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Abstract 22 

Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting 23 

marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-24 

based bioremediation is gaining increasing interest as an effective, economically and environmentally 25 

sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno 26 

River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ~15 tons of 27 

heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful 28 

for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, 29 

contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected 30 

to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-31 

culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates 32 

corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and 33 

Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove 34 

HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, 35 

and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such 36 

abilities. Most promising yields (~100%) were obtained towards naphthalene, pyrene and lead. We 37 

propose these novel bacterial strains and related genetic repertoire to be further exploited for effective 38 

bioremediation of marine environments contaminated with both PAHs and HMs. 39 

Keywords: polycyclic aromatic hydrocarbons; heavy metals; bioremediation; next-generation 40 

sequencing; marine biotechnology. 41 
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1. Introduction42 

Pollution of coastal environments due to organic (e.g., polycyclic aromatic hydrocarbons, PAHs) 43 

and/or inorganic (e.g., heavy metals, HMs) contaminants can determine major detrimental effects on 44 

the marine food web and human health (Tashla et al., 2018; Fuentes-Gandara et al., 2018; Loflen et 45 

al., 2018; Buah-Kwofie et al., 2018). PAHs, HMs and metalloids are known to strongly affect 46 

biological systems such as cell membranes, organelles and enzymes, causing cell cycle alteration, 47 

carcinogenesis or apoptosis (Tchounwou et al., 2001; Sutton et al., 2002; Yedjou and Tchounwou, 48 

2007a,b; Beyersmann and Hartwig, 2008; Patlolla et al., 2009; Kim et al., 2015; Costa et al., 2022). 49 

Such contaminants can persist in the environment for a long time and can be subjected to 50 

bioaccumulation and/or biomagnification processes, which increase their potential to cause harm 51 

(Oyetibo et al., 2017). Conventional methods for the removal of PAHs and HMs include chemical 52 

treatments (e.g., precipitation, oxidation and reduction), electrochemical techniques or physical 53 

adsorption (Fenyvesi et al., 2019). Unfortunately, such methods typically produce special wastes 54 

(e.g., toxic sludge and by-products) and are expensive, ineffective at low pollutant concentrations and 55 

highly energy-demanding (Joshi, 2017; Priyadarshanee and Das, 2021). The use of microorganisms 56 

(especially, bacteria, fungi and microalgae) may be a promising alternative or complementary 57 

strategy to such conventional tools, due to several microbial characteristics including high 58 

biodegradation/detoxification efficiency towards several contaminants, high surface area-to-volume 59 

ratio and the ability to grow at high concentrations of toxic pollutants (Zouboulis et al., 2004; 60 

Kordialik-Bogacka and Diowksz, 2014). Microbial-based remediation strategies are also considered 61 

to be one of the most sustainable approaches due to low carbon footprint of the overall 62 

decontamination process (Kuppusamy et al., 2017; Dell’Anno et al., 2020; Jain et al., 2022).  63 

Microbes effectively degrade PAHs by several mechanisms including assimilation, intracellular 64 

detoxification, and/or co-metabolism mediated by the activity of specific enzymes such as oxygenase, 65 

dehydrogenase and ligninolytic enzymes (Johnsen et al., 2005; Ladino-Orjuela et al., 2016; Saravanan 66 

et al., 2021). Microbial-mediated HMs’ sorption, leaching or transformation are well-known as 67 
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inexpensive and highly efficient HM bioremediation processes (Leung et al., 2000; Aryal et al., 2010; 68 

Sahmoune, 2018; Quiton et al., 2018; Cai et al., 2019). Co-contamination by PAHs and HMs is 69 

typically encountered in most marine polluted sites (El-Mufleh et al., 2014; Ali et al., 2021) and 70 

several microbes can exert a combined action towards such contaminants by bioleaching, biosorption 71 

and biodegradation, which increase their overall removal and/or detoxification capacity (Liu et al., 72 

2017; Ali et al., 2021). Examples of this synergistic approach include microbial secretion - under 73 

mixed PAHs and HMs contamination - of enzymes with useful bioremediation activities (Chen et al., 74 

2020) and of extracellular polysaccharides (EPSs). EPSs are particularly relevant targets for 75 

bioremediation studies, as they consist of a wide array of polymers and functional groups, that can 76 

simultaneously bind metals (thus enhancing HM extraction/removal from contaminated matrices) 77 

(Amoozegar et al., 2012; Ates, 2015; Little et al., 2014; Mohite et al., 2017; Gupta and Diwan, 2017; 78 

Cao et al., 2022; Cheng et al., 2022), and increase PAH solubilization and enzymatic degradation 79 

efficiency (Gutierrez et al., 2013; Alaba et al., 2018).  80 

Environmental matrices that are naturally or experimentally enriched with organic and/or inorganic 81 

contaminants are an underexploited source of novel microbes resistant to contaminants and involved 82 

in their biodegradation/detoxification (Beolchini et al., 2009; Adams et al., 2015; Fodelianakis et al., 83 

2015; Dell’Anno et al., 2021; Wang et al., 2021). Currently, high-throughput sequencing technologies 84 

help to uncover such microbial bioremediation potential, providing novel insights on the diversity of 85 

useful environmental microbes and their repertoire of genes involved in PAH and HM bioremediation 86 

(Czaplicki and Gunsch, 2016; Dell’Anno et al., 2021; Meng et al., 2022; Hassan et al., 2022; Sharma 87 

et al., 2022). 88 

In this study, we selected the highly anthropically-impacted and severely contaminated coastal area 89 

at the mouth of the Sarno River (Gulf of Naples, Mediterranean Sea), one the most polluted rivers in 90 

Europe discharging large amounts of PAHs and HMs into the sea (Montuori and Triassi, 2012; 91 

Montuori et al., 2013). Based on such high inputs of contaminants at this site, we postulated that here, 92 

marine sediments could host microbiomes enriched in bacterial taxa that typically characterize marine 93 
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areas affected by oil-spills and/or industrial activities, and possibly useful for PAHs and HMs 94 

bioremediation. We collected marine sediments from one of the most polluted sites in this area, and 95 

we adopted a laboratory approach based on the enrichment of the sediment microbiome, subsequent 96 

selection and culturing of bacteria resistant to HMs, and next-generation sequencing coupled with 97 

laboratory experiments to unveil their potential for PAHs and HMs bioremediation.    98 

