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Summary 29 

● The architecture of root systems is an important driver of plant fitness, competition 30 

and ecosystem processes. However, the methodological difficulty of mapping roots 31 

hampers the study of these processes. Existing approaches to match individual 32 

plants to belowground samples are low-throughput and species-specific. Here, we 33 

developed a scalable sequencing-based method to map the root systems of 34 

individual trees across multiple species. We successfully applied it to a tropical dry 35 

forest community in the Brazilian Caatinga containing 14 species. 36 

● We sequenced all 42 individual shrubs and trees in a 14 by 14 m plot using double-37 

digest restriction-site associated sequencing (ddRADseq). We identified species-38 

specific markers and individual-specific haplotypes from the data. We matched 39 

these markers to ddRADseq data from 100 mixed root samples from across the 40 

centre (10 by 10 m) of the plot at four different depths, using a newly developed R 41 

package. 42 

● We identified individual root samples for all species and all but one individual. There 43 

was a strong significant correlation between below and aboveground size 44 

measurements, and we also detected significant species-level root-depth 45 

preference for two species. 46 

● The method is more scalable and less labour-intensive than current techniques, and 47 

is broadly applicable to ecology, forestry and agricultural biology. 48 

 49 
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Introduction 54 

Most plant ecology studies have focussed on aboveground traits, despite a large 55 

proportion of plant biomass being located belowground (Mokany et al., 2006; Poorter et 56 

al., 2012). This has led to limited research into crucial processes occurring in the soil, 57 

such as plant–soil, plant–microbial and plant–plant interactions and their implications for 58 

ecosystem processes (Bardgett et al., 2014). Expanding our knowledge in this area has 59 

implications for biodiversity conservation, plant productivity, and predicting ecosystem 60 

responses to global environmental change (Ostle et al., 2009).  61 

Assessing root distribution at the individual level permits a reconstruction of the fine 62 

rooting patterns of single plants (e.g., individual trees in an area of a forest) in three 63 

dimensions. This then allows inferences of how plant roots compete with each other for 64 

nutrients and water, and the relationship between aboveground and belowground 65 

biomass — contributing to the understanding of the structure and dynamics of 66 

community-level and evolutionary processes such as niche differentiation, symbiosis 67 

and environment-phenotype interactions. To achieve this, better methodologies are 68 

needed for detecting the distribution of individual root systems. 69 

Belowground studies in natural systems are limited by the difficulty of observing roots in 70 

natural settings, which is especially true for trees where excavation of entire root 71 

systems is destructive and sometimes unfeasible (Cabal et al., 2021). Therefore, 72 

alternative techniques are needed to elucidate the belowground structure and 73 

interactions of particular plant species, or ideally, specific individuals (Jones et al., 2011; 74 

Cabal et al., 2021). Methods based on DNA sequencing and related computational 75 

techniques have allowed an increasing number of assessments of belowground plant 76 

distribution at the species level (Jackson et al., 1999; Bardgett et al., 2014). To 77 

differentiate roots of different species, amplicon sequences are usually sequenced in 78 

mixed root DNA from soil cores and are then allocated to species by comparison to 79 

databases (Mommer et al., 2010; Bardgett et al., 2014; Barberán et al., 2015). DNA 80 

metabarcoding has been successfully used to identify the species composition (Jones 81 

et al., 2011; Kesanakurti et al., 2011; Hiiesalu et al., 2012) and relative abundance 82 

(Matesanz et al., 2019) of plant communities from mixed root samples. However, this 83 



approach is successful for species-level identification only, and is dependent on the 84 

existence of complete reference libraries (Jones et al., 2011).  85 

Microsatellite markers have been used to assign single root fragments to individual 86 

trees (Saari et al., 2005). This approach, however, is not applicable to experiments with 87 

large sample sizes since it requires each root fragment to be processed individually, 88 

which is laborious. Furthermore, species-specific PCR primers for each marker must 89 

first be developed in order to use microsatellite approaches (Zane et al., 2002), limiting 90 

their scalability to mixed plant communities. To the best of our knowledge, no high-91 

throughput method has been successful in linking root DNA from mixed-species soil 92 

specimens to individual plants.  93 

The restriction-site associated DNA sequencing family of methods (RADseq; also 94 

known as Genotyping-by-Sequencing, Davey and Blaxter 2010) have been employed to 95 

address a wide variety of ecological, phylogenetic and evolutionary questions (Andrews, 96 

Good, Miller, Luikart, & Hohenlohe, 2016). These include resolving relationships among 97 

closely related species (Grewe et al., 2017), tracing the movement of insects among 98 

host plants (Fu et al., 2017), population genetic inference of selection (Magalhaes et al., 99 

2020) and building genetic maps (Papadopulos et al., 2019). The double digest 100 

variation of the RADseq method (ddRADseq) can be used for Single Nucleotide 101 

Polymorphism (SNP) discovery and genotyping of any organism, without the need of a 102 

reference genome (Heyland & Hodin, 2004; Peterson et al., 2012; Andrews et al., 103 

2016). This makes ddRADseq a relatively inexpensive and potentially suitable approach 104 

for tracing individual plant roots from mixed soil samples. 105 

Here, we describe a method to allow direct inferences on the fine rooting patterns of 106 

individual trees. We employed ddRADseq data from all individual trees, a single 107 

specimen of each shrub species present, and 100 mixed root samples, across an 108 

experimental plot in the understudied but ecologically important seasonally dry tropical 109 

forest of the Brazilian Caatinga. We developed a bioinformatic pipeline to link the 110 

individual trees to root samples using this data, constructed 3D maps of fine root 111 

distribution of each tree, and used the results to identify species-specific root-depth 112 

niches and aboveground-belowground size correlations.  113 



 114 

Materials and Methods 115 

Study design and sequencing 116 

Our study site consisted of a 14 × 14 m plot situated on the Semiarid unit of the 117 

