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Summary 

Over recent years the investigation into the magnetic behaviour of nanostructured 

permalloy has become more advanced due to improvements in numerical micromag

netic methods on the theoretical side and high accuracy electron-beam lithography 

methods experimentally. The interest in such structures of magnetic material is 

increasing mainly due to the possible potential use in future high-density magnetic 

storage media applications. 

When the material is discretised into a nanoelement structure at the sub micron 

level theoretical micromagnetic techniques may be employed in order to investi

gate the magnetization behaviour. This thesis describes a theoretical study of the 

hysteresis and domain behaviour in thin film permalloy nanoelements. 

To carry out our investigations we have developed a dynamical micromagnetic 

model based on the use of the finite element method. The results presented in this 

thesis begin with a test of the performance of our model. We then proceed with 

an investigation into the effect of size, elongation and geometry on the transition 

states for single nanoelements. The investigation is then extended to look at the 

magnetization behaviour of arrays of interacting nanoelements in relation to their 

separation and material properties. 

The reversal mechanism of the arrays is very sensitive to the degree of disorder. In 

the case of an aligned uniaxial anisotropy a highly symmetric cooperative switch

ing mechanism is observed. A large anisotropy has the effect of stabilizing states 

during the reversal process leading to distinctive switching. A random anisotropy 

breaks this high symmetry sufficiently to reduce the cooperative switching leading 

to a relatively random reversal of individual elements. The theoretical predictions 

are compared with experimental observations. 
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Chapter 1 

Magnetic Materials 

1.1 Introduction 

The history of magnetism and magnetic materials began when the attractive power 

of spontaneously magnetized magnetite (Fe30 4 ) was discovered, although the date 

of this is not known. Early interest in magnetism was due to its application as 

a navigation aid, the compass. Around 1269AD Peregrinus made a formal ex

planation of the fact that there existed regions on a magnetic material, termed 

magnetic poles, which would attract a piece of iron more strongly than the rest 

of t he material. Using this scientific knowledge the pivotal compass could be de

veloped. 

The interest in magnetism was lost by scientists for many centuries until Gilbert 

(1540-1603) explained the reason for the existence of magnetic poles and that the 

Earth could be considered as a huge magnet itself. This encouraged scientists to 

look into the phenomenon of magnetism. With the aid of mathematics by the 

eighteenth century the phenomenon of magnetism could be expressed in terms of 

equations. In 1785 Coulomb (1736-1806) was able to formulate the inverse square 

law for the magnetic field and also around this time Poisson (1781-1840) published 

work which forms the basis to the formulation of modern day theoretical magnetics. 

This work which Poisson published formulated an expression for the magnetic 
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1.2. MAGNETIC QUANTITIES 

force of a magnet in terms of a volume and a surface integral as a function of the 

magnetization intensity. This theory was then built on by Green and Gauss who 

produced much work on magnetostatic and electrostatic theory. On the experi

mental side, the work of Physicists Oersted, Biot and Savart and Ampere proved 

that there was a mutual magnetic reaction between an applied electric current and 

a magnet. 

The first recognised study of the magnetic properties of a material was due to 

the Physicist Faraday in 1831 who discovered electromagnetic induction. Later 

in the nineteenth century, Maxwell (1831-1879) translated this theory into mathe

matics. This work laid the mathematical foundation of the modern day theoretical 

study of magnetic materials. 

1.2 Magnetic quantities 

The vast majority of materials which exist in the World have magnetic properties 

which for engineering purposes are the same as those of a vacuum. The exceptions 

to this are iron(Fe), cobalt(Co) and nickel(Ni) and a number of rare earth mag

netic materials. These have the feature that they exhibit magnetization in zero 

applied magnetic field, i.e. they are spontaneously magnetized. Before explaining 

more about the origins of magnetism we will now consider how magnetization is 

measured and what this reveals about the magnetic behaviour of a material. 

1. 2 .1 Magnetic fields 

When a piece of iron is subject to an external magnetic field H it will become 

magnetized. The extent of the magnetization M in the iron will be dependent 

upon the strength of the field. We therefore need a way of determining this field 

strength for different materials. 

The strength of the external magnetic field H is measured in oersteds ( Oe) in 

the cgs system and the magnetization Mis measured in emu/cm3 . Absolute mea-

2 



1.2. MAGNETIC QUANTITIES 

surement of a magnetic field can be obtained by Nuclear Magnetic Resonance 

(NMR) by using the spin magnetic moments of nuclei. In practice a Hall probe 

magnetometer can be used to measure the intensity of H and output can easily 

be monitored on a PC, however this method must first be calibrated using NMR 

results. 

1.2.2 Magnetic susceptibility 

The magnetic susceptibility x is the single most important characteristic of a ma

terial. It is defined by 

X = 
M 
H (1.1) 

It may be measured directly from a magnetization curve or directly by force and 

A.C. methods [1]. Materials with small and negative x include diamagnets, for 

small and positive x we have paramagnets and antiferromagnets which all 

retain no magnetization when the field is removed. Whereas those which posses 

large and positive x are ferromagnets and ferrimagnets. 

1.2.3 Magnetic moments 

The magnetic properties of a material arise at the atomic level. The atomic mag

netic moment has contributions from the electron motion around the atom and 

also from the electron spin magnetic moment. The magnetic moment is defined 

by the vector sum of all orbiting electronic moments. This gives a convenient 

way of classifying types of magnetization from the atomic level. There are only 

two possibilities that may arise from the summat ion of moments, either they all 

cancel out so that the atom as a whole has no magnetic moment termed diamag

netism or we are left with a net magnetic moment which occurs in paramagnetism, 

ferromagnetism, antiferromagnetism and ferrimagnetism. 

3 



1.3. FERROMAGNET/SM 

1.3 Ferromagnetism 

We have mentioned the existence of spontaneously magnetized iron but how can 

we explain this ability to exhibit magnet ization in zero applied field. This may be 

achieved by the following. 

1.3.1 Mean field theory of ferromagnetism 

In 1895 Curie made a systematic study of the susceptibility of many materials over 

a range of temperatures. It was found that the susceptibility was independent of 

temperature for diamagnets> but it varied inversely with the absolute temperature 

for paramagnets. This was later shown to be a special case of the Curie-Weiss 

law. The formal theory of ferromagnetism was proposed by P. J. Wiess in 1907. 

This theory assumes the existence of a magnetic field within the material whose 

magnitude is proportional to t he bulk magnetization M , i.e. 

(1.2) 

where Bm is the mean field and A is a constant dependent upon the temperature 

of the material. This leads to a relationship between the temperature and the 

susceptibility as 

X = T-Tc 
C 

(1.3) 

where C is the Curie constant, T the absolute temperature and 

(1.4) 

which is another material dependent constant known as the paramagnetic Curie 

temperature. For T > Tc the material acts as a paramagnet. Equation (1.3) is 

often referred to as the Curie-Weiss law. 

1.3.2 Atomic magnetism and exchange forces 

The Curie-Weiss law shows that ferromagnetism may be explained by invoking a 

large internal field proportional to the magnetization. This model is successful in 

4 



1.3. FERROMAGNETISM 

predicting the variation of magnetization with temperature but neglects the origin 

of the internal field. This internal field is actually very large and cannot arise from 

magnetic sources alone. 

The origin of this internal field was first explained by Heisenberg who showed that 

the molecular field arose from exchange forces which are quantum mechanical in 

origin. When two atoms are bought closer together, the electrostatic forces between 

them may be either attractive or repulsive. These may be found by Coulomb's law. 

The exchange force is a direct consequence of the Pauli exclusion principle. This 

states that two electrons can have the same energy only if t hey have opposite 

spins. As a consequence we would expect that as atoms are forced closer together 

the most stable configuration will be with the spins on neighbouring atoms anti

parallel, i.e. non-ferromagnetic order should result. However, the exchange force 

arises in a very subtle way. Because of the indistinguishability of electrons we must 

take into account the possibility that two electrons on neighbouring atoms simply 

exchange places. It is this which leads to exchange energy between two neighbour

ing atoms. The exchange energy is responsible for the ferromagnetic coupling. It 

can be shown that two atoms i and j with spins Si and Sj are exchange coupled 

with an energy, Eex given by 

(1.5) 

where l ex is known as the exchange integral and 0 is the angle between the spins. 

However this is an atomic level quantity, for our micromagnetic considerations 

this phenomena may be formulated as follows. 

Assuming a slowly spatially varying magnetization the exchange energy may be 

written as 

l exS
2 L </>f,j (1.6) 

n.n 
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1.3. FERROMAGNETISM 

with the summation being carried out over nearest neighbours. The CPi,j represents 

the angle between two neighbouring spins. For small angles l<Pi,jl ~ lmi - m}i. A 

first order expansion in a Taylor series is 

where s is a position vector joining lattice points i and j. 

Substituting equation (1.7) into equation (1.6) gives 

Eex = 1exS2 LL l(s · \7)ml2 

i n.n 

(1.7) 

(1.8) 

where the second summation is over nearest neighbours. Changing the first sum

mation to an integral over the whole body we obtain t he micromagnetic formalism 

for cubic crystals as 

(1.9) 

where C is a material dependent constant and m is a unit vector parallel to the 

local spin of the magnetic moment. Exchange is fundamental to ferromagnetic 

behaviour. 

1.3.3 Magnetic domains 

We know that ferromagnetic materials exhibit spontaneous magnetization but they 

can also exist in a demagnetized state. To reconcile these facts we must consider 

the existence of magnetic domains. 

Domains are regions of a material in which the magnetization is saturated, i.e. 

the magnetization M has a value equal to the spontaneous magnetization. How

ever in the demagnetized state the domains are oriented at random so that the 

total magnetization is zero. 

It was pointed out in ref. [2] that the existence of magnetic domains was a con

sequence of exchange, anisotropy and magnetostatic energies that are present in 

a ferromagnetic material. The existence of domain structures arise from the need 

6 



1.3. FERROMAGNETISM 

to balance the magnetostatic and the exchange energy. The tendency of a mate

rial is to lower the magnetostatic energy which is ex M 2 . The reduction in the 

magnetization, M is achieved by the material splitting up into domains. Within 

each domain the magnetization remains parallel in order to minimize the exchange 

energy but the overall orientation of the direction of the domains is such that NI 

itself is lowered. 

Some possible domain configurat ions for a hypothetical thin film ferromagnetic 

material will now be demonstrated. 

Since the thickness of the material is very small, we can neglect the domain struc

ture in this direction so the patterns can be represented in two dimensions as shown 

in Figure 1.1. 

(a) (b) (c) (d) 

Figure 1.1: Some possible domain configurations in a ferromagnet 

In Figure 1.l (a) the net magnetization would be the saturation value Ms, whereas 

(b), (c) and (d) would exhibit zero net magnetization. The production of the do

main wall itself requires energy, as a consequence the energy reduction by splitting 

up into a small number of domains may not be sufficient to compensate for the in

creased energy associated with the domain walls involved as shown in Figure 1.l(a). 

7 



1.4. ANISOTROPY 

Experimental techniques used to produce images of domain structures include 

• Bitter pattern method which involves introducing a colloidal solut ion into 

a ferrofluid placed on the surface of a magnetic material. 

• Faraday and Kerr magneto-optical methods whereby a linearly polarised 

beam of light is aimed at the specimen. 

• Transmission electron microscopy (TEM) , Foucalt imaging and 

Lorenz microscopy where electrons are deflected by the magnetic field 

gradient in the specimen producing an image of the domains. These methods 

allow high resolution images to be produced showing fine detail in the domain 

structure. 

1.4 Anisotropy 

The term anisotropy refers to the fact that the properties of a magnetic material 

are dependent on the directions in which they are measured. Anisotropy makes 

an important cont ribution to Hysteresis in magnetic materials and is therefore of 

considerable practical importance. Anisotropy arises from a number of possible 

causes. 

1.4.1 Crystal or Magnetocrystalline Anisotropy 

This is the only contribution intrinsic to the material. It has its origins at the 

atomic level. Firstly in materials with a large anisotropy there is a st rong coupling 

between the spin and orbital moments within an atom. In addit ion, the atomic 

orbitals are generally non-spherical. 

Because of their shape the orbits prefer to lie in certain crystallographic directions. 

The spin-orbit coupling then assures a preferred direction for the magnetization 

termed the easy direction. To rotate the magnetization away from the easy di

rection costs energy - the anisot ropy energy. The anisotropy energy depends on 

the lattice structure of the material. 

8 



1.5. PROPERTIES OF FERROMAGNETS 

1.4.2 Shape Anisotropy 

Shape anisotropy is caused by the geometry of the material. A practical example of 

this is in particulate recording media where particles with aspect ratios of between 

4 : 1 to 10 : 1 are used. The Hysteresis behaviour of the particles is then directly 

related to the shape anisotropy caused by their aspect ratios. 

1.4.3 Stress Anisotropy 

This arises from the change in atomic structures as a material is deformed. It is 

related to the phenomenon of 'magnetostriction ' which is important for magnetic 

sensor applications. 

1. 5 Properties of ferro magnets 

So far we have mentioned the basic physical ideas behind ferromagnetic materials 

but in order to investigate their suitability to magnetic recording applications, we 

must mention their fundamental magnetic properties. 

1.5.1 Magnetic saturation 

Consider an init ially unmagnetized ferromagnet shown in Figure 1.2(a). When 

an high external field is applied to a ferromagnet, the magnetic moments will 

align themselves in parallel with this and the material will become magnetized as 

seen in Figure 1. 2 (b). If we measure the magnetization M of the ferromagnet in 

relation to the applied field we see there is a limiting value of M which will get 

no larger even if the external field is increased. This value Ms is known as the 

saturation magnetization of the material. Ms represents a value of M for which 

all the magnetic moments are aligned in the external field direction. 

1. 5. 2 Hysteresis 

Hysteresis is the phenomenon whereby the magnetic state depends on the history of 

the sample in terms of the sequence of application of an external magnetic field. A 

9 



1.6. APPLICATIONS OF MAGNETIC MATERIALS 

1 j 

(a) (b) 

Figure 1.2: Moments in a ferromagnetic material 

practical application of the hysteresis behaviour is to give the material a 'memory'. 

A hysteresis curve which is a plot of the magnetization M against the applied 

field H may be obtained by applying an external field H to the sample which is 

increased until M = Ms this is represented on Figure 1.3 by the path ab and is 

known as the magnetization curve. The field is then gradually reduced by a 

fixed field step and we notice that M does not follow the initial path ab but a new 

one be. The value of Mat c is called the remanence of the ferromagnet. The value 

of the external field needed to make M zero is known as the coercivity at d of the 

ferromagnet and the curve cd is known as the demagnetizing curve. Gradually 

decreasing the applied field further will produce a magnetization M negative to the 

saturation value at e. The field is then increased with reverse polarity to produce 

the curve ef gb. If this processes is repeated the hysteresis loop bcdef gb will be 

traversed again. The hysteresis loop is influenced by the material anisotropy which 

produces an energy barrier for the applied field to overcome and thus contributes 

to the width of the loop. 

1. 6 Applications of magnetic materials 

For technological applications ferromagnetic materials are the most important class 

of magnetic materials. This is due to their high magnetic susceptibility which en

ables high magnetic inductions to be obtained with the smallest of applied fields 

and also their ability to retain magnetization. Further explanat ion of ferromag

netism can be found in Jiles [3] and Carter [4]. 
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The properties of the variety of magnetic materials which now exist can be con

trolled by varying the proportions of the constituent components which make up 

the alloy. They are also strongly influenced by the ways in which the material is 

prepared, especially any heat treatments used. More detailed discussion may be 

found in Cullity [5] 

From a practical point of view the main division among magnetic materials is 

between "hard" and "soft" materials. The difference between these two classes 

of material can be seen in Figure 1.4. Soft materials are characterized by having 

narrow hysteresis loops, low remanence and small coercivity (they are easy to de

magnetize). Hard magnetic materials have broad hysteresis loops, high remenance 

and a high coercivity. Such materials are difficult to demagnetize and are therefore 

used for making permanent magnets and magnetic recording. 

Permanent magnets are used in a wide variety of applications from consumer and 

automotive electronics such as loudspeakers and DC motors to biosurgical and in

dustrial uses such as ferromagnetic probes, separators and sensors. The main cause 

M 

b 

H 

e 

Figure 1.3: Hysteresis loop showing magnetization paths 
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of hysteresis is the presence of magnetocrystalline anisotropy. In materials with 

this present the magnetic moments will be in the lowest energy state when they 

are aligned with the easy direction, the presence of any strong external field will 

cause them to find new lowest energy states and thus causes a switching action of 

the moments. Another way of controlling hysteresis is by adding impurities such 

as non magnetic materials to ferromagnets. 

M 

H 

Figure 1.4: Hysteresis loops for Hard and Soft magnetic materials 
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1. 7 Stoner-Wohlfarth Theory 

Usually we observe many domain configurations in ferromagnetic specimens. How

ever under certain circumstances, it is possible to observe single domain states. The 

formation of such states is dependent upon the size of the specimen,the magne

tostatic energy and exchange forces. The magnetic hysteresis of non-interacting 

single domain particles with uniaxial shape anisotropy has been investigated theo

retically by Stoner and Wohlfarth [6]. They investigated the behaviour of a single 

domain ellipsoid of revolution when subjected to increasing magnetic fields at var

ious angles to the easy axis of magnetization of the ellipsoid. 

The theory of Stoner and Wohlfarth describes the magnetization process of single 

domain particles with uniaxial anisotropy as a result of particle shape and size. 

The theory is based on energy minimization. The magnetization is assumed to be 

of uniform magnitude and direction, represented by the magnetic moments. The 

most basic and understood form of magnetization process is rotation. If the spins 

rotate as a whole in a parallel fashion, this motion is referred to as coherent ro

tation as opposed to incoherent rotation where the directions of the spins will 

vary. 

For a given material we can represent the angle of orientation of the magnetiza

tion M with the uni axial anisotropy (easy) direction by 0. The anisotropy energy 

density is then given by 

Ea = - Ksin2 0 (1.10) 

where K is the uniaxial anisotropy constant . 

The component of magnetization in the direction of the applied field is then given 

by 

Ms cos0 
HM2 

s 

2K 
(1.11) 
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Where Hk is the applied field strength needed to saturate the sample, i.e. for 

H > Hk the magnetization, M = M 8 • 

Two interesting situations can now be investigated. When a field is applied per

pendicular to the easy axis direction there will be torques on the magnetization 

by the applied and anisotropy fields and the magnetization will align itself with 

the applied field and create no hysteresis as shown in Figure 1.5(a). However, 

when a field is applied parallel to the easy axis direction the magnetocrystalline 

anisotropy will keep the magnetization in its original direction. When the field 

becomes strong enough in the opposite direction this causes the magnetization to 

line up parallel. The magnetization can therefore be made to follow the direction 

of the applied field and therefore create hysteresis as in Figure 1.5(b). 

M M 

Ms 

Hk H 

(a) (b) 

Figure 1.5: Hysteresis loops for single a domain particle with applied field ( a) 

perpendicular and (b) parallel 

1. 8 Magnetic recording 

The modern day methods of electronic information storage rely on magnetic record

ing processes. Magnetic recording was first demonstrated by the Danish engineer 
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Poulson who in 1898 created a device called the telegraphone which recorded ac

coustic signals on a ferromagnetic wire using an electromagnet connected to a 

microphone. This technology evolved further when in 1927 magnetic tape was in

vented which could be used in the audio recorders developed in 1948. Since the 

1940s there has been much improvement in the technology due to the growth in the 

availability of new materials for recording (recording media). Digital recording 

for computers was developed by IBM in the mid 1950s and video recording soon 

followed 

Magnetic recording is probably the main reason for the majority of current sci

entific investigation and research into magnetization processes in recording media. 

There is much commercial interest from the point of view of information technol

ogy due to the demanding storage requirements of computer operating systems on 

hard disks and their software packages and in entertainment such as audio compact 

discs and digital video discs. The current state of the art storage density capability 

is 36GB/sq.in. 

Much literature exists on magnetic recording such as Bertram (1994) [7]. The 

technology behind magnetic recording is far beyond the discussion here but one 

application of the results provided by our work is to gain an insight into the mag

netization processes in a recording medium. Before going any further, it is useful 

to explain the basics behind the magnetic recording process. 

The recording process involves both writing an imprint to the medium and read

ing from the medium. To make a magnetic imprint onto the media an inductive 

process is used via electrical impulses from coils wound around an electromagnet 

which is in the shape of a toriod. The writing head is made from a small pole gap 

cut into the toroid. When the media is placed below the gap a fringing field causes 

a change in the magnetization behaviour on the media. 

Reading from the media is performed by passing it below a read head. Once the 
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magnetic imprint on the media is below the read head there will be a fluctuation in 

the flux density in the magnetic core of the read head. The stray field associated 

with the imprint on the media (fringing field) will pass through the coil giving rise 

to an induced voltage which is proportional to the rate of change of the magnetic 

flux linking the coil. The basic recording process is shown in Figure 1.6, where I 

is the input current, V is the direction of motion of the media and dis the pole gap. 

head 

I 

medium d 

V 

track 

Figure 1.6: The magnetic recording process 

The patterns of recorded data are referred to as written bits. The recording heads 

are usually made from soft magnetic materials with d = 0.3µm. The important 

criteria for determining a good magnetic material for the head is a high saturation 

magnetization in order to make a large magnetic imprint on the media and a low 

remanence to ensure that no writing takes place when the current is switched 

off. Typical materials possessing these attributes are AlFe, NiFe (permalloy) and 

CoZr (cobalt-zirconium). During the writing process, the magnetization may be 

oriented in different directions relative to the direction of motion of the media, 

when in the same direction the media is termed longitudinal in comparison to 
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transverse and perpendicular, when the media is written to in a transverse and 

perpendicular direction respectively wit h respect to the direction of the motion 

of t he media. For a detailed discussion of magnetic recording t he tutorial review 

article by Mallinson [8] is very appropriate. 

The requirement of modern day magnetic recording is higher density storage, this 

is achieved by reducing the track width which is limited by the gap width in the 

head and by making the bits smaller. The limiting factor in this criteria is a reduc

t ion in signal, hence inductive heads are no longer viable and are currently being 

replaced by Magnetoresistive (MR) sensors. 

Magnetoresistance is a change in t he electrical resistance of certain materials when 

exposed to an applied field. This is a very sensitive way to detect the stray field 

above the transitions between two bits of information. It is not surprising to realise 

that magnetoresistive heads are now being used in current hard disc technology. 

A new phenomena Giant Magnetoresistance (GMR) has recently been discovered 

in certain materials and it is predicted that GMR devices will be predominant by 

early this century and represent the ultimate sensitive readback device. 

1.9 Material requirements 

The basic physical attribute which makes a material suitable for magnetic record

ing is non-equilibrium behaviour. This can be considered as introducing a memory 

which obviously is essential to any means of information storage. In the case of a 

magnetic material the non-equilibrium behaviour is represented by a hysteresis 

loop obtained by measuring the magnetization as the applied field is cycled . 

A vibrating sample magnetometer (VSM) is the instrument used to test the mag

netic material to determine its suitability as a recording medium from the criteria 

t hat the material should have 

• a high magnetization remanence enabling information to be retained after 
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the writing process 

• a high saturation magnetization which will give a large signal during the 

reading process 

• a high coercivity to prevent erasure of the recorded information. The co

ercivity should be such that a small external field will not demagnetize the 

recorded information 

The ratio between the remanence and the saturation magnetization of the material 

defines the saturation squareness of t he material. 

Due to the increasing power of magnetic imaging techniques, the magnetic record

ing medium has been found to possess structures which are quite complicated. 

Nowadays mostly particulate media is used for magnetic recording, this type of 

media is made of particles which are usually elongated and are single domain e.g. 

oxides of iron, oxides of chromium (CrO2 ) and barium ferrite (BaFe). Particulate 

media are used for recording on flexible media. 

The usual material for magnetic disk recording is of the thin metallic film type 

which is made up of small areas of magnetization. The granular nature is neces

sary to achieve a high coercivity. 

A type of recording media which is being investigated for future high density 

applications is patterned media. This type of metallic thin film is composed of 

a discrete number of areas of magnetic material which are well defined geometric 

shapes. This is to reduce the signal to noise ratio and increase the recording density. 

Investigation into the magnetic properties of this type of media due to the de

pendence upon the shapes of the geometrical regions of magnetization, their size 

and separation is the subject of much current research in magnetism including part 

of this thesis. Imaging techniques such as transmission electron microscopy (TEM) 

and lithographic techniques are used by experimentalists to produce this type of 
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media and due to the recent advances in these methods the sizes and shapes of 

the particles within the media can be controlled by dimensions at t he sub micron 

level. 

1.10 Theory of micromagnetics 

Previously we have mentioned the behaviour of the net magnetization of a fer

romagnetic material in terms of a magnetization vector, M and explained its 

behaviour in terms of Stoner-Wohlfarth Theory. We now turn our attention to the 

continuum theory of micromagnetics which was formulated by Brown [9] and was 

based on an energy minimization approach formally known as Brown's equations. 

These equations are the final step in the formulation of classical micromagnetics. 

Firstly, if m is a unit vector parallel to M, then the total energy is defined as 

which has contribut ions from the exchange, anisotropy, external and demagnetizing 

energies respectively. The approach is to minimize equation (1.12) using standard 

variational principles. Essentially setting the first variat ion of the total energy to 

zero leads to two equations. The first is a surface equation 

(1.13) 

The second is a volume equation 

m X H tot 0 (1.14) 

where the total effective field 

H tot = 
2A 2 
M '1 m + H a + H app + H d 

s 
(1. 15) 

A full discussion of the numerical calculation of the individual field terms in the 

calculation of H tot will be given in Chapters 3 and 4. Essentially, equation (1.13) 
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states that the equilibrium solution is found by making the magnetization lie paral

lel to the local field. Equations (1.13) - (1.14) are referred to as Brown's equations 

and form the basis of the classical micromagnetic approach via the solution of a 

stationary problem. 

Micromagnetics is a theoretical formalism enabling the prediction of magnetiza

tion structures such as domain walls and the investigation of magnetization reversal 

mechanisms in bulk magnetic materials. As such it forms an important link be

tween atomic scale magnetization behaviour. 

The study of micromagnetics is an important and challenging field for the compu

tational physicist, much activity exists in this area. There are two main reasons 

for this 

• The enormous technological advances made to computing facilities have made 

it possible to use numerical solutions to the micromagnetic problem. This 

enables the development of advanced theoretical and computational models 

for comparison with experimental data. 

• Secondly, the technological evolution of a number of important magnetic 

materials has reached a stage at which an increasingly detailed understand

ing of their fundamental magnetic behaviour has emerged as being of vital 

importance. 

Probably the best example of the practical application of micromagnetics is the 

area of recording media. Since the beginning of the existence of particulate record

ing media, advances relied on the simple prescript ion of decreasing the particle 

size and increasing the coercivity. However, current information storage density 

requirements of magnetic recording media needs a new approach. Current re

search is being undertaken into a number of materials including thin metal films 

with longitudinal and perpendicular anisotropy and Metal Evaporated (ME) tapes 

in addition to advanced particulate media. Common to all these disparate mate

rials is the existence of complex magnetization structures and reversal processes 
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which are highly sensitive to the physical microstructure of the material and to the 

existence of short (exchange) and long range (magnetostatic) interactions. 

1.11 The finite element method in micromagnet-
. 
ICS 

The evolution of micromagnetics has created some problems which are very dif

ficult to solve in terms of numerical methods. However with the introduction of 

novel calculations such as hybrid finite element / boundary element methods [10], 

integro-differential equations [11], finite difference methods [12] and Fast Fourier 

Transforms (FFTs) [13] into micromagnetics it has become possible to overcome 

this difficulty. 

One problem in modeling micromagnetic behaviour is being able to consider re

gions of arbitrary geometries. The finite element method (FEM) was first used 

in micromagnetics to overcome this by Fredkin and Koehler (1987) [14]. Since 

then many authors have used this method in micromagnetic simulations. Fredkin 

and Koehler continued their work by improving their method numerically [15] and 

several authors began using their own variant of finite element method in different 

micromagnetic modeling situations, Schrefl [16], Kronmiiller [17] and Tako [18] are 

just a few to mention. 

The work which is of direct interest to the motivation behind this thesis is that 

involving the modelling of thin film permalloy platelets at the nanoscale. The ex

perimental work in this area has been carried in [19] and [20] by using electron 

beam lithographical imaging techniques such as Foucalt and Fresnel methods to 

look at the domain behaviour and reversal mechanisms of the particles. On the 

theoretical side Schrefl and coworkers [21] and [22] have looked at the micromag

netic simulations of these experiments by using the FEM and have produced results 

which emulate the experimental observations with fine detail. Because of its ability 

to model the material behaviour with a very high precision the FEM is certainly 
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the way forward to realistically understand the micromagnetic properties of this 

work even further. 

