
Bangor University

DOCTOR OF PHILOSOPHY

Investigation of Machine Vision and Path Planning Methods for use in an Autonomous
Unmanned Air Vehicle

Williams, Matthew

Award date:
2000

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/investigation-of-machine-vision-and-path-planning-methods-for-use-in-an-autonomous-unmanned-air-vehicle(af872eeb-ac43-4737-ab40-76c70a128c90).html

Investigation of Machine Vision and Path
Planning Methods for use in an Autonomous

Unmanned Air Vehicle

Matthew Williams

Thesis Submitted in Candidature for the Degree of
Doctor of Philosophy

December 2000

School of Informatics
University of Wales, Bangor

United Kingdom

Summary

Summary

The thesis investigates obstacle detection and path planning methods appropriate
for use in an unmanned helicopter, which are essential to establishing autonomous
control of the vehicle.

The research described here is complementary to a feasibility study by EA Tech
nology Ltd to consider the use of robotic vehicles in the inspection of overhead
electricity power lines. The context of this project is the proposal that the in
spection be performed by a small, remotely-piloted helicopter fitted with a video
camera, returning video imagery to the ground-based observer.

A major obstacle to this concept is that, under current flight regulations, the
helicopter would not be allowed to fly outside the visual range of the ground
station. This work investigates whether autonomous obstacle detection based on
machine vision coupled with 3D path planning has the potential to remove this
constraint.

The thesis first discusses the requirements and current methods of overhead line
inspection. A review of relevant machine vision and path planning methods is
given and a method for placing these into a hierarchical control system architec
ture is described. A method for fast 3D path planning, based on the distance
transform, is introduced and experimental results are presented to show its ef
fectiveness. Implementation of the control system, integrating the vision system
and path planner, is done by means of a scale model laboratory test rig. The
construction of this test rig is described and results are presented to show obstacle
avoidance in action. The thesis ends with an assessment of how far the research
has advanced the prospect of autonomous aerial power line inspection.

Contents

Summary

Contents

Aclmowledgements

Statements

1 Introduction

1.1 Inspection Processes

1.2 The RIPL Concept .

1.3

1.4

1.5

Obstacle detection, location and avoidance

1.3.1

1.3.2

1.3.3

Controller Development

Obstacle detection and location

A voiding Obstacles

Overview of the thesis . .

Contributions of this research work

2 Background and Literature Review

2.1 Background

2.1.1 Power Line inspection - Why?

11

xviii

XDC

1

2

3

5

5

6

8

9

10

11

12

12

2.1.2 Current Inspection Procedures .

2.1.3 The RIPL Concept ..

2.1.4 So what needs doing? .

2.2 Helicopter Guidance

2.3 Controller Architecture Literature .

2.4 Path P lanning Literature .

2.4.1 Roadmap Methods

2.4.2 Cell Decomposit ion Methods .

2.4.3 Potential Field Methods . . .

2.4.4 Path planning with the Distance Transform

2.4.5 Spatial Decomposition

2.5 Machine Vision Literature

2.6 Summary

3 Controller Architecture

3.1 System Architecture

3.2 Planner

3.2.1 Preferred Flight Space

3.2.2 Modified Preferred Flight Space

3.3 Navigator

3.4 P ilot

3.4.1 Obstacle Detection and Location

3.4.2 Motion Planning

Contents

13

18

23

26

28

30

34

36

38

40

43

46

53

55

55

57

58

60

63

64

64

67

lll

Contents

3.5 Summary . 69

4 Obstacle Detection and Location using Machine Vision 70

4.1

4.2

Refiex Collision Avoidance . .

4.1.1

4.1.2

4.1.3

Methods of Detection .

A voiding Action .

Conclusions

Standard Detection

4.2.1

4.2.2

4.2.3

Conservation of Distance

Optical F low . . .

Anandan's Method

72

72

75

76

77

77

80

84

4.3 Using optical fiow to locate obstacles within the environment . 86

4.4

4.5

Camera Configuration .

4.4.1

4.4.2

Multiple cameras

Implications of using mult iple cameras

Summary

5 Path Planning using the Distance Transform

5.1

5.2

5.3

Basic Representation .

Quadtrees and Octrees

5.2.1

5.2.2

5.2.3

W hat are quadtrees?

Node labelling scheme

Building a quadtree ..

Tree connection method - the key to planning

88

89

90

91

93

93

96

97

98

98

102

lV

5.3.1 Stage 1 : Initial neighbour assignments

5.3.2 Stage 2 : Update connections

5.3.3 Stage 3 : Update connections

5.4 Application of the distance transform

5.5 Path planning

5.6 Summary . .

6 Path planning implem entation and results

6.1 Two dimensional planning

6.1.1 Matrix based implementation

Contents

102

103

106

107

111

112

113

113

113

6.1.2 Implementation of a Quadtree based Distance Transform
Path P lanning Algorithm in two dimensions 118

6.2 Three dimensional planning

6.2.1 Test 1: Empty workspace

6.2.2 Test 2: Large Obstacles

6.2.3 Test 3: Small obstacles

6.2.4 Test 4: No path .

6.2.5 Test 5: Complex workspace

6.3 Summary

7 Hierarchical Controller Implementation

7.1 Test Rig

7.1.1 Mechanical Design

7.1.2 Electronic Design .

130

130

131

135

139

140

145

146

146

148

154

V

Contents

7.2 Controller Software 163

7.2.1 Design .. . 163

7.2.2 Implementation 166

7.3 Summary 168

8 Results 169

8.1 Optical flow tests 169

8.1.1 Input Images 170

8.1.2 Optical flow generation . 172

8.1.3 Depth from flow vectors 186

8.1.4 Map building 197

8.2 Test Rig Experiments . 204

8.2.1 Experiment One 204

8.2.2 Experiment Two 211

8.2.3 Experiment 3 218

8.2.4 Experiment 4 227

8.3 Discussion and Conclusions 236

9 Discussion and Conclusions 238

9.1 Hierarchical Controller 238

9.2 Machine Vision 239

9.3 Path Planning . 240

9.4 Results 241

9.5 Recommendations for further work 242

V l

Contents

9.6 General Conclusions . 243

A CAA Regulations

B Approximate Cell Decomposition

B.1 General Description

C Potential Field Methods

D

C.1 Description of potential function .

C.1.1 The attractive potential

C.1.2 T he repulsive potential .

C.2 Potential Guided Path Planning .

C.2.1 Depth-first planning

C.2.2 Best-first planning .

c++ Source code

D.1 Header Files .

D.1.1 Node.h .

D.1.2 Matrix.h

D.1.3 Queue.h

D.1.4 Image.h

D .2 Selected Source Code

D.2.1 Function: Octree

D.2.2 Function: Diver .

D. 2.3 Function: Updatel

245

247

247

250

250

251

251

252

252

254

256

256

256

258

258

259

263

263

268

269

Vil

D.2.4 Function: Update2

D.2.5 Function: Distance Transform

D.2.6 Function: Path Planning .. .

Bibliography

Contents

273

280

281

284

Vlll

List of Figures

1.1 A flying Sprite . 3

2.1

2.2

Line termination pole under repair

Power line situated in valley

2.3 Power line in upland area

2.4 A difficult location for helicopter inspection due to the proximity

14

15

16

of t rees and a road . 1 7

2.5 Faulty pole top . .

2.6 RIPL sub-system block diagram

2. 7 ML Aviation Sprite .

2.8 Controller Hierarchy

2.9 Configuration Space Example: The workspace diagram shows two
obstacles and an example path for the triangular shaped robot.

18

20

21

29

The configuration space diagram shows the path generated by re
ducing the robot to a point and growing the obstacles by an ap
propriate amount. 31

2.10 Potential Fields a) Attractive Field: Goal at lower left, b) Repul-
sive Field : Point obstacle at upper right, c) Combined Fields, d)
Contour Plot of the Combined Fields 40

2.11 Memory requirement comparison of matrix (blue) and octree (green)
based algorithms . 46

lX

Contents

3.1

3.2

Hierarchical Controller Architecture

Preferred Flight Space: Conceptual visualisation .

57

59

3.3 Example Obstacle highlighting how the PFS would look in cross
section around an obstacle that encroaches into it 61

3.4 Modified Preferred Flight Space: a) T=l , b) T=0.9, c) T=0.8, d)
T =0.5 . 62

3.5 A visualisation of the pilot's map

4.1 Pilot function showing the two types of avoidance systems

4.2

4.3

Time to impact

Viewing Configuration

4.4 Images 3 and 4 of the Taxi set of images used for testing optical

67

71

74

78

flow systems . 85

4.5 Flow field generated by Anandan's method using the images shown
in figure 4.4 . 86

4.6 Coordinate System

4. 7 Field of view

5.1

5.2

5.3

Example two-dimensional workspace

Segmentation of workspace into matrix structure .

Application of the distance transform

87

89

94

94

95

5.4 Neighbour configurations and their resulting path properties 95

5.5

5.6

One possible path from the start to the goal

Workspace after first division

96

99

5.7 Intermediate decomposition of the data presented in figure 5.2 99

5.8 Final decomposition of the data presented in figure 5.2 100

X

Contents

5.9 Quadtree resulting from the decomposition of the data presented
in figure 5.2 . 101

5 .10 Connections after the initial connection stage

5.11 Adjacency Relationship

5.12 Fully connected tree after stages 2 and 3

5.13 Distance transform applied to t he example workspace

5.14 Distance transform applied to the example workspace

5.15 A path produced using the example workspace .

5.16 A path produced using the example workspace .

103

104

108

110

110

111

112

6.1 The path resulting from a simple workspace 116

6.2 Distance transform surface produced from the example in figure 6.1117

6.3 A complex workspace with the resulting path 118

6.4 The surface produced using the workspace given in figure 6.3 119

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

The split of a square workspace into four sub-workspaces

(a) Node representation, (b) Neighbour node Map

Simple workspace and node path

Workspace and path for one single large obstacle .

Workspace with many small obstacles showing node path

·workspace where no path is possible

Complex workspace and node path

Another complex workspace and node path .

Empty workspace

121

122

124

126

127

128

128

129

131

xi

Contents

6.14 Workspace with a few large obstacles showing the path from start
to goal: View 1 . 132

6.15 Workspace with a few large obstacles showing the path from start
to goal: View 2 . 132

6.16 Workspace with a few large obstacles showing the path from start
to goal: View 3 . 133

6.17 Workspace with a few large obstacles showing the path from start
to goal: View 4 . 133

6.18 Workspace with a few large obstacles showing the path from start
to goal: View 5 . 134

6.19 Workspace with a few large obstacles showing the path from start
to goal: View 6 . 134

6.20 Workspace with a few small obstacles showing the path from start
to goal: View 1 . 135

6.21 Workspace with a few small obstacles showing the path from start
to goal: View 2 . 136

6.22 Workspace with a few small obstacles showing the path from start
to goal: View 3 . 136

6.23 Workspace with a few small obstacles showing the path from start
to goal: View 4 . 137

6.24 Workspace with a few small obstacles showing the path from start
to goal: View 5 . 137

6.25 Workspace with a few small obstacles showing the path from start
to goal: View 6 . 138

6.26 Workspace where no path is possible 139

6.27 Complex workspace showing the path from start to goal: View 1 140

6.28 Complex workspace showing the path from start to goal: View 2 141

6.29 Complex workspace showing the path from start to goal: View 3 141

6.30 Complex workspace showing the path from start to goal: View 4 142

Xll

Contents

6.31 Complex workspace showing the path from start to goal: View 5 142

6.32 Complex workspace showing the path from start to goal: View 6 143

7.1 The test rig . .

7. 2 The Electronics

7.3 Controller block diagram

7.4 Simplified Rig Design .

7.5 Camera mount

7.6 Toothed belt . .

7.7

7.8

7.9

Potentiometer position sensor

A view showing the toothed belt pulley arrangement

Mechanical design of the pulley housing

7.10 The position encoder sensor, the two detectors can be seen mounted

147

149

150

151

152

152

153

155

156

over the acetate strips . 157

7 .11 Mechanical design of the carriage

7.12 Drive motor, capstan and tachometer

7.13 Potentiometer Wire Voltage Control Circuit

7.14 Buffer Amplifier

7.15 Digital to Analogue Conversion

7 .16 X Drive circuit diagram

7.17 Y position measurement circuit

7.18 Y Drive circuit diagram

7.19 Design Layout

7.20 Flow chart of the pilot function

158

158

159

160

161

161

162

162

164

165

xiii

Contents

8.1 Images 0, 14, 20, 28, 37, 42, 50, 54 and 55

8.2 Test images

8.3 Flow field Images 27 28 (w=3 l=l i= l0)

8.4 Flow field Images 37 38 (w=3 l=l i=lO)

8.5 Flow field Images 50 51 (w=3 l=l i=l0)

8.6 Flow field Images when l= l - Top three images are number 27 /28
37 /38 50/51 for W=l L=l l=l - Bottom three images are number

170

171

173

174

175

27 /28 37 /38 50/51 for W=7 L=4 l= l 176

8.7 Flow field Images 27 28 - Top four w=3 1= 1,2,3,4 - Bottom four
w=5 1=1,2,3,4 178

8.8 Flow field Images 27 28 - w= 7 1= 1,2,3,4 179

8.9 Flow field Images 37 38 - Top four w=3 l=l,2,3,4 - Bottom four
W=5 1= 1,2,3,L! 180

8.10 Flow field Images 37 38 - w=7 1=1,2,3,4 181

8. 11 Flow field Images 50 51 - Top four w=3 1= 1,2,3,4 - Bottom four
w=5 1=1,2,3,4 182

8.12 Flow field Images 50 51 w=7 1=1,2,3,4 183

8.13 Flow field Images when 1=20 - Top three images are number 27 /28
37 /38 50/51 for \tV=l L=l 1=20 - Bottom three images are number
27 /28 37 /38 50/51 for W=7 L=4 1=20 185

8.14 Optical flow magnitudes for images 27 28 where W=3 L=4 l=lO . 187

8.15 Optical flow magnitudes for images 37 38 where W=3 L=4 1= 10 . 188

8.16 Optical flow magnitudes for images 50 51 where W=3 L=4 1= 10 . 189

8.17 Range map for images 27 28 where W= 3 1 = 4 l= lO

8.18 Range map for images 37 38 where W= 3 1 = 4 l= lO

8.19 Range map for images 50 51 where V/= 3 1 = 4 l= lO

191

192

193

XIV

Contents

8.20 Depth cross-section for images 27 28 where vV=3 1=4 I=lO 194

8.21 Depth cross-section for images 37 38 where W=3 1=4 I=lO 195

8.22 Depth cross-section for images 50 51 where W=3 1=4 1= 10 196

8.23 Map generation parameters 198

8.24 Map Images 0 and 1 200

8.25 Map Images 27 and 28 200

8.26 Map Images 37 and 38 201

8.27 Map Images 40 and 41 201

8.28 Map Images 45 and 46 202

8.29 Map Images 47 and 48 202

8.30 Map Images 50 and 51 203

8.31 Map Images 54 and 55 203

8.32 Images captured during experiment 1 205

8.33 Flow fields generated during experiment 1 206

8.34 Map 0 calculated during experiment 1 207

8.35 Map 5 calculated during experiment 1 207

8.36 Map 10 calculated during experiment 1 208

8.37 Map 15 calculated during experiment 1 208

8.38 Map 17 calculated during experiment 1 209

8.39 Map 20 calculated during experiment 1 209

8.40 The path followed during experiment 1 210

8.41 Images captured during experiment 2 . 211

8.42 Flow fields generated during experiment 2 213

xv

Contents

8.43 Map 1 calculated during experiment 2 214

8.44 Map 5 calculated during experiment 2 214

8.45 Map 10 calculated during experiment 2 215

8.46 Map 15 calculated during experiment 2 215

8.47 Map 20 calculated during experiment 2 216

8.48 Map 25 calculated during experiment 2 216

8.49 Map 30 calculated during experiment 2 217

8.50 The path followed during experiment 2 217

8.51 Images captured during experiment 3 . 218

8.52 Flow fields generated during experiment 3 220

8.53 Map 1 calculated during experiment 3 221

8.54 Map 5 calculated during experiment 3 221

8.55 Map 10 calculated during experiment 3 222

8.56 Map 14 calculated during experiment 3 222

8.57 Map 1 7 calculated during experiment 3 223

8.58 Map 24 calculated during experiment 3 223

8.59 Map 31 calculated during experiment 3 224

8.60 Map 37 calculated during experiment 3 224

8.61 Map 40 calculated during experiment 3 225

8.62 Map 46 calculated during experiment 3 225

8.63 Map 50 calculated during experiment 3 226

8.64 The path followed during experiment 3 226

8.65 Images captured during experiment 4 . 227

XVl

8.66 Flow fields generated during experiment 4

8.67 Map 1 calculated during experiment 4

8.68 Map 5 calculated during experiment 4

8.69 Map 10 calculated during experiment 4

8.70 Map 15 calculated during experiment 4

8.71 Map 20 calculated during experiment 4

8.72 Map 25 calculated during experiment 4

8.73 Map 30 calculated during experiment 4

8.74 Map 35 calculated during experiment 4

8. 75 Map 40 calculated during experiment 4

8. 76 Map 50 calculated during experiment 4

8. 77 Map 53 calculated during experiment 4

8.78 The path followed during experiment 4

Contents

229

230

230

231

231

232

232

233

233

... 234

234

235

235

XVll

Acknowledgements

Acknowledgements

I wish thank Dr Dewi Jones for his invaluable advice, guidance and motivation
throughout the course of this project.

I must also thank EA Technology Ltd, especially Mr Graham Earp, for sponsoring
this project and for all the support given.

This PhD studentship was supported by the EPSRC.

Thanks to everyone at the School of Informatics who have made the years fly by!

Finally, thanks to my family for being there, and everyone who helped me get
this far.

Document Information

This thesis was prepared using XEmacs, with Corel Draw, PovRay, and XFig
providing the pictures. The thesis was compiled using L}'fBX 2c .

xviii

Chapter 1

Introduction

The world in which we now live is totally dependent on electricity, and in recent

years we have come to expect a very high level of service from the electricity

distributors. Gone are the days in which power cuts, or outages, were considered

as a normal part of life. In this electronic age we demand reliable power supplies

to power our factories, farms and homes.

The demand for reliable power supplies has pushed the distribution companies to

place more emphasis on preventive maintenance. In towns and cities the delivery

of power is dominated by underground lines. However, in the majority of rural

areas power is supplied via lines suspended from poles. These overhead lines and

poles are exposed to the elements and over t ime faults can develop.

Underground lines are obviously difficult to inspect visually, but if a fault is found

it is relatively straight forward to fix. Usually the people who do the work live

locally, and the position of the lines are normally accessible. Over-head lines are

easier to inspect, but to find a fault may mean that many miles of lines would

need to be checked. Also once a fault is found it may be very difficult to get

equipment and people to the area.

The types of power line that interest us are the llKV and 33KV wooden pole

mounted power-lines. These are most common in rural areas of the country

distributing power to villages and isolated farms.

Chapter 1 Introduction

The power-lines need to be inspected by law. But also it makes sense for the

power distribution companies to ensure that t heir lines are as reliable as possible.

1.1 Inspection Processes

The current methods of inspection can be split into two types:

• Ground Based Inspection

• Air Based Inspection

Ground based inspection means that an inspector walks from pole to pole in

specting the lines, poles and pole-top equipment. For a closer check the inspector

may climb the pole to get a better view. However , for safety the power needs to

be switched off during this type of inspect ion so it is only used once a fault has

been locat ed. This method is a slow and dirty job especially during the winter

months. However, it is reliable and the inspection teams do find fau lt s which are

repaired before they become a problem. In the past few years the use of quad

bikes to speed up the process has been tried , but even with these the process is

slow.

Air based inspection relies predominantly on helicopters and human inspectors.

As one might imagine this method is not cheap. Either the distribution compa

nies, individually or in a consortium, run their own helicopt er, or t he helicopter

plus pilot is chartered. A high level of competence and training is required by a

pilot to fly these inspection missions as they are not without their danger. T he

inspection is performed by eye, wit h the inspector sometimes using binoculars for

a closer look. The inspection process is fast , but can never be as reliable as the

ground based method.

So how can the inspection process be improved so that the advantage of the

speed of the helicopter and the reliability of t he ground based inspection can be

combined?

2

Chapter 1 Introduction

1.2 The RIPL Concept

The Robot Inspection of Power Lines (RIPL) [1] principle was developed joint ly

by EA Technology and the Control and Instrumentation group at the University

of Wales, Bangor. The initial project aimed to investigate the use of an air vehicle

as a platform for an automatic inspection system. A feasibility study [2] and a

bridging study [3] both came to the same decision that an autonomous helicopter

with a vision based inspection system mounted on a stabilised platform would be

the best solution to the problem.

The SPRITE [4] airframe was chosen as the vehicle to model the system on.

Although the vehicle's development has ceased due to the loss of a military contact

it was decided that it was the most suitable concept on which to base this research

programme. The Sprite in action can be seen in figure 1.1.

Figure 1.1: A flying Sprite

3

Chapter 1 Introduction

In figure 1.1 the unusual design of the Sprite vehicle can be seen. It has two

contra-rotating rotor blades which removes the need for a stabilising tail rotor.

This means that the helicopter has no concept of "front" or "back", so is equally

happy flying in any direction. This means that it does not need to rotate in

azimuth to travel in another direction, so a stabilised camera platform does not

have to compensate.

The RIPL concept is based on a helicopter able to fly along a stretch of power

lines, sending back high quality video images of power lines, poles and pole-top

equipment so that either a human, or eventually a computer based inspector can

check for faults. To make the inspection process cost effective about 30 miles of

line would need to be inspected during each mission.

So the problem is easily solved! A remote control helicopter with a video camera

to send back both information to the pilot and the inspector. However, life can

never be that simple. What happens if the radio link between the pilot and the

helicopter is lost? Most likely the helicopter would crash. With this in mind the

reader should be glad that it is against the law to fly a remote control vehicle out

of the visual range of the pilot. The air is policed by the Civil Aviation Authority

(CAA), it is their role to maintain standards and improve safety.

The answer is to put the pilot back in the helicopter. But not a human pilot this

time, a computer based pilot. The idea of autonomously controlling a vehicle is

not new. Several autonomous aircraft exist, some have flown across the Atlantic

but no autonomous vehicle has been approved by the CAA for civilian use.

The aim of the work presented here is to try to produce a system that could

be used within the Sprite helicopter and would also satisfy the CAA as to its

suitability for solo flight.

The RIPL concept encompasses many different engineering and scientific dis

ciplines, other projects have been running in parallel with the work reported

here. The interested reader can find more details abou t these from the following

[l, 5, 2, 3, 6].

4

Chapter 1 Introduction

1.3 Obstacle detection, location and avoidance

So how can we put the Pilot back in the helicopter? There are two main issues

here. Firstly the "pilot" needs to be able to "see" any obstacles that may pose

a threat to the vehicle. Secondly, once an obstacle has been detected it must be

avoided.

However, a controlling framework is required to incorporate all the different tech

nologies that are needed for autonomous flight .

1.3.1 Controller Development

Before we put the "pilot" into the aircraft , what can be done to simplify the

process? A controller hierarchy [7] has been investigated. This adds the concept

of a Planner function to develop mission goals such as deciding which poles need

inspecting, and a Navigator function to do off line planning using information from

the Planner function and data gathered from previous inspection runs. Chapter

3 examines t he controller.

The controller is used to gather all the individual elements that would be required

to enable an autonomous aircraft to fly. For example the Planner, Navigator and

Pilot functions all need access to a map. It makes sense to only have one map,

which is used at different resolutions dependent on the controller level. This is

just one advantage of a controller system.

The majority of this thesis is based in the Pilot level of the cont roller. This would

be the part of the controller that would "fly" the aircraft based on the Planner's

mission plan and the Navigator's flight plan. The Pilot level is fundamentally

two separate functions, a machine vision system and a path planner. The next

sections introduce these concepts.

5

Chapter 1 Introduction

1.3.2 Obstacle detection and location

In order to avoid something its position must be known. There are several meth

ods for measuring position of objects, including:

• Touch

• SONAR

• RADAR

• LIDAR

• Machine Vision

Early robots used tactile sensors to find obstacles, in a similar way that a cat

might . Obviously, tactile sensors are not an option on a helicopter!

The next three items in the list above all work in a similar manner. They are

active sensors that send out a pulse of energy and, in their most simple form ,

measure the time it takes for reflect ions to return. In this way objects can be

detected and located within an environment .

SONAR uses sound to locate obstacles, j ust like bats. However, it is mostly used

in under water robots as sound t ravels further in that medium.

RADAR and LIDAR equipment is expensive and bulky. In fact, very few light

aircraft are fi t ted with RADAR. However, much more than just locat ion can be

measured using it, and it is very accurate.

The last item, vision, is what all human pilots use. Machine vision means using

cameras and computers to make sense of an environment. Much research has

been done in trying develop machine vision techniques that enable a robot to be

able to see. However, the day when a robot can make sense of its environment

as well as we can is still some way off.

6

Chapter 1 Introduction

The research presented here aims to show that machine vision can give as much

detail as other types of sensors. Machine vision systems are generally smaller and

cheaper than RADAR systems which is a requirement for commercial operations.

The task of detecting obstacles has been split into the detection of high risk fast

moving obstacles such as low flying jets, and the detection of lower risk slow

moving obstacles such as hot air balloons. This distinction has been made as the

manner in which the two types are dealt with is different. Slow moving obstacles

can be manoeuvred around, fast moving ones need to be avoided.

Fast moving obstacles present an immediate threat to the helicopter. They must

be detected quickly and as much information as possible about their motion

should be measured. The exact size or shape is not important, the speed and

direction are. Methods such as looming and time-to-contact have been inves

tigated. These together with a reflex motion planner have been proposed as a

possible solution for avoiding fast moving obstacles.

The slow moving obstacles that could be encountered by the helicopter during

the flight do not pose an immediate threat, but need detecting all the same. The

standard machine vision detection method presented here uses optical flow to get

a measure of location.

Optical flow is a measure of motion between a series of images captured by a video

camera. It is not a simple subtraction to see what has changed, but a measure

of image plane motion. Motion in the image plane is either due to the motion of

the camera or to the motion of obstacle, or a combination of them. The obstacles

that have been classified as slow moving, can be regarded as stationary for the

purpose of detection. Using this assumption, any motion within the image frame

is due to the helicopter moving. The velocity of the helicopter can be measured

in several ways including inertial navigation systems or even by using the Global

Positioning System (GPS) . Knowing the amount of helicopter motion during the

series of images used to calculate the optical flow, and the camera parameters, it

is possible to estimate the distance to objects and thus calculate their position in

space.

7

Chapter 1 Introduction

1.3.3 Avoiding Obstacles

Once an obstacle has been detected then avoiding action may be needed. How

ever, if at all possible the inspection process should continue. The aim of the

inspection process is to examine a stretch of line, if some part is missed then it

will have to be re-inspected which adds to the cost.

Slow moving obstacles can be avoided by path planning to allow the inspection

process to cont inue.

When a fast moving obstacle is detected, the inspection process is of no conse

quence. The primary objective is to get out of danger. There may not be time

even to plan a path. In this case a prepared escape path is activated. These

escape paths would be continuously calculated during the flight ready to be put

into action at any time. The advantage of using these prepared escape paths is

that they will not put the vehicle into any further danger as they are based on

all the known data about the environment .

Path planning systems have been developed for robots for many years, and there

are many types. In chapter 2 a summary of the different methods is presented.

The method chosen to implement the path planner in this project is based on

the Distance Transform [8, 9, 10, 11]. This can be thought of as a combination

of cell decomposition methods which are efficient for high dimensional planning,

and potential field methods which are rapid.

The use of spatial decomposition has been incorporated into the scheme as it can

reduce the computer memory requirements for an algorithm and more impor

tantly, according to the Quadtree/Octree Complexity theory [12], improve the

efficiency of the algorithm.

Both the standard avoidance method and the reflex method use a rapid three

dimensional path planner using the distance transform and octree spatial decom

position [13, 14, 15].

8

Chapter 1 Introduction

1.4 Overview of the thesis

In chapter 2 a more detailed background of the RIPL concept is given together

with a literature review of suitable technologies. A description of the different

types of helicopter based guidance systems is given together with a description of

a controller hierarchy that breaks the tasks of navigation and obstacle avoidance

into distinct layers. The different types of path planning methods are presented.

Obstacle detection systems are presented and the decision to use a machine vision

system is justified.

Chapter 3 presents a controller hierarchy. The division of responsibilities into the

three levels, the Planner, the Navigator and the pilot is shown. The Preferred

Flight Space (PFS) is introduced to provide a method for guaranteeing the safety

of any planned path.

In chapter 4 details about the obstacle detection and location systems are given.

Obstacles are divided into two main types: Stationary or slow moving obstacles

and fast moving obstacles. Methods to detect and locate both types are given

and discussed. The use of the optical flow field for the location of objects is

examined, several methods are considered and the one chosen is justified.

The Distance Transform Planner is described in detail in chapter 5. This is a

new rapid path planner for three dimensional environments. The use of spatial

decomposition to reduce the processing time and memory requirement is shown.

This new method has been presented by Williams et al. in [12], Williams and

Jones in [14] and Williams et al. in [15].

Chapter 6 presents the results of the various experiments performed during the

development of the path planner. This chapter shows the development of the Dis

tance Transform algorithm from a feasibility study based on a MatLab algorithm

to a rapid 3D path planner.

The implementation of the Controller hierarchy is presented in chapter 7. This

chapter concentrates on the design and construction of a new test rig that was

used to investigate the combination of the distance transform path planner and

9

Chapter 1 Introduction

of an optical flow method for obstacle detection.

Chapter 8 discusses the results from experiments performed using t he test rig.

This chapter gives details about the configuration of the optical flow software

using a "ground-truth" experiment. Results from several runs of the test rig are

presented showing obstacle avoidance in action.

The final chapter discusses the work presented in this thesis. A judgement is

made about the suitability of the system to answer the complex problems posed

in trying to develop a safe control system for an autonomous system. Conclusions

of the project in general are given together with recommendations for further

work.

1.5 Contributions of this research work

The research contributions that are presented within this thesis are:

• The use of a controller architecture to combine all the different technologies

needed for autonomous flight and the division of responsibilities between a

Planner, Navigator and Pilot is introduced. The controller's benefit is that

it can be tested and analysed by any certificating authority.

• The Preferred Flight Strip (PFS) and the Modified Preferred Flight Strip

(MPFS) are introduced in order to improve safety and to prepare the flight

path for the Pilot reducing the complexity of this "real-t ime" function.

• The development of a rapid three dimensional path planner using the dis

tance transform and spatial decomposition has been the main contribution

of this research work.

• A working three dimensional planner which has been incorporated with

machine vision in a laboratory test rig.

10

Chapter 2

Background and Literature

Review

The purpose of this chapter is twofold; first it discusses the background of the

project and second it reports on the initial literature research that was performed.

The aims of this project have been highlighted in the previous chapter. In this

chapter a more detailed description of the power line inspection problem is given,

together with details of related methods reported in the literature that ·will pro

mote the aims of the project. The idea of using an autonomous air vehicle will

be discussed and the reason for basing all subsequent work around the Sprite

helicopter is explained.

The literature survey consisted of a search for information on what has been

done before in the area of autonomous flight and the associated subject areas.

The following sections give details about the varied mechanisms discovered in

the literature with comments on their suitability, or otherwise, for the current

project. The literature review is ordered in subject areas and each at the encl of

each section there is a discussion about the choices made for the project based

on the information gained.

Chapter 2 Background and Literature Review

2 .1 Background

This section describes the initial concept behind using an AUV to perform power

line inspection. The reasons for performing the inspection are given, together

with a description of current practice. The advantages and disadvantages are

summarised, and a justification for using a UAV is presented.

2 . 1. 1 Power Line inspection - Why?

The electricity companies need to reliably supply power to their customers. In

urban areas electricity is distributed via underground cables. This method of

distribution protects the cables from most forms of damage. However, to supply

power to rural areas pole mounted cables are used. This method of distribution

exposes the poles and cables to many forms of failure.

The electricity companies are bound by law to inspect their power distribut ion

equipment at regular intervals. Failure to perform these checks can result in

interruption of the supply but may have more serious consequences. In a recent

case [16] Scottish Power was fined £100,000 after the death of a nine-year-old

boy who was electrocuted. The boy was killed as he climbed a tree. The court

heard that the power lines passed through the tree, but that it should have been

t rimmed by Scottish Power to at least three meters below the level of the lines.

The electricity company admit ted a charge under the Health and Safety Act. The

court heard the trees had not been inspected for four years due to a fault in the

company's computer system, although t housands of pounds had since been spent

updating safety procedures.

This case highlights the dangers of not performing regular inspections. Less

serious problems can also be prevented by performing regular inspection; these

include:

• Cracks in insulators

• Signs of corrosion on cables

12

Chapter 2 Background and Literature Review

• 'Iraces of arcing

• Worn insulators

• Structural damage to poles

• Broken or slack stay wires

• Leaking t ransformers

• Missing anti-climb guards and not ices

Detecting these problems before they become too severe can reduce the likelihood

of power cuts, or outages as they are known in t he industry. To maintain a high

standard of service power companies need to reduce the frequency of outages to

a minimum. It is also beneficial in so much as the companies do not need to pay

out compensation to their customers.

Inspection by whatever means is typically performed on a 4 year cycle. However,

some lines that are considered "at risk" may be inspected more frequently.

2 .1.2 Current Inspection Procedures

At present t here are three main methods for power line inspection.

Pole climbing

The practice of pole climbing is now only used when looking for specific faults

[2]. It has been discontinued for routine inspection because it is slow, and as

the power is sometimes not removed from the lines, is a dangerous job for t he

inspection crews. T his method does have the advantage of being thorough, but

this comes at a cost.

Figure 2.1 shows a pole being repaired using a "cherry picker" . This cannot be

used in all cases as up to 50% of poles are sit uated at least 200m from the nearest

road or track.

13

Chapter 2 Background and Literature Review

Figure 2.1: Line termination pole under repair

Foot Patrol

A team of two persons walk alongside the stretch of line noting any fault they

may observe. The majority of the inspection process is performed at the poles.

However> the majority of the time is spent walking between the poles. Since most

of the poles are situated in rural areas the ground between the poles is generally

rough with many obstacles such as walls> ditches and hedges impeding the lines

persons. It is generally acknowledged that walking a line is very tedious> leading

to lapses in concentration and occasionally a tendency to omit details [2]. Figures

2.2 and 2.3 shows a typical pole locations.

14

Chapter 2 Background and Literature Review

Figure 2.2: Power line situated in valley

Foot patrols can cover up to 150 poles in one day, but this could halve if the ground

is bad or there are a number of spur lines requiring significant back t racking. In

recent years quad-bikes have been used to inspect poles on open moorland which

speeds up the operation.

Foot patrols give a good degree of accuracy, errors and omissions excepted. How

ever, they can never provide the same amount of pole top detail as pole climbing.

Also there is no record of the condition of the equipment except for the linesman's

report and it is difficult to detect degradation from one inspection to another.

Manned Helicopter

The use of helicopters for inspection is not new. The national grid has been using

this method for checking their transmission towers for a number of years. The

electricity distribution companies have only started using helicopters to inspect

their lines in recent years. This is because the cost benefit is not as great as that

of the national grid as they have a much larger network to inspect.

15

Chapter 2 Background and Literature Review

Figure 2.3: Power line in upland area

Manned helicopter inspection is fast, and up to 250km of lines can be traversed

in one day. However, they are far less accurate than foot patrols because it is

difficult for the observer to know exactly which pole is in view and, with the

unaided eye, only major faults can be detected although being able to view the

poles from above does have advantages.

Another problem is that to obtain sufficient detail the helicopter needs to fly close

to the poles and hence close to the ground. It is the pilot's duty to ensure that

the helicopter does not pose a threat to those on the ground, and so he/she may

need to veer away from the line to avoid a hazardous condition. This deviation

from the line can result in a number of poles being missed which then have to

be inspected by another method, which all adds to the cost. Figure 2.4 shows a

number of poles in an area a pilot may not wish to enter due to the proximity of

a road and trees.