Brazilian Agriculture Research Corporation (EMBRAPA; Pernambuco State, Brazil; 118 

central coordinates: 9.04002°S, 40.31957°W; Fig. 1a). The studied vegetation can be 119 

broadly described as being part of the Caatinga domain (de Lima Araújo et al., 2007) 120 

with soil physical and chemical properties sampled and analysed as in Quesada et al. 121 

(2011) yielding a World Reference Base (IUCC, 2006) soil classification of “Haplic 122 

Lixisol (Loamic, Hypereutric, Ochric, Magnesic)”. The Brazilian Caatinga is recognised 123 

as the largest and most species rich forests of the Seasonally Dry Tropical Forest 124 

(SDTF) biome in the New World (Pennington et al., 2000, Fernandes et al., 2022).  125 

To quantify the vegetation structure, measurements of stem diameters and projected 126 

canopy areas were made according to protocols as detailed in Tortello-Raventos et al. 127 

(2013) and Moonlight et al. (2021). Tree height measurements were taken by holding a 128 

graduated pole close to the trunk. Tree height and crown base height correspond to the 129 

distance from ground level to the highest and lowest fully expanded leaf, respectively. 130 

The main stem diameter at breast height (1.3 m; DBH) and the visible crown extension 131 

in two cardinal directions were measured. The canopy volume was calculated assuming 132 

an ellipsoid shape and canopy area was calculated assuming an elliptical shape 133 

(Sampaio and Silva, 2016). The few subshrub and succulent herbaceous species were 134 

not measured.  135 

 136 

This yielded estimates (all woody plants with a stem DBH > 25 mm) of a stem density of 137 

ca. 2420 ha-1, a woody plant canopy area index of 1.39 m2 m-2, and with mean and 0.95 138 

quantile canopy heights of 3.9 m and 7.5 m respectively. Although there was also a 139 

subordinate herbaceous and shrub understorey present, this visually estimated to be 140 

with a total fractional cover of much less than 0.3. This, along with the clear dry-141 

deciduous nature of the majority of the species present allowed the studied vegetation 142 

to be classified as a ‘closed deciduous shrubland’ (Torello-Raventos et al., 2013).  143 



 144 

The study stand consisted of both trees and shrubs (as defined by Tortello-Raventos et 145 

al., 2013) with all 42 woody individuals of DBH > 25 mm present sampled for DNA 146 

extraction. This woody component consisted of Cenostigma microphyllum (Mart. ex G. 147 

Don) Gagnon & G.P. Lewis, Cereus albicaulis (Britton & Rose) Luetzelb., Chloroleucon 148 

foliolosum (Benth.) G.P. Lewis, Cnidoscolus quercifolius Pohl, Commiphora 149 

leptophloeos (Mart.) J.B. Gillett, Croton echioides Baill., Handroanthus spongiosus 150 

(Rizzini) S.O. Grose, Jatropha mollissima (Pohl) Baill., Manihot carthagenensis (Jacq.) 151 

Müll. Arg., Mimosa arenosa (Willd.) Poir., Pseudobombax simplicifolium A. Robyns, 152 

Sapium glandulosum (L.) Morong, Schinopsis brasiliensis Engl., and Senna 153 

macranthera (DC. ex Collad.) H.S. Irwin & Barneby. We also sampled one individual of 154 

each of the five subshrub and succulent herbaceous species present, these being 155 

Calliandra depauperata Benth., Ditaxis desertorum (Müll. Arg.) Pax & K. Hoffm., 156 

Neoglaziovia variegata (Arruda) Mez, Tacinga inamoena (K. Schum.) N.P. Taylor & 157 

Stuppy, and Varronia leucocephala (Moric.) J.S. Mill. This resulted in 47 aboveground 158 

samples in total (Table S1). For each specimen, we collected fresh leaf samples with an 159 

approximate size of 4 cm2, which were cut into 3 mm strips and stored in RNAlater 160 

(Sigma) until further processing.  161 

For root collection, the centre (10 × 10 m) of the plot was subdivided into a grid of 2 × 2 162 

m subplots (Fig. 1b). Soil cores were sampled from the centre of each subplot with an 163 

auger with a core of 6.25 cm diameter. Four samples, representing four different depth 164 

ranges (0–5 cm, 5–10 cm, 15–20 cm, and 45–50 cm; Fig. 1c), were then taken from 165 

each core for root sampling, resulting in 100 root samples in total. All roots within each 166 

core-sample were separated from the soil in the field with a metal sieve, washed with 167 

water, and preserved in RNAlater (Sigma) until further processing.  168 

The 100 mixed root samples and 47 leaf samples were sent to LGC (Berlin, Germany) 169 

for DNA extraction, library construction, and sequencing. Mixed root samples were 170 

homogenised prior to DNA extraction such that aliquots used for extraction were likely 171 

to contain a mixture of all roots in the entire sample. Approximately 100 mg of 172 

homogenised root or leaf material was used to extract DNA from each sample using a 173 



CTAB-chloroform method (Xin and Chen, 2012). Illumina paired-end (2 × 150 bp) 174 

double-digest restriction-associated DNA libraries were prepared using pstI and apeKI 175 

restriction enzymes (Hamblin & Rabbi, 2014) and were sequenced on an Illumina 176 

NextSeq 550 machine. 177 

Bioinformatic pipeline 178 

We developed a pipeline to use species-specific ddRAD markers and individual-specific 179 

haplotypes of these markers, to link species and individual trees present in a plot to 180 

unknown root samples collected from the soil below it. Our method uses the STACKS 181 

pipeline (version 2.52; Rochette et al. 2019) as well as a new R package – RootID 182 

