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Computing 3-Dimensional Groups :
Crossed Squares and Cat2-Groups

Z. Arvasia, A. Odabaşa, and C. D. Wensleyb

aDepartment of Mathematics and Computer Science, Osmangazi University, Eskisehir, Turkey
bSchool of Computer Science and Electronic Engineering, Bangor University, North Wales, UK

Abstract

The category XSq of crossed squares is equivalent to the category Cat2 of cat2-groups. Func-
tions for computing with these structures have been developed in the package XMod written using
the GAP computational discrete algebra programming language. This paper contains a table list-
ing the numbers ι2G of isomorphism classes of cat2-groups on groupsG of order at most 30 – a total
of 1007 cat2-groups. Secondly, it contains general formulae for ι2G in a number of special cases.

Key Words: cat2-group, crossed square, GAP, XMod
Classification: 18D35, 18G50.

1 Introduction

Crossed modules of groups were first defined by Whitehead in [26]. Connected (weak homo-
topy) 2-types are modelled algebraically by (quasi-isomorphism classes of) crossed modules (see
[17]). However these algebraic structures are the essential data for 2-groups, which are exactly the
same as internal categories in the category Gp of groups (see [24] ). The Brown-Spencer theorem
(see [10]) constructs the associated 2-group of a crossed module, which is now regarded as a “2-
dimensional group”. The 2-group viewpoint provides a useful way of interpreting the structure of a
crossed module, and gives some applications (see [24]).

Turning to 3-types, there are several different algebraic models: crossed squares of groups; cat2-
groups; 2-crossed modules [14]; quadratic modules [6]; braided, regular crossed modules and (2-
truncated) simplicial groups [11]. Some links between these structures are discussed in [5]. We
consider here the equivalent categories XSq and Cat2 of crossed squares and cat2-groups (see [21]).
These two algebraic structures represent 3-types and provide an interpretation for 3-groups (see [24]).
Connected 3-types are modelled by quasi-isomorphism classes of crossed squares.

The inclusion crossed square is the simplest algebraic example of a crossed square. Given a pair
of normal subgroups M,N of a group G, we can form a square

M ∩N //

��

N

��
M // G

in which each homomorphism is an inclusion crossed module, and there is an h-map

h : M ×N −→ M ∩N
(m,n) 7−→ [m,n] = m−1n−1mn.

1



The principal topological example of a crossed square is the fundamental crossed square. Given
a pointed triad of spaces A ⊆ X, B ⊆ X with a ∈ A∩B, second relative homotopy groups π2(A,A∩
B, a), π2(B,A ∩B, a), and the first homotopy group π1(A ∩B, a), we obtain a square

π3(X;A,B, a)

��

// π2(B,A ∩B, a)

��
π2(A,A ∩B, a) // π1(A ∩B, a).

In this case the h-map

h : π2(A,A ∩B, a)× π2(B,A ∩B, a) −→ π3(X;A,B, a)

is the triad Whitehead product (see [15, 26]).
This paper is concerned with the latest developments in the general programme of “computa-

tional higher-dimensional group theory” which forms part of the “higher-dimensional group theory”
programme described, for example, by Brown in [8].

The 2-dimensional part of these programmes is concerned with group objects in the categories
of groups or groupoids. These objects and their morphisms form the equivalent categories XMod
of crossed modules or Cat1 of cat1-groups. The initial computational part of this programme was
described in Alp and Wensley [2]. The output from this work was the package XMod [1] for GAP [19]
which, at the time, contained functions for constructing crossed modules and cat1-groups of groups,
and their morphisms, and conversions from one to another.

The next development of XMod used the package groupoids [22] to compute crossed modules of
groupoids. Later still, a GAP package XModAlg [3] was written to compute cat1-algebras and crossed
modules of algebras, as described in [4].

We are concerned here with the 3-dimensional part of the programme which deals with objects
in XSq and Cat2. The mathematical basis of all these structures is described in §2, and some compu-
tational details are included in §3. General formulae for some simple abelian groups are contained
in §4. In §5 we enumerate the 1, 007 isomorphism classes of cat2-groups on the 92 groups of order at
most 30.

The contents of this paper are purely algebraic. Readers wishing to understand the applications of
the theory are encouraged to study references such as [5, 9, 24, 17]. The XMod package also follows a
purely algebraic approach, and does not compute any specifically topological results. The interested
reader may wish to investigate the GAP package HAP [16] which also computes with cat1-groups.

2 Crossed Squares and Cat2-Groups

The notion of a crossed module X = (∂ : S → R) was introduced by Whitehead [26]. It consists of
a group homomorphism ∂ : S → R, together with a left action R on S (written (r, s) → rs for r ∈ R
and s ∈ S) satisfying the following conditions:

∂(rs) = r(∂s)r−1 ∀ s ∈ S, r ∈ R, (∂s2)s1 = s2s1s
−1
2 ∀ s1, s2 ∈ S,

(the pre-crossed module property and the Peiffer identity).
A morphism of crossed modules (σ, ρ) : X1 → X2 consists of two group homomorphisms σ : S1 → S2

and ρ : R1 → R2 such that ∂2 ◦ σ = ρ ◦ ∂1 and σ(rs) = (ρr)(σs) for all s ∈ S1, r ∈ R1.
Standard constructions for a crossed module morphism include the inclusion of a normal sub-

group, where the action is conjugation; the inner automorphism map S → Inn(S); the zero map
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when S is an R-module; maps with central kernel, where r ∈ R acts on S by conjugation with ∂−1r;
and direct products (∂1 × ∂2 : S1 × S2 → R1 ×R2) with direct product action.

