Computing 3-dimensional groups : crossed squares and cat2-groups
 Arvasi, Zekeriya; Odabas, Alper; Wensley, Christopher D.
 Journal of Symbolic Computation

DOI:
10.1016/j.jsc.2022.04.020

Published: 31/01/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Arvasi, Z., Odabas, A., \& Wensley, C. D. (2023). Computing 3-dimensional groups : crossed squares and cat2-groups. Journal of Symbolic Computation, 114 (Jan-Feb), 267-281.
https://doi.org/10.1016/j.jsc.2022.04.020

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Computing 3-Dimensional Groups : Crossed Squares and Cat^{2}-Groups

Z. Arvasi ${ }^{\text {a }}$, A. Odabaş ${ }^{\text {a }}$, and C. D. Wensley ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, Osmangazi University, Eskisehir, Turkey
${ }^{\mathrm{b}}$ School of Computer Science and Electronic Engineering, Bangor University, North Wales, UK

Abstract

The category $\mathbf{X S q}$ of crossed squares is equivalent to the category Cat2 of cat 2-groups. Functions for computing with these structures have been developed in the package XMod written using the GAP computational discrete algebra programming language. This paper contains a table listing the numbers ι_{G}^{2} of isomorphism classes of cat ${ }^{2}$-groups on groups G of order at most 30 - a total of 1007 cat 2-groups. Secondly, it contains general formulae for ι_{G}^{2} in a number of special cases.

Key Words: cat 2-group, crossed square, GAP, XMod
Classification: 18D35, 18G50.

1 Introduction

Crossed modules of groups were first defined by Whitehead in [26]. Connected (weak homotopy) 2 -types are modelled algebraically by (quasi-isomorphism classes of) crossed modules (see [17]). However these algebraic structures are the essential data for 2-groups, which are exactly the same as internal categories in the category Gp of groups (see [24]). The Brown-Spencer theorem (see [10]) constructs the associated 2 -group of a crossed module, which is now regarded as a " 2 dimensional group". The 2-group viewpoint provides a useful way of interpreting the structure of a crossed module, and gives some applications (see [24]).

Turning to 3 -types, there are several different algebraic models: crossed squares of groups; cat $^{2}{ }^{-}$ groups; 2-crossed modules [14]; quadratic modules [6]; braided, regular crossed modules and (2truncated) simplicial groups [11]. Some links between these structures are discussed in [5]. We consider here the equivalent categories $\mathbf{X S q}$ and Cat2 of crossed squares and cat ${ }^{2}$-groups (see [21]). These two algebraic structures represent 3 -types and provide an interpretation for 3-groups (see [24]). Connected 3 -types are modelled by quasi-isomorphism classes of crossed squares.

The inclusion crossed square is the simplest algebraic example of a crossed square. Given a pair of normal subgroups M, N of a group G, we can form a square

in which each homomorphism is an inclusion crossed module, and there is an h-map

$$
\begin{aligned}
h: M \times N & \longrightarrow M \cap N \\
(m, n) & \longmapsto[m, n]=m^{-1} n^{-1} m n .
\end{aligned}
$$

The principal topological example of a crossed square is the fundamental crossed square. Given a pointed triad of spaces $A \subseteq X, B \subseteq X$ with $a \in A \cap B$, second relative homotopy groups $\pi_{2}(A, A \cap$ $B, a), \pi_{2}(B, A \cap B, a)$, and the first homotopy group $\pi_{1}(A \cap B, a)$, we obtain a square

In this case the h-map

$$
h: \pi_{2}(A, A \cap B, a) \times \pi_{2}(B, A \cap B, a) \longrightarrow \pi_{3}(X ; A, B, a)
$$

is the triad Whitehead product (see [15, 26]).
This paper is concerned with the latest developments in the general programme of "computational higher-dimensional group theory" which forms part of the "higher-dimensional group theory" programme described, for example, by Brown in [8].

The 2-dimensional part of these programmes is concerned with group objects in the categories of groups or groupoids. These objects and their morphisms form the equivalent categories XMod of crossed modules or Cat1 of cat ${ }^{1}$-groups. The initial computational part of this programme was described in Alp and Wensley [2]. The output from this work was the package XMod [1] for GAP [19] which, at the time, contained functions for constructing crossed modules and cat ${ }^{1}$-groups of groups, and their morphisms, and conversions from one to another.

The next development of XMod used the package groupoids [22] to compute crossed modules of groupoids. Later still, a GAP package XModAlg [3] was written to compute cat ${ }^{1}$-algebras and crossed modules of algebras, as described in [4].

We are concerned here with the 3-dimensional part of the programme which deals with objects in $\mathbf{X S q}$ and Cat2. The mathematical basis of all these structures is described in $\S 2$, and some computational details are included in $\S 3$. General formulae for some simple abelian groups are contained in $\S 4$. In $\S 5$ we enumerate the 1,007 isomorphism classes of cat 2-groups on the 92 groups of order at most 30 .

The contents of this paper are purely algebraic. Readers wishing to understand the applications of the theory are encouraged to study references such as $[5,9,24,17]$. The XMod package also follows a purely algebraic approach, and does not compute any specifically topological results. The interested reader may wish to investigate the GAP package HAP [16] which also computes with cat ${ }^{1}$-groups.

2 Crossed Squares and Cat ${ }^{2}$-Groups

The notion of a crossed module $\mathcal{X}=(\partial: S \rightarrow R)$ was introduced by Whitehead [26]. It consists of a group homomorphism $\partial: S \rightarrow R$, together with a left action R on S (written $(r, s) \rightarrow{ }^{r} s$ for $r \in R$ and $s \in S$) satisfying the following conditions:

$$
\partial\left({ }^{r} s\right)=r(\partial s) r^{-1} \forall s \in S, r \in R, \quad\left(\partial s_{2}\right) s_{1}=s_{2} s_{1} s_{2}^{-1} \forall s_{1}, s_{2} \in S,
$$

(the pre-crossed module property and the Peiffer identity).
A morphism of crossed modules $(\sigma, \rho): \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$ consists of two group homomorphisms $\sigma: S_{1} \rightarrow S_{2}$ and $\rho: R_{1} \rightarrow R_{2}$ such that $\partial_{2} \circ \sigma=\rho \circ \partial_{1}$ and $\sigma\left({ }^{r} s\right)={ }^{(\rho r)}(\sigma s)$ for all $s \in S_{1}, r \in R_{1}$.

Standard constructions for a crossed module morphism include the inclusion of a normal subgroup, where the action is conjugation; the inner automorphism map $S \rightarrow \operatorname{Inn}(S)$; the zero map
when S is an R-module; maps with central kernel, where $r \in R$ acts on S by conjugation with $\partial^{-1} r$; and direct products ($\partial_{1} \times \partial_{2}: S_{1} \times S_{2} \rightarrow R_{1} \times R_{2}$) with direct product action.

Loday [21] reformulated the notion of a crossed module as a cat ${ }^{1}$-group. A projection on G is an endomorphism $p: G \rightarrow G$ satisfying $p \circ p=p$. A cat ${ }^{1}$-group $\mathcal{C}=(G \rightrightarrows R)$ is a triple $(G ; t, h)$ consisting of a group G with two homomorphisms: the tail map t and the head map h, having a common image R and satisfying the following axioms.

$$
\begin{equation*}
t \circ h=h, \quad h \circ t=t, \quad \text { and } \quad[\operatorname{ker} t, \operatorname{ker} h]=1 . \tag{1}
\end{equation*}
$$

When only the first two of these axioms are satisfied, the structure is a pre-cat ${ }^{1}$-group. It follows immediately (by expanding $t \circ h \circ t$ and $h \circ t \circ h$) that t and h are both projections. A cat ${ }^{1}$-group is symmetric if $t=h$ and, from (1), a sufficient condition for this is that $t \circ h=h \circ t$.

A morphism of cat ${ }^{1}$-groups $\mathcal{C}_{1}=\left(G_{1} ; t_{1}, h_{1}\right) \rightarrow \mathcal{C}_{2}=\left(G_{2} ; t_{2}, h_{2}\right)$ is a homomorphism of groups $f: G_{1} \rightarrow G_{2}$ such that $f \circ t_{1}=t_{2} \circ f$ and $f \circ h_{1}=h_{2} \circ f$.