(version 1.0). The pipeline follows three steps: i) Generate a catalogue of all markers 183 

and haplotypes across all leaf samples and match all data from both leaf and root 184 

samples to it, (STACKS); ii) Identify diagnostic markers and haplotypes from the leaf 185 

catalogue: those which are unique to a species or an individual, (RootID); iii) Match the 186 

root data to these diagnostic markers or haplotypes, to determine which are found in 187 

which root samples, and thus which tree’s roots are likely to be present in them 188 

(RootID). 189 

Sequence data was first demultiplexed, adaptor sequences and Illumina barcodes were 190 

clipped and reads were filtered to ensure they contained the correct restriction enzyme 191 

cut sites by LGC using their in-house pipeline. We input these reads into 192 

process_radtags module from STACKS to further filter them and prepare them for the 193 

main STACKS pipeline. We used the c option to remove any reads with uncalled bases, 194 

trimmed reads to exactly 142 bases in length (the expected read-length with adaptor 195 

sequences removed; t = 142, len-limit = 142), and removed reads where the PHRED-196 

scaled quality score fell below 25 in a sliding window of 15% of read length (q, s = 25, w 197 

= 0.15). Processed read pairs were then concatenated, without merging of overlapping 198 

sequence. This is justified, since STACKS requires sequences of the same length, and 199 

our downstream analyses identify sequences based on exact sequence identity (as 200 

opposed to, for example, genetic distance between sequences) so a portion of the 201 

sequence being repeated has no impact of assignment. 202 



We ran the ustacks module on all (root and leaf) samples to build sample specific sets 203 

of loci. We used the deleveraging algorithm (d), disabled haplotype calling from 204 

secondary reads (H) and disabled gapped alignment between stacks (disable-gapped). 205 

We used a minimum depth (m) of 1 for root samples and 5 for leaf samples (n.b. more 206 

stringent depth filters were applied in the post-processing of STACKS output using our 207 

RootID package). We used multiple values for the ustacks M parameter, and selected 208 

the best using our optimisation procedure (see Pipeline optimisation, below). We then 209 

ran cstacks on the leaf samples to build catalogues, again disabling gapped alignment 210 

between stacks (disable-gapped). As with the ustacks M parameter, we used multiple 211 

values for the cstacks n parameter and selected the best (see below). We then matched 212 

all sets of loci built with ustacks to the catalogue using sstacks with gapped assembly 213 

turned off (disable-gapped), which produced the input files required for RootID. 214 

RootID takes the matches.tsv.gz files produced by sstacks as input. One of these files is 215 

produced by sstacks for each sample, which contains the read depth for all haplotypes 216 

that were matched to the catalogue. The main workflow of the package is implemented 217 

in three functions: i) read.stacks, which reads sstacks output files for all known 218 

aboveground (leaf) samples and converts them to an R object; ii) find.diag, which 219 

identifies species-diagnostic loci and individual-diagnostic haplotypes from the output of 220 

read.stacks; and iii) match.diag, which matches these diagnostic markers and 221 

haplotypes to those in root samples.  222 

The find.diag function first identifies species-diagnostic markers (i.e. putative genomic 223 

loci), those which are unique to a single species in the dataset. These must be absent in 224 

all heterospecific individuals (at any read depth) and must occur in a user-defined 225 

proportion of individuals of the focal species (optional thresholds of minimum read depth 226 

per individual and maximum number of haplotypes per marker can also be applied). The 227 

function then identifies individual-diagnostic haplotype variants within the species-228 

specific markers that are unique to a single individual.  229 

Matching to the root samples is achieved with the third function in the pipeline, 230 

match.diag, which reads all sstacks output files for root samples, matches them to the 231 

diagnostic markers and haplotypes identified by find.diag, and reports the number of 232 



reads in each root sample that match diagnostic markers and haplotypes for each 233 

species and individual tree. For the analyses presented in the main text, we considered 234 

there to be a match if any diagnostic markers or haplotypes were detected in the root 235 

samples because false positives are likely to be far less frequent than false negatives 236 

(see discussion). However, match.diag can optionally filter matches by a minimum 237 

number of reads, and we also present results using a minimum read number of 3 in the 238 

supplementary information. Doing so will likely increase specificity at the cost of 239 

reducing sensitivity. 240 

Pipeline optimisation 241 

We ran the data through our pipeline in multiple runs where we varied several important 242 

parameters to determine their effect on the results. The maximum number of 243 

mismatches allowed between alleles to merge them into a putative locus (M) is one of 244 

the main parameters that affect the level of polymorphism in STACKS (Paris et al., 245 

2017), so we ran ustacks separately with a range of values of M: 2, 4, 6 and 8. Previous 246 

work showed that the optimal number of mismatches allowed between putative loci 247 

when building the catalogue (n) was between M – 1 and M + 1 (Paris et al., 2017). 248 

Therefore, for each value of M used in ustacks, we built a catalogue with n = M – 1, n = 249 

M, and n = M + 1, resulting in 12 catalogues overall. When we ran sstacks, we matched 250 

each set of ustacks outputs (i.e. ustacks M = 2, 4, 6 or 8), to the three catalogues that 251 

were produced with the same value of M (i.e. cstacks n = M -1, M, or M + 1), resulting in 252 