Although there is no record of a power line inspection helicopter colliding with

power lines there have been a number of cases where equally experienced pilots

have done so [17, 18]. Flying so close to the lines and to the ground increases the

16

Chapter 2 Background and Literature Review

Figure 2.4: A difficult location for helicopter inspection due to the proximity of

trees and a road

risk of both those in the helicopter and to those who may be on the ground.

To try and improve the inspection accuracy a stabilised mount with a video

camera has been tested [19]. This allows the operator to fix onto a pole and

zoom in to get a greater amount of detail.

In another project running at Bangor, an automatic pole tracker is being devel

oped. This uses GPS information together with machine vision to lock a video

camera onto a pole and allow an observer to zoom in and out to inspect it. The

use of GPS will allow the operator to uniquely identify the pole removing the un

certainty that is current ly the case. Another advantage of using a video camera

is that the inspection results are recorded and can be inspected at a later date

or during subsequent inspection. Figure 2.5 shows a picture of a pole top taken

from a helicopter. This pole is in a dangerous condition as one of the conductors

has come away from the insulator and is resting on the metal pole top.

17

Chapter 2 Background and Literature Review

Figure 2.5: Faulty pole top

Summary

In general there is a trade off between speed of inspection and quality of inspec

tion. Pole climbing is slow but thorough, helicopter inspections are fast but not

accurate. The aim of inspection is to reduce the cost of maintenance and also the

number of outages to the customer. The next section introduces a new method

for power line inspection which will combine the accuracy of the pole climbing

method with the speed of the helicopter inspection.

2.1.3 The RIPL Concept

The previous section has outlined the problems with the current methods for

power line inspection. This section will introduce RIPL (Remote Inspection of

Power Lines) . A great deal of research has been performed by EA Technology as

to which would be the best plat form for remote power line inspection. A bridging

study [2] suggested four different concepts:

18

Chapter 2 Background and Literature Review

• Semi-autonomous rotorcraft

• Semi-autonomous lighter-than-air vehicle

• Power line swinger

• Truck mounted long sight-line camera

Through the use of trade-off matrices to compare the advantages and disadvan

tages of the different platforms, the semi-autonomous rotorcraft was the concept

that comes closes to matching the requirements .

System Description

The RIPL concept embraces several distinct engineering disciplines. In order

to understand the complexity of the system a sub-system block diagram was

constructed. Figure 2.6 on page 20 shows the complete system diagram.

The system is divided up into six separate sub-systems:

• Ground Station

• Ground Communications Link

• Vehicle

• Vehicle Navigation

• Line Inspection

• Safety

Each of these sub-systems is broken down further. The blocks that this thesis

addresses are the Motion Planner and Flight Path Generator within the Vehicle

sub-system, and the Obstacle Collision Detection within the Safety sub-system.

19

I'-:>
0

':rj
c,q·
i:::
1-1
(!)

I'-:>
0)

~
'"O
t""'
Ul
i:::
Ci
I

Ul
'-<
Ul
M
(!)

8
Ci
0
C":l
~

CL
~-

OC!
1-1
~

8

Vehicle State
(Position and
Orientation)

External Navigation
Sources : Data
Fusion

\._oS

Proximity Signals

VTR ~

g
~
c-t-

~
~

to
~
c-:,

~
6
C
::l
0...
~
::l
0...

t-1
c-t-

~
c-t-
c
~

~
-,::
ct).

~

Chapter 2 Background and Literature Review

The Sprite Helicopter

The concept based on a rotor craft was selected because it offers relatively high

speed inspection, good viewing angles and inspection detail which will improve

the productivity and quality of line inspection.

There are a number of different rotor craft available ranging from small "hobbyist"

vehicles up to military quality vehicles. A _review of the then currently available

airframes was conducted which resulted in the ML Aviation Sprite being selected

[2].

Figure 2. 7 shows the Sprite helicopter.

Figure 2.7: ML Aviation Sprite

The technical specification of Sprite is as follows:

• Airframe

Two two-blade coaxial counter-rotating rotors

Symmetrical planform body of glass fibre and carbon fibre designed to

minimal radar, thermal, noise and optical signatures.

• Power plant

- Two 4.5KW MLH 2/88 two-stroke flat-twin engines

21

Chapter 2 Background and Literature R eview

- Can fly on only one engine

• Launch and recovery

- Vertical take-off and landing

• Guidance and control

- Skyleader PCM radio command system

- Automatic flight control system

- Can be preprogrammed for autonomous flight or automatic recovery

to base in the event of loss of control link

• Mission equipment

- Two 500W alternators provide electrical power

- Various sensor combinations including stabilised video or infra-red

cameras, low light video, laser target designators, chemical sensors,

electronic intelligence and ECM.

Dimensions
Rotor diameter (each)

Body diameter (max)

Height to top of rotor head

Weights
Weight empty

Max fuel

Sensor pack (max)

Max Take off and landing

1.60m

0.65m

0.90m

28Kg

6Kg

6Kg

40Kg

22

Chapter 2 Background and Literature Review

Performance
Max level speed (estimated) 130kmh- 1

Cruising speed lllkmh- 1

Climb rate at optimum speed of 83kmh-1 366m per minute

Normal operating height range 250-500m

Operating ceiling 2440m

Maintainable height on one engine 2440m

Typical mission radius 32km

Endurance (mixed mission) 2 hours

The Sprite airframe and ground support element incorporates 70-80% of the tech

nology required for RIPL. However, the three main problems with Sprite (as with

any other systems) are:

• No cert ification for civilian work

• No autonomous capability

• Somewhat large and heavy to be exactly right for the RIPL concept

2.1.4 So what needs doing?

All civilian aircraft movements are subject to the regulations of the Civil Avia

tion Authority (CAA) . The regulations cover aircraft from jumbo-jets down to

hobbyists' radio-controlled models and therefore will include Sprite. Whether the

RIPL concept is technically possible, or not, is of no consequence if the CAA is

unwilling to certify its use.

The only UK legislation relating to unmanned air vehicles is the relevant parts of

the UK Air Navigation Order (ANO) 1989 and the Rules of the Air, Regulations

1991. The overriding issue with both these is safety. Traditionally, the overall

safety of an aircraft is achieved by the combination of the ANO and the Rules of

the Air, the airworthiness of the aircraft, the licensing of the aircrew, air traffic

control, operational control and maintenance and continued airworthiness control.

23

Chapter 2 Background and Literature Review

However, remote control hobbyist aircraft are exempt from the ANO, providing

the aircraft is below 7kg in weight (excluding fuel) and that they are not used for

commercial ventures. Sprite fails on both scores as its minimum weight without

fuel or sensor payload is 28kg, and the intended use is commercial.

So Sprite will have to conform to the Air Navigation Order and satisfy the fol

lowing sections:

Article 7 Certificate of Airworthiness: An aircraft shall not fly unless it holds a

Certificate of Airworthiness.

Article 19(1) Composition of Crew of Aircraft: An aircraft shall not fly unless

it carries a flight crew.

Article 20(1) Flight Crew Licences: Flight crew must hold appropriate licences.

Article 69(2) Rules of the Air: It is an offence to contravene of fail to comply

with the Rules of the Air.

Articles 7 and 20(1) pose no difficulty in principle. Article 19(1) effectively pre

vents the flight of any unmanned vehicle which weighs more that 7kg. It would

therefore be necessary to apply to the CAA for exemptions to conduct commercial

operations. Article 69(2) is the main problem area as it requires every aircraft to

obey the rules of the air.

Rules of the air

The Rules of the Air, Regulations 1991 outlines the best practice for flying which

is backed up by law. The rules that are of particular interest for our application

are:

Rule 5 Low Flying: Generally, an aircraft shall not fly over any congested area

of a city, town or settlement essentially below 1500ft or below such height

as would enable it to glide clear in the event of failure of a power unit etc

whichever is the higher. An aircraft shall not fly closer than 500ft to any

person, vessel, vehicle or structure.

24

Chapter 2 Background and Literature Review

Rule 17 Avoidance of collisions: "Rules of the Road" and "See and be Seen"

principles for collision avoidance action.

The restriction of flying at an alt it ude of at least 1500ft over settlements is

within the performance characteristics of the Sprite helicopter. However, the

500ft (~ 150m) proximity rule is restrictive. Current manned helicopters do have

permission to fly within 30m of the electricity lines and the ground. The pilots

employed on these missions have to be well trained and are usually ex-military.

In order to fly this close to the power lines the CAA would have to make an

exception. This exemption could be justified from the point of view that it is the

electricity company's property.

The "See and be Seen", or "sense and avoid" which is more commonly used for

UAVs [20], requirement is the main driving force for the work presented in this

thesis. The "be seen" part of the regulation is relatively easy to implement, by

the use of lights and possibly a navigation transponder. However, the Sprite

vehicle was intended for a military role and was deliberately designed not to be

seen so modifications would be required to enhance its "visibility" both to the

eye and to RADAR.

The main problem is the "Seeing" or "sensing" part of the regulations. The rules

governing flying have been developed to cater for manned aircraft. At all times

during a flight a responsible person is always in control of the aircraft, even when

running on autopilot. For unmanned aircraft operated by remote control, it could

be argued that the person on the ground is performing this function. However,

the CAA regulations that apply to remote control aircraft state that the "pilot"

should always be able to visually see the aircraft [21]. If the remote control

aircraft carried a video camera that transmitted the view from the "cockpit" to

the pilot, again it could be argued that the pilot is still in full control of the

vehicle even when it is outside visual range. Unfortunately, the CAA would not

allow this either, as they point out, correctly, that if the communications link

failed then no one would be in control of the vehicle.

The only possible way to satisfy the CAA would be to put a "pilot" in the vehi

cle. In other words the vehicle would have to be autonomous. The autonomous

25

Chapter 2 Background and Literature Review

controller would need to perform all the crucial functions that a human pilot

would. This thesis investigates the machine vision techniques and path planning

methods that could be combined to produce the core functions of an autonomous

controller.

The next sections presents a review of pertinent literature within the fields of

machine vision and path planning.

2. 2 Helicopter Guidance

Passive vision is used in military applications as it reduces the characteristic

electromagnetic signature of a vehicle. This is important in military applications

as the smaller the signature of a vehicle is, the harder it is to detect.

The main area of research is providing military helicopters, that use low flying

techniques to avoid detection by the enemy, with intelligent guidance systems.

The design of intelligent systems for helicopter guidance will require information

about the objects in the vicinity of the flight path of the vehicle. The sensor

system on the helicopter should be able to detect objects such as buildings, trees,

poles and wires during flight. Sridhar and Chatterji [22] introduce a vision based

obstacle detection system based on the optical flow /motion at different points

in an image. The mot ion algorithms provide a sparse set of ranges to discrete

features in an image sequence as a function of azimuth and elevation. They state

that for obstacle avoidance guidance, and for display purposes, these discrete

sets of ranges need to be grouped into sets that correspond to objects in the real

world. They present tests on video footage from a helicopter moving slowly over a

runway containing a number of objects. They state that the object segmentation

algorithm together with a range estimation algorithm provides a basis for the

object information required for helicopter guidance.

Cheng and Lam [23] describe an automatic guidance and control system for heli

copter obstacle avoidance. Their paper describes the development of a guidance

system that can reproduce low level nap-of-the-earth (NOE) flight. This flight

mode is predominantly ground hugging and below tree tops, with mostly lateral

26

Chapter 2 Background and Literature R eview

manoeuvres around obstacles. In this way the helicopter can use ground based

obstacles such as ridges and banks of trees to provide cover from fire. Flying

in the NOE mode places great demands on the pilot's flying skills, such a high

degree of concentration is needed just to keep the vehicle safe. The system pre

sented by Cheng and Lam is aimed at reducing the pilot's work load so that

they can concentrate on deploying their weapons accurately rather than on flying

the helicopter. They present simulation examples showing a helicopter altering

course to avoid obstacles. They show that their method has the potential for pro

ducing t rajectories that provide cover for the helicopter together with obstacle

avoidance.

Sridhar and Phatak [24] also present a navigation system producing nap-of-the

earth flight, but unlike the previous paper their method is based solely on machine

vision techniques. They split the guidance function into three levels - farfield,

midfield and nearfield. The farfield function provides mission information in

corporating global threat information and vehicle resources. The mission plan

contains goals, and way points for directing the rotorcraft between goals. At this

level, a coarse digital map of the terrain is used for planning. The midfield plan

ning refines the path produced by the farfield level for a short duration ahead.

The midfield planner used a more detailed map of the terrain. The flight path

generated by the midfield planner is the path the rotorcraft would follow if all

the a priori information is correct. The near field planner is a real-time function

which uses the previously planned path and modifies it if and when unknown ob

stacles are detected. This method of off-line and on-line planning is similar to the

method presented by Mystel [7] which will be discussed later. Their method for

obstacle location is different to previous methods at it does not attempt to mea

sure the rotorcraft's position using images. The rotorcraft's position is measured

using an inertial navigation system. Kalman filters are used to recursively esti

mate object point coordinates. The filters perform two functions - Measurement

update and time update. The first updates the filter when a new measurement

is made, the second handles time between measurements. Three different filters

are used based on different representations of the state vector, governed by the

choice of coordinate systems. The first uses the earth coordinates of the object

point as the state vector. The second uses the relative coordinates of the object

point with respect to the rotorcraft sensor axis as the state vector. The final filter

27

Chapter 2 Background and Literature Review

assumes that image point mot ion can be represented by a polynomial model for

each of the image coordinates. The results show that the first two Kalman fil

ter implementations provide good estimates of object location, the third Kalman

filter diverges because the actual image motion can be abrupt depending on the

rotorcraft manoeuvre.

2.3 Controller Architecture Literature

The three papers on helicopter guidance above present a complete system de

scription of a guidance system. The final paper by Sridhar and Phatak [24]

describes the guidance function being broken down into three levels, the farfield,

the midfield and t he nearfield.

Mystel [7] int roduces the principle of an Intelligent Mobile Autonomous System

(IMAS). The controller is split both vert ically and horizontally. The horizontal

divisions give different levels in the controller, while the vert ical divisions group

associated functions at the different levels. A typical controller hierarchy is given

in figure 2.8.

The different levels of the intelligent modules and their associated sensors and

maps perform t he following functions:

Planner The highest level of the intelligent module is the Planner. This level

can be thought of as mission planning. This corresponds with Shridar and

Phatak's farfield level. This level has the associated sensors, map and re

porter. The sensors at this level could be as abstract as a dat abase lookup

to find which poles need inspecting. The map at this level could be a mul

tidimensional Geographic Information System (GIS), which would provide

much more than just terrain attitude. This GIS map would contain in

formation about the approximate locations of distribution poles, together

with information about likely static obstacles including t ransmission towers,

communication structures, buildings. A GIS could also hold non-physical

data such as areas where flying could be dangerous such as near airfields, or

28

Chapter 2

Perception

I
I

I I
---------------'

Background and Literature Review

User

Cartographer

Planner

Figure 2.8: Controller Hierarchy

Intelligent
Module

military test ranges, or even areas where manned helicopters have reported

problems such as down-drafts. It could also hold information about the

usage of the land. This could be important as manned helicopters always

tend not to fly low over land that contains sensitive animals such as horses

as they can be alarmed by the noise.

N avigator The second level of the intelligent module is the Navigator. This

level is similar to the midfield function described previously. T his level

produces a flight path for the vehicle to follow, using the Planner's output

as the basis for the path together with its own sensors and map. The path

produced by this level would be the one the vehicle would follow in the

absence of unknown obstacles.

Pilot This is the lowest level of the intelligent module. The Pilot performs path

modification when an obstacle is detected. It uses details passed from the

29

Chapter 2 Background and Literature R eview

Navigator and its own sensor suite and map to calculate these modifications.

Chapter 3 gives a detailed description of the implementation of this type of hier

archical cont roller for use in our part icular application.

2.4 Path Planning Literature

Path planning is the process of generating a sequence of robot posit ions and ori

entations that moves a vehicle from a start location to a goal. It is different to

trajectory planning as it does not take the dynamics of t he vehicle into consid

eration, but only t he kinematics. Motion planning is the term generally used to

describe the combination of path and trajectory planning.

This section will outline the basics of path planning and will present some of the

approaches that have been researched by others.

The task of finding a path from one position to another without causing damage

to oneself or others is a process at which most animals, including humans, are

exceptionally good. This ability has developed over count less years of evolution.

The process uses information from a number of sensors including vision, tactile,

aural and balance. The brain is naturally the key to the process analysing the

inputs and using the knowledge base to produce stimuli to the limbs to generate

motion. The current position of robot planning is nowhere near as advanced as

even lowly organisms such as insects. These possess a complex planning capability

which can plan paths between a nest and food sources and pass this information

on to others.

There are a number of distinct methods for path planning, broadly classified as

Roadmap, Cell Decomposition and Potential methods. Common to these meth

ods is the idea of configuration space. The generation of configuration space

reduces the problem of finding a path for a single point among a set of configu

ration space obstacles. Consider a rigid body robot which is free to translate but

not rotate in a workspace consisting of two obstacles, as illustrated in Figure 2.9.

30

Chapter 2 Background and Literature Review

Goal Workspace Configuration Space

OB COB

OB
2

q,tarl COB

Figure 2.9: Configuration Space Example: The workspace diagram shows two

obstacles and an example path for the triangular shaped robot. The configuration

space diagram shows the path generated by reducing the robot to a point and

growing the obstacles by an appropriate amount.

Consider the basic problem. Let the robot A (at a certain position and orienta

tion) be described as a compact subset of W = RN, N=2 or 3, and the obstacles

OB1 ... OBq be closed subsets of W. In addition, let FA and Fw be Cartesian

frames embedded in A and VV, respectively, FA is a moving frame, while Fw is a

fixed one. By definition, since A is rigid, every point a of A has a fixed position

with respect to FA. But a's position in W depends on the position and orienta

tion of FA relative to Fw. Since the Bi's are both rigid and fixed in W, every

point of Bi, for all i E [1, q], has a fixed position with respect to Fw.

A configuration of an arbitrary object is a specification of the position of every

point in this object relative to a fixed reference frame. Therefore, a configura

t ion q of A is a specification of the position T and orientation 8 of FA with

respect to Fw. The configuration space of A is the space C of all the configu

rations of A. The subset of W occupied by A at configuration q is denoted by

A(q). In the same fashion, the point a on A at configuration q is denoted by

a(q) in W.

One may describe a configuration by a list of real parameters. For example, the

position T can be simply described by the vector of the N coordinates of FA in

31

Chapter 2 Background and Literature Review

Fw. The orientation 8 can be described as the N x N matrix whose columns

are the components, in Fw, of the unit vectors along the axes of FA. Then

q = (T, 8) is uniquely represented as a list of N(N + 1) parameters. Clearly,

however, this representation is redundant , since the matrix describing 8 must

have orthonormal columns and determinant of+ 1. Therefore, C is only a subset
of RN(N+1)_

There are many different methods for generating the configuration space. These

are highlighted below [25]:

1. Point evaluation

2. Sweep volume

3. Minkowski set difference - This effectively grows an obstacle using the shape

of a robot and a reference point on the robot. This type of workspace

generation can be seen in figure 2.9.

4. Boundary equations

5. Slice projections

6. Templates

7. J acobian based methods

Another method for generating the configuration space is presented by Kavraki

[26]. This method uses the Fast Fourier Transform (FFT) to compute the con

volut ion between the robot and the workspace. This method is useful when the

robot is a complex shape and can benefit from specific hardware developed for

the FFT algorithm.

Consider a robot A. A is a rigid body and moves in the workspace W C 3tN, N

is 2 or 3. {3 denotes one of the objects in W, and C the configuration space of A.

The subset of W occupied by A at the configuration q is A(q).

A(q) = A+ q = {x + q: XE A} (2.1)

32

Chapter 2 Background and Literature R eview

C(3 = {q E c I A(q) n (3 =f 0} (2.2)

The obstacle (3 maps to the region C (3 within C - the c-obstacle. The configuration

space can be computed in two dimensions as the convolut ion of the workspace

and the translating robot. Consider a workspace vV,

W = [a,b] x [c,d] C 3i2 (2.3)

W is discretised into a N x N array,

C ll
.. _ [i(b - a) (i + l) (b - a)] [j(d - c) (j + l)(d - c)]

e iJ - a + N , a + N x c + N , c + N

(2.4)

where

i,j ES= 0, .. . , N - l

If there is an obstacle anywhere in the cell ij we let W(i, j) = 1, else W(i, j) = 0.

The robot A can be approximated by a set of points (i, j), i, j E S. For each fixed

value of (x, y, 0) we consider the N x N bitmap array A(x, y, 0), where only the

points that belong to the robot are marked with ones. A point (x, y, 0) in the

(discrete) configuration space is free if and only if,

N-1

C(x,y,0) = L W(i,j)A(x,y,o)(i,j) = 0 (2.5)
i,j=O

We observe that whenever 0 is fixed and x, y are varying, the various bitmaps

A(x, y, 0) are all translations of each other and in particular of A(0, 0, 0). Then

C(x, y, 0) = L W(i, j)A(o,o,o) (i - x, j - j)
i,j

(2.6)

33

Chapter 2 Background and Literature Review

T his is the convolution of W and A~ where

A~(i,j) = A(O,O,0)(-i,-j) (2.7)

The convolution of two arrays Q and T is defined as ,

Q * T(x, y) = L Q(i,j)T(x - i, y - j) (2.8)
ij

Hence,

C(., ., 0) = W * A~ (2.9)

T he configuration space is the building block for many path planning algorithms,

the next sub-sections describes different path planning procedures that can be

applied to it.

2.4.1 Roadmap Methods

Roadmap approaches attempt to reduce the configuration space to a network of

one dimensional curves, the roadmap. If t he start and goal configurations are

linked to this map then path planning becomes a graph search problem. The

search can be performed using a variety of approaches, but among the most used

is the A* algorithm. This searching method uses a heuristic measure to find

minimum cost paths. It is shown that the A* algorithm is admissible, t hat it will

always find the shortest path , and it is optimal [27].

The Sub-Goal Method The Sub-Goal Method generates a list of configura

tions that are reachable from the start point. A local operator is used to test

the reachability between one configuration and t he next. A simple local operator

would be to join the configurations wit h a straight line if no collisions occur.

34

Chapter 2 Background and Literature R eview

The initial use of the local operator is to test whether the goal is reachable. If

it is not, a list of candidate intermediate configurations is generated, these are

the subgoals. The local operator is used then to see which of these subgoals is

reachable. This process is repeated until the goal is reached. The effectiveness of

this method depends on the local operator and the generation of subgoals. The

viability graph is one type of subgoal network commonly used.

The Visibility Graph The V graph is a roadmap that can be used in two

dimensional Cspace. It is constructed by using all the vertices of the obstacles

and the st art and goal configurations as the graph nodes, and the links are the

line segments which connect two nodes without intersecting any obstacles.

An improvement to this method is the reduced visibility or the tangent graph.

This graph is produced by removing all the line segments that are not tangents

of the obstacles. This reduces the size of the graph which can make the struc

ture quicker to search. The tangent graph will always contain the shortest path

between the start and the goal, which will always be found when using the A*

search.

For configurations of three dimensions or higher, the visibility graph cannot be

applied as effectively. However several authors have proposed methods to improve

the situation.

The Voronoi Diagram A Voronoi diagram contains the set of points that

are equidistant from two or more object features. The space is partitioned into

regions each containing one feature and any point in a region is closer to the

feature in that region than to another feature. The resulting roadmap is the edge

between regions. This edge is the safest possible path as it avoids obstacles by

the maximum distance possible. The previous method produced paths that were

optimal in distance and for some path planning applications this is preferred.

However, for the application discussed here safety is the overriding concern and

methods that produce optimally safe paths are preferred.

In higher dimensional workspaces, the boundaries between regions become sur-

35

Chapter 2 Background and Literature Review

faces. This graph is no longer a roadmap and in general is not suitable for path

planning.

The Silhouette Method This method is suitable for constructing roadmaps

in arbitrary dimensions [28]. Objects in higher dimensional space are projected

into a lower dimension space and the boundary of the curves are traced, giving

the silhouette. This reduction is performed recursively until they produce a set

of one dimensional lines.

The final network of these lines produces the roadmap. The path is searched for

by connecting the start and goal to this network. The method generates paths

that trace around the edges of obstacles which may be desirable in some planning

application but not to all.

2.4.2 Cell Decomposition Methods

The cell decomposition methods are characterised by the representation of a

workspace as a series of smaller simple regions. These regions are called cells. A

non-directed graph can be created depicting the adjacency relationship between

cells which can then be searched. This graph is called a connectivity graph. The

nodes of the graph are freespace cells, cells are only linked if they pass an adja

cency rule. Searching this graph from a start node, to find a goal will only be

successful if a channel can be found linking the start and goal. The method can

be divided into two categories, exact and approximate.

Exact Cell D ecomposition Methods Exact cell decomposition methods de

compose the free space into cells whose union is exactly the free space. A function

that decomposes the workspace should have the following attributes: [29]

1. The geometry of the cells should be simple, and

2. It should not be difficult to test the adjacency of any two cells.

36

Chapter 2 Background and Literature Review

It follows from these requirements that the boundary of a cell corresponds to a

criticality, that is something significant changes when the boundary is crossed.

Approximate Cell Decomposition Methods Approximate decomposition

methods use cells of predefined shape whose union is strictly included in the

freespace. The boundary of a particular cell does not characterise a discontinuity

of any sort and has no physical meaning.

These methods are realistically applicable only when the dimension of the workspace

(n) is small , say n < 4. Specific tricks exploiting the structure of a particular task

domain may possibly be used to develop planners working in higher dimensions

[29].

Approximate cell decomposit ion has been investigated further than the exact

methods since they are usually much easier to implement, thus requiring less

computational power and are less sensitive to numerically approximate compu

tations.

The general description of approximate cell decomposition is given in appendix

B.

The basic cell decomposition method can be improved by using a divide and label

algorithm. The most widely used technique is to compute a 2m-tree decomposi

t ion, where m is the dimension of the configuration space.

A 2m-tree decomposition of D is a tree of degree 2m, each cell which is not a leaf

cell has exactly 2m children. Each cell of the tree is a rectangloid cell which is

labelled as EMPTY, FULL, or GREY. The root of the tree is n. Only cells which

are mixed may have children and they each have 2m of them. All the children

of a cell k have the same dimensions and are obtained by cutting each edge of

k into two segments of equal length. If m = 2, the tree is called a quadtree, if

m = 3, it is called an octree.

The root node of the tree represents n, the depth of a particular cell determines

its size relative to n. The height of the tree h determines the resolut ions of the

37

Chapter 2 Background and Literature Review

decomposition of n. The higher the tree the greater the resolution.

In the worst case the number of leaf cells in a 2m-tree of height h is 2mh_ This

increases exponentially with both the dimension of C and the depth of the de

composition. In practice, this number is significantly less, since the tree is pruned

at every empty and full leaf.

2.4.3 Potential Field Methods

Potential field methods use the principles of electric field theory to model the

workspace, obstacles and the robot. Imagine the robot, a, is a positively charged

particle, and the goal, b, is a fixed negative charge. An attractive force exists

between the two charges which can be expressed as:

Fab = _ l _ qaqb f
41rE0 r 2

(2.10)

where Eo is the permittivity of freespace of freespace and r is the distance between

the two particles. The field produced by the goal can be expressed as:

E = _l_qbf
41rEo r 2

The important features of this field are:

1. The field magnitude E is proportional to lql.

2. E is proportional to 1/r2

(2.11)

3. The vector E points directly away from a positive charge, or directly towards

a negative charge

So considering the robot to be initially released from rest in a uniform field, it

will move with constant acceleration along the line parallel to E.

38

Chapter 2 Background and Literature Review

In this way we can produce a field that will attract a robot to a goal configuration.

However, how do we represent obstacles in this configuration? Just as the goal

attracts the robot the obstacles need to repel it. To achieve this the charge on

obstacles are set to be the same as that of t he robot . Using the principle of

superposition we can model the forces on the robot a due to both the attractive

force from the goal band the obstacles ob1 , ... , obn, modelled as point charges as:

F

F

Thus the resulting potential field can be represented as:

(2.12)

(2.13)

(2.14)

Figure 2.10a shows an example of an attractive field, while 2.10b show the re

pulsive field for a point obstacle. Consider the robot starting from rest, it would

follow the contour of the field avoiding the obstacles and proceeding to the goal

location. The combined attractive and repulsive fields are shown in figure 2.10c,

a contour plot of the combined field is shown in figure 2.10d.

Unfortunately, the robot may not get as far as the goal. This is due to the

generation of local minima in the field from the position of the obstacles. This is

the major problem in simplistic implementations of the potential field methods

for path planning.

Potential methods have the advantage of being fast and efficient planning meth

ods. However, this speed is reduced when methods for avoiding local minima are

introduced.

39

4

2

0
1

15

10

5

0
1

Chapter 2

Attractive Force

.
. . ~ . .

: :
. . . .

,,,<: .
y~

0 0

Potential Field

0 0

Background and Literature Review

10

5

0
1

0.8

0.6

0.4

0.2

0.2

Repulsive Force

0 0

Contour Plot

0.4 0.6 0.8

Figure 2.10: Potential Fields a) Attractive Field: Goal at lower left , b) Repulsive

Field : Point obstacle at upper right, c) Combined Fields, d) Contour Plot of the

Combined Fields

2.4.4 Path planning with the Distance Transform

The decision to use a distance transform path planning algorithm was made after

studying the advantages and disadvantages of the planning methods given above.

The key requirement for this application is safety. To be safe it is necessary

to plan paths in three dimensions quickly and reliably. The ability to plan for

multiple goals is also an advantage as it allows several routes to be planned in

one operation. This is useful as it has been suggested that a reflex avoidance

system would be required just to handle the case where a fast moving obstacle

40

Chapter 2 Background and Literature Review

enters the workspace of the helicopter. There would not be enough time to plan

a standard path to continue the inspection process, but there should be enough

time to avoid a collision.

Chapter 5 gives an in depth investigation of the distance transform.

The Distance Transform

The distance transform itself is not a new idea. The first reported use of the

method for path planning was described by Jarvis and Byrne [10] in 1986. In this

approach an attempt is made to find a route from goal location back to a start

location in two dimensions. A uniform grid is placed over the workspace, and

in Jarvis and Byrne's implementation each cell within the grid has 8 neighbours

(they are 8 connected). The distance transform propagates from the goal location

marking all freespace cells with an incrementing distance value. Once all cells that

are not obstacles have been marked, a search from a selected start position can

be made. If the start location has been marked with a distance transform value a

path is possible, otherwise a path does not exist. The path is formed by walking

downhill from the start via the steepest descent path.

The generation of the distance transform can be computationally expensive, espe

cially as the resolution of the grid placed over the workspace increases. However,

there are several advantages to this method. Firstly, the shortest path from any

point to the goal is known for all freespace cells, thus multiple robots can be

supported by the same planning algorithm. Secondly, the distance transform

supports multiple goals. Also, the distance transform provides the feature to

favour or avoid certain regions. All these features are attractive for use in our

path planning system.

Kambhampati and Davis [30] present a multi resolution path planning method for

mobile robots using a quadtree representation of the workspace. Given a binary

representation of the robot's environment, the first step is to reduce the robot to

a point by growing the obstacles by the radius of the robot's cross section. This

process is widely used in path planning. They use a raster to quadtree algorithm

41

Chapter 2 Background and Literature Review

developed by Samet [31]. The complexity of this algorithm is O(n) where n is the

number of pixels in the raster being converted. The next step is to calculate the

distance transform of the freespace nodes of the quadtree. This determines the

minimal distance between the centre of a node and the boundary of an obstacle.

Samet [32] presents an algorithm for computing t his distance transform which has

complexity O(n), where n is now the number of leaf nodes in the quadtree. The

number of leaf nodes in a quadtree of an image map having polygonal obstacles

is approximately~· O(p), where pis the sum of the perimeter of the (polygonal)

obstacles in terms of the lowest resolution units [30] . The method then uses an

A* search algorithm to attempt to find a path from start to goal. This A* search

will only have to deal with about O(p) nodes in the case of a quadtree, instead

of the n2 grid points in the case of a grid based search.

In Samet's method the distance transform is used in a different way to that

presented by Jarvis and Byrne [10] . The measure of distance of a node is the

distance from that node to an obstacle, rather than from that node to the goal.

Shin [8] presents a similar method.

Subsequent authors have used the implementation of Jarvis and Byrne and im

proved the method by using different methods to model the workspace. Zelinski

[9] presents an exploration algorithm using quadtrees and the distance transform.

Initially the workspace is totally unknown. The robot knows its location and that

of the start and the goal. The notional size of the workspace is m x n and the

position reference of the robot is (x, y, q) relative to some reference point. A

quadtree Q is generated of sufficient size to cover the workspace. The smallest

quadtree leaf resolution size is of diameter d, a size that allows the robot to pass

through. The size of quadtree is Q = (2d)i, where i is an integer such that

(2d)i > s and s = max(m, n). The planner assumes that all unknown areas of

the workspace are unoccupied. So initially a quadtree exists which represents

complete freespace. Each node is marked with a distance transform value of oo

(in practice it is the largest available integer). The distance transform is then

calculated. Path planning is then performed to find a path from start to goal.

Obviously the first path is just a direct route to the goal as no obstacles have

been discovered.

42

Chapter 2 Background and Literature Review

The robot then starts moving on this path. One of two conditions exists during

this motion: either the robot reaches the goal or it encounters an obstacle (in

practice this may be detected by a tactile sensor). If an obstacle is discovered then

the node corresponding to the obstacle is marked as such. The distance transform

is then recalculated and a new path is generated. This sequence of detecting an

obstacle, updating a quadtree and replaning the path continues until either the

goal is reached or the path planner reports that no path is possible. The planner

can definitively report that no path is possible when the distance transform value

at the robot's current location is infinite as it has not been marked by a distance

transform value.

2.4.5 Spatial Decomposition

The efficient storage and processing of workspace data for any path planning

method is important. In applications operating in more than two dimensions it

is critical.

An early driving force for the development of spatial decomposition was image

processing. At the time computer memory was expensive and data transmission

speeds were low. For example a 1024 x 1024 binary image requiring lMbit of

memory to store, and transfered via facsimile at 9600 bits per second would take

almost two minutes. For instance, an average length academic paper, say 10

pages, would take 20 minutes to transfer which was expensive if one was sending

it from the UK to the USA. This stimulated many ideas for the compression of

two dimensional images.

A number of different planar decomposition methods exist. In all the above

examples, and the method we propose, square nodes are used as the building

blocks. The reason squares are used in the majority of cases is that:

1. They yield a partition that is an infinitely repetitive pattern so that they

can be used for workspaces of any size, and

2. The partition is infinitely decomposable into increasingly finer pattern.

43

Chapter 2 Background and Literature Review

Other shapes also satisfy the points above, one example is decomposition into

four equilateral triangles. However, triangular decompositions do not have an

uniform orientation. Decomposition into hexagons has a uniform orientation but

do not satisfy point 2 above [33].

One motivation to use space decomposition is to save space. As mentioned above

we predict that the environment local to the helicopter will not contain many

obstacles, in fact in most cases it will be empty. It would be wasteful in both

space and time to operate on a raster representation t hat was empty or in which

only a small percentage of the workspace was used. This is particularly important

as our requirement is for three dimensional planning. We have used quadtrees

and octrees to represent the decomposition of space.

The first implementations of quad trees used pointers to link nodes together. Each

node has one parent pointer and four children pointers. The tree structure is

built by linking these pointers to each other. The root node has no parent so its

parent pointer is empty, also leaf nodes have no children so the children pointers

are empty. This implementation obviously adds an overhead to any method using

it.

Two further implementations have been proposed. The linear quadtree t reats

the image as a collection of leaf nodes where each node is encoded by a base 4

number termed a location code. This location code is a sequence of direction

codes that locates a leaf along the path from the root. For example, node 123,

means that the node is child three of node 12, which is in turn child 2 of node

1, which is child 1 of the root node. The second implementation, known as the

DF-expression [34] (Depth First expression), represents an image as a traversal

of the nodes of its quadtree. This method is very compact as it only requires

two bits to represent a node. However, this method is not suitable when random

access to nodes is required. Samet and Webster show that for a static collection

of nodes, an efficient implementation of a pointer based representation will often

be more economical than a location code representation. This is especially true

for higher dimensional images.