99 

2. Materials and Methods100 

2.1. Sediment sampling, microbiome enrichment and selection of bacteria useful for PAH and 101 

HM bioremediation  102 

Sampling was performed at the mouth of the Sarno River (Fig. 1). Surface sediments were collected 103 

by a Van Veen grab, placed into sterile Whirl-Pak bags (Nasco), and then stored at 4°C in the dark 104 

until processing. One gram of sediment was added to a 1000 ml flask containing 200 ml of Marine 105 

Broth (Difco, Marine Broth 2216). Inoculated flasks were mixed and incubated at 28°C in the dark. 106 

After 2 weeks of incubation, the enriched microbiome was plated by streaking onto marine agar 107 

(Difco, Marine Agar) added with a mix of Pb2+ (500 ppm), As3+ (500 ppm), and Cd2+ (10 ppm) and 108 

incubated at 28°C for 48 hours. Above HMs were selected as the most relevant in the study area, and 109 

the applied concentrations were significantly higher than those determined in the sediments 110 

(Montuori et al., 2013), to isolate HM-resistant bacteria with possible PAH and HM bioremediation 111 

ability. PAHs were not added at this stage, as we hypothesized that bacterial PAH degraders were 112 

already abundant in the original contaminated sediments, and our rationale was to select those able 113 

to also tolerate high HM concentrations. As the diversity of potential PAH-degrading bacteria is 114 

potentially high in contaminated sediments, we acknowledge that alternative enrichment strategies 115 

(e.g., contextual addition of PAHs at this stage) may have led to different/additional bacterial isolates 116 

than those obtained in our study.  117 
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Following incubation, high microbial growth was observed, which was confirmed to be a multi-118 

species bacterial culture by preliminary Sanger sequencing of the 16S rRNA genes, hence analyzed 119 

by whole DNA shotgun sequencing, as described below. 120 

121 

2.2. Whole DNA shotgun sequencing and analysis of bacterial metagenome-assembled genomes 122 

(MAGs) 123 

The total genomic DNA (gDNA) obtained from the enriched mixed culture was extracted with the 124 

DNeasy Blood & Tissue kit, according to the manufacturer's instructions. The DNA concentration 125 

was determined using the Qubit™ dsDNA HS assay kit with a Qubit fluorometer (Thermo Fisher, 126 

Waltan, US). Sequence library preparation of gDNA was performed using the Nextera DNA Flex kit 127 

(Illumina, Hayward, USA) with 1 ng input DNA according to the manufacturer's instructions. The 128 

resultant libraries were sequenced on an Illumina MiSeq instrument using a MiSeq Reagent kit V2 129 

(500 cycles) with a 10% phiX v3 spike, generating 2 × 250 bp reads. Preliminary metagenome 130 

processing and taxonomic and functional annotation were performed in MG-RAST under default 131 

settings (Meyer et al., 2008). Read assembly was performed using CLC Genomics Workbench 132 

version 11. Briefly, the raw reads were trimmed and demultiplexed, and contigs ≤500 bp were 133 

removed from the final assembly. Binning of metagenomic contigs was performed using MyCC (Lin 134 

and Liao, 2016) while completeness and contamination of MAGs and genome quality were 135 

determined using CheckM with the lineage-specific workflow and default parameters (Parks et al., 136 

2015). 137 

138 

2.3. Isolation and identification of single bacterial strains 139 

To obtain single colonies of pure bacterial strains, the enriched mixed culture was re-plated on marine 140 

agar (Difco, Marine Agar) added with HMs as described above, through serial dilution. After several 141 

re-streaking cycles of 48-hours incubation at 28°C, two main colony morphologies were observed, 142 

and each re-streaked until confirmed to be pure by PCR analysis and Sanger sequencing targeting 143 
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16S rRNA gene (by universal bacterial primers E9F-5′-GAGTTTGATCCTGGCTCAG-3′ and 144 

U1510R-5′-GGTTACCTTGTTACGACTT-3′; Rodriguez-Caballero et al., 2012). All polymerase 145 

chain reactions (PCR) were carried out in a Perkin Elmer Thermocycler (Gene Amp PCR system 146 

6700) in a 50 µl reaction volume containing 1× PCR buffer, 200 µM of each dNTP, 0.5 µM of each 147 

primer, 0.2 U of Taq Gold polymerase (Applied Biosystems, Waltham, MA, US) and 1 ng of template 148 

DNA. Thermal cycling conditions were 5 min denaturation at 94 °C; 30 cycles of 94 °C for 30 s, 55 149 

°C for 30 s and 72°C for 90 s; final elongation step at 72°C for 5 min. The PCR products were 150 

analyzed by agarose gel (1.2% w/v) electrophoresis in TAE buffer solution (40 mM Tris-acetate, 1 151 

mM ethylenediaminetetraacetic acid, EDTA) containing 0.5 μg ml−1 (w/v) ethidium bromide. The 152 

amplicons were purified and sequenced using an ABI PRISM 377 automated sequencer (Applied 153 

Biosystems). The sequencing data were processed using Chromas Pro v. 1.5a software 154 

(Technelysium, South Brisbane, QLD, Australia) for alignment and manual editing of sequences. The 155 

consensus sequences of the isolates were compared with those deposited in GenBank using BLAST. 156 

The two bacterial strains were matched with the two corresponding MAGs obtained by whole-DNA 157 

shotgun sequencing by comparing their 16S rRNA gene sequences following nucleotide alignment 158 

performed through a local blast in the annotation system. The pure bacterial strains were then tested 159 

in experiments to assess their bioremediation ability to degrade PAHs and remove HMs, as described 160 

below. 161 

162 

2.4. Laboratory tests to assess the PAH degradation and HM removal ability of the bacterial 163 

isolates 164 

Each bacterial isolate was incubated in flasks (T175, TPP tissue culture flasks, final volume 250 ml 165 