We use the following equivalence between XMod and Cat1. It was shown in [21, Lemma 2.2] that

$$
\begin{equation*}
(G \stackrel{t, h}{\rightrightarrows} R) \quad \text { determines } \quad \mathcal{X}=(\partial: S \rightarrow R) \quad \text { where } \quad S=\operatorname{ker} t, \partial=\left.h\right|_{S}, \tag{2}
\end{equation*}
$$

and the action is conjugation. Conversely, if $(\partial: S \rightarrow R)$ is a crossed module, then setting $G=S \rtimes R$ and defining t, h by $t(s, r)=(1, r)$ and $h(s, r)=(1,(\partial s) r)$ for $s \in S, r \in R$, produces a cat ${ }^{1}$-group $(G ; t, h)$.

The notion of a crossed square is due to Guin-Walery and Loday [20]. An oriented crossed square of groups \mathbb{X} is a commutative square of groups $[L, M, N, P]$, together with left actions of P on L, M, N, and a crossed pairing map $\boxtimes: M \times N \rightarrow L$. Then M acts on N and L via P and N acts on M and L via P. This structure is illustrated in the following left-hand diagram.

The following axioms must be satisfied for all $l \in L, m, m^{\prime} \in M, n, n^{\prime} \in N$ and $p \in P$.

1. With the given actions, the homomorphisms $\kappa, \lambda, \mu, \nu$ and $\pi=\mu \circ \kappa=\nu \circ \lambda$ are crossed modules, and both κ, λ are P-equivariant,
2. $\left(m m^{\prime} \boxtimes n\right)=\left({ }^{m} m^{\prime} \boxtimes^{m} n\right)(m \boxtimes n) \quad$ and $\quad\left(m \boxtimes n n^{\prime}\right)=(m \boxtimes n)\left({ }^{n} m \boxtimes{ }^{n} n^{\prime}\right)$,
3. $\kappa(m \boxtimes n)=m\left({ }^{n} m^{-1}\right) \quad$ and $\quad \lambda(m \boxtimes n)=\left({ }^{m} n\right) n^{-1}$,
4. $(\kappa l \boxtimes n)=l\left({ }^{n} l^{-1}\right) \quad$ and $\quad(m \boxtimes \lambda l)=\left({ }^{m} l\right) l^{-1}$,
5. ${ }^{p}(m \boxtimes n)=\left({ }^{p} m \boxtimes{ }^{p} n\right)$.

Note that axiom 1. implies that (id, μ), (id, $\nu),(\kappa, \mathrm{id})$ and (λ, id) are morphisms of crossed modules.
The transpose $\tilde{\mathbb{X}}$ of \mathbb{X}, obtained by interchanging M and N, is shown in the right-hand diagram in (3). Since crossed pairing identities are similar to those for commutators, the crossed pairing for $\tilde{\mathbb{X}}$ is $\dot{\otimes}$ where $(n \tilde{\boxtimes} m)=(m \boxtimes n)^{-1}$. Transposition gives an equivalence relation on the set of oriented crossed squares, and a crossed square is an equivalence class. We shall follow the usual convention of
omitting the adjective "oriented" and refer to \mathbb{X} as a crossed square. It is important to remember that, when giving enumeration results, we have counted equivalence classes.

Standard constructions for crossed squares include the following sets of groups $[L, M, N, P]$:

- $[M \cap N, M, N, P]$, where M, N are normal subgroups of P;
- $[L, \operatorname{Inn} L, \operatorname{Inn} L$, Aut $L]$ where $\kappa=\lambda$ maps $l \in L$ to the inner automorphism $l^{\prime} \mapsto l l^{\prime} l^{-1}$;
- [$M \otimes N, M, N, P]$ where where $M \otimes N$ is a nonabelian tensor product of groups [13];
- the direct product of crossed squares has groups $\left[L_{1} \times L_{2}, M_{1} \times M_{2}, N_{1} \times N_{2}, P_{1} \times P_{2}\right]$ with direct product actions and crossed pairing $\boxtimes\left(\left(m_{1}, m_{2}\right),\left(n_{1}, n_{2}\right)\right)=\left(\boxtimes_{1}\left(m_{1}, n_{1}\right), \boxtimes_{2}\left(m_{2}, n_{2}\right)\right)$.

The crossed square \mathbb{X} in (3) can be thought of as a horizontal or vertical crossed module of crossed modules:

where (κ, ν) is the boundary of the crossed module with domain $(\lambda: L \rightarrow N)$ and codomain (μ : $M \rightarrow P$), (see also section 9.2 of [25]).

There is an evident notion of morphism of crossed squares which preserves all the structure, so that we obtain a category $\mathbf{X S q}$, the category of crossed squares.

Although, when first introduced by Loday and Walery [20], the notion of crossed square of groups was not linked to that of cat ${ }^{2}$-groups, it was in this form that Loday gave their generalisation to an n-fold structure, cat ${ }^{n}$-groups (see [21]). When $n=1$ this is the notion of cat ${ }^{1}$-group given earlier.

When $n=2$ we obtain a cat ${ }^{2}$-group. Again we have a group G, but this time with two independent cat 1-group structures on it. An oriented pre-cat ${ }^{2}$-group is a 5 -tuple, $\mathbb{C}=\left(G ; t_{1}, h_{1} ; t_{2}, h_{2}\right)=\left[\mathcal{C}_{1}, \mathcal{C}_{2}\right]$, where $\mathcal{C}_{1}=\left(G ; t_{1}, h_{1}\right)$ and $\mathcal{C}_{2}=\left(G ; t_{2}, h_{2}\right)$ are pre-cat ${ }^{1}$-groups, and

$$
\begin{equation*}
t_{1} \circ t_{2}=t_{2} \circ t_{1}, \quad h_{1} \circ h_{2}=h_{2} \circ h_{1}, \quad t_{1} \circ h_{2}=h_{2} \circ t_{1}, \quad t_{2} \circ h_{1}=h_{1} \circ t_{2} . \tag{4}
\end{equation*}
$$

This is an oriented cat ${ }^{2}$-group when $\mathcal{C}_{1}, \mathcal{C}_{2}$ are both cat ${ }^{1}$-groups. We say \mathbb{C} is symmetric if $\mathcal{C}_{1}=\mathcal{C}_{2}$. By (4) this can only happen when $t_{1} \circ h_{1}=h_{1} \circ t_{1}$, so \mathcal{C}_{1} is symmetric. Thus symmetric cat ${ }^{2}$-groups and in one-one correspondence with symmetric cat ${ }^{1}$-groups. The transpose $\widetilde{\mathbb{C}}$ of \mathbb{C} is obtained by interchanging $\left[t_{1}, h_{1}\right]$ with $\left[t_{2}, h_{2}\right]$. Again, transposition is an equivalence relation, and a cat ${ }^{2}$-group is an equivalence class. We shall omit the qualifier "oriented" whenever possible.

To emphasise the relationship with crossed squares we give the following left-hand diagram for \mathbb{C}, where R_{12} is the image of $t_{1} \circ t_{2}=t_{2} \circ t_{1}$. On the right we show the symmetric case.

A morphism of pre-cat ${ }^{2}$-groups from \mathbb{C} to \mathbb{C}^{\prime} is a triple $\left(\gamma, \rho_{1}, \rho_{2}\right)$, as shown in the diagram

where $\gamma: G \rightarrow G^{\prime}, \rho_{1}=\left.\gamma\right|_{R_{1}}$ and $\rho_{2}=\left.\gamma\right|_{R_{2}}$ are homomorphisms satisfying:

$$
\rho_{1} \circ t_{1}=t_{1}^{\prime} \circ \gamma, \quad \rho_{1} \circ h_{1}=h_{1}^{\prime} \circ \gamma, \quad \rho_{2} \circ t_{2}=t_{2}^{\prime} \circ \gamma, \quad \rho_{2} \circ h_{2}=h_{2}^{\prime} \circ \gamma
$$

We thus obtain categories PreCat2 and Cat2, the categories of (pre-) cat ${ }^{2}$-groups.
Notice that, unlike the situation with crossed squares where the diagonal is a crossed module, it is not required that the diagonal in (5) is a cat ${ }^{1}$-group - it may just be a pre-cat ${ }^{1}$-group. The simplest case of this situation is described in Example 2.1 below.

Recall that Loday, in [21], proved that there is an equivalence between the category Cat2 and the category XSq (see also [23]). Applying the equivalence between Cat1 and XMod in (2) to the cat^{2}-group \mathbb{C} in (5), we obtain the left-hand diagram of group homomorphisms in (6) where each morphism is a crossed module for the natural action, conjugation in G. The required crossed pairing is given by the commutator in G since if $x \in R_{1} \cap S_{2}$ and $y \in S_{1} \cap R_{2}$ then $[x, y] \in S_{1} \cap S_{2}$. Note that equation (4) implies $\partial_{1} \circ \partial_{2}=\partial_{2} \circ \partial_{1}$. It is routine to check the remaining crossed square axioms.

