

Dynamic multi-dimensional scaling of 30+ year evolution of Chinese urban systems: patterns and performance

Ning, Ying; Liu, Shuguang; Smith, Andy; Qiu, Yi; Gao, Haiqiang; Yuan, W.; Lu, Yonglong; Yuan, Wenping; Feng, Shuailong

Science of the Total Environment

DOI: 10.1016/j.scitotenv.2022.160705

Published: 10/03/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Ning, Y., Liu, S., Smith, A., Qiu, Y., Gao, H., Yuan, W., Lu, Y., Yuan, W., & Feng, S. (2023). Dynamic multi-dimensional scaling of 30+ year evolution of Chinese urban systems: patterns and performance. *Science of the Total Environment, 863*, Article 160705. https://doi.org/10.1016/j.scitotenv.2022.160705

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

2 Chinese urban systems: patterns and performance

- 3 Ying Ning^{1,2}, Shuguang Liu^{1,2,*}, Andrew R. Smith³, Yi Qiu⁴, Haiqiang Gao^{1,2}, Yonglong Lu⁵, Wenping Yuan⁶,
- 4 *Shuailong Feng*^{1,2}
- ⁵ ¹National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South
- 6 University of Forestry and Technology (CSUFT), Changsha 410004, China
- 7 ²College of Life Science and Technology, CSUFT, Changsha 410004, China
- 8 ³Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
- 9 ⁴College of Business, CSUFT, Changsha 410004, China
- 10 ⁵State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese
- 11 Academy of Sciences, Beijing, 100085, China
- ⁶School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster
- 13 Studies, Sun Yat-sen University, Zhuhai, Guangdong 510245, China
- 14 Corresponding author *: Shuguang LIU
- 15 shuguang.liu@yahoo.com
- 16

17 Abstract

- 18 Understanding the co-evolution and organizational dynamics of urban properties
- 19 (i.e., urban scaling) is the science base for pursuing synergies toward sustainable
- 20 cities and society. The generalization of urban scaling theory yet requires more studies

21	from various developmental regimes and across time. Here, we extend the
22	universality proposition by exploring the evolution of longitudinal and transversal
23	scaling of Chinese urban attributes between 1987 and 2018 using a global artificial
24	impervious area (GAIA) remotely sensed dataset, harmonized night light data (NTL),
25	and socioeconomic data, and revealed agreements and disagreements with theories.
26	The superlinear relationship of urban area and population often considered as an
27	indicator of wasting land resources (challenging the universality theory $\beta_c=2/3$), is in
28	fact the powerful impetus (capital raising) behind the concurrent superlinear
29	expansion of socio-economic metabolisms (e.g., GDP, total wage) in a rapidly
30	urbanizing country that has not yet reached equilibrium. Similarly, infrastructural
31	variables associated with public services, such as hospitals and educational
32	institutions, exhibited some deviations as well and were scaled linearly. However, the
33	temporal narrowing of spatial deviations, such as the decline in urban land
34	diseconomies of scale and the stabilization of economic output, clearly indicates the
35	Chinese government's effort in charting urban systems toward balanced and
36	sustainable development across the country. More importantly, the transversal

37	sublinear scaling of areal-based socio-economic variables was inconsistent with the
38	theoretical concept of increasing returns to scale, thus validating the view that a single
39	measurement cannot unravel the intricate web of diverse urban attributes and
40	urbanization. Our dynamic urban scaling analysis across space and through time in
41	China provides new insights into the evolving nexus of urbanization, socioeconomic
42	development, and national policies.

Keywords: urban growth, the evolution of cities, power law, temporal scaling, crosssectional scaling, urban sustainability

45 **1. Introduction**

46 The Earth has entered a new epoch —the Anthropocene, in which humankind 47 dominates planetary change, and roughly two-thirds of the world's population will be 48 living in cities (United Nations, 2018a). The exponential growth of human activities 49 gives rise to both economic opportunities for improved human well-being, as well as 50 concerns about excessive pressure on natural ecosystems (Bettencourt et al., 2007). 51 The study of complex evolving urban systems requires us to be wary of naively taking 52 a systems approach and dividing the system into independent acting parts (Batty, 53 2012). Instead, if we consider an urban system as an "organism" that need to 54 understand how subsystems like social networks, natural environment, and economies are interrelated and how their evolving interrelationships head toward a sustainable 55 56 path (Batty, 2008; Bettencourt et al., 2007). Thus, developing a systematic

57	quantitative framework is necessary to decode the coevolution of diverse attributes
58	and process patterns that differ within cities or across cities (Li et al., 2017;
59	McPhearson et al., 2016).
60	Considerable progress has been made in exploring whether strong order and a
61	pattern exist under the myriad of complications and entanglements in cities (Batty,
62	2008; Bettencourt and West, 2010; Bettencourt et al., 2007; Zheng et al., 2019). So
63	far, multiple theoretical attempts at city fractality have been done to understand the
64	hierarchical organizations of cities (Zipf's law) (Soo, 2005; Zipf, 1949), and
65	proportionate growth of city size (Gibrat's law) (Gibrat, 1931; González-Val and
66	Sanso-Navarro, 2010). However, the diversity of anthropogenic activities in
67	conjunction with an enormous variety of geographic circumstances and social
68	organizations presents significant obstacles to the universality of some of these laws
69	(Meirelles et al., 2018; Zhao et al., 2018; Zhao et al., 2015). Nevertheless, the power
70	scaling law seems to be a better manifestation of social process, both dynamically and
71	organizationally (Bettencourt, 2015; Bettencourt et al., 2007).
72	The power scaling law, first proposed by Kleiber to quantify the allometric
73	scaling of metabolic rate with body mass (Kleiber, 1947), can simultaneously scale
74	urban properties and characterize their temporal dynamic paradigm, which has often
75	been adopted in the exploration of urban development (Bettencourt, 2013; Bettencourt
76	et al., 2007). Typically, the population (N) is an accurate determinant of the evolution

77	of other urban attributes (Y) in urban metabolism, following the form $Y=Y_0N^{\beta}$
78	(Brelsford et al., 2017; Keuschnigg, 2019; Lobo et al., 2019; Meirelles et al., 2018).
79	The magnitude of the scaling exponent β that reflects the dynamic rules of the urban
80	system can be considered as a determinant of three categories of scaling behavior,
81	with $\beta > 1$ (superlinear), for productivity, creativity, and wealth, $\beta = 1$ (linear), for
82	number of houses, number of jobs, and $\beta < 1$ (sublinear), for infrastructure and
83	services (Bettencourt, 2013; Bettencourt et al., 2007). These scientific propositions
84	have been evaluated and verified by empirical data from the United States of America
85	(USA), Brazil, Europe, and China (Bettencourt, 2015; Bettencourt et al., 2007;
86	Meirelles et al., 2018). Knowledge of the scaling relationship between certain types of
87	social and physical interactions is of great significance in recognizing the
88	characteristics, persistence, and sustainability of cities.
89	A better understanding of the past and contemporary urbanization opens up new
90	possibilities for power-law scaling research. The apparent simplicity of the previous
91	analysis hinges on the limited socio-economic attributes or in a short time period,
92	which are not always made fully explicit, especially in a developing country like
93	China (Jiao et al., 2020). Theoretically and empirically, scaling exponents are
94	projected to be constant and change slowly over several decades in developed
95	countries (Bettencourt, 2013; Bettencourt, 2020; Bettencourt et al., 2007). Differences
96	and deviations in the universal hypothesis may still exist in rapidly urbanizing