1.12 Summary 

In this introductory chapter we have put forward a few general ideas about mag

netism and magnetic materials. The magnetic recording process has been described 

in order to explain the unique feature of magnetic materials (non equilibrium be

haviour) which makes them suitable for this application, also the desire to increase 

storage density in magnetic recording media due to the software requirements of 

the domestic PC is the driving force behind a lot of research into magnetic record

mg. 

We have mentioned how we quantify different magnetic materials and what fea

tures can be examined to determine their suitability for a particular application 

such as remanence, coercivity and susceptibility. The concept of ferromagnetism 

has been described together with the properties associated with it. The existence 

of magnetic domains has been discussed together with the concept of the study 

of the magnetization behaviour at the micromagnetic level. We have introduced 

the theory of micromagnetics which enables a theoretical comparison to be made 

with the high resolution imaging techniques in experimental work. We have also 

commented on the new numerical methods being introduced into micromagnetics 

to maintain agreement between experiment and theory. 

The rest of this thesis is concerned with the development and implementation 

of a finite element method in micromagnetics which will later be used to produce 

some new results on thin film permalloy particles of sizes in the region of microns. 

These particles are termed nanoelements, which is a purely micromagnetic term 

and is not necessarily a direct implication of their size. 

In Chapter 2 we give a brief introduction to the finite element method includ-
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ing its historical beginning, the basic ideas involved and t he general mathematical 

concepts. We also give an example via a finite element solution to a simple problem 

which is very applicable to our more advanced problem in micromagnetics. 

Chapter 3 gives the detailed descript ion of the micromagnetic model which we 

will employ in our simulations. Here we specify the mathematical physics behind 

the model and the formulation of the field terms. The magnetization dynamics is 

detailed which governs the magnetization behaviour of the material. We also give 

a brief mention of the numerical t ime integration routine used in the model. 

We have devoted Chapter 4 to the complete description of our finite element cal

culation. Here we look at the problem of obtaining the demagnetizing field via a 

numerical routine. Existing methods are mentioned together with advantages of 

using the FEM. We then give a detailed description of the field problem and its 

solution in terms of a finite element variational approach. 

In the first four chapters we have given the description of the motivation behind our 

model and also its mathematical formulation. Chapter 5 sees the results obtained 

by using our model to simulate magnetization processes in single non interacting 

permalloy nanoelements. We start off by looking at efficiency and numerical ac

curacy of the finite element field calculation and present some results illustrating 

this. We then test our model with existing published theoretical work and then 

proceed to obtain new results in terms of domain configurations and hysteresis 

behaviour. 

Chapter 6 is the second part of the results section. This includes the results 

we have obtained by investigating magnetization domain processes in arrays of in

teracting nanoelements. Due to the ability of the finite element method to handle 

regions of arbitrary geometry we are able to investigate the interaction effects of 

nanoelements arranged in one and two dimensional arrays. 
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We close the work presented in this thesis in chapter seven by some concluding 

remarks and an outline of any further work which could be developed in the future 

to improve the existing model. 

At the end of the main discussion we include an appendix giving a brief overview 

of the finite element mesh generation software used in this work together with 

some mathematical formulae referenced in the main text and a list of the scientific 

research papers published arising from this investigation. Finally we give a list of 

the bibliographical references. 
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Chapter 2 

The finite element method 

2 .1 Historical background 

The fundamental idea of the finite element method (FEM) is to replace a complex 

system with individual components whose behaviour is more easily understood, 

then rebuild the original system from such components. This results in the re

placement of a global function by a set of piecewise approximations. 

This idea is hardly a new one, early Oriental mathematicians used 'finite elements' 

to evaluate 1r to reported accuracy of almost forty decimal places. They accom

plished this by inscribing and circumscribing regular polygons inside and around 

a circle. The lengths of the sides of the polygons are readily measured as they 

are straight, the sum of these lengths will t hen approximate the circumference, 

then by dividing this by the diameter of the circle, upper and lower bounds to 1r 

are available. By increasing the number of sides of the polygons convergence to 

an exact solution was found. Indeed, Archimedes used ideas of finite elements to 

determine areas of plane figures and volumes of solids, but with no idea of limit

ing procedures he was prevented from discovering the integral calculus long before 

Newton and Leibniz. 

The main application of the FEM today is as a numerical technique for obtaining 

an approximate solut ion to differential equations. The fascinating point here is 
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that modern day physical phenomena described in terms of differential equations 

will have a finite element solution which utilizes ideas which are much older than 

those used to set up the equations initially. 

The modern use of finite elements began in the field of solid mechanics by solv

ing a continuum model as a discrete system. Probably the first attempts were 

by Hrenikoff (1941) [23] and McHenry (1943) [24]. These methods belonged to 

a collection of techniques which were used in the early days of aircraft structural 

analysis when wings and fuselages were represented by discrete bars and beams. 

It soon became apparent that these techniques were inadequate for reliable mod

elling of modern jet-powered aircraft and new methods were sought. The for

mal introduction of the FEM is attributed to Turner, Clough, Martin and Topp 

(1956) [25] who presented the direct stiffness method for assembling triangular 

elements for the analysis of plane stress problems. The term 'finite element' was 

first used by Clough (1960) [26] in a paper devoted to plane elasticity problems. 

This important piece of work is both of great conceptual and computational value 

to the FEM as it introduces a framework for the direct use of a standard method 

applicable to discrete systems. 

Over the next few years the FEM was being used to solve a wide variety of plane 

structural problems and it was not long before generalizations to three-dimensional 

problems were being considered by Argyris (1964) [27]. However it was at this point 

that researchers faced some difficulty due to convergence problems, but this matter 

was resolved by Bazeley et al (1965) [28]. The common three-dimensional type of 

problem being considered at this stage was that of plate bending. This could be 

modelled by the use of plate elements, such as triangles or rectangles, many of 

which make up a structure known as a shell. However, serious problems occurred 

in the presence of extreme bending and this led to the creation of shell elements. 

The first attempts at shell elements took the form of simple conical shapes known as 
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axisymmetric elements and were first presented by Grafton and Strome (1963) [29]. 

A whole sequence of curved shell elements soon followed and are reviewed by Gal

lagher (1969) [30] . Such elements are still being developed to this day. 

As well as being employed in structural modelling, the FEM holds a history of 

equal importance in other problems which began during the mid 1960s. Such non

structural problems include heat conduction, irrotational flow of ideal fluids and 

distribution of electrical and magnetic potential. These all come under t he heading 

of field problems. During this time it was becoming apparent that the FEM could 

be applied to any problem which could be expressed in a variational form, i.e. in 

the form of a scalar quantity known as a functional, which will be explained later. 

Theorems such as minimization of total potential energy to achieve equilibrium 

in mechanical systems and least energy dissipation principles in viscous flow both 

produce variational forms and therefore the FEM may successfully be implemented 

in their modelling. Notably a solut ion to the Poisson equation by the FEM was 

first described by Zienkiewicz and Cheung (1965) [31]. 

About the same time a convergence proof of the method was produced from an 

engineering perspective which utilized the principle of minimum potential energy, 

although it was not until 1967 when applied mathematician Birkhoff published a 

convergence proof together with error bounds for the method [32] . At this point 

engineers and mathematicians were bought together in the understanding that the 

FEM could be extended to new areas. 

By the start of the 1970s the FEM had become a very powerful tool for a wide 

variety of applications mainly due to its ability to handle regions of complicated 

geometry with ease. Another breakthrough happened during this time when the 

FEM was recognised as a form of the already well known weighted residuals ap

proach. This meant that problems where no variational principle existed could be 

solved e.g. electromagnetic theory as presented by Zienkiewicz (1977) [33]. 
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Since the inception of the FEM, the amount of work using the technique has grown 

exponentially. This, together with improvements in mathematical algorithms to 

formulate finite element solutions; have made the FEM attractive to other physi

cal sciences such as biomedical engineering and micromagnetics. The rest of this 

chapter is devoted to the description of the basic concepts of the FEM with an 

introduction to how it will be applied to the solution of a micromagnetic field 

problem. 

2.2 Basic concepts of the FEM 

If we assume ¢ to be a function defined over some domain, then the finite element 

analysis of¢ will involve obtaining its approximation by finding a set of piecewise 

approximations. In order to do this there are a number of steps to be carried 

out which are common to any finite element analysis. The first step is known as 

domain discretisation. 

2.2.1 Domain discretisation 

Domain discretisation is the process of subdividing the domain occupied by ¢ into 

a finite number of smaller regions. These regions are called elements each of which 

have a certain number of associated nodes. The most common elements in two

dimensional discretisation schemes are triangular and rectangular (see Figure 2.1), 

generalizing to three dimensions, they become tetrahedrons and bricks. Together 

t he collection of elements and nodes make up the finite element mesh (see Fig

ure 2.2). It is clear that the elements will share common nodes within the mesh 

due to connectivity. 

For simplicity if we consider an arbitrary two-dimensional domain with a curved 

boundary, it is easy to see that the mesh will not exactly cover the entire domain 

(Figure 2.3). The area that is not covered is known as the source of the mesh error 

and can be minimized by making the elements smaller (increasing their number), 

this is known as mesh refinement. 
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-------- node ~ ---------
element_ ---

Figure 2.1: Finite elements 

Figure 2.2: Finite element mesh 
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Mesh refinement may also be used to improve a finite element solution in areas of 

great spatial variations. The mesh in Figure 2.3 is known as graded due to the 

regions of extra refinement, whereas in Figure 2.2 we have an ungraded mesh. 

source of discretisation 

error 

Figure 2.3: Graded finite element mesh 

The process of creating a mesh is a difficult one due to two distinct but related 

tasks, namely nodal definitions and element definitions. The nodes are numbered 

in such a way as to minimize the computational requirements of the assembling 

process of the stiffness matrix. 

Mesh generation is usually performed by a specialist software package which usu

ally comes with a graphics program for viewing the finished product (see Appendix 

B for details of t he mesh generator used during the course of this work). The mesh 

generator requires input in the form of a description of the domain with any ma

terial properties, it will then output mesh details consisting of node numbers with 

their co-ordinates and element connectivity and material property data. 

The algorithms which are used in the production of meshes have been developed 

by mathematicians working in computational geometry. A widely used algorithm 

is the Delaunay triangulation method, which is used to construct meshes for trian

gular elements and is also a basis for generating tetrahedral elements. A Delaunay 

30 



2.2. BASIC CONCEPTS OF THE FEM 

triangulation of a set of points is a triangulation whose vertices (nodes) are the 

points, having the property that if we take any three points and draw a circle 

around the triangle produced, then no other point in the set will fall inside this 

circle. The use of this method ensures that no triangles are produced with small 

angles, as only triangles with angles away from O and 1r are suitable for FEM anal

ysis. Once we have the data describing a mesh this has to be presented to the 

main finite element program so that the required analysis may be carried out. 

Before beginning to explain the analysis process of the FEM, we must explain 

a little about interpolation. 

2.2.2 Interpolation between nodes 

If we consider a continuous quantity ¢ defined over a domain 0. The mesh will 

consist of n finite sub-domains ne, i.e. finite elements. After the creation of the 

mesh, the next step is to make a discrete approximation for¢. Usually this will be 

in the form of a set of polynomials because of their ease of manipulation. The order 

of the polynomial is related to the number of nodes associated with the element. 

The polynomial ¢e is defined over a particular element e such that the whole set of 

polynomials form a piecewise continuous function ¢ over ne where e = 1, 2, ... , n, 

i.e. 

¢ (2.1) 

The FEM often requires the calculation of surface or volume integrals over the 

finite elements. It is customary to perform this integration after a change of vari

able which maps the region of integration to a geometrically simpler region ( the 

parent element). The reason for this mapping is to simplify the integration process 

and when this cannot be done exactly, quadrature is also much easier to perform. 

A brief demonstration of this will now follow. 
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In one dimension we have a two node lineal element as shown in Figure 2.4. There 

Figure 2.4: Two noded lineal element 

are two nodes in the element (at x = x1 and x = x2) with one degree of freedom 

at each node, hence we are looking for a solution of the form 

(2.2) 

The finite element solution will provide us with values of </>1 and </>2 at x = x1 and 

x = x2 respectively. By making the substitutions 

we note that 

and 

Now by expressing </>e ( x) by 

X2 - X 

X2 - X1 

X - X1 

X2 - X1 

N2(x1) = 0 

N2(x2) = 1 

0 :::; N1, N2:::; 1 

N1+N2 1 

we are able to obtain values for </> throughout an element. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Moving on to two dimensions with the continuous function </>e(x, y), if we con

sider a four node rectangular element (Figure 2.5). Here we have four nodes to an 
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element with one degree of freedom at each node so we are looking for a bilinear 

solut ion of the form. 

(2.10) 

To simplify this more complicated mapping it is convenient to choose local coor-

y 

..------------~k 

b 

a 
X 

Figure 2.5: Four noded rectangular element 

dinates ( (, rJ) such that 

rJ 

where (xm, Ym) is the centre of the element. By making the substitutions 

We may interpolate throughout an element by 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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Here we notice that an interpolat ion function associated with a particular node 

is unity at that node while all others are zero and the sum of the interpolation 

functions is unity as with the lineal element. 

For two-dimensional applications the rectangular element has the main disadvan

tage that it is only applicable to geometries which are fairly regular. Because of 

this, it is more convenient to choose the triangular element for use in the two

dimensional application of our research work. 

Considering a three node triangular element in two dimensions (Figure 2.6), we 

have one degree of freedom at each node so 

(2.18) 

which may be written 

(2 .19) 

In this case, the mathematics behind the derivation of the interpolation functions 

will be explained because the idea is also applicable to the other element types. 

Also these functions are used extensively in the finite element formulation of field 

terms described in later chapters. 
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I 

I 
I ______, 

L I 
I I 

X 

Figure 2.6: Three noded triangular element 

If we assume the triangular element with nodes labeled i, j and k which are po

sitioned at global coordinates (xi, Yi), (xi, Yi) and (xk, Yk) respectively with nodal 

values of <Pi, <Pi and <l>k - Then in matrix form we have the following set of indepen-

dent simultaneous linear equations. 

</>i 1 Xi Yi C1 

</>i 1 Xi Yi C2 (2.20) 

<pk 1 Xk Yk C3 

Solving for the above c1 , c2 and c3 and substituting into equation (2.19) gives 

-1 

1 Xi Yi </>i 

( 1 X y ) 1 Xi Yi <Pi (2.21) 

1 Xk Yk <pk 

Using Cramer's rule 

Yk -yi 
XiYi - XiYi ) ( </>i l 

Yi - Yi </>j (2.22) 

Xi - Xi <f>k 
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where A is the area of the element given by 

1 Xi Yi 

A 
1 

(2.23) - 1 Xi Yi 2 
1 Xk Yk 

If we let 

ai = XiYk - XkYi bi= Yi - Yk Ci Xk - Xi 

ai = XkYi - XiYk bi= Yk - Yi C· J Xi - Xk 

ak = XiYi - XiYi bk= Yi - Yi Ck Xi - Xi (2.24) 

then we can now denote the interpolation functions Li , Li and Lk by 

Li 
1 

(2.25) -(a·+ b·x + c·y) 
2A i i i 

Li 
1 

(2.26) - (a·+ b·x + c -y) 
2A 1 1 1 

1 
(2.27) Lk 

2A (ak + bkx + cky) 

These may be used to locate any point P(Li, Li , Lk) within the element. By some 

simple mathematics the relationship between the global coordinates (x, y) and the 

local triangular coordinates (Li, Li, Lk) may be shown to be given by 

X 

y 

The interpolation functions have the property 

1 m=n 

0 m=/=n 

and they are not independent since 

Thus ¢(x, y) may be interpolated linearly throughout an element by 

The Li, Li and Lk are known as area coordinates. 

(2.28) 

(2.29) 

(2.30) 

(2.31) 
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2. 3 Variational methods 

The aim of this section is to introduce the main idea behind the analysis process 

of the FEM by briefly ment ioning a few different finite element approaches. 

In many physical situations a variational principle will exist governing the phe

nomena, e.g. minimum potential energy. The solution of this problem will then 

involve the minimization of some functional. This idea is used in one of many fi

nite element formulations, namely the Rayleigh-Ritz method. If we define a partial 

differential equation of the form 

Lcp = f (2.32) 

defined over some two dimensional domain R and subject to some essential bound

ary conditions. If t he differential operator L is self-adj oint and positive definite, 

it may b e shown that the unique solution to equation (2.32) may be found by 

minimizing the funct ional 

I[¢] = / k q>Lcpdxdy - 2 / l ¢! dxdy (2.33) 

More complicated boundary conditions may be incorporated into the method by 

t he application of Green 's theorem. The Rayleigh-Ritz algorithm requires t he 

choice of a suitable complete set of linearly independent basis functions 'l/Ji(x, y) 

for i = 1, 2, ... , n where n is t he number of nodes in the discretisation scheme. The 

exact solution is then approximated by 

n 

¢(x, y) = "'£ c/>i'l/Ji (2.34) 
i=l 

If we express ¢ as a function of the n unknowns 

(2.35) 

then the constants c/>i are chosen to minimize the functional I [¢1 , ¢2 , ... , c/>nl, i.e. 

= 0 j = 1,2, ... ,n (2.36) 
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This leads ton simultaneous linear equations inn unknowns, the solution of which 

gives the nodal values ch It may be proved that the Rayleigh-Ritz finite element 

solution of 1> approaches the exact solution as n ➔ oo, i. e. the solution converges. 

A more powerful finite element procedure that is applicable to a wide variety 

of problems is that of weighted residuals. The Rayleigh-Ritz method is only of 

use when a suitable functional exists whereas weighted residual methods give an 

alternative approach when one does not exist or cannot be found. 

A commonly used weighted residual method is the Galerkin approach where the 

test and trial functions are the same weight and works as follows. 

If we consider the partial differential equation (2.32). We define the residual by 

r(c/>) = Le/> - f (2.37) 

If the exact solution is c/>exact then 

r( c/>exact ) = 0 (2.38) 

As in the Rayleigh-Ritz method we define an approximation of the form of equa

tion (2.34). We then set the integral of the residual weighted by test functions 

equal to zero. 

/ l r(cp)widxdy = 0 i = 1, 2, ... , n (2.39) 

This will produce the n simultaneous linear equat ions in n unknowns. The advan

tage of weighted residual methods is that the wi may be chosen arbitrarily from 

any set of independent funct ions, which is of advantage in solving non-linear prob

lems. However, if we choose the wi to be the same as the interpolation functions 

'lj;i then we have the Galerkin method. 

Another more explicit method is by point collocation. Here we begin with the 

residual. We then choose n collocation points (nodes) and a polynomial with un

known coefficients which satisfies any essential boundary condit ions. We then set 
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the residual to zero at the collocation points. 

The final commonly used weighted residual method to be mentioned here is the 

method of least squares. Here we proceed as previously described, but this time 

we apply the method of least squares to the residual, i. e. we seek a solut ion to 

(2.40) 

2.4 Use of the FEM in the solution of a partial 

differential equation 

Now that we have introduced the FEM and its basic ideas, we will now apply it 

to the solution of partial differential equations. We will solve a simple Poisson 

problem, using the Rayleigh-Ritz method. The ideas introduced will then be used 

to tackle a more difficult problem in Chapter 4. 

Consider the two dimensional Poisson equation 

(2.41) 

defined over the domain R as given by O ::; x ::; 1 and O ::; y ::; 1, subject to the 

natural boundary conditions 

(2.42) 

and the essential boundary conditions 

</>(l,y) = 0 </>(x, 1) = 0 (2.43) 

We notice that the solution will be symmetric about y = x as shown in Figure 2. 7, 

so we only need to model either the upper or lower triangular domain. Hence we 
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Figure 2. 7: The domain of the problem R 
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Figure 2.8: The lower triangular domain 
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shall use linear triangular elements to discretise the lower domain (Figure 2.8). 

The nodal coordinate and element connectivity lists are given by -

node X y 

1 0 0 element node 1 node 2 node 3 

2 0.5 0 1 1 2 3 

3 0.5 0.5 2 5 3 2 

4 1 0 3 2 4 5 

5 1 0.5 4 3 5 6 

6 1 1 

where the node number in the element connectivity list refers to the local node 

number. 

We are using linear triangular elements so we shall adopt the area coordinate 

system of interpolation as described in section 2.2 denoted by (Li, Lj, Lk). 

The variational formulation of equation (2.41) using equation (2.33) is given by 

(2.44) 

We have divided R into 4 elements connected by 6 nodes so we will have a discrete 

solution in the form 

4 

</J(x,y) L <Pe(x, y) (2.45) 
e=l 

where 

(2.46) 

and the subscript denotes the local node number. 

So 

I[ <Pl (2 .47) 
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Since q>e = 0 outside element e, the only contribution to I[¢] from q>e comes from 

the element itself. Thus 

(2.48) 

From equation (2.45) the finite element approximation is of the form 

(2.49) 

where the subscripts now refer to the global node numbers. Using the Rayleigh-Ritz 

procedure to minimize I with respect to the variational parameters ¢1 , ¢2 , .. . , ¢6 

gives 

8I 
0 (2.50) 

8¢i 
4 8Ie 

i.e. L - - 0 i= l , 2, ... , 6 (2.51) 
e=l Oq>i 

Before developing the element matrices it is useful to express equation (2.51) as a 

single matrix equation 

(2.52) 

so 

0 (2.53) 

and 

(2.54) 

At this point we note that if node i is not associated with element e, then :~: = 0. 

A cont ribution will only occur if node i is associated with the element. 

c/>e(x, y) = L Liq>i Vi associated with element e (2.55) 
iEe 
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similarly 
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~ (8¢')' 
B¢i Bx 

- 2 B¢e ~ ( B¢e) 
Bx B¢i Bx 

- 2B¢e ~ ( B¢e) 
Bx Bx B¢i 

¢! 

2~ ( Le Le Le ) ¢2 B ( B¢e) (2.56) -
Bx B¢i Bx 1 2 3 

¢3 

B¢e 
L~ 

B¢i 
- i (2.57) 

¢! 
2 ( BL! BL'f BL2BL'f BL3 BL'f ) 

¢2 - --
Bx Bx Bx Bx Bx Bx 

i = 1, 2, 3 (2.58) 

¢3 

¢! 
( BLe BLe BL2BL'f BL3 BL'f ) - 2 _l_i -- ¢2 By By By By By By i = 1, 2, 3 (2.59) 

¢3 

now equation (2.54) becomes 

¢! 

( BL3 BL'f + BL3 BL'f) ] d d 2 /J, Led d ¢2 X y - Re i X y Bx Bx By By (2.60) 

i.e. 

- 2 L kfj¢j - 2ft (2.61) 
jEe 

where 

(2.62) 
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and 

j l , L fdxdy (2.63) 

We require 

0 (2.64) 

so 

E kf/Pj = ft (2.65) 
jEe 

Forming these equations over the entire domain R leads to the system of linear 

equations 

K</> = f (2.66) 

where K is known as the global stiffness matrix and f the force vector (these terms 

arise from structural mechanics). Using the system of triangular coordinates, we 

can now assemble the element stiffness matrix as follows : 

• The contribution to the i, j position comes from all elements containing nodes 

i and j e.g. from Figure 2.9, elements 1, 2 and 3 have node i in common and 

elements 1 and 2 have node j in common. Thus elements 1, 2 and 3 contribute 

to the i, i position with 

and elements 1 and 2 contribute to the i, j position with 

• The global force vector is assembled in a similar manner. 

Referring back to equations (2.25) - (2.27) 

(2.67) 

44 



, 2.4, USE OF THE FEM IN THE SOLUTION OF A PARTIAL 
DIFFERENTIAL EQUATION 

CD 

Figure 2.9: Connection between elements 1,2 and 3 through nodes i and j 

So we can assemble the stiffness matrix by 

(2.68) 

where the area of an element, A = 1 
Similarly from the formula for integration over an element given in Appendix A 

j l . L fdxdy 

Thus 

A 

3 

b~ = bf = bf = -0.5 

bl - b3 - b4 - 0 5 2 - 2 - 2 - · 

c~ = c~ = c~ = - 0.5 

The stiffness matrix entries are 

b2 
1 

b2 
2 

c2 
1 

0.5 

- 0.5 

0 

0 

0.5 

-0.5 

(2.69) 
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k - k3 44 - 22 

kss = ki2 + ki1 + k~3 

k 55 = k j3 

and the force vector 

!1 ft 
h Ji+ ff + f l 

h fl + fl+ ft 

f4 Ji 

fs f t+ Ji+ Ji 

!6 Ji 

Thus 

1 _ !. 0 0 0 0 ch 4 4 

_!. 1 1 1 0 0 ¢ 2 4 - 2 - 4 

0 _!. 1 0 1 0 </)3 
2 2 - 2 

0 _!. 0 1 1 0 </)4 4 2 -4 

0 0 1 1 1 1 <Ps -2 - 4 -4 

0 0 0 0 1 1 
<P6 -4 4 

1 

3 

1 3 
(2.70) -

24 1 

3 

1 

applying the essential boundary conditions ¢ 4 = ¢ 5 = ¢ 6 = 0 to equation (2.70) 

then solving gives 

¢1 0.31250 

<Pz 0.22917 

</)3 0.17708 
(2.71) 

</)4 0 

<Ps 0 

<P6 0 
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2.5 Summary 

In this chapter we have introduced the basic methodology of the FEM. We have 

shown how it may be applied to the modelling of problems defined over irregular 

domains - which is a significant advantage any new FEM micromagnetic field cal

culation has over existing other methods which only consider regular domains. The 

coupling of the FEM with the idea of a variational principle has been explained 

and an example of the mathematical solution to a commonly occurring type of par

tial differential equat ion has been worked through. The reason for including this 

example is to illustrate the algorithm used in its solution, as this will be applied 

to a more complicated problem in Chapter 4. A few concluding remarks will now 

be given. 

When applying a variational finite element method to a particular problem, it 

is often difficult to decide which is the best method. The distribution of error may 

vary non-uniformly and some methods may give a very good solution in some areas 

but not so good elsewhere, see Crandall (1956) [34]. 

Another consideration to be given to the improvement of a solution is that of 

mesh refinement. We may choose to increase the number of finite elements (h-type 

refinement), increase the order of the interpolation polynomials (p-type refinement) 

or both (hp-type refinement). From a practical point of view the choice of method 

is dependent upon the local regularity of the solution. This point is discussed by 

Desai and Abel (1972) [35] who also cite an example due to Clough (1969) [36] 

in which h-type refinement is found to be better for one problem whereas p-type 

provides a better approximation for another. 
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Chapter 3 

Micromagnetic model description 

3.1 Int roduction 

The purpose of this chapter is to present the concepts of our theoretical micro

magnetic model to simulate the magnetization dynamics of thin permalloy na

noelements. 

Theoretical investigation into the behaviour of magnetic materials has progressed 

steadily since it was first formulated by Brown in the 1950s [9] to the present day 

where advances in numerical techniques allow more realistic calculations to take 

place bringing theory closer to reality. However, the majority of numerical simu

lations in micromagnetics are carried out for very idealized geometries. 

Recent advances in modern day magnetic imaging techniques such as transmission 

electron microscopy (TEM) have shown that there is a need for the micromagnetic 

modelling of irregular microstructures. To apply this notion, we need to consider 

a suitable numerical method that can be applied to arbitrary geometries, namely 

the finite element method (FEM). 

In order to model magnetization structures, it is necessary to discretise the ma

terial in question into a particular microstructure. Our model uses the idea of 

patterning the material into rectangular bars with either one, two or no pointed 
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ends, see Figure 3.1. In micromagnetics these shapes are termed nanoelements and 

have typical dimensions at the sub micron level. These particles have been studied 

extensively in experimental imaging work such as that performed in [19] and [20]. 

Investigation into nanoelement properties has involved looking at their switching 

Figure 3.1: Nanoelement geometries 

behaviour, domain structures and interaction effects when they are placed in an 

array formation. The application of the FEM to this work enables us to discre

t ise a particular nanoelement into finite elements and obtain realistic theoretical 

results. This chapter will concentrate on explaining the field term contributions 

t o our model and the governing equation of motion. The finite element algorithm 

will be explained in detail in the following chapter. 

3.2 Mesh generation 

Before any finite element analysis may take place we must define the finite elements 

and their nodal points which will lie on our theoretical piece of magnetic material. 

Due to the very small thickness of the permalloy nanoelements it is advantageous 

to use a two-dimensional finite element model which minimizes the computational 

requirements. This may be justified by a very small variat ion in t he out of plane 

component in the Landau-Lifshitz equation of motion used in our model. Thus 

our model will utilize finite element meshes defined over the x, y plane with the z 

direction being out of plane. 
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In order to make our model versatile enough to model arbitrary geometries we 

chose to use triangular finite elements. The creation of the meshes used in this 

work has been mainly done by using the mesh generator "Triangle", which is a 

freely available package [37] . 

Initially, our model will be used to investigate the material behaviour of single 

nanoelements and will progress later on to looking at the effects of placing several 

nanoelements in array formations. Due to this fact and the idea of modelling the 

problem over a single mathematical domain which will become more clear in the 

next chapter , it is necessary to model the physical effects outside the nanoelement. 