Loday [21] reformulated the notion of a crossed module as a cat1-group. A projection on G is an
endomorphism p : G→ G satisfying p◦p = p. A cat1-group C = (G⇒R) is a triple (G; t, h) consisting
of a group G with two homomorphisms: the tail map t and the head map h, having a common image
R and satisfying the following axioms.

t ◦ h = h, h ◦ t = t, and [ker t, kerh] = 1. (1)

When only the first two of these axioms are satisfied, the structure is a pre-cat1-group. It follows
immediately (by expanding t ◦ h ◦ t and h ◦ t ◦ h) that t and h are both projections. A cat1-group is
symmetric if t = h and, from (1), a sufficient condition for this is that t ◦ h = h ◦ t.

A morphism of cat1-groups C1 = (G1; t1, h1) → C2 = (G2; t2, h2) is a homomorphism of groups
f : G1 → G2 such that f ◦ t1 = t2 ◦ f and f ◦ h1 = h2 ◦ f .

We use the following equivalence between XMod and Cat1. It was shown in [21, Lemma 2.2] that

(G
t,h

⇒ R) determines X = (∂ : S → R) where S = ker t, ∂ = h|S , (2)

and the action is conjugation. Conversely, if (∂ : S → R) is a crossed module, then setting G = S oR

and defining t, h by t(s, r) = (1, r) and h(s, r) = (1, (∂s)r) for s ∈ S, r ∈ R, produces a cat1-group
(G; t, h).

The notion of a crossed square is due to Guin-Walery and Loday [20]. An oriented crossed square of
groups X is a commutative square of groups [L,M,N, P ], together with left actions of P on L,M,N,

and a crossed pairing map � : M ×N → L. Then M acts on N and L via P and N acts on M and L

via P . This structure is illustrated in the following left-hand diagram.

L

λ

��

κ //

π

��

M

µ

��

L

κ

��

λ //

π

��

N

ν

��

X = X̃ =

N ν
// P M µ

// P

(3)

The following axioms must be satisfied for all l ∈ L, m,m′ ∈M, n, n′ ∈ N and p ∈ P .

1. With the given actions, the homomorphisms κ, λ, µ, ν and π = µ◦κ = ν◦λ are crossed modules,
and both κ, λ are P -equivariant,

2. (mm′ � n) = (mm′ � mn) (m � n) and (m � nn′) = (m � n) (nm � nn′),

3. κ(m � n) = m(nm−1) and λ(m � n) = (mn)n−1,

4. (κl � n) = l(nl−1) and (m � λl) = (ml)l−1,

5. p(m � n) = (pm � pn).

Note that axiom 1. implies that (id, µ), (id, ν), (κ, id) and (λ, id) are morphisms of crossed modules.
The transpose X̃ of X, obtained by interchanging M and N , is shown in the right-hand diagram in

(3). Since crossed pairing identities are similar to those for commutators, the crossed pairing for X̃ is
�̃ where (n �̃ m) = (m � n)−1. Transposition gives an equivalence relation on the set of oriented
crossed squares, and a crossed square is an equivalence class. We shall follow the usual convention of
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omitting the adjective “oriented” and refer to X as a crossed square. It is important to remember that,
when giving enumeration results, we have counted equivalence classes.

Standard constructions for crossed squares include the following sets of groups [L,M,N, P ]:

• [M ∩N,M,N,P ], where M,N are normal subgroups of P ;

• [L, Inn L, Inn L,Aut L] where κ = λ maps l ∈ L to the inner automorphism l′ 7→ ll′l−1;

• [M ⊗N,M,N,P ] where where M ⊗N is a nonabelian tensor product of groups [13];

• the direct product of crossed squares has groups [L1×L2,M1×M2, N1×N2, P1×P2] with direct
product actions and crossed pairing � ((m1,m2), (n1, n2)) = (�1(m1, n1),�2(m2, n2)).

The crossed square X in (3) can be thought of as a horizontal or vertical crossed module of crossed
modules:

L

λ

��

M

µ

��

L
κ //

(λ,µ)

��

M

(κ,ν) //

N P N ν
// P

where (κ, ν) is the boundary of the crossed module with domain (λ : L → N) and codomain (µ :

M → P ), (see also section 9.2 of [25]).
There is an evident notion of morphism of crossed squares which preserves all the structure, so

that we obtain a category XSq, the category of crossed squares.

Although, when first introduced by Loday and Walery [20], the notion of crossed square of groups
was not linked to that of cat2-groups, it was in this form that Loday gave their generalisation to an
n-fold structure, catn-groups (see [21]). When n = 1 this is the notion of cat1-group given earlier.

When n = 2 we obtain a cat2-group. Again we have a groupG, but this time with two independent
cat1-group structures on it. An oriented pre-cat2-group is a 5-tuple, C = (G; t1, h1; t2, h2) = [C1, C2],
where C1 = (G; t1, h1) and C2 = (G; t2, h2) are pre-cat1-groups, and

t1 ◦ t2 = t2 ◦ t1, h1 ◦ h2 = h2 ◦ h1, t1 ◦ h2 = h2 ◦ t1, t2 ◦ h1 = h1 ◦ t2. (4)

This is an oriented cat2-group when C1, C2 are both cat1-groups. We say C is symmetric if C1 = C2. By
(4) this can only happen when t1 ◦ h1 = h1 ◦ t1, so C1 is symmetric. Thus symmetric cat2-groups
and in one-one correspondence with symmetric cat1-groups. The transpose C̃ of C is obtained by
interchanging [t1, h1] with [t2, h2]. Again, transposition is an equivalence relation, and a cat2-group is
an equivalence class. We shall omit the qualifier “oriented” whenever possible.

To emphasise the relationship with crossed squares we give the following left-hand diagram for
C, where R12 is the image of t1 ◦ t2 = t2 ◦ t1. On the right we show the symmetric case.