97	countries such as those in China, India, and Brazil (Arcaute et al., 2015; Meirelles et
98	al., 2018; Sahasranaman and Bettencourt, 2019; Zhao et al., 2018). Given the
99	diversity of cities around the world, it is essential to test the universality hypothesis of
100	urban scaling law and reveal a multifaceted picture of urban scaling among different
101	urban systems, concerning more comprehensive and representative urban indicators
102	across space and time (Lei et al., 2021; Meirelles et al., 2018). It was found that the
103	interpretation of the paradigm of urban scaling was insufficient, as the population is
104	not the only measure indicating the urban size, and the inclusion of other measures,
105	like total impervious surface area and night light, enables us to identify
106	comprehensive features and dynamic urban evolution and provide insights for future
107	policymaking in contributing to sustainable development in China or globally (Zhao
108	et al., 2018).
109	The most astonishing and massive urbanization worldwide is undoubtedly China,
110	where the government has been putting the country on a fast track of modernization
111	and industrialization. However, the unprecedented and complicated development has
112	led to rising pollution levels and widening regional disparities (Xu et al., 2020a). Yet,
113	coordinating and controlling urban development based on carrying capacity and the
114	natural environment while alleviating economic inequality has become an important
115	issue of social concern. Here, we integrated the urban expansion dataset and
116	corresponding socio-economic, environmental, and demographic factors to depict the

117 evolutionary processes of the Chinese urban system from 1987 to 2018. The 118 objectives of our research were to investigate the chronological coevolution of city 119 indicators for each city; examine the longitudinal dynamics of scaling exponent of 120 paired urban attributes from the year 1987 to 2018; evaluate the spatial-temporal 121 patterns of economic output efficiency and land-use efficiency; test the validity of 122 scaling by comparing the coevolutionary scaling parameters with theoretical 123 expectations. Our working hypothesis is that the universality proposition plays out in 124 a developing world like China, and the fitted scaling exponents are projected to be constant over several decades. 125

126 **2. Materials and methods**

127 **2.1 Study area**

128 China is an East Asian country along the coastline of the Pacific Ocean with a 129 complex and diverse geographical distribution across the country. The urban system 130 of China consists of cities and towns, which are classified according to their 131 population size, economic and defense significance. The development and 132 backwardness of cities in different periods fully reflect the prevailing urbanization 133 policies and socio-economic development. So, our research takes the top nearly 300 134 prefectural-level cities in China as the study objects, covering a wide range of 135 physical, social, economic, and geographical scales. As the most complicated and 136 prominent component in mainland China, the prefectural-level cities are an

137	administrative division of the People's Republic of China. Prefectural level cities may
138	not meet the usual gold standard for scientific analysis of urban systems (like
139	Metropolitan Statistical Areas (MSAs) in the USA and Larger Urban Units (LUZ) in
140	Europe), but instead, administrative units that were defined according to commuting
141	flows and economic activity, which is in line with the demographic, socio-economic
142	data issued by National Bureau of Statistics (Bettencourt, 2015). Moreover, the
143	consistent scaling relations for urban indicators in the USA, Europe, and China
144	indicate that the definitions of city boundaries in China were appropriate (Bettencourt
145	et al., 2007). All the prefecture-level cities were divided into one of four regions based
146	on recognized socio-economic zones (Eastern China, Western China, Central China,
147	and Northeast China) in order to explore the geographical variations in the
148	coevolution of urban attributes (Figure 1).

Figure 1: The spatial distribution of the prefecture-level cities in China.

2.2 Data source

152	Artificial impervious area refers to the artificial structures covered by water-
153	resistant materials such as concrete, brick, and asphalt, chosen as the key indicator of
154	urban area within the administrative unit (Bounoua et al., 2018; Lu and Weng, 2006).
155	The long-term annual global artificial impervious area (GAIA) remotely sensed
156	dataset provides a means for monitoring changes in urban growth for those
157	prefectural-level cities from 1987 to 2018 (http://data.ess.tsinghua.edu.cn/). The
158	dataset showed good performance, with overall accuracy rates exceeding 90% (Gong
159	et al., 2020). The harmonized NTL data for 1992 -2018 was derived from a database
160	by Li et al. (2020, which was generated by integrating the DMSP and VIIRS data and
161	was verified using physical indicators of the sum of NTL
162	(https://doi.org/10.6084/m9.figshare.12312125). Each prefecture-level city's spatial
163	variables (GAIA, NTL) were then summed based on its administrative boundary. It is
164	noteworthy that in our research, we decompose urbanization into population
165	urbanization (population), spatial urbanization (urban area), and social urbanization
166	(NTL) and use area-based and NTL-based scaling in addition to demographic scaling
167	in our study. These alternative measures that exist today can allow for more
168	opportunities to interpret the coevolution of urban areas, NTL with other urban
169	attributes, and thus significantly help urban planning and implementation process
170	toward sustainable development and human well-being.

171	The demographic and socio-economic variables are mainly collected from the
172	Chinese City Statistical Yearbook or Provincial Statistical Yearbook between 1987
173	and 2018 (National Bureau of Statistics of China, 1987-2018). These variables
174	included the following for scaling analysis: Population, GDP, Wage, number of High
175	schools, and number of Hospitals. In addition, the emission data were collected from
176	the Emission Database for Global Atmospheric Research (EDGAR), including
177	emissions of nitrogen oxides (NOx) (Salmoral et al.) and particulate matter (PM _{2.5} ,
178	PM ₁₀). The annual emissions have a spatial resolution of $0.1^{\circ} \times 0.1^{\circ}$, covering 1970 to
179	2012. To explore the nature of horizontal scaling relationships and their temporal
180	evolution for various urban attributes, all of which were divided into three sets of
181	urban characteristics: public infrastructure, economic output, and air pollution. These
182	attributes were chosen with the goal of quantitatively depicting a wide range of urban
183	environments while also taking into account three scaling regimes based on the
184	assumption (Superlinear relates to socio-economic production; Linear associated with
185	individual service variables; Sublinear relates to infrastructural demand). All the
186	demographic, socio-economic, and environmental variables used in our research are
187	summarized in Table S1.

188 2.3 Urban scaling model

Both the longitudinal scaling within each city and the transversal scaling acrosscities are analyzed and quantified in our study. The former refers to the co-

191	evolutionary trends of paired urban indicators in a given city from 1987-2018, while
192	the latter explores the scaling relationship between various urban properties across
193	cities at different points in time and their temporal evolution from an urban
194	organization perspective. The longitudinal or temporal scaling can better capture the
195	patterns, regimes, and trajectories that involve changes in multiple interwoven
196	dimensions (e.g., area, population, GDP) in a given city. In comparison, transversal or
197	horizontal scaling reflects the relative development of individual urban sectors in a
198	country that could not be obtained using temporal scaling. The combination of these
199	two scaling models can better depict urbanization in China, individually and as a
200	whole, from 1987 to 2018.

201 **2.3.1 Longitudinal scaling within each city**

In this study, the coevolution of paired attributes in the single urban system can be well described by the following power-law equation model (Bettencourt, 2013; Bettencourt et al., 2007):

205
$$Y_t = \alpha_t X_t^{\beta t} e^{x(t)} \tag{1}$$

210	determined by the power law's fit using orthogonal regression. $x(t)$ is the error term.
211	Instead of only considering the errors in the y direction, orthogonal regression
212	(ORTH) as an alternative approach takes the error of the independent variable and
213	dependent variable into account simultaneously in the model. Furthermore, the
214	dependent and the independent variables in the coevolutionary relationship need to be
215	interconverted (e.g., urban area, population, and NTL) due to the inability to
216	determine if the attribute is x or y (Zhao et al., 2018). We, therefore, choose the
217	ORTH procedure to estimate the nature of scaling effects or agglomeration effects.
218	Empirical studies showed three types of exponent values (β_t) of urban indicators
219	for a given city and distinct scaling characteristics (Sahasranaman and Bettencourt,
220	2018; Zhao et al., 2018). The upper and lower tail (2.5 - 97.5) of the 95% confidence
221	interval (CI) for the β_t are computed so as to decide which types it belongs to. (1)
222	Sublinear: the upper limit of 95% CI is below or lower than 1; (2) Superlinear: the
223	lower limit of 95% CI is above or higher than 1; (3) Linear: the threshold 1 falls
224	within the CI.