12 sets of sstacks results.  253 

We ran the RootID pipeline on each of the 12 sets of matches produced by STACKS, 254 

separately. There are several parameters in the find.diag function that have the 255 

potential to affect the results, so we used a range of values for each of these. For the 256 

min.dep parameter, which sets the minimum read depth required for a marker to be 257 

considered present in an individual, we used values of 5, 10 and 20. For 258 

max.md.marker, which controls the maximum proportion of missing data among 259 

individuals of the focal species to call a species-diagnostic marker, we used values of 0, 260 

0.2 and 0.4. For max.md.hap which controls the maximum proportion of missing data to 261 



call an individual-diagnostic haplotype, we used values of 0, 0.1 and 0.2 (with 0 only 262 

used when max.md.marker was also set to 0). For max.haps, which controls the 263 

maximum number of haplotypes allowed per-marker, we used values of 2, 3 and NA, 264 

where NA specifies no limit. Using every combination of STACKS and RootID 265 

parameters resulted in 756 sets of results. To choose the optimal set of parameters, we 266 

ranked the results by number of individual-diagnostic haplotypes for each individual, 267 

and chose the results with the best mean rank for downstream analyses.   268 

To assess the robustness of our results to parameter choice, we compared the results 269 

when each set of parameters (i.e., STACKS settings, minimum sequence depth, 270 

maximum missing data and maximum haplotypes) was varied while all other 271 

parameters were fixed at the optimal values identified above.  272 

Pipeline validation 273 

To confirm the effectiveness of using marker presence or absence to distinguish the 274 

species present in the plot, we used a hierarchical clustering approach. We first 275 

constructed a matrix of the proportion of shared markers across all individuals (i.e., the 276 

proportion of the markers in the individual with fewer markers that are shared with the 277 

individual with more markers). This was then used to calculate an unweighted pair 278 

group method with arithmetic mean (UPGMA) dendrogram using the function upgma in 279 

the R package phangorn (v. 2.5.5; Schliep 2011) in R. If marker presence is an effective 280 

method to distinguish species, conspecific individuals should cluster monophyletically in 281 

the resulting dendrogram. We include a function to conduct this analysis, 282 

shared.marker.tree, in the RootID package. 283 

We then assessed how thoroughly the diversity has been sampled in each root sample 284 

at the level of haplotype, marker, individual and species, using rarefaction analysis. By 285 

randomly subsampling the data across a range of subsample sizes, it is possible to 286 

estimate whether the sampling effort is sufficient to identify all diversity present in the 287 

total sample. If all diversity present (e.g. all species) has been detected using 50% of 288 

the data, for example, then the addition of the remaining 50% of data will not lead to an 289 

increase in detected diversity. Therefore, in the above example, if subsample size is 290 

plotted against detected diversity, the horizontal asymptote will be reached at around 291 



50%. For each root sample, we randomly subsampled between 2% and 98% of the 292 

reads that matched our catalogue without replacement at 2% intervals. This was 293 

repeated 100 times for each rarefaction level and the mean and 95% quantile of number 294 

of unique species-diagnostic markers, individual-diagnostic haplotypes, individuals and 295 

species was calculated. We include a function, sample.rarefaction, in the RootID 296 

package to conduct this analysis. The results were used to plot rarefaction curves for 297 

each root sample. We calculated the slope of the final 10% of the curve as: 298 

𝑚 =
1 − 𝑃90 

0.1
 299 

Where P90 is the mean proportion of total diversity detected at 90% rarefaction (i.e., the 300 

mean proportion of species-diagnostic markers, individual-diagnostic haplotypes, 301 

species or individuals detected using the whole dataset that were detected when 90% of 302 

the data was randomly subsampled). Values closer to zero indicate higher sufficiency of 303 

sequencing effort. We tested whether variation in m was correlated with the number of 304 

sequenced reads per root sample using Spearman’s correlation tests.  305 

We expected that the roots of each tree would be more likely to be found in samples 306 

located closer to the tree and, if the method worked well, this would be reflected in the 307 

results. To test this expectation, we first calculated the Euclidian distance (ignoring root 308 

sample depth) between tree and root sample locations for all tree and root sample pairs 309 

for which the individual tree was detected in the root sample (matches). We compared 310 

this to the distance between all tree and root sample pairs for which the tree was not 311 

detected in the root sample (non-matches) using Mann-Whitney U tests. We considered 312 

significantly lower distance in matches than non-matches as evidence that tree roots 313 

are more likely to be detected in samples closer to the tree. We took a similar approach 314 

to the same question using our species-diagnostic marker results, but took the distance 315 

from the root sample to the nearest tree of the focal species for species with multiple 316 

individuals.  317 

Finally, we used simulated data to assess the effect of genome size and sequencing 318 

depth on the number of diagnostic markers and haplotypes recovered. We downloaded 319 

six genome assemblies from Phytozome (Goodstein et al., 2012): Arabidopsis thaliana 320 



(version: Araport11; total scaffold length: 120 Mbp), Populus trichocarpa (version: 4.1; 321 

392 Mbp), Eucalyptus grandis (version: 2.0; 691 Mbp), Asparagus officinalis (version: 322 

1.1; 1,188 Mbp), Lactuca sativa (version: 8; 2,400 Mbp) and Helianthus annuus 323 

(version: r1.2; 3,028 Mbp). These were used to generate simulated ddRAD reads using 324 

RADinitio (Rivera-Colón et al., 2021). We first simulated 10 individuals of each species 325 

using the make-population command in RADinitio using a simulated population size of 326 

1,000. The simulated individuals were then used to simulate ~1,000,000 read pairs per 327 

species (using the appropriate -coverage setting for the genome size of each species) 328 

using the make-library-seq command in RADinitio with 10 simulated PCR cycles, a read 329 

length of 150, and the enzymes PstI and MspI (ApeKI is not available in RADinitio). The 330 

simulated reads were then randomly subsampled between 100,000 and 1,000,000 331 

reads (with a step-size of 100,000) using the sample command in seqtk 332 

(https://github.com/lh3/seqtk; version 1.3-r117-dirty) with random seeds recorded to 333 

ensure reproducibility (Table S7). Subsampled reads were then processed with ustacks, 334 

cstacks, sstacks, read.stacks and find.diag using the optimal setting identified above. 335 