Conversely, we may consider the crossed square \mathbb{X} in (3) as a morphism of crossed modules $(\kappa, \nu):(\lambda: L \rightarrow N) \rightarrow(\mu: M \rightarrow P)$. Using the equivalence between crossed modules and cat ${ }^{1}$ groups this gives a morphism $\partial:(L \rtimes N, t, h) \longrightarrow\left(M \rtimes P, t^{\prime}, h^{\prime}\right)$ of cat ${ }^{1}$-groups. There is an action of $(m, p) \in M \rtimes P$ on $(l, n) \in L \rtimes N$ given by ${ }^{(m, p)}(l, n)=\left({ }^{m}\left({ }^{p} l\right)\left(m \boxtimes{ }^{p} n\right),{ }^{p} n\right)$. Using this action, we form its associated cat ${ }^{2}$-group with source $(L \rtimes N) \rtimes(M \rtimes P)$, as shown in the right-hand diagram in (6).

Example 2.1. Let $D_{8}=\left\langle a, b \mid a^{2}, b^{2},(a b)^{4}\right\rangle$ be the dihedral group of order 8 , and let $c=[a, b]=(a b)^{2}$ so that $a^{b}=a c$ and $b^{a}=b c$. (The standard permutation representation is given by $a=(1,2)(3,4), b=$ $(1,3), a b=(1,2,3,4), c=(1,3)(2,4)$.

Define $t_{a}, t_{b}: D_{8} \rightarrow D_{8}$ by $t_{a}: a, b \mapsto a, 1$ and $t_{b}: a, b \mapsto 1, b$. Then construct cat ${ }^{1}$-groups $\mathcal{C}_{a}=\left(D_{8} ; t_{a}, t_{a}\right)$ and $\mathcal{C}_{b}=\left(D_{8} ; t_{b}, t_{b}\right)$. Diagram (5) and the left-hand diagram in (6) become

where $A=\langle a\rangle, B=\langle b\rangle, C=\langle c\rangle$ and I is the trivial group. The crossed pairing is given by $\boxtimes(a, b)=c$. The composite $t_{a} \circ t_{b}$ is the zero map, and $\left[D_{8}, D_{8}\right]=C$, so the diagonal is not a cat ${ }^{1}$-group.

For dimensions $n \geqslant 3$, a cat ${ }^{n}$-group consists of a group G with n independent cat ${ }^{1}$-group structures $\left(G ; t_{i}, h_{i}\right), 1 \leq i \leq n$, such that $t_{i} t_{j}=t_{j} t_{i}, h_{i} h_{j}=h_{j} h_{i}$ and $t_{i} h_{j}=h_{j} t_{i}$ for all $i \neq j$. Ellis and Steiner in [18] defined a generalisation of a crossed square to higher dimensions, called a crossed n-cube.

The following result is needed for $\S 4$. Since all the axioms are immediately satisfied, the proof is straightforward.

Lemma 2.2. Let G be a direct product $H \times K$.
(i) Let \mathcal{C} be a cat ${ }^{1}$-group on G such that $t H \leqslant H$ and $t K \leqslant K$. Then restricting the maps t, h to H gives a cat ${ }^{1}$-group on H, and similarly for K.
(ii) Let \mathbb{C} be a cat ${ }^{2}$-group on G such that $t_{1} H$ and $t_{2} H$ are subgroups of H while $t_{1} K$ and $t_{2} K$ are subgroups of K. Then restricting the maps $t_{1}, h_{1}, t_{2}, h_{2}$ to H gives a cat ${ }^{2}$-group on H, and similarly for K.

3 Computer Implementation

GAP [19] is an open-source system for discrete computational algebra. The system consists of a library of implementations of mathematical structures: groups, vector spaces, modules, algebras, graphs, codes, designs, etc.; plus databases of groups of small order, character tables, etc. The system has world-wide usage in the area of education and scientific research. GAP is free software and user contributions to the system are supported. These contributions are organized in a form of GAP packages and are distributed together with the system. Contributors can submit additional packages for inclusion after a reviewing process.

The Small Groups library by Besche, Eick and O'Brien in [7] provides access to descriptions of the groups of small order. The groups are listed up to isomorphism. The library contains all groups of order at most 2000 except 1024.

3.1 2-Dimensional Groups

The XMod package for GAP contains functions for computing with crossed modules, cat ${ }^{1}$-groups and their morphisms, and was first described in [1]. An equivalent notion of cat ${ }^{1}$-group is implemented in XMod, where the tail and head maps are no longer required to be endomorphisms on G. Instead it is required that t and h have a common image R, and an embedding $e: R \rightarrow G$ is added. The axioms in (1) then become:

$$
\begin{equation*}
t \circ e \circ h=h, \quad h \circ e \circ t=t, \quad \text { and } \quad[\operatorname{ker} t, \operatorname{ker} h]=1, \tag{7}
\end{equation*}
$$

and again it follows that $t \circ e \circ t=t$ and $h \circ e \circ h=h$. We denote such a cat ${ }^{1}$-group by $\mathcal{C}=(e ; t, h:$ $G \rightarrow R)$. Note that (id, e) is an isomorphism from \mathcal{C} to $\mathcal{C}^{\prime}=(\mathrm{id} ; t \circ e, h \circ e: G \rightarrow e R)$ where the maps are endomorphisms.

The package provides an operation Cat1Select which may be used to select a cat ${ }^{1}$-group \mathcal{C} from a data file. This file contains data on all isomorphism classes of cat ${ }^{1}$-structures on groups of size up to 70 (ordered according to the GAP numbering of small groups). The GAP package HAP has more recently extended this information to groups of size up to 255 . Cat ${ }^{1}$-groups may be converted into crossed modules, and vice-versa, using the functions XModOfCat1Group and Cat1GroupOfXMod.

The operation AllCat1Groups (\mathbf{G}) may be used to produce a list of all the cat ${ }^{1}$-groups with source G. This function starts with a list L of the projections on G, selects pairs (t, h) from L, and tests whether these satisfy axioms (1). While this is acceptable for many small groups, such lists can make heavy use of memory. It is a fundamental principle in GAP to avoid the unnecessary storing of long lists by providing iterators. An iterator is a function which returns a record containing functions NextIterator, IsDoneIterator and ShallowCopy. The package provides iterators All-

Cat1GroupsIterator(G), and AllCat1GroupsWithImageIterator(G,R) which constructs cat ${ }^{1}$-groups $(G \rightrightarrows R)$ for a given subgroup R. The equivalent function in HAP is CatOneGroupsByGroup.

3.2 3-dimensional Groups

We have developed new operations for XMod which construct (pre-)cat ${ }^{2}$-groups and their morphisms. There are also functions for crossed squares and their morphisms, and functions to convert between cat ${ }^{2}$-groups and crossed squares.

As with pre-cat ${ }^{1}$-groups, we use an equivalent notion for pre-cat ${ }^{2}$-groups. An oriented pre-cat ${ }^{2}$ group has the form

where R_{1}, R_{2} need not be subgroups of G, but R_{12} is taken to be the common image of $e_{2} \circ t_{2} \circ e_{1} \circ t_{1}$ and $e_{1} \circ t_{1} \circ e_{2} \circ t_{2}$, a subgroup of G. The other orientation is obtained by reflecting in the diagonal.