Marine Broth; starting inoculum of 8 x 107 cells ml-1), and subjected to two treatments. These 166 

included: i) addition of naphthalene, pyrene and phenanthrene (ratio of 1:1:1 with a total 167 

concentration of 242 ppm); ii) addition of arsenic (As3+; 14 ppm), lead (Pb2+; 331 ppm), cadmium 168 

(Cd2+; 1 ppm), copper (Cu2+; 74 ppm), and zinc (Zn2+; 899 ppm). Controls were included for each of 169 
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the two treatments, following the same procedure but without bacterial inoculum. All experimental 170 

microcosms were set up in triplicate. The concentration of the toxic compounds used for 171 

bioremediation experiments was selected based on the average values found in the surrounding 172 

marine area (Montuori and Triassi, 2012; Montuori et al., 2013). The flasks were incubated for 27 173 

days at 28°C, and bacterial growth was monitored by OD600 at days 0, 9 and 27. The quantification 174 

of PAHs and HMs was conducted, respectively, by gas chromatography-mass spectrometry (GC-MS; 175 

EPA8270) (Casillo et al., 2018), and by inductively coupled plasma atomic emission spectroscopy 176 

(ICP-OES; EPA6010) (EPA, 2014) on aliquots from each experimental treatment. The PAHs 177 

degradation yield was calculated for each experimental treatment by comparing the concentrations of 178 

each contaminant at the beginning and at the end of the incubations. For HMs, aliquots of each 179 

experimental treatment at the end of incubations were first centrifuged (1000 x g, 5 min), and the HM 180 

concentration in the pellet was used to calculate the % of HMs removal, as the % of HM mass in the 181 

pellet compared to the HM mass added at the beginning of incubations. 182 

183 

2.5. MAGs functional annotation and comparative genomics 184 

The genome taxonomy database (GTDB) (https://gtdb.ecogenomic.org/) implemented through K-185 

Base (www.kbase.us) was used to perform the whole-genome based classification of the two MAGs 186 

obtained following whole-DNA shotgun sequencing and corresponding to the two bacterial strains 187 

used in the PAHs degradation and HM removal experiments in this study. Species relatedness was 188 

evaluated through the average nucleotide identity (ANI) analysis (Rodriguez and Konstantinidis, 189 

2016; Han et al., 2016) by comparing the de novo genomes with the genomes selected following the 190 

GTDB output. The obtained genomes were annotated by RAST (Overbeek et al., 2014) providing an 191 

automated functional annotation or hypothetical protein annotation for each open reading frame 192 

(ORF) identified on the genome. KEGG was used for metabolic prediction (Kanehisa et al., 2017). 193 

Following automated identification of genes involved in hydrocarbon degradation or metal 194 

resistance/detoxification/removal, manual verification of the annotated ORFs was conducted against 195 
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the SwissProt database. In addition, the sequences flanking the genes of interest were manually 196 

annotated to better understand their genomic context, accurately delineate the regions involved in 197 

these functions and for synteny comparison, and visualized using Easyfig (Sullivan et al., 2011). The 198 

superimposition analysis of dioxygenases belonging to the two MAGs have been performed using 199 

the web portal for protein modelling, prediction and analysis Phyre2 (Kelley et al., 2015), and enzyme 200 

similarity was assessed according to Zhang and Skolnick, 2004. 201 

202 

2.6. Statistical analyses 203 

To test for differences in the experimental results, Student T and Fisher-Snedecor tests were carried 204 

out using PAST3 software (Hammer et al., 2001). 205 

206 

3. Results and Discussion207 

3.1 Characterization of the enriched microbiome and of the bacterial isolates tested for PAHs 208 

and HMs bioremediation 209 

The shotgun sequencing of the total DNA, extracted from the selectively enriched mixed bacterial 210 

culture obtained in this study from the contaminated marine sediments of the Sarno River mouth, 211 

resulted in >3.1 million high-quality reads (average sequence length 201±59 bp; Supplementary Table 212 

S1). Taxonomic annotation of this enriched metagenome showed a dominance of two 213 

Oceanospirillales (Gammaproteobacteria) genera: Alcanivorax (~24% of total reads) and Halomonas 214 

(~27% of total reads) (Fig. 2A). Several other bacterial taxa were detected in the metagenome, though 215 

at a much lower relative abundance. These included other Gammaproteobacteria (Chromohalobacter, 216 

Marinobacter, Pseudomonas, Pseudoalteromonas and Marinomonas), Clostridia (Alkaliphilus), 217 

Alphaproteobacteria (Ruegeria), and Betaproteobacteria (Burkholderia) (Fig. 2A). All of these 218 

bacterial taxa have previously been reported to typically increase rapidly in abundance during oil 219 

spills, to degrade hydrocarbons and to tolerate/detoxify heavy metals (Gutierrez et al., 2013; 220 

Dubinsky et al., 2013; Kumar et al., 2019; Dell’Anno et al., 2021; Huo et al., 2014; Liu et al., 2019; 221 
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Ramasamy et al., 2020; Ghosh et al., 2022). This suggests that our microbiome enrichment strategy 222 

was successful in selectively boosting autochthonous bacterial taxa with promising potential for 223 

petroleum hydrocarbon and HM remediation. This was also supported by the preliminary functional 224 

annotation of the metagenome (Fig. 2B), which highlighted that the functions putatively related to 225 

hydrocarbon degradation and to resistance/interaction with heavy metals represented an important 226 

portion of the overall reads count (>6%). The major role of such functional features was further 227 

suggested by the fact that their representation was quantitatively similar compared to fundamental 228 

cell processes such as cell respiration, DNA metabolism or membrane transport (Fig. 2B). It should 229 

be noted that our enrichment approach, resulting in the virtual absence of Archaea in the enriched 230 

metagenome, might have overlooked possible syntrophic relationships among bacteria and archaea 231 

in the original sediments, whose relevance in petroleum hydrocarbons degradation has been 232 

highlighted by recent independent studies (Liu et al., 2018, 2021; Harindintwali et al., 2022). 233 

The reads assembly and MAGs reconstruction and annotation resulted in two dominant MAGs with 234 

genome completeness between 99-100%, which were classified as Alcanivorax xenomutans and 235 