The results of find.diag were used to plot the relationship between number of reads and 336 

numbers of diagnostic markers and haplotypes for each species and individual, 337 

respectively. Correlations between genome size and number of diagnostic markers and 338 

haplotypes were tested using Spearman’s correlation tests. 339 

Visualisation 340 

We visualised the results in the form of three-dimensional root “maps” for each species 341 

and individual using a function, plot_roots_3d, in the RootID package. This uses the rgl 342 

package in R (Murdoch & Adler, 2021) to show the root sampling layout as a three-343 

dimensional grid. Each grid square represents one root sample, and visually displays 344 

the abundance of the focal tree or species (either in the form of colour intensity or 345 

density of randomly distributed particles within each root sample). Optional three-346 

dimensional models of the trees show their position, height, crown base height, and 347 

crown diameter. We used the plot_roots_3d function to produce root maps for all 348 

species and all individuals.  349 

Analysis of the root distribution patterns 350 



We used the results to detect broad belowground distribution patterns among the 351 

species in the plot.  352 

Firstly, we asked whether the belowground distribution of each species was significantly 353 

associated with root-sample depth using linear-by-linear association tests in the coin 354 

package in R (Agresti, 2002; Hothorn et al., 2008) in each species separately. P-values 355 

were corrected for multiple-testing using the false discovery rate method (Benjamini & 356 

Hochberg, 1995). 357 

Secondly, we asked whether the dimensions of the aboveground and belowground 358 

portions of the trees were correlated. We first calculated two belowground size metrics: 359 

i) the root radius, which we defined as the horizontal distance from each individual tree’s 360 

trunk to the furthest root sample in which it was detected, and ii) the number of root 361 

samples each individual was detected in. We then tested whether these measures were 362 

significantly correlated with five aboveground size metrics: tree height, crown base 363 

height, canopy radius, canopy area and canopy volume. Because the number of 364 

individuals per species can reduce the number of potential individual-specific 365 

haplotypes, which in turn may reduce the chance that an individual is detected in any 366 

given root sample (see results), we used a partial Spearman’s correlation test using the 367 

pcor.test function in the R package ppcor (Kim, 2015). This tested for correlation 368 

between root size and aboveground measurements while controlling for number of 369 

conspecific individuals. 370 

Results 371 

Matching roots to aboveground trees 372 

The sequencing produced between 223,378 and 1,045,252 read-pairs for leaf samples 373 

and between 133,584 and 1,523,847 read-pairs for root samples following filtering 374 

(Table S2). Of the 756 parameter combinations tested, the optimal parameters for each 375 

pipeline component were as follows: for ustacks, M = 6; for cstacks, n = 7; for find.diag, 376 

max.md.marker = 0.4, max.md.hap = 0.2, min.dep = 5, and max.haps = unlimited (Table 377 

S3). The results produced using the optimal parameter combination were used for all 378 

subsequent analyses. 379 



The leaf data were assembled into 316,537 catalogue loci across all individuals. Using 380 

the read.stacks and find.diag functions in RootID, between 6,842 and 16,814 species-381 

specific markers were identified per species (Table S3). Diagnostic haplotypes were 382 

identified for all individuals, but these varied in number from 10 to 7,420 per individual 383 

(Table S3). 384 

Using the match.diag function, between 67 and 91,223 root reads per sample were 385 

mapped to catalogue markers. Of these, between 14.49% and 99.94% were matched to 386 

species-diagnostic markers, and between 0% and 25.78% were matched to individual-387 

specific haplotypes (with 91/100 root samples having at least one match to an 388 

individual-specific haplotype; Table S4). 389 

All 14 tree/shrub species were detected in between 5 and 90 of the 100 root samples 390 

and all 5 subshrub/herb species were detected in between 26 and 94 root samples (Fig. 391 

2a and c; Figs. S1 – S17). Of the 37 individuals (i.e., those from species with multiple 392 

individuals for which the individual-specific haplotype analysis was conducted), 36 were 393 

detected in at least one root sample (median = 10 root samples; Fig. 2b and d; Figs. 394 

S18–S24). The undetected individual (L_22) was from the species with the fewest 395 

individual-diagnostic haplotypes, Jatropha mollissima. 396 

Patterns of root distribution 397 

We found that two species, Cenostigma microphyllum and Ditaxis desertorum, had 398 

depth distributions that significantly departed from null expectations following multiple 399 

test correction (Fig. 3; when a minimum read depth filter of 3 was used in match.diag 400 

(see methods), D. desertorum no longer had a significant association with depth but an 401 

additional species: Varronia leucocephala did; Table S5). Both species were more 402 

commonly detected in the two deeper root depth levels (15–20 cm and 45–50 cm) than 403 

at shallower levels. Lateral aboveground size metrics (canopy radius, canopy area and 404 

canopy volume) were significantly positively correlated with the number of root samples 405 

each individual was detected in, while controlling for number of individuals per species 406 

(Spearman’s partial correlations: canopy radius: ρ = 0.58, P = 0.0001; canopy area: ρ = 407 

0.59, P < 0.0001; canopy volume: ρ = 0.44, P = 0.006; Fig. 4). The correlation between 408 

number of root samples and tree height was marginally non-significant (ρ = 0.31, P = 409 



