
Bangor University

DOCTOR OF PHILOSOPHY

A framework of services to provide a persistent data access service for the CORBA
environment

Ball, Craig

Award date:
1999

Awarding institution:
University of Wales, Bangor

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://research.bangor.ac.uk/portal/en/theses/a-framework-of-services-to-provide-a-persistent-data-access-service-for-the-corba-environment(752e2fea-bd07-419e-bef0-ec3789697bf0).html

A Framework of Services to provide a
Persistent Data Access Service
for the CORBA Environment

Craig Ball

Thesis submitted in candidature for the Degree of
Doctor of Philosophy

l'Vv ODcFNYDDIO YN y
LL y F f-i G;: l L Yi'~ U i\J I G

September 1999

School of Electronic Engineering and Computer Systems
University of Wales, Bangor

United Kingdom

Summary

Background: CORBA is a component architecture that enables inter-operability between

software components that are based on heterogeneous platforms and in heterogeneous

languages. CORBA goes further to specify a set of services providing low-level functionality to

CORBA components. These CORBA services are vastly lacking in a specific area of

functionality, this is accessing persistent data. The Persistent Object Service was the original

service to provide this functionality, but has been discredited due to design faults and

ambiguities resulting in the specification being withdrawn. This thesis presents an investigation

into the analysis, design and implementation of a framework of services that together provide a

persistent data access service.

Objectives: The service should satisfy the missing functionality in CORBA, therefore opposing

the need for developers to implement their own proprietary solutions. Proprietary solutions are

expensive in developer resources and data access code is highly dependent on the proprietary

data storage mechanism being used. The service will provide insulation from proprietary data

storage mechanisms by encapsulating its data access interface, thus breaking the dependency of

code on the specific data storage mechanism. The type of data and data storage mechanisms

used in the Exploration & Production industry and their particular characteristics will be

considered in the design of the service.

Approach: The investigation has examined current methods of accessing persistent data from

CORBA, including an in-depth analysis of the Persistent Object Service and a case study of a

commercial application. The problems with these methods has been studied resulting in a list of

requirements for the service to meet. A high-level design for the service has been outlined and a

number of services have designed from bottom-up to reflect it.

Results: The principal outcome of the research is the design of the Persistent Data Access

Service that allows the manipulation of complex structured entity data. This data can be resident

in any datastore, but has to be mapped to a standard data definition model. Other functionality

that services that have been designed and implemented are providing distributed streams

permitting copy-by-value and data transfer performance enhancement, distributed access to files

and the transfer of complex structured entities in a stream.

Implications: The Persistent Data Access Service gives to CORBA developers a standard

means to access persistent data resident in heterogeneous datastores. This prevents applications

becoming dependent on a specific data storage mechanisms and takes the responsibility away

from the developer to implement their own proprietary solutions. The service also lets new

CORBA applications and legacy applications run in parallel, as no changes has to be made to

actual datastores and data models, unlike CORBA' s future Persistent State Service.

List of Publications

C.H.Ball & S.Hope. Data Access and Transportation Services for the COREA Environment.

TOOLS '98 Conference, Santa Barbara, USA, August 1998.

Acknowledgements

I would firstly like to express my deep gratitude to Miss Patrina Ellison, whose love and

encouragement has kept me going through the years, as well as keeping me sane. Next, I would

like to express my thanks to my supervisor, Mrs. Sian Hope for setting up the Ph.D. and her

valuable support during the work. I would also like to thank Steve Trythall for his part in setting

up of the Ph.D. and for the great opportunity he gave me to work with Prism Tech in Houston,

Texas for 4 months. Wow, it was hot! Thanks to Dr. Thomas Varsamidis for being my second

supervisor and for being a good friend in the last few years, I shall miss our daily discussions.

Other people I would like thank who have helped me along the way are:- Dr. Dylan Banarse,

Dr. Andy Duller, Rallis Farfarakis, Ian France and Dave Whitehead.

I would also like to acknowledge SEECS and PrismTech for their financial funding to make this

work possible.

For Patrina.

Contents

1. Introduction 1

1.1 The CORBA Component Architecture for Inter-operability, Reuse and
Portability . 2

1.2 CORBA Persistent Data Access . 4

1.3 Models of Application Persistent Data Access . 5

1.4 Persistent Data Access in the Exploration and Production Industry 7

1. 5 Aims of the Research Work . 9

1. 6 Overview of the Thesis . 10

1. 7 Summary of Contribution. 12

2. Introduction to the Background Standards and Technologies 13

2. 1 Introduction . 13

2.2 The Object Management Group. 13

2.2.1 The OMA Abstract Object Model. 14

2.2.2 The OMA Reference Model. 15

2. 3 The Common Object Request Broker Architecture. 16

2.3 .1 The Object Request Broker. • 16

2.3.2 The OMG Interface Definition Language . 18

2. 3. 3 Object Adaptors . 20

2.3 .4 Object References. 21

2.3 . 5 CORBA Object Summary. 23

2.3.6 Further Features of a CORBA ORB.. 23

11

2. 4 CORBA Services . • 25

2.4.1 The Naming Service. 25

2.4.2 The LifeCycle Service. 27

2.4.3 The Externalization Service. 28

2.4.4 The Persistent Object Service . 30

2.4.5 The Object Transaction Service. 31

2.4.6 The Concurrency Control Service. 35

2.4. 7 The Relationship Service. 36

2.5 Overview of STEP. 38

2. 5 .1 The STEP architecture. 38

2.5.2 EXPRESS Overview and Constructs. 40

2.6 POSC's System Integration Platform(SIP). 43

2. 6. 1 The SIP specifications . 44

2.6.2 The Epicentre Logical Data Model. 45

2.6.3 The Data Access and Exchange Specification 47

2.6.4 Example DAE Code. 48

2. 7 Summary and Conclusions . • 49

3. Analysis of Current CORBA Persistent Data Access Solutions 53

3. 1 Introduction. 53

3.2 Proprietary Storage Technology. 54

3 .2. 1 Problems with Proprietary Storage Technologies. 55

3 .2.2 OpenSpirit and its Data Access Approach. 57

3 .3 Standard Interface Definition Language Specifications to provide Data Access
to Persistent Storage . 66

3. 3 .1 The OMG Persistent Object Service. 66

3.3.1.1

3.3 .1.2

The Design of the Persistent Object Service. 67

Problems with the Persistent Object Service. 71

3.3.2 The STEP IDL Standard Data Access Interface. 75

Ill

3.4 Persistent CORBA Objects using Database Adaptors 77

3.4.1 Complexities involved in Database Adaptors. 78

3 .4.2 Object-oriented Database Adaptors. 80

3.4.3 Why Object-Oriented Database Adaptors cannot be the only CORBA
persistence mechanism . 81

3 .4.4 Integration of Database Adaptors with Traditional Datastores. 82

3. 4. 5 The proposed OMG Persistent State Service. 86

3. 5 Summary. • 88

4. Analysis, Requirements and Design of a Persistent Data Access Service 90

4. 1 Introduction . 90

4.2 Problems Encountered from the Analysis ofCORBAPersistent Data Access
Solutions . 90

4. 3 Requirements . 93

4.4 High-Level Design of a Persistent Data Access Service. 94

4.4.1 Manipulation of Data Objects. 95

4.4.2 The Meta-Schema Model . 97

4.4.3 Local and Remote Data Object Manipulation 102

4.4.3.1

4.4.3.2

4.4.3.3

Data Manipulation Models. • 103

Design Factors for Implementing Local and Remote Data
Object Manipulation. 104

Caching Data using Streams . 106

4. 4. 4 Sessions . 109

4.4.5 Integration with the Transaction and Concurrency Services. 111

4. 5. 6 Representing Internal Datastore References 114

4.5.7 Querying Data Objects....... 117

4. 5. 8 Retrieving Groups of Data Objects. 119

4. 5. 9 Binding CORBA Objects to Data Objects. 121

4.6 Summary. 123

lV

5. The Stream Tunnel Service 126

5 .1 Introduction. 126

5.2 Interfaces and Components of the Stream Tunnel Service.... 128

5. 2.1 Stream Channels. 128

5 .2.2 Stream Channel Factories. 130

5.2.3 Stream Tunnels..................... 131

5.3 Setting up a Stream..................... 133

5 .4 Transporting Data using a Stream. 134

5.5 Streams supporting Low-Level Network Data Transport Mechanisms. 136

5.5.1 Enhancing Data Transfer using Low-Level Data Transport
Mechanisms . 13 7

5.5.2 Experiment to Compare ORB and Socket Based Stream Mechanisms 138

5.5.3 Details and Problems oflmplementing the Stream Tunnel Service
Components . 13 8

5. 5 .4 Details of Running the Experiment • 146

5. 5. 5 Experiment Results . 148

5. 6 Further Applications of the Stream Tunnel Service 151

5. 7 Summary. 156

6. The Data Object Service 158

6 .1 Introduction . 15 8

6.2 The Interfaces of the Data Object Service. 160

6 .2.1 The Data Object Identifier Interface. 160

6.2.2 The Data Object Server Interface. 161

6 .2.3 The Data Object Manager Interface. 162

6.2.4 The DataObjectManagerFactory Interface 163

6 .3 Using the Data Object Service. 163

6.4 The File Data Object Service. 165

V

6.4.1 The File Data Object Service Interface Extensions. 166

6.4.2 Implementation of the File Data Object Service. 169

6.4.3 CORBAFileView Application. 171

6.4.4 Security and Reliability Improvements to the File Server. 173

6.5 Similarities and Differences between the Data Object Service and the 175
Persistent Object Service

6.6 Lessons Learnt from Implementing CORBA Services and Applications. . . . 177

6.7 Summary 181

7. The Persistent Data Access Service 184

7 .1 Introduction . 184

7.2 Modules and Interfaces of the Persistent Data Access Service. 187

7.2.1 The Persistent Data Access Module . 188

7.2.2 ThePDASServermodule 191

7.2.3 The Entity Data Object Service. 192

7.2.4 Use of the Meta-Schema Model. 195

7 .3 Demonstration of the Operation of the Persistent Data Access Service. 198

7. 4 Summary. 202

8. Roles of the Persistent Data Access Service 205

8. 1 Introduction . 20 5

8.2 Supporting Arbitrary Datastore Types. 205

8.3 Supporting the POSC Data Access & Exchange Interface and the Epicentre 208
model .

8.4 Using the Persistent Data Access Service as a Database Adaptor 210

8.5 Using PDAS as a Standard Data Access Interface for the Mapping Manager
Architecture . • • 213

8.6 Summary. 215

Vl

9. Conclusions 216

9. 1 General Overview . 216

9. 2 Results of the Work . 220

9. 3 Recommendations . 222

9. 4 Future work . 224

A. Glossary of Terms 225

B. Relevant CORBA Services 233

B.1 Concurrency Control Service. 233

B.2 Externalization Service. 235

B. 3 LifeCycle Service . 23 7

B.4 Object Transaction Service . 239

B. 5 Persistent Object Service . 24 3

C. Stream Tunnel Service 248

C. l Stream Tunnel Service. 248

C.2 ExtendedStreamIO. 250

C. 3 Tag Values for ExtendedStreamIO . 251

D. Data Object Service and File Data Object Service 252

D .1 Data Object Service . 252

D. 2 File Data Object Service . 25 3

E. Meta-Schema Model 255

E. 1 Meta-Schema Model. 256

E.2 Meta-Schema Model IDL. • 257

E.3 Meta-Schema Facility. 259

Vil

E.4 Meta-Schema Stream Format Syntax. 260

F. Persistent Data Access Service 263

F .1 Persistent Data Access Service. 263

F.2 Entity Data Object Service. 267

F.3 Variable Sized Binary Array Manager. 269

F.4 Retrieval Map 270

F. 5 Structured Entity Stream Format Syntax . 2 71

Chapter 1

Introduction

Software systems are increasingly being developed that consist of components, where a

component is a self-contained piece of code providing a known functionality. Components can

be plugged together to provide application level functionality and can also be distributed across

machines and processes. A component architecture allowing this type of application building is

the Common Object Request Broker Architecture(CORBA). This project focuses on CORBA,

but the problems, concepts and solutions discussed are also valid for most other component

architectures e.g. COM[Orfali 96], Enterprise Java Beans[SUN 98].

Traditional software systems that need to persistently store data are centred around storing their

data in data storage mechanisms e.g. files and databases. This data is typically accessed using

the data storage mechanism's proprietary interface and is invaluable to the corporations that

own it.

In the move towards distributed component technology, these datastores must be brought to

reach of the newly created component applications. This will allow the reuse of their stored data

and to permit the running of already existing applications and new component applications in

parallel. The aim of this research is to design a way to integrate these differing paradigms to

achieve these requirements.

Chapter 1 - Introduction 2

The following gives an overview of the CORBA component architecture, models of data access,

what this integration should achieve and why it should be realised in a set of CORBA services.

Also, described is the research' s interest of integrating Exploration and Production industry

standard datastores into the CORBA environment.

1.1 The COREA Component Architecture for Inter-operability, Reuse
and Portability

Object-Orientation(OO) is a paradigm that models real-world entities and their relationships in a

logically definable manner. An object-oriented model of a problem domain can be simulated in

software and solutions to the problem can be designed. One of major advantages of 00 is its

flexibility. Should the problem domain change, the object-oriented model can be extended or

altered to reflect the change.

In recent years, Object-Oriented Technology(OOT)[Winblad 90] has come to fruition, with its

wide spread use in systems analysis, design and implementation. There are numerous Object

Oriented analysis and design methodologies [Rumb 91][Coad 90][Coad 91] that act as a guide

to examining a problem and designing a system for its solution. For the implementation of

systems, OOT has become popular as a basis for many programming languages. Object

Oriented programming languages have enabled developers to tackle complex tasks such as

building graphical user interfaces with ease. OOT is also making an impact in the data storage

domain with the advent and evolution of object-oriented databases[Joseph 90]. Object-oriented

databases are solving problems where tradition relational databases were very inefficient

solutions such as CAD applications.

However, inter-operability between Object-Oriented systems is exceedingly poor. Each system

is effectively closed. There is no standard 00 communication protocol. To achieve

communication between 00 based systems, developers have to employ low-level

communication protocols such as sockets[Stevens 90]. These low-level communication

protocols do not fit well with the Object-Oriented philosophy and degrade the flexibility of 00

based systems.

Chapter 1 - Introduction 3

This was the situation until the Object Management Group(OMG)[OMG 97] was formed in

1989 by a few major software related corporations. Today, corporate membership of the OMG

has dramatically increased to become the largest software standards organisation in the world.

The OMG's primary goal is to provide specifications for the inter-operability of object-based

systems, where parts of the systems are distributed in terms of machines/processes and

implemented on heterogeneous platforms in heterogeneous programming languages. The

OMG' s solution to this interoperability requirement is the Common Object Request Broker

Architecture(CORBA)[OMG 95]. CORBA is a specification for inter-operability m a

heterogeneous environment and raises inter-operability to the application level.

The model of the CORBA inter-operability architecture consists of objects requesting

operations of the interfaces of server objects through a middleware software layer called the

Object Request Broker(ORB). The key element of CORBA inter-operability is the utilisation of

the OMG' s Interface Definition Language(IDL) to specify the operations that a component

offers to clients through its interface. IDL is object-oriented based, thus uses concepts such as

inheritance of interfaces and an interface is the equivalent of an object, although the interface's

implementation might not be an object-oriented object. An active piece of code or object

instance implementing an IDL interface and carrying out the operations of an interface is called

a CORBA object.

Currently, there is a trend towards creating software systems out of components, where a

component is a unit of code providing a known functionality and also has a public interface to

access its functionality. Components can then be plugged together to create whole applications.

This is contrary to applications of the past that have been created using enormous monolithic

bodies of code. These monolithic applications are brittle in the sense that they are difficult to

change, extend and debug. Also a vast amount of their functionality is never utilised by users.

Component applications solve this problem by gluing together tried and tested components with

well defined interfaces and behaviour. Further, applications can be dynamically configured by

including only the components serving the functionality required by a user.

A CORBA object makes an ideal component with its programming language independent

interface and the transparency of location, language and platform features provided by an ORB.

Chapter 1 - Introduction 4

The ORB acts as the glue bringing components together allowing them to communicate to carry

out their tasks in a coherent manner. Thus, CORBA provides an excellent component

architecture as well as an almost universal inter-operability mechanism.

One of the primary benefits of component architectures is their ability to easily reuse

components i.e. instead of re-writing pieces of code, previously proved code serving the

required functionality can be reused. The OMG has taken reuse to a higher level in its Object

Management Architecture(OMA)[OMAG 90]. The OMA is an idealised architecture concerning

how a software system should be structured. The OMA separates component applications into

layers made up of low level common services, higher level application services and applications.

The OMG is in the process of developing a standardised sets of services to fill the OMA layers.

The specification of these services include the definition of their IDL interfaces and behaviour of

the components implementing these interfaces. The specification of these standard services not

only encourages reuse, but also has the benefit of enhancing the portability of applications

across platforms, ORB products and service implementations.

The CORBA services are the OMG' s standard set of services for the low level common services

of the OMA. The implementation of these services provide much of the basic functionality

needed by CORBA objects/components to operate in the distributed environment. The services

cover functionality such as object creation/deletion, naming, streaming, events, concurrency and

transactions. Concurrency and transactions are especially important for any reliable system.

1.2 CORBA Persistent Data Access

This thesis focuses on a vital area of functionality that the CORBA services do not adequately

cover. This area is access to persistent data i.e. access to data held in some storage mechanism

that is resilient to system failures e.g. databases and files.

The Persistent Object Service(POS)[OMG COSS] was the OMG's original solution to

providing persistent data access from CORBA. However, POS has since been discredited as

well as abandoned by the OMG due to faults and ambiguities in its design. One of the few

commendable aspects of POS was its goal to support access to datastores of all types. Datastore

Chapter 1 - Introduction 5

types such as traditional datastores e.g. files and relational databases, as well as support for

newer object-oriented databases. Object-oriented databases that have an object model similar to

that of the CORBA object model making their integration easier. Future OMG persistent object

services will be biased towards integrating datastores with models similar to that of the CORBA

object model. Access to existing traditional datastores and the valuable data held within them is

an essential requirement of corporations in their move towards distributed component based

systems.

The framework of services presented in this thesis are designed to supply a solution to providing

access to data stored in heterogeneous datastores. The services will attempt to meet this goal

that POS failed at, by analysing the failures of POS and rebuilding from bottom up a set of

services to meet this goal.

1.3 Models of Application Persistent Data Access

There are two general models that applications use to access persistent data. The first model is

based on the traditional client-server model[Orfali 94] of an application directly accessing a

datastore using the datastore's proprietary data access interface(Figure I. la). The principal

problems inherent with this model includes carrying out all processing of data on the client

machine, thus the business logic involved in data processing is deeply embedded in the

application. In respect to actual data access the application becomes highly dependent on the

proprietary datastore access interface. This dependency makes the application very inflexible to

change in its data storage mechanism.

The second model of persistent data access is the three tier model[Orfali 96][Shan 98](Figure

1.1 b) and is typical of how component systems are structured. The three tiers of the model are:-

• A top level client application tier.

• A middle tier composing of objects that contain the business logic to enable the processing of

application requests. This separates the processing and the logic needed for the processing

from the internal code of the client application as in the client-server model.

Chapter 1 - Introduction 6

• The bottom tier is the data storage tier. The middle business object tier makes use of this tier

to persistently store its data. This data storage tier is typically occupied by file systems,

databases and industry specific standard datastores.

a)
Application

t ldata
datal •requests

Datastore

b)
Application

process
requests

t !data
datal trequests

Datastore

Figure 1.1: The client-sever model(a) and the three tier
model(b)

The benefit of the three tier model is that the business logic is taken out of the application and

put into the autonomous middle tier. Using this model, applications indirectly access persistent

data in the data storage tier through the middle tier. This indirect data access prevents the high

dependency which the application has with the datastore in the client-server model, therefore the

application is insulated from the proprietary nature of the datastore and any changes made to the

data storage tier. However, the high dependency is only shifted away from the application to

between the middle business object tier and the data storage tier.

Software systems built using either of these models both suffer from the high dependency on a

data access interface. Another goal of a persistent data access service is to decrease this

dependency, so that applications/business objects are insulated from the proprietary data access

interface. Thus, the service will introduce an additional tier into the models that hides the

proprietary nature of datastores used for data storage(Figure 1.2).

Chapter 1 - Introduction

Application

t I datastore Independent
datal +data requests

Persistent
Data Access

t I datastore specific
detal -+data requests

Datastore

Application

alas!ore independent
ala requests

r-.;--'--+,-,-----,t-,

D ss

t !dataslore specific
dalal data requests

Data store

Figure 1.2: An additional tier in the client-server model(left)
and three tier model(right) to hide the proprietary nature of

the datastores

1.4 Persistent Data Access in the Exploration and Production Industry

7

This project is a joint venture with PrismTech[PrismTech]. PrismTech specialises in providing

information systems to the Exploration and Production(E&P) sector of the Oil and Gas

Industry. Information systems of the E&P industry are especially complex due to the nature of

the E&P data, this varies from highly complex networks of objects to enormous arrays of

scientific data that can have the additional complication of being related to spatial locations.

Initially, the project was examining the persistence mechanism of a PrismTech product called

OpenBase. OpenBase was an innovative ORB product with a built-in persistence mechanism for

C++ objects that are the implementations of CORBA objects. However, OpenBase did not

achieve production release.

The focus of the project shifted to a new direction which was examining how instance data of

the POSC Epicentre model[POSC 95] could be accessed from CORBA. POSC is an

organisation producing standards to help the E&P industry integrate its information systems.

One such standard is the Epicentre model. Epicentre is a data model that describes a large

number of objects that represent the majority of data items that need to be stored in the E&P

industry. Epicentre gives the industry a universal data model allowing all E&P organisations to

share data that complies with the model.

Chapter 1 - Introduction 8

POSC also defines an API to access and manipulate Epicentre instance data called the Data

Access and Exchange(DAE) interface[POSC 95b]. The DAE is independent of any database

technology, but the implementation of a DAE datastore is usually provided by a layer of

software that performs a mapping between the DAE and an actual database.

To access Epicentre data from CORBA, the DAE could simply be re-written in IDL and a

bridge be provided to the actual DAE datastore interface(Figure 1.3). However, this solution

causes two problems. Firstly the CORBA application is still greatly dependent on the DAE

interface. Secondly, the solution is inefficient as each DAE operation invocation requires a slow

ORB request. This could be solved by caching data locally in the client, but this creates further

problems, such as how to transport data across the ORB. Any data transported across the ORB

has to have an IDL definition, and as Epicentre has around 1,500 objects, providing a compiled

IDL definition of these objects is unfeasible.

Application

DAE
Datastore

sts via the ORB
remote requests

Figure 1.3: A DAE bridge to allow access to a
DAE datastore from COREA applications

A CORBA persistent data access service should provide a more generic interface to accessing

data than the DAE, again insulating the application from a proprietary datastore mechanism. It

should also define services to enable the efficient caching of data in clients, so that it can be

manipulated at local invocation speeds. This caching/transport mechanism should efficiently

handle the typical types ofE&P Epicentre data i.e. complex networks of objects and large arrays

of scientific data. As the Epicentre model is so large it should further provide a way of handling

this data without statically compiled IDL code.

Chapter 1 - Introduction 9

Applications accessing Epicentre data via the DAE reflects the client-server model. PrismTech

is also leading a coalition of E&P companies in developing a three tier architecture called

OpenSpirit[Godfrey 97] to support information integration in the E&P industry. The OpenSpirit

project is defining and implementing middle tier business objects representing common E&P

entities e.g . wells and wellbores. The attribute data of these business objects are persistently

stored in various popular E&P datastores including Epicentre and the DAE.

In fact, the mapping between the OpenSpirit objects and Epicentre was personally carried by the

author of this thesis. This gave a good insight into the complexities of manually mapping

between differing data models such as:- the large amount of code needed to perform a relatively

simple mapping, the high possibility of bugs in this code, representing object references between

models and the code's high dependency on the DAE interface.

The OpenSpirit objects are fairly coarsely grained. On the other hand Epicentre is very finely

grained, hence many Epicentre objects would make up the data of a single OpenSpirit object.

For the relatively few OpenSpirit objects currently being developed manually, mapping them to

Epicentre is just about a feasible task, but should the complexity of OpenSpirit model increase

then the manual mapping would quickly break down as a result of the exponential increase in

complexity of the mapping code.

Ideally, mapping between two models should be an automated process with the only human

interaction being to specify the rules to map between the models. The primary problem with

automated mapping is accessing the data in the source and target models, providing a common

data access interface to source and target models greatly simplifies automated mapping. Hence,

another role which a persistent data access service could fill.

1. 5 Aims of the Research Work

The aim of this work is to design a set of CORBA services to provide access to heterogeneous

datastores, including the ability to cache data locally for fast manipulation. The ability of the

service to efficiently handle Exploration and Production(E&P) industry data should also be

considered in the design of the service.

Chapter 1 - Introduction

The design of these services is achieved by meeting the following objectives:-

• Analysis of the current CORBA data access solutions.

• Analysis of the Persistent Object Service and taking its faults into consideration.

• Analysis of future methods of CORBA data access.

• Familiarisation with the Epicentre model and its Data Access & Exchange(DAE) interface

and its special needs.

• Specifying a set of requirements that the services should meet.

• Creating a high level model of how these services should work and interact, including its

integration with the CORBA transaction and concurrency services.

• The design of the IDL interfaces to these services.

• Sample implementations of the designed services.

• Analysis of how the services meet their requirements, especially m relationship to the

Epicentre and the DAE.

1. 6 Overview of the Thesis

Chapter 2 presents an introduction into the background standards and technologies that are

essential to have an understanding of this thesis. Covered in detail is the CORBA architecture,

as well as the OMG CORBA services that are relevant to comprehending the services that are

the solution to the set problem. Also included is an overview of the Epicentre model and its

Data Access & Exchange interface, the EXPRESS information modelling language which

Epicentre is defined in and the STEP project that created EXPRESS. The chapter concludes

with a discussion on the differences between CORBA on one hand and the Epicentre/DAE &

STEP architectures on the other.

Chaper 3 provides an analysis of current solutions of achieving data access from CORBA. The

analysis includes a discussion on the problems incurred by directly using proprietary storage

technologies to persistently store data. The OpenSpirit project is given as an example of a three

tier architecture reliant on proprietary storage technologies. The analysis also covers

standardised methods of persistent data access including:- an extensive examination of the

Persistent Object Service, the STEP SDAI interface to access data and the database adaptor

approach to persistence.

Chapter 1 - Introduction 11

Chapter 4 begins by summarising the problems with current methods of CORBA data access

solutions. From this a set of requirements is derived. Next, the high-level design of a Persistent

Data Access to meet these requirements is described. The highlights of this design are:- a

standard data definition model, the use of streams to cache data local to clients, the use of

sessions to represent access to a datastore and integrate with the transaction and concurrency

services.

Chapter 5 describes the design of the Stream Tunnel Service(STS). STS extends the OMG

Externalisation service to permit the set-up and use of distributed streams. This service provides

a way of transporting non-IDL defined data. STS encapsulates the actual network data transport

mechanism used to transfer data between the ends of the stream, therefore allowing for efficient

methods of data transfer than the ORB to be employed. An investigation is carried out into the

performance of an ORB based stream and a connected socket based stream.

Chapter 6 begins by describing the Data Object Service(DObS). DObS is an abstract service for

the management of persistent data. Management operations include identifying, creating,

retrieving, storing and deleting persistent data. DObS is similar to POS in some aspects, but

DObS most significant difference is the use of a single standard data transfer mechanism i.e. the

Stream Tunnel Service. DObS is only abstract, it must be extended to handle specific types of

data. The File Data Object Service(FileDObS) is one such extension allowing access and

manipulation of files. An implementation of FileDObS is outlined that has a Java client side and

a C++ server side. The chapter also presents the lessons that were learned from creating the

STS and FileDObS applications.

Chapter 7 provides an outline of the Persistent Data Access Service(PDAS). PDAS is the

decisive service to provide access to complex persistent data. PDAS embodies the high-level

design features presented in chapter 4. PDAS consists of three modules:- client session, server

session and the Entity Data Object Service(EntityDObS). EntityDObS extends DObS to enable

the management of entities that make up the complex persistent data. EntityDObS fully provides

a mechanism to cache data in the client session. The behaviour of components implementing the

PDAS interfaces are demonstrated to show how PDAS carries out its task.

Chapter 1 - Introduction 12

Chapter 8 briefly discusses the areas that PDAS can be used in. This includes how the

Epicentre/DAE datastore can be supported by PDAS, how PDAS can act in a similar way to

database adaptors and the requirements to access general datastores to provide clients with

standard data access interface.

Chapter 9 reviews whether the aims and requirements of the research have been met, following

this conclusions are presented.

1.7 Summary of Contribution

The work presented in this thesis results in the following main contributions for the area of

CORBA and persistent data access integration:

• A framework of CORBA services to provide data access to heterogeneous datastores.

• The mechanisms necessary to support heterogeneous datastores i.e. a caching mechanism, a

meta-schema model and data manipulation interfaces.

• The services to allow insulation of clients from the proprietary data access interfaces and

access to already existing data in traditional datastores.

• How transaction and concurrency services can be integrated into services.

• Providing a copy-by-value mechanism to CORBA using streams.

• The use of more efficient network data transport mechanisms to transfer large amounts of

data in CORBA.

• A distributed file service to Java applications that might be running in secure environments

preventing local file access.

• The services are designed in a way which takes into account the nature of Epicentre data

including complex networks of objects, large scientific arrays of data and generally the large

number of object types in the Epicentre schema.

This research has resulted in the presentation of the paper - "Data Access and Transportation

Services for the CORBA Environment", at a prestigious conference in the USA. A journal

article has also been submitted to TAPOS (Theory & Practice of Object Systems).

Chapter 2

Introduction to the Background Standards
and Technologies

2.1 Introduction

This chapter introduces the standards and technologies that are the basis for the problem

domain. It provides an overview of the OMG CORBA architecture including the CORBA

object models and the individual components of a CORBA implementation. The chapter

progresses by outlining some of the OMG CORBA services. These explanations of CORBA

services will be useful in understanding the solutions to the problem that has been set. Next,

an overview of NIST's STEP international standard is described incorporating an

introduction into the EXPRESS information modelling language. The final standard is

POSC's SIP. SIP's major role is data exchange and management in the Exploration and

Production industry. The various parts of the standard are presented with a further

explanation of the Epicentre data model and the Data Access and Exchange interface. The

chapter concludes with a discussion of the strengths and weaknesses of the standards.

2.2 The Object Management Group

The Object Management Group(OMG)[OMG 97] was founded in May 1989, by eight

companies that wanted to promote the use of object-oriented technology by creating

Chapter 2 - Introduction to the Background Standards and Technologies 14

industry standards. Today, the consortium of companies making up the OMG has risen to

over 800 member organisations. This demonstrates the importance and success that the

OMG standards have had on the object software industry.

"The organization 's(OMG) charter includes the establishment of industry guidelines and

object management specifications to provide a common framework for application

development. Primary goals are the reusability, portability, and interoperability of object

based software in distributed, heterogeneous environments. Conformance to these

specifications will make it possible to develop a heterogeneous applications environment

across all major hardware platforms and operating systems. "[OMG 95]

The first step the OMG took in realising its goal was the Object Management

Architecture(OMA)[OMAG 90]. The OMA includes the Abstract Object model and the

Reference model. The Object model provides standard definitions for the object-oriented

model. The Reference model provides a model on how systems should be structured.

2.2.1 The OMA Abstract Object Model

The OMA Object model provides standard concepts, semantics and terminology for the

object-oriented model, so that further standards and systems built using the OMA can have

an unambiguous common model.

A summary of some of the basic definitions of the object model are as follows:-

• An object has an associated state and a set of operations.

• An object provides services to clients.

• Clients can invoke a service of an object by issuing requests.

• A request specifies a handle, an operation name and zero or more parameters.

• A handle identifies an object providing a service.

• An object performs some action as the result of a request.

• An object has a unique identity within the system that is identified by a handle.

• An interface describes the set of operations an object provides.

• An object must satisfy an interface i.e implement its defined operations.

Chapter 2 - Introduction to the Background Standards and Technologies 15

• The code that performs a request is called a method.

• An implementation is the code supporting an object.

• For implementations classified as persistent, their state survives the process/thread.

2.2.2 The OMA Reference Model

The OMA Reference model(Figure 2.1) is a high level architectural view of how systems

should be structured. The four elements of the Reference model are:-

• Object Services are a set of services made that provide basic level functionality to

objects and applications e.g. instance management, storage management. These services

should be common to each OMA platform, thus promoting reusability and portability of

OMA applications.

• Common Facilities are application level services e.g. user interfaces, electronic mail.

Common facility services are optional for OMA platforms.

• Application Objects are collections of objects that constitute an end-user application.

• Object Request Broker(ORB) is the mechanism allowing requests to be invoked on

objects. Each of the other elements of the OMA use the ORB for interoperability.

Application Objects Common Facilities

Object Request Broker

object
Object Services

Figure 2.1: Components of the OMA Reference Model

Chapter 2 - Introduction to the Background Standards and Technologies 16

2.3 The Common Object Request Broker Architecture

The Common Object Request Broker Architecture[OMG 95][Siegel 96][Orfali 96] 1s an

OMG specification for the implementation of the OMA Object Request Broker(section

2.2.2). CORBA provides a standardised open communication middleware specification.

The Common Object Request Broker Architecture is commonly referred to by its acronym -

CORBA. Implementations of CORBA give the ability of different parts of a system to

easily inter-operate, regardless of the location, hardware, operating system and

implementation language of the various parts.

The CORBA model[Kim 95] is based on the OMA Abstract Object Model(section 2.2.1),

thus the CORBA model is of client objects/applications invoking a method of a server

object. In the CORBA model, this process of invocation is called a request. The mechanism

that transports requests between applications in a heterogeneous distributed environment is

the Object Request Broker(ORB). To provide a service, a server object must have an

explicitly defined interface. The interface describes the methods the object implements and

the parameters passed and returned in the method. The interface is declared in the OMGs

Interface Definition Language(IDL). It is the IDL descriptions of object interfaces that are

critical to interoperability of CORBA over heterogeneous systems. IDL is the contract that

both client and server will abide by. It is then a process of mapping IDL to the local

programming language and system, so clients can make requests and servers can respond to

requests.

The next sections describes the main features of CORBA in more detail and discusses areas

of CORBA programming and systems that will be useful in understanding the interface

frameworks and applications described in this thesis .

2.3.1 The Object Request Broker

The mechanism that conveys requests between clients and server objects is the Object

Request Broker(ORB)(Figure 2.2). The ORB is a layer of software that encapsulates the

network environment and hardware/software differences between the two ends of the

Chapter 2 - Introduction to the Background Standards and Technologies 17

request. Thus, the ORB effectively gives a client a single view of a heterogeneous

distributed environment. This view is of numerous server objects, which the client can

somehow gain references to, using the reference the client can request method invocations

on the server objects through the ORB. This view is conceptually equivalent to the

messagmg mechanism between object instances within a single object-oriented language

program.

Clients are not limited to just inter-operating with server objects on their native ORB.

Requests can also be invoked on server objects present on remote ORBs. This ability is due

to two standard CORBA inter-ORB communication protocols. The first protocol is the

General Inter-ORB Protocol(GIOP). GIOP specifies a standard message and data format

that ORBs can understand and use to interact with each other. The second protocol is the

Internet Inter-ORB Protocol(IIOP). IIOP specifies how GIOP messages are exchanged

over TCP/IP[Rieken 92] i.e. the internet.

IIOP is a valuable asset to the CORBA specification, as it allows the vast reach of the

internet to be used as an ORB communication network. Currently, the most popular tool

for providing interactivity between a user and an internet server is the Common Gateway

Interface(CGI)[Orfali 97] over Hypertext Transfer Protocol(HTTP). Nevertheless,

CGI/HTTP is an extremely slow and clumsy middleware mechanism to use compared to

CORBA IIOP. For these reasons, the most popular web browsers can come with a Java

ORB built in.

Client
Server
Object

Figure 2.2: Client requests operation of a server object through the ORB

Chapter 2 - Introduction to the Background Standards and Technologies 18

2.3.2 The OMG Interface Definition Language

To publish the methods a server object implements, the server object has an explicitly

defined interface. Each interface is described in the OMG' s Interface Definition

Language(IDL)[OMG 95][Vinoski 96]. An IDL description presents a complete description

of a server object that is relevant to a client for interoperability. Objects that implement an

IDL interface are termed CORBA objects, and as a CORBA object is accessible from an

ORB, it is also a distributed object. A more generic name for a CORBA object is a

component, due it providing some known functionality and a public interface for making

use of its functionality.

IDL can be used to specify the following of CORBA interfaces :-

• Interface name.

• Operations of the interface.

• Parameters of the operations.

• Semantics concerning the direction of use of operation parameters i.e. in, out, inout.

• Exceptions an operation can raise.

• Interface attribute variables.

• Type definitions including simple typedefs, sequence definitions, structures.

• Interface inheritance.

• Module definition to group interfaces in a common name space.

Figure 2.3 shows a sample IDL file showing some aspects of the IDL features mentioned

above. IDL is independent of any programming language, but as the sample shows, IDL has

a similar appearance to C++[Strou 91] class declarations.

IDL is the key feature of CORBA that enables CORBA systems to span heterogeneous

hardware and software environments. This is due to code that is native to each environment

being produced from the IDL definition. The codes main purpose is to translate between

the standard data format of the ORB and the environment native data format

i.e. marshalling and de-marshalling of data[Coulouris 88].

Chapter 2 - Introduction to the Background Standards and Technologies

IDL Definition

interface Calculator
{
attribute long Accumulator;

void add(in long ANumber);
void subtract(in long ANumber);
long result();
}

I IDL Compiler I

~ uces pro~

Figure 2.3: Example IDL code and its produced native stub and ske/etion code

19

The native code produced from the IDL definition comes in two parts, these are the stub

code and the skeleton code. Figure 2.3 shows the process of parsing an IDL file. The stub

code is linked with the client. The stub code contains proxy classes that represent the server

interfaces locally. To initiate a request, the client invokes the desired method of the relevant

proxy class instance. The proxy object performs any necessary marshalling of parameter

data and then makes a call to the ORB to carry out the request.

The skeleton code allows an invocation from the ORB to the implementation object of the

IDL interface. Implementations of interfaces have to be bound to the skeleton code, so that

the skeleton code can invoke an implementation method in response to a request.

For clients to invoke a request or for a server object to process a request in a program, the

program must keep to a certain set of rules on the usage of the ORB. These rules are

specific to each programming language and are termed the language bindings. Some areas

of use that language bindings enforce are :-

• Use of IDL data types

• Use of object references

Chapter 2 - Introduction to the Background Standards and Technologies 20

• How requests are invoked

• How parameters are passed and returned

• Whose responsibility is the allocation and deletion of parameters, whether the client,

ORB or server.

• Use of exceptions including their raising and catching.

Programs must follow their language bindings to be CORBA compliant, and also to work in

harmony with the ORB and its own stub and skeleton code.

Currently, in CORBA 2.2 there are six specified language bindings these are C, C++,

SmallTalk, COBOL, Ada and Java. Note that CORBA applications do not necessarily have

to be created from an Object-Oriented(OO) language. Procedural languages can also be

used. However the mapping to CORBA is not as natural as with an 00 language.

2.3.3 Object Adaptors

The object adaptor sits between the ORB and the server skeleton. Server objects have to

register their presence with the object adaptor. There can be many server objects per

adaptor, therefore, the adaptors main purpose is to accept requests from the ORB and route

them to the targeted server object.

The Basic Object Adaptor(BOA)[OMG 95][0rfali 96] 1s CORBA's standard object

adaptor, and a CORBA compliant ORB must support it. The Basic Object Adaptor

provides all the basic facilities just mentioned. Additional facilities can be incorporated in

an object adaptor, such as persistence and dynamic loading of objects[Baker 97].

Each object adaptor will have an activation policy. The activation policy defines how an

object will be activated to carry out a request. CORBA defines four activation policies for

the Basic Object Adaptor. These are :-

• Shared server - all server objects share the same process and one request is processed at

a time.

• Unshared server - a new process is started for each active object.

• Server-per-method - a new process is started for each request.

Chapter 2 - Introduction to the Background Standards and Technologies 21

• Persistent Server - a new process is started by a means outside of the BOA

The most common activation policy is the shared server.

2.3.4 Object References

To make a request, a client must have an object reference to the CORBA/server object. An

object reference is represented as some language specific encapsulated construct e.g. a C++

object. The object reference will contain enough information for the ORB to locate the

CORBA object and make an invocation.

CORBA has an object-oriented architecture and a CORBA object reflects this by being the

implementation of a hierarchy of IDL interfaces. Object references to CORBA objects can

accordingly be cast up or down their hierarchy of interfaces.

A useful feature of CORBA object references is that they can be translated to and from a

string format. This means that the location information contained in the object reference

can be coded into a string of characters, and at some later time, the object reference can be

recreated from the information in the string. This feature can be very useful, for example to

store an object reference persistently in a file.

The location information embedded in object references is hidden from applications, and

cannot be created or edited. In a CORBA compliant application the only element allowed to

create object references is the object adaptor. An object reference is only produced when a

CORBA object registers itself with its object adaptor. It is then the responsibility of the

object to make itself known to potential clients by somehow passing an object reference to

them.

There are a few common ways a client can gain an object reference to a required CORBA

object :-

• From another CORBA object : the object reference is passed as a parameter in a request.

Chapter 2 - Introduction to the Background Standards and Technologies 22

• Via the Naming service the object reference is registered with label in the naming

service.

• From a well known file : The client can read the object reference in string form from a

file that the client knows the location of. This file could be located in a local or shared

file system.

• From the ORB : the method 'resolve initial references ' with a service name as a

parameter can be called on the ORB. The ORB will return an object reference for the

object server. This is the usual manner of gaining an object reference to the Naming

Service. However, registering an object server with an ORB is highly ORB

implementation specific and is an ORB configuration process rather than a dynamic run

time operation. Thus, it should only be used for a few well known and used services such

as the Naming service.

• Via the Trading service : the Trading service is more a search oriented service for gaining

object references than the Naming service. To be found in the Trading service, a server

object registers properties that describes the service it offers. The client can then find a

server object by searching for a specific set of properties.

Object references are proprietary to a specific ORB implementation i.e. they cannot be

passed to another vendor's ORB implementation and utilised. This would be a major

drawback for CORBA if this was the only situation, as different ORBs could not inter

operate. Fortunately, the CORBA specification for IIOP defines a standard format for an

object reference called the IIOP Inter-operable Object Reference(IOR). The IIOP IOR

contains the important information needed to locate server objects on TCP/IP network,

such as the host's IP address[Stevens 90], the port number where a server is listening and

an object key that indicates the target object. The IIOP IOR is a very beneficial element to

ORBs that support the IIOP protocol, as they can simply pass IIOP IOR between each

other and use them to request methods of server objects on other ORBs.

Chapter 2 - Introduction to the Background Standards and Technologies 23

2.3 .5 COREA Object Summary

CORBA Objects are the principal processing element of CORBA, that together create a

distributed CORBA application. Therefore, it is important to have a clear view of what a

CORBA object is .

A CORBA object comprises an IDL interface and programming language code that

implements the interface. The interface declares the operations and inherited interfaces of

the CORBA object. The purpose of a CORBA object is to act as a server object by

providing its operations for invocation to the distributed environment. Clients can request

operations of the CORBA object through the ORB.

To make a request on a CORBA object, the client must have an object reference to it.

Object references are created when the CORBA object registers with an object adaptor. It

is the responsibility of the object to make its object reference known to potential clients.

Clients of a CORBA object can be applications or other CORBA objects. Consequently, a

framework of interacting CORBA objects can be built. Together, the framework of

CORBA objects will provide a higher level of service, which can be reused to supply some

basic functionality to applications.

The key feature of CORBA is that this interaction between CORBA objects is independent

of language, location and platform of the implemented object.

2.3.6 Further Features of a COREA ORB

Figure 2.4 shows some further standard features of a CORBA ORB. These additional

features will be briefly discussed to provide a fuller view of CORBA.

The Interface Repository[OMG 95] is a facility that stores IDL interface definitions. These

definitions can be queried at run-time, so that clients can find the structure of interfaces e.g.

the interface hierarchy, an interface operations, operation parameters etc. The main use of

the interface repository is to allow dynamic invocations[Siegel 96].

Chapter 2 - Introduction to the Background Standards and Technologies 24

Client Server Object
~ -/

Interface Static I Dynamic ii r -5' ::,
, ___ -

Repository ~ Dynamic Client mO mO Skeleton
~ Implementation ii} ::0 ::i, ::0 Skeletons Invocation

Invocation IDL Stubs Q) (ll Repository ~ - 0 (ll

£ CD Object Adaptor
--- -

ORB

Figure 2.4: Other major components of a COREA ORB

The Dynamic Invocation Interface permits clients to build a request for invocation on a

server interface, even if the client has not been compiled with the stub code for the server

interface. This is achieved by the client querying the interface repository to discover the

structure of the desired interface method. Using this information the client dynamically

builds a parameter list for the request and then performs the invocation.

The ORB Interface provides some useful functions that applications might require, such as

converting object references to and from strings, finding initial services and partly used to

make dynamic invocations.

The Dynamic Skeleton Interface[Baker 97] allows a server to receive requests for any

defined interface, even though the server does not implement any interface. The primary

purpose for this feature is to provide gateways to ORBs that use some other protocol for

communication. The server can receive requests, format them to correspond to the other

ORBs protocol and dispatch the request to the other ORB.

The Implementation repository provides run-time information on the interfaces a server

process supports and the objects that are instantiated.

Chapter 2 - Introduction to the Background Standards and Technologies 25

2.4 CORBA Services

The CORBA services[OMG COSS] are a set of OMG specified services supplying

specifications for the implementation of the OMA object services. Each CORBA service

provides some basic level functionality to CORBA objects and applications in the CORBA

environment such as persistence, instance management and transactions. Each CORBA

service specification is comprised of a set IDL interface describing the interface that clients

interact with, and a description of the use and behaviour of the service.

One of the key design principals of the CORBA services is the so called Bauhaus principle:

"Minimize duplication of functionality. Functionality should belong to the most

appropriate service. Each service should build on previous services when appropriate."

[OMG 95b]

This principle is followed in the CORBA services with services reusing the functionality of

another service. This principle has also been followed in the design of the services

presented in this thesis.

The following sections introduce some existing CORBA services that have been used and

built on by the new services presented in this thesis. All services can be found in [OMG

COSS] which can be obtained from the OMG web site, further explanations can be found in

[Orfali 96][Siegel 96][Baker 97]. The IDL modules for the services that are relevant to this

thesis are shown appendix B .

2 .4 .1 The Naming Service

Any distributed system must have some mechanism for members of the system to find

services that they require[Sloman 87]. Typically, this is achieved by a naming facility that

stores location independent names and location dependent addresses for services. A

member wanting to locate a service can look through the stored names for the name of the

service it requires and, once found, can gain the address for the service. This scenario

assumes that the member can initially locate the naming facility and that the member knows

Chapter 2 - Introduction to the Background Standards and Technologies 26

Name

Calculator1
MMR
Syslog

Object
Refs

• • •

Cont~ <Jrr,;f/9 Naming Object
'Jets ontext Name Refs

jupiter
services

0
0

Figure 2.5: Structure of Naming Context

Naming domain 1 Naming domain 2

Figure 2.6: Example of Naming Context graph

the name of the service its looking for. As a naming facility is of utmost importance for a

distributed system, the Naming service is one of the core CORBA services, and the most

widely implemented service.

The Naming service stores string name and object reference pairs. Each pair is called a

name binding(see Figure 2.5). A name binding must be explicitly created for a CORBA

object to be registered in the naming service. A client can find a service by supplying a

name, if a name binding exists for the name then the service returns an object reference to

the client.

The service is not simply a one level list, but is modelled on a logical tree structure

(Figure 2 .6). Each node of the tree is called a naming context. Each naming context

contains a grouping of name bindings and sub-naming contexts, and is analogous to a

directory that contains files and sub-directories.

A naming context has an interface, hence it is also a CORBA object. The NamingContext

interface allows for the creation and deletion of bindings and sub-NamingContext objects

within the naming context. The interface also permits names to be resolved i.e. given a

name, the naming context will return an object reference.