The modern computer has an abundance of memory available, so saving space is

not such an important factor. In many cased a binary array representation may

44

Chapter 2 Background and Literature Review

still be more economical than a quadtree [33]. However, efficient representation of

data has an important effect on execution t ime of algorithms operating on them.

Hunter and Steiglitz [12] present the Quadtree Complexity Theorem. This states

that the number of nodes in a quadtree is proportional to the perimeter of the

image. In other words in the resolution doubles the perimeter doubles thus the

number of nodes will double. Compare this to an array representation, when the

resolution doubles the number of elements in the array quadruples. The Quadtree

Complexity theorem also holds for three dimensional data [35] were perimeter is

replaced by surface area.

Consider the representation of a cube shaped space. For an octree decomposition

representation based on the occupancy of the cube the number of octree nodes

is proportional to the surface area, ie 6 · l2 . If this were to be stored as a simple

matrix the number of elements would be proportional to the volume l3. Now

assuming that the simple matrix representation uses one byte of memory to store

an element and, say that each octree node requires 50 bytes to store information

about a node (a figure derived from software developed during this project), a

comparison can be made. Figure 2.11 shows the comparison between memory

requirements as a log-log graph.

In figure 2.11 the blue line shows the memory requirement of a simple matrix

based storage of the cube space, and the green shows that required by an octree

method. At low values of l the matrix representation is clearly more efficient, but

as l increases the difference becomes smaller and eventually at values of l of more

than 150 it is more space efficient to use the octree representation.

Chapter 5 presents a new method for path planning based on the distance trans

form and quadtree/octree decomposition.

Path planning is of no use without a sensor system to detect obstacles, unfor

tunately tactile sensors are out of the question! The next section will give a

description of the sensor systems researched and will justify the decision to use

vision.

45

1010

109

108

107
(/)
(l)
-a
0
~ 10

6

(/) -C
(l)

E 105 (l)

ui
0

104 (l)
.0
E
::,
z

103

102

101

Cl1apter 2 Background and Literature Review

Comparison of number of elements and number of nodes required to represent an image

.. , , •

: :.: :.: ; :. :.:.:::

• ,•.

: : < ;.:

, ,,

,
' '

•.:,:,: ·· ··· ·· ..

...
. . . .
,•,•,•.'' ..

' ...

. . '

: :-: : ! : : : ' "

t:;:

'
'.'

; :
• .•. \' \ • ,•

...
~ •'•' •'• : : ~ : : :. : : .: : .:

..
: :::.::: ::: ::::: ::: : ::: : : : ; ::: . :- : : : : ! : i ~ : i ! ~ ! ..

0 0 0 0 ■ 0 0 0 MO ><<

..... . : : ~: : : :·:

: :·:: .. :-: : :· ::

. ~ : : : : .; : : ! ! ! : ! ~ ~ : : : ,·

} : :

. ,

.. ·
': ·.· : ·. ·. · ·: . . .

1 ~ : ~
'I' l

. \.'
....... -·

. . ·.·'

100
100 101 102

Length of vertex

Figure 2.11: Memory requirement comparison of matrix (blue) and octree (green)

based algorithms

2.5 Machine Vision Literature

Machine vision is the technology of using sensors and computers to make sense

of the real world in a way that is comparable to humans. Machine vision systems

are applied to tasks such as part placement and obstacle detection for mobile

vehicles.

However, cameras are not the only sensor that can be used for this purpose.

T here are two distinct methods of sensing, passive and active. Video cameras and

46

Chapter 2 Background and Literature Review

thermal imaging cameras are passive as they do not emit any energy to acquire the

informat ion about a view. RADAR and SONAR are examples of the active type of

sensor, these do emit energy and use the returned energy to acquire information.

Another distinction between the two is that generally passive methods generate

two dimensional information about an environment, while active sensors can build

up a three dimensional picture without using computer processing.

The ability to build up a three-dimensional model of an environment is important

for mobile robotics. Without knowledge of what is in the vicinity of the robot

other functions, such as path planning, cannot work. This section will outline

methods that have been found in the literature to produce t hree dimensional

maps using a variety of different sensors, both passive and active. The results

show that camera based vision together with computer processing prove no worse

than other types of methods in terms of performance, and also show why, m

certain categories, they are better for the intended application.

Typically, RADAR devices for microwave imaging designed for long distance rang

ing or radiometric purposes have poor range resolution and operate at a wave

length of several centimetres. Rozmann and Detlefsen [36] describe the use of a

three-dimensional imaging RADAR for a ground based autonomous robot. The

sensor they use is a monostatic pulse Doppler radar front end with a scanning

deflection unit. A 20cm nearly parallel beam is directed by a reflector controlled

mechanically by two servo motors which give an angular range of 360° in azimuth

and a 25° in elevation. The carrier frequency used is 94GHz (>-=3.2mm), at a

pulse peak power of 10m W. Their intended application is for a land based robot

which operates in a human environment, so the power level is kept to a mini

mum for safety reasons. They claim a distance accuracy of less than 17mm, an

angular accuracy of 0.125° (both over 50m) and a velocity accuracy of lmms- 1

(1 x 10-3ms-1) over a measurement domain of ±8ms-1 . This sensor gives the

robot a great deal of information such as distance, speed and bearing. A map of

the environment can be readily built up from this information and then passed

on to the robot system.

Three-dimensional laser range sensors operate in a similar way to RADAR. Horn

and Schmidt [37] present a method for continuous localisation of a mobile robot

47

Chapter 2 Background and Literature Review

based on such as sensor. The sensor is designed for eye safe (emitted laser power

less than 4.5m W) indoor operation. A collimated laser beam (>-=810nm) is di

rected onto the scene, and the back-scattered light is measured by a photodiode.

The distance between the sensor and the object is determined by measuring the

phase shift between the emitted and received beams of modulated (AMCW) laser

light. A two frequency phase shift method provides high resolution, 0.45mm, over

a 15m range. Three-dimensional range data within a field of view of 52° x 57.6°

(elevation x azimuth) is obtained by scanning the environment with two synchro

nised mirrors.

SONAR plays a vital role in the operation of Autonomous Underwater Vehicles

(AUV). Wright et al. [38] shows the integration of several types of sensor, in

cluding SONAR, electro-optic and magnetic, in a vehicle designed to assist in

the clearing of unexploded ordinance from shallow water areas. In this applica

tion two side-looking SONARs are used, one low frequency and the other high

frequency. The low frequency sensor has a range limit of 37m and a range reso

lution of 7.5cm, and can penetrate soft ground up to a depth of 2m. The high

frequency SONAR also has a range of 37m and a range resolution of 5cm but

does not penetrate the ground significantly.

SONAR is governed by the speed of sound in the vehicle's environment. In air

the speed of sound is about 300ms- 1 . For a lO0kHz signal (>-= 3mm) there is a

5dBm-1 attenuation of the signal, the attenuation of the same frequency electro

magnetic signal is approximately 1.3 x 10- 3dBm- 1 . For underwater applications

the speed of sound is about 1445ms-1 (at 0°C) and for a lO0kHz signal the re

sulting attenuation is approximately 0.03dBm-1 . SONAR is the choice of AUVs

as it can give measurements of distance over a large range from a relatively low

power transducer, it is also unaffected by particles suspended in the water - just

as infra-red can "see" through smoke, SONAR can "see" through turbid water

which is useful in shallow water or near sea bed operations.

Passive sensors, such as video cameras, have been used for navigation and obstacle

detection for manned rotor craft [39, 40, 24, 23, 22]. These researchers show how

vision can be used, sometimes in conjunction with other types of sensors, to

improve safety during low alt itude flight. The systems are used to allow the pilot

48

Chapter 2 B ackground and Literature Review

to concentrate on mission tasks rather than flying the vehicle.

The area of machine vision of importance to this project is obstacle detection and

location. Obstacle location (for both autonomous land and rotorcraft) using pas

sive sensors relies on two fundamental techniques for range estimation: binocular

stereo and motion stereo. Binocular stereo uses two laterally spaced cameras and

feature matching between two images to calculate a range estimation to objects.

Motion stereo uses one sensor from which images are collected as it moves. By

observing the amount of image plane motion that a particular world point ex

hibits between frames and using information about the sensor motion, range to

the world point can be computed. The amount of image motion can be computed

either using the optical flow method [41] or by using feature matching between a

temporal sequence of two or more images.

Bhanu et al. [39] give a description of a sensor suite that could be used in a

military helicopter operating in Nap-of-the-Earth flight . They discuss what com

binations of sensors give the best results and also outline the drawbacks. With

purely motion stereo systems the obstacle must first be detected before an estima

t ion of range can be calculated. Since the range from motion is not computable at

the focus of expansion (FOE - the point in the image plane corresponding to the

instantaneous velocity or trajectory direction) a purely motion stereo system will

fail in exactly t he direction which is most relevant. A binocular stereo system can

provide range estimation anywhere in the stereo field of view (FOV) . However,

it is not a good choice for detecting small obstacles with little or no features.

For example, a FOV of ~ 4 ° would be needed to detect wires 3mm in diameter

at a range of 40m. They propose using binocular stereo and LIDAR, to give a

"maximally passive" system for obstacle detection and avoidance.

Sridhar and Chatterji [22] present a vision-based obstacle detection method for

helicopter guidance. They use optical flow methods together with Kalman filter

ing to give improved accuracy and predict future obstacle locations. They present

simulation results based on images recorded on actual low level flight over a run

way containing a number of obstacles. The results show how obstacle points are

detected and grouped, and then located in world coordinates.

Sridhar and Phatak [24] give an analysis of an image-based navigation system for

49

Chapter 2 Background and Literature Review

low level rotor craft flight . They divide the decision making process into three

levels, the farfield, the midfield and the nearfield and use different sensors for each.

For farfield use they suggest a course digital elevation map of the whole mission

area, and for the mid field a high resolution map which can generate trajectories

for a short duration ahead. The nearfield uses the midfield generated trajectory

and replans this when obstacles that are not contained in the environmental

maps are detected using either low-light-level cameras or forward-looking infrared

detectors.

The majority of references found on the use of vision in rotorcraft are based on

military applications were the main objective is to move away from active sensors

to passive sensors. Active sensors emit a characteristic signature, which can be

detected by an enemy, passive sensors do not, making them a safer system in

battlefield situations. The following part of this section will investigate other

uses of passive vision systems for guidance and obstacle avoidance which are

mostly focused on ground-based vehicles.

Rozmann and Detlefsen [36] used a scanning RADAR to give a 360° azimuth and

25° elevation detection area for a mobile robot. A 360° coverage in azimuth can

be achieved in a vision system either by using multiple cameras with overlapping

fields of view or by using a single camera and a conic mirror as described by Yagi,

Nishizawa and Yachida [42]. The conic mirror they use gives an elevation range

of about 22° which allows the vehicle to see the ground around it and objects

above it. Using a predefined environmental map together with information from

the vision system a path is generated allowing the robot to move from a start to

a goal without colliding with any obstacles.

Several methods for using vision to estimate object depth and position are given

in the literature. The majority are based on binocular stereo or motion stereo

principles. Dalmia and Trivedi [43] propose a method of depth extraction using

a single moving camera by combining these two principles. They claim a mean

error of less than 3% in depth estimation by using spatial and temporal gradient

analysis. Mitiche et al. [44] use a method based on the conservation of distances in

rigid obstacles and show how object location and camera motion can be recovered

from a sequence of images.

50

Chapter 2 Background and Literature Review

Zhuang and Shieh [45] report an approach for computing depth maps from monoc

ular image sequences with known camera motion. They use a combination of the

direct depth estimation method with an optical flow based method to improve the

overall estimation accuracy. They assume that the camera motion is known, the

objects in the environment are rigid bodies, the image is changing slowly between

two successive frames and that in a small interval of time the image brightness

remains unchanged. They solve the depth estimation problem using a Kalman

filter in three stages. In the prediction stage, the depth map of the current frame,

together with information about the camera motion, is used to predict the depth

and depth variance at each pixel in the next frame. The estimation stage re

fines the predicted depth for the next frame. The final stage, smoothing, is used

to reduce measurement noise and to fill in untrustworthy areas. They produce

simulation results on both synthetic and real images and show that using both

gradient methods and optical flow methods can improve the operation of a depth

estimation process.

Horn and Weldon [46] present direct methods for recovering motion of the ob

server in a static environment. Their methods work with cases of pure rotation,

pure translation, and arbitrary motion when rotation is known. The methods

do not establish point correspondence between frames, nor do they calculate the

optical flow. They point out that the field of view should be large to accurately

recover the components of motion in the direction towards the image region, and

also discuss the problems resulting from very large depth ranges.

Observations

The discussion above gives details of different methods to accomplish the task of

obstacle detection and location. The aim is to show that camera based vision

can perform as well as active methods, and for the intended application have

certain advantages over them. The active sensors that would be applicable for

range and velocity estimation are RADAR and laser based systems, SONAR can

be discounted as the attenuation characteristics of the atmosphere means that an

acceptable range specification could not be achieved.

51

Chapter 2 Background and Literature Review

Rozmann and Detlefsen [36] state that a current drawback of RADAR is its high

cost as integrated subsystems are not available. The same is true for Laser range

finding as given in [37]. Both these papers report on the construction of their

own sensor as nothing suitable could be purchased. This is one of the major

drawbacks to this type of active sensors, in contrast passive vision equipment is

readily available.

Another problem with the active sensors is their size, weight and power consump

tion. It would be difficult to incorporate a full RADAR system into the SPRITE

helicopter, the sensor placement would be a problem due to shadowing from the

helicopter 's body resulting in blind spots in the sensory environment. A laser

based system would have the same sort of problems. A vision system to give a

full 360° field of view in azimuth is possible using a conic mirror assembly [42],

but again this would have the problem of blind spots. The other way of giving

360° is to use multiple cameras mounted around the circumference of the vehicle,

for example with each camera having a field of view (FOY) of 60° in azimuth,

six cameras would be required. Using a 6mm lens mounted on a½" CCD camera

gives an elevation range of 44° and a azimuth range of 57°. The choice of lens

and the number of cameras depends on the resolution required from each camera

- a large field of view means that the resolution detail of the images is low, while

a high resolution image needs a small field of view resulting in more cameras.

The drawback of passive vision over active vision is the requirement to process

the information gathered by the cameras to recover location and motion. It

has been reported above that active sensors can do both tasks without the need

for complex processing algorithms and independent of the viewing conditions.

To recover depth either requires binocular stereo or motion stereo. The problem

with binocular stereo is the need for a large base line for resolving the positions of

distant objects. Motion stereo removes the need for this base line at the expense

of requiring further processing of the images. However, the research presented

above has shown that it is possible to recover obstacle locations and motion

from monocular vision system in particular when camera motion is known. The

majority of papers reviewed have limited their experiments to either computer

simulations or live tests under strict laboratory conditions.

52

Chapter 2 Background and Literature Review

From studying the literature, judging the merits and drawbacks of the different

types of sensors, it has been concluded that passive vision presents the best

solution to the problem. The reasons for this conclusion is as follows:

• Passive vision offers a small volume and weight sensor system.

• Computer processing power is increasing, while the size and power con

sumption is decreasing.

• Vision equipment is readily available and, relative to RADAR, is cheap.

• A Mult iple camera configuration can give full 360° coverage in azimuth and

an elevation coverage as good as, or better than, active systems.

• There is no blind spot produced by the body of the helicopter as the cameras

are mounted on its circumference.

• The passive system does not emit any harmful radiation.

• Machine vision techniques, such as motion stereo, looming, optical flow

can give the same type of information at an accuracy equivalent to active

methods.

The main drawback to relying on a machine vision system is that for very complex

environments it would not be able to process all the information quickly enough

to ensure safety. However, the machine vision system would never be alone, there

are other sensors on the vehicle such as GPS, and the a priori information about

the environment given by the GIS, which will all aid in the processing of the

visual information. Also, at all t imes a human operator will be supervising the

flight of the vehicle, ensuring that if there is a problem the vehicle can be safely

recovered.

2.6 Summary

The need for visual inspection of overhead power lines is clear. The death of

a young boy [16] due to the failure of an inspection system just goes to show

53

Chapter 2 Background and Literature Review

how important it is. The current methods of inspection are slow or do not give

detailed results. Flying helicopters at low levels has its risks, several helicopters

have crashed and their crew seriously injured or killed by flying into power lines

[17, 18]. The aim of the RIPL project is to improve the inspection process, reduce

the risks to the inspection personnel and to reduce the cost of inspection.

The Sprite helicopter was chosen as the airframe to provide the base for the

inspection process. The CAA regulations require that a aircraft is always under

the full control of a pilot. This means that a remotely controlled vehicles cannot

venture outside the sight of the pilot. This, and other limiting factors, has driven

the research into developing a system that can fly the helicopter autonomously,

and therefore proving to the CAA that the vehicle is under the control of a "pilot" .

There are two key areas of the CAA regulations. The first, see and be seen

requires the pilot to be able to detect other aircraft. The second requires a pilot

to fly safely avoiding obstacles such as other aircraft and keeping a safe distance

from people, structures, vessels and vehicles.

The ability to "see" requires a sensor, the discussion above has reviewed the

different type of sensor available and has shown that , for the RIPL project a

machine vision has clear benefits over other types of sensors. In order to avoid

obstacles a path planning system is needed. The information from the vision sys

tem plus information from other sources can be used to safely guide the helicopter

through the inspection process while avoiding any obstacles detected during the

flight. The different path planning systems described above all have the ability

to produce flight paths for the helicopter, but the distance transform method has

several advantages over the others such as quickly discovering when no path is

possible and simultaneous mult iple goal planning which add to the safety to the

helicopter.

The combination of the machine vision system and path planning system within

a controller hierarchy that splits the tasks into pre-flight operation, and real-time

flight operations also improves the safety of the helicopter. The next chapter

will detail the controller system leading on to subsequent chapters that detail the

vision system and the distance transform path planner.

54

Chapter 3

Controller Architecture

This chapter will review the controller architecture of the autonomous unmanned

air vehicle (AUAV). The controller architecture is a hierarchical structure con

ta ining three important levels: the planner, the navigator and the pilot. Each of

these will be discussed in detail to show how they produce a coherent approach

to the solution of the problems described in chapters 1 and 2.

3.1 System Architecture

There are many types of system architecture presented in the literature. The

concept selected is based on Meystel's Intelligent Mobile Autonomous System

(IMAS) architecture [7]. The architecture comprises of four levels, these being

the Planner, the Navigator, the Pilot and the Actuation Control System. A

pictorial representation of this structure is given in figure 3.1.

The division of responsibilities within this structure is as follows:

Planner This is the highest level controller. It is the main interface between the

user and the vehicle. The operator enters the mission objectives and the

planner then produces a mission plan detailing to the next level down the

requirements of the mission.

Chapter 3 Controller Architecture

Navigator Using the information from the level above the navigator produces a

detailed path for the vehicle to follow using any a priori information that

has been gathered . This path will satisfy the mission objectives as far as

possible.

Pilot This is the lowest controller level investigated. The pilot is in charge of

getting the vehicle from A to B, satisfying the mission objectives without

colliding with obstacles. The pilot makes changes to the navigator's flight

path to take into account any deficiencies in the navigator's information

about the environment. The pilot will follow the navigator's flight path if

no obstacles are detected.

Actuation Level This level is shown as the autopilot in figure 3.1. This controls

the actuators of t he vehicle. This level is machine dependent and as such

will not be investigated further in this chapter as the low level controller

for the Sprite helicopter is not known at present.

The IMAS architecture was chosen because it allows both off-line and on-line

control of the vehicle. The Planner and the Navigator levels of the IMAS archi

tecture can be preformed off-line as they operate with a priori information. The

pre-flight planning is designed to produce the safest possible path given known

information. The on-line control then only needs to react to unknown obstacles

by modifying the path that was produced off-line.

Other controller architectures considered are all loosely based on this type of

division of responsibilities. Meystel terms them Nested Hierarchical Controllers.

They include intermediate levels between the three given above and some include

details about the sensors system and low-level actuator control. It was decided

to keep the controller architecture simple and if need be introduce complexities

within each level. This is done in the pilot function where two types of obstacle

detection system are employed, the first to deal with stationary or slow moving

obstacles that can be avoided by path replanning, and the second to deal with

fast moving obstacles that are handled by a reflex controller .

56

Chapter 3 Controller Architecture

User Input

Planner

Navigator 1---~

Pilot

Figure 3.1: Hierarchical Controller Architecture

3.2 Planner

The planner is the top level of the architecture. This contains the user interface

to the UAV, allowing an operator to select a series of poles that require inspection.

It also contains a reporter which allows the operator to enquire about the state

of the vehicle at any time.

In order to produce a maximally safe flight path the planner must have a priori

information about the environment around the poles that are to be inspected. The

inspection environment would be stored in a Geographical Information System

(GIS). The GIS would contain information about the landscape, the use of the

land, the type of land, the location of towers or masts , and the locations of the

poles. The GIS would be updated after every flight to correct position errors and

to introduce any new obstacles detected.

57

Chap ter 3 Controller Architecture

Using this a priori information would allow the majority of the planning stage to

be performed off-line, prior to a mission.

3.2.1 Preferred Flight Space

The planner uses a GIS to produce a Preferred Flight Space (PFS). The PFS

is a volume in which the helicopter flies during its mission. The PFS is not an

exclusive airspace. The generation of the PFS is based on rules. The main rules

are laws governing flying as laid out in the Air Navigat ion Order [29]. These will

control the size of the PFS in height, minimum and maximum.

The maximum height for model aircraft as defined in CAP 658 [29] is 120m

above ground level. There is no set minimum flight level, but in CAP 658 the

recommendations are that any air vehicle should stay at least 50m from people,

vehicles, vessels and structures. So a minium height of 50m would satisfy the

best practice guide at all t imes. This would result in an height envelope of 70m.

The width of the PFS will be based on the dynamics of the helicopter allowing

enough room for safe manoeuvring. The inspection equipment would also affect

the width of the PFS, there will be a maximum distance away from the poles be

yond which the inspection results would not be acceptable. The PFS is generated

as a constant width and height volume of defined cross-section which follows the

poles from start to end. This can be seen in figure 3.2.

The planner will use the concept of traversability. In ground based robotics

traversability is used to describe the quality of the terrain. For example, on a

map a lake would have a traversability value of O (for a purely land based vehicle)

while a tarmac road would have a value of 1. The intermediate values would be

assigned to intermediate ground condit ions.

However, for an air vehicle, the condition of the ground is generally of little

importance, other t han at take off and landing or during an emergency so the

meaning of t raversability is different . Consider a wide area of flat land around

the line of the poles. For this type of environment the t raversability of the region

58

Chapter 3 Controller Architecture

Power Distribution Line

Preferred Flight Space:

♦

• I • ■ • • • •

.

Plan View

Cross Section T

Figure 3.2: Preferred Flight Space: Conceptual visualisation

around the poles could be set to one. The reasoning behind this is that there are

no known obstacles higher than our normal minimum flight altitude (50m plus

safety margin) as defined in the CAP regulations.

In contrast, consider the case were the helicopter is required to fly up a valley to

monitor the poles. As the poles are on the valley floor, there may be areas of the

valley sides that could infringe on to the PFS, compromising safety. These areas

would be allocated a low traversability value. These two examples are on either

extremes of the environments that we envisage that our vehicle would encounter.

Another use for the traversability value is to identify areas where it would not be

safe to fly for reasons other t han the position of physical obstacles. Examples are

near air fields, where other aircraft are likely to pass through the PFS, or target

ranges which are specified as no fly areas. Areas where flying can be difficult,

for example in mountainous areas where down drafts can affect the vehicle, could

also be included but these factors would require local information from human

pilots who know the area. Another use of the traversability factor would be to

mark areas of farm land which contain animals that could be disturbed by the

59

Chapter 3 Controller Architecture

noise from the helicopter. In manned flights, pilots are always on the look out

for farm animals. In particular, horses seem to be easily distressed and can cause

injuries to themselves. As stated previously, the goal is to minimise the risks

both the the helicopter and others, before leaving the ground.

3.2.2 Modified Preferred Flight Space

So how would these traversability measures be used to improve the safety of the

PFS? A number of methods could be used dependent on the rules adopted by the

operator. A decision could be made to fly only in space of traversability values

of one, ie where no known obstacles or other dangers will hinder the mission.

Using this method if the PFS contains a hazard, then no path is possible. This

is maximally safe, but not feasible. The MPFS can only be created within the

bounds of the PFS, because as far as the navigator is concerned, the area outside

is unknown.

The preferred option is to have a variable threshold. At the first pass test to see

if a clear path is possible. If not, reduce the traversability t hreshold to (say) 0.9

and t ry again to produce a path. The reduction of t he threshold value would

be continued down to a predefined limit until a path is found. This is a better

method than simply selecting an arbitrary lower limit as it will ensure that the

safest possible MPFS is produced given the threshold degradation interval.

To illustrate this principle take, for example, the obstacle on a flat piece of land

as shown in figure 3.3. The building could be a tall tower over 50m high, thus

encroaching into the PFS.

How would the PFS be modified given an obstacle like that in figure 3.3? Figure

3.4a shows the obstacle near a stretch of power line together with the traversability

values. The first test is to determine whether the PFS is an acceptable flight

space. The safest path contains no obstacle regions, so the entire PFS has a

traversability value of one. Figure 3.4a clearly shows that this is not possible.

Figure 3.4b shows that with a traversability threshold of 0.9 a path would be

60

Chapter 3 Controller Architecture

0 0.5 0.8

120m

50m

Obstacle

Figure 3.3: Example Obstacle highlighting how the PFS would look in cross

section around an obstacle that encroaches into it

possible. However, t he MPFS is not acceptable as the observer would not be able

examine both sides of a number of poles.

Figure 3.4c shows the MPFS for a traversability threshold of 0.8 and figure 3.4d for

a value of 0.5. In this case the t raversability threshold of 0.8 would be acceptable

giving the option of full inspection around the poles together with a higher level

of safety. T he lower the traversability value the higher the risk level of the MPFS.

T he result of t his process is a flight space that is maximally safe for t he known

environment. The planner's task is now complete and the MPFS is passed down

to the navigator so that an actual path can be generated within the MPFS.

The process of selecting a MPFS need not be a completely computer operation.

It would be advisable for the pilot and observer to have an input and be able to

select t he MPFS for all t he obstacle that encroach into the PFS.

61

a b
~

f-:J 'Tj g
II

.....
()q

..... ~~FS ... _,------ I~ .:: ~ ...,
(!) c:-t-

('l)

vJ
...,

;i:,. <:.,.:,

~
0
CL
::n
(!)

CL

J I I

I ?. I l j I I
"'O

0.5 ...,
0.5 (!)

ct' ...,

l L Traversability=0.8 j I ~Line l l / Traversability=0.8 j I
...,
(!)

Power Line I CL
7

7 'Tj -
~~ Traversability=0.9 l ~ y j

oq"
Traversability=0.9 O""

PF
,,....

PF U)
'O
~
()
(!)

~ .___,

f-:J
II
I-"

o"

~
.___,

MPFS:·/ l I f-:J b
II c:-t-...,
0 0 co

- ('l)

0.5 J I I I / I A 0.5 j I I
...,

() .___, ~
f-:J

...,
g.

Power Line I l J .1. IGY\;.,l,>Q.UUH.J - V•U J I ·Power Line I l J AA Q T "'J. .>Q.UAll!o..J-VoU J I
II ~-

0 c:-t-
7 7 ('l)

00 r., . c:-t-

?J I l ~ Traversability=0.9 j ~~ Traversability=0.9 j CL
.:: ..., .___, ('l)

PF
C d

Chapter 3 Controller Architecture

3.3 Navigator

The planner has produced a MPFS which prioritised the volume of space that

the helicopter should be confined to during the inspection process to remain safe

given the a known environment. The navigator's task is now to produce a flight

path for the helicopter to fly along to produce the best inspection results.

The measure of "best inspection path" is subjective, being based on the configu

ration of the inspection cameras used and possibly the operator's own preference.

However , to produce a flight path some form of formalisation is required. It is

suggested that the experience of pilots and observers who fly the manned inspec

tion operat ions could be used as a model for the exact flight path configuration.

This model could then be used to calculate the best dist ance and angle between

the camera and power line. The best inspection path in not necessarily the

safest path. There is then a trade-off between the best inspection path and the

traversability values of the MPFS.

Manned inspection flights start at one end of the lines of poles and then move

forward along the lines. The observer studies the "front" of the first pole as the

helicopter is flying towards it together with the power lines, and once passed will

then move onto the "front" of the next pole. During the transit to the second

pole, the observer may look back to view the "rear" of the first pole to complete

the inspection, before finishing with the "front" of the second pole.The process

of looking back means that the helicopter can in general fly a reasonably straight

path alongside the poles at a constant speed.

Once the navigator has produced a flight path the vehicle is ready to perform

the inspection of t he poles. In a perfect flight, ie. no obstacles are detected, the

vehicle would j ust follow the navigator's path. However, once up in the air it is

the pilot's responsibility to detect obstacles and avoid them.

63

Chapter 3 Controller Architecture

3.4 Pilot

The pilot is the "real-time" element of t he controller. The pilot's role is to follow

the path generated by the navigator and to detect obstacles and replan the path

to avoid them. The pilot function has been broken down into two main areas -

obstacle detection and location, and path planning. This section will look in turn

at these two functions.

3.4.1 Obstacle Detection and Location

The detection of obstacles in the environment is critical to the safe operation of the

helicopter. Once an obstacle has been detected, its location in the environment is

required so that a local map can be built up allowing a path planner to produce

a flight path that avoids the obstacles.

This section will not give implementation details, but will give a high level view

of how the controller at the pilot level would operate in a complete system. Chap

ter 4 will give a more detailed t reatment of the obstacle detection and location

methods that have been investigated and their implementation on the test rig.

As stated previously in chapter 2 two types of detection mechanisms would be

required for safe operation of the helicopter. The first; standard detection - would

handle stationary or slow moving obstacles that do not pose an immediate threat

to the helicopter. The second - reflex detection - would cater for obstacles that

pose an immediate threat to the helicopter, such as fast moving jets.

Chapter 2 presented a discussion detailing why vision was chosen over other

methods such as RADAR, and in this chapter the justification for choosing vision

will be reinforced.

The proposed solution to the detection of obstacles is to use a number of video

cameras mounted on the periphery of the helicopter. The optics would be chosen

so that a continuous field of view in azimuth is achieved giving 360° vision around

the vehicle. The field of view in elevation would typically be 50°. Any obstacles

detected that are with a certain range of the helicopter would be entered into a

64

Chapter 3 Controller Architecture

local map. A full discussion of the camera system is given in section 4.4.

Standard Detection

The aim of detection is to find areas in a two dimensional image which could be

obstacles in the environment that may pose a danger to the vehicle. This would

be a continuous process operation on a stream of video images. There would be

a separate process for each stream of images, and a supervisor process to keep

the process synchronised. The result would be areas in the cameras' image that

have the characteristics of obstacles. The next step is to estimate the distance

from the helicopter to the obstacles, and then determining their actual location

in space.

The method chosen to estimate the distance from the helicopter to the obstacle

is the optical flow method. This method uses a sequence of images and estimates

the amount of motion in the sequence. Considering a fixed camera in a dynamic

environment, only obstacles that move would be detected and very little infor

mation about stationary obstacles would be gathered. However, our helicopter is

moving and this can be used to acquire more information about a static environ

ment, provided the magnitude and direction of motion between acquired images

is known. This process is known as motion stereo vision. The ability to deal with

moving obstacles accurately depends on the precision of the helicopter position

measurements. The result from this process would be an optical flow field, which

shows the amount of motion in an image sequence. The larger the flow field the

closer the obstacle is to the camera, and therefore the more dangerous it is.

Once candidate obstacles have been detected they need to be analysed. The

information needed about obstacles is their location in space and their velocity.

The distance away from the camera is estimated using the optical flow field and

information about the camera calibration. The resulting distance can then be

used in a simple mathematical relationship linking the position in space to the

position in the image frame, provided the helicopter position is known. This

results in an obstacle region which needs to inserted into the map the pilot uses

to replan its path.

65

Chapter 3 Controller Architecture

The initial acquisition of an obstacle only gives information about what the cam

eras can see - there is no information about what could be behind the obstacle.

Using the overriding guideline of safety first the unseen region behind the obst acle

must be marked as a "danger area". Once more informat ion about the obstacle is

know a better description of its shape can be progressively entered into the map.

Once a map, containing obstacles, is produced the next step is to use it to test if

the navigator's flight path needs modifying.

Figure 3.5 shows an example of a the pilot 's local map, the black regions contain

obstacle regions and the white contains freespace. The red regions are marked as

obstacle as the vision system has been unable to determine the full shape of the

obstacle. The size of the map would be dependent on the vision system, there is

a trade off between the maximum detection distance and the location accuracy.

A guide would be that the resolution of the pilot's map should be no worse that

the accuracy of the vehicle's positioning system. The maximum size of the map

is dependent on the accuracy of the location system, the closer an obstacle is to

the helicopter the more the apparent motion is between successive image frames

which would improve accuracy. At greater distances the accuracy will deteriorate

because of the reduction in apparent motion. At the limit, if the apparent motion

falls below on pixel on the camera's CCD no motion can be detected and thus no

position can be estimated.

Reflex Avoidance

The second mode of obstacle detection is the reflex avoidance system which is

included to handle obstacles posing an immediate threat to the helicopter. The

requirement is to detect a looming motion. An obstacle approaching the vehicle

will appear progressively larger in the field of view, the faster it is coming towards

the helicopter the larger the looming field. It is assumed that there is insufficient

t ime to estimate distances, and that only the approximate direction of approach

can be determined. There would also not be enough time to perform path plan

ning, so some rapid response mechanism is needed to move the helicopter out of

danger safely. To accomplish this a series of acceptable "escape" routes would be

66

Chapter 3 Controller Architecture

Figure 3.5: A visualisation of the pilot's map

planned as the helicopter proceeds along its flight path, so that at any location

the vehicle can put one path into action dependent on the direction of approach

of the threat. The method used to generate these paths is again based on the

standard motion planner using the distance transform and the local map. A num

ber of safe goal locations are selected in different directions from the helicopter's

present location and then used to plan the escape route. Chapter 4 will describe

the looming concept in more detail.

3.4.2 Motion Planning

If an unknown obstacle is detected in the vicinity of the helicopter t hen on-line

path planning may be required to avoid it . The pilot is a ''real-time" system which

needs to produce safe paths very quickly when an obstacle is discovered. This

places severe demands on the computational algorit hms used for t his purpose and

67

Chapter 3 Controller Architecture

one of the main contributions of this thesis, path planning using the Distance

Transform detailed in chapter 5, is to show how processing efficiency can be

increased and the memory requirements minimised.

The map at the navigator's level contains information about the whole inspection

run. At the pilot level, the data contained in the pilot's map only covers a sub

section of the navigator's map. The map can be visualised as a cube with the

helicopter at the centre. The size of the map is dependent on the dynamics

of the helicopter and the dynamics of possible moving obstacles that could be

encountered, and finally on the specifications of the visual system. The map will

include known obstacles that would be passed down from the navigator level,

which in turn was built based on the configuration of the landscape generated

via the PFS and the MPFS at the planner stage.

In normal circumstances, when no unknown obstacles have been discovered, there

would be no need for any path replanning. However, by including data from the

higher levels and the motion of the helicopter, the map is always up to date should

replanning be required.

This provision of a constantly updating map allows the generation of reflex avoid

ance escape routes throughout the mission. This process would be given priority

over the standard path planning mechanisms as explained further in Chapter 5.

If standard replanning is required the pilot would init ially select a goal point

somewhere on the predefined navigator's flight path. Using this location and the

pilot's map a first attempt would be made to generate a path. If this fails, more

goal locations would be tried until a path is found. If no path is produced the

pilot is then free to decide on any location as the goal. If, after trying different

goal locations, a safe path is not found then the helicopter would slow down and

the navigator and then the planner and finally t he user would be asked for fur ther

instructions. It should be noted that even when the helicopter cannot follow the

navigator's path, the reflex avoidance mode remains operational. The likelihood

of the pilot failing to find any paths is very low so the referrals to the higher

levels will be few and far between.