The following GAP session illustrates the use of the function Cat2Group (C1,C2) which constructs a cat ${ }^{2}$-group from two cat ${ }^{1}$-groups. Notice that the cat ${ }^{2}$-group C 2 ab is the second example with a diagonal which is only a pre-cat ${ }^{1}$-group.

```
gap> a := (1,2,3,4) (5,6,7,8); ;
gap> b := (1,5) (2, 6) (3,7) (4, 8); ;
gap> c := (2,6) (4,8);;
gap> G := Group( a, b, c );;
gap> SetName( G, "c4c2:c2" );
gap> tla := GroupHomomorphismByImages( G, G, [a,b,c], [(), (),c] ); ;
gap> Cla := PreCat1Group( tla, tla );;
gap> tib := GroupHomomorphismByImages( G, G, [a,b,c], [a,(),()] ); ;
gap> C1b := PreCat1Group( t1b, t1b );;
gap> C2ab := Cat2Group( C1a, C1b );
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [c4c2:c2 => Group( [ (), (), (2,6) (4,8) ] )]
2 : [c4c2:c2 => Group( [ (1,2,3,4) (5,6,7,8), (), () ] )]
gap> IsCat2Group( C2ab );
true
gap> Size( C2ab );
[ 16, 2, 4, 1 ]
gap> IsCat1Group( Diagonal2DimensionalGroup( C2ab ) );
false
```

The basic algorithm for the function AllCat2Groups(G) is very simple. It returns a list L of cat^{2} groups, and is shown in Algorithm 1.

```
Algorithm 1: AllCat2Groups
    Input: G, a group
    Output: L, a list
    begin
        L\leftarrow[]
        for [R1,R2] in unordered pairs of subgroups of }G\mathrm{ do
            for A in AllCat1GroupsWithImage(G,R1) do
                for B in AllCat1GroupsWithImage(G,R2) do
                        C\leftarrowCat2Group}(A,B
                        if C\not= fail then
                    Add(L,C)
```

Note that this algorithm is used to provide an iterator AllCat2GroupsIterator(G); that the pair of subgroups $\left[R_{1}, R_{2}\right]$ is provided by the standard GAP functions AllSubgroupsIterator and UnorderedPairsIterator; and that A, B are constructed using the iterator for cat ${ }^{1}$-groups with a given image described above. Note also that an oriented cat 2-group and its transpose are only counted once.

The package also includes an iterator AllCat2GroupsWithImagesIterator(G,R1,R2) which returns cat ${ }^{2}$-groups with chosen subgroups R_{1}, R_{2}. The utility of this becomes clear when, for example, G has the form C_{p}^{3}, the cube of a cyclic group of prime order, with generators $\{a, b, c\}$. As we shall see in the following section there are, up to isomorphism, very few cases to consider. So it is only necessary to call this function with pairs R_{1}, R_{2} chosen from $[G,\langle a, b\rangle,\langle a, c\rangle,\langle a\rangle,\langle b\rangle, I]$, and then apply appropriate multiplicities.

4 Formulae for special cases

Our aim in the next two sections is to list, for each group G of order at most 30, the following values. First, the number ϵ_{G} of projections on G. Then the number γ_{G}^{1} of cat ${ }^{1}$-groups on G, followed by the number ι_{G}^{1} of their isomorphism classes. (The numbers $\epsilon_{G}, \gamma_{G}^{1}$ and ι_{G}^{1} can be found in [2].) Then the number σ_{G} of symmetric cat ${ }^{1}$-groups, followed by the number τ_{G} of their isomorphism classes. (We have already observed that σ_{G}, τ_{G} are also the numbers of symmetric cat 2-groups and of their isomorphism classes.) Finally, we list the number γ_{G}^{2} of cat 2-groups on G and the number ι_{G}^{2} of their isomorphism classes.

We define the compatibility matrix M_{G}^{2} of G to be the symmetric matrix with rows and columns indexed by the cat ${ }^{1}$-groups \mathcal{C}_{i} on G, where $\left(M_{G}^{2}\right)_{i j}=1$ if \mathcal{C}_{i} and \mathcal{C}_{j} combine to form a cat 2-group. We denote by μ_{G}^{2} the number of ones in M_{G}^{2}. Off-diagonal ones in symmetric positions correspond to the two orientations of a cat ${ }^{2}$-group, so γ_{G}^{2} is the number of ones in the upper-triangular part of M_{G}^{2}. Thus $\gamma_{G}^{2}=\left(\mu_{G}^{2}+\sigma_{G}\right) / 2$ and $\mu_{G}^{2}=2 \gamma_{G}^{2}-\sigma_{G}$.

There is a similar $0-1$ matrix M_{G}^{1} containing μ_{G}^{1} ones. Its rows and columns are indexed by the projections t_{i} on G with $\left(M_{G}^{1}\right)_{i j}=1$ when t_{i} and t_{j} combine to form an oriented cat ${ }^{1}$-group. Again $\gamma_{G}^{1}=\left(\mu_{G}^{1}+\sigma_{G}\right) / 2$ and $\mu_{G}^{1}=2 \gamma_{G}^{1}-\sigma_{G}$. Note that M_{G}^{1} has the form of a block diagonal matrix with one block for each subgroup of G.

4.1 The case $G=A \times B$ with $|A|$ coprime to $|B|$

Since $|A|$ is coprime to $|B|$, an endomorphism of G must consist of an endomorphism of A together with one for B. Hence $\epsilon_{G}=\epsilon_{A} \epsilon_{B}$ and $\gamma_{G}^{1}=\gamma_{A}^{1} \gamma_{B}^{1}$ and $\sigma_{G}=\sigma_{A} \sigma_{B}$.

Proposition 4.1. When $G=A \times B$ with $|A|$ coprime to $|B|$ then $\gamma_{G}^{2}=\gamma_{A}^{2} \gamma_{B}^{2}+\left(\gamma_{A}^{2}-\sigma_{A}\right)\left(\gamma_{B}^{2}-\sigma_{B}\right)$.
Proof: The matrix M_{G}^{2} is the Kronecker product of M_{A}^{2} with M_{B}^{2} so $\mu_{G}^{2}=\mu_{A}^{2} \mu_{B}^{2}$. The formula for γ_{G}^{2} follows by applying $\gamma_{G}^{2}=\left(\mu_{G}^{2}+\sigma_{G}\right) / 2$.

For example, using values in the table of $\S 5$ for C_{2}^{2} and for C_{3}^{2} we may calculate for $G=C_{6}^{2}$ that $\gamma_{G}^{2}=36 \times 93+(36-8)(93-14)=5,560$.

4.2 The case when G is cyclic

Proposition 4.2. When $G=C_{p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}}$ is cyclic, and its order is the product of m distinct primes p_{i}, having multiplicities k_{i}, then

$$
\epsilon_{G}=\gamma_{G}^{1}=\iota_{G}^{1}=\sigma_{G}=\tau_{G}=2^{m} \quad \text { and } \quad \gamma_{G}^{2}=\iota_{G}^{2}=2^{m-1}\left(2^{m}+1\right) .
$$

Proof: When $G=C_{p^{k}}$ is cyclic, with p prime, the only projections are the identity and zero maps. So there are just two cat ${ }^{1}$-groups, both symmetric and all isomorphism classes are singletons. All pairs are compatible, so

$$
M_{G}^{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

and $\mu_{G}^{2}=4$. Similarly, in the general case, there are 2^{m} subgroups, 2^{m} projections and 2^{m} cat 1-groups. All of these are symmetric and no two are isomorphic. M_{G}^{2} is the m-th Kronecker power of the matrix above, so $\mu_{G}^{2}=4^{m}$ and $\gamma_{G}^{2}=\left(4^{m}+2^{m}\right) / 2$.

4.3 The case $G=C_{p}^{n}$ with p prime

When G is an elementary p-group the numbers γ_{G}^{1} and γ_{G}^{2} can get very large, and computations may run out of memory. Indeed the largest numbers of cat ${ }^{2}$-groups in the table below are 325,363 for C_{2}^{4} and 24,222 for C_{3}^{3}. However, some general formulae may be obtained.

Proposition 4.3. For p a prime and $G=C_{p}^{n}$, the n-th power of the cyclic group C_{p},

$$
\sigma_{G}=\epsilon_{G}=\sum_{k=0}^{n} p^{k(n-k)} \prod_{j=1}^{k} \frac{\left(p^{n-j+1}-1\right)}{\left(p^{j}-1\right)} \quad \text { and } \quad \gamma_{G}^{1}=\sum_{k=0}^{n} p^{2 k(n-k)} \prod_{j=1}^{k} \frac{\left(p^{n-j+1}-1\right)}{\left(p^{j}-1\right)} .
$$

Proof: Let $\theta: G \rightarrow G$ be a projection with image $R \cong C_{p}^{k}$. The structure of the subgroup lattice of G is well known, and the common product term in the two formulae gives the number of subgroups of G isomorphic to R. We may choose a generating set $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ for G such that $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$ is a generating set for R. Then $\theta g_{i}=g_{i}$ for $1 \leqslant i \leqslant k$, and each of $(n-k)$ generators $\left\{g_{k+1}, \ldots, g_{n}\right\}$ may be mapped to any of the p^{k} elements in R, so the number of projections with image R is $p^{k(n-k)}$.