Halomonas alkaliantarctica based on GTDB-Tk whole-genome based classification, and supported 236 

by 16S rRNA gene sequence identities (Supplementary Tables S2-S4). The ANI analysis indicated 237 

Alcanivorax xenomutans strain KS-293 (Barbato et al., 2015; ANI score 99.10%) and Halomonas 238 

alkaliantarctica strain CRSS (Poli et al., 2007; ANI score 97.13%) as their respective closest 239 

relatives. Two additional partial MAGs (4-32% completeness) were recovered from the metagenome 240 

and classified in the genera Pseudoalteromonas and Alkalphilus, but these were not analysed further. 241 

The completeness and coverage of the four reconstructed MAGs reflected the relative contribution of 242 

their reads to the overall sequence count (Fig. 2A), further suggesting that the obtained enriched 243 

mixed bacterial culture was dominated by A. xenomutans and H. alkaliantarctica, with minor 244 

contribution by other bacterial taxa. 245 

The sequential and selective sub-culturing from the enriched mixed bacterial culture allowed us to 246 

obtain the two strains that matched the two full-reconstructed MAGs based on 16S rRNA gene 247 
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sequence identity (100%). We hence refer to the two novel strains and related genomes obtained in 248 

this study as A. xenomutans strain SRM1 and H. alkaliantarctica strain SRM2 (Suplementary Fig. 249 

S1, S2). 250 

The laboratory tests conducted to assess their ability for PAHs and HMs remediation showed high 251 

PAHs degradation (ranging for both strains from 60% for phenanthrene to 100% for both naphthalene 252 

and pyrene; Fig. 3A), as well as high HMs removal yields (34-91% for As, 79-94% for Cd, 21-70% 253 

for Cu, 50-89% for Zn, and 94-100% for Pb), with highest values observed with H. alkaliantarctica 254 

strain SRM2 for As, Cu, and Zn; Fig. 3B). Notably, we observed that the culturing of A. xenomutans 255 

strain SRM1 and H. alkaliantarctica strain SRM2 with addition of PAHs resulted in growth rates 256 

almost double to those of control conditions (Supplementary Fig. S3), which agrees with previous 257 

independent evidence that these bacterial genera include taxa able to exploit hydrocarbons to produce 258 

cell biomass (Mnif et al., 2009; Rahul et al., 2014). Both strains exhibited resistance to the high 259 

concentrations of mixed HMs tested in our study (>1300 ppm, considering the sum of As, Cd, Cu, 260 

Zn, and Pb) (Fig. 3B, Supplementary Fig. S3), indicating that these strains can be particularly useful 261 

for PAH biodegradation of marine matrices that are simultaneously highly polluted with different 262 

HMs. Indeed, the use of bacterial strains able to both degrade organic contaminants and tolerate toxic 263 

inorganic compounds present in the target matrix can help to reduce failure risk in bioremediation of 264 

environments that display high loads of mixed toxic contaminants (Thompson et al., 2005; Nwuche 265 

and Ugoji, 2008; Alisi et al., 2009; Tyagi et al.,  2011; Dueholm et al., 2015). 266 

Overall, these results confirm several previous reports showing that Halomonas spp. and Alcanivorax 267 

spp. include members that display high resistance towards toxic organic and inorganic contaminants 268 

(Rahul et al., 2014; Fu et al., 2018, Catania et al., 2018; Dell’Anno et al., 2020) and can degrade 269 

PAHs (Budiyanto et al., 2018; Kadri et al., 2018). 270 

The observed higher degradation rates of naphthalene and pyrene than phenanthrene (Fig. 3A) may 271 

be counterintuitive, as it is generally assumed that bacterial biodegradation of low-molecular-weight 272 

PAHs (such as naphthalene and phenanthrene, with ≤ 3 aromatic rings) occurs faster than for high-273 
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molecular-weight PAHs (with ≥ 4 aromatic rings, like pyrene). Despite previous investigations 274 

support the expected pattern of a higher PAH recalcitrance with increasing molecular weight (Yu et 275 

al., 2005; Haritash and Kaushik, 2009; Thavamani et al., 2012; Nzila et al., 2021), other studies have 276 

reported the opposite trend, similar to that observed in the present study (Sohn et al., 2004; 277 

Wongwongsee et al., 2013; Vaidya et al., 2017, 2018). This can be explained by different enzymatic 278 

and metabolic pathways among microbes, by differences in the specific chemical-physical conditions 279 

applied in the laboratory (which can differentially influence the degradability of different PAHs; 280 

Leahy and Colwell, 1990; Bagby et al., 2017), as well as by possible interactions among different 281 

PAHs, such as inhibition or enhancement of the biodegradation of specific high-molecular-weight 282 

PAHs in the presence of specific low-molecular-weight PAHs (Guha et al., 1999; Vaidya et al., 2018). 283 

As PAHs-contaminated sites typically display mixtures of high- and low-molecular-weight PAHs 284 

(Bezza and Chirwa, 2017), we can conclude that our two bacterial strains, able to enhance 285 

biodegradation rates of high-molecular-weight PAHs in the presence of low-molecular-weight PAHs, 286 

can represent a significant advantage for environmental bioremediation applications.  287 

Regarding the ability of the two tested strains to tolerate and remove HMs from contaminated 288 

matrices, our results confirm previous findings obtained using other Halomonas and Alcanivorax 289 

species. Halomonas elongate, Halomonas halophila and others displayed 50-94% removal yields 290 

towards Pb, Cd and/or Cr (Amoozegar et al., 2012; Murugavelh and Mohanty, 2012; Asksonthong et 291 

al., 2018; Abdel-Razik et al., 2020), while Pb removal ability has already been documented for some 292 

Alcanivorax sp. (da Costa Waite et al., 2016; Dell'Anno et al., 2020; Ramasamy et al., 2020). 293 

Notwithstanding, the current knowledge on the promising application of Halomonas sp. and 294 