G
t1,h1 // //

t2,h2

�� ��

t1◦t2

  

h1◦h2

  

R1

t2,h2

����

G
t,t ////

t,t

�� ��

t

��

t

��

R

1,1

����

C =

R2
t1,h1

//// R12 R
1,1

// // R

(5)
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A morphism of pre-cat2-groups from C to C′ is a triple (γ, ρ1, ρ2), as shown in the diagram

R1

ρ1

��

G

γ

��

t1,h1oooo
t2,h2 //// R2

ρ2

��
R′1 G′

t′1,h
′
1

oooo
t′2,h

′
2

//// R′2

where γ : G→ G′, ρ1 = γ|R1 and ρ2 = γ|R2 are homomorphisms satisfying:

ρ1 ◦ t1 = t′1 ◦ γ, ρ1 ◦ h1 = h′1 ◦ γ, ρ2 ◦ t2 = t′2 ◦ γ, ρ2 ◦ h2 = h′2 ◦ γ.

We thus obtain categories PreCat2 and Cat2, the categories of (pre-)cat2-groups.
Notice that, unlike the situation with crossed squares where the diagonal is a crossed module, it

is not required that the diagonal in (5) is a cat1-group – it may just be a pre-cat1-group. The simplest
case of this situation is described in Example 2.1 below.

Recall that Loday, in [21], proved that there is an equivalence between the category Cat2 and
the category XSq (see also [23]). Applying the equivalence between Cat1 and XMod in (2) to the
cat2-group C in (5), we obtain the left-hand diagram of group homomorphisms in (6) where each
morphism is a crossed module for the natural action, conjugation in G. The required crossed pairing
is given by the commutator in G since if x ∈ R1 ∩ S2 and y ∈ S1 ∩R2 then [x, y] ∈ S1 ∩ S2. Note that
equation (4) implies ∂1 ◦ ∂2 = ∂2 ◦ ∂1. It is routine to check the remaining crossed square axioms.

S1 ∩ S2

∂2|S1

��

∂1|S2 //

∂1◦∂2

##

R1 ∩ S2

∂2|R1

��
S1 ∩R2

∂1|R2

// R1 ∩R2

(LoN)o (M o P ) ////

�� ��
&& &&

(M o P )

����
(LoN) // // P

(6)

Conversely, we may consider the crossed square X in (3) as a morphism of crossed modules
(κ, ν) : (λ : L → N) → (µ : M → P ). Using the equivalence between crossed modules and cat1-
groups this gives a morphism ∂ : (LoN, t, h) −→ (M oP, t′, h′) of cat1-groups. There is an action of
(m, p) ∈ M o P on (l, n) ∈ LoN given by (m,p)(l, n) = (m(pl)(m� pn), pn). Using this action, we
form its associated cat2-group with source (LoN)o (M o P ), as shown in the right-hand diagram
in (6).

Example 2.1. Let D8 = 〈a, b | a2, b2, (ab)4〉 be the dihedral group of order 8, and let c = [a, b] = (ab)2

so that ab = ac and ba = bc. (The standard permutation representation is given by a = (1, 2)(3, 4), b =

(1, 3), ab = (1, 2, 3, 4), c = (1, 3)(2, 4).)
Define ta, tb : D8 → D8 by ta : a, b 7→ a, 1 and tb : a, b 7→ 1, b. Then construct cat1-groups

Ca = (D8; ta, ta) and Cb = (D8; tb, tb). Diagram (5) and the left-hand diagram in (6) become

D8

ta // //

tb

�� ��

0

"" ""

A

0

����

C
c 7→ 1 //

c 7→ 1

�� ""

A

a 7→ 1

��
B

0
//// I B

b 7→ 1
// I

whereA = 〈a〉,B = 〈b〉, C = 〈c〉 and I is the trivial group. The crossed pairing is given by�(a, b) = c.
The composite ta ◦ tb is the zero map, and [D8, D8] = C, so the diagonal is not a cat1-group.
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For dimensions n > 3, a catn-group consists of a groupGwith n independent cat1-group structures
(G; ti, hi), 1 ≤ i ≤ n, such that titj = tjti, hihj = hjhi and tihj = hjti for all i 6= j. Ellis and Steiner in
[18] defined a generalisation of a crossed square to higher dimensions, called a crossed n-cube.

The following result is needed for §4. Since all the axioms are immediately satisfied, the proof is
straightforward.

Lemma 2.2. Let G be a direct product H ×K.
(i) Let C be a cat1-group on G such that tH 6 H and tK 6 K. Then restricting the maps t, h to H gives a
cat1-group on H , and similarly for K.
(ii) Let C be a cat2-group on G such that t1H and t2H are subgroups of H while t1K and t2K are subgroups
of K. Then restricting the maps t1, h1, t2, h2 to H gives a cat2-group on H , and similarly for K.

3 Computer Implementation

GAP [19] is an open-source system for discrete computational algebra. The system consists of
a library of implementations of mathematical structures: groups, vector spaces, modules, algebras,
graphs, codes, designs, etc.; plus databases of groups of small order, character tables, etc. The system
has world-wide usage in the area of education and scientific research. GAP is free software and
user contributions to the system are supported. These contributions are organized in a form of GAP
packages and are distributed together with the system. Contributors can submit additional packages
for inclusion after a reviewing process.

The Small Groups library by Besche, Eick and O’Brien in [7] provides access to descriptions of the
groups of small order. The groups are listed up to isomorphism. The library contains all groups of
order at most 2000 except 1024.