Chapter 2 - Introduction to the Background Standards and Technologies 27

The actual name of an object is a sequence of strings that reflects the object position in the

hierarchy of naming contexts. The fully qualified name of an object is the sequence of

names between the root naming context and the object e.g. in figure 2.6, the name of obj 1

is jupiter;COOL-ORB;obj 1. Given a naming context other than the root, then the objects

name is relative to the path from that naming context e.g. objects;obj 1.

Another important use of the Naming service is a mechanism to allow the sharing of

CORBA objects across separate ORBs. Naming services resident in separate ORB domains

can be interconnected, thus the name bindings of server objects are accessible across the

domains. The interconnection is achieved by binding a naming context resident in one ORB

domain as a sub-naming context in the other ORB domain. This is assuming that the two

ORBs can interoperate using a common protocol such as IIOP (see section 2.3.1).

2.4.2 The LifeCycle Service

The LifeCycle service is a specification for the management of CORBA object instances.

The service provides interfaces and guidelines on how objects should be created, moved,

copied and deleted. For an object to be managed by the LifeCycle service it must inherit

and implement the LifeCycleObject interface. This interface provides operations to move,

copy or delete the object.

To create objects, the LifeCycle service presents the concept of Factory objects. A

e
Figure 2. 7: Model of creating an object with the

LifeCyc/e service
Figure 2.8: Model of finding factory

with the li,feQ;cle service

Chapter 2 - Introduction to the Background Standards and Technologies 28

Factory object is an object capable of creating another object (Figure 2.7). A client

requests the Factory object to create objects for it.

Another important strategy the LifeCycle service suggests is how Factory objects are

found. The service specifies the FactoryFinder object to achieve this. A client requests a

FactoryFinder(Figure 2.8) to find Jactories and passes some key information about the

type of factory required. The FactoryFinder passes back to the client a list of factories

that correspond to the key information. Using this model allows a loose coupling between

client and Factory.

2.4.3 The Externalization Service

The Externalization service provides a framework of interfaces, to allow an object to

externalise and internalise its state to and from a stream of data. Thus, an object can write

its state to a stream (externalising), or an object can be recreated, by creating an

uninitialised object and initialising its state by reading from the stream (internalising). The

Externalization service framework comprises three primary interfaces, these are

Streamable, Stream and StreamlO.

The Streamable interface has operations externalize to stream and

internalizeJrom_stream. An object supporting these operations can be driven to write or

read its state to or from the stream.

The Stream interface represents the data stream that Streamable objects write to and

read from. The interface has two operations externalize and internalize. The externalize

operation references a Streamable object for externalising. The internalize operation

references a FactoryFinder object that is used to find a factory object. The factory is used

to create an object that can initialise its state by internalising from the stream.

The StreamIO interface offers input/output operations to access data within a stream.

These operations are of the form write_ <type> and read_ <type>, where <type> is any

Chapter 2 - Introduction to the Background Standards and Technologies

Client 1.externalize

Figure 2.9: Externalising an object to a stream

Client 1.intemalize

i ~.read_ <data type>
3
"' l
a~ ,; StreamlO

I
3 "data

Stream

Figure 2.10: Internalising an object from a stream

29

basic type such as string, long, float or even a reference to another object to be externalised

or internalised.

Figures 2.9 and 2.10 shows the sequence of requests necessary for an object implementing

the Streamable interface to be externalised and internalised to and from a stream. The

requests to externalise are:-

1. A client requests a Stream object to externalize a Streamable object that is referenced.

2. The Stream object requests the Streamable object to externalize to stream and

references a StreamlO object.

3. The Streamable writes its state to the stream using the StreamlO write operations.

The requests to internalise are:-

1. A client requests a Stream object to internalize, a reference to a FactoryFinder is

passed.

2. The Stream requests the FactoryFinder to find a factory object for creating the object

contained in the stream.

3. The Stream requests the StreamableFactory to create_ uninitialized that creates the

new Streamable object.

4. The Stream requests the Streamable to internalizeJrom_stream.

5. The Streamable reads its state from the StreamlO object.

The Externalization service provides a standard method of getting state data into and out of

a CORBA object and to/from a serialised form. This ability could be of great importance to

CORBA applications, as it could be used to provide object persistence and object copy

Chapter 2 - Introduction to the Background Standards and Technologies 30

capabilities. These capabilities both require accessing a CORBA object's state and moving

data in a serialised form. However, this requires the movement of data between designated

points which the Externalization service does not provide.

A very simple form of persistence is already incorporated in the Externalization service, as

the service allows streams to be created that save their data to files . However, the only

control an application has over the objects persistent state is a simple string file name.

There are no capabilities for locking, transactions, remote access and deletion of the

persistent state.

The Externalization service could support object copymg capabilities. This could be

achieved by externalising an object to a stream, transferring the stream to another location

and internalising it there, however the services specification gives no indication on a

standard way of accomplishing this.

2.4.4 The Persistent Object Service

The Persistent Object Service(POS)[OMG COSS][Session 96] provides the functionality

for CORBA objects to store their state persistently. This means that a CORBA object can

save and load the data representing its state to/from some type of stable storage e.g. a file

or database. Thus, the persistent state of the object can exist independently of the life time

of the CORBA object instance.

POS was designed to permit any type of storage technology to be used as a persistent store

such as files, relational databases and object-oriented databases. Allowing traditional

storage technologies as well as directly mapped technologies (i.e. object-oriented

databases) to be used for storage has the benefit of enabling access to already existing

datastores. These existing datastores contain the vast majority of data for the world's

computer systems. Consequently, they are a valuable asset to provide access to .

The diversity of POS is also one of its failures. To handle data in many different types of

datastore, the service was designed very generically. This left the service under-specified,

Chapter 2 - Introduction to the Background Standards and Technologies 31

with implementors having to devise parts of the service themselves to compensate.

Implementors have also found some fundamental flaws in the basic design of POS. As a

result of these problems the OMG has withdrawn POS as a standard and is in the process of

creating a replacement called the Persistent State Service.

An in-depth examination of the POS architecture, its benefits and failures are covered in

chapter 3.

2.4.5 The Object Transaction Service

The Object Transaction Service(OTS) is probably the most significant service that will

enable CORBA to be successful in being the infrastructure for business enterprise systems.

OTS provides CORBA applications with the ability to perform requests within the context

of a transaction[Bernstein 97].

"A transaction is a unit of work that has the following (ACID) characteristics:-

A transaction is atomic; if interrupted by failure, all effects are undone (rolled back).

A transaction produces consistent results; the effects of a transaction preserve invariant

properties.

A transaction is isolated; its intermediate states are not visible to other transactions.

Transactions appear to execute serially, even if they performed concurrently.

A transaction is durable; the effects of a completed transaction are persistent; they are

never lost (except in a catastrophic failure). "[OMG COSS]

The ability to perform operations within a transaction is critical for systems that must

maintain the integrity of data and system state despite system failures. In these systems, all

changes performed within a transaction must be made permanent i.e. commit, or in case of

failures all changes must be cancelled i.e. rollback.

However, to allow operations to be performed within a transaction in a distributed

environment is a complex problem. A part of this problem is that each resource, e.g. a

Chapter 2 - Introduction to the Background Standards and Technologies 32

Figure 2.11 : Object requests within a transaction

server object, that performs some operation within the boundaries of a transaction must

obey the decision of the transaction to commit or rollback.

For example, Figure 2.11 shows a number of requests(reqi) between a client and a number

of CORBA objects(Si) within a transaction that the client has started. The client invokes

req1 on S1. In processing req1, S1 invokes req2 on S2, and the client then invokes req3 on

S3. All objects: S1, S2 and S3 must take part in the commit or rollback of the transaction

and somehow the transaction must know of each object taking part.

The subsequent problem is to allow each resource to commit or rollback consistently. For

example, the client wishes to commit, so the transaction sends commit signals to each

server object sequentially. Firstly, S1 commits successfully, then the commit signal is sent to

S2. If S2 or S3 could not commit and forced a rollback, then the transaction would not be

atomic as S1 has made its changes permanent. The solution is a two-phase

commit[Bernstein 97][Coulouris 88] instead of a single phase commit.

The two-phase commit has a coordinator that is some entity driving the transactions

commit. In the first phase, the coordinator sends each resource a prepare signal. The

prepare signal is fundamentally asking the resource whether the resource can commit, the

resource returns a value indicating whether it will commit or wants to rollback, this is

called its vote. Each resource responds with its vote. If each vote is a commit, then in the

second phase, the coordinator sends the commit signal to each resource and each resource

makes its changes permanent in response. If one or more votes were to rollback, then the

coordinator signals each resource to rollback.

Chapter 2 - Introduction to the Background Standards and Technologies

Transactional
1
___ re_q.;..u_e_s_t _ _..

Client

Current

Object
Transaction
Service

Transaction
Context

repare,
rollback,
commit,
commit_one_phase

Figure 2.12: Primary interfaces and components involved in a OTS
transaction

33

The Object Transaction Service(OTS) is a framework of interfaces defining a model of the

behaviour of objects taking part in a transaction. The OTS model incorporates distributed

transactions with a one- or two-phase commit protocol. Figure 2.12 shows a simplified

overview of the primary OTS interfaces and components involved in a transaction.

The OTS entities are :-

• The Transactional Client is the entity that creates, starts and ends the transaction.

• The Recoverable Server is an entity that has recoverable state i.e. it stores data on stable

storage, thus can recover from failures.

• The Object Transaction Service is a global system service that coordinates transaction

and drives commit protocols.

• The Transaction Context is an entity that is copied to each server involved in a

transaction. The Transaction Context contains information on the state of a transaction.

The interfaces are :

• Current interface provides begin, commit and rollback operations as well as access to the

Coordinator object of the OTS.

• Coordinator interface provides operations to get information on the transaction and

allows resources to register as taking part in the transaction.

Chapter 2 - Introduction to the Background Standards and Technologies 34

Recoverable
Server for Bank A

Recoverable
Server for Bank B

OTS objects

~

~ debit

~
* f begin

t
creditili

~
r~
li

get ¢ontrol

re lster

~

► ' ! resourcb

i
I
!
!

get control ► ili

register J resource

commit

~

~ ◄

I re are

~
! re ,_ are

commit
" • ~

commit

Coordinator

Figure 2.13: Sequence of requests for a client to move money between two Bank objects in a OTS transaction
using two-phase commit

• Resource interface must be supported by recoverable servers, so that the OTS can drive

a commit protocol with the server.

Figure 2.13 shows an example of an OTS scenario. This scenario is taken from [Orfali 96]

and gives a clear view of the sequence of requests between objects within an OTS

transaction, consequently it should give a better understanding of OTS. The example

scenario shows a client starting a transaction, preforming a debit and a credit operation

between two Bank objects and then committing the transaction, at which point the OTS

performs a two phase commit. In the diagram, the horizontal arrows represent requests, the

vertical lines represent the events (requests) that an object has received and initiated over

the duration of the transaction.

1. The client begins the transaction.

2 . The client debits Bank A.

3. Bank A implements recoverable behaviour, so it registers its Resource interface with

the Coordinator.

Chapter 2 - Introduction to the Background Standards and Technologies 35

4. The client credits Bank B.

5. Same as step 3 for Bank B.

6. The client issues a commit.

7. The Coordinator performs the first phase of the two-phase commit by requesting each

Resource to prepare. Each Resource in turn returns a vote on whether to commit or not.

8. Each vote was to commit, hence the Coordinator requests each Resource to commit

and the transaction is complete.

An overview of the fundamental model of the Object Transaction Service has been given.

The OTS has more aspects such as nested transactions, recovery, transaction context

propagation and supporting XA-compliant resources of the X/Open Distributed Transaction

Processing model. These features are covered in the OTS specification[OMG COSS] and

[Fleming 97], information on implementing an OTS can be found in [Grasso 97] and

[Grasso 97b].

The Object Transaction Service is a complex and important CORBA service and is

necessary for any CORBA system that has to be reliable. Thus, a CORBA persistent data

facility serving a reliable system must be able to work within the context of a transaction

and support the transaction ACID properties. Consequently, a persistent data facility must

comply with the OTS to be of value.

2.4.6 The Concurrency Control Service

The Concurrency Control Service(CCS) manages access to shared resources(i.e. a CORBA

object), so that concurrent accesses to the resource by multiple clients does not upset the

consistency of the resource. To keep the consistency of the resource, the CCS enforc~s a

locking mechanism[Coulouris 88] on access to the resource, whereby a client must gain a

lock on a resource to access it. The two basic lock types of the CCS are read-only lock and

write lock, allowing shared non-update access or exclusive updating of the resource' s data.

Typically, resources will implement a locking policy of multiple readers and a single writer.

Thus, multiple clients can concurrently read from the resource, but only one client can

update the resource with no other locks active on the resource.

Chapter 2 - Introduction to the Background Standards and Technologies 36

The Concurrency Control Service(CCS) consists of a set of interfaces which a resource

must implement to control access to itself with a locking mechanism. The primary interface

is the LockSet interface, which provides operations for clients to explicitly gain and release

locks on the resource.

The Concurrency Control Service is a complementary service to the Object Transaction

Service(OTS) as CCS provides a locking facility that serialises access to a resource, thus

providing the isolation characteristic of a transaction. For this reason, CCS has been

designed to work with the Object Transaction Service by allowing the OTS to drive the

release of locks.

Again, in a reliable system, the consistency of the system must be maintained and the

concurrency control service is the manner of achieving this in CORBA systems. Hence,

CCS is a key part of any persistent data facility.

2 .4. 7 The Relationship Service

In the CORBA environment, an object can refer to another object by holding an object

reference to it, thus a relationship is formed between the two objects. In this model, the

relationship details are hidden within the objects involved. Consequently, the relationship is

not generically viewable by other objects and services that might wish to know about an

objects relationships. The Relationship Service provides a means by which relationships can

be created external to objects, hence relationships can be viewed and traversed by the

objects involved in the relationship or by external objects using standard interfaces.

The two pnmary interfaces presenting a relationship are the Role and Relationship

interfaces(Figure 2.14). The Role interface represents one end of a relationship. The

interface has operations to traverse the relationship and to create or destroy a relationship.

The Relationship interface represents the link between roles and has an attribute defining

the relationship name.

Chapter 2 - Introduction to the Background Standards and Technologies 37

The Role and Relationship interfaces define the basic level of functionality that the

Relationship service supplies. The next level of the Relationship service allows the creation

of complex relationship graphs. This level introduces a Node interface that permits an

object to take part in multiple roles. At this level, a complex graph of objects and

relationships can be created. The TraversalCriteria interface gives the ability to define a

set of rules that define a sub-group of objects of a graph. The third level allows the

specialisation of roles, by defining whether the role type is a containment or reference role.

The Relationship service can be used by other services to manipulate a graph of objects as a

group. For example, the LifeCycle service can copy a group of objects from one place to

another, and the Externalization service can externalise a group of objects to a stream. Both

examples are dependent upon a set of rules that comprises the traversal criteria, which

defines the group of objects.

The COREA architecture is based upon components dynamically inter-operating by

requesting operations of each other. The next sections introduce the STEP and POSC SIP

architectures where inter-operability is based on applications sharing repositories of data

with a defined data models. These data repository architectures are introduced to show the

differences between them and the COREA style of inter-operability. They also serve to

provide an overview of the EXPRESS information modelling language that was created by

the STEP project and to describe the nature of the Epicentre data model which is defined in

EXPRESS.

Student Degree
~ studies student-degree studied by~
~ Role>--------< Relationship ---.... Role ~

Figure 2.14: Example of a relationship between objects using the Relationship service

Chapter 2 - Introduction to the Background Standards and Technologies 38

2.5 Overview of STEP

The STandard for the Exchange of Product Model Data(STEP)[STEP 94][0wen 93] is the

unofficial name for the international standard - ISO 10303 Industrial automation systems -

Product data representation and exchange. STEP is under the guidance of the National

Institute of Standards and Technology(NIST). The STEP project is working towards

providing a single international standard for the exchange of product data. Product data is

typically created and required by Computer-Aided Design(CAD), Computer-Aided

Engineering(CAE) and Computer-Aided Manufacturing(CAM) systems throughout the life

of a product. Therefore, it is important that a standard data exchange format is available to

transfer product data between such systems.

2.5.1 The STEP architecture

STEP is realising its goal in three main ways, these are :-

• To provide a method of describing the structure of data independent of data storage.

• To define standards to allow the exchange and sharing of data.

• To provide standard data models for specific industry areas.

These activities are described in more detail in the STEP architecture.

The STEP architecture(Figure 2.15)[Fowler 96][Yang 95] is comprised of a number of

sections. Each section of the architecture has a set of parts. Each part is an individual

specification and has a number identifying the part. This number is relevant to the section

number and part number.

The STEP architecture sections are :-

1. Description Methods

Part 1: Overview and fundamental principles : defines the basic principles of STEP and

the structure of the architecture overall.

Chapter 2 - Introduction to the Background Standards and Technologies

en cii'
"O 0)

0 ~ ..c 0)
+-' C
Q) ..!!!

~~
CW
0 8:
:p >< c..w
·c ~
(.) (I)
CfJ ·-

Q) ~
Q>

Q_

Application Protocols
(industry specific models)

Integrated Resources
Integrated Application

Resources
(application type specific models)

Integrated Generic
Resources

(industry specific models)

Implementation Forms
(STEP files, SDAI)

Figure 2.15: The STEP architecture

3
~o
::::r 0
0::::,
0. o'
0....,
0::::, cc 0,)
'< ::::,
Qo@
-+, ,-+, co
0) en
3!:!:
~ ::'I oc.c,
7"

39

• EXPRESS : One of the key objectives of STEP is to provide an unambiguous,

computer-interpretable representation of product data. To achieve this objective, the

EXPRESS language[EXPRESS 92] was developed. EXPRESS is used to describe

data in the form of entities that have attributes. Entities are linked together by

relationships or inheritance. EXPRESS also provides a full procedural programming

language to specify constraints on entity instances. The entity definitions for a single

data model are grouped together within a named schema. These features make

EXPRESS a powerful data modelling language that is independent of any data storage

implementation.

2. Implementation forms

This section defines standard formats within which instance data belonging to EXPRESS

defined models can be stored, exchanged and accessed. The first part of this section is

part 21-the physical file format. Part 21 describes the format of how instance data can be

stored in a file. These files are unofficially called STEP files and are the primary method

of exchanging data between systems. Part 22 Standard Data Access Interface(SDAI)

provides a standard interface to access data within an application e.g. a database

management system, regardless of the internal form of the data storage. There are

additional parts to SDAI that specifies a mapping of the SDAI to specific programming

languages such as C, C++ and Java. There is also a mapping in development to the

OMG' s Interface Definition Language.

Chapter 2 - Introduction to the Background Standards and Technologies 40

3. Integrated Resources : This section provides a set of common data model definitions that

are required in many different product data application areas. This section is divided into

two different parts:-

• Integrated Generic Resources : This part provides data models that are independent

of any specific application area, but is common to many different application areas.

For example, Part 42 Geometric and topological representation defines generic

representations for the shapes of objects.

• Integrated Application Resources : This extends the integrated generic resources to

support the needs of specific groups of applications. For example, Part 101

Draughting defines common data representations for all applications that make use of

engineering drawings.

4 . Application Protocols

This section provides data models related to specific industries. The application

protocols are data models that are more precisely defined than the more abstract models

of the integrated application resources. It is these application protocols that are the

pinnacle of the STEP architecture. Applications of a specific industry using their

industry's application protocol, can easily exchange product data with similar

applications.

5. Conformance testing methodology and framework

This section provides information on methods for testing software product conformance.

2.5.2 EXPRESS Overview and Constructs

The EXPRESS information modelling language[EXPRESS 92] is an international

standard(ISO 103 03 : Part 21) for the modelling of data independent of any implementation

technology. EXPRESS is the key element to allow data exchange in the STEP architecture.

Applications exchanging data can refer to a common EXPRESS-defined data model to

understand the structure of the data.

Chapter 2 - Introduction to the Background Standards and Technologies 41

The EXPRESS language syntax is precisely defined in a set of logical rules. Consequently,

a data model correctly written in EXPRESS can be computer interpretable and an

automated process can be employed to map the data model to any implementation

technology e.g. a programming language or database management system.

EXPRESS embodies concepts such as units of information called entities that are

comprised of attributes. The relationships and inheritance structure of entities can also be

described. EXPRESS provides a procedural language to specify constraints on entity

attributes and between entities. These concepts make EXPRESS more than a data definition

language, EXPRESS is an information modelling language as it captures the structure and

constraints of the data.

Figure 2 .16 shows a sample EXPRESS file for a small hypothetical data model. The data

model and EXPRESS code is neither a complete solution to such a problem or an example

of good data modelling, but was simply created to demonstrate some of the fundamental

constructs of the EXPRESS language.

Entity - Entities (e.g . ENTITY person, lines 10-19) are the basic units of data in

EXPRESS. An entity is made up of a set of attributes and constraint rules on the values of

these attributes. An entity can inherit the attributes and constraints of other entities by

specifying the entity or entities that it is a sub type of For example, line 22 specifies

ENTITY student is a sub type of person.

Data Types - Each attribute of an entity has a data type. Data types can be simple types

such as integer, real, string etc .. Data types can be more complex types such as defined

types e.g. 'PCAS_code' defined on line 3 or they can be enumeration types e.g.

'degree_type' defined on line 6.

Relationships - a relationship is indicated by an entity attribute having a data type of

another entity. For example, line 33, the degree entity has a one-to-many relationship with

the student entity. The relationship is one-to-many as it is specifying an aggregate

relationship with the ' SET OF' key words. However, this relationship definition only

indicates the relationship in the direction of degree to student. The relationship in the

Chapter 2 - Introduction to the Background Standards and Technologies

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15 .
16.
17.
18.
19.
20.
21.
22.
23 .
24 .
25.
26.
27.
28.
29.
30.
31.
23 .
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

SCHEMA engineering_school;

TYPE PCAS code= STRING(15);
END_TYPE;

TYPE degree type
ENUMERATION-OF (ee,cse,csb,mee,mcse);
END_TYPE;

ENTITY person
SUPERTYPE OF (student);

surname STRING;
first name : STRING;
address STRING;
age INTEGER;
phone_no STRING;

UNIQUE
surname, first_name;

END_ENTITY;

ENTITY student
SUBTYPE OF (person);

code : PCAS _code;
grade average REAL;

UNIQUE code;
INVERSE

degree course
WHERE

degree FOR degree_students;

age_ limit : age<= 65 AND age>= 18;
END_ENTITY;

ENTITY degree;
degree code : degree type;
degree=students : SET [0 :100) OF student ;

END_ENTITY;

RULE maximum_number_of_masters students FOR (student, degree);
WHERE

check : SIZEOF(QUERY(temp <* student I
temp .degree course.degree code mee OR
temp.degree=course.degree=code = mcse)) <= 20;

END_RULE;

END_SCHEMA;

Figure 2.16: An Example EXPRESS schema

42

opposite direction (i.e. student to degree) is specified on lines 28 & 29. The 'INVERSE'

keyword indicates the relationship in the reverse definition.

Constraints - are divided into two categories, these are local and global rules. Local rules

apply constraints on the value of attributes of an entity that the rules are defined in, or

constraints on all instances of that entity. There are two forms of local rules : unique and

domain. Global rules apply constraints amongst many entities in a data model.

Unique rules apply to all instances of an entity type. A unique rule specifies an attribute or

set of attributes that must be unique across all instances of an entity. For example, lines 17

& 18 declare that the combination of 'surname' and 'first name' must be unique for each

person instance.

Chapter 2 - Introduction to the Background Standards and Technologies 43

Domain rules constrain the value of an attribute for a particular instance. For example, lines

28 & 29 declare a rule that constrains the age of student.

Global rules are defined using the procedural language part of EXPRESS. The procedural

language allows rules to be formed. These rules involve querying properties of instances of

differing entity types. For example, lines 36-41 query all student instances to find out if

their degree type is a masters degree. The rule limits the number of masters degrees to less

then or equal to 20.

The EXPRESS language is an excellent data definition language to represent complex data

models. This combined with the ability to define constraints makes EXPRESS a very

powerful information modelling language. For these reasons and by virtue of being an

international standard, EXPRESS has been widely used outside the STEP project, as well

as in many other standards e.g. POSC SIP[POSC 92].

2.6 POSC's System Integration Platform(SIP)

The Petrotechnical Open Software Corporation(POSC) is an organisation formed by the

Exploration and Production(E&P) industry i.e. the oil and gas industry. POSCs purpose is

to produce standards for computing technologies within the E&P industry. The need for

these standards was due to E&P companies in the past building expensive software

applications. These applications could not communicate or exchange data with other

applications as they were built using proprietary communication and data format standards.

The ability to share data between applications in the E&P industry is an important one, as

most applications have one primary processing task and must pass data onto other

applications to carry further processing. For example, in searching for oil, a seismic survey

has to be carried out. The seismic recorder application places the seismic data onto

magnetic tape. To view the data, a 3D seismic interpretation application must understand

the stored format of the data to be able to read and interpret it.

Chapter 2 - Introduction to the Background Standards and Technologies 44

POSC's solution to the problem of interoperability and data exchange in the E&P industry

is the Software Integration Platform(SIP) architecture[POSC 92]. SIP is a set of

specifications that not only standardises methods of sharing and exchanging E&P data, but

also some aspects of general computing environments such as user interface styles and

computing platforms.

2.6.1 The SIP specifications

SIP currently comprises of seven specifications, these are :-

1. Base Computer Standards - this specification standardises some aspects of computer

systems such as operating systems and language compilers. These are specified to

increase portability of SIP applications across systems.

2. Epicentre Data Model[POSC 95] - is a very large data model defined in

EXPRESS[EXPRESS 92](section 2.5.2). The entity definitions in Epicentre can be used

to describe the vast majority of data that will ever need to be stored in the E&P industry.

Thus, Epicentre provides a common reference model between E&P applications.

3. Data Access and Exchange(DAE)[POSC 95b] - is a specification for an Application

Programming Interface(API) to access Epicentre defined data. The API is independent

of any underlying storage technology(e.g. DBMS). This is to isolate the standard from

any technological changes in storage technologies e.g. migrating from relational

databases to object-oriented databases. The DAE specification also incorporates its own

variation of SQL. This permits developers to manipulate Epicentre data in a query type

style.

4. POSC Exchange Format - enables the storage of Epicentre-defined data in a standard

external form that can be exchanged with other systems.

5. User Interface Style Guide - specifies a common computer-human interface that defines

the appearance and behaviour of user interfaces.

6. Computer Graphics Metafile Petroleum Industry Profile - defines formats for the

exchange of graphical data.

Chapter 2 - Introduction to the Background Standards and Technologies 45

7. Inter-Application Communications - provides a standard API for inter-operability

between applications.

2.6.2 The Epicentre Logical Data Model

Epicentre[POSC 95][Kim 95] is a data model describing more than 1500 business and

technical objects concerned with the E&P industry. These objects are termed entities in

Epicentre. The definitions of each entities attributes and relationships are accurately

represented in EXPRESS.

Epicentre is a logical model as it cannot be directly implemented in a physical database,

hence is independent of any storage technology. However, POSC does provide a set of data

definition language statements that provides a mapping of Epicentre to some popular

relational databases. These mappings are called projections.

Each Epicentre entity has a complex structure due to the many attributes and relationship

attributes. Additionally, each entity can inherit from multiple entities. This can make the

inheritance hierarchy of an entity complicated and greatly increases the number of attributes

for a given entity.

ENTITY well
SUBTYPE OF (composite spatial object, facility, product flow network unit) ;
identifier : ndt name-; - - - -
ref naming system : OPTIONAL ref naming system ;
ref-well structure rule : OPTIONAL ref well structure rule
part of well : OPTIONAL SET [0 : ?] OF well ; - -
well-slot : OPTIONAL well s l ot ;

INVERSE -
well status : SET [O: ?] OF well status FOR well
composed of well : SET [0 : ?] OF- well FOR part of well
wellbore- : SET [0:?] OF wellbor e FOR well ; - -
well report : SET [O:?] OF well report FOR well ;
well-alias : SET [0 : ?] OF well alias FOR well ;
wel l -surface point : well surface point FOR well;
wel l -surface-feature role- , SET [0 : ?] OF well s urface feature_role FOR well ;
well-activi t y : SET [0 : ?] OF well activity FOR well ;-
well-completion : SET [0:?] OF well completion FOR well ;
pty economic oil cut limit : SET [0~?] OF pty economic oil cut limit FOR well ;
pty- specific- productivity index : SET [0 : ?] OF pty specific productivi ty index FOR well
pty- economic-water cut l imit : SET [0 : ?] OF pty economic water cut l i mit-FOR well
pty-unit productivity index : SET [O:?] OF pty unit productivity index FOR well ;
pty-economic gor limit : SET [0:?] OF pty econo mic gor limit FOR-well ;
pty- economic-wor-limit : SET [O : ?] OF pty-economic- wor-limit FOR well ;
pty- productivity-index : SET [0:?] OF pty-productivity-index FOR well ;
pty- economic limit money : SET [0:?] OF pty economic limit money FOR well
reservoir drainage- featu re : SET [O : ?] OF reservoir drainage feature FOR well

UNIQUE - - -
s i: i dentifier, ref_ex istence_ kind;

END_ENTITY;

Figure 2.17: EXPRESS code f or the Epicentre Well entity

Chapter 2 - Introduction to the Background Standards and Technologies 46

Figure 2.17 shows the EXPRESS code for the well entity. The well entity has many

relationship attributes with other entities, where many of these relationships are aggregate

(zero-to-many) relationships. For example, a well can contain many well bores(i.e. drilled

holes). This relationship is depicted in the wellbore attribute.

The code declares the attributes of only the well entity and does not include the definitions

of the supertypes ofwell. Figure 2.18 shows the inheritance hierarchy of the well entity.

The total number of attributes that the well entity possesses and inherits from its super

types is 64.

topological
_object

spatial_object

composite_
spatial_object

e_and
_p_data

object_of
interface

business
_object

facility

well

Figure 2.18: Entity hierarchy of Well entity

product_flow
network unit

Chapter 2 - Introduction to the Background Standards and Technologies 47

2.6.3 The Data Access and Exchange Specification

The Data Access and Exchange[POSC 95b] specification is an Application Programming

Interface(API) to access Epicentre-defined data, including creating, querying, updating and

deleting the data. The API also allows management of the data access environment such as

transaction management.

An implementation of the DAE is termed a Data Access and Exchange

Facility(DAEF)(Figure 2.19). An accessible DAEF storing Epicentre data is termed a POSC

datastore. Applications written using the DAE API specification should be portable across

DAEFs of different vendors.

The DAE API specification can be categorised into the following sections :-

• General environment operations - comprises of connection, transaction, error status and

memory management operations.

• Instance operations - provides the direct manipulation operations, including

creation/deletion of instances, attribute reading/updating and aggregate management.

• Frame operations - much of E&P data are large sets of scientific data or spatial data.

These data sets are stored in arrays. The arrays may not only be large in size, but can also

have many dimensions. These complex arrays are handled by the DAE in the form of

frames. A frame holds an array of data or can hold an array of child frames. Using this

feature recursively, a structure representing an array of many dimensions can be built up.

• Query language and execution - the Epicentre data can be directly manipulated using

Application

POSC datastore

communicatio

Figure 2.19: Structure of a DAEF

,--- - - - --,

DBMS

Epicentre
projection

Chapter 2 - Introduction to the Background Standards and Technologies 48

instance operations or can be manipulated in a query type style using the DAE data

access language. The data access language is based on SQL. Its formal specification is

provided and explained in this section. The execution of data access statements using

DAE operations is also specified.

• Administration operations - provides control over user access, and creating or deleting

datastores.

2.6.4 Example DAE Code

An example of DAE code is shown in figure 2.20. The code is shown to give a clearer view

of what the DAE does and how it is used.

The DAE API is a set of 'C' functions that can be called to manipulate Epicentre instances

resident in a POSC datastore. The example code demonstrates the two forms of entity

manipulation using the data access language and direct manipulation. The data access

language is used to execute a query to return a we 11 instance with a specific

identifier attribute. Direct manipulation is then used to change the identifier

attribute.

The code execution starts by creating a connection with a specific DAEF server(6). This

connection is called its session. A datastore is then opened with the server(8). The query to

find a specific well(3-4) is then executed(I0-11). The result of the query is fetched(13-15),

and then a direct manipulation operation is used to change the value of the selected Well

identifier attribute(19-20). The changes are committed(24), memory is released and

the session is disconnected(26-29).

Note that the example code does not show any checking that a DAE function call has

successfully executed. In a reality, each DAE function call would be individually checked

for correct execution. DAE function calls that are particularly prone to failure are attribute

update operations(l 9-20). This is due to constraints on attribute values specified in the data

model. The identifier attribute of well has a unique constraint on it(see

Figure 2.17). If this unique constraint is not satisfied then the update operation will return

an error.

Chapter 2 - Introduction to the Background Standards and Technologies

1. daeStaternent strntHandle = NULL;
2. daeinstance wellinstance = NULL;
3. daeString queryStaternent
4. = "SELECT well FROM well WHERE identifier = 'AlphaOOOOl' ";
5.
6. daeConnectSession(user, password, NULL, "rnyDAEFserver", &session);
7.
8. daeOpenDataStore(session, "datast orel', &datastore);
9.
10. daeAllocStrnt(datastore, &strntHandle) /* allocate the query statement*/
11. daeExecDirect(strntHandle, queryStaternent, -1); /* execute the query*/
12.
13. daeBindCol(strntHandle, 1, DAE C INSTANCE, &wellinstance, NULL,
14. &indicat or); /* bind results of query to wellinstance

*/
15. daeFetch(strntHandle,&returnCount); /* fetch the first r esult*/
16.
17. if (returnCount!=O) /* if any instances are returned*/
18. {
19. daeUpdateValueOfAttribute(wel linstance,"IDENTIFIER",/*update identifier*/
20. DAE_C_STRING, "BetaOOOOl") /*attribute of well* /
21.)
22. else printf("\n Query did not return any wells");
23.
24. daeCornrnitTransaction(session); / * commit the changes*/
25.
26. daeFreeHandle(wellinstance));
27. daeFreeHandle(strntHandle);
28. daeFreeHandle(datastore);
29. daeDisconnectSession(session); /* disconnec t the session*/

Figure 2.20: Example DAE 'C' code

2. 7 Summary and Conclusions

49

This chapter has summarised three major international computing standards. Each standard

tries to achieve integration of heterogeneous applications by providing inter-operability

models and common data models. However, the standards place a different emphasis on the

importance of the issues of inter-operability and common data models. Figure 2.21 shows a

synopsis of the primary parts of the three standards, the parts are ordered vertically

according to similar functionality.

The STEP and POSC SIP standards are greatly oriented towards providing a common data

model that is used as a template to create data. Inter-operability between applications is in

two forms - exchange and sharing of data.

Data exchange(Figure 2.22) is carried out by an application storing the data in a standard

format in a file e.g. Part 21, PEF. Another application can read the stored data by

referencing the common data model and by complying with the standard format rules.

Data sharing(Figure 2.23) entails applications using a standard interface(e.g. DAE, SDAJ)

to concurrently access data in a shared datastore. Applications using the data access

Chapter 2 - Introduction to the Background Standards and Technologies 50

interface have to conform to a common logical data model(e.g. Part 218 Ship Structures,

Epicentre) that the datastore supports. It is the duty of the software layer implementing the

data access interface to do the conversion between the data storage model and the logical

data model.

Both STEP and SIP have a similar architecture to inter-operability by having a common

data model(s) and instance data of the model can be exchanged or shared. The difference is

that SIP has a single data model supporting the needs of a single industry, while STEP has

a many data models supporting a wide range of industries. Due to SIP's focus on a single

model, its data exchange and sharing standards are closely tied to the data model 1.e.

Epicentre, while STEP standards are more oriented to sustaining multiple models.

CORBA provides inter-operability by supplying a communication system(i.e the ORB) that

part
of

CORSA
Applications

Vertical
Facilities

Horizontal
Facilities

CORSA
services

ORS/IIOP

IDL

~tary
store interface

CORBA

process
oriented

,----------, ,----------,•---------------

1 1

1 1

I
I

SIP
Applications

Epicentre

PEF

EXPRESS

DAE

SIP

I

I

I
I

STEP
Applications

Application
Protocols

Integrated
Application ;o-
Resources

(D ;:!.
VI (D
0 (0

Integrated C-,
.., OJ
()

Generic (D (D
VI C.

Resources

STEP Files

EXPRESS

SDAI

STEP

data model
oriented

Applications

Data Models

--------- -- -----
I Data Transfer

······----------
I Model Definition

Language

I Data Access
................
I

Figure 2.21: Matrix of the components of each standard with similar functionality

Chapter 2 - Introduction to the Background Standards and Technologies 51

system parts(i.e. CORBA objects) can directly send messages to each other to carry out

operations(Figure 2 .24). The inter-operability of system parts is modelled using the

Interface Definition Language(IDL). An interface definition specifies the operations that a

system part implementing that interface can carry out.

CORBA also incorporates a suite of common service specifications that provide much

functionality for systems to operate in the distributed environment. CORBA encourages the

reuse and extension of these services. CORBA itself has built upon these services with the

common facilities specifications that provide application level functionality.

A particular significant CORBA service is the Object Transaction Service(OTS). OTS

permits multiple distributed heterogeneous applications to work within a single transaction.

For systems that must be reliable, transaction capability is essential. Therefore, the

combination of CORBA and OTS will be a strong candidate for the basis of future

enterprise systems.

CORBA offers a sophisticated dynamic run-time inter-operability system that is largely

process oriented. On the other hand, STEP and SIP inter-operability is based on the sharing

and exchange of statically defined data. These data oriented applications concentrate on the

structure, semantics and management of the data, rather than how the application can

dynamically inter-operate with others.

data model

file system

Figure 2.22: Data exchange with a
common data model

Data Access 171
'---- lnt_erf,-ac_e _ _,refere~ e~

DBMS

Figure 2.23: Data sharing with a
common data model

IDL
interface
description

S
implements

~ 1/s .• , interface

~ s
references I

8 __ -"',J!DL
. 111terface
1mplemen s d . t·
inlerface escnp ion

Figure 2.24: Dyanmic inter
operability between system

components

Chapter 2 - Introduction to the Background Standards and Technologies 52

CORBA is strong in dynamic interoperability, but weak in the management of complex

persistent data. The reverse is true for STEP and SIP. They are strong in data management

and weak in dynamic interoperability.

One of the great strengths of STEP and SIP is their use of EXPRESS as a data definition

language. In CORBA, IDL could be used as a data definition language to define data

models, but it does not have some of the powerful abilities of EXPRESS, such as the

capture of relationships and constraints. These abilities are essential to create an

unambiguous, fully specified data models.

Both STEP and SIP have a standard data access API. Applications built to the API

specifications will be portable across implementation of the API. CORBA has no such

equivalent suitable standard for data access. The Persistent Object Service(POS) was

intended to meet this functionality, but failed due to design faults and being under specified.

Consequently, CORBA developers are left to implement their own data access mechanisms

to store data persistently using proprietary datastore interfaces e.g. file systems, DBMSs.

This leads to more work for developers, less flexible systems, possibly more bugs and a

decrease in application portability.

This section has discussed the strengths and weaknesses of the three standards. But the

factor that each profits from is the ability to specify a model (whether data or interface

model) that is independent of any implementation technology. Consequently, the logical

models do not have to take into account the complexities and evolution of any specific

implementation technology, thus the logical model will more accurately reflect the problem

domain.

Chapter 3

Analysis of Current CORBA Persistent
Data Access Solutions

3 .1 Introduction

This chapter surveys current solutions that CORBA applications can utilise to access and

manipulate persistent data. The persistent data is stored in some kind of datastore that is

based on some specific storage technology e.g. files, relational databases, object-oriented

databases and industry standard datastores. CORBA applications can access this data using

some form of interface to the store.

Access to persistent data for CORBA applications can be divided into three categories.

These are:-

• Proprietary storage technology interfaces.

• Standard IDL interfaces to storage technology.

• Persistent CORBA objects using database adaptors.

The chapter discusses each of these categories, including a description on how CORBA

applications interact with the differing interface mechanisms and the benefits and

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 54

disadvantages of their use in conjunction with CORBA. The result of this investigation has

influenced the proposed solutions presented in this thesis.

Included in this discussion are the following :-

• An overview of the OpenSpirit project. OpenSpirit is an excellent example of a three-tier

architecture supporting components for the Exploration and Production industry. The

data for the middle layer business objects have to be persistently stored. OpenSpirit' s

approach to persistent data access is examined.

• The Persistent Object Service(POS) was the OMGs answer to persistent data access.

POS is extensively detailed as well as an in-depth analysis of its design and the major

failures of its design.

• An overview of ISO 10303 Parts 22 and 26. Part 22 is the STEP project's Standard

Data Access Interface, it specifies an interface to allow the manipulation of EXPRESS

defined data. Part 26 is the binding of Part 22 to the OMG Interface Definition

Language.

• Integration of CORBA database adaptors with object-oriented databases. This puts

forward the argument that this kind of integration is the most elegant and ideal solution

to access persistent data in CORBA, but for already existing data in "traditional"

datastores this approach is not feasible.

3 .2 Proprietary Storage Technology

The most common method of accessing persistent data for any application is through an

interface of some proprietary storage technology. For example:-

• For a file system, data is stored in files and accessed using some programming language

specific API e.g. 'C' standard input/output functions, 'C++' input/output streams.

• Accessing a relational database through a proprietary or standard Application

Programming Interface(API) such as JDBC[SUN 97], ODBC[Orfali 96].

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 55

• Object-oriented databases(OODBs) such as Versant[OODB l] , Objectivity[OODB 2].

Also, one level stores such as ObjectStore[OODB 3], where memory and persistent

storage are closely coupled, so that objects in memory are effectively persistent and all

persistence operations are transparent to the client.

• An industry standard datastore and access interface e.g. the POSC Data Access &

Exchange Facility(DAEF) supporting Epicentre and the Data Access & Exchange(DAE)

APL

3.2.1 Problems with Proprietary Storage Technologies

To develop an application that requires data to be persistently stored, a developer will

create a logical model of the data. This logical model can then be mapped to an

implementation model that the selected storage technology can support. However,

transforming the model to fit the storage technology creates an impedance mismatch

between the application logical view of the data and its stored format .

The impedance mismatch can be defined as the amount of work required converting data

between two differing models where these models semantically represent the same data.

There are degrees of impedance mismatch that is dependent on how dissimilar models are.

For example, mapping an object model to a relational database the impedance mismatch is

high. The relational model does not have concepts such as inheritance, object identifiers,

complex data types and direct object manipulation. There is a low impedance mismatch

between an object model and object-oriented databases(OODB), as OODBs support all

these concepts, thus the object model can be directly mapped to the OODB, requiring very

little if any conversion of data.

A low impedance mismatch is an ideal situation to have between logical and storage

implementation models. This is due to the great amount of code and processing that will be

needed to transform data from one model to another when there is a high impedance

mismatch. The need for additional code and processing to cross a high impedance mismatch

leads to several additional problems:-

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 56

• Extra effort needed to create code, therefore extra cost.

• More possibility of bugs.

• Small changes in the application logical model will lead to large changes in conversion

code.

• Advances in storage technology can incur bugs.

• Integrity of data is more difficult to maintain.

• Performance is decreased due to conversion operations and maintaining data integrity.

• Conversion code is generally not reusable and has to be thrown away should the storage

technology change.

The result is very fragile code that is sensitive to changes in either model. Any changes will

require maintenance in the conversion code that could introduce bugs that will need fixing

and further testing performed.

The design of the mapping to the implementation model should be carefully carried out with

the possibility of changes and extensions to the logical model taken in consideration.

Otherwise, changes to the logical model will result in the implementation model becoming

extremely complex and performance inefficient[Ambler 99].

Mapping between logical and implementation storage model is a major concern for

developers. If not performed correctly then this can result in major delays in product

release and vast expense in software maintenance.

Also of concern is the close cohesion the application code has with the proprietary storage

technology. This mainly effects the portability and reusability of the code as the application

can be locked into the specific vendor's storage technology product. To port the

application to another vendors product requires a major rewrite. Another consequence of

this product lock is that the developers choice of platform, operating system and

programming language is limited to that for which the storage product is available.

Therefore, reusability and portability of the application is poor.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 57

For standard data access interfaces such as JDBC[SUN 97], ODBC[Orfali 94], DAE[POSC

95b] and standard file I/0 functions product lock is not so much of a problem given that a

developer abstains from any proprietary features of the specific datastore implementation.

But there is still the impedance mismatch caused by mapping to consider.

CORBA applications will use such data access interfaces either to provide a form of

persistence to CORBA objects or simply carry out some processing on persistent data and

make the results available to the CORBA distributed environment. As the CORBA

application is directly accessing the datastore through its proprietary interface, the

application therefore inherits the problems of data mapping and vendor product lock as

previously mentioned.

This close coupling[Somvil 89] of CORBA application/object and proprietary datastore

interface is contrary to the nature of component architectures which is the very essence of

CORBA. Component architectures entail the encapsulation[Rumb 91] of program

complexity within an interface. Encapsulation permits maximum reusability, portability and

a low coupling so that changes in one component have little or no effect on components

that are inter-operating with the component through its interface. The linkage between

CORBA application/object and datastore does not have these benefits and is therefore

detrimental to the quality of the software.

3 .2 .2 OpenSpirit and its Data Access Approach

The OpenSpirit[Godfrey 97] project is an alliance of Exploration and Production(E&P)

companies that are designing and developing a common framework of components to

enable integration and data sharing of systems within the E&P industry. The project is

initially concentrating on components representing subsurface features e.g. wells, wellbores

and associated measurement of their features such as log traces and seismic surveys. These

components are realised in the form of IDL interface definitions, thus all communication

between components/CORBA objects is through an ORB.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 58

ORB domain

• -. -. ----. ----•► stored in

Figure 3.1: The three tiers of the OpenSpirit architecture

The architecture of the OpenSpirit component framework follows a three tier

architecture[Shan 98](Figure 3 .1). The middle logic layer comprises of CORBA

objects/components representing common subsurface features. The presentation layer

contains viewers that provide a view to the user of these middle layer components. The

datastore layer comprises of IDL wrappers to popular E&P datastores. Each component

relies on an IDL wrapper to an E&P datastore to preserve its state.

The datastore layer consumes a large portion of the development effort of the

implementation of the OpenSpirit framework. This is due to the effort needed to map each

component from its implementation model to a form where it can be served to the business

object across an IDL interface.

Each type of OpenSpirit E&P(OSEP) object has an equivalent IDL interface that acts as a

datastore wrapper. An implementation of this IDL wrapper permits an OSEP object to

request and set data that constitutes its persistent state. Several layers of software are

required to implement the IDL datastore wrapper shown in figure 3 .2. The upper most

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 59

layers provide the connectivity between the OSEP object and its datastore wrapper

interface using the ORB. The specific implementation of the datastore wrapper methods are

written in Java and utilise a Java ORB for distributed communication. OpenSpirit has taken

this approach for the following practical reasons:-

• Portability of code due to Java's write once, run anywhere ability.

• Only one single ORB run-time in use.

• Object implementation code can be reused for each E&P datastore in use with the

OpenSpirit project.

• The OpenSpirit project makes use of a set of services called the Business Object

Facility[Prism 99] by PrismTech[PrismTech]. These services are written in Java, hence

they can be used locally rather than remotely as would be the case if the wrapper was

written in another language.

• Easier distribution of OpenSpirit software.

The drawback of this approach is that the access interfaces to the supported E&P

datastores are based in C or C++, therefore a cross-language integration mechanism is

OpenSpirit E&P Object } Business

Business IDL stub object

object
specific I DL skeleton } Reusable object

Java implementation
implementation
code

Mapping
code

Data store
specific Persistent

store
Oracle database

Figure 3.2: Layers of software implementing an IDL datastore wrapper

Chapter 3 - Analysis of Current CORBA Persistent Data Access Solutions 60

necessary. Java provides integration with C based languages usmg the Java Native

lnterface(JNl)[SUN 97b]. JNI allows Java programs to call native C functions including the

passing and returning data. JNI also allows native functions to share memory management

of the Java virtual machine.

The mapping code layer provide 'get' and 'set' C language functions . These contain the

intelligence to convert data between the datastore model and the logical model of upper

layers, thus spanning the impedance mismatch.