Alcanivorax sp. for the bioremediation of HMs is still in its infancy and should be investigated further, 295 

also including tests for larger sets of HMs (Pennafirme et al., 2015; Verma and Kuila, 2019; Cecchi 296 

et al., 2021; Dell’Anno et al., 2020).  297 

298 

3.2. Genetic basis for PAHs biodegradation 299 
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Understanding the genetic basis and metabolic processes involved in  microbial removal of petroleum 300 

hydrocarbons is fundamental to optimize bioremediation strategies, enabling tailored amendments to 301 

favor specific bacterial metabolism, genetic bioengineering, or discovery of useful 302 

enzymes/compounds (Schneiker et al., 2006; Dell’Anno et al., 2021; Sharma et al., 2022). Our results 303 

from high throughput sequencing allowed us to identify the genes and metabolic pathways potentially 304 

involved in the bioremediation ability of the tested A. xenomutans strain SRM1 and H. 305 

alkaliantarctica strain SRM2. In particular, several genes involved in the metabolism of aromatic 306 

compounds were identified through the automatic functional annotation of their MAGs 307 

(Supplementary Fig. S4). Even though the two strains possessed a different number of enzymes 308 

involved in these metabolic pathways (36 in A. xenomutans strain SRM1, 61 in H. alkaliantarctica 309 

strain SRM2; Supplementary Fig. S4), they performed similarly in the laboratory tests for PAHs 310 

degradation (Fig. 3A,B). We cannot exclude that additional genes for enzymes known to be involved 311 

in petroleum hydrocarbon degradation and apparently missing in the two MAGs were not identified 312 

through automatic annotation, due to divergence of DNA sequences from those available in current 313 

public databases. To gain a more complete picture of the main pathways for hydrocarbon degradation 314 

in the two novel strains, we manually checked the organization of the genomic regions that contain 315 

the genes of major interest, including those for hydrocarbon degradation peripheral pathways (cis-316 

hydroxylation and trans-hydroxylation pathways) and central degradation routes (catechuate, 317 

protocatechuate, homoprotocatechuate, homogentisate and phenylacetic pathways), as detailed 318 

below. 319 

3.2.1 Peripheral pathways for hydrocarbon degradation  320 

The cis-hydroxylation pathway usually starts following the activity of ring hydroxylating 321 

dioxygenase enzymes (RHDs) (Peng et al., 2019), which have large (α) and small (β) subunits 322 

(Kauppi et al., 1998). The alpha subunit (RHDα) contains two conserved regions (the [Fe2-S2] Rieske 323 

center and the mononuclear iron-containing catalytic domain), which promote the incorporation of 324 

molecular oxygen into the aromatic ring forming a cis-dihydrodiol. We found RHDs in both A. 325 
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xenomutans strain SRM1 and H. alkaliantarctica strain SRM2 MAGs (Fig. 4A-D). The sequence of 326 

A. xenomutans strain SRM1 showed ~100% identity with that of A. xenomutans P40 (Fu et al. 2018)327 

(Fig. 4A). Comparison with A. dieselolei B5 (Lai et al., 2012) highlighted a lower correlation but still 328 

high overall similarity (homology of ≥ 70%) with 11 genes (including the RHD gene) (Fig. 4A). 329 

Other proteins involved in hydrocarbon detoxification and degradation processes were found in A. 330 

xenomutans strain SRM1 when analyzing the flanking region of RHD, including glutathione s-331 

transferase, linear amide C-N hydrolase, aldo-keto reductase and nitrite reductase (Lloyd-Jones and 332 

Lau, 1997; Al-Turki, 2009; Cao et al., 2015; Imperato et al., 2019; Salam and Ishaq, 2019). The 333 

comparison of the sequences flanking the RHD in H. alkaliantarctica strain SRM2 MAG, with those 334 

of close relatives (Fig. 4B) highlighted that in all genomes the genes encoding the RHD and 335 

ferredoxin (both directly involved in the degradation of hydrocarbons), as well as serin 336 

hydroxymethyl transferase, sarcosine oxidase α,β,γ-subunits and formyltetrahydrofolate 337 

deformylase, were all located in the same genomic region. Such genomic organization supports 338 

previous evidence that genes associated with glycine and serine metabolism are involved in 339 

hydrocarbon degradation (Yan and Wu, 2017). The 3D superimposition analysis revealed a high 340 

similarity for both RHDs with naphthalene 1,2 dioxygenases (Fig. 4C,D), which are enzymes 341 

involved in the first ring hydroxylation of multiple PAHs, including naphthalene, phenanthrene, 342 

anthracene, dibenzothiophene and fluorene (Park and Crowley, 2006). Although it will be necessary 343 

to confirm the specific function of the RHDs identified, the results of 3D modeling suggest a similar 344 

ability in degrading PAHs (based on TM scores of 0.89 and 0.73 respectively for A. xenomutans strain 345 

SRM1 and H. alkaliantarctica strain SRM2). Surprisingly, such high similarity between the two 346 

enzymes’ structures corresponded to only 30% identity in their secondary sequences. This further 347 

suggests that the lack of matches of our MAGs DNA sequences for some of the other major genes 348 

involved in hydrocarbon degradation may actually be due to evolutionary genetic divergence from 349 

currently known bacterial genomes deposited in public databases. 350 
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An alternative to the cis-hydroxylation pathway is represented by the trans-hydroxylation pathway, 351 

in which the cytochrome P450 system (CYP450) catalyzes a trans-dihydrodiols formation by the 352 

epoxidation of the aromatic ring by epoxide hydrolase (Moody et al., 2005). For the A. xenomutans 353 

strain SRM1 MAG, we found highly conserved homologs of the CYP450 within the 3 closest 354 

relatives retrieved from NCBI (100% identity with Alcanivorax xenomutans sp 40, and >70% identity 355 

with Alcanivorax sp N3-2A and Alcanivorax dieselolei B5) (Fig. 5A). Within the same genome region 356 

containing CYP450, we also found two genes involved in the detoxification and biodegradation of 357 

xenobiotics: glutathione-disulfide reductase (Moron et al., 1979) and a Rieske domain non-heme 358 

oxygenase (Barry and Challis, 2013). For H. alkaliantarctica strain SRM2, the BLASTp analysis of 359 