225 **2.3.2 Transversal scaling across cities**

The cross-sectional scaling of a set of cities obeys the power scaling laws in every time period (Bettencourt, 2013; Bettencourt et al., 2007), and it can be repeated to investigate the time dependence of the coefficients. Here, we examined it in 229 Chinese prefectural-level cities:

$Y_c = \alpha_c X_c^{\beta c} e^{\xi(t)}$

(2)

231	Where X_c and Y_c are urban attributes from all the cities in the system
232	corresponding to a specific year, the parameters α_c and β_c are used to distinguish the
233	intercept and scaling exponent of the temporal scaling and differentiate the scaling
234	type mentioned in the temporal scaling of city indicators in each city. The power
235	scaling relationship between various urban attributes is simple and can be compared
236	conveniently with previous results, which is also why we choose the power scaling
237	law instead of direct comparison. To test the correlation between the paired exponents
238	β (relationship between urban variables with city size), Pearson's correlation
239	coefficient was performed using R 3.6.1(R Core Team, 2019) and the RStudio
240	Integrated Development Environment (Tam, 2019), with p-values < 0.001 being
241	statistically significant. We did not measure the degree of responsiveness of GDP or
242	any other economic indicators to changes in the general price levels (inflation rate),
243	mainly because the trend in urban attributes was probably our significant focus rather
244	than the numerical values. Moreover, all types of fitting exponent did not take
245	inflation into account, such bias was expected and therefore did not affect the
246	outcome of the comparison theoretically.
247	$\xi(t)$ is the deviation from the average for an individual city, also referred to as
248	Scale-Adjusted Metropolitan Indicators (SAMIs) (Bettencourt et al., 2010), and can
249	be used to evaluate the economic performance and land-use efficiency of similar-sized

cities. We used the analogous procedures in the temporal scaling case by calculatingthe confidence intervals. The residuals of the scaling relations are as follows:

252
$$\xi_i(t) = \log Y_i - \log(\alpha_c X_i^{\beta c})$$
(3)

Note that Y_i is the value of the urban indicator for city i; $\alpha_c X_i^{\beta c}$ is the estimated value of the urban indicator for the city i; X_i represents the size of each city based on an urban area, population, and NTL; α_c and β_c are the fitting parameter of Equation (2). SAMI is an indicator to observe the performance of a city relative to others in the whole urban system. This index is dimensionless and eliminates the agglomeration effects so that different cities within the system can be compared directly.

259 2.4 Spatial heterogeneity

The Getis-OrdGi* spatial statistical method, also known as hotspot analysis, allows for visualization of spatial distributions (clustering) and the manifestation of the degree of spatial dependency based on location and values simultaneously (Getis, 1992). Thus, we used the Getis-OrdGi* statistic based on SAMIs to detect the spatial distribution of economic output and land-use efficiency across the nation, and identify hotspot/cold spot of spatial aggregation, respectively, based on ArcGIS10.5, whereby:

266
$$Gi^{*} = \frac{\sum_{j=1}^{n} W_{i,j}x_{j} - X\sum^{n} W_{i,i}}{\sum_{j=1}^{n} \sum_{j=1}^{j=1} \frac{j=1}{n}}$$
267
$$Gi^{*} = \frac{\sum_{j=1}^{n} x_{i}}{X = \frac{\sum_{j=1}^{n} x_{i}}{n}}$$
(4)

268
$$S = \sqrt{\frac{\sum_{j=1}^{n} x_j^2}{n} + \bar{X}^2}$$
(6)

269 Where n is the total number of pixels, x_i illustrates the attribute value related to 270 feature j, $w_{i,i}$ means the spatial weight matrix, d is the distance between i and j 271 location. 272 The degree of agglomeration, as well as its significance, are assessed using 273 confidence levels and Z-scores. A larger Z-score indicates the high concentration of 274 high values (hot spot), which suggested that the economic output or land-use 275 efficiency of the city and its nonboring is relatively high; conversely, a smaller Z-276 score indicates a denser concentration of low values (cold spot). **3. Results** 277 **3.1** Temporal evolution of urban indicators 278 279 Nationally, the scaling exponent γ of almost all urban attributes forms a 280 unimodal distribution with slight differences, except for hospitals (Figure 2A). The 281 economic outputs of cities, like gross domestic product (GDP), wage and its 282 derivatives (GDP density, and GDP per capita), has been expanding throughout this 283 period, with median exponent γ of 0.141, 0.135, 0.088, and 0.130, respectively, 284 marking the accumulation of wealth, and the same goes for the urban area (positive 285 exponents γ). Air pollution (PM_{2.5}, PM₁₀, NO_x), was getting worse in most cities in 286 China, as evidenced by the relatively abundant positive exponents γ (median values 16

287	for exponent γ were 0.017, 0.016, 0.05 for $PM_{2.5}, PM_{10}, NO_x,$ respectively). The three
288	socio-economic indicators, nighttime light (NTL), GDP density, and GDP were
289	probably the most volatile variables with respect to time because of their widest range
290	of exponents at 0.176, 0.113, and 0.107, respectively (Table S2).
291	Across different geographic regions in China, substantial divergences were also
292	observed. It should be noted that the density distribution of wage and GDP in the
293	northeast was distinctly different from the other three regions (Figure 2B), with the
294	lowest average exponent at 0.097 and 0.125, respectively. By contrast, the comparable
295	figures were the highest in east China, 0.145 and 0.141, respectively (Table S3). The
296	results also demonstrated that the urban indicators in the western regions were more
297	dispersed or volatile than those in the eastern, northeastern, and central regions in
298	China, except for wages (Table S3). The mean value of the estimated γ of urban area
299	ranked first in western China (0.061), followed by the eastern (0.056), the central
300	(0.051), and northeast regions (0.044) . However, the analysis showed that urban areas
301	exhibited the lowest variability in northeast China.

303 Figure 2. The distribution of the estimated exponent coefficient γ of the power-law relations 304 between urban characteristics and time in China (A), and in four regions of China (B) ("C" 305 for central, "E" for Eastern, "NE" for the northeast, and "W" for western)(i.e., $y = at^{\gamma} + b$). 306 Urban characteristics include area (km²), population (person), gross domestic product (GDP), 307 wage (RMB), number of high schools, number of hospitals, particulate matter 10 micrometers or less in diameter (PM₁₀), particulate matter 2.5 micrometers or less in diameter (PM_{2.5}), 308 309 nitrogen oxides (NOx), nightlight (NTL), population density (population per square kilometer 310 of urban area), GDP density (RMB per square kilometer of urban area), and GDP per capita 311 (RMB per population). The solid black line indicates the median value of the exponent 312 coefficient γ for various urban attributes. The black dashed line represents the boundary line 313 between positive and negative changes of urban characteristics in time.

