5 485 

Lead N 505 363 
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distributed metals, that registered outliers, were tested in the new data samples. 

Similar steps previously used to test outliers of the first smallest or first largest 

observation using Grubbs criterion were followed for the normalized samples. No 

furt her out liers were detected. Correlation coefficients between the metals were 

calculated for each finalized data set, Appendix ( B). 

2.5 Conclusion 

Dat a samples from Liverpool bay and Morecambe bay were processed for missing 

and outlying observations. Annually sampled metal data sets from Liverpool bay in 

1986 and 1988 were the only years that showed missing values, with 1986 containing 

the largest number of missing observations. Based on scientific expertise, missing 

observations were substituted by the minimum sampled concentration of the same 

metal instead of discarding the data point. 

Testing of outliers was done using two approaches. The outlier tests were based 

on whether the metal sets were or were not approximately normally distributed, i.e., 

the Grubbs' test and Chebyshevs' inequality, respectively. Only samples of 1986 and 

1987 from Liverpool bay, and 1988 from Morecambe bay registered the presence of 

outliers. As a result of this finding, the data points containing the outliers were 

discarded. 

Preprocessing of metal data for missing observations and suspected outliers was 

carried out. The finalized version of annually sampled environmental data, listed 

in Appendix (B ), shall be used to study the spatial distribution of metal concen­

trations in Liverpool bay, throughout the thesis. 
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Chapter 3 

Using Fuzzy Set Theory in 

Environmental Sciences 

In this chapter we introduce the basics of fuzzy set theory and details several 

applications related to field of environmental sciences. Also, we attempt to con­

struct a reference (model) set of contamination of Liverpool bay. 

3.1 An Introduction to Fuzzy Set Theory 

The concept of a fuzzy set can be directly attributed to L.A. Zadeh, from his seminal 

work in 1965 [79]. Zadeh's purpose for introducing the fuzzy set was to provide a 

concept which maybe of use with classes (or sets) of objects encountered in the real 

physical world. These classes, more often than not, are characterized by imprecision, 

which for various reasons cannot have or do not have precisely defined attributes 

of membership (i.e., boundaries). For example, the set of plants clearly include 

roses, tulips, vegetables, etc. as its members, and clearly excludes such objects as 

rocks, animals, gases etc. However, such objects as bacteria, plankton, etc. have 

an ambiguous status with respect to the set of plants. Similarly with heavy metals, 

the property of 'metal contamination' includes all conditions from natural occur­

ring levels to pollution. These inexactly defined classes are the basis of fuzzy sets. 

Therefore, fuzzy set is a class of objects with a continuum of grades of membership. 
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Ordinary or crisp sets allow only for binary membership (i.e., true or false); 

an object is a member or is not a member of any given set. Fuzzy sets, however, 

consider the possibility of a partial membership. Therefore, fuzzy sets are seen as 

a generalization of crisp sets to situations where the class boundaries cannot be 

defined. 

The following section is an introduction to the basic theory of fuzzy sets. For 

more information on fuzzy set theory refer to the following texts [27, 44, 4 7, 49, 79]. 

3.1.1 Definitions 

Fuzzy sets 

Let X be a universe of discourse (i.e., a universal set X that covers a definite range 

of objects), with a generic element of X denoted by x . Thus X = {x}. 

Let a crisp set A be defined with respect to X, with the aid of a characteristic 

function, µA(x). This function describes the membership in the set by declaring 

which elements x of X are members of the set A and which are not. The set A is 

defined by µA as follows: 

{ 

1 for x EA 
µA(x) = 

0 for x (/. A 
(3.1) 

In other words, the characteristic function associated with A is a mapping, that 

formally can be expressed by 

µA: X --+ {0,1}. 
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Example 3.1.1 : The characteristic function 

{ 

1 for Q < X < 1.35 
µA(X) = -

0 otherwise 

describes the set of all non-negative real numbers smaller than 1.35. The point 

of discontinuity at 1.35 can be seen to be natural, if the characteristic function 

is interpreted as the set of body-heights of children who are shorter than 1.35 

meters. 

The adequacy of characteristic functions with codomain {O, 1} has to be ques­

tioned if, for instance, body heights are considered for which a person should be 

called 'tall'. The word tall can have different meanings depending on the context 

in which it is used, e.g., for a child or an adult? Then, if we wanted to represent 

the set of tall adults, the use of a fuzzy set in this situation would free us from the 

restriction of having to categorize each person as being or not being a member of 

this set. Of course there are some body heights which will always be classified as 

tall (e.g., 1.8 m) or not tall (e.g., 1.3 m) but for others (e.g., 1.45 m) a definite 

classification is hard to find. This method would therefore allow us to make more 

subtle distinctions and represent more closely the types of concepts which humans 

use, such as old, young, short, .fat, and so on. 

One method to model gradual transition is to use other values of membership 

in addition to O (does certainly not belong to it) and 1 (does certainly belong to 

it). A mathematically simple way to introduce a gradual membership consists in 

taking the values of membership from the compact interval [O, l]. Therefore, if our 

universal set was the set of real numbers, concepts such as small, large, close to 5, 

and so on, would be more naturally represented as a fuzzy set than as a crisp set. 

Therefore, a fuzzy set can be seen as a generalization of the idea of a crisp (non­

fuzzy) set, by extending the range of the characteristic function from the binary pair 

45 



{0, l} to the unit interval, I=[0, l ]. This can be achieved by a function called the 

membership function, which assigns values to the elements of X within this specified 

range. Each such value, µA(x), for x E X is called a "degree of membership" or 

"membership grade" of x in A. 

Definition 1 (Fuzzy Set). : For a universal set X, a fuzzy set A of X is asso­

ciated with a membership function: 

(3.2) 

P(X) denotes the class of all fuzzy sets on X. 

One of the first questions asked concerning fuzzy models, is the relationship of 

fuzziness to probability. Are fuzzy sets just a clever disguise for statistical models? 

In one word, the answer is NO. In fuzzy sets, the term 'possibility' should not 

be equated with the statistical concept of 'probability'. Here, possibility refers to 

the value of the membership function (which is used to construct the fuzzy sets) 

associated with a given value of a attribute x and is not derived from a probability 

distribution. Also, these two types of models possess different kinds of information: 

Fuzzy memberships represent similarities of objects to imprecisely defined properties, 

while probabilities convey information about relative frequencies (e.g., the relative 

frequency, r / n, of an event A occurring r out of a total of n repeated experiments) 

[9]. 

Membership Functions 

Any fuzzy set A of X can be described by directly assigning a degree of membership 

µA(x) to each element x EX. This is practically feasible only if the universal set 

consists of a finite number of elements. If the number of elements in X is very 

large or a continuum is used for X (e.g., to measure temperature or velocity), then 

µA(x) is best represented with the help of an appropriate parameterized function, 

also known as a membership function. This would allow the user to adjust the 

parameters within the function according to the given problem. Also, the assignment 
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of the membership function of a fuzzy set is subjective in nature and, in general, 

should reflect the context in which the problem is viewed [44, 49, 47, 50]. 

If X = ~, then in most cases linguistic expressions like 'tall', 'about 10', and 

'approximately between reference values a and b' may be encountered. These expres­

sions may be interpreted using a suitable class of membership functions µ : X ~ 

[0, l]. One function that can present an interpretation of 'tall' is the monotonic 

non-decreasing function 

{ 

0, if X :Sa 

µ(x)= b=i, ifa :Sx:Sb 

1, if x 2'. b 

(3.3) 

where a < b. This is also known as an asymmetric left variant type membership 

function. 

Other interpretations are piece-wise linear functions, whose parameters are the co­

ordinates of the defining points. An example of this is the normalized version of the 

data sets in X, [76] 

µ(x) = { 

X if a :S x :S b /j, 

0, if X < a 

1, otherwise 

(3.4) 

where a= min{x} and b = max{x}. 

To interpret linguistic expressions like 'about 10', we may simply adopt symmet­

rical triangular functions like 

µ(x) = { 

x-a if xE (a,b], b- a' 

c- x if x E (b, cl, c-b' 

0, otherwise, 

(3.5) 

as well as Guassian curves like 

(3.6) 
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where a > 0, m E 3t. Or the trigonometric based cosine function 

{ 

l+cos(a,,-(x-m)) 

µ(x) = 2 

0 

when x E [m - l m + l] 
a' a 

otherwise 
(3 .7) 

Again, where a > 0, m E R Some membership functions are specific, in that they 

can only be used to describe certain classes of objects. These were called 'non­

admissible functions' [44, 49]. An example is the class of Exponential functions 

like 

{ 

1 - e(-a(x-b)) if X > b 
µ(x) = ' -

0, if x < b 
(3.8) 

where a > 0 and b E 3t. Kandel, [44], characterized such a function as a monoton­

ically increasing function that does not satisfy the condition O :S µ(x) :S 1 for all 

x EX (but only approximates to 1). 

In the general formulas of (3.6) and (3.7), m denotes the real number for which 

the membership grade is required to be one, and a is a parameter that determines 

the rate at which, for each x, the function decreases with the increasing difference 

Im - xi [47]. 

Similarly, the expression 'approximately between a reference value b and a ref­

erence value c' is most simply characterized by the trapezoidal function 

x-a if a :S x < b b-a' 

µ( x) = 
1, if b '.S X '.SC 

(3.9) 
x-d 
c-d' if C < X '.S d 

0, if x < a or x > d, 

where a < b < c < d and a, b, c, d E 3t. 

Therefore, with the availability of various membership functions, fuzzy sets rep­

resenting the same concepts may vary considerably. As an example consider the 

following. 
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Example 3.1.1: Consider three fuzzy sets whose membership functions are 

given by (3 .5), (3.6) and (3. 7), respectively. These sets can be used to express 

the 'class of real numbers that are close to 2' . In these functions, let a = 1, 

b = 2, c = 3 and m = 2. In spite of their differences, the three fuzzy sets are 

similar in the sense that the following properties hold for each Ai ( i E N3) 

(ii) Ai is symmetric with respect to x = 2, that is µAi (2 + x) = µA; (2 - x), 

\Ix ER 

(iii) µA;(x) decreases monotonically from 1 to 0 

The three membership functions are also similar in that numbers outside the 

interval [1, 3] are excluded from the associated fuzzy sets. This is because their 

membership grades are either equal to O or negligible. 

These properties are also necessary in order to represent the given concept of, say, 

'tall'. This similarity does not reflect the concept itself, but rather the context in 

which the concept of 'tall' is used within the context of adults or children [47]. 

Whether a particular shape is suitable or not can be determined only in the 

context of a particular application. According to Klir and Yuan [47], however, many 

applications were found not to be that overly sensitive to variation in shape. In such 

cases, it was suggested that, the use of a simple shape is more convenient, such as 

the triangular shape of µA;. Practically, except for some vague semantic guidelines 

(i.e., concepts that can only be expressed linguistically, such as in Example 3.1.1), 

there are no restrictions in designing a membership function. 

3.1.2 Notations and concepts 

In this section we shall introduce some basic notations and concepts used through 

out the text. First, Table 3.1 presents some common mathematical symbols and a 

glossary of some special fuzzy sets. 
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Figure 3.1. 1: Graphical presentation of the three membership functions of Example 
3 .1.1: symmetrical triangular (A I), Gaussian (A2) and trigonometric based cosine 
function (A3). 



Table 3.1: Some mathematical and fuzzy set notations 

Mathematical symbols 

x = {x1,x2,·· · ,xn} 

S = {s1,s2,· · · ,sm} 

X 

n 

m 

Fuzzy set symbols 

The set of features 

the set of objects 

The data set matrix comprising of m (rows) by n (columns), 

such that X c ~n 

The dimensionality of the feature space (which is also the 

number of variables of x) 

The number of objects of s 

The value of the ith variable for the jlh data point 

U = { u 1, u2, · · · , Um} Discrete finite universal set (universe of discourse) 

P(U) Set of all fuzzy subsets of U 

µA(ui) Degree of membership of Ui EU in the fuzzy set A 

¢ Empty set 

M 0.5 fuzzy set, where all µA(u) = 0.5 

LI(ui) Loading index value of Ui EU 

I Unit fuzzy set, where all µA(u) = 1 

Singleton fuzzy set, A A is said to be a singleton fuzzy set if :lk such that µA(uk) =j:. 0. 
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Basic concepts of fuzzy sets 

Here, we shall introduce some basic concepts of fuzzy sets. Let A be a fuzzy set on 

U, with membership function µA : U -t [O, 1] . 

• The a -cut of a fuzzy set A is a crisp set A°'. This set contains all elements of 

the universal set, whose membership grades in A are greater than or equal to 

a specified value, o: E [O, 1] . In other words, 

Then the new set is a crisp one with the following membership grades, 

{ 

1 if u EA°' 
µAo(u)= 

0 otherwise 

(3.10) 

(3.11) 

A variation of the a-cut is the strong a-cut [44]. It is defined on U and as a 

crisp set, 

(3.12) 

• A fuzzy set A of U is called normal if there exists at least one element u E U 

such that µA(u) = 1, otherwise it is called subnormal (i.e., µA(u) < 1) . 

• The core of A is a crisp subset of U which consists of all elements with 

membership grades equal to l. 

Core(A) = { ul µA(u) = 1 and u EU}. (3.13) 

The core can be thought of as the most representative elements of A. 

• Given A, a fuzzy set of U, the support of A is a crisp set of U whose elements 

all have nonzero membership grades in A. 

Supp(A) = {ul µA(u) > 0 and u EU} . (3.14) 
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It is obvious that the support of A is equivalent to the strong a-cut of A 

when a = 0, i.e., A0+ = { ul µA(u) > 0}. Also, the 1-cut of A, denoted 

A1 = {ul µA(u) 2'.: l} = {ul µA(u) = l} , is t he same as the core of A. 

• The height of a fuzzy set A is the largest membership grade obtained by any 

element, denoted as: 

height(A) = sup[µA(u)] (3. 15) 
uEU 

which becomes 

height(A) = max[µA(u) ] 
uEU 

(3.16) 

for a finite U. Therefore a normal fuzzy set is defined to have height equal to 

1. 

• The cardinality of a fuzzy set A on a finite U is 

n 

IAI = L µ A(ui) , Ui EU (3.17) 
i=l 

while the relative cardinality of A is 

(3.18) 

• The complement of a fuzzy set A on U (µ A : U --+ [0, 1]) is a fuzzy set .A 

on U, defined by a function h: [0, l ] --+ [0, l] as 

The function h is defined using the following set of axioms [28, 50] 

(i) h is a function of one argument in [0, l], taking values in [0, l] (i.e., µ,4.(u) 

depends only on µA(u), u EU). 

(ii) h(0) = 1 and h(l) = 0; 

(iii) h is continuous and strictly monotonically decreasing; 
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(iv) his involutive, i.e., h(h(a)) = a, a E [0, l]; 

(v) a+ b = 1, a,b E [0, l] -¢:::::::> h(a) + h(b) = 1 

These five axioms specify a unique function h as 

h(a) = 1 - a, i.e., µA= 1 - µA . (3.19) 

Equation (3.19) is known as the standard complement . 

• Let A and B be two fuzzy sets on U. Then A is said to be contained in B ( 

or equivalently, A is a subset of B, or A is smaller than or equal to B) if and 

only if µA(u) :S µ3(u), i.e., 

• Two fuzzy sets A and B are equal, A= B, if and only if µA(u) = µB(u) for 

all u EU. 

Ex ample 3.1.2: Let U be a list of possible holiday destinations with dis­

tances by air from London in miles, e.g., U = {(Cairo,2280), (Athens,1501), 

(Kuwait,3254), (Paris,215), (Casablanca,1293)}. Let the fuzzy set A correspond 

to "distance of air travel at most 1000 miles from London" . From this context, 

we expect µA to be a decreasing function, which can be expressed using the 

function 

l+[ o.0199 (u-1000)]2 

0 

when u E [O, 1000] 

otherwise 

Then, A can be defined as : A = {(Cairo,0.3), (Athens,0.8), (Kuwait,0.1), 

(Paris,1), (Casablanca,0.9)}. Applying some of the concepts mentioned above, 

we can see that the fuzzy set A has height(A) = 1.0, core(A) = {Paris}, 

supp(A) = U, and A0·5 = { Athens, Paris, Casablanca }. 
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3.1.3 Basic operations on fuzzy sets 

Operations on fuzzy sets are considered to be an extension of the classical set the­

oretic operations from crisp (ordinary) set theory. Two examples of classical op­

erations are the union operation (i.e., AU B = { ul u E A or u E B}) and the 

intersection operation (i.e., An B = { ul u E A and u E B} ), defined for two crisp 

sets A and B. We use the same symbols in fuzzy set theory. In the following, inter­

section and union, are introduced in the framework of fuzzy sets. Let A and B be 

two fuzzy sets of some crisp set U = { u1, u2, · · · , Un}. The intersection of A and 

B, is a fuzzy set C for all u EU, denoted as C = AnB, whose membership function 

is defined by 

(3.20) 

Where 'min' or standard intersection denotes the minimum operator and is com­

monly symbolized by '/\' . 

The union ( or standard union) of A and B is a fuzzy set C, denoted C = AU B, 

whose membership function is defined by 

(3.21) 

Where 'max' denotes the maximum operator, symbolized by 'V'. 

These pair of operations min and max have favorable properties like the distributive 

laws 

An (Bu C) = (An B) u (An C) (3.22) 

and 

Au (B n C) =(Au B) n (Au C) . (3 .23) 

Also, the DeMorgan laws hold 

AUB=.An.B (3.24) 
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and 

(3.25) 

Convenient arithmetic representation for the minimum and maximum operators are 

. ( b) _ a + b - la - bl mm a, -
2 

, (3.26) 

( b) 
_ a+ b + la - bl max a, -

2 
. (3.27) 

Where a and b are real numbers and la - bl denotes the absolute value between a 

and b. 

More operations on fuzzy sets will be presented in Chapter 4. But first, we 

discuss some applications of fuzzy set theory in the field of environmental science. 

3 .2 Environmental applications 

Application of fuzzy mathematical methods in various fields has been discussed 

by many authors. Some of these examples are, in soil science [12, 13, 26, 58, 

81], ecosystem and environmental management [11 , 7, 55, 76] and transportation 

planning [46], just to name a few. In the next section we give a summarized survey 

of t he application of fuzzy methods in some of these studies. 

3.2.1 Soil fertility assessment 

Application of fuzzy mathematical methods in soil sciences has been researched by 

many authors. Burrough (1989) [12], summarizes the reasoning behind using fuzzy 

methods in soil science very well. The author states that users of soil or environ­

mental information have a clear notion (or central concept) of what they need, but 

are often unsure about just where the boundaries of this central concept should be 

drawn. An example of a vaguely formulated query is 'Where are all area's of marine 

sediment significantly saturated with disposed sewage?' . Such vaguely formulated 
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questions are then translated using the basic units of information available, i.e. , 

collected data or expert knowledge. 

In this case, fuzzy methods were seen appropriate whenever the user needs to 

deal with ambiguity or vagueness in mathematically or conceptually modeled data 

of empirical phenomena (i.e., data that rely solely on observation and experiments) . 

In [12] soil profile data (e.g., soil depth, chemical status, etc.) was analyzed 

using the standard Boolean model and a fuzzy set based model. In the Boolean 

model, a crisp membership function 

0 for X < C 

1 for X ~ C (3.28) 

is used to describe the attributes x E A, where c defines the exact boundary condition 

of A. Another approach, adopted in [12] is the Semantic Import model (SI). It 

uses a priori fuzzy membership function with which attributes can be assigned a 

degree of membership. The SI model was useful in situations where users have a 

good qualitative idea of how to group data by selecting the boundaries for the class 

intervals. A fuzzy memebership function suitable for the SI model is the symmetric 

function 

1 
µA(x) = l + a(x _ c)2 for .x E [O, Pl, PER+ (3.29) 

The parameter a is the dispersion index, and c is the value of the property x at the 

central concept (where µA(c) = 1). The parameter c is named the ideal centre or 

standard index [12]. For a chosen c, and defined lower and upper cross-over points 

b1 and b2 respectively, the value a is calculated such that µA(b1) = 0.5 = µA(b2). 

Case studies were used as examples for the application of the SI model, to deal 

with soil related queries in two geographical areas. Soil properties measured at 

various soil profiles were defined via symmetric (3.29) or asymmetric left (right) 

membership functions, 

for X ~ C 

{l + a(x - c)2}- 1 for x < c 
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Table 3.2: Parameters of membership functions for Tiiren data 

Type Lower Upper 

Soil of cross-over Central cross-over 

property function value value value 

DPP A 15 30 30 

DMT A 80 100 100 

Sl s 20 40 60 

Cl s 15 25 35 

OMl A 1.0 1.5 1.5 

S2 s 20 40 60 

C2 s 15 25 35 

OM2 A 0.5 1.0 1.0 

S3 s 20 40 60 

C3 s 15 25 35 

OM3 A 0.5 1.0 1.0 

I<ey: DPP, depth of plough pan (cm); DMT, depth to mottling (cm); 

Sl, Cl, OMl, percent sand, clay and organic matter content of layer 

1 (0-20 cm); other layers are 2, 30-40 cm; 3, 70-80 cm deep. 

A: asymmetric function; S: symmetric function. 

depending on a predefined concept by the user. 

In [12], examples of case studies that illustrate the application of fuzzy set methods 

were summarized. In one case study, quantitative data of 11 soil properties were 

collected on a farm in Tiiren, Venezuela. The soil of the farm was surveyed on a 75 

x 75 m regular grid over an area of 825x 375 m. The properties were gathered by: 

(i) sampling 69 profiles (points) at three different depths, 0-20, 30-40, and 70-80 cm, 

for sand, clay and organic matter content (9 properties) , (ii) measuring the depth to 

plough pan (which was known to limit root growth), and (iii) measuring the depth 

to mottles (which is used to estimate drainage conditions). Table 3.2 summarizes 

the 11 soil properties. Membership functions (3 .29) and (3.30) were used to reflect 

the general soil survey experience in the area. In t he first example, the user wanted 

to answer the following queries: 
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(1) Where is there a reasonable possibility of finding areas of the field with sand 

somewhere in the soil profile? 

(2) Where is there a reasonable possibility of finding areas of the field where the 

soil profile is sandy throughout? 

For this example, only data related to the sand content of the 0-20 and 70-80 cm 

layers were used. That is, those fuzzy sets constructed using soil properties S1 

(percent of sand content in layer 1 (0-20 cm)) and S3 (percent of sand content in 

layer 3 (70-80 cm)), respectively. To answer question (1), degrees of the membership 

functions, for both soil properties S1 and S3, were compared at each site using the 

maximum operation (Equation (3.21)). For question (2) the minimum degree of 

membership, Equation (3.20), was used. The resulting fuzzy sets of maximum and 

minimum degrees of membership were mapped using contour plots. In conclusion, 

the resulting plots showed that: 

(1) there are large parts in the soil profile in which the possibility of sand occurring 

somewhere exceeds 0.6, (2) whereas the possibility of finding parts with completely 

sandy profiles, is much more limited. 

To show how a Boolean approach can lack in performance compared to a fuzzy 

methodology, another example was given. Again, the Tiiren data was used. The 

user considers the question: 'Where on the farm are the best soil conditions for 

growing maize?' which was reformulated as 'where are the areas of well-drained, 

medium-textured, organic matter-rich soil that do not have shallow plough pans?'. 

The soil data for all eleven properties were used to answer this question. The 

Boolean methodology comprised first of constructing a set of 11 Boolean maps. The 

11 Boolean maps were defined using the function 

µA(x) = 1 forb1'.5:x'.5:b2 

µA(x) = 0 Otherwise (3.31) 

Those points x falling within the class boundaries (the lower and upper cross-over 

values) were deemed to be "suitable", while all points x falling outside these lim-
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its were deemed "not suitable" . Therefore, the 50% cross-over values (b1 and b2) 

were used to establish exact class limits, and classify each site with respect to each 

property as being suitable (µA(x) = 1) or not (µA(x) = 0). The maps are then 

entered into separate overlays in a geographic information system (GIS). The set 

of eleven Boolean maps are compared with each other, and all sites for which the 

crisp degree of membership 'true' is returned, were seen to have met the desired 

specifications. This was done using the Boolean intersection. The end result showed 

that the field was not suitable. Because experience had shown the field is suitable 

for growing maize and the soil profiles required do occur on it, it was concluded that 

the Boolean approach was unsatisfactory. 

Burrough concluded that the use of strict Boolean approach with simple true/false 

logic in combination with an exact (observational) data model is often inappropri­

ate for soil survey and land evaluation because of the: (i) continuous nature of soil 

variation, (ii) uncertainties associated with describing the phenomenon or in the 

measurements made on it, and (iii) inexactness in formulating the queries. Fuzzy 

methods, e.g., semantic import model, allow users to define flexible class member­

ship functions that match practical experience. The results of operations with fuzzy 

sets yielded quantitative degrees of aggregated membership functions that can be 

mapped. Also, the fuzzy based maps were able to show how closely sites match up to 

requirements. A down side to the fuzzy approach is that the choice of membership 

functions, class centers and cross-over values relies mostly on expert knowledge and 

the queries posed. In all, a fuzzy approach appeared to be more suited for exploring 

a database and providing more detail about the gradual evaluation of sites or objects 

in terms of the questions posed, than the exact Boolean approach. 

The general symmetrical membership function (3.2) was also used to assess soil 

fertility in [13, 26, 41] . In all three studies, a comparison between classical and 

fuzzy procedures to answer queries on soil fertility in Canada and the Philippines, 

was carried out. The authors similarly remarked that: 

• Given the continuous nature of the variation in soil properties, many envi-
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ronmental problems cannot realistically be modeled using the exact Boolean 

approach. 

• A crisp membership function divides the objects into only two membership 

classes, 0 (unsuitable) and 1 (suitable). As a result, of this much information 

is lost, such that objects with attribute values close to the exact boundary 

conditions are rejected. 

• The user must realize that associated with a fuzzy approach is the problem 

of how to define the parameters of the continuous membership function. It is 

important that parameters are chosen so that the resulting logical models will 

better describe the problem at hand. 

McBratney et al. [58] also give a brief encounter on most of these studies. In soil 

science, fuzzy set theory is principally used for classification. It is used to reduce 

a complex system, represented by some sets of data, into explicitly defined classes. 

Although there exist other classification approaches, such as cluster analysis, the 

fuzzy set approach, e.g., semantic import model, can deal with uncertainty specifi­

cally due to imprecise boundaries between categories. The class pre-specification is 

based either on expert judgement or conventionally imposed definitions. [58] 

3.2.2 Inland evaluation 

Fuzzy set theory is also used to evaluate whether land is suitable or unsuitable for 

a particular purpose. 

An application of fuzzy set theory to the identification of non-point sources of 

land pollution is presented in [76]. The case study focused on land within seven 

sub-watersheds (objects) located within the Kewaunee river watershed in Wisconson, 

USA. A watershed is also known as a catchment area. That is, that area of land 

in which rainfall collects (or is drained into a stream) to form the supply of river 

[22]. The objective was to identify priority watersheds. That is, those watersheds 

with the most serious pollution problems and to which scarce resources have been 
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allocated for diminishing the problem (abatement). 

To analyze the pollution problem in the Kewaunee river watershed, a data ma­

trix of seven sub-watersheds (rows) sampled with respect to seven criteria ( columns) 

was compiled. Here the columns k = 1, 2, · · · , 7 represent the seven criteria which 

emphasize agricultural aspects within the sub-watersheds, e.g., erosion of agricul­

tural land and manure spreading. The rows i = 1, 2, · • • , 7, represent the set of 

sub-watersheds sampled within a 139 mile2 of the Kewaunee river watershed. To 

compare the watersheds equally, a function similar to that of (3.4) was used. Entries 

Xik in each column k were mapped to the unit interval, Y : X --+ [O, l] by dividing 

Xik to the largest entry in its column. This produced seven sets whose entries were 

real numbers between O and l. From here on we shall refer to sub-watersheds as 

watersheds. 

To identify priority watersheds, watersheds were classified depending on the re­

lationship between each pair. Two fuzzy classification models were used. One model 

ranks watersheds based on pair-wise comparison (Model I) , while another identifies 

similarity relationships among the watersheds (Model II). Model I used the fuzzy 

membership function 

, if Yik - Yjk > 0 

, if Yik - Yjk < 0 , k = 1, 2, · · · , 7 

, if Yik - Yjk = 0 

for a pair of watersheds i and j, while Model II used the fuzzy membership function, 

n=7 

Tij = 1 - cl L d(Yik, Yjk)l-

k=l 

Where d is d(Yik, Yjk) = Yik - Yjk, and c a constant chosen such that O ~ Tij ~ 

1\/i,j. Model I was used to compute a fuzzy dominance relationship between the 

watersheds. For more description of each model see [76]. 

In the end, three sub-watersheds were identified as priority ones. In both mod­

els, the results conformed with the best judgement of personnel in the Wisconsin 
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Department of Natural Resources who are familiar with the Kewaunee watershed. 

In conclusion, the author found that 

• The fuzzy set models could be applied to a range of environmental management 

problems, where objects are to be compared on the basis of several properties. 

• It is not necessary for the units used to measure the criteria in fuzzy set 

modeling to be the same, or for the information to be in quantitative form. 

An application of fuzzy set theory in environmental science is discussed in [11]. 

The study is about habitat quality determination and whether land parcels or land 

segments, selected for examination in Kentucky, are unsuitable for mining. There­

fore, the task of the Kentucky Department of Natural Resources and Environmental 

Protection (DNREP) was to identify a subset E that consists of all parcels of land 

which are unsuitable for mining. Because value judgements made to identify such 

parcels are complex, these parcels or subsets were considered fuzzy. So, if M was 

defined as the subset of parcels which are suitable for mining, then its complement 

M was the subset of parcels which were unsuitable. 

Eleven quality variables, X = {xj}, j = 1, · · · , 11, were used to assess suitability 

membership of parcels in M. Some variables, such as endangered plants, nature 

preserves and wild rivers, take either 1 or O as membership values depending on the 

existence or non-existence of these items in the parcel. On the other hand, other 

variables such as recreation value may take any membership value between O and 

1 based on the quality of the parcels as judged by other state agencies. Both crisp 

and fuzzy membership functions were used to determine the degrees of membership 

of suitable parcels for mining in the set M with respect to a quality variable Xj , 

Symmetric and asymmetric fuzzy membership functions were used. 

Since Mis the complement of M, its degrees of membership are such that O refers 

to t he parcel being suitable and 1 totally unsuitable for mining, for the set of eleven 

quality variables Xj, j = 1, · · · , 11, at that parcel. In addition, the membership or 

importance of a quality variable in the set M was taken into account. This was done 
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by assigning weights Wj E [O, 1] to each property Xj, Finally, to determine if a set M 

is unsuitable for mining given the vector of quality variables (xi, x2, · · · , x11), two 

fuzzy operations were used to compute the land unsuitability indices, µM(X) : the 

weighted average 

where L j Wj = 1, and the maximum operation 

Finally, a strong a-level fuzzy set of those parcels which had membership indices 

µM(X) > 0.95 were selected as land totally unsuitable for mining in Kentucky. The 

same approach was also applied as an example to the classification of ecosystems 

(i.e., wetland classification). 

Bosserman and Ragade (1982) [11] concluded that a fuzzy description of an 

object is able to incorporate large number of variables that most adequately char­

acterize the object. Also, it was found that observers and their judgments are 

essential in defining and classifying ecosystem phenomena (i.e., choosing the mem­

bership functions and defining their parameters) . Finally, methods based on fuzzy 

set theory were found to provide a bridge by which subjective human judgment can 

be made compatible with exact scientific methods. 

A landform segmentation model (LSM) for partitioning agricultural landscapes 

into terrain element classes (output ) is introduced in [55] . These elements are cho­

sen to display significant differences with respect to soil properties, which are needed 

for precision farming. In this paper, the author wished to produce a generic method 

for the classification of landform elements such that the chosen method can uti­

lize and incorporate expert knowledge and judgement . He found that classification 

procedures based on statistical analysis and ordination of terrain variables (input) 

for a particular site result in classifications that are optimal only for a given site. 

That is, the results were specific to each unique site and can not be easily general­

ized . Therefore, a continuous fuzzy approach was chosen, since it permits experts 
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to identify desired conceptual landform elements and to define each element using 

imprecise semantics. For example, the terrain element class of level crest has been 

suggested and described using fuzzy landform attributes. 

Raw digital elevation data was collected from two sites in Alberta, Canada, then 

interpolated into regular grid cells. From the interpolated data, ten terrain variables 

were computed and used as input variables. Three of the variables were chosen to 

describe the local shape and orientation of a grid cell related to the movement of wa­

ter in the landscape. An example is the 'slope gradient' variable. Six variables that 

represent measures of relative slope position formed another group. A final deriva­

tive called the 'wetness index' was chosen because of the importance of moisture 

availability for crop growth in the moisture limited agricultural landscapes of west­

ern Canada. Table 3.3 shows the first group of derivative relating to landform shape, 

i.e., slope gradient, profile curvature and plan curvature. A detailed description of 

all ten terrain variables can be found in [55]. 

The aim of the study was to define 15 terrain element classes, predefined by 

the expert, using a fuzzy approach and the input data of ten terrain variables. 

Application of the procedure is summarized in the following steps. 

Step 1. Fuzzy membership functions were first used to define 20 fuzzy landform at­

tributes, using the input data of nine out of the ten terrain variables. The 

fuzzy membership models were based on Burrough et al. [13] semantic im­

port model 

1 
µA(x) = [l + ((x _ c)/d)2] x 100, (3 .32) 

where x is the value of a terrain variable at each grid cell. Symmetric, left 

asymmetric and right asymmetric fuzzy membership functions were used. For 

each fuzzy landform attribute expert judgement and information from liter­

ature (where applicable) were used to select appropriate values for c and d, 

expressing a fuzzy concept. The parameters were then substituted in (3.32) to 

compute the degree of membership µ(x) of each terrain variable value x in its 
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Table 3.3: Examples of some terrain variables used in [55] for landform identification 

Abbreviation Name of terrain Description of terrain derivative 

of terrain derivative derivative 

Slope gradient Slope gradient SLOPE 

PROF 

PLAN 

Profile curvature Rate of change of slope in the down slope direction 

P lan curvature Rate of change of slope in the across slope direction 

Table 3.4: Heuristic rule base for converting the terrain variables from Table 3.3 

into fuzzy landform attributes 

No. Input terrain Output fuzzy Description of fuzzy Model Standard Dispersion 

derivative landform landform index (c) index (d) 

attri bute attribute 

1 PROF CONVEX-D Relatively convex Left 10.0 5.0 

in profile (down) asymmetric 

2 PROF CONCAVE-D Relatively concave Right -10.0 5.0 

in profile (down) asymmetric 

3 PROF PLANAR-D Relatively planar Symmetric 0.0 5.0 

in profile (down) 

4 PLAN CONVEX-A Relatively convex Left 10.0 5.0 

in plan (across) asymmetric 

5 P LAN CONCAVE-A Relatively concave R ight -10.0 5.0 

in plan (across) asymmetric 

6 PLAN PLANAR-A Relatively planar Symmetric 0.0 5.0 

in plan (across) 

7 SLOPE NEAR-LEVEL Nearly level slope Right 1.0 2.0 

gradient asymmetric 

8 SLOPE REL-STEEP Relatively steep s lope Left 5.0 2.0 

gradient asymmetric 
c and d are parameters defining the dispersion and cross over point for each terrain derivative. Both 

parameters are defined as in Equation (3.30). 
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corresponding fuzzy landform attribute. As an example, Table 3.4 shows the 

resulting eight fuzzy landform attributes calculated using the terrain variables 

from Table 3.3. The heuristic rule-base for converting the terrain variables 

into fuzzy landform attributes, the parameters used and type of SI model used 

are given in the paper [55]. For example, the fuzzy landform attribute that 

describes the degree to which a site (or grid cell) is considered to be nearly 

level in slope gradient, NEAR-LEVEL, was calculated using the input terrain 

variable SLOPE. The right asymmetric fuzzy membership function, 

1 
µ NEAR- LEVEL(SLOPE(x )) = [1 + ((SLOPE(x) - 1.0)/2.0)2] x 100, 

(3.33) 

Step 2. The next step was to convert the 20 fuzzy landform attributes into fuzzy 

degrees of membership which express the possibility that a given cell or site 

belong to each of n = 15 defined terrain element classes. For this, an operation 

based on the 2-place weighted sum was used , where the combined weights 

summed to l. The weighted sum operator was used to compute each of the 

15 defined terrain element classes, B1 , B2, · · · , B1s, resulting in 15 different 

aggregated values, one for each of the 15 different terrain element classes, for 

every grid cell. Step l. and Step 2. were applied for each grid cell. 

Step 3. Finally, to assign each grid cell to a single terrain element class, the maximum 

operator was used to see which of the 15 classes had the maximum degree of 

membership. 

The proposed fuzzy logic based methodology (i.e, landform segmentation method­

ology) 

• can be applied to a wide variety of agricultural landscapes and generalized 

according to the magnitude and scale of the landscape and data. 

• The fuzzy procedure supported explicit linguistic expressions of imprecise se­

mantics (e.g., the slope is steep) required to define an abstract set of soil 
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landform attributes. 

In [66], classification of environmental impacts using fuzzy sets is presented as 

an example. The example considers the impacts of effluent discharges from a factory. 

Two categories of impacts, acceptable and not-acceptable, and two types of effluents, 

nutrients and toxins, were considered for simplicity. Normally each discharge would 

be evaluated separately and then regulated, based on the result . But this approach 

was not always seen reasonable. The difference between a given factory A that 

discharges 99% of the allowable level of nutrients and B that discharges 101 % of this 

level is negligible (i.e., 1 % above the allowable level of discharge) and probably within 

the range of measurement error. However, the former would meet the discharge 

criteria and the latter would not. If factory A also discharges 99% of the allowable 

level of toxins while B discharges almost none, this would not affect the outcome. On 

the other hand, factory B could legitimately argue that it pollutes less than factory 

A. Therefore, instead of evaluating each discharge individually as either acceptable 

or not, fractional values for the acceptability of each discharge could be assigned 

using fuzzy set theory. Then, to obtain an overall acceptability level, these partial 

memberships are combined using a scoring rule. 

The first step was to assign an acceptability level to each level of pollution 

discharge using a plausible membership function. The ' level of acceptability' was 

seen as a continuous decreasing function of nutrient ( or toxin) loading, so that a 

small increase in nutrient discharges leads to a small decrease in acceptability. Once 

the partial memberships µN and µT are calculated for the nutrients and toxins 

respectively, the next step is to combine them to define the total membership, µ . 

Most environmental standards are based on the non-compensatory combination rule, 

the standard fuzzy intersection. However this approach to classifying environmen­

tal impacts is perceived as very conservative. That is , it considers only the most 

unacceptable indicators, no matter how many favorable indicators there may be to 
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counter it. So, from the view point of Silvert (1997) [66], the combination rule is 

that it must be compensatory. This means that a good score for one variable (high 

membership in the fuzzy set 'acceptable') can partly compensate for a poor score 

(low membership) from another variable. Hence, combination rules, other than the 

standard intersection and union operations, were considered for the combination of 

the partial membership of acceptable discharges. These will be discussed further in 

Chapter 4. 

Further applications of fuzzy set theory to land and environmental impact eval­

uation can be found in [30, 68]. 

3.2.3 Evaluation of a marine environment 

Fuzzy set theory is also viewed as a powerful tool for classifying marine environmen­

tal conditions and for describing the occurrence of natural changes in an environ­

ment. It is seen as an approach that has the ability to integrate different kinds of 

observations in a way that permits a good balance between favorable and unfavorable 

observations, and between incommensurable effects such as social impacts. 

Application of a fuzzy set procedure to evaluate benthic impacts under fish farms 

is given as an example in [67]. Conditions of a seabed under fish farms can be 

surveyed by divers. Observations may include visual records of the abundance and 

diversity of fauna and flora (i.e., animal and plant life, respectively; fauna and flora 

= benthic biota), as well as geochemical cores obtained with hand-held samplers. 

It is not always practical to deal with 'scient ific' quantitative data, especially when 

a large number of farms are to be monitored and also, in some instances, if special 

equipment is required. Other data might be required, such as a strong sulphide 

smell to the core, and are considered virtually impossible to quantify. 

In 1998, a pilot project was carried out to explore the use of fuzzy logic for 

developing indices of benthic conditions under a fish farm in Eilat, Isreal. The farm 

had been studied by divers for several years. Observations of eight different benthic 

variables from 100 dive logs under fish pens were used. 
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Using these observations, four fuzzy sets were defined representing nil, moder­

ate, severe and extreme impacts. The partial fuzzy memberships were obtained by 

a procedure which first assigns membership values, called 'association rules', to each 

of the eight observations. These observations were: the extent of bacterial mats, 

thickness of bacterial mats, colour of bacterial mats, quantity of seagrass, quantity 

of epi-macrofauna, degree of bioturbation by macrofauna, degree of bioturbation by 

fish, and visibility. The assignment of observations were mainly qualitative, i.e., 

made by divers without use of measuring instruments. Each observation was also 

assigned a weight reflecting its importance in the benthic assessment process. For 

example, seagrass coverage was 'abscent', 'few', or 'normal' . The presence of sea­

grass is generally considered to be a strong indicator of a healthy seabed. So if 

the divers identified the seagrass cover as 'normal', t he partial membership for nil, 

moderate, severe, and extreme impacts were assigned as 

µNIL= 0.8, µMOD= 0.2, µsEV = µxTR = 0, 

a method known as 'association rules' . To visualize the results, a graphical repre­

sentation of the partial membership in the four fuzzy sets over time was produced. 

In the resulting graph, it was seen that a lot of useful information was available, 

but was difficult to interpret. For this reason the four fuzzy sets were combined to 

produce a single comprehensive score which would represent an overall measure of 

environmental quality. The weighted impact score, defined as 

SCORE= OµNIL + l µMoD + 2µsEv + 4µ.xTn, 

for data collected over the period of study, from 1991 until 1994, was used. 

As a result of this project, Silvert (2000) [67] found that in addition to facilitating 

a simple and practical sampling scheme, this procedure gave the researcher access 

to an historical database that might had to be discarded if they were only prepared 

to accept rigorously quant itative measurements. 