This means that we need to mesh two individual regions with one continuous mesh 

while still maintaining a distinction between the two regions. 

To create a mesh, first of all we must define the region in question which will 

consist of an inner and outer area and then present this data in a format recognis

able to "Triangle", see Appendix B. Briefly, this is done by specifying numbered 

points and their connectivity. At this stage we may also define extra points around 

areas where mesh refinement is needed. An example of a typical region is shown in 

Figure 3.2 where the inner region is a rectangular nanoelement with an 8 : 1 aspect 

ratio and the outer region is a suitable distance away where we wish to model the 

exterior field behaviour. 

Once we have defined the region, we must decide upon the constraints on the mesh 

that we may require, such as the number of elements, aspect ratio of elements and 

order of elements. By default, "Triangle" uses the Delaunay triangulation method 

for generating elements. This method is widely used in computational geometry 

and works by generating nodal points such that if we put a circle around any partic

ular three points (which defines an element), then no other point would fall within 

or on that circle. This is very suitable for finite element analysis as it ensures that 

no angles within the triangular elements are close to O or 1r; such cases are unde

sirable as they are likely to produce inaccurate results in finite element calculations. 
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Figure 3.2: Polygonal region defining nanoelement and surrounding area 

With the region defined and mesh constraints decided upon we may call "Tri

angle)) with this data in mind and then obtain our mesh, see Figure 3.3. This 

resulting mesh has a total of 2018 quadratic elements and 4051 nodes. Within the 

magnetic region (nanoelement) there are 2541 nodes and 1200 elements, the extra 

refinement here ensures that we will have a high degree of accuracy to take care 

of the large variation in magnetization changes. When we wish to look at arrays 

of interacting nanoelements we also require a certain degree of refinement in the 

surrounding area between nanoelements to take account of increased activity in 

the interaction effects. 

3. 3 Field formulation 

The fundamental idea of our micromagnetic model is to represent the magnetic 

moment at a particular point on the platelet by a vector denoted by M . For 

convenience each M is located at a particular node of the finite element mesh. 
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Figure 3.3: Mesh with 4051 nodes and 2018 elements 

Throughout our simulations we have chosen to work in reduced units such that M 

becomes a normalized vector with respect to the saturation magnetization Ms by 
M 

m --- Ms. 

We represent the reduced magnetization m in terms of linear finite element in

terpolation functions as follows. To obtain m throughout an element e, denoted 

by m e we interpolate the components of m e by 

(3.1) 

where Li are the linear interpolation functions mentioned in equations (2.25) -

(2.27) that are associated with the element e. 

If we denote the total system energy by Et, then Et = Ed + Eex + Ea + Eapp 

with Ed, Eex, Ea and Eapp representing the demagnetizing, exchange, anisotropy 

and applied energy terms respectively. 

52 



3.3. FIELD FORMULATION 

The total effective field, H t is related to the total system energy by 

dEt 
---

dM 
(3.2) 

3 .3.1 Applied field 

The energy created by the externally applied field arises as a result of its interaction 

with the magnetization. In our model this field is introduced in order to produce a 

hysteresis curve simulation allowing the magnetization to relax under the influence 

of its presence. The applied field energy is given by 

Eapp = l Happ· MdV (3.3) 

This field will be uniform in our simulations but need not be in general. We will 

only be concerned with applied fields parallel to the x and y axes. 

3.3.2 Anisotropy field 

The term anisotropy refers to the fact that the properties of a magnetic material 

are dependent on the directions in which they are measured. In the absence of 

all external forces, the magnetization M would align itself in one or more specific 

directions in the crystal lattice. These directions are termed the easy axes of the 

material and represent the directions of the easy magnetization. 

To rotate the magnetization away from the easy direction involves energy - the 

anisotropy energy, which is dependent upon the lat tice structure. For our simu

lations with Permalloy we shall be concerned with magnetocrystalline anisotropy 

with a single easy axis, so the material is termed uniaxial with respect to the 

anisotropy. For a purely uniaxial crystal, the anisotropy energy density, Ea de

pends on the angle 0 between the magnetization vector M and the easy direction. 

This energy is given by 

(3.4) 
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plus higher order terms of even power in sin 0. The constants K 1 and K2 are 

material dependent. If we neglect K 2 and let the uniaxial anisotropy constant, 

K = K 1 , then since Ea is an energy density we have 

(3.5) 

where V is the volume of the magnetic material and e is a unit vector along the 

direction of the easy axis. 

The anisotropy field H a is then obtained by differentiating with respect to the 

magnetization M so that 

H 2K ( A) A 
a = Af2 M. e e 

s 
(3.6) 

Our simulations will have easy directions parallel to either the long or short axis of 

t he nanoelement, i.e. e = (0, 1, 0) ore = (1, 0, 0). Anisotropy makes an important 

contribution to hysteresis in magnetic materials and is therefore of considerable 

practical importance. 

3.3.3 Exchange field 

The exchange energy was described in Chapter 1 and was formulated in terms of 

a micromagnetic formalism for cubic crystals as 

{ A 2 
Eex = Jv 2M; l\7 M l dV (3.7) 

The exchange field H ex is then obtained by differentiating with respect to the 

magnetization M so that 

A 2 
H ex = 2M2 \7 M 

s 
(3.8) 

Due to the linear interpolation of M within our finite element spatial discretisation 

scheme this field cannot be calculated directly from this expression as \72 M is not 

defined. So we use the discrete approximation given by 

H ex = (3.9) 
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where ri and T j are the position vectors of points i and j respectively, i # j, N 

is the number of nodes in the linear interpolation scheme and A is the material 

dependent exchange constant. 

3.3.4 Demagnetizing field 

The demagnetizing energy of the magnetic material is given by 

(3.10) 

It has been proved that the governing equations in electromagnetics derived by 

Maxwell also hold in micromagnetics. Thus it is possible to express the physi

cal law in terms of a single set of equations related to potential theory. For a 

given magnetization distribution M , the associated demagnetizing field H d can 

be expressed in terms of the Maxwell equations. Thus 

(3.11) 

where J is the electric current density and D the electric flux density. For regions 

which are current free, it follows that 

(3.12) 

Thus H d is an irrotational vector field. If we denote the induced field by B where 

(3.13) 

and 

V-B = 0 (3.14) 

It follows from the previous equation that 

(3.15) 

From the laws of vector calculus we may introduce a magnetic scalar potential ¢, 

such that 

(3.16) 
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From equations (3 .13) - (3.16) 

(3.17) 

So ¢ satisfies the Poisson equation. However, since M = 0 outside the magnetic 

material we have 

(3.18) 

which is the Laplace equation. If we denote the magnetic and non magnetic regions 

by D int and D ext respectively and the potential inside and outside the magnetic 

region by <Pint and <Pext respectively. Then we have 

(3.19) 

'v
2

<Pext = 0 (3.20) 

However since there is a dramatic change in material properties between the mag

netic and non magnetic regions, equations (3.19) - (3.20) are insufficient on their 

own in modelling the potential. In order to completely model what is happening 

we must introduce an interface condition on the boundary of the magnetic mate

rial, an. 

The laws which govern this change in material properties across the boundary 

are a direct consequence of the nature of the Maxwell equations. At the interface, 

the tangential component of H d and the normal component of the induced field, 

B must be continuous which leads to the following interface condition 

o </Jint _ o<f>ext = 41r M . n 
on on Vx E 8D, (3.21) 

where n is the unit normal away from the surface. The continuity condition 

<Pint <Pext Vx E [)D, (3.22) 

is also required, together with the bounding of the potential at infinity. The 

demagnetizing field is then calculated by 

(3.23) 
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In Aharoni [38] the equation for ¢ has been found to satisfy 

¢(r) = { - 'v'. M(r') dV' + { M (r'). n dS' 
iv, Ir - r'I l s, Ir - r'I (3.24) 

where the first and second terms define the magnetic volume and surface charge 

contributions respectively. The demagnetizing field) H d acts opposite in direction 

to the magnetization M which creates it. Due to the global nature of the interac

tion effects of the demagnetizing field its computation is the most time consuming 

part in any micromagnetic simulation. Analytic solutions of equation (3.24) exist 

for certain geometries [38], but solutions for irregular domains involve the use of 

very complicated integration. 

Many different numerical methods have been used for finding H d· In the past 

authors have used such methods as analytic dipolar approximations, finite ele

ment/boundary element calculations and integro-differential equations. In the next 

chapter we will describe a new approach to the formulation of H d in terms of the 

finite element method. 

3.4 Magnetization dynamics 

The field terms which make up H t are the cause of the change in the magnetization 

M over time. In order to model this change) we must employ an equation which 

describes the magnetization dynamics in terms of the evolution of time. The 

Landau-Lifshitz equation of motion is given by 

dM ,\ 
dt = -1,IM X Ht - M; (M X (M X Ht)) (3.25) 

where t is the time, , is the magneto-mechanical or gyromagnetic ratio, >. is the 

dissipative constant, M is the magnetization vector and H t is the total effective 

field made up contributions from anisotropy) external, exchange and magnetostatic 

sources neglecting other phenomena such as magnet ostriction and thermal effects. 

The first term on the right hand side of equation (3.25) describes the precession 

of the magnetization vector M (magnetic moment) around the effective field H t. 
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3.4. MAGNETIZATION DYNAMICS 

This is related to the angular momentum between M, Ht and the electron spin. 

Thus the equation 

dM 
-= - 1,IMxHt 

dt 
(3.26) 

describes the motion of uniform precession of the magnetization M about the to

tal effective field Ht , The motion described in equation (3.26) could never reach 

equilibrium as M would never align itself with Ht. This illustrates the need for 

the second term on the right hand side of equation (3.26) which was formulated by 

Landau and Lifshitz [2]. This term exerts a torque on the precessive motion which 

causes damping on the motion of the magnetization M making it spiral inwards 

and align itself with Ht achieving equilibrium as shown in Figure 3.4. 

- a(mx(mxh)) h 

- (mx~ 

Figure 3.4: The dynamics of the magnetization m in the presence of an effective 

field ht 

Equation (3.25) has been used by several authors successfully in micromagnetic 

simulations [39], [40], [41]. An alternative way of modelling the magnetization dy

namics is by a variation of equation (3.25) proposed by Gilbert and Kelly (1955). 

This equation formulates the dissipative term to be proportional to the rate of 

change of the magnetization, i.e. 

-=-1,alMxHt+- Mx -dM aa ( dM) 
dt Ms dt 

(3.27) 
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where ,c is the Gilbert magneto-mechanical ratio and ac is the Gilbert damping 

constant. 

It is easy to see that when ,\ and ac are both small equations (3.25) and (3.27) 

are approximately equivalent. However when the dissipative term becomes more 

prominent (when ,\ and ,c are much greater than unity) , the Gilbert form is 

preferred purely on physical grounds. A detailed discussion of the differences be

tween the two equations of motion under different physical conditions is given by 

Mallinson [42]. In our simulations, we will be concerned with a constant premul

t iplying factor of unity before the damping term, so in effect we have a choice of 

which equation of motion to use. However , the Landau-Lifshitz equation is easier 

to solve numerically, hence that is the form which we shall use in our simulations. 

2K 
If we define Hk = M to be the anisotropy field strength where K is the uni-

s 

axial anisotropy constant, then we can scale the effective field terms with respect 

to the anisotropy field strength for convenience. Also, to simplify computations in 

t he numerical method of solution of equation (3.25) it is convenient to rewrite it in 

a non-dimensionalised form, i.e. in reduced units. Hence we scale the total effective 
H 

field Ht with respect to the anisotropy field strength so that h t = H~ where ht 

is the reduced total effective field, the reduced time T = tl,IHk , a = l,l~s is the 

reduced damping constant and the reduced magnetization, m = : . The reduced 
s 

form of equation (3.25) is then 

dm 
dT = -m x h t - a(m x (m x h t)) (3.28) 

To obtain the desired rapid convergence to equilibrium, we set a to unity in our 

simulations since this gives the most rapid relaxation [42]. 

We may formulate equation (3.28) in terms of the components of m either di

rectly in Cartesian component form or by the use of spherical polar coordinates. 

The finite element formulation in our model requires us to solve for the reduced 

magnetization m pointwise at a node in the finite element discretisation scheme. 
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Thus if there are N nodes in the system and if we use Cartesian components x, y 

and z, we will have to solve 3N equations at each time step. In the case of using 

spherical polar coordinates, since 1ml = 1, r = 1 so we only need to find changes 

in 0 and ¢, hence we will have to solve 2N equations at each time step. However 

the use of spherical polar coordinates involves calculation of the intrinsic functions 

sin and cos, so there is no computational advantage in using this method hence for 

convenience we chose the Cartesian component form. 

The components of reduced magnetization m are given by mx, my and mz along 

the directions of the x, y and z axes respectively, similarly we have hx, hy and hz 

for the components of effective field h t , Hence 

m(r) 

h t(r) 

(mx(r),my(r),mz(r)) 

( hx ( T), hy ( T), hz ( T)) 

and equation (3.28) in component form is 

dmx(,) 
dr = - (myhz - mzhy) - a(my(mxhy - myhx) - mz(mzhx - mxhz)) 

dmy(,) 
dr = -(mzhx - mxhz) - a(mz(myhz - mzhy) - mx(mxhy - myhx) ) 

(3.29) 

(3.30) 

dmz(,) 
dr = -(mxhy - myhx) - a(mx(mzhx - mxhz) - my(myhz - mzhy)) (3.31) 

The set of differential equations (3.31) are coupled through the components of 

the reduced magnetization m. To solve them we need to use a numerical method 

to integrate the components on the right hand side with respect to the reduced 

time r, but since the equations are coupled it is not possible to solve any one by 

itself, hence we must find an appropriate numerical solver to do this. There are 

many routines available to solve sets of differential equations so we must choose the 

one best suited to our application in terms of accuracy, stability and computational 

requirements. 
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3.4.1 Euler method 

To introduce this method let us consider its application to solution of the following 

ordinary differential equation 

dy 
dt = f(t , y) (3.32) 

subject to the initial condition y(t0 ) = y0 . 

Euler's method is the simplest way to get a solution. The idea is that since we 

know y = Yo at t = t0 from equation (3.32) we also know the slope dy at this 
dt 

point. Hence we can use this initial slope to get a tangent line approximation to 

the value of y at a nearby point, say t = t0 + h. Thus 

y(to) + hf(to, y(to)) 

Yo+ hf(to, Yo) 

(3.33) 

(3.34) 

Now we know y at a new point, so from equation (3.32) we also know the slope, 

so a new tangent line can be constructed to get y at another point (t0 + 2h) so 

y(to + 2h) = y(to + h) + hf (to+ h, y(to + h)) (3.35) 

This procedure can be repeated to obtain an approximation to y at any point. 

Thus if h is the size of the time step, in general Euler's method may be written as 

Yn+l = Yn + hf(tn , Yn) (3.36) 

where tn+l = tn + hand Yn = y(tn), 

In order to solve systems of ordinary differential equations such as equation (3.28) 

the Euler method generalizes to vector component form as follows. 

If 

y 
Y2 

(3.37) 

Ym 
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The system of differential equations may be written in component form as 

with the initial conditions 

then 

dy 
dt 

s 

where tn+l = tn + hand Yn = y(tn) 

3.4.2 Runge-Kutta method 

f (t, y) 

S2 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

A more accurate alternative to the Euler method is that of the Runge-Kutta 

method. With this procedure the numerical scheme is slightly more complicated 

than with Euler, a derivation of the formulae from the Taylor expansions is given 

in a book on numerical analysis by Burden [43]. If we t urn our attention to the 

solution of equation (3.32), the fourth order Runge-Kutta solut ion is obtained as 

follows 

h 
(3.42) Yn+i Yn + 6(k1 + 2k2 + 2k3 + k4) 

where 

k1 f (tn, Yn) 

k2 ( h hk1) f tn+ 2,Yn+ 2 

k3 ( h hk2 ) f tn+ 2,Yn+ 2 
k4 f (tn + h,Yn + hk3) 
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Here we see that there are 4 funct ion evaluations required at each time step. This 

method also generalises to a form suitable for use in the solution of a system of 

ordinary differential equations. 

Before describing the generalization, it is convenient to slightly modify the way 

that we write the set of differential equations !~ = f (t, y). It is not necessary to 

t reat the variable t separately from the others in y. We may bring t in disguise 

into y by introducing a new variable and a new differential equation 

(3.43) 

with the initial condition Ym+1(to) = to. 

In this way we increase the number of differential equations by one to obtain a 

simpler system 

dy 
dt = f(y ) (3.44) 

with init ial conditions 

y (to) = s (3.45) 

We may now represent the Runge-Kutta method for a system of ordinary dif

ferential equations in vector component form as 

(3.46) 

where 

k1 f (Yn) 

k2 ( hk1 ) f Yn + - 2-

k 3 ( hk 2) f Yn +-
2
-

k4 f (Yn + hk 3) 
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3.4.3 Predictor-Corrector methods 

The two procedures explained so far have solved equation (3.32) and its vector 

generalization by means of single step numerical methods. In other words, if we 

know y (t) at a particular time, t, then y(t + h) can be found without any knowl

edge of the solution at points earlier than t. More efficient methods can be devised 

if several values y(t), y(t - h), y(t - 2h), ... are utilized in finding y(t + h), i.e. 

multi-step methods. Such methods are not self starting since at the beginning no 

values of y are known, so it is usual to start by obtaining the first few initial slopes 

by using a single step method such as Euler or Runge-Kutta. 

One example of a multi-step formula is the Adams-Bashforth scheme given in 

vector form by 

Yn+I = Yn + 2~ [55f(Yn) - 59f(Yn-1) + 37f(Yn-2) - 9f(Yn- 3)] (3.47) 

Since the solution y has been calculated at the four points t, t - h, t - 2h and 

t - 3h, then equation (3.47) can be used to compute y(t + h). This procedure can 

be done systematically so only one evaluation of f is needed at each time step. 

This is a considerable saving over the fourth order Runge-Kutta method. However 

equat ion (3.47) is never used by itself but in conjunction with another formula as 

part of a predictor corrector scheme. 

There are many predictor corrector methods discussed in [44] with different or

ders of accuracy, each consists of two formulae the predictor part and the corrector 

part. The predictor equation is used to compute the value at the next time step 

explicitly and the corrector part then uses this predicted value in an implicit for

mula to obtain the corrected value. The Adams-Bashforth formula is the predictor 

part of the Adams-Moulton predictor corrector method. The corrector equation is 

given by the Adams-Moulton formula 

Yn+I = Yn + 2~ [9f(Y~+1) + 19f(Yn) - 5f (Yn- 1) + f (Yn- 2)] (3.48) 

Here y ~+I is the predicted value of Yn+1 computed from equation (3.47), the equa

tion (3.48) then gives Yn+I more accurately. 
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3.4.4 Comparison of numerical schemes 

The numerical solvers for ordinary differential equations discussed in this chapter 

are only explained briefly. The mathematical justifications of these methods are 

described in most books on numerical analysis such as [43], [44] and [45] together 

with other schemes. It is worthwhile to note that most schemes are derived from 

the Taylor expansion of y(t) around t 

This idea is also used to quantify the accuracy of a method. The order of accu

racy of a particular method is found by substitut ing the form of the numerical 

approximation into the Taylor series expansion and then comparing up to which 

order term the series is successfully reproduced. This is the order of accuracy of 

the numerical scheme. For instance the Euler method is only first order accurate 

whereas the Runge-Kutta method mentioned here is fourth order accurate. How

ever accuracy is not the only concern in micromagnetic simulations and a further 

important consideration is that of numerical stability. 

This arises due to the presence of the dissipative term in the Landau-Lifshitz 

equation which creates an exponentially decaying solution. We need to solve the 

differential equations describing the Cartesian components of magnetization at 

each node in the discretisation scheme. However activity in the change of mag

netization at any particular node will be varying throughout the material. Nodes 

located at areas that change most rapidly will govern the stability of the numerical 

solver. 

Authors that have carried out micromagnetic simulations in the past have used 

a variety of numerical schemes for solving the time evolution of the system Vic

tora [46] used a Runge-Kutta method, Tako et al a predictor corrector scheme [47]. 

Our initial simulations for single nanoelements [48] were carried out successfully 

using the Euler method to solve equation (3.28) with a reduced time step of order 

10-2 . However when we came to do simulations on arrays of interacting particles 
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we found smaller time steps were necessary due to the decrease in mesh spacing as 

a consequence of the refined mesh. Predictor corrector schemes have been found 

to remain stable with slightly larger time steps [44]. With this in mind we imple

mented the Adams-Moulton method for our simulations on arrays of interacting 

nanoelements. Under these conditions we needed a reduced time step of the order 

10- 3 
- 10- 6 depending upon the size of the system. 

3 .5 Summary 

In this chapter we have given a detailed description of the micromagnetic model 

which we will use in our simulations. The nanoelement geometries have been in

troduced together with the general idea behind the method we shall use to create 

their discretised form. We have defined the pointwise magnetic moment and how 

it will be approximated by the use of a finite element interpolation scheme. 

We have described the mathematical formulation of the micromagnetic field terms 

and how they will be obtained. At this stage however we have not given full details 

of the implementation of our finite element variational method to the calculation 

of the demagnetizing field, this is left until the following chapter. 

The Landau-Lifshitz equation of motion has been introduced as our means to 

modelling the magnetization dynamics. We have given a brief descript ion of the 

underlying mathematical physics which governs it and finally we have described 

the numerical schemes which we shall employ to solve it. 
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Chapter 4 

Demagnetizing field calculation 

4 .1 Introduction 

In order to model the micromagnetic behaviour of a material, one must consider 

the effective field sources of exchange, anisotropy and magnetostatic. When we 

look at the mathematical modelling of the exchange and anisotropy terms we see 

that these depend locally on the magnetization behaviour at a particular position 

on the material. This is clearly not the case in the magnetostatic field calcula

tion, which depends upon the global behaviour of the magnetization distribution 

throughout the material. 

The demagnetizing field acts opposite in direction to the magnetization which cre

ates it, hence the magnetization is the principal source of the demagnetizing field 

in any ferromagnetic material. Due to its long range nature the magnetostatic 

( demagnetizing) field calculation is the most time consuming due its computa

t ional requirements. Previous authors have used a variety of numerical methods 

on this calculation. Dipolar approximations were used by Walmsley [49] who also 

employed an analytical expression for a uniformly magnetized sphere and oblate 

spheroid in spherical polar coordinates for the stray field so that this could be used 

in Lorentz imaging techniques. Other popular methods include a Fast Fourier 

Transform based scalar potential method as used by Berkov and coworkers [50] . 
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In this chapter, we discuss the problem of the magnetostatic field calculation in 

terms of computational requirements and efficiency with a detailed mathematical 

description of the implementation of the numerical method which we are going to 

use in our simulations - the finite element method. 

Although this is not the first time the FEM has been used in micromagnetics 

as mentioned at the end of Chapter 1, we shall develop a novel approach. 

4.2 Method of obtaining the demagnetizing field 

In the previous chapter, we have seen that the demagnetizing field, H d may be cal

culated via a magnetic scalar potential,</> which is expressed by the equations (3.19) 

- (3.22) then 

( 4.1) 

The equations for </> have been found to satisfy [38] 

</>(r ) = { -"v'. M(r') dV' + { M(r'). n dS' 
lv1 /r - r'/ l s, /r - r'/ (4.2) 

where the magnetic volume charge is defined by 

p(r') = - "v' · M(r' ) (4.3) 

and the surface charge by 

o-(r') = M(r') · n (4.4) 

From equation ( 4.2) we can write the demagnetizing field H d as 

H d = f -(r - r')"v. M(r') dV' + { (r - r') M(r'). n dS' (4.5) 
l v, /r - r' /3 ls1 /r - r'/ 

Although these equations represent elegant closed form solutions for the potential 

and demagnetizing field, they are not the best form for numerical computation. 
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Analytic solutions of equation ( 4.2) exist for certain geometries [38) and will be 

discussed later on in this chapter but solutions for irregular domains involve very 

complex methods which can involve 6-fold integration. In terms of the numerical 

calculation this involves a scaling with N 2 where N is the number of cells into 

which the body is discretised. This leads to a rapid degradation of computational 

speed with system size and in practice alternative techniques must be used which 

will now be discussed. 

4.3 Finite element formulation of the scalar po

tential 

In the previous chapter the equation (3.1) described a representation of the re

duced magnetization, m in terms of linear finite element interpolation functions. 

We have also seen how t he demagnetizing field, H d may be expressed in terms of a 

magnetic scalar potential ¢. To use this approach we need to be able to calculate 

q; from the set of equations (3.19) - (3.22). 

With the finite element method in mind we can now proceed to formulate a solut ion 

for a reduced form of ¢ by working in terms of the reduced magnetization m and 

the reduced demagnetizing field h d where h d = !: . Before applying our method 

let us note that we have two regions in question Dint where the magnetization dis

tribution is non-zero and Dext where this distribution is the zero vector field. The 

abrupt difference in material properties is taken care of along the interface, &D by 

the condition 

O<Pint O<Pext -----&n &n 4nm·n Vx E &D (4.6) 

which may also be written as 

'v</>int · n - 'v</>ext · n = 4nm · n Vx E &D (4.7) 

With this in mind we notice that 'v · m is zero when m = 0 , hence we may solve 

equation (3.19) over the two mathematical domains Dint and Dext· 
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We notice that the equations are defined over entire space, however under ex

perimental observation the demagnetizing field is known to become weaker as we 

go further away from the magnetic region. With this in mind it is sensible to 

implement a method which gives a solution over a finite part of external space sur

rounding the magnetic material in question. The entire problem is then solved over 

a single mathematical domain consisting of a magnetic and non-magnetic region, 

with an artificial boundary condition imposed on the outer region's boundary 8R. 

However , we must also incorporate the interface condition into the method. 

Hence our method will solve equations (3.19) - (3.22) over a single mathemati

cal domain (Figure 4.1) with equation ( 4.6) being satisfied along the interface and 

an artificial boundary condition of¢>= 0 on oR. 

4.3.1 Explicit interface condition 

We shall now describe a novel method for finding ¢> by the use of the FEM. The 

essence of the method is to replace the open boundary by a suitably large closed 

boundary 8R which is far enough away from the magnetic region Dint and enclos

ing next· 

--+--- n ext 

!.---- 811 

l}c-----+-- on 

Figure 4.1: Model of region as a single mathematical domain 

Effectively we are now solving the Poisson equation globally over a single mathe-
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matical domain. 

(4.8) 

Let us denote the global potential </J by 

<P = <Pint + <Pext (4.9) 

and the region n by 

(4.10) 

Using equation (2.33), the variational formulation of the Poisson equation is then 

given by 

I[¢] / l (~!)' + (:)' dil 

-2 / In ¢(41rv' · m)dn (4.11) 

Since we know that the field becomes weaker the further away we are from nint, it 

is sensible to impose the artificial Dirichlet boundary condition 

<P = 0 (4.12) 

In order to obtain </J we will apply the standard Rayleigh-Ritz stationary func

tional method. As with any FEM solution, a suitable transformation method is 

used to map each element to a simple parent element in order to simplify the 

integration over the whole region. Since we are using triangular elements, it is 

convenient to use the system of local area coordinates (Li, Lj , Lk) introduced by 

equations (2.25) - (2.27). Referring to equations (2.45) - (2.70), we may proceed 

to assemble the finite element stiffness matrix with element contributions given by 

I/, (BL~ 8Le 8Le 8Le) 
ke i J + i J d d ij = -d -d -d-d xy 

~ X X y y 
(4.13) 
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Since we are interpolating m linearly within an element 

The element force vector is calculated from 

- { L f(41r"v · m )dxdy JR, 
-(41r"v · m) { Lfdxdy JR• 

Using the following result given in Appendix A 

gives 

(4.14) 

(4.15) 

(4.16) 

( 4.17) 

There has been no consideration yet given to the interface. To bring this into 

the method we proceed as follows : 

- There will be the same number of outer boundary elements as there are boundary 

nodes. 

- If a node lies on the interface, replace its formulation in the corresponding row 

in the stiffness matrix and element force vector with the interface condition given 

by equation ( 4. 7) . 

- The interface condition is formulated via an outer. boundary element and its cor

responding interior boundary element. 
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The mathematical formulation of this will now be described, but first some con

sideration must be given to the orientation of normals to the boundary elements 

around the magnetic region and their formulation via the interpolation functions. 

For any particular finite element we have one associated normal per side, i.e. n12 , 

fi23 and fi13 as shown in Figure 4.2. 