Once a path is generated it is passed down to t he autopilot level which converts

68

Chapter 3 Controller Architecture

the flight path into stick control commands. Refer back to page 57 for the diagram

of the whole inspection system or figure 3.1 for the controller visualisation.

3.5 Summary

This chapter's purpose was to present a controller architecture which combines all

the different technologies that would be required to produce a viable helicopter

inspection platform. The controller architecture was chosen as it allowed the

division of tasks into off-line, the planner and navigator, and the on-line, the

pilot.

The planner's task is to define the poles that need inspecting and to use this to

produce first a preferred flight space (PFS) and then using information about the

environment to modify this as safely as possible to produce a modified preferred

flight space (MPFS), which is a sub-set of the PFS.

The navigator used this MPFS to produce a flight path that is as safe as possible

while giving the "best" inspection locations.

The pilot level has its hands on the controls and needs to be able to detect

and locate obstacles and to then calculate a path modification that will avoid

them. The subsequent chapters of this thesis introduce the technology needed to

implement the pilot level.

69

Chapter 4

Obstacle Detection and Location

using Machine Vision

The previous chapter gives details about the controller hierarchy which has been

selected as the framework for producing a method for cont rolling an autonomous

air vehicle. T his chapter and chapter 5 concentrate on methods for solving two

key issues regarding air safety. This chapter discusses methods for detecting and

locating obstacles that may pose a threat to the vehicle. This chapter will show

t he work done in trying to answer the "seeing" aspect of the CAA's "see and be

seen" regulations.

The two main areas of investigat ion are:

1. Obst acle detection;

• Standard detection;

• Reflex or panic detection.

2. Obstacle locat ion.

The detection process will be discussed giving details about the operation of

the two modes, standard and reflex. The problems associated with each will be

given and applicable methods found in the lit erature will be reviewed as to their

Chapter 4 Obstacle Detection and Location using Machine Vision

suitability for our application. Reflex detection will be explained and the reasons

for needing it will be discussed. The detection of looming mot ion using different

m ethods will be explained.

The location of objects in an environment is key to satisfactory path planning.

The methods considered will be expanded giving details about their suitability.

Methods such as optical flow and stereo vision will be presented with an analysis

of their performance and suitability.

The pilot function described in chapter 3 has two interconnected systems, a path

re-planner which is used to avoid slow moving or stationary obstacles and a

panic planner, or reflex planner, which is used when a fast moving or undetected

obstacle poses an immediate risk to the safety of the vehicle. This is shown in

figure 4.1.

Sensors Mapping
Function

Pilot Level

Reflex

Planner

Planner

Figure 4.1: Pilot function showing the two types of avoidance systems

There are two types of obstacles:

• Slow moving or stationary objects (the norm);

• Fast moving objects (the exception).

71

Cl1apter 4 Obstacle Detection and Location using Machine Vision

The first type of obstacle can be avoided using the standard types of path planning

techniques highlighted in chapter 2. These type of obstacles include balloons,

hang gliders, parachutists and tall ground based structures such as radio towers.

The problem comes with fast moving obstacles as these may not be detected and

analysed in time for the path planner to take avoiding action, this is where reflex

motion planning is needed. The obvious obstacle in this group is a low flying fast

jet. Although one may think that encountering such a threat would be a rare

occurrence, training flights do take place in remote areas of this country, the very

place that airborne inspection is most needed.

4.1 Reflex Collision Avoidance

This section will outline the principle of reflex collision avoidance and highlight

the reasons for considering these methods for use in the hierarchical controller

configuration.

Reflex motion planning means replying quickly to a sudden stimulus. It is analo

gous to the reflex action in humans, a knock on the knee results in a subconscious

movement of the lower leg. It is suggested that vision will be used as the input to

the panic planner but other sensory inputs have not been ruled out. Joarder and

Raviv [47] outline a method for autonomous obstacle avoidance using looming. A

description of looming as it is understood in nature is given in a paper by Regan

and Vincent [48]. Murray et al. [47] show how looming can be integrated with

other machine vision techniques on their Yorick camera platform.

4.1.1 Methods of Detection

Looming

The visual looming effect, a function related to the expansion of the projection

of an object in the retina, is a prime cue in human reflex in avoiding obstacles

72

Chapter 4 Obstacle Detection and Location using Machine Vision

[49] . The same process can be used for machine vision using a video camera to

give a measure of the location of approaching obstacles.

The looming value L of an infinitesimally small 3D object is defined as the negative

value of the time derivative of the relative distance R between the observer and

t he centre of t he object divided by t he relative distance. The unit of looming is

time-1
. It has been shown [50] that looming is independent of camera rotation

and it can be conveniently measured using a logarithmic retina. Looming is

related to, but different from, the so called Flow Field Divergence and Time-to

Collision.

Time-to-Collision

Time to collision is another method that could be used as a reflex avoidance

system. Detection of a small t ime-to-collision triggers a defensive panic move

ment [47]. In [47] the looming function is used to protect the cameras should

any object approach them, the time to collision is derived from the optical flow

field by finding the point of zero motion in the flow field. When the scene is

purely translational this is the focus of expansion, the point at which the scene

translation vector, and t hus the looming object, strikes the image plane.

As a simple demonstration of the time-to-collision principle, consider a planar

version of the pinhole camera model, and a vertical bar perpendicular to the

opt ical axis, travelling towards the camera with constant velocity. It is possible

to compute the t ime, r, taken by the bar to reach the camera only from image

information; that is without knowing the real size of the bar or its velocity in 3-D

space [51] .

F igure 4.2 shows the bar approaching the camera, L denotes the real size of the

bar, with V its constant velocity, and f is the focal length of the camera. The

origin of the reference frame is t he projection centre.

If D(O) = D0 is the position of the bar on the optical axis at time t = 0, its

position at t ime twill be D = Do - Vt. T hen,

73

Chapter 4 Obstacle Detection and Location using Machine Vision

V

L

f DO
◄ · . . · ►

. · ►

D0-vt

Figure 4.2: Time to impact

V
T=-

D
(4.1)

From figure 4.2 the apparent size of the bar on the image plane at time tis given

by

l(t) = f ~

If we compute the time derivative of l(t),

l'(t) = dl(t) = -f !:__ dD = JLV
dt D 2 dt D 2

now if we take the ratio between l(t) and l'(t) then

l (t)
- = T
l' (t)

(4.2)

74

Chapter 4 Obstacle Detection and Location using Machine Vision

Both the apparent size of the bar, l(t), and its time derivative, l'(t), are measured

from the images which allows the computation of r in the absence of any 3-D

information.

4.1.2 Avoiding Action

Once a possible obstacle has been detected by either looming or time-to-contact

how does the vehicle avoid a collision? It is relatively easy to detect a possible

collision it requires little processing power and is robust against many variants

such as camera rotation. This section will indicate some options that have been

considered for avoiding a collision.

The easy answer to detecting a possible collision is to change t he course so that

it is perpendicular to the velocity vector of the obstacle, this would virtually

guarantee that no collision with the obstacle occurs. The problem with this is

that the new course may not be safe and in the urgency to avoid the moving object

the helicopter could fly straight into a hill-side. What is needed is a flexible and

dynamic avoidance plan which could be called upon at any point during the flight.

We have suggested previously in chapters 2 and 3 that a constantly updated

avoidance plan that takes t he current environment and the location of known

obstacles into account should be built during the flight . If a hazard situation

arises, such as a fast moving jet flying low and at speed in the general direction

of the vehicle, the current avoidance plan is put into action. The plan does not

have to be complex as long as it works and reduces the possibility of collision to

a level acceptable to the CAA.

During the operation of the avoiding action new plans are generated so that at all

points during the flight a valid and safe plan exists. The reflex planner is the last

resort to avoid collision and does not guarantee avoiding every possible collision.

For example an obstacle appearing from nowhere, out of a fog bank for instance,

into the immediate vicinity of the helicopter may not be avoided. However, in all

but the exceptional cases the reflex avoidance system must avoid collisions every

time.

75

Chapter 4 Obstacle Detection and Location using Machine Vision

4.1.3 Conclusions

The aim is to produce a safe reliable system that performs correctly every time

an obstacle, that is deemed to be a threat, comes within a set distance from the

vehicle. The system must work alongside the other systems in the vehicle using

information from them to best prepare for evasive action. It is the hope that

the reflex motion planning system will never be needed and that the standard

path planning system will cope with all environments configurations and obstacle

positions and velocities.

Vision is our main sensory input to the system. Machine vision procedures must

be implemented to detect obstacles that could be a threat. The level of threat

must be measured so that if need be the reflex mot ion planning system is acti

vated.

Other sensory inputs may be required to give the best protection. A recent article

on the BBC Television programme "Tomorrow's World" showed a demonstration

of a aircraft detection system using the characteristic signal produced by strobe

navigation lights. The system operated in bright day light and was capable of

detecting an obstacle which was invisible to the pilot as it was directly in line

with the sun. Systems such as this would be an extra level of protection for our

system, and may improve the case for the CAA granting a flying licence for the

vehicle.

In conclusion, reflex motion planning is required because in certain, except ional,

circumstances the standard path planning system may not be able to cope with

the obstacles in the environment either because of their speed or proximity. The

reflex planner will maintain an up to date escape plan derived from information

from other systems in the vehicle and will act on this plan when a sensor system

detects a hazard situation. The reflex avoidance system has not been taken

further than a paper study as effort was put in to develop the standard detection

system first. It would be of little merit to avoid fast moving obstacles, only to

collide with a stationary one. The next section will describe methods for detecting

and locating the normal types of obstacles that the vehicle will encounter.

76

Chapter 4 Obstacle Detection and Location using Machine Vision

4.2 Standard Detection

T he role of the machine vision system is obstacle detection and location. The

objects detected are analysed and, if they are found to be either stationary or

slow-moving and close to the helicopter, then they are added to the pilot's map.

The pilot can then plan a path around the known and detected obstacles to get

from start to goal. If the objects detected are found to be coming towards the

helicopter at a measured speed greater than a certain threshold then a reflex

avoidance system will be initiated and an escape path put into action based on

the measured velocity.

This section will describe two methods that were investigated during the course

of the project. The first uses the principle of conservation of distance, i.e. points

on a rigid obstacle do not change their relative position. The second uses the

optical flow method.

4.2.1 Conservation of Distance

Consider a video camera connected to a frame-grabber which acquires images for

computer processing. The following assumptions are made about the scene and

equipment:

• Obstacles are rigid,

• The image is changing slowly between successive frames,

• In a small interval of time the image brightness remains unchanged.

then, knowing the amount of camera motion and image plane motion the position

of the obstacle can be found.

The following method is based on an idea given by Mitiche at al. [44]. They use

the principle of conservation of distances in rigid obstacles to calculate position

and displacement. This principle, which is the subject of a theorem in kinematics

77

Chapter 4 Obstacle Detection and Location using Machine Vision

of solids, simply states an obvious fact: distances in a rigid configuration of points

do not change during motion. The parameters used in this method consist of the

positions of image points and not optical flow.

p

V(v)
Y(y)

U(u)

···,•··· ,
' ' ' .

~ ·-----·----s..,.X(x) S2
S1 w

z

Figure 4.3: Viewing Configuration

Figure 4.3 shows a point being captured by two cameras. Both cameras are

represented by a central projection model modified not to invert images. A point

Pi in space, the coordinates of which are (Xi,~, Zi) in S1 and (Ui, ¼, Wi) in S2

is imaged on Pi in 11 and qi in 12 , where S1 and S2 are the coordinate systems of

the camera at the different capture positions, and 11 and 12 are the image plane

coordinate systems. Because Pi is on line CiPi there exists a negative real number

Ai such that

78

Chapter 4 Obstacle Detection and Location using Machine Vision

where (xi, Yi) are the coordinates of Pi, and Ji is the focal length. Similarly, Pi

is on the line C2qi and if (ui, vi) are the coordinates of qi then there exists 'Yi < 0

such that

>. and 'Y are negative because of the coordinate system used, C is the projection

centre through which all projection lines pass through, this point is a distance f
from the origin point.

The distance between points Pi and Pj expressed in S1 is therefore

or

Similarly, the distance between ~ and Pj expressed in S2 is

Now the principle of conservation of distance, assuming identical units in S1 and

S2, gives

or

79

Chapter 4 Obstacle Detection and Location using Machine Vision

(>.ixi - AJXJ)2 + (AiYi - AJYJ)2 + (>.i - AJ)2 f t =
(,iXi - rjXJ) 2 + (,iYi - 'YJYJ) 2 + ('Yi - rj)2 fi

(4.3)

Each point Pi contributes two unknowns Ai and 'Yi, and each pair of points Pi, Pj

gives one second order equation in the form of (4.3) above. Therefore, 5 points

yield 10 equations in 10 unknowns.

This method depends on point correspondence between two images. The assump

tion that the image is changing slowly over times allows the matching of image

points between frames. In [44] they use a least-squares analysis using a FOR

TRAN subroutine. It should be noted that the position of the camera when the

images were taken is not used in the equations given above, Mitiche discusses a

method of recovering camera motion (both translation and rotation) using these

equations by calculating the transformation matrix which takes S1 to S2 . If the

position of the camera is known then this matrix is known and this will simplify

the solution to the second order equation given above. In the RIPL applica

tion the position of the vehicle would be known, thus this method could quickly

determine the location of obstacles in space

This method was investigated but not taken any further due to the restrictions

on rigid bodies. As described above, the slow moving obstacles that could be

encountered include non-rigid bodies such as balloons. The next section will

describe the method that was chosen to perform obstacle detection and location.

4.2.2 Optical Flow

Optical flow is the distribution of apparent velocities of movement of brightness

pa tterns in an image [41] . It can give important information about the spatial

arrangements of objects in an environment . Discontinuities within the optical

flow field can aid segmentation of images into regions which correspond to dif

ferent objects. The optical flow technique can also be used to estimate 3D scene

properties and motion parameters from a moving visual sensor [52]. It can also

be used to compute the focus of expansion and time-to-collision [53].

80

Chapter 4 Obstacle Detection and Location using Machine Vision

A detailed description of optical flow and methods for computing it are given in

papers by Horn and Schunck, and Beauchemin and Barron [41, 54] .

Mathematical R epresentation

Let the image brightness at the point (x, y) in t he image plane at t ime t be

denoted by E(x, y, t) . Now consider what happens when the pattern is displaced

a distance ox in the x direction and oy in the y direction. The brightness of the

patch is assumed to remain constant, so that

E(x, y, t) = E(x + ox, y + oy, t + ot)

Expanding the right-hand side about the point (x, y, t) we get,

BE BE BE
E(x, Y, t) = E(x, y, t) +ox~+ oy~ + ot~ + E

uX uy ut

Where E contains second and higher order terms in ox, oy and ot. After subtract

ing E(x, y, t) from both sides and dividing through by ot we have

ox BE 8y BE BE O (ot) = 0 ot ax + ot oy + at +

where O(ot) is a term of order ot. In the limit as ot ➔ 0 this becomes

8Edx 8Edy BE - -+--+-= 0
ax dt ay dt at

If we let

dx
u=-

dt
and

dy
v = -

dt

81

Chapter 4 Obstacle Detection and Location using Machine Vision

then is it easy to see that we have a single linear equation in the two unknowns

u and v,

(4.4)

where we have also introduced the additional abbreviations Ex, Ey and Et for the

partial derivatives of the image brightness with respect to x, y and t, respectively.

The partial spatial derivatives of the image brightness are simply the components

of the spatial image gradient, VE, and the temporal derivatives dx/dt and dy/dt,

the components of the motion field, v. Equation 4.4 can also be rewritten as the

image brightness constancy equation:

(4.5)

where E = E(x, y, t) and v is the motion field and the subscript t denotes the

partial differential with respect to time.

How well does (4.5) estimate the normal component of the motion field? To

answer this we need to look at the difference, 6.v, between the true value and

the one estimated by the brightness constancy equation. In general, 16.vl, is

unlikely to be identical to zero, and the apparent motion of the image brightness

is almost always different from the motion field. The apparent motion is known

as the optical flow.

The optical flow is a vector field subject to the image brightness constancy equa

tion 4.5, and loosely defined as the apparent motion of the image brightness

pattern [51]. The optical flow is only an approximation of the motion field

which can be computed from time varying image sequences, the error of this

approximation is small at points with high spatial gradient. The papers studied

[55, 56, 48, 50, 49, 57, 58, 59, 60] give more information on the different methods

for computing the optical flow.

There are other methods for computing object position and velocity, some use

82

Chapter 4 Obstacle Detection and Location using Machine Vision

object matching to a database of known obstacles and measure the relative sizes

to estimate depth. Other use inter-frame matching of obstacle features, such as

corner points, to estimate mot ion.

Optical Flow Methods

Barron et al. [61] and Galvin et al. [62] give comparisons of optical flow methods.

The optical flow methods they have investigated include the following:

• Anandan

• Camus

• Fleet and Jepson

• Heeger

• Horn and Schunck

• Lucas and Kanade

• Nagel

• Proesmans et al.

• Singh

• Uras

The source code for the most of the above methods is available from:

• ftp:// ftp.csd.uwo.ca/pub/vision [63]

The key requirement is to get a full picture of what is occurring in the envi

ronment. Many of the methods investigated by Barron et al. [61] and Galvin

et al. [62] give very accurate results, but the measurement density is low. A

measurement density of 100% means that every pixel in the original images has

83

Chapter 4 Obstacle Detection and Location using Machine Vision

been given an optical flow value. For example Barron et al. determine that the

phase-based method of Fleet and Jepson and the first-order differential technique

of Lucas and Kanade give the most accurate results. However, the measurement

density of their output ranges from at best 76% to at worst 8.8%.

Some met hods reported by Barron et al. always produced a measurement density

of 100%. These are t he methods of Anandan [64], Horn and Schunck [41] and

Uras. There is a trade-off between accuracy of results and the density of the

results.

In this application safety is of the paramount importance. This dictates that

every obstacle must at least be detected. This requires the use of optical flow

methods that produce a full set of results, even if these results are not as accurate

as methods that do not give a full field of results . Anandan's method gave the

best accuracy results of those methods that produced a full optical flow field.

4.2.3 Anandan's Method

Research on the interpretation of motion [52] indicates that a dense and reliable

displacement field may be necessary for the successful determination of the struc

ture of the environment. The most effective way for computing dense fields seems

to be those methods that use either gradient-based or a matching approach in a

hierarchical, mult i-resolution scheme.

Anandan's method [64] uses such a hierarchical, mult i-resolut ion scheme. The

framework used to compute the optical flow uses spatial frequency decomposi

t ion to separate the intensity variations according to scale. Large scale (or low

spatial-frequency) intensity variations can provide imprecise measurements over

a large range of magnitude of motion. Small scale (or high spatial-frequency)

variations can give more accurate measurements but over a smaller range. The

matching-criterion used between the two images is the minimisation of Gaus

sian weighted sum-of-squared-differences (SSD) correlation template window. A

confidence measure is used together with a smoothness constraint to specify the

criterion for t he propagation of reliable displacements within the framework.

84

Chapter 4 Obstacle Detection and Location using Machine Vision

The code used to implement the optical flow system was obtained from [63].

The code was reviewed and adapted to give the output in a form that could

be integrated with the other software systems. Chapter 8 gives more results

obtained during the testing and integration of the optical flow software. There

are a number of parameters that can be varied in the software. The first is the

size of the correlation template window (W) . The supported values of W are 3 x 3,

5 x 5 and 7 x 7. The second value is the number of levels of spatial decomposition

(L), the software supports up to 4 levels. The final parameter is the number of

relaxation iterations (I), this has a default value of 10.

Figure 4.4 shows two of twenty images from a series of images showing a taxi

turning. These images are used as standards to test optical flow systems. A fixed

camera is pointing at a road junction, a number of vehicles are moving in the

image. The optical flow shown in figure 4.5 was calculated using W=3,L= l and

1= 10 as the parameters for the optical flow software.

Figure 4.4: Images 3 and 4 of the Taxi set of images used for testing optical flow

systems

Figure 4.5 shows the optical flow field calculated by Anandan's method using the

two images shown in figure 4.4. The white taxi seen in figure 4.4 is represented in

this figure by a disturbance in the centre of the flow field. On further examination

of the flow field (which may not be visible in the printed form), the direction of

the motion of the taxi can be seen. A number of other features can be seen in

the flow field, near the lower-left corner a disturbance due to the black car can

be seen. Also, as important, where there is no motion the flow field is zero.

85

Chapter 4 Obstacle Detection and Location using Machine Vision

Figure 4.5: Flow field generated by Anandan's method using the images shown

in figure 4.4

Anandan's method shows that a velocity field can be generated from just two

The flow field is full so depth all over the image can be estimated. images.

Chapter 8 gives details of the experiments used to configure the optical flow

The next section shows how the flow field can be used to build a depth software.

map.

4.3 Using optical flow to locate obstacles within

the environment

The optical flow field gives informat ion about the velocity of objects as they

appear on the image plane of the camera. This motion is either due to the

motion of the camera or the motion of the object or a combination of the two.

This section will describe how the flow field can be used to estimate the position

of an object in space. The coordinate system is cent red in the middle of the

86

Chapter 4 Obstacle Detection and Location using Machine Vision

helicopter as shown in the figure 4.6.

z

X

----.v

Camera

Figure 4.6: Coordinate System

The Y-axis is aligned with the focal axis of axis of the camera.

The magnitude and angle of each flow field vector are calculated. For stationary

objects and a moving camera the distance from the camera to the obstacle can

be estimated as the inverse of the magnitude of the flow field:

where I< is a constant related to the configuration of the camera/lens and f is the

magnitude of the flow field. This detection method is designed for slow moving

obstacles, the amount of motion of the obstacles between images grabbed by the

camera will be small compared to the distance moved by the helicopter so that

obstacles can be considered to be stationary.

The next function is to estimate the position relative to the helicopter. This is

achieved using the following:

87

Chapter 4 Obstacle Detection and Location using Machine Vision

ix a - px

j X {3 pz

where Px,z is the estimated position is space, and i, j is the position of the flow

vector in the flow field image and a and f3 are constants of the camera/lens

combination. Chapter 8 describes this in more detail.

The final stage is to transform the camera based estimates of obstacle position

into world based positions using the position of the helicopter. If the obstacle

points are within the local environment they are entered into the pilot's map, if

not they can be passed to the navigator's map.

If the map contains obstacles then the flight path that the navigator calculated

may need changing, the next chapter will introduce a rapid path planner for use

in three dimensional environments. The final section in this chapter gives details

about the use of more than one camera to allow the detection of obstacles from

all around the helicopter.

4.4 Camera Configuration

This section explains the decisions that were made about the configuration of the

camera system that would be required for the helicopter. The vision system must

be able to "see" as much of the environment as possible. There are two ways to

achieve this using video cameras.

Yagi et al. [42] present a method using a conic mirror which gives a field of view

of 360° in azimuth. The field of view in elevation is dependent on the specification

of the mirror. Although this method give the full field of view in azimuth, there

are still blind-spots.

88

Chapter 4 Obstacle Detection and Location using Machine Vision

4.4.1 Multiple cameras

The other way of giving a 360° field of view is to have mult iple cameras with

overlapping fields of view mounted on the circumference of the vehicle. Figure

4.7 shows a vehicle with four cameras from above.

Vb ya

Figure 4.7: Field of view

Given that t he origin of the coordinate system is placed at the centre of the circle,

the equations of the field of view boundaries are given below. Equation 4.6 relates

to camera 1, equation 4.7 relates to camera 2 on so on.

Ya tan (90 - a)xa + r

tan (90 - a)xb + r
(4.6)

89

Chapter 4

Ya

Yb

Ya

Ya

Obstacle Detection and Location using Machine Vision

tan (a)xa - r tan (a)

tan (-a)xb + r tan (a)

tan (-90- a)xa - r

tan (- 90 + a)xb - r

tan (a)xa + r tan (a)

tan (-a)xb - r tan (a)

} y < -r

(4.7)

(4.8)

(4.9)

It can be seen that if a is less than 45° then the fields of view will never overlap.

As a increases the more the fields overlap and the closer the boundary cross over

points get to the vehicle. The trade off between number of cameras and field of

view is determined by the space available on the vehicle.

Using a 6mm lens mounted on a½" CCD camera, both of which are commercially

available for reasonable prices, gives a field of view of about 44° in elevation and

60° in azimuth. Six camera-lens combinations would be required to give a full

field of view in azimuth.

There is no practical way to give 360° coverage in both azimuth and elevation. It

should be noted that human pilots do not even come close to having 360° of field

of view in azimuth in most small aircraft as there are always blind-spots caused

by the vehicle.

4.4.2 Implications of using multiple cameras

The use of multiple cameras with overlapping fields of view presents some inter

esting questions about how to deal with the information. Either each camera

should be treated individually or the images from all the cameras should be com

bined into one vista. The first case can be wasteful as two adjacent images will

contain some identical information which will be operated on twice. The combi

nation of images is difficult and requires more processing and could be hazardous

should one of the cameras move or otherwise go out of working tolerance.

90

Chapter 4 Obstacle Detection and Location using Machine Vision

The aim of the machine vision system is to identify and locate obstacles in the

environment so that they can be entered into a map. Therefore it is not a problem

if the same obstacle is detected twice by different cameras as long as the posit ions

in space determined from the two images are approximately the same. Therefore

we favour using the information from the cameras individually. The machine

vision system would then be several nearly independent software processes all

running in parallel on separate image feeds. This process could either run on

one computer with a multi-processing operating system, or on several different

computers in a parallel processing environment. The second option is favourable,

subject to space limitations, as it improves the safety of the whole system.

4.5 Summary

This chapter has described the different types of machine vision systems that

would be required in the helicopter. Standard and reflex detection have been

introduced and methods for implementing them have been described. The use of

multiple cameras to give the maximum field of view possible has been discussed.

The reflex avoidance system needs to act quickly. Using methods such as looming

and time-to-collision provide enough information to allow a panic motion to be

put into action. However, these methods have not been take any further than a

paper study and evaluation.

The standard detection system needs to detect stationary or slow moving obsta

cles and locate them in space. A number of methods exist to achieve this but

they need to be quick. The conservation of distance method detailed above would

have been used except for the fact that it only works when the obstacle is rigid.

Such a restriction is not feasible in the airspace the helicopter would operate in,

non-rigid obstacles such as balloons could be present. This method uses geometry

to estimate position in space, and given that the position of the helicopter would

be known should be a quick and reliable method.

The optical flow method described here depends on the obstacles being slow

moving or stationary. The motion in the image plane is then only due to the

91

Chapter 4 Obstacle Detection and Location using Machine Vision

camera, thus the closer the obstacle is to the camera the larger that motion is.

Therefore, image plane motion is inversely proport ional to the dist ance from the

camera. From this estimate of distance location in space can be determined, which

allows any obstacles detected to be avoided. Anandan's method for calculating

optical flow has been chosen to be used in subsequent work as it provides a full

flow field and is accurate.

Once obstacles have been detected they may need avoiding. Chapter 2 describes

some of the path planning methods that have been detailed in the literature. The

next chapter describes a three dimensional path planner which uses the distance

transform and space decomposition to effect rapid planning.

92

Chapter 5

Path Planning using the Distance

Transform

This chapter discusses path planning using the distance transform [8]. A discus

sion of different methods for path planning is given in Chapter 2. The distance

transform method gives two key advantages. F irstly, using a quadtree/octree

decomposition reduces the complexity of the planning problem. Secondly, the

dist ance t ransform allows for fast path planning in a similar manner to the po

tential method, but without the inherent disadvantage of generat ing false goals.

5 .1 Basic Representation

This section will outline the principles of planning a path using the distance t rans

form using a simple two-dimensional example. F igure 5.1 presents the workspace

that will be used throughout the example.

Figure 5.2 shows the segmentation of t he workspace into an eight -by-eight matrix

structure where the cells coloured black represent obstacles in the workspace and

the white coloured cells represent free space.

Figure 5.3 shows the distance transform values radiating from the goal, marked

Chapter 5 Path Planning using the Distance Transform

Figure 5.1: Example two-dimensional workspace

Figure 5.2: Segmentation of workspace into matrix structure

G, t hroughout the workspace.

In t his example the four-connected principle is used. This defines t hat a cell only

considers another cell to be a neighbour if it shares common edges, rather than

just a common vertex connection. Figure 5.4a shows the four connected method,

while 5.4b shows t he eight or fully connected method.

Figure 5.4d shows t he drawback of using eight-connected neighbours as the re

sult ing path can contain elements that clip t he corner of obstacles. Figure 5.4c

shows how this can be avoided by using four-connected neighbours.

94

Chapter 5 Path Planning using the Distance Transform

12 11 10 9 8 7 6 5

ll 10 9 8 7 6 5 4

7 6 5 4 3

6 5 4 3 2

10 9 8 7 6

l l 10 9 8 7

9 8

10 9

Figure 5.3: Application of the distance transform

a b

C d

Figure 5.4: Neighbour configurations and their resulting path properties

Once the matrix structure has been labelled with the distance transform values

a simple descent search can be used to find a path from the start to the goal.

Figure 5.5 shows one possible path from the start location, marked S, to the goal

location.

Although this method is simple it is very powerful and has several key advantages

which make it an at t ractive solution to our path planning requirements. One of

95

Chapter 5 Path Planning using the Distance Transform

12 11 10 9 8 7 6 5

11 10 9 8 7 6 5 4

5 4 3

Figure 5.5: One possible path from the start to the goal

the principle advantages is the property that if a cell has not been labelled with

a distance transform value then it is known that a path to the goal does not exist

from that cell. Other search based methods would require time to determine that

no path is possible, whereas in our application it is preferable to select another

goal and apply the distance transform once more.

5.2 Quadtrees and Octrees

The previous section described the use of the distance transform in the simple

matrix case. vVhile this is adequate for small scale problems in two dimensions,

for larger size workspace or planning in more than two dimensions the efficiency

suffers due to the increased storage requirement and processing time. This section

describes the decomposition of the workspace into a tree structure and shows how

this improves the efficiency of the method.

96

Chapter 5 Path Planning using the Distance Transform

5.2.1 What are quadtrees?

In section 5.1 a matrix was used to represent the occupancy of a workspace.

However, this representation does not store the information efficiently. In this

section the concept of quadtrees is introduced and, by reference to the Quadtree

Complexity Theorem [33] it is shown that except for pathological cases, the rep

resentation of a workspace using a quadtree provides an improvement in both

storage requirements and processing time over a matrix based representation.

Quadtrees are one example of hierarchical data structures. Hierarchical data

structures are used to represent data in computer graphics, computer-aided de

sign, robotics, computer vision and cartography [33]. The term quadtree is used

to describe a class of hierarchical data structures whose common property is that

they are all based on the principle of recursive decomposition of space. They can

be differentiated on the following basis:

1. the type of data that they represent,

2. the principle guiding the decomposition process, and

3. the resolution (which may be variable or fixed).

In our application, a map is produced showing the location of obstacles and free

space. The map is binary, i.e. there are only two possible values of the data,

one value for obstacles and another for freespace. Regular decomposition is used

in our example, this means that each decomposition results in equal sized parts.

The resolution of the decomposition is variable.

The properties of the map can be used to accomplish the decomposition. We

are interested in specific regions of the map, i.e. those containing obstacles and

those containing free space and therefore make use of the most common type of

quadtree, the region quadtree.

97

Chapter 5 Path Planning using the Distance Transform

5.2.2 Node labelling scheme

The key to the subsequent planning operations is producing a fully connected tree

structure. To aid in this process we need a method of knowing which nodes at

any level are neighbours to other nodes. The way that this is achieved is by using

a labelling scheme which uniquely marks a node giving both its position in the

hierarchy of the t ree and the position of the region within the map, so that the

neighbourhood connection process can ascertain what neighbours a given node

should have and assign them.

The numbering scheme operates as follows:

1. The root node is always labelled 0

2. On splitting the root node its children are labelled 1,2,3, and 4

3. Then, if node 1 is split, it is partitioned into nodes 11, 12, 13, and 14.

4. Node 11 is further split into nodes 111,112,113,114 and so on.

5 .2 .3 Building a quadtree

At this point the description of a region quadtree is best conducted using a series

of figures. For the current example we will use the map in figure 5.1.

If this map contained one region only, t hat is if it were all black or all white, then

no decomposition based on region would be necessary and only one node would

be required to store all the information present in the workspace. However, if the

map contains a mixture of obstacle and free space then the workspace is divided

into four equal sized sub-workspaces as shown in figure 5.6.

This is not the only division possible; for instance it is possible to divide the

workspace into four equal sized triangles by dividing the workspace along its

diagonals. There are other shapes that can be used which have been discussed

in section 2.4.5, but here, and in all subsequent references to quadtree or octree

decomposition, square quadrants will be used.

98

Chapter 5 Path Planning using the Distance Transform

2

Figure 5.6: Workspace after first division

The next step is to perform the same occupancy test on the new sub-workspaces.

If a mixture of black and white occurs then it is successively sub-divided until no

further division is possible. Division stops either when no further partitioning is

required or when the maximum resolution of the map is reached. Figures 5.7 and

5.8 show the results of the next and last division.

Figure 5.7: Intermediate decomposition of the data presented in figure 5.2

The resulting tree structure produced by this method is given in figure 5.9. Here

the black leaf nodes represent an obstacle, the white represent free space and

the grey nodes represent a region containing both obstacle and free space. Grey

nodes are never leaf nodes: they must always be divided further.

99

Chapter 5 Path Planning using the Distance Transform

l l

13

31

331

333

12

141 ■

143 ■
32

2

411

433 434 443 444

Figure 5.8: Final decomposition of the data presented in figure 5.2

The process can be described as a recursive algorithm which starts with the

current quadrant set to the whole workspace:

Funct i on generate tree

{

Scan t he current quadrant

If quadrant contains both f r ee and obstacle cells

{

Mark node as 'grey'

Divi de quadrant into sub- quadrants

Label each new sub-quadrant as a child node

For each sub-quadrant

100

Chapter 5 Path Planning using the Distance Transform

Figure 5.9: Quadtree resulting from the decomposition of the data presented in

figure 5.2

{

Call generate tree

}

}

Else

{

If quadrant is all free

{

Mark node as 'white'

}

Else

{

Mark node as 'black'

}

}

Return

}

In this example the region information present in the map has been represented

as forty-one nodes. At no point was the resolut ion of the map mentioned. To

accurately describe the map a minimum resolution of 8x8 is required. However ,

this figure could be considerably greater for more complex maps.

The region quadtree used in this example partit ions space into sets of squares

whose sides are all a power of two long. This formulation is due to Klinger [65] .

For path planning the neighbour relationships of leaf nodes are vital but these

101

Chapter 5 Path Planning using the Distance Transform

have been lost during the translation from the matrix to the quadtree.

5.3 Tree connection method - the key to plan-
.

n1ng

The previous section describes how a tree structure can be derived from a map.

However, for use in path planning a further step is required to enable the distance

transform to be applied in a sensible manner. The region quadtree has the ad

vantage of reducing storage requirements and increasing processing efficiency, but

the decomposition removes t he direct neighbourhood relationships of the regions.

For example in figure 5.8 the leaf node marked 344 is a neighbour to leaf node

433. However, there is no direct way of determining this.

The tree structure must be transformed into an undirected connectivity graph

containing information about the adjacency of freespace nodes before the distance

transform can be applied. Establishing the connectivity requires three stages:

initial neighbour assignments followed by two further node-linking passes through

the structure.

5.3.1 Stage 1 Initial neighbour assignments

Construction of the connectivity graph starts by forming links only between nodes

that share a common parent. The children of every node in the quadtree (Figure

5.9) are examined in turn and a link made between all non-black nodes whose

corresponding cells (see Figures 5.6 to 5.8) share a common boundary. The result

is a number of intra-child-group connections as shown in Figure 5.10. Valid

connections are stored as a pointer-driven list of Neighbour Information within

each node's data structure; links to black nodes never appear in the list.

102

Chapter 5 Path Planning using the Distance Transform

D

Figure 5.10: Connections after the init ial connection stage

5.3.2 Stage 2 : Update connections

Two further types of connection are established at Stage 2. First, connections

are made between the white children of a grey node and any neighbouring white

node. An example of this in Figure 5.7 is the connection of cell 12 (a child of grey

node 1) to white node 2. Secondly, all valid connections between nodes that lie

at the same depth but do not share a common parent are added to the Neighbour

Information list. An example of this in Figure 5.8 is the connection of cell 342 (a

child of grey node 34) with cell 431 (a child of its neighbour grey node 43).