If $t, h: G \rightarrow G$ have a common image R then $t \circ h=h$ since t is the identity on R. Similarly $h \circ t=t$. Since G is abelian, $\operatorname{ker} t$ and $\operatorname{ker} h$ commute. Hence there is a cat ${ }^{1}$-group with t, h as the tail and head maps. It follows that the number of cat ${ }^{1}$-groups with image R is the square of the number of projections with image R.

Note, in particular, that γ_{G}^{1} is equal to $\frac{1}{2} p\left(p^{2}+1\right)+\left(p^{2}+2\right)$ when $n=2$, and $2+p^{2}\left(p^{2}+1\right)\left(p^{2}+p+1\right)$ when $n=3$.

4.3.1 $\quad \mathrm{Cat}^{2}$-groups on $G=C_{p}^{2}$

G has $p+1$ subgroups isomorphic to C_{p} and Proposition 4.3 states that there are $2+p(p+1)$ projections and $2+p^{2}(p+1)$ cat 1-groups. In the case $p=2$ there are 8 projections which combine to form 14 cat 1-groups \mathcal{C}_{i}, and 8 of these are symmetric. These form 4 isomorphism classes with numbers $1,8,9,14$ as representatives, of the form $(G \rightrightarrows I) ;(G \rightrightarrows\langle b\rangle)$, both non-symmetric and symmetric; and $(G \rightrightarrows G)$.

The matrix M_{G}^{2} shown below has $\mu_{G}^{2}=64$, so $\gamma_{G}^{2}=36$.
This matrix illustrates the behaviour for every prime $p: \mathcal{C}_{1}=(G \rightrightarrows I)$ forms a cat ${ }^{2}$-group with every \mathcal{C}_{i}, and every \mathcal{C}_{i} forms one with $\mathcal{C}_{14}=(G \rightrightarrows G)$. There is an additional symmetric cat 2-group (ones on the diagonal) only when \mathcal{C}_{i} is symmetric (tail and head maps are equal). Finally, each symmetric \mathcal{C}_{i} forms a cat ${ }^{2}$-group with precisely one of the other symmetric \mathcal{C}_{j} 's. We conclude that the cat ${ }^{2}$-groups on $C_{p} \times C_{p}$ comprise 9 isomorphism classes with the following structure:

where the second and fifth cases illustrate both symmetric and non-symmetric classes.

$M_{G}^{2}=$| | $(t a, t b)$ | $(h a, h b)$ | symm? | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $(1,1)$ | $(1,1)$ | Y | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | $(a, 1)$ | $(a, 1)$ | Y | 1 | 1 | | | | 1 | | | | | | | | 1 |
| 3 | $(a, 1)$ | (a, a) | | 1 | | | | | | | | | | | | | 1 |
| 4 | (a, a) | $(a, 1)$ | | 1 | | | | | | | | | | | | | 1 |
| 5 | (a, a) | (a, a) | Y | 1 | | | 1 | | | | | | | | | 1 | 1 |
| 6 | $(1, b)$ | $(1, b)$ | Y | 1 | 1 | | | | 1 | | | | | | | | 1 |
| 7 | $(1, b)$ | (b, b) | | 1 | | | | | | | | | | | | | 1 |
| 8 | (b, b) | $(1, b)$ | | 1 | | | | | | | | | | | | 1 | |
| 9 | (b, b) | (b, b) | Y | 1 | | | | | | | 1 | 1 | | | | 1 | |
| 10 | $(a b, 1)$ | $(a b, 1)$ | Y | 1 | | | | | | | | 1 | 1 | | | | 1 |
| 11 | $(a b, 1)$ | $(1, a b)$ | | 1 | | | | | | | | | | | 1 | | |
| 12 | $(1, a b)$ | $(a b, 1)$ | | 1 | | | | | | | | | | | 1 | | |
| 13 | $(1, a b)$ | $(1, a b)$ | Y | 1 | | | | 1 | | | | | | | | | 1 |
| 14 | (a, b) | (a, b) | Y | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Proposition 4.4. When $G=C_{p} \times C_{p}$ with p prime, $\gamma_{G}^{2}=4 \gamma_{G}^{1}-\frac{1}{2} \epsilon_{G}-4$.
Proof: We consider the symmetric matrix M_{G}^{2} for this general case. To avoid counting a cat ${ }^{2}$ group twice, we take the number of ones in the matrix, add the number on the diagonal, and divide by 2 . The number of ones around the perimeter is $4 \mu_{G}^{1}-4$ and the number on the diagonal is ϵ_{G}. If, as claimed, each symmetric \mathcal{C}_{i} forms a cat 2-group with precisely one other symmetric \mathcal{C}_{j}, then the total number is $\left(4 \mu_{G}^{1}-4\right)+2\left(\epsilon_{G}-2\right)$ and so $\gamma_{G}^{2}=4 \gamma_{G}^{1}-\frac{1}{2} \epsilon_{G}-4=3+\frac{1}{2} p(p+1)(4 p+3)$.

To verify the claim, let $\phi_{i}, 0 \leqslant i \leqslant p-1$, be the projections $G \rightarrow A$ mapping $[a, b]$ to $\left[a, a^{i}\right]$. Then $\phi_{j} \circ \phi_{i}$ has images $\left[a, a^{i}\right]$ while those of $\phi_{i} \circ \phi_{j}$ are $\left[a, a^{j}\right]$. So ϕ_{i}, ϕ_{j} are compatible only when $i=j$. Now let $\psi_{j}:[a, b] \mapsto\left[b^{j}, b\right]$. Then $\psi_{j} \circ \phi_{i}$ and $\phi_{j} \circ \psi_{j}$ have images $\left[b^{j}, b^{i j}\right]$ and $\left[a^{i j}, a^{i}\right]$ respectively. For compatibilty $i=j=0$ and the only compatible pair with images A and B is $\left(\phi_{0}, \psi_{0}\right)$. (In the case $p=2$ this is the pair (2,6) in the matrix above.) By symmetry in G, each symmetric cat 1-group whose range is a C_{p} is compatible with just one symmetric cat ${ }^{1}$-group whose range is a different C_{p}. Hence we obtain the given formula for γ_{G}^{2}.

Proposition 4.5. When $G=C_{p}^{2}$ the number of isomorphism classes of cat ${ }^{n}$-groups on G is $\iota_{G}^{n}=(n+1)^{2}$.
Proof: We start with the case $n=2$ and continue to use the notation of the previous proof. The four isomorphism classes $[\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}]$ of cat ${ }^{1}$-groups on G have representatives $\mathcal{C}_{1}=\left(0_{G}, 0_{G}\right), \mathcal{C}_{2}=$ $\left(\phi_{0}, \phi_{0}\right), \mathcal{C}_{3}=\left(\phi_{0}, \phi_{1}\right), \mathcal{C}_{4}=\left(1_{G}, 1_{G}\right)$. (In the case $p=2$ these are in rows $1,2,3$ and 14 of the matrix above.) When forming a cat ${ }^{2}$-group on G we have to pick a pair of compatible cat ${ }^{1}$-groups. It is easy to see that \mathcal{C}_{1} and \mathcal{C}_{4} are both compatible with all the cat ${ }^{1}$-groups, giving $\left(2 \gamma_{G}^{1}-1\right)$ cat 2-groups in 7 isomorphism classes. We have seen that the remaining $\epsilon_{G}-2$ symmetric cat ${ }^{1}$-groups form $\epsilon_{G}-2$ symmetric cat ${ }^{2}$-groups, making an eighth class, and pair off to form $\frac{1}{2}\left(\epsilon_{G}-2\right)$ non-symmetric ones, a ninth class. Thus the $\gamma_{G}^{2}=\left(2 \gamma_{G}^{1}-1\right)+\frac{3}{2}\left(\epsilon_{G}-2\right)$ cat 2-groups form 9 isomorphism classes with representatives

$$
\left(\mathcal{C}_{1}, \mathcal{C}_{1}\right),\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right),\left(\mathcal{C}_{1}, \mathcal{C}_{3}\right),\left(\mathcal{C}_{1}, \mathcal{C}_{4}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{4}\right),\left(\mathcal{C}_{3}, \mathcal{C}_{4}\right),\left(\mathcal{C}_{4}, \mathcal{C}_{4}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{2}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{2}^{\prime}\right)
$$