0.053). In contrast, there was no significant correlation between root radius and any 410 

aboveground metrics (Table S6). When a minimum depth filter of 3 was used for 411 

match.diag (see methods), results were similar in terms of significance/non-significance 412 

except for the correlation between number of root samples and tree height, which was 413 

significant with this filter (Table S6).  414 

Pipeline optimisation and validation 415 

The parameter comparison showed that the analysis was fairly robust to the choice of 416 

parameter values. For the STACKS parameters, 94% of root-to-species and 74% of 417 

root-to-individual matches were found across all parameters values; for max.md.marker 418 

and max.md.hap, 99% of root-to-species and 97% of root-to-individual matches were 419 

found across all parameters values; for min.dep, 90% of root-to-species and 95% of 420 

root-to-individual matches were found across all parameters values; and for max.haps, 421 

96% of root-to-species and 77% of root-to-individual matches were found across all 422 

parameters values (Figs. S25–S32). The pipeline was computationally efficient and did 423 

not require high-performance computing capabilities: the RootID analysis completed in 424 

between 96 and 114 seconds per run, on an Apple Macbook Pro laptop computer (16 425 

GB memory) using a single processor. 426 

Identification of both species-specific markers and individual-specific haplotypes was 427 

more efficient in species with fewer individuals. While this negative relationship was 428 

moderate for species-specific markers (Spearman’s correlation test: ρ = −0.47, P = 429 

0.04), it was strong and highly significant for individual-specific markers (Spearman’s 430 

correlation test: ρ = −0.62, P < 0.0001). In our UPGMA clustering analysis based on 431 

the proportion of shared markers between individuals, all conspecific individuals 432 

clustered monophyletically, supporting the use of presence or absence of RAD markers 433 

for species identification (Fig. S33). 434 

Individuals were more frequently detected in root samples that were physically closer to 435 

them (Mann-Whitney U test. W = 575509; P < 0.0001; Fig. S34) and species were more 436 

frequently detected in root samples that were closer to an individual of that species 437 

(Mann-Whitney U tests. W = 174844; P < 0.0001; Fig. S35). As with the number of 438 



diagnostic haplotypes and markers (above), there was a significant negative correlation 439 

between the number of root samples an individual was detected in and the number of 440 

individuals per species, but there was no such correlation for species (Spearman’s 441 

correlation tests. Species: ρ = 0.17, P = 0.47; individuals: ρ = -0.34, P = 0.04; Fig. S26). 442 

The rarefaction analysis showed that final 10% slopes were high for species-diagnostic 443 

markers (median m = 0.58; Figs. S36–S39) and individual-diagnostic haplotypes 444 

(median m = 0.58; Figs. S40–S43). No root samples had m = 0 for either species-445 

diagnostic markers or individual-diagnostic haplotypes. The number of reads per 446 

sample was significantly negatively correlated with final slope for both species-447 

diagnostic markers and individual-diagnostic haplotypes (Spearman’s correlation tests. 448 

Markers: ρ = −0.69, P < 0.0001; haplotypes: ρ = −0.69, P < 0.0001; Fig. S44). The 449 

final slopes for species (median m = 0.25; Figs. S45–S48) and individuals (median m = 450 

0.22; Figs S49–S52) were much lower on average, and were zero for several samples 451 

(3 for species and 26 for individuals). In contrast to the results for markers and 452 

haplotypes, there was no significant correlation between the number of reads and the 453 

final slope of either species or individuals (Spearman’s correlation tests: Species: ρ = 454 

−0.18, P = 0.08; individuals: ρ = 0.09, P = 0.39; Fig. S44).    455 

The simulated data analysis showed that increased read depth increases the number of 456 

both species-diagnostic markers (Fig. S53a) and individual-diagnostic haplotypes (Fig. 457 

S53b). However, for most species, the majority of diagnostic markers and haplotypes 458 

are identified at relatively low sequencing depths. The number of individual-diagnostic 459 

haplotypes significantly increased with genome size (Fig. S53d; Spearman’s correlation 460 

test: ρ = 0.94, P = 0.005). There was no association between genome size and number 461 

of species-diagnostic markers, however (Fig. S53c; ρ = -0.71, P = 0.11). 462 

Discussion 463 

Given the limitations of previous methods to genetically identify and map tree roots (i.e. 464 

DNA barcoding is appropriate only for species-level and microsatellites need species-465 

specific developments), we designed here a new method, which has also been 466 



validated by our dataset from the dry forest of Brazil. While the ideal control — a reliable 467 

spatial map of the fine roots in the plot by which to ground truth the results — is not 468 

feasible, the highly significant association between root position and tree position 469 

provides corroboration of the method (Fig. S34). The presence/absence of RAD loci is 470 

not usually treated as informative, but rather as missing data (Cerca et al., 2021; Crotti 471 

et al., 2019). This is largely because, while the presence or absence of a marker may 472 

result from mutational processes such as point mutations in the enzyme cut-site or 473 

indels which drastically alter fragment size, it can also result from technical issue in 474 

library preparation and sequencing (Cerca et al., 2021). The rate of marker 475 

presence/absence variation from mutational processes is expected to increase with 476 

lineage divergence (Cerca et al., 2021). Therefore, we expect that, in a dataset which 477 

includes multiple distantly related species such as ours, the majority of marker 478 

presence/absence variation is likely to be mutational rather than technical, and thus be 479 

useful for species differentiation. Indeed, our hierarchical clustering analysis (Fig. S33) 480 

indicates that marker presence/absence distinguishes species well in our dataset. 481 