The mapping between objects in the upper layers and data entities in the datastore will not

necessarily be a one-to-one mapping. In considering the mapping of OSEP objects to the

Epicentre data model, each OSEP object will be mapped to many Epicentre entities. This is

due to the fact that OSEP objects are very coarsely grained and Epicentre entities are very

finely grained, therefore attributes of OSEP objects map to many individual entities that are

intricately interconnected by relationships. To retrieve (or set) OSEP object state data,

these relationships have to be navigated and the data contained in the Epicentre entities

have to be pulled out and transformed to a format for passing across the JNI.

The implementation of the OpenSpirit E&P mapping to Epicentre was personally carried

out by the author of this thesis . This work was completed within the employment of

PrismTech[PrismTech]. PrismTech is the development and marketing partner of the

OpenSpirit alliance and is part sponsor of this project.

An area that PrismTech specialises in is providing data management and integration tools

for the E&P industry including LightSIP - an implementation of the DAE supporting

Epicentre, and conversion tools to convert common data formats to an Epicentre format.

PrismTech is working towards a complete solution for E&P data management in the form

of a data warehouse. This will involve the conversion of data between many different

industry formats and models. To meet this challenge PrismTech is developing the Mapping

Manager Architecture[Prism 98] .

Chapter 3 - Analysis of Current CORBA Persistent Data Access Solutions 61

The Mapping Manager Architecture(MMA) is a methodology for moving and transforming

data between different data models. The MMA specifies a three-stage process to convert a

data between two data models. The first stage is a formal definition of the map between the

data models, second is the automatic generation of executable code to carry out the

conversion, and the final stage is the execution of this code to transfer data between the

two models. The pivotal element of this architecture is the formalization of the mapping

between data models. This is accomplished by specifying the mapping in PrismTech' s

Expressive language[Prism 98b].

The Expressive language allows the formalization of the mapping from one model to

another. It achieves this by permitting the definition of how attributes of a data entity or

entities in a source model are assigned to attributes of a data entity or entities in a target

model. The language can also be used to define control over instance creation of entities in

the target model. Navigation of relationships between entities is also permitted, thus

attributes of many different entities can be extracted to fulfill the required data for

attributes of a single entity of the target model. These are only the core features of

Expressive, as it contains many other features to help formalise the complex task of

specifying how one data model maps to another.

The powerful features that Expressive provides made it an ideal facility to specify a formal

mapping between OpenSpirit E&P objects and the Epicentre data model. The Expressive

mapping for OSEP objects to Epicentre was designed by Steve Trythall of Prism Tech E&P

data management division. To design such a mapping requires a comprehensive knowledge

of both models including the structure and semantics of the models. This is especially true

in the case of Epicentre where there can be multiple sets of entities that OSEP data can be

mapped to, but the design semantics of Epicentre dictate only one set of these entities.

Stage two of the Mapping Manager Architecture is the automatic generation of executable

code from the Expressive mapping to transfer data between the two models. To achieve

this, two pieces of conversion code need to be generated. The first piece translates the data

in the source model to a standard model format . The second piece translates the standard

model format data to the destination model. To develop code generator tools to produce

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 62

such translation code requires intimate knowledge of each respective data model and the

access interfaces at each end of the translation. For Epicentre, this would be extremely

complex for the following reasons :-

• Epicentre has many extended data types that have a complex structure to hold data such

as spatial, quantity and geometric (Mapping these data types is complicated as well as

saving them in the DAE).

• Each Epicentre entity has a set of attributes that makes up the entity' s natural identifier.

The combination of these attributes is unique within the domain of all instances of that

entity type. This uniqueness has to be maintained for successful translation.

• Many Epicentre entities have mandatory attributes. These attributes are not allowed to

have a null value. Sometimes the need for this data is not mandatory in other models,

therefore will not exist. In this situation, mapping code would have to create arbitrary

values for these attributes.

• Many Epicentre entities have constraints placed on their values by rules declared in the

EXPRESS procedural language, that have to be complied with.

• The DAE interface is very complex to use, especially the frames facility that manages

scientific and spatial data.

Due to these reasons, a massive amount of development time and resources would be

required to create an Expressive automatic translator from a standard data model format to

Epicentre. Therefore, the OpenSpirit to Epicentre/DAE mapping was manually coded and a

direct translation strategy was selected with no intermediary standard data model format.

Development of the get and set functions to map each OSEP object to Epicentre was an

awkward and time-consuming process. The first stage of this development was the manual

creation of test data within the POSC datastore. The test data required the creation of

entities involved the mapping, as well as the creation of entities that are the mandatory

attribute values of these mapped entities. Given this test data, each get function has the

following stages :-

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 63

1. Start a transaction.

2 . Use a query to search for a target entity that is identified by key information.

3. The target entity will typically have references to other entities that hold data required

for the mapping. Traverse the relationships from the target entity specified in the

Expressive mapping to gain references to the required entities.

4. Copy and convert the data from the target entities to the JNI data structures. This stage

is not a simple matter owing to the fact the data is made up scientific values or spatial

data and is contained in DAE frames. Reverse this stage for set functions.

5. Finish the transaction.

The development of the get functions was used as an evaluation of the correctness and

consistency of the Expressive mapping to Epicentre. The consequence of this was slight

changes to the mapping design. The next stage of development was the creation of the set

functions to write data from OSEP objects to their persistent Epicentre form.

The get and set functions carrymg data between OSEP objects and Epicentre entities

provide the principal functionality to cross the impedance mismatch between the Epicentre

model and the OpenSpirit model. The functions carry out the greatest amount of work to

provide persistence to the OpenSpirit components and take up the majority of development

time for the datastore layer, especially in considering that each component has to be

mapped to each datastore type supported by the OpenSpirit project.

The OpenSpirit project and its approach to providing persistence to components/CORBA

objects is typical of current solutions concerning the provision of access to persistent data

from CORBA applications. This solution involves the wrapping of datastores in an IDL

interface and providing mapping code as the implementation of the interface to translate the

implementation datastore model to the application logical model. Although the middle tier

components are disjoint from their mapping code via the IDL datastore wrappers, the

wrapper implementations still incur the problems with proprietary datastore interfaces

described in 3 . 1. 1 .

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 64

OpenSpirit acquires some additional problems due to the design of its persistence

architecture. The use of the Java Native Interface(JNI) to bridge ORB specific Java

implementation code and mapping code introduces great complexity into the persistence

architecture. The JNI approach to language integration is not as clean, automated and

defined as that of CORBA integration using IDL interfaces. The native side of the JNI has

to manually convert data to a format that is acceptable to the Java virtual machine. Use of

the JNI adds an additional impedance mismatch, thus making the code more bug prone,

harder to maintain and sensitive to model changes. To preclude the use of JNI, a C/C++

ORB could be used, but this would counter the initial reasons for choosing a Java based

ORB.

The high level view of the OpenSpirit persistence architecture is a rather simplistic one.

This view is of components providing datastore wrappers with identifier information to

locate their state data. Once located, the wrapper fetches the data and returns it to the

component. The significant features missing from this view is that of concurrency and

transaction capability that are essential for any reliable system. To have such a capability,

the clients of the datastore wrapper must allow some sort of session to be set-up that

relates the client with its activates in the datastore. The session will give access to the

locking and transaction functions of the datastore as well as keeping track of locks and

transactions that the client is responsible for.

Currently, OpenSpirit does not control concurrent access to datastores. This situation is

fine for simply distributing data in a standardised form for read-only access, but for a fully

functional read-write system, concurrency and transaction control is vital.

As mentioned, the OSEP objects are fairly coarsely grained. Each OSEP object has a

counterpart datastore wrapper interface and implementation to provide it with access to its

persistent state. As there is a low number of OSEP objects, there are only a few datastore

wrapper interfaces. If the granularity of OSEP objects was to increase or if we might wish

to provide access to each Epicentre entity from CORBA, then to use this persistence model

each object would have a datastore wrapper interface and manually coded conversion code.

For a data model the size and complexity of Epicentre, this approach would be unfeasible.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 65

This is due to the amount of developer time and effort required to create bug free code to

convert each Epicentre entity to a CORBA object form.

Another problem with large, finely grained models is how references between

entities/objects are handled. In OpenSpirit, references are handled by an OSEP object

passing simple identifier information to the datastore wrapper. For example, a ' well' entity

has a string identifier that acts as a unique name for the well. An OSEP object will pass this

identifier to the datastore wrapper to identify its persistent data. For more complex models

referencing of this type is not always possible for the following reasons:-

• An entity might not have a unique identifier, but is identified by navigating a relationship

path from some other identified entity.

• An entity might be part of one-to-many relationship. In this case the single entity would

keep attribute identifiers to each entity it is referring to. If there is a large number of

entities in the many relationship then the single entity would be very large with all the

identifiers it has to keep.

• Referential integrity is harder to maintain as identifier information is spread amongst

many entities.

• Performance can be negatively impacted using unique attribute identifiers as a search is

necessary to find the referenced entity.

In summary, OpenSpirit is the first of its kind in the Exploration and Production industry.

The project is providing a three tier architecture with components in the middle layer

representing common business entities that are independent of any E&P datastore, thus are

also providing a form of integration between the popular E&P datastores. Each component

interacts with other components using their IDL interfaces and the ORB, hence components

of the OpenSpirit framework are truly distributed and open allowing reusability with ease.

However, the OpenSpirit component framework is a rather simplistic model. This has the

effect of making mapping to datastores easier. But even at this level of sophistication

crossing the impedance mismatch between logical model and implementation model is a

hard, time intensive and error prone task. For models such as Epicentre that are very finely

grained, the mapping is even more difficult owing to the numerous Epicentre entities

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 66

involved in a single mapping as well as the many constraints that are put on Epicentre

entities. An ideal situation would be to automate the mapping task. PrismTech's Mapping

Manager Architecture with its Expressive mapping language seems to be a natural solution.

3.3 Standard Interface Definition Language Specifications to
provide Data Access to Persistent Storage

This section surveys data access interfaces and services that are specified in IDL and are

international standards. The first standard specification is the OMG Persistent Object

Service(POS). POS is the OMG's solution to providing persistent data access in the form

of a set of services that provide persistence to the state data of CORBA objects. The

second standard is a specification from the STEP project that provides a standardised data

access interface to EXPRESS defined data. This interface has an IDL binding allowing data

to be manipulated from CORBA applications.

3.3.1 The OMG Persistent Object Service

The OMG Persistent Object Service(POS)[OMG COSS][Session 96] is one of the OMG

CORBA service specifications. POS was the OMG's solution to providing persistence to

CORBA objects, hence should be the main mechanism to provide access to persistent data.

As with other CORBA service specifications, the POS specification provides a set of IDL

interfaces and an explanation of how components implementing these interfaces work

together to meet their aim i.e. providing a persistence service.

A key design principal of POS is that POS should support both traditional datastores e.g.

files, relational databases as well as newer data storage mechanisms i.e. object-oriented

databases to store persistent data. The reason behind this design decision is that the vast

majority of corporate data is stored in these traditional datastores. Figure 3. 3 is taken

from [Session 96] and shows an estimate of the amount of data stored in files, traditional

databases and object-oriented databases. The estimate of the amount of data stored in

object-oriented databases is minuscule compared to files and traditional databases.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions

_____ ._Object-oriented
Databases

Figure 3.3: Estimate of amount of data stored

in different datastore types

67

Therefore, to simply support object-oriented databases, which is CORBA's most similar

storage model would be a serious drawback to the future growth of CORBA.

However, the design of POS to support persistence in a broad range of datastores was the

primary reason why it failed and has been withdrawn by OMG as a standard. This is due to

the fact that developers of POS implementations found POS un-implementable owing to

major design flaws and being greatly under specified. This section describes the design of

POS and then continues with an examination of the reasons why POS has failed and what

can we learn from it.

3 .3 .1.1 The Design of the Persistent Object Service

The Persistent Object Service(POS) regards a persistent object's state as having two parts.

These are a dynamic state and a persistent state (Figure 3.4). The dynamic state acts as the

object's state data in memory and only exists for the lifetime of the object. The persistent

state is state data stored in a persistent datastore and is copied out to memory to create the

dynamic state, thus survives multiple creations of the dynamic state. The IDL interfaces of

POS (Appendix B) are used to identify, create and delete persistent states as well as to

move the state data between dynamic and persistent states.

As mentioned, the persistent state can be stored in any type of datastore. The only

constraint on the type of datastore and the implementation model of the datastore is that

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 68

the persistent state must be able to be uniquely

identifiable for the purpose of finding the persistent

state and to read or write it.

To move state data between persistent and dynamic

states, POS utilises a protocol. A protocol is a

structured way to transport the state data from the

datastore to the persistent object using requests.

The POS specification defines no standard protocol,

but gives an example of three possible protocols.

Excluding interfaces concerned with protocols,

there are four fundamental POS interfaces shown in

figure 3 .4. These are the Persistent Identifier(PID),

Persistent Object(PO),

Manager(POM)

DataService(PDS).

and

Persistent

the

Object

Persistent

Client

has Persistent
Identifier

1---- -----1 PIO

Pos*

Data transfer
by datastore

interface

* interface has
operations:
store/restore
connect/disconnect
delete

POM*

C:
ct)
::i -3i
CD
en

Figure 3.4: Structure of the fundamental
interfaces of the Persistent Object Service

The Persistent Identifier(PID) interface provides a base interface to allow the identification

of the persistent state in the datastore. This interface is intended to be extended for each

datastore type. The extensions of the interfaces will provide additional attribute information

to identify persistent states for specific datastore types. For example, a file path name could

be added to identify a file or some unique object identifier identifying a persistent object in

an object-oriented database.

The PO, POM and PDS interfaces provide the same operations in their interfaces. These

operations are connect, disconnect, store, restore and delete. Each operation has a PID

reference as a parameter. Additionally, both POM and PDS have a reference to a PO object

as an extra parameter. The POS specification stipulates that the components implementing

these interfaces act in a chain. That is, a request of one of the operations of the PO

interface, results in the PO component invoking the same operation on the POM and the

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 69

POM carries on the chain by invoking the same operation on the PDS component.

However, each component has a different duty to perform on receipt of a request.

The Persistent Object(PO) interface is implemented by the actual object whose persistence

is being handled by the Persistent Object Service(POS). This interface lets a client control

the persistence of the object. In addition to the operations just indicated, the PO interface

has an attribute that references a PID object. It is the task of the client set location

information contained in the PID to identify the persistent state of the object. Once the PID

is set, the other operations of the PO interface can be used to control the persistence of the

PO. These operations have the following semantics upon the object's persistence :-

• connect/disconnect : these operations create and break a connection between the

dynamic state and the persistent state, so that any updates in one are reflected in the

other.

• store/restore : these operations allow the explicit loading and saving of the dynamic state

to/from the persistent state.

• delete : the removal of the persistent state from the datastore.

The Persistent Object will forward an operation invoked upon it to the Persistent Object

Manager(POM). It is the duty of the POM to locate the Persistent DataService(PDS) that is

a wrapper for the datastore holding the POs persistent state and forward the request to it.

As mentioned, the PO and PDS will use a common protocol to transfer data between them.

It is also the task of the POM to choose a PDS that can 11 speak11 the same protocol as the

PO.

The Persistent DataService(PDS) is responsible for getting data in and out of its datastore.

It is also responsible for getting this data in and out of the Persistent Object using a specific

protocol. It is the PDS that carries out the processing to convert the implementation model

of data to the logical model, consequently crossing the impedance mismatch. Once in its

logical form the data can be pushed or pulled to/from the Persistent Object using a

protocol.

Chapter 3 - Analysis of Current CORBA Persistent Data Access Solutions 70

To further reinforce and clarify how POS works, the following scenario explains how a

Persistent Object retrieves its persistent state using the 11restore11 operations.

1. The client creates the Persistent Object(PO) using an object factory.

2. The client sets the Persistent Identifier(PID) attribute of the PO to indicate the location

of its persistent state.

3. The client invokes the restore operation of the PO interface.

4. The Persistent Object invokes the restore on its Persistent Object Manager(POM).

5. The Persistent Object Manager somehow decides on the Persistent DataService(PDS)

containing the identified persistent state and communicates with the Persistent Object

using a specific protocol.

6. The POM invokes the restore operation on the Persistent DataService.

7. The PDS component retrieves the identified data from its datastore.

8. The PDS transforms the data to a form that allows it to be passed to the PO using the

supported protocol.

9. The PDS transfers the data to the PO using its protocol.

The POS specification proposes three possible protocols for moving data between the PDS

and the PO. These are the Direct Access, ODMG-93 and the Dynamic Data Object

protocols.

The Direct Access protocol allows a Persistent Object to directly read or write using

attribute get and set requests to a CORBA object. This CORBA object is called a Data

Object and is instantiated by the PDS. The Data Object gives access to the PO's persistent

state via attributes declared in its interface.

The ODMG-93 protocol is similar to the Direct Access protocol, but is based on the

ODMG's object database standard. The protocol uses the ODMG' s object definition and

manipulation languages instead of IDL and attribute get/set requests.

The Dynamic Data Object protocol is a variant of the Direct Access protocol. This protocol

uses a Dynamic Data Object instead of a static IDL interface to access data. Thus, the

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 71

protocol extracts data by examining attribute descriptions and extracting the data from IDL

'Any' types.

The final part of POS provides standard IDL interfaces between the PDS and record

oriented databases e.g. relational, hierarchical and VSAM file systems. This interface is

based on the X/Open Call Level Interface[Orfali 94] standard and is called the

Datastore _ CLI. The Datastore _ CLI interfaces provide operations to set-up a connection

with a datastore and allow creation, deletion and manipulation of record data using cursors.

To summarise, POS provides a framework of interfaces to identify, load and save the

persistent data of CORBA objects. Movement of data between the Persistent Object and

the Persistent DataService is provided by one of the suggested protocols or a proprietary

protocol. The main strength of this framework is the fact that it does not discount the use

of any type of datastore in favour of a datastore with a closely related model to that of

CORBA i.e. object-oriented databases. However, the POS framework is only an abstract

model of how persistence can be achieved. POS cannot be directly implemented.

3.3.1.2 Problems with the Persistent Object Service

The design of the Persistent Object Service(POS) seems like an excellent solution to

provide persistence to CORBA objects in a broad range of datastores. Nevertheless, to

actually try to design an implementation of POS reveals many problems. These problems

become more apparent the further the POS specification is examined.

Some problems with POS are mainly due to its major under-specification. This under

specification allows POS the flexibility to support a range of datastores. To compensate for

this under-specification a developer of POS would have to design their own solutions to

make POS implementable. Consequently, the POS implementation would become

proprietary to that developer, thus would not have the benefits of portability and reusability

that are the principal aims of common object services.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 72

Other problems with the POS specification are major design flaws innate its architecture

and ambiguity in the description of some parts of the specification. The compound effect of

all these problems led to no commercial implementations of POS being developed, resulting

in the OMG withdrawing the specification as a standard.

The following section gives a brief account of some of the more significant problems of the

Persistent Object Service.

• Transaction and
Concurrency

• Object Referencing

• Relationship Service

• Underspecified
functionality of the
Persistent Object
Manager

The specification makes no attempt to describe how POS interacts
with the Object Transaction and Concurrency services. These
services are essential to any reliable system and are especially
significant in any system dealing with persistence. In POS, it is not
known how a Persistent Object will lock its persistent state to
prevent other incarnations of itself manipulating the data. Also, how
will POS components react to a transaction commit or abort?

POS only offers a weak form of object referencing either through a
CORBA object reference in its string form or by using Persistent
Identifiers(PIDs) encoded into object attributes.

POS suggests that the Relationship service[OMG COSS] be used to
handle relationships between CORBA objects and make use of the
Relationship service' s TraversalCriteria object as a method of
storing a graph of objects as a single unit i.e. transitive closure of
dependencies. How this integration of services is achieved is not
explained. An investigation into this integration of services was
carried out in [Klein 95][Klein 96][Klein 96b]. The investigation
found many problems in this integration, including making the
relationship object themselves persistent, performance exceedingly
degraded due to the dereferencing needed to traverse a relationship,
and how is a TraversalCriteria specified.

For the Persistent Object Manager(POM) to decide on the correct
PDS to serve the object's persistent state, the POM needs to know
two types of information :- the protocol the PO supports and the
protocol of each PDS known to the POM. POS does not indicate
how this information can be found, but [Sessions 96] suggests
several possible solutions such as :- examining the interface of the
PO to see if it supports a protocol interface, POM offering
operations to register protocol-PDS associations and examining the
interface repository.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 73

• Controversy in the
semantics of the
connect/ disconnect
operations

• Persistent Identifiers
(Pills) for non
simplistic
identifiable data

• Blocking problem

• Inefficient protocols

• Inconsistent design
of the Direct Access

POS explains the semantics of these operations as "The persistent
state may be updated as operations are performed on the object".
Does the word 'may' mean updates will be forwarded to the
persistent state or might be forwarded? The inclusion of these
operations is suggested by [Sessions 96] for the purpose of
supporting single level stores such as ODI' s ObjectStore[OODB 3],
where memory and storage are tightly coupled offering a virtual
persistent memory. [Sessions 96] believes these operations are not
implementable even with a single-level store due the 'connect'
operation which is executed on an already instantiated object,
however single-level stores provides a persistent connection when
the object is instantiated. The author of [Sessions 96] is one of the
main architects of POS and recommends connect/disconnect not to
be used due to its vague semantics and an efficient implementation
of these operations is difficult, if not impossible.

POS relies on data being uniquely identifiable. Information for this
unique identification is stored in the Persistent ldentifier(Pill). POS
gives some examples of implementations of Pills such as a path
name for files, or an object identifier for objects within an object
oriented database. For non-uniquely identifiable data, for example
tuples in a relational table, POS recommends a string containing a
SQL statement. This is fine for very simplistic data models, but for
data models with sophisticated relationships like multiple 1-to-many
relationships, the Pill will become increasingly more complex to
use.

A severe problem inherent in the design of the POS architecture is
the problem whereby the Persistent Object(PO) blocks due it
performing a request. When a 'restore' request from a PO reaches a
Persistent DataService(PDS) component, the PDS retrieves the data
from its store and then is required to transfer the data to the PO
using a protocol. But the PO process is blocked as it is executing a
request, therefore a deadlock state is created. To solve this problem
the PO process could be multi-threaded, but this would entail an
immense amount of additional complexity for every application
using POS.

The suggested protocols in POS are very inefficient, as each
attribute of an object will require one or more requests to transfer
the data to the Persistent Object.

The Direct Access protocol goes against the design principals at the
heart of POS. As the Direct Access protocol extends the PDS

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 74

protocol

• Persistent Object
must drive protocol

• No standard
protocol

• No exceptions

interface to provide operations to more than just transfer data e.g.
getting and setting root objects.

The suggested protocols depend on the Persistent Object making
requests to push and pull the data to/from the PDS. Therefore, it is
necessary for the PO to hold the code to perform this and to convert
the data to the PO's own attributes. This results in the object
containing a large amount of code that is sensitive to logical and
protocol models. Also, the responsibility for writing this code is
given to the developer of the PO, thus extra effort is needed by the
developer and could introduce errors. A more ideal situation would
be to let the persistence system automatically take care of all data
transfer and conversion, leaving the developer to concentrate on the
application logic.

As POS does not specify a single standard protocol to transport
data, developers will implement their own proprietary solutions,
consequently weakening the standard.

None of the POS operations are defined as being permitted to raise
exceptions. Therefore, if an operation was to fail, the application
would have no way of knowing about it. This is a major oversight in
the design of the specification.

The above list shows only the major faults within the POS specification. There other small

peculiarities within it, like the reasoning behind certain operations, their parameters and

their intended behaviour.

As mentioned, developers would have to design their own solutions to solve these

problems. Accordingly, the POS implementation would simply become another proprietary

interface to datastores with the POS framework lending little value to the implementation.

After examining the POS specification in great detail[Sessions 96], the specification seems

be very ill thought out and poorly designed. Some of the problems of POS come from it

being designed by an amalgamation of two groups of designers. Each group had its own

view of how persistence should achieved for CORBA components. One group' s view was

that object-oriented databases should integrate into CORBA to provide persistence, while

the other group believed that persistence could be supported by any type of storage facility.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 75

The greatest problem of POS is that it does not seem to have been verified that it works

before becoming a standard. Implementing it first would have shown many errors and many

poorly designed parts that would have brought the designers to the conclusion that it does

not work.

3 .3 .2 The STEP IDL Standard Data Access Interface

The STEP[STEP 94](section 2.5) project has specified a set of standards to allow the

definition, exchange and sharing of product data. The fundamental element of STEP is the

ability to unambiguously define the structure of data using the powerful concepts embodied

in the EXPRESS[EXPRESS 92) information modelling language.

To access and manipulate instance data of EXPRESS models that reside in datastores,

STEP specifies the Standard Data Access Interface(SDAI) specification(ISO

10303-22)[STEP SDAI). The SDAI is a language independent interface specification for

data access. The SDAI has similar functionality to that of the POSC Data Access and

Exchange interface, but is not exclusive to a single data model and is being implemented in

a range of programming languages.

The SDAI details functions to manage the following :-

• Instance creation and deletion.

• Get and set attributes.

• Aggregates.

• Forward and inverse references.

• Details of entity hierarchy e.g. is kind of.

• Sessions including error reporting.

• Transactions and Concurrency.

• Validate rules.

• Entity instance searches.

• Meta information via dictionary data.

SDAI offers two different approaches to manipulating data from an application, early and

late binding. The early binding approach is performed at compile time and entails the

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 76

generation of static language constructs in the implementation language of the SDAI e.g.

C++ classes. These language constructs are used to represent data being manipulated, thus

acting as proxies for the stored data. The late binding approach allows dynamic

manipulation of data at run-time. The data is handled by referring to dictionary data to find

the structure of data. The early binding approach is simpler than late binding, but requires

the extra stage of generation of language constructs. However, late binding is more generic

in that it can handle different data models and is tolerant to changes and extensions in data

models.

The mappings of the SDAI to programmmg languages are called the SDAI language

bindings and are presented in additional STEP parts :- Part 23, the C++ language binding;

Part 24[STEP SDAib], the C language binding. A future Java language binding is in

development. SDAI is also mapped to OMG's IDL(Part 26)[STEP SDAic]. Which,

although not a programming language, in turn has its own mapping to programming

languages. This makes the SDAI available to any language that IDL maps to. SDAI also

gains from the heterogeneous distributed nature of CORBA, therefore making a powerful

marriage of technologies.

Using Part 26, IDL SDAI binding lets CORBA applications create and manipulate the

complex data structures defined in EXPRESS. This permits CORBA applications to share

data and inter-operate by understanding the semantics of the data, rather than simply

passing data structures in the parameters of IDL interface operations. The IDL SDAI fills a

gap that is missing from the CORBA services in manipulating complex persistent data.

The next question to ask is whether the IDL SDAI should be a CORBA persistent data

access service. The reasoning against this proposal is described in the following :-

• SDAI is based on
STEP technology

• Uses EXPRESS as a
data modeling

The concepts of SDAI are all based in the STEP paradigm including
operation naming, error codes, data modeling language,
consequently providing an extra paradigm for developers to come to
terms with.

EXPRESS is the data modeling language of the SDAI, thus only
logical models described in EXPRESS can be manipulated. Data

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 77

language

• EXPRESS types only

• No integration with
other CORBA
services

• Performance
inefficient

• Implementations of
the IDL SDAI have
no standardised
component structure

• Does not take into
account providing
CORBA persistence

modeling languages such as SQL, OQL and IDL are not considered.

The only data types permitted are those that are EXPRESS types.
This is a problem with data models such as Epicentre that have many
extended types.

The IDL SDAI does not integrate or reuse other CORBA services
such as Object Transaction, Concurrency, Collection and Query
services.

Current implementations of IDL SDAI[Sauder 97][Amar] have only
a thin client layer. All manipulation of data are performed using
requests across the distributed environment to the datastore. For
applications such as CAD/CAM that can have millions of small data
objects, using this architecture is not viable. To solve this problem,
caching is needed i.e. moving the data locally and manipulating it
there.

The SDAI is solely an interface specification, there are no details
describing the components that make up the implementation such as
integration with other CORBA services and how can data be cached.

The SDAI is an interface for accessing persistent data, it does not
indicate any way to use it to store CORBA object's persistent state,
except by the manual manipulation of the interface by a CORBA
object.

The SDAI and its IDL mapping is a fine means of accessing persistent data and sharing it

among CORBA applications, but for a general CORBA service the SDAI does not fit well

due to its foundation in STEP and non-composite design.

3 .4 Persistent CORBA Objects using Database Adaptors

CORBA objects can be made persistent by being managed by a database adaptor. Database

adaptors integrate databases into ORBs by extending the functionality of standard CORBA

object adaptor(see section 2.3 .3) to provide persistence for CORBA objects that are

registered with the adaptor. The purpose of the database adaptor is to store the persistent

state of the CORBA object within its supported database(Figure 3. 5). The benefit of this

Chapter 3 - Analysis of Current CORBA Persistent Data Access Solutions

Application

• database

Figure 3.5: Database adaptor storing COREA objects persistent states
in its database

78

approach is that clients are unaware whether server objects are persistent or not, therefore

do not incur the complexity of controlling the persistence of their server objects.

The database adaptor solution to persistence has already been proposed by the OMG[OMG

95] and the ODMG[ODMG 93] in their relevant specifications. Products providing this

functionality have been very successful such as Iona's Orbix+ObjectStore Adaptor[OOSA

97] and Orbix+Versant Adaptor[OVA 97].

3. 4 .1 Complexities involved in Database Adaptors

There are more complexities[Reverbel 97] [Arnirb 97] to database adaptors than simply

storing an object's persistent state, including :-

• Activation of objects

• Object references to persistent objects

• Mapping object states to the database

• Integrating IDL skeleton and persistent object implementation

• Mapping OTS transactions to database transactions

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 79

Persistent objects have to be activated to be able to service a request. Activation entails the

object being retrieved from the database and bound to an IDL interface skeleton so that the

desired implementation's method can be executed.

Activation of objects is required, as it is inefficient and most likely impossible to have every

object stored in a database instantiated in memory and registered with an ORB. Thus

objects have to be passively stored until needed. Database adaptors must possess an

activation mechanism to locate and retrieve objects to service a request.

The next complexity is how are persistent objects referenced given that they are dormant in

a database and not actively registered with an ORB. The answer to this is to embed unique

identification information that identifies persistent objects into CORBA object references.

When a database adaptor receives a request, the adaptor can extract the identification

information and use it to activate the relevant object. The requirement of unique identifiers

to reference persistent objects is a constraint on the type of database that can be used with

a database adaptor. Object-oriented databases(OODBs) support unique identifiers to

objects, but this is not the case with tuples in the relational model.

The database adaptor has to save and load state data of a persistent object, therefore has to

perform a mapping between the two different models. Again, OODBs are more suited to

this than other database types as their objects can effectively be the persistent state with no

convers10n necessary.

On activation of an object, its persistent data has to be loaded into its implementation

object. The implementation object then has to be attached to an IDL interface skeleton to

process the request. The database adaptor has to provide this functionality. For OODBs,

this is simply a matter of binding the persistent object to the interface and forwarding the

request to the desired method of the persistent object.

It is the responsibility of the database adaptor to integrate the transactions of the Object

Transaction service with the transaction mechanism that the database provides. Further, the

locking of persistent objects is controlled by the concurrency service.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 80

Database adaptors offer a neat solution to CORBA object persistence by basing all

persistence functionality in the adaptor. The adaptor is the ideal element to place the ability

to provide persistence to server objects. The adaptor is ideal due to its functionality of

creating object references, thus can implicitly encase persistent identifier information within

the reference. Also the adaptor is the first element on the server side to receive requests,

therefore it can activate the relevant object to service the request. The result of this

solution is that CORBA objects managed by database adaptors become Persistent CORBA

objects as they are referenced persistently and are stored persistently. This also has the

desirable feature that the persistence of objects is transparent to clients.

3.4.2 Object-oriented Database Adaptors

Object-oriented database adaptors(OODA) are well suited to providing persistence to

CORBA objects. The integration of object-oriented databases(OODBs) into CORBA is

commonly called their " synergy"[Amirb 97], as the merger provides great benefits to each

technology. OODBs supply the following beneficial features to CORBA[Amirb 97] :-

• Concurrent access to a large number of persistent objects.

• Data recoverability.

• Guarantee of data integrity in the event of failure.

• Database transactions provide ACID properties(see section 2.4.5).

• Better management of server memory.

OODBs gain the following benefits from its integration with CORBA :-

• Extended heterogeneity, that is clients of the OODB can be implemented in any language

and on any system that CORBA is ported to.

• Lower coupling between client and OODB, the client does not have knowledge of

database object models and does not depend on OODB proprietary data transport

mechanisms and interfaces.

• Clients are more lightweight.

Chapter 3 - Analysis of Current CORBA Persistent Data Access Solutions 81

OODBs are easily integrated into CORBA compared to other types of databases. The

integration is easier owing to the similarity of the CORBA and object-oriented database

models. Both are based on the object-oriented concept of an object that has state,

behaviour and inheritance.

The characteristic of the OODB model that makes it particularly fitting over other database

models is its intrinsic feature of object identifiers. Object identifiers(OIDs) uniquely

reference a persistent object within a OODB. Thus, to identify a persistent object in the

CORBA environment, the OID can be encoded into a string form and embedded within a

CORBA object reference. Therefore, not only do OODAs support persistent CORBA

objects, but then also support persistent object references. Further, these features provide a

firm persistence foundation that CORBA sorely needs.

Activation and persistent object referencing is automated by the OODA, but it is still the

responsibility of the application developer to write implementation objects and make them

persistent. Again, with OODBs this process presents few difficulties as the implementation

object will also be a persistent object.

Further information on integrating object-oriented databases with database adaptors can be

found in [Vasu 94][Baker 97].

3.4.3 Why Object-Oriented Database Adaptors cannot be the only COREA
persistence mechanism

Object-oriented databases(OODBs) integrate well with database adaptors to provide

persistence for CORBA. This integration is straightforward due the closeness of the OODB

and CORBA object models. However, many corporate organisations are unwilling to invest

in OODBs for various factors such as:-

• Immaturity

• Existing storage

OODBs are relatively new, therefore have not been extensively proven
in the corporate environment in terms of performance, reliability and
scalability.

Organisations will already have existing storage solutions that have

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 82

solutions

• Existing data in
existing
datastores

consumed much investment e .g. relational databases. Thus, would be
unwilling to cast away existing storage technologies.

Corporations will have large amounts of data already stored in their
datastores. To make this data accessible to a new OODA based system
would require the data being re-modelled and translated to the OODB,
which is a large complex project within itself. This would also have the
consequence of making existing client application defunct, as they will
be incompatible with the new system.

The resistance for corporations to move to the unproved technology of object-oriented

databases will leave developers having to utilise their current storage solutions. Thus, many

developers of CORBA systems will not have the luxury of having a similar storage model

and a low impedance mismatch that exists between OODBs and CORBA.

3.4.4 Integration of Database Adaptors with Traditional Datastores

Traditional datastores such as relational, hierarchical databases and files are the mainstay of

many corporate data solutions. If a corporation is to move towards an enterprise wide

system that is based on CORBA, then the invaluable data stored in these datastores must be

brought into the reach of CORBA applications. The method of persistent data access that is

most fitting with the CORBA model is with database adaptors. The database adaptor' s

purpose is to instantiate CORBA objects that represent persistent data making the data

accessible from the CORBA environment.

For a database adaptor to support a datastore, the datastore must provide the following

facilities:-

• Unique identification information that is suitable to be embedded into CORBA object

references.

• Retrieval/storage of identified data from/to the datastore.

For datastore types other than object-oriented databases, the provision of these facilities

introduces extensive complexity.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 83

Providing unique identifiers to allow the referencing of data is the most problematic for

traditional databases. This is due to their models not containing the concept of unique

identifiers for units of data.

For example, the relational model uses pnmary keys to represent references to

tuples(i.e .rows) of a table, where a tuple is analogous to an object's state. A primary key is

one or more attributes of a table, that together are unique for each tuple within the table.

Thus, to reference tuples that are object's persistent states would require the tuple's

primary keys to be encoded into object references. This would be an awkward integration,

as actual attribute values would have to be encoded into object references . This would

cause a dependency between an object reference and its object state, if the object' s state

change then the object reference would be invalid. These factors are implicit to the very

nature of the relational model and do not mix naturally with object-oriented models.

The Epicentre model embodies additional problems to those of the relational model for

creating object references. The Epicentre model and the Data Access & Exchange(DAE)

interface uses a mixture of natural identifiers(analogous to primary keys) and direct

references to reference entities. Further attribute types making up an entity natural

identifier can also be a direct reference, which makes the encoding identifier information

even more problematic. This is assuming that the DAE provides a form of external direct

reference representation, which it does not as it is an implementation detail that is specific

to the DAE implementation.

In addition to mapping unique identifier information to object references, the problem of

mapping data to objects is a complex issue.

In the relational model, an object will rarely map to a single tuple of a single table owing to

the normalisation process. The normalisation process[McFadden 94] breaks up an object

into multiple tables, so that attributes (table columns) are atomic, all attributes are

functionally dependent on their primary keys and there is no transitive dependency between

non-key attributes. Thus, object attribute types such as complex types, aggregate(i.e.

container of many data items) types and references will be mapped to multiple tables.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 84

Consequently, more than one query is needed to fetch or set the data resident in multiple

tables. The mapping between object types and their tables has to be defined in some way, so

that SQL queries can be generated from the definition. Also, executing multiple queries to

gather data from multiple tables is very performance intensive and inefficient, especially

considering that usually only a small part of the data gathered will be read or manipulated.

Mapping Epicentre entities to objects is more straightforward if there is only a one-to-one

mapping between the two models. The nature of Epicentre and its definition EXPRESS

language is similar to object-orientation. Both paradigms have concepts of attributes

grouped into information units, inheritance and relationships between information units.

These factors have the effect of making mapping an Epicentre entity to an object fairly

simple. The only problem with the mapping is coping with the many Epicentre extended

types. These types would have to be mapped to objects with a defined IDL interface that

would provide operations to manipulate the type's data.

Mapping data from traditional datastores to objects, and further into CORBA objects that

can be managed by database adaptors is feasible in some respects. Instances of datastore

constructs (e.g. tuples, DAE entities) can be the persistent state of objects given some

processing needed for mapping. The disadvantage of this mapping is that it is a complex

and performance deteriorating task as data has to be moved across the impedance

mismatch. However, this is only considering non-referential attributes.

The foremost obstacle to integrating traditional datastores into CORBA via database

adaptors is that of representing unique identification information (i.e. internal datastore

references) in CORBA object references. As previously described, object-oriented database

adaptors embed object identifiers (OIDs) into CORBA object references. Here, both forms

of referencing have the same semantics in that a single value (i.e. the reference) points to a

universally distinct object. As their semantics are the same, the integration of the two

referencing types leads to no complexities in their use. This is not the case with datastore

models based on referencing with attribute keys, as with the relational model. The

semantics of attribute keys is of searching through all objects of the same type, for the

object with the matching attributes. Thus, there is a dependency between references and

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 85

objects. Further, to integrate an attribute key based reference into an object identifier based

reference leads to complexities in the use of the reference.

These complexities are the result of the differing views of how objects are represented and

what entails equality between objects in object-oriented and relational models. In object

oriented models every object is innately unique and objects are the same if their object

identifiers are equal. In relational models, object (tuples) uniqueness is based on the value

of their attributes, therefore two objects are the same if their keys match. These differing

concepts cause a profound discrepancy in the use of the two reference types. For example,

creating a copy of an object-oriented object is simply a matter of creating a new object and

copying the attributes of the source object. Copying objects in the relational model is more

difficult due to the fact that the object's attributes must differ for the newly created object

to be distinct from the source object.

The integration of attribute key references into object references is conceivable, but

impractical due to the semantics of their use. This mismatch in the semantics of referencing

types would cause serious integrity problems and complexities for applications that utilise

the references. Hence, to support datastores with such referencing type semantics with

database adaptors is unrealistic.

Unique identification information is also problematic with logically defined data access

interfaces such as DAE (section 2.6) and SDAI (section 2.5). The problem with data access

interfaces of this type is that they are independent of any specific datastore implementation.

Any references to objects/entities are specific to the datastore implementation, hence

unique identification information contained in a reference is of an unknown format. It is

also inaccessible and is not guaranteed to be unique outside of the client's session.

Consequently, datastores of this type are also inappropriate for integration with database

adaptors.

This discussion has only considered traditional datastores with already existing data models

and data being integrated with database adaptors and subsequent accessibility from

CORBA. It has been argued that this integration is far from ideal, if not impossible due to

Chapter 3 - Analysis of Current CORBA Persistent Data Access Solutions 86

mapping problems and the merging of references of different semantic types. This does not

entirely exclude traditional datastores from integration with datastore adaptors as some

traditional datastores can be given an object-oriented wrapper. There are

products[DBTools 98][ONTOS] available that give relational databases an object-oriented

wrapper, so that from the application point of view the database appears similar to an

object-oriented database. The problem with wrapping is that the relational tables have to be

automatically generated from a data model by a tool provided by the wrapper product. The

generated tables will be modeled in such a way as to incorporate object inheritance,

aggregation and object identification. The consequence of this process is that the tables

have to be of the wrapper's design and cannot incorporate already existing models.

Therefore, it is viable to integrate database adaptors with relational databases given an

object-oriented wrapper and no requirement to support existing data. The major

disadvantage of this integration is its inefficient performance compared to using a pure

object-oriented database. This inefficiency is caused by the time taken to execute the many

queries required to fetch a single object.

3.4.5 The proposed OMG Persistent State Service

The OMG is currently considering submissions[PSS 98][PSS 98b] for a Persistent State

Service(PSS)[PSS RFP]. PSS will replace the retired Persistent Object Service and will be

based on a formalisation of the database adaptor approach to CORBA object persistence.

One of the primary problems that PSS will overcome is the binding together of components

that comprise a CORBA persistent object. On activation of an object these components

have to be created or retrieved and then bound together to service the request. The

components of the PSS model are shown in figure 3 .6. These components are described as

follows:-

• Persistent Object Adaptor(POA) is the new OMG object adaptor standard. One of the

new capabilities of the POA is the ability to embed and extract object identifier

information inside CORBA object references. Currently, this ability is proprietary to

specific ORBs.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 87

• CORBA objects represent the persistent object IDL interface to external clients.

• Servants process requests from the CORBA objects. The servant's duty is to activate

and bind to an actual application object.

• Application objects provide the implementation of the CORBA objects.

• Incarnations provide persistent state to application objects.

• Persistent objects are the actual persistent data resident in a persistent store.

Incarnations are the cached form of this persistent data in memory.

• Persistent stores hold persistent data that represents persistent objects.

The PSS specification will provide interfaces and descriptions of how these components can

be plugged together to provide persistent objects. It will also describe how persistent object

identifier information can be embedded into object references and how it can be used to

locate persistent objects. However, this persistent object identifier will simply be based on a

single unique value. The specification will also describe how the service interacts with the

object transaction service and how concurrency is achieved.

The final PSS specification will be based on the two proposal specifications. In studying

POA

uO
(l)

~o ca
0::: so

domain Persistent Store
PSS

0 O~ 0 00
E Cl) C

O§ Oi ~o
Q.)

(f) co ro
u u

0 oi oc
Figure 3.6: Elements of persistent COREA server

supporting the Persistent State Service

Ou
(l)

E

O~
(l) en

O~

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 88

these proposals, the final PSS specification should be an excellent solution to CORBA

persistence in a heterogeneous language and datastore environment. PSS will be a well

designed and integrated service, unlike its predecessor - POS. However, the datastore

model types that PSS can support still have to be close to that of the CORBA model.

Summary

This chapter has presented methods in which CORBA applications/objects can access

persistent data that resides in heterogeneous datastores. These persistent data access

techniques include: -

• Proprietary language-dependent data access interfaces e.g. 1/0 functions, database APis.

• Standard IDL interface data access e.g. POS, SDAI.

• Persistent CORBA objects managed by database adaptors.

Proprietary data access interfaces entail an impedance mismatch due to the mapping needed

to transfer data between logical and storage implementation models. To cross this

impedance mismatch requires much conversion code that is bug prone, sensitive to model

changes, time/cost consuming and has poor portability and reusability. Also there is the

possibility of vendor lock i.e. becoming totally dependent on a single software product and

its vendor. This situation does not resemble a component architecture that loosely couples

components that are the basis of CORBA.

OpenSpirit is an excellent example of a CORBA application architecture that is segregated

into three tiers. The middle logic layer provides components representing common E&P

entities. These components rely on datastore wrappers to popular E&P datastores to

provide persistence. The datastore wrappers map data between the OpenSpirit logical

model of data and the datastore model of data. The author has personally helped implement

the OpenSpirit to Epicentre mapping. This mapping had to be manually coded. This was

possible due to the course granularity of the OpenSpirit model. For models of finer

granularity, manually coding the mapping would quickly become too complex and bug

prone, thus automating the mapping code would become necessary. PrismTech' s Mapping

Manager Architecture is a possible technique of achieving this automation.

Chapter 3 - Analysis of Current COREA Persistent Data Access Solutions 89

Standard IDL data access interfaces should be the pnmary techniques that CORBA

applications use to access persistent data. The OMG Persistent Object Service(POS) has

been discredited and subsequently retired due to major design faults and under

specification. One of the few beneficial features of POS was its characteristic of supporting

a broad range of datastore model types, rather than a single datastore model i.e. object

oriented database model.

The STEP Standard Data Access Interface(SDAI) and its IDL binding provide a greatly

missing functionality to the CORBA paradigm. Using the SDAI, CORBA applications can

share and manipulate structured data that is resident in datastores. However, the SDAI

specification is deeply rooted in STEP concepts and technologies, such as the EXPRESS

data modeling language, EXPRESS data types and SDAI has no integration with CORBA

services.

The persistent data access technique that is most fitting and consistent with the CORBA

architecture and object model is the use of database adaptors. Database adaptors extend the

functionality of the object adaptor by storing the persistent state of CORBA objects in a

database. Database adaptors work well with datastore models similar to that of CORBA's

object model, but for models outside the object-oriented paradigm (e.g. relational database

model) the integration is problematic. The basis of these problems is the integration of

unique identification information into CORBA object references due to inaccessibility and

dissimilar semantics. Thus, object-oriented databases integrate elegantly with database

adaptors, but not with other datastores supporting other types of models.

The Persistent State Service(PSS) is a formalisation of the database adaptor approach and

is to become the future standard for CORBA persistence. PSS is the ideal technique of

accessing persistent data by giving the data a CORBA object representation to the external

CORBA environment.

Chapter 4

Analysis, Requirements and Design
of a Persistent Data Access Service

4.1 Introduction

This chapter provides a short analysis of the current situation of persistent data access in

CORBA, highlighting the problems with the currently available solutions. Given these

problems, the requirements for a persistent data access service to solve these problems is

presented. The majority of the chapter discusses high-level design considerations and

solutions of the persistent data access service, so that an implementation of the service will

meet the requirements put forward .

4.2 Problems Encountered from the Analysis of CORBA Persistent
Data Access Solutions

The current CORBA persistent access solutions examined in the previous chapters have

shown that access mechanisms to persistent data are lacking in the CORBA environment.

This section provides an analysis of the functionality that is missing from these solutions as

well as of the problems which a persistent data access solution should solve.

The most unsatisfactory problem with CORBA persistent data access is that CORBA has

no standardised technique for persistent data access, hence leaving this area open for

Chapter 4 -Analysis, Requirements and Design of a Persistent Data Access Service 91

proprietary solutions. The introduction of proprietary solutions providing a functionality

that is commonly used amongst applications is against the principles of the Object

Management Architecture(OMA). The OMA adheres to the principle of component reuse

that saves repetition of functionality and increases portability and reusability of

components. Applications with proprietary data access solutions will not have these

benefits.

Proprietary data access solutions inherently cause an impedance mismatch between the

application and the data storage. Usually, it is the developer's duty to manually implement

the mapping between the two models. This mapping is time/cost consuming, bug-prone,

performance inefficient and sensitive to changes.

In directly using a proprietary data access solution, a developer has an additional software

technology paradigm to learn, maintain, purchase, to be aware of technological advances

and to consider implications of changes to applications. It would be beneficial to COREA

developers to put this data access functionality behind IDL interfaces, thus providing a

great deal of insulation from the proprietary data access solutions.

For models of increased complexity and fine granularity, an automated approach to

mapping has to be taken. The problem with mapping automation is the complexity of

interacting with a proprietary data access interface, where every data entity, identifier

information and data type has to be mapped to the target model. Thus, creating an

automated mapper is a major development task that has to be justified. The complexity of

such a development task is vastly increased by the many different data access interfaces that

datastores support and as well as their many data definition models. Consequently, some

degree of insulation is required from proprietary interfaces and models, so that mapping

software is presented with the same interface and model for each datastore type.