Traversal of the tree is accomplished in depth-first fashion by the recursive func

tion diver, beginning at the root node, and applying the connection function

update1 when t he conditions stated above are encountered.

Function diver(current_node)

{

For n = 1 : 8

{

temp_node = nth child of the current node

If t emp_node is a grey node

{

103

Chapter 5 Path Planning using the Distance Transform

}

diver(temp_node)

}

update1(temp_node) I* call to the connect i on function *I
}

Return

The updatel function is called repeatedly during Stage 2 and the key to fast exe

cution is the node labelling scheme which selects only those pairs of nodes which

correspond to spatially adjacent cells to be tested for a freespace-to-freespace

connection.

The adjacency relationships used by the connection function update1 are de

scribed for the quadtree case - the rules for an octree are no different in principle

but are considerably longer. Consider Figure 5.11 which shows the decomposition

of four cells (1, 2, 3 and 4) into 16 sub-cells, whose corresponding nodes lie at the

same depth in the quadtree.

l l 12 21 22

13 14 23 24

31 32 42

3 34 43 44

Figure 5.11: Adjacency Relationship

Evidently there are only 16 permutations of sub-cells (12-21, 21-12, 14-23, 23-

14 etc) which share a common boundary with sub-cells of another parent,

i.e. they are adjacent sub-cells. The node labelling scheme ensures that update1

104

Chapter 5 Path Planning using the Distance Transform

IC/NII 1 2 3 4

1 X2-Y X4-Y X3-Y X4-Y

Truth Table A 2 Xl-Y X3-Y X2-Y X4-Y

3 Xl-Y X2-Y X2-Y X4-Y

4 Xl-Y X2-Y Xl-Y X3-Y

IC/NII 1 2 3 4

1 X2-Y X4-Y X3-Y X4-Y

Truth Table B 2 Xl-Y X3-Y X2-Y X4-Y

3 Xl-Y X2-Y X2-Y X4-Y

4 Xl-Y X2-Y Xl-Y X3-Y

Table 5.1: Truth tables used to determine adjacency relationships in the connec

tion function updatel

applies the tests for a freespace-freespace connection to adjacent cells only. In

fact, as shown in truth tables 5.lA and 5.lB, any invocation of updatel applies

two tests at most. The truth tables are generic and applicable at any depth

within the tree.

The tables 5.lA and 5.lB give the linking rules based on the final digits of the

current node (C) and the neighbour node (N) . For example if the current node

is 34 (X=34) and the neighbour node is 43 (Y=43) then C=4 and N=3. Using

table 5 .1 B, X2 (child 2 of the current node, in this case 342) would be linked to

Yl (child 1 of the neighbour node, in this case 431) and X4 (344) would be linked

to Y3 (433).

Function updatel(current_node)

{

X = current node 's label

C = final digit of X

For Each node in the current node's Neighbour Information List

{

Y = neighbour node's label

N = final digit of Y

If current node is grey AND neighbour node is white

105

Chapter 5 Path Planning using the Distance Transform

}

}

{

}

Apply truth-table 1A to link white or grey children

of the current node to the neighbour node.

Else If both current node AND neighbour node are grey

{

}

Apply truth-table 1B to link the white or grey children

of the current node to the white or grey children of the

neighbour node .

Else I* current node is white AND neighbour node is grey

DR both current node AND neighbour node are white *I
{

Do nothing I* the first case is dealt with in update2;

the second case does not occur because

such links will already have been made *I
}

Return

The dotted lines in Figure 5.12 show the connections for the example workspace

after applying the updatel algorithm.

5.3.3 Stage 3 Update connections

Stage 3 connects nodes at different depths in the tree. The links that were made

during the two previous stages are retained and the function diver is applied once

more to traverse the t ree but with the updatel function replaced by the update2

function, which again relies on the node labelling scheme for fast execution.

106

Chapter 5 Path Planning using the Distance Transform

Function update2(current_node)

{

X = current node's label

C = final digit of X

P = Parent node of X

If current node has children

{

}

Switch (C)

{

}

Case 1:

X2 linked P2 X3 linked P3 X4 linked P2 and P3

Case 2:

Xl linked Pl

Case 3:

Xl linked Pl

Case 4:

X3 linked Pl and P4 X4 linked P4

X2 linked Pl and P4 X4 linked P4

Xl linked P2 and P3 X2 linked P2 ;X3 linked P3

Return

}

The dashed lines in Figure 5.12 show t he Stage 3 connections for the example

workspace. Note that Figure 5.12 now contains only the links between freespace

nodes which are needed for path planning; the others are redundant once the

connectivity graph is complete and are omitted. ·whilst it would be possible to

search this graph directly for a path, a much more efficient guided search can be

performed using distance transform annotation.

5.4 Application of the distance transform

The previous sections have shown how a matrix based workspace can be converted

into a quadtree and the resulting structure connected so that contiguous regions

107

Chapter 5 Path Planning using the Distance Transform

-

Figure 5.12: Fully connected tree after stages 2 and 3

are joined. The final step before planning a path is to apply the distance transform

onto this structure.

In section 5.1 it was shown how the distance transform was applied to a matrix

structure. The resulting distance transform for the example workspace was given

in figure 5.2. The application of the distance transform onto the tree structure

will produce a different result. The matrix structure is a uniform division of the

workspace but the quadtree decomposition produces a non-uniform division. This

_can be seen by comparing figures 5.2 and 5.8. For example the node labelled 2 in

5.14 contains eight matrix cells in figure 5.2. In the matrix representation each cell

is labelled with a distance transform value while, in the quadtree representation,

every leaf node is given a distance transform value.

The distance transform is applied to the tree structure in the following way.

Starting at the goal leaf node, mark it with a distance transform value of zero.

The goal node contains a list of its neighbours. Each of these is labelled with

a distance transform value of one, their neighbours are marked with a distance

transform value of two and so on until all nodes that are accessible from the goal

nodes have been labelled. Nodes that can not be reached from the goal node

remain unmarked and show that from that node there is no feasible path to the

goal. The distance transform applied to the example workspace of figure 5.13 is

108

Chapter 5 Path Planning using the Distance Transform

shown as a grid representation in figure 5.14. In this figure the distance transform

has radiated from the goal node through the structure until all the nodes are

labelled. The above process can be described by the following algorithm:

Function distance transform

{

}

Create empty queue

Add goal node to queue

Mark the goal node with a DT value of zero

While the queue is occupied

{

}

Remove head of queue and make it the current node

Copy all unlabelled neighbours of the current node

onto the tail of the queue

Mark all unlabelled neighbours of the current node

with a DT value of one greater than the current node

Return

The final step in the path planning process is to find the path from start to goal.

109

Chapter 5 Path Planning using the Distance Transform

- -

Figure 5.13: Distance transform applied to the example workspace

Figure 5.14: Distance transform applied to the example workspace

110

-

Chapter 5 Path Planning using the Distance Transform

5.5 Path planning

The previous processes that have been applied to the local map have generated

a structure that is ready for path planning. The path is produced by beginning

at the start node finding its neighbour with t he lowest distance transform value

and making it the current node. The neighbours of this node are t hen analysed

to find the one with the lowest distance transform value, which is then made the

current node. This process repeats until the goal node is reached. If a start node

is labelled then a path is always possible.

Figure 5.15 shows one path that could be constructed from the start node to

the goal node. Figure 5.16 shows the same path in a grid representation of the

quad tree.

1111

--

Figure 5.15: A path produced using the example workspace

-
-0-G

If two or more neighbours of a node are found to have t he same distance transform

value, which is the best to choose? With this simple method of path planning

it does not really matter. However, to improve safety it is always preferable to

use nodes that cover the largest areas of free space. In this way the subsequent

motion planner has the space to work in. If the nodes are the same size then the

first one found is used.

111

Chapter 5 Path Planning using the Distance Transform

Figure 5.16: A path produced using the example workspace

The result from t he path planning process is a number of nodes that have to

be passed through to get from the start to t he goal. Remember, that this is

not the path that the vehicle would follow, but an area (or volume) that is safe

for the vehicle to pass through. The path shown in figure 5.16 is constructed by

connecting the node centres t ogether, to get from the node path to an actual path

requires robot specific motion planning based on the kinematics of the vehicle

used . The path presented in figure 5 .16 is only for illustration only.

5.6 Summary

This chapter int roduces and describes a rapid method for path planning in three

dimensions using the distance transform and spatial decomposition. The use of

quadtree and octree decomposition has been explained and the concept of the

distance transform has been introduced. The mechanics of node generat ion and

neighbour connections has been shown by using a two-dimensional example.

The next chapter presents the results of the different experiments that were per

formed to test the three dimensional path planner.

112

Chapter 6

Path planning implementation

and results

T his chapter will review the results obtained from the different practical experi

ments that have been performed on the various implementations of the distance

transform path planner.

6 .1 Two dimensional planning

The section will give a brief review of the results from the two dimensional path

planners that were developed to test the operation of the distance transform.

6.1.1 Matrix based implementation

The init ial investigation of the distance transform used a standard matrix rep

resentation. This simple approach was used to first ly provide a straightforward

way to investigate the propert ies and also to highlight any deficiencies in using

the distance transform for path planning, and also to provide a reference for

comparing any subsequent developments.

Chapter 6 Path planning implementation and results

In order to keep the implementation as simple as possible, MatLab was used to

model the path planning process. MatLab allows, through the execution of a

series of function via a script file (called a m-file), a complex program to be de

veloped. MatLab is particularly good at handling matrices, so it was the obvious

first choice.

The main function sets up the required variables and matrices. The map is

produced using a graphics package which results in a binary GIF file. This allows

for different maps to be produced quickly and easily using a graphics application.

There is the provision to include multiple goals but this is not used in the standard

version.

The second function performs the distance transform calculation. This function

scans the matrix until all the elements are labelled with a distance t ransform

value. It performs this task by passing a 3x3 mask over the image. At the start

only the goal location is marked with a distance transform value, in this case

1. When the centre of the mask reaches this goal location the elements on the

periphery of the mask are set to a distance transform of one more than the value

under the centre of the mask in this case 2. The mask is then applied to the

map repeatedly until all the elements have been set. There are special cases of

the mask to handle the corners and edges of the map. This has the effect of

propagating the distance transform through the matrix.

This process of of passing a mask over the matrix takes a maximum of:

Passmax = [(m x Ceil (i)) + Ceil (n;
1
)] (6.1)

loops of the algorithm to pass over the matrix. Equation 6.1 gives the worst case

value for a workspace of size n x m .

The criteria for stopping the generation of the distance transform is that all the

elements have been set to a distance transform of 1 or more. However, if a region

is not connected to the region with the goal in it, its distance transform values can

never be set. To detect when to finish the application of the distance transform a

"hole detection" algorithm is used. This marks all areas that cannot be reached

114

Chapter 6 Path planning implementation and results

from a goal location. This method was used to allow t he provision for multiple

goals.

The holes are found by scanning the distance transform matrix after a maxi

mum of Passmax loops of the above masking process have been performed. Any

freespace areas that have not been marked with a distance transform value are

more than likely to be contained in a hole. Each remaining freespace element

contiguous to an obstacle is analysed by producing a vector that passes through

the point vertically and horizontally. These vectors are searched for the sequence

... , -1, 0, ... , 0, -1, If this sequence is found in both vectors it means that

the point is enclosed.

The path planning function is a simple descent based search of the distance

transform values from the start location to the goal location. If the distance

transform value is set then a path is always possible, if it is not then no path is

possible.

Figure 6.1 shows a simple example workspace. The goal location is marked with

a red x and the start with a green x, the path is shown as a series of *.

The MatLab implementation allowed many different configurations to be gen

erated and tested easily. The algorithm was mouse based, with the start and

goal nodes being entered on the display. However, the generation of the distance

transform in two dimensions was slow, and would have been considerably worse

if the algorithm had been extended into three dimensions.

However, it was a useful tool to investigate the distance transform and showed how

the distance transform can be likened to the potential-method for path planning.

This can be seen by looking at the surface plot of the distance transform given

in in figure 6.2.

This surface plot shows the values of the distance transform. T he goal locations

is at the lower right hand side of the figure. It can be seen that as one moves away

from the goal the distance transform values increase. The plot looks like a po

tential function with the goal at the bottom of the well. However, in the distance

transform approach the obstacles do not have any influence over the generated

115

25

20

15

10

5

Chapter 6 Path planning implementation and results

Path Planned using the Distance Transform

X

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* X

5 10 15 20 25

Figure 6.1 : The path resulting from a simple workspace

surface. The potential method uses the obstacles to create a repulsive force which

prevents obstacles from coming too close to them. This has advantages but, for

some obstacle configurations, can produce local minima in the force field which

will result in the path planner becoming trapped in a well other than that of the

goal. The distance transform approach does not introduce these false minima.

W ithout these false minima a simple descent based search can be used to plan the

path, whereas a much more complex search method is required in the potential

method.

A more complex map is given in figure 6.3. This shows a complicat ed environment

together with a n obstacle with holes. The figure shows how the holes are marked

116

50

40

30

20

10

0

-10
30

Chapter 6 Path planning implementation and results

Surface Plot of the Distance Transform

0 0

F igure 6.2: Distance t ransform surface produced from the example in figure 6.1

and also shows one path from the start location to the goal.

The surface plot of the complex example's distance transform is given in figure

6.4.

These investigations showed that a more advanced algorithm would be needed

to allow for planning in "real t ime". The next section gives a description of t he

implementation of a quadtree based two dimensional distance transform planning

algorithm.

117

30

25

20

15

10

5

Chapter 6 Path planning implementation and results

Path Planned using the Distance Transform

* * * * * * * *
* *
* *
* * * * * *
* X

*
*
*
*
* * * *
* X * *
* * * * * * * * *
* * + + + * *
* * + + * *
* * + + * *
* * + + * *
* * + + + * *
* * * *
* * * * * * * * * * * *
* *
* *
* *
* *
* *
*

5 10 15 20 25

Figure 6.3: A complex workspace with the resulting path

6.1.2 Implementation of a Quadtree based Distance Trans

form Path Planning Algorithm in two dimensions

The matrix based software presented above showed that planning using the dis

tance transform had clear and distinct advantages over other planning methods

investigated for our intended application. However, the simple matrix implemen

tation would not be satisfactory for use in a real-time system, especially if it

were to operate in three dimensions. T he main drawback of the matrix system is

t hat it is wasteful of space in computing terms. This space inefficiency results in

processing inefficiency due to the fact that all t he operations had to operate on

118

120

100

80

60

40

20

0

Chapter 6 Path planning implementation and results

30 30

Figure 6.4: T he surface produced using the workspace given in figure 6.3

a potentially large matrix. It was decided to research different methods for rep

resenting the data, which reduce the storage requirement and more importantly

improve the processing time.

T he method chosen was to use space decompositions based on the ideas of t rees.

In chapter 5, the quadtree and the octree have been introduced, in this section

the processes used to implement these t ree structures will be presented.

119

Chapter 6 Path planning implementation and results

Implementation details

When the software starts execution, a workspace is loaded and stored in a matrix

structure. The first process is to generate the quadtree. This is performed by

successive division of the workspace as described in chapter 5. The rules used to

generate the sub divisions are as follows:

a (l, m) (6.2)

b (z + ((p + ~) - 1) - 1, m + ((q + 11- m) - 1) (6.3)

C (z + ((p+~)-l) ,m) (6.4)

d (P, m + ((q + 11 -m) - 1) (6.5)

e (z , m + ((q + 11- m)) (6.6)

f (l + ((p + ~) - 1) - 1, q) (6.7)

g (l + ((p + ~) - 1) 'm + ((q + 11 - m)) (6.8)

h (p, q) (6.9)

Figure 6.5 shows the points a, b, ... , h and the corner points of the area that is

to be split, (l, m) -+ (p, q). Using this split method requires that the workspace

is of size (sxs) where,

S = 2x, XE N (6.10)

The fact that the workspaces are of power two sizes means that the division of the

workspace can be implemented using pure integer division, which is significantly

quicker than division using floating point numbers. A workspace can always be

increased to the next power of two size.

After each split a new set of nodes are created. The following information is set

in each of the nodes:

120

Chapter 6 Path planning implementation and results

l,m

a C

1 2

e g

3 4

p,q

Figure 6.5: The split of a square workspace into four sub-workspaces

Node Name This records the position of the node within the tree

Parent T his is the a link to the parent of the current node. All node, except

the root node, have parents.

Node Classification The type of node, either obstacle, freespace or grey

Workspace coordinates This records the coordinates of the current node in

the workspace. The root node covers all the workspace

Distance Transform This is set to a negative number during the node creation

stage

In the first implementation the neighbourhood relationships were not held on the

the nodes, but were stored in a node map matrix. As each node was created

the area in the node map that the node covered was labelled with the node

name. So, for example, in an 8 x 8 workspace, the first division would generate

4 new sub-workspaces each 4 x 4. The top right node, node 1, would cover

the (0, 0), (0, 1), (0, 2), ... , (3, 2) , (3, 3) elements in the workspace matrix, so the

corresponding cells in the node map matrix would be labelled 1. This node map

121

Chapter 6 Path planning implem entation and results

allowed a simple representat ion of the neighbourhood relat ions, as just by looking

at the periphery of a node in the node map would give a list of its neighbours.

Refer to figure 6.6 for further details.

(0,0)~ ~ -----.-Y __ ~
11 12

2
13

X

3 4

la)
(7,7)

(O,O) 11111
11111
1313

2 2 2 2
2 2 2 2
2 2 2 2

1313 2 2 2 2
3 3 3 3 4 4 4 4
3 3 3 3 4 4 4 4
3 3 3 3 4 4 4 4
3 3 3 3 4 4 4 4

lb)

Figure 6.6: (a) Node representation, (b) Neighbour node Map

(7,7)

Taking node 13 for example, this covers workspace elements (2, 0), (3, 0) , (2, 1) , (3, 1).

The corresponding elements in the neighbour map are set with the value 13. So

looking at the periphery of node 13 at all the elements we get a list of the form

2,2,11,11. Processing this list for duplicates we find that t he neighbours of node

12 are 11, and 2. This method provides a st raight forward way of storing neigh

bourhood relationships. However , this is not efficient as corners and edges of the

map need to be catered for, and there is still a matrix to handle.

Once the workspace has been converted and the neighbourhood map has been

constructed then the distance transform can be applied. This is achieved by

starting at the goal node, where the distance t ransform value is set at zero, and

searching the neighbour matrix for a list of the current node's neighbours. These

neighbours are marked with a DT value of 1 and placed onto the end of a queue.

The next step is to take the first node from the queue and mark its neighbours

with a DT value of 2, unless they have already been assigned a value. These

nodes are then placed on the end of the queue. This process of finding the

neighbours, marking them with a DT value of one more than the current node

and placing them on the queue continues unt il the queue becomes empty. This

122

Chapter 6 Path planning implementation and results

process searches the entire workspace for paths that can be reached to the goal

node. If a node cannot be reached from the goal, then it is not a neighbour to

any nodes that are connected to the goal so the node never appears on the queue

nor is it assigned a DT value.

The final step is to locate the start node and check if it has been marked with a

DT value. If it has not then no path is possible from that start point. If the DT

value is set then a simple descent based search is used to find a path from the

start to the goal. Starting at the start node, find the neighbour with the lowest

DT value and move to it . Then look at the neighbours of the current node and

again find the one with the lowest DT value. This process repeats until the goal

is reached.

This implementation proved that the division of workspace saved space, but since

it still used a grid structure to store the adjacency relationships saving was lost.

The next revision was to store neighbourhood relationships within the tree struc

ture.

Results

The following figures give some examples of the workspaces that were used to test

the path planner. In all cases the start location is at the top right and the goal

is at the bottom left of the workspace. The workspace size was 32 x 32, except

for the second which was 256 x 256.

The data produced by most of the path planning experiments is very detailed

and is not presented.

The paths are given as a series of nodes represented by a pair of coordinates,

(i , j) - (k,l) the x direction is aligned with the vertical and they with the hori

zontal in all the workspaces below.

Simple Workspace Figure 6.7 shows a simple workspace with 4 regular shaped

obstacles. The node path can be seen in blue, the start point is at the top left

123

Chapter 6 Path planning implementation and results

marked in red and the goal in the lower right marked green.

Figure 6.7: Simple workspace and node path

The configuration of the obstacles results in a small tree structure. In this case

the full output from the planner is given bellow.

Dist1.08 - Distance transform and path planning

Output info

0 - No info

1 - Info

Enter now:

Enter the map file name :

Finding size

Size is 32

The workspace is 32x32

Do you want to see the matrix? (yin)

Now enter Start and Goal coordinates

Enter Start Point

Enter start x:

Enter start y:

124

Chapter 6 Path planning implementation and results

Enter Goal point

Enter goal x:

Enter goal y:

Generate quadtree

Finding Start and Goal

Distance Transform

Queue is empty

Print tree

Node: 0 Class=2 Start=0 Goal=0 Distance=-2

Node: 1 Class=2 Start=0 Goal=0 Distance=-2

Node: 11 Class=0 Start=1 Goal=0 Distance=5

Node: 12 Class=0 Start=0 Goal=0 Distance=4

Node: 13 Class=1 Start=0 Goal=0 Distance=-1

Node: 14 Class=O Start=0 Goal=0 Distance=6

Node: 2 Class=0 Start=0 Goal=0 Distance=2

Node: 3 Class=2 Start=0 Goal=0 Distance=-2

Node: 31 Class=1 Start=0 Goal=0 Distance=-1

Node: 32 Class=0 Start=0 Goal=0 Distance=1

Node: 33 Class=0 Start=0 Goal=1 Distance=0

Node: 34 Class=0 Start=0 Goal=0 Distance=1

Node: 4 Class=2 Start=0 Goal=0 Distance=-2

Node: 41 Class=1 Start=0 Goal=0 Distance=-1

Node: 42 Class=0 Start=0 Goal=0 Distance=-3

Node: 43 Class=1 Start=0 Goal=0 Distance=-1

Node: 44 Class=0 Start=0 Goal=0 Distance=-3

Plan the path

Do you want to save the path to file? (yin):

From (0,0) to (7,0)

From (8,0) to (15,7)

From (16,0) to (31,15)

From (24,16) to (31,23)

From (24,24) to (31,31)

This output shows the node tree printed out in text form. This gives the node

names, a flag for the start and goal, and the distance transform value. Notice

125

Chapter 6 Path planning implementation and results

that the obstacle points such as node 13 have a negative distance transform value.

Large Obstacle Figure 6.8 shows a workspace with one large obstacle.

Figure 6.8: Workspace and path for one single large obstacle

The output from this run would take over 30 sides of A4 to reproduce. The

workspace used for this example is 256 x 256 and thus the tree has a maximum

of 8 levels. The path is quite simple, flowing around the obstacle to the goal.

Complex workspace with many small obstacles Figure 6.9 shows a com

plex workspace with many small obstacles.

This is a very complex workspace which results in a very "wide" tree, ie. there

are many leaf nodes at lower levels. The blue path is shows the route from start

to goal. The robot can move around in this blue region safe in the knowledge

that it will not hit anything.

No path The next experiment shows the output from a workspace where no

path is possible. This is included as one of the advantages of the distance trans-

126

Chapter 6 Path planning implementation and results

J

I
n

-
Figure 6.9: Workspace with many small obstacles showing node path

form method is the speed at which the absence of a path is determined.

The only test that needs performing on the tree is whether the start locat ion has

a distance transform value greater than one. If not no path is possible.

Complex workspaces Figures 6.11 and 6.12 show two further complex exam

ples.

127

Chapter 6 Path planning implementation and results

Figure 6.10: Workspace where no path is possible

Figure 6.11: Complex workspace and node path

128

Chapter 6 Path planning implementation and results

Figure 6.12: Another complex workspace and node path

129

Chapter 6 Path planning implementation and results

6. 2 Three dimensional planning

This section will reproduce the results obtained from the distance transform three

dimensional planner. The results presented here show the planner operation

under different workspace configurations. T he output from the path planner is

series of nodes that have to be passed through in order to get from the start to

the goal. In order to present these results graphically the freely available PovRay

ray tracing software was used. In all the results, obstacles are coloured blue, the

goal is a green ball , and the start is a red ball. The path is shown as a black line

which passes through the centre of all the nodes in the planned path.

6.2.1 Test 1: Empty workspace

This experiment shows the operation of the path planner when there are no

obstacles in the environment. No spatial decomposition, tree building or path

planning is performed in this case. The whole workspace is treated as one node,

thus the motion path between the goal and node can just be a straight line. The

workspace is shown in figure 6. 13.

130

Chapter 6 Path planning implementation and results

Figure 6.13: Empty workspace

6.2.2 Test 2: Large Obstacles

This experiment shows the operation of the path planner when there are only a

few large obstacles in the environment. Figures 6.14 to 6.19 show a path from

several different angles. Large objects are easier to deal with as they fill more of

t he tree up as obstacle reducing the possible width of the tree. Also, dependent

on the location of the obstacles, they can limit the depth of the tree.

The path is constructed by linking the start point, through the centres of the

nodes in the node path, and then to the goal point. As with the two dimensional

examples above, it is impossible to include even one sample output within the

thesis because of the length.

131

Chapter 6 Path planning implementation and results

Figure 6.14: Workspace with a few large obstacles showing the path from start

to goal: View 1

Figure 6.15: Workspace with a few large obstacles showing the path from start

to goal: View 2

132

Chapter 6 Path planning implementation and results

Figure 6.16: Workspace with a few large obstacles showing the path from start

to goal: View 3

Figure 6.17: Workspace with a few large obstacles showing the path from start

to goal: View 4

133

Chapter 6 Path planning implementation and results

Figure 6.18: Workspace with a few large obstacles showing the path from start

to goal: View 5

Figure 6.19: Workspace with a few large obstacles showing the path from start

to goal: View 6

134

Chapter 6 Path planning implementation and results

6.2.3 Test 3: Small obstacles

This experiment shows the operation of the path planner when there are only a

few small obstacles in the environment. Figures 6.20 to 6.25 show a path from

several different angles.

Figure 6.20: Workspace with a few small obstacles showing the path from start

to goal: View 1

135

Chapter 6 Path planning implementation and results

Figure 6.21: Workspace with a few small obstacles showing the path from start

to goal: View 2

Figure 6.22: Workspace with a few small obstacles showing the path from start

to goal: View 3

136

Chapter 6 Path planning implementation and results

Figure 6.23: Workspace with a few small obstacles showing the path from start

to goal: View 4

Figure 6.24: Workspace with a few small obstacles showing the path from start

to goal: View 5

137

Chapter 6 Path planning implementation and results

Figure 6.25: Workspace with a few small obstacles showing the path from start

t o goal: View 6

138

Chapter 6 Path planning implementation and results

6.2.4 Test 4: No path

This experiment shows the operation of the path planner when there is no path

between the start and goal. Figure 6.26 is included for completeness!

Figure 6.26: Workspace where no path is possible

139

Chapter 6 Path planning implementation and results

6.2.5 Test 5: Complex workspace

This experiment shows the operation of the path planner when there are only a

few small obstacles in the environment. Figures 6.27 to 6.32 show a path from

several different angles.

Figure 6.27: Complex workspace showing the path from start to goal: View 1

140

Chapter 6 Path planning implementation and results

Figure 6.28: Complex workspace showing the path from start to goal: View 2

Figure 6.29: Complex workspace showing the path from start to goal: View 3

141

Chapter 6 Path planning implementation and results

Figure 6.30: Complex workspace showing the path from start to goal: View 4

Figure 6.31: Complex workspace showing the path from start to goal: View 5

142

Chapter 6 Path planning implementation and results

Figure 6.32: Complex workspace showing the path from start to goal: View 6

143

Chapter 6 Path planning implementation and results

Test 1 Test 2 Test 3 Test 4 Test 5

Execution Time 30ms 50ms 60ms 50ms lO0ms

Table 6.1: Execution time of the three dimensional path planner

Performance The performance of the developed method was tested by mea

suring the time of execution. Because the simulation was performed using a

multitasking operating system, it was necessary to run the experiment a number

of times and then to record the minimum run time so that the overheads due to

the operating system were minimised.

The results are shown in table 6.1. The first test is performed on an empty

workspace in order to determine a reference processing time. The main compo

nent of the processing time is testing the occupancy of the workspace. In this

case the whole workspace has to be scanned. The execution time is 30ms.

Test 2 uses the workspace presented in figures 6.14. In this test there are a few

large obstacles, this tests the performance of the basic tree generation algorithms.

The processing time of 50ms is less than twice that of the empty workspace.

Test 3 shows the effect of a number of small obstacles has on the processing time.

In this test more time is needed to construct the tree structure and to link the

neighbours was there are more nodes in the tree. This test workspace is shown in

figure 6.20. This has only increased the processing time by lOms to 60ms, twice

that of the empty workspace case.

Test 4 uses the workspace given figure 6.26. In this case no path is possible. The

execution time of 50ms shows that the path planner can quickly report when no

path is possible to the goal. Remember no actual path planning is performed in

this case. The application of the distance transform determines that no path is

possible, therefore no execution t ime is wasted.

Test 5 shows the execution time for a complex workspace with a set of large and

small obstacles. The execution time is lO0ms. This is just over three times that

of the empty workspace.

144

Chapter 6 Path planning implementation and results

The execution times should only be used as a guide as they are PC and operating

system dependent, but they do show that the developed method can quickly

produce paths and quickly determine when no path is possible.

6.3 Summary

This chapter has described the results from the various experiments performed

using the distance transform. A two dimensional feasibility study of the distance

transform path planner implemented using MATLAB has been developed into the

rapid three dimensional path planner which incorporates spatial decomposition

and octrees.

Overall the experiments have shown that the three dimensional path planner de

veloped [14] has contributed to the field of path planning, especially path planning

for a mobile robot operating in three dimensions.

The next chapter describes the development of a hierarchical controller, defined

in chapter 3, to integrate the path planning system described in chapter 5 with

the machine vision system described in chapter 4.

145

Chapter 7

Hierarchical Controller

Implementation

This chapter describes the design and construction of the controller defined in

chapter 3. It has been implemented as a computer controlled test rig whose

purpose is to allow the machine vision and path planning software described

previously to be tested as a complete system. The controller hierarchy described

in chapter 3 includes three levels but in the controller described here only the

pilot level is implemented fully, the other two levels being implemented only to

the point that allows the third to function.

In order to test the combination of the machine vision and path planning systems

the decision was made to construct a test rig. The alternative option was to

produce a test environment in software. This option was not chosen as it was

thought to be too complex and would end up dominat ing the project.

7.1 Test Rig

T he test rig is a large X-Y table with position and velocity control provided by

custom built electronics. The Y axis is aligned with the parallel tracks, the X

axis is perpendicular to this. Figure 7.1 shows the test rig.

Chapter 7 Hierarchical Controller Implementation

Figure 7 .1: The test rig

147

Chapter 7 Hierarchical Controller Implementation

In the figure two aluminium channels can be seen which are screwed down onto

a wooden frame to keep them parallel. On each channel a carriage with two

pairs of wheels is positioned. A linear rail is fixed between these two carriages.

The linear rail has another carriage fixed to it which supports the camera mount

fixings. Two pulley housings are fixed onto the two carriages which support

a toothed belt connected to the carriage on the linear rail. A motor fixed to

one pulley housing allows the linear rail carriage to be pulled in the X direction

(posit ive X is right to left in figure 7.1).

In order to achieve motion in the Y direction, positive Y is bottom to top in figure

7 .1 , a capstan and pulley mechanism is attached to the wooden frame between

the two channels. At the bottom of figure 7.1 a motor-capstan-tachometer can

be seen. A piece of string is connected to the centre of the linear rail around the

capstan, then to the pulley at the back of the test rig and back to the linear rail.

The test rig is controlled using custom built electronics as shown in figure 7.2.

There are four main circuits, two of which drive and control the x and y motors.

The x control is achieved using a potentiometer wire for position control, veloc

ity is controlled in the Y direction using the feedback signal from a tachometer

connected to the drive shaft of the motor/capstan assembly. The bespoke op

tical encoder circuit allows the position of the test rig in the Y direction to be

measured. The final circuit interfaces the test rig electronics with the PC.

Figure 7.3 shows a block diagram of the controller electronics.

The rest of this section will describe in more detail the design and construction

of the test rig both mechanically and electronically. The final section will then

describe the software design and implementation.

7 .1.1 Mechanical Design

The test rig was designed by the author. A large proportion of the construc

t ion was also completed by the author with assistance from School's Mechanical

Workshop staff. Figure 7.4 shows a simplistic representation of the test rig. The

148

Chapter 7 Hierarchical Controller Implementation

Figure 7.2: The Electronics

149

Chapter 7

0 ... -C:
0 u
C:
0

n
~
C
><

...
.!
- C: o,_
... cu
E c.:,
0 u

<
0 -C

C:
0
E

111 (/)

0
C.

C
0 -<

aoepaiu1

!
as

t
u, ...
.! e -C
0 u

~ ...
0
3:
Q)
z

Hierarchical Controller Implementation

>, "C
.t:: C:
c., cu
.2 E
a, a,
>c

II

>, -·c3
C:
0 = 1 111 0

-a;
I 1 1 1111111111 •en

>

! :

as

I ',

;:
0

U::
'ii
,g -C.
0

...
0 C:
U) · -c: cu
a, C,
u,

e -C:
0 u
C:
0 = c.,
a, ...
C
>

a,
U)

:::I
C.

0
C.

C: ...
3: a,
o-c§
--- 0 :§-u

C:
0 = c.,
~

C

Figure 7.3: Controller block diagram

150

Chapter 7 Hierarchical Controller Implem entation

Ill Camera mount

□ Toothed belt

■ Pulley housing

String ■ Rail

!!!I Capstan/pu I ley
y

■ Carriage

Figure 7.4: Simplified Rig Design

two aluminium rails are coloured cyan, the two carriages are coloured blue, the

linear rail is magenta, the pulley housing green and the capstan/pulley system

is pink. The yellow toothed belt is mounted on the pulley held in t he pulley

housing.

The camera mount is fixed onto a trolley that is moved along a linear rail by a

toothed belt connected to a motor and gearbox. Figure 7.5 shows two cameras on

a mounting plate which is connected onto a carriage fixed onto a linear rail. Also

on the plate is a connection box to power the cameras. In t he figure one of the

cameras is mounted upside-down due to space limitations. Any images captured

have to be inverted before they can be used.

The carriage on the linear rail traverses by means of a toothed belt connected to

each side of the carriage. Figure 7.6 shows the toothed belt passing through a

pulley housing.

Running parallel with the linear rail is a length of eureka wire, shown in figure 7.7,

which is used in the positioning control system. A brass wiper moves along the

wire allowing the voltage to be detected. The problem found with this method

was oxidisation of the wire which affected the detected voltage. It was necessary

to change the wire regularly to keep the positioning accuracy consistent.

151

Chapter 7 Hierarchical Controller Implementation

Figure 7.5: Camera mount

Figure 7.6: Toothed belt

152

Chapter 7 Hierarchical Controller Implementation

Figure 7.7: Potentiometer posit ion sensor

153

Chapter 7 Hierarchical Controller Implementation

The toothed belt is held on two pulleys; figure 7.8 shows one pulley housing.

Figure 7.9 shows the top and bottom view of the two plates that make up the

housing. The cut-out in the plate holds a bearing for the shaft of the pulley to

be mounted into. The plates are separated by 4 pillars which are hollow to allow

the fixing bolts to pass trough the structure. An extra plate is used to mount the

motor. The motor shaft is connected to the pulley shaft by a flexible coupling

which reduces the problem of shaft alignment and can act as a "fuse" should

there be a problem with the controller.

The pulley housings are mounted on two carriages. Figure 7.10 shows the pulley

housing mounted on the carriage which is in turn mounted on an aluminium

channel. Figure 7.11 shows the design of the carriage.

Also visible in figure 7.10 is the Y positioning sensor. This is made from a

strip of acetate which has an alternating opaque/transparent pattern printed on

it. The acetate strip runs between two optical sensors which are positioned 90°

out of phase relative to the pattern. This allows the direction of motion to be

determined.

A motor and gearbox plus capstan is mounted between the channels at one end.