3.1 2-Dimensional Groups

The XMod package for GAP contains functions for computing with crossed modules, cat1-groups
and their morphisms, and was first described in [1]. An equivalent notion of cat1-group is imple-
mented in XMod, where the tail and head maps are no longer required to be endomorphisms on G.
Instead it is required that t and h have a common image R, and an embedding e : R → G is added.
The axioms in (1) then become:

t ◦ e ◦ h = h, h ◦ e ◦ t = t, and [ker t, kerh] = 1, (7)

and again it follows that t ◦ e ◦ t = t and h ◦ e ◦ h = h. We denote such a cat1-group by C = (e; t, h :

G→ R). Note that (id, e) is an isomorphism from C to C′ = (id; t ◦ e, h ◦ e : G→ eR) where the maps
are endomorphisms.

The package provides an operation Cat1Select which may be used to select a cat1-group C from
a data file. This file contains data on all isomorphism classes of cat1-structures on groups of size up
to 70 (ordered according to the GAP numbering of small groups). The GAP package HAP has more
recently extended this information to groups of size up to 255. Cat1-groups may be converted into
crossed modules, and vice-versa, using the functions XModOfCat1Group and Cat1GroupOfXMod.

The operation AllCat1Groups(G) may be used to produce a list of all the cat1-groups with source
G. This function starts with a list L of the projections on G, selects pairs (t, h) from L, and tests
whether these satisfy axioms (1). While this is acceptable for many small groups, such lists can
make heavy use of memory. It is a fundamental principle in GAP to avoid the unnecessary stor-
ing of long lists by providing iterators. An iterator is a function which returns a record contain-
ing functions NextIterator, IsDoneIterator and ShallowCopy. The package provides iterators All-
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Cat1GroupsIterator(G), and AllCat1GroupsWithImageIterator(G,R) which constructs cat1-groups
(G⇒R) for a given subgroup R. The equivalent function in HAP is CatOneGroupsByGroup.

3.2 3-dimensional Groups

We have developed new operations for XMod which construct (pre-)cat2-groups and their mor-
phisms. There are also functions for crossed squares and their morphisms, and functions to convert
between cat2-groups and crossed squares.

As with pre-cat1-groups, we use an equivalent notion for pre-cat2-groups. An oriented pre-cat2-
group has the form

G
t1,h1 // //

t2,h2

�� ��

e2◦t2◦e1◦t1,

""

e2◦h2◦e1◦h1

""

R1

e2◦t2◦e1

��

e2◦h2◦e1

����

e1
oo

R2

e1◦t1◦e2, e1◦h1◦e2 ////

e2

OO

R12
t2

oo

t1

OO

inc

bb

where R1, R2 need not be subgroups of G, but R12 is taken to be the common image of e2 ◦ t2 ◦ e1 ◦ t1
and e1 ◦ t1 ◦ e2 ◦ t2, a subgroup of G. The other orientation is obtained by reflecting in the diagonal.

The following GAP session illustrates the use of the function Cat2Group(C1,C2) which constructs
a cat2-group from two cat1-groups. Notice that the cat2-group C2ab is the second example with a
diagonal which is only a pre-cat1-group.

gap> a := (1,2,3,4)(5,6,7,8);;

gap> b := (1,5)(2,6)(3,7)(4,8);;

gap> c := (2,6)(4,8);;

gap> G := Group( a, b, c );;

gap> SetName( G, "c4c2:c2" );

gap> t1a := GroupHomomorphismByImages( G, G, [a,b,c], [(),(),c] );;

gap> C1a := PreCat1Group( t1a, t1a );;

gap> t1b := GroupHomomorphismByImages( G, G, [a,b,c], [a,(),()] );;

gap> C1b := PreCat1Group( t1b, t1b );;

gap> C2ab := Cat2Group( C1a, C1b );

(pre-)cat2-group with generating (pre-)cat1-groups:

1 : [c4c2:c2 => Group( [ (), (), (2,6)(4,8) ] )]

2 : [c4c2:c2 => Group( [ (1,2,3,4)(5,6,7,8), (), () ] )]

gap> IsCat2Group( C2ab );

true

gap> Size( C2ab );

[ 16, 2, 4, 1 ]

gap> IsCat1Group( Diagonal2DimensionalGroup( C2ab ) );

false

The basic algorithm for the function AllCat2Groups(G) is very simple. It returns a list L of cat2-
groups, and is shown in Algorithm 1.
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Algorithm 1: AllCat2Groups
Input: G, a group
Output: L, a list
begin

L← [ ]
for [R1,R2] in unordered pairs of subgroups of G do

for A in AllCat1GroupsWithImage(G,R1) do
for B in AllCat1GroupsWithImage(G,R2) do

C ← Cat2Group(A,B)
if C 6= fail then

Add(L,C)

Note that this algorithm is used to provide an iterator AllCat2GroupsIterator(G); that the pair
of subgroups [R1, R2] is provided by the standard GAP functions AllSubgroupsIterator and Un-
orderedPairsIterator; and that A,B are constructed using the iterator for cat1-groups with a given
image described above. Note also that an oriented cat2-group and its transpose are only counted
once.

The package also includes an iterator AllCat2GroupsWithImagesIterator(G,R1,R2) which re-
turns cat2-groups with chosen subgroupsR1, R2. The utility of this becomes clear when, for example,
G has the form C3

p , the cube of a cyclic group of prime order, with generators {a, b, c}. As we shall see
in the following section there are, up to isomorphism, very few cases to consider. So it is only nec-
essary to call this function with pairs R1, R2 chosen from [G, 〈a, b〉, 〈a, c〉, 〈a〉, 〈b〉, I], and then apply
appropriate multiplicities.