314 **3.2 Scaling of paired urban attributes**

302

315 Population growth in all but three cities increasingly lagged behind its area

316	expansion (Figure 3A), and the remaining three grew proportionally to the urban land
317	with the exponent $\beta \approx 1$ (Table 1). Specifically, Shenzhen appeared to be an
318	exceptional city for urban area expansion as it matched population growth, with the
319	95% confidence bounds for the β_t being [0.9,1.39]. The same scaling pattern has
320	emerged in Urumqi and Xining, where their scaling exponent ranged from 0.65 to
321	1.57 and 0.88 to 1.64, respectively. Urban GDP expanded superlinearly with the urban
322	population growth in every city from 1987 to 2018 since scaling exponents were
323	larger than 1 for all cities (Figure 3B). Similar to GDP, NTL in most parts of China
324	increasingly outpaced the growth in population, with only Shenzhen and Dongguan
325	showing a sublinear scaling and linear scaling relationship, respectively (confidence
326	limits being [0.17,0.3], [0.85,2.34]) (Figure 3C). The total wage as a function of the
327	population size was superlinear in each city, signifying that the total wage increased
328	faster than population growth (Figure 3D). In the case of air pollution indicators
329	(PM_{10} , NO_x), all cities showed superlinear scaling (Figure 3E, 3F) except Xining,
330	which demonstrated linear scaling.
331	The increase in GDP and total wage progressively exceeded its urban area
332	expansion in almost all cities (273 of 274 cities and 282 of 283 cities, respectively)
333	(Table 1), leading to a superlinear scaling appearing in socio-economic metrics

- relative to the urban area horizontally (Figure 3G, 3H). The relations between
- infrastructure attributes (number of high schools and hospitals) and the urban area

336	showed a sublinear regime in most cities (Figure S1D, S1E). Of the 343 cities with
337	PM_{10} records, 7 and 36 cities presented sublinear and linear scaling between PM_{10} and
338	urban areas, respectively. Likewise, 262 cities, or 76.6% of all cities, followed
339	superlinear scaling relations between $PM_{2.5}$ and urban areas (Table 1).
340	When comparing the average fitting coefficients of different regions, it is
341	revealed that the superlinear scaling for population verses area and population verses
342	GDP in the northeast (β_{NE} is 11.19 and 28.53, respectively) was relatively prominent,
343	indicating a larger gap in the growth rates of area and GDP relative to population in
344	northeast China. The highest average scaling exponent between population and NOx
345	also showed a comparatively rapid rate of air deterioration in this region. Western
346	China and central China ranked first when using the urban area as the independent
347	variable to scale GDP and Wage (β_w =3.41, β_c =3.19). For cities in eastern China, the
348	average scaling exponent of PM_{10} and NO_x with respect to the urban area was the
349	lowest, followed by the northeast regions and central regions.

Figure 3. The temporal scaling exponent (β_t) and 95% CI (2.5% and 97.5% percentiles) for paired city indicators with an urban area, population, and nighttime light as independent variables in Chinese cities. The three distinct background colors represented three scaling regimes: pale orange for the superlinear regime, light green for the linear regime, and light blue for the sublinear regime. The gray vertical and horizontal lines separate the sublinear (the upper CI of $\beta_t < 1$) from superlinear regime (the bottom CI of $\beta_t > 1$). The colors of dots

357	represented four regions in China: green for the Eastern, blue for the Central, purple for the
358	Western, and yellow for the Northeast regions. The β values shown in the text are the average
359	value of all cities in each region. The values of β_t and its 95% confidence range emanated
360	from the coevolution of two indicators in a specific city from 1987 to 2018 using orthogonal
361	regressions.

Table 1. The temporal scaling of the coevolution of two urban indicators within each

363 city from	1987 to 2018.
---------------	---------------

У	Х	Total number of cities	Sublinear	Linear	Superlinear
GDP	Area	274	0	1	273
NTL	Area	344	31	69	244
Total wage	Area	283	1	0	282
High school	Area	280	248	30	2
Hospital	Area	287	244	38	5
PM_{10}	Area	343	7	36	300
PM _{2.5}	Area	342	10	70	262
NOx	Area	343	0	1	342
Area	POP	234	0	3	231
GDP	POP	235	0	0	235
NL	POP	247	1	1	245
Total wage	POP	243	0	0	243
High school	POP	254	204	25	25
Hospital	POP	243	95	89	59
PM_{10}	POP	254	0	1	253
PM _{2.5}	POP	254	0	2	252
NOx	POP	254	0	1	253
GDP	NL	288	2	28	258

364

365 3.3 Temporal change of the transversal scaling across cities

366 Transversal scaling relationships of urban attributes and their temporal dynamics

367	are pivotal to capture the multifaceted nature of urbanization. From 1987 to 2018, the
368	area displayed superlinear scaling with a population in the Chinese urban system
369	(Figure 4H), demonstrating that the pace of urban area growth outpaced the speed of
370	population growth. The strong positive correlation between the scaling exponent of
371	GDP and wage (r=0.87, p<0.001) suggested a tight coevolutionary relationship
372	between these two urban attributes (Figure 5). The coevolution of GDP and total wage
373	with urban area did exhibit similar trends in the urban system, i.e., a sublinear
374	relationship, but with a decreasing degree of sublinearity, as evidenced by the
375	increasing β for GDP since 2011 (from 0.77 to 0.89) and increasing β for total wage
376	since 2004 (from 0.68 to 0.88) (Figure 4A, 4C). Conversely, the scaling exponent of
377	economic output elements with population shifted from linear to superlinear, in which
378	the 95% CIs of the GDP and wages ranges from [0.94, 1.27] and [0.81,1.2] in 1987 to
379	[1.24,1.66] and [1.29,1.85] in 2018 (Figure 4I, 4K). As for the hospital and high
380	school variables, the scaling relation with the area was sublinear from 2000 to 2018
381	and from 1997 to 2018, respectively (Figure 4F, 4G), suggesting that the rate of these
382	social infrastructures increased much slower than the expansion rate of urban areas.
383	Using population as the independent variable, the infrastructure attributes showed
384	sublinear or linear patterns during the study period. For example, the number of high
385	schools grew more slowly than the population growth from 1997 to 2018, with the
386	95% CI for the exponent being [0.92, 0.98] and [0.93,1], respectively (Figure 4N).

387	Similarly, the scaling relationship between hospital and population remained linear
388	since 2000 until it skewed to sublinear in 2003 (Figure 4O).

389	The fact that emissions of particulate pollutants ($PM_{2.5}$, PM_{10}) scaled
390	superlinearly with population and area over the period (Figure 4D, 4E, 4L, 4M). It
391	was noteworthy that changes in GDP may strongly predict changes in NOx, $PM_{2.5}$,
392	and PM ₁₀ , as evidenced by the high correlation coefficients of $\beta_{POP-GDP}$ and $\beta_{POP-NOx}$
393	$(r=0.890, p<0.001), \beta_{POP-GDP} and \beta_{POP-PM2.5} (r=0.819, p<0.001), \beta_{POP-GDP} and \beta_{POP-PM10}$
394	(r=0.823, p<0.001) (Figure 5). Thus, it seems that the degree of environmental
395	degradation has progressively outpaced the speed of city development, that is, the
396	larger the area or, the denser the population, the more serious the environmental
397	pollution and the greater the harm caused by the city. The scaling of GDP with NTL
398	transitioned from linear (1992-1993) to superlinear (since 1993), with a temporal
399	trend that remained primarily stable until 2013, followed by a fairly steep rise in the
400	last five years (from 1.27 in 2013 to 1.73 in 2014) (Figure 4P).

Figure 4. Temporal variations of transversal scaling exponent(β_c) with 95% confidence intervals for various urban attributes against the urban area, population, and nighttime light from 1987 to 2018. The β_c coefficients were derived from observations of all cities using orthogonal regression. The purple horizontal line ($\beta_c=1$) was plotted as a guide to distinguish between sublinear ($\beta_c<1$) and superlinear ($\beta_c>1$). The colors represent the diverse scaling regime: dark blue—superlinear scaling regime; blue—linear scaling regime; light blue sublinear scaling regime.

Figure 5. The correlation matrix for Area_based exponents, PoP_based exponents, and

412 positive and negative correlations, respectively.