A length of string is connected to the middle of the linear rail, via a single turn

on the capstan, then to a pulley at the other end of the rig and back to the linear

rail. Figure 7.12 shows the capstan drive system.

7 .1. 2 Electronic Design

The position of the camera mount in the X direction is measured by a length of

resistance wire which has a constant current flowing through it. The circuit used

to control the voltage on this wire consists of two adjustable voltage references,

the voltage being fine tuned with potentiometers. Figure 7.13 shows the circuit.

The potential difference across the wire is ±2V and the centre of the wire should

then be OV.

The voltage measured at a point on the wire is therefore directly proportional to

154

Chapter 7 Hierarchical Controller Implementation

F igure 7.8: A view showing the toothed belt pulley arrangement

155

Chapter 7 Hierarchical Controller Implementation

5

H
=:c 5 0 0

0 60

0 0

0 0

0 0 =:c M4

I◄
100

►I
Figure 7.9: Mechanical design of the pulley housing

156

Chapter 7 Hierarchical Controller Implementation

Figure 7.10: The position encoder sensor, the two detectors can be seen mounted

over the acetate strips

157

Chapter 7 Hierarchical Controller Implementation

80

I - I I - I
L>--U L>--U

25

40

,-n ,-n
I - I I - I

25

150

Figure 7 .11: Mechanical design of the carriage

Figure 7.12: Drive motor, capstan and tachometer

158

Chapter 7 Hierarchical Controller Implementation

+15V

1uF +2V
LM317T Sr 10nF

Sr 10nF

LM337T
1uF -2V

- 15V

Figure 7.13: Potentiometer Wire Voltage Control Circuit

the position of the camera mount . In order not to load the potentiometer wire a

high impedance amplifier is used to buffer the voltage and figure 7.14 shows the

AD544 circuit used to do t his.

The output from this circuit is fed into an analogue to digital converter circuit

which encodes the voltage into an eight bit digital value which is input to the

computer via a digital IO card.

The X position is set by the controller software running on the PC. The 8 bit value

representing the required position is converted into an analogue voltage using the

digital to analogue converter shown in figure 7.15. This circuit produces a voltage

range between O and 5 volts, this must be re-biased to vary about zero volts so

that the motor may be driven in both directions. A voltage reference circuit, also

shown in figure 7.15, was built to achieve this. The two signals in this circuit are

added together using a 741 operational amplifier.

Position feedback from the potentiometer wire is also used to locate the trolley

accurately using a control circuit. F igure 7.16 shows the X direction controller

circuit.

159

Chapter 7 Hierarchical Controller Implementation

100K

-----vvv---

+15V 7

SK

-15V ___J

AD544
+

Figure 7.14: Buffer Amplifier

A counter is used to count the pulses from one detector, the quadrature detector

controls the direction of count. The value stored in the counter is proportional

to the position. Figure 7.17 shows a schematic of the Y direction position mea

surement circuit.

The trolley is pulled along in the Y direction at a fixed speed with feedback pro

vided by a precision tacho generator. The computer can not control the position

of the trolley in the Y direction, it is set manually using a potentiometer . Figure

7.18 shows the controller circuit.

These positioning circuits give a resolution of about 4mm in the X (over lm)

direction and 10mm in the Y direction (over 2.5m).

160

Chapter 7

8

TOK

LM611

Hierarchical Controller Implementation

ZN425E

UA741CP
+

741

6.BK

10K

*··
10K 18K

J
10K

+

TL074CNa

Figure 7.15: Digital to Analogue Conversion

10k

1k

Position
Sensor

Figure 7.16: X Drive circuit diagram

10K

motor

rn

161

Chapter 7 Hierarchical Controller Implementation

+SV

Flip Flop

Up/Down
D a

C
Sensor

4 Bit

f Counter

Carry 8 bit

4 Bit
Counter

Figure 7.17: Y position measurement circuit

+15V 10k

T
motor

J_ 1k L1 65

- 15V

tacho
1Q

10k

Figure 7.18: Y Drive circuit diagram

162

Chapter 7 Hierarchical Controller Implementation

7.2 Controller Software

This section will outline the software design and implementation.

The main controller software was developed progressively during the course of the

project. The major components of the software were developed separately from

the main controller software. The software was implemented using an object

oriented aware programming language, but the actual design and the subsequent

code uses both procedural and object-oriented methods.

7.2.1 Design

The organisation of the software can be seen in figure 7.19 which shows the main

building blocks of the controller software. The Planner and Navigator have not

been implemented fully but have been included in the software to allow for future

development. The Planner function is called but only sets up some parameters

that are used throughout the rest of the software. The Navigator also sets up

parameters, but in addition produces the nominal Navigator's Path.

The Pilot is the main function. This coordinates the operation of the image

acquisition, map building and path planning systems. The flow chart in figure

7.20 shows how the software operates.

The pilot function uses objects derived from classes. This is object-oriented ter

minology, a class is a container for data and functions that operate on that data.

An object is simply one instance of a class. For example, in the class "road

vehicle", one instance of that class could be a car another could be a bus.

The classes used in the pilot function include:

image This class is a container for the acquired image, but it also holds other

information about the image.

queue This is a simple ring queue of limited length.

163

Chapter 7 Hierarchical Controller Implementation

Controller
Planner

Navigator

Figure 7.19: Design Layout

coordqueue This is derived from the queue class, but is suitable for storing

coordinates.

nodequeue Again this is derived from the queue class, but this stores octree

nodes.

imagequeue This a separate queue class for storing images

node A node is the building block of the octree structure

helicopter This class provides an interface to the test rig controller

Every time an image is acquired a new image object is instant iated to contain

the image. This encapsulates the data with the functions that can operate on

that data.

164

Chapter 7

Acquire and
store image

on queue

Transfer two
images to

optical flow
via sockets

Generate map

If required,
plan path to

avoid obstacles
in map

Path?

N

Generate
path from

Navigator's
Path

Hierarchical Controller Implementation

y

Calculate and
return flow
field and

associated data

Generate

N

Send to
Test rig

controller

>----~motion path from,__ ____ -t

Pilot's Path

y

Figure 7.20: F low chart of the pilot function

End

165

Chapter 7 Hierarchical Controller Implementation

7.2.2 Implementation

Software was required to control both a video frame grabber and a digital IO

card. This limited the operating system choice to Windows 95 as this was the

only operating system, at the time, to have software drivers for both peripherals.

Drivers could have been written for other operating systems, but this was seen as

a distraction. The computer used to develop and run the software is a Pentium

166 with 64M of memory.

The software was written in C++ using the Borland C++ 5.01 design environ

ment.

The optical flow operations were not performed on the same computer. This

software ran on another PC running the FreeBSD Unix operating system. The

decision to use two computers to control the test rig was borne out during ex

perimentation. The test rig controller PC was not able to perform all the tasks

within a acceptable time. A socket communication method was implemented

which allowed the calculation of the optical flow and path planning to run in

parallel. After each image was captured it was sent to the other machine for

processing. While the optical flow was being calculated, the controller PC was

free to continue to monitor the position of the test rig. This also allowed for the

future implementation of the reflex avoidance system. When the optical flow had

been calculated the flow fields were transfered to the controller PC for further

processing.

The planner, navigator and pilot levels have been described in chapter 3. The

software was developed from the bottom up, that is starting with the pilot level.

This section will describe the implementation of the pilot level breaking down the

procedure into defined tasks.

The flow chart given in figure 7.20 has been implemented in the following manner:

Acquisition The first task is to acquire an image. This is stored as an image

object. The image object also contains the time the image was taken, the position

of the camera when the image was taken and information about the camera that

166

Chapter 7 Hierarchical Controller Implementation

took the picture. Storing data about the image with the image is useful as it

allows further processing to be performed. Appendix D.1.4 gives the header file

for the image code showing the different variables and functions. For example,

one of the cameras on the test rig is mounted upside-down. This means that

any image captured using it requires flipping before it can be used, the software

knows about the position of the camera so this happens automatically. There

is an option to then perform more image processing functions on the captured

image. Functions to perform high-pass and low pass filtering, edge detection,

normalisation and thresholding are all available in the software.

Optical flow generation Once two images have been acquired they are sent

to the optical flow software and the flow field calculated. The computation time

depends on the image size used, the parameters used within the optical flow

software and of course the speed of the computer. Once the flow field has been

calculated it is transferred back to the controller PC. There is an overhead in

transferring two images and returning the flow field but this is justifiable because

it allows the main controller software to continue performing other actions such

as planning a path and controlling the test rig.

Map generation The returned flow field contains vectors representing the

magnitude and direction of image motion. This is then used as described in

chapter 4 to locate obstacles points that are close to the camera mount which are

then added to the map. The map is stored as a matrix so that it is compatible

with the distance transform software. It also allows the map to be saved to a file

for subsequent processing or visualisation.

Path Planning Once a map exists, path planning may be needed. The oper

ation of the path planner has been described in chapter 5. Appendix section D.2

gives highlights from the source code of the path planning software. The function

octree given in section D.2.1 produces the unconnected graph. The functions up

datel and update2 given in sections D.2.3 and D.2.4 generate the neighbourhood

relationships. Section D.2.5 of Appendix D gives the source code for the distance

167

Chapter 7 Hierarchical Controller Implementation

transform generation. The function find path in section D.2.6 then produces the

node path.

7.3 Summary

During this project, much time and effort were expended on design and construc

tion of the test rig but, once this was done, it has proved invaluable for testing

both the machine vision system and the path planning system in a closed loop

environment.

The rig was used to test individual sub-systems and the integrated system. The

next chapter first presents an experiment to configure the optical flow software

so that accurate distance measurements can be made. The chapter ends with

results from the test rig showing obstacle detection and avoidance in action.

168

Chapter 8

Results

This chapter presents the results from the different experiments performed us

ing the test rig. Results from the optical flow software are presented showing

the effects of the variation of algorithm parameters. The optical flow software

and the map building system are tested using the results from a "ground-truth"

optical flow experiment, where the motion of the camera and obstacle positions

are known. The aim of these experiments is to determine the best configuration

of optical flow software and map building system. The chapter culminates with

results from the test rig which show the obstacle avoidance system in operation.

8 .1 Optical flow tests

This section describes the investigation of the optical flow software described in

Chapter 4. In that chapter it will be recalled that Anandan's method was chosen

to calculate the optical flow. This method has the key advantage that it always

produces a full flow field, and that it works with two input images.

The results presented in here aim to show two things: firstly that Anandan's

method does indeed compute the optical flow and secondly that, through the

optimisation of the software parameters, the method is applicable to our problem.

Chapter 8 Results

8 .1.1 Input Images

In order to test the optical flow system a set of "ground truth" images were

obtained from the test rig. The camera was set in motion on a predefined path

and a series of 72 raw images where captured. Figure 8.1 shows a selection of the

captured images.

Figure 8.1: Images 0, 14, 20, 28, 37, 42, 50, 54 and 55

In figure 8.1, the object with the white band is an obstacle suspended in space

(the string holding the obstacle can be seen) - this should be noted for future

reference. In the first few images a black cloth can been seen on the right hand

side which was used to hide a feature within the room. The "background" is

made from two pieces of card; the join between these two can be seen in some of

the images - again this should be noted for future reference.

The pulley mechanism can be seen near the bottom of all the images This is

located at the same distance as the obstacle from the "background" in the y

direction. This feature should be detected by the optical flow software.

170

Chapter 8 Results

Figure 8.2 shows the three pairs of images (27 and 28, 37 and 38, and 50 and

51) that where used in the optical flow tests described below. The images where

captured at a resolution of 128 x 96 with 256 grey scales.

27 28

37 -38

50 51

Figure 8.2: Test images

These pairs of images images were captured at three different camera location.

The remainder of this section shows how the distance between the camera and

obstacles can be estimated using optical flow.

171

Chapter 8 Results

8.1.2 Optical flow generation

There are a number of parameters that can be adjusted when using Anandan's

method. These are:

• The number of hierarchical levels (L) which can range from 1 to 4, the

default is 1. This gives the number of resolution levels that the flow field is

generated from.

• The size of the correlation window (W) can be either 3,5 or 7, the defaul t

is 3. This gives the size of the mask used in pixel matching.

• The number of relaxation iterations (I) which can range between 1 and N,

the default being 10. This controls how much smoothing is performed on

the flow field.

Default values

In order to determine the optimum parameter values for this application, the flow

field was calculated for the values of L =1-4, W=3,5, and 7 and I=l,10,20. As a

benchmark the flow fields were calculated using the default values first. The flow

field figures presented in this chapter have been calculated from the computed

flow field values using a software utility. This generates a vector representation

where the length of the arrow is proportional to the magnitude of the flow field

and the arrow indicates the direction of motion on the image plane.

The images were captured at a resolution of 128 x 96. In all the figures given

below the flow fields have been sub-sampled by a factor of two, and the magnitude

has been doubled - this gives the best reproduction on paper.

Figure 8.3 shows the optical flow field generated from images 27 and 28 using the

default values. There are three distinct areas in this flow field. At the bottom the

motion relative to the pulley mechanism can be seen. On the right the interface

between the background and the black cloth produces distinctive motion vectors .

Finally, there is a flow associated with the obstacle in the upper left hand corner,

172

Chapter 8 Results

.. ,. __+,. •_ 4 ♦ ----............ ., J • "' ,. ---i. .. JI 'II

♦♦➔➔-_,,,.,.- ➔ ,,_.,,,_.._,., .. _.._..,. -_..,..... /',,. ..

- - --.. .. ► ♦ 1 ♦ -+-+ ➔..... .. • .. ,,. .,,, ► -+ --.-.~ /'

• - -- - ♦ , .. • ... • • ... - _ - ♦ ,It ♦ "W, --..- > ◄ •
,. ,,. _.............. , ,,,,-....................... .. ._ ... -. \.

• ,..:. ... ,.. _..,,.,. • .aJ,,, ,..'11 \,..._z:::
• ,. •,,,, -t ... " J ,. - ♦ ••• •• •• ~ • ~ .. ; ·, / :::-: ~

····"' - _. ■ __,...,.

: : : : : : : : : :: .. -.. • • 'c ♦ ♦ : : : : : : : : : : : : : : : : : : f ; : : =:
............. ♦ ti ... ,. ♦ .. • :.: : : : : : : ~ ~ ~ : : : : -+ - ,. , ' ,,.,,.

............. --\ f -+-+,. ♦ ,. ◄ ,,, ♦ ♦ ♦ • \, i \ .,,, ,. "

: : : : : : : : : :::--. ,...,, :::.: : .. : 1 :r::: : : :
-+ ➔ ➔ .+ ➔ • • .,,. -+-+ ➔ • ► .,. -➔ -+ • ,. • ► • .,,, ,. .. -+-+-♦ ➔ ➔ • • • r • " ♦ • • ,. .+ .. .,. • ,., _. _.. -

-♦ - -♦ .. • • • -♦ - .. - + - .-..... 11 • • ... A - _,. -♦,, ... • • -+ ➔ -+ t .I 1111 \, '\t _., -.,..\, 'Ir or 11 'll .. -♦ -
-♦ - _._.., • .., -+ __ ,.....-._..~...,, 'll Ir • " "' _..-+ _.,-+ .._...., ..,,_ ._ 'll 'll .. ➔ ➔ ♦ ,. .._ 'II 'II ..._ "v....,-♦ i 4 II \, 'II ...,. ➔

-+-+-+ .. ♦ ... -+ _ ___....-,.._,,..,. 'll 'Ir Ir • • ... 'll 'Ii \, .l' ... \, " ... ♦

-♦ -+ -....--.- ---....,. 'll 'll 'll - ' \, ,. " • .. • ♦

.......... - -~ .. -♦ - 'II /."

........ -+➔----♦-♦--__.._.,....,, " ••• -+-+-+.._ ♦ -\.., •• .ft

.. ..,. __ .. -----. ---..-.. ... • ••• __ ...,..,.. ♦ ... "" •• --... "\,'Ir 'll 'II • .., .. -♦ .,.,11/'.,,. "

............... -♦ -♦ -----...,, -♦ --.. ♦ ••• ♦ \, \ \r 'll ♦ .. ,f • -~ ♦ ...

"' • ._. ------♦ ,f \-%-\,".,,. ,,,~
Iii-♦ -♦ -♦ .. "" ,JI -♦ ➔ -♦ -♦♦ f. & ~" ,f • ._ .. -;,, "II "II "II Iii Ir 'lo 'Ir 'II •• • ♦ ... , ➔ ♦ • 1' II"
.......... "" ,,. " • 'll • .. 'II .. " " ♦ Ir ,,,. _._ • • •

♦ .. -♦ ➔ .+ ,,. II ,- • ' "♦- + 'Ir II .. -♦ _,.-♦-..,. ' \ 'lo 'II ... ➔ + -+ 'I, ---♦- .. f. • >
♦ .. -♦-♦ A ,It .. ♦ -♦ -+ ♦ • 'II, -♦-♦ .. 'I If 'Ill "'Ii+'"♦- 'II l, "Ir 1I lJ 'II .. -♦ 'Ill .. -+-♦,, '~A -+

.. -- ♦ ♦ 'II 'II .. 11 " " " -..-.......---.........-;,,,, .,, ,.

• ... ---➔ -♦ -♦ -♦ -♦ ♦ _.A_..,_ -♦ ---♦ ••'ll .. ♦ 11'1l• ♦ .. -♦ .. -♦➔ -♦ -♦ ... , --~~,11I J ~~
• '11..,.-A-+-.,..--+-+• .. -➔-♦➔-+-•-----_.,..,,,, • -♦ -♦ -...-..-..-----;t~f/',,,.
,. - .. , .. _ __.,_-'➔--♦--.-.---...~--♦•• -♦--.~--♦---♦--...~~~
..... --.. L-.-♦--♦~~-.."'__.. -~-♦---♦ --t.....,.~---♦ --------♦~ • ... --➔

"' • -4 ... -.- -/ ... , ._,,'I,. ... ,,,,.r ➔-♦--, • -+ .,., ~ .. -~---__,., ,,,,,.-........__._..
II"" • t 7"'· ... -.,-............ , \ //',. _._..,.. -..---..-_...... ... _ ,,,,, ___ ----.....,._...,.-...__...---♦

- ~-- " - ✓ ---♦-.. \, -~ ♦ ----♦----➔------- --.-♦--♦-.---♦---........ -

Figure 8.3: Flow field Images 27 28 (w= 3 l= l i= lO)

demonst rating that the obstacle has been det ected. On closer examination, the

vectors can be seen to point in one general direction indicating flow to the right

(meaning that the motion of the camera was to the left). Note that the string

holding the obstacle has also been detected.

Figure 8.4 shows the optical flow field generated from images 37 and 38 using the

default values. There are now only two main areas of flow. Again there is a flow

at the bottom due to the pulley mechanism. The obstacle and string are now in

the centre of the image which can be clearly seen in figure 8.4. The flow vectors

are still showing motion towards the right.

F igure 8.5 shows the opt ical flow field generated from images 50 and 51 usmg

t he default values. There is now only one area of distinct flow, at the right hand

corner of the flow field which is associated with the obstacle. The direction of

flow is confused but the obstacle has been detected. Notice in figure 8.2 that the

173

Chapter 8 R esults

.. ► ••'t'f ➔)r•·""'• ,. ,- .. A ... -t-+•,1) -

♦♦ .. ♦ 1>•-+-t .. .-t.+ ... _-+-+-+-+ ... 'll'IJll<I.+- (................. ,. ♦➔ --

........................._,.1 -.- ➔ -+-+...,,'ll'l,o'llll._ ... _..,,Jt,,.

..... -+ ♦ A A _. -+ _,,,,It ,r. + ♦ ♦ .. ♦ 'I' "' 1' -+ ➔ -+-+-,. 'II. .. ._ ...,, ➔ _. ll • "

+ -+ -+ .+ ... _. • ♦ • ♦ AIll ♦ • ♦ ♦ ♦ ♦ + ♦ f ,._ • ... -.--.-. ♦ ♦ Ill ._ + •
........... "" ,. .. ♦ • • • • ♦ .. ,. .. ,.

... --............ ♦
• - I',, " ,. • .,. ♦ .., .. ,,.,~,,. I> -+ -+ ♦ ♦ • II 'lt 'Iii !I ,._ . .,
- ,. ~ I' ,. ♦ • ♦ • • .. • • lit Ir .. ♦ ,,, ,,, ♦ " .. l, ,. ..,) ,.
A-+--. .. ♦♦ lt ♦ >'t• •

..,, -. '

.. "'' ___.
... ♦ " .. _.._...., .
.. ... -+ " 'lt • ,. ,. ,.

♦ ~ ~ ♦ .. "' ♦

♦ ♦ ... ♦ ••• . ' . 'f &. • ♦ ..,, ♦ • ♦ -♦-

♦ ➔ -. ..,_ "',t. -+ -+ • ,- ,. • , ll ll 'I ♦ • A .,JI ,II ,If _., ♦ • ♦ ➔ -
► ♦ ♦ "' • .. • -+ -....... -♦ _,. :,. .,,. • ♦ t • 'II

► ♦ -♦-♦ ♦ ♦) t ,+ ➔ ♦-,. ♦ 6 1 ► ► ► ♦ -~~-+ It " " JI • t II li .. ♦ • • • <f J.
♦➔--

t -+ -+ ♦ • • 1 t t ... -+ - -..._--~ ► • :,. -" ,+ • • ._ 'it 'Ir 'II ... f f, 1)

t .. " , ____ __,. /✓..,..,.. ♦ • ,. /# • ,.

.. ,.,..,.......,, .. 1 t _.. / l

....... __

............ _ .. .,, .,, ... ,
• ~ .. ,.,.. ... ,. -►,.~ ,If,. ♦ •• Ir • • t • ♦ -,. t

-♦ .. ,+ t' ► -, ♦ _. •) • .. - -~ 'II " ♦ ♦ 4' • ,a .. -+ t • II ♦ .. ,+ ➔ -♦ -♦ ._ .. 9- ♦

.. It '

.... ♦ .. ♦ i
♦ ♦ "

➔ -+ ➔ .. ♦ .-,. tr 11 ,. 't > J.) .. ► • ♦ .. -+ ----♦ .. Ir It Ir 11 ♦ .. -♦ ➔ -+ ft t ♦ .. ,,ft ♦ ♦ .. "II .. .-,. ♦ " ♦ '\a -
............ " J, ♦• ♦ ♦ _,. __ ..., "" .. ♦ - , J. ,. .. --

♦ ♦ ,,,,. --➔,., J, ,. " ,. •

• ♦ ♦,. ~~ ♦ , ..

........ 'II ♦ • ,,, .. ♦ > " " .. " ,. J. ► • ... -..--...

. ' ••◄••• ,. , • "'. , -.... ..,,,..,.,
..... -~ - ___ _ _. _ __...,,. --➔ J. "' t ♦,. ... -..-----

......... .,. \ \___..... -~➔_,,,,,._.. _ ___ ---♦ ♦ -♦---♦---♦-

..... -- -♦ ~ ~ -, ~, ___.__~ ---~-.._----♦ --·· _ __._., ___ _

-: --.............. ~-♦ --# - '\ ,.,,,,_" -.---.__..,._ ---r"' ~ ♦- _..._._._... ___ _..

Figure 8.4: Flow field Images 37 38 (w= 3 1= 1 i= lO)

pulley mechanism is present in images 50 and 51 but this feature is not present in

the flow fields presented in figure 8.5. This is due to "edge-effects". The optical

flow at the edge will always be difficult to compute as the matching function will

not be able to find corresponding points between images.

Parameter Variation

The default values used to produce the optical flow fields presented in figures 8.3,

8.4 and 8.5 have shown that obstacles can be detected and that obstacles closer

to the camera produce larger flow fields. However, figure 8.5 is disappointing

because, although the obstacle is close to the camera, the flow field is small and

indistinct. This section describes the effects of varying t he software parameters,

and shows that near-opt imum values can be selected by inspection of the flow

field. However, an exhaustive search is not possible because of the large number

174

Chapter 8 Results

.,. ... " .I- • tr ., t • • r ◄ • 11 lr ... "►
♦ •• ., > •• ♦ • ◄ • ♦ ...

.. • II, " .. ,. .. ◄

.. ' - 1' ,. ♦ II, , .. ,.,,.............. "" ""
• 1' , " II; • • t • ,+, \.> ♦ ♦ > • ♦ .+ .+ ♦ • •+ • • ... ♦ ll 'II

♦ ~ 4 ◄
◄ ♦ - ...
I,. ♦.,. __ ...

♦ _..,.. ...

... ,r. ... _ ... ,,.

. '
,. • II, >

,. 11, " .. ,. " •• 11 •

,. ' ◄ ... ♦ • 't

> (♦ ♦ ♦ ... II ♦ •

. .

" -
.... ,II _

It ,,,,.,,.

,. _.,.._ " ~ .
.. _ ~. . '

.. ► • ◄

.. .. ♦ ,. .. ,.

• .,. 11 ,_.. .. ,,, ..
.. ,. ,. ,. 't • ... 'II 'II • ♦ • • ♦ ,. ., • ... __......,,.., • -

• + <II ,,. • ♦., + 'II --""" I,.

... - ♦ ♦ .. -+ ♦ " • ., :--...

........ ,.,.,..+A~-....... ➔➔➔➔➔➔ .. c+ + ···-·· -~--···········
T ► , ► • ,I 'II ... "ll 11 _, " " 11 -. .. 1' >

,. , ,. >, J,

··~-•·"·➔--. • ,,. ,. ,. ,, , ◄

-- ...,.. '"' __,.' -
,. ~-....... :.-..,....... ...

.... - ♦
' . ~

........................ -......... ~"
" ... _....,. ~ ' .. - ... ► ,, ... ' lit

♦

Figure 8.5: Flow field Images 50 51 (w=3 l=l i=lO)

of possible combinations of parameters. It should be noted that the effect of

increasing the values of the parameters also increases the computation time, so

there is a trade-off between flow field quality and processing time.

l=l The effects of setting I=l can be seen in figure 8.6. The figure show the

flow fields for the "low" settings W=3 and L=l , and the "high'' settings of W= 7

and 1=4. These show that , although some structure can be seen in the flow

fields, even to the human eye (which is adept at pat tern recognition), there is

very little information contained within the flow fields. This result shows that a

low relaxation interval produces unusable results. Further experiments confirmed

that acceptable results could not be produced with a value of I of less than the

default value of 10.

175

Chapter 8 Results

II=l I

Figure 8.6: Flow field Images when I=l - Top three images are number 27 /28

37 /38 50/51 for W=l L=l l= l - Bottom three images are number 27 /28 37 /38

50/51 for W=7 1 = 4 l= l

176

Chapter 8 Results

1=10 Figures 8.7 to 8.12 show the results from t he optical flow software when

1= 10.

Figures 8. 7 and 8.8 shows the results produced using t he first set of input images.

The top four flow fields in figure 8.7 show how L=l,2,3 and 4 effect the flow field

with W=3. It can be seen that as L increases the objects in the flow fields become

more distinct. The lower four flow fields shows the same variation of L but here

the correlation window size (W) is 5. The effect of increasing the correlation

window size is to smooth the detail in the flow fields. In latter four flow fields L

does not have much affect the resulting flow. This is because the smoothing effect

of the correlation window has reduced the "higher" spatial frequencies during

the matching between the two images. When W=7, figure 8.8 shows that the

smoothing effect of the correlation window makes the result almost independent

of the variation of L and very little detail is visible in the flow fields.

The same trends can also be seen in figures 8.9 and 8.10 for the second set of

input images, and in figures 8.11 and 8.12 for the final set.

177

Chapter 8 Results

II=lO I

Figure 8.7: Flow field Images 27 28 - Top four w= 3 1= 1,2,3,4 - Bottom four w=5

1=1,2,3,4

178

Chapter 8 Results

II=lOI

Figure 8.8: Flow field Images 27 28 - w=7 1=1,2,3,4

179

Chapter 8 Results

II=lOI

Figure 8.9: F low field Images 37 38 - Top four w=3 l=l,2,3,4 - Bottom four w= 5

1=1,2,3,4

180

Chapter 8 Results

II=lOI

Figure 8.10: Flow field Images 37 38 - w=7 1= 1,2,3,4

181

Chapter 8 Results

Figure 8.11: Flow field Images 50 51 - Top four w=3 1=1,2,3,4 - Bottom four

w=5 1=1,2,3,4

182

Chapter 8 Results

II=lOI

Figure 8.12: Flow field Images 50 51 w=7 1=1,2,3,4

183

Chapter 8 Results

w L I

3/4 3/5 10

Table 8.1: Table of selected parameters

1=20 Figure 8.13 shows the flow fields when I is set to 20. The flow fields here

are similar to those were 1=10, although more uniform as background "noise" has

been reduced. However , the processing t ime is much longer. The effect of varying

both L and W was investigated and the trend was found to be consistent . Only

results from "low" and "high" values of L and W are presented in figure 8.13.

Selection of parameters to set in Anandan's Method

The investigation of the optical flow parameters have deduced that the parameters

that should be selected for further investigation should be:

L Setting L to 3 or 4 produced a flow field in which the object stands out clearly

from the background and are more distinct than when L=l or 2. Values of

L greater than 4 are prohibited by the current version of the software and

in any case would produce very long computation times.

W W=7 has been discounted as it increases the processing time, and reduces

the amount of information contained in the flow fields irrespective of the

settings of the other values. Values other than 3,5 and 7 are not supported

by the software

I Experiments have been performed for various values of I. Low values of I pro

duced unusable results, although the calculation time was reduced. Values

higher than the default of 10 produce good results but the processing time

is greater. The default value process good results with an acceptable pro

cessing overhead.

184

Chapter 8 Results

!1=201

Figure 8.13: Flow field Images when 1=20 - Top three images are number 27 /28

37 /38 50/51 for W= l L= l 1= 20 - Bottom three images are number 27 /28 37 /38

50/51 for W=7 1=4 1=20

185

Chapter 8 Results

8.1.3 Depth from flow vectors

Once the optical flow has been calculated a method is needed to convert from a

measure of flow to a measure of distance. This section shows how this is achieved

and selects the parameters to be used within the optical flow software of the test

rig.

The range along the optical axis to the obstacles in the three sample images is

known. In images 27 and 28, the obstacle is about 650mm away from the camera,

in images 37 and 38 it is 550mm distant and in the final set of images it is 350mm

away. The flow software has to estimate these ranges. This is achieved by tuning

the optical flow software to minimise the difference between the estimated and

known distances.

Flow field magnitudes

A visualisation of the depth information in the optical flow fields can be generated

by calculating the magnitude of the flow vector at each point in the flow field:

f = Ju2 + v2 (8.1)

where u and v are the components of the flow field in the vertical and horizontal

directions with reference to the captured image. This can then be presented as a

relief map. Figures 8.14 to 8.16 show the flow field magnitudes for the case where

W=3, L= 4 and 1= 10. The figures are colour coded, blue for low magnitudes to

red for high magnitudes.

Figure 8.14 shows the flow field magnitude generated from the first pair of input

images. There are three areas of flow, at the bottom of the figure due to the

detection of the test rig, to the right caused by the black cloth. The final area of

flow is due to the obstacle. Figures 8.1 5 and 8.16 show the flow field magnitudes

for the second and third pairs of images, again the features seen in the flow fields

presented above are present - especially the obstacle which can be seen moving

186

4

2

0

Chapter 8 Results

from left to right and coming closer to the camera.

These figures give the idea of depth, areas of higher values of flow are closer to

the camera, and as the objects get closer to the camera the flow field magnitudes

increase.

. . . .

.

0

Figure 8.14: Optical flow magnitudes for images 27 28 where W= 3 L= 4 1= 10

187

0

4

2

0

Chapter 8

. . .
..

. . .
, ·

. ..

Results

.. . . .

0

Figure 8.15: Optical flow magnitudes for images 37 38 where W=3 1 = 4 1= 10

188

0

Chapter 8 Results

·.- . . .

.

0

10

5

0

0

Figure 8.16: Optical flow magnit udes for images 50 51 where W=3 L=4 1=10

189

Chapter 8 Results

w 1 I Images 27-28 Images 37-38 Images 50-51

3 3 10 -3758 -3528 -3377

3 4 10 -3529 -3526 -3540

5 3 10 -5126 -3769 -3573

5 4 10 -5126 -3769 -3573

Table 8.2: Calibration Values (k)

Calibration value determination

In order to convert from the magnitude of the flow field to a depth map, a

calibration value (k) is required. This was calculated as follows:

k = Dn x (1 + MAX(!)) (8.2)

where Dn is the known distance from the camera to the obstacle in image n and

f is the flow field magnitude. The function MAX() determines the maximum

magnitude of t he flow field. The value of k was calculated for the flow fields with

optical flow parameters W=[3,5], 1 = [3,4] and I=lO. Table 8.2 details the results.

Note that equation 8.2 assumes that the maximum value of t he flow field magni

tude is associated with the obstacle.

Table 8.2 shows that the best estimate of distance occurs when W = 3, 1=4 and

1=10, as the difference between the calibration values is the smallest.

The depth maps are calculated using the following expression:

k
d = (l + j) (8.3)

where d is the depth field and k = -3500. Figures 8.17, 8.18 and 8.19 show the

depth maps for the optimal optical flow parameters.

Although the shape of the obstacle is clearly discernible in the figures, it is difficult

190

E
E

0

~ - 2000
C
ro
1n
0

-4000

140

Chapter 8 Results

K = -3529.4
.:

0
100

Figure 8 .17: Range map for images 27 28 where W =3 1=4 I= 10

to see the variation of depth. Figures 8.20, 8.21 and 8.22 show cross-sections

through the depth maps of figures 8.17, 8.18 and 8.19 respectively. The cross

sections are made every 10 "pixels" (i=l0,20 ... 120) from right to left. The red

line in the figures shows the 800mm range, ie. the distance at which the obstacle

is entered into the local map. It can be seen that the obstacle is only within this

range in figure 8.22.

The investigation of Anandan's method for determining optical flow has resulted

in a set of parameters that give the best depth estimation from a set of "ground

truth" images. This is only the first part of the obstacle detection and location,

191

C

0
E
E

~-2000
C
ell
ui
0

-4000

Chapter 8 Results

K = -3526.3

0
100

Figure 8.18: Range map for images 37 38 where W=3 1=4 1= 10

the next step being to take the depth maps generated using the optimal param

eters and convert them into a map that gives the positions of the obstacles.

192

C

0
E
E

~ -2000
C
ro
t5
0

-4000

Chapter 8

. ' .

..
. ' ..

. '

K = -3540

0
100

Figure 8.19: Range map for images 50 51 where W=3 1=4 1=10

Results

C

193

Chapter 8 Results

-200: l
-4000

• •

: :] -200: I
-4000

• • • •

]
00 20 40 60 80 100

-200:[

20 40 60 80 100

-20001

• • •

:]
• • • •

]
-4000 -4000

-200:[

20 40 60 80 100 00 20 40 60 80 100

• • • •

] -2000 I

• • • •

]
-4000 -4000

-200:~ 'r -200:[

20 40 60 80 100

• • • •

]
-4000 -4000

-200:r

20 40 60 80 100 00 20 40 60 80 100

• • • •

] -20001

• • • •

]
-4000 -4000

00 20 40 60 80 100 00 20 40 60 80 100

-20001

• •

:
•

] -20001
:

•

'.

•

]
-4000 -4000

0 20 40 60 80 100 0 20 40 60 80 100

Figure 8.20: Depth cross-section for images 27 28 where W=3 L=4 1=10

194

Chapter 8 Results

-200:r
-4000 :

• •

: I -200:1
- 4000 :

• •

: I
-200:r

20 40 60 80 100 00 20 40 60 80 100

:
• • •

I -20001

• • • •

I -4000 - 4000

-200:r

20 40 60 80 100

~::::~T : :

• •

I -4000

~::::e?YT
00 20 40 60 80 100

-20001

• • • •

I -4000
00 20 40 60 80 100 00 20 40 60 80 100

-20001
:

• •

: I -20001
'.