4 Formulae for special cases

Our aim in the next two sections is to list, for each group G of order at most 30, the following
values. First, the number εG of projections on G. Then the number γ1G of cat1-groups on G, followed
by the number ι1G of their isomorphism classes. (The numbers εG, γ1G and ι1G can be found in [2].) Then
the number σG of symmetric cat1-groups, followed by the number τG of their isomorphism classes.
(We have already observed that σG, τG are also the numbers of symmetric cat2-groups and of their
isomorphism classes.) Finally, we list the number γ2G of cat2-groups on G and the number ι2G of their
isomorphism classes.

We define the compatibility matrix M2
G of G to be the symmetric matrix with rows and columns

indexed by the cat1-groups Ci on G, where (M2
G)ij = 1 if Ci and Cj combine to form a cat2-group. We

denote by µ2G the number of ones in M2
G. Off-diagonal ones in symmetric positions correspond to

the two orientations of a cat2-group, so γ2G is the number of ones in the upper-triangular part of M2
G.

Thus γ2G = (µ2G + σG)/2 and µ2G = 2γ2G − σG.
There is a similar 0 − 1 matrix M1

G containing µ1G ones. Its rows and columns are indexed by the
projections ti on G with (M1

G)ij = 1 when ti and tj combine to form an oriented cat1-group. Again
γ1G = (µ1G + σG)/2 and µ1G = 2γ1G − σG. Note that M1

G has the form of a block diagonal matrix with
one block for each subgroup of G.
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4.1 The case G = A×B with |A| coprime to |B|

Since |A| is coprime to |B|, an endomorphism of G must consist of an endomorphism of A to-
gether with one for B. Hence εG = εAεB and γ1G = γ1Aγ

1
B and σG = σAσB .

Proposition 4.1. When G = A×B with |A| coprime to |B| then γ2G = γ2Aγ
2
B + (γ2A − σA)(γ2B − σB).

Proof: The matrix M2
G is the Kronecker product of M2

A with M2
B so µ2G = µ2Aµ

2
B . The formula for

γ2G follows by applying γ2G = (µ2G + σG)/2. 2

For example, using values in the table of §5 for C2
2 and for C2

3 we may calculate for G = C2
6 that

γ2G = 36× 93 + (36− 8)(93− 14) = 5, 560.

4.2 The case when G is cyclic

Proposition 4.2. When G = C
p
k1
1 p

k2
2 ...pkmm

is cyclic, and its order is the product of m distinct primes pi,
having multiplicities ki, then

εG = γ1G = ι1G = σG = τG = 2m and γ2G = ι2G = 2m−1(2m + 1).

Proof: When G = Cpk is cyclic, with p prime, the only projections are the identity and zero maps.
So there are just two cat1-groups, both symmetric and all isomorphism classes are singletons. All
pairs are compatible, so

M2
G =

[
1 1

1 1

]
and µ2G = 4. Similarly, in the general case, there are 2m subgroups, 2m projections and 2m cat1-groups.
All of these are symmetric and no two are isomorphic. M2

G is them-th Kronecker power of the matrix
above, so µ2G = 4m and γ2G = (4m + 2m)/2. 2

4.3 The case G = Cn
p with p prime

When G is an elementary p-group the numbers γ1G and γ2G can get very large, and computations
may run out of memory. Indeed the largest numbers of cat2-groups in the table below are 325, 363

for C4
2 and 24, 222 for C3

3 . However, some general formulae may be obtained.

Proposition 4.3. For p a prime and G = Cnp , the n-th power of the cyclic group Cp,

σG = εG =
n∑
k=0

pk(n−k)
k∏
j=1

(pn−j+1 − 1)

(pj − 1)
and γ1G =

n∑
k=0

p2k(n−k)
k∏
j=1

(pn−j+1 − 1)

(pj − 1)
.

Proof: Let θ : G→ G be a projection with image R ∼= Ckp . The structure of the subgroup lattice of
G is well known, and the common product term in the two formulae gives the number of subgroups
of G isomorphic to R. We may choose a generating set {g1, g2, . . . , gn} for G such that {g1, g2, . . . , gk}
is a generating set for R. Then θgi = gi for 1 6 i 6 k, and each of (n − k) generators {gk+1, . . . , gn}
may be mapped to any of the pk elements in R, so the number of projections with image R is pk(n−k).

If t, h : G → G have a common image R then t ◦ h = h since t is the identity on R. Similarly
h ◦ t = t. Since G is abelian, ker t and kerh commute. Hence there is a cat1-group with t, h as the tail
and head maps. It follows that the number of cat1-groups with image R is the square of the number
of projections with image R. 2

Note, in particular, that γ1G is equal to 1
2p(p

2+1)+(p2+2) when n = 2, and 2+p2(p2+1)(p2+p+1)

when n = 3.
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4.3.1 Cat2-groups on G = C2
p

G has p+1 subgroups isomorphic to Cp and Proposition 4.3 states that there are 2+ p(p+1) pro-
jections and 2+p2(p+1) cat1-groups. In the case p = 2 there are 8 projections which combine to form
14 cat1-groups Ci, and 8 of these are symmetric. These form 4 isomorphism classes with numbers
1, 8, 9, 14 as representatives, of the form (G⇒I); (G⇒ 〈b〉), both non-symmetric and symmetric; and
(G⇒G).

The matrix M2
G shown below has µ2G = 64, so γ2G = 36.

This matrix illustrates the behaviour for every prime p: C1 = (G⇒ I) forms a cat2-group with
every Ci, and every Ci forms one with C14 = (G⇒G). There is an additional symmetric cat2-group
(ones on the diagonal) only when Ci is symmetric (tail and head maps are equal). Finally, each
symmetric Ci forms a cat2-group with precisely one of the other symmetric Cj ’s. We conclude that
the cat2-groups on Cp × Cp comprise 9 isomorphism classes with the following structure:

G // //

�� ��

I

�� ��

G ////

�� ��

I

�� ��

G // //

�� ��

I

�� ��

G ////

�� ��

Ci

�� ��

G ////

�� ��

Ci

�� ��

G ////

�� ��

Ci

�� ��

G ////

�� ��

G

�� ��
I // // I Ci

//// I G // // I Ci
//// Ci G //// Ci Cj

//// I G //// G

where the second and fifth cases illustrate both symmetric and non-symmetric classes.