Figure 4.2: Normals exterior to an element 

We may then calculate these normals from the local coordinates by 

(Y2 - YI, X1 - X2) 

✓(x1 - x2)2 + (Y1 - Y2)2 

(-b3 , -c3) 
1 

(b~ + c~)2 

✓(x2 - x3)2 + (Y2 - y3)2 

(-bi , -ci) 
1 

(bf+ cf) 2 

✓ (x1 - x3)2 + (Y1 - y3)2 

(- b2, -c2) 
1 

(b~ + c~) 2 

(4.18) 

(4.19) 

(4.20) 

where the expressions for bi and Cj are given by equation (2.24) in terms of the 

local coordinates x and y. 
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For linear elements the interface condition may be formulated as follows with the 

normal n computed from the appropriate formula chosen from equations ( 4.18) 

- ( 4.20) depending upon which side of the element lies on the interface and is taken 

outward from the magnetic region. 

and 

3 3 

"'v <Pint . n - "'v <Pext . n = "'v L Li</Jrt . n - "'v L Li<l>:xt . n 
i=l i=l 

3 

41rm · n = 41r L Lim xinx + Limyiny 
i=l 

(4.21) 

(4.22) 

Where A int and A ext represent the area of the interior and exterior boundary ele

ments respectively. 

At this stage it is worthwhile to note that in order to keep the computat ional 

requirements to a minimum our initial studies used linear finite elements. How

ever, linear elements were found unsuitable for our method, even after intensive 

mesh refinement in areas of great spatial variation. This was found to be due to 

the enforcing of continuity in </> and the interface condition along an. This problem 

was resolved by the use of quadratic finite elements. 
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4.3.2 Quadratic formulation 

The quadratic nodal displacement functions Ni are formed from the linear functions 

as follows 

i=l,2,3 ( 4.23) 

(4.24) 

(4.25) 

( 4.26) 

giving a quadratic interpolation scheme for ¢ enabling higher order interpolation 

within the domain. Thus 

( 4.27) 

The stiffness matrix K is formed in a similar manner to the linear case by inte

grating over elements. A contribution to an entry is obtained from a particular 

element by 

__ i --3 + _ _ i --3 dxdy I 1 (8Ne 8Ne 8Ne 8N~) 

R• dx dx dy dy ( 4.28) 

Due to the higher order interpolation functions the integration is more difficult 

than in the linear case, the result for the upper triangular part is given in [51] by 
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1 
k25 = 3A (b2b3 + C2C3) k25 = 0 

1 1 
k34 = 0 k35 = 3A (b2b3 + C2C3) k35 = 3A (b1b3 + C1C3) 

k44 = 
3
: (b~ + b1b2 +bf+ c~ + c1c2 + ci) 

1 2 2 ) k45 = 
3
A (b2b3 + 2b1b3 + b2 + b1b2 + c2c3 + 2c1c3 + c2 + c1c2 

1 2 2) k45 = 
3

A (2b2b3 + b1b3 + b1b2 + b1 + 2c2c3 + c1c3 + c1c2 + c1 

k55 = 
3
: (b~ + b2b3 + b~ + c~ + c2c3 + c~) 

1 2 2 
k55 = 

3
A (b3 + b2b3 + b1b3 + 2b1b2 + c3 + c2c3 + c1c3 + 2c1c2) 

k55 = 
3
: (b~ + b1b3 +bf+ c~ + c1c3 + ci) 

Where bi and Ci belong to a particular element and A is the area of the element. 

The derivatives of the shape functions are derived as follows. For corner nodes 

i = 1,2,3 ( 4.29) 

and so 

oNi ( oNi ) ( oLi ) 
ox oLi ox 

b· 
(4L· -1)-' 

' 2A 
b· 

( 4.30) _ i (2a· + 2b·x + 2c·y - A) 2A2 i i i 

oNi ( oNi ) ( oLi) -
oy oLi oy 

C· 
(4L· -1)-i i 2A 

Ci (4.31) -(2a· + 2b·x + 2c·y - A) 2A2 i i i 

For mid side nodes 

Ni 4LjLk i = 4, 5, 6 ( 4.32) 
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so 

8Ni 8(4LjLk) 
ax ax 

4L ' 8Lk + 4Lk 8Lj 
J ox ax 

- 4L · ( ~ ) + 4Lk ( ~ ) 3 2A 2A 
1 

A2 [aj bk + akbj + (bjck + bkcj)Y + 2bjbjx] ( 4.33) 

8Ni 8(4LjLk) 
8y 8y 

4L '8Lk + 4Lk 8Lj 
3 8y 8y 

- 4L · ( ~ ) + 4Lk ( !:i_) 3 2A 2A 
1 

( 4.34) - A2 [ajck + akcj + (bjck + bkcj)x + 2cjcjy] 

In order to formulate the interface condition, let us first note that 

\7¢ - ( 8¢ 8¢ ) 
ox' 8y 

(4.35) 

where 

8¢ 3 </>·b· 

ax 
- ~ 

2
~; (2ai + 2bix + 2CiY - A) 

i=l 
6 </J · 

( 4.36) +L A; [ajbk + akbj + (bjck + bkcj)y + 2bjbkx] 
i=4 

and 

8¢ 3 </J ·C· 
L ____:._:(2a· + 2b·x + 2c·y - A) 

8y . 2A2 i i i 
i=l 

6 </J · 
( 4.37) +L A; [ajck + akCj + (bjck + bkcj)x + 2cjcky] 

i=4 
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Thus 

and 

3 

41rm · n = 47r L Limxinx + L imyiny 
i=l 

( 4.39) 

which is calculated as before since we are still using linear interpolation form. We 

then incorporate the interface condition by using this formulation directly within 

the stiffness matrix for nodes which lie on the interface as shown in Figure 4.3. 

interior 
boundary element 

exterior 
boundary element 

mid-side node 
on the interface 

interface 

Figure 4.3: Quadratic elements along the interface 
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Before proceeding any further, the final stage of the construction of the stiffness 

matrix and element force vector is to enforce the artificial boundary condition given 

by equation (4.12). This is easily achieved by setting the stiffness matrix so that 

values of¢ on 8~ are zero. This computation leads up to the formation of a system 

of n linear equations, where n is the number of nodes in the spatial discretisation 

scheme. 

We now need to solve the set of equations 

K¢ = F ( 4.40) 

where K is a non-singular n x n sparse matrix, F is a known vector and ¢ is an 

unknown vector both of length n. The way we choose to solve these equations will 

influence the efficiency of the demagnetizing field calculation. 

If we store K as an x n array in memory then we may easily implement a direct 

method of solution such as Gaussian elimination. We are not able to use a more 

efficient solver such as the conjugate gradient method with an initial starting so

lution since K will not be symmetric due to the interface formulation. With this 

in mind our initial simulations used a factorization of K in terms of lower ( L) and 

upper (U) triangular matrices, so that K = LU where 

Lx 

U¢ 

F 

X 

(4.41) 

( 4.42) 

This system can easily be solved by performing forward and backward substitu

tions, thus¢ may be obtained by matrix multiplication which reduces the compu

tation at each time step, provided no re-meshing is involved. To implement this 

approach we used the LU factorization routines from the LAPACK library [52]. 

When n becomes large it is impractical to store the matrix K in this way and 

to use this method of solution. There are many ways of improving this method 

one would be to use a technique called the frontal method [53] which involves con

structing K at the same time as the elimination process is performed. Only the 
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part of the matrix being worked on is stored in memory. 

Another direct technique would be to reorder the unknowns, so that the struc

ture of the matrix is changed. This reduces the number of non zero entries needed 

during the elimination. This is discussed in more detail in [54]. 

Alternative to the direct methods of solution, we could look at iterative methods 

which are discussed in detail in [55]. In short, these methods take an approxima

tion to cl> and obtain a better solution by iterative refinement until convergence is 

obtained. A popular iterative approach used in fluid dynamics is GMRES (Gen

eralized Minimal Residual) [56], however the storage requirements are quite high. 

Another disadvantage to the iterative methods of solution is that we may lose some 

accuracy. 

We require a method of solution which minimizes storage requirements while max

imizing speed and accuracy of the solution, hence we have employed an efficient 

method of storing the entries of K coupled with a solver that takes advantage of 

this, namely the y12m routines from the netlib library [52]. We implement the 

storage of the entries in K as follows 

4.3.3 Storage of sparse matrices 

The stiffness matrix K depends upon the finite element mesh and will always be 

very sparse. For a typical mesh less than 1 % of the entries will be non-zero, hence 

we need an efficient method of storage for K. From a programming point of view 

it is straightforward to store K as a n x n array in memory but for large n this 

soon becomes a disadvantage due to the need for large storage requirements and 

inefficiency in the solver. 

The strategy we have used is to store K by a method which is a variation of 

the Harwell-Boeing sparse matrix format described in [53]. We specify K by the 

three arrays K val, K raw and Kcal• The non-zero entries are stored in K val with 
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4. 3. FINITE ELEMENT FORMULATION OF THE SCALAR POTENTIAL 

their corresponding row and column numbers in Krow and K cot , respectively. For 

example if 

4 0 0 2 

0 2 0 0 
K= ( 4.43) 

0 0 1 0 

2 0 0 2 

Then a representation of this matrix by our storage method could be 

K val ( 4 2 2 1 2 ) 

K row ( 1 1 2 3 4 ) 

K col ( 1 4 2 3 4 ) 

Note that this is representation is not unique, this will depend upon how t he en

tries are built up from element connectivity. In this case the resulting storage 

requirements are not much better than in the initial setup, however it is quite easy 

to see that when K is much larger , our method is more advantageous. 

It is not a t rivial task to construct these matrices from the finite element for

mulation. The method we have adopted works as follows 

• Loop through all elements e = 1, 2, ... , n tri · 

• For each individual element e calculate the contribution to K ig,jg where ig , jg 

are the global node numbers that correspond to the local node numbers 

i l , jl . Hence if we consider the quadratic element in Figure 4.4, then the 

connectivity between nodes may be represented by the matrix 

1 1 1 1 0 1 

1 1 1 1 1 0 

1 1 1 1 0 1 
C = ( 4.44) 

1 1 0 1 1 1 

0 1 1 1 1 1 

1 0 1 1 1 1 
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Thus for each element e we must calculate the contributions to Kig ,jg from 

local il, jl if there is a connection. 

• Hence for each element ewe have a maximum of 30 possible non-zero entries. 

So the number of maximum non-zero entries will be related to the number 

of elements, i.e. 30 x ntTi· 

• In order to allocate array size we define K val, K Tow and K col to be of size 

30 x ntTi . This is a significant saving over storing K as an n x n array. 

• When we add an local contribution from node i l , j l to a global node ig, jg 

we must loop over existing entries in K Tow and K col to determine whether 

this global position has been referenced before, if it has then we must add 

the contribution from il,jl to K val, else we must make a new entry in K val 

and address its global location in the arrays K Tow and K col · 

• Move on to the next element e + 1. 

6 

5 

2 

Figure 4.4: A quadratic finite element 

Other routines for handling sparse matrices are explained in depth in [57]. After 

performing the above procedure on all the elements, we will have built up our 

stiffness matrix K and force vector F so we our now in a position to present the 

three arrays K val, K Tow, K col and F to the netlib sparse matrix solver routine 

and hence obtain ¢ and thus hd globally. 
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4.3.4 Implicit interface condition 

This section describes how the scalar potential </> may be formulated by a Galerkin 

method [58]. Here the interface condition is integrated into the method implicitly 

by the application of Green's theorem. We use the same underlying idea of mod

elling the solution over a single mathematical domain as in the previous section. 

Let the Galerkin residual R be denoted by 

R = ~nt + Rext ( 4.45) 

By application of the Galerkin method to equations (3.19) - (3.22), i.e. setting the 

integral of the residual, weighted by the basis functions to zero. 

Green's Theorem states 

Hence 

so 

- { 'v Wi · 'v <PintdDint - { Wi ( 41r 'v · m) dD.int 
} flint } flint 

+ { Wi 'v <Pint · dS 
l afl12 

- { 'vWi · 'v <PextdDext + { Wi 'v <Pext · dS Jfl.,,t l afl21 

- { 'vWi · 'v <PextdDext - { Wi 'v <Pext · dS Jfl.,,t l afl12 

( 4.46) 

( 4.47) 

(4.49) 

( 4.50) 

where 80.12 and 80.21 denote integrating along the interface clockwise and anti

clockwise respectively. Hence 

R = - { 'vWi · 'v</>dD. - { Wi(41r'v · m )dD.int 
Jfl Jflint 

+ { Wi('v</>int - 'v</>ext) · dS (4.51) J 8fl12 
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Using the interface condition gives 

('v </>int - v' </>ext) · dS 

so we now have 

('v </>int - v' </>ext) · ndS 

41rm · ndS ( 4.52) 

From the previous it is clear that the interface condition has been implicitly for

mulated. The finite element formulation may now be found by the formation of 

the stiffness matrix K and element force vector F given by 

K 

F 

fn vwi . v ¢dn 

- { WA1rv' · mdD.int + { WA1rm · ndS 
l nint l an12 

4.3.5 Linear finite element formulation 

( 4.54) 

( 4.55) 

The difference between this method and the previous explicit approach is that we 

found that we were able to formulate the problem by using linear interpolation. 

Again by using the system of local t riangular coordinates (Li, Li, Lk), we can 

proceed to construct the stiffness matrix and element force vector. First of all it is 

convenient to make the basis functions equivalent to our set of linear interpolation 

functions, hence 

( 4.56) 

which may be constructed in the usual way with element contributions being given 

by 

J 1 (8Le 8Le 8L~ 8Le) 
ke i J + i J d d 
ij = ~~ ~~ X Y 

~ ux uX uy uy 
( 4.57) 

Due to the implicit formulation of the method, the element force vector will now 

consist of terms involving v' · m and m · n 

f +f ( 4.58) 
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Hence 

( 4.59) 

where element contributions are given by 

( 4.60) 

Using the formula in Appendix A gives 

(4.61) 

Let us now consider the interface contribution 

( 4.62) 

To explain a contribution to this line integral we must consider boundary elements 

that are external to the magnetic region since an internal boundary elements at a 

corner may be common to two sides of the interface. Let us take for example the 

local side 13 as being on the interface which we denote by f13. Along this side 

L2 = 0 so L3 = (1 - £ 1). The normal outward from the magnetic region will now 

be oriented into the finite element, i.e. 

( 4.63) 

and along the side 

( 4.64) 

We can rewrite the x and y components of m which denoted by mx and my 

respectively by 

3 

mx L Limxi 
i=l 

L1mx1 + (1 - L 1)mx3 (4.65) 
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and 

3 

my Z:Limyi 
i=l 

L1my1 + (1 - L1)my3 

hence 

{ L1(41r)m·n13dS 
l an3 

- { L1(41r)m·n31dS 
l ar31 

-4?T fo
1 

L1(b2(mx1L1 + mx3(l - L1)) + 

(c2(my1L1 + my3( l - L1)))dL1 

By cyclic permutation 

Similarly local side 21 gives the following 

2?T 
- 3 (b3(2mx2 + mx1) + C3(2my2 + my1)) 

2?T 
- 3 (b3(mx2 + 2mx1) + c3(my2 + 2my1)) 

and local side 32 gives 

2?T 
- 3 (b1(2mx3 + mx2) + c1(2my3 + my2)) 

2?T 
- 3 (b1(mx3 + 2mx2) + c1(my3 + 2my2)) 

( 4.66) 

( 4.67) 

( 4.68) 

( 4.69) 

(4.70) 

( 4.71) 

(4.72) 

where I{ denotes the elemental contribution to the force vector from the local node 

i. The system of linear equations K <p = F may now be solved in the same way as 

described earlier. 

4.3.6 Quadratic finite element formulation 

Even though the implicit interface method will give sensible results with linear 

elements, in order to achieve the required accuracy it was found necessary to use a 
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high discretisation of finite element nodes. We now describe the quadratic element 

implicit interface formulation. Using the same quadratic interpolation scheme as 

described in the previous section 

6 

</>e = I: Nt </>f (4.73) 
i=l 

where the quadratic interpolation functions are denoted by Nr 

The volume force vector is 

(4.74) 

Element contributions to f are now given by 

(4.75) 

Referring again to Appendix A, for corner nodes 

0 i= l ,2,3 (4.76) 

For mid-side nodes, e.g. 

( 4. 77) 

the same holds for N5 and N6 , so 

ft = 0 i = 1,2,3 (4.78) 

i = 4, 5, 6 (4.79) 

To consider the interface contribution from elements to f , let us take for example 

the local side 13 as being on the interface. Then L2 = 0 so L3 = 1 - £ 1 . Let 
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us consider both the outward normal n13 and increment dS along the interface as 

previously defined in the linear case. 

and mid-side point 

2(1 - L1)2 - (1 - L1) 

2Li - 3L1 + 1 

4L1(1 - L1) 

4L1 - 4Li 

Using the elementary integration given in Appendix A 

fo
l 1 

LidL1 = -
0 3 

the element contributions to J are 

{ N1 (41r)m · n13dS 
lan3 

- { N1(41r)m · n31dS 
laf31 

-41r fo
1 
(2Li - L1)(b2(L1mx1 + (1 - L1)mx3) 

+c2(L1my1 + (1 - L1)my3 ))dL1 

-41r (b2 (~
1 

+ (O)mx3) + c2 (11 
+ (O)my3)) 

( 4.80) 

( 4.81) 

( 4.82) 

( 4.83) 

27r 
- 3 (b2mx1 + c2my1) (4.84) 

by cyclic permutation 

( 4.85) 
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f N6(41r)m · n13dS 
lar13 

- f N6(41r)m · n13dS 
lar31 

-41r fo
1 

4(L1 - Li)(b2(L1mx1 + (1 - L1)mx3) 

+c2(L1my1 + (1 - L1)my3))dL1 

_ 167r (b2 (mx1 + mx3) + c2 (my1 + my3)) 
12 12 12 12 

471" 
- 3 (b2(mx1 + mx3) + c2(my1 + my3)) (4.86) 

similarly local side 21 gives the following contribution 

( 4.87) 

( 4.88) 

( 4.89) 

and local side 32 gives 

( 4.90) 

(4.91) 

( 4.92) 

Once all contributions from elements have been added to the stiffness matrix and el

ement force vector, we may proceed to solve the system of linear equations K ¢ = F 

as before. 
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4.4 Summary 

So far in this thesis, we have described the mathematical formulat ion of our mi

cromagnetic model and the motivation behind its use. We formulated the model 

in terms of the Landau-Lifshitz equation of mot ion and have discussed our use of 

numerical methods in the solution to this equation. The problem of improving the 

calculation of the demagnetizing field in terms of computational requirement has 

been mentioned and in this chapter we have formulated a solution to this problem 

in terms of triangular finite elements. 

Our finite element method has evolved with the view of developing improved so

lut ions to the demagnetizing field problem as compared with existing methods in 

terms of computational efficiency and accuracy. With this in mind we have intro

duced a sparse matrix storage routine and linear equations solver to keep storage 

requirements to a minimum. 

We are now in a position to look at the efficiency of the solut ion with respect 

to mesh refinement and order of interpolation. This will be described at the begin

ning of the next chapter by using a refinement indicator and comparison with the 

analytical solut ion (under the conditions that t his is valid). The next two chapters 

will be devoted to the most interesting results produced during this period of study. 

Chapter 5 will contain results from applying our model to simulate the behaviour 

of non interacting nanoelements and in Chapter 6 we take full advantage of the 

FEM and generalize the simulation to arrays of interacting nanoelements. 
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Chapter 5 

Investigation of non interacting 

nanoelements 

5 .1 Introduction 

Now that we have formulated finite element solutions of the demagnetizing field h d 

via a magnetic scalar potential </>, we are in a position to make a brief comparison 

via the use of a refinement indicator and an analytical solution in terms of interpo

lation, computational efficiency and accuracy of our solution between the explicit 

method and implicit interface formulation using quadratic elements. Throughout 

this chapter we shall concentrate on non interacting nanoelements only. We shall 

begin our investigations by giving some brief results on the computational speed 

and efficiency of our finite element calculation. 

Testing the solution to the demagnetizing field calculation is only a partial test 

of our model so the next step is to perform a full micromagnetic simulation and 

compare our results with well known published work. Only after full testing of the 

model may we proceed to simulate new results on the magnetization behaviour in 

single nanoelements of thin film permalloy. The rest of this chapter will then be 

concerned with looking at a systematic investigation of the single domain (SD) / 

multi domain (MD) transition states of these nanoelements. Simulations will be 

carried out on various particle sizes and aspect ratios. 
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5. 2 Testing the efficiency of the calculation 

In order to investigate the efficiency of the calculation we shall use the meshes in 

Table 5.1 to define a rectangular magnetic region of dimensions 0.2µm x l.6µm 

with a uniform magnetization distribution of m = (0, 1, 0). Referring back to Fig

ure 4.1 for the definitions of a~ and an, we define the distances xl and yl which 

are the x and y distances respectively of 8~ from an as shown in Figure 5.1. 

The calculation of the scalar potential </J where <pis the solution to equations (3.19) 

- (3.22) involves an infinite boundary being approximated by a finite boundary a~. 
In order to determine how far away a~ should be in order to obtain a reasonable 

solution we performed a series of calculations. These calculations were carried out 

on the meshes in Table 5.1 by gradually increasing the distances xl and yl from 

0.9µm and 2.0µm respectively in steps of 0.5µm. We found that values greater that 

3.9µm and 5.0µm for xl and yl respectively gave maximum differences in <p of order 

10-4 for this particular geometry. Hence for the rest of the numerical comparisons 

in this chapter we shall fix xl and yl to be 3.9µm and 5.0µm respectively. 

In order to give a brief insight into the typical C.P. U. times of our calculations 

we have recorded the time in seconds to calculate the solution of </J for the meshes 

given in Table 5.1. These calculations were performed on a single 500MHz EV5 

processor and are given in Table 5.2 where the C.P.U. t ime indicates the total 

time to calculate <p including the decomposition of the stiffness matrix and the 

subsequent matrix multiplication. These results suggest that the scaling of the 

calculation is lower than the order of n log n which is certainly better than existing 

FFT methods. 
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mesh quadratic nodes linear nodes elements 

(Dint + Dext) (Dint + Dext) (Dint + Dext) 

1 864 + 972 237 + 226 391 + 520 

2 3327 + 1822 873 + 418 1582 + 986 

3 9171 + 2770 2361 + 629 4450 + 1514 

Table 5.1: Meshes with increasing refinement 

yl 

xl 

Figure 5.1: Definition of distances xl and yl for 8~ away from 8D 

mesh C.P.U. time (s) C.P.U. time (s) 

(quadratic) (linear) 

1 7.27 1.91 

2 31.83 5.10 

3 92.42 12.21 

Table 5.2: C.P.U. times for calculating the scalar potential 
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5.2.1 Refinement indicator 

As an initial test on the solution we introduce the refinement indicator for hd [18] 

d [(v' X hd)2 + (v' · hd)2]Ai 
'T/i = "I:f=l lhs 12 (5.1) 

where Ai denotes the area of element i and lhs I is the value of lhdl computed at 

the element centre. Previously equation (5.1) has been used to define areas of the 

simulations where refinement of the mesh was required. However the refinement 

indicator does not represent a direct calculation of the error in the field calculation. 

The images in Figure 5.2 show the areas of largest error detected by the refinement 

indicator for meshes with increasing levels of refinement. The areas highlighted 

I 

, 

I 
(a) (b) 

Figure 5.2: Areas for refinement with explicit interface using quadratic elements 

in (a) mesh 1 (b) mesh 2 and (c) mesh 3 

for refinement occur mainly at the element ends where the field has a large spatial 

variation. We notice that the refinement region becomes less significant as we refine 

the mesh as shown by 5.2(c). 
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5.2. TESTING THE EFFICIENCY OF THE CALCULATION 

5.2.2 Analytical solution 

In this section we will show the areas oflargest error in comparison to the analytical 

solution. The review [38] gives some methods that have been used for the numerical 

evaluation of the demagnetizing field. This work includes some analytical formulae 

for certain regular geometries, one of particular relevance to our application is the 

solution for a rectangular region. The solution uses a two dimensional distribution 

of m in the xy plane, when the dimension along z is either zero or infinite. We 

consider the magnetic region to be defined over the rectangular domain -a ::; 

x ::; a, -b ::; y ::; b, it can be proved that equation ( 4.2) is equivalent inside the 

magnetic region to 

</>(x, y) = 2 fo00 

[lbb COS [(y - 77)t] (l: mx(~, 17)e-(x- ()td( 

- la mx((, 17)e- ((-x)td() d17 

+ l: cos [(x - Ot] (J:b my((, 17)e- (Y - TJ)td17 

- lb my(~, 17)e-(TJ- y)td17) d~] dt (5.2) 

It is convenient to use equation (5.2) as a test of accuracy of our method of solution. 

To apply this we shall consider an in plane magnetization distribution of m = (0, 1) 

to be defined over the rectangular domain c ::; x ::; a, d ::; y ::; b, substituting this 

into the previous equation, we get 

¢(x, y) = 2 fo00 [la cos[(x - ~)t] (ly e-(y-TJ)td17 - lb e- (TJ+y)td11) d(l dt 

2 fo00 la cos[(x - ~)t] [} [e-(Y- TJ)t]: - ~ l [e-(TJ-y)t(] d~dt 

2 f
00 

fa! cos[(x - ~)t] [ ( 1 - e- (y-d)t ) + ( e-(b-y)t - 1)] d~dt 
lo le t 

2 fo00

} [la cos[(x - ()t] ( e-(b- y)t - e-(y-d)t )] d~dt 

2 fo00 

[ - t~ e-(b-y)t [sin(x - ~)t]~ + t1
2 

e- (y- d)t [sin(x - Ot]~] dt 

2 fo00 

[t~ (e-(y- d)t - e-(b-y)t ) [sin(x - ()t]~] dt 

2 fo00 

[t~ ( e-(y- d)t - e-(b- y)t ) (sin(x - a)t - sin(x - c)t) ] dt (5.3) 
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To evaluate this integral we refer to the mathematical handbook [59], and use the 

result that 

lo
oo 1 

-(e-ax - e-f3x) sin(ax)dx 
o x2 

Using this result we obtain 

c/>(x,y) 2 fo
00 

t~ ( e-(y-d)t - e-(b-y)t ) (sin(x - a)t - sin(x - c)t) dt 

2 [ (x; ") In u: = :;: : i! = ~:) + (b - y) tan-
1 

( ~ =;) 
-(y-d)tan-

1 (:=:)] 

(5.4) 

- 2 [(~) ln ( (x - c)
2 

+ (b - y)
2

) + (b - y) tan- 1 (~) 
2 (x - c)2 + (y - d) 2 b - y 

- (y - d) tan-
1 

( ; = ~)] (5.5) 

We can then use a mathematical applications package such as MAPLE to find 

- v' c/>( x, y). From this result we then obtain hd straight away since hd = - v' c/>( x, y). 

So if hd = (hJ, h~), then 

hx = ln ( (x - a)2 + (b - y)2 ) 
d (x - a)2 + (y - d)2 

( 
2x-2a ((x-a)2 +(b-y)2)(2x -2 a) ) 2 2 

(x - a) (x - a)2 + (y - d)2 - ((x - a)2 + (y - d)2)2 ((x - a) + (y - d) ) 
+-------'----------,------,-----::----------'--------

(x-a)2+(b-y)2 

+ 2 2 1 ( (x - c)2 + (b - y)2
) 

(x - a)2 

1 
(x - a)2 - n (x - c)2 + (y - d)2 

1+ (b-y)2 + (y-d)2 

(x - c) ( 2x-2c _ ((x-c)
2

+(b-y)
2
)(2x-2c)) ((x-c)2 +( - d)2) 

(x - c)2 + (y - d)2 ((x - c)2 + (y - d)2)2 Y 

(x - c) 2 + (b - y)2 

2 2 - --~+---~ 
(x - c)2 

1 
(x - c)2 

1+ (b-y)2 + (y - d)2 

(5.6) 
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and 

(x-a) ( -2b+2y _ ((x-a)
2
+(b-y)2)(2y-2d) ) ((x-a)2 +(y-d)2 ) 

(x - a)2 + (y - d)2 ((x - a)2 + (y - d)2)2 
hy -

d - (x-a)2+(b-y)2 

-2, .. -, G=:) +2 r:x-•)') -2,an-• (:::) +2 r:x-a)') 
(b-y) 1 + (b -y)2 (y-d) 1 + (y-d)2 

(x-c) ( -2b+2y _ ((x-c)
2
+(b-y)

2
)(2y-2d)) ((x-c) 2 +(i -d)2 ) 

(x - c)2 + (y - d)2 ((x - c)2 + (y - d)2)2 Y 

(5.7) 

Using this result, we may now make a comparison of our method with the analytical 

solution. The graphs in Figures 5.3 - 5.5 show the actual calculated error relative 

to the analytical solution. The errors are calculated from the formula 

error = jh~ - h~l2 

jh~l2 (5.8) 

where h~ and h~ represent the analytical solution and the calculated value respec

tively. In both cases we see that as the number of elements increases the relative 

error becomes smaller, however we can also see that for the same discretisation we 

get a smaller error associated with the quadratic case. It is also very clear that the 

graphs for quadratic elements shown in Figures 5.4 and 5.5 are very similar. The 

numerical difference in these methods only becomes apparent when we apply the 

model to arrays of nanoelements. It is true to say that as we increase the number 

of nodes, the solution becomes better and the maximum relative error decreases. 