Datastores with data models that are not similar to the object-oriented model are difficult to

integrate into COREA with the database adaptor approach. This difficulty is mainly caused

by lack of unique identifiers for units of data. As a vast of amount of data are stored in

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 92

datastores of this type, these datastores should be brought into reach of the CORBA

environment.

Different datastore types have different types of internal datastore references. From the

analysis in the previous chapter, there are basically two kinds of referencing:- attribute key

referencing and direct referencing. Attribute key referencing indicates the referenced data

unit(s) by matching attribute values held in the key with attributes of all data units of a

particular type e.g. foreign key of a tuple. Direct referencing entails the reference holding

some value that directly identifies the reference data unit e.g. a DAE handle to an Epicentre

entity. Both forms of referencing should be supported.

For data access solutions to be reliable they should be integrated with the CORBA

Transaction and Concurrency services. This is considered a critical part of a service dealing

with persistent data and a factor that the previously reviewed persistent data access

solutions(except for the future PSS) had not even considered.

Data manipulation mechanisms should be efficient. The persistent data access solutions

discussed in the previous chapter are generally inefficient for certain types of data e.g. large

arrays of data or manipulating large numbers of small objects. The inefficiency is due to

data being kept in the datastore server process and is manipulated remotely using requests.

To manipulate this kind of data requires many requests, the performance overhead caused

by the requests will be intolerable for certain applications e.g. CAD. Therefore, server

based persistence solutions such as database adaptors and consequently PSS will fail in this

area. A more ideal approach for some situations would be the option to transfer the data in

bulk to the client process and manipulate it locally i.e. caching data. Object-oriented

databases typically cache data in client applications, but this leads to a high cohesion

between application and datastore.

In connection with moving data in bulk, it should be possible to specify a sub-graph of data

entities to be retrieved and stored as a single unit. This will increase the efficiency of

application data manipulation as arbitrary collections of data can be moved back and forth

between client and store in a single transfer.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 93

Different data model types have a different set of data types, such as Epicentre extended

data types and SQL time based types. A data access service would have to be flexible

enough to allow manipulation of these data types.

It should be possible to give persistent data a CORBA object shell, allowing the

manipulation of the data through an user provided IDL interfaces. Thus, application can

access the persistent data through a static interface, rather than using the persistent data

access service directly.

4. 3 Requirements

In examining problems and missing functionality of current persistent data access solutions,

the following set of requirements that a persistent data access service should supply is

devised :-

• A set of services to allow manipulation of data stored in heterogeneous datastores.

• Achieve all manipulation using components supporting CORBA IDL interfaces.

• Allow data entities from differing data model types to be manipulated in the same

manner.

• A void adding or changing any functionality of the datastore or the implemented data

model so to prevent the operation of existing legacy applications. This will be of great

benefit to the migration to new CORBA based systems as old and new systems can run

in parallel.

• Avoid ORB vendor proprietary mechanisms.

• Allow the manipulation and navigation of datastore internal references, where references

can be single unique values or attribute keys.

• Decrease the impedance mismatch between application and datastore models.

• Remove the responsibility for the implementation of mapping code from the application

developer.

• Allow the efficient manipulation of data, whether caching locally or manipulating

remotely.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 94

• Design services in a component fashion to allow the plugging together and exchange of

components that work together.

• Integrate with the CORBA Object Transaction and Concurrency services.

• Reuse and extend current CORBA services whenever possible, thus keeping to the

Baushaus principle.

• Allow binding of CORBA objects to persistent data. This is a form of late binding(see

SDAI, section 3.2.2) . Without the bound interface to the data, early binding can be used

to manipulate the data.

• The ability to retrieve and store sub-graphs of objects in a single access to a datastore.

• The flexibility to allow the handling of datastore data types that are not native CORBA

data types e.g. SQL time based types, Epicentre spatial types.

• Minimum effort needed to map proprietary data definition models to the service's

standard data definition model service.

• A query service to gain initial references to persistent data entities.

4.4 High-Level Design of a Persistent Data Access Service

This section provides an outline for the design of the services that will meet the

requirements mentioned previously. It describes the major problems involved in

constructing such a service and presents solutions to these problems and the components

that will make up an implementation of the service. The behaviour and interaction of these

components is presented along with the problems the components are a solution to.

In this section, persistent data will be referred to as data objects, due to the fact that data

only has state and no behaviour unlike true object-oriented objects. Data objects can be any

type of persistent data such as :-

• Variable sized arrays of binary data e.g. files, Binary Large Objects(BLObs).

• Units of information that have a set of typed attributes e.g. tuples, behaviour-less object

oriented database(OODB) objects, EXPRESS entities.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 95

4.4.1 Manipulation of Data Objects

A persistent data access service will have to provide basic manipulation operations. These

operations include creation and deletion of data objects as well as providing read and

update operations of the data object's attributes. In addition to these operations, there is a

need to control the storage of data objects i.e. retrieve and store operations that will pull

the data object out of a datastore or push it back.

To manipulate data objects in a standardised manner requires an independent representation

of the data object from its stored form(Figure 4.1). Thus, an impedance mismatch is created

that requires mapping code to move data across. The purpose of mapping code is to issue

' get' and 'set' calls on the datastore interface to retrieve or store data between the two

models. Examples of mapping code would be:- the execution of SQL statements to retrieve

or set tuples and retrieval or setting of attributes of identified objects/entities via an OODB

or DAE interface.

Mapping code can be generated manually or automatically. Ideally the automated approach

should be utilised. The manual approach requires the application developer to manually

code the mapping, which creates many problems (see OpenSpirit and its approach to data

access). Tools for the automatic generation of mapping code for specific datastores will be

more reliable, consistent, bug free and take the responsibility away from the developer.

Persistent
Data Access

Service

Datastore

Client
Application create,

delete,
read,

update,
retrieve,

store.

Figure 4.1: Independent data object representation
from its proprietary stored form

Persistent
Data Object

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 96

Generally, there are two techniques for the generation of automated mapping code: static

and dynamic generation(Figure 4.2). Static generation entails tools producing mapping

code that provides routines for retrieving and storing each data object type involved in the

model. The static mapping code is then linked with the service at compile time.

The dynamic generation of mapping code occurs at runtime with no pre-compiled code.

Dynamic mapping code can generate retrieval and storing routines by examining meta

model information on each data object type that it handles. The meta-model information is

provided by a facility where the structure of data object types can be queried i.e. the

attribute types can be discovered and inheritance hierarchies can be traced. Therefore the

mapping code will understand the structure of data objects it handles. Consequently it can

generate the relevant 'set' and 'get' calls to retrieve/store data objects from/to their stored

form.

Each type of mapping code has benefits and drawbacks. The static mapping generation is

faster at runtime, but becomes increasing larger with larger sized data models. Dynamic

mapping generation is slower at runtime, but does not increase in size for larger data

models. Dynamic mapping also has the advantage that is resilient to changes in data models,

while static mapping code will have to be regenerated with changes in data models.

Another consequence of static mapping is that there is a high dependency between tools,

components, data models and programming languages implementing the static mapping.

Persistent Data Access Service • Datastore

Representation
or PeBlslent
Dala Obtect 0

erslstent
Dal& Object

Figure 4.2a: Static mapping code

Persistent Data Access Service , Datastore
'

Dynamic mapper ~~

Poroislcnt
Dati10btect

Figure 4.2b: Dynamic mapping code

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 97

This high dependency is detrimental to scalability of systems and causes system parts to be

non-reusable. On the other hand, the dynamic mapping with its meta-model facility allows

generic components to be built that handle data objects regardless of their structure. Thus,

there can be many components in a system reusing the meta-model facility to handle data

objects. Lowering the dependency of components like this improves the scalability of

systems.

Providing description information on data objects is a vital facility, therefore a meta-model

facility is a critical component of a persistent data access service. Consequently, a meta

model facility should be a system-wide service in its own right.

4.4.2 The Meta-Schema Model

The structure of data objects is described within a schema/data model. In the following

sections the terms 'data model ' and 'schema' will be used interchangeably. A schema

describes the attribute structure of data objects, relationships between data objects, the

inheritance hierarchy of data objects and any user-defined data types. A schema is defined

in a Data Definition Language(DDL). There are many different forms of DDL such as SQL

DDL, ODMG ODL, ISO EXPRESS, XML or even programming language based DDLs

such as C++ classes, Java classes. Each DDL has its own data definition model that

specifies language constructs, data types, relationship semantics, inheritance, behavioural

and constraint definitions. However, if only the data definition parts of these models are

considered, ignoring behavioural and constraint parts, then there is a great deal of

commonality between these models.

The difference between data models and data definition models is further clarified for an

improved understanding of the following material. A data model is a description of data

that represents entities from the problem domain that the application is concerned with. A

data definition model is the form that this description takes. The data definition model will

define the way in which entities are represented and related.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 98

A requirement of the persistent data access service is the manipulation of data objects in a

common manner, regardless of their stored form and their native data definition model.

Thus, to manipulate data objects in this way requires a common data definition model to be

presented to applications. This standard data definition model will transcend the proprietary

data definition models of datastore types as it will be generic enough to allow the mapping

of all proprietary DDL schemata to it(Figure 4.3). A standard data definition model is

possible due to the fact that proprietary data definition models are all based on a similar

structure of data objects, attributes, data types, relationships and inheritance.

The standard data definition model will not be another data modelling facility with an

associated data definition language. It is simply a standardised method of describing data

defined in proprietary data definition models to applications, thus providing the application

with a single logical view of the structure of data.

The standard data definition model that will be used to describe the structure of data

Application 1 Application 2 Application 3

Applic tion see a
stan rd dat defin~ model

Propr' ry da a definiti n models
re mapp d to a stan d

data de nition model

Figure 4.3: Proprietary data definition models are
mapped to a standard definition models

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 99

objects manipulated by the service is shown in figure 4.4. The model is presented as an

object model. A set of instances of the object model will provide meta-information that

describes a data model. Consequently the object model is called the meta-schema model as

it describes schema/data models.

The meta-schema model was designed by carrying out an in-depth analysis of several data

definition languages including SQL, EXPRESS, ODL. The analysis examined the features

of each language and extracted a model of the common features and the relationships

between these features . The examination produced an initial rough design of the object

model. After many redesign iterations and re-examination of the data definition models and

languages, the final model was completed.

An overview of the object model is explained in the following:-

• A Schema object contains many schema defined types, many schema constants and many

entities.

• The Schema Defined Type is specialised into sub-types that allows the definition of user

defined types that are defined globally in the schema.

• Schema constants provide the definition of global constants in the schema.

• Entities are the principal information element of a schema. The model permits the

definition of an entity' s parent and child entities, thus specifying its inheritance

hierarchy. An entity contains many attributes.

• The Attribute object defines its name and type of an attribute of an entity.

• The Type object is the supertype of all the objects that define the type of an attribute.

The possible types of an attribute are Entity Reference, Aggregate, Any, Base and

Defined.

• An Entity Reference defines the attribute as being a relationship between entities. The

Entity Reference defines the type of the referred entity and whether the reference is an

inverse reference. If so, then the forward referencing attribute can be specified.

• Entity Reference is further specialised into Absolute and Key references. This

specialisation allows the model to incorporate the two types of referencing used in data

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 100

definition models. These referencing types are pointer based referencing as m object

oriented models and referencing by attribute values as in the relational model.

• Aggregate and its sub-types of Array, Bag, List and Set provide types to represent an

attribute with multiple elements e.g. a set of references to other entities, a bag of

integers.

• Some data definition models have an Any type, which allows a value of any other type to

be assigned to it.

• The Base type is the parent of basic literal types and fixed arrays of them.

• The Defined type allows the attribute type to be defined as one of the schema defined

ke

en
~

!i
Q)
C:

-= Q)
'O

Schema

entities

Select

Typeldentifier
type_name:string

schema_ constants

has type

Key

Enum

*
Enumldentifler
ldentifier:string

Figure 4.4: The Meta-Schema Model

Described
Type

lnslance
_data

Named

TypeDescriplors
value_name:slring

variable
Sized

Binary Array
si:ze:integer

Schema
Constant

Literal

Defined

of
typ

Chapter 4 -Analysis, Requirements and Design of a Persistent Data Access Service IOI

types :- Select, Enum, Described Type, Named.

• Select allows the value to be any of the identified types.

• Enum provides the enumeration of a list of identifiers.

• The Described Type is provided for the purpose of representing types that are exclusive

to a proprietary data definition model. For example, SQL has time based types, and the

Epicentre model has over 300 extended types. The Described Type can therefore be used

to describe a type and associate the type's instance data with it. It is the responsibility of

the application to read the describe identifiers and handle the instance data in a

consistent manner with the structure of the data.

• The named type simply gives a Base type a name such as used m the 'C' language

'typedef statement.

The meta-schema model can represent the majority of features that data definition models

provide. Not all the features provided in the meta-schema model will be used by proprietary

data definition models. For example, relational models will not use the inheritance hierarchy

feature or the Schema Defined Type facility. Object-Oriented based models can make use of

all features provided.

The meta-schema model is the data definition model of data objects manipulated by the

service. Proprietary data definition models of datastore types will map their schema

CREATE TABLE PERSON
(NAME CHAR(100),
AGE INTEGER);

cr~a,~d ht STAFF dotabas~

interface Person
()
{
attribute String name;
attribute Short age; represented as)
} ;
1akenfrom Staff.ODL

SCHEMA Staff;

ENTITY Person;
Name : STRING;
Age : INTEGER;
END_ENTITY;

END_SCHEMA;

Schema

._E_n_tlty_ K aattributes
en1lty_rv11nn •

PERSON
ebslract•fa!Se

Figure 4.5: Proprietary schema definitions are represented as
instances of the meta-schema model

String

Integer

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 102

definitions to the meta-schema model(Figure 4. 5). Client applications will therefore

manipulate data objects that the structure of which is described by instances of the model.

It may be necessary for application components to query the structure of the data objects,

allowing the component to dynamically handle and manipulate data objects. To provide the

meta-information to components, the meta-schema model has to be implemented in a run

time form that permits the querying of the model instances. This is achieved by representing

each meta-schema object as a CORBA object. Therefore it is necessary to give each meta

schema object an IDL interface allowing the querying of its attributes. The IDL interfaces

for the meta-schema model can be found in appendix D. Components implementing these

interfaces will supply the meta-model facility mentioned in the previous section(4.4.1). This

facility will allow components to find out the structure of data objects via the meta-schema

objects allowing the manipulation and mapping of data objects(Figure 4.6).

4.4.3 Local and Remote Data Object Manipulation

This section discusses the advantages and disadvantages of local and remote manipulation

of data objects and the design decision that the persistent data access service should

support both forms. The primarily problem with local manipulation is moving data across

the distributed environment to the client application. The solution is to split the service into

Application
The data object can

be dynamically
manipulated by

discovering
Its structure In the

meta-schema facility

ersistent Data Access Servic Data store

'Person'
Persistent

Data Object

schema defined
In proprietary
data definition
model mapped to
standard data
definition model

Figure 4.6: Meta-Schema Facility comprises of COREA object that are
instances of the meta-schema model classes

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 103

client and server components connected by a stream-based mechanism to transport data.

4.4.3.1 Data Manipulation Models

The efficiency of a system that is manipulating persistent data is very dependent upon the

location of the data. There are two models that are typical of the location of data that is

being manipulated (Figure 4. 7). In the first model, data is kept local to the datastore server

process and all data manipulation is carried out by the server on behalf of the client. This

model is characteristic of relational databases. The second model involves the moving of

data from the datastore server process to the client process where the client directly

manipulates the data using locals calls. Thus, the client is caching the data locally for fast

repetitive manipulation. This model is typically used in object-oriented databases and file

systems.

The optimum model to use for data manipulation is primarily dependent on the frequency

that the data objects are accessed. For the manipulation of data objects that are infrequently

accessed, it is more efficient to manipulate them in the server, as the overhead in

transferring the data objects to the local process would outweigh the benefits of fast local

manipulation. Data objects that have a high possibility of frequent access are more efficient

if cached in the client's local process, thus gaining from the performance of virtual

instantaneous local function calls compared to slow remote procedure calls. Local caching

is also more efficient for very large data objects or very large numbers of data objects. In

these situations the data objects can be transferred in bulk to the local process. A specific

Process boundary
I
I
I
I
I

Program re ' ate ~
manip~lation ~

I
Application I Server

Figure 4.7a: Data is remotely manipulated

Process boundary
Program 1

I
local 1

manipulation 1
I

~ 14-~~,.,....ta--•~
tra1sfer ~

I
Application 1 Server

Figure 4. 7b: Data transfer to the local process
and manipulated locally

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 104

example of where local caching of large numbers of data objects is in CAD applications.

CAD drawings contain enormous numbers of data objects such as points and shapes. These

data objects are also frequently accessed, therefore it is a necessity that these data objects

are cached.

Each type of datastore is usually heavily biased towards one of these data manipulation

models, thus certain application types are more efficient in one type of datastore than

another. The persistent data access service is providing CORBA wrappers to datastores.

Consequently the manipulation model that the datastore types uses is irrelevant to CORBA

applications. But the decision of the manipulation model that the actual service uses has to

be taken. The ideal situation is for the service to allow for both models, leaving the decision

to the application of which method to use.

4.4.3.2 Design Factors for Implementing Local and Remote Data Object
Manipulation

Manipulating data objects locally or remotely 1s of no concern to actual CORBA

application code. This is because of CORBA's location transparency characteristic. A

request on a local CORBA object is initiated the same way as a request on a remote

CORBA object. As a result, it makes little difference to the application which manipulation

model is used, except for performance related factors . Therefore, the only design factors

involved in supporting both manipulation models is how the application indicates the

location that it wishes to manipulate data objects and how the service will transfer the data

objects to that location.

The first problem is how applications can decide the location that data objects will be

manipulated in. This can be solved by creating the component(s) implementing the service

in the relevant location i.e. in the server or application process. The facility that covers

component creation in CORBA is the LifeCycle service (see section 2.4.2). Therefore, the

components defined in LifeCycle service can be used to create an instance of the service. A

LifeCycle factoryfinder component can be used to locate a factory object capable of

creating an instance of the service. The location of the factory selected will determine

where the data objects are manipulated (Figure 4.8).

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 105

,>

Process boundary
I Perslste<11
I
I

I
13.creates
I

Process boundary
Persistent I 011blstor11

Date Access Servi I

r-===;;;:' =a~.' ~
pata • ~

trpnsfer '

!
l
!

r-::::::=7_ - - -1 Fa~tory I ~ re ref.

Application I Server Application Server

Figure 4.8a: A remote factory is used to create
an instance of the service for remote

manipulation

Figure 4.8b: A local factory is used to create
an instance of the service for local

manipulation

The second problem is specific to the model of caching of data objects in the client

application. The problem concerns how data is transferred between processes in the

distributed environment. The most obvious solution is to make use of the data transfer

mechanism of the datastore interface. The problem with this solution is that it is introducing

a high degree of coupling between the application and datastore interface software. The

coupling constrains the application to the vendor, platform, language as the datastore

interface library would have to be linked to the application. Also, another constraint might

be a limited number of available licenses for the datastore, hence only allowing a certain

number of clients to be connected simultaneously. These constraining factors are exactly

what must be avoided.

A better solution would be a generic client side to the service that uses an independent

Process boundary
Persistent I

12,a_!a_ ~C~.J~ ~e!'JlC!:: _______ I _______________ _
I

Generic client I Datastore specific · · ; Datastore
I server

Progra:,,.,,!;,~i ~ ,,, •• ;,,."' ~ ~
data lrnnsfer ~

1 hi . 1 ______ _, mec t3rnsm
I , _________________ J ________________ _

I Persistent
I Data Access Service
I
I

Application , Server
Figure 4.9: A generic client side to the service using a data transfer mechanism

that is independent of the datastore data transfer mechanism

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 106

communication mechanism to transfer data to and from the server side(Figure 4.9). The

server side component will be dependent on the datastore software, but at least the client

application will be a pure CORBA application with no dependencies on proprietary

communication mechanisms.

4.4.3.3 Caching Data using Streams

To cache data objects in the client application, the data objects have to be moved from the

server across the distributed environment to the client. The critical problem with this

solution is that CORBA is being used as a middleware layer and the essential requirement

for inter-operating using CORBA is the definition of an IDL interface. This is problematic

as data objects manipulated by the service will not have IDL descriptions, therefore cannot

be passed as parameters of requests. Hence, data objects cannot be moved using normal

ORB mechanisms.

One possibility is to use a dynamic data transfer method based on IDL' s 'Any' type such as

the Persistent Object Service's Dynamic Data Object protocol[OMG COSS]. But this

would be grossly inefficient and does not offer a very convenient and concise interface.

An ideal solution would be to use a stream-based data transfer mechanism. A stream is a

sequential array of bytes. Using a stream, data objects can be broken out into their

composing basic literal values and written sequentially to the stream. The stream can then

be moved to another location via the ORB and the data objects rebuilt by reading the data

out of the stream(Figure 4.10).

Setting up a stream between client and server components of the service not only offers the

benefit of transporting non-IDL defined data, but also has the benefit of being able to efficiently

transport data in bulk. Using a stream, graphs oflarge numbers of data objects be can written to

a single stream and moved in a single transfer and recreated at the other end(Figure 4.11).

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 107

"'- stream /

w~~::n ►~I - ~l --rr£~!rer--• D ~e8~~ ►

Figure 4.10: Using a stream, data objects can be written to the stream,
transported to their destination and rebuilt there

The functionality offered by streams is of great use to CORBA systems as it provides CORBA

with the ability to copy by value i.e. take a copy of an object, move it else where and recreate.

Currently, CORBA only offers copy by reference, where only references to objects can be

passed in request calls. Hence, the streaming ability is providing a missing functionality for

CORBA and therefore should be designed as a service in its own right. Future CORBA

standards will include an extension to the ORB and IDL to support an IDL 'valuetype', which

declares an object that can be passed by value. But it does not offer the powerful ability to

serialise of graphs of objects.

The design for a streaming service will have to define and describe how the following functions

are carried out:-

• A stream is set-up.

• Data is read in and out of the stream.

• Data is transported between ends of the stream.

• Data objects are stored and rebuilt.

• Graphs of related data objects are stored and rebuilt.

Process boundary
Persistent I

Data Access Service 1

~ ~----~ I
Generic client I Datastore specific

Program i--------t ... ~
local!

manipulation:

I server
"'- Streilm /

D◄+~
/ I '-.

I
I

I
I
I , _________________ J _______________ _

Application

I Persistent
I Data Access Service
I
I
I Server

Datastore

Figure 4.11: The stream can be used to efficiently transport large numbers of
data objects between client and server parts of the service

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 108

The CORBA Externalization service(see section 2.4.3) already provides some of this

functionality. The Externalization service defines IDL interfaces to write and read basic literal

types in and out of a stream. The service also depends on the LifeCycle service for the creation

of objects that are read out of the stream.

As for graphs of objects, the Extenalization service specifies the Relationship service for the

compound serialising of CORBA objects. However, the Relationship service defines the

relationships between CORBA object instances. Data objects are not CORBA objects, therefore

this functionality is of no use.

As a result, a standard stream format to support the storage streamed graphs of related data

objects will have to be devised. This format will have to keep the structure of the data objects

and internal data object references in a consistent form for recreation in the destination. An

analogy can be drawn between this and STEP files(part 21), that describes how EXPRESS

instance data can be stored in files. In this case, streams are being used instead of static files and

the primary use of the stream is data transportation rather than data storage.

A component that serialises data objects to or from a stream must have the capability to perform

the following :-

• discover the structure of the data objects.

• access the local representation of the data objects.

• (de)serialise the data objects that conform to the standard stream format.

The serialising component must cross the impedance mismatch between local representation and

the standard stream format representation. Thus, the component can benefit from the meta

schema facility to discover the structure of data objects and to perform dynamic mapping

between the representations(Figure 4.12).

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 109

Persistent
Data Access Service

~--,
Generic client

~
generic client
data object

representation

data object
standard stream

serialiser

Meta-Schema
Facility

Datastore specific
server

data object ~
standard stream

serialiser

datastore specific
data object

representation

Persistent
query Data Access Service

data object
structures

Figure 4.12: The meta-schema f acility can be used to discover the
structure of data objects enabling dynamic (de)seria/ising

It should be emphasised that the combination of stream transport across the distributed

environment and a standard serialised format for structured groups of data objects is a powerful

general tool for the exchange of data. In this case, it is being used as a data bus between client

and server parts of the persistent data object service.

4 .4 .4 Sessions

Client applications that access persistent data commonly perform its manipulation within the

context of a session. A session is a logical connection between the client and the datastore

server. The session offers the client a virtual exclusive access interface to the datastore, hence

hiding the concurrent access of other clients. Through the session, all datastore specific

operations are performed:- opening/closing oflogical collections of data, manipulation of data,

creation/deletion of data, execution of queries, access control, accessing meta-data, applying

locks and beginning/ending transactions.

The persistent data access service will reflect this model of access through a session to provide a

logical connection to the proprietary datastore session and as an access point to the rest of the

service's functionality. Thus, using the session interface, a client can gain other interfaces of the

service that provide the functionality to perform the datastore specific operations mentioned

previously.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 110

session
application operations

application session

server process
----- --------------------- ----- -----------------
1
I
I
I ,~ session 1r

I
I
I
I
I
I forwarded
1 session operations

" I stream
/1

se~er J datastore J

session session

/ se~er J datastore J

session session

"

,,,.-
1'--

_.,,..

Datastore l
I
l
l
l
I
I
I

I I I __ __ _ I

server process

Figure 4.13: Configurations of client and server sessions to provide for
local or remote data manipulation

A design decision of the persistent data access service is to support the two location

manipulation models i.e. local or remote data object manipulation. The result of this decision is

that the service is implicitly split into client and server parts. Consequently, a single logical

session is implemented with a client and server session components. As with streams, the client

session should be a generic implementation that is independent of datastore specific software.

The client session is also the component where actual datastore independent representations of

data objects are manipulated. The server session on the other hand is specific to the datastore

and supplies a bridge between the service's session operations and the datastore proprietary

session(Figure 4.13). Also, for each session created in the server process, a new thread of

execution is created for the session to run on, hence there are multiple sessions running in

parallel accessing the datastore.

The client session is the component that permits the application to access and manipulate data

objects. Therefore, the location of the client session determines the data manipulation model in

use. If the client session is remote from the server session, then it is the client session' s

responsibility to set-up a stream between it and the server session.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 111

4.4.5 Integration with the Transaction and Concurrency Services

Transactions and locking in proprietary datastores are generally controlled by the client

application from within a session, using the datastore interface(Figure 4.14a). However,

transactions in the distributed CORBA environment do not have this simplistic model of a direct

transaction between client and server. CORBA transactions are distributed. In this model a

single distributed transaction can cover many requests amongst many CORBA objects(Figure

4.14b). Consequently, the client of the datastore may not be the originator and controller of the

transaction.

CORBA transactions are provided by the Object Transaction Service(OTS)[OMG COSS](see

section 2.4.5). The OTS interfaces are used to create and start a distributed transaction by some

component in the CORBA environment. This component is the originator of the transaction,

thus it begins and ends(i.e. commits or rollbacks) the transaction. The originator component will

make requests on CORBA objects. These objects in turn might make requests on other objects

etc. A chain of requests that has been initiated from within the context of a transaction is

unfolded (Figure 4.15). Any objects in this chain that are transaction-aware will implicitly pass

transaction information onto objects they are making requests of. The state of certain objects in

the chain might be affected by whether the transaction is committed or not. Frequently, these

affected objects will be supporting some sort of persistent storage, so that when the transaction

is committed the state change can be written to the store. These objects who' s state is

dependent on the transaction outcome are called resources.

transaction boundary _______ __ __ _ _ _
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

transaction boundary

Figure 4.14a: Direct transaction between client
and datastore

Figure 4.14b: Transaction is distributed
covering many components

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 112

transa9tj_oJl_b_o~!)~~ry - - - - - - - -- - - - - -- - - -- - ----,,,
,-- - -- ',

\ obj 1 r \...-----~ obj2R Datastore ',,,,

I • '
1 (transaction ',
1 originator) '

1
I I l________ I

obj3T obj4R Datastor 1

I
I
I

'--------------------~------- ' transaction boundary

T - Transaction aware
R - Resource

Figure 4.15: A chain of requests within a transaction. Transaction aware objects convey
transactions information, Resources take part in completing a transaciton

Each component involved in the transaction has the right to force a rollback, but only the

transaction originator can initiate a commit. The change of state of all resources within a

transaction is dependent on how the transaction is completed. If the transaction is completed

with a commit, then a two phase commit protocol must be performed, so that each resource

agrees to the commit. To be involved in the two phase commit each resource must implement

the OTS Resource interface. For an object to be transaction aware it must inherit the OTS

TransactionalObject interface.

A requirement of the persistent data access service is its integration with the object transaction

service, therefore it must fit in with the OTS transaction model and support its interfaces. As it

happens, the design of the session model presented in the previous section integrates neatly into

the OTS transaction model and interfaces. In the session model, the client session is the

application's gateway to the service's functionality and the server session is the bridge between

the datastore and the service. The client session is typical of a transaction-aware object that is

only concerned with whether its own operations have been correctly executed and with passing

transaction information on to other objects. The server session is a resource object as it has data

that has to be persistently stored upon commit, and has to vote in the two-phase commit

whether it can commit or not. Thus, the session components can implement the relevant OTS

interfaces and therefore take part in the distributed transaction(Figure 4.16).

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service

transaction boundary _________ _ __ _________ __ _______ _ ____________ _ __ _

persistent data access service
requests from
other transaction- - -►
aware objects

I
. r ~ ~ ---s-:-erv,,,--e~

c rent >-----~ sessionR

I
I
I
I

datastore :

(client may be
the transaction

originator)

I
I

I
I
I

transaction boundary

T - Transaction aware
R- Resource

Figure 4.16: The client session is transaction aware and the server session is a resource

113

Datastores are usually being concurrently accessed, therefore locking is necessary to prevent

interference between clients and to maintain the integrity of data and the system as a whole.

Hence, it is necessary build locking functionality into the design of the service. The CORBA

Concurrency Control Service(CCS)[OMG COSS](see section 2.4.5) supplies standard

interfaces for clients to gain locks of different types on resources/CORBA objects. CCS

provides the Lockset interface that allows locks to be gained, dropped or upgraded. CCS also

provides the LockCoordinator interface that permits the OTS to drop any locks held on a

resource at the end of a transaction.

Again, the session components can implement the relevant CSS interfaces(Figure 4.17). Both

client and server session can support the Lockset interface. The client session will simply

forward locking requests to the server session where the locks will be held. The server session

will implement the LockCoordinator interface enabling the OTS to explicitly drop its locks upon

the completion of a transaction.

client

persistent data access service

lock session
1--;.;;;..;;..;.;_,a-< Lockset
reques

lock
reques

OTS

server
session

Lockset
LockCoordinator

Figure 4.17: The session components will support the relevant
Ca12c11rre12cy Ca12trot i=enlice i12te>ji:Jcer

datastore

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 114

The session components are the primary elements to integrate transaction and concurrency

services. The session components accomplish this integration by inheriting the relevant

interfaces and implementing the behaviour expected of these interfaces. The interface hierarchy

of the session components is shown in figure 4. 18.

The session components are divided into client and server side varieties. They further specialise

into non-transactional and transactional types. Every session type inherits the Lockset interface,

thus providing the locking operations. The transactional sessions inherit the necessary OTS

interfaces, with the transactional server session additionally inheriting the LockCoordinator

interface. The sessions are set-up in client-server pairs, where a pair depends upon whether the

session will work within a transaction or not.

Lockset

~ Lock
Coordinator

Session Transactional Server
Resource Object Session

,l il /'J , l

I I I I
Non

Transactional Non
Transactional Transactional

Session
Transactional

ServerSession
Session ServerSession

r. r: ~ :,

. . . . '

• · • ... session pair ... • · · · · • ... ~~~~1?.n. P!:l!r .. • · ·
Figure 4.18: Interface hierarchy of the session components incorporating

transaction and concurrency service interfaces

4. 5. 6 Representing Internal Datastore References

'l

A facility that makes structured data defined in schema definitions so powerful is their property

of representing relationships between data objects. A relationship is defined in data definition

models as a reference attribute of a data object. A value of a reference attribute indicates the

other dci!a object(s) in the relationship.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 115

Representing references is the most problematic property to deal with when manipulating data

outside its native domain i.e. copying data out from a datastore to an external representation,

manipulating it, then updating the original stored data. Moving non-referential attribute types

between its native format and an external format is usually just a case of a one-to-one mapping

of a native type to an external type. But for referential attribute types the mapping is far more

complicated, mainly due to it being rarely possible to directly represent a reference in two

domains. Direct representation is not possible owing to the many diverse methods to represent

references, such as memory pointers, objects/structures containing referential information,

attribute keys, object identifiers. These methods of maintaining references is specific to the

native datastore and/or the programming language used to access the datastore. Therefore, a

more complex method must be employed to map native references to external references.

Manipulating references in an external format entails further complexity issues. The integrity of

references must be maintained, so that references copied out from the datastore still logically

point to the same data object. Integrity of references must also be maintained when entities are

updated in the datastore. Another complexity is that references have an associated type that

constrains the type of data objects that can be assigned to it. A further complexity of reference

types is dealing with the data object type's inheritance hierarchy in that any sub-types of the

reference type can be assigned to it.

The design of the persistent data access service must address these problems of handling

references. The initial problem is of representing datastore references external to the datasstore.

This requires some standard form of storage technology independent representation. An ideal

solution that is independent of storage technology and their implementation languages is for the

server session to assign every data object retrieved from a datastore an object identifier(oid).

Where the object identifier is an integer value that is unique within the logical session. Thus,

data objects active in the service can refer to each other by their oid's(Figure 4.19).

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 116

Server session Datastore

oid:123

oid:124

Figure 4.19: Active data objects are given a session unique integer value
providing them with an object identijier(oid)

The benefit of assigning each retrieved data object an oid, is that data objects can be moved

between client and server sessions via the stream and their relationships can be maintained. This

is due to the service no longer being constrained by the datastore/language specific references.

However, the server session has to be carefully planned to prevent inconsistencies between

logical references via oid's and the native datastore references. One difficulty in maintaining

consistency is that the server session must ensure that distinct data objects will have only a

single oid within a session. Therefore, when a data object is retrieved from a datastore, the

current list of active data objects must be checked to see whether the data object has previously

been retrieved and assigned an oid.

It should be noted that this proposal to use object identifiers(oid's) is different from the object

oriented database(OODB) concept of object identifiers. An OODB oid is a permanent identifier

for the lifetime of an object. Here, an oid is only valid for an object for the duration of a session

as oid's are dynamically associated with objects upon retrieval. The OODB oid on the other

hand will be the same for every session in which a particular object is retrieved. The significance

of this is that OODB oid's can be dependably used in an external environment to the OODB,

which is why they can be integrated into CORBA object references via object database

adaptors(see section 3.4.2). The same sort of integration could be achieved with session

dependent oid' s, but the CORBA object references would only be valid for the duration of the

session. Also, all objects referred to would have to be active in memory, unlike OODBs where

objects are usually dormant.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 117

The use of object identifiers is a mechanism that allows the persistent data access service to

maintain the consistency of references between its own representation of references and the

native datastore references. Nevertheless, this functionality is internal to the workings of the

service and is hidden from the application.

The application view of references relates to the reference types of the meta-schema model.

Applications will view references as attribute instances of meta-schema Key or Absolute

types(see section 4.4.2). Applications can navigate a relationship by explicitly retrieving the data

object by its attribute reference. If the attribute reference does not have an oid associated with it

then the client session will ask the server session to retrieve the data object(Figure 4.20a). Once

retrieved the data object will be associated with an oid, transferred to the client session and the

oid associated with the attribute reference(Figure 4.20b) . This technique is called

swizzling[Vadaparty 95] and is commonly used with object-oriented databases.

Application

retrieve
re erence
data object

Client session Server session

'----------"

Figure 4.20a: Attribute reference does not have an associated oid,
requiring the referenced data object to be retrieved

Application Client session Server session

Figure 4.20b: Referenced data obj ect is retrieved, assigned an oid
and oid is associated with attribute reference

4.5.7 Querying Data Objects

Datastore

Datastore

A query in general database terminology means not only to select, but also to carry out general

data manipulation operations such as creation, updating and deletion. For the persistent data

access service, querying through the service is restricted to selecting data objects only.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 118

The querying facility will permit applications to specify a select query, execute it and return a

collection of data objects that meet the criteria of the predicates defined in the query. This

enables applications to gain initial data objects whose relationships can be further navigated or

to simply gain a collection of data objects that are of interest to the application.

The next design consideration is what will the structure of query statements be and how they

will be executed. There is a large variety of query languages amongst the database community.

The majority are based on standard languages of SQL[Vander 93] or OQL[ODMG 93], with

many languages being proprietary versions of these. Hence, datastores supported by the service

will have a diverse range of query languages. Thus, a simple query language is required that can

be used to specify select statements. These statements can be translated to each native query

language.

The query language will be based on the "select from <type> where <predicates>" statement.

The <type> specifies the name of a entity type declared in a meta-schema model and the

<predicates> provides evaluation expressions on attributes of the entity type or entities with a

relationship to the specified entity type. Note that the returned elements are always data objects,

so there is no need to specify what is passed back as in SQL select statements.

The next consideration is how to execute these statements. The natural solution to this is to

examine integrating the CORBA query service into the service. Fortunately, the CORBA query

service is generic enough to serve our purposes. The query service defines a QueryEvaluator

interface that supports the submission of a query statement in a string form and returns an IDL

'Any' type containing the results. The implementation of the Query Evaluator has the duty of

translating a select query to the native language, executing the query on the local datastore and

Application

query

Client session Server session
orwarded

query

retrieved
results

Figure 4.21: Retrieving data objects using a QueryEvaluator

Data store

Chapter 4 - Analysis, Requirements and Design. of a Persistent Data Access Service 119

retrieving the data objects indicated by the results of the query(Figure 4.21).

4.5.8 Retrieving Groups of Data Objects

A common programming pattern emerges when manipulating data objects, where the data

objects are related by complex networks of relationships. This pattern involves the following

series of steps :-

1. Execute a search for an initial data object.

2. Retrieve a related data object that is of interest.

3. For each retrieved data object, repeat the previous step for each relationship of interest.

4. Manipulate retrieved data objects.

5. Store any update data objects.

The effect of following this pattern is that a network of retrieved data objects is constructed in

memory. Typically, each application type will repeatedly traverse the same set of relationships

between data objects for each execution of the application.

However, usmg this pattern reqmres each data object to be explicitly retrieved from the

datastore using separate retrieval calls. This is technique is inefficient. A superior approach

would be to specify an initial data object and for all the relationships to be automatically

traversed and the data objects retrieved. This approach has the benefit that all data objects of

interest can be transferred in bulk to the client, thus being more efficient than multiple retrieval

calls and data objects transferred individually.

To implement such a facility, the relationships that are traversed and the data objects that are to

be retrieved have to be described. This description is called a Data Object Retrieval Map. The

retrieval map has to somehow be presented to the system, so that the server session can

automatically traverse relationships in the map so that an application can specify a retrieval map.

The presentation of a retrieval map to the system can be conveyed in a form similar to that of

the meta-schema model(see section 4.4.2). Because the retrieval map information is represented

as CORBA objects with defined interfaces, the components of the system can examine these

objects to find out the map 's structure.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 120

Data Object
Retrival Map
map_riamo:strtng

from the meta-schema model ------------- -- ----------------------- - ----- 1
I J

: references ;
I .J, I I
I
I has *- has type) Entity I Entity Attribute
I

Reference I
I

I _ ____ ------------- -- --- ------- -- --------

data object I< - - • - - - la!lr.\b,!lte .!>t - - ••• - • reference
type entity or attribute

entity parents}

• Data Object Traverse ,
Node : Relationship

0 .. 1

node

Figure 4.22: The data object retrieval model

I
I
I

I

The Data Object Retrieval Model is shown in figure 4.22. Instances of the Data Object Node

and Traverse Relationship classes reference the entities and attribute references that make up a

retrieval map. Each Traverse Relationship can reference another Data Object Node allowing

multi-level retrieval of data objects.

Figure 4.23 shows an example schema of entities and relationships in EXPRESS. Using this

schema, the following relationships could be traversed:- A.refl->B and A.ref2->C.ref3->D. The

instances of the retrieval model describing this traversal is shown in figure 4.24.

The Data Object Retrieval Map and its representation model is only a facility to improve

performance for applications, thus is not vital to the persistent data access service. But

traversing relationships from an initial data object is a common procedure that was also realised

in the implementation of the OpenSpirit to Epicentre mapping(see section 3 .2.2). Being able to

automatically retrieve data objects in accordance with a set retrieval map is not only

performance efficient, but also removes some work from the programmer.

ENTITY A;
ref1 :B;
ref2:C;

END_ENTITY;

ENTITY B;
END_ENTITY;

ENTITYC;
ref3:D;

END_ENTITY;

ENTITYD;
END_ENTITY;

Figure 4.23: An example EXPRESS schema

Chapter 4 -Analysis, Requirements and Design of a Persistent Data Access Service 121

classes from meta-schema model ------------ --------------------------1

Entity Entity Entity Entity

entity_name=A entity_name=B entity_name=C entity_name=D

Oata Object
Retrieval Map

Attribute Attribute
attr name=ref1 attr name=ret2
iype=e iype=c

---- ---- ---------- ---- --------

Data Object
Node

Figure 4.24: Instances of the retrieval model describing the relationships of entities
that will automatically be traversed

4.5.9 Binding CORBA Objects to Data Objects

The persistent data access service is not dealing with the storage of CORBA objects, but with

data objects, which are units of information that have no IDL interface and no behaviour. The

storage of data objects is delegated to datastores. The service interacts with these datastores to

manipulate their stored data objects. As data objects are not CORBA objects, the service must

dynamically manipulate data objects by understanding their structure by comprehending their

meta-information.

An application to manipulate data object attributes is provided with a single interface for every

data object type. This interface allows applications to dynamically 'get' or ' set' attributes by

providing the following information:- handle to a target data object, an attribute string name and

typed variable. See figure 4.25 for pseudo code showing an example of dynamic and static

manipulation. The disadvantages of dynamic 'get' and 'set' operations is that type checking of

operations cannot be carried out at compile time, applications are more complex, hence more

bug prone.

DataObject handle = ;
AnyType value = "Mikey";

set(handle, "NAME", value);

Figure 4.25a: Dynamic manipulation

Person person1 = ;
String name = "Mikey";

person1->set_name(name);

Figure 4.25b: Static manipulation

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 122

CORSA distributed components can also
component indirectly manipulate data object

using the CORSA object binding

Application
(client of service)

Persistent Data Access Service

manipulate --r------.~
data object
using static

interface

Data store

CORSA object bound Data Object
to data object providing

CORSA
component

a static interface to the
data object

Figure 4.26: COREA object is bound to a data object providing a static interface for
manipulation and allowing access from the distributed COREA environment

It would be advantageous to provide data objects with a static type-specific interface that would

permit static manipulation. Further, this interface binding would naturally take the form of

CORBA objects, thus providing applications with a static IDL interface to data objects. As well

as having the benefit of a static binding, it would also have the benefit of making data objects

available for manipulation from any component in the CORBA environment(Figure 4.26).

CORBA objects providing a static interface to data objects will have to be implemented by

developers or be automatically generated from the meta-schema description by special purpose

tools. A similar situation can be found in [Sauder 97], that describes an implementation of the

STEP IDL SDAI. Here, CORBA objects are automatically generated from EXPRESS schemata

and are used as wrappers for database objects.

Given a set of CORBA objects that behave as wrappers to data objects, the service will have to

provide a mechanism to bind the two together. Given a handle to a data object of a certain type,

its matching CORBA object wrapper has to be obtained. The basis of this problem is associating

data object types with their appropriate CORBA object wrappers and instantiating the wrapper.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 123

This functionality is provided by an integration of the CORBA Trading and FactoryFinder

interfaces. In this integration, factories of the wrapper objects can register the data object types

they support with the trading service. The persistent data access service can use the

FactoryFinder object to return the relevant wrapper factory that can be used to create an

instance of a wrapper object to act as interface to a data object(Figure 4.27). The integrated

Trading and FactoryFinder service have also been suggested in the CosLifeCycle service

specification.

This mechanism of binding of CORBA objects to persistent data objects is effectively providing

a form of persistence for CORBA objects. However, the persistent data of the CORBA object is

determined by the data object's schema rather than by the IDL interface attributes.

2.find factories
Session

Person
CORBA
Object 5.Data

Object bou
to CORSA object

Figure 4.27: Requests required to find and instantiate a COREA object wrapper
to bind to a data object

4.6 Summary

This chapter has presented an analysis of problems with current CORBA persistent data access

solutions. This primarily pointed out that there is no standard persistent data access service for

CORBA, resulting in proprietary solutions. Consequently a high dependency is created with the

storage solution. The future Persistent State service will mostly fill this functionality, but is only

ideal for datastores that have models similar to object-orientation. Also, for database adaptor

based solutions, all manipulation of data is carried out in the server, therefore a slow remote

procedure call is required each time data is accessed. In some situations, the impact of this

performance decline is unacceptable.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 124

The outcome of the analysis is the formalisation of a set of requirements that the persistent data

access service should meet. The highlights of these requirements are that the service should

provide a set of IDL interfaces that will allow the common manipulation of data stored in

heterogeneous datastores. The service should not impede existing applications accessing the

datastore and integrate with the CORBA transaction and concurrency service.

The chapter continues by covering the problems involved in meeting these requirements and

design decisions of how these problems can be solved. In the service, persistent data are called

data objects as they only have state and no behaviour. To manipulate data objects in a common

manner, the service must hold data objects in a form that is independent of the proprietary

datastore representation, therefore mapping is required to transform data objects between the

two forms. This mapping can be dynamically carried out by discovering the structure of data

objects via meta-information.

To manipulate data objects in a common manner, applications must also have a common view of

the structure of data objects. This view is provided by the meta-schema model. The meta

schema model is an object model. Instances of the object model will describe the structure of

data objects. This description is provided by proprietary data definition models being mapped to

the meta-schema model.

The next design decision is for the service to support both local and remote data manipulation

models. This allows applications to cache data locally permitting fast repetitive manipulation.

Providing this feature inherently splits the service into client and server components, therefore

for local manipulation, a stream mechanism is required to transport data between the

components. A stream mechanism provides the missing copy-by-value functionality to CORBA,

and should be designed as a service in its own right.

Clients of datastores usually operate through a session. The session provides all the functionality

of the data access interface as well as locking and transaction ability. This session model will be

reflected in the service. A single logical session comprises of a client session and a server session

supplying the client and server components of the service.

Chapter 4 - Analysis, Requirements and Design of a Persistent Data Access Service 125

Integration of the transaction and concurrency services is critical to any reliable service. The

service can combine with this functionality by implementing the necessary interfaces. These

interfaces can easily be supported by the client and server sessions. The client session supports

the TransactionalObject interface and the server session supports the Resource interface,

allowing it to take part in transaction completion. Both sessions support the Lockset interface

permitting the clients to specify the locking to use for the session. The server session

additionally supports the LockCoordinator interface that allows the transaction service to drop

any locks held.

Other facilities provided by the service are:- giving active data objects an session dependent

object identifier to represent internal datastore references, a Query service interface for

executing simple 'select' queries, a facility for specifying relationships that can be traversed for

automatic retrieval of groups of data objects and the ability to bind CORBA objects supporting

static IDL interfaces to data objects.

These design decisions presented in this chapter have laid out the basic components and

facilities of the persistent data access service. In doing so, they have answered many questions

of how the requirements specified at the beginning of the chapter can be met.

Chapter 5

The Stream Tunnel Service

5 .1 Introduction

The Persistent Data Access Service(PDAS) requires a mechanism to transport non-IDL

defined data across the distributed environment. This data transport mechanism is provided

by the Stream Tunnel Service(STS)[Ball 98][Ball 99].

The purpose of the Stream Tunnel Service is to provide a mechanism to set-up and use

distributed streams. Using the stream, data can be written to one end of the stream,

transported to the other end of the stream and read out there. The benefit of this approach

of transporting data in streams over using ORB request calls is that the structure of the

transported data does not have to be statically defined in IDL operation definitions. This

makes streams ideal for transporting data objects held in datastores and defined using the

datastore specific data definition languages.