Another application of fuzzy sets is introduced by Urbanski (1999) [71], for the 

evaluation of an environment in coastal waters. The lack of a well suited data model 

for coastal water areas was viewed as a problem in the development of successful 
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coastal water applications. The reason for this is the spatial and temporal variabil­

ity of many parameters used to describe coastal waters like temperature, salinity, 

amount of nutrient or wave height. 

The study focused on locating places in the Gulf of Gdansk (Poland) vulnerable 

to algae blooms, which are known to constitute a highly toxic threat to sea life as 

well as human beings. First this was done by classifying the data sets, using a fuzzy 

membership function. The raw data consisted of concentrations of three variables: 

nitrogen forms (N03+N02+NH4), phosphorus (P04) and temperature of the water 

measured at each station. Then, using these measurements, probability of reaching 

values equal to or greater then a threshold (i.e., for nitrogen (xi) 3 µmol dcm-3 , 

for phosphorus (x2) 1 µmol dcm-3, for temperature (x3) 18°0) for each station 

was calculated. The probabilities were then reclassified into 3 classes according to 

the shape of the histogram (e.g., small, medium, and extreme vulnerability to algal 

blooms). A sigmoidal function based on the trigonometric cosine 

such that 

( ) 2 ( X - Pmin ) µA X = 1 - COS 
(Pmax - Pmin)( 7f /2) 

µ = 0 for X :; Pmin 

µ = 1 for X ~ Pmax 

was used to define the partial memberships in each class. Values of Pmin were 

selected based on the values for nitrogen and phosphorus content, and temperature, 

by searching for the local minimum. Values of Pmax were defined based on the 

assumption that 15% of the studied area is extremely vulnerable(µ= 1). Therefore, 

the marked value for which 15% of the data had higher values was defined as Pmax, for 

each parameter. The membership function defined as above was considered relative 

and qualitative, because it allowed the outline of the gulf areas of higher and lower 

vulnerability without facilitating any quantitative analysis. Calculation of the index 

of vulnerability using the defined oceanography parameters {A1, A2, A3 } was carried 

out next. The combination of information (fuzzy sets) was used to create land 
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evaluation maps through fuzzy set operations, based on the same technique used in 

[12]. 

3.3 Conclusion 

In this Chapter, formulation of different membership functions and the combina­

tion of information through simple fuzzy operations is defined. A survey of fuzzy 

set applications in some fields of environmental sciences is given. A symmetric and 

asymmetric fuzzy membership function and judgment assignment of membership 

values were repeatedly used in environmental applications. As for the combination 

of information via fuzzy operations, most applications concentrated on the stan­

dard intersection, standard union and the weighted average operations. For more 

information on the theory behind fuzzy sets, see [33]. 

The use of a fuzzy set approach rather than a Boolean approach was preferred 

as an application tool in environmental science. 
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Chapter 4 

Fuzzy aggregation and loading 

indices 

In the previous chapter we found that common combination rules, such as the 

standard fuzzy intersection and the simple average, were used in many environ­

mental applications. Here we consider more complex combination rules that may 

be used for the formulation of overall heavy metal indices in a marine environ­

ment. 

In t his chapter, a general view of combination rules that can be used for the aggrega­

tion of environmental information is presented. A selection of aggregating operations 

will be used to generate "loading indices" in a marine environment. T he chapter is 

divided as follows: Section 1 introduces 2-place aggregating operations and exam­

ples of existing n-place aggregation operators. Methods of generalizing associative 

aggregation operators are presented in Section 2. In Section 3, aggregation rules 

that can take into account the importance of the fuzzy sets being combined are 

summarized. Finally, in Section 4, n-place aggregation operations are applied used 

to construct loading indices of the two marine environmental regions. 
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4.1 Aggregation operations (AO) 

Aggregation operations combine a set of fuzzy subsets to produce one fuzzy set. 

Dubois and Prade highlighted as one of the most attractive features of fuzzy set 

theory its provision of a mathematical setting for the integration of individual at­

tributes, represented by membership functions [28]. At the application level, many 

authors found that fuzzy set theoretic operations have proved useful in many differ­

ent fields, an example of which is the field of multi-attribute evaluation. In return, 

this type of application gave the necessary motivation to search for classes of op­

erations beyond the straightforward extensions of classical set theoretic operations 

[28]. Applications of fuzzy set methods and its use in multicriteris evaluation, using 

various aggregation operators can be found in [36]. 

Fuzzy intersections and unions are alternatives of the set theoretic operations for 

crisp sets. Being a richer model, fuzzy sets can be combined using other formulas, 

which together with the set theoretic operations are called fuzzy aggregation 

connectives. 

Next, we shall introduce alternative operators to that of the standard intersection 

operation and standard union operation for aggregating or combining two fuzzy sets. 

4.1.1 Fuzzy intersection and fuzzy union operations 

Instead of minimum and maximum operators, many other operations can be used 

on two fuzzy sets, A and B, defined on a universal set U with a common element 

u E U. For a function I: [0, l ] x [0, l ] --+ [0, l] to be acceptable as an operator for 

intersection, I has to satisfy some axioms. These are stated below and lead to the 

concept of t-norms. 

Definition 2 (T-norm operators). Let I be a binary operation such that, 

I: [0,1] x [0,1]--+ [0,1]. 

I is said to be a t-norm operator if the following conditions are met for all a, b, c, d E 

[0, 1]: 
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(i) I(a, b) = I(b, a) {Commutativity) 

(ii) I (a,I(b, c)) = I (I (a, b), c) {Associativity) 

(iii) I (a, b) 2 I (c, d) if a 2 c and b 2 d {Monotonicity) 

(iv) I (a, 1) = a {One-identity) 

It can be easily verified that I reduces to the crisp intersection if a, b, c, d E {O, 1} 

There are two more alternative conditions /32, 47/: 

(v.a) I (a, a) = a {Idempotence property) 

(v.b) I(a,a) < a {Archimedean property) 

T he union type operators on two fuzzy sets are implemented by t-conorms. 

These are also two-place operations defined as follows. 

D e finition 3 (T-conorm operators). Let U be a binary operation on the unit 

interval 

U : [O, 1] x [O, 1] ----+ [O, 1] 

such that for all a, b, c, d E [O, 1] 

(i) U(a, b) = U(b, a) (Commutativity) 

(ii) U(a, U(b, c)) = U(U(a, b), c) {Associativity) 

(iii) U(a, b) 2 U(c, d) if a 2 c and b 2 d {Monotonicity) 

(iv) U(a, 0) = a {Zero-identity) 

(v.a) U(a, a) = a {Idempotency property) 

(v.b) U(a,a) > a (Archimedian property) 
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The minimum and maximum operators are examples of intersection and union, 

respectively. They are considered to be "the standard" type of fuzzy operations. 

This is because they perform as the corresponding operations for crisp sets when 

the range of membership grades is {O, l}. The reason for the special attention they 

receive in the literature is twofold. First, they are simple and intuitive. As [49] 

states: 'from a practical point of view, the pair (min and max) are comfortable to 

work with arithmetically as well as graphically'. Second, the minimum operator 

is the largest t-norm amongst those satisfying properties 1 to 4, and the maximum 

operator is the smallest t-conorm among those satisfying the respective 4 properties. 

In other words, the 'min' operator is viewed as the weakest fuzzy intersection, where 

as the 'max' operator is viewed as the strongest fuzzy union. 

The min and max operations are the only pair of distributive and idempotent t­

norms and t-conorms, respectively. Therefore, if one wants to preserve the equalities 

An A = A and AU A = A 

for fuzzy sets A, one turns to this pair of operators. But in some applications fuzzy 

sets do affect each other when united or intersected. In such cases other operators 

(e.g., parameterized operators) are often used instead of min and max to represent 

these operations in different contexts. 

Examples of t-norm operators 

• Algebraic Product: I(a, b) =a· b 

• Bounded Difference: I(a, b) = max(O, a+ b - l) 

• Hamacher Product: I(a, b) = (a+b)!(a·b) 

• Drastic Intersection: 
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Notice that, l D(a, b) :S max(O, a+ b- 1) :Sa · b :S min(a, b). [47] 

Examples of parametric two place t-norms are 

• Dubois and Prade {1980): l o:(a, b) = max(:.b,o:) , for o: E [O, l]. 

This operator ranges from the min(a, b) for o: = 0 to the product operator for 

o: = 1. It also can be written in the following form: 

l o:(a, b) = { a} 
min(a, b) 

for a, b E [O, o:] 

elsewhere 

a-b • Hamacher Product family: r+(l-r)(a+b-a·b)' r :S 0 

This operator ranges form the product operator for r = 1, to drastic intersec­

tion as r --+ oo. 

Examples of t-conorms 

The following are examples of t-conorm operators, defined on two fuzzy sets, A and 

Bon [O, 1], where a E A and b EB. 

• Algebraic ( or Probabilistic ) Sum: U(a, b) =(a+ b) - (a · b) 

• Bounded Sum: 

• Hamacher Sum: 

• Drastic Union: 

U(a , b) = min(l, a+ b) 

U(a b) = (a+b)-2(a·b) 
' 1-(a·b) 

{ 

a when b= O 

UD(a,b) = b when a=O 

1 otherwise 

Notice that, max(a, b) :S (a+ b) - (a· b) :S min(l, a+ b) :S U D(a, b). 

Examples of parametric two placed t-conorms are: 

• Dubois and Prade: U ( b) _ (a+b)- (a·b)- min(a,b,o:) 
a: a, - max(l - a,1-b,o:) ' for o: E (0, 1). 

This operator ranges from the max operator for o: = 0 to the probabilistic sum 

when o: = 1. 
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• Sugeno's Operation: U(a, b) = min(l , a+ b +>.a• b), ).. > -1, 

ranges from the bounded sum for >. = 0 to drastic union as >. -+ oo. 

• Hamacher Sum family: a·b+(r-2)a·b O 
r+(r-l)a·b ' r > ' 

ranges from the probabilistic sum for r = 1 to Umax(a, b) as r-+ oo. 

4.1.2 Alternative aggregation operators of two fuzzy sets 

We introduce three examples of fuzzy aggregating operations. They are, the Mean 

operators, the Symmetrical sum and Symmetrical difference operators. 

Mean or Averaging Operations 

Mean operations are used to generate fuzzy sets that lie between the 'min' and 'max' 

operators. 

Definition 4 (Mean operators) . Let A and B be fuzzy sets of U. Then a mean 

operation is defined as a mapping 

m: [0, 1] X [0,1] ~ [0, 1]. 

given that the following conditions are satisfied for a, b E [O, 1], 

(i) m is commutative: m(a, b) = m(b, a) 

(ii) m is increasing with respect to both arguments and continuous. 

(iii) min(a, b) :S m(a, b) :S max(a, b) such that m ~ {min, max} . 

Examples of such operators are: 

• Arithmetic Mean: 

• Harmonic Mean: 

• Geometric Mean: 

m(a, b) = ~ 

m(a b) = 2a·b 
' a+b 

m(a, b) = ~ 
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• Generalised Mean: 
1 

( b) _ (a"'+b") 0 
ma a, - 2 , aER 

which is also the general formula that produces the arithmetic mean when 

a = 1, and the 'Quadratic' mean, when a = 2. [10] 

Although these operations are strictly increasing, t hey are not associative. The only 

associative mean operators that are also increasing are those known as the family 

of median operations: 

{ 

max(a, b) 

• meda(a, b) = :in(a, b) 

if a , b E [0, a] 

ifa,bE[a,1] 

otherwise 

Symmetrical Sum Operators 

In some cases, a pair of sets to be combined may have comparable features (e.g., 

the set of "good" objects vs. the set of "bad" objects) , such that symmetry exists 

between their two complementary sets. In such a case, appropriate set operations 

should be defined in a way that it does not matter whether we deal with a set or its 

complement [65]. Such operations, are known as Symmetric sums. [10, 50, 65] 

Definition 5 (Symmetric sums). Symmetric sums are operations defined by a 

rule of combination a 

such that 

: [0, 1] X [0,1] ~ [0, 1], 

(i) a(O, 0) = 0, a(l, 1) = 1 (Boundary conditions) 

(ii) a(a, b) = a(b, a) (Commutative) 

(iii) a is continuous and increasing with respect to both arguments 

(iv) a is auto dual. That is, with respect to the complement to 1, we have: 

1 - a(a, b) = a( l - a, 1 - b) , 

i.e., a is independent of whether we deal with sets or their complements. 
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The general form of a symmetric sum can be given by 

a(a b) = g(a, b) 
' g(a,b)+g( l -a, 1 -b) 

( 4.1) 

such that the generating function g is an increasing real mapping which is posit ive, 

continuous and g(O, 0) = 0. The following are examples of symmetric sums 

{ 

max(a, b) if a, b E [O, ½J 

• med½ (a, b) = min(a, b) if a, b E [½, 1] 

½ otherwise 

which is considered to be the only symmetric sum which is associative and also a 

mean operator. 

• a(a, b) = l-a.!:b~2a,b , for g(a, b) =a· b, where a, b E (0, 1) (Associative) 

( b) _ a+b-a-b 
• a a, - l+a+b-2a·b ' for g(a,b) =a+b-a·b, (NOT associative) 

Examples of symmetric sum that make use of the 'min' and 'max' operators as the 

generating functions are, 

( b) _ min(a,b) 
• a a, - 1-la-bl 

( b) _ max(a,b) 
• a a, - 1-la-bl 

for g(a, b) = min(a, b) 

for g(a, b) = max(a, b) 

which are also mean operators. 

Symmetrical Difference Operators 

Other interesting operators that combine two fuzzy sets, are referred to as symmet­

rical difference operators [44]. 

D efinition 6 (Symmetric difference). Let Ab..B, where 6. denotes the symmet­

rical difference between fuzzy sets. Symmetrical differences can be generated by a 

mapping 

d: [0, 1] x [0, 1]---+ [0,1] 
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such that 

(1) d(0, 0) = d(l, 1) = 0 

(2) d(0, 1) = d(l, 0) = 1 

(3) d(a, b) = d(b, a) 

(4) Va, b E [0, 1], d(a, b) = d(l - a, 1 - b). 

A general form of symmetrical difference operators is 

d(a, b) = f(g(a, b), g(l - a, 1 - b)) 

where the generating functions 

(i) f and g are any continuous mappings from [0, 1]2 and [0, l]. 

(ii) f is commutative 

(iii) f(g(0, 0), g(l, 1)) = 0 and f(g(0, 1), g(l, 0)) = 1 

Examples of symmetrical difference operations are [44] 

• d(a, b) = max(min(l - a, b), min(a, 1 - b)) 

where g(a, b) = min(l - a, b) and f(a, b) = max(a, b). 

This is consistent with the usual definition of AD.B = (An B) U (An B) 

translating n and U into min and max. Here, D. is associative. 

• d(a,b) = la - bl 
where g(a, b) = 1 - a+ b and f (a, b) = la;bl. This symmetrical difference 

operation is consistent with AD.B = (An B) U (An B) translating n and U 

into An B = max(0, a+ b - 1) and AU B = min(l, a + b). Here, D. is NOT 

associative. 
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4.1.3 Aggregation Operators of More than Two Fuzzy Sets 

More often there are more than two fuzzy sets to be considered for aggregation. 

Therefore, aggregating operations on fuzzy sets are ones by which several fuzzy sets 

are combined in a desirable way, to produce a meaningful expression in terms of a 

single fuzzy set. In order for a function A to qualify as an intuitively meaningful 

aggregation operator of n-arguments, it must satisfy at least three conditions. 

Definition 7 (n-place aggregation connective). Ann-place aggregation connec­

tive is defined by the mapping 

A: [0, l t----? [0, l]. 

(1) A(o, ... ,0) = 0 and A (1, ... ,1) = 1 (Boundary conditions) 

(2) A(a1, ... ,an)= A(ai1 ,ai2 "· ,ain),foranypermutationi1,i2, ... ,inof1, ... ,n. 

In other words, the aggregation is indifferent to the ordering of the arguments, 

ai. (Commutativity) 

(3) For any pair (a1, · · · , an) and (b1, · · · , bn) of n -arguments, such that ai, bi E 

[0, 1] for all i E Nn: 

That is, A is monotonic increasing in all arguments. 

Next , we shall present a summary of a variety of aggregation operators, grouped 

as follows: (i) generalized t -norms (ii) generalized t-conorms, (iii) mean type aggre­

gations. [28, 32, 47, 8, 10] 

Although fuzzy intersection and union operators do not cover all operations by 

which n fuzzy sets can be aggregated, they do cover all aggregating operations that 

are associative. T he benefit of this property is that it will allow us to extend the 

definition of fuzzy intersection (union) aggregations involving only two sets to any 

number of sets [32, 47, 50]. 
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Fuzzy Intersection and Union Aggregations 

An aggregation A is said to be an intersection or union type operation, if one of the 

following additional conditions, to that of definition (7), is met: 

(4.a) A(a1 , · · · , an) ::; min(a1, · · · , an), 

This is characterized as a conjunctive or severe behaviour [10, 28, 50]. 

(4.b) A (a1, · · · , ap) 2: max(a1, · · · , an), 

This is characterized as a disjunctive or indulgent behavior. 

Defining an intersection or union operation on n arguments from one acting on 

2 arguments, is possible as long as the operation to be extended is associative. 

Examples of straightforward extended aggregations to the case of n > 2 are the 

• Minimum: 

• Product: 

• Maximum: 

Mean aggregation Operators 

The generalized aggregation operation selected for the analysis of ecological impacts 

in [66] (e.g., impacts of factory discharges) was compensatory. The idea is that a 

good score for one attribute (high membership in the fuzzy set) can partly compen­

sate for a poor score (low membership). From Silvert's (1997) point of view, the 

importance of using a compensatory combination rule is that it provides an objective 

method for dealing with the reality that ecological impacts are inevitably balanced 
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against each other, and against social and economic factors in the decision making 

process . Mean aggregation operations are such functions characterized as having a 

compromise or caut ious behavior. That is, results generated always lie between the 

maximum and minimum aggregation operations, i.e., 

Definition 8. A n operator A is called a mean aggregat ion of n arguments if it 

satisfies the following conditions: 

(i) The aggregation is indifferent to the ordering of the arguments. 

tativity) 

(Commu-

(ii) A (a1, · · · , an) ~ A (b1, · · · , bn) if ai ~ bi for all i . (Monotonicity) 

(iii) A (a, a, .. · , a) = a, for a E [O, l ] (Idempotency) 

Therefore, mean operations are the only aggregation operations that lie between 

the standard intersection and standard union aggregation operations, i.e. , ( 4.1.3), 

and that are idempotent [28, 32, 47]. 

The Generalized mean is a class of aggregating operations that cover the ent ire 

interval between the minimum and maximum operations, 

(4.2) 

The following aggregating operations are examples of how the general formula re­

duces to other mean operations for various values of a E ~ -

• Arithmetic Mean: 

• Harmonic Mean: 

a1 +· · ·+ an 
A a = ----'----- for a = 1 

n 

n 
A a = 1 1 for a = -1 

-+ .. ·+-a1 an 
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• Geometric M ean: 

(4.5) 

The generalized mean approaches the 

• maximum aggregating operator as a ➔ oo and 

• minimum aggregating operator as a ➔ -oo. 

Parameterized operations 

This group of generalized n-place aggregating operators are sometimes preferred to, 

say, formulating a new operator each time a different problem is faced [25, 66, 67]. 

The following are such operations. 

• Beta-Gamma combination rule 

The beta-gamma rule ranges from the product (/3 = 1, 1 = 0), to the algebraic 

sum (/3 = 0, 1 = 1). It also includes the special cases of the geometric mean 

(/3 = ¼, 1 = 0) and zimmermanns ,-family (/3 = 1 - ,), 

,0:S,:S l. (4.7) 

which ranges from the product (, = 0) to the algebraic sum (, = 1). These 

parameters are known as 'grades of compensation'. 

• Symmetric sum 

a 

1 -a 

such that L~=l Wi = 1. The value 1.'.:.a is defined as the weighted geometric 

mean of the ratios for the membership, ci.'.:.~;) . This type of operator considers 

both fuzzy sets and their complements in the calculation. 
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4.2 Generalizing 2-P lace aggregation operators 

We present generalization of 2-place aggregations to n-place ones. First, recall the 

associativity law, one of the properties satisfied by 2-place intersection and union 

aggregations An aggregation 

A: [O, 1] x [O, 1] -+ [O, 1] 

is said to be associative, if for all a, b, c E [O, 1] 

A(A(a, b) , c) = A(a, A(b, c)) (4.9) 

The importance of this property is that, it ensures that we can take the aggregation 

of any number of sets in any order of pair-wise grouping desired , i.e., extend an 

aggregation to more than n = 2 sets. As for the property of commutativity, it 

ensures that fuzzy aggregation is symmetric, that is, indifferent to the order in 

which the sets are combined. Then using this basic property, 

a 2-place aggregation operator can be extended to an n-place aggregation 

operator 

(4.10) 

where ai1 , ai2 , • • • , ain is any permutation of a1, a2, .. . , an. 

To illustrate this in simple terms, we use the basic definition of a 2-place associa­

tive aggregations (4.9) . Then the aggregation of n = 3 fuzzy sets should not depend 

on the order in which the elements, are combined, i.e., 

In general, the associativity law makes certain that, when constructing our models 

of n > 2 sets, the resulting aggregated sets produced by a specific operator will not 

differ or depend on the ordering of fuzzy sets to be aggregated. 
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4.2.1 Methods of generalizing aggregation operators 

Due to the variety of aggregating operators presented in the literature [10, 28, 32, 

47], it is understandable that difficulties may be encountered when attempting to 

design a general n-place aggregation for respective 2-place operators. Because of 

this, we experimented with two possible approaches. Here is a summary of both 

approaches . 

A. This approach relies on using the definition of associativity. This is done by 

successively adding elements for n = 3, 4, · · · ,etc., to design a 3-place, 4-place, 

• • • ,etc. aggregating operator, and gradually derive a general pattern for an 

n-place aggregation. 

B. This approach relies on: (i) aggregating each pair of fuzzy sets, of a fuzzy model 

1, to obtain the first group of aggregated sets; e.g. , for three fuzzy sets A, B, C, 

aggregate each pair of sets, resulting in A(A, B) = Z and C is left since n is 

odd, (ii) then aggregate each pair from the first group in (i) to obtain a sec­

ond group of aggregated sets, e.g., A(Z, C) = Y, ... and so on; (iii) finally, 

the nth aggregated set is obtained. Since here we are dealing with associative 

operators (as well as commutative), the order in which pairs of fuzzy sets are 

aggregated will not alter the final result. 

Note that because this approach is time consuming, it was thought of with 

models consisting of a small number of sets to be aggregated (e.g., 2 < n :S 10). 

Both approaches should give the same pattern regardless of whether the first or 

second approach is used. 

A summary of proposed steps is given below for the first approach, approach A. 

Stepl: Choose a 2-place aggregation operator and check whether the operator is 

associative and obtain the 3-place aggregation operator. 

1 In this study, the model consists of the process of deriving a problem-specific membership 

function with which objects can be assigned a membership grade, to evaluate the loading indices 
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Step2: Design an n-place general formula for your chosen aggregation. 

Step3: Prove the n-place aggregation general formula by the method of Mathemat­

ical induction. 

Definition 9 (Mathematical Induction Method) . Let P(n) be a statement con­

cerning a positive integer 'n '. Then using mathematical induction, we prove that this 

statement is true for every integer 'n' greater or equal to some lowest integer 'no '. The 

following steps are required by the proof: 

(1) Prove that P(no) is true. 

(2) Prove that if P(k) is true, where k 2: no, then it is also true for the next larger 

integer, P(k + 1). 

Then the mathematical induction principle guarantees that P(n) is true for all n E 

z+. /2] 

The following are extensions carried out on some operators. 

4 .2.2 Examples of generalized operators 

Simple operators: Minimum, Maximum and the Algebraic product 

One straightforward extension is that of the minimum aggregation, A( a, b) = min( a, b), 

Va, b E [O, 1], which is an intersection type operator. To design a general pattern, 

we first derive a 3-place operator. 

l. Assume, without any loss of generality, that a1 < a2 < a3, then 

2. Similarly for n = 4, a1 < a2 < a3 < a4, 
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3. Following this design for n > 4, it is obvious that the final pattern of an n-place 

minimum aggregating operator will be as follows, 

Amin(a1, · · · , an) = Amin(Amin(a1, · · · , an-1), an) 

= Amin(a1, Amin(a2, · · · , an)) 

= min(a1, · · · , an) (4.11) 

The next step is to prove (4.11) using the principle of mathematical induction. 

Therefore, carrying out the proof steps, we have 

(i) For n = no = 2, let ai1 < ai2 be a permutation of a1, a2 E [O, 1]. Then 

is true. 

(ii) Let ( 4.11) be true for some integer n > no such that for any permutation 

Then for (n + 1) 

where ai1 , aicn+iJ is a permutation of a1, an+l given that ai1 < ai(n+i). Hence, 

the minimum n-place operator is true for every integer n . 

Other operators which are as easily extendable are the product (4.12) and the max­

imum (4.13) operations. Similarly, both operators can be proven using the same 

steps followed as in the case of deriving the minimum operator. 

(4.12) 

(4.13) 

Hamacher Product 

The extension procedure can also be applied to the Hamacher product. The following 

proposition and its corollary introduce the idea that will lead to the main result of 

this section. 
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Proposition 1. The extended aggregation operator based on the Hamacher Product 

is 

A( ) Ilf=l ai 
a1,a2, ... ,an = "\""n n n . - ( - l)Iln . 

L.,i=l j=l,j-f=i aJ n i=l ai 
(4.14) 

Proof. 1. Starting with the 2-place hamacher product and the associativity law, 

we have 

(4.15) 

2. The same is done for n = 4 with the end result 

( 4.17) 

(4.18) 

3. This is continued for n 2'. 2, until we can identify a pattern to design the 

general formula. Therefore, observing the denominator of equations (4.16) 

and (4.18) , i.e., 

for n = 3, 

for n = 4, 

and 

we can see they indicate a clear pattern. On this basis, we can attempt to 

construct then-place Hamacher product as 

A( ) Ilf=l ai 
a1, a2, ... ,an = "\""n n n ·-( _ ) Iln . 

L.,i=l j=l ,j-f=i aJ n 1 i=l ai 
( 4.19) 

or equivalently, 

A( ) TI~1~ 
a1,a2, ••• ,an = "\""n A n n • 

L.,i=l a1 · a2 · · · ai · · · an - ( n - 1) i = l ai 
(4.20) 

Where, CLi denotes the i th element left out from the product of all elements, of 

the ith summed up parameter. 
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4. Proof by induction: The formula (4.19) is correct for n = 2, n = 3 and n = 4 

by design. Next, assume that (4.19) is true for some n. Then, for (n + 1) , we 

have to prove that the (n + 1)-place formula has the same representation, i.e., 

A( ) IT~~} ai 
a1, a2, , .. , an, an+l = n+l n+l n+l 

Li=l IT j=l,i,tj aj - (n) ITi=l ai 

From associativity, 

Then, 

°'""'" TI" ·-( - l)fln . · an+l L..,i=l j=l ,j ,pi aJ n i=l a, 

n n n 
ITn+l a · i- 1 i 

(4.21) 

an+1(L II aj) + II ai -(n - l)(IT7=:1 ai)an+l - IT~~/ ai 
i=l j=l,#i 

(1) 

i=l ..__.., 
(2) 

Breaking down expression (1) leads us to 
n n 

(4.22) 

an+1(I: II aj) = an+1[(a1 . a2 . . - .. an)+ (a1 . a2 ..... an)+ ... + (a1. a2 ..... an)l 
i=l j=l,i,tj 

Considering the above expression together with (2), which is the product a1 • 

a2 · · · · ·an· &n+l , we obtain 

(1)+(2) = I::~~} IT?!t,H i aj 

Then, 

IT
n+l 

A( ) ~l~ a1, a2 , ... , an , an+l = "'"'n+l ITn+l __ ( ) ITn+l . 
L.,i=l j=l ,i,tj aJ n i=l ai 

( 4.23) 

Hence, the n -place Hamacher product, defined for an element vector [a] = 

(a1 , a2, .. -,an), holds for all n . 

□ 
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Bounded Difference 

Due to the variety in aggregating operators present, different methods to design and 

derive n-place formulas (Step 2 of the extension procedure) are sometimes needed. 

As will be shown, this applies when trying to extend 2-place operators that consist 

of two mathematical expressions. An example of such is the Bounded difference 

aggregation, 

A(a, b) = max(O, a+ b - l) (4.24) 

Here, the bounded aggregation has two different solutions depending on the condi­

tions satisfied by its elements a and b to be aggregated. 

case 1: 

case 2: 

For a + b :S 1, we have 

For a + b > l , we have 

A(a,b) = O 

A(a,b)=a+b- l 

Therefore, there exist two cases to deal with when extending such aggregations. 

The steps of extension to follow are the same. As before, we start with the 

chosen operator (n = 2) by adding an element to the associative equation (4.9), i.e., 

(4.25) 

A diagram can be used to illustrate the extension of both cases (see Figure 4.1). 

Finally, by design, an n-place aggregation is reached, then proved by induction. This 

can be illustrated using the bounded difference aggregation. 

Proposition 2. The extended aggregation operator based on the Bounded Difference 

is 

A(a,,a,,· ·· ,"-n-1,an) - { O 

Equivalently, 

n 

A(a1 , a2, · · · , an-1, an) = max{O, Lai - (n - l)} 
i=l 
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I:;f=l ai > 4 

l(f(a1,a2,a3,a.1),a5) = I::[=1 ai - 4 

a1 +a2 - l, ifa1 +a2 > 1 

max(0,a1 +a2 - !) 

0 

0 

0 

0 

0 

Figure 4.1: A diagram showing the left hand case extension of an intersection oper­

ator based on the bounded difference aggregation. A similar solution is reached for 

the right hand case. 
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Proof. Use Equation (4.32), the Bounded difference intersection. The equation can 

be rewritten as 

, if a1 + a2 ~ 1 (Case 1) 

, if a1 +a2 > 1 (Case 2) 

To start the extension we first construct a 3-place aggregation using the associativity 

property. 

1. For n = 3: 

Since the Bounded Difference is associative, 

and 

2. For n = 4, 

3 .... and so on. Hence, for n ~ 2 there exist two cases 

4. Proof by induction: 

Assume that I:f ,;;/ ai ~ n, then 

ifI:f=1 ai ~ n - I 

ifI:f=1 ai > n - 1 

= A(O, an+1) = max(O, 0 + an+l - 1) 
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But since, an+l E [O, 1] then 

Alternatively, when I:7~} ai > n 

n+l 

for Lai :Sn 
i=l 

A(A(a1, a2, · · · , an- 1, an), an+1) 

[t ai - ( n - l )] + an+ 1 - 1 
i=l 

a1 + a2 + ... +an+ an+l - (n - 1) - 1 
n+l 

L ai-n (4.31) 
i=l 

Hence, the n-place bounded difference extension is true for all n □ 

Bounded Sum 

The same approach used to extend the Bounded difference, i.e., approach A., can 

also be used to extend the Bounded Sum, 

(4.32) 

a union type aggregating operator. 

Proposition 3. The extended aggregation operator based on the Bounded Sum is, 

Equivalently, 

n 

A(a1, a2, .. · , an) = min( l , L ai) 
i = l 

This is illustrated in Figure 4.2. 

Proof. The proof is similar to that followed for the bounded difference. 
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· • • · · · · · · so on. 

ZT=t a;< I 

U(U(a1,a2,a3,a4) ,as ) = Zf=t a; 

z:=1 a;< I 

U(U(a1,a2,a3),a ,1) = z;1=l a, 

Zr=l a;< I 

U(a1,a2,a3) = Zf=l a; 

a1 + a2 , if a1 + a2 < I 

rnin(l , a1 + a2) 

1 

1 

1 

1 

1 

Figure 4.2: A diagram showing the left hand case extension of a union operator 

based on the bounded sum aggregation. A similar solution is reached for the right 

hand case. 
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1. For n = 3 the bounded sum is 

A(a1, a2 , a3) - { 
1 

2. For n = 4 

, if Lf =l ai 2: 1 

, if Lt =l ai < 1 

, if L i=l ai 2: 1 

, if I:;=1 ai < 1 

3. · · • and so on. Then, for n 2: 2 there exists two cases 

if I:~ 1 ai 2: 1 

if I:r=l ai < 1 

4. Proof by induction: Assume that I:~1 ai 2: 1 then 

But since, an+l E [O, 1] then 

n+l 

A(a1, a2, · · · , an, an+1) = 1, for L ai 2: 1 

Alternatively, when I:r~} ai < 1 

i=l 

A(A(a1 , a2, · · · , an- 1, an), an+d 

[t ail + an+l 
i=l 

n+l 

I: ai 
i=l 

Similarly, assume that I::~1 ai < 1 then 

A(A(a1,a2,··· ,an-1,an),an+1) 
n 

= A(L ai, an+1) 
i=l 

n 

min(l, L ai+ an+1) 
i=l 
n+l 

= min( l , Lai) 
i=l 
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But ai E [O, 1] for all i = 1, · · · , n + 1. Hence 

(4.39) 

□ 

Algebraic Sum 

The algebraic sum is another union type aggregating operator. Its 2-place formula 

is 

(4.40) 

Proposition 4 . The extended union aggregation based on the Algebraic Sum is 

n n-i+l n-i+2 n 

A(a1,a2,···,an)= I)-1)i+1 L L ··· L aj1 •aj2 .. · aj; ( 4.41) 
i = l j1=l j2=j1+l j ; =j; -1+1 

(1) 

fo r all n > 2. To simplify, denote expression {1} as S i . Then Equation (4 .41) 

becomes 

n 

A(a1, a2, · · · , an)= L (- 1)H 1si ( 4.42) 
i=l 

Before proceeding to the proof consider the following lemma. 

Lemma 1. Let a1, a2, · · · , an be elements in /0,1}. Let 

n-i+l n- i+2 n 

Si= L L ... L aj1 • a12· · •aj;• (4.43) 
j1=l j2=j1+l j ; =j;-1 + 1 

such that aj1 • a12 · · · aj; is the product of i elements, where i = 1, · • • , n. Then the 

addition of an element, an+l to Si, still preserves the formula for (i + 1}, i.e., 

(4.44) 
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or 

I 

Si+1 [a1a2 · · · ai + a1a2 · · · ai+1 + · · · + a(n-i+l)a(n-i+2) · · ·] · an+l 

This is for all i = 1, · · · , n - 1 where, 

Proof. Consider Si · an+l, such that 

( 4.45) 

( 4.46) 

( 4.4 7) 

To find s;+1, we need the product of all elements taken i+ 1 at a time. The expression 

Si· an+l contains all of these products which also contain the element an+l in them. 

Therefore, the only missing products are those that contain all elements taken i + 1 

at a time, from the elements {a1,a2, ···,an}, i.e., 

a1a2 · · · ai+l + a1a2 · · · ai+2 + · · · + a(n-i+l)a(n-i+2) · · · • 

But the summation of these is Si+l · Therefore, 
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Example (4.2.2): For n = 2, Equation(4.41) is solved as follows 

i = 1: 

i = 2: 

2 

S1 = (-1)2 L aj1 = a1 + a2 

}t=l 

1 2 

S2 = (-1)3 L L aj1 • aj2 = -ai · a2 

J1 = lj2=2 

Hence, combining both expressions, we obtain Equation (4.40) . Similarly, for 

n = 3. 

i = 1: 

i = 2: 

i = 3: 

3 

S1 = (-1)2 L aj1 = a1 + a2 + a3 

j1=l 

2 3 

S2 = (-1)3 LL aj1 • aj2 = (- 1)3
(a1 · a2 + a1 · a3 + a2 · a3) 

}1=1}2=2 

1 2 3 

S3 = (-1)4 LL L aj1 • aj2 • aj3 = (-1)4
a1 · a2 · a3 

}t=l}2=2j3=3 

Then combining all three expressions we obtain the 3-place algebraic sum 

Proof. ( of Proposition ( 4)) Let Equation ( 4.40) be the 2-place algebraic sum union 

aggregation operator. Assume that this operator is true for some integer n, Equation 
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(4.42), then for (n + 1) 
n n 
~ +1 ~ .+l A(a1 , a2, · · · , an, an+1) = L...,(-l)i Si +an+l - L...,(- l )i Si· an+l 
i=l i=l .__,_, 

1 

From (1), take out the term for i = 1, and combine to an+l to get S~, Lemma (4.44). 

Then we have 

i=2 i=l 

i=2 i=l 

Let j = i + l -+ i = j - l. When i = 1 -+ j = 2; and when i = n -+ j = n + l. 
Then, take out the term S~+l = an+l · Sn = a1 · a2 · · · an · an+l, Lemma (4.44). 

n n+l 
s~ - L(-l)iSi - an+l · L (-l)j Sj- 1 

i=2 j=2 
n n 

I ~ • ~ • +2 
S1 - L...,(-l)iSi - an+1 · L...,(-1)3Sj-l - (-It Sn· an+l 

i=2 j=2 

Without any loss of generality, denote j by i, 
n n 

= s~ - L(-l)iSi - an+l · L (-l)iSi- 1- (-1t+2s~+l 
i=2 i=2 

n 

(-1)2S~ - L (-l)i [Si +an+l · Si- 1] - (-1t+2s~+1 
i=2 

But, based on the lemma, s; =Si + an+l · Si-1· Therefore, 
n 

(-1)1+1s~ + L(- 1)i+1s ; + (-1t+2s~+1 
i=2 

n+l 
L (-1)H 1s; 
i=l 

The generalized form of the algebraic sum also can be presented as 
n 

A (a1, a2, · · · , an) = l - IT (1 - ai) 
i=l 

obtained from the family of , -operators [25, 48]. 
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Hamacher Sum 

The 2-place hamacher sum union aggregation is 

(4.50) 

Proposition 5. The extended aggregation based on the Hamacher Sum is 

(4.51) 

Proof. The proof of Equation (4.51) consists of two parts: proof of the numerator, 

and proof of the denominator. Given the 2-place Hamacher sum, Equation (4.50), 

assume that the formula is true for some integer n, Equation (4.51). Then for (n+l) 

we have 

Simplifying the formula, we obtain 

n n 

Numerator = 1)- l )i+l(i) ·Si+ an+l - a11+1 · I)-l)i (i - 1) · Si 
i=l i=2 

- 2 (t,r-1/+1(il. s,) . an+1 (4.s2J 

Denominatm- ~ 1 - t,(-l}'(i - 1) · S, - (t,(- l)'+l(i) · s,) On+J (4.53) 

We start with the proof of the numerator. We want to prove that 

n+l 

Numerator = I)- l)i+1(i) • S~. (4.54) 
i=l 
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Consider the expression (4.52) , 

n n 

Numerator = 2)- 1)i+1 (i) ·Si+ an+l - an+l · I )-l)i(i - 1) · Si 
i=l i=2 

n n 

I )-l )i+l (i) ·Si + an+l - an+l · I )-l )i(i - 1) · Si -
i=l i=l 

n 

2 · an+l 2 )-l )i+l (i) · Si 
i=l 

n n 

I )-l )i+l (i) ·Si + an+l - an+l I )-l )i(i) · Si 
i=l i=l 

n n 

+ an+l I )-l)i · Si - 2 · an+1 2)-1)i+l(i) · Si 
i=l i=l 

n n 

I )-l )i+1(i) · Si +an+l + an+l I )-l)i(i + 1) · Si 
i=l i=l 

(1) (2) 

From (1), take out the term for i = 1, then combine with an+l to obtain S~. Also, in 

the second summation (2) , substitute j = i + 1, then i = j - 1. When i = 1 -+ j = 2; 

i =n -+j =n +l. 

n n+l 
.·. Numerator = S~ + 2 )-l)i+l (i) · Si+ an+12:)- l)j- 1(j) · Sj- 1 

i=2 j=2 

equivalently, 

n n+I 
= s~ + I )-l)i+1(i) . Si+ an+l 2 )-l )j+l (j) . Sj- 1 

i=2 j=2 

(3) 
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From (3), take out the term for j = n + l. This term is (-l)n+2 (n + 1) ·Sn· an+l · 
n n 

Numerator = S~ + I)- l )i+1 (i) ·Si+ an+l I)-1)H1 (j) · Sj-l 
i=2 j=2 

+ (-l)n+2 (n + 1) · Snan+I 
n 

= (-1)2(1) · s~ + I)- l )i+1(i) ·(Si + an+l · si_i) 
i=2 

n 

(-1)2(1) · s~ + I)- l )i+1(i) · s; + (-1t+2(n + l )S~+l 
i=2 

Hence, 

n+l 

Numerator = L (-l)i+1(i). s; 
i=l 

Next, we want to prove t he denominator 
n 

Denominator= 1 - L (- l )i(i - 1) · Si 
i=2 

We begin with Equation (4.53) 

n ( n ) Denominator = 1- ~(-l)i(i -1) · Si - ~(-l)i+1 (i) · Si an+l 

1 

Substitute for i in (1), j = i + l. When i = 1 --+ j = 2; i = n--+ j = n + 1. 

n ~l 

(4.55) 

1 - L (- l )i(i - 1) · Si - an+l L (- l )j (j - 1) · Sj-1 (4.56) 
i=2 j=2 

2 

From (2), take out the term for j = n + 1 to get S~+l =Sn· an+l = a1 · a2 · · · an+I· 

Then, without any loss of generality, substitute j for i . 
n n 

1 - L (-l )i (i - 1) · Si - an+l L(- l )J(j - 1) · Sj-1 
i=2 j=2 

n 

1 - L (- l )i (i - 1) (Si+ Si-I· an+1 ) - (- 1t+1 (n) · S~+l 
i=2 

n 

= 1 - L (-l)i (i - l )s; - (-1t+1(n) · S~+l 
i=2 
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Hence, 

n+l 

Denominator 1 - I)-l)i(i - l)S~ 
i=2 

Therefore, the hamacher sum 

~f!/(-l)i+1 (i) · S~ 

1 - ~ f!21 (-l)i(i - l)S~ 
( 4.58) 

is true for n + l. Hence, it is true for n . □ 

In the next section, we introduce examples of operators for the n-place aggregation 

of weighted arguments. 
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4.3 Using Weights in Fuzzy Aggregation 

4.3.1 Weighted Fuzzy Intersections and Unions 

With the aid of conjunctive and disjunctive type aggregations, Filev and Yager 

[32] talked about a subclass of these aggregations called Weighted Intersections and 

Unions. This term refers to the intersection and union type aggregations when the 

fuzzy sets Ai have weights associated with them. 