3.4 Assessment of economic output and land-use efficiency

414	To assess the spatial-temporal dynamics of economic output efficiency and land-
415	use efficiency specific to a given city, scale-adjusted metropolitan indicators (SAMI)
416	were used to directly compare cities using city-level indicators instead of per capita
417	indicators. Results from our study present substantial spatial variations in SAMI of
418	Area or NTL and GDP, but with slight variations over time. Notably, southern coastal
419	cities appeared reasonably good for their economic output given their greater GDP
420	than cities of the same magnitude (Area, NTL), even though that advantage did not
421	appear until 2010 and after (Figure 6). Concerning SAMI Area-GDP, the degree of

422	deviation decreased from southwest to northeast, cities located in southwest China
423	exhibited a substantial positive deviation from scaling for GDP in 2010 and 2018,
424	which means that southern regions are more conducive to economic growth even
425	within the same urban area. similarly, the same pattern occurred in SAMI NTL-GDP
426	in 2010 (Figure 6). In addition, the hot spot area of Area-GDP, and NTL-GDP
427	expanded from 2000 to 2018 but with different temporal variation characteristics. For
428	instance, Area-GDP SAMIs, the cities with high SAMI of the area were mainly
429	located in southwest regions consistently, while the hot spot areas in NTL-GDP
430	SAMIs were shifted from the south to the southeast coastal region. In terms of POP-
431	Area, there was a significant positive deviation from expectation in sparsely populated
432	areas such as northeast and Xinjiang province (Figure 6G); that is to say, these cities
433	occupied more area than cities with the same population in the above regions. On the
434	contrary, cities in areas with limited land resources, such as Yunnan-Guizhou Plateau
435	occupied less area than other regions with the same population size.

437 Figure 6. Hotspot analysis of SAMI GDP~Area, SAMI GDP~NTL and SAMI

- 438 Area~POP in 2000, 2010, and 2018, respectively. Hot spot and cold spot represent the
- 439 areas of high occurrence and areas of low occurrence, respectively; 90%, 95%, and
- 440 99% mean the significant level at 90%, 95%, and 99%, respectively.

4. Discussion

4.1 Hits and misses of the universality proposition

443	According to the urban scaling law on economies of scale (Bettencourt, 2013),
444	the transversal scaling of urban area and population should fall into the sublinear
445	regime with $\beta_c = 2/3$ (Bettencourt, 2013; Bettencourt et al., 2007; Sahasranaman and
446	Bettencourt, 2018). However, the analyzed scaling exponent β_c for urban area verses
447	population in our study varies from 1.56 to 2.25 throughout the period (Figure 4),
448	generally suggesting diseconomies of scale in China. The prevailing view holds that
449	land plays a marginal role in socioeconomic development (i.e., western economic
450	growth theories). Our unexpected result may indicate the opposite in China, possibly
451	because China's dramatic urban expansion is government-led and driven by a variety
452	of complex and intercorrelated factors (i.e., the influx of rural population, industrial
453	restructuring, advancement of transport) rather than market forces alone, as in the
454	USA (Tian et al., 2017). Admittedly, China's pioneering use of land expansion as one
455	of the major driving forces for socio-economic development has created "growth
456	miracles" in human history (Zhao et al., 2015). The state power reshuffling, urban
457	land development, and municipal financing have all become intertwined and mutually
458	reinforced to promote growth and transformation (Lin et al., 2014). But
459	counterintuitively, this land-centered mechanism implies a massive waste of land
460	resources in China and poses enormous challenges for humanity in the coming

461	decades, including greenhouse emissions (Hankey and Marshall, 2010), fragmentation
462	of landscape (Irwin and Bockstael, 2007), and exacerbating the risk of food security
463	(Chen et al., 2020), failing to make cities inclusive, safe, resilient and sustainable
464	(United Nations' Sustainable Development Goal 11). One encouraging signal from the
465	temporal evolution of the β_c for urban area verses population is the decline in the
466	degree of superlinearity since 2005 (Figure 4), indicating Chinese government's effort
467	in charting sustainable urban development across the country.
468	Similarly, infrastructure variables associated with public services, such as
469	hospitals and educational institutions, exhibit some deviations as well. Variables
470	related to education (i.e., number of high schools) scaled sublinearly, as expected, but
471	this pattern has shifted in a way that contradicts theory since 2013. By contrast,
472	variables related to health facilities (i.e., number of hospitals) differ from the
473	theoretical sublinear regimes proposed by Bettencourt (Bettencourt et al., 2007) and
474	are scaled linearly almost all the time. The same pattern was also found in Brazilian
475	urban system, with a scaling exponent of 1.01 from 2005 to 2014 (Meirelles et al.,
476	2018). Probably, these deviations related to infrastructural variables that can reach
477	everyone in a city or be decided by the local government are determined by social
478	network features and spatial limits (Bettencourt, 2013). As for developing countries
479	like China and Brazil, top-down national investments or policies may cause
480	infrastructure indicators to depart from the sublinear regime since the central

481	government cannot get involved in all municipal infrastructure projects. In this
482	instance, a centralized decision might reflect itself in linear scaling relations or in a
483	sublinear relationship resulting from interactions at the local level.
484	Urban expansion scaled superlinearly with population growth in individual cities
485	over the past three decades (Figure 3) with scaling exponents (9.94) on average much
486	higher than its cross-sectional counterpart (1.56-2.3). The large difference between the
487	spatial and temporal scaling exponents demonstrates unequivocally that individual
488	temporal dynamics do not collapse in the universal curve of urban systems
489	(Keuschnigg, 2019). This finding casts doubt on the "space for time" concept in the
490	study of urban evolution and organization and calls for more longitudinal studies. In
491	addition, the much higher superlinearity found in individual cities suggests the
492	diseconomies of scale were more pronounced longitudinally than laterally. In other
493	words, the waste of land resources, examined from cross-city analysis at a given point
494	in time, was not as severe as that during the urban expansion of individual cities.
495	From another perspective, most Chinese cities currently rely heavily on revenue from
496	land sales or leasing for urban development.

4.2 Paradigm shift to dynamic scaling of urban properties

498 Intrinsic social and economic dimensions of Chinese cities, scaled superlinearly
499 (β>1) and agreed well in principle with the existing proposition (Bettencourt, 2013),
500 signifying increasing returns with city size. In light of knowledge spillover, the

501	superlinear scaling exponent for GDP and wage can be elucidated as a consequence of
502	social interactions among individuals in relatively congested metropolitan areas
503	(Keuschnigg et al., 2019). Alternatively, it can be interpreted as a result of increased
504	productivity and advance of innovation due to the coexistence of increased overall
505	diversity and a broad spectrum of expertise that accompany the expansion of city
506	(Bettencourt et al., 2014). However, the magnitude and temporal dynamics of β_c are
507	fascinating and beyond theoretical expectations, which were intimately related to
508	social and economic vitality stimulated by Chinese and local development strategies
509	and policies. For example, the scaling exponent of population-GDP was significantly
510	larger than 7/6 since 1995 after being in line with theoretical value (7/6) from 1987 to
511	1990 (Figure 7). The approximately linear correlation in the early period reflected the
512	stagnation and stability of the economy and the ineffectiveness of the centrally
513	planned economy in propelling the economy (Kuang et al., 2016). The market-
514	oriented mechanism, accompanied by fiscal centralization policy and tax reform, has
515	proved to be a powerful means that allow economic growth to exceed the pace of
516	demographic development (Lu et al., 2019). Globalization has given rise to these
517	forces, contributing to rapid urbanization since the start of the 21st century, especially
518	in coastal areas.

520 **Figure 7**. Transversal power scaling relationships between urban area, GDP, and population 521 for prefecture-level cities (black dot) and provincial capitals(sky blue dot), with the 522 expected theoretical value ($\beta_c=2/3$) in dark blue.

523 Likewise, the transversal scaling of wage verses population was superlinear most524 of the time, except for the linear relationships in the previous few years. The linear

525	scaling agreed with the fixed-wage plan under the stringent planned economy,
526	meaning that the wage was roughly proportional to population, which may be a
527	consequence of the restrictions of the household registration system that prevented the
528	free flow of labor from rural to urban environments (Jia et al., 2020). The changeover
529	from linear scaling to superlinear scaling reflected the steady liberalization of hukou
530	restrictions since the beginning of the 21st century, with large cities thus expanding
531	through their attraction and retention of talent, and reaping the privileged benefits of
532	rapidly rising wages from economic development (Keuschnigg et al., 2019). The high
533	correlation and the similar trend between population-GDP and population-wage
534	(Figure 5) are due to the fact that rapid growth of GDP will boost domestic demand,
535	which may trigger a rise in salaries.
536	Despite the importance and pervasiveness of scaling theory in understanding the
537	multifaceted nature of urban systems, the universality framework has its limitations in
538	assuming scaling exponent is invariant over time. The dynamic scaling of social,
539	spatial, and infrastructure properties reflecting the past or current trajectories of urban
540	system evolution, can be viewed as complementary to the existing theoretical
541	paradigm to clarify the impacts of changes in social development, economic reforms,
542	and national policies. Scaling relationships change over time, and the lack of temporal
543	flavor in the existing scaling laws limits their applications in depicting the evolution
544	and sustainable development of urban systems.