• • •

I -4000 -4000
00 20 40 60 80 100

-200:[

20 40 60 80 100

-2000[

• • • •

I
•

:
• •

I - 4000 - 4000
0 20 40 60 80 100 0 20 40 60 80 100

Figure 8.21: Depth cross-section for images 37 38 where W=3 L= 4 I= lO

195

Chapter 8 Results

Figure 8.22: Depth cross-section for images 50 51 where W=3 1=4 1=10

196

Chapter 8 Results

8.1.4 Map building

Once the depths of each point in the image is known, a transformation between

the image plane and the real-world coordinates referred to the cameras axes can

be performed. The maps presented in this section have all been generated using

the depth maps presented above. However, the depth estimation can only give

det ails of the visible surfaces of the obstacles in the image, obviously there is no

information about how far the obstacle extends away from the camera, nor is

there any detail about what lies behind the obstacles. In the maps given below

the volume "behind" the obstacle has been filled in to indicate that there may

be an obstacle there.

A better method of map building would be to add information about obstacles

to the map as they are discovered, ie. building the map over time. This would

reduce the amount of space wrongly marked as obstacle, and could allow a path

to be produced where otherwise one would not be possible.

The transformation between image plane and world coordinates is achieved using

the following:

PY d (8.4)

px (i-£)xa
2

(8.5)

pz (j- J) x(3
2

(8.6)

where d is the distance obtained from the optical flow, (i, j) is the position in the

image plane, and (I,J) is the size of the image (128 x 96).

The values a and (3 are calculated from the size of the image, the lens configuration

and the size of the map. In this case the map was set to be a cube size 1600mm

with the camera at the centre. The CCD chip measures½" or 10.16mm by 7.62mm

and we are using a resolution of 128 x 96. The field of view of the camera is 60°

in the azimuth and 44° in elevation. Figure 8.23 shows the setup.

So a can be generated as follows:

197

Chapter 8

f

Focal Point

800mm

Figure 8.23: Map generation parameters

L = 800 x tan0

L = 800 x tan30 = 461

a= L/l = 461/64 = 7.20

/3 can be calculated in a similar way and is found to be 6.73. So,

7.20 Xi px

6.73 X j PY

gives the transform from pixel (i,j) to world coordinates (px,py,pz).

Results

Applying the transform to the depth values yields the three dimensional maps

given in figures 8.24 to 8.31. The red sphere in the centre represents the camera

pointing down at the bottom inside surface of the cube. This surface is the plane

198

L

Chapter 8 Results

orthogonal to the optical axis. The obstacles are coloured blue, and in order for

depth to be represented shadows are present - these can be confusing but are

necessary to present depths. Also, as the map builder only detects the surface of

an obstacle and cannot determine what may be occluded by it, the map building

algorithm fills in the volume behind the detected surface.

Figure 8.24 shows the first map generated and, correctly, it contains no obstacles.

Figure 8.25 shows the map generated from images 27 and 28 and again the map

is empty except for a small point near the centre; this is noise. From the cross

sections presented in figure 8.20 is is clear that all the obstacles are outside the

limit of the map. This is true for the map shown in figure 8.26 where the cross

section given in figure 8.21 again shows that all the obstacles lie outside the map.

A sample of the sequence showing the progress of the map builder are shown

in figures 8.27 to 8.30. Figure 8.27 start shows the obstacle breaking through

the bottom surface and entering the map for the first time. Later figures in

the sequence show the obstacle range reducing and the size increasing as the

camera approaches it. The sequence also shows the lateral motion of the obstacle,

although an animation of the complete sequence shows this much more clearly.

Figure 8.31 is an empty map (apart from noise) because the obstacle is no longer

in the camera's field of view.

From these maps paths can be produced using the method presented in chapter

5.

In this section, it has been shown that Anandan's optical flow method, used with

parameters chosen by experimentation from a set of "ground truth" images, can

produce a flow field which reliably estimat es distances to objects within images.

This depth estimation allows a three-dimensional map to be generated. The map

can then be used by a path planner to produce a path to avoid any obstacles

within the map.

199

Chapter 8 Results

•

Figure 8.24: Map Images 0 and 1

•

Figure 8.25: Map Images 27 and 28

200

Chapter 8 Results

•

Figure 8.26: Map Images 37 and 38

•

Figure 8.27: Map Images 40 and 41

201

Chapter 8 Results

'

Figure 8.28: Map Images 45 and 46

'

Figure 8.29: Map Images 47 and 48

202

Chapter 8 Results

•

Figure 8.30: Map Images 50 and 51

•

Figure 8.31: Map Images 54 and 55

203

Chapter 8 Results

8.2 Test Rig Experiments

This section gives details of experiments performed on the test rig. Up to now,

all the results presented in this chapter and from the investigation of the path

planner detailed in chapter 5 have used "hand-made" data. This was necessary in

order to test the operation of the different sub-systems. The aim of this section

is to show how the controller architecture has combined these sub-systems in

order to perform real-time collision avoidance. A number of typical runs will be

presented and a discussion of the results will be given.

In all the results presented in the experiments below, the camera mount is set to

move along the navigator's path which has been defined as a straight line from

the starting point parallel with the Y axis towards the background. If the camera

deviates from this path to avoid an obstacle, then once the obstacle is passed the

camera should return to the original path.

The sequence of figures is the same for each experiment below. The first figure

gives a sample of the images captured during the experiment, the next figure

shows the flow fields for these images. Next the maps generated from the flow

fields are given and finally the path followed during the experiment is shown, the

dots on the path show the location where the images were captured.

Three dimensional paths are produced by the planner within the test rig's soft

ware, but as the rig only has two degrees of freedom only the X and Y components

of the paths are used. Not having the third axis will have an effect on the subse

quent paths which may make the resulting motion seem inefficient or unusual.

8.2.1 Experiment One

In this test one obstacle is present. Figure 8.32 shows a selection of the images

captured during the run.

In this run, the camera moves both towards the obstacle and from right to left on

the test rig. The obstacle therefore appears larger in the scene and moves from

204

Chapter 8 Results

Figure 8.32: Images captured during experiment 1

left to right in the image. As in the experiments presented above, a number of

other features are present in the images. These include the black cover to the

right, a join in the back ground and the capstan assembly towards the bottom

of the images. These all play an important part in the understanding of the flow

fields presented in figure 8.33.

The flow fields in figure 8.33 correspond to the images presented in figure 8.32.

In figure 8.32 at the top right, a number of features can be seen. The capstan

assembly has been detected at the bottom of the image and this is also present

in the next three images. Towards the right hand side of this flow field a distinct

line from top-to-bottom can be seen, this corresponds to the join between the

background and the black cloth. Just visible at the left of the image is the obsta

cle. In the subsequent images the features can be seen to move from left to right,

also the "size" of the flow fields can be seen to be increasing, this is particularly

true for the obstacle. In the penultimate case the flow field corresponding to the

obstacle is large, indicating that it is close to the camera.

The next stage is crucial. This is the conversion from flow field to location.

Figures 8.34 to 8.39 show the maps calculated from the flow fields above.

Figure 8.34 to 8.39 shows the maps generated during this experiment. In the case

of the map presented in figure 8.34 it has been calculated that no obstacles are

205

Chapter 8 R esults

Figure 8.33: Flow fields generated during experiment 1

within range and the map is empty. As the camera moves a distinct obstacle area

appears to map in figure 8.35, this is the capstan assembly. Figure 8.36 to 8.38

shows the maps produced as the camera approaches the obstacle. Figure 8.39

shows that once the images is out of view the map becomes less cluttered.

The path generated by this run is given m figure 8.40. This shows the test rig

moving the camera assembly to avoid the obstacle that was detected. By looking

at the position of the camera and the obstacle at the beginning of the sequence,

path planning should not be needed as the navigator's path misses the obstacle.

However, during the initial stages the obstacle location system has detected the

black cloth to the right and has produced a path to avoid this. Once the camera

begins to move to the left, it then detects the obstacle as continues towards the

left to avoid it. Eventually, the obstacle moves out of the field of view and the

rig begins to return to the pre-planned Navigator's path.

206

Chapter 8 Results

•

Figure 8.34: Map O calculated during experiment 1

Figure 8.35: Map 5 calculated during experiment 1

207

Chapter 8 Results

..

Figure 8.36: Map 10 calculated during experiment 1

Figure 8.37: Map 15 calculated during experiment 1

208

Chapter 8 Results

Figure 8.38: Map 17 calculated during experiment 1

·-

Figure 8.39: Map 20 calculated during experiment 1

209

Chapter 8 Results

2500 r--------.-----..-----r--------.---------,

2000

1500
E
E_,

>-
1000 ' • • • • • • • • • • • • • • 0 • 0 • • 0 • • • • • • • • o • • • • • • • o • • • o • ' • ' • ' • • • ' o • 0 • • • • • • • • •:• I • • I • • 0 • • • • • • • • • • I • • I • • o ~ • . .

500 ■:.

0 '------ ---'------'--------'-----'----- --'
0 200 400 600 800 1000

X(mm)

Figure 8.40: T he path followed during experiment 1

210

Chapter 8 Results

8.2.2 Experiment Two

In this test no distinct obstacle was present. Figure 8.41 shows some of the images

captured during this experiment.

Figure 8.41: Images captured during experiment 2

In this series of images, t he camera does not move in the X d irection at all it

simply moves slowly towards t he background. The resulting flow fields are shown

in figure 8.42. In this collection of flow fields, the join between the background

and t he black cloth is in t he centre. As the camera moves towards it, t he flow

fields sizes get bigger. Also note on t he right hand side a large flow field is

m easured which is due to the proximity of the black cloth. Also note the capstan

assembly is still visible at t he bottom of the initial images.

T he resulting maps are shown in figures 8.43 t o 8 .49. The maps show that as t he

camera gets closer to the background the larger the flow fields detected. Figure

8.43 shows the first map produced, here only a few points are visible in the map.

As the experiment progresses more obstacle points appear in the image and by

211

Chapter 8 Results

the map shown in figure 8.46 two distinct obstacle areas are visible. These are

due to the gap in the background at the top and the capstan assembly at the

bottom. As these move out of the field of view of the camera their effects reduce

and by the map shown in figure 8.47 they have disappeared. The remaining maps

show show the background being detected.

The path generated by this run is given in figure 8.50.

In this experiment the camera does not move in the X direction even though

obstacles have been detected, and simply follows the Navigator's path. This is

entirely possible as the path planner has detected that the obstacles are not on

the path. However , the results from the map building system in this experiment

are less than ideal. This experiment shows a weakness in the obstacle detection

system. The optical flow software seems to be very sensit ive to fluctuation in

light level. The net effect of these fluctuations is that the obstacles appear closer

than they are.

212

Chapter 8 Results

Figure 8.42: Flow fields generated during experiment 2

213

Chapter 8 Results

•

Figure 8.43: Map 1 calculated during experiment 2

•
' ~ I I l

\lH11.JW

Figure 8.44: Map 5 calculated during experiment 2

214

Chapter 8 Results

Figure 8.45: Map 10 calculated during experiment 2

F igure 8.46: Map 15 calculated during experiment 2

215

Chapter 8 Results

f I 1

1,Lli iJ

Figure 8.47: Map 20 calculated during experiment 2

Figure 8.48: Map 25 calculated during experiment 2

216

Chapter 8 Results

Figure 8.49: Map 30 calculated during experiment 2

2500 .---------.------r--------.------r-------,

E
E .._.,

2000

1500

>-
1000

500 ■

o ~-------'-----'--------'-----'-------'
0 200 400 600 800 1000

X(mm)

Figure 8.50: The path followed during experiment 2

217

Chapter 8 Results

8.2.3 Experiment 3

In this experiment two potential obstacles are present. Figure 8.51 shows some

of the images captured during the experiment.

F igure 8.51: Images captured during experiment 3

The flows generated from the image sequences above are shown in figure 8.52.

These clearly show the two obstacles. However, the join in the background card,

the capst an assembly are also visible. In t he last few flows the left hand edge

is prominent because the lateral motion of the camera causes the edge of the

background card to appear in the scene

218

Chapter 8 Results

The maps produced from these flow fields are shown in figures 8.53 to 8.63.

The first few maps are empty as the obstacles are out of range. The next few

maps then show the obstacles being detected and coming closer to the camera,

although the rate of change of depths is small as the camera is moving laterally

in the middle period of the sequence.

The figures above show the progression of the two obstacles through the image

sequence. With reference to the results from experiment 2, the obstacle location

system is working better in this experiment as the light level was constant during

the experiment.

The path generated by this run is given in figure 8.64. The path shows that

the obstacles were first detected when they were about 750mm away from the

camera. As the camera moves towards them the path planning system begins to

move the camera to the left and successfully avoids the obstacle.

The path in figure 8.64 was cut short by the software crashing. This is due to the

camera moving too far to the left, beyond the limit of the "background". Figure

8.51 shows the bright room emerging at the left of the last couple of images. The

software crash is caused by the map building function of the software, the exact

reason for the crash is unknown.

219

Chapter 8 Results

Figure 8.52: Flow fields generated during experiment 3

220

Chapter 8 Results

•

Figure 8.53: Map 1 calculated during experiment 3

•

Figure 8.54: Map 5 calculated during experiment 3

221

Chapter 8 Results

•

Figure 8.55: Map 10 calculated during experiment 3

\ · -I -f J

Figure 8.56: Map 14 calculated during experiment 3

222

Chapter 8 Results

Figure 8.57: Map 17 calculated during experiment 3

Figure 8.58: Map 24 calculated during experiment 3

223

Chapter 8 Results

Figure 8.59: Map 31 calculated during experiment 3

Figure 8.60: Map 37 calculated during experiment 3

224

Chapter 8 Results

Figure 8.61: Map 40 calculated during experiment 3

Figure 8.62: Map 46 calculated during experiment 3

225

Chapter 8

•
. :, ·. ~ .,,. . .
·. . .. •. .

Figure 8.63: Map 50 calculated during experiment 3

Results

2500 .------,--------r------y------,-----

2000

1500
E
E .._,

>-
1000

500 ■

o~-------------------- --
0 200 400 600 800 1000

X(mm)

Figure 8.64: T he path followed during experiment 3

226

Chapter 8 Results

8 . 2 .4 Experiment 4

Figure 8.65 shows some of the images captured during the experiment. In this

experiment, which has a starting point similar to the previous one, the path

generated in completely different. The images below this t ime show a left to

right movement.

Figure 8.65: Images captured during experiment 4

The flows generated from the image sequences above are shown in figure 8.66.

These show that the camera does come close to one of the obstacles, the flow

vectors are very large in the final few flow fields. In this experiment the de

tails noticed on the background in previous experiments are not as prominent,

227

Chapter 8 Results

compared with the obstacles.

The maps produced from these flow fields are shown in figures 8.67 to 8. 77. These

clearly show the obstacles coming close to the camera and then disappearing out

of view.

The path generated by this run is given in figure 8.78. The camera mount did

come close to the obstacles but it did not collide with it. This path shows the

camera moving the opposite direction to that in experiment 3 although the start

ing point and the obstacle locations are similar. Also notice that the software

does not crash in this case.

228

Chapter 8 Results

Figure 8.66: F low fields generated during experiment 4

229

Chapter 8 Results

•

Figure 8.67: Map 1 calculated during experiment 4

'

Figure 8.68: Map 5 calculated during experiment 4

230

Chapter 8 Results

•

Figure 8.69: Map 10 calculated during experiment 4

\

Figure 8.70: Map 15 calculated during experiment 4

231

Chapter 8 Results

Figure 8.71: Map 20 calculated during experiment 4

•

Figure 8.72: Map 25 calculated during experiment 4

232

Chapter 8 Results

•

Figure 8.73: Map 30 calculated during experiment 4

•

Figure 8.74: Map 35 calculated during experiment 4

233

Chapter 8 R esults

Figure 8.75: Map 40 calculated during experiment 4

F igure 8.76: Map 50 calculated during experiment 4

234

Chapter 8 Results

E
E .._.,

>-

•

Figure 8.77: Map 53 calculated during experiment 4

2500 .----- -~----,-------,-----,------

2000 ,,

1500

1000 , ,

500 , , ■

0 '---------'-----'---------'-----'---- - --'
0 200 400 600 800 1000

X(mm)

Figure 8.78: The path followed during experiment 4

235

Chapter 8 R esults

8 .3 Discussion and Conclusions

The aim of this project was to investigate whether collision avoidance could be

achieved using a machine vision based obstacle detection and location system

providing information for a path planner. The results from t he test rig experi

ments presented above show that obstacle detection and location is possible using

PC based software. Path planning using the distance transform was presented

in chapter 5. The test rig experiments do show that combination of these two

systems makes obstacle avoidance possible.

The "Achilles Heel" of the system is the map builder. The optical flow method

assumes t hat light levels remain constant between images but this was not the case

in many of the experimental runs that were performed because of varying daylight

condit ions in the laboratory. Once the optical flow results are compromised, t he

rest of the location system fails. It would have been possible to construct the test

rig in a dark room with strictly controlled lighting, but t he fact t hat the lighting

levels affect performance would have to be faced at some point .

A more realistic remedy to the problem would be to use a more advanced camera

and lens system. The camera currently used on the test rig has a fixed focal length

lens with manual aperture and focus control. Adding an auto-iris and auto-focus

would probably contribute greatly to the consistency of the results. However, at

the time of purchase, this would have been beyond the project 's budget . Also,

the inclusion of an advanced lens could have introduced its own set of problems,

focusing on the background and not the obstacles for example could result in

the obstacle being missed initially leaving less time for the avoidance system to

generate a path around it.

T he results presented here do show that obstacle avoidance is possible. This

implementation uses optical flow to estimate obstacle location in space that under

controlled condit ions will produce accurate results. However, the results from the

test rig show that opt ical flow on its own would not be acceptable as a location

system. Therefore it is necessary to continue research into methods of obstacle

location, but always with the constraints that the resulting system should be

"cheap", easily assembled using standard parts and be able to fit into a small air

236

Chapter 8 Results

frame.

The next chapter will conclude the thesis. A summary of t he work preformed to

gether with the achievements of the project will be given. Areas for improvement

will be discussed and recommendations for further work will be outlined.

237

Chapter 9

Discussion and Conclusions

The aim of this project was to investigate machine vision and path planning

methods for use in an autonomous unmanned air vehicle. This chapter begins

with a summary of the work performed and its achievements. The chapter con

tinues by discussing the outcomes of the project with reference to the original

aims and objectives. A review of the key research areas is presented, highlighting

the contributions of this work to progress in the field. Finally, recommendations

for further research are made, showing how the project could be taken forward.

9 .1 Hierarchical Controller

The machine vision and path planning methods which constitute the main techni

cal investigation of t his thesis must exist within a defined framework if they are to

be effectively employed for controlling an autonomous air vehicle. Chapter 3 dis

cusses a suitable controller hierarchy which divides responsibilities between three

levels, the planner, the Navigator and the Pilot. The majority of the thesis has

been aimed at implementing the Pilot level as this is the "real-time" component

of the system that controls the helicopter.

The Planner and Navigator functions are employed before the helicopter leaves

the ground. The Planner generates a Preferred Flight Space (PFS), which is

Chapter 9 Discussion and Conclusions

refined into a Modified Preferred Flight Space MPFS - a volume of space where

the threat of collision with known obstacles is below a certain level.

The Navigator then uses the MPFS as its workspace and produces a flight path

along which the best inspection results can be obtained. This ensures that the

flight path is safe and can give the good quality inspection results.

The nominal flight path generated by the Planner and Navigator is followed by

the Pilot unless an unknown obstacle is detected.

Finally, the Pilot level performs the key tasks of obstacle detection and location,

and path planning.

While the generation of the nominal flight path from geographical data has not

been considered in detail, it is nevertheless a contribution of this work that the

principle of how this cam be done has been established. Further, its relationship

to autonomous guidance functions is given by the hierarchical architecture and

provides a defined route to implementation.

9. 2 Machine Vision

Given that other sensors exist, such as RADAR which can give range and velocity

estimates, it is not obvious at first sight why machine vision should be consid

ered in this application. However, chapter 2 provides a rationale for doing so in

economic and practical terms. By and large, the results of this work support this

view because it is shown that optical flow based methods can yield the same type

of results as RADAR (although perhaps not the same quality).

Chapter 4 proposes that two different types of detection systems are required.

The first is used when a fast moving object such as a low flying jet comes into the

locality of the helicopter. By the use of time to collision or looming, a measure

of the velocity can be obtained allowing a reflex avoidance plan to be triggered.

This function has not been considered during this project.

239

Chapter 9 Discussion and Conclusions

The second type of detection is used when the threat level is not so severe. In

this mode, time can be spent determining the position of the obstacle so that a

controlled manoeuvre can be executed which maintains the inspection process.

The machine vision system investigated here uses Anandan's optical flow method.

This was chosen as it produces a dense flow field and in addition only operates on

two frames at a time. This particular method was chosen over other methods after

reviewing comparisons within the literature. In addit ion the software source code

was freely available. The code was reviewed and tested using standard publicly

available test images and images captured from the test rig. The software was

then adapted for use within the controller allowing the machine vision system to

run in parallel with the other software components.

9.3 Path Planning

In order to avoid the obstacles detected by the machine vision system path plan

ning is required. Chapter 2 introduced a variety of existing path planning meth

ods. The decision was made to use a path planner based on the Distance Trans

form, which can be thought of as a combination of a cell decomposit ion method

and a potential field method. The advantages of both types (cell decomposition

methods are useful for higher dimensional problems and potential methods tend

to produce fast planners) have been incorporated into the method.

The resulting path planner operates in three dimensions, is rapid and does not

suffer from the problems of false minima which are inherent in the potential

method. Chapter 5 gives a detailed account of the Distance Transform based

path planner.

The use of spatial decomposition of a three dimensional workspace into an octree

was key to the success of the path planner. This is because decomposition of

space acts like a dimension reducing device. In other words, it is as though the

path planner is operating on a two dimensional workspace. However, there is an

overhead in processing to convert the workspace into a tree structure and it has

been shown that for the process to be efficient, the workspace needs to be greater

240

Chapter 9 Discussion and Conclusions

than 150 units in size or the obstacles need to be few and large.

As mentioned in the previous section there are two types of detection and conse

quently there are two modes of avoidance. It is true that path planning method

described here is rapid; nevertheless, in the case of a reflex response to the detec

t ion of a fast-moving object, it is preferable to follow a pre-defined path. It has

therefore been proposed that, as the vehicle is moving along, a number of escape

paths should be generated as part of the normal path planning process. This

would only add a minimal amount of processing time to the overall path genera

t ion process because the path planner can easily handle multiple goals from one

start point. Thus a number of escape paths can be continually generated and one

of these put into action, dependent on the velocity of the approaching object.

9.4 Results

The experiments performed using the path planner are presented in chapter 6.

The final three dimensional planner has been shown to be effective and rapid.

The execution t ime ranges from 30ms for an empty workspace to lO0ms for a

complex workspace, and more importantly it takes only 60ms to determine that

no path is possible for a complex workspace.

Chapter 7 has detailed the construction of a new computer controlled test rig. The

mechanical design of the rig and the design and construction of the electronics was

completed by the author. The controller software combines the machine vision

software with the path planning system together with the necessary sub-systems

to acquire images and control t he position of the test rig.

The results of the optical flow investigation show that obstacle location is possible.

The results presented at the beginning of chapter 8 show that the method can

be used to determine the distance from a camera to an object, and from that to

generate a obstacle map. This map can then be used for path planning.

The results from the test rig are also presented in chapter 8. The conclusion of

this chapter is that obstacle avoidance using the system developed is possible, but

241

Chapter 9 Discussion and Conclusions

as the system stands the results are not reliable enough to proceed to a prototype

stage.

9.5 Recommendations for further work

The recommendations for future work based on this project include:

• The Distance Transform path planner has worked well in three dimensions.

It would be interesting to investigate how it operates in higher dimensions,

for example in path planning for a multi-link robot arm in configuration

space.

• The path planner is an ideal candidate for parallel or cluster computing

with the t ree structure being spread among the processors. Investigation of

the potential speed-up to be obtained by parallelisation of the path plan

ner , especially if using more than three dimensions would be an interesting

research topic.

• Reflex avoidance systems have been introduced in this thesis, it would be

interest ing to develop these further and asses the possible cont ribution to

improving the safety of the air vehicle.

• A specific recommendation for improving the test rig would be to add the

third axis and incorporate posit ion and velocity control on every axes. This

would allow the helicopter to be modelled more closely and the possibility

of implement ing paths planned in three dimensions.

• Camera and lens technology has improved over the period of this project.

An Automatic Gain Control (AGC) and automatic focus camera/lens com

bination would help in the acquisition of images by ensuring that light ing

level fluctuations has less of an effect on the images. However, further work

examining the effect of these improvements on the operation of the opt ical

flow software is required to find out if there are any detrimental effects.

242

Chapter Discussion and Conclusions

9.6 General Conclusions

This PhD project encompasses a large area of science and engineering. The work

was therefore performed at several levels:

• At the application level, the requirements of power line inspection and the

constraints of current aircraft regulations were analysed, leading to the idea

of autonomous software to provide the "See and Be Seen" function.

• At the organisational level, the hierarchical architecture was introduced as

a suitable framework into which the low level functions could be embedded.

• At a detailed technical level, methods for obstacle detection and path plan

ning were considered.

It was impossible to explore every area in depth within the t ime frame of a PhD

project. The machine vision system is the crucial technical problem. Selection of

a suitable method was done by reviewing the literature, especially papers giving

comparisons between the different types. Also, the software code was obtained

from a publicly available Internet site. It would have been preferable to investigate

machine vision in much more depth and to develop software from scratch so that

it was customised for use within the project. However, this was never going to

be feasible.

The results from the test rig were not of a consistent standard. The results pre

sented in chapter 8 do show obstacle avoidance in action. However, map building

using optical flow has demonstrated the sensitivity of the software to brightness

fluctuations between images. More work is required to determine whether ma

chine vision system can provide obstacle detection and location with the same

degree of accuracy and reliability as other sensors.

As a whole the PhD experience has been a profitable one. In particular the

development of a distance transform based path planner for three dimensional

use had not been reported before and this work has therefore contributed to the

literature on path planning methods.

243

Appendix

244

Appendix A

CAA Regulations

This appendix is provided to show the main guidelines set out for small (model)

aircraft in CAP 658 [21]. The important items are highlighted in bold face.

1. Any model aircraft

• Choose an unobstructed site and at all times keep a safe distance from

- Persons

- Vessels

- Vehicles

- Structures

• Only fly

- In suitable weather

- With regard to any other conditions such as local bylaws

- With due consideration for other people and property

2. Models weighing 7Kg to 20Kg

• Should only be flown

- When the weather is suitable

Clear of controlled airspace unless with Air Traffic Control (ATC)

perm1ss10n

Appendix A

• and

CAA Regulations

Clear of any aerodrome traffic zones unless with ATC permission

Below 120m above ground level unless with ATC permission

Within the sight of the operator at all times

Well clear of any congested area of a city, town or settlement . Not

closer than 150m is suggested

At least 50m clear of persons, vessels, vehicles or structures. This

can be reduced to 30m for take off.

A serviceable 'fail-safe' mechanism should be incorporated

Ensure that any load carried on the model is secure

Flights must comply with any other condit ions or bylaws

Authority permission is required for any commercial flights

246

Appendix B

Approximate Cell Decomposition

B.1 General Description

In the following a rectangloid designates a closed region of the following form in

a Cartesian space Rn:

(B. l)

Let A be a robot whose configuration space C is RN, with N =2 or 3. A configu

ration q is represented by the coordinates of A's reference point O A in the frame

Fw attached to the workspace.

We assume that the set of possible positions of A is contained in a rectangloid

D C RN. We represent C free as :

Cfree = R\CB (B.2)

where CB is the C-obstacle region and:

R = int(D) (B.3)

Let n = cl(R). It is a rectangloid of Rm, where m is the dimension of the

configuration space C.

Appendix B Approximate Cell Decomposition

A rectangloid decomposit ion P of D is a finite collection of rectangloids kii

1, . . . , r such that:

• D is equal to the union of the ki, ie:

r

• T he interiors of t he k/s do not intersect, ie:

Each rectangloid ki is called a cell of the decomposit ion P of D.

Two cells are adjacent if and only if their intersection is a set of non-zero measure

in Rm-l_

A cell ki is classified as:

• Empty, if and only if its interior does not intersect the C-obstacle region, ie

int(ki) n CB = 0

• Full, if and only if ki is entirely contained in the C-obstacle region, ie ki ~

CB

• Grey, otherwise.

The connectivity graph associated with a decomposition P of D 1s the non

directed graph G as follows:

• T he nodes of G are the empty and grey cells of P.

• Two nodes of G are connected by a link if and only if the corresponding

cells are adjacent

Given a rectangloid decomposition P of D, a channel is defined as a sequence

(kai)j=l, ... ,p of empty and/or mixed cells such that any two consecutive cells k0 i

248

Appendix B Approximate Cell Decomposition

and ko.H,, j E [1) p - l], are adjacent . A channel that contains at least one

grey cell is called a G-channel, a channel containing only empty cells is called an

E-channel.

Given an init ial configuration qinit E C free and goal configuration q9oal E C free,

the problem is to generate an E-channel (ko.Jj=l, ... ,p) such that qinit E ko., and

q9oal E ko.p. If such a channel is generated, let /3j = 8ko.i n Bko.H,, j = l , . . . , p - l ,

be the intersection of the boundaries of two successive cells. A free path joining

the initial to the goal configuration can be extracted from the E-channel by linking

qinit to q9oal by a polygonal line whose vertices are points Qjint(/3j)-

249

Appendix C

Potential Field Methods

C .1 Description of potential function

Most potential methods use the idea that the robot should be attracted to a goal

and repulsed by the obstacles. This section will introduce the basic method where

the robot A translates freely at a fixed orientation in a workspace W = RN, where

N=2 or 3, ie C = RN.

The field of force F'(q) in C is produced by differentiable potential function U :

C free --t R, with:

F(q) = -fiU(q) (C.1)

where f!U(q) denotes the gradient vector U at q. In C = RN (N=2 or 3), we can

write q = (x, y) or (x, y, z) and:

(

oU/ox) ... oU/ox
vu = (oU O) or oU / oy

I y oU/oz
(C.2)

In order to make the robot attracted towards a goal and repulsed by obstacles,

Appendix C Potential Field Methods

U is constructed as the sum of two functions.

(C.3)

Uatt is the attractive potential associated with the goal configuration Qgoal · Urep is

the repulsive potential associated with t he C-obstacle region. The attractive po

tential is independent of the obstacles, and the repulsive potential is independent

of the goal configuration.

C.1.1 The attractive potential

The simplest definition of Uatt is a parabolic well:

(C.4)

where~ is a positive scaling function and p90a1(q) denotes the Euclidean distance

llq-q9oatl l- The function Uatt is positive, except at the goal, where Uau(q90a1) = 0.

C.1.2 The repulsive potential

The repulsive potential creates a barrier around the C-obstacle region, that should

not be traversed by the robot's configuration. However, it is desirable that the

obstacles potential field does not affect the motion of the robot when it is signif

icantly distant from the C-obstacles. One method to achieve this is to create the

repulsive potential function as follows:

½77 c(~) + Plo r to p(q) ~ Po,

to p(q) 2: Po 0
(C.5)

251

Appendix C Potential Field Methods

where rJ is a positive scaling faction , p(q) denotes the distance from q to the

C-obstacle region CB, ie:

p(q) = min llq - qtll
qtEC/3

(C.6)

and p0 is a positive constant called the distance of influence of the C-obstacles.

The function Urep is positive or zero, tends to infinity as q approached the C

obstacle region, and is zero when outside the influence of the C-obstacle region.

C.2 Potential Guided Path Planning

This section will describe simple potential-guided path planning techniques, which

operate on the above potential function and others that have been described in

the literature.

In its original conception, the potential field approach to mot ion generation con

sists of regarding the robot in the configuration space as a unit mass particle

moving under the influence of the force field F = - fJU. At every configuration

q the artificial force F (q) determines the acceleration of the particle.

C.2.1 Dept h-first planning

This technique constructs a path as the produce of successive path segments

starting at the init ial configuration qinit· Each segment is oriented along the

negated gradient of the potential function computed at the configuration attained

by the previous segment.

Let qi and qi+l be the origin and extremities of the it h segment in the path. Let

Xj(qi,j = 1, ... ,m, be the coordinates of qi in some chart (U,</>) . We define the

inner product in the tangent space Tq(C) so that the basis /3 induced by this chart

in Tq(C) is orthonormal. We than have:

252

Appendix C Potential Field Methods

(C.7)

We denote the components of the unit vector t(qi) = F(qi)/IIF(qi)II in (3 by t1(qi)

The coordinates of the configuration qi+1 attained at the i th iteration, (U, ¢>), are:

(C.8)

with c5i denoting the length of the ith increment .

For example, if A is a planar object moving in W = R2 , we can parameterise any

q by (x1 , x2, x3) = (x, y, 0) E R2 x [O, 21r), with x and y being the coordinates

of A 's reference point O A at q, and 0 being the angle (modulo 2n) between the

x-axes of the frames :Fw and :FA attached to W and A , respectively. Then:

x(qi+l)
au

x(qi) + c5i ox (x, Y, 0), (C.9)

y(qi+1)
au

y(qi) + c5i oy (x, Y, 0), (C.10)

0(qi+l)
au

0(qi) + ()iae(x , y, 0) mod 27f (C.11)

In order to "normalise" the displacements along the 0-axis relative to displace

ments along the x- and y-axis, on may parameterise q by (x, y, ¢>) E R2 x [O, 21r R),

by posing¢,= 0R, with R = maxaE8A IIOA - all being the maximal distance be

tween the reference point O A and A 's boundary. This yields:

au
¢>(qi)+ c5i o¢> (x, y, ¢>) mod 21r R

c5i au
0(qi) + Ro¢> (x, y, 0R) mod 21r

(C.12)

(C.13)

This technique simply follows the steepest slope of the potential function until

the goal is obtained. Unfortunately, local minima may be present in the potential

253

Appendix C Potential Field Methods

field which act like false goals, trapping the robot in a well which using the simple

technique above it would never escape from. Escaping from local minima in a

depth first search is not straight forward, The first problem is to detect that the

robot is in a false minima, as motions is discretised, the planner does not stop

exactly at the zero-force configuration. The second problem is escaping from

the local minima, one approach would be to move a given distance at a certain

orientation before resuming depth-first planning.

C.2.2 Best-first planning

Let us place a grid over the configuration space C, we donate this grid by QC. QC

can be defined by considering a single chart over C and discretising each of the m

corresponding coordinate axes. For example, if A is a free-flying object in W =
R2

, the grid consists of the configurations (kxOx, kyOy, k060), with kx, ky, ko E Z

and modulo 21r arithmetic on 0.

Given a configuration q in the m-dimensional grid QC, its p-neighbours (1 ~

p ~ m) are defined as all the configurations in QC having at most p coordinates

differing from those of q, the amount of difference being exactly one increment

in absolute value. There are 2m 1-neighbours, 2m2 2-neighbours, .. . , and 3m - 1

m-neighbours. Here we consider two configurations of QC to be neighbours if and

only if they are p-neighbours for a predefined p E [1 , m]. To simplify the following

algorithm:

• Both qinit and q90a1 are configurations in CQ.

• If two neighbours in QC are in frees pace, the straight line segment connect

ing them in Rm also lies in free space.

• The grid QC is bounded and forms a rectangloid

The best-first techniques consists of iteratively constructing a tree T whose nodes

are configurations in QC. The root of Tis qinit· At every iteration, the algorithm

examines the neighbours of the leaf of T that has the lowest potential value,

254

Appendix C Potential Field Methods

retains the neighbours not already in T at which the potential function is less than

some large threshold M, and installs the retained neighbours in T as successors

of the current leaf. The algorithm terminates when the goal configuration is

reached, or when the free subset of QC accessible from the initial configuration

has been fully explored and no path to goal has been found.

This procedure follows a discrete approximation of the negated gradient of the po

tential function until it reaches a local minimum. When this happens, it operates

in a way that corresponds to filling the well until a saddle point is attained.

This algorithm is guaranteed to return a free path when one exists, and to re

port when no path is possible. The implementation presented by Latombe [29]

gives the basic time complexity as O(mrm logr). In practice this method is only

suitable when m is small. For the case of a free-flying robot in two-dimensional

space (m = 3), it provides a means for very fast and reliable path planning with

grid resolutions of the order 2563
.