However , we note that the maximum errors mainly occur at nodes belonging to 

boundary elements. The implication of this is that as we refine a mesh we get nodes 

located closer to the interface and these will create errors. There may become a 

stage at which further discretisation is not going to produce any better results. 
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Figure 5.3: Maximum relative error for linear elements 
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Figure 5.4: Maximum relative error for quadratic elements with implicit interface 

condition 

The improvement of the solution around the interface region would be a substantial 

piece of further research work but is beyond the scope of this thesis. Also it is quite 
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possible that the numerical evaluation of the analytical solution becomes more 

inaccurate closer to the boundary as the integrals involved are singular there. If 
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10000 12000 

Figure 5.5: Maximum relative error for quadratic elements with explicit interface 

condition 

we turn our attent ion to the meshes in Table 5.1 we can look more closely at the 

values of the error at specific points within the magnetic region. We have marked 

three points as shown in Figure 5.6 where we expect there to be varying difference 

in the error. Table 5.3 can then be constructed giving values of the error using 

the implicit method with quadrat ic elements to maintain highest accuracy. We see 

from the table that the largest value of the error occurs nearest to the corner of 

the nanoelement at point 1 where the field is most non-uniform. 

mesh point 1 point 2 point 3 

1 9.4 X 10- 2 7.9 X 10- 2 2.7 X 10- 2 

2 3.8 X 10- 2 2.6 X 10- 2 2.3 X 10- 2 

3 1.5 X 10- 2 1.3 X 10- 2 2.2 X 10-2 

Table 5.3: Pointwise values of the error 
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The images shown in Figure 5.7 give an indication of where the errors are occurring 

and again the same situation is reflected as in the case of the refinement indicator. 

We have the largest errors occurring at the ends of the nanoelement due to the non

uniformity of the field and increasing the mesh refinement minimizes the severity 

of the errors as shown by the refinement indicator and by comparison with the 

analytical solution. 

point 2 
j 

point 1 

point 3 

Figure 5.6: Location of points within the magnetic region 
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Figure 5.7: Maximum relative error for quadratic elements with implicit interface 

method using (a) mesh 1 (b) mesh 2 ( c) mesh 3 
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5.3 Initial studies of elongated nanoelements 

The purpose of the previous section was to give an indication of the reliability of 

our finite element method in calculating the demagnetizing field via a scalar po

tential. Table 5.3 shows that the order of magnitude of the error is about 10- 2, so 

it now seems reasonable to implement the method within the model and perform 

a micromagnetic simulation using the additional exchange, anisotropy and applied 

field terms described in Chapter 3 coupled with the Landau-Lifshitz equation of 

motion to describe the dynamics of the process. 

The first simulation we must perform is one that will test all aspects of the model, 

in addition to this the results we expect to obtain should already have been pub

lished so that we may make a direct comparison with what we obtain. With this in 

mind, we shall begin with a simulation that is comparable to one that was carried 

out by Schrefl et al [22] who investigated the formation of domains in rectangular 

permalloy nanoelements with anisotropy. These results were obtained from a the

oretical model and were also observed experimentally. 

The nanoelement that we shall consider is of size 0.2µm x l.6µm with a thickness of 

20nm and transverse anisotropy. The presence of the transverse anisotropy implies 

that we should expect some domains in the results. Initially the nanoelements are 

saturated with a uniform magnetization distribution parallel to the longitudinal 

axis. For this particular simulation the exchange constant A = l.3 x 10- 6erg/cm, 

the anisotropy constant K = 5 x 105erg/cm3 and the saturation magnetization 

Ms = 800emu/cm3
. These material parameters were obtained from the work of 

Hefferman et al [20]. 

Our simulation was carried on a finite element mesh with 1024 quadratic elements 

within the nanoelement to ensure that there are enough to successfully model the 

change in magnetization throughout a domain wall. Simulations of remanent states 

were performed as in the case of Schrefl et al. The results from our simulation are 
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given in Figure 5.8, in a format that will be used throughout this thesis with the 

direction of the magnetic moments being represented by small arrows within the 

nanoelement and a colour scheme denoting the strength of the magnetization com

ponent in the anisotropy direction, in this case transverse, i.e. m x. 

The results in Figure 5.8 show the time evolution of the magnetization of the 

nanoelement into the zero field equilibrium state. The magnetization (my) is mea

sured by summing the total number of longitudinal components and dividing this 

by the number of finite element nodes. 
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(a) (b) (c) (d) 

Figure 5.8: Transition in zero field equilibrium for a 0.2µm x 1.6µm nanoelement 

after time a) 7ns b) 12ns c) 15ns d) 25ns 

In Figure 5.8(a), my = 0.75, the nucleation of domain structure occurs by vor

tex formation at opposite ends of the nanoelement giving a large initial change 

in magnetization. We see that the domain structure then expands throughout 

the nanoelement as shown in 5.8(b) and 5.'~(c) where my = 0.5 and my = 0.25 

respectively. Finally the equilibrium sta,t/ in Figure 5.8(d) shows the domain 
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configuration when my = 0.0 which is achieved when our convergence criterion 

of I dd:i- 1 < 10-6 is obtained. The evolution of the domain structure into the zero 

field equilibrium state is consistent with that of the published work of Schrefl at al. 

As an extension to this simulation and a further test we shall introduce an ap

plied field and examine the hysteresis effects. By slow reduction of an applied 

field, we obtain the hysteresis curve shown in Figure 5.9 and in more detail in 

Figure 5.10. Here we see a steady initial reduction in magnetization to the point 

(a) on the curve caused by the reversal beginning from the two opposite ends of 

the nanoelement. The large change in magnetization which occurs between point 

(b) and point ( c) indicates the formation of domains caused by vortex nucleation 

at the ends of the nanoelement. The reversal then proceeds from the two element 

ends with propagating domain structures towards the element centre. Finally at 

point ( d) on the curve the multi-domain formation occupies the entire element 

which exhibits zero reduced magnetization. 
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Figure 5.9: Hysteresis loop for a 0.2µm x l.6µm nanoelement 
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Figure 5.10: The reversal process in detail 
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5.4 The single domain / multi domain transi

tions 

Now that we have fully tested our model we may proceed to carry out a system

atic study of the single domain (SD) to multi domain (MD) transition states on 

permalloy nanoelements. The motivation behind this is to get some idea on the 

particle size at which these transitions occur in order to determine their suitability 

for magnetic recording applications. Previous work has been done experimentally 

by Smyth et al [60] who investigated the effect of particle size and aspect ratio on 

hysteresis behaviour at the sub micron level. 

The transition to SD behaviour occurs for the following reasons. The existence 

of domains in a magnetic structure with magnetization M is driven by the ten

dency of a material to try to reduce the magnetostatic energy which is ex M 2 . 

The reduction in M is achieved by the material splitting into domains. Within 

each domain, the magetization remains parallel in order to minimize the exchange 

energy but the overall orientation of the direction of the domains is such that the 

magnetization itself is lowered. However the production of the domain wall itself 

requires some energy. As a consequence of this, as the size of the system is re

duced there comes a point at which the energy reduction by splitting up into a 

small number of domains is not sufficient to compensate for the increased energy 

associated with the domain walls involved. At this point there is a transition from 

MD to SD behaviour via intermediate transition states which are termed as pseudo 

single domain (PSD). 

The PSD states are characterized by their highly non-uniform magnetization struc

tures and the distinction between PSD and SD states is shown in Figures 5.11 

and 5.12. Here we see a non-uniform PSD magnetization structure in Figure 5.11 

since the bottom right and top left corners differ and a SD magnetization structure 

in Figure 5.12. 
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Figure 5.11: Example of a PSD state 
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Figure 5.12: Example of a SD state 

However in practice the situation is rather more complicated since it is expected 

that the transition will depend to some extent on the elongation of the nanoelement 

since this is one of the major factors in determining the overall magnetostatic 

energy. Consequently, our investigation must include a study of transition effects 

due to particle aspect ratio as well as size. Hence we shall consider each aspect 

ratio in turn. 
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We shall begin our investigation by studying the geometry of a square nanoele

ment. To produce the remainder of the results in this thesis, we use the generally 

accepted material parameters for permalloy which were obtained from NIST [61]. 

They are the exchange constant, A= 1.3 x 10-6erg/cm, the uniaxial anisotropy, 

K = 5 x 103erg/cm3 and the saturation magnetization, Ms = 800emu/cm3. We 

also fix the thickness of the nanoelements to be 20nm. Unless otherwise stated, we 

begin our simulation with our particle having a uniform magnetization distribution 

in a direction from the bottom to the top of the nanoelement and we remove the 

applied field instantaneously. All of the states were obtained after convergence of 

the system to equilibrium. 

The experimental work by Kirk et al [62] shows evidence of domain formation 

at a size of 2.0µm, which is the size at which we begin in our first series of sim

ulations. Our theoretical result is given by Figure 5.13 where we see a classic 4 

domain pattern with a 90° domain wall as a result of the formation of the central 

vortex. 
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Figure 5.13: 2.0µm x 2.0µm 
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Continuing our study by reducing the size of the nanoelement to l.0µm, we find 

this is also capable of supporting the increase in energy from the domain wall 

formation by making the central domain grow and thus forcing vortices outwards 

as shown by the results in Figure 5.14. Here we also see an increase in surface 

charge. However this is certainly not the case for a nanoelement of size 0.068µm 
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Figure 5.14: l.0µm x 1.0µm 

as shown by Figure 5.15. Here the particle size is not capable of supporting any 

increase in energy from domain wall formation and so it remains in a single domain 

configuration. By carrying out simulations on smaller particle sizes, the size at 

below which only a single domain state is supported was found to be about O.lµm. 

0.80 
0.71 
0.63 
0 . 55 
0 .46 
0.38 
0.29 
0.21 
0.12 
0.04 

- 0.05 
- 0.13 
-0.22 
-0.30 
- 0.38 
- 0.47 
-0.55 
-0.64 
-0. 72 
-0.81 

Figure 5.15: 0.068µm x 0.068µm 
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Now that we have looked at decreasing particle sizes for a single aspect ratio, we 

shall proceed to look at the effects of an increase in the elongation by considering 

a 2: 1 aspect ratio nanoelement. This is necessary as any transitions will be depen

dent upon the magnetostatic energy which in turn is directly determined by the 

elongation of the particle. 
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Figure 5.16: 1.4µm x 2.8µm 

For this series of simulations we found that particle sizes above 0.15µm x 0.3µm 

were all capable of supporting multi domain states. At these sizes the domain wall 

energy is supported by the reduction in total energy due to the domains. However 

as we decrease the particle size we observe the transition from pseudo single do

main to single domain at about 0.09µm x 0.18µm at the point where the reduction 

in the total energy is insufficient enough to support the domain wall energy. In 

Figure 5.16 we observe a classic 7 domain configuration for a particle of size 1.4µm 

x 2.8µm with the two vortices occurring to accommodate the domain walls. We 

also see a similar configuration in 5.17 which shows a particle of size 1.2µm x 

2.4µm, here the reduction in particle size causes the domain wall energy to have 

slightly more overall effect by beginning to separate the vortices, this in turn will 

increase the total system energy and thus force the particle into a pseudo single 

domain state as shown by Figure 5.18 and then ultimately a single domain state. 

109 



5.4- THE SINGLE DOMAIN/ MULTI DOMAIN TRANSITIONS 

0 . 92 
0.83 
0.73 
0.63 
0.53 
0.44 
0.34 
0.24 
0.15 
0.05 

- 0 . 05 
- 0.14 
-0.24 
-0.34 
-0.43 
-0.53 
-0.63 
- 0.73 
- 0.82 
-0.92 

0 . 83 
0.75 
0.67 
0.58 
0.50 
0.42 
0.34 
0.26 
0.18 
0 . 09 
0.01 

- 0.07 
-0.15 
-0.23 
-0.31 
-0.39 
-0.48 
- 0 . 56 
- 0.64 
- 0. 72 

Figure 5.17: l.2µm x 2.4µm 

Figure 5.18: 0.lµm x 0.2µm 
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Turning our attention to nanoelements with a 3:1 aspect ratio we expect the elon

gation to have an effect on the transitions due to it being a major factor in de

termining the overall magnetostatic energy. If we firstly look at a particle of size 

0.2µm x 0.6µm we see a 13 domain configuration as shown in Figure 5.19 with the 

nucleation of two inner and outer vortices. By a slight reduction in particle size 

to 0.17µm x 0.5lµm as shown by Figure 5.20 we see the an increase in the overall 

magnetostatic energy as the two inner vortices grow to join the others at the top 

and bottom of the nanoelement. 

The size at which the formation of several domains is no longer possible was found 

to be about 0.lµm x 0.3µm at which point the configuration becomes single do

main as shown in Figure 5.21. It is interesting to note that the 3 : 1 aspect ratio 

case supports single domain configurations to greater particle sizes than the 1 : 1 

and 2 : 1 aspect ratio cases. In the case of nanoelements with a 4:1 aspect ratio 

we observe similar effects as in the previous case with the particle being able to 

support single domain states to larger particle dimensions. 
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Figure 5.19: 0.2µm x 0.6µm 
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Figure 5.20: 0.17µm x 0.5lµm 
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Figure 5.21: O.lµm x 0.3µm 
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The lower magnetostatic energy due to the aspect ratio ensures that a nanoelement 

of size 0.2µm x 0.8µm is capable of supporting the extra energy from the domain 

walls and thus leads to a multi domain configuration as shown in Figure 5.22. 

However on reduction of the particle size to 0.12µm x 0.48µm the decrease in the 

total magnetostatic energy does not make the formation of domain walls energeti

cally feasible and we observe a pseudo single domain state with the appearance of 

only small vortex nucleation near the two opposite ends of the particle as shown 

in Figure 5.23. The transition to single domain behaviour with this aspect ratio 

occurs at a particle size of about 0.llµm x 0.44µm. At particle sizes below this 

the overall magnetostatic energy is too large to allow anything but single domain 

behaviour as shown in Figure 5.24. 
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Figure 5.22: 0.2µm x 0.8µm 
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Figure 5.23: 0.12µm x 0.48µm 
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Figure 5.24: 0.05µrn x 0.2µrn 
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The simulations we have carried out so far indicate that the transition to the single 

domain state is determined by the particle size and elongation. We shall extend the 

results by recording the size of particle for each transition with each aspect ratio in 

t urn. This data is given by Figure 5.25 in the form of a phase transition diagram 

for each aspect ratio as a function of elongation of the length of the nanoelement. 

We can see from the graph that if we take any specific particle of fixed length and 

then decrease its width this will eventually become single domain. 
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Figure 5.25: Transition for single / pseudo single / multi domain states 

The noticeable feature of t he graph is that for very high aspect ratios the transition 

from multi domain to single domain occurs more directly since the PSD states are 

less stable due to the presence of the transverse anisotropy. Also the nanoelements 

with higher aspect ratios maintained the single domain state to larger particle 

sizes. For further investigation we shall consider extreme cases of both SD and 

MD behaviour in the next two subsections. Because of the single domain feature 

of the higher aspect ratios we have chosen to investigate their hysteresis properties 

for possible magnetic recording applications. In order to investigate the behaviour 
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we chose a single nanoelement of size O.lµm x l.6µm as this has already been 

considered in [21]. 

5.4.1 Single domain behaviour of a high aspect ratio par

ticle 

As mentioned at the end of the last section we found that nanoelements with high 

aspect ratios exhibited single domain behaviour to larger particle dimensions than 

those with smaller aspect ratios . We saw that the magnetization state remained 

stable in the nanoelement without any applied field so the next stage is to look at 

the hysteresis experiment. 

When we obtain the hysteresis curve of a O.lµm x l.6µm nanoelement as shown 

in Figure 5.26 it is obvious that the particle exhibits single domain behaviour from 

the high remanence value of Mr = 0.98 and coercivity. Again the magnetization 

reversal proceeds via vortex nucleation of domain structures from opposite ends of 

the nanoelement which is evident in the remanence state in Figure 5.27. This is 

featured on the curve as the initial small decrease in magnetization. The reversal 

after this then proceeds via further nucleation of domains which propagate towards 

the centre of the nanoelement as shown by Figure 5.28. This hyst eresis behaviour 

exhibited by this particle is that which is required by a good recording medium as 

described in Chapter 1, i.e. high coercivity and remanence. 
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Figure 5.26: Hysteresis loop for a O.lµm x l.6µm nanoelement 
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Figure 5.28: Reversal process via vortex nucleation and propagation 

So far we have performed a systematic investigation on the transition behaviour 

from single domain to multi domain states in nanoelement. We mentioned at the 

beginning of this section that t he formation of domains is dependent upon the 

total system energy being lowered by a reduction in magnetization and hence the 

magnetostatic energy such that the energy produced from the domain wall motion 

may be compensated. During the course of our investigation we have seen t hat 

since t he magnetostatic energy is determined by the aspect ratio of the nanoelement 

this also has a strong influence on the transition states. All the simulations have 

been performed under the assumption of an infinitely fast removal of a saturating 

field, we shall now discuss the effect of introducing a slow field variation and the 

consequence this has on transitions. 
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5.4.2 Effect of magnetization dynamics 

We now look at the difference between performing a particular simulation at differ

ent rates of reduction of the saturating field. As an example we choose to look at a 

single 0.2µm x l.2µm nanoelement. The remanent magnetization configurations 

are shown in Figure 5.29 for (a) instantaneous removal and (b) gradual reduction 

of an applied field by steps of 0.lHk. Here we see that the configurations depend 

on the dynamics of the magnetization process. Specifically, a gradual reduction 

of the magnetic field produces slightly different domain structures compared with 

those produced without the presence of an applied field. 
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Figure 5.29: Remanent state with (a) instantaneous and (b) gradual relaxation of 

an applied field 

On further investigation we also found that the configuration in Figure 5.29(b) 

exhibits an 8% lower energy than that in Figure 5.29(a). We see that a multi 

domain state is observed in both cases which is consistent with the results in Fig

ure 5.25, however since there is less energy from the nanoelement after the gradual 

reduction of an applied field, we would expect the transition size to single domain 

to be marginally lower. 

119 



5 .. 4, THE SINGLE DOMAIN / MULTI DOMAIN TRANSITIONS 

The slightly larger domains in Figure 5.29(b) are driven by the demagnetizing ef

fects at the ends of the nanoelement and the lower magnetostatic energy. They 

are stabilized by the transverse anisotropy. The hysteresis curve for this particular 

simulation is shown in Figure 5.30. 
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Figure 5.30: Hysteresis loop for 6:1 aspect ratio nanoelement 
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The reversal process proceeds via vortex nucleation of end domains giving rise 

to an initially large change in the magnetization as shown by point (a) in Fig

ure 5.31 and Figure 5.32(a). At this point an irreversible magnetization change 

occurs. The domain structure then propagates reversibly along the entire element 

as shown by point (b) and Figure 5.32(b). Again, the reversal mechanism is by 

domain propagation from the two ends of the nanoelement towards the centre. As 

we continue along the curve to point ( c) we see that the magnetization is beginning 

to align itself with the applied field as shown in Figure 5.32(c). Finally at point (d) 

we see that the domains begin to disappear from the centre of the nanoelement as 

it comes close to saturation in the opposite direction as shown by Figure 5.32(d). 
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Figure 5.31: The reversal process 
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Figure 5.32: Magnetization states along the hysteresis curve 
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Experimental investigation of this type of nanoelement has been performed by Hef

ferman et al [20]. The loop from our simulation is qualitative in agreement with 

these experimental results and may be classified under the type 'C' observation. 

From our observations we can conclude that in rectangular nanoelements, the tran

sition from single domain to multi domain behaviour is not simply straightforward, 

instead as the dimensions increase there is a slow transition through pseudo single 

domain states which are characterized by the highly non uniform magnetization 

structures. 

The occurrence of single domain formation happens when the particle in ques

tion cannot support the additional energy from domain walls. We have shown this 

to be dependent upon both the size and aspect ratio of the nanoelement. We have 

also looked briefly at the effects of the dynamics of the magnetization process. 

The next stage in our investigations will be to look at the effects on transitions 

determined by the geometry of the nanoelement. 
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5.5 More complex geometries 

More investigation into the properties of nanoelements will be required over the 

next few years, especially those with irregular geometries. This is partially due 

to their application in the development of magnetic random access memories 

(MRAM) and magnetic sensors [63]. Research into non-volatile, high density, fast 

access solid-state storage of information is one of the major concerns of today's 

information society. New approaches for high density, fast read/write, low power 

MRAMs using magnetic nanoelements are currently in development [64]. 

Previous investigation has included looking at the switching field of nanoelements 

with pointed ends [21]. We shall begin with these more complicated geometries 

by looking at t he domain structure of nanoelements with a single pointed end. 

For this geometry we define the pitch of the nanoelement to be as shown in Fig

ure 5.33. In terms of t he finite element method we are able to deal with such 

complicated geometries wit h ease. As an example we show the evolut ion of the 

domain structure of a nanoelement with dimensions of the rectangular part being 

0.2µm x 1.2µm and the pitch is 0.4µm . Since the ends of the nanoelement have 

previously played such an import ant role in the magnetization reversal process, we 

expect the addition of a pointed end to a nanoelement to have an effect on this 

mechanism. 

Figure 5.33: The pitch of the nanoelement 
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The results for this particle size are shown in Figure 5.34. Here we see from left 

to right the reversal of magnetization predominantly beginning from the flat end 

and a stabilization effect at the pointed end. This in turn causes the domains to 

propagate from the flat end and then occupy the entire nanoelement. This reversal 

process may be explained by the following. The nucleation of reversed domains 

begins near the corners of the nanoelements where there is a strong transverse 

demagnetizing field. Close to the apex of the pointed end, the demagnetizing field 

eminating from the two opposite inclined faces due to the magnetic surface charges 

cancel out which results in a zero net field component in the transverse direction. 

This is not the case in the region joining the rectangular and triangular regions. 

Here, a transverse component of the demagnetizing field occurs and initiates mag

netization reversal in addition to the reversal from the flat end. 
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Figure 5.34: Transition into zero field equilibrium for a 0.2µm x 1.6µm nanoele

ment 
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Since the likelihood of the reversal of the nanoelement is reduced by the addition of 

a pointed end we observe an increase in coercivity when compared to a rectangular 

nanoelement of comparable size. This implies that the single point type of geom

etry would also maintain single domain behaviour to larger particle dimensions. 

When we add two pointed ends to a nanoelement we require a much larger field for 

reversal than for a comparatively sized rectangular particle and a coercive force of 

more than double the rectangular nanoelement case. This has also been reported 

in [21]. If, for example we look at the magnetization behaviour of a 0.2µm x l.2µm 

nanoelement then we observe the remanent configurations shown in Figure 5.35. 

Here we observe a pseudo single domain state. The effect of altering the pitch from 

( a) 0.2µm to (b) 0.3µm increases the demagnetizing field with micromagnetic de

tail appearing in the regions joining the rectangular and triangular regions where 

the reversal process is being initiated by the transverse component of the demag

netizing field. Referring back to the phase transition graph in Figure 5.25 we see 

that a rectangular nanoelement of this size indicated by the cross in Figure 5.36 

would exhibit multi domain behaviour. 

The stabilization of the pseudo single domain state to larger particle dimensions 

occurs in nanoelements with two pointed ends, this is not surprising since the 

chance of domain formation and propagation is half as likely as in the case of one 

pointed end as discussed earlier. 
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Figure 5.35: Remanent states for a 0.2µm x 1.2µm nanoelement with two pointed 

ends, varying pitch 

2 ,-----.-----r----,r---.----.------,--- -.-- - .---~----, 

1.8 

1.6 

1.4 

en 
§ 1.2 
ti 
I 
..c:: 
O> 
~ 0.8 

....J 

0.6 

0.4 

0.2 
___ ,,.,.,,.,.. 

_,,,,,,----------

/ 
,,, .... 

+ .,.,,. ...... , .. ' 

.... , .... 
/ 

/ 

-----.. ---

SD-PSD -
PSD - MD ------

RECTANGULAR + 

0 L._ _ __._ _ _ ....._ _ ___. __ -'----'------'--- --'--__;'-----L.---' 

0 2 4 6 8 10 12 14 16 18 20 
Aspect ratio 

Figure 5.36: Transition for single/ pseudo single / multi domain states 

126 



5. 6. SUMMARY 

5.6 Summary 

We started this chapter off by a series of tests of our finite element solution to 

the calculation of the demagnetizing field via a scalar potential method. The tests 

were carried out by comparing our explicit and implicit methods using quadratic 

finite elements with a refinment indicator and analytical solutions. We also gave 

an indication of the computational requirements of the calculation. 

After a full testing of this calculation, we were ready to implement this into our 

complete micromagnetic model which was described in Chapter 3. However, be

fore using this to produce any new results, another test had to be carried out. 

This was performed by generating results for comparison with existing scientific 

work on rectangular permalloy nanoelements. Our results were similar, therefore 

we were able to proceed with our investigations and look at the transition states 

of nanoelements from multi to single domain behaviour for decreasing particle size. 

Since the formation of domains in a particle is linked to the magnetostatic en

ergy which itself is determined to some extent by the elongation of the particle we 

also had to look at the effect of altering the aspect ratios. We carried out the study 

by looking at each aspect ratio in turn. The particle size at which we started was 

governed by previous experimental observations of multi domain behaviour. We 

predicted multi domain behaviour at this stage consistent with the experimental 

data. The particle size was then reduced until the total energy reduction from any 

domain formation was not enough to compensate for the increase in domain wall 

energy and a single domain state was observed. 

We recorded our theoretical observations on transition states in the form of a 

phase diagram. As expected the nanoelements with greater elongation remained 

single domain to larger particle dimensions. Up to this point, our simulations on 

transition states had been performed under the assumption of instantaneous reduc

tion of t he applied field, to observe the hysteresis effects with a view on magnetic 
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recording applications, we chose a high aspect ratio case to investigate this further. 

It was suspected at the beginning of these simulations that the rate of reduc

t ion of the applied field would have some bearing on the magnetization dynamics 

and thus the transition size. Indeed this is the case as we demonstrated with a 

6 : 1 aspect ratio nanoelement which exhibited a small reduction in energy after 

the gradual reduction of an applied field as when compared with the saturating 

field being removed instantaneously. The reversal mechanism observed was one of 

domain propagation via vortex nucleation from the two ends of the nanoelement. 

Again qualitative agreement with experimental work was observed with the corre

sponding hysteresis experiment. 

Bearing in mind the full capabilit ies of t he finite element method in dealing with 

arbitrary shaped regions we have also looked at the effect of altering the nanoele

ment geometry by the addition of one or two pointed ends. This more complicated 

geometry is of particular importance in MRAM and magnetic sensor applications. 

In the case of a nanoelement with a single pointed end we observed a reversal 

mechanism in which the formation of domains started from the flat end of the par

ticle with some interaction around the region where the rectangular and triangular 

region joined one another. This was due to the magnetostatic interactions at the 

pointed end compensating each other and giving rise to reduced local fields. This 

causes the nanoelement to have a higher coercivity than in the rectangular case 

and to exhibit single domain behaviour to larger particle dimensions. As expected 

the addition of two pointed ends to a nanoelement caused an even greater increase 

in the coercivity and t hus further increase in the particle size to which single do

main behaviour is supported. 

In this chapter we have made a systematic study on single nanoelements only. The 

next step is to look at the behaviour of arrays of interacting nanoelements which 

we shall discuss in the next chapter in relation to experimental observations. 
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Chapter 6 

Investigation of arrays of 

interacting nanoelements 

6.1 Introduction 

Investigation into the behaviour of arrays of nanoelements is of particular im

portance to determine their suitability for future high density data storage [65]. 

Current research in this area is being carried out experimentally by Kirk et al [66] 

to investigate magnetostatic interaction effects due to spacing between the nanoele

ments. The main advantage behind the use of nanoelements as patterned media 

for writing is that their coercivity can be less than that for continuous media, this 

means less demand on the miniaturised write heads. Also noise is not a problem 

since the aim is to write 1 bit per nanoelement. 

The simulations we have considered so far have all been carried out on single 

nanoelements. These results are an initial study on the domain behaviour and 

hysteresis properties of the particles. However to apply the nanoelements to mag

netic recording, we must extend our model to be able to look at arrays of particles. 

For this chapter we use our model to look at the magnetization behaviour of 

arrays of interacting rectangular nanoelements. The experiments are carried out 

with varying space between the nanoelements and both longitudinal and trans-
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verse material anisotropy. We consider both single arrays and several of them in 

placed in row and column formations. Following the same procedure as for single 

nanoelements, we must firstly do a simple test of the model by comparing init ial 

results involving an array of nanoelements with existing scientific work. 

The obvious consequence in terms of our model is that of an increase in terms 

of computational requirements needed for such a simulation. So far we have only 

looked at a single particle with a discretization of one or two thousand quadrat ic 

finite elements. In this situation we are going to have to deal with at least three 

times the computational requirements, however this is within the capabilities of 

our finite element solver due to the sparse matrix solver routine as described in 

Chapter 4. 