Given a group of fuzzy sets, A1, A2, · · · , An of U, let each set be associated with 

a weight Wi E [O, 1], i = 1, · · · , n. Each weight, Wi, corresponds to the importance of 

the fuzzy set Ai, such that the larger Wi is, the more important the respective fuzzy 

set in the aggregation is. In the following we shall define weighted intersections and 

unions as a weighted aggregation, A, resulting in a fuzzy set R 

Before applying A, we must transform the original fuzzy sets Ai using their associ­

ated weights. So, let f be a transformation function used on each set, resulting in 

a modified fuzzy set bi, i.e., 

Then the aggregated operation A is calculated as 

The form of the transformation function f will depend primarily on the operation 

A, whether it is an intersection or union type aggregation. The following is a general 

class of transformations for intersection and unions respectively, both suggested by 

[32]. 

1. Transformation functions for intersection type aggregations 

Let Wi = 1 - Wi . Then 
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2. Transformation functions for union type aggregations 

Examples of such weighted aggregations are the weighted sum and weighted maxi-

mum, 

n 

.A(A1, · · · , An)=~ Wi · ai (4.59) 
i= l 

(4.60) 

respectively. 

4.3.2 OWA 

There exists a family of mean-like operators known as the ordered weighted averaging 

operators. The abbreviation OWA is usually used in the literature to refer to these 

operations [32, 47, 51, 78]. The following definitions introduce the basic concepts 

associated with OWA operators. 

Let the vector ( ai 1 , ai2 , • • • , ain) be a permutation of the vector ( a1, • • · , an) 

in which the elements are ordered, i.e., ai1 ~ ai2 ~ • • • ~ ain· Also, let w = 

(w1, · · · , wn) be a weighting vector, such that 

l. wk E [O, 1] for all k = l, .. · n and 
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D efinit ion 10 (Ordered weighted averaging op erators) . An OWA operator, 

'A', of n arguments is a mapping: 

such that 

A : [0, lt x [0, 1] --+ [0, 1] 

W1ai1 + · · · + Wnain 
n 

L Wk . aik 

k=l 

OWA operators hold the properties of monotonicity, commutativity and idempo­

tency [78]. Notice that an argument ak is not associated with a particular weight 

wk, but gets a weight according to its place in the ordered vector a. The following 

example will help to illustrate this concept. 

Example (4.3.2): Let w = (0.3,0.1,0.2,0.4), and a= (0.6,0.9,0.2,0.7). 

Then for ( ai1 , ai2 , • • • , ain) a permutation of ( a1, · · · , an), the reordered vector is 

( a.1 2 , a24 , a31> a43 ) = (0.9, 0. 7, 0.6, 0.2), 

then 

A(0.6, 0.9, 0.2, 0.7) = 0.3 · (0 .9) + 0.1 · (0.7) + 0.2 · (0.6) + 0.4 · (0.2) = 0.54 

An important aspect of OWA operators, is that they can represent various ag­

gregation operators. The following are examples of OWA special cases. 

l. Let w· = (1,0,0,··· ,0), then Aw•(a.1, · · · ,an)= max(a1, ··· ,an) 

2. Let w.= (0,0,0,··· ,1), then Aw.(a1, · · ·,an) = min(a.1 ,· ·· ,an) 

4. Let w = (0, n~2 , n~2 , · · · , n~2, 0) , then 

Aw(a.1 , · · · , O.n ) = n~2 [z=~=l O.k - (min(a1 , · · · , an)+ max(a.1, · · · , an))] 

(Competition Jury). 
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5. Let Wmed, be defined as follows, 

fo, n odd= { 
W!tl.!. = 1 

2 

for all other k 

{ 

W!! = W !!+l = 0.5 
for n even = 2 2 

Wk = 0 for all other k 

Then the resulting A wmed = (a1, · · · , an) is called the 'Median' aggregation 

[32]. 

In general, for any OWA operator, 'A ' 

4.3.3 Fuzzy Integrals as Aggregation Operators 

In [3, 51], fuzzy aggregation operators were used to define overall loading indices, 

which indicate the degree of overall metal concentration at a given site. This was 

done without any consideration to the level of importance of each metal, with respect 

to its ecological effect. Therefore, a future prospective was suggested in that these 

levels can be used to design an Index of metal importance, by weighting the fuzzy 

metal sets and then applying an appropriate fuzzy aggregation. 

Consider a group of environmental monitoring research scientists who are uncer­

tain about if some metals (or contaminants) are harmful or not to the environment. 

The uncertainty here is related to the lack of distinct boundaries. 

To add to this, the effect of a combination of metals is difficult to assess or 

predict . Therefore, here it is assumed that a perfect level of contamination reached 

by a metal (i.e., harmful or not) would point to full membership in one and only 

one of these sets. However, since monitoring of metal levels can depend on other 
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factors, such as the chemical interaction between two or more metals, considering 

the convex combination (weighted sum aggregation) of metals 

may not always be perfect, and some uncertainty may exist. In order to represent 

this type of uncertainty, we could assign a value to each possible (nested) crisp subset 

of metals to which each metal (element) may belong. This value would indicate the 

degree of evidence or certainty of the metals importance or membership in the set. 

This type of uncertainty is known as a fuzzy measure. 

Fuzzy Measures 

This method differs from the assignment of grades of membership in fuzzy sets. In 

the latter case, a value µA ( u) is assigned to each object (station) u of the universal set 

U, signifying its degree of membership in a particular set A with unsharp boundaries. 

The fuzzy measure, on the other hand, assigns a value to each crisp subset of the 

universal set of elements (metals), signifying the "importance" of each subset of 

metals. 

Definition 11 (Fuzzy Measure).: GivenauniversalsetM= {m1,m2,··· ,mn} 

of elements and a nonempty family P(M) of subsets of M, a set function g, 

g: P(M) --t [O, 1] 

is a mapping from crisp subsets of M into the unit interval, satisfying the following 

properties: 

(1) g(¢) = o, g(M) = 1 (Boundary requirements). 

(2) VA, BE P(M), if A~ B then, g(A) ~ g(B) (Monotonicity). 

Then g is called a fuzzy measure on M. 

Property (1) states that regardless of our evidence of membership (of an element), 

the element in question definitely does not belong to the empty set and definitely 

does belong to the universal set, P(M). T he monotonicity requirement states that , 

109 



when we know with some degree of certainty that the element mi belongs to a set A, 

then our degree of certainty that it belongs to a larger set B containing the former 

set, can be greater or equal, but not smaller [47]. 

Next, we shall give some examples of the function g. As given in Definition 

(11), these measures assume only the property of monotonicity and thus are seen 

as a generalization of Probability measures [27]. This generalization is obtained by 

replacing the additivity by the monotonicity property. The Probabilistic measure, 

>.-fuzzy measure, Dirac measure and U-decomposable measures are particular cases 

of fuzzy measures that are given next. 

• Probabilistic Measure: 

Consider the addit ivity property of probabilities for disjoint sets, i.e., if two 

sets A and B are mutually exclusive 

, then AU B denotes the set "either A or B occurs". Then, a probability 

measure is a fuzzy measure iff 

(1) For all sets A, g(A) E [0, l] and g(M) = 1 

(2) If VA, BE P(M) such that An B = ¢, then 

g(A U B) = g(A) + g(B) (Additivity Property) 

• >.-Fuzzy Measure: 

(4.61) 

Relaxing the additivity property and replacing it with the monotonicity one, 

then for any A, C E P(M), crisp subsets of M, if A ~ C, =,B, such that 

C = A U B and A n B = ¢ [27], then we have 

9>.(A U B) = g(A) + g(B) + >.g(A)g(B) ( 4.62) 

for >. > - 1, g is called a >.-fuzzy measure. For, >. = 0, g is the probabilistic 

measure. 

Another special case is when >. = - 1. In this case, \:/A~ M, \I B ~ M, g is 
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known as a plausibility measure i.e., 

g(A U B) = g(A) + g(B) - g(A n B) 

A plausibility measure satisfies the following axioms: 

(1) For all sets A, g(¢) = O; g(M) = l. 

(2) V A,B ~ M, 

g(A U B) ~ g(A) + g(B) - g(A n B) 

[27]. But for g(A n B) = g(A) • g(B), Equation (4.63) becomes 

g(A U B) = g(A) + g(B) - g(A) · g(B) 

• T-conorm based fuzzy measures: 

For any two disjoint subsets A and B of M, we define 

g(A U B) = U(g(A), g(B)) 

(4.63) 

(4.64) 

(4.65) 

where U is a t-conorm (union type operation), then g is a fuzzy measure (since 

t-conorms are monotonic by definition). These type of measures are called U­

decomposable fuzzy measures. It follows, from the associativity property of 

t-conorms, for any A, a crisp subset of M, that 

g(A) = Um;EA (g{ mi}) ( 4.66) 

where g(A) is uniquely determined by the collection g{mi}. Here, U is the 

n-place extension of the t-conorm in Equation (4.65). To calculate g(A) by 

Equation ( 4.66) it is enough to know the values for the individual elements 

of M , i.e., g{ mi}. These values will be discussed further. An example of a 

t-conorm based measure is: 

g(A) = max (g{mi}) 
mi EA 

Similarly, formulas of fuzzy measures can be derived using t-norm operators 

[32]. 
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The Concept of Fuzzy Integral 

Using the notion of fuzzy measures, Sugeno developed the concept of fuzzy integral 

[62]. The operation of Sugeno fuzzy integral is based on a fuzzy measure, g(Ai), 

which in turn relies on the identification of the fuzzy densities, g{ mi} for all i = 

1 · · · n, (i.e., >.-fuzzy measure). 

Before calculating g>,, t he analyst must determine the values of the measures 

corresponding to individual elements of M, which reflect the importance of each 

element within a research environment. These values, g{ mi},··· , g{ mn} known as 

fuzzy densities, will be denoted as g1 , • • • , gn, respectively, where gi = g{ mi} E [O, l]. 

The i th fuzzy density, gi, is interpreted as the degree of importance of the element 

mi towards the final evaluation. These densities can be (i) subjectively assigned 

by an exper t, or (ii) can be derived from training data, as done in [62, 21] . The 

subjective assignment approach is sometimes the only method to assess the worth 

of non-numeric sources of information (such as intelligence reports) [45] . 

To calculate the >.-fuzzy measures ( 4.62) after determining the fuzzy densities, 

we must first obtain the value of>. by solving 
n 

>- + 1 = II(l + >-gi), >- ¥= o. (4.67) 
i = l 

The required >. is the unique real root greater than - 1. 

Let A= {mi1, · · · ,miL} be a subset of M, such that {i1, · · · ,iL} C {1, • • • ,n}. 

Then a sequence of nested subsets A1 , • · · , Ai, are obtained by subsequently adding 

the elements one at a t ime. Let the fuzzy densities g( { m ii}) and g( { mi2}) (i.e., 

gi1 and gi2
) represent the assigned weights of importance in a fuzzy measure, for 

elements mi1 and mi2, respectively. Also, let g( { mi1} U { mi2}) be the measure 

when the two elements mi1 and mi2 are combined, i.e., g(A2) = g({mi1} U {mi2}). 

Because m i1 and mi2 are interrelated, g( { mi1} U { mi2}) does not necessarily equal 

g{m ii} + g{mi2}. It is however, clear that g({mii} U {mi2}) should be greater or 

equal than g{mii} and g{mi2} , i.e., 
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In this case, g(AUB) can be calculated using the Sugeno A-fuzzy measure (4.62). 

The measures g(A) are then calculated recursively as follows: 

and 

g(Ak) = lk + g(Ak- 1) + Agikg(Ak-1) for 1 < k ~ n 

such that 

g(A) = g(An) 

where A is obtained by solving equation ( 4.67), using the fuzzy densities predeter­

mined by the researcher, gi . 

Now, let H be a fuzzy set on M with grades of membership, H = (µH(m 1), · · • , 

µH(mn)). Here we are looking for one representative value of the membership grades 

to which the concept, H, is satisfied by all elements mi's. We want this aggregate 

value to show how all elements of M agree with the characteristic H, at the same 

time taking into account the importance of each element mi, Vi = 1 · · • n . For 

simplicity, we shall denote µH(mi) as ai, 

Using the notion of fuzzy measures, Sugeno developed the concept of the fuzzy 

integral [21]. This is a nonlinear function that is defined with respect to a fuzzy 

measure, especially the A-fuzzy measure. Therefore, using the concept of fuzzy 

integrals, we can arrive at our respective representative value. 

Definition 12 (Sugeno Fuzzy Integral). : Let M be a finite set, and H be a 

fuzzy subset of M. defined by a membership function, µH: M-----+ [O, l ] 

The fuzzy integral over M, of the function µH with respect to a fuzzy measure g, is 

defined by 

(4.68) 

where Ha is the a-level set (a-cut) of the fuzzy set H , Ha= {m: µH(m) ~ a} 

and t is a t-norm (intersection type operator). 
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Since M is finite, H has at most n different a-level sets, ranging from Ho = M 

to Hheight(H) containing only the elements for which the membership function of H, 

Ml, reaches its maximum. In the original formula, the t-norm was the minimum 

operator [21, 50, 32, 45] 

(4.69) 

The value obtained from (4.69), which compares the objective evidence and the 

subjective importance (the fuzzy densities) in terms of the minimum operator, is 

interpreted as the grade of agreement between real possibilities, µu(m), and the 

expectations, g. In other words, it can be interpreted as the 'highest pessimistic' 

grade of agreement between the evidence and the expectation. 

In Keller (1994) [45], a generalization of the definition of fuzzy integral involved 

replacing the minimum operator with more general aggregating operators, t-norms 

and t-conorms. It was noted that in order to replace the minimum with another 

t-norm or maximum with another t-conorm, the new operators must satisfy the 

distributive law. Examples of such t-norms that are mutually distributive with 

respect to the maximum are the minimum, product, bold union, and the drastic 

product. To calculate the fuzzy integral, given a finite set M and a membership 

function µu, 

1. Rearrange the elements of M such that their corresponding grades of mem-

bershi p are in descending order a · > a· >·· · >a· 'll - 'l2 - - Zn, 

and consequently the set of fuzzy densities, gi Vi= 1, • • • , n. 

2. Let the sequence of nested subsets be denoted by A1 = { mi1 } , A2 = { mi1 , mi2 }, • • • , 

An = M. Thus, each Ak ~ M is the aik -cut of M, where aik > aik+i. 

3. Then, the fuzzy integral (4.68), with respect to a fuzzy measure, g over M, 

becomes 

(4.70) 

where (4.70) is simpler to compute than (4.68). 
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Example 4.3.3 : Using a simple illustration, with n = 4, such that An = M = 

A: 1 (0.6, 0.1, 0.3, 0.9) = max[(min(0.9, g( { u4} )), (min(0.6, g( { u1, u4}) ), 

(min(0.3, g( { u1, u3, u4}) ), (min(0.l, g( { u1, u2, u3, u4}) )] 

Another type of fuzzy integral, which uses the concept of fuzzy measures, is known 

as the Choquet fuzzy integral. The formula for the choquet integral is 

n 

Af 1 
(a1, · · · , an)= ain + 2)aik-l - aik) .g(Ak_i) 

k=2 

(4.71) 

Some information on the application of the Choquet fuzzy integral, as an aggregation 

operator, can be found in [20, 62]. More information on the concept of fuzzy 

measures and fuzzy integrals and their application can be found in [74] . 
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4.4 Fuzzy Modelling of Metal Loading in Liverpool bay 

and Morecambe bay 

Previously we introduced the theory behind constructing a basic fuzzy model for 

information fusion. In this chapter we construct such a model to represent a marine 

environment. The model uses the heavy metal content, sampled from the sediment 

and derives what we call metal loading indices. These indices represent various 

spatial distributions of heavy metal loading in the marine environment. 

4.4.1 An Introduction: Spatial data and multi-variate analysis 

First consider the word 'spatial' , and the connection between a fuzzy environmental 

model, on the one hand, and 'spatial data analysis' used mostly by geographical 

information systems (GIS), on the other hand. Questions that relate to multi­

variate analysis of attributes in a geographical space are classified as being either 

aspatial (i.e., referring to geometrical issues such as area size or shape), or spatial 

(i.e., referring to locational properties such as the relationship between the objects 

with respect to their location: spatial relationship) [39] . Spatial data is a collection 

of points located in a geographical space, and attached to it a set of one or more 

attribute values. In [39], spatial analysis (SA) is defined as a collection of techniques 

for analysing geographical events, whereas [6] defines SA as 'a general ability to 

manipulate spatial data into different forms and extract additional meaning as a 

result'. 

Bailey (1994) [6] stated that it is important to make a distinction between spatial 

summarization of data and spatial analysis of data (be it statistical or mathematical) 

in GIS. The former refers to basic functions for the selective retrieval of spatial data 

within defined areas of interest and the computation, tabulation or mapping of 

various basic summary statistics of that information. The latter is more concerned 

with the investigation of patterns in spatial data, in particular, seeking possible 

relationships between such patterns and other attributes within the study region, 
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and with the modelling of such relationships for the purpose of understanding or 

prediction. Finally, it is widely acknowledged that existing GIS offer a powerful array 

of techniques for spatial summarization which are in many cases, a prerequisite to 

spatial analysis (SA) [6] . 

Three main categories of SA are identified, [39] . These are statistical spatial data 

analysis (SDA), map based analysis and mathematical modelling. Many applications 

concentrate on SDA techniques [6, 39] because of the widespread application of these 

techniques ( e.g., descriptive statistics, graphical representation, mult iple regression) 

compared to 'customized' techniques which were not yet developed to the stage 

where they were widely used. 

Raining (1994) [39] mentioned that GIS require robust operations to summarize 

data for purposes of identifying data properties and pattern detection, which should 

also be relatively easy to carry out and implement. A grouping of these operations 

was given as: 

[A ] Operations that depend on accessing the location and/or attribute values of 

the cases. 

[B ] Operations that depend on identifying spatial relationships between the cases. 

[C ] Operations that involve interaction between type [A] and [BJ operations. 

4.4.2 Detailed objectives and problem-specific difficulties 

Having specified the problem (Chapter 1), the data (Chapter 2), and the underlying 

theory (Chapter 3), we can now detail the specific objectives of the first part of the 

Research Assignment: Designing loading indices. 

The aim is to develop a practical procedure to evaluate overall spatial distri­

bution of metal concentrations and contamination, using a sample of metal 

concentrations from sediments in Liverpool bay and Morecambe bay. Therefore, we 

seek to: 
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• Develop a model that can be applied to a wide range of measurement scales 

of the different metals. 

• Verify that the model is applicable to different marine environments. 

The main difficulty in this study is that we lack prior knowledge about the expected 

pattern of metal distribution in a marine environment. A similar problem was faced 

by the authors of [81]. Thus a priori information would enable us to measure 

the performance of a technique, for modelling metal distribution with respect to 

the concept of contamination. Unfortunately, this is not the case for our research 

problem. The only available information about possible distributions came from 

the domain expert. So, our conclusions will be based mainly on the subjective 

satisfaction of the domain expert with the visual output we produce. 

The use of statistical techniques has been considered in the analysis of heavy 

metals [56] and soil information [12]. On the one hand, such methods were found 

to be at most times user friendly, i.e., well understood by the user [6] . On the other 

hand, results of some of these methods might defy interpretation, as we suggest in 

[51]. 

Based on our collection and analysis of quantitative information, there are two 

aims within our research that we share with that of SA. The first is the careful 

description of environmental data and patterns in a geographical space. The second 

is the exploration of the pattern of events, and the association between them in space 

in order to gain a better understanding of the process that might be responsible for 

the distribution of these events. 

One part of our objective, to find a pattern for the flow of contaminants in 

Liverpool bay, can be viewed as a spatial type analysis. For example, one possible 

question is: are large/small values of attribute A spatially close to large/small values 

of attribute B across the set of locations? Subsequently, we may ask how data 

properties vary across the map or between one part of the map and another. A 

visual representation will then aid us to find if there exist spatial trends in the 

value of the attributes over the region. Therefore, operations involved in the fuzzy 
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modelling of spatial data of a marine environment, can be grouped into the first 

two operations identified for GIS, i.e., operation [AJ and [BJ. In our case, operations 

of type [AJ are: identification of properties of attributes ( descriptive statistics), 

missing case/attribute value estimation, and design of fuzzy membership functions. 

Operations of type [BJ are: aggregation operations for constructing the loading 

indices. A statement made by [60J highlights the importance of using innovative 

and unconventional techniques in SDA: 

'techniques are wanted that are able to hunt out what might be considered to be 

localized pattern in geographically referenced data but without being told either 'where' 

to look or 'what' to look for, or 'when' to look'. This encouraged us to look beyond 

the classical statistical techniques and turn to non-conventional methods. 

Considering the detailed objectives, the difficulties we are facing and the con­

clusions of the survey in Chapter 3, a mathematical analysis of the metal data sets 

using fuzzy set theory was chosen. From the review in 3.2, it was found that the 

fuzzy set approach has not been applied to analyzing metal distribution in a marine 

environment. Referring to the above quote from [60], we believe that the chosen ap­

proach will lead to "discovering" interesting phenomena in data, and consequently 

in the respective geographical region. We expect to find contamination patterns 

(distributions) in Liverpool bay and Morecambe bay, without previous knowledge 

on "where" to look and "what" to look for. Thus the current research can be con­

sidered as a pilot study, in which different concepts of metal spatial distribution 

are constructed and explored. Admittedly, this study is largely ad-hoc, and might 

have a practical significance in the field of environmental monitoring of heavy metal 

distribution. Nevertheless, we believe that the general methodology of data analysis 

in a marine environment will be useful in other environmental studies and other 

geographical regions. 
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4.4.3 A methodology for analysis of heavy metal distributions in a 

marine environment 

In Chapter 2, the finalized data and its summary statistic is given for the two marine 

environments: Liverpool bay and Morecambe bay (in 1988). This data will be used 

to analyze the spatial distribution of overall metal content in 1988. 

Let X = { x1, x2, · · · , Xn} denote a finite set of n heavy metals. In our case, 

X = { Mercury/Hg (x1), Cadmium/Cd (x2), Cromium/Cr (x3), Copper/Cu (x4), 

Nickel/Ni (x5), Lead/Pd (x5), Zinc/Zn (x7) }. 

Let S denote the universal set, S = {s1,s2, ... ,sm} of m sampled stations (or 

objects/points) in a marine environment, i.e., m = 70 in Liverpool bay, and m = 198 

in Morecambe bay. Then let Xi ( s j) be the concentration of the metal Xi measured 

at site SJ· 

The following is a summarized overview of steps which shall be implemented to 

design the fuzzy model. 

l. Construct a fuzzy membership function to measure a specific feature, i.e., 'the 

degree to which a site is considered to be contaminated' . 

( a) Decide upon a function to convert the metal concentrations from a specific 

scale to the unit interval. Then, determine the parameters needed by the 

function to express this feature. The shale values and the acceptable 

maximal concentration of a metal can be used to pinpoint the lower and 

upper boundaries of this feature, the 0 and the 1, respectively. This is 

done for each of the sampled metals. 

(b) Find the parameter values, e.g. , by literature research or expert opinion. 

( c) Apply the function to convert the concentrations of each metal data set 

to a fuzzy set on S . 

2. Aggregate the fuzzy sets for the metals to express 'the possibility that a given 

point or station is contaminated'. 
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(a) Construct or select a suitable set of aggregation operators. Here "suitable" 

should be related to the operator's interpretability in the domain context. 

(b) Apply the operators to the fuzzy sets of metal elements to compute values 

for each point in S. 

3. Use a formal or a subjective method to choose the most useful set of aggregated 

results. 

4.4.4 Determining a Fuzzy Membership Function (FMF) 

The concepts of contamination and pollution 

Substances that occur in nature and exist naturally in the sea are called inputs 

[23]. Examples of inputs are metals in the runoff from metalliferous deposits, or 

particulate material from coastal erosion, e.g. coal. With so many natural inputs 

to the sea, the concentrations of substances vary widely from place to place in the 

marine environment. 

Contamination is caused when an input from human activities increases the 

concentration of a substance in seawater, sediments, or organisms above the natural 

background level (i.e., average shale values) for that area and for the organisms [23]. 

Sometimes the locally elevated concentrations may be less than the concentration 

of the same substances in other areas where there is a large natural input. 

Marine pollution is the introduction by man, directly or indirectly, of substances 

or energy to the marine environment resulting in deleterious effects such as: hazards 

to human health; hindrance of marine activities, including fishing; impairment of 

the quality for the use of sea water, and reduction of amenities [23] . The definition 

of contamination differs from the definition of pollution in that 'contamination' is 

the occurrence of inputs in the sea, while 'pollution' is the damaging effects these 

inputs have on the environment. Although the discovery of high concentrations of a 

substance may provide a warning signal, unless it is the result of human activities and 

is damaging, it does not constitute pollution. Generally, there can be no doubt about 
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the existence of pollution when the damage is severe, but there is often considerable 

difficulty in identifying damage from low levels of contamination caused by diffused, 

or sometimes, unknown inputs. Hence, measuring pollution is not an easy task 

to perform. Therefore, we focus this research on identifying mathematically the 

different levels of contamination. 

Fuzzy membership function (FMF) 

To construct the fuzzy sets we must select a function that scales the metal concentra­

tions (in µg/g of sediment) to the unit interval, to denote the degree of contamination 

by a metal. We decided that the FMF must be an increasing function, with respect 

to the increasing levels of metal concentrations. Since we have seven metals mea­

sured on different scales, the FMF is a context specific function [51], i.e., different 

for each metal. Therefore, for each Xi, a fuzzy set A i over Sis defined corresponding 

to 'contamination with xi' with an asymmetric left variant type function 

µA(Xi(S ·)) = { ~;(sj)-L; 
• J T;-L; 

1 

' if Xi(Sj) < Li 

' if X E [Li , Ti] 

, if xi(sj) > Ti 

(4.72) 

where L i are background metal concentrations that are naturally present in sedi­

ments [70, 29], and Ti are upper guideline limits of metal concentrations from the 

U.K. Department of the Environment (DOE) Interdepartmental Committee for the 

Reclamation of Contaminated Land (ICRCL) list of trigger concentrations for envi­

ronmental metal contaminants [5] as shown in Table 4.1. The upper trigger levels 

are those given by the ICRCL [5], whereas the average shale values were obtained 

from [29, 70]. 

Results 

Using Equation (4.72) on the metal concentration data of Liverpool bay and More­

cambe bay (1988), seven fuzzy sets are computed for each marine environment (see 
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Appendix (CJ) . Some summary statistics of the membership functions for both re­

gions are given in Table 4.2. All major calculations were done with the aid of 

the packages, Octave and Matlab. Using Equation ( 4. 72) metal concentrations are 

mapped to the unit interval [O, 1], such that O and 1 fuzzy values correspond to no 

contamination and full contamination, respectively. Some data anomalies during 

the analysis process were encountered. Negative degrees of membership were re­

assigned the non-membership (µA (sj) = 0). These negative values occur because 

the lower bound of a metal set was less than the corresponding metal lower guide­

line. This is because within defining the concept of 'contamination', a degree of 'O' 

is chosen to denote no contamination, but at the same time to indicate the existence 

of concentration levels equal to or below the benchmarks Li (i.e., average shale val­

ues). In general, mean metal concentrations from Morecambe bay appear to be, on 

average, 27% less than metal concentrations found in Liverpool bay, in 1988 (Table 

4.2). 

Observing the resulting fuzzy sets in Appendix (CJ and Table 4.2, the following 

features with respect to contamination can be seen for each marine environment. 

Liverpool bay (1988) 

• There is no evidence of contamination by the heavy metals chromium and 

nickel. 

• All sampled sites register contamination with lead and zinc, compared to 

some sites are contaminated with mercury, cadmium and copper. 

Morecambe bay (1988) 

• There is no evidence of contamination by the heavy metals mercury, 

cromium and nickel. 

• The majority of sites are contaminated with lead, whereas only a few 

sites register contamination with cadmium, copper and zinc. 
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Table 4.1: Contamination guidelines: Average shale and upper trigger limits on 

units 

Metals General limits 

Lower Li Upper~ 

Hg 0.4 20 

Cd 0.3 15 

Cr 90 1000 

Cu 45 130 

Ni 68 70 

Pb 20 2000 

Zn 95 300 

Table 4.2: Some summary statistics of the membership functions of Liverpool and 

Morecambe bay data 

Metals LB(1988) MB(1988) (1) (2) 

Min. Max. Min. Max. Mean LB Mean MB Mean(2)-(1) 

Hg 0.00 0.09 0.00 0.00 0.01 0.03 -0.01 

Cd 0.00 0.15 0.00 0.06 0.02 0.00 -0.02 

Cr 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Cu 0.00 1.00 0.00 0.53 0.03 0 -0.03 

Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pd 0.03 0.60 0.00 0.12 0.11 0.02 -0.09 

Zn 0.20 1.00 0.00 0.37 0.90 0 -0.90 

124 



4.4.5 Loading indices 

Having designed the fuzzy sets, seven for each marine environment, the next step 

is to evaluate the possibility of a site being contaminated. We use fuzzy general­

ized aggregation operations to define overall loading ( contamination) indices. Some 

information on the definition of environmental indices is introduced in [53]. 

Two groups of aggregating operators are used, ordinary operators and depen­

dent operators. Operations that do not use external information (i.e., weights or 

information other than the fuzzy data sets at hand) we call ordinary operations. 

Operations which involve external parameters are called dependent operations. 

Let U = { u1, u2, · · · , um} be the universal set of elements Uj, Vj = 1, · · · , m. The 

fuzzy aggregated set Ai on U is defined by assigning a degree of membership aij = 

µA; ( Uj) to each Uj E U, with regard to overall contamination. Fifteen generalized 

aggregation operations are summarized in Table 4.3. These include intersection, 

union, mean, parameterized and weighted generalized aggregation operations, of 

which {3}, {4}, {6}, {7} and {8} were derived in Section 4.2. Not all of these 

operators were suited for the evaluation of a marine environment. Operations {14} 

and { 15} were seen not suitable for the following reasons. 

• A downside of the beta-gamma combination rule is that the parameters f3 and 

, are not intuitively clear [66]. Even in the case of aggregating two fuzzy sets, 

it was recommended to obtain , (/3 = 1 - 1 ) through predefined degrees of 

membership for some selected objects u. This requires external information 

from domain experts which was not available for our study. Another factor is, 

if some u from Ai has degree of membership µ A; ( u) = 0, then for any grade of 

compensation, f=. 1 the resulting degree of membership is always µA(u) = 0. 

In this case, the minimum, product and geometric mean generalized operations 

will suffice. 

• The symmetric sum ( 4.8) is characterized as a balanced combination rule 

[66, 67]. This would be useful if we studied balancing environmental dam-
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Table 4.3: Generalized aggregation operations, where Si = 

Operation Generalized operation External 

A (a1,··· ,an) information 

l. Minimum min(a1 , · · · , an) None 

2. Algebraic a1. a2 ..... an None 

product 

3. Hamacher nn~1 a; 
None I::'=1 Tij'=l,#i aj-(n-1) TI~ 1 a; 

product 

4. Bounded max (0, I:~ 1 ai - (n - 1)) None 

difference 

5. Maximum max(a1, · · · , an) None 

6. Algebraic sum I:f=l (-l)i+l Si None 

7. Hamacher sum Et-) (-l)i+ 1 (i)·S; 
1-E:::2(-l)' (i-l)·S; None 

8. Bounded sum min (1, I:f=1 ai) None 

9. Arithmetic mean 1 I:n n i=l ai w=[l .. . l] 
n' 'n 

10. Geometric 
1 

(a1 · a2 · · · · · an)ri None 

mean 

11. Competition n~2[I:~1 ai - {min(a1, · · · ,an)+ None 

jury max(a1, · · · , an)}] 

12. Fuzzy maxk=i[min(aik, g(Ak)] g = [_g1'lg,gCd,gCr , 

integral 9cu, gNi, gPb] 

13. Weighted Et=I a;g(A;) 
I;i=I g(A;) g = [gHg,gCd,gCr, 

average 9cu, gNi, gPb] 

14. Beta-Gamma 

combination rule (Tif=1 ad
3 

· (l - Tif=1(l - ai))'Y /3,,E[0, l] 

[25 , 66] 

15. Symmetric { ( ~) W1. ( ~) W2 . ( _Qa_) W3 ... } w1 +w2~w3 +-·· 
l-a1 l-a2 l-a3 I:~1 Wi = l 

sum [66, 67] 
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age against potential benefits. Also, symmetric sum is useful when there is no 

implicit assumption that certain degrees of membership are 'good' and oth­

ers are 'bad'. Therefore, the symmetric sum is symmetric under reversal of 

definitions, such that one gets the same result by replacing a by 1 - a and 

consequently ai by 1 - ai \:/i = 1, · · · , n. 

None of these features are required in this study. In addition, Equation ( 4.8) 

is not defined if any of the ai is equal to 1. 

Therefore, our selection rested on operations {l} through {13}, from Table 4.3. 

The computation of operators { 1} to { 11} does not require any external infor­

mation, unlike the fuzzy integral {12} and weighted average {13}. Both of these 

generalized aggregating operators rely on defining the fuzzy densities ( or weights) 

9 = [91,92, · · · ,97] where 9i E [O, l], \:/i = 1, · · ·, 7. Here, we are concerned with the 

effect of a combination of metals. In order to represent this type of uncertainty, we 

could assign a value to each possible (nested) crisp subset of metals representing its 

importance. Therefore, using the notion of fuzzy measure we can express a group 

weight of each metal combination and take it into account in the aggregation. But 

to compute both operators {12} and {13}, we must determine the fuzzy densities. 

Let X = { x1, · · · , x7} be the crisp set of metals, such that subscripts i = 1, · • • , 7 

denote: Hg, Cd, Cr, Cu, Ni, Pb, and Zn, respectively. To define the 7 fuzzy densities, 

the "shale values", Li, were used. We assumed that the fuzzy densities should denote 

a metal's importance or weight with respect to contamination. The degree in which 

a metal concentration on average exceeds a benchmark value (i.e., shale values) is 

used to denote this. For Liverpool bay data (1988), the median of each metal set 

was taken to represent the metal concentration over all sites and to be compared 

with the benchmark. Similarly, the median of each metal in Morecambe bay (1988) 

was chosen to compute the fuzzy densities for this region. We chose the median 

to reduce the effect of accidental high concentrations (see Chapter 2). Examples of 

this, are the dumping of copper wires or lead batteries in the bay. Finally, a fuzzy 

density vector, 9 = [9H 9, 9cd, 9cr, 9cu, 9Ni, 9Pb, 9zn] 
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for each region was computed as µ med - µbenchmark · These differences were scaled 

to [0, 1], so t hat the smallest density is 0.05 and the largest is 0.95. The results are 

9lb = [0.8, 0.94, 0.3, 0.86, 0.05, 0.9, 0.95] 

9mb = [0.89, 0.95, 0.2, 0.89, 0.05, 0.95, 0.94]. 

Using the fuzzy densities, 9lb and 9mb, to solve Equation ( 4.67), the root >- = -1 

was calculated. 

4.4.6 Index interpretation 

In this section, we will summarize our interpretation of t he resulting indices based on 

the aggregating operator used. This will be done within the context of overall metal 

contamination. Let the aggregated values of contamination E [O, 1] be linguistically 

interpreted as 'degrees of membership that fall between acceptable (aggregation 

value= 0) and unacceptable ( aggregation value= 1) levels of overall contamination'. 

Minimum { 1} : One of the most standard combination rules used in environmen-

tal applications [12, 13, 11, 26, 41, 63, 66 , 67, 68]. The minimum operator 

can be used to answer queries such as: "Where is there a reasonable possibil­

ity of finding areas in the bay where the sediments are generally contaminated 

throughout?" It gives for each site the smallest levels of contamination among 

the seven metals. T herefore, the minimum operator can be seen to reflect 

a definite contamination by all seven heavy metals in the region. 

Algebraic product {2}, and geometric mean {10} : In some situations, en­

vironmental scientist would only consider the presence of heavy metal contam­

ination, if all combined µA;(u), Vi= 1, · · · , 7 are non-zero. In this case, the 

aggregate membership degrees in a set of unacceptable levels of contamination 

should be subject to the requirement that if any of µA;(u) = 0, the aggregate 

degree of membership is 0. In other words, if any of the metal contamination 

degrees of membership is totally acceptable, the total contamination is also ac­

ceptable. Hence, resulting JMF values of both operators can be said to reflect 

total unacceptable levels of overall metal contamination in the region. 
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Hamacher product {3} The 2-place hamacher product 

a·b 
A(a,b) = b b a+ -a· 

is an intersection type operator defined by (2), such that A(O, b) 

( 4. 73) 

O,Vb E 

(0, 1], but is undefined for A(O, O). Consider then-place structure of this op­

erator, Equation (4.19), and the defining properties of an n-place aggregation 

connective, Definition 7. This operator is not defined for the boundary condi­

tion, A (a1 = 0, · · · , an = 0) for n 2: 2. Therefore, redefining the generalized 

hamacher product is necessary, 

, if :li such that ai = 0, 

for i = 1, · · · , n 

, otherwise 

The resulting aggregate degrees of membership can be interpreted as the 

relative degrees of totally unacceptable levels of contamination in the bay. 

Bounded difference { 4} : Degrees of membership, as a result of the bounded dif­

ference, can be used to interpret excess levels of overall metal contamination, 

above the unacceptable level of contamination ai = l , in the region. 

Maximum {5} : The maximum operator can be used to answer queries such as: 

"Where is there a reasonable possibility of finding areas in the bay where sed­

iments register a contamination by one or more of the seven heavy metals?" 

It gives the largest levels of contamination by one or more metals. This oper­

ator can therefore be used by a scientist as a prevention sign. That is, when 

the contamination by one or more of the seven metals is detected, it can be 

used to prevent additional or an increase in metal contamination in the area. 

Algebraic sum {6} : The resulting sets can be interpreted as the aggregate mem­

bership degree of the difference of unacceptable levels of overall metal contam­

ination from the total sum of metal contaminations, in the bay. 
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Hamacher sum {7} : As part of the hamacher family, redefining the hamacher 

sum in terms of boundary conditions is necessary. Similarly, consider the n­

place structure of this operator, Equation 4.19, and the defining properties of 

an n-place aggregation connective, Definition 7. The 2-place hamacher product 

A(a,b) = a+b-2a·b 
1 - a · b 

(4.74) 

is a union type operator defined by (3), such that A(l, b) = 1, Vb E [O, 1) , 

but undefined for A(l , 1). Therefore, using the property of associativity, the 

generalized hamacher sum is not defined for the boundary condition A(a1 = 

1, · · · , an = 1) for all n 2'. 2. Therefore, based on the property of symmetry 

and that A(l , b) = 1, Vb E [O, 1), we redefine the Hamacher sum as 

, if :li such that ai = 1, for i = 1 · · • n 

, otherwise 

The degrees of aggregate membership as a result of 4.4.6 can be interpreted as 

the relative difference of totally unacceptable levels of overall metal contamin­

ation from their summed contamination, in the sedimentary area of the bay. 

Bounded sum {8} : The fuzzy set as a result of the bounded sum reflects the 

summation of unacceptable levels of overall metal contamination in the bay. 

Arithmetic mean {9} : As a mean type aggregation, it has the ability to com­

pensate the input data between values of acceptable and unacceptable lev­

els of overall contamination. The arithmetic mean fuzzy set interprets the 

average levels of overall metal contamination in the bay. 

Competition jury {11} : Like the arithmetic mean, it has the compensation 

ability. The competition jury considers in its computation only fuzzy degree of 

metal membership that fall between the extremes, i.e., the smallest and largest 

degrees of fuzzy membership. Therefore, the aggregate fuzzy set can be seen 

as the true average of overall metal contamination levels in the bay. 
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Fuzzy integral {12} : Because the fuzzy integral is based on the fusion of external 

information via fuzzy measures, the aggregate fuzzy set can be interpreted as 

follows: the interactive impact between unacceptable levels of combined metal 

contaminations in the bay. 

Weighted average {13} : The fuzzy set as a result of the weighted (fuzzy densi­

ties) average can be viewed as the weighted average of unacceptable overall me­

tal contamination in the bay. 

Probability of species death index (PSD) {14} : Previously, we only consid­

ered loading indices that measure the level of contamination (concentration) 

within the sedimentary surface of a marine environment. But, what about the 

effect of metal contamination on organisms living in the sedimentary area? 

And can we construct a loading index that measures this effect, using only the 

limited information at our disposal? 

If we want to look at the harmful effect of metal contamination on species, 

that exist in the sediment, then we can use the fuzzy sets constructed using 

(4.72) and interpret the degrees of membership as probabilities. Let ai denote 

the probability that metal i will lethally harm an organism present in the sed­

iment surface of Liverpool bay. Then the probability that an organism will 

survive a harmful effect of contamination by the i th metal is (1 - ai )- If we 

assume that the metals have independent effects, the probability that an or­

ganism in Liverpool bay will survive the effect of overall metal contamination, 

is equal to IJf; / (1 - ai) - Then "the probability that species will not survive 

contamination by overall heavy metal loading" is 
n=7 

A(a1, a2, · · · , an) = 1 - IT (1 - ai)- (4.75) 
i=l 

We will call this index (Equation (4.75) ) the "probability of species death" 

(PSD). This index is not included in our analysis because taking the proba­

bilities ai to be µA;(s j) is an unrealistic guess. We have included it here for 

completion. 
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4.4. 7 Spatial distribution of metal contamination: A visual repre­

sentation 

Using MATLAB, all thirteen generalized aggregating operators were computed. In 

some cases, environmental data is sampled or surveyed over a grid of regularly spaced 

points [12] while in other cases this has not been possible [13, 51, 41]. In the case of 

irregularly sampled data, interpolation is necessary. In short, interpolation results 

in surfaces being smoothed, to obtain a regular pattern of data distribution [57, 75]. 

The most natural output of the results of these studies is to represent them visually 

on a 2-D geographical grid. 