However, since there were no congeneric species, it is possible that for closely related 482 

species this will be less effective. Therefore, we recommend that hierarchical clustering 483 

analysis should be performed in all cases, and species which cannot be reliably 484 

distinguished should be coded as a single species for the purpose of the analysis, such 485 

that individuals may still be distinguished using haplotype information. While we 486 

focussed on testing the method in a real dataset, future work could also evaluate the 487 

tolerance of the method for particularly closely related species using “pseudo-samples” 488 

– similar to the mock communities used as controls in metabarcoding analysis 489 

(Braukmann et al., 2019). This could be achieved by sequencing pairs of species with 490 

differing levels of relatedness to produce a catalogue, and making mixed pseudo-491 

samples of known quantities of each of the species’ tissue, which could also be 492 

sequenced to test the limits and sensitivity of the method. 493 

While analysis of RADseq data requires the selection of several parameters which can 494 

have large effects on downstream analysis, our results were highly robust to parameter 495 

choice. Furthermore, the computational efficiency of the pipeline allows many parameter 496 

combinations to be easily tested. False positive matches between individual trees and 497 



root samples are likely to be relatively rare using our method, but may occur 498 

occasionally due to sequencing or PCR error. The chance of false positives is likely to 499 

be affected by multiple factors, including sequencing error rate and the number of SNPs 500 

distinguishing diagnostic haplotypes. However, it is worth noting that misidentification of 501 

individuals is very unlikely even with small numbers (~10) of unlinked and variable loci, 502 

a fact that forms the basis of forensic DNA fingerprinting (Norrgard, 2008). The false 503 

positive likelihood can be reduced by filtering the results of match.diag by a minimum 504 

number of markers or haplotypes (using the min.reads.mar and min.reads.hap options 505 

in match.diag, respectively), although this will likely increase the false negative rate. 506 

Here, we present both unfiltered matches (main text) and matches filtered by a 507 

minimum of 3 reads per match and find that while there were fewer matches in the 508 

filtered results, the overall findings of both the aboveground/belowground correlation 509 

and depth niche analysis were similar.  510 

False negatives are likely to be much more common. The non-detection of an individual 511 

in a subplot could have one of several causes: i) they may be genuinely absent from the 512 

subplot; ii) they may be absent from the soil core taken to represent the sub-plot but 513 

present elsewhere in the subplot; iii) they may be present in the soil core, but the 514 

sequencing depth is insufficient to detect their diagnostic haplotypes. Since in our 515 

sampling regime each root sample is taken from a small fraction of the total volume of 516 

the subplot (153.4 cm3 of a total 200,000 cm3), it is likely that some trees present in 517 

some subplots were not captured by the soil-core sampling. This possibility is common 518 

to any soil core-based method and would be made less likely with denser sampling. Its 519 

likelihood may also be influenced by differences in root architecture between species, 520 

for example, it could be less common in species with a higher density of fine roots.  521 

We estimated the sufficiency of our sequencing depth using a rarefaction-based 522 

approach similar to those employed in metabarcoding analyses (Estaki et al., 2020). 523 

While none of the curves flattened at the marker and haplotype levels, several did at the 524 

individual and species levels. This indicates that while the sequencing effort was 525 

insufficient to sequence all diagnostic markers and haplotypes in the samples, this 526 

effect was substantially ameliorated at the level of species and individual detection 527 



because there are multiple markers and haplotypes which can be used to detect each 528 

species or individual. Nevertheless, the success of the analysis was clearly linked to 529 

sequencing coverage and some samples performed poorly. The number of individuals 530 

per species was negatively correlated with both number of diagnostic markers and 531 

haplotypes detected in the roots, and the number of root samples an individual was 532 

detected in. This is expected: given a community of two individuals, all fixed genetic 533 

differences between them can be used as individual-diagnostic haplotypes to 534 

distinguish them. As more individuals are added to the community, there is a higher 535 

chance that another individual carries these haplotypes. This is likely to be exacerbated 536 

in populations with low genetic diversity, such as inbred populations, since they contain 537 

fewer intraspecific genetic variants overall. Sequencing effort also affects the number of 538 

diagnostic markers and haplotypes in the catalogue, as evidenced by our simulated 539 

data analysis. While none of the species in our Caatinga dataset have sequenced 540 

genomes, studies involving species with available genomic resources could make use 541 

of similar simulation studies to estimate the required sequencing depth prior to 542 

experimental design, significantly improving the efficiency and effectiveness of the 543 

approach. Thus, the number of identified diagnostic markers and haplotypes can be 544 

increased by higher sequencing depth in the aboveground tissues, and the number of 545 

these that are detected can be increased by higher sequencing depth in belowground 546 

samples. Both of these are likely to be more important if high numbers of conspecific 547 

individuals are present and in populations that are less genetically diverse. The impact 548 

of these caveats depends strongly on the research question. False negatives should be 549 

randomly distributed amongst samples. Therefore, even if detection capability differs 550 

among species, experiments addressing, for example, the vertical distribution of roots, 551 

are unlikely to be biased by this. Contrastingly, care should be taken if attempting to use 552 

these methods to compare absolute root biomass between species if they vary in 553 

number of individuals. 554 

The analysis successfully identified species-diagnostic markers and individual-555 

diagnostic haplotypes for all species and individuals and detected all species and all but 556 

one individual in root samples. Given that the total soil volume the roots were sampled 557 

from (0.015 m3) was only 0.03% of the total volume of the plot (50 m3), this implies that 558 



the roots of most individuals are likely densely and widely distributed in the plot. Root 559 

distribution was variable between individuals and species, however. Number of root 560 

samples was significantly correlated with several measures of aboveground size. While 561 

not a direct measurement of root dimensions, number of root samples is likely to be 562 

influenced by both root system size and root density. There were no significant 563 

correlations between root radius and aboveground traits. Such a correlation has been 564 

shown in previous studies (Tumber-Dávila et al., 2022), and its absence here may be a 565 

result of many of the study plants extending their root systems beyond the bounds of 566 

the plot. 567 

In this paper we have developed, to our knowledge, the first method capable of high-568 

throughput individual-level root identification across multi-species plant communities. 569 