We may now proceed with the testing process. The experimental results of Riihrig 

and coworkers [19] were concerned with 'large' scale domain structures in nanoele

ments with longitudinal anisotropy as shown by Figure 6.1. These 'large' scale 

domain structures were caused by the magnetostatic interactions around the ends 

of the nanoelements. It is a good test for our model to simulate these results since 

they involve 'large' domains which do not require a high level of discretization to 

model correctly and hence are less computationally intensive. 

To simulate this magnetization behaviour we introduced longitudinal material anis

totropy to our model and created a finite element mesh for three interacting na

noelements each of size 0.2µm x l.6µm with inter nanoelement spacing of O.l µm. 

To be able to compare with the experimental observations we saturated the na

noelements parallel to the anisotropy direction and then removed the saturating 

field instantly at the beginning of the simulat ion. 

Our results are shown in Figure 6.2 in the form of greyscale images with black 

and white representing + 1 and -1 respectively for the longitudinal component of 

magnetization my· We observe a similar 'large scale' domain structure to the ex-
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perimental results. We notice that the two outer nanoelements have the same kind 

of domain structure with a single 180° domain wall whereas the central nanoele

ment has two 180° domain walls . In all 3 nanoelements we also see the formation of 

end structures. These configurations may be explained by the magnetization in the 

central nanoelement being forced parallel to the anisotropy axis due to the strong 

demagnetizing effect between nanoelements. On further comparison with the ex

perimental results we notice that our predicted domain structures in the outer 

nanoelements show the domain walls shifted outwards more than in the experi

mental case. This is caused by weaker interactions and is due to the different rates 

of reduction of the applied field between the experimental case and our theoretical 

predictions. 

l i lTl i! 

Figure 6.1: 'Large' scale domain structure observed experimentally in 3 interacting 

nanoelements 
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Figure 6.2: Equilibrium state for an array of three 0.2µm x l.6µm nanoelements 

with longitudinal anisotropy and spacing O.lµm 

Now that we are satisfied that the model is correctly simulating the interaction ef

fects between nanoelements, we may proceed with some new results on the slightly 

more complicated case of nanoelements with transverse material anisotropy. 

132 



6.2. THREE INTERACTING NANOELEMENTS 

6.2 Three interacting nanoelements 

To begin our investigation into the magnetization behaviour in arrays of nanoele

ments we shall continue at the simplest level, i.e. three rectangular nanoelements 

placed side by side in a row formation. 

In terms of mesh considerations, we expect there to be significant interaction effects 

between nanoelements so in order to observe this in our simulations we enforce a 

high degree of mesh refinement along the inter-nanoelement edges and the space 

between the nanoelements. As a result of this we obtain a type of mesh as shown 

in Figure 6.3 which contains 6460 finite elements and 12937 quadratic nodes. The 

refinement between the nanoelements is shown in greater detail in Figure 6.4. 

Figure 6.3: Mesh discretization for three interacting nanoelements 
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Figure 6.4: Extra mesh refinement between the interacting nanoelements 

For our first series of simulations we are going to use the same material parameters 

as mentioned in 5.4 and we shall consider nanoelements of a size which previously 

exhibited mult i domain behaviour with transverse anisotropy. This will enable us 

to observe any interaction effects due to the element spacing. 

As an example we perform our first simulation on three interacting 0.2µm x 1.6µm 

nanoelements with thickness 20nm. Here, the nanoelements are initially saturated 

with a uniform magnetization distribution in a direction going from the bottom to 

the top of the particle. As in the case of the single nanoelement simulation which 

was performed at the beginning of the previous chapter we simulate the evolution 

of the magnetization of the particle without any externally applied field. 

We start off with an inter-element spacing of 0.05µm as shown by the results 

given in Figure 6.5. The 8 : 1 aspect ratio of these individual nanoelements make 

the elongation large enough to have significant effect on the magnetostatic energy 
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of the particle. The implication of this is that there will be a very strong stray 

interaction field around the ends of the nanoelements. 

The reversal mechanism for this particular array is one where the reversal be

gins by the vortex nucleation of reversed domains from the two opposite ends of 

the two outer nanoelements. The domain structure then expands throughout the 

whole of the outer nanoelements while the central particle remains almost satu

rated. 

In Figures 6.5 - 6. 7 we show zero field domain structures for separations of 0.05µm , 

0.4µm and 0.8µm respectively. In Figure 6.5 we observe the stabilization of a single 

domain state in the central nanoelement but not in the two outer ones although 

the domain structures in the outer elements are considerably different from that 

of the isolated element. Here we see the stabilization of a transient state as in 

Figure 5. 32 ( c). If we were to consider the array of nanoelements to be one large 

particle roughly of size 0. 7 µm x l.6µm ignoring the non magnetic spacing, then 

referring back to the transition diagram in Figure 5.25 a nanoelement of this size 

and aspect ratio would certainly exhibit multi domain behaviour. However from 

the single domain state in the central nanoelement , our results for the interacting 

case display clear evidence of interaction effects. 

The effects of interactions between nanoelements can be explained by the exis

tence of the large magnetostatic interactions. We mentioned earlier t hat there 

will be a strong stray field around the ends of the nanoelements from the large 

magnetostatic energy present there. 
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> 
anisotropy direction 

Figure 6.5: Equilibrium state for a 0.2µmxl.6µm array of nanoelements, spacing 

0.05µm 

The two outer nanoelements break up into multi domain states and thus lower 

their individual magnetization and therefore magnetostatic energies. The strong 

magnetostatic field at the ends of the nanoelements then forces the magnetization 

of the central nanoelement to be perpendicular to the anisotropy axis in order to 

minimize the total exchange energy of the system. We again observe the stabiliza

tion of transient states in the two outer nanoelements in comparison with the non 

interacting case as shown in the last chapter by Figure 5.8. The central nanoele

ment is not capable of supporting a multi domain structure with this spacing since 

the reduction in energy needed by any further domain wall formation would not 

be sufficient to compensate for the increase in energy associated with any extra 

domain walls. 

When we increase the separation between the nanoelements to 0.4µm, as shown in 

Figure 6.6, we observe that the central element is still being prevented from form

ing a multi domain structure due the large stray fields originating from the ends of 

the nanoelernents as a consequence of the magnetostatic interactions. However in 
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this case we notice that there is slightly more end structure occurring in the central 

nanoelement due to the large increase in space between the particles. Recent ex

perimental observations [68] have suggested that for nanoelements of comparable 

size to our example with a 4 : 1 aspect ratio, magnetostatic interactions are only 

strong enough to have any significant effect on the domain behaviour at spacings 

less than the width of the nanoelement. Our results are showing evidence of in

teraction effects at spacings of twice the nanoelement widths and may be justified 

by the 8 : 1 aspect ratio of our particles since this will cause the nanoelements 

to have magnetostatic interactions far greater than those exhibited by the 4 : 1 

aspect ratio cases. 
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Figure 6.6: Equilibrium for 0.2µmxl.6µm array of nanoelements, spacing 0.4µm 

When we increase the separation to 0.8µm, shown by Figure 6. 7, the central el

ement does form a multi domain structure much like the two outer ones and the 

domain structures in· all elements reverts to that obtained earlier in Figure 5.8. At 

this level of inter nanoelement spacing the magnetostatic interactions originating 

from the ends of the particles are clearly not significant enough to have stabilized 
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a single domain state in the central nanoelement. However we do see slightly dif

ferent domain structures to that observed in the non interacting case as shown in 

Figure 5.8 suggesting that magnetostatic interactions effect the evolution of the 

local field. 
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Figure 6.7: Equilibrium for 0.2µmxl.6µm array of nanoelements, spacing 0.8µm 

Again this may be explained by the very large demagnetizing effects from the 

8 : 1 aspect ratios. If we investigate this behaviour further by comparing the total 

energy of the individual nanoelements in this example with the non interacting 

case given in the previous chapter, then the two outer nanoelements exhibit 18% 

lower energy than the non interacting case whereas the central nanoelement ex

hibits a reduction of 11 %. This is evidence that the magnetostatic interactions are 

still present. 

We can estimate the importance of interactions as follows. The distance of separa

tion at which the magnetization energy is equal to the anisotropy energy is given 
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by the formula 

(6.1) 

where R is the separation distance, Ms = 800emu/ cm3 is the saturation magneti

zation, the uniaxial anisotropy constant, K = 5 x 103erg/cm3 , and the width and 

thickness of each nanoelement is given by w = 2 x 10-5cm and t = 2 x 10- 6cm 

respectively. Using these parameters, we obtain a value of R = 0.47µm. This is in 

agreement with our observations since we expect the nanoelements to become non 

interacting at a separation of well above this value for R. 

We may illustrate the interaction effects further by comparing graphs which give 

the total magnetization of the system over time for the non interacting and inter

acting cases. In Figure 6.8 we have the relaxation of the magnetization for a single 

non interacting case, here we observe a small initial variation in magnetization at 

the beginning of the reversal process, when the domain structure begins to form 

from the two outer ends of the nanoelement. The rate of change of magnetization 
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Figure 6.8: Relaxation of the non interacting nanoelement 

then rapidly increases as the domains propagate throughout the entire nanoelement 
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towards the centre and stabilize as we reach the equilibrium state at remanence. 

When we look at the interacting case with a spacing of 0.4µm as shown by the 

graph in Figure 6.9 a similar effect is observed only over a longer period of time. 

Here we have measured the total magnetization by combining the three individ

ual values of the nanoelements. However when we give the relaxation of each 
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Figure 6.9: Total relaxation of the whole system 

120 

individual nanoelement as a function of time as shown in Figure 6.10, we observe 

a different effect. For reference we have labeled the nanoelements by Nl,N2 and 

N3 from left to right. For the outer nanoelement there is initially a relatively slow 

variation of the magnetization associated with the nucleation of a reversed area of 

magnetization followed by a more rapid propagation. The magnetization structure 

of the central nanoelement changes early in the process, but stabilizes rapidly. 

So far in this chapter we have discussed the magnetization behaviour of arrays 

of three nanoelements with varying separation. We have given an idea on the 

increase in computational requirement needed by our model to perform such sim

ulations. The results have concentrated on the effect of the stabilization of the 
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Figure 6.10: Relaxation of each individual nanoelement in the system 

single domain state in the central nanoelement due to magnetostatic interactions. 

Current experimental work is being carried out on larger rows and arrays of na

noelements to determine their use in fut ure recording applications hence the next 

st age for our model is to look at larger numbers of nanoelements in both row and 

array formations and then make theoretical and experimental comparisons. 
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6.3 Interacting nanoelements in a two dimen

sional array 

At the beginning of this chapter we mentioned the reason for the investigation into 

the behaviour of arrays of nanoelements. This is of course due to their possible fu

ture application in high density data storage. For use as patterned magnetic media 

each individual nanoelement would store 1 bit. Thin films with exchange coupled 

grains such as Permalloy or Cobalt would be used to fabricate the nanoelements. 

Previous experiments on these films have shown that each nanoelement behaves 

in an almost single domain manner and therefore has two stable magnetic states 

which is ideal for data storage. 

Recent experimental work in this area has been carried out by Kirk et al [66] . 

In the experiments arrays of permalloy nanoelements are created by electron beam 

lithography and lift off patterning. The nanoelements are fabricated in short rows 

or in arrays which are made up from 3 rows close together. The magnetic imaging 

is carried out in a modified Philips CM20 transmission electron microscope (TEM) 

in which samples may be viewed in field free conditions or in variable applied fields. 

To create the hysteresis experiments a global field is applied using the objective 

lens of the microscope which is de-activated for field free experiments. The array 

was magnetized by tilting it in the vertical field from the objective lens in the 

TEM, thus giving a field component in the plane of the sample. The field was 

aligned along the long axis of the nanoelements. 

To perform the hysteresis experiment, the sample was first tilted to a high an

gle to produce a large in plane field component to saturate the elements in one 

direction. The sample was then returned to 0° tilt and then gradually t ilted in 

the other direction to obtain an increasing reverse field until all the nanoelements 

have reversed. The same procedure is then performed to return the nanoelements 

back to their initial configuration. Throughout the magnetization cycle images 

are recorded on a CCD camera. Configurations are displayed by either Fresnel or 
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Differential Phase Contrast (DPC) mode imaging. The former method involves 

de-focusing the microscope until the deflection beam by the magnetic induction 

of the sample causes visible regions of varying electron density to appear in the 

image whereas in the DPC mode the nanoelements appear either dark or light 

depending upon their direction of magnetizat ion. A more detailed explanation of 

TEM studies of these experiments can be found in [67]. 

Since these small arrays are amenable to computational studies, we are now going 

to perform simulations on similar arrays of nanoelements and then make compar

isons with the experimental observations. The geometries considered will be either 

arrays or rows of rectangular nanoelements as shown in Figure 6.ll(a) and (b) 

respectively. 

For the arrays we denote the intra row spacing by x and the inter row spacing 

by y . The simulations which we shall consider will be on arrangements of 6 na

noelements in a single row and 6 x 3 nanoelements in an array. The obvious 

concern with the simulation of these setups is of computational requirement, for 

the two dimensional arrays we have to deal with 18 nanoelements. Indeed to 

create a finite element mesh with the correct level of refinement we need approxi

mately 8000 quadratic finite elements. This leads to the formation of a very large 

stiffness matrix which requires the sparse matrix solver to be used to full potential. 

For these particular array simulations we use a typical mesh as given in Figure 6.12. 

The extra refinement needed to successfully be able to simulate the magnetostatic 

interactions between nanoelements is shown in Figure 6.13, a mesh with refinement 

in similar areas is also used for the single row simulation. For these simulations we 

initially saturate each individual nanoelement with a magnetization distribution 

parallel to a direction going from the bottom to the top of the nanoelement. The 

standard material parameters for permalloy are again used which are the exchange 

constant , A = 1.3 x 10- 6erg/cm, the uniaxial anisotropy, K = 5 x 103erg/cm3 and 

the saturation magnetization, Ms = 800emu/ cm3• We also fix the thickness of each 
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Figure 6.11: One and two dimensional arrays of nanoelements 
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Figure 6.12: Mesh for the array of eighteen nanoelements 
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Figure 6.13: Refinement of mesh 

individual nanoelement to be 20nm. To emulate the dispersion of the anisotropy 

distribution throughout the individual nanoelements in the array we use a planar 

random anisotropy distribution. 

In our first simulations we shall consider a row and array of nanoelements of size 

300nm x 80nm with an intra row spacing of 80nm and for the array an inter row 

spacing of 100nm. Previous experimental investigations of similar arrangements 

have already been performed by Kirk et al [68], the hysteresis curves are given in 

Figure 6.14. The reversal occurs sooner in the rows than in the arrays, which is 

due to the inter row magnetostatic interactions. 
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Figure 6.14: Experimental hysteresis curves for rows and arrays of 300nmx80nm 

interacting nanoelements after Kirk et al 

To obtain our theoretical results for comparison, we apply a strong saturating field 

and then reduce it by field steps of 6.25Oe, (0 .5Hk) until all the nanoelements 

have reversed. We also record some interesting magnetization plots which indi

cate the strength of the net magnetization of each individual nanoelement , this 

is represented by the standard colour map for magnetization with red, green and 

blue representing M = 1, M = 0 and M = - 1 respectively. For this particular 

simulation in order to simulate the hysteresis curve we needed approximately 34hrs 

of C.P.U. time on a single EV6 processor. 

Our results are shown in Figure 6.15. Here we observe good agreement between 

the experimentally observed value and our predicted value of the coercivity. Also 

our estimation of the average switching field distribution (SFD) is 117Oe which 

is significantly smaller than the experimental observation of 330Oe which was re-

147 



6.3. INTERACTING NANOELEMENTS IN A TWO DIMENSIONAL ARRAY 

C 
0 

+= co 
N 

t 
C 
0) 
co 
E 

"O 
Cl) 
CJ 
::::, 

"O 
Cl) .... 

0.5 

0 

-0.5 

-1 
-1000 -500 

' ' ' ' ' 

' 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

0 

' ' ' 

i 
: 

) 

applied field (Oe) 

rows 
array 

500 1000 

F igure 6.15: Theoretical hysteresis curves for rows and arrays of 300nm x 80nm 

interacting nanoelements 

ported in [69]. The higher value for the experimental case may be ascribed to a 

dispersion of the intrinsic properties of the individual nanoelements in the experi

mental samples. 

The reversal process in the experiments is via a mechanism of random columns 

of nanoelements switching together and is described in [68]. This unordered mech

anism is also observed in our results and again occurs by entire columns of nanoele

ments reversing at random. To illustrate this effect we shall consider the following 

magnetization plots as shown in Figures 6.16 - 6.19. In Figure 6.16 we see that the 

far right and second from far left column have almost reversed together. In Fig

ure 6.17 we see additional columns reversing due to the magnetostatic interactions. 

To justify the random behaviour of this reversal mechanism we have also per

formed simulations whereby a single column is forced to reverse at the beginning 

of the simulation. In reality this type of reversal event could be due to thermal 
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activation. In the case illustrated in Figure 6.18 the column one right from the 

centre of the array was forced to reverse by applying a large negative field to the 

column and then instantly removing it once the entire column had become satu

rated in the opposite direction. The random switching behaviour is also observed 

in this case as shown in Figure 6.19 with no apparent order of the switching of the 

individual columns. 

I l l 
Il l 
Il l 

I 
I 
I 

Figure 6.16: Magnetization plot for array at -290Oe 
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Figure 6.17: Magnetization plot for array at -305Oe 
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Figure 6.18: Magnetization plot for array at -290Oe with forced reversal 
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Figure 6.19: Magnetization plot for array at - 305Oe with forced reversal 

It was observed in [66] that magnetostatic interactions are dependent on the size 

and spacing of the nanoelements. So to investigate this observation we shall now 

consider rows and arrays of 300nm x 50nm nanoelements with an intra row spac

ing of 50nm and an inter row spacing of 100nm. The experimental results of Kirk 

et al [68] are shown in Figure 6.20. Here we observe a similar hysteresis curve to 

Figure 6.14. However , we notice a much higher coercivity which may be ascribed 

to the increase in elongation of the nanoelements and larger magnetostatic inter

action effects within the rows as well as between the individual rows. 

Our results are shown in Figure 6.21 , here we also observe an increase in the 

system coercivity in agreement with the experimental results. Also our predicted 

switching field distribution was 335Oe this again is much lower than the experi

mental observation of 670Oe which was recorded in [69] and can be interpreted as 

implying that the experimental samples have a significant dispersion of intrinsic 

properties. Again the reversal mechanism is via a randomly ordered entire column 

process as is the case of the 300nm x 80nm nanoelements. 
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Figure 6.20: Experimental hysteresis curves for rows and arrays of 300nm x 50nm 

interacting nanoelements after Kirk et al 
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So far in this section we have investigated the behaviour of arrays of interacting 

nanoelements with a planar random anisotropy distribution to simulate to some 

extent the dispersion of the properties in the experimental samples. We have 

obtained good agreement between the experimental results and our predicted be

haviour, however we shall now extend this investigation by considering new results 

on these array setups with the introduction of ordered anisotropy distributions. 

This is expected to influence the hysteresis behaviour and the reversal mechanism. 

For the next simulations we shall use an ordered anisotropy distribution through

out the nanoelements, i.e. a transverse component of K = 5 x 103erg/ cm3 with 

the easy axis parallel to a direction going from the left to the right of the individual 

nano elements. 

We shall firstly consider the case of the 300nm x 80nm array and row setup. 

The results are shown in Figure 6.22 and were obtained under the same exter

nal field conditions as the previous hysteresis simulations. Here we see very large 

collective reversal events just before the system coercivity for both the rows and 

array. Although the coercivity still agrees with previous calculations. The re

versal mechanism we have seen so far was via random columns of nanoelements 

switching. Here columns of reversed nanoelements are also observed, however in 

the individual rows of the array, alternately switched nanoelements are seen. The 

reason for whole columns of nanoelements switching in both cases of ordered and 

unordered anisotropy distributions may be explained by the strong magnetostatic 

interactions in the long axis direction forcing the nanoelements to switch together 

whereas the interactions in the short axis direction tend to stabilize neighboring 

nanoelements that have not switched. 
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Figure 6.22: Theoretical hysteresis curves for rows and arrays of 300nm x 80nm 

interacting nanoelements 

If we turn our attention to the magnetization plots in Figures 6.23 - 6.26 we can 

look at the reversal process in detail. In Figure 6.23 which was recorded at the 

beginning of the reversal we see very small interaction effects around the ends 

of the outer nanoelements. The reversal then starts by the two outer columns of 

nanoelements switching together as shown in Figure 6.24. The columns of reversed 

nanoelements then evolve towards the centre of the array as shown in Figure 6.25. 

The reversal here takes place via a collective motion which involves a high degree 

of symmetry. This mechanism was not present in the earlier results with the 

planar random anisotropy distribution. A similar collective reversal process is also 

observed in our single row simulations as shown in Figure 6.26. 
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Figure 6.23: Magnetization plot for array at -295Oe 

Figure 6.24: Magnetization plot for array at -305Oe 
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Figure 6.25: Magnetization plot for array at -3250e 

Figure 6.26: Magnetization plot for row at - 3470e 
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The next stage is to investigate the interaction effects by considering the case of 

300nm x 50nm setups. Our results are shown in Figure 6.27. An interesting sit

uation arises here as we observe that the reversal of the row is via a completely 

collective mechanism whereas the reversal in the array is by 3 large collective 

reversal events where batches of columns of nanoelements have switched. Our sim-
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Figure 6.27: Theoretical hysteresis curves for rows and arrays of 300nm x 50nm 

interacting nanoelements 

ulation again predicts an increase in system coercivity. This is due to an increase 

in demagnetizing effects due to the spacing which confirms the experimental ob

servations in [68]. This process again occurs by entire columns of nanoelements 

reversing in a symmetrically collective manner. However, the reversal in this case 

is initiated from one column in from the ends of the array as shown in Figure 6.28. 

This effect is also observed in the single row case as shown in Figure 6.29. 
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Figure 6.28: Magnetization plot for array at -800Oe 

Figure 6.29: Magnetization plot for row at - 600Oe 
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We can investigate the interactions in between rows of nanoelements in the array 

formations by decreasing the spacing in the longitudinal axis direction, the results 

are shown in Figure 6.30 for t he 300nm x 80nm array and Figure 6.31 for the 

300nm x 50nm array. In both cases we observe an increase in system coercivity 

when the inter row spacing is reduced from 100nm to 50nm. This is due to the 

interactions at the elements ends suppressing any stable intermediate magnetic 

states. 
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Figure 6.30: Comparison of inter row spacing for the 300nm x 80nm array 
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Figure 6.31: Comparison of inter row spacing for the 300nm x 50nm array 

Now that we have looked at the effect of introducing an ordered anisotropy we shall 

now look at increasing the interaction effects along the longitudinal direction by 

changing the anisotropy direction to be longitudinal to the nanoelements with the 

easy axis parallel to a direction going from the botton to the top of each individual 

nanoelement. For the 300nm x 80nm array and rows our results are shown in 

Figure 6.32. 

Again the reversal is by a symmetrically collective mechanism. However we notice 

that the introduct ion of the longitudinal anisotropy has initiated small jumps in 

the curves where intermediate magnetic states are stabilized. In the case of the 

300nm x 50nm array and rows as shown in Figure 6.33 we see an increase in 

the system coercivity which was observed in our previous simulations and exper

imentally in [68] . However the stable intermediate magnetization states are not 

observed which is probably due to the increase in magnetostatic interactions and 

the elongation of the nanoelements. 
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Figure 6.32: Theoretical hysteresis curves for rows and arrays of 300nm x 80nm 

interacting nanoelements 
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interacting nanoelements 
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We shall now look at increasing the anisotropy contribution to the interaction ef

fects. For this we shall introduce a longitudinal component of uniaxial anisotropy, 

K = 5 x 104erg/ cm3 with the easy axis parallel to a direction going from the 

botton to the top of the individual nanoelements. The results in Figure 6.34 show 

3 large collective reversal events occurring due to batches of switching nanoele

ments. This process is driven by the magnetostatic interactions. Also the higher 

anisotropy is strong enough to stabilize the intermediate state - the combination 

of the alignment and strength of the anisotropy gives rise to the collective reversal 

and the stable intermediate magnetic states. 
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Figure 6.34: Theoretical hysteresis curves for rows and arrays of 300nm x 80nm 

interacting nanoelements 
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The next stage is to consider the case of 300nm x 50nm setups. Our results are 

shown in Figure 6.35. The neighbouring columns of nanoelements which switch 
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Figure 6.35: Theoretical hysteresis curves for rows and arrays of 300nm x 50nm 

interacting nanoelements 

in our simulations may be explained by the longitudinal anisotropy which was not 

present in the experimental samples or in our earlier simulations. The anisotropy 

tends to keep the reversal symmetric about the centre of the array. 

In both cases of size and spacing the magnetization reversal is initiated faster 

for rows than for the array, in agreement with previous findings. The computa

tional results predict large collective reversal events during the decrease from the 

saturated state. 

The theoretical predictions give good qualitative agreement with experiment and 

suggest that both interactions and variations in intrinsic properties contribute sig

nificantly to the system coercivity. 
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6 .4 Summary 

This chapter began with a brief introduction to the study of arrays of nanoelements 

and their possible application in future high density data storage. We introduced 

the idea of varying the space between individual nanoelements in order to look at 

their interaction effects. 

The results we presented in Chapter 5 were all concerning non interacting na

noelements. These findings gave us a useful indication on the domain behaviour 

and hysteresis properties of the particles but we now needed to extend the capabil

ities of our model to be able to look at more than one nanoelement. We discussed 

the implications of this at the beginning of this chapter in terms of the increased 

demand on computational resources due to the extra number of finite elements 

needed. This is not however a major problem since we have already implemented 

sparse matrix storage and solver routines, however simulations will now require far 

more C.P.U. time. 

Before producing any new results it was necessary to carry out a testing of the 

model for comparison with existing scientific work. This was performed by simu

lating existing results on 3 interacting nanoelements with longitudinal anisotropy. 

From the presence of this anisotropy we expected a 'large' scale domain structure 

to form as was observed in the experiments. Indeed our model produced similar 

results with a domain configuration that was symmetrical about the central na

noelement. 

We then proceeded with further results on nanoelements with transverse mate

rial anisotropy. The reason for this was to be able to make comparison between 

the stabilization of the single domain state in single nanoelements as discussed in 

Chapter 5 against new results on arrays of three particles. Before discussing any 

results we gave a brief indication on the areas of the finite element mesh which 

required a high level of refinement , namely around the area between the nanoele-
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ments. 

We could then proceed in a discussion on the effects of the stabilization of the 

single domain state in the central nanoelement. We began this series of experi

ments by considering a nanoelement which we knew from our previous observa

tions would fall into a multi domain configuration at remanence. As expected from 

experimental findings at small inter nanoelement spacing we observed a single do

main configuration in the central nanoelement due to the very large magnetostatic 

interaction effects between particles. When we increased this spacing however> in

teractions became less prominent but nevertheless were still present. 

So far we had not looked at the reversal mechanism of the arrays. Further in

vestigation into this was carried out by looking at the time evolution of the re

versal process and comparing with the non interacting case. In the case of the 

arrays we noticed that the domains formed in the outer nanoelements propagating 

from the two opposite ends to the particle centre. In the case of arrays where the 

nanoelements were spaced at intervals large enough to exhibit multi domain be

haviour it was the central nanoelement which was the last to become multi domain. 

To conclude the results on arrays of nanoelements we continued our studies by 

looking at the larger systems as already investigated in current experimental re

search. These systems consisted of single arrays of 6 interacting nanoelements and 

18 nanoelements arranged in 6 x 3 arrays. 

The reason for studying such systems is to investigate the effect of the nanoelement 

spacing between rows and columns on the system coercivity and magnetostatic in

teractions. We performed simulations on nanoelements of two different sizes and 

spacing for a direct comparison with the experimental results. From our simula

tions we saw an increase in the magnetostatic interaction effects when the spacing 

was decreased as predicted by the experiments. 
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6.4. SUMMARY 

The results also indicated that in both sizes of nanoelement the reversal was initi

ated faster in the rows than in the arrays. The reversal mechanism of the array as 

a whole is very sensitive to the degree of disorder. In the case of an aligned uni

axial anisotropy a highly symmetric cooperative switching mechanism is observed 

to take place. A large anisotropy has the effect of stablizing states during the 

reversal process leading to the distinctive switching. A random anisotropy breaks 

this high symmetry sufficiently to reduce the cooperative switching. This leads 

to a relatively random reversal of individual elements. Our theoretical observa

tions gave good agreement with the experimental findings. However, the predicted 

Switching field distributions were narrow in comparison with experiment. In the 

case of the simulations the SFD essentially arises because of interaction effects 

and our predicted values indicate that interaction effects are small but significant, 

since they account for half of the width of the SFD. The discrepancy between the 

experimental and calculated SFD's probably suggests that there is a dispersion of 

the intrinsic element properties, which is not considered in the current model. 