Interpolation 

In the data set , X refers to the geographical longitude location of the sampled point, 

Y to the latitude location of the sampled point, and Z is the measured property at 

the (X, Y) location. Because the data is made up of irregularly spaced data points, 

a method to interpolate scattered data is used. In [51], the "linear" interpolation 

method ( default interpolation method in MATLAB when using the command "grid­

data") was used. It could be expected that a change in the method used will have 

an effect on the visual representation of the loading indices. According to [75], an 

ideal interpolation method for the display of spatial data should produce a continu­

ous and smooth surface. We compared the visual outcome of all available methods 

in MATLAB, suitable for interpolating non-collinear or scattered data points ('lin­

ear', 'nearest neighbor', 'cubic' and 'v4' interpolation methods). Best results were 

obtained using the 'MATLAB 4 griddata method' better known as 'v4' and the 

default ' linear' interpolation. Linear interpolation is recommended for faster inter­

polation when X and Y are equally spaced and monotonic. We found that both 

these methods gave the smoothest graphical outcomes. The only difference between 

them is the ability of the 'v4' method to cover all sampled sites in its interpolation 

and also extrapolate to areas outside the sampled region. This factor did not have an 

effect on the visual outcome over the sampled region when using the 'linear' or 'v4' 
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Table 4.4: Upper and lower limits of longitude (X) and latit ude (Y) of Liverpool 

bay (1986-1992) and Morecambe bay (1988) sampled data. For Liverpool bay values 

of X are in minutes west of 3°W of Greenwich and for Y in minutes north of 53°N 

of Greenwich, while Morecambe bay values of X are in degrees west of Greenwich 

and for Y in degrees north of Greenwich. 

Liverpool bay 1986 1987 1988 1989 1990 

X y X y X y X y X y 

Minimum -42 26.9 -42 26.9 -41.9 25.4 -44.4 25.8 -44.4 25.2 

Maximum -13.7 36.4 -13.7 36.4 -12 36.4 -13.27 35.8 -15.1 36.2 

Liverpool bay 1991 1992 Morecambe bay 1988 

X y X y X y 

Minimum -41.9 26.9 -42 25.3 Minimum -3.4 53.9 

Maximum -13.1 35.7 -12.4 35.7 Maximum -2.8 54.2 

methods. Figure 4.3 gives a visual comparison between the four methods applied on 

one loading index. 

Grid resolution 

After selecting the method of interpolation, a decision must be made about the 

appearance of the grid. In other words, select the most suitable number of grid 

nodes, on which the loading indices are interpolated, which determines the grid 

resolution. 

In MATLAB the grid resolution is defined by two parameters a and b, the offsets 

on X and Y, respectively. To determine the values of the upper and lower limits for 

both X and Y axis of the grid, we use the data (1986 to 1992 for Liverpool bay and 

1988 for Morecambe bay) as a guide. Table 4.4 shows the different range of X and Y 

for all sampled years. X and Y values of the grid for Liverpool bay are in minutes, 

while for Morecambe bay the X and Y values are in degrees. This is because we 

proceeded with the raw data provided. Using the summarized information from 
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Figure 4.3: A comparison of interpolation methods using shaded contour plots of a 

selected loading index (Maximum) from Liverpool bay 1988 
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Table 4.4, we selected our limits. Arrays, X = -45: a: -10 and Y = 20: b: 40 for 

Liverpool bay data were used, while X = -3.4 : c : -2.8 and Y = 53.85 : d : 54.25 

were used for Morecambe bay data. The default values for Liverpool bay, a= b = 1, 

were initially used. Then varying a and b we determine the number of grid nodes and 

see the effect it has on the visual output. Similarly, this was also done for parameters 

c and d, the offsets on X and Y, respectively, for Morecambe bay. For Liverpool bay, 

we varied a and b (in minutes) (a= b) assigning them values • • • 0.1, 0.2, • • • 1.0, • • • , 

and observed the visual change in the appearance of the graph. In the end, we 

found that information held by a loading index is preserved for a, b E [0.3, 1.0]. The 

smoothest graphs were found for a = b between 0.3 and 0.5. The same procedure 

was done for Morecambe bay. We found the best grid resolution for values of c and 

d (in degrees) between 0.008 and 0.01. 

In [12], the concept of a -level fuzzy sets was used to answer a query related 

to land evaluation. Based on the maximum aggregation connective, the 0.6-level 

fuzzy set was constructed to show those large parts of the study area in which the 

possibility of sand occurring somewhere in the soil profile exceeds 0.6. Therefore, we 

can use different a-levels, where a E ( 0, 1], to distinguish areas of moderate to high 

overall metal contamination with respect to a certain loading index. Or, to answer 

queries such as: 

"Are there areas in Liverpool bay of suspected unregulated dumping of sewage and 

industrial material?" 

Different a-cuts can be used, a = 0.5, 0.6, 0.7, · · · , 1.0, to observe the gradual change 

of moderate (a= 0.5) to highly (a= 1.0) contaminated areas. Here we will not use 

this method of distinguishing between the spatial distribution of moderate to high 

contamination levels, because this will confine our analysis to specific indices. That 

is, we can only look at those indices that have loading LI(uj) > a, for j = 1, • • • , m. 
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Visual comparison of loading indices 

Colour shaded contour plots were used to visualize the loading indices. The different 

colour shades are retrieved from MATLAB's colormap. A colormap is a matrix ofreal 

numbers between 0 and 1, which define the different colors used for plotting. Color 

scaling is done using the MATLAB command 'caxis' . Caxis controls the mapping of 

the data values to the colormap. By default, MATLAB computes the color limits, 

for the colormap, automatically using the minimum and maximum data values. For 

the preassigned color map in MATLAB, RSV, the value of 1 is colored bright red, 

and the value of 0 is colored in dark blue. For example, if the values of the loading 

index span the interval 0.01 to 0.10, the bright red (1) will be assigned to 0.10 and 

the dark blue (0) will be assigned to 0.01. For another loading index, spanning 

the interval 0.20 to 0.80, bright red will be assigned to 0.80 and dark blue will be 

assigned to 0.20. Thus a direct visual comparison of the strength of contamination 

will not be possible across different plots. To enable a cross-plot comparison, we 

set 'caxis' to the unit interval, i.e., caxis ([0,1]). By this, dark blue will always be 

assigned to 0 and bright red to l. Figures 4.4 - 4.14 show the distribution of metal 

loading indices in Liverpool bay and Morecambe bay, respectively. The following 

conclusions can be drawn: 

Liverpool bay (1988) 

l. The minimum, product, bounded difference and Hamacher product indices 

produced the lowest index values. The bounded difference and Hamacher 

product registered no contamination, i.e., loading index values at all sampled 

data points u E U as a result of both aggregation operators registered no 

contamination (LI(uj) = 0, Vj = 1, · • · , m). 

2. The maximum and the fuzzy integral indices pinpoint isolated regions of high 

overall metal contamination. 

3. The geometric mean, arithmetic mean, competition jury and weighted average 

indices produced similar distribution of index values ranging E [0, 0.4). 
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Figure 4.4: Shaded contour plots of selected aggregation connectives for Liverpool 

bay 1988 
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Arithmetic Mean (LB 1988) Competition Jury (LB 1988) 
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F igure 4.5: Shaded contour plots of selected aggregation connectives for Liverpool 

bay 1988 (continued) 
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Bounded Difference (LB 1988) Bounded Sum (LB 1988) 
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Figure 4.6: Shaded contour plots of selected aggregation connectives for Liverpool 

bay 1988 ( continued) 
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4. The bounded sum, Hamacher sum and algebraic sum gave similar graphical 

distribution of overall metal contamination. These indices assume that the 

largest part of Liverpool bay is contaminated (LI (uj) ~ 0.7) , which is an overly 

pessimistic estimate, not corresponding to reality. The graphical distribut ion 

of the maximum index, one of the commonly used aggregations, pinpoints at 

least two regions of high contamination and so does the fuzzy integral index. 

Morecambe bay (1988) 

l. The minimum, product, geometric mean, bounded difference and Hamacher 

product indices did not register any overall metal contamination. 

2. Only a very small level of overall metal contamination is registered by the 

remaining indices. 

3. All graphical distribution of loading indices seem to support the expectation 

that Morecambe bay is in general a clean and uncontaminated region. 

From the mathematical and graphical observation of the thirteen aggregate mem­

bership functions, we excluded the following indices. 

From Figures 4.4 to 4.14 we see that many loading indices have almost identical 

distribution patterns. Therefore, we can eliminate the indices that require more 

calculations, and do not have a straightforward interpretation. We decided to leave 

out the bounded difference, bounded sum, Hamacher product, Hamacher sum, and 

algebraic sum and keep a set of indices, 

{Limin, Liprod, Ligm,Limax, Liavg,Li cj, LJFJ,LfwA}-

To select a small set of most different indices from the group of remaining indices, 

a mathematical approach is required. Such an approach in fuzzy set theory is by 

using similarity measures [76]. This issue will be discussed in the next chapter. 

4.4.8 Conclusion 

A fuzzy model has been applied for the study of contamination by seven heavy metals 

of Liverpool bay and Morecambe bay. We found that some aggregate membership 
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functions were not suited to model the concept of metal contamination. Within 

the scope of our environmental study, some functions are easier to interpret than 

others. Eight loading indices were subjectively selected, although thirteen in total 

were initially considered. 

We were able to identify regions of high contamination outside the designated 

dumping area (SI), in Liverpool bay. This was done by comparing outcomes of the 

maximum and fuzzy integral generated loading indices. Three regions, in Liverpool 

bay, registered a moderate to high contamination impact as a result of the interaction 

between combined metal loading. All mean type aggregating operators gave in 

average a low overall metal contamination in both regions. Outcomes of overall 

metal distribution in Morecambe bay, supported the hypothesis that the region is 

generally clean. 

In Chapter 5, measures of similarity will be used to find a set of distinct indices 

out of the selected eight which can easily be implemented in this area of study. 

We considered n-place aggregation operators as combination rules, and intro­

duced methods of generalizing associative aggregation operators. A selection 

of thirteen aggregation operators were applied for the evaluation of loading in­

dices of two marine environments, Liverpool bay and Morecambe bay (in 1988). 

Finally, based on graphical observation, eight out of the thirteen indices were 

selected, which were based on the following aggregation operators: Minimum, 

Product, Geometric mean, Maximum, Average, Competition jury, Fuzzy inte­

gral, and Weighted average. 
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Figure 4.7: Shaded contour plots of selected aggregation connectives for Liverpool 

bay 1988 ( continued) 
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Minimum (MB 1988) Product (MB 1988) 
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Figure 4.8: Shaded contour plots of selected aggregation connectives for Morecambe 

bay 1988 
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Geometric Mean (MB 1988) Maximum (MB 1988) 

54.3 54.3 

54.2 54.2 

54.1 54.1 

54 54 

53.9 53.9 

53.8 53.8 

53.7 53.7 

53.6 53.6 

53.5 53.5 

53.4 53.4 
-3.4 - 3.2 - 3 -2.8 -3.4 -3.2 -3 

Figure 4.9: Shaded contour plots of selected aggregation connectives for Morecambe 

bay 1988 ( cont inued) 
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Arithmetic Mean (MB 1988) Competition J ury (MB 1988) 

54.3 54.3 

54.2 54.2 

54.1 54.1 

54 54 

53.9 53.9 

53.8 53.8 

53.7 53.7 

53.6 53.6 

53.5 53.5 

53.4 53.4 
-3.4 -3.2 -3 -2.8 - 3.4 - 3.2 -3 

Figure 4. 10: Shaded contour plots of selected aggregation connectives for Morecambe 

bay 1988 ( continued) 
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Fuzzy Integral (MB 1988) Weighted Average (MB 1988) 
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Figure 4.11: Shaded contom plots of selected aggregation connectives for Morecambe 

bay 1988 ( continued) 
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Bounded Difference (MB 1988) Bounded Sum (MB 1988) 
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Figure 4.12: Shaded contour plots of selected aggregation connectives for Morecambe 

bay 1988 ( continued) 
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Hamacher Product (MB 1988) Hamacher Sum (MB 1988) 
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Figure 4.13: Shaded contour plots of selected aggregation connectives for Morecambe 

bay 1988 ( continued) 
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Algebraic Sum 
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Figure 4.14: Shaded contour plots of selected aggregation connectives for Morecambe 

bay 1988 (continued) 
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Chapter 5 

Similarity Measures 

After formulating metal loading indices of an environmental region, the next 

step is to quantify the degree of similarity between the chosen eight indices: 

minimum, product, geometric mean, maximum, average, competition jury, fuzzy 

integral, and weighted average. Based on the similarity, we suggest selecting a 

subset of loading indices. 

Scalar measures of similarity are fuzzy operations that define weak or strong equal­

ities between two fuzzy sets. 

The interpretation of similarity in everyday language is 'having characteristics in 

common' or 'shape is alike, but size and position may be different'. This is different 

to the definition of similarity based on equality between fuzzy sets. Then in the same 

way that fuzzy sets allow for gradual transition between full membership and non­

membership, a similarity measure captures a gradual transit ion between equality 

and non-equality. 
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5 .1 Definitions and Properties 

A similarity measure S indicates the degree to which two fuzzy sets A and Bon the 

same universal set U are equal or similar, i.e., 

S(A,B) = degree (A= B), where S(A,B) E [O, l]. 

Therefore, for a discrete finite universe U, given that: IUI = m, P(U) denoting the 

class of all fuzzy sets on U and C(U) the class of all crisp sets on U, we define the 

following: 

Definition 13 (Similarity Measure). A function S : P(U) x P(U) -t [O, l] is 

called a similarity measure on P(U), if S satisfies the following general properties 

(27, 47, 80}: 

1. S(A, B) = S(B, A), A, BE P(U). 

2. S(E, E) = 1, EE P(U). 

3. If A ~ B ~ C, VA, B, C E P(U), then S(A, B) ~ S(A, C) and S(B, C) > 

S(A, C). Note that, A~ B ~ C implies that µA(u) :=:; µa(u) :=:; µc(u) V u E 

u. 

In general, the larger the value of S(A, B), the more similar A and B are. 

Related with the concept of similarity measure, the dissimilarity measure of two 

fuzzy sets, used by many researchers, is a measure that describes the difference 

between fuzzy sets. The following is the axiom definition of a dissimilarity measure 

of fuzzy sets . 

Definition 14 (Dissimilarity Measure). A function D: P(U) x P(U) -t [O, l ] 

is called a dissimilarity measure on P(U), if D satisfies the following general prop­

erties: 

1. D(A, B) = D(B, A) , for A , B E P(U) 

2. D(E,E) = 0, VEE P(U) 
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3. If A~ B ~ C, V A,B,C E P(U), then D(A,B) $ D(A,C) and D(B,C) < 

D(A, C). 

Examples of dissimilarity measures are given at the end of this section. 

Many measures of similarity among fuzzy sets have been proposed in the litera­

ture [27, 19, 31, 61, 64]. 

The motivation behind many of these measures is either geometric (i.e., based 

on a geometric distance model) or set-theoretical (i.e., based on the operations of 

union and intersection) [19, 61, 83]. In the geometric based measures, the fuzzy sets 

are represented as points in some coordinate space such that the distance among the 

sets corresponds to the metric distance between the respective points. Sometimes 

the assessment of similarity may be better described as a comparison of features 

rather than as a computation of metric distance between points . In this instance, 

similarity may be better modeled by a function that is not a geometric distance but 

a set-theoretic function. 

In [83], noted it was argued that geometric representations may be appropri­

ate for certain studies, but not for others. For example, consider the set of coun­

tries (objects), i5 = {(a, Belgium), (b, U.K.), (c, Mexico), (d, U.S.A)} and the set 

of features, I:!. = {(A, Geographical proximity), (B, Economy), (C, Political aspect) , 

(D, Culture), (E, Heritage), (F, History)} where features C, D, E and Fare qualita­

tive features . In this case, the assessment of similarity between such objects may be 

better described as a function of their common and distinctive features, i.e., a set 

theoretic approach, than representing the objects as metric distances between the 

respective points. 

In Pappis et al. [61] and Chen et al. [19], measures of similarity of fuzzy sets 

(coming from both approaches) are presented and compared. The authors point out 

that although several properties were common to these measures, there exist notable 

differences between the similarity measures (in terms of properties). As a result of 

this, care should be taken when selecting a measure for a particular application. 

A summary of both studies done in [19, 61] is given in [54] . The following are 

152 



examples of similarity measures based on the two approaches. 

5.1.1 A measure based on the set-theoretic approach (Type [1]) 

l. Cardinality-ratio measure: 

IAnBI 
Sc(A, B) = IA u Bl (5.1) 

Since the measure is undefined for A= B = ¢, we can redefine Equation (5.1) 

as follows 

A=B=¢, 
(5.2) 

otherwise. 

i.e, Sc(A, B) is the ratio of the relative cardinality of the intersection and 

the union, (set-theoretical approach). When 1~8~1 = 0, A and B are called 

separable fuzzy sets. If l~8~J = 1 and A, B are non-empty crisp sets, then 

A= B [27]. 

Another example of a set-theoretic based similarity measures is the symmetrical 

difference measure [27) 51], 

SsD(A, B) = 1 - IIA 6 BIi 

1 _ I:~=l max{ min{µA ( ui)}, µB ( ui), min{µ A ( ui)µs( ui)} 

n 

(5.3) 

where µAt:,B(u) = max{µAnB(u), µAns(u)}, u E U. T he fuzzy set A 6 B accounts 

for the elements that approximately belong to A and not to B, or conversely to B and 

not to A. The symmetrical difference is defined based on a definition of similarity 

adopted by other authors [31, 72, 77]. This measure differs in that it does not always 

hold for property (2) of Definition 13. That is, S(E, E) = maxA,BE'P(U) S(A, B), 

V E E P(U). In our case, these functions are not suitable as similarity measures in 

this type of application. 
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5.1.2 Measures based on the geometric distance model (Type [2]) 

A particular class of distance functions some measures are based on, what is known 

as the Minkowski r-metric. The Minkowski r -metric is a one parameter class of 

distance functions defined as follows [31, 83, 19] . 

Let a= (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two points in an n-dimensional 

space, then 

(5.4) 

Some cases of this metric are, 

• The city-block distance, r = l, 
n 

d1 (a, b) = I: lai - bi l (5.5) 
i= l 

• The Euclidean distance, r = 2, 

(5.6) 

• As r approaches oo, Equation (5 .4) approaches the dominance metric in which 

the distance between points a and b is determined by the difference between 

features along only one dimension - that dimension for which the value lai - bi I 
is greatest. That is, 

d00(a, b) = max lai - bil (5.7) 
i 

Let A and B be two fuzzy sets on P (U). Then the following similarity measures are 

based on t he geometric model, 

1. Difference-sum ratio measure based on the difference and the sum of grades of 

membership [72] 

(5.8) 
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to account for A= B = </>, Equation (5.8) can be redefined as 

dD(A,B)= { l 
l _ I:K-i fµA(u;)-µs(u;) f 

I:i=l (µA (u;)+µs(u;)) 

A=B =</>, 
(5.9) 

otherwise. 

Equation (5.8) can also be written as follows 

dD(A,B) = 1 
_ I::f- 1 max(µA(ui), µs(ui)) - min(µA(ui), µs(ui)) 

I::?=1(µA(ui) + µs(ui)) 

1 _ IA u Bl - IA n Bl (5.10) 
[A[+IBI 

2. Symmetrical difference measures [27, 31] 

(a) 

(b) 

dsm(A, B) = 1 - max lµA(ui) - µs(ui)[ 
u;EU 

= 1 - height(A VB) (5.11) 

(5.12) 

where IIA 'v BIi denotes the relative cardinality of the symmetrical differ­

ence AV B. The fuzzy set AV B denotes the elements that belong more 

to A than to B or conversely. Also, owing to the symmetrical difference, 

A = B if and only if A V B = </>. 

The following similarity measure we refer to as the Vector-product measure. This 

measure was defined by Chen [31] 

A·B 
Sv(A, B) = max(A · A, B · B) ( 5.13) 

such that A-B expresses the inter-product of A and B taken as vectors of membership 

degrees. Or, taking into account that both A and B can be empty sets, A= B = </> 

Sv(A,B) = {l 
---,-,+A-"F-B'-=-= 
max(A·A,B·B) 
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Then this measure can be written as, 

A= B = </>, 
(5.15) 

otherwise. 

Also related to the concept of similarity measures, Wang et al. (1995) presented 

a definition of approximate equality between fuzzy sets A and B, for the three 

measures given by Equations (5.1), (5.11) and (5.8) [61, 73]. Consider the similarity 

measure Sc of Equation (5.1). For two fuzzy sets, A and B are said to be equal 

to "degree a" with respect to Sc, denoted A ~~c B, if and only if Sc(A, B) 2 a, 

where a E [O, 1]. Similarly, definitions of 'equality to degree o:' with respect to the 

measures (5.11) and (5.8) can also be introduced. 

5.1.3 Proximity measures 

In [31], a general definition of another class of similarity measures was given known 

as Proximity measures. Most of the measures introduced up to now, give consid­

eration to the relation between A and B , and have no concern about the relation 

between their complement sets A and B. Proximity Measures are measures that take 

into account the similarity between two fuzzy sets as well as the similarity between 

their complements. 

Definition 15 (Proximity Measure ). A similarity measure S is called a prox­

imity measure, if 

S(A, B) = S(.A, B) 

Examples of such measures already introduced are Equations (5.11) and the 

similarity measure based on the general Minkowski function, i.e., 

(5.16) 

wit h special cases for r = l (5.12) and r = 2. Additional examples are: 
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1. The proximity measure defined by Bhandari and Pal [31]. 

2. Fan and W. Xie (1999) proposed generating proximity measures through or­

dinary similarity measures using the following operations: 

(5.18) 

(5.19) 

[31]. 

5.2 Similarity measures for environmental data 

In fact-based studies such as this one, a clear explanation of the context in which 

the membership functions are defined, must be given. In summary, metal concen­

trations were mapped via a membership function, Equation (4.72), into degrees of 

membership in the unit interval [0, 1], corresponding to "contamination with the 

metal xi". Therefore within each fuzzy set Ai, 

• a degree of membership= 0, would reflect the level of harmless and naturally 

found metal concentrations within the environment, i.e., no contamination. 

• a degree of membership= 1, would correspond to the largest amount of metal 

concentrations considered to pose the greatest levels of harm within environ­

mental guidelines, i.e., full contamination. 

• degrees of membership in the interval (0, 1) , would reflect a gradual transition 

between no contamination and full contamination of metal concentrations. 
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Table 5.1: Six examples of pairs of fuzzy sets and the desired similarity values 

I Example II µ(xi) I µ(x2) I µ(x3) II Similarity 

Tl 1.0 0.2 0.8 Moderate 

1.0 0.1 0.2 0.50 ::; s T1(A, B) ::; 0.55 

T2 0.0 0.1 0.0 Moderately high 

0.0 0.9 0.0 0.65::; ST2 (A,B)::; 0.75 

T3 1.0 0.1 1.0 Moderately high 

1.0 0.9 1.0 0.65::; sT3 (A,B)::; 0.75 

T4 Low 

T5 o.o I 0.1 I 0.3 

0 0.9 0.8 

Low 

T6 0.0 0.0 0.0 Low 

0.1 0.3 0.2 ST6 (A, B) < ST5 (A, B) ::; 0.5 
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In Table 5.1, data example pairs are used to reflect specific practical properties, 

from an environmental point of view (with respect to contamination) 1 . Let X = 

{xi, x2, x3} be the universal set. Six example pairs of fuzzy sets A and Bare shown 

in Table 5.1, rows (1) through (6) denoted Ti, for i = 1, ... , 6. The six example pairs 

are constructed to reflect these practical properties mathematically and account for, 

(i) matching singletons and their complement, e.g., T2 and T3, (ii) separated fuzzy 

sets, e.g., T6, (iii) fuzzy sets A and B for which :Jui EU, such that µA(ui) = µB(ui), 

e.g., Tl and T5, and (iv) fuzzy sets A and B that do not fall in the other types, 

e.g., T4. In addition, the (intuitively) reasonable value of the similarity is expressed 

verbally and an interval is suggested for each example. Therefore, the suggested 

ordering of the intuitive values of a similarity measure are as follows: 

T2 and T3 > Tl ~ T4 ~ T5 > T6. 

Within our framework in defining the concept of 'contamination', a degree of '0' 

is chosen to denote no contamination, but at the same time indicates the existence 

of concentration levels equal to or below the benchmark (i. e., average shale values). 

A degree of ' l ' is chosen to denote the highest level of contamination, but also to 

indicate the existence of very high concentration levels equal to or far above the 

upper guidelines. In other words, in interpreting the concept of contamination, a 

value of O is as important as a fuzzy value of 1. This theoretically desirable property 

can be satisfied if: 

S(A,B) = S(A,B) VA,B E P(U). 

Therefore, we require a similarity measure which is also a proximity measure. Table 

5.2, compares some similarity measures and this desired property. Comparative 

studies of similarity measures and their individual properties can be found in [19, 

54, 61, 72] . Observing Table 5.2 we find that two out of the five measures satisfy the 

desired property. They are measures (5.11) and (5.12). But which one is best suited 

to our data? To make an overall judgment on the performance of (5.11) and (5.12), 
1 The data examples were derived intuitively after some trial and error, and comparison with 

different data structure using various similarity measures 
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Table 5.2: A desirable property of similarity measures 

Similarity measures S(A, B) = S(A, B) 

Type [1] 

Sc(A, B) (5.1) No 

Type [2] 

do(A, B) (5.8) No 

dsm(A, B) (5.11) Yes 

ds02(A, B) (5.12) Yes 

Others 

Sv(A, B) (5.13) No 

we shall include similarity measures from other types, to test the practical properties. 

Table (5.3) shows the values of the four similarity measures, (5.1), (5.13), (5.11), and 

(5.12), on the six example pairs and gives a short comment for each. Observations 

can be made by comparing the intuitive similarity values, from Table (5.1), with the 

calculated similarities, in Table (5.3), of the six data examples for each measure. 

Generally, we can see that the results of the four measures of similarity were not 

satisfactory to a certain extant and some discrepancies in the results exist. Measures 

(5.1) and (5.13) seem to produce results consistent with the desired intervals of 

similarity for data examples (Tl) and (T3) to (T5), i.e., T3 > Tl > T4 > T5. 

On the other hand, they did not comply with the desired intervals for matching 

singletons and separated fuzzy sets in data examples (T2) and (T6), respectively. 

As for the symmetrical difference based measure (5.11), it produced values different 

from the desired ordering of similarity values. The same holds for (5.12). 

Therefore, taking into consideration all four similarity measures and their results 

on the six data examples, in the next section we propose a new measure of similarity 

based on the desirable theoretical and practical properties. 
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Table 5.3: The values of the four similarity measures for the six examples examples 

from Table 5.1 

Similarity measures T l T2 T3 T4 T5 T6 Remarks 

Sc 0.65 0.1 0.72 0.44 0.24 0 Does not comply with 

Cardinality-ratio, the desired intervals; 

(5. 1) poor result on 

T2 and T6 

Sv 0.7 0.1 0.74 0.5 0.23 0 Similar to Sc. 

Vector-product, 

(5 .13) 

Ssm 0.4 0.2 0.2 0.3 0.2 0.7 Do not correspond to 

Symmetrical difference, the desired ordering. 

(5.11) 

Ssm 0.77 0.73 0.73 0.7 0.57 0.8 Similar to SsDl 

Symmetrical difference, 

(5.12) 

s* 0.61 0.67 0.67 0.52 0.46 0.33 Close to the desired 

The proposed measure, intervals and 

(5.20) consistent with the 

order of preference. 
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5.2.1 A new measure of similarity S* 

Proposition 6 . The function S* : P(U) x P(U) ~ [O, 1], based on the symmetrical 

difference ratio is 

1 _ II Av B II 
height(A v' B) 

Equation 6 is a similarity measure on P(U) satisfying the properties: 

1. S(A,B) = S(B,A), A,B E P(U). 

2. S(E, E) = 1, EE P(U) . 

(5.20) 

3. If A ~ B ~ C, \:/A, B, C E P(U), then S(A, B) 2: S(A, C) and S(B, C) 2: 

S(A,C). Note that, A ~ B ~ C implies that µA(u) ~ µB(u) ~ µc(u) 

\:/ u E U. 

4. S(A, B) = S(A, B), A, BE P(U). 

As the denominator is undefined for A = B, we extend (5.20) to be 

{ 

1 
S (AB) - ' 

* ' - UAvBII 
l - height(A'vB)' 

if A= B 

otherwise 

This proposed similarity measure is based on the maximum symmetrical difference. 

The next step is to check the performance of (5.20) on the data examples. In 

Table 5.3, the bottom row shows that values of the proposed measure for the six 

examples are consistent with the desired values. 

In the next section, the proposed similarity measure, designed here for environ­

mental type data, will be applied on data from Liverpool and Morecambe bay. 
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5.3 Application of similarity measure S* to Liverpool 

bay and Morecambe bay data of 1988 

For our study, we wish to reduce the number of loading indices that contain similar 

information of metal distribution in a marine environment. This reduction will be 

performed with the help of the similarity measure S* and statistical analysis using 

hierarchical relational data clustering. The main question we want to address is 

• How many different groups of informative loading indices can we find in the 

set of constructed indices and subsequently, which index do we choose as a 

representative of its group? 

Eight loading indices were calculated for the data in Liverpool bay and More­

cambe bay collected in 1988 (details in Chapter 4). Many operators are applicable, 

although these eight were selected because of their desirable properties. Lh: Fuzzy 

integral and Lls: Weighted average, take into account the importance of each metal 

with respect to contamination. On the other hand from an environmental aspect, 

the common operators; Lli: Minimum, LI2: Product, LI3 : Geometric mean, LI4 : 

Maximum, Lh: Arithmetic mean, and Lh: Competition jury, produce most intu­

itive and interpretable indices of their type. 

For this study, we wish the measure of similarity to help us in reducing the 

number of loading indices by replacing a group of indices containing similar infor­

mation with one single index. Having picked the similarity measure, (5.20), the next 

question is "How many different groups of loading indices shall we consider?" 

Results of implementing the proposed measure S* (5.20) to Liverpool and More­

cambe bay are listed in Tables 5.4 and 5.5, respectively. The similarities for the 

Morecambe bay are higher than those for the Liverpool bay region. This is an in­

dication of the lower contamination in Morecambe bay, which can be seen visually 

as the blue contour shades in Figure 4.8 to 4.14 , and quantitatively in Appendix 

(C). That is, since there are large areas in the bay which are not contaminated, and 

hence all loading indices have low values across these areas, the similarity measure 
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takes high values. 

Hierarchical relational clustering, using single linkage, complete linkage and aver­

age linkage were applied to identify clustering among the eight loading indices. The 

results of classifying the indices into 2, 3, 4 and 5 clusters are listed in Tables 5.6 

and 5. 7 for Liverpool bay and Morecambe bay, respectively. Comparing the results 

in Table 5.6 and Table 5.7, 

• Clustering all eight loading indices into three and four clusters produced the 

same grouping of indices for both regions. 

• Relational clustering was able to identify the group consisting of { LI4 , Lh} , 

and keep the two together for 2, 3, and 4 clusters, for both regions. 

• The loading indices {Lli, Lh, Lh} were identified as a unique group for all 

clusters. 

This shows that the proposed measure gives stable results, and also indicates a 

natural grouping of the indices based mainly on the "degree of optimism" of the 

aggregation. Similarities between the 8 loading indices for both Liverpool bay and 

Morecambe bay can be seen by comparing the shaded contour plots in Figures 4.4-

4.14 for each region separately. The loading indices of the minimum and product 

have similar overall metal spatial distribution. This is true for both Liverpool bay 

and Morecambe bay. For the remaining indices, it is difficult to make a visual 

difference between the clusters of indices. It is impossible to distinguish between the 

indices for Morecambe bay, whereas we can easily group the indices for Liverpool 

bay into 2 groups: {maximum, fuzzy integral} and {minimum, product, geometric 

mean, competition jury}. 

Another objective method for grouping similarity measures between the eight 

loading indices is by using a similarity tree [82]. A similarity tree is similar to a 

dendogram, used to represent the similarity relat ion of a finite number of elements. 

In the tree, each level shall represent an a -cut of the similarity relation between the 

indices. The sets of indices on specific a-levels can be considered as similarity classes 
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Table 5.4: Measures of similarity S*(A, B), of all 8 paired loading indices of Liverpool 

bay. 

(S*) 

LI2 L!J LJ4 Lls Ll5 Lh Lls 

Lfi 1 1 0.27 0.58 0.76 0.27 0.57 

Lh 1 1 0.27 0.58 0.76 0.27 0.57 

L!J 1 0.27 0.58 0.76 0.27 0.57 

Ll4 1 0.31 0.32 0.8 0.32 

Lls 1 0.37 0.28 0.54 

Lh 1 0.29 0.29 

Lh 1 0.3 

Lfs 1 

Table 5.5: Measures of similarity S*(A, B), of all 8 paired loading indices of More-

cambe bay. 

Lh L!J Ll4 Ll s Lh Lh Lls 

Lfi 1 1 0.9 0.91 0.98 0.89 0.91 

LI2 1 1 0.9 0.91 0.98 0.89 0.91 

L!J 1 0.9 0.91 0.98 0.89 0.91 

Ll4 1 0.9 0.9 0.97 0.9 

Lls 1 0.9 0.9 0.91 

Ll5 1 0.9 0.9 

Lh 1 0.9 

Lfs 1 
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Table 5.6: Hierarchical clustering of the 8 loading indices using calculated similarities 

S* (A, B) for Liverpool bay. 

Number Grouping 

of Clusters 

2 (Ll4, Lh ),(LI1, Lh, L!J, Lls, Lh, Lls), 

3 (Ll4, Lh ),(Lli, LI2, L!J, Lh), (LI5 , Lls) 

4 (Ll4,Lf?),(Lfi,Lh,LI3,Lh), (Lls), (Lls) 

5 (LI4, Lh ),(Lli, Lh, L!J), (Lh),(Lls),(Lls) 

Table 5. 7: Hierarchical clustering of the 8 loading indices using calculated similarities 

S* (A, B) for Morecambe bay 

Number Grouping 

of Clusters 

2 (Ll4, Lfs, Lh, Lis) , (Lli, Lh, L!J, Ll5) 

3 (Ll4, Lh ),(Lli, L I2, Lh, Lh),(Lls,, Lis), 

4 (Ll4, Lh ),(Lli, Lh, L!J, Lh),(Lis),(Lis) 

5 (Ll4),(Lh ),(Lli, Lh, L!J, Lh) ,(Lls),(Ll s) 
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Figure 5.1: Similarity tree of the 8 loading indices of Liverpool bay 

{LI1, Lh , .. . ,Lis} s.,"'=o.3 

s.,"'=o.6 

s.,"'=o.s 

{Lis} {Lis} {Lh} s. ,"'=1.0 
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Figure 5.2: Similarity tree of the 8 loading indices of Morecambe bay 

{LI, , Lh, · · · , Lls} s.,a=0.89 

A 
{Lh} s.,a=0.9 

A 
{LI1, Lh, Lfs, Lls, Lh, Lls} {LI4} {Lh} s.,cr=0.91 

{Lh} s. ,a=0.98 

j 
{Lir} S•,0<=1.0 
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of a-level. The first step is to select the values for the a -cuts. Rounding the similarity 

measures in Table 5.4 to the first value after the decimal, we chose a levels at 0.3, 

0.6 , 0.8, and 1.0. As for similarities in Table 5.5, we chose a values equal to 0.89, 

0.9, 0.91, 0.98, and 1.0. The next step is to group the indices from the first 0.3-level, 

{LI1 , Lh, · · · , Llg} , into two classes at the 0.6-level. classes at the second 0.6-level. 

The first class is grouped such that { (Lii, Lij) JS* (Lii, Lij) 2'. 0.6, i, j = 1, • • • 8} and 

the second such that {(Lii, Lij)IS*(LhLij) < 0.6,i,j = 1, .. ·8}. Similarly, this is 

done for a = 0.8 and a= 1.0. This process of grouping is applied on each class of 

indices at each a -level. Figure 5.1 and Figure 5.2 show the similarity trees for the 

eight loading indices for Liverpool bay and Morecambe bay, respectively. Similarity 

trees for both regions of the eight indices give the same result at the a = I-level. 

Therefore, we can summarize our findings for both classification methods as fol­

lows. As a result of cluster analysis, the eight indices were classified into four groups 

for Liverpool bay and Morecambe bay. They are, {minimum, product, geomet­

ric mean, competition jury}, {average}, {maximum, fuzzy integral} , and {weighted 

average}. Using the similarity tree method, the loading indices were classified into 

six groups for both regions: { minimum, product, geometric mean}, { competition 

jury}, {average}, {maximum}, { fuzzy integral} , and { weighted average}. We also 

wish to take into account our subjective visual classification of the indices. Be­

cause it is impossible to visually group the spatial distribution of indices for More­

cambe bay, we will only consider classification of Liverpool bay indices. We found 

that the spatial distribution of the eight indices can be visually classified into 4 

groups: {minimum, product}, {geometric mean, average, competition jury, weighted 

average}, {maximum} and {fuzzy integral} . Comparing the results of these different 

grouping approaches, we found that the loading indices were classified in two out of 

the three approaches into five groups: 

{minimum, product, geometric mean}, {maximum}, {average} ,{fuzzy integral}, 

and { weighted average}. Only the competition jury based index differed in its clas­

sification in all three approaches. 
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Based on this outcome, we choose our index representatives as, the Minimum, 

Maximum, Average, Fuzzy integral and Weighted average. 

5.4 A general methodology for designing and selecting 

loading indices in a marine environment 

As a conclusion of this pilot study, the following generic methodology is suggested 

for constructing and selecting loading indices in marine environment. 

1. Identify the contaminants and collect a data set of measurements of these 

contaminants across the region of interest ( Chapter 1). 

2. Specify the lower and upper limits for each contaminant. 

3. Calculate the membership degrees of the fuzzy sets over the set of sites. 

4. Using fuzzy aggregation operators, calculate a set of loading indices (Chapter 

4) . Many operators are applicable at this stage, not only the init ial thirteen 

discussed, and the eight used in Chapter 4. 

5. Calculate pairwise similarities between the loading indices using a similarity 

measure ( we recommend S* for the reasons explained in the text). 

6. Run relational clustering for several number of clusters to find groups of similar 

indices. (We found out that hierarchical clustering procedures with single 

linkage, average linkage, and complete linkage led to the same grouping.) 

7. Display the results, e.g., by color contour plots, and select one loading index 

from each group. 

8. Use the selected indices to characterize the region of interest. We believe that 

the indices will be grouped according to the "level of optimism" involved in the 

aggregation. It is important to select indices which are interpretable in terms 

of the domain context. For example, the meaning of minimum, maximum and 

average aggregation can be explained to the environmental user. 
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After applying the above methodology to Liverpool bay and Morecambe bay, for 

data collected in 1988, we conclude that the results of implementing the proposed 

measure of similarity (and the grouping approach) can be seen to be in agreement 

with observed visual similarities between the loading indices (Figures 4.4 to 4.14. 

Therefore, we find S* appropriate for the type of environmental data considered 

here. 

5.5 Conclusion 

We used the concept of a similarity measure to identify similarity relationships 

between the eight loading indices: minimum, product, geometric mean, maximum, 

average, competition jury, fuzzy integral, and weighted average. A set of desirable 

theoretical and practical properties were identified for environmental data and a new 

similarity measure was proposed, S*. The similarity measure, S*, was then applied 

to Liverpool bay and Morecambe bay data of 1988 to identify similar information 

of spatial distribution held by the loading indices. The proposed similarity measure 

was found to give stable results and indicate a natural grouping of the indices based 

on the "degree of optimism" of the aggregation. 

Using hierarchical clustering and the idea of a similarity tree (in addition to a 

subjective comparison), we were able to select a set of five indices: minimum, max­

imum, average, fuzzy integral and weighted average. These characterize a marine 

environment from different aspects and are interpretable in a domain context. 

A new similarity measure was proposed based on a set of desirable properties 

for environmental data. Using two classification approaches we were able to 

reduce the indices from eight (based on graphical observation of similarity) to 

five: minimum, maximum, average, fuzzy integral and weighted average. 
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Chapter 6 

Further analysis of a marine 

environment: Liverpool bay 

Based on graphical observation and quantitative analysis of pair-wise similarity 

between thirteen loading indices, a final selection of five indices was made. The 

chosen indices were based on the minimum, maximum, average, fuzzy integral 

and weighted average aggregation operators. Using these indices, we want to 

compare the change in the metal loading distribution of annually sampled metal 

concentrations. 

6.1 Introduction: Annual data 

In Chapter 2, preprocessing of annually sampled metal data sets was carried out. 

We handled missing observations and detected suspected outliers within the data 

sets. This was done for each metal set , from 1986-1992, for Liverpool bay, and for 

Morecambe bay in 1988. So far only data sets sampled in 1988 have been used. 

The annually sampled data sets differ in the number of sampled sites ranging from 

m = 58 in 1986, m = 54 in 1987, m = 70 in 1988, m = 61 in 1989, m = 26 in 

1990, and m = 40 in 1991 and 1992. Also, we found a difference in the geographical 

location of some sampled sites, including those sites that make up the designated 
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dumping site (SI), i.e., SI= { J07, J09, J11 , K08, K09, KlO, K11, K12, 109, 110, 

111, 112}. Because of these differences it is not appropriate to compare the loading 

distributions directly. Even if we wish to look only at the dumping region (SI) and 

ignore the spatial fluctuations of the stations' coordinates, the comparison is not 

straightforward because not all sites in SI are sampled every year. For example, 

only 50% of SI sites are sampled in 1990, compared to 100% of SI sites sampled 

in 1988. We chose for our analysis only those years, 1986-1989, in which m 2: 50 

stations. 

T he chapter is sectioned as follows: analysis of annual contamination, and tem­

poral change in metal concentrations is introduced in Section 6.2. Representative 

indices, based on the minimum, maximum, average, fuzzy integral and weighted 

average aggregation operations, will be used to carry out further analysis on the 

distribution of overall metal contamination for a given sampled year in Liverpool 

bay. In section 6.3 we conclude our findings for this chapter. 