M2
G =

(ta, tb) (ha, hb) symm? 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 (1, 1) (1, 1) Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 (a, 1) (a, 1) Y 1 1 1 1

3 (a, 1) (a, a) 1 1

4 (a, a) (a, 1) 1 1

5 (a, a) (a, a) Y 1 1 1 1

6 (1, b) (1, b) Y 1 1 1 1

7 (1, b) (b, b) 1 1

8 (b, b) (1, b) 1 1

9 (b, b) (b, b) Y 1 1 1 1

10 (ab, 1) (ab, 1) Y 1 1 1 1

11 (ab, 1) (1, ab) 1 1

12 (1, ab) (ab, 1) 1 1

13 (1, ab) (1, ab) Y 1 1 1 1

14 (a, b) (a, b) Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Proposition 4.4. When G = Cp × Cp with p prime, γ2G = 4γ1G −
1
2εG − 4.

Proof: We consider the symmetric matrix M2
G for this general case. To avoid counting a cat2-

group twice, we take the number of ones in the matrix, add the number on the diagonal, and divide
by 2. The number of ones around the perimeter is 4µ1G − 4 and the number on the diagonal is εG.
If, as claimed, each symmetric Ci forms a cat2-group with precisely one other symmetric Cj , then the
total number is (4µ1G − 4) + 2(εG − 2) and so γ2G = 4γ1G −

1
2εG − 4 = 3 + 1

2p(p+ 1)(4p+ 3).
To verify the claim, let φi, 0 6 i 6 p − 1, be the projections G → A mapping [a, b] to [a, ai]. Then

φj ◦ φi has images [a, ai] while those of φi ◦ φj are [a, aj ]. So φi, φj are compatible only when i = j.
Now let ψj : [a, b] 7→ [bj , b]. Then ψj ◦ φi and φj ◦ ψj have images [bj , bij ] and [aij , ai] respectively. For
compatibilty i = j = 0 and the only compatible pair with images A and B is (φ0, ψ0). (In the case
p = 2 this is the pair (2, 6) in the matrix above.) By symmetry inG, each symmetric cat1-group whose
range is a Cp is compatible with just one symmetric cat1-group whose range is a different Cp. Hence
we obtain the given formula for γ2G. 2
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Proposition 4.5. When G = C2
p the number of isomorphism classes of catn-groups on G is ιnG = (n+ 1)2.

Proof: We start with the case n = 2 and continue to use the notation of the previous proof. The
four isomorphism classes [1,2,3,4] of cat1-groups on G have representatives C1 = (0G, 0G), C2 =

(φ0, φ0), C3 = (φ0, φ1), C4 = (1G, 1G). (In the case p = 2 these are in rows 1,2,3 and 14 of the matrix
above.) When forming a cat2-group on G we have to pick a pair of compatible cat1-groups. It is easy
to see that C1 and C4 are both compatible with all the cat1-groups, giving (2γ1G − 1) cat2-groups in
7 isomorphism classes. We have seen that the remaining εG − 2 symmetric cat1-groups form εG − 2

symmetric cat2-groups, making an eighth class, and pair off to form 1
2(εG − 2) non-symmetric ones,

a ninth class. Thus the γ2G = (2γ1G − 1) + 3
2(εG − 2) cat2-groups form 9 isomorphism classes with

representatives

(C1, C1), (C1, C2), (C1, C3), (C1, C4), (C2, C4), (C3, C4), (C4, C4), (C2, C2), (C2, C′2).

where C′2 = (ψ0, ψ0). We say that these classes have types [11,12,13,14,24,34,44,22,22′].
For the general case we note that the isomorphism classes may be partitioned into 4 sets. Let Sn1

be the set of classes having a C1 in one direction, but no C4; let Sn4 be the set with a C4 but no C1; and
let Sn14, S

n
0 be the classes having both a C1 and a C4, or neither of these. Let ξn = |Sn1 | = |Sn4 |, ηn = |Sn14|

and ζn = |Sn0 |, so that the total number of classes is τn = 2ξn + ηn + ζn, which is 6 + 1 + 2 = 9 when
n = 2. We claim that ξn = 2n − 1, ηn = (n − 1)2 and ζn = 2 for all n, except that ζ1 = 1. The proof is
by induction on n. The initial cases are ξ1 = 1, η1 = 0, ζ1 = 1, ξ2 = 3, η2 = 1, ζ2 = 2. Classes in Sn1 are
formed by adding a C1 to those in Sn−11 or in Sn−10 , so ξn = ξn−1+ζn−1 = 2(2n−3)+2 = 2n−1. There
is a similar argument for Sn4 . Classes in Sn14 are formed by adding a C4 to those in Sn−11 ; a C1 to those in
Sn−14 ; or both a C1 and a C4 to those in Sn−214 . Those that are duplicated are the ones formed by adding
both a C1 and a C4 to those in Sn−20 . Hence ηn = 2ξn−1+ηn−2−ζn−2 = 2(2n−3)+(n−3)2−2 = (n−1)2.
Representatives for classes contributing to ζn = 2 are 2 . . .22 and 2 . . .22′. It remains to calculate
τn = 2ξn + ηn + ζn = (4n− 2) + (n− 1)2 + 2 = (n+ 1)2. 2

4.3.2 Cat2-groups on G = Cp × Cp × Cp

We see here how the numbers of cat2-groups increases rapidly with p for these uncomplicated
groups, while the number of isomorphism classes remains constant. For p in [2, 3, 5, 7] the following
formula for γ2G gives [1,711, 24,222, 870,328, 10,253,106].