the CYP450 sequence found within its MAG showed no homologs within the 3 most similar reference 360 

sequences retrieved from NCBI (of H. axialiensis Althf1, H. olivaria TYRC17 and H. aestuari Hb3), 361 

despite the flanking region included other conserved genes (e.g., cytochrome C, nitrogen metabolism 362 

and membrane transporters genes) (Fig. 5B). As the abovementioned three closest relatives were not 363 

isolated from matrices heavily polluted by petroleum hydrocarbons and do not show genetic bases 364 

for PAHs degradation (Tsurumaki et al., 2019; Nagata et al., 2019; Kim et al., 2018), we can expect 365 

that this CYP450 system acquired by this novel H. alkaliantarctica strain SRM2 may have conferred 366 

specific PAH-degradation abilities to this strain. As CYP450s are broadly distributed across the tree 367 

of life and are considered the most versatile biocatalysts in nature because of the wide variety of 368 

substrate structures they can react with (Nelson, 2018; Yeom et al., 2021; Haas et al., 2022), further 369 

studies are needed to test the possible degradation/detoxification activity of the enzymes we identified 370 

towards other contaminants besides petroleum hydrocarbons. 371 

3.2.2. Central pathways for hydrocarbon degradation  372 

The activity of RHD generates salicylate that enters the catechol pathway, a classic bacterial central 373 

hydrocarbon degradation route mainly found in proteobacteria and actinobacteria (Nešvera et al., 374 

2015). In both MAGs, we identified the salicylate hydroxylase, which catalyzes the formation of 375 

catechol acid (a substrate of the catechol 1-2 dioxygenase enzyme; Nešvera et al., 2015), as well as 376 
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the terminal enzymes (β-ketoadipate succinyl-CoA transferase or β-ketoadipyl thiolase), which 377 

convert β-ketoadipic acid in acetyl-CoA and succinyl-CoA (Peng et al., 2008). Additionally, we found 378 

a hydroxiquinol 1,2 dioxygenase (BLASTp e-value 0, score 1461, id. 95.5%) suggested to promote 379 

the formation of β-ketoadipic acid (Ferraroni et al., 2005). These findings suggest that the catechol 380 

pathway could contribute to the observed PAH degradation ability of both strains. 381 

Following CYP450-mediated trans-hydroxylation, the degradation of hydrocarbons proceeds via the 382 

protocatechuate metabolic pathway, which starts with an hydroxybenzoate hydroxylase that 383 

transforms 4-hydoxybenzoate into 3,4 hydroxybenzoate (Fuchs et al., 2011). This enzyme has been 384 

identified only in H. alkaliantarctica strain SRM2 MAG (Suplementary Fig. S5), which also 385 

possessed a protocatechuate 3,4-dioxygenase, 3-carboxy-cis,cis-muconolactone cycloisomerase and 386 

4-carboxymuconolactone decarboxylase. Again, we cannot exclude that genes with similar function387 

but low sequence-similarity may be present also in A. xenomutans strain SRM1 MAG. Conversely, 388 

both MAGs possessed the terminal enzymes of the protocatechuate pathway (including β-ketoadipate 389 

enol-lactonase, 3-oxoadipate CoA transferase, β-ketoadypil-CoA thiolase) capable of catalyzing the 390 

production of succinyl-CoA. The comparison of the H. alkaliantarctica strain SRM2 gene sequences 391 

involved in this pathway with their homologs, generally showed high conservation (>70%) 392 

(Supplementary Fig. S5). To the best of our knowledge, this is the first evidence for genes associated 393 

with the protocatechuate degradation pathway organized as an operon in a Halomonas sp. (Corti 394 

Monzón et al., 2018). Further analyses are needed to assess if this feature is peculiar to the strains 395 

considered here, or common across Halomonas spp. and/or other bacterial taxa. 396 

Several other genes of the homoprotocatechuate pathway (Méndez et al., 2011) were also identified 397 

in both MAGs (Fig. 6A,B). Notably, the genome region containing the genes for the 398 

homoprotocatechuate pathway in A. xenomutans strain SRM1 was highly conserved with that of close 399 

Alcanivorax sp. relatives (Fig. 6A), while that of H. alkaliantarctica SRM2 showed no apparent 400 

homologs in currently known Halomonas sp. genomes (Fig. 6B). We thus suggest that deeper 401 

investigation of the homoprotocatechuate pathway of H. alkaliantarctica strain SRM2 through 402 
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mutation, heterologous expression or proteomics may unveil novel mechanisms for PAH 403 

biodegradation.  404 

Finally, H. alkaliantarctica strain SRM2 also displayed a complete set of genes for the phenylacetic 405 

pathway within a specific genomic region, highly conserved with closest Halomonas sp. genomes 406 

available for comparison (Supplementary Fig. S6), indicating that this strain possesses a particularly 407 

wide array of genes for PAHs degradation. Additional enzymes involved in the homogentisate 408 

pathway (Arias-Barrau et al., 2004; Guazzaroni et al., 2013), were detected in both MAGs, including 409 

maleylacetoacetate isomerase, fumarylacetoacetate hydrolase, and 4-hydroxyphenilpyruvate 410 

dioxygenase (data not shown). 411 

412 

3.3. Genetic basis for HMs removal/detoxification 413 

The blastp search against the SwissProt database identified in both MAGs the genetic basis for 414 

exopolysaccharide (EPS) biosynthesis, which may not only facilitate PAH degradation by enhancing 415 

the efficiency of all abovementioned PAH-degrading enzymes (Gutierrez et al., 2013; Alaba et al., 416 

2018), but also confer metal-binding properties contributing to explain the observed ability of these 417 

strains to resist to and to sequester HMs (Amoozegar et al., 2012; Gupta and Diwan, 2017; Cao et al., 418 

2022; Cheng et al., 2022). Specifically, a UDP-glucose 4-epimerase (e-value 0, score 1709, 97% 419 

identity), a UDP-glucose pyrophosphorylase (e-value 7.5 e-180, score 1300, 90% identity), and a poly-420 

beta-1,6-N-acetyl-D-glucosamine synthase (e-value 0, score 2011, 81% identity) were identified in 421 