4.3 Area-based and NTL-based transversal scaling

546	"Urban" is a commonly used and intuitively understood term—as it refers to a
547	densely packed populace (Seto et al., 2010). In this way, urban was drawn up based
548	on population size from major to small urban areas by 20% of countries (United
549	Nations, 2018b), scaling and scalability analysis has emphasized the significance of
550	using population size as a basis to analyze the intriguing link with various urban
551	metrics (Bettencourt et al., 2007; Lobo et al., 2013). However, any single
552	measurement can hardly fully comprehend the process and evolution of urbanization,
553	which needs to be enriched by considering the combination of other factors.
554	Urbanization is a process of re-location of people within or across areas and a
555	complex and dynamic socio-economic process, accompanied by the transformation of
556	the social network, economic structure, and mode of living style (Kuang et al., 2020).
557	That is the reason why we decompose urbanization into population urbanization
558	(population), spatial urbanization (urban area), and social urbanization (NTL) and use
559	area-based and NTL-based scaling in addition to demographic scaling in our study.
560	Additionally, using area-based and NTL-based scaling analysis can help us
561	reshape interactions between drivers and outcomes of urban evolution, which cannot
562	obtain by using original demographical scaling. The theoretical scaling exponent for
563	population-based can be obtained from Bettencourt's analysis (Bettencourt, 2013),
564	from which we can also derive the hypothetical areal scaling association for socio-

565	economic elements (Y \propto A7/4) (based on previous relations Y \propto N7/6 and A \propto
566	N2/3, Y for socio-economic variables, N for population, A for an urban area). It was
567	noteworthy that all exponents of areal transversal scaling for socio-economic
568	variables (e.g., GDP, wage) were far from the theoretical values ($\beta c=7/4$)—scale
569	sublinearly, thereby falling in the rejection of theoretical prediction (Figure 4). Thus,
570	the inconsistency can be summarized as follows: the phenomenon that the larger the
571	cities in the area, the higher the socioeconomic efficiency in other countries may not
572	exist in China (Bettencourt et al., 2007; Sahasranaman and Bettencourt, 2018).
573	Furthermore, the sublinear relations for the population are mainly attributed to
574	multiple internal and external factors (Schneider and Mertes, 2014), including
575	political decentralization and marketization, the abuse of eminent domain by local
576	government, rapid development of transportation and information technology, and the
577	uncontrolled and imperfect land market reform (Zhao, 2011). The sublinear scaling
578	relations between population and urban area meant that addressing China's massive
579	waste of land resources may seem like an increasingly daunting task. From another
580	point of view, the results of area-based scaling were in accordance with the view that
581	a single measurement cannot unravel the intricate web of diverse urban attributes and
582	urbanization. In addition, many types of research have shown that nighttime light can
583	provide an alternative proxy to measure urbanization (Li et al., 2020). The NTL-based
584	temporal transitioned from linear to superlinear for socio-economic quantities,

manifesting systematic increasing returns to scale over time (Figure 4), which
explicitly considered the dynamics, growth, and evolution of the entire urban system
regarding a broad range of metrics.

588

4.4 Future sustainability governance

589 Our work developed an integrated conceptual framework for diverse urban 590 development over an enormous range of scales while providing a basis for policy 591 recommendations toward sustainable development. On the one hand, the demographic 592 scaling for GDP exhibited a relatively high transversal scaling exponent at the same 593 point in time compared to United States of America (USA) and Germany (Figure 4), implying that China's population-GDP efficiency is gradually surpassing those 594 595 advanced countries in recent years as the same amount of population produces relatively higher economic output, which has become a bright spot in the Chinese 596 597 development process. On the other hand, expanding the urban areas to accommodate 598 rapid population growth can provide better benefits in terms of more living space and 599 high-quality housing options. However, the development of China's land-dependent 600 economies synonymous with uncontrolled and haphazard urban sprawl have both 601 added new sources of unsustainability in local and tele-connected regions (Lu et al., 2019). Therefore, a timely and effective regulatory policy to promote a more intensive 602 and economic land use pattern, mainly based on technological advances and 603 efficiency gains, remains a key and urgent task for sustainable urban planning and 604

605	management. Most critically, policymakers need to impose more rigorous and
606	effective policies, including urban growth boundaries, green belts, and urban renewal,
607	to create synergies that curb land increment and promote land stock optimization,
608	thereby safeguarding farmland and natural land and reversing unsustainable trends
609	(Hassan and Lee, 2015).
610	Regarding the disparity and diversity of development in China, we found that the
611	gaps in socio-economic development (GDP, urban area) among prefecture-level cities
612	are more pronounced than among provincial capitals, indicating that these cities
613	should be the focus of urban administrations in terms of coordinated development.
614	China is characterized by significant interregional inequalities in economic
615	development and urban expansion (Figure 6), which can be partly attributed to
616	regional resource and natural endowments but are mainly a result of urban
617	development policies (Wei et al., 2017). In the face of regional disparities, the central
618	government has promulgated a series of macro strategies in support of the coordinated
619	development broadly (Jia et al., 2020) ("Western Development Program"(1999),
620	"Rise of Mid-China Strategy" (2016), "Reviving the Northeastern Region" (2004)) in
621	the past three decades. To achieve China's goals of Vision 2035, region-based
622	development policies and highly tailored economic development plans should be
623	implemented to halt unequal economic growth while maintaining stable mobility of
624	talent towards a long-term path of inclusive and sustainable growth (Xu et al., 2020b).

625	Paralleling the experiences of advanced western countries in the early period of
626	urbanization, China's rapid urban development has yielded a broad portfolio of air
627	pollution emissions and environmental damages (Guan et al., 2012). The superlinear
628	scaling of ecological indicators with the urban area and population, and the strong
629	positive correlation with GDP (Figure 4, Figure 5), means that increasing urban size
630	would enhance the magnitude of human activities and productivity of economic
631	growth, which will directly or indirectly exacerbate environmental issues in larger and
632	more congested cities (Han et al., 2016). The pattern is also consistent with the first
633	stage of the "Environmental Kuznets Curve" (EKC) (Grossman and Krueger, 1991),
634	in which the economic development initially leads to a deterioration in environment.
635	The degree of superlinearity declined slowly since 2003, probably reflecting a
636	"turning point" in this growth pattern, at which it would switch to a decoupling of
637	economic growth and environmental degradation as economy undergoes
638	technological and structural changes. This is confirmed by the decreasing trend of
639	particulate pollutant concentrations ($PM_{2.5}$, PM_{10}) in China from 2015 to 2018
640	(Kuerban et al., 2020). Nonetheless, the objective of the "Blue Sky" plan and carbon
641	neutrality necessitated a thorough implementation of compulsory emission reduction
642	and upgrade of transportation and electricity systems towards environmentally
643	sustainable systems (i.e., wind and solar energy) (Soares et al., 2018). Reform and
644	opening-up should continue to promote socio-economic efficiencies scientifically

based on carrying capacity and resource-environmental context while taking intoaccount the practical needs of urban expansion.

647 **5.** Conclusion

We analyzed socioeconomic and environmental data of Chinese urban systems in light of urban scaling laws and known empirical patterns from other nations, aiming to quantitatively depict the temporal coevolution and spatial organization of urban attributes in the urbanization process in terms of scaling and agglomeration effects, and economies of scale.