A stream functionality already exists m CORBA with the Externalization service[OMG

COSS](see section 2.4.3). The Externalisation service provides a Stream/O interface to

write and read data to a stream. Components that write or read their data to/from the

steam, have to support the externalize_to_stream and internalizeJrom_stream operations

Chapter 5 - The Stream Tunnel Service 127

of the Streamable interface. Therefore, getting data in and out of the stream is already well

catered for with the Externalization service.

However, the Externalization service does not cater for the setting up a distributed stream

and for moving data between the ends of the stream. The Stream Tunnel Service has been

devised by extending the Externalization service to supply these mechanisms(Figure 5.1).

Consequently, STS is an excellent example of the application of the OMG's Baushaus

principle, where a CORBA service is extended to provide the required functionality to

serve a particular purpose.

In the stream model, data is written to one end of a stream, moved to the other end of the

stream and read out there. How data is moved is an implementation detail of the service,

therefore has no effect on how clients use the service. The actual network data transport

mechanism used to move data across the distributed environment does not necessarily have

to be the ORB. Hence, more efficient network data transport mechanisms could be

employed that improve the performance of data transfer. This characteristic of choosing a

network data transport is why the service is termed a 'tunnel' as it can go through the

defacto communication mechanism i.e. the ORB or can go underneath it by using a

mechanism like sockets[Rieken 92] for example.

Stream Tunnel Service

Streamable write data StreamlO ~
~~. ~

' data in stream '
.,.111,--=is--'-m~o""'"ve=d;;,..;u=s=in..._g _ _ ~ ~

a network data ~
transport mechanism

read data Streamable

Figure 5.1: The Stream Tunnel Service extends the Externalization service
to provide data transf er between streams

The contents of the chapter is as follows. Firstly, the interfaces of the Stream Tunnel

Service are introduced as well as an explanation on how the components implementing

these interfaces interact to provide the distributed stream functionality. Next, further

explanations are given explaining the sequence of activities needed to setup a stream and

push data through it. The utilisation of streams using low-level data transport mechanisms

is presented next. This includes an experiment comparing the performance of streams using

Chapter 5 - The Stream Tunnel Service 128

ORB-based and TCP socket-based data transport mechanisms. The implementation of the

STS components for the experiment is briefly described. How the experiment was carried

out and a discussion of the results of the experiment is also explained. Finally, suggestions

are made on other possible applications of the Stream Tunnel Service.

5 .2 Interfaces and Components of the Stream Tunnel Service

This section introduces the IDL interfaces of the Stream Tunnel Service(STS) and

describes the behaviour of components implementing these interfaces, demonstrating how

they work together to carry out the service's purpose. Only segments of the service' s IDL

code is presented here. The whole STS IDL code can be found in appendix C. This section

makes the presumption that the reader is familiar with the interfaces and workings of the

Externalization service(see section 3.4.3).

5.2.1 Stream Channels

The most basic component of STS is the StreamChannel. As shown in figure 5.2, the

StreamChannel inherits the Stream interface. Using the Stream interface, Streamable

objects can be externalised and internalised to/from the StreamChannel. This is the

mechanism by which data gets into and out of the StreamChannel. The actual

StreamChannel interface adds operations to push and pull data held in the stream to and

from the other side of the stream. Therefore, a distributed stream comprises of a pair of

StreamChannel components making up the ends of the stream. Data is transported

between these two ends with the push and pull operation.

Each StreamChannel component at the ends of a distributed stream has to take on the

role of a client or server. A StreamChannel component in the client role drives all

i nterface StreamChannel : CosExt ern alization : :Stream
{

) i

void p ull stream data(in StreamChannelServ er sourceChannel)
raise s(NoDa t aAv a ilable , StreamNotAvai l abl e, DataTransferErr or);

void p ush stream data (in StreamChannelServer t argetChannel)
raises(NoDa taAvai lable , StreamNotAvai l abl e, DataTransfer Error);

Figure 5.2: The StreamChannel interface

Chapter 5 - The Stream Tunnel Service

typedef sequence <octet> StreamedData;

interface StreamChannelServer : Streamchannel
{

) ;

} ;

void push StreamedData{in StreamedData restoredData)
raises (CannotAcceptData) ;

StreamedData pull StreamedData()
raises (NoDataAvailable, DataTransferError);

oneway void send_data() raises (NoDataAvailable, DataTransferError

oneway void receive_data() raises(CannotAcceptData);

Figure 5.3: The StreamChanne!Server interface
extending the StreamChannel interface

129

transport of data between the ends of the stream, while the server side StreamChannel

takes on a passive role and is slave to the requests of the client for data. There are two

primary reasons for this:- the first reason is to preserve integrity of state of the stream (if

both sides were simultaneously trying to move data then problems would occur). The

second reason is an implementational issue concerning the CORBA architecture. In

CORBA, to receive distributed requests, a component/CORBA object must be running on

top of an object adaptor. Consequently, the server side of the stream must also run on top

of an object adaptor, for the client side to be able to communicate with it. Generally, client

applications operate synchronously and are singularly threaded, hence do not run object

adaptors that provide asynchronous communication with the external CORBA environment.

Reflecting the client/server roles of the StreamChannel components, the push and pull

operations refer to a StreamChannelServer component as the other side of the stream.

The StreamChannelServer interface(Figure 5.3) further extends the StreamChannel

interface by adding operations which the client side of the stream can invoke to actually

move data between the two sides. The operations of the StreamChannelServer interface

are only a basis for possible methods of moving data and their implementation is not

obligatory. For more specialised methods of data movement the StreamChannelServer

interface should be further extended to provide operations with the required functionality.

If a specialised method of data movement is used, then the client side StreamChannel has

to accordingly use that method as StreamChannel work in pairs.

The StreamChannelServer interface provides two basic methods of data transfer. The

first uses the push_ StreamedData and pull_ StreamedData operations to transport the data

held in the stream as a sequence of octets i.e. an array of bytes. This method utilises the

Chapter 5 - The Stream Tunnel Service

StreamChannel
client side

StreamChannel
server side r-------- -- .-- - -------,

Stream

I

(C .) , Stream 1

hent 1.pull , ► Channel 1

d- I --- ,!.. "(~ stream_ ata , _____ __ __ _ , &I).

,J' rt(l
•Ir.,,,', .,.. c:1/~

..,.I)_,. ...
u.oo ...

'I'/ Cl ... I

c:1/,::,,. ,,
I

Figure 5.4: Sequence of requests to transport data
from the server to client StreamChannel

Stream

Stream
Channel

Stream
Channel
Server

130

ORB for data transport. The second method allows the use of transport mechanisms other

than the ORB. The operations send_ data and receive_ data signal the server side of the

stream to either send its data or to get ready to receive data. The actual data can then be

transported using some mechanism other than the ORB.

Figure 5.4 shows the StreamChannel client and server sides and the hierarchy of

interfaces that make the two components. Given that the server side has already had a

Streamable object externalised to it, then the figure shows the sequence of requests

required to 'pull' the data to the client side using a network data transport mechanism other

than the ORB.

5 .2.2 Stream Channel Factories

In keeping with the model of creating CORBA objects specified in the LifeCycle service,

the StreamChannelFactory interface(Figure 5.5) provides a create operation to return a

typedef CosLi feCycle : :C r iteria TransferChannelCriteria;

interface StreamChannelFactory
{

Streamchannel creat e(inout TransferChannelCriteria
channel Type)

} ;

raises(ChannelTypeNotSupported, BaseChannelSupportedOnly,
Channel OpenFailed);

Figure 5.5: The StreamChanne/Factory interface

Chapter 5 - The Stream Tunnel Service 131

new instance of a StreamChannel. The create operation takes a parameter of

TransferChannelCriteria type. This parameter can be used to pass all information

concerning the set-up of the stream. For example, it could pass the host address and port

number of a socket based.

The TransferChannelCriteria type is based on the LifeCycle's Criteria. This type is made

up of a sequence of Named Value Pair(NVP). The NVP type comprises of a structure that

contains a string value name and an IDL 'any' type. Therefore, a NVP contains a name

describing what the contained value represents. Using a sequence of NVP the information

detailing the set-up of the stream can be passed to the factory. This makes stream

configuration very flexible as the information detailing the stream set-up can be dynamically

constructed. Examples of stream setup information are shown in figure 5.6.

Stream type description Value strin2 name Examole value
1. Socket based stream "stream type" "TCP socket"

"host address" "14 7 .345 .234.394"
"port number" 5001

2. ORB based octet block stream "stream type" "ORB octet sequence"
"block size" 1024

Figure 5.6: Example of stream set-up information contained in a TransferChanne/Criteria type

5.2.3 Stream Tunnels

The StreamTunnel interface makes the use of StreamChannels by encapsulating the

stream mechanism and its set-up. It also hides the use of the Externalisation service and

Lifecycle service that are necessary for the internalising and externalising ability. Each

process using streams will have an instance of a StreamTunnel. The StreamTunnel

component will manage all stream connections for the process.

The Stream Tunnel interface is the primary component of the Stream Tunnel Service that

users of the service interact with to access its functionality. The interface(Figure 5. 7) has

two sets of operations. One set deals with pushing and pulling Streamable objects through

Chapter 5 - The Stream Tunnel Service 132

interface StreamTunnel
{
S t reamChannel push streamable (

in Cosstream: :Streamable streamableSource, in Streamchannel targetStream)
raises(NoDataAvailable, StreamNot Avail able, DataTransferError

) i

CosStream::Streamable pull streamable(
in CosLifeCycle::FactoryFinder finder, in StreamChannel sourceStr eam)

raises(CosLifeCycle::NoFactory, CosStream: :StreamDataFo rmatError,
NoDataAvailabl e, StreamNotAvailable, DataTransferError);

StreamChannel open channel(
in StreamTunnelService::StreamTunnel other tunnelEnd,
inout TransferChannelCriteria channelType,-inout Streamchannel o t herEnd

raises (Channel TypeNotSupported, BaseChannelSupportedOnly,
ChannelOpenFailed);

void close channel(in StreamChannel targetChannel
-raises (StreamNotAvailable);

) i

Figure 5. 7: The StreamTunne/ interface

a stream, the other is for creating and closing a stream. The creation of streams is covered

in the next section.

The StreamTunnel with its push and pull streamable operations effectively permits any

object supporting the Streamable interface to be transported through a stream(Figure

5.8). The prerequisites for transporting Streamables using the tunnel is that a stream must

already be setup. Also, for internalisation purposes, each type of Streamable object must

have a counterpart Factory object that can be used to recreate the Streamable object. The

Factory object must be registered with a Factoryfinder, so that it can be found. For a

better understanding of the internalisation process and its use of the LifeCycle service see

sections 2.4.2 and 2.4.3 .

Client
1.push_streamable 2.pull_streamable
(Streamable ref1, (Factoryfinder ref3,
StreamChannel ref2) StreamChannel ref4)

"'-------s~t~re~a_m ____ ~ /

Stream data transfer
Tunnel via StreamChannel pair

produces
copy of source

Streamable

Stream
Tunnel

Server

Figure 5.8: The StreamTunnel can be used to push and pull a Streamable object through a stream

Chapter 5 - The Stream Tunnel Service

Client

Stream
Tunnel

Process boundary
I

4.open_channel

\

6.creates\

Figure 5.9: Steps 3-6, requests to create a stream

5 .3 Setting up a Stream

Stream
Tunnel

133

A stream is made up of a client and server side StreamChannel objects. These objects

must be created in a synchronised way, so that they are correctly set-up to communicate.

The creation of a stream is a complex procedure involving coordinating client and server

tunnels and their associated StreamChannel factories. This section describes the sequence

of requests and behaviour of these components necessary to set-up a stream. The ORB

requests are shown in the accompanying figures.

1. The client of the service must somehow gain references to client and server

StreamTunnel components.

2. The client creates a TransferChannelCriteria instance describing the type of stream to

be set-up.

3 . The client invokes the open_channel operation on in its client side StreamTunnel

providing the server StreamTunnel and TransferChannelCriteria as parameters.

4. The client StreamTunnel conveys this operation to the server StreamTunnel.

5. On receiving the open_channel request, the server StreamTunnel will invoke the

create operation on its StreamChannelFactory passmg the

TransferChannelCriteria parameter.

6 . The StreamChannelFactory will examine the information contained m the

TransferChannelCriteria and create an instance of a StreamChannelServer that

meets the stream type criteria.

Chapter 5 - The Stream Tunnel Service 134

7. The TransferChannelCriteria is an IDL 'inout' parameter, which means that any

change in the TransferChannelCriteria value is passed back to the caller of the

operation. This allows the StreamChannelFactory to add information to the

TransferChannelCriteria parameter that will influence how the client side

StreamChannel is created. For example, for a socket based stream, the host address

and port number could be added.

8. A reference to the newly created StreamChannelServer is returned as a return

parameter of the open_channel operation to the client side StreamTunnel.

9. The client Stream Tunnel calls the create operation of its StreamChannelFactory.

(Client)

Process boundary
I
I
I

"'--::::==::::::::::--~s~tr~§:a~m~---:::;;::==::::
I
I

Stream
Channel

/ ~
I

'1 O.creates
I

Figure 5.10: Steps 9-10, requests to create a stream

Stream
Tunnel

10. The StreamChannelFactory creates a client StreamChannel in conformity with the

passed TransferChannelCriteria value. Thus, the client StreamChannel is initialised

for communication with the corresponding StreamChannelServer. For example, a

socket based stream will open a socket with the server at the specified address and port.

Consequently, with both StreamChannels in place, the stream is ready for use.

5 .4 Transporting Data using a Stream

The behaviour of components and the sequence of requests required to transport data

through a stream is presented here for clarity of how the service works. The data to be

pushed through the stream is held in a Streamable object that knows how to write its data

to/from a stream. Given that a stream is already set-up as described in the previous section,

the Streamable object can be pushed through the StreamTunnel using the specified

StreamChannel. The sequence of requests are shown in accompanying figures.

Chapter 5 - The Stream Tunnel Service 135

1. The client invokes push_streamable on the StreamTunnel, specifying the

Streamable and the StreamChannel to push it through.

2. The StreamTunnel is encapsulating the functionality of a client of the Externalisation

service, thus it requests the StreamChannel to externalise the Streamable.

3. The StreamChannel requests the Streamable to externalize to stream passing it a

StreamlO interface.

4. The StreamlO interface 1s used by the Streamable to write its data to the

StreamChannel.

Client

Process boundary
l
l

Figure 5.11: Steps 1-4, requests to externalise an object to a stream

(Server)

Stream
Tunnel

5. The StreamChannel is now filled with data, so the StreamTunnel requests it to push

its data to the other side.

6. The StreamChannels transfer the data using a method that they have implemented and

set-up to use.

7. Having transferred the data, the client must now somehow inform the server that the

data has arrived and what StreamChannel is holding the data. How this is achieved in

outside the scope of STS and is an application level issue.

8. The StreamChannel requests its StreamTunnel to pull_streamable specifying the

StreamChannel holding the data and a FactoryFinder that can find a Factory object

Client
Stream
Tunnel

Process boundary
I 7.data available(StreamChannel Ref6 Server

1
8.pull_streamable

str(lam ~treamChannel Ref6,
'::::=St=re=am:::::::::-- 6~.d=a:ta=,r~an~sf_e_r - -:::;.;,=tre=a::::::::'m FactoryFlnder SRef7

Channel ---< tream
Channel lo olhirend of Server . . Tunnel

;;::;.:::=:::::::::.. _ _Js!!Jllerua!!!m:!.._ _ ___:::::::=::::::::::=_ 9.mtemahze------
1 (Fll'&.toryFinder Ref7)
I

Figure 5.12: Steps 5-8, requests to push data through a stream and internalise at the destination

Chapter 5 - The Stream Tunnel Service 136

capable of recreating the Stream able object.

9. The StreamTunnel requests the StreamChannelServer to internalise its data to a

Streamable object.

10. The StreamChannelServer needs to find the Factory capable of creating the object

that has been externalised to the stream. It does this by extracting information about the

object type from the stream, then uses the FactoryFinder object to find the relevant

Factory object.

11. The Factory is requested to create a Streamable object.

12.The Factory creates a Streamable object.

13 .The StreamChannelServer requests the newly created Streamable object to

internalise the data held in the stream.

14.The Streamable object reads its data from the stream.

15. The Server is returned a reference to the newly created Streamable object.

(Client) Stream
Tunnel

Process boundary
I
I
I

"'-:::::::::==.:::----'s=tr:§~a,.,_,m'--- ~ ~ :;::::
I
I

Stream
Channel

Server

Figure 5.13: Requests of steps 10-15 to create a Streamable obj ect and internalise the stream 's data

5.5 Streams supporting Low-Level Network Data Transport
Mechanisms

STS is providing a wrapper of IDL interface to low-level network data transport

mechanisms or ORB based mechanisms. STS allows non-IDL defined data to be

transported by these mechanisms and still maintain the integrity of the typed data stored in

the stream. This section describes the advantages and disadvantages of using a non-ORB

Chapter 5 - The Stream Tunnel Service 137

distributed communication mechanism and carries out an experiment to compare streams

based on transporting data using the ORB and TCP sockets.

5. 5 .1 Enhancing Data Transfer using Low-Level Data Transport Mechanisms

The ability to transport data using low-level data transport mechanisms such as TCP

sockets, UDP sockets and Transport Level Interface etc [Rieken 92][Stevens 90], can have

major performance enhancements for applications requiring fast data transfer. These

mechanisms will improve performance over ORB requests as they avoid the following :-

• Any additional communication an ORB performs in a request, such as communicating

with ORB daemon processes.

• Complex (de)marshalling of IDL request parameters in stub and skeleton code.

• Bottlenecks caused by object adaptors, as requests have to pass through the object

adaptor.

• ORBs based on IIOP/GIOP use connection oriented TCP sockets to communicate. The

set-up of these socket connections is dependent on the ORB implementation, thus the

manner and therefore the efficiency of how the ORB makes these connections is

unknown and out of control of the application. For example, an ORB might make a new

connection for each request or route all requests via a central ORB daemon process

causing a bottleneck.

• The rate at which data can be transferred is very much dependent on how fast a server

can consume data being sent by the client. Usually, servers cache data being received in

a buffer area before moving it on to its destination. If an ORB/object adaptor has a small

buffer area and a client is sending a large amount of data, then the buffer area might

easily be filled. This leads to the halting of data transfer to clear the buffer, thus the data

transfer becomes inefficient. A proprietary transfer mechanism that is specific to the

transfer needs of a specific application type can specify the size of its own buffer area for

maximum efficiency.

For some application types the data transfer rate of ORBs might be unsatisfactory. These

applications would benefit from efficient data transfer mechanisms that the stream can

support. Such application types are:-

Chapter 5 - The Stream Tunnel Service 138

• Applications transferring files.

• Multimedia applications needing to send continuous stream of data.

• Applications transferring enormous multi-dimensional arrays of scientific data such as

petroleum industry based applications.

• Applications transferring large collections of objects.

However, using low-level network data transport mechanisms comes with a cost, in that the

StreamChannel objects have to provide mechanisms that ensure the data is transferred

correctly. The objects have to make sure all data sent is correctly received, so that no data

is lost and segments of data sent have to be correctly ordered when received. Also if data is

lost then the server has to request the data to be resent. These data transfer consistency

issues are usually addressed by the ORB. Another cost with low-level transport mechanisms

is that applications become dependent on the transport mechanism and the requirement that

the platform the application is implemented on supports the specific transport mechanism.

However, transport mechanisms such as sockets are widely available on most platforms, but

there might be the possibility of platform specific variations on the use of the sockets.

Nevertheless, these costs might be outweighed by the demand for fast data transfer by the

certain applications.

5.5.2 Experiment to Compare ORB and Socket Based Stream Mechanisms

An experiment[Ball 98] was carried out to compare the performance of a stream based on

transferring the stream's data as sequence of IDL octets(equivalent to bytes) and a stream

based on transferring the data as bytes through a connected TCP socket. The experiment

will record the time taken to transport increasingly larger sized arrays of bytes. Presented

first are the implementation details of the Stream Tunnel Service components needed to

carry out the experiment. Next, how the actual experiment was carried out is described and

then the results are shown with a discussion analysing the results.

5.5.3 Details and Problems of Implementing the Stream Tunnel Service
Components

The ORB utilised to carry out the experiment was the C++ COOL-ORB v4. l from Chorus

Systems. COOL-ORB was not one of the most popular ORBs available and has since been

Chapter 5 - The Stream Tunnel Service 139

withdrawn when SUN Microsystems took over Chorus Systems. COOL-ORB was chosen

as, at the time of starting the project, it was free for trial use and it was the only ORB

available for the only platform available for development, which was SUNOS 4 using the

GNU C++ compiler. During the progression of the project a Solaris 2. 51 platform became

available and development shifted over to it, including this experiment. However, the

COOL-ORB was kept due to developed code being locked to the proprietary functions of

the ORB[Chorus 97] such as ORB initialisation, BOA initialisation, CORBA object

registration with the BOA and binding implementation object to skeleton code. This is an

example of ORB vendor lock that prevents portability of application code between ORBs.

Over the last few years the OMG has standardised these proprietary ORB functions.

Consequently ORBs have matured to implement these functions, therefore increasing the

portability of code between different ORBs. However, overall developing with the COOL

ORB was very satisfactory as it was reliable and easy to use.

The first component of STS to be implemented was the Streamable object used to hold an

array of bytes/octets. This object implements the Externalisation service's

externalize to stream and internalize Jrom _ stream operations, as well as set_ octet_ seq

and get_octet_seq operations for applications to get data into and out of the object.

The Externalisation service's Stream and StreamlO interfaces were implemented next.

These two interfaces are essentially the same component, as the Stream requests

Streamables to externalise and internalise data, and also hold the stream's data. The

StreamlO interface provides operations to read and write CORBA data types from/to the

stream e.g. write_string or read_long. Data written to the Stream via Stream IQ is held in

a temporary file as the amount of data written to the Stream is unknown(Figure 5.14).

3. Write data

2.extemalize to stream
(StreamlO Ref2)

Client

Stream component

Stream

4.data written
, , l_O file

~
1 externalize

(Str~amable Ref1) '-------------

Figure 5.14: Data externalised to a stream is written to a file

Chapter 5 - The Stream Tunnel Service 140

A problem with the StreamlO interface is that it does not provide for reading and writing

sequences(arrays) of data types. Hence, to repeatedly write individual data elements of a

large array of elements would be grossly inefficient. To solve this problem the Stream IQ is

extended to an ExtendedStreamlO interface to provide operations for the reading and

writing of sequences of data types e.g . a sequence of octets. Appendix C includes the

ExtendStreamlO interface.

The consequence of extending Stream IQ so that sequences of data types are written to the

stream is that the Externalisation service' s Standard Stream Data Format(SSDF) has to also

be extended. SSDF specifies the format that data is stored in a stream, including the

specification of tag values for each data type that can be written to the stream. Each data

type that is written to the stream is stored with an accompanying tag describing the data

type. Following this technique, each sequence of data type has to be assigned a tag

value(Appendix C). However, this extension of the SSDF is proprietary to this project.

Streaming sequences of data types is an essential feature and should not have been left out

of the original Externalisation service. A more ideal situation is if the OMG was to specify

an equivalent ExtendedStreamlO and SSDF tag values for sequences, thus creating a

standard.

The StreamChannel interface extends the Stream by adding push and pull operations to

send or get data from the other side of the stream. The StreamChannelServer interface is

slave to this at the client side and provides operations to actually initiate the transfer of

data. These two interfaces act in pairs that support the same method of data transfer.

The first pair of StreamChannels and simplest to implement for the experiment, transfer

streamed data as a sequence of octets using ORB requests. The operations for transferring

the octet sequence to and from the server side are provided for in the basic

StreamChannelServer interface. The client StreamChannel implementation is simply

required to call one of these octet sequence operations on the server. The side holding the

streamed data has to take this out of the file, convert it to an octet sequence and put it in

Chapter 5 - The Stream Tunnel Service

Client

StreamChannel
component

C3
El Stream

2.read data ' , •- ~---1.push stream_data Stream
Channel

3.push_StreamedData
(StreamData data)

StreamChannelServer
com anent

I

, 4.write data
I

Figure 5.15: StreamChannels that transfer data using a octet sequence stream

141

the returned/passed parameter of the request. The Stream Channel end receiving the data

writes it back into a temporary file(Figure 5 .15).

The next pair of StreamChannels uses a pair of connection-oriented TCP sockets to

transfer data between the two sides. TCP sockets is a low-level network data transport

mechanism that provides a reliable data transfer, so that packets of data that are sent are

not lost and are received in the correct order. To achieve this reliably, the socket software

takes care of packet resending, ordering of received packets and negotiating with sending

and receiving sockets to transfer data at a rate that will not overflow the receiving process

buffers.

TCP sockets are connection-oriented, meaning that a connection has to be set-up between

client and server sockets before any data can be sent. The model for making a connection is

of the server socket listening for a connection on a port of its local host. The port the

server is listening on is somehow known to the client. The client creates the connection by

specifying the host address and the port the receiver is listening. Once the server accepts

the connection, either side of the socket can send data through the connection.

The client and server StreamChannels using sockets to transfer data have to follow this

model to connect their sockets. The first problem with this is that there is no notion of host

address and port number of servers in CORBA communication, as this information is

hidden within the object references. Therefore, a mechanism to explicitly let the client know

the server address and port to connect to has to be utilised. The STS

Chapter 5 - The Stream Tunnel Service 142

TransferChannelCriteria used m passing set-up information between

StreamChannelFactorys is the perfect solution to this problem. The flexibility of the

TransferChannelCriteria type allows the StreamChannelServer to store its connection

information in the type which is forwarded to the client side(see section 5 .1.1.2).

The second problem is performance related in respect to the thread behaviour of the

StreamChannelServer. This performance problem is caused by server processes being

singularly threaded, so that the StreamChannelServer waiting to accept a socket

connection results in the whole process being blocked. The time spent waiting for a

connection is indefinite, during this time the process is blocked, preventing the object

adaptor and any registered CORBA objects from processing further ORB requests. This

blocked process may also have extensive implications on the rest of the software system,

causing a large degrade in performance.

The solution to this blocking problem is to introduce multi-threading into the server

process, so that functions such as accepting socket connections execute on a separate

thread to that of the object adaptor and registered CORBA objects. The socket server

thread will only block its own thread and not interrupt the whole process.

Some ORBs implicitly support multi-threading in their object adaptors providing different

activation policies(see section 2.3.3) such as server-per-method. An activation policy of

server-per-thread runs each request received on a separate thread of execution. The multi

threading of requests would avoid this socket blocking problem.

COOL-ORB only supports single threading and a shared server policy. Therefore, to

execute the socket connection acceptance on a separate thread, a thread has to be explicitly

created using operating system calls. The Solaris operating system offers two kinds of

threads, the first is Solaris's own native threads[Sol Man] and the other is POSIX

threads[POSIX 97]. Solaris' s own native threads permits finer control over the scheduling

and execution behaviour of the thread, but is specific to the Solaris platform. PO SIX is an

international standard for aspects of computing environments including thread creation and

execution. The benefit of POSIX threads is that code written using the POSIX thread

Chapter 5 - The Stream Tunnel Service

Client

StreamChannel
component

1.push stream_data

Stream

Stream
Channel

2.receive_data

StreamChannelServer
com anent

Stream

Stream
Channel
Serve

1 3.create

"' O ~~k~t-a~c~pt~n-c~ ~~d; ____ __. i _ data transfer thread _:

sockets

Figure 5.16: Requests necessary to set-up a socket connection between StreamChannels(steps 1-4)

143

functions is portable over any POSIX compliant platform. To prevent further locking of

code to specific platforms and software, POSIX threads were utilised to create and run

threads for the server to wait for a connection and then to receive or send data.

Figures 5. 16 and 5 .17 show the sequence of requests and activities to connect a pair of

StreamChannel sockets and transfer data across the connection. The steps describing

these actions are below. This description makes the presumption that the stream is already

set-up and the client StreamChannel has extracted the host address and port number from

the TransferChannelCriteria.

1. The client requests the socket StreamChannel to push its streamed data.

2. The StreamChannel sends a receive data request to the StreamChannelServer

signalling it to get ready to receive data.

3. The StreamChannelServer creates its socket acceptance thread and starts running it in

parallel with the main execution thread of the process. After being started, the

acceptance thread will block as it waits for a connection from the client.

4. The client will initiate a connection with the server socket. Upon connection data can be

transferred between the sockets.

5. The client StreamChannel reads the data from the temporary file .

6. The data is pushed through the socket connection.

7. The server receiving thread writes the data back to a temporary file .

Chapter 5 - The Stream Tunnel Service

(Client)

StreamChannel
component

~
~ '

'

Stream

5.read data '':... _ __._ __

Stream
Channel

StreamChannelServer
com onent

Stream

Stream
Channel
Serve I

L;J
I

I

I

I
I

, 7.write data

r - - - - - - _/_ - - - - ,

~ socket acceptance and,
, _ data transfer thread _ :

Figure 5.17: Data transport through the socket(steps 5-7)

144

Multi-threading can bring much performance enhancement to systems, especially to servers

catering for multiple clients. But it also brings a cost in the complexity of applications.

Multi-threaded applications have to organise the creation and scheduling of threads using

operating system thread management functions or toolkits that insulate applications from

the specifics of platform threads. Another complexity innate in parallel execution is

preserving the integrity of shared data between threads. The solution to this classic problem

involves keeping different threads from simultaneously manipulating the same data. Thus,

concurrency control must be exerted on the shared data allowing a thread to gain exclusive

locks on data it wishes to manipulate preventing interference from other threads.

The data being received by the StreamChannelServer must be locked until all the data is

received. This is to prevent any other thread accessing the data until it is completely

transferred.

Locking of the StreamChannelServer object can be achieved in several ways. ORB

products[Orbix][Visibroker] supporting multi-threaded object adaptors generally provide

an API that provides an abstraction to the management of native operating systems locks.

The API will allow locks to be gained and dropped on instances of CORBA objects.

Although this form of locking is independent of specific operating systems, it is dependent

upon the particular ORB product. This causes a high dependency between the application

and the ORB product. However, this manner of locking cannot even be considered in the

Chapter 5 - The Stream Tunnel Service 145

implementation of the StreamChannelServer as such functionality is not provided by

COOL-ORB.

Another way of locking the StreamChannelServer is for the object to support the

Concurrency service's Lockset interface. A client accessing the StreamChannelServer

would firstly have to gain a lock on it. The StreamChannelServer will then prevent

access from any other than the lock holder. The problem with this solution is that a client

would need to gain a lock to make requests on the StreamChannelServer. This would

make all components involved unnecessarily complicated, as all that is necessary is some

internal mechanism to prevent the methods of a StreamChannelServer being executed

while the data transfer thread is running. A solution such as implementing concurrency

control via the Lockset interface is more of a system level concurrency solution, where a

resource is being accessed by clients. Here, the resource (i.e. the stream's data) is only

being accessed by different parts of the same component.

The solution for the StreamChannelServer implementation was for it to have a

semaphore[Sol Man] variable. The semaphore acts as a lock to the component's stream

data. Each method of the StreamChannelServer object must gain the semaphore before

accessing the data. Hence, the data transfer thread has the semaphore while it is executing,

any other thread trying to gain the semaphore while this is happening will be blocked.

The downside of using a semaphore solution is that the management of semaphores is

specific to the operating system's API, thus causing a dependency. Also, the low-level

procedural nature of using operating system APis is unlike the high-level object-oriented

nature of CORBA that the system is based on. This causes a fracture in the internal

implementation of the system increasing the complexity and reducing the flexibility of the

system.

Ideally, all parts of a component should be implemented from within the same paradigm for

simplicity and consistency. Implementing the StreamChannelServer using low-level

mechanisms such as threads and semaphores that are from outside the CORBA model

results in much complexity being introduced. This complexity comes from merging the two

Chapter 5 - The Stream Tunnel Service 146

paradigms:- each mechanisms model has to be mapped to the other, with much the same

consequences and difficulties as a mapping between two disparate data storage models.

Having the built the StreamChannel ends and the Externalisation service components,

next to implement is the StreamTunnel that encapsulates the workings of these

components and makes STS easier to use for clients of the service.

The StreamTunnel component's main responsibilities are opening/closing a stream,

pushing/pulling data and commanding the StreamChannel to externalise/internalise as

described in sections 5.2.3 and 5.2.4. Hence, the implementation of the StreamTunnel is

fairly simple as it just automates a sequence of request calls. The only detail not explicitly

apparent is that the Stream Tunnel must keep a list of streams that are open by recording

object references to client and server StreamChannels.

5.5.4 Details of Running the Experiment

The experiment compares data transfer rates of two types of streams. One stream uses a

pair of StreamChannels that pass data held in the stream as a sequence of octets in an

ORB request. The other stream transfers the data through a connected TCP socket. The

data transfer rate is measured by recording the time taken to push increasingly larger sized

data chunks through the stream. These data chunks are the state data of Streamable

objects that are created with a set size of bytes which can be externalised to or internalised

to/from a StreamChannel. The Streamable object is pushed from client to server side

through a StreamTunnel that uses a previously opened stream.

Two sets of time recordings are taken. The first set measures the time taken to perform the

whole procedure of moving a Streamable from one side to the other. This includes

externalising an object on the client side, transporting its data through the stream, signalling

the server that the data has arrived and internalising the object on there. The starting time

for this procedure is recorded before the client issues the push_ Streamable operation and

the finishing time is recorded on return from the client signalling the server that the data has

arrived. The interface and operation that the client uses to signal the server is shown in

Chapter 5 - The Stream Tunnel Service 147

figure 5 .18. The difference between the starting and finishing time is the time taken to

transport the Streamable using the StreamTunnel and the specific stream type employed.

interface Receiver
{

void receive(in StrearnTunnelService ::StrearnChannel sourceChannel);
) ;

Figure 5.18 The interface used to signal the server the data has arrived

The second set of timings measures the time taken to transport the streamed data from one

StreamChannel to the other. The starting time is taken before the StreamTunnel issues

the push_stream_data request on the StreamChannel and the finishing time is taken on

return from this operation. This timing for pushing the data across the stream only

measures the time taken to read the streamed data out of the file, transport the data

between through the stream using one of the transport mechanisms and write it back to a

temporary file at the other end. The reading and writing to/from a temporary file has to be

performed for each stream type. Therefore, this timing is more representative of the

behaviour that using different data transport mechanisms ensues.

The experiment is measuring the time taken to push Streamable objects that hold

segments of data . The size of these data segments will vary between 10 kilobytes and 12

megabytes. The steps between these limits is calculated using the formula (n2)* 10000 bytes,

where n = 1 to 35 in steps of 1. For each stream type, six runs will be made of sending

these ranges of data segment sizes through the stream and recording their time. The runs

are numbered 1 to 6. Odd runs will be made with the data segment sizes increasing and

even runs with the data segment sizes decreasing. This is to counter any memory allocation

problems with reserving such large areas memory.

The experiment was performed on two SUN Spare 5 workstations running the Solaris 2. 51

operating systems. The workstations are connected to the local area network that is made

up of a 1 0Mbps ethernet. The experiment was run at a time of day when network activity

was negligible and other activities executing on the machines was insignificant. As already

stated, the ORB used was the Chorus COOL-ORB release 4 with the system components

implemented in C++ using the GNU C++ compiler. The efficiency of getting data into and

Chapter 5 - The Stream Tunnel Service 148

out of the stream is increased by providing the ExtendedStreamIO interface, that allows the

data to be written/read to/from the stream as a sequence of octets.

5. 5. 5 Experiment Results

The experiment results are discussed here. A graph showing the experiment results are

shown in figure 5. 19. The discussion includes the performance behaviour of the streams,

explanations are offered to explain this performance behaviour and conclusions on use of

different data transport mechanisms for streams.

The graph shows average time in seconds against number of bytes of the size of the data

segment pushed through a stream. The average time is calculated from the timings of the

six runs carried out for each stream. The black lines show the average timings for the ORB

octet sequence based stream. The grey lines show the average timings for the TCP socket

based stream. Each stream has two sets of timings that are also shown on the graph. The

solid line is the average time for push_Streamable operation, therefore the time for the

100

90

80

iii 70
I.)
Cl)

!?. 60
Cl)

E
I= 50
Cl)
Cl
~ 40
Cl)

~ 30

20

10

0

---octet Seq.
(push_Streamable)

-octet Seq.
(push_stream_data)

..... ,,,, , Socket channel
(push_Streamable)

' Socket channel
(push_stream_data)

2000000
I

4000000
I

6000000
I

8000000
I I

10000000 12000000

Bytes pushed through a stream (bytes)

Figure 5.19: Number of bytes pushed through a stream against time taken

Chapter 5 - The Stream Tunnel Service 149

whole procedure of externalising, data transport and internalising. The broken line is the

average time for the push_ stream_ data operation, thus encompassing the reading data out

of a file, data transport across the stream and writing back to a file.

The first noticeable feature of the behaviour of the timing lines is that for each stream, the

shape ofthepush_Streamable line follows the shape ofthepush_stream_data line i.e. the

solid line has a similar shape to the broken line. This proves that any differences in timing

behaviour between the stream types is only dependent on the different data transport

mechanisms and the externalisation/internalisation actions are linearly proportional to the

size of the data segment.

The most prominent and significant feature of the graph is the sudden increase in gradient

of the ORB octet sequence stream lines at 6 megabytes. After 6 megabytes the octet stream

line climbs steeply, but the socket stream stays at a constant gradient that is proportional to

the data segment size. At 9 megabytes and above the octet stream levels out slightly, but at

this stage this stream is approximately three times slower than the socket stream. This is

evidence that the socket-based stream is more efficient than the ORB-based stream for

transporting very large amounts of data.

A possible explanation for this behaviour of the ORB octet sequence stream is related to

the manner with which each stream assembles data for transferring using its data transport

mechanism. The octet sequence stream has to read all its data out of the file into a memory

area before presenting it to the ORB as a parameter in a request. The problem with doing

this with very large segments of data is that the data becomes larger than physical memory

can handle. When this happens, virtual memory starts being used. This results in disk

accesses being necessary to store the data, therefore slowing down the transfer of data by

the ORB.

The socket stream assembles data in a different fashion. It reads data out of the temporary

file in small chunks of 16 kilobytes. When a chunk of data is sent, the stream fetches

another chunk and repeats this routine until all the data is sent. The benefit of this approach

Chapter 5 - The Stream Tunnel Service 150

is that a large of amount of memory that might require slow virtual memory access does not

need be reserved.

Another possible explanation for the inefficiency of the ORB octet sequence stream could

be due to inefficiencies of the ORB server receiving the actual data. For example, the size

of the data being sent might be larger than its data buffers, resulting in an overflow and the

stalling of data transfer. Another source of inefficiency might be the skeleton code and its

handling of received data.

Figure 5.20 shows a clearer picture of the graph for data segment sizes of 8 megabytes and

under, only for the time taken for the push_ stream_ data operations to perform. The graph

plainly shows that the octet sequence stream is 1. 5 to 2 seconds faster than the socket

stream for the range 1 to 7 megabytes. Beyond this range the octet stream experiences its

steep climb. Thus, the ORB octet sequence stream is faster for smaller data segments.

A possible cause of this roughly constant lagging of the socket stream is due to the fact that

25.00

20.00
U)
(J
(I)
II)

";' 15.00
E
I=
(I)

g> 10.00
~

~
ct

5.00

-octet Seq.
(push_stream_data)

=»socket channel
(push stream data)

I
I

I

0.00 4,'«lE:- - +-----1-- - -+--- -+----+-- - -+-- ---+--~

0 100000 200000 300000 400000 500000 600000 700000 800000
0 0 0 0 0 0 0 0

Bytes pushed through stream (bytes)

Figure 5.20: A closer look at time taken to transport data segments under 8 megabytes

Chapter 5 - The Stream Tunnel Service 151

each time it wants to send data it has to remake its connection with the server side socket.

Therefore the time lag is due to the StreamChannel issuing the receive_stream_data on

the StreamChannelServer, the StreamChannelServer creating a thread to accept a

socket connection and transfer data. Meanwhile the client StreamChannel is trying to set

up a connection with the server socket. This lag is inherent in the design of the socket

stream, but as the size of the data increases, the proportion of time required to set-up the

connection compared to the amount of time to transfer the data becomes increasingly

insignificant.

This experiment has proven that wrapping low-level network data transport mechanisms in

CORBA wrappers has performance benefits over simply using ORB requests for data

transport. Although the overhead in setting up a connection outweighs its use for small to

medium sized amounts of data, for large amounts of data its use is very valuable. Typical

applications that would benefit from such efficient data transfer mechanisms are

Exploration and Production industry applications and multimedia applications.

5. 6 Further Applications of the Stream Tunnel Service

The Stream Tunnel Service(STS) is very useful in fulfilling the task it was designed for;

that is, distributed transport of non-IDL defined data using streams. It has also been proven

as a mechanism to improve the performance of the transport of large amounts of data

against standard ORB request data passing. However, STS proves to have many more

useful functions than was firstly perceived. This section presents other applications where

STS could be of use.

STS could be used as the transport system of a persistence system, so that the persistent

state of a CORBA object could be indicated and transported through STS to the CORBA

object. A key feature of supporting persistence with STS is that all an object has to do to

have its state initialised by S TS is to support the externalize _to_ stream and

internalizeJrom_stream operations. This allows CORBA objects to read and write their

data to/from the stream. This is assuming that there is some way to indicate the location of

the persistent state and a means of setting up a server side to the stream.

Chapter 5 - The Stream Tunnel Service 152

In regard to the OpenSpirit architecture of persistence(Section 3 .2.2), STS could be of

used to transport persistent state data to OpenSpirit objects. This would remove the need

for the use of the low-level JNI layer and the need for the definition of wrapper objects for

OpenSpirit object types. Instead the OpenSpirit objects will simply implement the

Streamable operations. This would allow the OpenSpirit objects to be serialised to and

from a stream allowing the transportation of their state data. OpenSpirit objects can also

benefit from the performance enhancements of using low-level network data transport

mechanisms. As OpenSpirit is based in the exploration and production industry, the

majority of data will be enormous collections of data resulting in performance problems in

transporting.

The performance enhancements and flexibility in the actual method of data transport is also

of great relevance to multimedia applications. Typically, multimedia requires the transport

of large files or the transmission of a constant stream of data. STS can be used to wrap

efficient mechanisms supporting these kind of needs. For example, User Datagram

Protocol(UDP) sockets could be used to transmit data very quickly. A UDP socket is

connectionless, meaning no connection is made between a socket pair. Packets of data are

simply sent from the sender socket with an attached receiver address and port. The arrival

of the packets of data at the receiver is not guaranteed, nor is the order in which the

packets arrive in. Protocols to guarantee consistent delivery of data has to be explicitly

implemented by the applications that are communicating. Consistent delivery will involve

application requesting retransmission of data packets, ordering of arriving data packets and

an agreement to the rate that data packets are sent as to not flood the receivers buffers with

data.

For multimedia applications the benefits of the high speed of UDP socket data transmission

would be substantial, especially for constant streaming of data. The consistent delivery of

data packets of multimedia information is not always an essential factor. The occasional

data packet that is lost might not make much difference to the playing of some video, or the

occasional data packet received out of order could merely be discarded. UDP sockets

enable unreliable fast transmission of data, but a StreamChannel pair implementing

wrapping to such a mechanism still has the benefits of reliable ORB communication. An

Chapter 5 - The Stream Tunnel Service 153

example where this reliable communication would be necessary is in negotiating the data

transfer rate between the StreamChannel ends. At the set-up of a stream, the client side

could send test data through the socket to the server end. The client could then query the

server using reliable requests for the optimum data transfer rate to use. They could even

work out the optimum route to send data packets through the network. Techniques like this

and the use of IDL wrappers for fast network data transmission mechanisms make the use

of multimedia a reality in CORBA.

In CORBA, objects can only be passed by reference, meaning only object references to

CORBA objects can be passed in requests. Actual CORBA objects cannot be passed, thus

there is no pass-by-value. If an CORBA object needs to move between process spaces, then

some proprietary method must be employed to create the same CORBA object type in the

destination process. The state data of the source object then has to be copied to the newly

created object. STS innately provides this copy-by-value functionality with the prerequisites

that the relevant object factories are available and there are StreamTunnels active in the

source and destination processes.

A service that would also benefit from the functionality of using low-level network data

transport mechanisms is the OMG' s Event service. The Event service allows a form of de

coupled communication between components, in that client components will not necessarily

know the components receiving their communication. The model of this de-coupled

communication makes use of events, where an event is a signal that some occurrence has

happened and can optionally contain data specifying the type of occurrence. ·Components

producing events are event suppliers and send their events to event channels. Components

interested in the occurrence of these events are called event consumers. The event

consumer registers with the event channel that they are interested in the events of, so that

any events sent to the event channel are forwarded to the event consumer(Figure 5.21).

There can be many suppliers and many consumers of events for a single event channel. The

Event service is normally implemented using standard ORB requests. Hence on arrival of an

event at a channel, the channel has to issue an ORB request to each individual event

consumer to signal the occurrence of the event. This would very time consuming for a large

Chapter 5 - The Stream Tunnel Service

Event
Supplier

Event
Supplier

Figure 5.21: Supplier send events to a event channel and
consumers receive these events

Event
Consumer

Event
Consumer

154

number of event consumers. A more efficient model would be for the event channel to send

a single signal and all event consumers to receive it. This functionality is not currently

provided for within ORBs, but a mechanism that does provide it is UDP socket

broadcasting.

Broadcasting is the network facility whereby packets of data sent out into the network are

received and processed by every node(computer) on the local network. If any nodes have

processes bound to the port that the data packet arrives at, then it is forwarded to the

process for further processing. If no processes are bound to the port then the data packet is

discarded.

The flexibility of STS allows it to encapsulate UDP broadcasting permitting a single client

end of a stream to have multiple server ends. Data pushed through the client end is

transported to each server end using efficient broadcasting, rather than making individual

connections with each server end. STS using broadcast streams could be used as an

efficient means of transporting events to multiple event consumers(Figure 5.22). Although

this model is not in strict keeping with the Event service that uses direct ORB requests to

communicate, it is only an optimisation for situations where ORB requests would be too

inefficient. Also, STS usage would be totally hidden from client applications by Event

service interfaces, therefore normal and STS-based Event service implementations could be

interchanged without changing any application code.

Chapter 5 - The Stream Tunnel Service

event Event
Supplier Event Channel

event

Event
Consumer

Event
Consumer

Event
Consumer

Event
Consumer

Event
Consumer

Event
Consumer

Figure 5.22: Events are broadcast simultaneously using the broadcast stream

155

Another application where STS could be of use is in security and the encryption of data

that is sent across the network. An application wishing to secure its data has to explicitly

encrypt its data before sending it in an ORB request. Using STS, a StreamChannel pair

could be implemented that implicitly encrypts any data sent between them. The

StreamChannel pair could also negotiate encryption algorithms and encryption keys. This

takes the burden of encryption from the application.

Chapter 5 - The Stream Tunnel Service 156

5.7 Summary

This chapter has presented the Stream Tunnel Service and its use in transporting non-IDL

defined data. The service extends the OMG Externalization service to provide a distributed

stream. This is achieved by pairing StreamChannel components together and providing

communication mechanisms to pass data between them. The StreamTunnel component

encapsulates the use of the Externalization service and hides the complexity of using and

setting up streams.

The StreamChannel components encapsulate the network data transport mechanism that

actually transfers data, therefore the method of transferring data can be mechanisms other

than the ORB. For example, low level mechanisms such as connection TCP sockets or

connectionless UDP sockets could be used for data transfer. These mechanisms would

provide performance gains over using the ORB for data transfer. An experiment was

carried out to compare transferring data through a stream as an octet sequence of an ORB

request, against sending data through a connected TCP socket. The experiment compared

sending increasingly larger sized blocks of data through a stream using the ORB and a

stream using a TCP socket. The experiment showed that for blocks of data under 6

megabytes the ORB-based stream was faster due to the extra time the socket stream needed

to make a connection. Above 6 megabytes of data the socket stream proved more efficient,

as the performance of the ORB stream takes a steep decline.

The Stream Tunnel Service has many other uses such as:-

• Transport mechanism for CORBA object state data, enabling migration of objects.

• A persistence mechanism to transport data between a datastore and a CORBA object,

given some way to identify and manage the persistent data.

• Use in multimedia applications for constant streaming of data. The data transport

mechanism can be optimised to application needs such as use of connectionless datagram

based protocols, refinement of buffering routines, negotiation of data transfer rates,

packet routing opitmisation and refinement of data consistency protocols.