6.2 Temporal changes of regions of high and low con­

tamination 

We discuss and analyze the dynamics of Liverpool bay system using different ap­

proaches. In Chapter 4, Section 7, we suggested the use of a-cuts, that can be 

implemented on certain loading indices, to extract regions that exhibit moderate to 

high levels of metal contamination. Here we consider a process that distinguishes 

between, what we call, clean and highly contaminated regions of Liverpool bay for 

each sampled year. In addition to this, an approach is defined to compare the av­

erage annual change in overall metal contamination. But first, we shall construct a 

priori set of contamination by sewage and industrial waste based on the designated 

area for dumping, SI. 
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6.2.1 Ideal contamination index (IC) 

Observing the annually sampled data sets processed and presented in Chapter 2, 

each site is distinguished by a symbol (e.g., 109) and assumed to have a constant 

geographical location (X =longitude,Y = latitude). However, when comparing the 

latitude and longitude coordinates of a site in one year with its coordinates from 

another year, we found that the coordinates for some sampled sites were not consis­

tent throughout the years. For example, the site G07 has coordinates (-41.6, 29.1) 

in 1986 and 1987, (-41.3, 29.1) in 1988, and (-44.4, 29.1) in 1989. Because of this, 

it was necessary to smooth out the differences in the geographical locations (X, Y) 

from one year to the other. As a result, we averaged the coordinates for each site 

sampled over the seven years. The total number of sites sampled over the years 

1986-1992 and their averaged coordinates are given in Appendix (B ). Sites that fell 

within, or on the boundaries of, the designated dumping area SI are: J07, J09, J11 , 

K08, K09, KlO, K11, K12, 109, 110, 111, 112. To distinguish these sites from other 

non SI sites, we will denote their coordinates as ss1(X, Y) (see Appendix (BJ. 

Next we wish to construct a priori knowledge (or set) reflecting the importance 

of sampled sites in Liverpool bay, with respect to contamination, using the set of av­

eraged sites (Appendix (B)). To do so, an appropriate function is needed that maps 

all m = 94 site coordinates s(x, y) to a single value. This value should represent the 

concept of "the importance of sampling stations to contamination". Since, the high­

est contamination should be concentrated within SI, i.e. , the designated dumping 

region, we can redefine the concept as "the importance of sampling stations to SI". 

Therefore, we require a function that can associate the coordinates of each sampled 

station Sj(X, y) and the stations that fall within SI. To simplify the calculations, we 

averaged all sites that belong to the dumping region SI(x, y) into one site, ssr with 

coordinates (xsr,fisr) = (-35.25,31.72). A distance function d: ~ 2 ---+ ~+ was 

chosen to compute the relationship between the dumping area ssr and all sampled 

sites Sj with coordinates (xj, Yj)- We chose the commonly used Euclidean distance 
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measure, 

(6.1) 

Dis tances for sampled sites located in the dumping area SI, d(ss1, ss1) , ranged from 

0.15 to 3.955. Distance values calculated for all sampled sites Sj, j = 1, · · · 94 (includ­

ing sites within the dumping region SI) ranged between [0. 15, 23.40] . Therefore, on 

average, the closer the calculated distances are to values in the interval [0.15, 3.955], 

the closer a sampled site is to the dumping region. 

The next step is to construct an ideal fuzzy set ( or crisp set) of contamination in 

Liverpool bay, based on data sampled between 1986 and 1992. When we say ideal, 

we make the assumption of an ideal situation where (i) dumping occurs only in the 

designated area and (ii) waste is not influenced by natural phenomena such as tidal 

movement . Therefore, we want to formulate a fuzzy ( or crisp) set of importance for 

sampled sites Sj(x, y) with respect to their distance from ss1(x, y). For this, the 

chosen membership function must have the following features: 

1. For d(ss1, Sj ) ~ 3.955, the fuzzy degree of membership must be 1, 

µFuzzy(d(ss1, Sj)) = 1. 

Otherwise, µFuzzy(d(ss1, Sj)) E [O, 1). 

2. The fuzzy membership function should be a decreasing function with respect 

to the increasing distance d(ss1, Sj) from the dumping region SI. 

3. In an area designated for the disposal of sewage and industrial waste, ideally 

the greatest degree of membership should exist in the dumping site SI, with 

decreasing degrees of membership for sites outside the dumping area. 

Considering these points, we chose the fuzzy membership funct ion as a right asym­

metric function, based on Equation (3.29), to denote the concept of ideally perceived 

contamination in Liverpool bay. The function is used to define how close a sampled 

site Sj is to the designated dumping area SI, d(ss1, Sj ) (an ideal centre) . Hence, our 
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fuzzy membership function is 

, d(ss1, sj) < b 

, d(ss1, sj) 2 b 
(6.2) 

The parameters b and c are given the values 3.955 and 0.026, respectively. The 

parameter b denotes the 'ideal center' chosen as the maximum distance within the 

dumping area. As for the parameter c, the dispersion index, for a chosen b = 3.955 

of the fuzzy set of ideal contamination, a value of c = 0.026 gives a cross-over point 

at distance 10.15, where µ(d(ss1,sj)) = 0.5. The cross-over point was calculated 

as, ~ I:,1=94 d(ss1, Sj)- In addition to this, an ideal crisp membership set can be 

computed by the following formula, 

µ(d(ss1,s;)) = { ~ , d(ss1, Sj) E~ 3.955 

,Otherwise 
(6.3) 

The resulting crisp and fuzzy ideal sets are presented in Figure 6.1. The com­

puted ideal data sets are listed in Appendix (C). Both sets of weights can be used 

as future reference for contamination with respect to the dumping area SI. 

Recall the fuzzy membership function of Equation ( 4. 72), defined by the data set 

of metal concentrations xi(sj), the average shale values, Li, and upper trigger levels, 

I'i - Using annually sampled metal data sets from 1986 to 1989 and Equation (4.72), 

we plotted the spatial distribution of metal contamination in Liverpool bay, shown 

in Figures 6.2-6.6, using the five chosen loading indices. The minimum, average and 

weighted average indices exhibit very low metal loading. Interestingly, the highest 

values of metal loading were not produced by the maximum index but by the fuzzy 

integral index, i.e., when the importance of each heavy metal was taken into account. 

On the other hand, on average, we can say that the sampled region of Liverpool bay 

is not contaminated. This is evident by observing both the average and weighted 

average indices. 
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Figure 6.1: Crisp and fuzzy ideal contamination ind ices of total sampled stations in 

Liverpool bay 
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Figure 6.2: Shaded contour plots of the Minimum aggregation connective for Liver­

pool bay from 1986 to 1989 
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Figure 6,3: Shaded contour plots of the Maximum aggregation connectives for Liv­

erpool bay from 1986 to 1989 
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Figure 6.4: Shaded contour plots of the Average aggregation connective for Liverpool 

bay from 1986 to 1989 
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Figure 6.5: Shaded contour plots of the Fuzzy integral aggregation connective for 

Liverpool bay from 1986 to 1989 
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Figure 6.6: Shaded contour plots of the Weighted average aggregation connective 

for Liverpool bay from 1986 to 1989 
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6.2.2 A single representative index value (SRV) 

In previous sections, we analyzed sampled data from 1986-1989. Here we make use 

of the data sampled in 1990-1992. This data was left out in the previous analysis 

because of the insufficient sample size. We suggest a single value representing each 

loading index on average, thereby disregarding the size of the annual sample sets. 

We call this value the "single representative value" 

1 m 

SRVu(u) = IILiull = - L LI(uj) 
m . 

J=l 

(6.4) 

The result ing value SRVu(u) will represent the distribution of overall metal con­

tamination by the loading index Liu for a given sampled year. 

Equation (6.4) was applied to the five representative loading indices constructed 

for the annually sampled data, 1986 to 1992. Figure 6.2.2 plots the minimum, 

maximum, average, fuzzy integral and weighted average SRV's for 1986-1992. The 

graphs show that the contamination is generally decreasing. We can see that there 

was a definite rise in contamination levels in 1987 (compared to 1986), which then 

fell again in 1988. T he fuzzy integral loading index produced the largest values of 

averaged contamination for all sampled years 1986-1992. Thus, this index can be 

used as a warning sign. 

6.2.3 'Clean' and 'Highly contaminated' regions of Liverpool bay 

In Liverpool bay, the area 'SI' is designated for sewage and industrial waste disposal. 

Based on this, we partition the sampled region into two or more distinct regions of 

supposed low and high contamination. Then we compare these regions with respect 

to contamination levels. We will use metal sets sampled from 1986-1992 to classify 

sites into two regions, called "clean" and "highly contaminated". 

We distinguish between clean and highly contaminated regions, by separating 

the metal concentrations, and consequently the sites, based on the 1st and 3rd data 

quartiles (or 25th and 75th percentile) denoted lQ and 3Q, respectively. Using the 

1st and 3rd quartile of each metal data set, for each year (Table 6.1), we classified 
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Table 6.1: Descriptive statistics of annual metal data (1986-1989), with respect to 

the 25th and 75th percentile 

Metal 

Data 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

lQ 

3Q 

IQ 

3Q 

lQ 

3Q 

lQ 

3Q 

IQ 

3Q 

IQ 

3Q 

IQ 

3Q 

Hg Cd 

0.79 0.108 

1.4 0.29 

0.88 0.67 

1.44 2.02 

0.16 0.36 

0.77 0.75 

0.34 0.24 

0.53 0.65 

0.23 0.12 

0.66 0.32 

0.36 0.03 

0.89 0.08 

0.36 0.03 

0.69 0.06 

Cr Cu 

18.27 45.42 

25.15 63.4 

70.65 62.95 

93.52 82.95 

54.25 43.25 

73.75 71.5 

61.98 45.62 

75.49 93.24 

20.13 15.4 

32.73 27.93 

47.38 13.43 

84.85 23.33 

1.3 13.43 

2.1 23.33 
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Ni Pb Zn 

28 101.25 247 

34.75 158.5 351 

38.02 156.5 295.75 

43.97 216.25 392.25 

34 104.25 195.75 

45 258.75 316.25 

25.12 74.6 181.56 

29.2 143.8 286.14 

18.98 54.5 74.98 

25.38 92.08 174.35 

30.3 47.25 85.55 

38.8 90.28 150.38 

30.3 47.25 85.55 

36.6 90.28 150.38 



a site as belonging to the clean or highly contaminated region. The classification 

procedure was conducted as follows: 

We count in how many of the seven metal data sets, the measurements for this site is 

below the first quartile 1 Q. Let N1 ( s j) denote this number. Also, denote by N3 ( s j) 

the number out of seven of the metal data sets for which the metal concentration 

measured at Sj is larger than the third quartile 3Q. If N 1 (sj) > N3(sj), then Sj 

classed as a site of low contamination. All sites for which N 1(sj) = N3(sj) are 

considered in both groups. 

Table 6.2 shows the total number of sites sampled over the years 1986-1992 and 

their averaged coordinates. Sites shown in Table 6.2 are classified into two types, 

clean and highly contaminated. They are marked with the superscripts, + and *, 

respectively. The remaining sites belong to both types. 

The next step is to apply SRV to the clean sites and highly contaminated sites 

separately for the five chosen loading indices. The SRV over 1986 to 1992, for both 

regions, are plotted together for each loading index. This is shown in Figure 6.2.3. 

It is generally expected that a plot of SRVs of a highly contaminated region would 

have greater SR values than that of a clean region for any given loading index. 

There is a slight decrease in highly contaminated SR values, from clean SR values, 

for the maximum, average and weighted average indices between 1990 to 1992. This 

could be due to the small number of sampled stations in 1990 to 1992. Looking 

at the highly contaminated plots, the highest contamination from 1986-1992 for all 

indices occurred in 1987. This supports the outcome when comparing the spatial 

distribution of loading indices from 1986 to 1989 (Section 6.1) for the detection of 

overall metal contamination. 

6.3 Conclusion 

Coordinates of stations sampled from one year to another did not match for some 

years. By averaging similar stations sampled from one year to the other, we were 

able to construct a model set (fuzzy and crisp) of contamination by sewage and 
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Table 6.2: Total sampled sites from 1986-1989. 

sites (86-89) Symbol X y 

1 FQ6+ -44.1 25.9 

2 F08* -44.1 28.5 

3 FlO* -44.1 31.0 

4 F12* -44.1 33.4 

5 005* -41.9 26.7 

6 G07 -42.2 29.1 

7 G09 -41.7 31.6 

8 Gll* -42.0 34.0 

9 G13* -41.7 36.4 

10 H06* -39.6 27.6 

11 H08 -39.3 30.l 

12 Hl0* -39.7 32.5 

13 H12 -39.9 35.1 

14 J07* -37.4 28.4 

15 Jog+ -37.5 30.8 

16 Jll -37.4 33.4 

17 J13* -37.4 35.8 

18 K06* -35.4 26.9 

19 K07+ -35.5 28.1 

20 Kos+ -35.4 29.3 

21 Kog+ -35.6 30.7 

22 KlQ+ -35.4 31.7 

23 Kll* -35.5 33.0 

24 K12* -35.7 34.3 

25 LQ7+ -33.3 27.8 

+ clean sites 

* highly contaminated sites 
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Table 6.3: Continued: Total sampled sites from 1986-1989 

sites (86-89) Symbol X y 

26 Los+ -33.3 29.1 

27 Log+ -33.4 30.5 

28 LIO+ -33.3 31.7 

29 Lll* -33.2 32.8 

30 L12* -33.2 34 

31 L13* -33.2 35.1 

32 M06+ -31.0 26.4 

33 MOS -31.2 28.9 

34 Mog+ -31.1 30.1 

35 MIO+ -31.0 31.3 

36 Mll -31.2 32.5 

37 M12* -31.3 33.7 

38 M13* -31.2 34.8 

39 N05 -29.0 26.1 

40 N07* -29.2 27.3 

41 Nos+ -29.1 28.6 

42 N09* -29.0 29.9 

43 NIO+ -29.0 31.1 

44 Nll* -28.9 32.3 

45 N12* -28.9 33.5 

46 N13* -28.8 34.5 

47 N14+ -29 35.7 

48 NW24+ -13.3 29.5 

49 P06 -26.7 25.8 

50 P08 -26.9 28.4 

188 



Table 6.4: Continued: Total sampled sites from 1986-1989 

sites (86-89) Symbol X y 

51 po9+ -26.8 29.6 

52 Pio+ -26.7 30.8 

53 Pll -26.6 32.0 

54 Pl2* -26.7 33.2 

55 Pl4* -26.7 35.5 

56 Q07* -24.9 27.0 

57 Q08 -25.2 28.0 

58 Qog+ -24.6 29.4 

59 Ql0* -24.6 30.6 

60 Q11+ -24.5 31.7 

61 Q12+ -24.5 32.9 

62 Ql3* -24.4 34.2 

63 R06* -22.5 25.4 

64 Ros+ -22.6 27.9 

65 Rog+ -22.4 29.1 

66 RlO* -22.0 30.4 

67 R11+ -22.1 31.5 

68 Rl2* -22.1 32.7 

69 Rl3 -22.0 33.8 

70 Rl4* -21.8 35.0 

71 S07 -20.3 26.4 

72 sos+ -20.2 27.7 

73 sog+ -20.l 28.9 

74 S10* -19.9 30.0 

75 s11+ -19.8 31.2 

189 



Table 6.5: Continued: Total sampled sites from 1986-1989 

sites (86-89) Symbol X y 

76 S12 -19.6 32.4 

77 s13+ -19.4 33.5 

78 S14* -19.3 34.7 

79 T06* -18.4 25.2 

80 T08 -17.7 27.4 

81 T09 -17.7 28.6 

82 Tl0 -17.6 29.9 

83 Tll* -17.3 31.0 

84 Tl2 -17.2 32.2 

85 Tl3 -17.0 33.3 

86 Tl4* -16.9 34.4 

87 T15+ -16.5 35.5 

88 uo9+ -15.2 28.4 

89 u11+ -14.8 30.8 

90 Ul5* -14.5 35.5 

91 YY0l -14.2 29.l 

92 YY02+ -12.7 29.5 

93 YY03* -12.0 29.1 

94 YY04 -13.4 28.6 
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Figure 6.2.3. : Single representative value for clean and highly contaminated sampled 
regions from 1986-1992, of the five contamination loading indices. 

19 '\. 



1 

! -+-Clean Fl 

- H. contaminated Fl 

0.9 - .n. --- /""-.... ............ ~ 0.8 
✓ , - -~ 0.7 "' .....__ \ ~ 0.6 - -... \ l o.5 '\. \ E 0.4 

"\.\ ~ 0.3 
~ -iI 0.2 T T 

0.1 
0 
1985 1986 1987 1988 1989 1990 1991 1992 1993 

Sampling years 

-+-Clean WA 

- H. contaminated WA 
0.35 ~ ----- --------'-------~---, 

~ 0.3 -I----_.,,.=--------------- - --! 
"C 
.s 
Ql 0.25 -j-- 71,c.__7"~~ "11====:::::..----- --- - 7 
C) 

~ 0.2 -1----/-----""---,,----->,------- ----j 
~ 

<( 0.15 -!------ ----~ -->,--- ---- -----, 
"C 
Ql 

.:E 0.1 -'------------,------------, 
C) 

~ 0.05 _J_ ___ ________ ~..,.,= ~!:::::::::=iL- ~ 

0 -l-------.------,.----,----.----,----,----f 

1985 1986 1987 1988 1989 1990 1991 1992 1993 

Sampling years 

Figure 6.2.3. : Continued: Single representative value for clean and highly 
contaminated sampled regions from 1986-1992, of the five contamination loading 
indices. 
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industrial waste (including heavy metals) over all sampled stations from 1986 to 

1992. Analysis of Liverpool bay from 1986 through to 1989 was carried out with 

respect to the distribution of overall metal loading, based on adopted lower limits of 

average shale values within the earth's crust [70] and UK upper trigger levels [5] . 

We found the region showed no evidence of contaminated throughout the sampled 

years. An unexpected rise in the level of contamination was seen in 1987, compared 

to 1986, detected by the maximum and fuzzy integral indices. 

In field research it is normal that sampling schedule is not exactly matched from 

one year to another. This is because of the restrictions imposed by financial and 

environmental factors. Using the single representative value approach we were able 

to use all annually sampled data from 1986 to 1992 to compare the rise and fall 

of metal contamination levels over the seven years. This was done for each of the 

five indices. Based on the same approach, analysis was carried on two distinct ar­

eas of Liverpool bay, those that continuously registered very high levels of a metal 

concentration and those that registered very low levels of a metal concentration. A 

comparison of the highly contaminated regions supported the previous outcome that 

Liverpool bay in 1987 contained the highest contamination of all annually sampled 

years. 

Based on 1986 to 1989 sampling of metals, the environmental region of Liverpool 

bay is generally not contaminated. On the other hand, samples of metals collected 

from the same region in 1987 registered an unexpected increase in metal loading 

compared to sampled years from 1986 to 1992. 
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Chapter 7 

Conclusion 

In this final chapter, we summarize the results from the work. Also, we make 

some suggestions for improvements of future data collection procedures. 

7 .1 Summary and research inference 

The large amount of environmental data available demands advanced processing 

methods to extract interpretable and useful information. We were presented with 

data about metal concentrations in sediments sampled in Liverpool bay between 

years 1986 and 1992. The task was to find a way to extract from this data infor­

mation about the degree and the spread of contamination in Liverpool bay. As a 

benchmark of a "clean" environment we were given data about the same metals 

sampled from sediments in Morecambe bay. 

The use of fuzzy set operations was suggested in many environmental applica­

tions ranging from soil fertility assessment, inland evaluation, and evaluation of a 

marine environment. Fuzzy sets and their combination via the standard intersec­

tion, standard union and weighted average operations have been applied in these 

studies. 

The data collected from Liverpool bay contained missing and outlying observa­

tions. For our type of data we found that 'missing' refers to 'undetectable' concen-
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trations of a metal. The absence of metal values were replaced by the minimum level 

of a metal concentration detectable by the instrument used for trace metal analysis. 

In observational data analysis, the need to investigate subjective (e.g., human error, 

physical limitation of field equipment) and statistical evidence, for the existence of 

outliers, may be desired. Two statistical tests, Grubb's test and Chebyshev's in­

equality, were used based on whether the data sets approximated to normality or 

not. Stations which registered outliers were removed from the data sets since the 

reason behind these outlying observations could not be explained by the domain 

expert. 

On a preliminary basis, a study on Liverpool bay and Morecambe bay was con­

ducted on data sampled in 1988. An asymmetric left variant function was chosen 

as an appropriate function to present the concept of contamination with respect to 

increasing levels of metal concentrations. Thus seven fuzzy sets were defined across 

the set of sampling sites. Before the aggregation of these sets, to form an overall 

index of contamination, we introduce the necessary concepts from fuzzy set theory. 

Two methods for designing and generating n-place aggregation operators were sug­

gested and applied to formulate a set of possible indices of contamination, called 

here "loading indices". Both methods relied on the associativity of the 2-place ag­

gregation operator being extended. The minimum, maximum, and algebraic product 

were easily extended. The hamacher product, hamacher sum, bounded difference, 

bounded sum, and algebraic sum required more complicated algebraic manipulation. 

In addition to these eight, the arithmetic mean, competition jury, geometric mean, 

fuzzy integral, and weighted average were also used, three of which use external in­

formation in the form of weights. Finally, a graphical representation was constructed 

for all indices via MATLAB. The overall metal distribution from Morecambe bay 

supported the hypothesis that the region is not contaminated, unlike Liverpool bay 

which showed some signs of contamination. Aggregation operators of the hamacher 

product, hamacher sum, bounded difference, bounded sum, and algebraic sum did 

not produce feasible results, and hence were not used. Thus we use further eight 
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out of the thirteen formulated indices: minimum, product, geometric mean, maxi­

mum, average, competition jury, fuzzy integral, and weighted average. Some of these 

indices produced similar visual results. We decided to quantify the degree of sim­

ilarity between the indices using similarity measures and discard indices showing 

similar information. Because of the variety in similarity measures, it was important 

to specify our requirements from a practical point of view. A similarity measure S* 

based on symmetrical difference was introduced and tested against other similarity 

measures. The measure appeared to be suitable for our task. Finally, we applied S* 

to both Liverpool bay and Morecambe bay, and then used two grouping methods 

hierarchical relational clustering and similarity tree. Using outcomes of the two ap­

proaches and also comparison by eye, the set of recurring groups of loading indices 

were finally chosen. Five distinct groups were found, { minimum, product, geomet­

ric mean}, {maximum}, {average}, {fuzzy integral}, and {weighted average}, from 

which we chose five index representatives: Minimum, Maximum, Average, Fuzzy 

integral and Weighted average. 

A generic methodology for designing and selecting loading indices of contamina­

tion in a marine environment was produced. The availability of annually sampled 

data from Liverpool bay between the years of 1986 until 1992 inclusive, presented us 

with the opportunity to compare the change in metal loading distribution. We use a 

single representative index value SRVu(u), calculated as the relative cardinality of 

the index Liu to represent the distribution of overall metal contamination by that 

index for a given sampled year. Application of SRVu(u) on the five representative 

indices yielded a general view on the annual fluctuation of metal contamination lev­

els over seven years, from 1986 to 1992. Also, we partitioned the whole sampled 

region into two areas, clean and highly contaminated, and showed graphs of the 

temporal changes in these areas. Our analysis lead us to conclude that there is no 

evidence to support that the area of Liverpool bay during the period from 1986-1992 

was not contaminated with heavy metal loading. 
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7.2 Discussion and recommendations 

From an analyst point of view, we found that the collection of data can be improved. 

The following points are some recommendations in regards to future data collection 

(sampling). 

1. The number of points sampled from one year to another should be similar. This 

would help to produce a clearer comparison for the distribution of specified 

environmental feature within a region between sampled years. 

2. To assess contamination based on human inputs of substances from surround­

ing industries in a region, it would be best to coordinate data collection with 

the t ime these inputs are dumped. For instance, data collection can be orga­

nized to take place before and after dumping of inputs. The time of sampling 

should be assigned by a domain expert who has sufficient knowledge with 

regards to environmental changes and when these inputs are dumped. 

3. A change in the distribution of contamination over time (on a monthly ba­

sis, within one year) can be carried out. Consistent sampling at specific time 

intervals should be done and logged accurately. This data can then be used 

in relation with other factors (e.g., tidal movement, dumping of inputs/time, 

·••etc.) to view the gradual change in overall contamination levels over time 

within one year. 

These requirements are logical but not very straightforward to implement because 

• The extent of the sampling programme depends largely on budgetary con­

strains. 

• If the weather is poor during the sampling week then smaller number of samples 

can be taken. Operation in more than "Force 4" wind conditions is extremely 

hazardous. 
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It is essential, however, to estimate in the future analysis the time variability of 

the contamination pattern and its relationship with the dumping activities and the 

seasonal variation of the other inputs. 

7.3 Summarized contributions 

The contributions of the research can be summarized as follows 

• Theory Part: 

l. Extending 2-place aggregation operators to n-place operators using asso­

ciativity. (Chapter 4, Section 2) 

2. Definition of a new measure of similarity suitable for environmental data. 

(Chapter 5, Section 2) 

• Application Part: 

3. Developing a general methodology for designing a collection of loading 

indices ( contamination indices) using fuzzy aggregation for a marine en­

vironment, and for environmental data in general. (Chapter 5, Section 

4) 

4. Analyzing the contamination of Liverpool bay and Morecambe bay re­

gions using the proposed methodology. ( Chapter 2 - Data preprocessing, 

Chapter 4, Section 4, and Chapter 5, Section 3) 

• Impact to ecological sciences: 

l. We were able to bring fuzzy set theory to be used almost directly by the 

domain expert and provide a toolbox and a logical interpretation for the 

methods in it. 

2. Explicating the need for a standardized procedure for data collection and 

a more systematic approach, e.g., monitoring the type and significance of 

disposal activities and the time of taking the samples. 
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1. L.I. Kuncheva and J. Wrench and L.C. Jain and A.S. Al-Zaidan. A fuzzy 

model of heavy metal loadings in Liverpool bay. Environmental Modelling and 

Software, 15(2):161- 167, 2000. 

2. A.S. Al-Zaidan. Constructing a loading index of heavy metals, based on c­

means and fuzzy sets, in Liverpool bay. Master's thesis, University of Wales, 

Bangor, 1998. 

3. A.S. Al-Zaidan and L.I. Kuncheva. Selecting fuzzy connectives to represent 

heavy metal distribution in Liverpool bay. KES2000 Conference proceedings, 

August 2000. 

4. Da Ruan and Janusz Kacprzyk and Mario Fedrizzi (eds). Soft computing 

for risk evaluation and management: Applications in technology, environment 

and finance, volume 76:355-374 of Studies in fuzziness and soft computing. 

Physica-Verlag, 2001. 

Letter of support: 

The following question was asked of the domain expert. What do you think of this 

fuzzy set approach in dealing with and analyzing metal concentrations? 

He answered as follows: 'Where there is multivariate data, I think that it provides 

a number of advantages': 

1. It reduces a large data matrix to an easily understandable form. 

2. The concept of loading index is directly relevant to ecological impact. In 

the case of Liverpool Bay sediments, for example, organisms in the surface 

sediments experience the combined effect of all metals; that is there is likely 

to be an additive effect which the loading index goes some way to summarize. 

3. The frequency distribution of most metals is skewed towards higher values. 

Calculation of loading index tends to normalize the data ( central limit the-
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orem?) this allows standard parametric test to be applied. Again the ap­

proach simplifies the data handling making the output easier to interpret -

especially compared to other methods such as principal component analysis 

and cluster analysis. 

4. In many environmental data sets there are inevitable outlying values; such 

values arise from the fact that one cannot exert complete control over the 

system under investigation ( compare Liverpool Bay with the very controlled 

nature of laboratory experiments). The use of loading indices introduces a 

robustness whereby the pattern generated from the data is not unduly affected 

by outliers. For example, the pattern of the 2000 data is not affected by 

inordinately high values of Cu at some stations. 

5. The application of loading index produces realistic patterns which are easy to 

interpret. Comparison of the patterns for the 1988 and 2000 data by the do­

main expert, for example, showed a consistency with known events (reduction 

of sludge disposal) and correspond with the natural characteristics of Liverpool 

Bay. 
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Appendix A 

A 1: Concentrations of metals in fine fraction 
of the sediments of Liverpool bay, 1986 

A2: Concentrations of metals in fine fraction 
of the sediments of Liverpool bay, 1987 

A3: Concentrations of metals in fine fraction 
of the sediments of Liverpool bay, 1988 

A4: Concentrations of metals in fine fraction 
of the sediments of Liverpool bay, 1989 

AS: Concentrations of metals in fine fraction 
of the sediments of Liverpool bay, 1990 

A6: Concentrations of metals in fine fraction 
of the sediments of Liverpool bay, 1991 

A 7: Concentrations of metals in fine fraction 
of the sediments of Liverpool bay, 1992 

A8: Concentrations of metals in fine fraction 
of the sediments of Morecambe bay, 
1988 



Table A 1: Concentrations of metals in fine fraction of the sediments of Liverpool bay, 
sampled in 1986, expressed in micrograms/gram of sediment. (Sample size, n=61 ) 

stations Longitude Latitude Hg Cd Cr Cu Ni Pb Zn 

G7 -41.6 29.1 0.416 • 20.3 49.5 37 201 371 
G9 -41 .7 31.6 0.374 0.17 15 36.6 34 102 239 
G11 -42 34 0.299 0.16 15.3 29.9 33 76 208 
G13 -41.8 36.4 0.428 • 11.7 28.1 25 62 179 
K8 -35.4 29.3 0.741 0.17 21.1 59 40 176 327 
K9 -35.7 30.7 1.24 0.05 48.3 82.4 41 156 351 
K10 -35.4 31.7 0.93 0.17 22.4 54.9 29.1 109 247 
K11 -35.5 33 0.787 0.21 16.4 40.2 29.9 79 223 
L7 -33.3 27.8 0.865 0.37 26 51.9 37 98 247 
L8 -33.3 29.1 0.991 0.28 25.3 71.6 34 178 370 
L9 -33.4 30.5 1.159 0.2 27.5 53 29 27.5 400 
L10 -33.3 31.7 1.35 0.26 35.1 87.6 41 198 358 
L11 -33.2 32.8 0.741 0.1 3 17.1 45.3 28 85 194 
L1 2 -33.2 34 0.687 0.1 5 14.1 35.2 25 73 196 
L1 3 -33.2 35.1 0.703 0.1 14.1 31 27 68.3 200 
MS -31.2 28.9 0.647 • 19 76.1 49 209 340 
M9 -31.1 30.1 1.1 85 • 21.8 1.31 29 11 05 952 
M10 -31 31.3 0.847 • 21.2 1826 59 219 303 
M11 -31.2 32.5 0.951 0.15 22.2 57.5 29 118 271 
M12 -31.3 33.7 0.837 0.13 15.7 36.1 25 78.8 183 
NS -29.1 28.6 0.881 . 18.9 42.4 27 242 351 
N9 -29 29.9 2.453 • 24.5 76.5 43 588 816 
N10 -29 31.1 1.564 0.28 25.2 81.4 32 177 341 
N11 -29 32.3 1.094 0.21 20.7 60.8 31 274 312 
N12 -28.9 33.5 1.024 0.14 14.5 37.4 24 87.2 126 
NW24 -13.7 30 2.167 0.3 29 65.2 32 157 374 
PS -26.9 28.4 1.487 . 33.7 70.2 45 174 351 
pg -26.8 29.6 • . • • . • • 
P10 -26.8 30.8 0.619 0.22 23.6 67.5 35 112 236 
P11 -26.7 32 1.141 0.1 20.9 46.7 28 111 240 
P12 -26.8 33.2 1.008 0.16 18.1 46.5 32 108 243 
07 -24.9 26.9 0.808 0.49 17.1 58.8 37 122 333 
08 -25.2 28 1.081 0.79 23.7 79.1 34 219 403 
09 -24.6 29.4 1.265 0.48 26.1 68.6 39 291 485 
0 10 -24.6 30.6 1.408 0.3 25.6 56.7 32 139 313 
011 -24.5 31.7 0.82 0.34 22.6 54.2 30 11 9 279 
0 12 -24.5 32.9 1.15 0.37 23.5 54.7 30 123 298 
0 13 -24.5 34.2 0.82 0.28 23.5 47.3 34 101 254 
R8 -22.6 27.9 1.048 • 25.3 75.9 22 401 618 
R9 -22.4 29.1 1.699 . 38.9 70.8 35 262 531 
R10 -22.1 30.4 0.719 0.19 15.5 45.8 25 84.3 218 
R11 -22.1 31.5 1.755 0.28 25 58.8 31.7 134 331 
R12 -22.1 32.7 1.1 93 0.19 23.3 56.4 33 116 299 
R13 -22 33.8 1.6 0.2 23.8 63.6 39 159 342 
R14 -21.8 35 1.046 0.1 22.2 41 33 112 265 
S9 -20.1 28.9 2.16 0.42 31.7 70.2 33 144 367 
S10 -19.9 30 1.79 0.2 29.3 58.9 32 123 308 
S 11 -19.8 31.2 1.446 0.19 24.8 55.7 30 11 6 275 
S12 -19.6 32.4 1.546 0.19 21.9 43.2 28 102 256 
S13 -19.4 33.5 1.1 6 0.22 23.1 49.3 28 111 284 
S14 -19.3 34.7 0.53 0.17 0.05 40.9 27 92.4 241 

A11 



(Continued) Table A 1: Concentrations of metals in fine fraction of the sediments of 
Liverpool bay, sampled in 1986, expressed in micrograms/gram of sediment. 

stations Longitude Latitude Hg Cd Cr Cu Ni Pb 
T9 -17.7 28.6 1.869 0.38 23.7 61 .3 29 153 
T10 -17.6 29.9 0.516 * 39.7 39.7 53 92.6 
T11 -17.3 31 0.924 * 19.2 47.9 29 125 
T12 -17.2 32.2 0.412 0.4 16.8 55.1 25 131 
T13 -17 33.3 1.645 0.31 21.5 52.5 27 115 
T14 -16.9 34.4 1.368 0.28 22.7 55.4 31 106 
T15 -16.5 35.5 0.879 * 18.8 62.8 31 119 
U9 -15.2 28.4 1.709 0.38 23.5 59.8 30 123 
U11 -14.8 30.8 1.321 0.68 15.9 50.1 23 130 
U15 -14.4 35.5 0.823 0.13 23.3 45.2 35 100 

A1 2 

Zn 
319 
304 
321 

389.1 
294 
286 
387 
331 
364 
311 



Table A2.: Concentrations of metals in fine fraction of the sediments of Liverpool bay, 
sampled in 1987, expressed in micrograms/gram of sediment. (Sample size, n=57) 

Stations Longitude Latitude Hg Cd Cr Cu Ni Pb Zn 

G7 -41.6 29.1 0.6 0.5 59.8 58.1 46.4 143.0 255.0 
G9 -41.7 31.6 0.7 1.2 61.7 58.1 44.4 108.0 251.0 
G11 -42 34 0.4 1.1 45.8 43.7 36.5 87.0 222.0 
G13 -41.8 36.4 0.5 0.5 46.9 43.6 36.7 98.0 229.0 
K8 -35.4 29.3 0.5 61.8 49.3 61.4 58.6 295.0 591.0 
K9 -35.7 30.7 1.1 2.0 73.0 58.1 45.7 159.0 283.0 
K10 -35.4 31.7 0.9 2.0 56.2 91.5 41.9 371.0 434.0 
K11 -35.5 33 0.9 0.7 87.5 72.7 40.5 167.0 325.0 
L7 -33.3 27.8 1.0 1.0 62.7 90.2 50.8 217.0 306.0 
L8 -33.3 29.1 0.9 1.3 98.4 81.7 40.0 154.0 304.0 
L9 -33.4 30.5 1.0 2.9 77.2 84.3 49.0 943.0 692.0 
L10 -33.3 31.7 0.9 0.7 88.2 150.3 44.3 209.0 323.0 
L11 -33.2 32.8 1.0 1.1 87.7 64.9 42.9 173.0 326.0 
L1 2 -33.2 34 0.8 0.6 71.4 62.0 42.2 145.0 288.0 
L1 3 -33.2 35.1 0.8 0.9 60.5 54.0 37.3 134.0 265.0 
M8 -31.2 28.9 0.8 1.7 105.3 76.9 42.6 137.0 256.0 
M9 -31.1 30.1 1.4 1.4 41.4 201.0 41.6 1196.0 805.0 
M10 -31 31.3 1.1 0.9 97.4 206.1 53.8 348.0 395.0 
M11 -31.2 32.5 0.8 0.9 80.9 83.0 44.5 180.0 301.0 
M12 -31.3 33.7 0.8 0.4 75.3 64.4 40.6 164.0 302.0 
N8 -29.1 28.6 0.8 2.1 77.4 63.1 36.9 171.0 279.0 
N9 -29 29.9 1.2 43.5 788.8 88.2 49.2 823.0 1103.0 
N10 -29 31 .1 1.3 7.1 11 7.6 130.2 51.7 250.0 394.0 
N1 1 -29 32.3 1.5 3.9 102.6 80.5 43.0 187.0 370.0 
N12 -28.9 33.5 0.9 0.5 72.5 62.2 38.1 160.0 301.0 
NW24 -13.7 30 2.1 1.3 76.4 105.1 42.2 254.0 472.0 
P8 -26.9 28.4 0.9 2.3 80.0 63.3 41.0 180.0 857.0 
P9 -26.8 29.6 1.0 0.7 65.2 73.3 35.2 206.0 317.0 
P10 -26.8 30.8 0.9 2.1 87.0 63.4 42.7 154.0 282.0 
P11 -26.7 32 1.1 19.1 75.4 82.3 38.2 189.0 359.0 
P12 -26.8 33.2 0.9 0.6 73.0 62.9 38.5 146.0 294.0 
07 -24.9 26.9 0.6 2.9 64.3 47.0 40.7 195.0 372.0 
08 -25.2 28 1.2 1.3 71 .1 49.8 38.3 156.0 307.0 
09 -24.6 29.4 1.5 3.4 104.0 87.4 54.9 313.0 548.0 
0 10 -24.6 30.6 1 .1 0.8 66.0 69.4 36.4 146.0 292.0 
011 -24.5 31 .7 1 .1 1.1 75.0 66.1 44.8 178.0 315.0 
0 12 -24.5 32.9 1.4 1.2 96.1 78.0 41 .5 194.0 373.0 
013 -24.5 34.2 1.7 0.7 88.1 72.7 41.7 173.0 357.0 
R8 -22.6 27.9 1.1 3.2 64.1 77.5 54.3 302.0 444.0 
R9 -22.4 29.1 1.3 0.7 72.2 77.7 34.5 223.0 356.0 
R10 -22.1 30.4 1 .1 1.0 62.0 56.2 33.7 139.0 269.0 
R11 -22.1 31 .5 1.8 1.0 119.4 97.0 44.6 230.0 478.0 
R12 -22.1 32.7 1.4 1.1 86.2 76.8 37.6 158.0 351.0 
R13 -22 33.8 1.2 0.5 76.0 71 .6 38.9 168.0 325.0 
R14 -21.8 35 1.1 0.5 70.5 63.8 37.0 159.0 320.0 
S9 -20.1 28.9 1.6 1 .1 92.6 82.8 39.2 190.0 387.0 
S10 -19.9 30 1.4 4.1 81.9 58.6 37.3 186.0 354.0 
S1 1 -19.8 31.2 0.8 0.4 57.8 58.2 36.9 11 5.0 273.0 
S12 -19.6 32.4 1.7 1.0 94.0 71.4 39.2 186.0 380.0 
S13 -19.4 33.5 1.7 0.5 11 1.4 85.1 43.0 222.0 415.0 
T9 -17.7 28.6 1.9 1.0 104.1 91.7 41.0 214.0 453.0 

A2.1 



(Continued) Table A2.: Concentrations of metals in fine fraction of the sediments of 
Liverpool bay, sampled in 1987, expressed in micrograms/gram of sediment. 

Stations Longitude Latitude Hg Cd Cr Cu Ni Pb 
T10 -17.6 29.9 1.2 2.3 73.9 64.0 42.3 198.0 
T11 -17.3 31 2.1 0.6 72.3 80.3 37.4 187.0 
T12 -17.2 32.2 1.3 0.9 93.0 94.7 41 .1 225.0 
T13 -17 33.3 1.7 0.6 94.2 80.2 38.0 193.0 
U9 -15.2 28.4 1.9 0.0 93.7 89.4 39.2 226.0 
U11 -14.8 30.8 1.9 12.2 105.1 78.5 53.1 285.0 

A2.2 

Zn 
357.0 
333.0 
378.0 
396.0 
457.0 
540.0 



Table A3: Concentrations of metals in fine fraction of the sediments of Liverpool bay, 
sampled in 1988, expressed in micrograms/gram of sediment. (Sample size, n=70) 

Station Longitude Latitude Hg Cd Cr Cu Ni Pb 

GO? -41 .3 29.1 0.21 0.35 91 43 37 130 
G09 -41 .6 31.5 0.34 2.44 58 199 54 865 
G11 -41.9 34 0.28 0.29 44 28 43 84 
G13 -41.6 36.4 0.22 0.42 41 25 41 85 
HOS -39.3 30.1 0.32 1.39 50 35 47 123 
H1 0 -39.7 32.5 0.37 0.36 48 44 43 110 
H12 -39.9 35.1 0.33 0.37 38 23 41 70 
JO? -37.4 28.4 0.57 0.72 61 44 51 99 
J09 -37.5 30.8 0.09 1.21 64 54 68 307 
J11 -37.4 33.4 0.52 0.31 51 35 51 91 
J1 3 -37.4 35.8 0.49 0.17 48 31 41 86 
K06 -35.4 26.9 0.15 0.45 50 40 45 177 
KOS -35.5 29.4 0.09 1.37 90 121 60 698 
K09 -35.5 30.8 1.23 0.8 95 83 42 154 
K10 -35.4 31.8 1.41 0.41 64 46 38 107 
K11 -35.5 33.1 0.47 0.43 56 38 34 102 
K12 -35.7 34.3 0.42 0.46 50 32 38 83 
LO? -33.2 27.8 0.18 1.16 67 54 39 148 
LOS -33.3 29.1 0.21 0.48 68 58 25 138 
L09 -33.5 30.5 0.16 1.28 91 157 68 1214 
L10 -33.2 31.7 0.11 0.67 76 168 51 453 
L11 -33 .1 32.8 0.62 0.47 60 44 38 91 
L1 2 -33.1 34 0.54 0.75 57 46 34 104 
L13 -33.1 35.1 0.31 0.17 51 36 33 89 
M06 -31 26.4 0.02 0.73 62 79 68 482 
MOS -31.2 28.9 0.09 0.16 71 59 38 220 
M09 -31.1 30.1 0.27 0.39 77 144 35 547 
M10 -31.1 31.3 0.29 0.69 75 173 48 707 
M11 -31.1 32.5 0.54 0.75 66 60 31 125 
M12 -31.2 33.7 0.45 0.3 52 31 28 90 
NO? -29.2 27.3 0.08 0.53 63 50 39 218 
NOS -29.1 28.6 0.02 0.8 64 168 45 348 
N09 -29.1 29.9 0.16 0.45 66 62 42 224 
N10 -28.9 31.1 0.14 0.14 77 225 58 247 
N11 -28.8 32.4 0.1 0.2 66 56 35 258 
N12 -28.8 33.5 0.64 0.22 57 54 37 105 
N13 -28.8 34.5 0.47 0.28 60 39 35 100 
P06 -26.7 25.8 0.1 0.17 49 46 41 133 
P08 -26.8 28.4 0.05 0.16 44 72 34 334 
P09 -26.7 29.6 0.31 0.51 66 177 31 265 
P10 -26.6 30.8 0.08 2.05 85 137 54 1000 
P1 1 -26.3 32 2.09 2.46 95 125 36 199 
P12 -26.4 33.2 0.7 0.45 66 50 32 116 
007 -24.9 27.1 0.2 0.36 66 47 45 111 
009 -24.6 29.4 0.1 0.45 75 82 30 484 
01 1 -24.4 31.7 0.82 0.66 96 69 47 191 
013 -24.3 34.2 0.72 0.98 64 55 31 165 
R06 -22.5 25.4 0.02 0.7 48 35 33 194 
ROS -22.6 27.9 0.14 0.6 70 175 36 403 
R1 0 -21.9 30.4 0.27 0.37 54 41 27 179 
R11 -22 31.5 1.21 0.72 78 58 45 139 

A31 

Zn 

245 
607 
158 
153 
191 
195 
135 
207 
335 
180 
177 
246 
591 
314 
199 
189 
183 
226 
214 
904 
389 
182 
192 
179 
439 
246 
325 
548 
217 
176 
205 
322 
297 
321 
304 
182 
195 
181 
279 
333 
483 
479 
234 
198 
473 
324 
275 
195 
313 
171 
299 



(Continued) Table A3: Concentrations of metals in fine fraction of the sediments of 
Liverpool bay, sampled in 1988, expressed in micrograms/gram of sediment. 