where $\mathcal{C}_{2}^{\prime}=\left(\psi_{0}, \psi_{0}\right)$. We say that these classes have types $\left[\mathbf{1 1}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 4}, \mathbf{2 4}, \mathbf{3 4}, \mathbf{4 4}, \mathbf{2 2}, \mathbf{2 2}{ }^{\prime}\right]$.
For the general case we note that the isomorphism classes may be partitioned into 4 sets. Let S_{1}^{n} be the set of classes having a \mathcal{C}_{1} in one direction, but no \mathcal{C}_{4}; let S_{4}^{n} be the set with a \mathcal{C}_{4} but no \mathcal{C}_{1}; and let S_{14}^{n}, S_{0}^{n} be the classes having both a \mathcal{C}_{1} and a \mathcal{C}_{4}, or neither of these. Let $\xi_{n}=\left|S_{1}^{n}\right|=\left|S_{4}^{n}\right|, \eta_{n}=\left|S_{14}^{n}\right|$ and $\zeta_{n}=\left|S_{0}^{n}\right|$, so that the total number of classes is $\tau_{n}=2 \xi_{n}+\eta_{n}+\zeta_{n}$, which is $6+1+2=9$ when $n=2$. We claim that $\xi_{n}=2 n-1, \eta_{n}=(n-1)^{2}$ and $\zeta_{n}=2$ for all n, except that $\zeta_{1}=1$. The proof is by induction on n. The initial cases are $\xi_{1}=1, \eta_{1}=0, \zeta_{1}=1, \xi_{2}=3, \eta_{2}=1, \zeta_{2}=2$. Classes in S_{1}^{n} are formed by adding a \mathcal{C}_{1} to those in S_{1}^{n-1} or in S_{0}^{n-1}, so $\xi_{n}=\xi_{n-1}+\zeta_{n-1}=2(2 n-3)+2=2 n-1$. There is a similar argument for S_{4}^{n}. Classes in S_{14}^{n} are formed by adding a \mathcal{C}_{4} to those in S_{1}^{n-1}; a \mathcal{C}_{1} to those in S_{4}^{n-1}; or both a \mathcal{C}_{1} and a \mathcal{C}_{4} to those in S_{14}^{n-2}. Those that are duplicated are the ones formed by adding both a \mathcal{C}_{1} and a \mathcal{C}_{4} to those in S_{0}^{n-2}. Hence $\eta_{n}=2 \xi_{n-1}+\eta_{n-2}-\zeta_{n-2}=2(2 n-3)+(n-3)^{2}-2=(n-1)^{2}$. Representatives for classes contributing to $\zeta_{n}=2$ are $2 \ldots 22$ and $2 \ldots 22^{\prime}$. It remains to calculate $\tau_{n}=2 \xi_{n}+\eta_{n}+\zeta_{n}=(4 n-2)+(n-1)^{2}+2=(n+1)^{2}$.

4.3.2 Cat 2-groups on $G=C_{p} \times C_{p} \times C_{p}$

We see here how the numbers of cat ${ }^{2}$-groups increases rapidly with p for these uncomplicated groups, while the number of isomorphism classes remains constant. For p in $[2,3,5,7]$ the following formula for γ_{G}^{2} gives $[1,711,24,222,870,328,10,253,106]$.

Example 4.6. When $G=C_{p}^{3}$ with p prime, $\gamma_{G}^{2}=p^{8}+4 p^{7}+9 p^{6}+7 p^{5}+7 p^{4}+2 p^{3}+3 p^{2}+3$.
We give a brief sketch of the argument. As before, we count μ_{G}^{2}, the number of ones in the matrix M_{G}^{2}, which has $\mu_{G}^{1}=2+2 p^{4}\left(p^{2}+p+1\right)$ rows and columns. For each subgroup of G isomorphic to C_{p} or C_{p}^{2} there are p^{4} cat 1-groups with that subgroup as range. The subgroups of G may be partitioned into: the identity subgroup I; the subgroup A; a set U of $p^{2}+p$ subgroups isomorphic to C_{p}; a set V of $p+1$ subgroups generated by A and H for some $H \in U$; the set W of p^{2} subgroups isomorphic to C_{p}^{2} and not containing A; and G itself. The matrix M_{G}^{2} has ones throughout the first and last rows and columns. The remaining entries partition into $4\left(p^{2}+p+1\right)$ square blocks, each with p^{4} entries, labelled by the pairs of subgroups (H, K) as source and range.

Of the $p^{4}\left(p^{2}+p+1\right)$ cat 1-groups with source in $\{A\} \cup U$, just $p^{2}\left(p^{2}+p+1\right)$ are symmetric. By symmetry, the corresponding rows in M_{G}^{2} all contain the same number of ones, and similarly for the non-symmetric cat ${ }^{1}$-groups, so it is only necessary to consider one example of each. Let t_{1}, t_{2} be the projections on G mapping $[a, b, c]$ to $[a, 1,1]$ and $[a, a, 1]$ respectively, and let $\mathcal{C}_{1}=\mathcal{C}\left(t_{1}, t_{1}\right)$ and $\mathcal{C}_{2}=\mathcal{C}\left(t_{1}, t_{2}\right)$. The row corresponding to \mathcal{C}_{1} has a 1 in the first column; a single 1 in block (A, A), on the diagonal; p^{2} ones in each of the $p+1$ blocks (A, H) with $H=\left\langle b^{i} c^{j}\right\rangle$; none in the remaining (A, H)
blocks when $H \in U$; p^{2} ones in the $p+1$ blocks (A, K) with $K \in V$; none in the remaining (A, K) blocks with $K \in W$; and 1 in the final column. This gives the total as $2 p^{3}+2 p^{2}+4$.

The row corresponding to \mathcal{C}_{2} has a 1 in the first column; p^{2} ones in block (A, C); none in (A, A) and the remaining (A, H) with $H \in U$; a single 1 in the p blocks $(A,\langle A, H\rangle)$, with range one of the symmetric cat ${ }^{1}$-groups where $[a, b, c] \mapsto\left[a, b c^{j}, 1\right]$ for $0 \leqslant j<p$; and 1 in the final column. This gives the total as $p^{2}+p+2$. Hence the total contribution from the blocks $(A,-)$ is $p^{2}\left(2 p^{3}+2 p^{2}+4\right)+\left(p^{4}-\right.$ $\left.p^{2}\right)\left(p^{2}+p+2\right)$. Multiplying this by $\left(p^{2}+p+1\right)$ and adding in the contribution from the first row, gives $p^{8}+4 p^{7}+9 p^{6}+7 p^{5}+6 p^{4}+p^{3}+2 p^{2}+2$ which is the total for the top half of M_{G}^{2}. This is $\frac{1}{2} \mu_{G}^{2}$ since, by symmetry, the bottom half is a reflection of the top half. Then calculate $\gamma_{G}^{2}=\frac{1}{2}\left(\mu_{G}^{2}+\epsilon_{G}\right)$.
Example 4.7. When $G=C_{p}^{3}$ with generating set $[a, b, c]$, there are $\iota_{G}^{2}=23$ isomorphism classes of cat 2-groups. As we have seen earlier, the number of isomorphism classes is the same for all p. Here we construct 23 representative cat ${ }^{2}$-groups using the following 12 projections, where the images of [$a, b, c]$ are listed.

projection	0_{G}	α_{1}	α_{2}	β_{1}	β_{2}	β_{3}	γ_{1}	γ_{2}	γ_{3}	δ_{1}	δ_{2}	1_{G}
has images	111	$11 c$	$1 b 1$	$1 c c$	$c 1 c$	$b b 1$	$a b 1$	$a 1 c$	$1 b c$	$a b b$	$b b c$	$a b c$

From these we construct twelve cat ${ }^{1}$-groups, the first six being representatives for the six isomorphism classes, and $\mathcal{C}_{2} \cong \mathcal{C}_{2}^{\prime}, \mathcal{C}_{3} \cong \mathcal{C}_{3}^{\prime} \cong \mathcal{C}_{3}^{\prime \prime}, \mathcal{C}_{4} \cong \mathcal{C}_{4}^{\prime} \cong \mathcal{C}_{4}^{\prime \prime}, \mathcal{C}_{5} \cong \mathcal{C}_{5}^{\prime}$.