Chapter 5 - The Stream Tunnel Service 157

• Use of broadcasting protocols to provide an efficient Event service with many event

consumers.

There is much overlap in functionality between the Stream Tunnel Stream and the ORB.

both are data transport mechanisms and retain the types of passed data items. STS is not a

replacement for the ORB, but a supplement to it. STS offers additional facilities that the

ORB does not, especially the facility to transport of non-IDL defined data and the

utilisation of data transport mechanisms with desired performance and reliability

characteristics.

In relation to providing a Persistent Data Access service, STS meets the design criteria for

a mechanism to transport data objects across the distributed environment. Therefore, STS

will be reused by other services as transport mechanism to move data.

Chapter 6

The Data Object Service

6.1 Introduction

The Data Object Service(DObS)[Ball 98] is a set of generic interfaces that permit the

management of data objects, where a data object is any type of persistent data that is stored in

some kind of datastore e.g. files, object-oriented or relational databases. Management of these

data objects by DObS includes the identification, creation/deletion and retrieval/storage of data

objects. DObS does not specify operations for the actual manipulation and identification of data

objects, as this is left to interfaces that extend the DObS interfaces. Thus, DObS is only an

abstract set of interfaces that enforce how the basic data object management tasks should be

carried out. One aspect of data object management that DObS enforces is the mechanism that is

used to transport data objects between clients and datastores (that is the Stream Tunnel

Service).

The Stream Tunnel Service(STS) is a mechanism for transporting non-IDL defined data. The

Data Object Service(DObS) provides a mechanism for the management of data objects that are

also not defined in IDL. DObS compliments STS by providing facilities to identify what data is

to be moved across a stream. Together they provide a simplistic data access and transport

Chapter 6 - The Data Object Service 159

system, which is why they are used for an internal mechanism for the transport of data objects

between client and server sides of the Persistent Data Access Service.

The Data Object Service(DObS) will prove useful in the management of simplistic data objects

such as files or simplistic objects. To provide this functionality, the DObS interface has to be

extended to provide operations that will enable the identification and manipulation of specific

data object types. The File Data Object Service(FileDObS) is an example of interfaces extending

DObS to provide access to and manipulation of files. File DObS provides a distributed file

system functionality to CORBA applications.

There are many similarities between the architectures of DObS and the Persistence Object

Service(POS)(see section 3.3.1). However, the design of DObS was influenced by the major

shortcomings of POS, specifically the lack of a common data transport mechanism hence the

Stream Tunnel Service.

Included in this section covering the Data Object Service is the following. Firstly the interfaces

of DObS are explained along with components implementing these interfaces interact. Next, the

File Data Object Service is presented, explaining its extensions to DObS interfaces that allows it

to provide distributed access to files . The actual implementation of File DObS is discussed,

including an application that makes use ofFileDObS called CORBAFileView. CORBAFileView

is a Java application that allows the viewing and manipulation of files. The functions

CORBAFile View provides are the viewing of images, text editing, directory manipulation and

an example of how File DObS can be used as a simplistic persistence service with object states

stored in files . The differences and similarities between the Data Object Service and the

Persistent Object Service are discussed. The chapter concludes by explaining some important

lessons that have been learnt from developing these CORBA applications and services. These

lessons are relevant to CORBA development as well as to general software development.

Chapter 6 - The Data Object Service 160

6.2 The Interfaces of the Data Object Service

This section describes the Data Object Service(DObS) interfaces/components and how they

interact with each other to carry out the service's purpose. An overview of the DObS

components are shown in figure 6.1. Briefly, the components have the following roles :-

• DOb _ ID - identifies the location of data objects to be manipulated.

• Data Object Manager - manages data objects in the client and provides operations to

manipulate data objects. It also requests the Data Object Server to retrieve and store data

objects.

• Data Object Server - stores and retrieves data objects in its supported datastore.

• Stream Tunnel - used to set-up streama for passing data objects between manager and server.

Interfaces are shown separately here. The complete IDL code for DObS can be found in

appendix D .

(Client)

data object ---.:...___.,,._
manipulation

DOb_lD
identifies location of data object

'-~ ---::-==-==-- - I stream
data transfer

data object
management operations

Figure 6.1: Components of the Data Obj ect Service

6.2.1 The Data Object Identifier Interface

The Data Object Identifier(DOb _ ID) interface(Figure 6.2) is the parent of all interfaces that will

be used to indicate the location of data objects. DOb_ID does not contain any actual values to

specify the location of the data object within the datastore. It is the responsibility of the

extension interfaces of the DOb_ID to add attributes to specify this. For example, an extension

of DOb _ ID indicating the location of a file would add attributes to indicate the directory and file

names of the file. Another example would be to add a integer value representing an object

identifier to a DOb _ ID to indicate the location of an object in an object store.

Chapter 6 - The Data Object Service 161

The DOb _ ID interface does provide an attribute to reference the server that is wrapping the

datastore containing the data object. It also provides the operations to translate the information

held in the data object identifier to and from a string form. The format of this string is specific to

the DOb _ ID extension type. The benefit of providing these conversion operations is that the

information identifying the data object can be passed by value in the form of a string, instead of

passing it as an object reference. If a DOb _ ID object reference was passed, then remote requests

would have to used to query the information contained in the DOb_ID, which would be highly

inefficient.

typedef string DOb_ID_String;

i n terface DOb_ID : CosLifeCycle::LifeCycleObject
{

attribute DataObjectServer server;
DOb ID String get stringified DOb ID();
void set DOb I D(In DOb ID String-DOb string identifier

raises-(DOb_ID_Invalid) ; - -
} ;

Figure 6.2: The Data Objectldentijier interface

6.2.2 The Data Object Server Interface

The DataObjectServer interface(Figure 6.3) provides a wrapper to datastores storing data

objects. The interface operations provide basic data object management operations and are

interface DataObjectServer
{

) ;

StreamTunnelService::StreamTunnel get_StreamTunnel();

void create(in DOb I D String DOb identifier)
raises(DOb_ID_Invali-d, DOb_CreateDenied);

void r e trieve(in DOb ID String DOb identifier,
in StrearnTunnelService::StreamChannel transfer_channel)

raises(DOb AccessDenied, DOb ID NotFound,
StreamTunnelService : :S treamNo t Available);

void store(in DOb ID String DOb identifier,
in StreamTunnelService : : StreamChannel transfer channel)

raises(DOb UpdateDenied, DOb ID NotFound,
StreamTunnelService :: StreamNotAvailable);

void remove(in DOb ID String DOb identifier)
raises(DOb_RemovalDenied, DOb_ID_NotFound);

Figure 6.3: The Data Object Server interface

invoked by the DataObjectManager. Components implementing the interface have the duty of

Chapter 6 - The Data Object Service 162

retrieving/storing data objects to/from the datastore and passing the data through the stream to

the DataObjectManager.

The operations of the DataObjectServer interface give access to the Stream Tunnel, allowing

the manager to create streams with the server. Each of the other data object management

operations has a string form of the data object identifier parameter indicating the target data

object. The retrieve/store operations have an additional StreamChannel parameter indicating

the stream to pass the data through.

6.2.3 The Data Object Manager Interface

The DataObjectManager interface(Figure 6.4) is the base interface of all components that

manipulate data objects. It provides the basic management operations for data objects. Actual

manipulation of data should be provided for in extensions of this interface. Requests of these

basic management operations are conveyed to the DataObjectServer. The data object that

these operations are performed on is indicated by the target_DataObject identifier attribute.

When a management operation is invoked, the identifier attribute' s stringified form is obtained

and passed in the request to the DataObjectServer. The final operaton - remove_manager

simply deletes the manage when it is no longer of use.

i n t e rface DataObj ectManager
(

) ;

attribute DOb_ ID t arget_ DataObject ;

void create() r aises(DOb_ ID_ Invalid, DOb_ CreateDenied);

void retrieve()
raises(DOb AccessDenied, DOb ID NotFound, DOb I D Invalid,

StreamTunnelService: : StreamNotAvailable) ; -

void store ()
raises(DOb UpdateDenied, DOb ID NotFound, DOb ID Inval id,

StreamTunnelService : : St reamNotAvailabl e) ; -

void remove ()
r aises(DOb_ RemovalDenied, DOb_ID_Not Found, DOb ID Invalid

void remove_manager();
} ;

Figure 6.4: The Data Object Manager interface

Chapter 6 - The Data Object Service 163

6.2.4 The DataObjectManagerFactory Interface

The DataObjectManagerFactory interface(Figure 6.5) provides a create operation to create

DataObjectManager components. There can be many types of DataObjectManager. The

type that is needed is dependent upon the type of data object to be manipulated. The type of

DataObjectManager to create is specified by the Key attribute type.

interface DataObjectManagerFactory
{

DataObjectManager create(in CosLifeCycle::Key
rnanager_interface_type,

} ;

in DOb ID initial DOb identifier)
raises (DOb_ID_Invalid,NointerfaceMatchingKey);

Figure 6.5: The Data Object Manger Factory interface

6.3 Using the Data Object Service

This section describes the steps involved to identify, retrieve, manipulate and store a data object.

This will give a clearer idea on how the DObS interfaces are used and how the components

interact with each other.

1. A client somehow obtains a reference to a DataObjectServer containing the data objects it

wishes to manipulate.

2. The client creates a Data Object Identifier(DOb_ID). The client sets the target server

attribute and the attributes indicating the location of the data object.

3. The client requests the DataObjectManagerF actory to create the relevant

DataObjectManager.

4. The factory creates the relevant DataObjectManager.

2.creates and set data object
location informatio - - -

target_DataObject ---- -c. attribute

I
I

' 4.creates
I

ataObjec
Manager
Factory

Figure 6.6: Steps 1-4 of using the Data Object Service

Chapter 6 - The Data Object Service 164

5. The DataObjectManager component needs to setup a stream with the DataObjectServer.

Therefore, it uses the get_StreamTunnel operation to acquire the server side Stream Tunnel

reference.

6. The DataObjectManager uses the server's Stream Tunnel to setup the stream.

7. The client invokes the retrieve operation on the DataObjectManager.

5. et mTunnel

Client 0 Stream
Tunnel

DataObject
Server Datastore

Figure 6.7: Steps 5-7ofusing the Data Object Service

8. The DataObjectManager gets the stringified version of the DOb ID. It invokes the

retrieve operation on the DataObjectServer passing the stringified DOb _ ID and the server

end StreamChannel.

9. The DataObjectServer recreates the DOb_ID object using the information the passed

DOb _ ID string.

10. The DataObjectServer exammes the information m the DOb ID and retrieves the

indicated data object from the datastore.

(Client)

8.retrieve(DOb_lDstring,
StreamChannel server_end)

Stream
Tunnel

I

,9.recreates
; identifier

e:>
Figure 6.8: Steps 8-10 of using the Data Object Service

11. The DataObjectServer produces the retrieved data object in the form of a Streamable

object.

12. The DataObjectServer pushes the Streamable into the Stream Tunnel.

13. Control is passed back to the DataObjectManager that pulls the data object through the

stream.

Chapter 6 - The Data Object Service 165

14. The client manipulates the retrieved data object usmg interfaces that extend the

DataObjectManager interface.

15. Having finished manipulating the data object, the client will invoke the store operation.

16. The data object is stored by carrying out the same process as to retrieve the data object,

except the store operation is used and the data object travels the opposite direction through

the stream.

6.4 The File Data Object Service

The Data Object Service(DObS) specifies basic data object management operations and how

components interact to get data objects into and out of a datastore. However, DObS is only

abstract; it does not provide identification and manipulation details for specific types of data

objects. These details are provided for in extensions of the DObS interfaces. The File Data

Object Service(FileDObS) is one such extension of DObS, providing the detailed operations for

identification and manipulation of data objects that are files stored in file systems.

The interfaces of the File Data Object Service are described here. Inherent to the access of files

is the ability to navigate and manage directories, so that file listings of directories can be

obtained and directories can be created/deleted. To provide this ability, FileDObS contains two

sets of extensions to the DObS. One set deals with the management of file data objects, where

the data object contains simple data. The other set views directories as data objects, where the

data object provides information on the contents of a directory.

A brief description of the implementation of the FileDObS is given. This implementation takes

the form of a Java language client side and a C++ COOL-ORB server side. Java was chosen due

to its exceptional portability features preventing locking to a particular platform. The co

operation between the two sides of the service demonstrates CORBA' s excellent ability of

allowing inter-operation between differing platforms and languages.

The Java implementation of the client side of the FileDObS provides a type of distributed

network file system to Java applications. This is especially important to Java applets that are

embedded within web pages and execute within the confines of an internet browser. The internet

Chapter 6 - The Data Object Service 166

browser enforces strict security that prevents the applet accessing local file systems. Using

FileDObS, the applet would be able to access remote file systems instead.

CORBAFile View is Java application demonstrating the use of the client FileDObS

implementation. CORBAFile View allows the graphical navigation of directories and the

selection of files to retrieve. Functions that CORBAFile View allows on files include the viewing

of image, the retrieval, editing and storage of text files and a limited demonstration of how

FileDObS can used to provide persistence to CORBA objects.

6.4.1 The File Data Object Service Interface Extensions

The File Data Object Service(FileDObS) extends the generic Data Object Service to provide

interfaces containing operations that specify how data objects representing files can be identified

and manipulated. FileDObS also describes interfaces that allow directories to be represented as

a data object, where the data object contains information on the file contents of the directory.

Presented first are the set of interfaces providing access to directory information.

The DirectoryDOb_ lD interface(Figure 6.9) provides identifier information on the location of a

directory, therefore the fpath attribute is set to the path name of the directory.

interface DirectoryDOb_ID : DataObjectService :: DOb_ ID
{

a ttri bute string fpath ;
} ;

Figure 6.9: The Directory Data Object Identifier

The DirectoryDObManager interface(Figure 6.10) is the manager interface for the directory

enum ftype{ FI LE , DIRECTORY} ;
struct Content
{

string fname;
ftype fi l e _ type ;

} ;
t ypedef sequence <Content> Contents ;

i n terface DirectoryDObMan ager :DataObjectService : :DataOb j ectManager
{

Contents get_ contents(} raises(NoDirectoryDataAvailabl e);
} ;

Figure 6.10: The Directory Data Obj ect Manager interface

Chapter 6 - The Data Object Service

//DirContents for private use of DirectoryDObManager

interface DirContents : CosStream::Streamable,
CosLifeCycle::LifeCycleObject

attribute Contents fileList;
) ;

Figure 6.11: The Directory Contents interface

167

data object. It provides an operation to get the contents of a directory, where the contents

describe contained file and directory names.

Data objects are transported between the manager and the server using a stream. Data that is

pushed through a stream is held in a Streamable object, therefore each data object type must

specify a Streamable object to hold its data. The DirContents interface(Figure 6.11) is an

extension of the Streamable interface providing a Streamable component holding directory

information.

The interfaces just presented allow the fetching of directory information. The interfaces include

operations to enable the identification of directories, retrieval of directory information and the

transportation of the information through streams. The interfaces for the manipulation of file

data objects take a similar form in providing extensions of the DObS interfaces, but are specific

to the identification and manipulation of files.

interface FileDOb ID : DirectoryDOb_ID
{ -

) ;

attribute string fname;
attribute long sliceStart;
attribute long sliceSize;

Figure 6.12: The File Data Object Identifier interface

The FileDOb_lD provides the data object identifier for files(Figure 6.12). It provides attributes

for identifying the directory(fpath in DirectoryDOb_lD) and file name. Optional is attributes

for specifying an internal segment of a file to retrieve.

Extensions to the DataObjectManager interface provide manipulation operations to data.

FileDObS gives two manager interfaces to access file data. The FileDObManager(Figure 6.13)

is based on the Java language's java.io.RandomAccessFile class and allows movement

around the file as well as the reading/writing of CORBA data types.

Chapter 6 - The Data Object Service

interface FileDObManager: DataObjectService: : DataObjectManager
{

} ;

long getFilePointer() raises(IOException);
void seek(in long offset) raises(IOException);
long length() raises(IOException);
void setlength(in long fileLength) raises(IOException);

octet readByte() raises(EndOfFile,IOException);
Bytes readBytes(in long NoOfBytes) raises(EndOfFile,IOException);
char readChar() raises(EndOfFile , IOException);
string readString() raises(EndOfFile,IOException);
boolean readBoolean() raises(EndOfFile,IOException);
short readShort() raises(EndOfFile,IOException);
unsigned short readUShort() raises(EndOfFile,IOException);
long readLong() raises(EndOfFile,IOException);
unsigned long readULong() raises(EndOfFile,IOException);
float readFloat() raises(EndOfFile,IOException);
double readDouble() raises(EndOfFile,IOException);

void
void
void
void
void
void
void
void
void
void
void

writeByte(in octet aByte) raises(IOException);
writeBytes(in Bytes sorneBytes) raises(IOException) ;
writeChar(in char aChar) raises(IOException);
writeString(in string aString) raises(IOException);
writeBoolean(in boolean aBoolean) raises(IOException);
writeShort(in short aShort) raises(IOException);
writeUShort(in unsigned short aUShort)raises(IOException);
writeLong(in long aLong) raises(IOException);
writeULong(in unsigned long aULong) raises(IOException);
writeFloat(in float aFloat) raises(IOException);
writeDouble(in double aDouble) raises(IOException);

Figure 6.13: The File Data Object Manager interface

168

The second manager interface(Figure 6.14) to manipulate files provides a StreamlO interface

to files. The StreamlO interface allows CORBA objects to write or read their state to and from

a file, therefore providing a simplistic form of persistence.

interface StrearnIOFileDObManager
: DataObjectService : :DataObjectManager

CosStrearn: :StrearnIO getStrearnIOinterface();
} ;

Figure 6.14: The StreamJO File Data Object Manager

The BLOb(Binary Large Object) interface(Figure 6.15) is the component for carrying file data

through a stream. The file data is held as a sequence of octets(BLOb_data) and data is put into

and taken out of the Streamable using the add_slice/take _slice operations.

Chapter 6 - The Data Object Service

typedef sequence<octet> Bytes;

//BLOb interface for private use of FileDObManager

interface BLOb CosStream::Streamable,
CosLifeCycle::LifeCycleObject

} ;

attribute Bytes BLOb data;
attribute long sliceStart;
attribute long sliceSize;

void add slice(in Bytes part of file) raises(IOException);
Bytes take_slice() raises(EndOfFile);

Figure 6.15: The Binary Large Object interface

6.4.2 Implementation of the File Data Object Service

169

The implementation of the File Data Object Service(FileDObS) involves a Java client side and

C++ server side. Hence the FileDObManager and StreamIOFileDObManager are implemented

in Java and the FileDObServer in C++. All other interfaces/components are implemented in both

languages.

The Java based components use the JavaIDL[JIDL] ORB from SUN Microsystems and the C++

side uses COOL-ORB[Chorus 97] from Chorus systems. Communication between the ORBs is

easily possible due to the fact they both use HOP as their native communication protocol. HOP

is the standard inter-ORB communication between ORBs on a TCP/IP network, thus inter

operability between the ORBs and the components using them is seamless.

A task necessary to be completed before implementing the Java client FileDObS components is

the porting of the client side components of the Stream Tunnel Service(STS) to the Java

language. This task was easier to carry out than was first thought, due to the closeness of C++

and Java languages. If a C++ program is fully written in an object-oriented style of only classes

and methods, then porting it to the pure object-oriented language of Java is fairly

straightforward. C++ classes and methods can be directly translated into Java classes and

methods by copy & pasting code from one to other, where sometimes the only conversion

needed was the keyword 'public' being added to the method header.

Chapter 6 - The Data Object Service 170

Although porting the components between languages was effortless, a problem was found in the

inter-operability between the two ORBs. The intended method of transferring stream data

between the ends of stream was to use the ORB octet sequence method. However, when

carrying out this transfer, the Java ORB caused an exception to requesting an octet sequence

from the C++ server. This is caused by one of the ORBs not fully complying with the HOP

standard for passing sequences of octets, thus either the COOL-ORB is packing the data

wrongly or JavaIDL reading the data incorrectly. Suspicion for this fault leans towards the

COOL-ORB due to it being a very early ORB product relative to the maturing of CORBA

specifications. Except for this problem, no other inter-operability problems were found between

the ORBs.

The solution to this problem is to use the alternative stream method of data transfer using

sockets. Java provides sockets functionality in a set of standard Java classes within the java.net

package. Sending data through a socket connection between the two differing language

StreamChannel components worked well and is the data transfer method used for all stream

communication between Java and C++ stream components.

Implementation of the File Data Object Service components(Figure 6.16) was accomplished

without any major complexities. The FileDObS interfaces were simply implemented by

components. These components also carried out their roles that are specified in the Data Object

Service, so that the file Data Object Server read/wrote from/to its local file system and

produced/consumed Streamable BLOb components for pushing/pulling across a stream. The

Client JavalDL

manipulate
internal data

(
.) ileDOb

Client Manager push/pull
manipulate data Streamable
using manager

interface

Stream
Tunnel

has file identifier

Server C++ COOL-ORB

Figure 6.16: An overview of the File Data Object Service Components

Chapter 6 - The Data Object Service 171

FileDObManager types handled BLObs on the client side, allowing clients to access the

internal data using the manager's interface. FileDOb _ IDs are used to identify files for creation,

retrieval, storage and deletion. Also, the associate set of components is implemented for the

directory data objects that contain a listing of a directory' s contents.

6.4.3 CORBAFileView Application

CORBAFile View is an application demonstrating the utilisation of the File Data Object Service.

CORBAFile View is a Java application and uses the client Java FileDObS components. The

application demonstrates the two fundamental uses of FileDObS, which are the access and

manipulation of directories and files. Demonstration of these uses includes the following :-

• creation and deletion of directories

• graphical navigation of directories

• graphical selection of files to retrieve

• viewing of image files

• editing of text files

• storage of text files

• graphical viewing of specific CORBA objects

Figure 6.17 & 6.18 shows example screenshots of CORBAFileView being used to view an

image and to edit a text file. The CORBAFile View window is separated into two panes. The left

panes allows the navigation of the directory structure and selection of files. While the right pane

shows the contents of the file retrieved. It is in the right pane that image files can be viewed and

text files can be edited. The menu bar provides options to create/delete directories, create/delete

files and exit.

The graphical components that make the application are standard Java classes provided by the

Java AWT package[JDK]. For example, there exists a List class for directory contents, a

TextArea class for text editing, an Image class for displaying of images. CORBAFileView

creates instances of these classes and initialises their state using data retrieved through the

DirectoryDObManager/FileDObManager. CORBAFileView reacts to users by responding

to events from its graphical components. Responding to events such as double-clicking a

Chapter 6 - The Data Object Service

Figure 6.17: Screenshot ofCORBAFileView displaying an
image file

Figure 6.18: Screenshot ofCORBAFileView editing a file

172

directory of the list causes CORBAFile View to retrieve and display the contents of that

directory, or clicking the text editor save button stores the text file. This demonstrates how

graphical interfaces can be layered on top of distributed services to indirectly provide their

powerful facilities to users.

CORBAFileView also demonstrates the use of the StreamlO interface provided by

StreamlOFileDObManager to externalise/internalise a CORBA object state to and from a

file, providing a simplistic form of persistence. The CORBA object's state is graphically

displayed(Figure 6.19) allowing the user to change any attributes of the object and to have it

stored again. The CORBA objects are loosely based on a few entities taken from the Epicentre

data model (the IDL interfaces are shown in appendix D). This small object model represents a

common E&P feature that belong to a 'well' entity that has a location and contains multiple

Chapter 6 - The Data Object Service

Figure 6.19: Screenshot ofCORBAFileView displaying the
persistent state of a we I/bore COREA object

173

'wellbore' entities, where a 'wellbore' has attributes, water depth and its three dimensional path

below the surface.

The interfaces inherit the Streamable interface so that the implementation must support the

externalize _to _stream and internalize _from _stream operations. These operations use the

StreamlO interface to save or initialise the object's state to/from a file. References between the

objects are held as a DOb_lD_String attribute type. The internal data of this type identifies the

file that contains the referenced object. Double-clicking the graphical representation of an

identifier responds in CORBAFileView fetching the object state file and displaying the attributes

of the object.

6 .4 .4 Security and Reliability Improvements to the File Server

CORBAFile View was designed for public demonstration, so that the Java client side could be

downloaded or embedded in a web page and used outside the university domain. Thus, the Java

client side connects with the C++ COOL-ORB file server located on a university server, and

navigates its directories and retrieves its files. Making the FileDObServer available to multiple

external clients increases the importance of the security and reliability of the service. The

improvements made to the service are discussed next.

Opening a server process up to public access throughout the internet leads to the opportunity

for abuse of the open access to gain further access to the private university resources. Hence,

Chapter 6 - The Data Object Service 174

the server side of the File Data Object and Stream Tunnel services had to be scrutinised for

possible security weak points. One weak point that was found is that the size of parameters

being received by the server was not checked. This checking is necessary as a corrupt client

could push a large amount of data into the server as a parameter of a request causing the server

process to crash. That could open up additional security breaches. This problem was solved by

checking the size of all incoming parameters to see if they were too large for what they were

representing.

An application level security problem is the fact that the FileDObServer is directly accessing

the server's file system, thus external clients have to be prevented from wandering around the

file system and stay below a designated directory. To enforce this, all requests for directory

paths is taken as an offset to the designated directory and the directory path is checked to make

sure the directory paths do not go above the designated directory. Another security precaution

is that the FileDObServer is put into read-only mode, so that directories and files cannot be

created/deleted and files cannot be edited and stored.

Another problem concerned with opening the FileDObServer to public access is that it

executes on a public university server, therefore the FileDObServer must be prevented from

overloading the server. A means of achieving this is to limit the number of clients that can

simultaneously access the FileDObServer. However, this is not as easy as it first appears, due

to the fact that the FileDObServer has no way of identifying clients making requests of it

through normal ORB mechanisms. Consequently, it cannot refuse the requests of some clients

and carry out the requests of others as it has no way to identify the clients it is serving. The

answer to this is to limit the number of streams allowed to be setup between the server and its

clients. If a client cannot create a stream, then it cannot request files from the FileDObServer.

Although this is not a perfect solution, it will limit the amount of work the FileDObServer

performs in moving file data. The FileDObServer implementation was limited to ten stream

connections.

However, limiting the number of streams increases the need for a solution to another related

problem. This problem involves the possibility of a client not closing a stream before it

terminates. This could be due to the client application crashing or a developer forgetting to

Chapter 6 - The Data Object Service 175

close the stream. This could result in the number of stream connections running out preventing

new streams from being created. The solution is for streams that have not been used for certain

period of time to be automatically closed by the server, if the period of time is long enough to

indicate that there is a high probability that the client has terminated without closing its stream.

This is a form of garbage collection, where stream connections are regularly examined to see if

they have been used within the time limit, and if they have not been used then they are closed.

Garbage collection takes place at regular intervals, hence the implementation of it is on a

independent thread of execution that periodically wakes up, checks when the streams were last

used, closes any unused streams and sleeps again. As a consequence of this garbage collection,

the StreamTunnel has to create the garbage collector thread and the StreamTunnel

component has to be locked when the garbage collector is awake and running.

6.5 Similarities and Differences between the Data Object Service and
the Persistent Object Service

The Data Object Service(DObS) has many similarities to the failed Persistent Object

Service(POS)(see section 3.3.l)[Ball 98], but also has many differences that are the result of

what has been learnt from the design failures of POS.

The Data Object Service has a similar purpose to the Persistent Object Service in that they

provide access to persistent data resident in heterogeneous datastores within the CORBA

environment. Both services specify interfaces to identify, create/delete, retrieve/store and

transfer data. There is a great deal of commonality between the components of the services, and

an interface in one service has an equivalent interface in the other carrying out an equivalent

role. The equivalent interfaces/components and their roles are shown in the following table.

Data Object Service Persistent Object Service Role
Interfaces Interfaces

Data Object Identifier Persistent Identifier (PID) Identify data that is to be
(DOb ID) managed or manipulated.
DataObjectManager Persistent Object Retrieve/store identified data

Manager(POM)/Persistent and to manage and manipulate
Object(PO) it.

DataObiectServer Persistent Data Retrieve/store data from its

Chapter 6 - The Data Object Service 176

Store(PDS) support datastore and transfer it
the client components using a
data transfer mechanism.

Both services also use the concept of extending their interfaces to provide the functionality to

support different types of data. For example, DOb_lD and PIO are extended to identify

different types of data, while the DataObjectManager and PO are extended to manipulate

different types of data.

There is a conceptual difference between the client components of the services 1. e.

DataObjectManager and the POM/PO. This difference is due to POS's principal objective,

which is to provide persistence to CORBA objects. Thus, POS provides a mechanism to retrieve

and store the persistent state of a PO object. Hence, there is a one-to-one relationship between

a PO object and a unit of data. DObS works on a more flexible way of a manager that contains

all the functionality to retrieve/store and manipulate data. The benefit of a manager manipulation

style is that a single manager instance can handle many items of data. Also, it separates user

CORBA objects from the functionality required to interact with datastores and to transfer data,

thus making them simpler. The POS manager - the POM does not provide any of this

functionality, but is only used to route requests to a target datastore.

The most significant distinction between the two services is that DObS specifies a single data

transfer mechanism(i.e. STS) that is highly integrated into the service. POS, on the other hand,

suggests a number of possible data transfer protocols. Conformance to these protocols is left to

the internal behaviour of POS components. This causes the data transfer protocols to be weakly

integrated into POS. Weak integration like this results in non-conformity between

implementations of POS.

Another benefit of DObS integration with STS is that it is more efficient than any of the POS

data transfer protocols. The POS protocols of Direct Access and Dynamic Data Object are

intrinsically inefficient due to the way they transfer data. This method entails a remote request to

retrieve every attribute of an object. There is a large performance penalty inherent in remote

requests, and consequently the POS protocols will become unusable for even small amounts of

Chapter 6 - The Data Object Service 177

data. STS allows all data to written into a single stream within local memory, and the stream's

data is then transported in bulk to the destination. The use of streams in POS has been

suggested by one of the architects of POS in [Sessions 96], but no formal integration of a

stream mechanism into POS was suggested.

A problem that the use of STS also avoids is the deadlocking problem of POS, whereby a

deadlock situation occurs due to an object requesting an operation of another object which is

blocked or does not run on an object adaptor. STS avoids this by driving all data transfers on

the client side of the stream, as all communication is in the direction of client side to server side

only.

The Data Object Service(DObS) is also efficient with its use of identification of data. The Data

Object Identifier(OOb_lO) is passed by value in a string form, so that the OOb_lO object can

be reconstructed by the server. POS passes the equivalent component, the PIO by reference, so

that remote requests are required to query the PIO information, hence performance is degraded.

Passing the PIO by reference is also a major design fault of POS. In CORBA, if an object is to

service requests as would be the case to query the PIO information, then that object must run on

an object adaptor. If the PIO object is resident within the process space of a client application,

then the client application must run an object adaptor. This is impracticable as applications

generally have synchronous execution and are singularly threaded.

The Data Object Service and the Stream Tunnel Service provide more efficient and

unambiguous service than the Persistent Object Service. DObS has been proven to work within

the implementation of the FileDObS, while POS has no satisfactory implementations due its

inherent design flaws and ambiguities.

6.6 Lessons Learnt from Implementing CORBA Services and
Applications

This section discusses the lessons that have been learnt from carrying out the implementation of

these CORBA services and applications. It puts forward advice that can be applied to general

Chapter 6 - The Data Object Service 178

application development and that any developer starting developing CORBA applications

should be concerned with.

A critical lesson learnt is to very carefully choose the system software which developed

applications will depend upon. System software is the software which an application becomes

dependent on for some facility provided by the software. Examples of system software and the

facilities they provide are data storage in databases, distributed communication by ORBs and

graphical interfaces by graphical component libraries. The factors that should be weighed up in

deciding on a piece of system software is the need for portability against the need for specialised

features of the system software.

Portability of application code over differing variants of the system software is an important

consideration. Applications can become locked to a specific features of a specific vendor's

system software. To port such applications to other vendor's system software may require much

effort, sometimes even impossible.

Portability problems became apparent in this project with the need to port code to ORBs other

than COOL-ORB. COOL-ORB became undesirable due to problems such as no support for

multi-threading, IIOP interoperability problems and does not compliance with later CORBA

specifications concerning ORB, BOA and CORBA object initialisation. Also, COOL-ORB was

withdrawn by Chorus Systems so that development could not take place on other platforms due

to COOL-ORB not being available for them. If COOL-ORB had complied with the CORBA

standards and the developed application code was written to these standards, then porting the

code to other ORBs would be relatively effortless. Thus, the lesson learnt was to choose system

software that complies with standards set for that area.

An opposing force to choosing system software based on portability is the need to choose

system software that is feature-rich. Features provide additional functionality, enhancing the

quality of applications and possibly improving their performance. However, software providing

such features are generally proprietary to the specific vendor's software and are not part of a

standard. For example, an ORB which is feature-rich is Iona's Orbix. Orbix provides many

useful and powerful features such as callbacks, filters and smart proxies[Baker 97] to name a

Chapter 6 - The Data Object Service 179

few. But none of these features are standard, therefore cannot be used in conjunction with other

vendors' ORBs. Using features such as these will lock applications and whole systems to a

specific vendor's ORB.

The need for the additional feature of multi-threading became a problem in implementing server

components of the services. As COOL-ORB did not support multi-threading, low-level

operating system mechanisms (e.g. threads and semaphores) had to be employed to serve the

same purpose, thus dramatically increasing the complexity of applications. This was another

lesson that was learnt, which is to try to only use facilities that are inside the paradigm that the

majority of an application uses. The threads and semaphores used are not based in object

orientation, thus much complexity was introduced to make use of them from the object-oriented

application.

Feature-rich ORBs usually provide thread class libraries that encapsulate the use of native

platform threads in an object-oriented manner. Therefore, using mechanisms that provide high

level control of threads greatly simplifies developing multi-threaded applications. However,

there is no set standards for thread control, hence each thread class library will be proprietary to

the specific vendor' s ORB and becomes another possible source of vendor lock.

Choosing system software such as an ORB is a critical decision that must be taken before any

development work is carried out. To make the best decision, the need for portability has to be

foreseen as well as what features will be required by applications. These two opposing factors

have weighed against each other and the result will influence the system software employed.

One of the great strengths of CORBA is its ability to provide interoperability that is of

transparent of location, platform and ORB type. Therefore, to a client of a CORBA object,

these transparency factors are of no importance. For example, the CORBA object could be

resident on a mainframe server somewhere on the internet or in the same process as the client, it

has no bearing on the way the client inter-operates with the CORBA object. The benefit of this

transparency is that it aids the scalability of applications, whereby objects can be redistributed

across different machines to increase performance with no alteration needed to actual

application code. Scalability is easy due to the CORBA transparency nature enabling low

Chapter 6 - The Data Object Service 180

coupling between objects i.e. there is a low dependency between components. The only

dependency between inter-operating components is their IDL interfaces, which is a well defined

dependency. Thus, to make applications as scalable and flexible as possible, every component

should inter-operate through an IDL interface, avoiding language specific mechanisms such as

function calls, method invocations etc.

An area where it is not possible to avoid language specific mechanisms is in the creation of

CORBA objects. Creating a CORBA object involves using a language specific instance creation

construct such as C++'s 'new', causing a high dependency between the creating component and

the created component. This high dependency results in a very rigid association between the

components, preventing components either from being scaled and making it very difficult for

either component to be altered and extended without effecting the other.

The OMG solution to this object creation problem is in the LifeCycle service. The LifeCycle

service states a technique in which objects are created by Factory objects. A Factory object

encapsulates all the complexity dealing with creating an object including creating an instance of

it, registering and initialising it. This technique disconnects applications from object creation,

lowering the dependency between the application and the creation of the object. Use of Object

factories is a valuable technique to try and solve this problem, but the LifeCycle service does not

go far enough. The LifeCycle model of creating CORBA objects is not a completely satisfactory

solution due to complexities such as how Factory objects are created and how they are found.

The LifeCycle service caters for the finding of Factory objects with the FactoryFinder

interface. The FactoryFinder object returns a list of Factory objects to a client that are

associated with some key information. The problem with the LifeCycle service's

FactoryFinder is that there is no standard way to register Factory objects with the

FactoryFinder. To hard-code registered Factory objects in a FactoryFinder is not a very

flexible solution, therefore a source of non-portability. A better solution is to dynamically

register Factory objects with a FactoryFinder. This can be achieved by the FactoryFinder

being extended to offer a registration interface. This allows a Factory object to dynamically

register itself upon creation, consequently letting clients find it through the find_factories

operation. Again, this is an example of lowering the dependency between components so that all

inter-operability is through IDL interfaces with no reliance on language-specific mechanisms.

Chapter 6 - The Data Object Service 181

The second complexity that the LifeCycle service does not provide a solution to is the creation

of actual Factory objects. In fact, there is no avoiding language-specific creation mechanisms to

do this, as somewhere in an application the Factory objects have to be created. However, the

effect on scalability can be minimised by keeping all Factory object creations in a single location

in a program and not spreading it throughout different sections of a program. Therefore, if the

program did need to be altered for scalability purposes or for some other purpose, then the

effect of altering the Factory object creation section would be minimal to the rest of the

program. The ideal situation is to have all Factory objects created, initialised and registered

with a FactoryFinder, before an application starts to perform its task. This way all Factory

objects are ready to be found and used by the rest of an application.

These suggestions concerning creating CORBA objects and their Factories came from

experience in needing to create the objects making up the services described in this chapter.

Hard-coding the creation of objects proved to be cumbersome and complex when it came to

amending or extending the code, therefore the LifeCycle Factory model was employed to

create objects. The FactoryFinder was also hard-coded, proving problematic when altering

code and adding new Factory objects.

In general, a common object creation policy should be employed across an application that

decreases the dependency between parts of the program, so that ease in changing code,

extending code and scalability is maintained.

6.7 Summary

The Data Object Service builds upon the Stream Tunnel Service providing interfaces to manage

data objects, which includes identifying, creating/deleting and retrieval/storing of data objects.

The combination of these services provides a framework of interfaces to access and manipulate

simplistically structured persistent data.

The Data Object Service provides create, retrieve, store and delete operations on identified data

objects. Data objects have to be transported between the datastore process that is storing them

Chapter 6 - The Data Object Service 182

to the client application for manipulation. This data transportation is provided by the Stream

Tunnel Service. DObS strongly integrates STS into the DObS interfaces. DObS has many

similarities to that of the failed OMG Persistent Object Service(POS), but DObS has been

designed to avoid many of the design failures of POS, particularly the specification of a single

data transport mechanism i.e. STS. DObS is only an abstract service, hence it must be extended

to provide identification and manipulation operations for specific types of data objects and

datastore types. An example of such an extension of DObS is the File Data Object Service

which allows the management and manipulation of files and directories. CORBAFile View is a

GUI application that demonstrates the use the File Data Object Service by allowing the

navigation of directories and the selection of files to retrieve. CORBAFile View can be used to

view image files, edit text files and also demonstrates the use of the File Data Object Service to

provide persistence to CORBA objects.

Many lessons have been learnt from implementing these CORBA applications and services. One

of the major lessons is to very carefully choose system software e.g. an ORB, so that portability

of application code that is dependent on the software is maintained. Opposing the portability

issue is the need for specialised features of the system software that enhances the quality and

performance of the applications, but are proprietary to a particular product. These issues should

be carefully weighed up upon selection of system software by predicting the need for portability

and the judging what proprietary features that will be needed.

Another valuable lesson was to make all components comprising an applications to interoperate

through IDL interfaces, therefore minimising inter-dependency and reducing dependency on

language specific inter-operation mechanisms. Reducing dependencies between components

increases the flexibility and scalability of applications. An area where language specific

mechanisms cannot be avoided is in the creation of CORBA objects. However, this language

dependency can be reduced by using the LifeCycle model of Factory objects and dynamically

registering Factory objects with FactoryFinder objects.

The Data Object Service and the Stream Tunnel Service is fine for accessing and manipulating

data objects of simplistic structured data such as files. But for more sophisticated structured

data like stores of complex structured objects having reference and inheritance relationships,

then more advanced functionality is needed than DObS provides. This functionality will be

Chapter 6 - The Data Object Service 183

provided by the Persistent Data Access Service(PDAS). However, PDAS has a need for the

transport of data between the client and server sessions of the service, which the union of STS

and DObS(and a specialisation service of it) can easily fulfil.

Chapter 7

The Persistent Data Access Service

7 .1 Introduction

This chapter presents an overview of the Persistent Data Access Service(PDAS). This service is

the decisive solution to the set requirements to provide a framework of interfaces to allow

access and manipulation of persistent data. The persistent data is resident in heterogeneous

datastores which are accessible in the distributed environment, and datastore types will have

proprietary data definition models. The purpose of this service rather than a direct method of

data access with proprietary datastore interfaces is to insulate applications from their proprietary

nature, therefore lowering the dependency of application code on the data access interface to

the datastore.

The Persistent Data Access Service brings together the high level design features discussed in

chapter 4, as well as the services previously designed and implemented i.e. the Stream Tunnel

Service and the Data Object Service. These services are extended for managing and transporting

the complex structured entity data that PDAS is manipulating.

The most significant high level design feature was the provision of a standard data definition

model. This standard data definition model is realised in the form of an object model called the

Chapter 7 - The Persistent Data Access Service 185

Meta-Schema model. All data manipulated by PDAS conform to this model, hence all data

models defined using proprietary data definition models must be mapped to the Meta-Schema

model providing a common view of the structure of data(Figure 7.1).

Application

Applicali n sees a
standard data efinition model

Persistent Data Access
Service

Figure 7.1 : The Meta-Schema model
provides a common view to the

proprietary data models

The meta-information provided by the Meta-Schema model is crucial to application components

to enable them to dynamic handle entities. For components to retrieve this meta-information, the

meta-schema model has a direct IDL translation(Appendix E), hence CORBA objects are

instantiated containing the meta-information.

Another high level feature is the use of a session component to provide the following:- access to

the persistent data, representation of a connection to a datastore and integration with the

transaction and concurrency services. The location of the session determines whether the data is

manipulated locally in the client process or remotely in the server process.

For the data to be locally manipulated, the data has to be transported to the client process from

the datastore server process i.e. the server session. Generally, the data transport mechanisms

that datastores like relational DBMS' s or object-oriented databases use to move data across the

distributed environment are proprietary to the specific datastore product and closed to external

developers. PDAS's data transport mechanism is an open mechanism based on the Data Object

Service and the Stream Tunnel Service. The alliance of these two services acts as an object bus

transporting entity data between the distributed client and server PDAS sessions(Figure 7.2).

Chapter 7 - The Persistent Data Access Service

Persistent Data Access Service

Datastore Specific
Server Session

Data Object
Service

entity
_ Stream Tunnel _ t- _____ _ entity o.-. ------

Service - -()

Data Object
Service

Generic Client
Session

Persistent Data Access Service

Figure 7.2: The Stream Tunnel Service and Data Object Service
provide an object bus transporting entities between client and

server sessions

186

The objective of the service is to free client applications from their dependency on the

proprietary datastore containing its data. Hence, to enforce this objective the client side to the

Persistent Data Object Service is purely generic, in the sense that it can handle any data from

any data model(conforrning to the Meta-Schema model) held in any datastore. To provide this

generic characteristic, all inter-operability between the client and server sides of the service has

to be standardised, including accessing, managing and transporting the data. This standard data

access and management facility is provided by an extension of the Data Object Service that is

geared towards managing the structured entity data.

The standard transportation mechanism of structured entity data is provided by the Stream

Tunnel Service(STS). However, STS and more specifically the Externalization service, only

provides for low-level literal types to be read/written from/to a stream. PDAS requires higher

level structured entity types to be read/written from/to the stream to maintain the structure of

entities in their serialised form. Thus, a protocol that formalises rules about how entities and

their attributes are held in the stream is specified. This is a powerful concept as it allows the

transport of complex structured entities in a distributed carrier mechanism i.e. the stream,

providing a mechanism for the transport and exchange of highly structured data(Figure 7.3).

The design factors that also make the transport of complex entity data possible is the use of

object identifiers(aids) and the availability of meta-information on the data. Object identifiers

provide an independent language/platform reference representation, so that internal datastore

references can be represented in the external domain of the PDAS sessions, hence maintaining

Chapter 7 - The Persistent Data Access Service

Entitles serialised In
stream using structured

entity protocol

""- i Stream /

~◄---•11 1 11 1, I I I~

Serialised
entity record

Figure 7.3: Highly structured entity data can be transported using the
stream given a protocol for specifying how entities are held in a stream

187

entity relationships. Provision of meta-information from the Meta-Schema model is a crucial

utility to the service. Using the Meta-Schema model, the structure of entities and their attribute

types can be discovered, enabling the dynamic handling of entities. Dynamic handling of entities

is important in a number of roles that PDAS has to carry out, including dynamic mapping of

data in their proprietary datastore form to a standardised form, (de)serialising the data to/from

the stream and enabling the dynamic manipulation of entity attributes.

This chapter presents how these concepts and design features are integrated into the Persistent

Data Access Service(PDAS). Firstly, an overview of the IDL interfaces and the responsibilities

of the components implementing these interfaces is presented. Next is a short scenario

demonstrating how the PDAS components work together to retrieve entities of small data

model.

7 .2 Modules and Interfaces of the Persistent Data Access Service

The Persistent Data Access Service is separated into three IDL modules, where each module

contains a set of interfaces and performs a specific role in the service. The modules are shown in

figure 7.4 and have the following roles and responsibilities :-

• The Persistent
Data Access
Service(PDAS)

• The Entity Data
Object Service

Interfaces of this module are the primary interfaces that client

applications of the service interact with. The interfaces include

the creation of sessions, actual sessions and an interface to

manipulate the attributes of entities.

These interfaces extend the Data Object Service and the Stream

Tunnel Service to provide a mechanism for the access and

Chapter 7 - The Persistent Data Access Service

• The Persistent
Data Access
Service Server
(PD AS Server)

transport of complex structured entities.

This is the server side to the service that includes the actual

ServerSession and a way of creating a ServerSession. The most

significant role the ServerSession performs is to access the

supported datastore and map accessed data to and from the

standardised format.

188

Also, implementation of these interface will require access to meta-information from the Meta

Schema model. The Persistent Data Access Services modules and interfaces are discussed in

further detail in the following sections. The modules and interfaces of the service are shown in

full in appendix E.

Client Process

PDAS module

Application

Entity Data Objeet Service module

!

/ Strubtured '
Entit,1S!ream

Meta-Schema Model

Server Process

PDASServer
module

ServerSession

Figure 7.4: Modules of the Persistent Data Access Service

7. 2 .1 The Persistent Data Access Module

Data store

The interfaces of the Persistent Data Access Service(PDAS) module(appendix F) are the

application's only contact with the service. All other interfaces are concerned with the internal

workings of the service and have no relevance to the application. The PDAS module interfaces

allow the application to create a session, gain references to entity instances and execute queries

to gain initial entities.

Chapter 7 - The Persistent Data Access Service

interface Session : CosConcurrencyControl::LockSet
{

} ;

EntityReference create(in string entity type name)
raises(NotFound,CreateFailure) ; - -

EntityReference copy(in EntityReference source entity)
raises(CreateFailure , ExactCopiesNotSupportedByModel);

void delete(in EntityReference entity) raises(DeleteFailure) ;

void save_all_updates() raises(StoreFailure);

MSModel: : msSchema get schema model ();
RetrievalModel: : RetrievalMaps get_ retrieval_maps();

CosQuery::QueryEvaluator get_query_evaluator() ;

Object bind object(in EntityReference er,
in CosLifeCycle :: FactoryFinder finder)

raises(CosLifeCycle : :NoFactory);

EntityReference find_ entity_by_oid(in long aid) raises(NotFound) ;

void close_session(I raises(TransactioninProgress) ;

interface NonTransactionalSession : Session
{
} ;

interface TransactionalSession : Session,
CosTransactio ns : :TransactionalObject

} ;

Figure 7.5: The Session interface and its non-transactional and transactional extensions

189

The Session interface(Figure 7.5) is the application's principal interface to the service's

functionality. The Session with its transactional extension also supplies the client side

integration with the transaction and concurrency services. Operations of the Session provides

the following :-

• Basic create, copy and delete of entities.

• Access to the Meta-Schema model describing the entities being manipulated.

• Access to the Retrieval Map model describing sub-groups of entities for simultaneous

retrieval and storage.

• Save updates to entities.

• Access to the query service.

• Binding of a static CORBA objects to entity objects.

• Gaining entities using session dependent oid values.

• Close a session.