Throughout the last two chapters we have discussed the magnetization behaviour 

of both interacting and non interacting nanoelements. In the case of the single 

rectangular nanoelements we have studied their transition effects from multi do

main to single domain behaviour. We have also looked at altering the geometry of 

the nanoelement and the effect this has on the stabilization of the single domain 

state in relation to particle dimensions. In the case of arrays of nanoelements we 

have investigated their domain behaviour in relation to their separation. At this 

point we may now conclude this work with a discussion on the context of this 

thesis in relation to magnetic recording in general and of course an overview of 

the limitations of our model and how these may be overcome by further work and 

development. 
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Chapter 7 

Concluding remarks 

It is quite noticeable that magnetic recording technology is a very dynamic area of 

scientific research. The heavy demands of the modern consumer audio and video 

market and the information storage requirements of both domestic and industrial 

computer users is the main driving force behind most of the current research in 

magnetism and magnetic materials. The aim is then to develop a recording process 

which gives the user the fastest access time coupled with the ability to store vast 

amounts of data on the smallest area of physical material. 

To achieve an improved method of magnetic recording we must investigate the 

method of reading and writing data to the medium from the recording head and 

the magnetic properties of the recording media. The recording heads used in 

modern digital recording applications are predominantly the magnetic sensor and 

magneto optic type. For the head applications it is necessary to understand the 

properties of the material at the sub micron level, hence looking at the behaviour 

of nanoelements may be useful, especially in the development of the giant mag

netoresistive type applications. Whatever recording medium we choose from the 

vast number of materials available we look for a high remanent magnetization to 

retain information after writing, high saturation magnetization to give a large sig

nal during recording and a high coercivity to prevent unwanted loss of data. 

The continuous media which is in production today is of a granular structure. 
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With each bit being represented by many individual grains. To keep the signal to 

noise ratio constant as the density increases the number of grains must remain ap

proximately constant. Thus as we increase the storage density the grain size must 

become smaller. However, at some grain size the particles will become unstable to 

thermal fluctuations which will cause the particles to spontaneously reverse and 

thus make the medium unsuitable for information storage. One possible solution 

to this problem would be to use the nanoelement array type structures introduced 

in Chapter 6, with each nanoelement storing one bit of information. 

During the past few years the everyday reliance on computers has continued to 

grow exponentially. As long as this continues, there will be work for the magnetic 

recording scientist as the need for efficient storage methods will remain. 

This thesis is the result of a study into a specific type of recording media, namely 

that of the thin film permalloy nanostructured type. This has been carried out 

by developing a numerical model based on a theoretical micromagnetic approach. 

Indeed the functioning of this model itself depends upon the use of powerful mod

ern computer resources. The interesting point here is that we need to utilize the 

facilities made possible by previous research into magnetic recording in order to 

improve the situation for the future. Also during the production of the scientific 

dat a presented in this work, the practical recording speeds and capacities have 

increased by at least 6 times. 

For a realistic understanding of the behaviour of the magnetization process within 

a modern recording material, we must look at the sample at least at the microstruc

tural level. This may be done experimentally by using methods such as electron 

beam lithography and other imaging techniques. The fact that some experimen

tally observed microstructures possess irregularity may cause problems with their 

theoretical study. We have overcome such difficulties in our work by implementing 

the finite element method within the micromagnetic model. 
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The practical implementation of such a method is not by any means a trivial 

matter as we discussed in Chapter 4. The high discretisation needed to mimic 

experimental results requires high capacity storage and processing facilities, this 

in itself led us to look at ways of reducing such costs within the solver, namely 

via the use of a sparse matrix solver routine. Also, since the magnetic material in 

question is of the thin film type, we have a physical and therefore mathematical 

justification for modelling the finite element field calculation in two dimensions 

since the variation in the out of plane component is minimal, this reduces compu

tation even further. 

To model the dynamics of the magnetization process we chose the Landau-Lifshitz 

equation of motion with an effective field having individual magnetostatic, ex

change, anisotropic and external contributing components. Again we were faced 

with another numerical problem, solving a large number of coupled ordinary differ

ential equations arising from the Landau-Lifshitz equation. To tackle this problem 

we looked at the use of suitable numerical time integration routines such as the Eu

ler and predictor-corrector methods. We concluded that the use of the predictor

corrector scheme dealt with larger systems involving several nanoparticles more 

efficiently due to the ability to use larger time steps. 

The micromagnetic simulations performed by our model are intended to give in

sight into the magnetization behaviour of very small magnetic particles at the sub 

micron level which are termed nanoelements. We have looked at different geome

tries and both single and interacting arrangements of particle system with varying 

size. The observed domain structures were found to be dependent upon these 

factors and on the dynamics of t he magnetization process specifically. By this 

we mean that the final equilibrium configuration is also dependent upon the ini

tial magnetization distribution and whether or not equilibrium was obtained with 

gradual or instantaneous removal of an applied external field. 

Further work which would be interesting would be to investigate the dynamics 
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and rate of convergence of the magnetization process as a result of varying the 

value of the damping constant before the dissipative term in the Landau-Lifshitz 

equation. Also we could compare results with the use of the Gilbert form of the 

equation of motion. 

The results presented in Chapters 5 and 6 illustrate the non uniform magnetization 

structures obtained from simulations on thin film permalloy. For this particular 

type of recording media we can justify the efficiency of our model in terms of math

ematical accuracy and computational requirements. Our finite element calculation 

is an efficient approach to the problem since the magnetization dynamics is mod

elled in three dimensions by the Landau-Lifshitz equation of motion. However for 

a material with a large enough third dimension to require the modelling of domain 

structures in this dimension we recognize the limitation of our model in terms of 

the two dimensional demagnetizing field calculation. 

For a complete generalization of the model to a t rue three dimensional simula

t ion would not be a trivial task by any means and would be the subject of future 

work. We could implement this by using tetrahedral finite elements which would 

then enable us to make a more direct comparison of our results against the meth

ods used in [70] and [22] or more recently the general dynamical approach (GDM) 

by Yang and Fredkin [71]. 

Another possible improvement to the model would be to adopt a strategy of adap

tive mesh refinement. This approach could use the refinement indicators for the 

exchange and magnetostatic forces as used by Tako et al [18] to locate areas within 

the mesh where rapid changes in the magnetization are occurring. A suitable re

finement algorithm would then be used to increase the number of elements around 

these areas. The subject of adaptive finite element mesh strategies on soft magnetic 

platelet calculations is described in depth in [72] by a comparison of two different 

methods to adaptively refine tetrahedral finite element meshes. 
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To complete the refinement strategy we would certainly also need de-refinement 

of the mesh to decrease computational needs when the magnetization is quite uni

form such as when the nanoelement is under the influence of a high external field. 

However the process of refinement and de-refinement of the mesh would itself put 

great strains on the computational resources in terms of memory and processing 

time. This was approached by Tako et al by only using the refinement procedure 

on remanent magnetization states. More recently, an advanced method of mesh 

refinement has been successfully implemented by Schrefl et al [73) to model domain 

wall motion in Co thin films. The refinement indicator in this method is based 

on the local variation of the magnetization which causes refinement in areas of 

high variation and de-refinement where the magnetization is uniform. This gives 

a moving mesh algorithm which enables the mesh to move with the domain wall. 

The implementat ion of t his algorithm in our model would definitely be useful in 

decreasing computation and increasing accuracy. 

On the numerical side of the field calculation further investigation into the ac

curacy of the solution would be another improvement to the model. We discussed 

at the beginning of Chapter 5 that as we refine the mesh finite element nodes be

come located closer to the interface and are therefore a possible source of error. To 

overcome this problem we would need to look at alternative numerical methods for 

calculating field values at these points. One such strategy would be to implement 

a method of self-adaptive wavelets for the calculation of this field. This would 

certainly provide grounding for interesting further research work. 

Another important area for future work within the finite element formalism is 

that concerned with the calculation of the exchange field. In Chapter 3 we gave 

our formalism in terms of a discrete approximation to the exchange energy integral, 

this however could be improved by the use of an implicit finite element approach. 

Whereby t he standard energy integral expression is bought into the minimization 

routine via the use of the interpolation functions. This variational approach has 

already been implemented in [71). However, this model requires a larger amount 
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of computational resources in terms of processor time and storage in memory than 

our existing model. 

The way forward for this model would be motivated by the constant need for fu

ture high density magnetic storage media. The scope for numerical improvement 

and the development of our own finite element GDM in micromagnetics would also 

be the subject of future developments. A theoretical study of periodic magnetic 

nanostructures such as those studied by electron beam lithography methods [74] 

would then be an interesting challenge for the model. 

Other consideration for further development to our model would be the inclu

sion of thermal activation. This could be implemented in a similar way to that 

described in [41], the only complication arising from this would be that we could 

no longer use our existing predictor-corrector method however this could easily be 

overcome by the use of a similar method. 

Recent calculations on the effect of surface anisotropy [75] in calculations of nucle

ation fields in small ferromagnetic particles suggest that this term should not be 

neglected in theoretical simulations. However further investigation in determining 

the values of the surface anisotropy constant Ks still needs to be carried out. 

Further studies of the magnetostatic interaction effects should also be performed 

on the larger arrays of nanoelement it is possible that the theory may shed fur

ther light on the behaviour of such systems and therefore offer enormous practical 

advantages to the study of future high density storage. With our current model 

we have given some initial predictions on this work, however to simulate certain 

experimental findings we would need to consider the intrinsic properties of each 

individual nanoelement separately. 

In Chapter 6 the predicted Switching field distributions were narrow in comparison 

with experiment. In our simulations the SFD essentially arises because of inter-
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action effects and our predicted values indicated that interaction effects are small 

but significant. The discrepancy between the experimental and calculated SFD's 

probably suggests that there was a dispersion of the intrinsic element properties. 

Our current model could be adapted to take account of this by introducing some 

random variation in the properties of each individual nanoelement in the array. 

To summarize, the starting point for the improvement of our model would be 

to make the demagnetizing field calculation three dimensional. We could then 

minimize the computation by implementing a mesh refinement algorithm. To in

crease the numerical accuracy of the exchange field calculation we could implement 

a variational approach to the entire problem. Finally to model the experimental 

observations more realistically we could bring thermal effects, surface anisotropy 

and varying intrinsic material properties into our model. 
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Appendix A 

Integrating products of area 

coordinates over an element 

We wish to find an expression for 

I = { LmLnLPdxdy )A 1 2 3 

Since L1 + L2 + L3 = 1 we may rewrite I as 

Referring to equations (2.28) - (2.29) we may say that 

Hence 

If we consider 

dxdy -
Yi - Y3 Y2 - Y3 

- 2AdL1dL2 

I (a, b) - fo0 

ta(a - t)6dt 

- --(a - t)6 + -- r ta+l(a - t)6-1dt [ 
ta+l l t=o b c, 

a + 1 t=O a + 1 Jo 

(A.l) 

(A.2) 

(A.3) 

b 
- a+ ll(a+ l ,b - 1) (A.5) 
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Hence 

I(a, b) -
b(b-l)(b-2) ... (2)(1) ( b ) 

I a+ ,0 
(a+ l)(a + 2)(a + 3) ... (a + b) 

a'b' 
(A.6) - (a~ ~)!I(a + b, 0) 

Now 

I(a+b,0) - lo°' ta+bdt 

aa+b+l 
(A.7) -

a+b+l 

so that 

I(a, b) a!b! a+b+l 
(A.8) - a 

(a+b+l)! 

Therefore 

I - 2An!p! fol Lm(l - L1t+p+ldL1 
(n+p+l)! o 1 

2An!p! m!(n + p + 1)! 
-

(n + p + 1)! (m + (n + p + l) + 1)! 
2Am!n!p! 

(A.9) -
(m+n+p+2)! 
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Appendix B 

Use of the mesh generation 

software "Triangle" 

B.1 Introduction 

The finite element meshes used in this work were all created with the use of the 

two-dimensional quality mesh generator and Delaunay triangulator, "Triangle". 

We will now give a brief mention on its practical usage and implementation within 

our work. 

Before deciding to use "Triangle", we tested other mesh generators which were 

both freely and commercially available but chose to use "Triangle" because of its 

ease of use in creating meshes involving two regions where one is inside the other. 

To create a finite element mesh we must first present "Triangle" with an input 

file containing details in the form of a P lanar Straight Line Graph (PSLG). This is 

simply a data file containing a collection of points, line segments and their connec

tivity. Segments are simply edges, whose endpoints are points in t he PSLG. The 

conventional file format for PSLGs is .poly files. For our application .poly files will 

define the location of the nanoelements and the extent of initial discretisation, t his 

will consist of an outline of t he nanoelement geometries and the artificial boundary 

which surrounds them. 
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B.1. INTRODUCTION 

Typically a . poly file will be 

• First line : number of points, dimension (must be 2) , number of attributes, 

number of boundary markers (0 or 1) 

• Following lines : node number, x, y, attributes, boundary marker 

• One line : number of segments, number of boundary markers (0 or 1) 

• Following lines : segment , endpoint, endpoint, boundary marker 

The first line is used to define the number of nodes, boundary markers and their 

attributes, after this the following lines will define the location of a particular node, 

whether it is on a boundary or not and its attributes which may be the init ial value 

of the magnetisation at that point. After this we need to define the geometry of 

the nanoelements which is done in t he remaining lines where we say how certain 

nodes are connected in terms of boundaries (nanoelements) . 

Let us denote the PSLG file as fname. poly, then to create a desired mesh we 

may now call "Triangle" by 

t riangle -pq fname.poly 

Where the p switch prompts "Triangle" to read a .poly file and the q switch 

generates a constrained conforming Delaunay triangulation from the given data. 

This ensures that there are no small angles, and is thus suitable for finite element 

analysis. A wide variety of command line switches are catered for by "Triangle" 

enabling such features as mesh refinement, boundary marking, area tolerances and 

angle tolerances. 

At this stage "Triangle" will have generated .node and .ele files containing de

tails of the mesh topology with respect to nodal coordinates and finite elements 

respectively. 
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B.1. INTRODUCTION 

The .node file will consist of 

• First line : number of points, dimension (must be 2), number of attributes, 

number of boundary markers (0 or 1) 

• Remaining lines : node number, x, y, attributes, boundary marker 

This file will define the nodal coordinates of the output mesh. The other file needed 

to completely define the mesh consists of 

• First line : number of elements, number of points per element, number of 

attributes 

• Remaining lines : element number, point 1, point 2, point 3 ... , attributes 

Points are indices into the corresponding .node file. The first three points are t he 

corners, and are listed in counterclockwise order around each triangular element. 

(The remaining points, if any, depend on the type of finite element used.) The 

attributes are just like those of .node files. If however when we wish to proceed to 

higher order finite elements i.e. quadratic, we must issue the command 

triangle -pqo2 fname.poly 

which tells "Triangle" to generate the mesh topology for a quadratic finite ele

ment mesh. In this case the .ele file, all elements have six points each with the 

fourth, fifth , and sixth points being on the midpoints of the edges opposite the 

first, second, and third corners. Both the .node and .ele files together define a 

finite element mesh which is now ready for use in our code. 

"Triangle" is distributed freely at [37] and comes with an additional program "Show 

Me". The main purpose of "Show Me" is to display meshes on the screen or in 

PostScript format. It also serves as a checking routine for the input files such as 

fname.poly. 
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Appendix C 

Publications 
Most of the work presented in this thesis has been published as papers in several 

scientific journals. The papers have been presented at conferences on magnetism 

either as talks or poster presentations. At the time of writing this thesis not all 

have been published, however the following lists them in chronological order. 

• Finite element modelling of nanoelements 

P.H. W. Ridley, G. W. Roberts, M.A. Wongsam, R. W. Chantrell 

J. Magn. Magn. Mater., vol. 193, 1999, 423-426 

• Modelling the evolution of domains in nanoelements using finite 

elements 

P.H. W. Ridley, G. W. Roberts, M.A. Wongsam, R. W. Chantrell, 

J. Gore and M . Maylin 

IEEE Trans. Magn., vol. 35(5), 1999, 3874-3876 

• Investigation of magnetisation behaviour in nanoelements using the 

finite element method 

P. H . W. Ridley, G . W. Roberts and R. W. Chantrell 

J. Appl. Phys., vol. 87(9), 2000, 5523-5525 

• Computational and experimental micromagnetics of arrays of 2-d 

platelets 

P . H . W. Ridley, K. J. Kirk, G. W. Roberts, R. W . Chantrell and 

J. N. Chapman 

IEEE Trans. Magn., to be published 
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EL.SEVIER Journal of Magnetism and Magnetic Materials 193 (1999) 423-426 

Finite element modelling of nanoelements 

P.H.W. Ridleya·*, G.W. Roberts\ M.A. Wongsama, R.W. Chantrella 
•sEECS, University of Wales Bangor, Dean Street, Bangor Gwynedd LL57 1 UT. UK 

bSchoo/ of Mathematics, University of Wales Bangor, Dean Street, Bangor, Gwynedd LL57 JUT. UK 

Abstract 

The numerical simulation of the magnetisation structure of two-dimensional permalloy nanoelements is described. The 
nanoelements have a uniform magnetisation structure and consist of bars with flat and/or pointed ends. The Landau
Lifschitz- Gilbert equation of motion is used to described the time evolution of the system and the numerical simulation 
consists of a finite element spatial discretisation coupled with a time-stepping scheme. The Poisson equation for the 
demagnetising field scalar potential ¢ is solved by a standard finite element variational or stationary functional 
formulation. The jump condition in V ¢ at a nanoelement boundary is integrated into the finite element formulation so 
that ¢ is obtained globally, both inside and outside the nanoelement, thus allowing interactions between two or more 
nanoelements to be modelled easily. The work will be compared to previously published experimental and numerical 
results for single nanoelements. © 1999 Elsevier Science B.V. All rights reserved. 

Keywords: Micromagnetics; Field calculations; Finite element method; Permalloy 

1. Introduction 

The interest in the magnetic behaviour of permalloy 
material has increased recently due to advances in nu
merical micromagnetic methods on the theoretical side 
and high accuracy electron-beam lithography methods 
experimentally. The great practical uses of such materials 
include magnetic sensors. When the material is dis
cretised into a nano-element structure of small enough 
dimensions, micromagnetic calculations may be carried 
out in order to investigate the material behaviour. 

Previous work has been done experimentally by M. 
Riihrig and coworkers [1], who investigated the mag
netic microstructure and switching behaviour of high
resolution electron beam fabricated thin film tips using 
transmission electron microscope techniques. Smyth and 
coworkers [2] investigated the effect of particle size and 
aspect ratio on hysteresis behaviour in arrays of particles 

* Corresponding author. Tel.: + 44-1248-382739; fax: + 44-
1248-361429; e-mail: phil@sees.bangor.ac.uk. 

by using experimental and numerical techniques to carry 
out their work and make comparisons between methods 
where applicable. More recently, Schrefl and coworkers 
[3] investigated the influence of the width and shape of 
the ends of nano-elements on the formation and structure 
of domains in NiFe bars, also involving two alternative 
numerical techniques in magnetostatics, namely the use 
of spatial transformations and a hybrid finite ele
ment/boundary element technique. 

2. Micromagnetic model description 

The total effective field in any realistic theory of mag
netisation dynamics is made up of the three energy terms 
exchange, anisotropy and magnetostatic. In our simula
tions we denote the total effective field by H i, working in 
reduced units, the total reduced effective field, 
h, = Hi /Hk is given by h, = hd + hex + h a, where hd, hex 
and ha represent the reduced demagnetising, exchange 
and anisotropy field terms, respectively. Hk = 2K/M . is 
the magnetocrystalline anisotropy field, M . is the satura
tion magnetisation and K is the uniaxial anisotropy 

0304-8853/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved. 
PII: S 0 3 0 4 - 8 8 5 3 ( 9 8 ) 0 0 4 6 7 - 3 
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constant. The governing equation for the magnetisation 
dynamics may be chosen from either the Landau- Lif
schitz equation of motion or the alternative Gilbert form 
[4] depending upon the system damping. We chose the 
Landau- Lifschitz form given by 

(1) 

where m = M/Ms is the reduced magnetisation, c,: = ),fy is 
the reduced damping constant and , = tyHk is the re
duced time. ), is the damping constant and y the 
gyromagnetic ratio. The system equations which are 
coupled through the components of m, arising from (1) 
are solved by an explicit Euler method, using a suitably 
small time step, with a convergence criterion for steady 
state stability of ldm/d,I < 10- 6

• 

2.1. Field formulation 

The demagnetising field is calculated via a magnetic 
scalar potential [ 4] , such that Hd = - V cp where cp is the 
solution to Poisson's equation within the magnetic re
gion Qint and Laplace's equation everywhere outside Q cx,; 

so we have 

(2) 

(3) 

where Qin,v Q c,, = e2
, Qint is the magnetic region, Q cxt is 

the external region, aQ is the boundary between Qint and 
Qcxt· 

Because of the abrupt change in material properties 
across a Q we have the interface condition 

acpint a¢cxt _ 
4 

M· , ...., aQ ------ n n vxe an an 
and continuity condition 

<Pint= <Pcxt Vx eaQ , 

(4) 

(5) 

where fz is the unit normal to the surface in question. Eqs. 
(3)-(5) define an open boundary problem, and have been 
solved by several authors in different ways. Since it was 
first applied to a micromagnetics problem in 1987 [5], 

Table 1 
Relative error in lid compared with the analytical solution 

Nodes (f.!;n, + f.!ex1) Elements (f.!;01 + f.!c,1) 

839 + 416 342 + 278 
1287 + 864 790 + 278 
2217 + 1472 1326 + 512 
3033 + 2288 2142 + 512 

the finite element method (FEM) and boundary element 
method (BEM) has been used. 

Alternative methods include integro differential equa
tions [6], and spatial transformations [7]. These 
methods formulate the problem for the magnetic mater
ial only and so avoid the need to introduce any artificial 
boundary conditions. Fredkin and Koehler [8] for
mulated the potential as cp = cp 1 + cp2 , where cp 1 is the 
solution to Poisson's equation within the magnetic re
gion subject to a natural boundary condition, which may 
be solved by the FEM, cp2 is solved by a boundary 
integral along the magnetic material boundary. We pres
ent a new method for finding cp by the use of the FEM. 
The essence of the method is to replace the open bound
ary by a suitably large closed boundary am which is far 
enough away from the magnetic region Qint and enclos
ing Q cxt· As with any FEM solution, a suitable trans
formation method is used to map each element to 
a simple parent element in order to simplify the integra
tion over the whole region. We then apply a standard 
Rayleigh- Ritz stationary functional method which leads 
up to the formation of a system of n linear equations, 
where n is the number of nodes in the spatial discretisa
tion scheme. Interface condition (4) is integrated into the 
linear equations by replacing any row number which 
corresponds to a node on a Q by formulating explicitly 
the jump condition in terms of the transformations. Then 
by performing an LU decomposition on the stiffness 
matrix, cp may be obtained by matrix multiplication (this 
is to reduce the computation at each time step, provided 
no re-meshing is involved). Thus lid may be obtained 
globally, a significant advantage over previous methods 
since we now have the capability of considering interac
tions between nano-elements. 

3. Results and discussion 

It is well known that a high proportion of the com
putational requirement of any simulation in micromag
netics is taken up by the demagnetising field calculation, 
so our initial studies used linear finite elements because of 
potential CPU limitations. However, linear elements 
were found unsuitable for our method, even after inten
sive mesh refinement in areas of great spatial variation. 

Point 1 Point 2 Point 3 

3.9 X 10- 2 4.5 X 10- 2 l.8 x 10- 1 

3.4 X 10- 2 4.2 X 10- 2 1.0 x 10- 1 

3.3 X 10- 2 2.4 X 10- 2 5.5 X 10- 2 

3.2 X 10- 2 1.9 X 10- 2 3.6 X 10- 2 
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This was found to be due to the enforcing of continuity in 
</> and the interface condition (4) along clQ. This problem 
was resolved by the use of quadratic finite elements. 
Table 1 gives results for the relative error in the demag
netising field for a single rectangular nano-element of 
dimensions 0.2 µm x 1.6 µm with a uniform magnetisa
tion distribution parallel to the length of the nano-ele
ment. These calculations give the error relative to the 
analytical solution for a rectangular magnetic region 
given by Aharoni [8], with point 1 close to corner, point 
2 further in from corner, point 3 edge of centre of nano
element. The solution was also used to evaluate a refine
ment indicator for hd [9] 

d [(V X hd)2 + (V. hd)2]A; 
1'/i = L7= 1l!h.l!2 ' (6) 

where Ai denotes the area of element i and l!h.11 is the 
value of llhdll computed at the element centre. Previously 
(6) has been used to define areas of the simulations where 
refinement of the mesh was required. However, the re
finement indicator does not represent a direct calculation 
of the error in the field calculation. Fig. 1 shows the 
calculated error relative to the analytical solution. It 
seems reasonable the errors are largest at the end of the 
element, where the field is most non-uniform. This situ-

Fig. 1. Plot of relative error in lid compared with the analytical 
solution for a 0.2 µm x 1.6 µm nano-element. 

ation is reflected in the refinement indicator, shown in 
Fig. 2, which essentially defines the area of largest error 
for mesh refinement. 

Once the stiffness matrix has been inverted the calcu
lation of the field at each time step is computationally 
fast. We have tested our method by calculating the time 
evolution of the magnetisation of a saturated element in 
zero field, for comparison with the work of Schrefl et al. 
[3]. The images in Fig. 3 show the time evolution of the 
magnetisation of a 0.2 µm x 1.6 µm infinitely thin per
malloy platelet with a transverse anisotropy of 
5 x 105 erg/cm3

. The evolution of the domain structure 
into zero field equilibrium state is consistent with that of 
Schrefl et al. 
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Fig. 3. Time series of magnetic domain patterns for a single 0.2 µm x 1.6 µm nano-element. 

References 

[1] M. Riihrig, S. Porthun, J.C. Lodder, S. McVitie, L.J. 
Heyderman, A.B. Johnston, J.N. Chapman, J. Appl. Phys. 
79 (1996) 2913. 

[2] J.F. Smyth, S. Schulz, D.R. Fredkin, D.P. Kern, S.A. Rish
ton, H. Schmid, M. Cali, T.R. Koehler, J. Appl. Phys. 69 
(1991) 5262. 

[3] T. Schrefl, J. Fidler, K.J. Kirk, J.N. Chapman, IEEE Trans. 
Magn. 33 (1997) 4182. 

[4] J.C. Mallinson, IEEE Trans. Magn. 23 (4) (1987) 2003. 
[5] D.R. Fredkin, T.R. Koehler, IEEE Trans. Magn. 23 (5) 

(1987) 3385. 
[6] A.G. Kalimov, M.L. Svedentsov, IEEE Trans. Magn. 32 

(1996) 667. 
[7] T. Schrefl, J. Fidler, H. Kronmiiller, J. Magn. Magn. Mater. 

138 (1994) 15. 
[8] A. Aharoni, IEEE Trans. Magn. 27 (14) (1991) 3539. 
[9] K.M. Tako, T. Schrefl, M.A. Wongsam, R.W. Chantrell, J. 

Appl. Phys. 81 (1997) 4082. 

183 



387-1 IEEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 5, SEPTEMBER 1999 

Modelling the Evolution of Domains in Nanoelements 
Using Finite Elements 
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Abstract- Investigation into the theoretical magnetic 
behaviour of permalloy is described. The material is dis
cretised into a structure of nanoelements, so that we may 
employ micromagnetic simulations in order to investigate 
the material behaviour. In this paper we describe the for
mation and structure of domains in an array of interacting 
nanoelements with varying space between them. The simu
lat ions begin at saturation and end when the nanoelements 
are in a zero field equilibrium state. The time evolution of 
the system is described by the Landau-Lifschitz equation 
of motion and the field calculations are carried out by the 
use of a finite element spatial discretisation scheme. 

Index Terms-Domains, Field calculations, Finite ele
ment method, Nanoelements. 