255

Appendix D

C++ Source code

D .1 Header Files

D.1.1 Node.h

#ifndef node_h

#define node_h

#include <fstream.h>

#include <stdio .h>

// Class node manages the tree structure

// All variables are private to the class

class node

{

private:

int node_name;

node *parent;

int goal,start;

Appendix D C++ Source code

int node_classification;

int distance_transform;

int start_x, start_y, end_x, end_y;

node *sw_child;

node *nw_child;

node *ne_child;

node *se_child;

public :

node(node *parent_to_this, int father_node, int node_offset);

~node();

};

void cl assify_node(int useage);

int analyse_node(void);

void set_size(int sx, int ex,int sy, int ey);

int *give_region_coords(void);

void set_nw(node *nw);

void set_ne(node *ne);

void set_se(node *Se);

void set_sw(node *sw);

int give_node_name(void);

int give_class(void);

node *give_node(int node_number);

node *give_parent(void) { return parent;}

int give_goal(void) { return goal;}

int give_start(void) {return start;}

void set_goal(void);

void set_start(void);

void reset_goal(void);

void reset_goal_above(void);

void set_distance(int value);

int give_distance(void);

void print_coords(void);

#endif

257

Appendix D

D.1.2 Matrix.h

#ifndef _matrix h

#define _matrix_h

#include <fstream.h>

#include <stdio.h>

#include <stdlib.h>

#include "node.h"

class matrix

{

private:

int nr,nc;

int *data;

public:

} ;

matrix(int w,int h);

~matrix();

void set_element(int i,int j,int value);

int get_element(int i,int j);

void fill_matrix(void);

int give_matrix_size_x(void);

int give_matrix_size_y(void);

int analyse_region(int *coords,node *Current);

void show_matrix(void);

#endif

D.1.3 Queue.h

#ifndef _queue_h

#define _queue_h

C++ Source code

258

Appendix D

#include <fstream .h>

#include <stdio.h>

#define MAXQUEUE 100

class queue

{

private :

int count;

int front;

int rear;

int entry[MAXQUEUE];

public:

queue(void);

void add(int data);

int remove(void);

int full(void);

int empty(void);

int size(void);

};

#endif

D.1.4 Image.h

// Image.h

// Header File

#ifndef _image_h

#define _image_h

#include <classlib\time.h>

#include <windows.h>

#include <mil .h>

C++ Source code

259

Appendix D

#include "workspace.h"

#include <stdio .h>

#include <fstream .h>

#include <cstring .h>

#include <math.h>

#include "model .h"

#include "obstacle .h"

#include "flowfield.h"

#define IMAGEDIRECTORY "m:\\optical\\"

#define THRESHOLD_VALUE 200

//#define ACQUIRE_IMAGE_SIZE_X 128

//#define ACQUIRE_IMAGE_SIZE_Y 128

#define ACQUIRE_IMAGE_SIZE_X 128

#define ACQUIRE_IMAGE_SIZE_Y 96

#define PREWITT 0

#define SOBEL 1

#define PGM 0

#define PBMP1 1

#define PBMP4 2

#define TIFF 3

#define FLIP 1

#define NOFLIP 0

#define CAMO 0

#define CAM! 1

#define CAM2 2

#define CAM3 3

#define PROC 4

#define GREY_LEVELS 256

C++ Source code

260

Appendix D

#define MAXLINE 64

II Define focal length as 6mm

#define F0CAL_LENGTH 6.0

#define FL0WTHRESH0LD 0.1

II define the flip state of each camera

#define CAM0FLIPSTATE N0FLIP

#define CAM1FLIPSTATE

#define CAM2FLIPSTATE

#define CAM3FLIPSTATE

FLIP

N0FLIP

FLIP

II The class definition of the image object

class image

{

private:

char *display_data;

unsigned int *image_data;

bool *binary_image_data;

float *flow_field_u;

float *flow_field_v;

double focal_length;

long x_size;

long y_size;

long length;

int x_position;

int y_position;

int z_position;

TTime *grab_time;

int camera_number;

bool flipstate;

bool flowdone;

int current_image_number;

static int master_image_number=0;

C++ Source code

261

Appendix D C++ Source code

obstacle *obstacles[MAX_OBSTACLES]; // Array of type obstacle

int obstacle_count;

model *current_model;

char rawfilename[30];

public:

i mage(model *helicopter) ;

i mage(int image_size_x,int image_size_y,int camera_num ,

model *helicopter);

~image();

long give_x_size(void) { return

l ong give_y_size(void) { return

long give_length(void) { return

char *give_raw_filename(void)

{ return rawfilename;}

x_size;

y_size;

length;

unsigned int give_el ement(long index)

{ return *(image_data+index); }

void set_element(long index,int value)

{ *(image_data+index)=value;}

unsigned int give_element(long x, l ong y)

}

}

}

{ return *(image_data+(y*ACQUIRE_IMAGE_SIZE_X)+x); }

bool give_bin_element(long index)

{ return *(binary_image_data+index); }

bool give_bin_element(long x,long y)

{ return *(binary_image_data+(y*ACQUIRE_IMAGE_SIZE_X)+x); }

void acquire(MIL_ID VisionMilSystem,MIL_ID VisionMilDigitizer);

void flipxy(void);

void preprocess_image(void);

void normalize(void);

void lowpass(void);

void highpass(void);

void edgedetect(int mask_type);

void threshold(int threshold_value);

void obstacle_detection(void);

void loadimage(void);

void saveimage(int type);

262

Appendix D C++ Source code

void saveraw(void);

void l oadflowfield (char *filename);

bool doneflow() {return flowdone;}

double give_focal_length(void) { return focal_length; }

void locate_objects(void);

int give_x_position(void) { return x_position; }

int give_y_position(void) { return y_position; }

int give_z_position(void) { return z_position; }

long *give_obstacle_boundary(int obstacle_number)

{ return obstacles[obstacle_number]->give_boundary(); }

int give_number_obstacles(void) { return obstacle_count;}

int give_image_number(void) { return current_image_number; }

unsigned int *give_image_data_pointer(void) { return image_data; }

bool *give_bool_image_pointer(void) { return binary_image_data; }

char *give_image_pointer(void) { return display_data; }

void update_display_data(void);

double *analyseflowfields(image *previousimage);

};

#endif

D.2 Selected Source Code

D.2.1 Function: Octree

II This functiom generates the tree structure

II from the workspace volume

void octree(node *current_node,volume *workspace)

{

node *children[8];

node *temp;

node *Store;

263

Appendix D C++ Source code

bool obstacle_flag,freespace_flag;

long sx,sy,sz,ex,ey,ez;

long x,y,z;

long *coord;

coord=current_node->give_coords();

sx=*(coord+O);

sy=*(coord+1);

sz=*(coord+2);

ex=*(coord+3);

ey=*(coord+4);

ez=*(coord+S);

obstacle_flag=false;

freespace_flag=false;

for(z=sz;z<ez+1;z++)

{

}

for(y=sy;y<ey+1;y++)

{

for(x=sx;x<ex+1;x++)

{

if(workspace->get_element(x,y,z)==OBSTACLE)

obstacle_flag=true;

if(workspace->get_element(x,y,z)==FREESPACE)

freespace_flag=true;

}

}

if(obstacle_flag==false && freespace_flag==false)

{

}

exit(1); // Image must include freespace or obstacle

// if nothing found something went VERY wrong!

264

Appendix D C++ Source code

if(obstacle_flag==true && freespace_flag==false)

{

II Current map is full of obstacles - we have hit the sea?????

current_node- >set_type (FULL) ;

current_node- >null_children();

}

if(obstacle_flag==false && freespace_flag==true)

{

}

II Map is clear do nothing

current_node->set_type(MT);

current_node->null_children();

II Map contains obstacle and freespace so split using recursion

if(obstacle_flag==true && freespace_flag==true)

{

II Map contains obstacles and freespace

current_node->set_type (GREY);

children[O]=new node((current_node->give_name()*10)+1,

current_node,sx,sy,sz,sx+(((ex+1)-sx)l2)-1,

sy+(((ey+1)-sy)l2)-1,sz+(((ez+1)-sz)l2)-1);

current_node->set_child(1,children[O]);

octree(children[O] ,workspace);

children[1]=new node((current_node->give_name()*10)+2,

current_node,sx+((ex+1)-sx)l2,sy,sz,ex,

sy+(((ey+1)-sy)l2) - 1,sz+(((ez+1)-sz)l2)-1);

current_node->set_child(2,children[1]);

octree(children [1] ,workspace);

children[2] =new node((current_node->give_name()*10)+3,

current_node,sx,sy+((ey+1)-sy)l2,sz,

sx+(((ex+1) - sx)l2) -1 ,ey,sz+(((ez+1) - sz)l2)-1);

265

Appendix D C++ Source code

current_node->set_child(3,children[2]);

octree(children[2],workspace);

children[3]=new node((current_node->give_name()*10)+4,

current_node,sx+((ex+1)-sx)/2,sy+((ey+1) - sy)/2,

sz,ex,ey,sz+(((ez+i) -sz)/2)-1);

current_node- >set_child(4,children[3]);

octree(children[3],workspace);

children[4]=new node((current_node->give_name()*10)+5,

current_node,sx,sy,sz+((ez+1) - sz)/2,

sx+(((ex+1)-sx)/2)-1,sy+(((ey+1) - sy)/2) -1 ,ez);

current_node->set_child(5,children[4]);

octree(children[4] ,workspace);

children[5]=new node((current_node->give_name()*10)+6,

current_node,sx+((ex+1)-sx)/2,sy,

sz+((ez+1)-sz)/2,ex,sy+(((ey+1)-sy)/2)-1,ez);

current_node->set_child(6,children[5]);

octree(children[5],workspace);

children [6]=new node((current_node->give_name()*10)+7,

current_node,sx,sy+((ey+1)-sy)/2,

sz+((ez+1) - sz)/2,sx+(((ex+1) - sx)/2)-1,ey,ez);

current_node->set_child(7,children[6]);

octree(children[6] ,workspace);

children[7]=new node((current_node->give_name()*10)+8,

current_node,sx+((ex+1)-sx)/2,sy+((ey+1)-sy)/2,

sz+((ez+1)-sz)/2,ex,ey,ez);

current_node->set_child(8,children[7]);

octree(children[7] ,workspace);

// Set local node neighbours

temp=current_node->give_child(1);

266

Appendix D

store=current_node->give_child(2);

temp->add_neighbours(store);

store=current_node->give_child(3);

temp->add_neighbours(store);

store=current_node->give_child(5);

temp->add_neighbours(store);

temp=current_node->give_child(2);

store=current_node->give_child(1);

temp->add_neighbours(store);

store=current_node->give_child(4);

temp->add_neighbours(store);

store=current_node->give_child(6);

temp->add_neighbours(store);

temp=current_node->give_child(3);

store=current_node->give_child(1);

temp->add_neighbours(store);

store=current_node->give_child(4);

temp->add_neighbours(store);

store=current_node->give_child(7);

temp->add_neighbours(store);

temp=current_node- >give_child (4);

store=current_node->give_child(2);

temp- >add_neighbours(store);

store=current_node->give_child(3);

temp->add_neighbours(store);

store=current_node->give_child (8);

temp->add_neighbours(store);

temp=current_node->give_child(5);

store=current_node->give_child(1);

temp->add_neighbours(store);

store=current_node->give_child(6);

C++ Source code

267

Appendix D

}

}

temp->add_neighbours(store);

store=current_node->give_child(7);

temp->add_neighbours(store);

temp=current_node->give_child(6);

store=current_node->give_child (2);

temp->add_neighbours(store);

store=curr ent_node->give_child (5);

temp->add_neighbours(store);

store=current_node->give_child(8);

temp->add_neighbours(store);

temp=current_node->give_child(7);

store=current_node- >give_child (3);

temp- >add_neighbours(store);

store=current_node->give_child(5);

temp->add_neighbours(store);

store=current_node- >give_chil d(8);

temp->add_neighbours(store);

temp=current_node->give_child(8);

store=current_node->give_child (4);

temp->add_neighbours(store);

store=current_node- >give_child(6);

temp- >add_neighbours(store);

store=current_node- >give_child(7);

temp->add_neighbours(store);

return;

D.2.2 Function: Diver

//Recursive search function

C++ Source code

268

Appendix D

void diver(node *current_node,int type)

{

}

node *temp;

// Functions using the diver search

void update1 (node *current);

void update2(node *current);

// Start at root and pass through all nodes

for(int i=1;i<9;i++)

{

}

// Test to see if current node has children

temp=current_node->give_child(i);

if(temp==NULL)

{

return;

}

else

{

// Recurse

diver(temp,type);

}

// Call functions

if(type==O) update1 (temp);

if(type==1) update2(temp);

return;

D.2.3 Function: Updatel

This code has been edited for length.

C++ Source code

269

Appendix D C++ Source code

void update1(node *current_node)

{

node *temp;

node *parent;

node *Store;

int node_number;

int node_id;

II This will catch the root node only case

if(current_node->give_child(1)==NULL) return;

II Get the current name

node_id=current_node->give_name();

II Get the node location 1,,2,3,4,5,6,7,8

node_number=node_id%10;

II This statement connects the children of the current node

II to the current node's sisters. Dependent on the location

II of the current node

switch(node_number)

{

case 0:

break;

case 1 : II Current node is top-left-front

II Get the parent of the current node

parent=current_node->give_parent() ;

II Get the lower-left-front child of current node

temp=current_node->give_child(2);

II Get the parents lower-left-front child

store=parent->give_child(2);

II Add the parents llf child to the current

II nodes llf child

t emp->add_neighbours(store);

270

Appendix D C++ Source code

// Add the current node llf child to the parent

// llf node child

store->add_neighbours(temp);

temp=current_node->give_child(3);

store=parent->give_child(3);

temp->add_neighbours(store);

store->add_neighbours(temp);

temp=current_node->give_child(4);

store=parent->give_child(2);

temp->add_neighbours(store);

store->add_neighbours(temp);

store=parent->give_child(3);

temp->add_neighbours(store);

store->add_neighbours(temp);

temp=current_node->give_child(5);

store=parent->give_child(5);

temp->add_neighbours(store);

store->add_neighbours(temp);

temp=current_node->give_child(6);

store=parent- >give_child(2);

temp->add_neighbours(store);

store->add_neighbours(temp);

store=parent->give_child(5);

temp->add_neighbours(store);

store->add_neighbours(temp);

temp=current_node- >give_child(7);

store=parent->give_child(3);

temp->add_neighbours(store);

store- >add_neighbours(temp);

store=parent->give_child(5);

271

Appendix D

temp->add_neighbours(store);

store->add_neighbours(temp);

temp=current_node->give_child(8);

store=parent->give_child(2);

temp->add_neighbours(store);

store->add_neighbours(temp);

store=parent->give_child(3);

temp->add_neighbours(store);

store->add_neighbours(temp);

store=parent->give_child(5);

temp->add_neighbours(store);

store->add_neighbours(temp);

break;

case 2:

parent=current_node->give_parent();

temp=current_node->give_child(1);

store=parent->give_child(1);

temp->add_neighbours(store);

store->add_neighbours(temp);

temp=current_node->give_child(3);

store=parent->give_child(1);

temp->add_neighbours(store);

store->add_neighbours(temp);

store=parent->give_child(4);

temp- >add_neighbours(store);

store->add_neighbours(temp);

temp=current_node->give_child(4);

store=parent->give_child(4);

temp->add_neighbours(store);

store->add_neighbours(temp);

C++ Source code

272

Appendix D

}

temp=current_node->give_child(7);

store=parent->give_child(7);

temp->add_neighbours(store);

store->add_neighbours(temp);

break;

default:

}

cout « 11 ERROR: Default in Node Parse\n 11
;

break;

return;

D.2.4 Function: Update2

This code has been edited for length.

void update2(node *current_node)

{

node *from_list;

node *temp;

int size,counter;

// This will catch the root node only case

if(current_node->give_child(1)==NULL) return;

if(current_node- >give_type()==FULL) return;

counter=O;

current_node->iter_restart();

size=current_node->give_items();

C++ Source code

273

Appendix D C++ Source code

while(counter<size)

{

from_list=current_node->next();

if(from_list->give_child(1)==NULL)

{

switch(current_node->give_name()%10)

{

case 1:

switch(from_list->give_name()%10)

{

case 1:

break;

case 2:

from_list->add_neighbours(current_node->give_child(2));

from_list->add_neighbours(current_node->give_child(4));

from_list->add_neighbours(current_node->give_child(6));

from_list->add_neighbours(current_node->give_child(8));

break;

case 3:

from_list->add_neighbours(current_node->give_child(3));

from_list->add_neighbours(current_node->give_child(4));

from_list->add_neighbours(current_node->give_child(7));

from_list->add_neighbours(current_node->give_child(8));

break;

case 4:

break;

case 5:

from_list->add_neighbours(current_node->give_child(5));

from_list->add_neighbours(current_node->give_child(6));

from_list->add_neighbours(current_node->give_child(7));

from_list->add_neighbours(current_node- >give_child(8));

break;

case 6:

break;

case 7:

274

Appendix D C++ Source code

break;

case 8:

break;

}

break;

case 2:

switch(from_list->give_name()%10)

{

case 1:

from_list->add_neighbours(current_node->give_child(1));

from_list->add_neighbours(current_node->give_child(3));

from_list->add_neighbours(current_node->give_child(5));

from_list->add_neighbours(current_node->give_child(7));

break;

case 2:

break;

case 3 :

break;

case 4:

from_list->add_neighbours(current_node->give_child(2));

from_list->add_neighbours(current_node->give_child(4));

from_list->add_neighbours(current_node->give_child(6));

from_list->add_neighbours(current_node->give_child(8));

break;

case 5:

break;

case 6:

from_list->add_neighbours(current_node->give_child(5));

from_list->add_neighbours(current_node->give_child(6));

from_list->add_neighbours(current_node->give_child(7));

from_list->add_neighbours(current_node->give_child(8));

break;

case 7:

break;

case 8:

275

Appendix D C++ Source code

break;

}

break;

case 3:

switch(from_list->give_name()%10)

{

case 1:

from_list->add_neighbours(current_node->give_child(1));

from_list->add_neighbours(current_node->give_child(2));

from_list->add_neighbours(current_node->give_child(5));

from_list->add_neighbours(current_node- >give_child(6));

break;

{

case 8:

switch(from_list->give_name()%10)

case 1:

break;

case 2:

break;

case 3:

break;

case 4:

from_list->add_neighbours(current_node->give_child(1));

from_list->add_neighbours(current_node->give_child(2));

from_list->add_neighbours(current _node->give_child(3));

from_list->add_neighbours(current_node->give_child(4));

break;

case 5:

break;

case 6:

276

Appendix D C++ Source code

}

{

from_list->add_neighbours(current_node->give_child(1));

from_list->add_neighbours(current_node->give_child(2));

from_list->add_neighbours(current_node->give_child(5));

from_list->add_neighbours(current_node->give_child(6));

break;

case 7:

from_list->add_neighbours(current_node->give_child(1));

from_list->add_neighbours(current_node->give_child(3));

from_list->add_neighbours(current_node->give_child(5));

from_list->add_neighbours(current _node->give_child(7));

break;

case 8:

break;

}

break;

}

else

switch(current_node->give_name()%10)

{

case 1:

switch(from_list->give_name()%10)

{

case 1:

break;

case 2:

temp=from_list->give_child(1);

temp->add_neighbours(current_node->give_child(2));

temp=from_list->give_child(3);

temp->add_neighbours(current_node->give_child(4));

temp=from_list->give_child(5);

temp->add_neighbours(current_node->give_child(6));

temp=from_list->give_child(7);

temp->add_neighbours(current_node->give_child(8));

277

Appendix D C++ Source code

break;

case 3:

temp=from_list->give_child(1);

temp->add_neighbours(current_node->give_child(3));

temp=from_list->give_child(2);

temp->add_neighbours(current_node->give_child(4));

temp=from_list->give_child(5);

temp->add_neighbours(current_node->give_child(7));

temp=from_list->give_child(6);

temp->add_neighbours(current_node->give_child(8));

break;

case 4:

break;

case 5:

temp=from_list->give_child(1);

temp->add_neighbours(current_node->give_child(5));

temp=from_list->give_child(2);

temp- >add_neighbours(current_node->give_child(6));

temp=from_list->give_child(3);

temp- >add_neighbours(current_node->give_child(7));

temp=from_list->give_child(4);

temp->add_neighbours(current_node->give_child(8));

break;

case 6:

break;

case 7:

break;

case 8:

break;

}

{

break;

case 2:

switch(from_list->give_name()%10)

case 1:

278

Appendix D C++ Source code

}

}

}

temp=from_list- >give_child(2);

temp- >add_neighbours(current_node- >give_child(1));

temp=from_l ist->give_child(4);

temp->add_neighbours(current_node- >give_child(3));

temp=from_list->give_child(6);

temp->add_neighbours(current_node- >give_child(5));

temp=from_list->give_child(8);

temp->add_neighbours(current_node- >give_child(7));

break;

case 2 :

break;

case 3:

break;

case 4:

}

}

temp=from_list->give_child(1);

temp->add_neighbours(current_node->give_child(3));

temp=from_l ist->give_child(2);

temp->add_neighbours(current_node->give_child(4));

temp=from_list->give_child(5);

temp- >add_neighbours(current_node- >give_child(7));

temp=from_list->give_child(6);

temp->add_neighbours(current_node->give_child(8));

break;

break;

counter++;

279

Appendix D C++ Source code

D.2.5 Function: Distance Transform

void distance_transform(node *root_node,node *current_node)

{

nodequeue *myqueue;

int queue_size;

int counter;

node *temp;

node *Store;

int dt_value=1;

long current_dt;

// Set goal node DT to 0

current_node->set_distance_transform(O);

// root node only case

if(current_node==root_node) return;

// Create a queue to store neighbours

myqueue=new nodequeue;

do

{

queue_size=current_node- >give_items();

current_node->iter_restart();

counter=O;

while(counter<queue_size)

{

// Get nodes neighbours

store=current_node- >next();

if(store- >give_dt()<O && store->give_type()==MT)

{

// Build the queue up with neighbours

myqueue->add(store,dt_value);

280

Appendix D C++ Source code

}

}

counter++;

}

// Remove the next node from the queue

temp=myqueue->remove();

// Remove the current node's DT value

current_dt=myqueue->remove_dt();

temp->set_distance_transform(current_dt);

// Assign the temp node to the current node

current_node=temp;

// Increment the DT value

dt_value++;

}

while(myqueue->empty()==false);

return;

D.2.6 Function: Path Planning

bool find_path(node *start,node *goal,nodequeue *path)

{

node *temp;

node *store;

node *lowest;

int counter;

int queue_size;

int path_test;

281

Appendix D C++ Source code

II Flag true if path exists, false if not

bool path_flag=false;

temp=start;

lowest=start;

path->add(temp,O);

II Start and goal are the same node

II Also caters for the case of only a root node

if(start==goal) return true;

II If start location has a negative dt value

II no path exists

if(start->give_dt()==-1)

{

}

MessageBox(O,"No path possible","Find path",MB_OK);

return false;

II Find a path

while(temp!=goal)

{

queue_size=temp->give_items();

temp->iter_restart();

counter=O;

path_test=O;

while(counter<queue_size)

{

store=temp->next();

if(store->give_dt()==-1)

{

path_test++;

}

else if(store->give_dt()<temp->give_dt()

282

Appendix D

}

}

&&store->give_dt()<lowest->give_dt())

{

lowest=store;

}

}

path_flag=true;

counter++;

temp=lowest;

path->add(temp,O);

if((queue_size-path_test)==1)

{

}

path_flag=false;

break;

if(path_flag==false)

{

}

// Something went wrong

MessageBox(O,"No path","Find path",MB_OK);

return false;

else

{

}

I I Path found

MessageBox(O, "Path Found", "Find path" ,MB_OK);

return true;

C++ Source code

283

References

[1] DJ.Jones and G.K.Earp, "Requirements for aerial inspection of overhead

power lines," in Proceedings of the 12th International Conference on Re

motely Piloted Vehicles, 1996.

[2] DJ.Jones, "A robotic device for aerial inspection of overhead power lines:

Feasibility report," EA Technology Report 3510, EA Technology Ltd, De

cember 1995.

[3] DJ.Jones, "A robotic device for aerial inspection of overhead power lines:

Bridging study," EA Technology Report 3398, EA Technology Ltd, Novem

ber 1995.

[4] R.G.Austin and P.A.Ryrie, "The sprite system - an update," in Proceedings

of the 8th International RPV Conference, December 1995.

[5] DJ.Jones, "Case study and requirements for robotic inspection of power

lines," Seminar on robotics for use in the electricity industry, EA Technology,

January 1997.

[6] DJ.Jones and G.Earp, "Requirements for aerial inspection of overhead elec

trical power lines," Technology report, EA Technology Ltd, 1996.

[7] A.Meystel, Autonomous Mobile Robots: Vehicles with Cognitive Control,

World Scientific, 1991.

[8] D.Shin, "A fast motion planning algorithm for a mobile robot using a dis

tance transformation image," Systems and Computers in Japan, vol. 25, no.

5, pp. 88- 99, 1994.

Bibliography

[9] A.Zelinsky, "A mobile robot exploration algorithm," IEEE Transactions on

Robotics and Automation, vol. 8, no. 6, pp. 707-717, 1992.

[10] RA.Jarvis and J.C.Byrne, "Robot navigation: Touching, seeing and know

ing," in Proceedings of the pt Australian Conference on A rtificial Intelli

gence, November 1986.

[ll] R.Jarvis, "An all- terrain intelligent autonomous vehicle with sensor-fusion

based navigation capabilities," Control Engineering Practice, vol. 4, no. 4,

pp. 481- 486, 1996.

[12] G.M.Hunter and K.Steiglitz, "Operations on images using quad trees," IEEE

Transactions on Patern Analysis and Machine Intelligence, vol. 1, no. 2, pp.

145- 153, 1979.

[13] M.Williams, DJ.Jones, and G.K.Earp, "Obstacle avoidance during aerial in

spection of power lines," in 2nd Workshop on European S cientific and Indus

trial Collaboration, G.N.Roberts and C.A.J.Tubb, Eds., pp. 61- 68. Mecha

tronics Research Center, University of Wales College, Newport, September

1999.

[14] M.Williams and DI.Jones, "A rapid method for path planning in three

dimensions for a small aerial robot," Robotica, vol. 19, pp. 125- 135, 2001.

[15] M.Williams DJ.Jones and G.K.Earp, "Obstacle avoidance during aerial in

spection of power lines," Aircraft Engineering and A erospace Technology,

vol. 73, no. 5, pp. 472-479, 2001.

[16] BBC News, "Power firm hit by 100,000 fine," Web Document

http: / /news2. thls. bbc.co. uk/hi/ english/uk/newsid_392000 /392268.stm,

July 1999.

[17] BBC News, "Fatal police air crash investigation," Web Document

http://news2.thls.bbc.co.uk/hi/english/ uk/ newsid_l90000/l90543.stm, Oc

tober 1998.

[18] BBC News, "Helicopter crash kills three," Web Document

http:/ /news 2. thls. bbc.co. uk/ hi/ english/uk/ newsid_l39000 / 139680.stm,

July 1998.

285

Bibliography

[19] G.K.Earp and L.D.Malone, "Evaluation of a stabilised camera platform for

power line inspection from a helicopter," EA Technology Report 4806, EA

Technology Ltd, February 1999.

[20] A.Clot and D.J.Smith, "Making sense of 'see and avoid'," Unmanned Vehi

cles, pp. 24- 27, October 2000.

[21] CAA, CAP 658: Small (model) aircraft: A guide to safe flying, Civil Avia

t ion Authority, 1995.

[22] B.Sridhar and G.B.Chatterji, "Vision based obstacle detection and grouping

for helicopter guidance," Journal of Guidance and Control, vol. 15, no. 5,

pp. 908- 915, 1994.

[23] V.H.L.Cheng and T.Lam, "Automatic guidance and control for helicopter

obstacle avoidance," Journal of Guidance and Control, vol. 6, no. 1, pp.

1252- 1259, 1994.

[24] B.Sridhar and A.V.Phatak, "Analysis of image-based navigation systems

for rotorcraft low-altitude flight," IEEE Transactions on Systems, Man,

and Cybernetics, vol. 22, no. 2, pp. 290- 299, 1992.

[25] Y.K.Hwang and N.Ahuja, "Gross motion planning - a survey," ACM Com

puter Surveys, vol. 24, no. 3, pp. 219- 291, 1992.

[26] L.E.Kavraki, "Computation of configurat ion-space using the fast fourier

transform," IEEE Transactions on Robotics and Automation, vol. 11, no. 3,

pp. 408- 413, 1995.

[27] A.B.Doyle, Algorithms and Computational Techniques for Robot Path Plan

ning, Ph.D. thesis, School of Electronic Engineering and Computer Systems.

University of Wales, Bangor, September 1995.

[28] J .Canny, Complexity of Robot Motion Planning, MIT Press, August 1988,

ISBN 0262031361.

[29] J-C.Latombe, Robot Motion Planning, Kluwer Academic, 1991.

[30] S.Kambhampati and L.S.Davis, "Multiresolution path planning for mobile

robots," IEEE Journal of Robotics and Automation, vol. 2, no. 1, pp. 135-

145, September 1986.

286

Bibliography

[31] H.Samet, "An algorithm for converting rasters to quad trees," IEEE Transac

tions on Pattern Analysis and Machine Intelligence, vol. 3, no. 1, pp. 93-95,

January 1981.

[32] H.Samet, "Distance transform for images prepresented by quadtrees," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 4, no. 3, pp.

298- 303, May 1982.

[33] H.Samet, "An overview of quadtrees, octrees, and related hierarchical data

structures," in Theoretical Foundations of Computer Graphics and CAD,

RA.Earnshaw, Ed., vol. F40 of NATO ASI, pp. 51- 68. Springer-Verlag,

1988.

[34] E.Hawaguchi and T.Edno, "On a method of binary-picture representation

and its application to data compression," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 2, no. 1, pp. 27- 35, January 1980.

[35] D.Meagheer, "Octree encoding: a new technique for the representation,tl1e

manipulation, and display of arbitarry 3-d objects by computers," Technical

report TR-80-111, Rensselaer Polytechnic Institute, October 1980.

[36] M.E.Rozmann and J .Detlefsen, "Environmental exploration based on

a three-dimensional imaging radar sensor," in Proceedings of the 1992

IEEE/RSJ International Conference on Intelligent Robots and Systems,

1992, pp. 422- 429.

[37] J.Horn and G.Schmidt, "Continuous localization of a mobile robot based

on three-dimensional-laser-range-data, predicted sensor images and dead

reckoning," Robotics and Autonomous Systems, vol. 14, pp. 99- 118, 1995.

[38] J.Wright, K.Scott, T-H.Chao, and B.Lau, "Multi-sensor data fusion for

seafloor mapping and ordnance location," in Proceedings of the 1996 Sympo

sium on Autonomous Underwater Vehicle Technology, June 1996, pp. 167-

175.

[39] B.Bhanu, S.Das, B.Roberts, and D.Duncan, "A system for obstacle detection

during rotorcraft low altitude flight," IEEE Transactions on Aerospace and

Electronic Systems, vol. 32, no. 3, pp. 875- 897, 1996.

287

Bibliography

[40] Y-1.Tang and R.Kasturi, "Accurate estimation of object location in an image

sequence using helicopter flight data," Robotics and Computer-Integrated

Manufacturing, vol. 11 , no. 2, pp. 65- 72, 1994.

[41] B.K.P.Horn and B.G.Schunck, "Determining optical flow," Artificial Intel

ligence, vol. 17, pp. 185- 203, 1981.

[42] Y.Yagi, Y .Nishizawa, and M.Yahida, "Map-based navigation for a mobile

robot with omnidirectional image sensors copis," IEEE Transactions on

Robotics and Automation, vol. 11, no. 5, pp. 634-478, 1995.

[43] A.K.Dalmia and M.Trivedi, "Depth extraction using a single moving camera:

and integration of depth from motion and depth from stereo," Machine

Vision and Applications, vol. 9, pp. 43- 55, 1996.

[44] A.Mitiche, S.Seida, and J.K.Aggarwal, "Determining position and displace

ment in space from images," in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 1985, pp. 504- 509.

[45] H.Zhuang, R.Sudhakar, and J.Shieh, "Depth estimation from a sequence of

monocular images with known camera motion," Robotics and Autonomous

Systems, vol. 13, pp. 87- 95, 1994.

[46] B.K.P.Horn and E.J.Weldon, "Direct methods for recovering motion," In

ternational Journal of computer vision, vol. 2, no. 1, pp. 51- 76, 1988.

[47] D.W.Murray and K.J.Bradshaw, "Driving saccade to pursuit using image

motion," International Journal of Computer Vision, vol. 16, no. 3, pp. 205-

228, 1995.

[48] D.Regan and A.Vincent, "Visual processing of looming and time to contact

throughout the visual field," Vision Research, vol. 35, no. 11, pp. 1845- 1857,

1995.

[49] K.Joarder and D.Raviv, "A new method to calculate looming for autonomous

obstacle avoidance," in Proceedings of the 1994 IEEE Computer Society

Conference on Computer Vision and Pattern R ecognition, 1994, pp. 777-

780.

288

Bibliography

[50] RC.Nelson and Y.Aloimonos, "Obstacle avoidance using flow field diver

gence," IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 11, no. 10, pp. 1102- 1106, 1989.

[51] E .Trucco and A.Verri, Introductory Techniques for 3-D Computer Vision,

Prentice Hall, 1998.

[52] G.Adiv, "Determining three-dimensional motion and structure from optical

flow generated by several moving objects," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 7, no. 4, pp. 384- 401, 1985.

[53] P.Burlina and R.Chellappa, "Analyzing looming motion components from

their spatiotemporal spectral signature," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 18, no. 10, pp. 1029- 1033, 1996.

[54] S.S.Beauchemin and J.L.Barron, "The computation of optical flow," ACM

Computer Surveys, vol. 27, no. 3, pp. 433- 467, 1995.

[55] R.Sharma and Y.Aloimonos, "Early detection of independent motion from

active control of normal image flow patterns," IEEE Transactions on Sys

tems, Man and Cybernetics - Part B, vol. 26, no. 1, pp. 42- 52, 1996.

[56] M.Campani and A.Verri, "Computing optical flow from an over-constrained

system of linear algebraic equations," in Proceedings of the Third IEEE

International Conference on Computer Vision, 1990, pp. 22- 26.

[57] M.Tistarelli and G.Sandini, "On the advantages of polar and log-polar map

ping for direct estimation of time-to-impact from optical flow," IEEE Trans

actions on Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp.

401- 410, 1993.

[58] M.T istarelli, "Multiple constraints to compute optical flow," IEEE Trans

actions on Pattern Analysis and Machine Intelligence, vol. 18, no. 12, pp.

1243- 1250, 1996.

[59] E.De.Micheli, V.Torre, and S.Uras, "The accuracy of the computation of

optical flow and of the recovery of motion parameters," IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 15, no. 5, pp. 434- 447,

1993.

289

Bibliography

[60] Y.Shirai, Y.Mae, and S.Yamamoto, "Object tracking by using optical flows

and edges," in The ";th Symposium on Robotics Research, May 1996, Lecture

Notes in Computer Science, pp. 440- 447.

[61] J .L.Barron, D.J.Fleet, S.S.Beauchemin, and T.A.Burkitt, "Performance of

optical flow techniques," in Procedings of the IEEE on Computer Vision and

Pattern R ecognition, pp. 236-242. 1992.

[62] B.Galvin, B.McCane, K.Novins, D.Mason, and S.Mills, "Recovering motion

fields: An evaluation of eight optical flow algorithms," in Proceedings of the

ninth British machine vision conference, P.H.Lewis and M.S.Nixon, Eds.,

vol. 1, pp. 195- 205. 1998.

[63] University of Western Ontario,

ftp://ftp.csd.uwo.ca/pub/vision, 1992.

"Optical flow software,"

[64] P.Anandan, ''A unified perspective on computational techniques for the

measurement of visual motion," in Proceedings of the First International

Conference on Computer Vision, June 1987, pp. 219- 230.

[65] A.Klinger, "Patterns and search statistics," in Optimizing Methods in Statis

tics, J.S.Rustagi, Ed. , pp. 303- 337. Academic Press, 1971.

290

The End

291