The create operation of the SessionFactory(Figure 7.6) interface is used to create a Session

as well as setting up and initialising a ServerSession for the Session to connect to. The

attributes of the create operation indicate a datastore server, the name of a datastore the server

Chapter 7 - The Persistent Data Access Service

interface Session Fa ctory
{

Sessi on crea te(in PDASSer ver: : DatastoreServe r da t astore_server,
i n stri ng datastore n ame ,
in b ool ean transactional session,
in CosConcurrencyControl~: lock mode initial lock mode ,
in CosPropertyService:: Pr operties initialisation-attributes}
raises (CreateFailure) ; -

} ;

Figure 7.6: The SessionFactory interface, used to create Session objects

interface EntityReference
{

} ;

boolean i s same(EntityReference other e nti t y) ;
boolean i s=kind_of (string e nti t y_type=name) ;

MSModel :: ms Ent i ty get e nti t y type() ;
MSMod e l: : msType get attribut e t ype (in string attr_name)

raises(InvalidAttribute) ;

long get_en t i ty_ses sion_oid () ;

void save_updates () raise s (StoreFailure) ;

void release () ;

// Operations to set the values of entity attribut es
vo i d set St ring(in string att r name , in s t rings)

raises (InvalidAtt ribut~ IllegalCast) ;
void set Double(in s t ring attr name, in doubled)

raises (InvalidAtt ribute-; Illegal Cast) ;

: Further set meta-schema attribute type operation s

void set Aggregate (in string attr name, in CosCollection : : Collection c)
rais-es{InvalidAttribute , Illeg-alCast) ;

void set EntityReference (in string a ttr name, in EntityReference er)
raises(Inval idAttribute,IllegalCast , InvalidRefenceAssignment) ;

/ / Operations to get the values of entity attributes
string get String(i n string attr na me)

raises (InvalidAttribute,Illegal Cast) ;
double get Double(in string attr name)

raises (InvalidAttri but e , IllegalCast);

: Further get meta-schema attribu te type operations

Enti tyReference get Entity(i n stringattr name)
raises (InvalidAttribut e,Ill egalCast , NullReference);

EntityReference g e t Entity using map(in string attr name , Retri valMap map_na me)
raises (InvalidAttribute,IllegalCast , NullReference) ;

Figure 7. 7: The EntityReference interface allows the manipulation of an entities' attributes

190

has access to, whether the session 1s within a transaction, initial lock type and any other

necessary initialisation attributes e.g. user name and password.

The Session interface provides the service's management operations. Actual entity instance

manipulation is carried out using the EntityReference interface(Figure 7.7).

The EntityReference interface allows manipulation of entity attributes by providing get and set

operations for all the entity attribute types. Each get/set operation has to specify the attribute

name of the target attribute since the entity is being dynamically manipulated, and has no static

Chapter 7 - The Persistent Data Access Service 191

interface. The EntityReference interface provides other operations concerning gaining meta

information on the type of entity the EntityReference is representing. The interface also

provides management operations such as getting its oid, saving updates and releasing the

EntityReference object when it is no longer needed.

An application must firstly obtain an EntityReference object to an entity instance to be able to

manipulate it. There are two general ways that an application can obtain an EntityReference.

The first is via the query service, the execution of a query returns a collection of

EntityReference' s representing the results of the query. The second means is by navigating

relationships between entities by calling get_Entity on a entity reference attribute.

7 .2.2 The PDASServer module

The PDASServer module contains server side interfaces to the service. The DatastoreServer

provides an operation to create a ServerSession. In general, newly created ServerSessions

will run on separate threads of execution, thus many ServerSessions will be concurrently

accessing the datastore(Figure 7.8).

The ServerSession and its (non-)transactional interface extensions(Figure 7.9) provide the

server-end to a session. The operations provided by the ServerSession are only accessed by

the client Session. It is the responsibility of the client Session to get the ServerSession's

DataObjectServer and use it to retrieve entities by setting up a stream with the server.

Client application process

Application · Session EntltyOOb
:E)············ ·· ··· ····· ··· ·
: Manager
.... . ······ •• · •· · · ········· .

Client application process

Application

rocess Datastore server Logical .
session r l.[J c:l_e_p~n_d!lrJ.I !1>18.f\!1I91} !_h[e!!c:l_ __

. . .. · ·-···· ·1·· ·· ·-···· ················ -· ··: :

Stream Da~!~~~ct ServerSession : ,

. ·1· • • - • . .. • ••• •••••..• . . • • •• - rt'~.• I

create.~s-' -
Datastore

Server Datastore

Figure 7.8: Multiple ServerSessions can be created within the datastore server process that
concurrently access the datastore

Chapter 7 - The Persistent Data Access Service

interface ServerSession : CosConcurrencyControl: : LockSet
{

);

DataObjectService: : DataObjectServer get_data_object_server();

MSModel::msSchema get meta schema model();
MSR: : MetaSchemaRespository-get_meta_schema_repository();

RetrievalModel :: RetrievalMaps get_retrieval_maps();

CosQuery:: QueryEvaluator get_server_query_evaluator();

void close_session(J raises(PDAS: : TransactioninProgress);

interface NonTransactionalServerSession : ServerSession
{
} ;

interface TransactionalServerSession ServerSession,

} ;

CosTransactions: :Resource,
CosConcurrency : :LockCoordinator

Figure 7.9: The ServerSession interface and its non-transactional and transactional extensions

7.2.3 The Entity Data Object Service

192

The Entity Data Object Service(EntityDObS) is an extension of the Data Object Service to

provide access, management and transport of complex entity data. This service is essential to the

ability to cache entities in the local process of a client application. Thus, EntityDObS acts as a

service for transporting entities between a PDAS client and server sessions. The EntityDObS

interfaces are lengthy and complex, so only an overview is given here (the complete IDL

interfaces can be found in appendix F).

The type of data objects managed by EntityDObS are entity instances, where an entity instance

is made up a collection of attribute values with a system unique identifier(oid). As with all

Identifier to retrieve
an entity referenced

by an attribute~

EntityGraph
DOb ID

string retrlevnl_map

~-~-~

Entity_DOb_lD

DOb_lD

Described
ype_DOb_l

Identifier to retrieve the
resul sofa search

OID_Array
old_array OIDS

Figure 7.10: The hierarchy of Data Object identifiers used to identify entities,
graphs of entities, aggregate and describe type attributes

Chapter 7 - The Persistent Data Access Service 193

extensions of DObS, the DOb_ID has to be extended to identify the data being accessed.

EntityDObS provides the DOb _ ID interface hierarchy shown in figure 7. 10 for this use. The

identifier interface hierarchy allows the retrieval of entities through the results of a

search(OID_Array) or through navigation from an entity reference attribute(Entity_DOb_ID).

Specialisations of Entity_ DOb _ ID permit the retrieval of graph of entities and the explicit

retrieval of aggregates and described types(i.e. binary data).

Data transported through a stream must by be contained within a Streamable object, where the

object knows how to read and write its data from/to the stream. The EntityContainer interface

extends the Streamable interface by adding operations to add and take out entities to/from the

container. Thus, the EntityContainer can simultaneously contain multiple entities and transfer

them through the stream in a single transfer.

The structure of entities has to preserved in their serialised form, so that attribute values written

to a stream are correctly read out. Therefore, a protocol has to be specified that defines how

entities are held in a stream. The Structured Entity Stream Format(Appendix F) defines this

protocol. It specifies how entities and their attribute values are written to a stream including tag

values that retain the structure of entities. Figure 7 .1 1 shows an example of the contents of a

stream that has had a entity instance serialised to it using the structured entity format. The

stream contains all entity identification information and its attribute values. The structure of this

information is maintained using tag values that identify what the following value represents.

The Structured Entity Stream Format is another protocol layer on top of the Externalization

service's Standard Stream Data Format(SSDF). SSDF specifies the low-level format for

Example 'Person'
entity(aid= 123)

Person

Example 'age'
stream contents Entity Entity 'name' attribute

\ tyoe oid attribute value value
"'•,--,~~~---~-~~~~-----~~' -·---~

f-------~--.....,......i 1 2 3 Person 123 4 5 6 A.Sample 5 12 24
string name= "A.Sample" serialised
int age= 24 to structured '--v---'

entity stream Entity tag
format header

~

String
attribute

tags

~

Integer
attribute

tags

Figure 7.11: An example of the contents of stream containing a 'Person' entity using the Structured
Entity Stream Format

Chapter 7 - The Persistent Data Access Service 194

CORBA data types in the stream. The Structured Entity Stream Format adds a protocol to

SSDF that allows the storage of higher level entities. The StructuredEntityStreamlO interface

encapsulates the entity format by allowing entities and their attributes to read/written from/to a

stream. This achieved by wrapping the Externalization service's StreamlO interface(Figure

7.12).

Stream
Tunnel 1.externalize

rite formatting tags
attribute values

Figure 7.12: The StructuredEntityStreamJO interface
wraps the Externalization service's Stream!O

interface to allow entities to be read/written from/to a
stream using the Structured Entity Stream Format

The Entity Data Object Service(EntityDObS) extends the Data Object Service, hence the

Entity_DOb_lD interface extends the data object identifier. The EntityContainer extends the

Streamable interface to hold entities for transport through a stream. The final Data Object

Service interface extension 1s the EntityDObManager interface extending the

DataObjectManager. The EntityDObManager encapsulates the transfer and retrieval of

entities mechanism allowing the retrieval and storage of entities.

The service also allows for the explicit retrieval of aggregate and described type attributes in

separation from their containing entities. These attribute types can be explicitly retrieved, due to

the fact that they can be very large. Therefore to retrieve them every time their containing entity

is retrieved would be wasteful as the aggregate/described type attribute might not be accessed.

Chapter 7 - The Persistent Data Access Service 195

7.2.4 Use of the Meta-Schema Model

The Meta-Schema model(see section 4.4.2) is used to describe the structure of entities including

their entity hierarchy and their non-referential and referential attributes. This is achieved by

creating instances of the Meta-Schema model that represents the definition of an' entity as

described in its native data model. It might not be possible to directly represent the native data

model using the Meta-Schema model, therefore some degree of mapping might be necessary to

mould the native data model to fit the Meta-Schema model. For example, a data type such as a

SQL timestamp or an Epicentre spatial type that are native to a data model would have to be

mapped to an entity.

The description of entities provided by the Meta-Schema model enables system components to

dynamically handle entities that the component has not been pre-configured to handle. For

example, given a segment of memory containing an entity, a component will know the structure

of the entity, and can interpret the contents of the memory segment and access the entity

attributes. Components that can dynamically handle structured data are superior to static pre

configured components as they are generic i.e. used for any data model and are easily scaleable

and flexible to system change.

The information contained in instances of the Meta-Schema model that describe a data model

has to be somehow be presented to system components. This is accomplished by representing

the Meta-Schema objects as IDL interfaces(Appendix E). CORBA objects implementing these

interfaces are created to represent data model meta-information. System components can then

query the interfaces of these objects to retrieve the meta-information.

Access to meta-information is a common feature of many persistent data storage systems such

as meta-tables in relational databases or a compiled EXPRESS model of data contained in a

STEP file. The meta-information is used to present a description of the stored data to

applications and to serve as an internal system facility allowing the dynamic processing of

described data. There are various components internal to an implementation of the Persistent

Data Access Service that will require access to the meta-information. These components shown

in figure 7.13 and their need for meta-information is described in the following:-

Chapter 7 - The Persistent Data Access Service 196

• Application

• Client PDAS
components

• EntityContainer

The client application might reqmre meta-information of entities to

dynamically manipulate data.

The client PDAS components requires meta-information to allow the

application to manipulate the attributes of cached entities using

EntityReference interface. It is also used to maintain the integrity of

the entities, so that the application is prevented from illegal type casting

when setting entity attributes.

The EntityContainer is the Streamable component, hence reads and

writes entities from/to the stream. It is the task of the EntityContainer

to break an entity down into its constituent attributes. The names and

types of the entities' constituent attributes are found in the meta

information.

• DataObjectServer The DataObjectServer is the principal component that carries out the

retrieval and storage of data. Thus, it has to carry out mapping between

the proprietary stored form of the data and a standard entity form that

can be added to an EntityContainer. The mapping can be automated

by examining the meta-information and finding out the type of each

attribute, then perform an automatic conversion between the

proprietary types and standard types of the attribute.

The provision of meta-information is crucial to the internal workings of the service, hence there

will be frequent accesses to the Meta-Schema Facility to gain meta-information. If the Meta

Schema Facility is a separate system-wide service to the distributed environment then remote

requests are required to access the facility. Hence, performance becomes a concern due the low

speed of remote requests and the frequency that they will be used by the service. In a perfect

distributed environment, local intra-process requests would take the same time as remote inter

process requests. But this is not the situation, so the solution is to move frequently accessed

data to the accessing process. Thus, components accessing the Meta-Schema Facility should

have a local copy of the data model descriptions stored in the facility.

Chapter 7 - The Persistent Data Access Service

·· • .

I

read ' '
entities ' - ttrib~t; - - - - -write -ail - - - '

s with values ·
r tags ldenti

Meta-Schema ,. ... · ·
Facility

write
entitie

197

...

I ~ meta-Information I
. access .

Figure 7.13: Components of the Persistent Data Object Service that access the Meta-Schema Facility to gain
meta-information on entities that are being handled

Local copies of the data model descriptions can be obtained in two ways: the first method is

having a static compiled copy linked with the components at compile time, the second method is

to dynamically obtain a copy at run-time. Statically compiling the meta-information into

components leads to many difficulties, such as need for recompilation if data models are

changed or extended and is also a point of dependency for a generic client side to the service.

Therefore, to retrieve a copy of a data model at run-time would the most flexible and generic

solution.

Data models are described using CORBA objects that have IDL interfaces representing the

object types in the Meta-Schema model. Therefore, to provide local copies of the meta

information, the group of CORBA objects making up a data model has to be copied by value to

Meta-Schema facility process Client process
Meta-Schema objects

r ___ for 'STAFF' data model _ ____ _
I I
I SUIINIW. I

Meta-Schema objects
r _ ___ J9!:SBF_F~d,!1\!!,!l'l.9Q.8L ___ _

I : Sch!Knw :
I I I

: "- Stream / :
:~ __ _ d2\,~ _ _ ~ate model•
,extemallse<rL__J tran~fer +-~
: to strea~ '{o client : ,.._,._...,_,,,

I _ - ~

Figure 7.14: Meta-Schema Objects representing entity meta-information can be copied to client
processes for fast access using a stream

Chapter 7 - The Persistent Data Access Service 198

the local process. This is a similar situation to that of caching entity data objects local to client

applications in the Persistent Data Access Service, to pass data by value rather than by reference

which the CORBA model is based on. The solution is also similar to the use of streams to move

the meta-information between processes and to rebuild the Meta-Schema objects in the client

process(Figure 7.14).

The MetaSchemaFacility interface(Figure 7.15) provides the pass-by-value ability to clients

wishing to copy data models locally. A client can request a stream containing data model meta

information using the MetaSchemaFacility interface. The stream's data can then be moved

locally possibly using the Stream Tunnel Service. As with the Structured Entity Stream Format,

the format that the meta-information is held in the stream is specified in the Meta-Schema

Stream Format(Appendix E).

typedef string Identifier;
typede f sequence <Identifier> Identifiers;

interface MetaSchemaFacility: CosLifeCycle : :LifeCycleObject
(

} ;

Identifiers get schema list() ;
Identifiers get-entity-list(in Identifier schema name) raises(NotFound);
I dentifiers get-schema-defined type list(in Identifier schema name)
raises (Not Found); - - - -
Identifiers get_schema_constant_ list(in Identifier schema_name) raises(NotFound);

CosStream: :Stream
get_schema_meta_info(in Identifier schema_name) raises(NotFound) ;

CosStream: : Stream
get entity meta info(in Ident ifier schema name ,

- - - in Identifier entity_name) raises(NotFound) ;
CosSt r eam: :Stream

get_schema_defined_type_meta_info(in Identifier schema name,
in Identifier defined type name)
raises (NotFound); - -

CosStream:: Stream
get_schema_constant_meta_info(in Identifier schema name ,

in Identifier constant_name)
raises(NotFound);

Figure 7.15: The MetaSchemaFaci/ity interface can be used to transport meta-information using a
stream to a client process

7 .3 Demonstration of the Operation of the Persistent Data Access
Service

This section provides a brief synopsis demonstrating the operation of the Persistent Data Access

Service(PDAS) and shows how the various components of PDAS work together to carry out

the task of giving access to persistent data.

Chapter 7 - The Persistent Data Access Service 199

The scenario used for the demonstration is typical of a common programming procedure to read

or update entity attributes. The steps common to such a procedure are:-

1. Open a session to connect to a datastore.

2. Start a transaction.

3. Execute a search for an initial entity.

4. Navigate relationships from the initial entity to obtain references to other entities that are of

interest.

5. Read or update the attributes of entities.

6. Commit the transaction

7. Close the session.

The data model for this scenario is very simplistic, in which a 'well' entity has two attributes:- a

name and a reference to a 'wellbore' entity. The 'wellbore' has a single attribute that records

how deep the 'wellbore' is. The scenario will use PDAS to search for a 'well' by its name,

navigate the 'wellbore' relationship and change the wellbore's 'depth' attribute. The scenario is

described in the following steps:-

1. The first step is for the client to create a transaction-aware session. To do this, the client

must firstly obtain a reference to a DatastoreServer object that can start a ServerSession

to the required datastore. The client then uses the create operation of a SessionFactory to

create a Session object.

2. In response to a create operation, the Session Factory uses the DatastoreServer to start a

ServerSession.

3. The ServerSession will create a datastore session to access it.

4. The SessionFactory also creates the client side Session. Upon creation the client side

Session will grab a reference to the ServerSession's DataObjectServer and then create

an EntityDObManager.

5. The EntityDObManager will use the Stream Tunnel Service to setup a stream between

itself and the DataObjectServer.

Chapter 7 - The Persistent Data Access Service

Client application process 4. Entity Data Obj1,=. ___ ---=:D~ac!!:ta~sc!!:to~re~se~rv~er~r~oc~e""'s~s---r-_ - --.
~ ---,--'--'-------'-----ervice set-u

Application

: Transactional
· Session

EntityDOb
Manager

\ 3.creates

Session
Factory

...... ·· ········· · ·

5.Stream
---Data Object

Server
Transactional : datastore

erverSessio ;,:-5-e5- 5-,-10-n +...i Datastore
· · ·· · ····· · -··· · ·· ··--·· ··· · ···- · -·· · ··~ --·

2.start_session

\

creates\ ----Datastore
Server

Figure 7.16: Steps 1-5, creating client and server sessions and the setting up of the Entity Data
Object Service and a stream

200

6. The initialisation of the PDAS components and the session is complete. The situation is

shown in figure 7.16.

7. Before carrying out any manipulation, a transaction must be started. The application must

use the Object Transaction Service to create a transaction. As the transaction extensions of

Session and the ServerSession are transaction aware, all manipulation of entities will be

within the context of a transaction.

8. The next stage involves executing a search for the desired 'well' entity and retrieving it. To

do this the application must first get the Session's QueryEvaluator. The QueryEvaluator

is the Query service's interface that allows the execution of a search.

9. The application will use the query "select from well where name = 'Alpha0000 l"' to find the

desired 'well'. The application executes this query using the Session' s QueryEvaluator.

10. The Session's QueryEvaluator forwards the query to the server side QueryEvaluator.

11. The server QueryEvaluator translates the query into the datastore' s native query language

and executes it.

12. The result of the query is a set of oid's that are passed back to the client Session. In this

case the result is only a single oid which is the desired 'well' (Figure 7.17).

Client application process
..... · · ··· ·· · · ·

: Transactional
· Session

Application
9.eval te

que

EntltyDOb
Manager

Datastore server rocess

· ·· · ····· ·· · ····••··· ··-···· .,

DataObject Transactional :
Server erverSesslo :

10.evaluate query

12.return aid result

Figure 7.17: Steps 9-12, executing a query and the returned result is an oid(s)

Datastore

Chapter 7 - The Persistent Data Access Service 201

13 . The client QueryEvaluator uses the oid to set the Data Object identifier of the

EntityDObManager and requests the manager to retrieve the entity.

14. The EntityDObManager responds by requesting the DataObjectServer to retrieve the

entity.

15. The DataObjectServer adds the indicated entity to a EntityContainer.

16. The EntityDObManager pulls the EntityContainer from the stream.

Client application process 14.retrieve

Application Query
Evaluator

eve / .p _ Streamable
I

Datastore server rocess

....... ······ ,

ataObject Transactional :
Server erverSesslo : ,

Entlty
Container

~

Figure 7.18: Steps 13-16, the entity indicated by the oid is retrieved using the Entity Data Object
Service. The entity is transported in a EntityContainer through a stream.

17. The EntityDObManager extracts the entity from the EntityContainer and adds it to the

client's entity cache.

18. An EntityReference to the entity is passed to the application as the result of the query.

19. The application requests the operation get_Entity("wellbore ") on the EntityReference.

20. The relevant entity is not in the cache, so the EntityReference initiates the retrieval of the

entity using the EntityDObManager. The identifier is a Entity_DOb_lD with attributes

oid= 123 & attr name="wellbore".

21.The DataObjectServer retrieves the object from the store and the entity is transported

through the stream to the client's cache(Figure 7.19).

Client application process Datastore server rocess ,---~----'---'----~- - - ~20.retrieveenlity,------ ---~---.------,
.

DataObject Transactional ;
Server erverSesslo : Datastore

Application

Figure 7.19: Steps 19-21, the referenced 'wellbore' entity is retrieved using the Entity Data Object
Service

22. An EntityReference to the newly retrieved 'wellbore' entity is passed back to the

application.

Chapter 7 - The Persistent Data Access Service 202

23. The application changes the depth by calling set_Double("depth",378.56) on the

EntityReference.

24. The application has finished its manipulation, therefore it can include its updates in the

transaction commit by calling save_ all_ updates on the Session. Calling this operation

causes all entities that have been changed to be transported back to the ServerSession

and the changes written to the datastore.

Client application process Datastore server rocess

Figure 7.20: Steps 23-24, the 'depth' attribute of the 'well bore' is changed, all updates to cached
entities are transported back to the server and written to the datastore

25. The application must then commit the transaction. Any data that has been saved within the

context of the Session with be included in the datastore's transaction commit.

7.4 Summary

This chapter has introduced the Persistent Data Access Service(PDAS). The PDAS enables the

manipulation of highly structured entity data. The chapter firstly reacquainted the reader with

the high level design features and concepts described in chapter 4, which PDAS is based on.

These design features and concepts include: -

• The Meta-Schema model that provides a common data definition model that proprietary data

models map their definition to.

• The Meta-Schema model has a direct IDL interface translation, therefore CORBA objects

represent the meta-information contained in data models. This meta-information is crucial to

the service to enable the dynamic management of entities.

• The use of sessions to access persistent data, represent a datastore connection and integrate

with the transaction and concurrency services.

• Reuse of the Stream Tunnel Service to transport data and extend the Data Object Service to

manage and access the data.

Chapter 7 - The Persistent Data Access Service 203

• The assignment of object identifiers(oids) to entities as an independent language/platform

means of representing references.

Next, the three main PDAS modules and their interfaces were presented. These are the actual

Persistent Data Access Service(PDAS) module, the PDAS Server module and the Entity Data

Object Service

The PDAS module contains interfaces that are the application's access to the service. These

interfaces include:-

• The Session interface for basic entity management, access to other facilities of the service

and client side integration with the concurrency and transaction services.

• A SessionFactory for creating Sessions.

• An EntityReference interface which is used to manipulate the attributes of entities.

The PDAS Server module has a DatastoreServer interface for the creation of

ServerSessions that concurrently access the supported datastore. The ServerSession

integrates the server side with the transaction and concurrency services and provides a

DataObjectServer for the retrieval and storing of entities from/to the datastore.

The Entity Data Object Service(EntityDObS) is an extension of the Data Object Service to

enable the transport of entities between the client and server session components. It specifies the

Data Object Identifiers for indicating the location an entity or entities, an EntityContainer for

the holding of entities and an entity serialisation format that specifies how entities are serialised

to a stream.

Access to meta-information described using the Meta-Schema model is important to many

PDAS components to enable the dynamic handling of entities. However, if the Meta-Schema

objects are remote to the client and the objects are frequently accessed, then performance of the

system will dramatically decline. The MetaSchemaFacility provides a way for clients to obtain

a local copy of the Meta-Schema objects.

Chapter 7 - The Persistent Data Access Service 204

The final section describes a typical scenario in which the PDAS might be used. The scenario

included performing a search for an entity, retrieving the result of the search, navigating a

relationship from the entity and retrieving the entity which is referenced.

In conclusion, the functionality provided by the PDAS is similar to the basic functionality

provided by facilities such as POSC' s Data Access and Exchange Facility, STEP's Standard

Data Access Interface and other data manipulation facilities, in that they present interfaces to

applications that allow the applications to manipulate persistent data. However, these facilities

usually put many constraints on the data that can be manipulated such as the data definition

language that may be used, or the language that the application is written in. PDAS does not

have these constraints as data models defined in proprietary data definition languages can be

mapped to the Meta-Schema model. Also the service is specified in IDL, and therefore is

language-independent.

PDAS is a open specification for a set of interfaces with guidelines on how they interact. As

with all CORBA specifications no implementation detail is specified. There are only guidelines

on component behaviour and a definition of their interfaces. An especially powerful interaction

is the ability to transport entities between the client and server sides of PDAS using the Stream

Tunnel Service and the Structured Entity Stream Format. The combination of the mechanism to

transport structured entity data and of the Meta-Schema model to describe the entity data makes

clients entirely independent from the proprietary nature of datastores. This insulates client

applications from the specifics of datastore types and allows the creation of generic clients that

can connect to any datastore supporting the PDAS server side and manipulate its data. Also, if

clients have no dependency on a specific datastore, then the application code is more portable

and reusable across datastore types.

Chapter 8

Roles of the Persistent Data Access Service

8.1 Introduction

This chapter discusses various roles and factors involved in the roles that the Persistent Data

Access Service(PDAS) can be used in, including the following:-

• Supporting arbitrary datastore types.

• Supporting the POSC Data Access & Exchange(DAE) interface and the Epicentre model and

its influence on the design of PDAS.

• Using PDAS in conjunction with a database adaptor.

• Using PDAS as a standard data access interface for data transformation using the Mapping

Manager Architecture.

8.2 Supporting Arbitrary Datastore Types

The purpose of the Persistent Data Access Service(PDAS) is to provide a way for applications

to manipulate data resident in heterogeneous datastores independent of the proprietary datastore

type storing the data(Figure 8.1). Thus, providing application insulation from the datastore' s

proprietary interface and software code means no need to link client applications with

proprietary code library.

Chapter 8 - Roles of the Persistent Data Access Service

Application PDAS client
side

manipul te ----En-ti-ty- O
eferenc -

Entity Data
Object Service

_ _ transport __

PDAS server
side

i Datastore
,

Entity
Data Object

Figure 8.1: The Persistent Data Access Service used to manipulate data in heterogeneous datastores

206

This independence is partly due to the strongly specified Entity Data Object

Service(EntityDObS). EntityDObS allows the retrieval and storage of structured entities in

conjunction with the Stream Tunnel Service and the Structured Entity Stream Format for the

transport of the serialised data. The client side of the service is therefore fairly straightforward;

it has to manage the retrieved entities in the local process and hand out EntityReference

objects allowing the manipulation of entities by applications. Consequently, the client side of the

service is entirely generic as it can handle entities from any datastore type that is supported by

the server side.

The real complexity in providing this independence comes from the mapping carried out by the

server side of the service to transform entity data to/from its stored format and a format suitable

for passing through/from EntityDObS. Each datastore type will have to have server side

software that is specific to the datastore type to perform this mapping.

The mapping performed by a PDAS server is crucial to the service supporting arbitrary

datastore types and providing independence on the client side from the datastore. There is a

number of responsibilities involved in the mapping that a server side must perform to make data

available to clients. These responsibilities include the following:-

• Generating the calls to the datastore's interface to retrieve and store entities.

• Transforming data between its native form used in the call to the datastore interface and a

form that can be passed to/from EntityDObS. This will include transforming the data so that

it reflects its description in the meta-schema model e.g. converting a native datastore data

type to an entity to represent the type.

• Assigning oids to retrieved entities. PDAS requires entities to be identified by a unique

session dependent integer allowing the independent representation of references to entities.

Chapter 8 - Roles of the Persistent Data Access Service 207

• Maintaining a list of handles to retrieved entities and the oids assigned to them.

• Logic is required so that when entities are stored, their persistent form in the datastore is

consistently changed to mirror the changes made by the applications in PDAS.

• Providing functions to create and delete entities.

• Mapping transaction and locking acquisition operations of the transaction and concurrency

services to the native datastore interface.

These duties are easier to implement for some datastore types than others. For example, an

object-oriented database will already provide an oid facility. Also, the logic required to make

changes to the persistent data consistent with changes made in PDAS is simpler for datastores

that have an object-oriented nature such as OODBs and the DAE.

For datastores that do not have an object-oriented nature, such as relational databases, it is

especially complex to be supported as a PDAS datastore. The major complexity comes from

having no unique identity for entities/tuples, because identity is based on the values of key

attributes. This leads to complexities in maintaining the oid to entity/tuple pairs and greatly

increases the complexity of the logic required to consistently store entities.

The mapping process should be automated, so that a PDAS server specific to a datastore type

can automate the mapping of any data model that the datastore can support. This automated

mapping can be achieved by gaining meta-information on the entity types of the data model,

including the type of each entity attribute. The meta-information allows the automatic

generation of datastore retrieve and store calls. It also allows entities to be automatically

converted to a standard form by converting each entity attribute to a corresponding attribute

type in the standardised form.

The meta-information needed to perform the automated mapping is obtained from the meta

schema model description of a data model. A data model might not easily be described using the

meta-schema model. For example, the meta-schema model might not support the data types of

the data model incorporates, therefore they have to be mapped to an entity type or be accessed

using a DescribedType(see chapter 4). Another example of a mapping difficulty is that relational

databases do not explicitly define relationships as attributes of tuples, but they are only defined

Chapter 8 - Roles of the Persistent Data Access Service 208

as foreign keys. The meta-schema model defines a relationship as an explicit entity reference

attribute of an entity. Thus, to define a relationship between tuples in the meta-schema model,

the entity representing the tuples has to have additional reference attributes representing the

tuple's foreign keys. Complexities such as these have to be taken into account in the automated

mappmg process.

8.3 Supporting the POSC Data Access & Exchange Interface and the
Epicentre model

A goal has been to support datastores that implement the POSC Data Access &

Exchange(DAE) interface to access instance data of the Epicentre model. A PDAS server side

supporting the DAE will have to satisfy the responsibilities presented in the previous section.

The aim to support the a DAE datastore has had a major influence in the design of the Persistent

Data Access Service(PDAS) and its underlying services - DObS and STS. The features that

influenced the design of the services are:-

• The nature of Epicentre data that ranges from complex networks of objects to multi

megabyte collections of scientific data.

• The sheer size of the Epicentre data model with 1500 objects/entities, each entity having

many attributes and relationships, and a complex inheritance hierarchy.

• Epicentre has many specialised data types to represent various quantities, geographical

locations and spatial structures.

• The DAE has no universal unique identifiers for entity instances, only session dependent

handles to entity instances.

• Typically, applications will repeatedly traverse the same relationships from a selected root

object. This can be optimised by specifying a template of the entities and their relationships to

be traversed, therefore allowing a predetermined group of entities to be retrieved and stored

in a single request.

PDAS can support the differing types of Epicentre data. It can efficiently handle the complex

structured entities that Epicentre contains e.g. the 'well' entity(chapter 2). The Structured

Entity Stream Format allows these complex entities to be serialised to and from a stream for

Chapter 8 - Roles of the Persistent Data Access Service 209

transport. The meta-information provided by the meta-schema model allows components to

understand an entity's structure to dynamically handle it.

For the massive collections of scientific data, the main consideration is the utilisation of an

efficient transport mechanism to get the data from server to client and vice-versa. The Stream

Tunnel Service has been proven to be an efficient mechanism for transporting such large

amounts of data. This efficiency comes from using low-level network transport mechanisms and

also has the possibility of using more efficient network transport mechanisms e.g. connectionless

UDP sockets, with an especially tailored data consistency protocol.

The immense size of the Epicentre data model has had the most significant effect on the design

of the Persistent Data Access Service. The size of the text file for Epicentre's EXPRESS

description is over 600 kilobytes. The size of the compiled code containing static IDL code to

handle each Epicentre entity would be many orders of magnitude larger than its text description

and therefore simply unfeasible to link with applications. This factor drove the requirement for

components to dynamically handle entities, thus the requirement for access to meta-information

on a data model. The meta-schema model was designed to meet this need for meta-information

on data models, and it also describes data models based in other disparate data definition

models.

The meta-schema model has a small selection of basic data types, while Epicentre has an

extensive collection of complex data types to represent quantities, geographical locations and

spatial structures. These data types cannot be directly represented in the meta-schema model,

but there are two ways they can be represented. The first way is to represent them as

DefinedTypes. The meta-schema DefinedType is made up of a set of string identifiers indicating

the type kind and an array of binary data storing the type's instance data. Applications

manipulating DefinedTypes are expected to know the internal structure of the type's binary

data. The second way is to map each data type to an entity and access the type's data through

the attributes of the entity.

To manipulate an Epicentre entity using the DAE, a handle has to be obtained through the DAE

to the entity. The handle is obtained by performing a search or traversing a relationship from

Chapter 8 - Roles of the Persistent Data Access Service 210

another entity. A handle is a language specific structure and is only valid within the current

session, hence is useless outside the session and process that obtained the handle. One of the

requirements of PDAS is to cache data locally in client processes, thus a handle needs some sort

of representation in the client process. This lead to the need for object identifiers(oids) to be

associated with DAE handles, to represent the handle in the client process. The manipulation of

the oid representing a handle to an entity in the client process is applied to the actual DAE

handle upon storing of the entity.

Retrieving/storing a predetermined group of entities by specifying the relationships that should

be traversed between the entities is an important optimisation factor. Usually an application will

frequently retrieve and store the same set of entity types. By specifying a template of the entity

types and their relationships so that the group of entities can stored/retrieved in a single request

has major performance benefits.

This situation of retrieving/storing constant group of entity types was typical of the mapping of

OpenSpirit components to Epicentre entities. A single OpenSpirit component maps to many

Epicentre entities, where the mapping would be described in Expressive. The Data Object

Retrieval Map(section 4.5.8) can be used to specify a template of the entities involved in a

mapping of an OpenSpirit component, therefore improving the performance of the

retrieval/storage of the Epicentre entities. PDAS allows a retrieval map to be specified in the

retrieval of a relationship in the operation get_ Entity_ using_ map of the EntityReference

interface.

8.4 Using the Persistent Data Access Service as a Database Adaptor

The Persistent Data Access Service(PDAS) is a service for the explicit access and manipulation

of persistent data. In contrast to this, a database adaptor(section 3 .4 .2) provides an implicit

persistence mechanism to CORBA objects. The database adaptor takes care of data access and

manipulation to its supported database and of activating CORBA objects when needed. The

impact these differing forms of persistent data access have on applications is that for PDAS, the

application has to explicitly access and manipulate data itself whereas with a database adaptor

the application has no notion of a CORBA object and its attribute data are persistent.

Chapter 8 - Roles of the Persistent Data Access Service 211

However, the database used in conjunction with a database adaptor should ideally have a model

similar to that of the object-oriented model that CORBA is based on. This makes mapping

between database data items easier, but the most crucial reason for this affinity between models

is the ability to uniquely and universally identify data items within a database. If a data item has

a unique identity for the lifetime of the data item then a value representative of its identity can be

encoded into CORBA object references. Consequently, not only are the CORBA objects

persistent but their object references are also persistent. A unique identity is part of the object

oriented database model, which also has an object model close to the CORBA object model. For

these reasons, object-oriented databases are most commonly supported by database adaptors.

The Persistent Data Access Service(PDAS) can also be used in the role of a database

adaptor(Figure 8.2) and has the benefit that it can support datastores other than object-oriented

databases(OODBs). Due to the mapping performed by the PDAS server side, all datastores

appear as a datastore supporting the meta-schema model, which is object-oriented. However, it

is not truly like the object-oriented database model due to PDAS aids are only unique within a

session and not universally unique for the lifetime of an entity as in OODBs.

The additional functionality that has be provided by a PDAS database adaptor is the following:

• The binding-together of CORBA objects having a static IDL interface and entity instances

Application

Entity
object's PDAS

Datastore

Figure 8.2: A PDAS Database Adaptor allows an entity to
be the persistent data of an COREA object

Chapter 8 - Roles of the Persistent Data Access Service 212

retrieved from a datastore.

• The embedding of session-dependent oids into CORBA object references.

• Activation and deactivation of CORBA objects bound to entities.

The binding-together of CORBA objects and entity instances is simply a matter of retrieving the

referenced entity and creating a CORBA object that can manipulate the data of the referenced

entity type. This process was described in section 4.5.9 and it entails a FactoryFinder being

used to find a Factory object capable of creating a suitable CORBA object to bind to the entity.

An oid to an entity is obtained from the entity's EntityReference object. Once obtained, the

oid can be embedded into a CORBA object reference and the reference can be made known to

the CORBA environment.

Activation of CORBA objects happens when a request is received for a CORBA object that is

not instantiated. To activate the CORBA object, the embedded oid will be extracted from the

object reference and the entity referenced by the oid is searched for using thefind_entity_by_oid

operation of the Session interface. An EntityReference object is returned if the referenced

entity is found. If the entity is found then the adaptor activates the CORBA object by creating

and binding a CORBA object to the entity.

Deactivation is the destruction of active CORBA objects according to some policy such as not

serving a request for a certain period of time. The deactivation deletes the CORBA object

instance, but it does not release the entity retrieved using PDAS. This allows any CORBA

object references to the entity retained by components in the CORBA environment to still be

valid. If the reference is used after deactivation then the entity is reactivated with a new CORBA

object shell. This differs from OODB adaptors that will totally deactivate the whole CORBA

object and its persistent object. Here, the entity has to remain active due to its association with

its oid.

Using a database adaptor in conjunction with the Persistent Data Access Service relieves

applications of the responsibility to explicitly access and manipulate the persistent data. But the

Chapter 8 - Roles of the Persistent Data Access Service 213

application must be aware that a CORBA object reference to an object activated in a PDAS

database adaptor is only valid for the duration of the current session.

8.5 Using PDAS as a Standard Data Access Interface for the Mapping
Manager Architecture

The Mapping Manager Architecture(MMA)(see section 3.2.2) is a methodology for moving and

transforming data between different data models and datastores. The principal factor in the

MMA needed to achieve its purpose is the Expressive language. The Expressive language

allows the formal definition of the data transformation between two models. Given an

Expressive definition, code has to be produced that retrieves the data from a source datastore,

transforms the data and stores it in the destination datastore. The problem with this is that each

datastore type involved in the mapping will have a different data access interface. Thus, if this

code generation was automated, a code generation tool would have to be written for each

datastore type needed to be accessed(Figure 8.3). Writing such a tool for just a single datastore

type is a highly complex undertaking and the resources needed to write tools for many datastore

Data Storage
Code Generator

Tool for Datastore2

produces

Expressive
Definition

produces

Data Retrieval
Code Generator
col for Datastore1

produces

Datastore1
)

~-~

Figure 8.3: Generation of code to automate the transformation of data in the
A.flvfA., each datastore type needs a code generation tool specific to its

proprietary data access interface

Chapter 8 - Roles of the Persistent Data Access Service 214

types would be impractical.

The Persistent Data Access Service(PDAS) provides a layer that makes all datastores seem to

have the same data access interface and data definition model. This greatly simplifies the task of

retrieving and storing data being used in the data transformation(Figure 8.4). The only code

generation tools needed would be for the actual data transformation and to retrieve/store data

through PDAS. Therefore, this makes the need for the many code generation tools for different

datastore types redundant. The use of PDAS removes from the MMA the need to incorporate

the complexity of proprietary data access interfaces, so that the MMA can concentrate on what

it is aimed at, which is data transformation.

PDAS
Data Storage Code

Generator Tool

produces

PDAS
Data Storage

Code

PDAS

Data store

Expressive
Definition

Data
Transformation Tool

Code Generator

produces

<\ ◄ Data ~
~ Transformation ~ i

PDAS
Data Retrieval Code

Generator Tool

produces

PDAS
Data Retrieval

Code

PDAS

Datastore1

Figure 8.4: PDAS is used to insulate the MMA from the proprietary data access interfaces of
the individual datastore types, the other code generation tools needed are for accessing the

PDAS interface and for transforming the code.

Chapter 8 - Roles of the Persistent Data Access Service 215

8.6 Summary

This chapter has discussed some of the roles that the Persistent Data Access Service(PDAS)

could perform, including supporting access to arbitrary datastore types and more specifically the

POSC DAE and the Epicentre model. It also indicates how PDAS can be used as a database

adaptor and how it would be of great value to the Mapping Manager Architecture.

In supporting arbitrary datastores, the datastore specific server side of PDAS has to perform a

number of duties in making its stored data available to PDAS clients. These responsibilities

include data fetching/storing/transforming, object identifier(oid) management and

transaction/concurrency management.

Supporting a DAE datastore also requires the PDAS server side to perform these tasks.

Considering how DAE and Epicentre could be supported has driven many design decisions of

PDAS. The variety of Epicentre data, such as large arrays of data and complex networks of

objects, drove the need for the serialising of multiple objects into a stream and for use of

efficient stream transport mechanisms. The immense size of the Epicentre model requires the

dynamic handling of data since compiling static handling code for a model of this size is

unfeasible. DAE entity handles are confined to the process space of the DAE session. This

drove the need for a representation of the handle outside the process space, thus the association

of oids with entity handles.

The database adaptors enable implicit persistence of CORBA objects. PDAS can be used in

such a way by adding binding of CORBA objects to entities, embedding entity oids into object

references and enabling CORBA objects to be (de)activated. However, the drawback is that

CORBA object references referring to objects created by the PDAS database adaptor are only

valid within the session that created them i.e. they are not valid between session instances.

PDAS makes datastores appear to have the same data access interface and data definition

model. The Mapping Management Architecture requires data retrieval and storage from/to

many types of datastore. The common data access interface that PDAS provides allows the

MMA to avoid proprietary interfaces to datastores.

Chapter 9

Conclusions

9 .1 General Overview

The work presented in this thesis is an investigation into persistent data access in the CORBA

environment. This has lead to the designing of a set of CORBA services to provide a standard

means of accessing persistent data stored in heterogeneous datastores.

The need for such a service was first suggested in chapter 2. This chapter provides introductory

material on the CORBA architecture and the CORBA services, as well as an overview of the

STEP and POSC SIP architectures. These architectures provide inter-operability for

applications, but in different ways. CORBA provides dynamic inter-operability, where

components directly request services of each other. STEP and SIP provide inter-operability by

applications sharing persistent data that have a defined data model. Persistent data is critical to

many applications. STEP & SIP strongly support access and manipulation of persistent data, but

CORBA is very weak in this area.

Chapter 3 examines current methods that are being used to access persistent data in CORBA.

These methods can be divided into three categories:- proprietary solutions, standard IDL

interface solutions and persistent CORBA objects using database adaptors.

Chapter 9 - Conclusions 217

Proprietary data access solutions are the most prolific method in use with CORBA systems.

Here, CORBA components directly access persistent data using the datastore' s proprietary

interface. There are many problems associated with using datastore proprietary interfaces,

including dependency on the datastore's interface, work required from application developers to

cross the impedance mismatch, poor reusability and flexibility of code. OpenSpirit's data access

approach is a typical example of these problems.

Currently, there are only two standards to provide CORBA applications with access to

persistent data. These are OMG's Persistent Object Service(POS) and STEP's IDL Standard

Data Access Interface(SDAI). POS should have been CORBA's default method of accessing

persistent data, but as chapter 3 extensively indicates, there are many design faults and

ambiguities in POS. The OMG has retired POS in response to the discovery of these problems.

The failure of POS has lead developers to implement their own proprietary data access

solutions. The IDL binding of SDAI is STEP' s answer to accessing data through CORBA.

However, IDL SDAI is highly embedded in STEP concepts and technologies.

Database adaptors allow CORBA objects to be persistent. Thus, data access is indirectly

achieved through a CORBA object interface. Database adaptors fit in well with the CORBA

object model and have the benefit that applications are totally unaware that CORBA objects are

persistent, thus have no code dependency with the adaptor or its supported database. Database

adaptors depend on the supported database having a unique identity value for stored data items.

This value can be embedded in CORBA object references to represent internal relationships in

the external CORBA environment. However, many data definition models(e.g. relational) and

data access interfaces(e.g. DAE) do not support unique identifiers, thus they cannot be used

with database adaptors.

Chapter 4 summarises the problems with CORBA persistent data access solutions and puts

forward a set of requirements for a solution for these problems. The most prominent of these

requirements are:- a set of CORBA services to access data in heterogeneous datastores, fit in

with existing data access legacy applications, efficient manipulation of data either locally(cache

data) or remotely, as well as integration with the CORBA transaction & concurrency services.

Chapter 9 - Conclusions 218

The chapter continues by presenting high-level design decisions for a Persistent Data Access

Service to achieve these requirements. A compendium of these design decisions is:- the use of

meta-information to dynamically handle and map data objects, the Meta-Schema model as a

standard data definition model to represent data models from heterogeneous datastores, a

stream mechanism to cache data, session components to represent a connection with a datastore

and integrate with transaction & concurrency services, as well as associating object identifiers

with active data objects to represent relationships externally to the datastore.

A design decision was for the need for a stream mechanism to allow the transport of non-IDL

defined data for caching data purposes. This is realised in the form of the Stream Tunnel

Service(STS) described in chapter 5. STS provides a set of interfaces to permit the setup and

use of distributed streams. The actual mechanism to transfer data does not necessarily have to

be an ORB, since low-level network data transport mechanisms can be employed to transfer

data for performance enhancement purposes. This enhancement was proved in an experiment

comparing an ORB-based stream and a socket-based stream. The experiment showed socket

based streams become more efficient when sending blocks of data over 6Mb. STS could be

useful in other areas such as:- providing a CORBA copy-by-value facility, multimedia data

transmission with UDP sockets, event broadcasting and encrypted communication channels.

The Stream Tunnel Service provides an excellent data transfer mechanism, but in respect to data

access it has no means of managing data i.e. identifying, creating/deleting and retrieval/storage

of data. The Data Object Service(DObS) described in chapter 6 is designed to provide these

data management functions, as well as strongly integrating STS into it to provide data transport.

DObS is only an abstract service, and must be extended to provide actual data identification and

manipulation operations for the particular type of data being managed. The chapter goes on to

present the File Data Object Service(FileDObS), which is an extension of DObS to permit

access to files and directories. An implementation of FileDObS is described, along with a Java

application that uses FileDObS to view/manipulate certain file types.

DObS has many similarities to that of the failed Persistent Object Service. The main differences

between the two is that DObS offers a data access approach to accessing persistent data, where

Chapter 9 - Conclusions 219

as POS concentrates on providing persistence to CORBA objects and this makes DObS more

flexible. But the crucial difference that makes DObS work and POS not work is DObS's

integration of a well designed efficient data transport service i.e. STS.

During the course of implementing these CORBA services, much knowledge has been gained

and many lessons have been learnt. This knowledge can be described by a set of

guidelines(Section 9.3). An example is the careful selection of system software i.e. the ORB

product, by weighing up the need for code portability against the need for specialised features

that are proprietary to a certain product. Another guideline was that all components of an

application should keep to inter-operating through IDL interfaces, as this maximises flexibility

and scalability. An area where keeping to this rule is difficult is in creating CORBA objects due

to the need for language specific creation constructs. This difficulty can be minimised by making

careful use of the Factory and FactoryFinder objects of the LifeCycle service.

Chapter 7 presents the final solution to the problem set, which is the Persistent Data Access

Service(PDAS). PDAS is designed to allow access and manipulation of complex entity data,

where the structure of each entity (its attributes, relationships and inheritance hierarchy), are

described in the Meta-Schema model. PDAS also provides the ability to manipulate entities

locally by caching the data in the client process.

PDAS consists of three modules:-

• The PDAS module that contains interfaces used by client applications to access the service's

functionality and manipulate entities.

• The Entity Data Object Service for transport and management of entity data.

• The PDAS Server responsible for server session creation and data mapping.

Components implementing these interfaces and having the behaviour discussed in chapter 4

provide a complete open solution to accessing and manipulating persistent objects in the

CORBA environment.