Given the fact that we were able to detect 97% of individuals across such a broad 570 

assemblage of plant species, the method is highly promising. It is also likely to be 571 

applicable to several distinct research questions. For species-level root identification, 572 

the current state of the art (metabarcoding) can suffer from lack of species 573 

differentiation at sequenced markers. This can be somewhat ameliorated by using 574 

multiple markers (Zhang et al., 2018), but with metabarcoding this significantly 575 

increases the labour required. Since our method can simultaneously sequence 576 

hundreds or thousands of species-diagnostic markers, it is likely to offer far greater 577 

species-specificity (although this comes at a higher sequencing cost compared to 578 

metabarcoding). For individual-level root identification, while clearly superior to existing 579 

microsatellite-based methods, our method currently requires all individuals to be present 580 

in the catalogue. This makes studies of hundreds of individuals across large geographic 581 

areas unpractical for now. Nevertheless, the method could still be effectively applied to 582 

large areas by spacing smaller plots (like that used here) across the region, and 583 

combining or comparing results across plots. An important future advance would come 584 

from developing a reliable exclusion probability statistic for this method, such as that 585 

used in paternity testing (Cifuentes et al., 2006). This would allow a measure of 586 

certainty of root individual identity even when all individuals are not present in the 587 

catalogue. This is not straightforward for GBS data however: exclusion probabilities 588 

require knowledge of mutation rates (Cifuentes et al., 2006), yet GBS loci are expected 589 



to be approximately randomly distributed across the genome, including in both highly 590 

conserved genic regions and highly variable intergenic regions. Future work on species 591 

with ample genomic resources, would allow these regions to be differentiated, and may 592 

help to develop an exclusion probability method that is generally applicable. 593 

 594 

Technological advancements are opening new fields of study in plant science, 595 

particularly in understudied regions like the Caatinga. For example, our method could 596 

be combined with techniques such as coarse root distributions derived from e.g., ground 597 

penetrating radar (Guo et al., 2013; Almeida et al., 2018) and field sequencing-based 598 

plant identification (Parker et al., 2017), to produce highly detailed maps of the root 599 

networks of coexisting trees in poorly-studied environments. Our method provides a 600 

level of detail which was not previously possible, and has applications across ecology, 601 

forestry and agricultural biology.  602 
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 796 

Figures 797 

 798 

Figure 1. A schematic showing our sampling strategy. A map shows the location of the 799 

experimental plot within the Caatinga region in South America (a). The sampling design 800 

is superimposed onto an aerial photograph of the plot (b): the 10 × 10 m central section 801 

of the plot is divided into 2 × 2 m subplots and a soil core is taken from the centre of 802 

each subplot (represented as a cylinder in panel c). Roots are sampled from four 803 

different depth ranges in each soil core (coloured sections in panel c) and leaves are 804 

sampled from all trees and shrubs within the 14 × 14 m plot. The background map 805 

image was created from the Natural Earth 2 dataset (naturalearthdata.com) which is 806 

free to use without restriction, and all other images are the authors’ own work. 807 

 808 

 809 



 810 

 811 

Figure 2. The estimated root distribution of two of the study species: Commiphora 812 

leptophloeos (panel a) and Cenostigma microphyllum (panel c) based on species-813 

diagnostic markers and the estimated root distribution of the individuals of these species 814 

based on individual-diagnostic haplotypes (Commiphora leptophloeos: panel b; 815 

Cenostigma microphyllum: panel d). Panels (a) and (c) show the number of species-816 

diagnostic marker reads for each species scaled by the maximum number found in any 817 

subplot. To show more easily rooting depth, we represented these as transparent 818 

cuboids, where darker colours indicate more species-diagnostic markers. Panels (b) 819 

and (d) show the proportion of individual-diagnostic haplotypes of each individual, 820 

scaled by the maximum proportion found for any individual. To show multiple individuals 821 

within the plot, we represented these as randomly distributed points within each subplot, 822 

where higher point density indicates higher relative abundance. Points are coloured by 823 

the tree they are associated with. Each panel shows a map of all 2 × 2 × 0.05 m 824 

subplots with each subplot represented as a cuboid. Tree models show the location, 825 

canopy area, tree height and crown base height of the trees. Axis labels show the axis 826 



identifiers (see Table S2). Gridlines in the horizontal plane show the horizontal extent of 827 

each subplot and vertical gridlines show the four sampling depth levels: 0–5 cm, 5–10 828 

cm, 15–20 cm and 45–50 cm, from top to bottom. Root sampling depths are not to scale 829 

but the horizontal root axes and the trees are.  830 

 831 

 832 

Figure 3. Depth distribution of each species. Each bar is divided into four sections, 833 

showing the number of root samples each species was detected in at each of the four 834 

sampling depths (0–5 cm, 5–10 cm, 15–20 cm and 45–50 cm). Stars above the bars 835 

indicate that species detection or non-detection was significantly associated with 836 

sampling depth following correction for multiple testing (linear-by-linear association 837 

tests; one star < 0.05, two stars < 0.01). Names of tree/shrub species are shown in 838 

bold-italic and subshrub/herb species are shown in italic. 839 
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  840 

Figure 4. The relationship between aboveground measurements (tree height, crown 841 

base height and canopy radius) and the number of root samples each individual was 842 

detected in. Each point represents an individual tree, and points are coloured by 843 

species. The line shows the linear regression.  844 
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