A. xenomutans strain SRM1, with the latter two also present in H. alkaliantarctica strain SRM2422 

(respectively, e-value 2.6e-165, score 1206, identity 77.3%, and e-value 0, score 1977, identity 86.1%). 423 

A deeper insight on the production of EPS by the tested strains would likely allow optimizing of their 424 

use for simultaneous bioremediation of PAHs and HMs in different environmental conditions. 425 

The annotation of the two MAGs by the automated RAST pipeline, followed by blastp check against 426 

the SwissProt database, shed light on further mechanisms possibly involved in the ability of both 427 

strains to resist to and to remove/detoxify HMs (Supplementary Fig. S7). In particular, several genes 428 
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coded for efflux pumps that selectively and non-selectively regulate the transport of multiple metals, 429 

including czcA, czcB, czcC, czcD able to transport cobalt, zinc and cadmium, as well as corC, specific 430 

for the transport of cobalt and magnesium. In addition, several genes were identified encoding for 431 

proteins involved in the detoxification of copper, including a copper chaperone, copper homeostasis 432 

protein CutE and CutF, copper resistance protein B, C, D, copper ATP ase, Cu-sensing two-433 

component system response regulator and Cu-responsive transcriptional regulator. Notably, the 434 

automated RAST pipeline also identified multicopper and blue multicopper oxidases (Supplementary 435 

Fig. S7), which may be synergistically involved both in Cu-detoxification/sequestration and act as 436 

laccase-like multicopper oxidases for the degradation of PAHs and other organic contaminants 437 

(Cooksey, 1994; Arregui et al., 2019; Ramasamy et al., 2020; Zhang et al., 2020). 438 

Several genes coding for proteins known to confer resistance to and/or detoxify arsenic were found 439 

in both MAGs (Supplementary Fig. S7), and our manual annotation of flanking gene sequences 440 

highlighted operon-like structures (Figure 7A-B) similar to “arsenic islands” previously described 441 

(Wu et al., 2018). In A. xenomutans strain SRM1, this MAG region (Figure 7A) included an arsenic 442 

resistance protein ArsH, arsenic transporter ArsB, arsenate reductase ArsC and ArsR regulator (Rosen 443 

and Liu, 2009; Chang et al., 2018). This genome region of A. xenomutans strain SRM1 showed on 444 

average ≥70% similarity with its closest Alcanivorax sp. relatives (Figure 7A), indicating high 445 

conservation of this As operon and flanking regions across different Alcanivorax species. Similarly, 446 

in H. alkaliantarctica strain SRM2, the region comprising the arsenic operon displayed high 447 

conservation with the homologous sequences of close Halomonas sp. relatives (Figure 7B). Notably, 448 

all the ORFs of the arsenic resistance operon in H. alkaliantarctica strain SRM2 MAG are contiguous, 449 

whereas additional ORFs (of un-identified function) are present in the three reference genomes, that 450 

separate ORF 7 from ORFs 8-9. As the three reference Halomonas genomes were obtained from 451 

matrices not contaminated by As (Nagata et al., 2019; Williamson et al., 2016) we can argue that this 452 

observed simplification of the arsenic operon may have enhanced the ability of H. alkaliantarctica 453 

strain SRM2 to detoxify/remove As. The functional implications of the observed differences in the 454 
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structure of the arsenic resistance operon across different Halomonas species remains to be further 455 

investigated, to understand which gene asset may perform better for different bioremediation 456 

purposes.  457 

A complete mercury-resistance operon (Boyd and Barkay, 2012) was also identified in H. 458 

alkaliantarctica strain SRM2 (Fig. 7C), whose coding sequence was highly conserved within the 459 

closest relatives retrieved from NCBI (H. axialiensis Althf1 and H. sp. ZM 3, which were isolated 460 

from HM-rich hydrothermal vents in the Pacific Ocean and from a mineral waste repository, 461 

respectively;   Dziewit et al., 2013; Tsurumaki et al., 2019). The structure of the identified mercury 462 

operon showed typical features identified in other Halomonas species (Boyd and Barkay, 2012), 463 

including two transcriptional regulators MerR, a mercuric transport protein MerT (able to transport 464 

Hg(II) to the cytoplasm), a periplasmic Hg-binding protein MerP, a mercuric reductase MerA, and an 465 

organomercurial lyase MerB. Based on the presence of this Mer operon, and especially of MerP, we 466 

can expect that, even if not directly assessed in our bioremediation tests, H. alkaliantarctica strain 467 

SRM2 may also perform Hg2+ biosorption (Huang et al., 2003). 468 

Notably, several of the genes of the arsenic and mercury operons we identified have been documented 469 

to cross-react with other toxic metals. For instance, ArsH has been reported to also detoxify and 470 

enhance the precipitation of chromium by reducing Cr(VI) to Cr(III) (Xue et al., 2014), ArsB to also 471 

detoxify the hazardous metalloid antimony (Meng et al., 2004), and MerP to be involved in the 472 

biosorption of other HMs such as nickel, chromium, copper and zinc (Kao et al., 2008; Hsueh et al., 473 

2017). This suggests that similar cross-reactivity with multiple HMs may contribute to explain the 474 

overall high removal efficiency towards the different HMs observed in our bioremediation 475 

experiments, possibly extending our findings to additional HMs not directly investigated here. 476 

Nevertheless, we acknowledge that other processes such as extracellular electron transfer and 477 

electrocatalysis, not assessed in the present study, may be involved in HMs bioremediation (Liu et 478 

al., 2018) and as such deserve further investigations.   479 

480 
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4. Conclusions481 

In summary, our multidisciplinary study based on an integrated approach that combines experimental 482 

microbiome enrichment, next-generation sequencing and selective culturing, allowed us to obtain two 483 

novel Alcanivorax and Halomonas strains with promising bioremediation potential. Both strains were 484 

shown to be resistant to, and to detoxify or remove multiple PAHs and HMs, and hence represent 485 

promising candidates for developing bioremediation applications (e.g., bioaugmentation or ex situ 486 

treatments) in environments contaminated by combinations of toxic pollutants. Finally, the contextual 487 

analysis of their genomic repertoire highlights the presence of genes and/or operons that are proposed 488 

as possible bioengineering targets, to further enhance the observed ability of these or other bacterial 489 

strains to serve for environmental bioremediation purposes. 490 
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Figure Legends 1005 