cat ${ }^{1}$-group	\mathcal{C}_{1}	\mathcal{C}_{2}	\mathcal{C}_{3}	\mathcal{C}_{4}	\mathcal{C}_{5}	\mathcal{C}_{6}
tail, head	$\left[0_{G}, 0_{G}\right]$	$\left[\alpha_{1}, \alpha_{1}\right]$	$\left[\alpha_{1}, \beta_{1}\right]$	$\left[\gamma_{1}, \gamma_{1}\right]$	$\left[\gamma_{1}, \delta_{1}\right]$	$\left[1_{G}, 1_{G}\right]$
cat ${ }^{1}$-group	\mathcal{C}_{2}^{\prime}	\mathcal{C}_{3}^{\prime}	$\mathcal{C}_{3}^{\prime \prime}$	\mathcal{C}_{4}^{\prime}	$\mathcal{C}_{4}^{\prime \prime}$	\mathcal{C}_{5}^{\prime}
tail, head	$\left[\alpha_{2}, \alpha_{2}\right]$	$\left[\alpha_{2}, \beta_{3}\right]$	$\left[\alpha_{1}, \beta_{2}\right]$	$\left[\gamma_{3}, \gamma_{3}\right]$	$\left[\delta_{2}, \delta_{2}\right]$	$\left[\gamma_{3}, \delta_{2}\right]$

Computations show that the following pairs of cat ${ }^{1}$-groups generate the required set of 23 representative cat ${ }^{2}$-groups:

$$
\begin{aligned}
& \left(\mathcal{C}_{1}, \mathcal{C}_{1}\right),\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right),\left(\mathcal{C}_{1}, \mathcal{C}_{3}\right),\left(\mathcal{C}_{1}, \mathcal{C}_{4}\right),\left(\mathcal{C}_{1}, \mathcal{C}_{5}\right),\left(\mathcal{C}_{1}, \mathcal{C}_{6}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{6}\right),\left(\mathcal{C}_{3}, \mathcal{C}_{6}\right),\left(\mathcal{C}_{4}, \mathcal{C}_{6}\right),\left(\mathcal{C}_{5}, \mathcal{C}_{5}\right),\left(\mathcal{C}_{6}, \mathcal{C}_{6}\right), \\
& \left(\mathcal{C}_{2}, \mathcal{C}_{2}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{2}^{\prime}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{3}^{\prime}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{4}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{4}^{\prime}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{5}^{\prime \prime}\right),\left(\mathcal{C}_{3}^{\prime}, \mathcal{C}_{3}^{\prime \prime}\right),\left(\mathcal{C}_{3}, \mathcal{C}_{4}^{\prime}\right),\left(\mathcal{C}_{4}, \mathcal{C}_{4}\right),\left(\mathcal{C}_{4}, \mathcal{C}_{4}^{\prime}\right),\left(\mathcal{C}_{4}^{\prime}, \mathcal{C}_{5}\right),\left(\mathcal{C}_{5}, \mathcal{C}_{5}^{\prime}\right)
\end{aligned}
$$

4.4 Two nonabelian examples

It is not so straightforward to find formulae for nonabelian groups. However, for dihedral groups $G=D_{2 p}=\left\langle a, b \mid a^{p}=b^{2}=(a b)^{2}=1\right\rangle$, with p prime, we can check that

$$
\epsilon_{G}=p+2, \quad \gamma_{G}^{1}=\sigma_{G}^{1}=p+1, \quad \iota_{G}^{1}=\tau_{G}^{1}=2, \quad \gamma_{G}^{2}=2 p+1, \quad \iota_{G}^{2}=3
$$

The idempotent endomorphisms are the identity map id; maps $\epsilon_{i}: a \mapsto 1, b \mapsto a^{i} b,(1 \leqslant i \leqslant p)$; and the zero map 0 . The cat ${ }^{1}$-groups are $\mathcal{C}_{0}=\left(D_{2 p} ;\right.$ id, id) and $\mathcal{C}_{i}=\left(D_{2 p} ; \epsilon_{i}, \epsilon_{i}\right)$, while $\left(D_{2 p} ; 0,0\right)$ is only a pre-cat ${ }^{1}$-group. The \mathcal{C}_{i} are all isomorphic. The cat ${ }^{2}$-groups have the form $\left[\mathcal{C}_{0}, \mathcal{C}_{0}\right] ;\left[\mathcal{C}_{0}, \mathcal{C}_{i}\right]$ and $\left[\mathcal{C}_{i}, \mathcal{C}_{i}\right]$, forming three isomorphism classes.

Even more straightforward is the case of a nonabelian, simple group G. The only idempotent endomorphisms are the identity and zero maps. The only cat ${ }^{1}$-group is $\mathcal{C}_{0}=(G ; i d, i d)$ and the only cat 2-group is $\left(\mathcal{C}_{0}, \mathcal{C}_{0}\right)$.

5 Tables of computed results

In the following tables the groups of size at most 30 are ordered by their GAP number. For each group G we list the numbers of projections; cat ${ }^{1}$-groups, and their classes; symmetric cat ${ }^{1}$-groups, and their classes; and cat ${ }^{2}$-groups, and their classes: $\epsilon_{G}, \gamma_{G}^{1}, \iota_{G}^{1}, \sigma_{G}, \tau_{G}, \gamma_{G}^{2}$ and ι_{G}^{2}.

We may reduce the size of the table by noting the results for cyclic groups. We have seen in Proposition 4.2 that when $G=C_{p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}}$ then $\epsilon_{G}=\gamma_{G}^{1}=\iota_{G}^{1}=\sigma_{G}=\tau_{G}=2^{m}$ and $\gamma_{G}^{2}=\iota_{G}^{2}=$ $2^{m-1}\left(2^{m}+1\right)$. When $m=2$ we may list the 10 isomorphism classes as

$$
[G, I, I, I],[G, I, G, I],[G, G, G, G], 2\left[G, I, C_{p^{k}}, I\right], 2\left[G, C_{p^{k}}, G, C_{p^{k}}\right], 2\left[G, C_{p^{k}}, C_{p^{k}}, C_{p^{k}}\right],\left[G, C_{p_{1}^{k_{1}}}, C_{p_{2}^{k_{2}}}, I\right]
$$

where, for example, $2\left[G, I, C_{p^{k}}, I\right]$ denotes $\left\{\left[G, I, C_{p_{1}^{k_{1}}}, I\right],\left[G, I, C_{p_{2}^{k_{2}}}, I\right]\right\}$.
When $m=1$ there are 16 cyclic groups of order at most 30 ; when $m=2$ there are 12 such groups; and when $m=3$ there is just the group $30 / 4=C_{30}$.

The following table contains the results for those G which are not cyclic. The values $\left\{\epsilon_{G}, \gamma_{G}^{1}, l_{G}^{1}\right\}$ agree with those in [2] except for the group 16/14.

GAP \#	G	ϵ_{G}	γ_{G}^{1}	ι_{G}^{1}	σ_{G}	τ_{G}	γ_{G}^{2}	ι_{G}^{2}
$1 / 1$	I	1	1	1	1	1	1	1
$4 / 2$	$K_{4}=C_{2} \times C_{2}$	8	14	4	8	3	36	9
$6 / 1$	S_{3}	5	4	2	4	2	7	3
$8 / 2$	$C_{4} \times C_{2}$	10	18	6	10	4	47	14
$8 / 3$	D_{8}	10	9	3	9	3	21	6
$8 / 4$	Q_{8}	2	1	1	1	1	1	1
$8 / 5$	$\left(C_{2}\right)^{3}$	58	226	6	58	4	1,711	23
$9 / 2$	$C_{3} \times C_{3}$	14	38	4	14	3	93	9
$10 / 1$	D_{10}	7	6	2	6	2	11	3
$12 / 1$	$C_{3} \times C_{4}$	5	4	2	4	2	7	3
$12 / 3$	A_{4}	6	5	2	5	2	9	3
$12 / 4$	D_{12}	21	12	4	12	4	41	10
$12 / 5$	$C_{3} \times K_{4}$	16	28	8	16	6	136	32
$14 / 1$	D_{14}	9	8	2	8	2	15	3
$16 / 2$	$C_{4} \times C_{4}$	26	98	5	26	3	231	11
$16 / 3$	$\left(C_{4} \times C_{2}\right) \ltimes C_{2}$	18	25	4	17	3	57	7
$16 / 4$	$C_{4} \ltimes C_{4}$	10	17	3	9	2	25	4
$16 / 5$	$C_{8} \times C_{2}$	10	18	6	10	4	47	14
$16 / 6$	$C_{8} \ltimes C_{2}$	6	5	2	5	2	9	3
$16 / 7$	D_{16}	18	9	2	9	2	17	3
$16 / 8$	$Q D_{16}$	10	5	2	5	2	9	3
$16 / 9$	Q_{16}	2	1	1	1	1	1	1
$16 / 10$	$C_{4} \times K_{4}$	82	322	12	82	6	2,875	53
$16 / 11$	$C_{2} \times D_{8}$	82	97	9	57	6	649	29
$16 / 12$	$C_{2} \times Q_{8}$	18	17	3	9	2	25	4
$16 / 13$	$\left(C_{4} \times C_{2}\right) \ltimes C_{2}$	26	13	2	13	2	37	4
$16 / 14$	$\left.C_{2}\right)^{4}$	802	10,882	9	802	5	325,363	53
$18 / 1$	D_{18}	11	10	2	10	2	19	3
$18 / 3$	$C_{3} \times S_{3}$	12	8	4	8	4	24	10
$18 / 4$	$\left(C_{3} \times C_{3}\right) \ltimes C_{2}$	47	118	4	46	3	541	9
$18 / 5$	$C_{6} \times C_{3}$	28	76	8	28	6	358	32
$20 / 1$	Q_{20}	7	6	2	6	2	11	3
$20 / 3$	$C_{4} \times C_{5}$	7	6	2	6	2	11	3
$20 / 4$	D_{20}	31	18	4	18	4	65	10
$20 / 5$	$C_{5} \times K_{4}$	16	28	8	16	6	136	32