Example 4.6. When G = C3
p with p prime, γ2G = p8 + 4p7 + 9p6 + 7p5 + 7p4 + 2p3 + 3p2 + 3.

We give a brief sketch of the argument. As before, we count µ2G, the number of ones in the matrix
M2
G, which has µ1G = 2+2p4(p2+p+1) rows and columns. For each subgroup of G isomorphic to Cp

or C2
p there are p4 cat1-groups with that subgroup as range. The subgroups of G may be partitioned

into: the identity subgroup I ; the subgroup A; a set U of p2 + p subgroups isomorphic to Cp; a set V
of p + 1 subgroups generated by A and H for some H ∈ U ; the set W of p2 subgroups isomorphic
to C2

p and not containing A; and G itself. The matrix M2
G has ones throughout the first and last rows

and columns. The remaining entries partition into 4(p2 + p + 1) square blocks, each with p4 entries,
labelled by the pairs of subgroups (H,K) as source and range.

Of the p4(p2 + p + 1) cat1-groups with source in {A} ∪ U , just p2(p2 + p + 1) are symmetric. By
symmetry, the corresponding rows in M2

G all contain the same number of ones, and similarly for
the non-symmetric cat1-groups, so it is only necessary to consider one example of each. Let t1, t2 be
the projections on G mapping [a, b, c] to [a, 1, 1] and [a, a, 1] respectively, and let C1 = C(t1, t1) and
C2 = C(t1, t2). The row corresponding to C1 has a 1 in the first column; a single 1 in block (A,A), on
the diagonal; p2 ones in each of the p+1 blocks (A,H) with H = 〈bicj〉; none in the remaining (A,H)
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blocks when H ∈ U ; p2 ones in the p + 1 blocks (A,K) with K ∈ V ; none in the remaining (A,K)

blocks with K ∈W ; and 1 in the final column. This gives the total as 2p3 + 2p2 + 4.
The row corresponding to C2 has a 1 in the first column; p2 ones in block (A,C); none in (A,A)

and the remaining (A,H) with H ∈ U ; a single 1 in the p blocks (A, 〈A,H〉), with range one of the
symmetric cat1-groups where [a, b, c] 7→ [a, bcj , 1] for 0 6 j < p; and 1 in the final column. This gives
the total as p2 + p+2. Hence the total contribution from the blocks (A,−) is p2(2p3 +2p2 +4)+ (p4−
p2)(p2 + p + 2). Multiplying this by (p2 + p + 1) and adding in the contribution from the first row,
gives p8 + 4p7 + 9p6 + 7p5 + 6p4 + p3 + 2p2 + 2 which is the total for the top half of M2

G. This is 1
2µ

2
G

since, by symmetry, the bottom half is a reflection of the top half. Then calculate γ2G = 1
2(µ

2
G + εG).

Example 4.7. When G = C3
p with generating set [a, b, c], there are ι2G = 23 isomorphism classes of

cat2-groups. As we have seen earlier, the number of isomorphism classes is the same for all p. Here
we construct 23 representative cat2-groups using the following 12 projections, where the images of
[a, b, c] are listed.

projection 0G α1 α2 β1 β2 β3 γ1 γ2 γ3 δ1 δ2 1G
has images 111 11c 1b1 1cc c1c bb1 ab1 a1c 1bc abb bbc abc

From these we construct twelve cat1-groups, the first six being representatives for the six isomor-
phism classes, and C2 ∼= C′2, C3 ∼= C′3 ∼= C′′3 , C4 ∼= C′4 ∼= C′′4 , C5 ∼= C′5.

cat1-group C1 C2 C3 C4 C5 C6
tail, head [0G, 0G] [α1, α1] [α1, β1] [γ1, γ1] [γ1, δ1] [1G, 1G]

cat1-group C′2 C′3 C′′3 C′4 C′′4 C′5
tail, head [α2, α2] [α2, β3] [α1, β2] [γ3, γ3] [δ2, δ2] [γ3, δ2]

Computations show that the following pairs of cat1-groups generate the required set of 23 repre-
sentative cat2-groups:
(C1, C1), (C1, C2), (C1, C3), (C1, C4), (C1, C5), (C1, C6), (C2, C6), (C3, C6), (C4, C6), (C5, C5), (C6, C6),
(C2, C2), (C2, C′2), (C2, C′3), (C2, C4), (C2, C′4), (C2, C′′5 ), (C′3, C′′3 ), (C3, C′4), (C4, C4), (C4, C′4), (C′4, C5), (C5, C′5).

4.4 Two nonabelian examples

It is not so straightforward to find formulae for nonabelian groups. However, for dihedral groups
G = D2p = 〈a, b | ap = b2 = (ab)2 = 1〉, with p prime, we can check that

εG = p+ 2, γ1G = σ1G = p+ 1, ι1G = τ1G = 2, γ2G = 2p+ 1, ι2G = 3.

The idempotent endomorphisms are the identity map id; maps εi : a 7→ 1, b 7→ aib, (1 6 i 6 p); and
the zero map 0. The cat1-groups are C0 = (D2p; id, id) and Ci = (D2p; εi, εi), while (D2p; 0, 0) is only a
pre-cat1-group. The Ci are all isomorphic. The cat2-groups have the form [C0, C0]; [C0, Ci] and [Ci, Ci],
forming three isomorphism classes.

Even more straightforward is the case of a nonabelian, simple group G. The only idempotent
endomorphisms are the identity and zero maps. The only cat1-group is C0 = (G; id, id) and the only
cat2-group is (C0, C0).