653 The results of the evolution of city indicators throughout time revealed the 654 economic agglomeration of most cities in China, accompanied by the accumulation of 655 pollution. The density distribution of the scaling coefficient β for population density 656 also implied that the average living space per person is on the rise. The superlinear 657 relationship of urban area and population often considered as an indicator of wasting land resources (challenging the universality theory $\beta_c=2/3$), is in fact the powerful 658 659 impetus (capital raising) behind the concurrent superlinear expansion of socio-660 economic metabolisms (e.g., GDP, total wage) in a rapidly urbanizing country that has 661 not yet reached equilibrium. Infrastructural variables associated with public services, such as hospitals and educational institutions, exhibited some deviations as well and 662 663 were scaled linearly. The observed deviations were a product of China's political 664 systems and national conditions as a developing country, whereas the tremendous 665 waste of land resources poses enormous challenges to natural environment and social 666 system at the regional and national scales. One encouraging signal from the decline in urban land diseconomies and the stabilization of economic output indicates the 667 government's engagement and commitment to common sustainability goals. In a 668 669 word, our results reject the hypothesis and challenge the universality proposition of

670 urban scaling.

671	Despite the importance and pervasiveness of scaling theory in understanding the
672	multifaceted nature of urban systems, the universality framework has its limitations in
673	assuming the scaling exponent is invariant over time. These conclusions should be
674	validated and extended to other developing countries, and more comprehensive
675	variables, which is crucial not only for well-being of Chinese residents, but for the
676	sustainability of the entire planet.

678 Acknowledgments

- 679 This work was supported by the National Natural Science Foundation of China
- 680 (Grant No. 41971152, U20A2089); the Hunan Innovative Talent Program (Grant No.
- 681 2019RS1062) to S Liu. We thank our many colleagues and everyone who has
- 682 dedicated time to help improve the research.

References

685 686 687	Arcaute E, Hatna E, Ferguson P, Youn H, Johansson A, Batty M. Constructing cities, deconstructing scaling laws. J R Soc Interface 2015; 12: 20140745.
688	Batty M. The Size, Scale, and Shape of Cities. Science 2008; 319: 769.
689	Batty M. Building a science of cities. Cities 2012; 29: S9-S16.
690 691	Bettencourt L, West G. A unified theory of urban living. Nature 2010; 467: 912-913.
692 693	Bettencourt LM. The origins of scaling in cities. Science 2013; 340: 1438-41.
694	Bettencourt LM. Urban Scaling in Europe. 2015.
695 696 697	Bettencourt LM, Lobo J, Strumsky D, West GB. Urban scaling and its deviations: revealing the structure of wealth, innovation and crime across cities. PLoS One 2010; 5: e13541.
698 699	Bettencourt LM, Samaniego H, Youn H. Professional diversity and the productivity of cities. Sci Rep 2014; 4: 5393.
700 701	Bettencourt LMA. Urban growth and the emergent statistics of cities. Science Advances 2020; 6: eaat8812.
702 703 704	Bettencourt LMA, Lobo J, Helbing D, Kühnert C, West GB. Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences 2007; 104: 7301.
705 706	Bounoua L, Nigro J, Zhang P, Thome K, Lachir A. Mapping urbanization in the United States from 2001 to 2011. Applied Geography 2018; 90: 123-133.
707 708 709	Brelsford C, Lobo J, Hand J, Bettencourt LMA. Heterogeneity and scale of sustainable development in cities. Proceedings of the National Academy of Sciences 2017; 114: 8963-8968.
710 711 712	Chen G, Li X, Liu X, Chen Y, Liang X, Leng J, et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat Commun 2020; 11: 537.
713 714	Getis AaO, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis 1992; 24, 189-206.
715	Gibrat R. Les Inégalités économiques; Paris, France. Paris, France, 1931.

716 717 718	Gong P, Li X, Wang J, Bai Y, Chen B, Hu T, et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment 2020; 236.
719 720	González-Val R, Sanso-Navarro M. Gibrat's law for countries. Mpra Paper 2010; 23: 1371-1389.
721 722 723	Grossman GM, Krueger AB. Environmental impacts of a North American free trade agreement. National Bureau of economic research Cambridge, Mass., USA, 1991.
724 725	Guan D, Liu Z, Geng Y, Lindner S, Hubacek K. The gigatonne gap in China's carbon dioxide inventories. Nature Climate Change 2012; 2: 672-675.
726 727 728	Han L, Zhou W, Pickett STA, Li W, Li L. An optimum city size? The scaling relationship for urban population and fine particulate (PM(2.5)) concentration. Environ Pollut 2016; 208: 96-101.
729 730	Hankey S, Marshall JD. Impacts of urban form on future US passenger- vehicle greenhouse gas emissions. Energy Policy 2010; 38: 4880-4887.
731 732 733	Hassan AM, Lee H. Toward the sustainable development of urban areas: An overview of global trends in trials and policies. Land use policy 2015; 48: 199-212.
734 735 736	Irwin EG, Bockstael NE. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proceedings of the National Academy of Sciences 2007; 104: 20672-20677.
737 738 739	Jia M, Liu Y, Lieske SN, Chen T. Public policy change and its impact on urban expansion: An evaluation of 265 cities in China. Land Use Policy 2020; 97.
740 741	Jiao L, Xu Z, Xu G, Zhao R, Liu J, Wang W. Assessment of urban land use efficiency in China: A perspective of scaling law. Habitat International 2020; 99.
742 743	Keuschnigg M. Scaling trajectories of cities. Proceedings of the National Academy of Sciences 2019; 116: 13759-13761.
744 745	Keuschnigg M, Mutgan S, Hedström P. Urban scaling and the regional divide. Science Advances 2019; 5: eaav0042.
746 747	Kleiber M. Body size and metabolic rate. Physiological reviews 1947; 27: 511-541.
748 749	Kuang B, Lu X, Han J, Fan X, Zuo J. How urbanization influence urban land consumption intensity: Evidence from China. Habitat International 2020;

750	100: 102103.
751 752 753 754	Kuang W, Liu J, Dong J, Chi W, Zhang C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD- based analysis of their trajectories, patterns, and drivers. Landscape and Urban Planning 2016; 145: 21-33.
755 756 757	Kuerban M, Waili Y, Fan F, Liu Y, Qin W, Dore AJ, et al. Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks. Environ Pollut 2020; 258: 113659.
758 759	Lei W, Jiao L, Xu G, Zhou Z. Urban scaling in rapidly urbanising China. Urban Studies 2021.
760 761	Li R, Dong L, Zhang J, Wang X, Wang WX, Di Z, et al. Simple spatial scaling rules behind complex cities. Nat Commun 2017; 8: 1841.
762 763	Li X, Zhou Y, Zhao M, Zhao X. A harmonized global nighttime light dataset 1992-2018. Sci Data 2020; 7: 168.
764 765 766	Lin GCS, Li X, Yang FF, Hu FZY. Strategizing urbanism in the era of neoliberalization: State power reshuffling, land development and municipal finance in urbanizing China. Urban Studies 2014; 52: 1962-1982.
767 768	Lobo J, Bettencourt LM, Strumsky D, West GB. Urban scaling and the production function for cities. PLoS One 2013; 8: e58407.
769 770 771	Lobo J, Bettencourt LMA, Smith ME, Ortman S. Settlement scaling theory: Bridging the study of ancient and contemporary urban systems. Urban Studies 2019; 57: 731-747.
772 773	Lu D, Weng Q. Use of impervious surface in urban land-use classification. Remote Sensing of Environment 2006; 102: 146-160.
774 775 776	Lu Y, Zhang Y, Cao X, Wang C, Wang Y, Zhang M, et al. Forty years of reform and opening up: China's progress toward a sustainable path. Science Advances 2019; 5: eaau9413.
777 778 779	McPhearson T, Pickett STA, Grimm NB, Niemelä J, Alberti M, Elmqvist T, et al. Advancing Urban Ecology toward a Science of Cities. BioScience 2016; 66: 198-212.
780 781	Meirelles J, Neto CR, Ferreira FF, Ribeiro FL, Binder CR. Evolution of urban scaling: Evidence from Brazil. PLOS ONE 2018; 13: e0204574.
782 783	National Bureau of Statistics of China. China City Statistical Yearbook. China Statistics Press (in Chinese), Beijing, China, 1987-2018.