Stat ion Longitude Latitude Hg Cd Cr Cu Ni Pb 
R12 -22.1 32.7 0.58 0.41 69 50 37 133 
S07 -20.3 26.4 0.02 0.11 54 70 44 553 
S08 -20.2 27.7 0.21 0.32 73 166 37 322 
S09 -20.1 28.9 0.78 0.9 85 60 43 191 
S11 -19.8 31.2 0.27 0.24 71 57 45 259 
S13 -19.4 33.5 1.11 0.45 59 45 34 105 
T08 -17.7 27.4 0.82 0.49 72 45 42 121 
T09 -17.7 28.6 1.45 1.24 85 78 45 158 
T10 -17.5 29.9 0.6 0.69 53 52 33 294 
T1 2 -17.2 32.2 1.17 0.73 55 37 31 90 
T14 -16.9 34.4 0.78 0.79 51 36 30 89 
U09 -1 5.2 28.4 1.36 0.73 73 48 43 110 
U11 -14.8 30.8 1.15 0.77 74 50 39 132 
U15 -14.6 35.5 0.54 0.5 58 69 37 126 
NW24 -12.4 28.6 1.56 0.75 79 50 41 111 
YY01 -14.2 29.1 1.22 0.77 67 44 34 97 
YY02 -1 2.7 29.5 1.7 0.81 84 52 42 127 
YY03 -12 29.1 1.19 0.72 62 37 33 82 
YY04 -13.4 28.6 1.46 0.66 70 50 35 102 

A32 

Zn 
251 
284 
338 
338 
302 
216 
235 
317 
281 
222 
201 
259 
285 
227 
288 
227 
288 
209 
254 



Table A4: Concentrations of metals in fine fraction of the sediments of Liverpool bay, 
sampled in 1989, expressed in micrograms/gram of sediment. (Sample size, n=61 ) 

Station Longitude Latitude Hg Cd Cr Cu Ni Pb Zn 

F 6 -44.11 25.94 0.29 2.64 34.0 113 .1 35.0 518.4 358.5 
F 8 -44.11 28.54 0.39 0.53 51.0 50.8 28.4 139.9 191 .4 
F 10 -44.11 31.00 0.30 0.81 40.9 172.5 25.6 80.6 145.7 
F 12 -44.11 33.40 0.31 0.89 42.1 32.2 26.0 45.7 137.1 
G 5 -41.87 26.70 0.39 0.62 55.0 49.3 25.4 62.4 187.4 
G 7 -44.40 29.10 0.53 0.87 65 .8 47.7 29.0 137.2 213.2 
G 9 -41.63 31.58 0.42 2.99 54.2 45.6 27.4 68.0 156.9 
H 6 -39.63 27.60 0.43 0.96 62.0 61.2 25.2 66.0 162.2 
H 8 -39.30 30.10 0.36 1.01 76.6 98.5 32.2 359.9 304.2 
H 10 -39.70 32.50 0.42 0.67 65.9 50.7 23.6 133.7 200.8 
H 12 -39.90 35.10 0.47 0.95 64.4 195.9 23.7 86.2 182.2 
J 7 -37.40 28.40 0.43 0.65 54.1 26.7 23.6 56.1 147.1 
J 9 -37.50 30.80 0.65 0.68 71.0 47.9 22.5 136.0 195.2 
J 11 -37.40 33.40 0.54 0.85 90.5 90.9 23.0 96.1 221.9 
J 13 -37.40 35.80 0.49 2.28 67.9 54.1 19.8 59.9 172.4 
K 6 -35.40 26.90 0.51 0.36 69.8 34.9 20.6 56.5 162.3 
K 7 -35.50 28.10 0.58 0.72 91.6 53.9 22.5 11 0.3 309.2 
K 8 -35.43 29.33 0.68 0.39 72.3 91.3 14.1 624.3 435.0 
K 9 -35.63 30.70 0.64 0.47 16.0 75.0 38.8 223.0 383.0 
K 10 -35.38 31.70 0.47 0.50 90.7 63.3 28.2 74.6 186.7 
K 11 -35.48 33.00 0.47 0.26 69.1 119.3 30.0 75.9 199.2 
K 12 -35.70 34.30 0.45 0.20 53.0 23.3 27.5 60.2 151.3 
L 7 -33.33 27.68 0.33 0.54 60.3 80.0 32.5 160.7 343.9 
L 8 -33.30 29.10 0.47 0.41 88.9 89.2 33 .8 335.8 342.6 
L 10 -33.28 31.70 0.39 0.14 75.6 91.4 30.5 156.3 211 .7 
L 11 -33.18 32.78 0.32 0.27 69.2 167.8 26.2 75.5 190.4 
L 12 -33.17 34.00 0.48 0.12 73.3 40.3 28.4 66.5 179.6 
L 13 -33.18 35.08 0.50 0.13 82.4 59.4 26.9 62.2 215.6 
M 8 -31.20 28.90 0.29 0.71 98.4 171 .0 33.3 64.5 317.2 
M 9 -31.10 30.10 0.34 0.28 88.2 93.2 29.5 104.3 266.7 
M 10 -31.08 31.30 0.62 0.30 69.3 138.1 30.3 86.2 286.1 
M 11 -31.20 32.50 0.63 0.18 60.7 33.2 25.2 143.8 165.6 
M 12 -31.27 33.70 0.47 0.12 66.3 37.0 28.5 520.2 181.6 
N 5 -28.99 26.10 0.27 0.25 70.8 72.6 30.1 122.7 247.8 
N 8 -29.10 28.60 0.43 0.31 0.2 73.4 44.8 122.3 320.2 
N 9 -29.03 29.90 0.32 0.24 70.5 87.2 27.5 76.0 233.8 
N 10 -28.97 31.10 0.46 0.17 75.5 40.6 24.5 69.7 193.0 
N 11 -28.93 32.33 0.43 0.16 77.3 33.4 26.4 297.8 157.2 
N 12 -28.87 33.50 0.45 0.11 74.0 32.7 24.1 94.2 170.9 
NW 24 -1 3 .27 29.53 0.52 0.10 85.9 192.8 27.6 108.1 329.7 
p 6 -26.70 25.80 0.84 0.31 98.4 45.9 27.2 84.5 285.1 
p 8 -26.87 28.40 0.33 0.23 57.7 73.0 26.2 86.5 259.7 
p 9 -26.75 29.60 0.35 0.28 69.3 51.9 29.0 144.9 240.9 
P 10 -26.73 30.80 0.43 0.25 67.0 98.9 30.9 513.4 531.1 
P 11 -26.57 32.00 0.44 0.30 66.7 42.7 26.5 11 4.2 232.2 
P 12 -26.67 33.20 0.69 0.28 69.3 48.8 25.6 95.9 231.0 
Q 7 -24.90 26.98 0.29 0.27 64.8 121.1 24.5 67.8 210.9 
Q 9 -24.55 29.40 0.30 1.08 74.5 52.0 24.1 70.8 172.9 
Q 11 -24.45 31.68 0.10 0.33 72.4 98.6 26.6 276.1 409.8 
Q 13 -24.38 34.23 0.45 0.27 75.1 39.9 26.1 86.9 175.4 
R 8 -22.60 27.90 1.19 0.39 71.8 36.7 20.0 76.7 163.8 

A41 



(Continued) Table A4: Concentrations of metals in fine fraction of the sediments of 
Liverpool bay, sampled in 1989, expressed in micrograms/gram of sediment. 

Station Longitude Latitude Hg Cd Cr Cu Ni Pb 
s 7 -20.30 26.40 0.36 0.26 63.2 264.0 32.7 291 .0 
s 9 -20.10 28.90 0.23 0.40 45.8 60.1 25.1 118.6 
s 11 -19.80 31 .20 0.75 0.15 80.1 107.7 31 .2 120.7 
S 13 -19.40 33.50 0.54 0.51 63.2 49.8 26.8 120.1 
T 8 -17.70 27.40 0.65 0.16 66.5 56.5 26.0 89.9 
T 9 -17.70 28.60 0.28 0.29 67.0 44.0 -25.6 130.9 
T 10 -17.58 29.90 0.52 0.09 85.4 88.2 29.2 169.2 
T 12 -17.1 8 32.23 0.18 0.31 61.9 126.7 25.9 176.7 
u 9 -15.18 28.38 0.97 0.16 85.2 47.1 28.1 90.2 
U 11 -14.80 30.80 0.70 0.30 72.4 31.8 21 .1 72.4 

A42 

Zn 
519.2 
193.9 
306.1 
242.1 
241 .1 
256.4 
436.3 
283.0 
284.5 
218.1 



Table AS: Concentrations of metals in fine fraction of the sediments of Liverpool bay, 
sampled in 1990, expressed in micrograms/gram of sediment. (Sample size, n=26) 

Stations Longitude Latitude Hg CD Cr Cu Ni Pb Zn 

G7 -44.4 29.1 0.27 0.06 8.00 16.70 18.70 55.10 74.20 
G9 -41 .5 31.6 0.24 0.08 22.40 16.00 19.80 53.10 62.70 
G11 -41.7 34 0.18 0.11 20.00 11.20 19.40 46.30 52.90 
G13 -41 .7 36.2 0.27 0.06 24.60 14.80 21.20 48.00 83.30 
K9 -35.6 30.6 0.02 0.27 9.10 5.50 7.30 93.10 53.80 
K10 -35.3 31.6 0.67 0.18 44.70 28.10 23.30 70.40 112.00 
K11 -35.4 32.9 0.45 0.25 47.60 27.40 25.00 73.90 128.10 
L7 -33.5 27.3 0.31 0.14 23.50 19.40 24.00 92.50 54.70 
L9 -33.5 30.5 0.07 0.09 14.70 15.70 14.90 56.60 77.30 
L10 -33.3 31 .7 0.82 0.16 28.00 36.60 21.50 82.30 89.20 
L11 -33.2 32.7 0.10 0.07 23.80 18.30 17.50 52.60 114.30 
L13 -33.2 35 0.03 0.05 17.50 13.20 16.40 46.50 98.50 
M9 -31.1 30.1 0.55 0.24 22.50 60.70 34.20 244.10 219.80 
M10 -31 .2 31.3 0.90 0.19 30.60 67.40 26.60 413.10 204.80 
M11 -31.3 32.5 0.22 0.13 24.00 23.60 22.80 75.00 107.30 
07 -24.9 27 0.06 0.19 16.60 13.40 15.60 40.00 70.90 
09 -24.4 29.4 0.72 0.60 76.20 41.40 30.60 94.90 209.60 
011 -24.4 31 .6 0.45 0.20 23.80 19.10 22.70 54.30 97.40 
012 -24.5 32.9 0.44 0.33 32.50 26.00 22.60 75.50 154.00 
013 -24.2 34.3 0.41 0.42 58.00 32.70 29.30 76.60 178.80 
T6 -18.4 25.2 1.08 0.16 16.40 13.10 19.20 90.80 72.10 
T8 -17.7 27.4 0.63 0.43 32.80 22.90 27.80 124.60 176.00 
T10 -17.6 29.9 0.52 0.33 20.50 21 .70 25.50 117.80 169.40 
T12 17.1 32.3 0.75 0.58 33.60 26.80 20.30 63.20 179.40 
T14 -16.9 34.4 0.37 0.26 20.70 15.30 18.90 61.50 123.30 
U9 -15.1 28.3 1.01 0.52 76.60 38.50 29.00 90.40 231.10 

A51 



Table A6: Concentrations of metals in fine fraction of the sediments of Liverpool bay, 
sampled in 1991, expressed in micrograms/gram of sediment. (Sample size, n=40) 

Stations Longitude Latitude Hg Cd Cr Cu Ni Pb Zn 

NW24 -1 3.05 29.28 0.83 0.19 56.8 24.3 32.2 58.0 149.7 
U9 -1 5.17 28.38 0.83 0.22 81.4 20.8 45.0 71.0 152.4 
T9 -17.67 28.60 0.81 0.12 59.7 18.5 40.0 57.5 137.5 
S9 -20.20 28.91 0.32 0.07 48.9 14.2 36.0 53.8 95.1 
R1 0 -22.06 31.92 0.30 0.08 45.9 11.4 33.3 37.1 46.9 
R1 2 -22.11 32.70 1.13 0.03 49.5 22.4 26.4 78.1 114.3 
R1 4 -21.60 35.07 0.53 0.05 38.5 16.8 31.1 56.2 85.8 
0 9 -24.58 29.40 0.19 0.03 78.7 23.7 25.0 264.4 165.7 
0 11 -24.48 31.68 1.07 0.1 6 76.4 33.0 30.3 97.2 193.9 
0 13 -24.40 34.24 0.64 0.04 44.2 16.0 28.5 50.5 72.9 
P1 0 -26.73 30.80 1.79 0.06 51.6 19.6 33.7 56.1 84.8 
P1 2 -26.70 33.20 0.67 0.06 46.9 17.9 33.6 51.8 98.5 
P1 4 -26.70 35.50 0.25 0.06 53.2 12.6 25.6 40.6 56.6 
NS -29.10 28.60 0.37 0.03 50.3 19.0 37.2 44.9 78.6 
N9 -29.02 29.90 0.45 0.03 40.9 31.4 35.4 415.6 276.7 
N1 0 -28.97 31.10 0.84 0.04 47.4 17.4 31.0 88.5 77.9 
N11 -28.95 32.32 0.68 0.05 56.4 73.5 36.4 100.1 165.3 
N12 -28.90 33.53 0.64 0.04 61.7 19.3 30.3 58.9 103.6 
N13 -28.95 34.55 0.55 0.05 43.7 13.6 31.3 47.4 80.2 
N14 -29.00 35.70 0.20 0.09 45.9 22.3 38.7 120.8 262.4 
MS -31.17 28.90 0.40 0.06 47.0 19.8 30.3 95.6 105.3 
M9 -31.11 30.10 4.06 0.10 64.7 54.4 46.4 341.0 368.9 
M10 -31.06 31.30 0.71 0.20 62.2 65.7 46.3 213.4 222.1 
M11 -31.20 32.50 0.44 0.06 73.0 17.4 34.8 53.4 93.6 
M12 -31.27 33.70 0.56 0.05 72.2 15.4 30.7 55.5 95.3 
M13 -31.20 34.80 0.40 0.03 49.0 11 .8 28.0 46.8 80.8 
LS -33.30 29.11 0.80 0.05 50.8 21.0 33.3 83.9 129.7 
L9 -33.45 30.50 0.46 0.06 52.9 23.2 30.4 193.2 197.4 
L1 0 -33.25 31.70 0.41 0.04 66.3 51.7 35.1 310.8 138.1 
L11 -33.16 32.76 0.68 0.05 88.9 18.2 33.6 67.5 141.3 
L1 2 -33.15 33.97 0.49 0.07 65.3 15.5 35.2 61.7 106.3 
L1 3 -33.16 35.06 0.42 0.01 44.7 12.3 26.4 45.0 80.8 
KS -35.43 29.30 0.20 0.02 55.3 10.2 29.8 71.5 107.7 
K9 -35.62 30.68 0.42 0.01 129.0 443.6 78.0 63.1 142.0 
K10 -35.36 31.68 0.27 0.03 55.6 12.9 30.4 44.7 96.6 
K11 -35.48 33.00 0.38 0.02 52.5 12.6 26.5 46.6 91.9 
K12 -35.65 34.30 0.41 0.01 47.3 10.6 38.1 44.1 95.8 
J7 -37.50 26.85 0.33 0.02 11 0.9 2397.6 74.2 69.2 624.6 
G9 -41.66 31.56 0.27 0.03 47.4 11.7 35.7 42.4 82.4 
G11 -41.92 34.02 0.24 0.01 50.8 9.7 45.0 45.2 93.9 

A61 



Table A7: Concentrations of metals in fine fraction of the sediments of Liverpool bay, 
sampled in 1992, expressed in micrograms/gram of sediment. (Sample size, n=40) 

Stations Longitude Latitude Hg Cd Cr Cu Ni Pb 
NW24 28.50 -1 2.40 0.83 0.19 5.2 24.3 32.2 58 
U09 28.40 -15.15 0.83 0.22 8.1 20.8 45 71 
T09 28.60 -17.60 0.81 0.12 2.4 18.5 40 57.5 
S09 28.92 -20.50 0.32 0.07 1.4 14.2 36 53.8 
R10 36.50 -22.12 0.3 0.08 1.2 11 .4 33.3 37.1 
R12 32.70 -22.16 1.13 0.03 2.5 22.4 26.4 78.1 
R1 4 35.20 -21.20 0.53 0.05 1.3 16.8 31.1 56.2 
009 29.40 -24.70 0.19 0.03 1.1 23.7 25 264.4 
0 11 31.70 -24.60 1.07 0.16 2.8 33 30.3 97.2 
0 13 34.30 -24.50 0.64 0.04 1.8 16 28.5 50.5 
P10 30.80 -26.70 1.79 0.06 1 19.6 33.7 56.1 
P1 2 33.20 -26.80 0.67 0.06 1.7 17.9 33.6 51.8 
P14 35.50 -26.70 0.25 0.06 1.6 12.6 25.6 40.6 
NOS 28.60 -29.10 0.37 0.03 1.4 19 37.2 44.9 
N09 29.90 -29.00 0.45 0.03 1.7 31.4 35.4 415.6 
N10 31.1 0 -29.00 0.84 0.04 1.1 17.4 31 88.5 
N11 32.30 -29.00 0.68 0.05 1.9 73.5 36.4 100.1 
N1 2 33.60 -29.00 0.64 0.04 1.9 19.3 30.3 58.9 
N13 34.60 -29.10 0.55 0.05 0.8 13.6 31.3 47.4 
N1 4 35.70 -29.00 0.2 0.09 1 22.3 38.7 120.8 
M08 28.90 -31.10 0.4 0.06 0.9 19.8 30.3 95.6 
M09 30.10 -31.15 4.06 0.1 2.6 54.4 46.4 341 
M10 31.30 -31.00 0.71 0.2 1.6 65.8 46.3 213.4 
M11 32.50 -31.20 0.44 0.06 2 17.4 34.8 53.4 
M1 2 33.70 -31.26 0.56 0.05 1.9 15.4 30.7 55.5 
M13 34.80 -31.20 0.4 0.03 1.4 11 .8 28 46.8 
LOS 29.13 -33.30 0.8 0.05 1.5 21 33.3 83.9 
L09 30.50 -33.44 0.46 0.06 1.5 23.2 30.4 193.2 
L1 0 31.70 -33.17 0.41 0.04 3.1 51.7 35.1 310.8 
L11 32.70 -33.10 0.68 0.05 1.8 18.2 33.6 67.5 
L1 2 33.87 -33.10 0.49 0.07 2.7 15.5 35.2 61.7 
L1 3 35.00 -33.10 0.42 0.01 1.5 12.3 26.4 45 
K08 29.20 -35.40 0.2 0.02 1.3 10.2 29.8 71.5 
K09 30.60 -35.60 0.42 0.01 5.5 443.6 78 63.1 
K10 31.60 -35.30 0.27 0.03 0.5 12.9 30.4 44.7 
K11 33.00 -35.50 0.38 0.02 1.3 12.6 26.5 46.6 
K12 34.30 -35.60 0.41 0.01 1.4 10.6 38.1 44.1 
JO? 25.30 -37.60 0.33 0.02 17.4 2000 74.2 69.2 
G09 31.50 -41.80 0.27 0.03 1.2 11 .7 35.7 42.4 
G11 34.10 -42.00 0.24 0.01 1.6 9.7 45 45.2 
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Zn 
149.7 
152.4 
137.5 
95.1 
46.9 
11 4.3 
85.8 

165.7 
193.9 
72.9 
84.8 
98.5 
56.6 
78.6 

276.7 
77.9 
165.3 
103.6 
80.2 

262.4 
105.3 
368.9 
222.1 
93.6 
95.3 
80.8 

129.7 
197.4 
138.1 
141 .3 
106.3 
80.8 
107.7 
142 
96.6 
91.9 
95.8 
624.6 
82.4 
93.9 



Table AB: Concentrations of metals in fine fraction of the sediments of Morecambe bay, 
sampled in 1988, expressed in micrograms/gram of sediment. (Sample size, n=201) 

Stations Longitude Latitude Hg Cd Cr Cu Ni Pb Zn 

2 ·3.03 53.96 0 0.094 18.8 41.7 8.19 203 50.3 
4 -3.07 53.96 0.209 0.234 41.9 19.7 13.5 62.8 104 
12 -3.26 53.96 0.12 0.638 29.2 54.4 12.7 56.6 95.8 
14 -3.30 53.96 0.168 0.238 40.3 35.3 11 .3 68 103 
15 ·3.32 53.96 0.045 0.112 19 4.96 7.31 29 38 
16 -3.35 53.96 0.173 0.243 49.9 15.1 11 .3 62.8 89.6 
17 ·3.36 53.96 0.16 0.144 31.3 13.6 10.6 47.5 80 
18 ·3.37 53.97 0.143 0.184 35.2 12.8 11 .2 50.3 83.1 
19 ·3.35 53.97 0.1 54 0.142 46.8 13.3 15.1 58.8 96.9 
20 -3.35 53.99 0.143 0.138 31.1 26.2 13 91.4 90 
24 ·3.39 54.07 0.216 0.24 47 19 13.2 77 117 
33 ·3.18 54.06 0.088 5.69 45.2 140 22.6 224 168 
38 -3.30 54.03 0.111 0.191 36.9 14.9 11 .3 66.5 100 
39 -3 .33 54.03 0.289 0.257 53.2 23 18.7 85.2 148 
46 -3 .34 54.09 0.261 1 51.8 40.6 19.1 75.7 144 
48 ·3.37 54.08 0.213 0.195 49.5 18.6 16.6 80.8 134 
53 -3.05 54.17 0.071 0.156 21.2 7.04 8.3 37.6 48.7 
54 -3.05 54.16 0.041 0.12 18.8 45.8 8.62 115 75.5 
55 -3.07 54.14 0.038 0.106 12.4 29.2 7.07 39.4 49.9 
57 ·3.09 54.13 0.034 0.104 14 8.36 6.7 37.9 39.7 
59 ·3.07 54.12 0.023 0.074 22.9 23.9 7.89 267 71.2 
61 -3.06 54.10 0.035 0.065 21.1 22.6 8.53 86.5 55.9 
63 ·3.08 54.11 0.113 0.268 31.2 16.5 11 .9 50.3 75.6 
65 -3.09 54.1 1 0.079 0.163 25.9 34.6 9.38 60.1 71.6 
67 ·3 .10 54.10 0.043 0.09 25.5 14 7.01 82.8 70.9 
69 ·3.12 54.11 0.036 0.11 15.9 14.8 7.66 29.1 47.2 
71 ·3.13 54.10 0.012 0.082 15.9 6.08 5.62 2.16 47.7 
73 ·3.12 54.09 0.033 0.108 18.3 9.91 8.27 67.6 61 
77 ·3.15 54.09 0.025 0.099 17.2 30.6 6.85 34.1 43.9 
79 -3.13 54.07 0.035 0.215 13.7 24.6 7.79 67.3 55.8 
81 -3.09 54.09 0.01 0.085 11 .4 3.94 6.12 50.9 28.2 
83 ·3.07 54.07 0.086 0.131 20.7 23.5 10.1 89.1 79.3 
91 -3.05 54.09 0.049 0.103 18 15.9 10.4 43.8 54.6 
93 -3 .07 54.10 0.051 0.076 15.9 22.2 10.1 93.5 65.9 
95 ·3.06 54.13 0.076 0.11 2 24.8 14.8 8.8 63.3 59.2 
97 -3.04 54.15 0.043 0.074 11 .8 8 6.83 26.2 35.8 
99 -3.03 54.14 0.041 0.062 23.2 24.9 8.56 0.195 54.2 
101 -3.03 54.12 0.055 0.196 27.2 25.7 13.8 123 88.4 
103 -3.00 54.15 0.046 0.076 13.2 4.95 6.57 20.3 34.6 
105 -3 .03 54.17 0.032 0.099 19.4 12.6 8.95 38.3 54.9 
107 -3.05 54.19 0.017 0.45 10.1 4.24 5.33 39.1 25.3 
109 -3 .04 54.20 0.194 0.594 51.2 50.7 18.6 120 170 
111 ·2.93 54.15 0.184 0.261 42.5 30 11 .7 67.2 11 4 
11 9 -2.90 54.1 4 0.031 0.08 23.7 8.12 7.18 41 .2 51.5 
123 -2.96 54.14 0.029 0.085 13.2 6.14 5.67 24.9 29.9 
125 -3.01 54.13 0.058 0.331 22.5 14.7 8.72 43.9 61.5 
127 -3 .01 54.13 0.099 0.218 31.1 21.4 10.5 58.2 94.3 
129 -2.97 54.13 0.094 0.1 69 28.8 16.8 10.2 60.9 85.4 
139 -2.98 54.11 0.038 0.126 19.8 14.5 7.31 42 48.7 
141 -3.01 54.11 0.076 0.246 19.4 17.1 8.77 47.5 71.4 
143 ·3 .00 54.09 0.052 0.135 29.5 21.8 8.7 124 81.6 
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(Continued) Table AB: Concentrations of metals in fine fraction of the sediments of 
Morecambe bay, sampled in 1988, expressed in micrograms/gram of sediment. 
(Sample size, n=201) 

Stations Longitude Latitude Hg Cd Cr Cu Ni Pb 
145 -2.97 54.09 0.048 0.218 24.1 17.8 9.12 78.6 
151 -2.99 54.08 0.042 0.04 25.5 11 .5 9.47 50 
153 -2 .98 54.08 0.032 0.083 21.9 45.5 9.51 157 
155 -2.95 54.10 0.035 0.101 18.8 9.58 8.84 43.7 
157 -2.98 54.10 0.058 0.126 37.8 11.3 9.36 52.3 
164 -2.85 54.18 0.018 0.125 13.2 4.04 5.88 25.3 
166 -2.88 54.18 0.036 0.102 11 .2 6.78 5.75 21.6 
168 -2.91 54.18 0.026 0.077 21.8 2.19 5.33 17.9 
170 -2.91 54.19 0.021 0.044 13.3 3.15 5.8 21 .7 
172 -2.85 54.20 0.027 0.123 10.9 5.46 5.79 26.9 
175 -2.84 54.08 0.157 0.11 8 29.3 15 12.9 55.4 
177 -2.83 54.10 0.082 0.1 68 26.5 11 .2 9.15 47.8 
179 -2.81 54.11 0.072 0.145 14.9 8.45 7.59 31 .2 
181 -2.85 54.12 0.018 0.036 20.4 11 .9 7.08 74.3 
183 -2.83 54.13 0.026 0.093 13.8 3.96 6.45 29.2 
185 -2.99 54.14 0.046 0.074 17.4 6.64 6.81 33.2 
189 -2.86 54.10 0.038 0.036 12.7 5.61 6.53 36.9 
201 -2.94 54.00 0.054 0.095 17.7 90.3 6.65 56.7 
203 -2.90 54.00 0.04 0.137 18.3 17 6.54 67.1 
205 -2.90 53.99 0.063 0.03 14.7 10.3 5.56 36.3 
207 -2.94 53.98 0.089 0.191 21 .2 51 7.37 60.6 
209 -2.97 53.99 0.036 0.218 22.6 36 7.12 103 
21 1 -2.93 53.98 0.05 0.08 16.1 14.3 5.86 54.3 
213 -2.91 53.97 0.091 0.101 23.2 12.8 7.97 48.2 
215 -2.92 53.96 0.143 0.069 39 56.9 13.1 95.5 
217 -2.96 53.96 0.111 0.044 24 31 9.04 91 .9 
219 -3.00 53.96 0.11 8 0.213 27.4 42.7 9.6 126 
221 -2.98 53.95 0.262 0.246 61 .5 61.3 17 159 
304 -2.94 54.03 0.177 0.247 39.7 13.9 14.7 58.7 
306 -2.95 54.02 0.052 0.093 28.4 17 9.06 61.4 
308 -2.96 54.03 0.149 0.23 36.2 14.9 10.8 63 
31 1 -3.03 54.01 0.177 0.222 43.8 18.5 12.4 64.4 
312 -3.05 54.01 0.11 9 0.031 32.4 14.5 10.4 57.6 
313 -3.05 54.00 0.09 0.022 26.2 12.4 9.62 48.3 
315 -3.05 53.97 0.211 0.124 26.3 11 .8 8.6 55.4 
322 -3.21 53.97 0.194 0.124 51.2 24.8 14.7 79.2 
326 -3.30 53.97 0.204 0.131 36.8 14.4 13.8 51.5 
327 -3 .33 53.97 0.175 0.202 41.7 16.3 13.4 56.1 
328 -3.32 53.99 0.144 0.175 38.6 13.9 11 .7 56.6 
332 -3 .24 53.99 0.184 0.151 39.4 17.3 15.6 62.6 
337 -3.12 53.99 0.041 0.077 16.7 21.8 8.79 47.3 
340 -3.06 53.99 0.032 0.121 22.7 12.7 10.5 130 
342 -3.00 53.99 0.13 0.109 24.6 8.75 10.4 34.9 
343 -2.99 53.99 0.102 0.089 26 12.1 8.05 44.1 
345 -2.98 54.00 0.15 0.176 28.5 19.1 8.94 46.3 
347 -3.03 54.00 0.136 0.149 33.8 8.22 13.1 52 
349 -3 .10 54.00 0.067 0.069 17.9 18.7 9.28 75.7 
356 -3.26 54.00 0.121 0.083 32.4 18.2 13.1 72.4 
357 -3.28 54.00 0.008 0.186 43 17.1 12.8 62.1 
363 -3.26 54.01 0.054 1.14 13.8 28.1 7.51 505 
365 -3.21 54.01 0.093 0.077 26.3 20.8 10.4 62.6 
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Zn 
60.2 
54.7 
68.8 
49.9 
57.3 
23.8 
32.4 
26.1 
25.3 
34.4 
82.8 
50.3 
47.3 
35.7 
26.7 

36 
31 .3 
121 

29.7 
16 
78 

0.56 
34 

45.2 
109 
21 

34.7 
150 

92.5 
62.7 
86.9 
104 

74.5 
61.4 
70.9 
119 

95.1 
81.6 
90.6 
107 

49.6 
65.7 
64.9 
37.5 
69.6 
79.4 

65 
99.3 
103 
123 

71.9 



(Continued) Table A8: Concentrations of metals in fine fraction of the sediments of 
Morecambe bay, sampled in 1988, expressed in micrograms/gram of sediment. 
(Sample size, n=201) 

Stations Longitude Latitude Ha Cd Cr Cu Ni Pb 
368 -3.14 54.01 0.061 0.232 14.4 32.8 12.1 225 
372 -3.07 54.03 0.013 0.083 6.63 2.86 2.43 82.4 
373 -3.05 54.03 0.084 0.092 27.3 10.7 9.62 46.5 
374 -3.03 54.03 0.17 0.107 37.9 16 11.6 55.8 
377 -2.97 54.01 0 0.099 24.2 13.3 9.42 67.5 
378 -3.00 54.01 0.04 0.078 12.8 13.5 7.96 76 
379 -3.02 54.01 0.025 0.147 16.5 12.3 6.67 70 
380 -2.99 53.98 0.066 0.045 15.7 13 8.03 50.5 
385 -3.00 53.97 0.201 0.2 45.6 21.5 12.2 73.1 
386 -3.03 53.97 0.23 0.161 32.9 13.4 14.3 60.3 
387 -3.04 53.97 0.209 0.15 44.3 16.6 13.1 60.8 
388 -3.06 53.97 0.189 0.134 30.8 12 14.9 42.6 
389 -3.07 53.95 0.225 0.431 45.3 16.6 13.6 63.6 
390 -3.09 53.95 0.127 0.144 29.4 12.4 9.14 40.8 
392 -3.11 53.95 0.134 0.139 33.4 11 12.7 46.6 
393 -3.12 53.95 0.146 0.201 42.7 13.6 15 56.2 
399 -3.26 53.95 0.224 0.168 39.9 21 12.4 59 
400 -3.28 53.95 0.167 0.169 34.3 13.1 10.6 45.3 
402 -3.33 53.95 0.131 0.154 30.4 11 .4 11 .4 43.7 
403 -3.35 53.95 0.1 4 0.56 30.9 33 11.7 51.2 
410 -3.11 54.03 0.081 0.138 18.9 62.7 11.5 207 
411 -3.09 54.04 0.029 0.126 14.9 16.5 5.26 57 
412 -3.10 54.05 0.052 0.058 32.1 28.5 13.7 87.6 
413 -3.10 54.07 0.083 0.042 21.5 9.88 8.73 37.2 
414 -3.1 0 54.08 0.035 0.086 14.4 6.05 6.33 29.7 
415 -3.12 54.08 0.121 0.138 29 9.79 9.6 45.3 
417 -3.12 54.05 0.152 0.204 37.5 13.7 13.2 46.6 
420 -3.14 54.05 0.111 0.165 34.7 17.9 11.9 52.9 
423 -3.07 54.04 0.027 1.02 22.8 13.3 9.75 90.5 
424 -3.07 54.05 0.051 0.213 20.3 20 9.43 93.7 
425 -3.07 54.07 0.021 0.028 11.3 20 5.91 29.4 
426 -3.05 54.07 0.063 0.063 18.4 13 7.29 40.4 
427 -3.05 54.05 0.022 0.071 10.3 10.6 6.15 27.9 
428 -3.05 54.04 0.024 0.088 11 .1 12.9 8.49 62.8 
429 -3.03 54.04 0.045 0.047 14.5 21.4 7.66 38.3 
430 -3.03 54.05 0.033 0.089 14.5 8.52 6.71 33.9 
431 -3.03 54.07 0.048 0.453 17.1 25.7 12 89.3 
433 -3.00 54.07 0.03 0.082 12 5.64 5.96 30.3 
434 -3.08 53.94 0.123 0.438 21.6 26.8 8.64 85.7 
435 -3.11 53.94 0.129 0.168 32.1 10.7 12.1 47.5 
436 -3.13 53.94 0.145 0.16 33.3 11 .6 12 54 
437 -3.15 53.94 0.167 0.185 36.5 13.2 13.4 53.2 
442 -3.26 53.94 0.245 0.167 42.2 18.2 12.6 61.2 
444 -3.30 53.93 0.143 0.1 85 34.6 12.1 12.4 50.8 
445 -3.33 53.93 0.11 6 0.138 27.6 10.3 10.6 44.7 
447 -3.36 53.93 0.147 0.153 35.9 12.9 11.8 52.6 
448 -3.35 53.92 0.134 0.148 28.3 12.1 10.4 47.8 
449 -3.33 53.92 0.164 0.158 33.5 14 11 .3 47 
450 -3.30 53.92 0.141 0.172 34.5 11.8 13.4 58.3 
451 -3.28 53.92 0.136 0.132 33.5 16 14 59.9 
453 . -3.24 53.92 0.059 0.14 24.1 19.8 10.8 114 
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Zn 
71.6 
14.7 
57.6 
78.4 
68.7 
68.6 
43.4 

53 
112 
71 

94.2 
61 

92.5 
49.8 
76.4 
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46 

71.8 
57 

35.6 
83.7 
69.7 
65.9 
47.2 
72.3 
35.3 
46.8 

32 
37.2 
49.8 
34.9 
62.5 
28.7 
36.4 

76 
83.4 
89.2 
90.9 
123 

71.6 
84.3 
54.2 
63.4 
83.5 
92.1 
85.7 



(Continued) Table A8: Concentrations of metals in fine fraction of the sediments of 
Morecambe bay, sampled in 1988, expressed in micrograms/gram of sediment. 
(Sample size, n=201) 

Stat ions Longitude Latitude Hg Cd Cr Cu Ni Pb 
456 -3.19 53.92 0.173 0.162 34.7 14.3 12.4 50.4 
457 -3.17 53.92 0.175 0.162 33.8 15.7 10.9 51.7 
462 -3.16 53.93 0.173 0.1 61 33.9 14.8 7.26 50 
463 -3.18 53.93 0.197 1.13 43.3 16 12 54.6 
465 -3.17 53.93 0.159 0.151 47.8 12.2 10.5 57.9 
467 -3.14 53.93 0.176 0.147 39.9 14.1 14.9 60.8 
468 -3.12 53.93 0.052 0.085 16.7 3.68 3.97 19.1 
473 -3.05 54.02 0.079 0.088 28.2 12.1 9.18 51.6 
474 -3.02 54.02 0.075 0.088 25.3 11.3 8.89 74.1 
475 -2.99 54.02 0.035 0.054 19 15.3 9.59 59.6 
477 -3.00 54.04 0.033 0.026 21.1 20 9.2 48.5 
478 -3.00 54.05 0.025 0.065 14.6 4.89 4.8 23.4 
479 -2.98 54.07 0.027 0.037 13.6 10.3 7.69 35.3 
481 -2.98 54.05 0.029 0.153 14.7 6.63 7.66 54.4 
482 -2.98 54.04 0.026 0.06 11 .5 10.5 6.33 31 .1 
483 -2.99 54.04 0.054 0.084 28.4 16.9 10.3 57.9 
485 -2.96 54.05 0.224 0.424 98.8 170 54.5 381 
486 -2.97 54.05 0.037 0.044 12.1 5.19 6.05 24.2 
487 -2.96 54.06 0.029 0.087 14.5 9.58 7.26 31 
489 -2.94 54.07 0.054 0.059 19.6 13.2 10.2 52.1 
493 -3 .18 53.91 0.201 0.255 41.5 15.7 12.5 58 
494 -3 .20 53.91 0.338 0.226 59.6 28.1 18 91.7 
497 -3.25 53.91 0.213 0.178 34.6 20.5 13.3 56.5 
498 -3 .28 53.91 0.148 0.245 35 38.2 12.3 77.8 
499 -3 .30 53.91 0.214 0.175 46.1 19.5 16.4 75.9 
500 -3 .33 53.91 0.18 0.128 39.3 16.9 13.4 71.5 
501 -3 .35 53.91 0.183 0.163 41.6 22.3 15 62.8 
502 -3.35 53.89 0.186 0.135 41 18.3 16.3 64.5 
503 -3.33 53.89 0.173 0.108 43.5 19.3 12.9 82.6 
504 -3 .30 53.89 0.178 0.158 36.5 13.4 14.4 51.4 
505 -3.28 53.89 0.15 0.217 30 16.4 12.7 59.1 
508 -3.22 53.90 0.207 0.209 36.2 15 13.1 57.7 
509 -3.19 53.91 0.085 0.127 17.1 7.67 7.03 31.6 
510 -3.17 53.91 0.204 0.342 39.8 17 13.6 62.9 
515 -3.12 53.89 0.191 0.123 33.3 13.4 10.9 54.9 
516 -3 .14 53.89 0.217 0.224 44.6 22.5 13.5 98.3 
517 -3 .17 53.89 0.152 0.091 29.1 26.2 10.6 53.1 
518 -3.19 53.89 0.171 0.379 37.9 14.6 11.3 64 
519 -3.21 53.89 0.17 0.144 33.5 15.3 11.3 50 
520 -3.24 53.89 0.143 0.095 28.4 12.5 10.3 44.4 
522 -3.21 53.88 0.169 0.133 38.8 15.7 13.5 66.5 
524 -3.26 53.88 0.18 0.151 38 14 14.3 63.5 
525 -3.28 53.88 0.258 0.15 51.1 20.7 16.7 79.1 
526 -3.30 53.88 0.162 0.102 32.1 14.8 11 .5 60.9 
529 -3.30 53.87 0.245 0.162 50.5 25.9 17 75.3 
533 -3.24 53.87 0.174 0.106 37.6 15.2 13.3 54.9 
534 -3.21 53.87 0.255 0.094 40.5 17.6 13.3 78.6 
538 -3.17 53.88 0.199 0.246 42.5 16.3 18.3 70.9 

A84 

Zn 
75.5 
69.5 
71.6 
92.9 
77.6 
96.8 
27.4 
60.3 
64.4 
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261 

32.4 
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18.2 
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Appendix B 

B 1: Statistical descriptors of finalized 
data with no missing observations or 
outliers. 

B2: Correlations between heavy metals of 
finalized annually sampled data: 
Liverpool bay, 1986-1992,and 
Morecambe bay, 1988. 

B3: Total sampled stations in Liverpool 
bay from 1986 to 1992. 