5 Tables of computed results

In the following tables the groups of size at most 30 are ordered by their GAP number. For each
group G we list the numbers of projections; cat1-groups, and their classes; symmetric cat1-groups,
and their classes; and cat2-groups, and their classes: εG, γ1G, ι

1
G, σG, τG, γ

2
G and ι2G.
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We may reduce the size of the table by noting the results for cyclic groups. We have seen in
Proposition 4.2 that when G = C

p
k1
1 p

k2
2 ...pkmm

then εG = γ1G = ι1G = σG = τG = 2m and γ2G = ι2G =

2m−1(2m + 1). When m = 2 we may list the 10 isomorphism classes as

[G, I, I, I], [G, I,G, I], [G,G,G,G], 2[G, I, Cpk , I], 2[G,Cpk , G,Cpk ], 2[G,Cpk , Cpk , Cpk ], [G,Cpk11
, C

p
k2
2

, I]

where, for example, 2[G, I, Cpk , I] denotes {[G, I, C
p
k1
1

, I], [G, I, C
p
k2
2

, I]}.
When m = 1 there are 16 cyclic groups of order at most 30; when m = 2 there are 12 such groups;

and when m = 3 there is just the group 30/4 = C30.
The following table contains the results for those G which are not cyclic. The values {εG, γ1G, ι1G}

agree with those in [2] except for the group 16/14.

GAP # G εG γ1G ι1G σG τG γ2G ι2G
1/1 I 1 1 1 1 1 1 1
4/2 K4 = C2 × C2 8 14 4 8 3 36 9
6/1 S3 5 4 2 4 2 7 3
8/2 C4 × C2 10 18 6 10 4 47 14
8/3 D8 10 9 3 9 3 21 6
8/4 Q8 2 1 1 1 1 1 1
8/5 (C2)

3 58 226 6 58 4 1,711 23
9/2 C3 × C3 14 38 4 14 3 93 9
10/1 D10 7 6 2 6 2 11 3
12/1 C3 n C4 5 4 2 4 2 7 3
12/3 A4 6 5 2 5 2 9 3
12/4 D12 21 12 4 12 4 41 10
12/5 C3 ×K4 16 28 8 16 6 136 32
14/1 D14 9 8 2 8 2 15 3
16/2 C4 × C4 26 98 5 26 3 231 11
16/3 (C4 × C2)n C2 18 25 4 17 3 57 7
16/4 C4 n C4 10 17 3 9 2 25 4
16/5 C8 × C2 10 18 6 10 4 47 14
16/6 C8 n C2 6 5 2 5 2 9 3
16/7 D16 18 9 2 9 2 17 3
16/8 QD16 10 5 2 5 2 9 3
16/9 Q16 2 1 1 1 1 1 1

16/10 C4 ×K4 82 322 12 82 6 2,875 53
16/11 C2 ×D8 82 97 9 57 6 649 29
16/12 C2 ×Q8 18 17 3 9 2 25 4
16/13 (C4 × C2)n C2 26 13 2 13 2 37 4
16/14 (C2)

4 802 10,882 9 802 5 325,363 53
18/1 D18 11 10 2 10 2 19 3
18/3 C3 × S3 12 8 4 8 4 24 10
18/4 (C3 × C3)n C2 47 118 4 46 3 541 9
18/5 C6 × C3 28 76 8 28 6 358 32
20/1 Q20 7 6 2 6 2 11 3
20/3 C4 n C5 7 6 2 6 2 11 3
20/4 D20 31 18 4 18 4 65 10
20/5 C5 ×K4 16 28 8 16 6 136 32
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21/1 C3 n C7 9 8 2 8 2 15 3
22/1 D22 13 12 2 12 2 23 3
24/1 C3 n C8 5 4 2 4 2 7 3
24/3 SL(2, 3) 6 1 1 1 1 1 1
24/4 Q24 5 4 2 4 2 7 3
24/5 S3 × C4 27 12 4 12 4 41 10
24/6 D24 33 20 4 20 4 75 10
24/7 Q12 × C2 25 36 6 20 4 115 14
24/8 D8 n C3 23 12 4 12 4 41 10
24/9 C12 × C2 20 36 12 20 8 178 52

24/10 D8 × C3 20 18 6 18 6 75 20
24/11 Q8 × C3 4 2 2 2 2 3 3
24/12 S4 12 5 2 5 2 9 3
24/13 A4 × C2 15 10 4 10 4 31 10
24/14 S3 ×K4 157 116 8 68 6 999 32
24/15 C6 ×K4 116 452 12 116 8 6,786 84
25/2 C5 × C5 32 152 4 32 3 348 9
26/1 D26 15 14 2 14 2 27 3
27/2 C9 × C3 20 56 6 20 4 138 14
27/3 (C3 × C3)n C3 38 37 2 37 2 127 4
27/4 C9 n C3 11 10 2 10 2 19 3
27/5 (C3)

3 236 2,108 6 236 4 24,222 23
28/1 Q28 9 8 2 8 2 15 3
28/3 D28 41 24 4 24 4 89 10
28/4 C7 ×K4 16 28 8 16 6 136 32
30/1 S3 × C5 10 8 4 8 4 24 10
30/2 D10 × C3 14 12 4 12 4 38 10
30/3 D30 25 24 4 24 4 92 10

There are just 6 of these groups which produce cat2-groups whose diagonal is not a cat1-group.
For each of these we give a triple consisting of the group number, the number of such cat2-groups,
and the number of their isomorphism classes:

[8/3, 4, 1], [16/3, 16, 1], [16/11, 176, 5], [16/13, 12, 1], [24/10, 16, 3], [27/3, 54, 1].
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