784 785	R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2019.
786 787	Sahasranaman A, Bettencourt LMA. Urban Geography and Scaling of Contemporary Indian Cities. Ssrn Electronic Journal 2018.
788 789 790	Sahasranaman A, Bettencourt LMA. Urban geography and scaling of contemporary Indian cities. Journal of The Royal Society Interface 2019; 16: 20180758.
791 792 793 794	Salmoral G, Zegarra E, Vazquez-Rowe I, Gonzalez F, del Castillo L, Rondon Saravia G, et al. Water-related challenges in nexus governance for sustainable development: Insights from the city of Arequipa, Peru. Science of the Total Environment 2020; 747.
795 796	Schneider A, Mertes CM. Expansion and growth in Chinese cities, 1978–2010. Environmental Research Letters 2014; 9.
797 798 799	Seto KC, Sánchez-Rodríguez R, Fragkias M. The new geography of contemporary urbanization and the environment. Annual review of environment resources 2010; 35: 167-194.
800 801 802 803	Soares N, Martins AG, Carvalho AL, Caldeira C, Du C, Castanheira É, et al. The challenging paradigm of interrelated energy systems towards a more sustainable future. Renewable and Sustainable Energy Reviews 2018; 95: 171-193.
804 805	Soo KT. Zipf's Law for cities: a cross-country investigation. Regional Science and Urban Economics 2005; 35.
806	Tam R. RStudio: Integrated Development Environment for R. 2019.
807 808 809	Tian L, Ge B, Li Y. Impacts of state-led and bottom-up urbanization on land use change in the peri-urban areas of Shanghai: Planned growth or uncontrolled sprawl? Cities 2017; 60: 476-486.
810 811 812	United Nations. World Urbanization Prospects: the 2018 Revision. In: Affairs DoEaS, editor. Department of Economic and Social Affairs, New York: United Nations, 2018a.
813 814	United Nations DoEaSA, Population Division. World Population Prospects : The 2018 Revision. 2018b.
815 816	Wei YD, Li H, Yue W. Urban land expansion and regional inequality in transitional China. Landscape and Urban Planning 2017; 163: 17-31.
817	Xu F, Wang Z, Chi G, Zhang Z. The impacts of population and

818 819	agglomeration development on land use intensity: New evidence behind urbanization in China. Land Use Policy 2020a; 95.
820 821 822	Xu Z, Chau SN, Chen X, Zhang J, Li Y, Dietz T, et al. Assessing progress towards sustainable development over space and time. Nature 2020b; 577: 74-78.
823 824	Zhao P. Managing urban growth in a transforming China: Evidence from Beijing. Land Use Policy 2011; 28: 96-109.
825 826	Zhao S, Liu S, Xu C, Yuan W, Sun Y, Yan W, et al. Contemporary evolution and scaling of 32 major cities in China. Ecol Appl 2018; 28: 1655-1668.
827 828 829	Zhao S, Zhou D, Zhu C, Sun Y, Wu W, Liu S. Spatial and Temporal Dimensions of Urban Expansion in China. Environmental Science & Technology 2015; 49: 9600-9609.
830 831 832	Zheng B, de Beurs KM, Owsley BC, Henebry GM. Scaling relationship between CO pollution and population size over major US metropolitan statistical areas. Landscape and Urban Planning 2019; 187: 191-198.
833 834	Zipf GK. Human Behavior and the Principle of Least Effort Cambridge ma edn 1949.

Tables

v	x	Total number of cities	Sublinear	Linear	Superlinear
GDP	Area	274	0	1	273
NTL	Area	344	31	69	244
Total wave	Area	283	1	0	282
High school	Area	280	248	30	2.
Hospital	Area	287	244	38	- 5
PM.	Area	3/3	7	36	300
1 11110	Alca	545	7	50	300
PM _{2.5}	Area	342	10	70	262
NOx	Area	343	0	1	342
Area	POP	234	0	3	231
GDP	POP	235	0	0	235
NL	POP	247	1	1	245
Total wage	POP	243	0	0	243
High school	POP	254	204	25	25
Hospital	POP	243	95	89	59
PM_{10}	POP	254	0	1	253
PM _{2.5}	POP	254	0	2	252
NOx	POP	254	0	1	253
GDP	NL	288	2	28	258

Table 1. The temporal scaling of the coevolution of two urban indicators within each city from 1987 to 2018.

Figures

Figure 1: The spatial distribution of the prefecture-level cities in China.

Figure 2. The distribution of the estimated exponent coefficient γ of the power-law relations between urban characteristics and time in China (A), and in four regions of China (B) ("C" for central, "E" for Eastern, "NE" for the northeast, and "W" for western)(i.e., $y = at^{\gamma} + b$). Urban characteristics include area (km²), population (person), gross domestic product (GDP), wage (RMB), number of high schools, number of hospitals, particulate matter 10 micrometers or less in diameter (PM₁₀), particulate matter 2.5 micrometers or less in diameter (PM_{2.5}), nitrogen oxides (NOx), nightlight (NTL), population density (population per square kilometer of urban area), GDP density (RMB per square kilometer of urban area), and GDP per capita (RMB per population). The solid black line indicates the median value of the exponent coefficient γ for various urban attributes. The black dashed line represents the boundary line between positive and negative changes of urban characteristics in time.

Figure 3. The temporal scaling exponent (β_t) and 95% CI (2.5% and 97.5% percentiles) for paired city indicators with an urban area, population, and nighttime light as independent variables in Chinese cities. The three distinct background colors represented three scaling regimes: pale orange for the superlinear regime, light green for the linear regime, and light blue for the sublinear regime. The gray vertical and horizontal lines separate the sublinear (the upper CI of $\beta_t < 1$) from superlinear regime (the bottom CI of $\beta_t > 1$). The colors of dots represented four regions in China: green for

the Eastern, blue for the Central, purple for the Western, and yellow for the Northeast regions. The β values shown in the text are the average value of all cities in each region. The values of β_t and its 95% confidence range emanated from the coevolution of two indicators in a specific city from 1987 to 2018 using orthogonal regressions.

Figure 4. Temporal variations of transversal scaling exponent(β_c) with 95% confidence intervals for various urban attributes against the urban area, population, and nighttime light from 1987 to 2018. The β_c coefficients were derived from observations of all cities using orthogonal regression. The purple horizontal line ($\beta_c=1$) was plotted as a guide to distinguish between sublinear ($\beta_c<1$) and superlinear ($\beta_c>1$). The colors represent the diverse scaling regime: dark blue—superlinear scaling regime; blue—linear scaling regime; light blue—sublinear scaling regime.

Figure 5. The correlation matrix for Area_based exponents, PoP_based exponents, and NTL_based exponents, respectively (P<0.01). The yellow and white colors correspond to positive and negative correlations, respectively.

Figure 6. Hotspot analysis of SAMI GDP~Area, SAMI GDP~NTL and SAMI Area~POP in 2000, 2010, and 2018, respectively. Hot spot and cold spot represent the areas of high occurrence and areas of low occurrence, respectively; 90%, 95%, and 99% mean the significant level at 90%, 95%, and 99%, respectively.

Figure 7. Transversal power scaling relationships between urban area, GDP, and population for prefecture-level cities (black dot) and provincial capitals(sky blue dot), with the expected theoretical value ($\beta_c=2/3$) in dark blue.

Shuailong Feng: Writing – review & editing.