Table B1: Statistical descriptors of finalized data with No missing observations or outliers 

LIVERPOOL BAY - · . -· . . - - - - . 

1986 N Mean StDev 0 1 Median 03 Minimum Maximum Skewness Kurtosis I 
Hg 58 1.10507 0.478303 0.7755 1.035 1.4175 0.299 2.453 0.654743 0.1 73012 

Cd 58 0.217586 0.15406 0.1 0.19 0.285 0.05 0.79 1.46294 3.04273 

Cr 58 22.5474 7.35135 17.85 22.65 25.225 0.05 48.3 0.655758 3.1 9345 
Cu 58 55.1759 14.0646 45.275 55 64 28.1 87.6 0.239389 -0.458652 
Ni 58 32.2017 6.19217 28 31.35 35 22 53 1.12027 1.73735 

Pb 58 144.657 86.8914 100.75 11 9 162.75 27.5 588 2.97105 12.0447 
Zn 58 315.519 108.061 246 309.5 352.75 126 816 2.12605 7.90048 

1987 N Mean StDev 01 Median 03 Minimum Maximum Skewness Kurtosis I 
Hg 54 1.17037 0.41374 0.9 1.1 1.425 0.4 2.1 0.564327 -0.382954 

Cd 54 1.92963 3.04839 0.675 1 2.025 0 19.1 4.31881 21.0212 

Cr 54 80.5926 17.1985 69.375 76.8 93.775 45.8 11 9.4 0.258317 -0.427774 

Cu 54 76.9593 26.1512 62.725 73 83.325 43.6 206.1 2.78951 11.3439 

Ni 54 41.7444 5.1 515 37.9 41 44.325 33.7 54.9 1.04466 0.660594 

Pb 54 203.611 117.046 155.5 183 218.25 87 943 4.9847 30.7102 

Zn 54 361.333 110.621 293.5 329.5 394.25 222 857 2.32541 7.64712 

MORECAMBE BAY 

1988 N Mean StDev 0 1 Median 03 Minimum Maximum Skewness Kurtosis I 
Hg 198 0.108021 0.0725585 0.04025 0.0938 0.17 0 0.338 0.464993 -0.733058 

Cd 198 0.162597 0.145642 0.087725 0.135 0.185 0.0217 1.13 4.0346 20.8562 

Cr 198 28.2113 11.6143 18.3 27.9 36.825 6.63 61.5 0.364414 -0.610626 

Cu 198 17.7235 11.8199 11 .75 14.8 20.125 2.19 90.3 2.50132 9.21128 

Ni 198 10.3667 3.2265 7.765 10.3 12.725 2.43 19.1 0.338447 -0.261651 

Pb 198 61.8841 33.9906 44.625 56.55 70.225 0.195 267 2.71416 11.347 

Zn 198 69.618 29.3662 48.45 69.35 88.6 0.56 170 0.446557 0.243064 
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Table B2: Correlations (Pearson) between heavy metals of finalized annually sampled data 

Cel l Contents : Correlation 

Liverpool Bay 
1986 {n=58} 

Hg Cd Cr Cu Ni Pb 
Cd 0 . 218 

Cr 0.484 -0.027 

Cu 0 . 530 0.240 0.617 

Ni 0 . 078 -0. 133 0.556 0 . 433 

Pb 0.414 -0.056 0.262 0.595 0.297 

Zn 0.496 0.050 0.411 0.658 0 . 313 0.873 

1987 {n=54} 
Hg Cd Cr Cu Ni Pb 

Cd 0 . 106 

Cr 0.595 0.169 

Cu 0 . 303 0 . 077 0 . 505 

Ni 0.095 0.243 0.367 0.499 

Pb 0 . 161 0.151 0 .160 0 . 354 0 . 456 

Zn 0.404 0 . 227 0.377 0 . 260 0.376 0.615 

1988 
Hg Cd Cr Cu Ni Pb 

Cd 0.2 7 4 

Cr 0.330 0.399 

Cu - 0.225 0.346 0 .445 

Ni - 0.222 0.346 0 . 270 0 . 366 

Pb - 0.385 0. 455 0.355 0.690 0.540 

Zn - 0 . 095 0 . 572 0.593 0 . 695 0.566 0 . 886 

1989 
Hg Cd Cr Cu Ni Pb 

Cd -0 . 150 

Cr 0.227 - 0.240 

Cu - 0.262 - 0.001 0.045 

Ni - 0. 216 - 0.033 - 0 . 360 0.267 

Pb - 0.076 0 . 066 -0.080 0 . 156 0 . 157 

Zn - 0.026 - 0 .12 9 0. 049 0 . 47 4 0.407 0.596 
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1990 
Hg Cd Cr Cu Ni Pb 

Cd 0 . 523 

Cr 0.524 0. 711 

Cu 0.595 0.357 0 . 484 

Ni 0.584 0.483 0.654 0.755 

Pb 0.438 0.109 0.065 0.807 0.448 

Zn 0.582 0.743 0.676 0.774 0.773 0 . 531 

1991 
Hg Cd Cr Cu Ni Pb 

Cd 0.290 

Cr 0.039 0 . 087 

Cu - 0.071 - 0.142 0.562 

Ni 0.095 0 . 047 0. 717 0.687 

Pb 0.352 0.103 0.036 -0.035 0.055 

Zn 0.288 0.141 0.465 0.779 0.610 0.456 

1992 
Hg Cd Cr Cu Ni Pb 

Cd 0.290 

Cr 0.019 0.161 

Cu -0.069 -0.144 0.893 

Ni 0.095 0.047 0.707 0.706 

Pb 0.352 0.103 -0.026 -0.033 0.055 

Zn 0.288 0.141 0 . 735 0.777 0.610 0.456 

Morecambe Bay 
1988 {n=198} 

Hg Cd Cr Cu Ni Pb 
Cd 0.324 

Cr 0.882 0.346 

Cu 0.184 0.240 0.239 

Ni 0.823 0.361 0.873 0 . 297 

Pb 0.099 0.146 0.206 0.559 0.301 

Zn 0.735 0 . 352 0.827 0.471 0 . 841 0.369 
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Table 83: Total sampled stations from Liverpool bay from 1986 
until 1992. 

Number Station symbol Average longitude I Average latitude 

1 F 6 -44.11 25.94 
2 F 8 -44.11 28.54 
3 F 10 -44.11 31.00 
4 F 12 -44.11 33.40 
5 G 5 -41.87 26.70 
6 G 7 -42.66 29.10 
7 G 9 -41.66 31.56 
8 G11 -41.92 34.02 
9 G13 -41.73 36.35 
10 H 6 -39.63 27.60 
11 H 8 -39.30 30.10 
12 H 10 -39.70 32.50 
13 H 12 -39.90 35.10 
14 J 7 -37.48 27.24 
15 J 9 -37.50 30.80 
16 J 11 -37.40 33.40 
17 J 13 -37.40 35.80 
18 K 6 -35.40 26.90 
19 K 7 -35.50 28.10 
20 K 8 -35.43 29.31 
21 K 9 -35.62 30.68 
22 K 10 -35.36 31.68 
23 K 11 -35.48 33.00 
24 K 12 -35.66 34.30 
25 L 7 -33.33 27.68 
26 L 8 -33.30 29.11 
27 L09 -33.45 30.50 
28 L1 0 -33.26 31.70 
29 L1 1 -33.16 32.76 
30 L1 2 -33.15 33.97 
31 L13 -33.16 35.06 
32 M06 -31.00 26.40 
33 MOB -31.18 28.90 
34 M09 -31.11 30.10 
35 M10 -31.06 31.30 
36 M1 1 -31.20 32.50 
37 M12 -31.27 33.70 
38 M13 -31.20 34.80 
39 N 5 -28.99 26.10 
40 NO? -29.20 27.30 
41 N08 -29.10 28.60 
42 N09 -29.03 29.90 
43 N10 -28.97 31.10 
44 N11 -28.95 32.33 
45 N12 -28.89 33.52 
46 N13 -28.95 34.55 
47 N14 -29.00 35.70 
48 NW24 -13.09 29.32 
49 P06 -26.70 25.80 
50 P08 -26.87 28.40 
51 P09 -26.75 29.60 
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(Continued) Table B3: Total sampled stations from Liverpool 
bay from 1986 until 1992. 

Number Station symbol Averaae longitude I Average latitude 

52 P10 -26.73 30.80 
53 P11 -26.57 32.00 
54 P12 -26.69 33.20 
55 P14 -26.70 35.50 
56 007 -24.90 26.98 
57 08 -25.20 28.00 
58 09 -24.58 29.40 
59 010 -24.60 30.60 
60 011 -24.48 31 .68 
61 012 -24.50 32.90 
62 013 -24.40 34.24 
63 R06 -22.50 25.40 
64 ROS -22.60 27.90 
65 R9 -22.40 29.10 
66 R10 -22.06 31 .92 
67 R11 -22.07 31.50 
68 R12 -22.11 32.70 
69 R13 -22.00 33.80 
70 R14 -21.60 35.07 
71 S07 -20.30 26.40 
72 S08 -20.20 27.70 
73 S09 -20.18 28.90 
74 S10 -19.90 30.00 
75 S11 -19.80 31.20 
76 S12 -19.60 32.40 
77 S13 -19.40 33.50 
78 S14 -19.30 34.70 
79 T6 -18.40 25.20 
80 T08 -17.70 27.40 
81 T09 -17.68 28.60 
82 T10 -17.58 29.90 
83 T11 -17.30 31.00 
84 T12 -10.34 32.23 
85 T13 -17.00 33.30 
86 T14 -16.90 34.40 
87 T15 -16.50 35.50 
88 U9 -15.17 28.38 
89 U11 -14.80 30.80 
90 U15 -14.50 35.50 
91 YY01 -14.20 29.10 
92 YY02 -12.70 29.50 
93 YY03 -12.00 29.10 
94 YY04 -13.40 28.60 
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Appendix C 

Cl: Fuzzy membership degrees of 
contamination of the seven heavy 
metals sampled from Liverpool bay 
in 1988. 

C2: Fuzzy membership degrees of 
contamination of the seven heavy 
metals sampled from Morecambe bay 
in 1988. 

C3: Contamination loading indices by 
heavy metals from Liverpool bay in 
1988. 

C4: Contamination loading indices by 
heavy metals from Morecambe bay 
in 1988. 

CS. Crisp ideal and fuzzy ideal 
contamination sets over all sampled 
stations from Liverpool bay between 
years 1986 to 1992. 



Table C1 : Fuzzy membership degrees of contamination of the seven heavy metals 
sampled from Liverpool bay in 1988. 

Station Longitude Latitude A1 A2 Aa Ai A;, ~ 
GO? -41.3 29.1 0.00 0.00 0.00 0.00 0.00 0.06 
G09 -41 .6 31.5 0.00 0.15 0.00 1.00 0.00 0.43 
G11 -41 .9 34 0.00 0.00 0.00 0.00 0.00 0.03 
G1 3 -41.6 36.4 0.00 0.01 0.00 0.00 0.00 0.03 
HOS -39.3 30.1 0.00 0.07 0.00 0.00 0.00 0.05 
H10 -39.7 32.5 0.00 0.00 0.00 0.00 0.00 0.05 
H12 -39.9 35.1 0.00 0.00 0.00 0.00 0.00 0.03 
JO? -37.4 28.4 0.01 0.03 0.00 0.00 0.00 0.04 
J09 -37.5 30.8 0.00 0.06 0.00 0.11 0.00 0.14 
J11 -37.4 33.4 0.01 0.00 0.00 0.00 0.00 0.04 
J1 3 -37.4 35.8 0.00 0.00 0.00 0.00 0.00 0.03 
K06 -35.4 26.9 0.00 0.01 0.00 0.00 0.00 0.08 
KOS -35.5 29.4 0.00 0.07 0.00 0.89 0.00 0.34 
K09 -35.5 30.8 0.04 0.03 0.01 0.45 0.00 0.07 
K10 -35.4 31.8 0.05 0.01 0.00 0.01 0.00 0.04 
K11 -35.5 33.1 0.00 0.01 0.00 0.00 0.00 0.04 
K12 -35.7 34.3 0.00 0.01 0.00 0.00 0.00 0.03 
LO? -33.2 27.8 0.00 0.06 0.00 0.11 0.00 0.06 
LOS -33.3 29.1 0.00 0.01 0.00 0.15 0.00 0.06 
L09 -33.5 30.5 0.00 0.07 0.00 1.00 0.00 0.60 
L10 -33.2 31.7 0.00 0.03 0.00 1.00 0.00 0.22 
L11 -33.1 32.8 0.Q1 0.01 0.00 0.00 0.00 0.04 
L1 2 -33.1 34 0.01 0.03 0.00 0.01 0.00 0.04 
L1 3 -33.1 35.1 0.00 0.00 0.00 0.00 0.00 0.03 
M06 -31 26.4 0.00 0.03 0.00 0.40 0.00 0.23 
MOS -31.2 28.9 0.00 0.00 0.00 0.16 0.00 0.10 
M09 -31.1 30.1 0.00 0.01 0.00 1.00 0.00 0.27 
M10 -31.1 31.3 0.00 0.03 0.00 1.00 0.00 0.35 
M11 -31.1 32.5 0.01 0.03 0.00 0.18 0.00 0.05 
M12 -31.2 33.7 0.00 0.00 0.00 0.00 0.00 0.04 
NO? -29.2 27.3 0.00 0.02 0.00 0.06 0.00 0.10 
NOS -29.1 28.6 0.00 0.03 0.00 1.00 0.00 0.17 
N09 -29.1 29.9 0.00 0.01 0.00 0.20 0.00 0.10 
N1 0 -28.9 31.1 0.00 0.00 0.00 1.00 0.00 0.11 
N1 1 -28.8 32.4 0.00 0.00 0.00 0.13 0.00 0.12 
N12 -28.8 33.5 0.01 0.00 0.00 0.11 0.00 0.04 
N13 -28.8 34.5 0.00 0.00 0.00 0.00 0.00 0.04 
NW24 -12.4 28.6 0.00 0.00 0.00 0.01 0.00 0.06 
P06 -26.7 25.8 0.00 0.00 0.00 0.32 0.00 0.16 
P08 -26.8 28.4 0.00 0.01 0.00 1.00 0.00 0.12 
P09 -26.7 29.6 0.00 0.12 0.00 1.00 0.00 0.49 
P10 -26.6 30.8 0.09 0.15 0.01 0.94 0.00 0.09 
P11 -26.3 32 0.02 0.01 0.00 0.06 0.00 0.05 
P1 2 -26.4 33.2 0.00 0.00 0.00 0.02 0.00 0.05 
007 -24.9 27.1 0.00 0.01 0.00 0.44 0.00 0.23 
009 -24.6 29.4 0.02 0.02 0.01 0.28 0.00 0.09 
0 11 -24.4 31.7 0.02 0.05 0.00 0.12 0.00 0.07 
0 13 -24.3 34.2 0.00 0.03 0.00 0.00 0.00 0.09 
ROG -22.5 25.4 0.00 0.02 0.00 1.00 0.00 0.19 
ROS -22.6 27.9 0.00 0.00 0.00 0.00 0.00 0.08 
R10 -21.9 30.4 0.04 0.03 0.00 0.15 0.00 0.06 
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A1 
0.73 
1.00 
0.31 
0.28 
0.47 
0.49 
0.20 
0.55 
1.00 
0.41 
0.40 
0.74 
1.00 
1.00 
0.51 
0.46 
0.43 
0.64 
0.58 
1.00 
1.00 
0.42 
0.47 
0.41 
1.00 
0.74 
1.00 
1.00 
0.60 
0.40 
0.54 
1.00 
0.99 
1.00 
1.00 
0.42 
0.49 
0.42 
0.90 
1.00 
1.00 
1.00 
0.68 
0.50 
1.00 
1.00 
0.88 
0.49 
1.00 
0.37 
1.00 



(Continued) Table C1 : Fuzzy membership degrees of contamination of the seven heavy 
metals sampled from Liverpool bay in 1988. 

Station Longitude Latitude A1 A2 A3 ~ Ar, ~ A1 
R11 -22 31.5 0.01 0.01 0.00 0.06 0.00 0.06 0.76 
R12 -22.1 32.7 0.00 0.00 0.00 0.29 0.00 0.27 0.92 
S07 -20.3 26.4 0.00 0.00 0.00 1.00 0.00 0.15 1.00 
S08 -20.2 27.7 0.02 0.04 0.00 0.18 0.00 0.09 1.00 
S09 -20.1 28.9 0.00 0.00 0.00 0.14 0.00 0.12 1.00 
S11 -19.8 31.2 0.04 0.01 0.00 0.00 0.00 0.04 0.59 
S13 -19.4 33.5 0.02 0.01 0.00 0.00 0.00 0.05 0.68 
T08 -17.7 27.4 0.05 0.06 0.00 0.39 0.00 0.07 1.00 
T09 -17.7 28.6 0.01 0.03 0.00 0.08 0.00 0.14 0.91 
T10 -17.5 29.9 0.04 0.03 0.00 0.00 0.00 0.04 0.62 
T12 -17.2 32.2 0.02 0.03 0.00 0.00 0.00 0.03 0.52 
T14 -16.9 34.4 0.05 0.03 0.00 0.04 0.00 0.05 0.80 
U09 -15.2 28.4 0.04 0.03 0.00 0.06 0.00 0.06 0.93 
U11 -14.8 30.8 0.01 0.01 0.00 0.28 0.00 0.05 0.64 
U15 -14.6 35.5 0.06 0.03 0.00 0.06 0.00 0.05 0.94 
YY01 -14.2 29.1 0.04 0.03 0.00 0.00 0.00 0.04 0.64 
YY02 -12.7 29.5 0.07 0.03 0.00 0.08 0.00 0.05 0.94 
YY03 -12 29.1 0.04 0.03 0.00 0.00 0.00 0.03 0.56 
YY04 -13.4 28.6 0.05 0.02 0.00 0.06 0.00 0.04 0.78 
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Table C2: Fuzzy membership degrees of contamination of the seven heavy metals 
sampled from Morecambe bay 1988. 

Stations Longitude Latitude A, A2 Aa ~ Ar, ~ 
2 -3 .03 53.96 0.00 0.00 0.00 0.00 0.00 · 0.09 
4 -3 .07 53.96 0.00 0.00 0.00 0.00 0.00 0.02 
12 -3.26 53.96 0.00 0.02 0.00 0.11 0.00 0.02 
14 -3 .30 53.96 0.00 0.00 0.00 0.00 0.00 0.02 
15 -3 .32 53.96 0.00 0.00 0.00 0.00 0.00 0.00 
16 -3.35 53.96 0.00 0.00 0.00 0.00 0.00 0.02 
17 -3 .36 53.96 0.00 0.00 0.00 0.00 0.00 0.01 
18 -3 .37 53.97 0.00 0.00 0.00 0.00 0.00 0.02 
19 -3.35 53.97 0.00 0.00 0.00 0.00 0.00 0.02 
20 -3 .35 53.99 0.00 0.00 0.00 0.00 0.00 0.04 
24 -3.39 54.07 0.00 0.00 0.00 0.00 0.00 0.03 
38 -3.30 54.03 0.00 0.00 0.00 0.00 0.00 0.02 
39 -3 .33 54.03 0.00 0.00 0.00 0.00 0.00 0.03 
46 -3.34 54.09 0.00 0.05 0.00 0.00 0.00 0.03 
48 -3.37 54.08 0.00 0.00 0.00 0.00 0.00 0.03 
53 -3.05 54.17 0.00 0.00 0.00 0.00 0.00 0.01 
54 -3.05 54.16 0.00 0.00 0.00 0.01 0.00 0.05 
55 -3 .07 54.14 0.00 0.00 0.00 0.00 0.00 0.01 
57 -3.09 54.13 0.00 0.00 0.00 0.00 0.00 0.01 
59 -3 .07 54.12 0.00 0.00 0.00 0.00 0.00 0.12 
61 -3.06 54.10 0.00 0.00 0.00 0.00 0.00 0.03 
63 -3.08 54.11 0.00 0.00 0.00 0.00 0.00 0.02 
65 -3 .09 54.11 0.00 0.00 0.00 0.00 0.00 0.02 
67 -3.10 54.10 0.00 0.00 0.00 0.00 0.00 0.03 
69 -3.12 54.11 0.00 0.00 0.00 0.00 0.00 0.00 
71 -3.13 54.10 0.00 0.00 0.00 0.00 0.00 0.00 
73 -3.12 54.09 0.00 0.00 0.00 0.00 0.00 0.02 
77 -3.15 54.09 0.00 0.00 0.00 0.00 0.00 0.01 
79 -3.13 54.07 0.00 0.00 0.00 0.00 0.00 0.02 
81 -3.09 54.09 0.00 0.00 0.00 0.00 0.00 0.02 
83 -3.07 54.07 0.00 0.00 0.00 0.00 0.00 0.03 
91 -3.05 54.09 0.00 0.00 0.00 0.00 0.00 0.01 
93 -3.07 54.10 0.00 0.00 0.00 0.00 0.00 0.04 
95 -3.06 54.13 0.00 0.00 0.00 0.00 0.00 0.02 
97 -3.04 54.15 0.00 0.00 0.00 0.00 0.00 0.00 
99 -3.03 54.14 0.00 0.00 0.00 0.00 0.00 0.00 
101 -3.03 54.12 0.00 0.00 0.00 0.00 0.00 0.05 
103 -3.00 54.15 0.00 0.00 0.00 0.00 0.00 0.00 
105 -3.03 54.17 0.00 0.00 0.00 0.00 0.00 0.01 
107 -3.05 54.19 0.00 0.01 0.00 0.00 0.00 0.01 
109 -3.04 54.20 0.00 0.02 0.00 0.07 0.00 0.05 
111 -2.93 54.15 0.00 0.00 0.00 0.00 0.00 0.02 
119 -2.90 54.14 0.00 0.00 0.00 0.00 0.00 0.01 
123 -2.96 54.14 0.00 0.00 0.00 0.00 0.00 0.00 
125 -3.01 54.13 0.00 0.00 0.00 0.00 0.00 0.01 
127 -3.01 54.13 0.00 0.00 0.00 0.00 0.00 0.02 
129 -2 .97 54.13 0.00 0.00 0.00 0.00 0.00 0.02 
139 -2.98 54.1 1 0.00 0.00 0.00 0.00 0.00 0.01 
141 -3.01 54.11 0.00 0.00 0.00 0.00 0.00 0.01 
143 -3.00 54.09 0.00 0.00 0.00 0.00 0.00 0.05 
145 -2.97 54.09 0.00 0.00 0.00 0.00 0.00 0.03 
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A1 
0.00 
0.04 
0.00 
0.04 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.11 
0.02 
0.26 
0.24 
0.19 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.37 
0.09 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 



(Contiuned) Table C2: Fuzzy membership degrees of contamination of the seven heavy 
metals sampled from Morecambe bay 1988. 

Stations Longitude Latitude A, A2 A3 At A,;, ~ A1 
151 -2.99 54.08 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
153 -2.98 54.08 0.00 0.00 0.00 0.01 0.00 0.07 0.00 
155 -2.95 54.10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
157 -2.98 54.10 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
164 -2.85 54.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
166 -2.88 54.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
168 -2.91 54.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
170 -2.91 54.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
172 -2.85 54.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
175 -2.84 54.08 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
177 -2.83 54.10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
179 -2.81 54.11 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
181 -2.85 54.12 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
183 -2.83 54.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
185 -2.99 54.14 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
189 -2.86 54.10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
201 -2.94 54.00 0.00 0.00 0.00 0.53 0.00 0.02 0.13 
203 -2.90 54.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
205 -2.90 53.99 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
207 -2.94 53.98 0.00 0.00 0.00 0.07 0.00 0.02 0.00 
209 -2.97 53.99 0.00 0.00 0.00 0.00 0.00 0.04 0.00 
211 -2.93 53.98 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
213 -2.91 53.97 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
215 -2.92 53.96 0.00 0.00 0.00 0.14 0.00 0.04 0.07 
217 -2.96 53.96 0.00 0.00 0.00 0.00 0.00 0.04 0.00 
219 -3.00 53.96 0.00 0.00 0.00 0.00 0.00 0.05 0.00 
221 -2.98 53.95 0.00 0.00 0.00 0.19 0.00 0.07 0.27 
304 -2.94 54.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
306 -2.95 54.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
308 -2.96 54.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
311 -3.03 54.01 0.00 0.00 0.00 0.00 0.00 0.02 0.04 
312 -3.05 54.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
313 -3.05 54.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
315 -3.05 53.97 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
322 -3 .21 53.97 0.00 0.00 0.00 0.00 0.00 0.03 0.12 
326 -3.30 53.97 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
327 -3.33 53.97 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
328 -3.32 53.99 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
332 -3.24 53.99 0.00 0.00 0.00 0.00 0.00 0.02 0.06 
337 -3.12 53.99 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
340 -3 .06 53.99 0.00 0.00 0.00 0.00 0.00 0.06 0.00 
342 -3.00 53.99 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
343 -2.99 53.99 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
345 -2.98 54.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
347 -3.03 54.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
349 -3.10 54.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
356 -3.26 54.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 
357 -3.28 54.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 
365 -3.21 54.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
368 -3.14 54.01 0.00 0.00 0.00 0.00 0.00 0.10 0.00 
372 -3.07 54.03 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
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(Continued} Table C2: Fuzzy members hip degrees of contamina tion of the seven heavy 
metals sampled from Morecambe bay 1988. 

Stations Longitude Latitude A, A2 Aa Ai A;, A;, A1 
373 -3.05 54.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
374 -3.03 54.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
377 -2.97 54.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
378 -3 .00 54.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
379 -3 .02 54.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
380 -2 .99 53.98 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
385 -3.00 53.97 0.00 0.00 0.00 0.00 0.00 0.03 0.08 
386 -3.03 53.97 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
387 -3.04 53.97 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
388 -3.06 53.97 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
389 -3.07 53.95 0.00 0.01 0.00 0.00 0.00 0.02 0.00 
390 -3.09 53.95 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
392 -3.11 53.95 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
393 -3.12 53.95 0.00 0.00 0.00 0.00 0.00 0.02 0.01 
399 -3.26 53.95 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
400 -3.28 53.95 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
402 -3.33 53.95 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
403 -3.35 53.95 0.00 0.02 0.00 0.00 0.00 0.02 0.00 
410 -3.11 54.03 0.00 0.00 0.00 0.21 0.00 0.09 0.14 
411 -3.09 54.04 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
412 -3.10 54.05 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
413 -3.10 54.07 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
414 -3.10 54.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
415 -3.12 54.08 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
417 -3.12 54.05 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
420 -3 .14 54.05 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
423 -3 .07 54.04 0.00 0.05 0.00 0.00 0.00 0.04 0.00 
424 -3.07 54.05 0.00 0.00 0.00 0.00 0.00 0.04 0.00 
425 -3.07 54.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
426 -3 .05 54.07 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
427 -3.05 54.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
428 -3.05 54.04 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
429 -3 .03 54.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
430 -3.03 54.05 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
431 -3.03 54.07 0.00 0.01 0.00 0.00 0.00 0.04 0.00 
433 -3.00 54.07 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
434 -3.08 53.94 0.00 0.01 0.00 0.00 0.00 0.03 0.00 
435 -3.11 53.94 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
436 -3.13 53.94 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
437 -3.15 53.94 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
442 -3.26 53.94 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
444 -3.30 53.93 0.00 0.00 0.00 0.00 0.00 0.02 0.14 
445 -3.33 53.93 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
447 -3.36 53.93 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
448 -3.35 53.92 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
449 -3.33 53.92 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
450 -3.30 53.92 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
451 -3.28 53.92 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
453 -3.24 53.92 0.00 0.00 0.00 0.00 0.00 0.05 0.00 
456 -3.19 53.92 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
457 -3.1 7 53.92 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
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(Continued) Table C2: Fuzzy membership degrees of contamination of the seven heavy 
metals sampled from Morecambe bay 1988. 

Stat ions Longitude Latitude A, A2 Aa ~ Ar, ~ A1 
462 -3.16 53.93 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
463 -3.18 53.93 0.00 0.06 0.00 0.00 0.00 0.02 0.00 
465 -3.17 53.93 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
467 -3.14 53.93 0.00 0.00 0.00 0.00 0.00 0.02 0.01 
468 -3.12 53.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
473 -3.05 54.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
474 -3.02 54.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
475 -2.99 54.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
477 -3.00 54.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
478 -3.00 54.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
479 -2 .98 54.07 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
481 -2 .98 54.05 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
482 -2 .98 54.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
483 -2.99 54.04 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
486 -2.97 54.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
487 -2.96 54.06 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
489 -2.94 54.07 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
493 -3.18 53.91 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
494 -3.20 53.91 0.00 0.00 0.00 0.00 0.00 0.04 0.14 
497 -3.25 53.91 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
498 -3.28 53.91 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
499 -3.30 53.91 0.00 0.00 0.00 0.00 0.00 0.03 0.12 
500 -3.33 53.91 0.00 0.00 0.00 0.00 0.00 0.03 0.04 
501 -3.35 53.91 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
502 -3.35 53.89 0.00 0.00 0.00 0.00 0.00 0.02 0.06 
503 -3.33 53.89 0.00 0.00 0.00 0.00 0.00 0.03 0.08 
504 -3.30 53.89 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
505 -3.28 53.89 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
508 -3.22 53.90 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
509 -3.19 53.91 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
510 -3.17 53.91 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
515 -3.12 53.89 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
516 -3.14 53.89 0.00 0.00 0.00 0.00 0.00 0.04 0.17 
517 -3.17 53.89 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
518 -3.19 53.89 0.00 0.01 0.00 0.00 0.00 0.02 0.00 
519 -3.21 53.89 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
520 -3.24 53.89 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
522 -3.21 53.88 0.00 0.00 0.00 0.00 0.00 0.02 0.03 
524 -3.26 53.88 0.00 0.00 0.00 0.00 0.00 0.02 0.01 
525 -3.28 53.88 0.00 0.00 0.00 0.00 0.00 0.03 0.19 
526 -3.30 53.88 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
529 -3.30 53.87 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
533 -3.24 53.87 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
534 -3 .21 53.87 0.00 0.00 0 .00 0.00 0.00 0.03 0.00 
538 -3.17 53.88 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
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Table C3: Contamination loading indices by heavy metals in Liverpool bay in 1988 
Subscripts denote: Ll1 : Minimum; Ll2 : Algebraic product; Ll3: Geometric mean; 

L14: Maximum; Ll5 : Arithmetic mean; Ll6 : Competition jury; Ll7 : Fuzzy integral. 

Station Longitude Latitude LI, Ll2 Ll3 Ll4 Lis Lis 
GO? -41 .3 29.1 0.01 0.00 0.15 0.46 0.14 0.10 
G09 -41 .6 31.5 0.04 0.00 0.30 0.71 0.32 0.29 
G11 -41 .9 34 0.00 0.00 0.13 0.54 0.1 3 0.07 
G13 -41.6 36.4 0.01 0.00 0.13 0.51 0.12 0.06 
HOB -39.3 30.1 0.01 0.00 0.17 0.59 0.15 0.09 
H10 -39.7 32.5 0.01 0.00 0.15 0.54 0.1 4 0.09 
H12 -39.9 35.1 0.01 0.00 0.12 0.51 0.12 0.06 
JO? -37.4 28.4 0.01 0.00 0.17 0.64 0.17 0.10 
J09 -37.5 30.8 0.02 0.00 0.19 0.87 0.22 0.14 
J11 -37.4 33.4 0.01 0.00 0.15 0.64 0.16 0.09 
J13 -37.4 35.8 0.00 0.00 0.13 0.51 0.13 0.08 
K06 -35.4 26.9 0.01 0.00 0.15 0.56 0.15 0.10 
K08 -35.5 29.4 0.02 0.00 0.24 0.76 0.30 0.26 
K09 -35.5 30.8 0.01 0.00 0.22 0.52 0.20 0.17 
K10 -35.4 31.8 0.01 0.00 0.17 0.47 0.17 0.14 
K11 -35.5 33.1 0.01 0.00 0.15 0.42 0.13 0.09 
K12 -35.7 34.3 0.01 0.00 0.14 0.47 0.13 0.08 
LO? -33.2 27.8 0.02 0.00 0.1 7 0.48 0.14 0.10 
LOB -33.3 29.1 0.01 0.00 0.15 0.30 0.11 0.09 
L09 -33.5 30.5 0.02 0.00 0.29 1.00 0.42 0.38 
L10 -33.2 31.7 0.01 0.00 0.21 0.64 0.22 0.18 
L11 -33.1 32.8 0.01 0.00 0.16 0.47 0.14 0.10 
L1 2 -33.1 34 0.01 0.00 0.16 0.42 0.13 0.10 
L1 3 -33.1 35.1 0.00 0.00 0.13 0.40 0.11 0.08 
M06 -31 26.4 0.00 0.00 0.17 0.87 0.26 0.18 
MOB -31.2 28.9 0.00 0.00 0.14 0.47 0.14 0.11 
M09 -31.1 30.1 0.01 0.00 0.21 0.45 0.20 0.19 
M10 -31.1 31.3 0.01 0.00 0.25 0.60 0.28 0.26 
M11 -31.1 32.5 0.01 0.00 0.17 0.38 0.13 0.11 
M1 2 -31.2 33.7 0.00 0.00 0.13 0.34 0.11 0.08 
NO? -29.2 27.3 0.01 0.00 0.15 0.48 0.14 0.10 
NOB -29.1 28.6 0.00 0.00 0.17 0.56 0.19 0.1 5 
N09 -29.1 29.9 0.01 0.00 0.17 0.52 0.16 0.12 
N10 -28.9 31 .1 0.00 0.00 0.18 0.74 0.21 0.14 
N11 -28.8 32.4 0.00 0.00 0.14 0.43 0.15 0.12 
N1 2 -28.8 33.5 0.00 0.00 0.15 0.46 0.14 0.10 
N1 3 -28.8 34.5 0.00 0.00 0.14 0.43 0.13 0.09 
NW24 -12.4 28.6 0.01 0.00 0.20 0.51 0.20 0.17 
P06 -26.7 25.8 0.00 0.00 0.12 0.51 0.13 0.08 
P08 -26.8 28.4 0.00 0.00 0.13 0.42 0.15 0.13 
P09 -26.7 29.6 0.01 0.00 0.20 0.38 0.16 0.15 
P10 -26.6 30.8 0.02 0.00 0.25 0.82 0.31 0.26 
P11 -26.3 32 0.04 0.00 0.29 0.51 0.25 0.24 
P1 2 -26.4 33.2 0.01 0.00 0.1 7 0.39 0.14 0.1 2 
007 -24.9 27.1 0.01 0.00 0.15 0.56 0.14 0.08 
0 09 -24.6 29.4 0.01 0.00 0.18 0.43 0.19 0.18 
0 11 -24.4 31.7 0.01 0.00 0.21 0.59 0.20 0.16 
01 3 -24.3 34.2 0.02 0.00 0.1 9 0.38 0.15 0.13 
R06 -22.5 25.4 0.00 0.00 0.12 0.40 0.12 0.08 
ROB -22.6 27.9 0.01 0.00 0.20 0.44 0.18 0.16 
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Ll1 
0.22 
0.71 
0.14 
0.14 
0.17 
0.18 
0.12 
0.19 
0.30 
0.16 
0.16 
0.22 
0.57 
0.30 
0.35 
0.17 
0.17 
0.20 
0.19 
0.90 
0.37 
0.16 
0.17 
0.1 6 
0.40 
0.22 
0.45 
0.58 
0.20 
0.16 
0.19 
0.29 
0.27 
0.29 
0.28 
0.16 
0.18 
0.38 
0.16 
0.28 
0.30 
0.82 
0.51 
0.21 
0.18 
0.43 
0.29 
0.25 
0.18 
0.33 



(Continued) Table C3: Contamination loading indices by heavy metals in Liverpool bay in 
1988. Subscripts denote: Ll1: Minimum; Ll2 : Algebraic product; Ll3 : Geometric mean; 

L14 : Maximum; Ll5 : Arithmetic mean; Ll6: Competition jury; Ll7 : Fuzzy integral. 

Station Longitude Latitude Ll1 Ll2 Lia Ll4 Lis Lis Lh 
R10 -21.9 30.4 0.01 0.00 0.14 0.33 0.11 0.09 0.15 
R11 -22 31.5 0.01 0.00 0.21 0.56 0.20 0.16 0.30 
R12 -22.1 32.7 0.01 0.00 0.17 0.46 0.15 0.12 0.23 
S07 -20.3 26.4 0.00 0.00 0.13 0.55 0.20 0.16 0.46 
S08 -20.2 27.7 0.01 0.00 0.19 0.46 0.18 0.16 0.31 
S09 -20.1 28.9 0.01 0.00 0.21 0.54 0.19 0.16 0.31 
S11 -19.8 31.2 0.00 0.00 0.17 0.56 0.18 0.13 0.27 
S13 -19.4 33.5 0.01 0.00 0.17 0.42 0.15 0.13 0.27 
T08 -17.7 27.4 0.01 0.00 0.18 0.52 0.17 0.12 0.21 
T09 -17.7 28.6 0.02 0.00 0.24 0.56 0.21 0.18 0.36 
T10 -17.5 29.9 0.01 0.00 0.19 0.40 0.16 0.15 0.25 
T12 -17.2 32.2 0.01 0.00 0.17 0.38 0.15 0.13 0.29 
T14 -16.9 34.4 0.01 0.00 0.16 0.36 0.13 0.11 0.19 
U09 -15.2 28.4 0.01 0.00 0.20 0.54 0.19 0.15 0.33 
U11 -14.8 30.8 0.01 0.00 0.20 0.48 0.18 0.15 0.28 
U15 -14.6 35.5 0.01 0.00 0.17 0.46 0.14 0.11 0.21 
YY01 -14.2 29.1 0.01 0.00 0.18 0.42 0.16 0.14 0.30 
YY02 -12.7 29.5 0.01 0.00 0.21 0.52 0.21 0.18 0.42 
YY03 -12 29.1 0.01 0.00 0.17 0.40 0.15 0.13 0.29 
YY04 -13.4 28.6 0.01 0.00 0.19 0.43 0.17 0.16 0.36 
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(Continued) Table C3: Contamination loading indices by heavy metals in Liverpool bay in 
1988. Subscripts denote: Ll8 : Weighted average; Ll9: Bounded difference; Ll10: Bounded 

sum; Ll11 : Hamacher product; Ll12: Hamacher sum; Ll13: Algebraic sum. 

Station Longitude Latitude Lie Ll9 Ll10 Ll11 Ll12 Ll1 3 
G07 -41.3 29.1 0.09 0.00 0.79 0.00 0.74 0.75 
G09 -41 .6 31.5 0.29 0.00 1.00 0.00 1.00 1.00 
G11 -41.9 34 0.06 0.00 0.34 0.00 0.32 0.33 
G13 -41.6 36.4 0.06 0.00 0.32 0.00 0.30 0.31 
HOS -39.3 30.1 0.08 0.00 0.59 0.00 0.50 0.53 
H10 -39.7 32.5 0.08 0.00 0.54 0.00 0.50 0.51 
H12 -39.9 35.1 0.06 0.00 0.23 0.00 0.22 0.22 
JO? -37.4 28.4 0.09 0.00 0.62 0.00 0.56 0.58 
J09 -37.5 30.8 0.13 0.00 1.00 0.00 1.00 1.00 
J11 -37.4 33.4 0.08 0.00 0.46 0.00 0.43 0.44 
J13 -37.4 35.8 0.08 0.00 0.44 0.00 0.41 0.42 
K06 -35.4 26.9 0.09 0.00 0.83 0.00 0.74 0.76 
KOS -35.5 29.4 0.25 0.00 1.00 0.00 1.00 1.00 
K09 -35.5 30.8 0.15 0.00 1.00 0.00 1.00 1.00 
K10 -35.4 31.8 0.12 0.00 0.62 0.00 0.54 0.56 
K1 1 -35.5 33.1 0.08 0.00 0.51 0.00 0.47 0.49 
K12 -35.7 34.3 0.08 0.00 0.47 0.00 0.44 0.45 
LO? -33.2 27.8 0.09 0.00 0.87 0.00 0.67 0.72 
LOS -33.3 29.1 0.08 0.00 0.81 0.00 0.62 0.67 
L09 -33.5 30.5 0.39 0.00 1.00 0.00 1.00 1.00 
L10 -33.2 31.7 0.17 0.00 1.00 0.00 1.00 1.00 
L11 -33.1 32.8 0.09 0.00 0.48 0.00 0.44 0.46 
L12 -33.1 34 0.09 0.00 0.57 0.00 0.50 0.52 
L13 -33.1 35.1 0.07 0.00 0.45 0.00 0.42 0.43 
M06 -31 26.4 0.18 0.00 1.00 0.00 1.00 1.00 
MOS -31.2 28.9 0.10 0.00 1.00 0.00 0.76 0.80 
M09 -31.1 30.1 0.18 0.00 1.00 0.00 1.00 1.00 
M10 -31.1 31.3 0.25 0.00 1.00 0.00 1.00 1.00 
M1 1 -31.1 32.5 0.10 0.00 0.86 0.00 0.64 0.70 
M12 -31 .2 33.7 0.07 0.00 0.43 0.00 0.41 0.42 
NO? -29.2 27.3 0.09 0.00 0.71 0.00 0.57 0.61 
NOS -29.1 28.6 0.14 0.00 1.00 0.00 1.00 1.00 
N09 -29.1 29.9 0.11 0.00 1.00 0.00 0.99 0.99 
N10 -28.9 31.1 0.13 0.00 1.00 0.00 1.00 1.00 
N11 -28.8 32.4 0.11 0.00 1.00 0.00 1.00 1.00 
N12 -28.8 33.5 0.09 0.00 0.59 0.00 0.48 0.51 
N13 -28.8 34.5 0.08 0.00 0.53 0.00 0.50 0.51 
NW24 -12.4 28.6 0.15 0.00 0.49 0.00 0.44 0.46 
P06 -26.7 25.8 0.07 0.00 1.00 0.00 0.90 0.94 
P08 -26.8 28.4 0.12 0.00 1.00 0.00 1.00 1.00 
P09 -26.7 29.6 0.14 0.00 1.00 0.00 1.00 1.00 
P1 0 -26.6 30.8 0.27 0.00 1.00 0.00 1.00 1.00 
P11 -26.3 32 0.23 0.00 0.81 0.00 0.69 0.72 
P12 -26.4 33.2 0.10 0.00 0.58 0.00 0.52 0.54 
007 -24.9 27.1 0.08 0.00 1.00 0.00 1.00 1.00 
009 -24.6 29.4 0.18 0.00 1.00 0.00 1.00 1.00 
0 11 -24.4 31 .7 0.14 0.00 1.00 0.00 0.88 0.91 
013 -24.3 34.2 0.12 0.00 0.60 0.00 0.52 0.55 
R06 -22.5 25.4 0.08 0.00 1.00 0.00 1.00 1.00 
ROS -22.6 27.9 0.15 0.00 0.46 0.00 0.41 0.42 
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(Continued) Table C3: Contamination loading indices by heavy metals in Liverpool bay in 
1988. Subscripts denote: Ll8 : Weighted average; Ll9: Bounded difference; Ll10: Bounded 

sum; L111: Hamacher product; Ll12: Hamacher sum; Ll13: Algebraic sum. 