$21 / 1$	$C_{3} \ltimes C_{7}$	9	8	2	8	2	15	3
$22 / 1$	D_{22}	13	12	2	12	2	23	3
$24 / 1$	$C_{3} \ltimes C_{8}$	5	4	2	4	2	7	3
$24 / 3$	$S L(2,3)$	6	1	1	1	1	1	1
$24 / 4$	Q_{24}	5	4	2	4	2	7	3
$24 / 5$	$S_{3} \times C_{4}$	27	12	4	12	4	41	10
$24 / 6$	D_{24}	33	20	4	20	4	75	10
$24 / 7$	$Q_{12} \times C_{2}$	25	36	6	20	4	115	14
$24 / 8$	$D_{8} \ltimes C_{3}$	23	12	4	12	4	41	10
$24 / 9$	$C_{12} \times C_{2}$	20	36	12	20	8	178	52
$24 / 10$	$D_{8} \times C_{3}$	20	18	6	18	6	75	20
$24 / 11$	$Q_{8} \times C_{3}$	4	2	2	2	2	3	3
$24 / 12$	S_{4}	12	5	2	5	2	9	3
$24 / 13$	$A_{4} \times C_{2}$	15	10	4	10	4	31	10
$24 / 14$	$S_{3} \times K_{4}$	157	116	8	68	6	999	32
$24 / 15$	$C_{6} \times K_{4}$	116	452	12	116	8	6,786	84
$25 / 2$	$C_{5} \times C_{5}$	32	152	4	32	3	348	9
$26 / 1$	D_{26}	15	14	2	14	2	27	3
$27 / 2$	$C_{9} \times C_{3}$	20	56	6	20	4	138	14
$27 / 3$	$\left(C_{3} \times C_{3}\right) \ltimes C_{3}$	38	37	2	37	2	127	4
$27 / 4$	$C_{9} \ltimes C_{3}$	11	10	2	10	2	19	3
$27 / 5$	$\left(C_{3}\right)^{3}$	236	2,108	6	236	4	24,222	23
$28 / 1$	Q_{28}	9	8	2	8	2	15	3
$28 / 3$	D_{28}	41	24	4	24	4	89	10
$28 / 4$	$C_{7} \times K_{4}$	16	28	8	16	6	136	32
$30 / 1$	$S_{3} \times C_{5}$	10	8	4	8	4	24	10
$30 / 2$	$D_{10} \times C_{3}$	14	12	4	12	4	38	10
$30 / 3$	D_{30}	25	24	4	24	4	92	10

There are just 6 of these groups which produce cat ${ }^{2}$-groups whose diagonal is not a cat ${ }^{1}$-group. For each of these we give a triple consisting of the group number, the number of such cat^{2}-groups, and the number of their isomorphism classes:

$$
[8 / 3,4,1],[16 / 3,16,1],[16 / 11,176,5],[16 / 13,12,1],[24 / 10,16,3],[27 / 3,54,1] .
$$

Acknowledgement

The first and second authors were supported by Eskisehir Osmangazi University Scientific Research Projects (Grant No: 2017/19033).

References

[1] Alp, M., Odabas, A., Uslu, E.O and Wensley, C.D., Crossed modules and cat ${ }^{1}$-groups, (manual for the XMod package for GAP, version 2.83 (2020)).
[2] Alp, M. and Wensley, C.D., Enumeration of cat ${ }^{1}$-groups of low order, Int. J. Algebra Comput., 10, 407-424 (2000).
[3] Arvasi, Z. and Odabas, A., Crossed Modules and cat ${ }^{1}$-algebras, (manual for the XModAlg share package for GAP, version 1.12 (2015)).
[4] Arvasi, Z. and Odabas, A., Computing 2-dimensional algebras: Crossed modules and Cat ${ }^{1}$-algebras, J. Algebra Appl., 15, 165-185 (2016).
[5] Arvasi, Z. and Ulualan, E., On Algebraic Models for Homotopy 3-types, J. Homotopy and Related Structures, 1, 1-27, (2006).
[6] H.J. Baues, Combinatorial homotopy and 4-dimensional complexes, Walter de Gruyter Expositions in Mathematics, 2, (1991).
[7] Besche, H.U., Eick, B. and O’Brien, E.A., A millennium project: constructing Small Groups, Internat. J. Algebra Comput., 12, 623-644 (2002).
[8] Brown, R., Higher Dimensional Group Theory, in: Low Dimensional Topology, London Math. Soc. Lecture Note Series, 48, 215-238 (1982).
[9] Brown, R., Modelling and computing homotopy types, Indag. Math., 29 459-482 (2018).
[10] R. Brown and C. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Ned. Akad. v. Wet, 79, , 296-302 (1976).
[11] Brown, R. and Gilbert, N.D., Algebraic models of 3-types and automorphism structures for crossed modules, Proc. London Math. Soc. (3) 59, 51-73 (1989).
[12] R. Brown, P. J. Higgins and R. Sivera, Nonabelian Algebraic Topology: Filtered spaces, crossed complexes, cubical homotopy groupoids, volume 15 of EMS Tracts in Mathematics, European Mathematical Society, (2011).
[13] Brown, R. and Loday, J.-L., Van Kampen theorems for diagram of spaces, Topology, 26 (3), 311-335 (1987).
[14] Conduché, D., Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, 34, 155-178, (1984).
[15] Ellis, G.J., Crossed Squares and Combinatorial Homotopy, Math. Z., 214, 93-110 (1993).
[16] Ellis, G.J., Homological Algebra Programming, (manual for the HAP package for GAP, version 1.19 (2019)).
[17] Ellis, G.J. and Le, V.L., Homotopy 2-types of low order, Experimental Math., 23, 383-389, (2014).
[18] Ellis, G.J. and Steiner, R., Higher dimensional crossed modules and the homotopy groups of ($n+1$)ads., J. Pure and Applied Algebra, 46, 117-136 (1987).
[19] The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.10.2 (2019). (https://www.gap-system.org).
[20] Guin-Walery, D. and Loday, J.-L., Obstructions à l'excision en K-théorie algébrique, in: Friedlander, E.M. and Stein, M.R. (eds.) Evanston conference on algebraic K-Theory, 1980. (Lecture Notes in Math., vol.854, 179-216) Berlin Heidelberg New York : Springer (1981).
[21] Loday, J.-L., Spaces with finitely many non-trivial homotopy groups, J. Pure and Applied Algebra, 24, 179-202 (1982).
[22] Moore, E.J. and Wensley, C.D., Calculations with finite groupoids and their homomorphisms (manual for the groupoids package for GAP, version 1.68 (2019)).
[23] Mutlu, A. and Porter, T., Crossed squares and 2-crossed modules, arXiv:math/0210462, https : //arxiv.org/pdf/math/0210462v1.pdf (2002).
[24] Porter, T., The Crossed Menagerie: an introduction to crossed gadgetry and cohomology in algebra and topology, (available from the n-Lab, https://ncatlab.org/nlab/show/Crossed+ Menagerie) (2020).
[25] Wensley C.D., Notes on higher dimensional groups and groupoids and related topics, https:// github.com/cdwensley/xmod-notes/blob/master/notes.pdf (2020).
[26] J.H.C. Whitehead, Combinatorial homotopy II , Bull. Amer. Math. Soc., 55, 453-496 (1949).