Figure 1. Map of the study area with the position of the sampling site at Sarno River Mouth 1006 

(Tyrrhenian Sea; 40°43'42.01"N, 14°28'0.45"E).  1007 

1008 

Figure 2A-B. Taxonomic and functional annotation of the enriched metagenome. A) taxonomic 1009 

classification at the genus level based on M5NR database (standard cutoff: alignment length 15bp; e-1010 

value e-5; id. 60%). B) functional classification based on Subsystems ontology (level 1; standard 1011 

cutoff: alignment length 15bp; e-value e-5; id. 60%), with functions putatively related to hydrocarbon 1012 

degradation and to resistance/interaction with heavy metals contained in the subsystems “stress 1013 

response” and “metabolism of aromatic compounds” subsystems. 1014 

1015 

Figure 3A-B. Removal of PAHs and HMs by the two novel bacterial strains isolated from the 1016 

enriched metagenome. A) Degradation of PAHs (naphthalene, phenanthrene and pyren) under control 1017 

(no bacteria) and treated conditions (i.e., addition of A. xenomutans strain SRM1 or H. 1018 

alkaliantarctica strain SRM2). B) Removal of HMs (As, Cd, Cu, Zn, Pb) under control (no bacteria) 1019 

and treated conditions (i.e., addition of A. xenomutans strain SRM1 or H. alkaliantarctica strain 1020 

SRM2). Reported are average values and standard deviations.  1021 

1022 

Figure 4A-D. Comparative genomics of genetic regions for peripheral pathways for hydrocarbon 1023 

degradation with ring hydroxylating dioxygenases enzymes (RHDs).  A) Comparison of contig 9 1024 

from A. xenomutans strain SRM1 MAG (containing the ORF 4 encoding for RHD) with three closest 1025 

sequences from the NCBI database. In the right, the complete list of genes encoded within contig 9 1026 

(ORFs 1-10) and those encoded by the 3 other reference genomes (ORFs 11-29). B) Comparison of 1027 

contig 29 from H. alkaliantarctica strain SRM2 MAG (containing the ORF 2 encoding for RHD) 1028 

with three closest sequences from the NCBI database. In the right, the complete list of genes encoded 1029 

within contig 29 (ORFs 1-17) and those encoded by the 3 other reference genomes (ORFs 18-30). C) 1030 

Superimposition of RHD of H. alkaliantarctica strain SRM2 (in red) with naphthalene 1,2-1031 

dioxygenase crystal structure from Pseudomonas sp. strain C18 (in blue) 1032 

[www.rcsb.org/structure/2hmm]. D) Superimposition of RHD of A. xenomutans strain SRM1 (in red) 1033 

with naphthalene 1,2-dioxygenase crystal structure from Rhodococcus sp. NCIMB 12038 (in blue) 1034 

[www.rcsb.org/structure/2b1x]. 1035 

1036 



39 

Figure 5A-B. Comparative genomics of genetic regions for peripheral pathways for hydrocarbon 1037 

degradation with cytochrome P450 (CYP450).A) Comparison of contig 76 from A. xenomutans strain 1038 

SRM1 MAG (containing the ORF 12 encoding for CYP450) with three closest sequences from the 1039 

NCBI database. In the right, the complete list of genes encoded within contig 76 (ORFs 1-20) and 1040 

those encoded by the 3 other reference genomes (ORFs 21-29). B) Comparison of contig 15 from H. 1041 

alkaliantarctica strain SRM2 MAG (containing the ORF 6 encoding for CYP450) with three closest 1042 

sequences from the NCBI database. In the right, the complete list of genes encoded within contig 15 1043 

(ORFs 1-14) and those encoded by the 3 other reference genomes (ORFs 15-27). 1044 

1045 

Figure 6A-B. Comparative genomics of genetic regions for central pathways for hydrocarbon 1046 

degradation  with genes for the homoprotocatechuate pathway. A) Comparison of contig 65 from A. 1047 

xenomutans strain SRM1 MAG (containing the ORF 7-17 encoding for the genes of the 1048 

homoprotocatechuate pathway) with three closest sequences from the NCBI database. In the right, 1049 

the complete list of genes encoded within contig 65 (ORFs 1-20) and those encoded by the 3 other 1050 

reference genomes (ORFs 21-38). B) Comparison of contig 29 from H. alkaliantarctica strain SRM2 1051 

MAG (containing the ORF 4-14 encoding for the genes of the homoprotocatechuate pathway) with 1052 

three closest sequences from the NCBI database. In the right, the complete list of genes encoded 1053 

within contig 29 (ORFs 1-17) and those encoded by the 3 other reference genomes (ORFs 18-47). 1054 

1055 

Figure 7A-C. Comparative genomics of genetic regions for heavy metal removal/detoxification. A) 1056 

Comparison of contig 20 from A. xenomutans strain SRM1 MAG (containing the ORFs 11-18 1057 

encoding the arsenic resistance operon-like genomic region) with three closest sequences from the 1058 

NCBI database. In the right, the complete list of genes encoded within contig 20 (ORFs 1-18) and 1059 

those encoded by the 3 other reference genomes (ORFs 19-24). B) Comparison of contig 68 from H. 1060 

alkaliantarctica strain SRM2 MAG (containing the ORFs 2-12 encoding the arsenic resistance 1061 

operon-like genomic region) with three closest sequences from the NCBI database. In the right, the 1062 

complete list of genes encoded within contig 68 (ORFs 1-15) and those encoded by the 3 other 1063 

reference genomes (ORFs 16-29). C) Comparison of contig 30 from H. alkaliantarctica strain SRM2 1064 

MAG (containing the ORFs 6-11 encoding the mercury-resistance operon) with three closest 1065 

sequences from the NCBI database. In the right, the complete list of genes encoded within contig 30 1066 

(ORFs 1-15) and those encoded by the 3 other reference genomes (ORFs 16-23). 1067 
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