I. INTRODUCTION 

T HE investigation into the magnetic beha\'iour of 
permalloy has become more advanced due to im

provements in numerical micromagnetic methods on the 
theoretical side and high accuracy electron-beam lithogra
phy methods experimentally. If the material is discretised 
into a nanoelement structure, micromagnetic calculations 
may be carried out in order to investigate the material 
behaviour. Recent work by T. Schrefl and coworkers [1] 
investigated the influence of the width and shape of the 
ends of nanoelements on the formation and structure of 
domains in single NiFe bars, also involving two alterna
tive numerical techniques in magnetostatics, namely the 
use of spatial transformations and a hybrid finite element 
/ boundary element technique. Here, we use a new fi
nite element approach based on a minimisation scheme 
to calculate the demagnetising field via a magnetic scalar 
potential. The numerical simulation of the domain struc
ture of an array of infinitely thin permalloy nanoelements 
is investigated. We investigate the zero field equilibrium 
state after the removal of a saturating field and look at 
the relaxation of each individual nanoelement as a func
tion of time. The nanoelements initially have a uniform 
magnetization structure and consist of arrays of bars with 
varying spaces between them. 

l'vlanuscript received March 5, 1999; revised May 12, 1999. 
P. H. W. Ridley, telephone : +44-1248-382739, 

fax : +44-1248-361429, e-mail : phil@sees.bangor.ac.uk 

IL MODEL DESCRIPTION 

The total effective field, Ht is given by the sum of 
the exchange, anisotropy and magnetostatic component 
fields. In our simulations working in reduced units, the 
total reduced effective field, ht is given by ht = ~ where 
ht = hd + hex + ha, with hd, h ex and ha representing 
the reduced demagnetising, exchange and anisotropy field 
terms respectively. Hk = ~~ is the magnetocrystalline 
anisotropy, Ms is the saturation magnetization and K is 
the uniaxial anisotropy constant. The governing equation 
for the magnetization dynamics is the Landau-Lifshitz 
equation of motion. 

';I;.'= -m x ht - o(m x (m x ht)) (1) 

The reduced magnetization is given by m = r;;:,, the re

duced damping constant o = ~ and T = t,Hk is the 
reduced time. ,.\ is the damping constant and I the gyro
magnetic ratio. The system equations which are coupled 
through the components of m are solved by a 4th order 
Adams-Moulton predictor-corrector method described in 
[2] with a convergence criterion of I~'; I < 10-6 . 

III. FINITE ELEMENT FIELD CALCULATION 

The demagnetising field is calculated via a magnetic 
scalar potential, ¢, such that hd = -V ¢. Here ¢ is the 
solution to Poisson's equation within the magnetic region, 
nint and Laplace's equation everywhere outside, next; so 
we have 

= 47r'v•m 
= 0 

Vx E n;,,t 

Vx E next 
(2) 

If we denote the boundary by an, then because of the 
abrupt change in material properties across an we have 
the interface condition 

8¢,n, _ 8¢,,,, 
an an 47l'm·n Vx E an (3) 

and continuity condition 

¢int = ¢ext Vx E an (4) 

where n is the unit normal to the nanoelement bound
ary. We calculate ¢ globally by the use of a variational 
finite element formulation, thus allowing the modelling of 
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interactions between nanoelements. The equations (2)
( 4) define a problem which needs to be solved over entire 
space. Several authors have formulated finite element so
lutions to this problem. A widely used method is that by 
D. R. Fredkin and T. R. Koehler [3) who formulate the 
solution for the magnetic material only, here the poten
tial is expressed as ¢ = ¢1 + ¢2, where ¢1 is the solution 
to Poisson's equation within the magnetic region subject 
to a natural boundary condition, which may be solved by 
the FEM, ¢2 is solved by a boundary integral along the 
magnetic material boundary. More recently the problem 
has been solved by enclosing the magnetic region within 
a finite part· of external space [4] . The entire problem is 
then solved over a single mathematical domain consisting 
of a magnetic and non-magnetic region, with an artificial 
boundary condition imposed on the outer region's bound
ary and condition (3) being imposed along the interface 
between the two materials. We calculate ¢ by the use of 
the FE:\I using the same concept of modelling (2)-( 4) as a 
single problem. The method we have developed replaces 
the infinite boundary by a suitably large closed bound
ary 8R which is a distance away from the magnetic re
gion fl;,,t and enclosing Dext· This distance is determined 
by comparing our solution with the analytical result for 
a rectangular magnetic region with a uniform magneti
zation structure parallel to the positive direction of the 
longitudinal axis given by A. Aharoni [8]. On 8R we im
pose the artificial boundary condition ¢ = 0. As with any 
FEM solution, a suitable transformation method is used 
to map each element to a simple parent element in order 
to simplify the integration over the whole region. We have 
used two different numerical methods of imposing the in
terface condition (3) within the finite element solution of 
(2)-( 4). In the first method we apply a standard Rayleigh
Ritz stationary functional method which leads up to the 
formation of a system of n linear equations, where n is 
the number of nodes in the spatial discretisation scheme. 
Condit ion (3) is integrated into the linear equations by re
placing any row number which corresponds to a node on 
8D. by formulating explicitly the jump condition in terms 
of the transformations. The alternative approach that we 
have formulated uses an implicit formulation of impos
ing (3) using a Galerkin technique described in [5]. Both 
ways _have worked adequately in our simulations but for 
the high degree of accuracy required for our simulations 
it is necessary to use quadratic finite elements. The stiff
ness matrices produced in our finite element formulations 
are very sparse, so in order to reduce the need for large 
storage requirements, we store only the non-zero entries 
with their corresponding row and column numbers. We 
then apply a sparse matrix solver routine from the netlib 
library [6] which keeps CPU requirements to a minil!l.um 
to obtain ¢ globally. Thus allowing us to model interac
tions between nanoelements. The following calculations 
were performed on a 500MHz single processor with 1 GB 
of RAf\'l. The simulations take an average CPU time of 
412.8 minutes. 

3875 

IV. RESULTS 

In this section we describe the results produced from 
applying our numerical model in simulating the forma
tion of domain structures in an array of 3 infinitely thin 
permalloy nanoelements. We investigate the zero field 
equilibrium state of the nanoelements after the removal of 
a saturating field. These experiments are carried out with 
varying space between the nanoelements and longitudinai 
and transverse material anisotropy. We also describe · the 
relaxation of each individual nanoelement as a function ·of 
time. Initially the nanoelements have a uniform magne
tization structure parallel to the positive direction of the 
longitudinal axis, they each have dimensions of 0.2µm x 
l.6µm and consist of rectangular bars. The material pa
rameters used are typical for those of permalloy. 

The following figures represent the in plane components 
of reduced magnetization, min the form of greyscale im
ages with black and white representing +land -1 respec
t ively. The left image shows the x component of magneti
zation, mx and the right image shows the y component of 
magnetization, my, The nanoelements have a transverse 
anisotropy of 5 x 103 erg/cm3 . 

The images in Fig. 1 show the magnetization configura
tion for the zero field equilibrium state for 3 nanoelements 
with a spacing of 0.05µm. The outer nanoelements relax 
into configurations of several domains whereas the cen
tral element remains almost saturated except at the ends 
where magnetostatic interactions have initiated a small 
scale domain structure to form. 

Fig. 1. magnetization configuration, spacing 0.0Sµm 

When we increase the separation between the nanoele
ments to 0.4µm, Fig. 2, we observe that the central ele
ment is still being prevented from forming a multi-domain 
structure due to interactions. However when we increase 

= I • I ff: ~ i .. • I 
,, 

~ 
fi~ - C ... 

Fig. 2. magnetization configuration, spacing 0.4µm 

the separation to 0.8µm, see Fig. 3 and Fig. 4, the cen
tral element forms a multi-domain structure much like the 
two outer ones. Here we see an increase in the number 
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of domains due to less magnetostatic interaction. In all 
cases the nucleation occurs simultaneously at one end of 
the outer nanoelements and propagates along the length. 

Fig. 3. x component of magnetization, spacing 0.8µm 

I 
I 

Fig. 4. y component of magnetization, spacing 0.8µm 

We illustrate this effect by the graph in Fig. 5 which 
shows the relaxation of each individual nanoelement as a 
function of time for the case when the nanoelement spac
ing is 0.4µm . . The nanoelements are denoted by Nl,N2 
and N3 from left to right. For the outer nanoelement 
there is initially a relatively slow variation of the mag
netisation associated with the nucleation of a reversed 
area of magnetisation followed by a more rapid propaga
tion. The magnetisation structure of the central nanoele
ment changes early in the process, but stabilises rapidly. 
We have performed the same sequence of simulations on 

0 20 40 60 80 . 100 

time (ns) 

Fig. 5. relaxation of each individual nanoelement 

nanoelements with longitudinal anisotropy and have o 
served a similar effect, however the elements now ha· 
a large scale domain . structure Fig. 6 which cum par 
well with experimental data (7]. It was found that ti 
magnetization configurations depended on the dynami, 
of the magnetization process specifically, a gradual redu 
tion of the magnetic field produced slightly different d, 
main structures and will be described in a separate pul 
lication. 

Fig. 6. y component of magnetization for nanoelements with 
longitudinal anisotropy and spacing 0.05µm 
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Investigation of magnetization behavior in nanoelements 
using the finite element method 

P. H. W. Ridley,8> G. W. Roberts, and R. W. Chantrell 
SEECS, University of Wales Bangor, Gwynedd, LL57 1 UT, United Kingdom 

A model of thin film permalloy using an efficient finite element variational approach to the 
magnetostatic field calculation is described. The material is discretized into a nanoelement structure 
at the micron level which enables us to investigate material properties due to patterning. Predicted 
domain structures agree well with experimental data. Interactions between elements are significant 
and it will be shown that the domain structure in the central element differs from that of its 
neighbors. As expected, the addition of pointed ends stabilizes the single-domain state. Elements 
with two pointed ends exhibit pseudo-single-domain behavior. We have studied the single-domain/ 
pseudo-single-domain transition for permalloy platelets, results for noninteracting platelets are 
given as a function of the elongation. Interactions are shown to increase or decrease the critical size 
depending on the geometry. © 2000 American Institute of Physics. [S0021-8979(00)78608-7] 

I. INTRODUCTION 

Much interest has developed recently in the study of the 
behavior of thin film magnetic materials patterned at the sub
micron level. 1 The motivation behind gaining further insight 
into the material behavior at this level is mainly due to its 
technological application in magnetic recording and mag
netic sensors.2 In order to investigate material behavior, ex
perimental techniques such as transmission electron micros
copy and electron beam lithography are currently being 
used.3 In order to maintain theoretical results which are com
parable to the high resolution capabilities of the experimental 
techniques, one must use a numerical approach enabling a 
very high discretization of the material. With this in mind, 
our model for investigating the domain structures in thin film 
magnetic material uses a finite element variational approach. 
This enables us to reproduce results comparable to experi
mental observations. 

In this work, we carry out a numerical simulation of the 
domain structure and hysteresis effects of single nanoele
ments with respect to their shape and size. We also observe 
the interaction effects of an array of nanoelements in relation 
to their separation. The shape of the nanoelements consid
ered will be restricted to rectangular bars with one, two, or 
no pointed ends with their lengths being in the region of 
0.1 -2.0 µm. 

II. MODEL DESCRIPTION 

We represent the magnetization distribution within a na
noelement by the pointwise vector M with each point corre
sponding to a node within the finite element spatial discreti
zation scheme. 

The total effective field H, is given by the sum of the 
component field terms exchange, anisotropy, magnetostatic 
and applied. For convenience, we work in reduced units by 
scaling the individual field terms with respect to the anisot
ropy field strength H k, so that the reduced total effective 

' 1Electronic mail: phil@sees.bangor.ac.uk 

field is given by h1 = H, I H k where h1 = hd+ hex+ ha+ hz with 
hd, hex, ha , and hz representing the reduced demagnetizing, 
exchange, anisotropy, and applied field terms, respectively. 
H k = 2KI Ms is the magnetocrystalline anisotropy, Ms is the 
saturation magnetization, and K is the uniaxial anisotropy 
constant. We also represent the reduced magnetization by m 
where m = Ml Ms . The governing equation for the magneti
zation dynamics is the Landau-Lifshitz equation of motion 
given by 

dm 
d-r = - mXh1-a(mX(mXh1)), (I) 

where the reduced damping constant a = >..!y, T=tyHk is 
the reduced time, >.. the damping constant, and 'Y the gyro
magnetic ratio. The system equations which are coupled 
through the components of m are solved by a fourth-order 
Adams- Moulton predictor-corrector method. 

Ill. FIELD CALCULATIONS 

The exchange field hex is calculated from the discrete 
expression used in Ref. 4 which is very suited to the finite 
element method. We calculate the magnetostatic field by ex
pressing the demagnetizing field, hd, in terms of a magnetic 
scalar potential ¢, such that hd= - "v ¢ as described in Ref. 
5. We can then obtain values for ¢ both inside and outside 
the nanoelements by the use of a variational finite element 
approach which allows us to look at interaction effects be
tween particles. The finite element formulation uses a Galer
kin weighted residual approach coupled with the use of qua
dratic finite elements in order to maintain the high degree of 
accuracy required to realistically model domain processes. 
To keep computational requirements to a minimum we use a 
sparse matrix routine from the netlib library6 and only store 
the nonzero entries in our stiffness matrix. The efficiency of 
this calculation enables us to perform an average simulation 
with a CPU time of 7 h on a 500 MHz single processor with 
I Gbyte of random access memory. 

0021-8979/2000/87(9)/5523/3/$17 .00 5523 © 2000 American Institute of Physics 
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FIG. 1. Transition for single-domain / pseudo-single-domain states. 

IV. RESULTS 

In this section we describe the results produced from 
using our model in simulating the magnetization behavior of 
thin film permalloy. The material parameters used are A 
= l.3X 10- 6 erg/cm, K= 5 X 103 erg/cm3, and Ms 
= 800 emu/cm3 to emulate permalloy. We assume the nano
elements to be infinitely thin. Initially the nanoelements have 
a uniform magnetization distribution parallel to the positive 
direction of the longitudinal axis. We illustrate magnetiza
tion configurations of the nanoelements in the form of gray
scale images depicting the magnitude of the transverse com
ponent of the reduced magnetization m with black and white 
representing + 1 and - 1, respectively. 

We begin by investigating the effect of elongation on the 
single-domain (SD)/pseudo-single-domain (PSD) transition 
and the PSD/multidomain (MD) transition for permalloy 
platelets with very small transverse anisotropy. Simulations 
to emulate the relaxation into the remanent states were car
ried out by removing the applied field with zero fall time. 
Figure I shows results for noninteracting single nanoele
ments, where transition states are given as a function of the 
elongation. Interactions are shown to increase or decrease the 
critical size depending on the geometry as will be demon
strated later. 

It was found that the remanent magnetization configura
tions depended on the dynamics of the magnetization pro
cess. Specifically, a gradual reduction of the magnetic field 

(a) (b) 

FIG. 2. Remanent state with (a) instantaneous and (b) gradual relaxation of 
the applied field. 
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(a) (b) 

FIG. 3. Remanent state for two pointed ends with no applied field (a) 
pitch=0.2 µm and (b) pitch=0.3 µm. 

produced slightly different domain structures compared with 
those produced without the presence of an applied field. 
These results are shown in Figs. 2(a) and 2(b), which show 
the remanent states of a single 0.2 µm X 1.2 µm nanoelement 
obtained by instantaneous and gradual relaxation of the field, 
respectively. We noticed that the configuration in Fig. 2(b) 
exhibits an 8% lower energy than that in Fig. 2(a). The ad
dition of a pointed end to a nanoelement causes the domains 
to propagate from the flat end. As seems reasonable, simula
tions for nanoelements with two pointed ends exhibit a 
pseudo-single-domain state to larger particle dimensions 
with micromagnetic detail appearing in the regions joining 
the rectangular and triangular regions. The remanent states 
for a 0.2 µmX 1.2 µm nanoelement are shown in Fig. 3 
showing the effect of altering the distance of the pointed end 
from the rectangular region (pitch) of the nanoelement. 

Hysteresis loops for two particle sizes are shown in Fig. 
4. The element of size 0.1 µm X 1.6 µm shows a loop corre
sponding to SD behavior in Fig. 4(a). Reversal proceeds via 
nonuniform magnetization states at the element ends which 
lead to vortex nucleation and propagation of the reversed 
magnetization. Figure 4(b) shows the hysteresis behavior for 
an element of size 0.2 µm X 1.6 µm which exhibits MD be
havior. The field is applied along the long axis of the particle 
and in this case the anisotropy direction is taken as planar 
random. The magnetization proceeds by the nucleation of an 
end domain, giving rise to an initial steep change of magne-
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0 .2 .. 
~ 0 
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1.5 

FIG. 4. Hysteresis loops for nanoelements of size (a) 0.1 µmX 1.6 µm and 
(b) 0.2 µmX 1.6 m. 
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FIG. 5. Remanent state for an array of three interacting 0.2 ,um X 1.6 ,um 
nanoelements with spacing 0.6 ,um and transverse anisotropy. 

tization. The hysteresis at this point indicates that this mag
netization change is irreversible. This domain structure 
gradually expands to fi ll the whole element. 

In addition to investigating domain behavior in single 
nanoelements we have also looked at the interacting case. 
The formation of domain structures in arrays of three nano
elements was found to be dependent upon their separation, 
for example as shown in Fig. 5 the central element of three 
remains single domain at a size which allows domain struc
ture to form in the outer elements. The elements do not be
come essentially noninteracting until a spacing of 0.8 µm. 
We have calculated the critical size for the central element at 
a spacing of 0.6 µm, which is represented as a single point in 
Fig. I, demonstrating the increase resulting from interaction 
effects in this geometry. 

V. CONCLUSIONS 

We have given calculations of the magnetic properties of 
permalloy nanoelements. The shape of the elements and in-

Ridley, Roberts, and Chantrell 5525 

teractions between elements have a strong bearing on the 
transition to MD states. The effects of interactions are also 
dependent on the geometrical arrangement of the elements, 
as will be discussed elsewhere. Hysteresis loops for indi
vidual elements are qualitative in agreement with experi
ment. In particular the large platelet exhibits a loop similar to 
the type " C" loop observed experimentally by Hefferman 
et al. 7 

ACKNOWLEDGMENT 

The financial support of the United Kingdom Engineer
ing and Physical Sciences Research Council is gratefully ac
knowledged. 

1T. Schrefl, J. Fidler, K. J. Kirk, and J. N. Chapman, J. Magn. Magn. 
Mater. 175, 193 (1997). 

2S. Y. Chou, M. Wei, P.R. Krauss, and P. B. Fishcher, J. Vac. Sci. Tech
nol. B 12, 3695 (1994). 

3 M. Riihrig, B. Khameshpour, K. J. Kirk, J. N. Chapman, P. Aichison, S. 
McVitie, and C. D. Wilkinson, IEEE Trans. Magn. 32, 4452 (1996). 

4 K. M . Tako, M. A. Wongsam, and R. W. Chantrell, J. Magn. Magn. 
Mater. 155, 40 (1996). 

5P. H. W, Ridley, G. W. Roberts, M.A. Wongsam, and R. W. Chantrell, J. 
Magn. Magn. Mater. 193, 423 (1999). 

6 Z. Zlatev, J. Wasniewski, and K. Schaumburg, SIAM J. Sci. Comput. 
(USA) 3, 119 (1982). 

7S. J. Hefferman, J. N. Chapman, and S. McVitie, J. Magn. Magn. Mater. 
95, 76 (1991), 

189 



Computational and Experimental Micromagnetics of 
Arrays of 2-D Platelets 

P.H. W. Ridley, G. W. Roberts, R. W. Chantrell, K. J. Kirk and J. N. Chapman. 

Abstract- 2-D regular nanoelements are of interest as 
micromagnetic model systems and in a number of sensor 
applications. In this paper we concentrate on a recent de
velopment in the form of experimental structures of arrays 
o f small nanoelements which are 300nm long and between 
50 - 80nm wide in small arrays which are amenable to 
computational studies . A direct comparison of theoretical 
and experimental hysteresis loops gives good quantitative 
agreement and suggests that both interactions and varia
tions in intrinsic properties contribute significantly to the 
width of the loops. The experimental samples were pro
duced by electron beam lithography and consisted of either 
a 6 X 3 array or a 6 element row. The intra-row spacing was 
50nm or 80nm and the inter-row spacing was 100nm. Mag
n etic images we re obtained by Lorentz microscopy, from 
which the magnetization curves were determined. Com
putational studies were carried out using a finite element 
method with magnetostatic field calculations via the max
imisation of the scalar potential. The t echnique is compu
tationa lly efficient and allows the calculation of the prop
erties of interacting e lements. 

Index Terms- Finite e lement method, Interactions, 
Nanoelements. 

I. INTRODUCTION 

WHEN a magnetic material is patterned into struc
tures at the sub micron level, the resulting shapes 

are termed nanoelements. At this level theoretical mi
cromagnetic calculations and experimental imaging tech
niques may be performed in order to investigate the ma
terial behaviour. 
Recent theoretical simulations have been concerned with 
the behaviour of single nanoelements [1] and more recently 
several of them placed in row formations [2]. On the ex
perimental side, work has been carried out on larger rows 
and arrays of nanoelements to determine their use in fu
ture recording applications [3]. 
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The motivation behind the investigation into the be
haviour of arrays of nanoelements is due to their possi
ble future application in high density data storage. For 
use as patterned magnetic media each individual nanoele
ment would store 1 bit. Thin films with exchange coupled 
grains such as Permalloy or Cobalt would be used to fab
ricate the nanoelements . Previous experiments on these 
films have shown that each nanoelement behaves in an al
most single domain manner and therefore has two stable 
magnetic states which is ideal for data storage. 
In this work we shall use our theoretical micromagnetic 
model to simulate the magnetization behaviour in rows 
of 6 and arrays of 18 nanoelements. The size of the indi
vidual nanoelements will be 300nm x 80nm and 300nm 
x 50nm and spacing will be varied to mat ch experimen
tal results. We shall then make comparisons between our 
theoretical predictions and the recent experimental obser
vations. 

II. MODEL DESCRIPTION 

For the micromagnetic calculations we use the variational 
finite element minimization scheme as described earlier 
in [4] where the demagnetizing field is calculated via a 
magnetic scalar potential, ¢ to reduce computational re
quirements and to allow the convenient modelling of in
teractions between nanoelements. The dynamics of the 
magnetization process is governed by the Landau-Lifshitz 
equation of motion with effective field cont ributions aris
ing from demagnetizing, exchange, anisotropy and exter
nal sources. 
To simulate permalloy we use the standard material pa
rameters which are the exchange constant, A = 1.3 x 
10-6erg/cm, the uniaxial anisotropy, K = 5x 103erg/cm3 

and the saturation magnetization, Ms = 800emu/cm3• 

For all of these simulations we initially saturate each in
dividual nanoelement with a magnetization distribution 
parallel to a direction going from the bottom to the top 
of the nanoelement. The simulations are performed using 
quadratic finite elements with extra mesh refinement lo
cated around the nanoelement edges which is required to 
successfully be able to simulate the magnetostatic inter
actions between nanoelements. We also fix the thickness 
of each individual nanoelement to be 20nm. 
In the experiments arrays of permalloy nanoelements are 
created by electron beam lithography and lift off pattern
ing [5]. The magnetic imaging is carried out in a modified 
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Philips CM20 transmission electron microscope in which 
samples may be viewed in field free conditions or in vari
able applied fields. The arrays are magnetized by tilting 
the sample in the vertical field from the objective lens in 
the TEM, t hus giving a field component of varying mag
nitude in the plane of the sample. The field is aligned 
along the long axis of the elements. For each magnetiz
ing experiment, the sample is first tilted to a high angle 
to produce a large in plane field component to saturate 
the elements in one direction. The sample is returned to 
0° tilt and then gradually tilted in the other direction to 
obtain an increasing reverse field to return the nanoele
ments back to their initial configuration. Throughout the 
magnetization cycle configurations are recorded via Fres
nel or Differential Phase Contrast (DPC) mode imaging. 
Further descript ion is given in [6], [7] . 

III. R ESULTS 

In this section we describe the results produced from ap
plying our theoretical model in simulat ing t he hysteresis 
curves for rows and arrays of interacting nanoelements. 
The geometries considered will be either single rows of 
6 rectangular nanoelements or arrays of 18 nanoelements 
made up from 3 rows placed close together. The actual 
sizes of the nanoelements will be eit her 300nm x 80nm or 
300nm x 50nm. 
For the rows we denote the distance between individual 
nanoelements as the intra row spacing and for the arrays 
we have additional inter row spacing between the individ
ual rows. For our results the inter row spacing will be 
fixed at 100nm. 
The obvious concern with the simulation of these setups 
is of computational requirement, for the two dimensional 
arrays we have to deal with 18 nanoelements. Indeed to 
create a finite element mesh with the correct level of re
finement we need approximately 8000 quadratic finite ele
ments. However requirements are kept to a minimum via 
our finite element solver and the total C.P.U. time needed 
for a typical simulation to calculate the hysteresis curve 
is approximately 34hrs on a single EV6 processor. 
To obtain our theoretical predictions for comparison with 
the experimental observations, we apply a strong saturat
ing field to the samples and then reduce it by field steps 
of 5.25Oe until all the nanoelements have reversed. These 
calculations were performed on a single EV6 processor. 
For our first simulations we shall consider a row and array 
of nanoelements of size 300nm x 80nm with an intra row 
spacing of 80nm and for the array an inter row spacing 
of 100nm. Previous experimental investigations of similar 
arrangements have already been performed by Kirk et al, 
the hysteresis curves are given in Fig. 1. The reversal oc
curs sooner in the rows than in the arrays, which is due to 
the inter row magnetostatic interactions . Our theoretical 
predictions are shown in Fig. 2. The results in Fig. 2 were 
obtained for a uniaxial anisotropy distribution of K = 5 x 
103erg/cm3 with a planar random orientation through-
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Fig. 1. Experimental hysteresis curves rows and arrays of 
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Fig. 2. Theoretical hysteresis curves rows and arrays of 
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out the nanoelements. Here we observe good agreement 
between the experimentally observed value and our pre
dicted value of the coercivity. Also we obtain an average 
switching field distribut ion of ll 7Oe which is smaller than 
the experimental observation of 330Oe. This higher value 
for the experimental case may be ascribed to a dispersion 
of the intrinsic properties of the individual nanoelements 
in the experimental samples . 
We now consider the second experimental configurations, 
namely rows and arrays of 300nm x 50nm nanoelements 
with an intra row spacing of 50nm and an inter row spac
ing of 100nm. The experimental results of Kirk et al are 
shown in Fig. 3. Here we observe a similar hysteresis 
curve as in the previous experimental results. However, 
we notice a much higher coercivity which may be ascribed 
to the increase in the shape anisotropy arising from the 
increased aspect ratio of the elements. Our simulation 
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Fig. 3. Experimental hysteresis curves rows and arrays of 
300nmx50nm interacting nanoelements 

also predicts an increase in system coercivity as shown in 
Fig. 4. Here we again observe good agreement between 
the experimental observations and our theoretical predic-
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;ions for the system coercivity. The difference in our 
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<'ig. 4. Theoretical hysteresis curves rows and arrays of 
300nmx50nm interacting nanoelements 

)redicted switching field distributions of 335Oe and the 
ixperimental observation of 670Oe is again caused by the 
ntrinsic properties of the experimental samples. 
We shall now investigate the effects of these properties fur
;her by performing simulations with ordered anisotropy. 
!<'or these simulations we have introduced to each of the 
1anoelements a component of longitudinal anisotropy of 
r< = 5x 104erg/cm3, i.e. a factor of 10 times larger 
;han the previous calculations. For the 300nmx80nm case 
;ve see 3 large collective reversal events occurring due to 
)atches of switching nanoelements as shown in Fig. 5. 
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l<' ig. 5. Theoretical hysteresis curves rows and arrays of 
300nm x 80nm interacting nanoelements 

[n the case of 300nm x 50nm we also see more prominent 
:ollective reversals in both the rows and arrays than in the 
results shown in Fig. 4. We also see an increase in the sys
tem coercivity as observed in the previous experimental 
md theoretical calculations. The results shown in Fig. 5 
md Fig. 6 show the effect of the large anisotropy aligned 
with the long axis of the element - the combination of the 
cilignment and strength of the anisotropy gives rise to the 
:ollective reversal and the stable intermediate magnetic 
,tates. The reversal process in the experiments is via a 
mechanism of random columns of nanoelements switch
ing together, this is also observed in our results involving 
the random anisotropy distribution and again occurs by 
entire columns of nanoelements reversing at random. In 
both cases of size and spacing the magnetization reversal 
is initiated faster for rows than for the array, in agreement 
with experiment. 
The reversal mechanism of the array as a whole is very 
sensitive to the degree of disorder. In the case of an 
aligned uniaxial anisotropy a highly symmetric cooper-
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Fig. 6. Theoretical hysteresis curves rows and arrays of 
300nmx50nm interacting nanoelements 

ative switching mechanism is observed to take place. A 
large anisotropy has the effect of stablising states during 
the reversal process leading to the distinctive switching 
features of Fig 5. A random anisotropy breaks this high 
symmetry sufficiently to reduce the cooperative switch
ing. This leads to a relatively random reversal of individ
ual elements as will be discussed in more detail elsewhere. 
This reduction in collective reversal is consistent with ex
perimental observations. The agreement between theory 
and experiment in terms of the coercivity is good. How
ever, the predicted Switching field distribution is narrow 
in comparison with experiment. In the case of the sim
ulations the SFD essentially arises because of interaction 
effects and our predicted values indicate that interaction 
effects are small but significant, since they account for half 
of the width of the SFD. The discrepancy between the ex
perimental and calculated SFD's probably suggests that 
there is a dispersion of the intrinsic element properties, 
which is not considered in the current model. 
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