Station Longitude Latitude Lie Ll9 Ll10 Ll11 Ll12 Ll1a 
R10 -21.9 30.4 0.08 0.00 1.00 0.00 1.00 1.00 
R11 -22 31 .5 0.14 0.00 0.89 0.00 0.77 0.79 
R12 -22.1 32.7 0.10 0.00 1.00 0.00 0.93 0.96 
S07 -20.3 26.4 0.15 0.00 1.00 0.00 1.00 1.00 
S08 -20.2 27.7 0.14 0.00 1.00 0.00 1.00 1.00 
S09 -20.1 28.9 0.14 0.00 1.00 0.00 1.00 1.00 
S11 -1 9.8 31 .2 0.12 0.00 0.68 0.00 0.61 0.63 
S13 -19.4 33.5 0.11 0.00 0.77 0.00 0.69 0.71 
T08 -17.7 27.4 0.11 0.00 1.00 0.00 1.00 1.00 
T09 -17.7 28.6 0.16 0.00 1.00 0.00 0.91 0.93 
T10 -17.5 29.9 0.13 0.00 0.72 0.00 0.63 0.66 
T12 -17.2 32.2 0.11 0.00 0.61 0.00 0.54 0.56 
T14 -16.9 34.4 0.09 0.00 0.96 0.00 0.81 0.83 
U09 -15.2 28.4 0.14 0.00 1.00 0.00 0.93 0.94 
U11 -14.8 30.8 0.14 0.00 1.00 0.00 0.70 0.76 
U15 -14.6 35.5 0.10 0.00 1.00 0.00 0.94 0.95 
YY01 -14.2 29.1 0.12 0.00 0.76 0.00 0.66 0.68 
YY02 -12.7 29.5 0.16 0.00 1.00 0.00 0.94 0.95 
YY03 -1 2 29.1 0.11 0.00 0.66 0.00 0.58 0.60 
YY04 -13.4 28.6 0.14 0.00 0.95 0.00 0.79 0.81 

C34 



Table C4: Contamination loading indices by heavy metals in Morecambe bay in 1988 
Subscripts denote: Ll1 : Minimum; Ll2 : Algebraic product; Ll3 : Geometric mean; 

Ll4 : Maximum; Ll5 : Arithmetic mean; Ll6 : Competition jury; Ll7: Fuzzy integral. 

Station Longitude Latitude Ll1 Ll2 Lia Ll4 Lis Lis Ll1 
2 -3.03 53.96 0.00 0.00 0.00 0.12 0.03 0.02 0.12 
4 -3.07 53.96 0.00 0.00 0.00 0.09 0.03 0.02 0.09 
12 -3.26 53.96 0.00 0.00 0.00 0.23 0.06 0.04 0.23 
14 -3 .30 53.96 0.00 0.00 0.00 0.07 0.03 0.03 0.07 
15 -3.32 53.96 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
16 -3 .35 53.96 0.00 0.00 0.00 0.21 0.05 0.03 0.20 
17 -3 .36 53.96 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
18 -3 .37 53.97 0.00 0.00 0.00 0.06 0.01 0.01 0.06 
19 -3 .35 53.97 0.00 0.00 0.00 0.15 0.03 0.02 0.15 
20 -3.35 53.99 0.00 0.00 0.00 0.06 0.02 0.01 0.06 
24 -3.39 54.07 0.00 0.00 0.00 0.16 0.04 0.03 0.16 
38 -3.30 54.03 0.00 0.00 0.00 0.04 0.01 0.01 0.04 
39 -3.33 54.03 0.00 0.00 0.00 0.26 0.07 0.04 0.20 
46 -3.34 54.09 0.00 0.00 0.00 0.38 0.12 0.09 0.38 
48 -3.37 54.08 0.00 0.00 0.00 0.20 0.05 0.03 0.20 
53 -3.05 54.17 0.00 0.00 0.00 0.02 0.01 0.00 0.02 
54 -3.05 54.16 0.00 0.00 0.00 0.11 0.02 0.01 0.11 
55 -3.07 54.14 0.00 0.00 0.00 0.03 0.01 0.00 0.03 
57 -3.09 54.13 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
59 -3.07 54.12 0.00 0.00 0.00 0.17 0.03 0.00 0.17 
61 -3.06 54.10 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
63 -3.08 54.11 0.00 0.00 0.00 0.07 0.02 0.01 0.07 
65 -3.09 54.11 0.00 0.00 0.00 0.06 0.02 0.01 0.06 
67 -3.10 54.10 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
69 -3.12 54.11 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
71 -3.13 54.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
73 -3.12 54.09 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
77 -3 .15 54.09 0.00 0.00 0.00 0.04 0.01 0.00 0.04 
79 -3.13 54.07 0.00 0.00 0.00 0.04 0.01 0.00 0.04 
81 -3.09 54.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
83 -3.07 54.07 0.00 0.00 0.00 0.03 0.01 0.01 0.03 
91 -3.05 54.09 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
93 -3.07 54.10 0.00 0.00 0.00 0.02 0.01 0.00 0.02 
95 -3.06 54.13 0.00 0.00 0.00 0.03 0.00 0.00 0.03 
97 -3.04 54.15 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
99 -3.03 54.14 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
101 -3.03 54.12 0.00 0.00 0.00 0.05 0.02 0.01 0.05 
103 -3.00 54.15 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
105 -3.03 54.17 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
107 -3.05 54.19 0.00 0.00 0.00 0.15 0.02 0.00 0.15 
109 -3.04 54.20 0.00 0.00 0.00 0.23 0.11 0.10 0.21 
111 -2.93 54.15 0.00 0.00 0.00 0.08 0.04 0.04 0.08 
119 -2.90 54.14 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
123 -2.96 54.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
125 -3.01 54.13 0.00 0.00 0.00 0.09 0.02 0.00 0.09 
127 -3.01 54.13 0.00 0.00 0.00 0.05 0.01 0.01 0.05 
129 -2.97 54.13 0.00 0.00 0.00 0.04 0.01 0.01 0.04 
139 -2.98 54.11 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
141 -3.01 54.11 0.00 0.00 0.00 0.06 0.01 0.01 0.06 
143 -3.00 54.09 0.00 0.00 0.00 0.05 0.01 0.01 0.05 
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(Continued) Table C4: Contamination loading indices by heavy metals in Morecambe bay 
in 1988. Subscripts denote: Ll 1: Minimum; Ll2: Algebraic product; Ll3: Geometric mean; 

Ll4 : Maximum; Ll5 : Arithmetic mean; Ll6 : Competition jury; Ll7 : Fuzzy integral. 

Station Longitude Latitude u, Ll2 Ll3 Ll4 Lis Lis Ll7 
145 -2.97 54.09 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
151 -2.99 54.08 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
153 -2.98 54.08 0.00 0.00 0.00 0.11 0.03 0.02 0.11 
155 -2.95 54.10 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
157 -2.98 54.10 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
164 -2.85 54.18 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
166 -2.88 54.18 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
168 -2.91 54.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
170 -2.91 54.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
172 -2.85 54.20 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
175 -2.84 54.08 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
177 -2.83 54.10 0.00 0.00 0.00 0.03 0.01 0.00 0.03 
179 -2.81 54.11 0.00 0.00 0.00 0.03 0.01 0.00 0.03 
181 -2.85 54.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
183 -2.83 54.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
185 -2.99 54.1 4 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
189 -2.86 54.10 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
201 -2.94 54.00 0.00 0.00 0.00 0.33 0.05 0.00 0.33 
203 -2.90 54.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
205 -2.90 53.99 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
207 -2.94 53.98 0.00 0.00 0.00 0.14 0.03 0.01 0.14 
209 -2.97 53.99 0.00 0.00 0.00 0.06 0.02 0.02 0.06 
211 -2.93 53.98 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
213 -2.91 53.97 0.00 0.00 0.00 0.03 0.00 0.00 0.03 
215 -2.92 53.96 0.00 0.00 0.00 0.17 0.04 0.02 0.17 
217 -2.96 53.96 0.00 0.00 0.00 0.04 0.01 0.01 0.04 
219 -3.00 53.96 0.00 0.00 0.00 0.10 0.03 0.03 0.10 
221 -2.98 53.95 0.00 0.00 0.00 0.41 0.12 0.09 0.20 
304 -2.94 54.03 0.00 0.00 0.00 0.08 0.02 0.02 0.08 
306 -2 .95 54.02 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
308 -2.96 54.03 0.00 0.00 0.00 0.06 0.02 0.01 0.06 
311 -3.03 54.01 0.00 0.00 0.00 0.10 0.03 0.02 0.10 
312 -3.05 54.01 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
313 -3.05 54.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03 
315 -3.05 53.97 0.00 0.00 0.00 0.09 0.01 0.00 0.09 
322 -3.21 53.97 0.00 0.00 0.00 0.23 0.05 0.02 0.20 
326 -3 .30 53.97 0.00 0.00 0.00 0.09 0.01 0.00 0.09 
327 -3.33 53.97 0.00 0.00 0.00 0.07 0.03 0.02 0.07 
328 -3.32 53.99 0.00 0.00 0.00 0.06 0.01 0.01 0.06 
332 -3 .24 53.99 0.00 0.00 0.00 0.08 0.02 0.01 0.08 
337 -3.12 53.99 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
340 -3.06 53.99 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
342 -3.00 53.99 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
343 -2.99 53.99 0.00 0.00 0.00 0.04 0.01 0.00 0.04 
345 -2.98 54.00 0.00 0.00 0.00 0.06 0.01 0.01 0.06 
347 -3.03 54.00 0.00 0.00 0.00 0.06 0.01 0.00 0.06 
349 -3.10 54.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
356 -3.26 54.00 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
357 -3.28 54.00 0.00 0.00 0.00 0.09 0.02 0.01 0.09 
365 -3.21 54.01 0.00 0.00 0.00 0.04 0.01 0.00 0.04 



(Continued) Table C4: Contamination loading indices by heavy metals in Morecambe bay 
in 1988. Subscripts denote: Ll1: Minimum; Ll2 : Algebraic product; Ll3 : Geometric mean; 

Ll4 : Maximum; Lis: Arithmetic mean; Ll6: Competition jury; Lli Fuzzy integral. 

Station Longitude Latitude Ll1 Ll2 Ll3 Ll4 Lis Lis L'7 
368 -3.14 54.01 0.00 0.00 0.00 0.14 0.04 0.02 0.14 
372 -3 .07 54.03 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
373 -3 .05 54.03 0.00 0.00 0.00 0.03 0.00 0.00 0.03 
374 -3.03 54.03 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
377 -2.97 54.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
378 -3.00 54.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
379 -3.02 54.01 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
380 -2.99 53.98 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
385 -3.00 53.97 0.00 0.00 0.00 0.13 0.04 0.03 0.13 
386 -3.03 53.97 0.00 0.00 0.00 0.10 0.02 0.00 0.10 
387 -3.04 53.97 0.00 0.00 0.00 0.11 0.03 0.02 0.11 
388 -3.06 53.97 0.00 0.00 0.00 0.08 0.01 0.00 0.08 
389 -3.07 53.95 0.00 0.00 0.00 0.14 0.05 0.05 0.14 
390 -3.09 53.95 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
392 -3.11 53.95 0.00 0.00 0.00 0.06 0.01 0.00 0.06 
393 -3.12 53.95 0.00 0.00 0.00 0.08 0.03 0.02 0.08 
399 -3.26 53.95 0.00 0.00 0.00 0.10 0.02 0.01 0.10 
400 -3 .28 53.95 0.00 0.00 0.00 0.07 0.01 0.01 0.07 
402 -3.33 53.95 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
403 -3.35 53.95 0.00 0.00 0.00 0.19 0.04 0.02 0.19 
410 -3.11 54.03 0.00 0.00 0.00 0.20 0.05 0.03 0.20 
411 -3.09 54.04 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
412 -3.10 54.05 0.00 0.00 0.00 0.03 0.01 0.01 0.03 
413 -3.10 54.07 0.00 0.00 0.00 0.03 0.00 0.00 0.03 
414 -3.10 54.08 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
415 -3.12 54.08 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
417 -3.12 54.05 0.00 0.00 0.00 0.06 0.01 0.01 0.06 
420 -3.14 54.05 0.00 0.00 0.00 0.04 0.01 0.00 0.04 
423 -3.07 54.04 0.00 0.00 0.00 0.39 0.06 0.00 0.39 
424 -3.07 54.05 0.00 0.00 0.00 0.04 0.01 0.01 0.04 
425 -3.07 54.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
426 -3.05 54.07 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
427 -3.05 54.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
428 -3.05 54.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
429 -3.03 54.04 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
430 -3.03 54.05 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
431 -3.03 54.07 0.00 0.00 0.00 0.15 0.03 0.01 0.15 
433 -3.00 54.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
434 -3.08 53.94 0.00 0.00 0.00 0.14 0.03 0.02 0.14 
435 -3.1 1 53.94 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
436 -3.13 53.94 0.00 0.00 0.00 0.06 0.01 0.00 0.06 
437 -3.15 53.94 0.00 0.00 0.00 0.07 0.01 0.01 0.07 
442 -3.26 53.94 0.00 0.00 0.00 0.11 0.03 0.02 0.11 
444 -3.30 53.93 0.00 0.00 0.00 0.06 0.01 0.01 0.06 
445 -3.33 53.93 0.00 0.00 0.00 0.05 0.01 0.00 0.05 
447 -3.36 53.93 0.00 0.00 0.00 0.06 0.01 0.00 0.06 
448 -3.35 53.92 0.00 0.00 0.00 0.06 0.01 0.00 0.06 
449 -3.33 53.92 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
450 -3.30 53.92 0.00 0.00 0.00 0.06 0.01 0.01 0.06 
451 -3.28 53.92 0.00 0.00 0.00 0.06 0.01 0.00 0.06 

C43 



(Continued) Table C4: Contamination loading indices by heavy metals in Morecambe bay . 
in 1988. Subscripts denote: Ll1: Minimum; Ll2: Algebraic product; Ll3: Geometric mean; 

L14: Maximum; Ll5: Arithmetic mean; Ll6: Competition jury; Lli Fuzzy integral. 

Station Longitude Latitude Ll1 Ll2 Lia Ll4 Lis Lis Ll1 
453 -3.24 53.92 0.00 0.00 0.00 0.04 0.01 0.01 0.04 
456 -3.19 53.92 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
457 -3.17 53.92 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
462 -3.16 53.93 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
463 -3.18 53.93 0.00 0.00 0.00 0.43 0.09 0.04 0.43 
465 -3.17 53.93 0.00 0.00 0.00 0.17 0.04 0.02 0.17 
467 -3.14 53.93 0.00 0.00 0.00 0.08 0.02 0.01 0.08 
468 -3.12 53.93 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
473 -3.05 54.02 0.00 0.00 0.00 0.03 0.00 0.00 0.03 
474 -3.02 54.02 0.00 0.00 0.00 0.03 0.00 0.00 0.03 
475 -2.99 54.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
477 -3.00 54.04 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
478 -3.00 54.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
479 -2.98 54.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
481 -2.98 54.05 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
482 -2.98 54.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
483 -2.99 54.04 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
486 -2.97 54.05 0.00 0.00 0.00 0.01 0.00 0.00 0.01 
487 -2.96 54.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
489 -2.94 54.07 0.00 0.00 0.00 0.02 0.00 0.00 0.02 
493 -3.18 53.91 0.00 0.00 0.00 0.09 0.03 0.02 0.09 
494 -3.20 53.91 0.00 0.00 0.00 0.37 0.09 0.05 0.20 
497 -3.25 53.91 0.00 0.00 0.00 0.09 0.02 0.01 0.09 
498 -3.28 53.91 0.00 0.00 0.00 0.08 0.03 0.03 0.08 
499 -3.30 53.91 0.00 0.00 0.00 0.14 0.04 0.03 0.14 
500 -3.33 53.91 0.00 0.00 0.00 0.08 0.02 0.01 0.08 
501 -3.35 53.91 0.00 0.00 0.00 0.08 0.02 0.02 0.08 
502 -3.35 53.89 0.00 0.00 0.00 0.08 0.02 0.01 0.08 
503 -3.33 53.89 0.00 0.00 0.00 0.09 0.03 0.02 0.09 
504 -3.30 53.89 0.00 0.00 0.00 0.08 0.01 0.00 0.08 
505 -3.28 53.89 0.00 0.00 0.00 0.06 0.02 0.01 0.06 
508 -3.22 53.90 0.00 0.00 0.00 0.09 0.02 0.01 0.09 
509 -3.19 53.91 0.00 0.00 0.00 0.03 0.01 0.00 0.03 
510 -3.1 7 53.91 0.00 0.00 0.00 0.10 0.03 0.02 0.10 
515 -3.12 53.89 0.00 0.00 0.00 0.08 0.01 0.00 0.08 
516 -3.14 53.89 0.00 0.00 0.00 0.11 0.04 0.03 0.11 
517 -3.17 53.89 0.00 0.00 0.00 0.06 0.01 0.00 0.06 
518 -3.19 53.89 0.00 0.00 0.00 0.11 0.03 0.01 0.11 
519 -3.21 53.89 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
520 -3.24 53.89 0.00 0.00 0.00 0.06 0.01 0.00 0.06 
522 -3.21 53.88 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
524 -3.26 53.88 0.00 0.00 0.00 0.08 0.01 0.00 0.08 
525 -3.28 53.88 0.00 0.00 0.00 0.23 0.05 0.03 0.20 
526 -3.30 53.88 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
529 -3.30 53.87 0.00 0.00 0.00 0.22 0.05 0.03 0.20 
533 -3.24 53.87 0.00 0.00 0.00 0.07 0.01 0.00 0.07 
534 -3.21 53.87 0.00 0.00 0.00 0.1 1 0.02 0.01 0.11 
538 -3.17 53.88 0.00 0.00 0.00 0.09 0.03 0.03 0.09 
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(Continued) Table C4: Contamination loading indices by heavy metals in Morecambe bay 
in 1988. Subscripts denote: Ll8: Weighted average; Ll9: Bounded difference; Ll10: Bounded 

sum; Ll11 : Hamacher product; Ll12: Hamacher sum; Ll13: Algebraic sum. 

Station Longitude Latitude Lis Ll9 Ll10 Ll11 Ll12 Ll13 
2 -3.03 53.96 0.04 0.00 0.09 0.00 0.09 0.09 
4 -3.07 53.96 0.03 0.00 0.07 0.00 0.06 0.06 
12 -3.26 53.96 0.08 0.00 0.16 0.00 0.15 0.15 
14 -3.30 53.96 0.04 0.00 0.06 0.00 0.06 0.06 
15 -3.32 53.96 0.00 0.00 0.00 0.00 0.00 0.00 
16 -3.35 53.96 0.03 0.00 0.02 0.00 0.02 0.02 
17 -3.36 53.96 0.02 0.00 0.01 0.00 0.01 0.01 
18 -3.37 53.97 0.02 0.00 0.02 0.00 0.02 0.02 
19 -3.35 53.97 0.02 0.00 0.03 0.00 0.03 0.03 
20 -3.35 53.99 0.02 0.00 0.04 0.00 0.04 0.04 
24 -3.39 54.07 0.04 0.00 0.14 0.00 0.13 0.13 
38 -3.30 54.03 0.01 0.00 0.05 0.00 0.05 0.05 
39 -3.33 54.03 0.05 0.00 0.29 0.00 0.28 0.28 
46 -3.34 54.09 0.12 0.00 0.32 0.00 0.28 0.30 
48 -3.37 54.08 0.03 0.00 0.22 0.00 0.21 0.22 
53 -3.05 54.17 0.01 0.00 0.01 0.00 0.01 0.01 
54 -3.05 54.1 6 0.03 0.00 0.06 0.00 0.06 0.06 
55 -3.07 54.14 0.01 0.00 0.01 0.00 0.01 0.01 
57 -3.09 54.13 0.00 0.00 0.01 0.00 0.01 0.01 
59 -3.07 54.12 0.03 0.00 0.13 0.00 0.13 0.13 
61 -3.06 54.10 0.00 0.00 0.03 0.00 0.03 0.03 
63 -3.08 54.11 0.02 0.00 0.02 0.00 0.02 0.02 
65 -3.09 54.11 0.02 0.00 0.02 0.00 0.02 0.02 
67 -3.10 54.10 0.00 0.00 0.03 0.00 0.03 0.03 
69 -3.12 54.11 0.00 0.00 0.00 0.00 0.00 0.00 
71 -3.13 54.10 0.00 0.00 0.00 0.00 0.00 0.00 
73 -3.12 54.09 0.00 0.00 0.02 0.00 0.02 0.02 
77 -3.15 54.09 0.01 0.00 0.01 0.00 0.01 0.01 
79 -3.13 54.07 0.01 0.00 0.02 0.00 0.02 0.02 
81 -3.09 54.09 0.00 0.00 0.02 0.00 0.02 0.02 
83 -3.07 54.07 0.01 0.00 0.03 0.00 0.03 0.03 
91 -3.05 54.09 0.00 0.00 0.01 0.00 0.01 0.01 
93 -3.07 54.10 0.01 0.00 0.04 0.00 0.04 0.04 
95 -3.06 54.13 0.01 0.00 0.02 0.00 0.02 0.02 
97 -3.04 54.15 0.00 0.00 0.00 0.00 0.00 0.00 
99 -3.03 54.14 0.00 0.00 0.00 0.00 0.00 0.00 
101 -3.03 54.1 2 0.02 0.00 0.05 0.00 0.05 0.05 
103 -3.00 54.15 0.00 0.00 0.00 0.00 0.00 0.00 
105 -3.03 54.17 0.00 0.00 0.01 0.00 0.01 0.01 
107 -3.05 54.19 0.03 0.00 0.02 0.00 0.02 0.02 
109 -3.04 54.20 0.11 0.00 0.50 0.00 0.42 0.45 
11 1 -2.93 54.15 0.04 0.00 0.12 0 .00 0.11 0.11 
119 -2.90 54.14 0.00 0.00 0.01 0.00 0.01 0.01 
123 -2.96 54.14 0.00 0.00 0.00 0.00 0.00 0.00 
125 -3.01 54.13 0.02 0.00 0.01 0.00 0.01 0.01 
127 -3.01 54.13 0.02 0.00 0.02 0.00 0.02 0.02 
129 -2.97 54.13 0.01 0.00 0.02 0.00 0.02 0.02 
139 -2.98 54.11 0.00 0.00 0.01 0.00 0.01 0.01 
141 -3.01 54.11 0.02 0.00 0.01 0.00 0.01 0.01 
143 -3.00 54.09 0.01 0.00 0.05 0.00 0.05 0.05 
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(Continued) Table C4: Contamination loading indices by heavy metals in Morecambe bay 
in 1988. Subscripts denote: Ll8: Weighted average; Ll9: Bounded difference; Ll10: Bounded 

sum; Ll 11 : Hamacher product; Ll 12 : Hamacher sum; Ll13 : Algebraic sum. 

Station Longitude Latitude Lis Lis Ll10 LI,, Ll,2 Ll13 
145 -2.97 54.09 0.01 0.00 0.03 0.00 0.03 0.03 
151 -2.99 54.08 0.00 0.00 0.02 0.00 0.02 0.02 
153 -2.98 54.08 0.04 0.00 0.08 0.00 0.07 0.07 
155 -2.95 54.10 0.00 0.00 0.01 0.00 0.01 0.01 
157 -2.98 54.10 0.00 0.00 0.02 0.00 0.02 0.02 
164 -2.85 54.18 0.00 0.00 0.00 0.00 0.00 0.00 
166 -2.88 54.18 0.00 0.00 0.00 0.00 0.00 0.00 
168 -2.91 54.18 0.00 0.00 0.00 0.00 0.00 0.00 
170 -2.91 54.19 0.00 0.00 0.00 0.00 0.00 0.00 
172 -2.85 54.20 0.00 0.00 0.00 0.00 0.00 0.00 
175 -2.84 54.08 0.01 0.00 0.02 0.00 0.02 0.02 
177 -2.83 54.10 0.01 0.00 0.01 0.00 0.01 0.01 
179 -2.81 54.11 0.01 0.00 0.01 0.00 0.01 0.01 
181 -2.85 54.12 0.00 0.00 0.03 0.00 0.03 0.03 
183 -2.83 54.13 0.00 0.00 0.00 0.00 0.00 0.00 
185 -2.99 54.14 0.00 0.00 0.01 0.00 0.01 0.01 
189 -2.86 54.10 0.00 0.00 0.01 0.00 0.01 0.01 
201 -2.94 54.00 0.06 0.00 0.68 0.00 0.57 0.60 
203 -2.90 54.00 0.00 0.00 0.02 0.00 0.02 0.02 
205 -2.90 53.99 0.00 0.00 0.01 0.00 0.01 0.01 
207 -2.94 53.98 0.04 0.00 0.09 0.00 0.09 0.09 
209 -2.97 53.99 0.03 0.00 0.04 0.00 0.04 0.04 
211 -2 .93 53.98 0.00 0.00 0.02 0.00 0.02 0.02 
213 -2.91 53.97 0.01 0.00 0.01 0.00 0.01 0.01 
215 -2.92 53.96 0.05 0.00 0.25 0.00 0.22 0.23 
217 -2.96 53.96 0.02 0.00 0.04 0.00 0.04 0.04 
219 -3.00 53.96 0.04 0.00 0.05 0.00 0.05 0.05 
221 -2.98 53.95 0.10 0.00 0.53 0.00 0.41 0.45 
304 -2.94 54.03 0.03 0.00 0.02 0.00 0.02 0.02 
306 -2 .95 54.02 0.00 0.00 0.02 0.00 0.02 0.02 
308 -2 .96 54.03 0.02 0.00 0.02 0.00 0.02 0.02 
311 -3.03 54.01 0.03 0.00 0.07 0.00 0.06 0.07 
312 -3 .05 54.01 0.01 0.00 0.02 0.00 0.02 0.02 
313 -3 .05 54.00 0.01 0.00 0.01 0.00 0.01 0.01 
315 -3.05 53.97 0.02 0.00 0.02 0.00 0.02 0.02 
322 -3.21 53.97 0.03 0.00 0.1 5 0.00 0.14 0.14 
326 -3.30 53.97 0.02 0.00 0.02 0.00 0.02 0.02 
327 -3.33 53.97 0.02 0.00 0.02 0.00 0.02 0.02 
328 -3.32 53.99 0.02 0.00 0.02 0.00 0.02 0.02 
332 -3.24 53.99 0.02 0.00 0.08 0.00 0.08 0.08 
337 -3 .12 53.99 0.00 0.00 0.01 0.00 0.01 0.01 
340 -3.06 53.99 0.01 0.00 0.06 0.00 0.06 0.06 
342 -3.00 53.99 0.01 0.00 0.01 0.00 0.01 0.01 
343 -2.99 53.99 0.01 0.00 0.01 0.00 0.01 0.01 
345 -2.98 54.00 0.02 0.00 0.01 0.00 0.01 0.01 
347 -3.03 54.00 0.01 0.00 0.02 0.00 0.02 0.02 
349 -3.10 54.00 0.01 0.00 0.03 0.00 0.03 0.03 
356 -3.26 54.00 0.01 0.00 0.05 0.00 0.05 0.05 
357 -3.28 54.00 0.01 0.00 0.06 0.00 0.06 0.06 
365 -3.21 54.01 0.01 0.00 0.02 0.00 0.02 0.02 
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(Continued) Table C4: Contamination loading indices by heavy metals in Morecambe bay 
in 1988. Subscripts denote: Ll8 : Weighted average; Ll9 : Bounded difference; Ll10: Bounded 

sum; Ll 11 : Hamacher product; Ll12: Hamacher sum; Ll13: Algebraic sum. 

Station Longitude Latitude Lis Lie Ll10 Ll11 Ll12 Ll13 
368 -3.14 54.01 0.05 0.00 0.10 0.00 0.10 0.10 
372 -3.07 54.03 0.00 0.00 0.03 0.00 0.03 0.03 
373 -3.05 54.03 0.01 0.00 0.01 0.00 0.01 0.01 
374 -3.03 54.03 0.01 0.00 0.02 0.00 0.02 0.02 
377 -2.97 54.01 0.00 0.00 0.02 0.00 0.02 0.02 
378 -3.00 54.01 0.00 0.00 0.03 0.00 0.03 0.03 
379 -3.02 54.01 0.00 0.00 0.03 0.00 0.03 0.03 
380 -2.99 53.98 0.00 0.00 0.02 0.00 0.02 0.02 
385 -3.00 53.97 0.03 0.00 0.11 0.00 0.11 0.11 
386 -3.03 53.97 0.02 0.00 0.02 0.00 0.02 0.02 
387 -3.04 53.97 0.02 0.00 0.02 0.00 0.02 0.02 
388 -3 .06 53.97 0.02 0.00 0.01 0.00 0.01 0.01 
389 -3.07 53.95 0.05 0.00 0.03 0.00 0.03 0.03 
390 -3.09 53.95 0.01 0.00 0.01 0.00 0.01 0.01 
392 -3.11 53.95 0.01 0.00 0.01 0.00 0.01 0.01 
393 -3.12 53.95 0.02 0.00 0.02 0.00 0.02 0.02 
399 -3.26 53.95 0.02 0.00 0.02 0.00 0.02 0.02 
400 -3.28 53.95 0.02 0.00 0.01 0.00 0.01 0.01 
402 -3.33 53.95 0.01 0.00 0.01 0.00 0.01 0.01 
403 -3.35 53.95 0.06 0.00 0.03 0.00 0.03 0.03 
410 -3.11 54.03 0.07 0.00 0.44 0.00 0.34 0.38 
411 -3.09 54.04 0.00 0.00 0.02 0.00 0.02 0.02 
412 -3.10 54.05 0.01 0.00 0.03 0.00 0.03 0.03 
413 -3.10 54.07 0.01 0.00 0.01 0.00 0.01 0.01 
414 -3.10 54.08 0.00 0.00 0.00 0.00 0.00 0.00 
415 -3.12 54.08 0.01 0.00 0.01 0.00 0.01 0.01 
417 -3.12 54.05 0.02 0.00 0.01 0.00 0.01 0.01 
420 -3.14 54.05 0.01 0.00 0.02 0.00 0.02 0.02 
423 -3.07 54.04 0.08 0.00 0.08 0.00 0.08 0.08 
424 -3.07 54.05 0.02 0.00 0.04 0.00 0.04 0.04 
425 -3.07 54.07 0.00 0.00 0.00 0.00 0.00 0.00 
426 -3.05 54.07 0.00 0.00 0.01 0.00 0.01 0.01 
427 -3.05 54.05 0.00 0.00 0.00 0.00 0.00 0.00 
428 -3.05 54.04 0.00 0.00 0.02 0.00 0.02 0.02 
429 -3.03 54.04 0.00 0.00 0.01 0.00 0.01 0.01 
430 -3.03 54.05 0.00 0.00 0.01 0.00 0.01 0.01 
431 -3 .03 54.07 0.04 0.00 0.05 0.00 0.04 0.05 
433 -3.00 54.07 0.00 0.00 0.01 0.00 0.01 0.01 
434 -3.08 53.94 0.04 0.00 0.04 0.00 0.04 0.04 
435 -3 .11 53.94 0.01 0.00 0.01 0.00 0.01 0.01 
436 -3 .13 53.94 0.02 0.00 0.02 0.00 0.02 0.02 
437 -3.15 53.94 0.02 0.00 0.02 0.00 0.02 0.02 
442 -3.26 53.94 0.03 0.00 0.02 0.00 0.02 0.02 
444 -3.30 53.93 0.02 0.00 0.15 0.00 0.15 0.15 
445 -3.33 53.93 0.01 0.00 0.01 0.00 0.01 0.01 
447 -3.36 53.93 0.01 0.00 0.02 0.00 0.02 0.02 
448 -3.35 53.92 0.01 0.00 0.01 0.00 0.01 0.01 
449 -3.33 53.92 0.02 0.00 0.01 0.00 0.01 0.01 
450 -3.30 53.92 0.02 0.00 0.02 0.00 0.02 0.02 
451 -3.28 53.92 0.01 0.00 0.02 0.00 0.02 0.02 
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(Continued) Table C4: Contamination loading ind ices by heavy metals in Morecambe bay 
in 1988. Subscripts denote: Ll8 : Weighted average; Ll9 : Bounded difference; Ll10: Bounded 

sum; L1 11 : Hamacher product; Ll 12: Hamacher sum; Ll13: Algebraic sum. 

Station Longitude Latitude Lia Llg Ll,o u,, Ll,2 Ll,a 
453 -3.24 53.92 0.01 0.00 0.05 0.00 0.05 0.05 
456 -3.1 9 53.92 0.02 0.00 0.02 0.00 0.02 0.02 
457 -3.17 53.92 0.02 0.00 0.02 0.00 0.02 0.02 
462 -3.16 53.93 0.02 0.00 0.02 0.00 0.02 0.02 
463 -3.18 53.93 0.10 0.00 0.07 0.00 0.07 0.07 
465 -3.17 53.93 0.02 0.00 0.02 0.00 0.02 0.02 
467 -3.14 53.93 0.02 0.00 0.03 0.00 0.03 0.03 
468 -3.12 53.93 0.00 0.00 0.00 0.00 0.00 0.00 
473 -3.05 54.02 0.01 0.00 0.02 0.00 0.02 0.02 
474 -3.02 54.02 0.01 0.00 0.03 0.00 0.03 0.03 
475 -2.99 54.02 0.00 0.00 0.02 0.00 0.02 0.02 
477 -3.00 54.04 0.00 0.00 0.01 0.00 0.01 0.01 
478 -3.00 54.05 0.00 0.00 0.00 0.00 0.00 0.00 
479 -2.98 54.07 0.00 0.00 0.01 0.00 0.01 0.01 
481 -2.98 54.05 0.00 0.00 0.02 0.00 0.02 0.02 
482 -2.98 54.04 0.00 0.00 0.01 0.00 0.01 0.01 
483 -2.99 54.04 0.00 0.00 0.02 0.00 0.02 0.02 
486 -2.97 54.05 0.00 0.00 0.00 0.00 0.00 0.00 
487 -2.96 54.06 0.00 0.00 0.01 0.00 0.01 0.01 
489 -2.94 54.07 0.00 0.00 0.02 0.00 0.02 0.02 
493 -3.18 53.91 0.03 0.00 0.02 0.00 0.02 0.02 
494 -3.20 53.91 0.06 0.00 0.18 0.00 0.17 0.17 
497 -3.25 53.91 0.02 0.00 0.02 0.00 0.02 0.02 
498 -3.28 53.91 0.04 0.00 0.03 0.00 0.03 0.03 
499 -3.30 53.91 0.03 0.00 0.15 0.00 0.14 0.14 
500 -3.33 53.91 0.02 0.00 0.07 0.00 0.07 0.07 
501 -3.35 53.91 0.02 0.00 0.02 0.00 0.02 0.02 
502 -3.35 53.89 0.02 0.00 0.08 0.00 0.08 0.08 
503 -3.33 53.89 0.02 0.00 0.12 0.00 0.11 0.11 
504 -3.30 53.89 0.02 0.00 0.02 0.00 0.02 0.02 
505 -3.28 53.89 0.02 0.00 0.02 0.00 0.02 0.02 
508 -3.22 53.90 0.02 0.00 0.02 0.00 0.02 0.02 
509 -3.1 9 53.91 0.01 0.00 0.01 0.00 0.01 0.01 
510 -3.17 53.91 0.04 0.00 0.02 0.00 0.02 0.02 
515 -3.12 53.89 0.02 0.00 0.02 0.00 0.02 0.02 
516 -3.14 53.89 0.04 0.00 0.21 0.00 0.19 0.20 
517 -3.17 53.89 0.01 0.00 0.02 0.00 0.02 0.02 
518 -3.19 53.89 0.04 0.00 0.03 0.00 0.03 0.03 
519 -3.21 53.89 0.02 0.00 0.02 0.00 0.02 0.02 
520 -3.24 53.89 0.01 0.00 0.01 0.00 0.01 0.01 
522 -3.21 53.88 0.02 0.00 0.05 0.00 0.05 0.05 
524 -3.26 53.88 0.02 0.00 0.03 0.00 0.03 0.03 
525 -3.28 53.88 0.04 0.00 0.22 0.00 0.21 0.21 
526 -3.30 53.88 0.01 0.00 0.02 0.00 0.02 0.02 
529 -3.30 53.87 0.04 0.00 0.03 0.00 0.03 0.03 
533 -3.24 53.87 0.01 0.00 0.02 0.00 0.02 0.02 
534 -3.21 53.87 0.02 0.00 0.03 0.00 0.03 0.03 
538 -3 .17 53.88 0.03 0.00 0.03 0.00 0.03 0.03 
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Table C5: Crisp ideal and fuzzy ideal contamination sets over total sampled 
stations from Liverpool bay between years 1986 to 1992. 

Average Average Crisp ideal Fuzzy Ideal 
Station Longitude Latitude set set 
F 6 -44.11 25.94 0 0.47 
F 8 -44.11 28.54 0 0.56 
F 10 -44.11 31.00 0 0.61 
F 12 -44.11 33.40 0 0.60 
G 5 -41 .87 26.70 0 0.67 
G 7 -42.66 29.1 0 0 0.76 
G 9 -41.66 31.56 0 0.86 
G11 -41.92 34.02 0 0.79 
G1 3 -41 .73 36.35 0 0.70 
H 6 -39.63 27.60 0 0.90 
H 8 -39.30 30.10 0 1.00 
H 10 -39.70 32.50 0 0.99 
H 12 -39.90 35.10 0 0.92 
J 7 -37.48 27.24 1 1.00 
J 9 -37.50 30.80 1 1.00 
J 11 -37.40 33.40 1 1.00 
J 13 -37.40 35.80 0 0.99 
K 6 -35.40 26.90 0 0.98 
K 7 -35.50 28.10 1 1.00 
K 8 -35.43 29.31 1 1.00 
K 9 -35.62 30.68 1 1.00 
K 10 -35.36 31.68 1 1.00 
K 11 -35.48 33.00 1 1.00 
K 12 -35.66 34.30 1 1.00 
L 7 -33.33 27.68 0 1.00 
L 8 -33.30 29.11 1 1.00 
L09 -33.45 30.50 1 1.00 
L10 -33.26 31.70 1 1.00 
L11 -33.16 32.76 1 1.00 
L12 -33.15 33.97 1 1.00 
L13 -33.16 35.06 1 1.00 
M06 -31.00 26.40 0 0.83 
M08 -31.18 28.90 0 0.98 
M09 -31 .11 30.10 0 0.99 
M10 -31.06 31.30 0 1.00 
M11 -31.20 32.50 0 1.00 
M1 2 -31.27 33.70 0 0.99 
M13 -31.20 34.80 0 0.97 
N 5 -28.99 26.10 0 0.66 
NO? -29.20 27.30 0 0.75 
N08 -29.10 28.60 0 0.82 
N09 -29.03 29.90 0 0.85 
N10 -28.97 31.10 0 0.88 
N11 -28.95 32.33 0 0.87 
N12 -28.89 33.52 0 0.85 
N13 -28.95 34.55 0 0.80 
N14 -29.00 35.70 0 0.76 
NW24 -1 3.09 29.32 0 0.10 
P06 -26.70 25.80 0 0.48 
P08 -26.87 28.40 0 0.60 
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(Continued) Table C5: Crisp ideal and fuzzy ideal contamination sets over 
total sampled stations from Liverpool bay between years 1986 to 1992. 

Average Average Crisp ideal Fuzzy Ideal 
Station Longitude Latitude set set 
P09 -26.75 29.60 0 0.63 
P10 -26.73 30.80 0 0.64 
P11 -26.57 32.00 0 0.63 
P12 -26.69 33.20 0 0.63 
P14 -26.70 35.50 0 0.57 
007 -24.90 26.98 0 0.41 
08 -25.20 28.00 0 0.46 
09 -24.58 29.40 0 0.44 
010 -24.60 30.60 0 0.46 
011 -24.48 31.68 0 0.45 
012 -24.50 32.90 0 0.45 
013 -24.40 34.24 0 0.43 
R06 -22.50 25.40 0 0.27 
ROS -22.60 27.90 0 0.31 
R9 -22.40 29.10 0 0.31 
R10 -22.06 31.92 0 0.30 
R11 -22.07 31.50 0 0.31 
R12 -22.11 32.70 0 0.31 
R13 -22.00 33.80 0 0.30 
R14 -21.60 35.07 0 0.28 
S07 -20.30 26.40 0 0.21 
S08 -20.20 27.70 0 0.22 
S09 -20.18 28.90 0 0.23 
S10 -19.90 30.00 0 0.23 
S11 -19.80 31.20 0 0.22 
S12 -19.60 32.40 0 0.22 
S13 -19.40 33.50 0 0.21 
S14 -19.30 34.70 0 0.20 
T6 -18.40 25.20 0 0.16 
T08 -17.70 27.40 0 0.16 
T09 -17.68 28.60 0 0.17 
T10 -17.58 29.90 0 0.17 
T11 -17.30 31.00 0 0.16 
T12 -10.34 32.23 0 0.16 
T13 -17.00 33.30 0 0.16 
T14 -16.90 34.40 0 0.15 
T15 -16.50 35.50 0 0.14 
U9 -15.17 28.38 0 0.13 
U11 -14.80 30.80 0 0.12 
U15 -14.50 35.50 0 0.12 
YY01 -14.20 29.10 0 0.11 
YY02 -12.70 29.50 0 0.10 
YY03 -12.00 29.10 0 0.09 
YY04 -13.40 28.60 0 0.10 
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