PDAS can be used in a number of different roles. Chapter 8 discusses these roles and the factors

involved in their implementation. The chapter discusses using PDAS for its primary role, that is

providing insulation to client applications from proprietary datastore types. The critical element

Chapter 9 - Conclusions 220

to providing this insulation is the mapping the server side performs to make data reflect its

Meta-Schema description.

A major influence on the design of PDAS was the need to support POSC's DAE and Epicentre

data. These influences and their effect on PDAS's design are outlined, including the influence of

the nature of Epicentre data, the huge size of the Epicentre model and the need to provide a

representation of entity handles external to the session.

PDAS can also be used in the role of a database adaptor. To do this, extra functionality has to

be built on top of PDAS, including binding of CORBA object to entities, embedding entity oids

in object references and (de)activation of CORBA objects. However, the problem with this is

that object references are not truly persistent, but are only valid for the duration of the session

that created them.

The Mapping Manager Architecture is a methodology for movmg and transforming data

between data models and datastores. The great difficulty with performing such a task is writing

the tools to automatically generate code to retrieve and store data to/from the necessary

datastore types. Each datastore type will have a different data access interface, making the

writing of the code generation tools a very resource consuming task. PDAS simplifies the task

by making each datastore appear to have the same data definition model and data access

interface, therefore needing for a single tool that produces PDAS retrieval/storage code.

9 .2 Results of the Work

In the process of designing and implementing the CORBA services presented in this thesis, the

following summarises the results of the work:-

l. Realisation of the need for a CORBA service to access persistent data. During the analysis

of current CORBA persistent data access mechanisms, it became apparent that there was a

important need for a CORBA service to access persistent data. This is due to the failure of

POS to meet this need and the resulting widespread use of proprietary solutions to meet

Chapter 9 - Conclusions 221

developers needs. Database adaptors can satisfy this need but only for certain types of

datastores.

2. A set of requirements that a persistent data access service should satisfy. As a result of the

analysis of CORBA persistent data access mechanisms, a list of requirements was devised

that a persistent data access service should meet the needs of.

3. A high-level design of a service to satisfy the requirements. A description of how the service

should be structured to meet its requirements. The high-level design put forward many

concepts necessary for the service to work such as the need for meta-information, streams,

object identifiers and sessions. These design decisions were greatly influenced by the need to

support POSC's DAE and Epicentre model.

4. The Meta-Schema model. The service is required to manipulate data resident in

heterogeneous datastore types where these datastore types will have their own data definition

models and languages. The Meta-Schema model provides a standard data definition model

for the representation of the structure of data i.e. meta-information. The data definition

models of supported datastores can be mapped to the model. The Meta-Schema model is

designed to be as generic as possible to permit the mapping of various data definition models

to it. In support of this the Meta-Schema caters for data definition models that use direct and

attribute key based references, and the ability to support proprietary data types.

5. The Stream Tunnel Service. A specification for the set-up and use of distributed streams.

STS is extremely useful to the CORBA architecture as it provides copy-by-value

functionality, which currently does not exist in CORBA.

6. Encapsulation of low-level network data transport mechanisms. The StreamChannel

interface of STS encapsulates the mechanism used to transfer data. Thus, low-level network

data transport mechanisms can be employed for performance enhancement purposes. An

experiment that was carried out proved this.

7. The Data Object Service. A specification for the management of persistent data including

identification, creation/deletion and retrieval/storage of persistent data. This is an abstract

service that enforces how these management operations are carried out and how it is

integrated with the Stream Tunnel Service to transport data.

Chapter 9 - Conclusions 222

8. The File Data Object Service. A specification that extends DObS for the management and

manipulation of files and directories. An implementation of the service was carried out with a

Java client side and C++ server side. The service provides a network file system for Java

applets that run in a secure environment preventing local file access. A sample application

was implemented on top of the Java client side that permitted the viewing and manipulation

of certain file types.

9. The Persistent Data Access Service. The definition of a set of interfaces to provide access

and manipulation of complex entities resident in heterogeneous datastores, as well as the

responsibilities of components implementing the service's interfaces.

JO.The Entity Data Object Service. A service extending DObS for the transport and

management of complex entity data. This includes the Structured Entity Stream Format that

defines how entities are serialised to and from a stream. This service provides a mechanism

for caching data local to clients.

1 I.Integration with Concurrency and Transaction Services. The Persistent Data Access Service

has shown how integration with the OMG Concurrency Control Service and Object

Transaction Service can be achieved.

The designed services including their IDL definitions, concepts and mechanisms have satisfied

the aims of the work(section 1.5) together with the requirements defined in chapter 4.

9.3 Recommendations

The experience gained from researching, implementing and designing the services presented in

this thesis has lead to the following suggestions for the design and implementation of future

component software systems.

• Separate layers of software. Ideally, layers should use the three-tier architecture of

applications, business objects and data storage. This divorces applications from business

logic, and business logic from data storage, thus enhancing flexibility of layers.

• Add a persistence layer. In the three-tier architecture business objects, are highly dependent

on the data storage mechanism in use. By adding a persistence layer that that encapsulates

Chapter 9 - Conclusions 223

the data storage mechanism, the dependency on the data storage mechanism is lowered. The

Persistent Data Access Service is an example of a persistence layer in the form of a CORBA

service.

• The easiest solution for persistent data is a database adaptor supporting persistent CORBA

objects. Ideally, a data model should be structured to work with databases that have database

adaptors e.g. object-oriented databases and relational databases with a relational to object

oriented mapping layer. However, database adaptors cause a very high dependency between

business objects and their data storage mechanism. Also, they are difficult to use with

existing legacy data and datastores.

• Careful selection of system software e.g. an ORB, should be made before any development

takes place. The consideration should take into account the need for portability of code

against the need for specialised facilities that proprietary to a specific product. Not only

should the right product be considered, but which of the component technologies should the

product be based on e.g. CORBA, Enterprise Java Beans and COM/DCOM. One of these

component technologies might be better for the application needs than others.

• Systems that need to be reliable usually make use of transactions. For a CORBA-based

system, the Object Transaction Service should be used for this facility. How the components

of the system integrate OTS transactions should be investigated and designed before the start

of development.

• The use of Java as the primary programming language of components has many advantages.

The most prominent advantage is Java' s portability characteristic of write once, run

anywhere. This releases software from the confines of the platform it was written and

compiled on. Java also provides a richly featured standard environment to write applications

in, with the provision of the JDK class library that also contains the A WT. In relation to

CORBA, Java's CORBA binding is effortless to use. This is due to Java's garbage collection

i.e. no need to explicitly release reserved memory. Also there are no complexities related to

pointers as with the C++ binding.

• Components should always inter-operate through IDL interfaces to preserve portability and

flexibility. If components do not maintain this rule, then they are very difficult to separate as

Chapter 9 - Conclusions 224

they have a high dependency. Also, the CosLifeCycle service model of creating objects using

Factory and FactoryFinder objects should also be used in support of this rule.

• Components needing to make frequent repetitive requests of another component should be

located within the same process for fast local process request calls rather than slow inter

process requests. The Persistent Data Access Service took this into account with its

requirement to cache data local to the client.

9 .4 Future work

The Persistent Data Access Service(PDAS) only exists in a specification form, therefore future

development work will consist of implementing the service. Modules of the service that are

already implemented are the Stream Tunnel Service, the Entity Data Object Service, the Meta

Schema facility and a viewer of Meta-Schema data models. The Epicentre model has been

mapped to the Meta-Schema model. The majority of complexity for the implementation will be

involved in implementing the mapping of data from the datastore's stored form to its Meta

Schema description.

The implementation of PDAS will have the following stages:-

• Implementation of a Data Object Server for a relational database.

• Implementation of a Java generic client side of the service.

• Implementation of a Data Object Server for POSC' s DAE datastore and Epicentre model.

Additional work will take the following form:-

• Implementation of a PDAS database adaptor.

• A tool to automatically produce CORBA objects that act as a static IDL interface to entities.

These CORBA objects will be used in conjunction with the database adaptor.

• Using the Extensible Markup Language(X11:L) instead of the Structured Entity Stream

Format and the Meta-Schema model to serialise and describe data.

• A tool to automatically produce code to retrieve and store data to/from a PDAS supported

datastore described in an Expressive data transformation description.

• Disseminating the result and approach to standards bodies, such as the OMG and other

practitioners in the field.

Appendix A

Glossary of Terms

API, Application Programming Interface. The definition of a set of functions.

Bauhaus principle. The principle that encourages the reuse of functionality that already exists.

Cache. The ability to store data in an area for fast accessing.

CAD, Computer Aided Design.

CCS, Concurrency Control Service. The CORBA service responsible for locking.

Client-server model. The architectural model where clients directly access databases and

application servers.

Component. A piece of code that has a public defined interface and known functionality.

COM, Component Object Model. Microsoft' s component architecture.

COOL-ORB. An implementation of an ORB from Chorus Systems.

Copy-by-value. The ability to pass an actual copy of a piece of data, rather than passing a

reference to it.

CORBA, Common Object Request Broker Architecture. The OMG's specification for

heterogeneous platform and language inter-operability.

Appendix A - Glossary of terms 226

CORBAFileView. The application demonstrating the File Data Object Service for distributed

access to files.

CORBA object. A piece of active code/object fulfilling an IDL interface.

CORBA object reference. A handle to a CORBA object, that can be used to invoke operations

of the object.

CORBA services. A set of services defined by the OMG to provide low-level functionality to

CORBA components.

Data Access & Exchange. POSC's API specification for the manipulation of Epicentre model.

Data access interface. The API used to access and manipulate data stored in a datastore.

Database. A mechanism for storing data in a structured form.

Database adaptor. A specialised object adaptor providing persistence to CORBA objects.

Data Definition Language. The code used to describe the structure of data.

Data Definition Model. The model of how data is structured in a data model.

Data model. A description of the structure of data.

Data Object. An item of persistent data.

DataObjectManager. The interface for the management of persistent data in the Data Object

Service.

Data Object Retrieval Map. The model that can be used to specify a group of data objects

that can be automatically retrieved or stored in a single operation.

DataObjectServer. The interface that serves data to clients from its supported datastore

Data Object Service. The abstract service specification for the management of persistent data.

Data Storage Mechanism. The specific datastore product being used to store data.

Appendix A - Glossary of terms 227

Datastore. A mechanism for storing data in a structured or unstructured form.

DBMS, DataBase Management System. The software component providing a database's

functionality e.g. querying, access control.

DOb_ID, Data Object Identifier. The interface used to specify the location of persistent data

in the Data Object Service.

EJB, Enterprise Java Beans. Java's component architecture.

Entity. A unit of data that has a set of attributes, both referential and non-referential, and a

inheritance hierarchy. An entity is the unit of manipulation of PDAS.

EntityContainer. An PDAS interface that allows the adding and removing of entities to/from

the container. Once in the container, the contained entities can be transported

through the StreamTunnel.

EntityDObS, Entity Data Object Service. The service extending DObS to transport

structured entities in a stream. PDAS uses it to transport entities between client and

server sessions.

EntityReference. The PDAS interface that allows the access and manipulation of an entities'

attributes.

Epicentre. POSC's data model defining the structure of data items for the majority of objects

that will be need to be stored in E&P information systems.

E&P, Exploration & Production. The sector of the oil & gas industry concerned searching for

and processing of natural energy substances.

Express. The information modelling language for the modelling of complex schemata, including

the definition of constraints amongst entities. Express is the language used to define

Epicentre.

Expressive. The language developed by PrismTech to formalise data transformation.

Externalisation. The process of an object serialising its state data to a stream.

Appendix A - Glossary of terms 228

Factory. The LifeCycle service's interface that serves the purpose of creating CORBA objects.

FactoryFinder. The LifeCycle service's interface that can be used to search for a Factory

object that is capable of creating an object of a specific type.

FileDObS, File Data Object Service. The service extending DObS to allow access and

manipulation of files and directories.

GIOP, General Inter-ORB Protocol. The specification of messages enabling different ORBs

to inter-operate.

IDL, Interface Definition Language. The OMG's language for defining the interface to

CORBA objects.

IDL SDAI. The IDL binding to STEP's Standard Data Access Interface.

IIOP, Internet Inter-ORB Protocol. The specification for the exchange of GIOP messages

over a TCP/IP communication link.

Internalisation. The process of an object reading its state data from a serialised form held in a

stream.

Java. Sun Microsystems' language that is portable across platforms that have a Java Virtual

Machine.

JavaIDL. Sun Microsystems' ORB that can used with JDK 2.

JNI, Java Native Interface. The mechanism used to execute platform specific code from Java.

Lif eCycle Service. The service responsible for management of CORBA objects.

Meta-information. Information that describes the structure of an object/entity including

attributes and inheritance hierarchy.

Meta-Schema Model. A model that allows the representation of meta-information, which

describes data models of proprietary data definition models.

Meta-Schema Facility. An implementation of the Meta-Schema Model.

Appendix A - Glossary of terms 229

MMA, Mapping Manager Architecture. PrismTech's methodology for the transformation of

data between models.

Multi-threaded. The ability of a program/application to have parallel execution of code within

the same process.

Network Data Transport Mechanism. A mechanism that can be used to transport data over a

network e.g. sockets.

NIST, National Institute for Standards and Technology. The standard' s organisation that is

the creators of STEP and Express.

Object adaptor. The element of CORBA that allows server objects to receive requests from

the ORB.

Object-oriented. The paradigm that separates a problem into distinct entities, that have state

and behaviour.

Octet Sequence. The IDL name for an array of bytes.

Oid, Object identifier. A value representing the identity of an object.

OMA, Object Management Architecture. The OMG's specification of how CORBA systems

should be structures including common services, common facilities and applications.

OMG, Object Management Group. The organisation that created CORBA and the CORBA

services.

OODB, Object-Oriented DataBase. A DBMS supporting the storage of data in an object

oriented form.

OpenSpirit. The PrismTech led alliance for the development of a 3-tier architecture for the

integration ofE&P datastores.

ORB, Object Request Broker. The layer of software that encapsulates distributed

communication for CORBA applications.

Appendix A - Glossary of terms 230

OSEP, OpenSpirit Exploration & Production. The name given to the components defined in

the OpenSpirit architecture.

OTS, Object Transaction Service. The CORBA service providing a distributed transaction

facility.

PDAS, Persistent Data Access Service. The service providing access to persistent data

resident in heterogeneous datastores.

PDS, Persistent Data Service. The POS interface that the implementation of serves data to

persistent objects to/from its supported datastore.

PDASServer. The server module of PDAS providing interfaces, which the implementation of is

specific to the datastore type being supported.

Persistent data. Data that exist beyond the life-time of the application that created it. The data

is usually stored in some type of datastore.

PID, Persistent IDentifier. The POS interface to identify the location of data.

PO, Persistent Object. The POS interface supported by objects that are persistent.

POM, Persistent Object Manager. The POS interface that the implementation of provides

request routing to an appropriate datastore.

POS, Persistent Object Service. The failed OMG service for accessing persistent data in

heterogeneous datastores.

POSC, Petrotechnical Open Software Corporation. The E&P industry own standard's

organisation.

Process. The execution environment of a running program.

PSS, Persistent State Service. The future replacement for POS. PSS will work in a database

adaptor style to provide persistence to CORBA objects.

Query Evaluator. The interface of the query service that permits the execution of queries.

Appendix A - Glossary of terms 231

Request. A distributed method call through an ORB to the interface of a CORBA object.

Relational database. A DBMS that stores data in the form of tables and relationships are

represented in the form of keys.

Schema. A data model describing the structure of data.

SDAI, Standard Data Access Interface. STEP's specification for an API to access data

defined in Express.

Semaphore. A facility preventing the interference of multiple parallel executing

threads/processes on a shared resource.

SESF, Standard Entity Stream Format. The Entity Data Object Serivce's format which

entities are stored in a stream in.

Session. A logical connection with a datastore. Also, the PDAS session interface gives clients

access to the service's functionality.

SIP, Software Integration Platform. A set of POSC specification for the standardisation of

information systems in the E&P industry.

Skeleton code. The code performing de-marshalling of request data for a CORBA object.

Socket. A low-level data transport mechanism for transporting data between machines on a

network.

SSDF, Standard Stream Data Format. The Externalization service's format which data is

stored in a stream in.

Stream. The Externalization service' s interface representing a storage area for objects'

serialised data.

StreamChannel. The STS interface representing one end of a distributed stream.

StreamChannelServer. The STS interface representing the slave end of a distributed stream.

StreamIO. The Externalization service's interface for read and writing data to/from a stream.

Appendix A - Glossary of terms 232

Streamable. The Externalization service's interface that is supported by CORBA objects that

are capable of being externalised/internalised to/from a stream.

StreamTunnel. The STS interface for managing creation/deletion of streams and for

pushing/pulling a Streamable through a stream.

STEP, STandard for the Exchange of Product Model Data. The name given to NIST's

international standard for the exchange of product data.

STS, Stream Tunnel Service. The service for the set-up and use of distributed streams.

Stub code. The code performing marshalling of data for a request call.

TCP/IP, Transport Control Protocol/Internet Protocol. The network protocol of the

internet.

Three tier architecture. The model of separating software into layers of :- applications,

business objects and data storage.

Transf erChannelCriteria. A data type allowing the definition of parameters for the set-up of a

stream using STS.

Transaction. Operations performed within a transaction will have ACID properties of

Atomicity, Consistency, Integrity and Durability. Transactions are critical to reliable

systems.

Tuple. A row in a relational database table. Can be the equivalent of an object, where each

column is an attribute.

UDP, User Datagram Protocol. A unconnected low-level network data transport protocol, for

the fast transport of data between machines, although reliably.

XML, eXtendible Markup Language. A data format for structured document interchange.

AppendixB

Relevant CORBA Services

Presented here are the OMG services that are relevant to the design of the services in this thesis.

These services are:-

• Concurrency Control Service

• Externalization Service

• LifeCycle Service

• Object Transaction Service

• Persistent Object Service

B.1 Concurrency Control Service

II Concurrency Control Service v l. 0 descr ibed i n

II CORBAservices : Common Object Services Specification, chapter 7

II OMG IDL for ConcurrencyControl Modul e, p 7 - 8

#i nclude <CosTransacti ons.idl>

module Cosconcur rencycontrol {

enum lock mode

read,

wri t e,

upgrade,

intention_read,

intention write

Appendix B - Relevant COREA Services

} ;

exception LockNotHeld{};

interface Lockcoordinator

void drop_ locks{);

} ;

interface LockSet

} ;

void lock(in lock_mode mode);

boolean try_lock(in lock mode mode);

void unlock(in lock_ mode mode)

raises(LockNotHeld);

void change_mode(in lock mode held_ mode,

in lock mode new_mode)

raises(LockNotHeld);

LockCoordinator get_coordinator (

in CosTransactions :: Coordinator which);

interface TransactionalLockSet

} ;

void lock(in CosTransactions :: Coordinator current,

in lock_mode mode);

boolean try_lock(in CosTransactions: :Coordinator current,

in lock_ mode mode) ;

void unlock(in CosTransactions::Coordinator c u rrent,

in lock_mode mode)

raises(LockNotHeld);

void change_mode(in CosTransactions::Coordinator current,

in lock_ mode held_ mode,

in lock_mode new_mode)

raises (LockNotHeld);

LockCoordinator get_ coordinator(

in CosTransactions: : Coordinator which);

interface LockSetFactory

LockSet create() ;

LockSet create_ related(in LockSet which);

TransactionalLockSet create_transactional();

TransactionalLockSet create_ transactional_related(in

TransactionalLockSet which);

234

Appendix B - Relevant COREA Services

) i

) i

B.2 Externalization Service

II Externalization Service vl.0 described i n CORBAservices :

II Common Object Services Specification, chapter 8

II OMG IDL for CosExternalization Module, p 8-12

#include <LifeCycl e.idl >

#i ncl ude <Stream. idl>

module CosExternalization

exception InvalidFileNameError{};

exception ContextAlreadyRegistered{};

i nterface Stream: CosLifeCycle : : LifeCycleObject

) i

void externalize(in CosStream: :Streamable theObject);

CosStream: :Streamable internalize(

in CosLifeCycle :: FactoryFinder there)

raises(CosLifeCycle:: NoFactory,

Cosstream: : StreamDataFormatError);

void begin_context()

raises(ContextAlreadyRegistered);

void end_context{) ;

void flush ();

interface StreamFactory

} ;

Stream create() ;

} ;

interface FileStr eamFactory

} ;

Stream create(in string theFileName)

rai ses(InvalidFileNameError);

II OMG IDL for CosStream Module, p 8-15

#include <LifeCycle.idl>

#include <Object identity . idl >

235

Appendix B - Relevant COREA Services

#include <CornpoundExternalization . idl>

module CosSt rearn {

exception ObjectCreationError{};

exception StrearnDataForrnatError{};

interface StrearnIO;

236

interface Strearnabl e: CosObjectidentity : :IdentifiableObject

) i

readonly attribute CosLi f eCycle :: Key external_ forrn_ id;

void external ize_to_strearn(

in StrearnIO targetStrearnIO);

void internalize_frorn_strearn(

in StrearnIO sourceStrearnIO,

in FactoryFinder there);

raises(CosLifeCycle : :NoFactory,

ObjectCreationError,

StrearnDataForrnatError);

interface Strearnabl eFactory

Strearnable create_uninitialized();

) i

interface StrearnIO

void write_string(in string aString);

void write_ char(in char aChar);

void write_octet(in octet anoctet);

void write_unsigned_ long(

in unsigned long anUnsignedLong);

void write_unsigned_ short(

in unsigned short anUnsignedShort);

void write_ long(in long aLong);

void write_short(in short ashort);

void write_ float(in float aFloat);

void write_double(in double aDouble);

void write_boolean(in boolean aBoolean);

void write_ object(in Strearnable aStrearnable);

void wri te_graph(in CosCornpoundExternalization::Node);

string read_ string()

raises(StrearnDataForrnatError);

char read_char ()

raises(StrearnDataFor rnatError);

octet read_octet()

raises(StrearnDataForrnatError);

Appendix B - Relevant COREA Services

) ;

) ;

unsigned long read_unsigned_long()

raises(StreamDataFormatError);

unsigned short read_unsigned_short()

raises(StreamDataFormatError);

long read_long ()

raises(StreamDataFormatError);

short read_short()

raises(StreamDataFormatError);

float read_float()

raises(StreamDataFormatError);

double read_double()

raises(StreamDataFormatError);

boolean read_boolean()

raises(StreamDataFormatError);

Streamable read_object(

in FactoryFinder there,

in Streamable aStreamable)

raises(StreamDataFormatError) ;

void read_graph(

in CosCompoundExternalization::Node

starting_node,

in FactoryFinder there)

raises(StreamDataFormatError);

B.3 LifeCycle Service

II Life Cycle Service vl.0 described in CORBAservices:

II Common Object Services Specification, chapter 6

II OMG IDL for CosLifeCycle Module, p 6-10

#include "Naming.idl"

module CosLifeCycle

typedef Naming::Name Key;

typedef Object Factory;

typedef sequence <Factory> Factories;

typedef struct NVP

Naming::Istring name;

any value;

NameValuePair;

237

Appendix B - Relevant CORBA Services

};

typedef sequence <NameValuePair> Criteria;

exception NoFactory

Key search_key;

} ;

exception NotCopyable { string reason; };

exception NotMovable { string reason; };

exception NotRemovable { stri ng reason; };

excepti on InvalidCriteria{

Criteria invalid_criteria;

} ;

exception CannotMeetcriteria

Criteria unmet_criteria;

} ;

interface FactoryFinder

} ;

Factories find_factories(in Key factory_key)

raises(NoFactory);

interface LifeCycleObject

} ;

LifecycleObject copy(in FactoryFinder there,

in Criteria the_ criteria)

raises(NoFactory, NotCopyable, InvalidCriteria,

CannotMeetCriteria);

void move(in FactoryFinder there,

in Criteria the_criteria)

raises(NoFactory, NotMovable, InvalidCriteria,

CannotMeetCriteria);

void remove ()

raises(NotRemovable);

interface GenericFactory

} ;

boolean supports(in Key k);

Object create_object(

in Key k,

in Criteria the_ criteria)

raises (NoFactory, Inval idCriteria,

CannotMeetCriteria);

238

Appendix B - Relevant COREA Services

B.4 Object Transaction Service

II Transaction Service v l .0 described in CORBAservices:

Common Object Services Specification,

chapter 10

II OMG IDL for CosTransactions Module, p 10-65

module CosTransactions

II DATATYPES

enum Status (

} ;

StatusActive,

StatusMarkedRollback,

StatusPrepared,

StatusCommitted,

StatusRolledBack,

StatusUnknown,

StatusNoTransaction

enum Vote (

VoteCommit,

VoteRollback,

VoteReadOnly

} ;

II Standard exceptions

exception TransactionRequired (};

exception TransactionRolledBack {};

exception InvalidTransaction (};

II Heuri stic exceptions

exception HeuristicRollback (};

exception HeuristicCommit (};

exception HeuristicMixed (};

exception HeuristicHazard (} ;

II Exception from Orb operations

exception WrongTransaction (};

II Other transaction-specific e xceptions

exception SubtransactionsUnavailable (};

exception NotSubtransaction (};

exception Inactive (};

exception NotPrepared {};

239

Appendix B - Relevant COREA Services

exception NoTransaction {);

exception InvalidControl {);

exception Unavai lable {);

// Forward references for interfaces defined later in module

interface Control;

interface Terminator;

interface Coordinator;

interface Resource;

interface RecoveryCoordinator ;

interface SubtransactionAwareResource;

interface TransactionFactory;

interface TransactionalObject;

interface Current;

// Current transaction pseudo object (PIDL)

interface Current

) ;

void begin ()

raises(SubtransactionsUnavailable);

void cornrnit(in boolean report_heuristics)

raises(

NoTransaction,

HeuristicMixed,

HeuristicHazard

) ;

void rollback ()

raises(NoTransaction);

void rollback_only()

raises(NoTransaction);

Status get_status();

string get_transaction_name();

void set_timeout(in unsigned long seconds);

Control get_control();

Control suspend();

void resume(in Control which)

raises(InvalidControl);

interface TransactionFactory (

Control create(in unsigned long time_out);

} ;

interface Control {

Terminator get_terminator()

raises(Unavailable);

240

Appendix B - Relevant CORBA Services

) ;

Coordinator get_coordinator()

raises(Unavailable);

interface Terminator {

void commit(in boolean report_heuristics)

raises(

HeuristicMixed,

HeuristicHazard

) ;

void rollback () ;

} ;

interface Coordinator {

} ;

Status get_status();

Status get_parent_status();

Status get_top_level_status();

boolean is same_transaction(in Coordinator tc);

boolean is_related_transaction(in Coordinator tc);

boolean is_ancestor_transaction(in Coordinator tc);

boolean is_descendant_ transaction(in Coordi nator tc);

boolean is_top_level_transaction();

unsigned long hash_transaction();

unsigned long hash_top_ level _tran();

Recoverycoordinator register_resource(in Resource r)

raises(Inactive);

void register_subtran_aware(in

SubtransactionAwareResource r)

raises(Inactive, NotSubtransaction);

void rollback_only()

raises(Inactive);

string get_ transaction_name();

Control create_ subtransaction()

raises(SubtransactionsUnavailable, Inactive);

interface RecoveryCoordinator {

Status replay_ completion(in Resource r)

raises(NotPrepared);

241

Appendix B - Relevant CORBA Services

} ;

interface Resource {

Vote prepare();

void rollback ()

raises (

Heuristi ccomrnit,

HeuristicMixed,

HeuristicHazard

) ;

void comrni t ()

raises(

) ;

NotPrepared,

Heurist icRollback,

HeuristicMixed,

HeuristicHazard

void commit_one_phase()

raises(

HeuristicRollback,

HeuristicMixed,

HeuristicHazard

) ;

void forget() ;

} ;

interface Subt ransactionAwareResource : Resource {

} ;

void comrnit_subtransaction(in Coordinator parent);

void rollback_ subtransaction();

interface Transacti onalObject {

} ;

}; II End of CosTransactions Module

B.5 Persistent Object Service

II Persist ent Object Service vl . 0 described in

II CORBAservices: Common Object Services Specification, c hapter 5

II OMG IDL for CosPersistencePID Module, p 5-9

module CosPersistencePID {

interface PID {

242

Appendix B - Relevant COREA Services

} ;

} ;

attribute string datastore_type;

string get_PI DString();

II OMG IDL for CosPersistencePO Module, p 5- 12

#include "CosPersistencePDS.idl "

II CosPersistencePDS . idl #incl udes CosPersistencePID . idl

module CosPersistencePO {

} ;

interface PO {

} ;

attribute CosPersistencePID : :PID p;

CosPersistencePDS: :PDS connect

in CosPersistencePID : :PID p);

void disconnect (i n CosPersistencePID: : PID p);

void store (in CosPersistencePID: :PID p);

void restore (in CosPersistencePID: : PID p);

void delete (in CosPersistencePID: : PID p);

interface SD {

void pre_store();

void post_ restore{);

} ;

II OMG IDL for CosPersistencePOM Module, p 5-15

#incl ude "CosPersistencePDS . idl"

II CosPersistencePDS.idl #incl udes CosPersistencePID . idl

module CosPersistencePOM {

interface Object;

interface POM {

CosPersistencePDS : :PDS connect

i n Object obj,

in CosPersistencePID: :PID p);

void disconnect (

in Object obj,

in CosPersistencePID : :PID p);

void store (

in Object obj,

243

Appendix B - Relevant COREA Services

} ;

} ;

in CosPersistencePID: : PID p);

void restore (

in Object obj,

in CosPersistencePID: :PID p);

void delete (

in Object obj,

in CosPersistencePID::PID p);

II OMG IDL for CosPersistencePDS Module, p 5-20

#include "CosPersistencePID.idl"

module CosPersistencePDS (

} ;

interface Object;

interface PDS {

PDS connect (in Object obj,

in CosPersistencePID :: PID p);

void disconnect (in Object obj,

in CosPersistencePID::PID p);

void store (in Object obj,

in CosPersistencePID: : PID p);

void restore (in Object obj,

in CosPersistencePID :: PID p) ;

void delete (in Object obj,

in CosPersistencePID :: PID p);

) ;

II OMG IDL for CosPersistencePDS_DA Module, p 5- 22

#include "CosPersistencePDS.idl"

II CosPersistencePDS . idl #includes CosPersistencePID.idl

module CosPersistencePDS DA

typedef string DAObjectID;

interface PID DA : CosPersistencePID: :PID

attribute DAObjectID oid;

} ;

interface DAObject {

244

Appendix B - Relevant COREA Services 245

} ;

boolean dado_ same(in DAObject d);

DAObjectID dado_oid();

PID_DA dado_pid();

void dado_remove();

void dado_free();

interface DAObjectFactory

DAObject create();

} ;

interface DAObjectFactoryFinder {

DAObjectFactory find_factory(in string key);

} ;

interface PDS DA: CosPersistencePDS :: PDS

DAObject get_data();

} ;

void set_data(in DAObject new_data);

DAObject lookup(in DAObjectID id);

PID_DA get_pid();

PID_DA get_object_pid(in DAObject dao);

DAObjectFactoryFinder data_factories() ;

II OMG IDL for CosPersistenceDDO Module, p 5-32

#include "CosPersistencePID.idl"

module CosPersistenceDDO {

interface DDO {

attribute string object_type;

attribute CosPersistencePID: :PID p;

short add_data();

short add_data_property (in short data_id);

short get_data_count();

sho r t get_data_ property_count (in short data_id);

void get_data_property (in short data_id,

in short property_id,

out string property_name,

out any property_value) ;

void set_data_property (in short data_id,

in short property_id,

in string property_name,

in any property_value);

void get_data (in short data_ id,

Appendix B - Relevant COREA Services

) ;

) i

out string data_name,

out any data_value);

void set data (in short data_id,

in string data_name,

in any data_value);

II OMG IDL for CosPersistenceDS CLI Module, p 5- 35

#include "CosPersistenceDDO.idl"

II CosPersistenceDDO.idl #includes CosPersistencePID.idl

module CosPersistenceDS - CLI (

interface UserEnvironment

void set_option (in long

void get_option (in long

void release();

) i

interface Connection

void set_ option (in long

void get_option (in long

) ;

interface ConnectionFactory (

Connection create_ object

option , in any value);

option,out any value);

option,in any value);

option,out any value);

in UserEnvironment user_envir) ;

) i

interface Cursor (

} ;

void set_position (in long position,in any value);

CosPersistenceDDO:: DDO fetch_ object();

interface CursorFactory (

Cursor create_object

in Connection connection);

) i

interface PID CLI : CosPersistencePID : :PID

attribute string datastore_ id;

attribute string id;

) ;

interface Datastore CLI

246

Appendix B - Relevant CORBA Services

} ;

} ;

void connect (in Connection connection,

in string datastore_ id,

in string user_ name,

in string authentication);

void disconnect (in Connection connection);

Connection get_connection (

in string datastore_id,

in string user_name);

void add_object (in Connection connection ,

in CosPersistenceDDO::DDO data_obj);

void delete_object

in Connection connection,

in CosPersistenceDDO::DDO data_ obj);

void update_object

in Connection connection,

in CosPersistenceDDO::DDO data_ obj);

void retrieve_object(

in Connection connection,

in CosPersistenceDDO::DDO data_obj);

Cursor select_ object(

in Connection connection,

in string key);

void transact (in UserEnvironment user_envir,

in short completion_type);

void assign_PID (in PID_CLI p);

void assign_PID_relative (

in PID CLI source_pid,

in PID CLI target_ pid);

boolean is identical PID

in PID CLI pid_l,

in PID CLI pid_2);

string get_object_type (in PID_CLI p);

void register_mapping_schema (in string schema_file);

Cursor execute (in Connection connection,

in string command);

247

Appendix C

Stream Tunnel Service

Presented here are the IDL definitions for the Stream Tunnel Service and other related services

and information. Included are:-

• Stream Tunnel Service IDL

• ExtendedStreamIO IDL

• Tag values for sequence data types used by ExtendedStreamIO

C.1 Stream Tunnel Service

#in clude <CosExter nalization . idl>

module StreamTunnelService

t ypedef sequence <any> StreamedData;

t ypedef CosLifeCycle : : Criteria Transf erChannelCriteria;

exception ChannelTypeNotSupport ed {} ;

e xception Bas eChannelSupportedOnly{} ;

exception Ch annelOpenFailed{ string reason; };

e xception DataTran sferError{ stri ng reason; } ;

exception NoDataAvailable{};

e xception StreamNotAvailable { };

exception CannotAcceptData{ };

interface StreamChannelServer;

Appendix C - Stream Tunnel Service

interface StrearnChannelFactory;

interface StrearnChannel CosExternalization::Strearn

} ;

void pull_strearn_data(in StrearnChannelServer sourceChannel)

raises(NoDataAvailable, StrearnNotAvailable, DataTransferError);

void push_strearn_data(in StrearnChannelServer targetChannel)

raises(NoDataAvailable, StrearnNotAvailable, DataTransferError);

interface StrearnChannelServer StrearnChannel

} ;

void push_StrearnedData(in StrearnedData restoredData)

raises(CannotAcceptData);

StrearnedData pull_StrearnedData()

raises (NoDataAvailable, DataTransferError);

oneway void send_data() raises (NoDataAvailable, DataTransferError);

oneway void receive_data() raises(CannotAcceptData);

interface StrearnTunnel

StrearnChannel push_strearnable(in Cosstrearn: :Strearnable strearnablesource,

in StrearnChannel targetStrearn

raises(NoDataAvailable, StrearnNotAvailable, DataTransferError);

CosStrearn: : Strearnable pull_strearnable(in CosLifeCycle::FactoryFinder finder,

in StrearnChannel sourceStrearn)

raises(CosLifeCycle::NoFactory, CosStrearn: :StrearnDataForrnatError,

NoDataAvailable, StrearnNotAvailable, DataTransferError);

249

StrearnChannel

other_tunnelEnd,

open_channel(in StrearnTunnelService : :StrearnTunnel

) ;

} ;

inout TransferChannelCriteria channelType,

out StrearnChannel otherEnd)

raises(ChannelTypeNotsupported, BaseChannelSupportedOnly, ChannelOpenFailed

void close_channel(in StrearnChannel targetChannel)

raises(StrearnNotAvailable);

interface StrearnChannelFactory

Appendix C - Stream Tunnel Service 250

StreamChannel create(inout TransferChannelCriteria channelType)

raises(ChannelTypeNotSupported, BaseChannelSupport edOnly, ChannelOpenFailed

) ;

} ;

} ;

C.2 ExtendedStreamIO

#include <CosExternalization . idl>

modul e ExtendedStreamIO
{
typedef sequence <string> St ringseq;
typedef sequ ence <char> Charseq;
typedef sequence <octet> OctetSeq;
typedef sequence <unsigned long> UnsignedLongSeq ;
typedef sequence <unsigned short> UnsignedShortSeq;
typedef sequ ence <long> LongSeq;
typedef sequence <short> ShortSeq;
typedef sequence <float> FloatSeq;
t ypedef sequence <double> Doubl eSeq;
typedef sequence <boolean> BooleanSeq;

} ;

interface StreamSeqIO : CosStream: :StreamIO
{

} ;

void write stri ng seq(in StringSeq aStringSeq);
void wr ite-char seq(in CharSeq aCharSeq);
void write-octet seq(in Octetseq anOctetSeq);
void write- unsigned long seq(in UnsignedLongSeq anUnsignedLongSeq);
voi d write-unsigned- short seq(in UnsignedShortSeq anUnsignedShortSeq);
void write-long seq(in LongSeq a LongSeq) ;
void write-short seq(in Shortseq aShortSeq);
void write-float-seq(in FloatSeq aFloatSeq);
void write-double seq(in DoubleSeq aDoubleSeq);
void wri te=boolean_ seq(in Booleanseq aBooleanSeq);

StringSeq read string seq() raises(CosStream: : StreamDataFormatError);
CharSeq read char seq() raises(Cosstr eam: :StreamDataForma tError);
OctetSeq read octet seq() raises(CosStream: :StreamDataFormatError);
UnsignedLongSeq read unsigned long seq()

raises(CosStream::StreamDataFormatError);
UnsignedShortSeq read unsigned short seq()

raises(CosStream: :StreamDataFormatError);
LongSeq read long seq() rai ses(CosStream: :StreamDataFormatError);
ShortSeq read s h ort seq() raises(CosStream::StreamDataFormatError);
FloatSeq read-float- seq() raises(CosStream::StreamDataFormatError);
DoubleSeq read double seq() raises(CosStream: : StreamDataFormatError);
BooleanSeq read_boolean_ seq() raises(CosStream: : StreamDataFormatError);

Appendix C - Stream Tunnel Service 251

C.3 Tag Values for ExtendedStreamIO

value
Oxel
Oxe2
Oxe3
Oxe4
OxeS
Oxe6
Oxe7
Oxe8
Oxe9
Oxea

AppendixD

Data Object Service and
File Data Object Service

Presented here are the Data Object Service and the extension of it for the access and

manipulation of files and directories - File Data Object Service.

D.1 Data Object Service

#i nclude <StreamTunnel Service . idl>

module DataObjectService
{
typed e f string DOb ID Stri ng;
t ypedef sequence <DOb=ID_String> DOb_ID_ Stri ng_Set;

excep tion DOb ID I nvalid{ string reason ; };
exception DOb-I D-NotFound {};
excep tion DOb- CreateDenied{ string reason ; } ;
e xception DOb- AccessDenied{ string reason ; } ;
e x c e pti on DOb-UpdateDenied{ string reason; };
exception DOb-RemovalDenied{ string reason; };
exception Noi nterfaceMatchingKey{} ;

interface DataObjectServer;

interface DOb_ ID : CosLifeCycle::LifeCycleObject
{

attribute DataObjectServer server;
DOb ID String get stringified DOb ID();
voi d set DOb ID(In DOb ID Str ing- DOb string identifier

raises-(DOb_ ID_ Invalid); - -
} ;

interface Da taOb jectServer
{

Stre amTunnel Service: :StrearnTunnel get StreamTunnel();
void create(in DOb I D String DOb identifier)

r aises(DOb ID Invalid, DOb CreateDenied);
void retri eve(in DOb_I D_ String DOb_identifier,

Appendix D - Data Object Service and File Data Object Service

} ;

in StreamTunnelService::StreamChannel transfer channel
raises(D0b AccessDenied, D0b ID NotFound,

StreamTunnelService::StrearnNotAvailable);
void store(in D0b ID String D0b identifier,

in StreamTunnelService::StreamChannel transfer channel
raises (D0b UpdateDenied, D0b ID NotFound,

StreamTunnelService::StrearnNotAvailable);
void remove(in D0b ID String DOb identifier)

raises(DOb_RemovalDenied, D0b ID NotFound);

interface Data0bjectManager
{

attribute D0b ID target Data0bject;
void create(f raises(DOb ID Inval id, D0b_CreateDenied);
void retrieve() - -

raises(D0b AccessDenied, D0b ID NotFound, D0b ID Invalid,
StreamTunnelService: : StreamNotAvailable) ; -

void store ()
raises(D0b UpdateDenied, D0b ID NotFound, D0b ID Invalid,

StreamTunnelService: : StrearnNotAvailable) ; -
void remove ()

raises(D0b_RemovalDenied, D0b_ID_NotFound, D0b ID Invalid) ;

void remove manager();
} ; -

interface Data0bjectManagerFactory
{

} ;

} ;

Data0bjectManager create(in CosLifeCycle::Key manager interface type,
in D0b ID initial D0b identifier) -

raises (DOb_ID_Invalid,NointerfaceMatc:hingKey);

D.2 File Data Object Service

#include <Data0bjectService.idl>
#include <CosExternalization.idl>

module FileD0bService
(
typedef sequence<octet> Bytes;

enum ftype{ FILE, DIRECTORY};
struct Content
{

string fname;
ftype file type;

}; -
typedef sequence <Content> Contents ;

exception I0Exception{};
exception End0fFile{};
exception NoDirectoryDataAvailable{};

//DirContents for private use of DirectoryD0bManager
interface DirContents : Cosstream: :Streamable, CosLifeCycle::Lifecycle0bject

{
attribute Contents fileList;

} ;

//BL0b interface for private use of FileD0bManager
interface BL0b: CosStream: :Streamable, CosLifeCycle: : LifeCycle0bject

253

Appendix D - Data Object Service and File Data Object Service

attribute Bytes BLOb data;
attribute long sliceStart;
attribute long sliceSize;

void add_ slice(in Bytes part_of_file) raises(IOException);
Bytes take slice() raises(EndOfFile);

} ; -

interface DirectoryDOb ID: DataObjectService : :DOb_ID
{ -

attribute string fpath;
} ;

interface FileDOb_ID : DirectoryDOb_ID
{

} ;

attribute string fnarne;
attribute long sliceStart;
attribute long s liceSize;

interface DirectoryDObManager : DataObjectService: :DataObjectManager
{

Contents get contents() raises(NoDirectoryDataAvail able);
} ; -

int erface FileDObManager: DataObjectService: :DataObjectManager
{

long getFilePointer() raises(IOException);
void seek(in long offset) raises(IOException);
long length() raises(IOException);
void setlength(in long fileLength) raises(IOException);

octet readByte() raises(EndOfFile,IOException);
Bytes readBytes(in long NoOfBytes) raises(EndOfFi le,IOException);
char readChar() raises(EndOfFile,IOException);
string readString() raises(EndOfFile,IOException);
boolean readBoolean() raises(EndOfFile,IOException);
short readShort() raises(EndOfFile,IOException);
unsigned short readUShort() raises(EndOfFile,IOException);
long readLong() raises(EndOfFile,IOException);
unsigned long readULong() raises(EndOfFile,IOException);
float readFloat() raises(EndOfFile,IOException);

) ;

double readDouble() raises(EndOfFile,IOException);

void writeByte(in octet aByte) raises(IOException);
void writeBytes(in Bytes sorneBytes) raises (IOException);
void writeChar(in char aChar) raises(IOException) ;
void writeString(in string aString) raises(IOException);
void writeBoolean(in boolean aBoolean) raises(IOException);
void writeShort(in short aShort) raises(IOException);
void writeUShort(in unsigned short aUShort) raises(IOException);
void writeLong(in long a Long) raises(IOException);
void writeULong(in unsigned long aULong) raises(IOException);
void writeFloat(in float aFloat) raises(IOException);
void write Double(in double aDouble) raises(IOException);

interface StrearnIOFileDObManager

) ;

: DataObjectService::DataObjectManager

CosStrearn::StrearnIO getStrearnIOinterface();
} ;

254

AppendixE

Meta-Schema Model

Presented here are material relevant to the Meta-Schema Model, including:-

• Meta-Schema Model diagram

• Meta-Schema Model IDL

• Meta-Schema Facility IDL

• Meta-Schema Stream Format syntax

Appendix E - Meta-Schema Model

E.1 Meta-Schema Model

1/)

8.
~
""C
Q)
C
<=
Q)

""C

Select

Type Identifier
type_natne:slling

Schema schema_constants

Entity
children* ent11y_..,mo:str1ng

abstract:boolean

ke>'! '<sub'sol} • ~as

has type

Entity
Reference

Key

1/)

.s

Enum

*
Enumldentlfier
k:lentifier:string

Described
Type

instance
_dal.a

Named

TypeDescliptors
value_name:11ring

Variable
Sized

Binary Array
size:integer

Schema
Constant

Literal

I Boolean I

Defined

of
typ

256

Appendix E - Meta-Schema Model

E.2 Meta-Schema Model IDL

module MSModel
{

typedef string Identifier;
typedef sequence <Identifier> Identifiers;

exception NotFound{};

interface msEntity;
typedef sequence <msEntity> msEntities;
interface msSchemaDefinedType;
typedef sequence <msSchemaDefinedType> msSchemaDefinedTypes;
interface msSchemaConstant;
typedef sequence <msSchemaConstant> msSchemaConstants;
interface msAttribute;
typedef sequence <msAttribute> msAttributes;
interface msType;
interface msLiteral;
interface msSchemaDefinedType;
interface msConstantValue;

interface msSchema
{

readonly attribute Identifier schema_name;
readonly attribute msEntities entities;
readonly attribute msSchemaDefinedTypes defined types;
readonly attribute msSchemaConstants constants;-

msEntity find_entity(in Identifier entity_name) raises(NotFound);

msSchemaDefinedType find schema defined type(
in Identifier schema_defined=type_name) raises(NotFound);

msSchemaConstant find schema constant(
in Identifier schema_constant_name) raises(NotFound);

} ;

interface msEntity
{

readonly attribute Identifier entity name;
readonly attribute boolean is abstract;
readonly attribute Identifiers parents;
readonly attribute Identifiers children;
readonly attribute msAttributes attributes;
readonly attribute msAttributes keys;

msAttribute find attribute(in Identifier attribute_narne)
raises(NotFound);

) ;

interface msAttribute
{

readonly attribute Identifier attribute name;
readonly attribute boolean is optional;
readonly attribute boolean is- unique;
readonly attribute msType type_of;

} ;

interface msType
{
} ;

interface rnsEntityReference : rnsType
{

readonly a t tribut e boolean is inverse;
readonly attribute Identifier-referenced_entity;

257

Appendix E - Meta-Schema Model

} ;
readonly attribute Identifier inverse_attribute;

interface msKey : msEntityReference
{

} ;
readonly attribute Identifiers key_attributes;

interface msAbsolute msEntityReference
{
} ;

interface msAggregate : msType
{

} ;

readonly attribute long lower limit;
readonly attribute long upper=limit;
readonly attribute msType contains_type ;

interface msArray msAggregate
{
} ;

interface msBag msAggregate
{
} ;

interface msSet msAggregate
{
} ;

interface msList msAggregate
{
} ;

interface msAny msType
{
} ;

interface msBase : msType
{

} ;

readonly attribute boolean is constant;
readonly attribute msConstantValue constant_value;

interface msLiteralArray: msBase
{

} ;

readonly attribute long array size;
readonly attribute msLiteral array_ of;

interface msLiteral : msBase
{

258

enum LiteralType { String, Double, Float, UnsignedLong, Unsignedinteger,
Long, Integer, Character, Byte, Boolean};

readonly attribute LiteralType literal_type;
} ;

interface msDefined: msType
{

readonly attribute Identifier type_ of;
} ;

interface msSchemaDefinedType
{

} ;
readonly attribute Identifier schema_defined_type_name;

interface msNamed msSchemaDefinedType

Appendix E - Meta-Schema Model

} ;

rea donly attribute msBase base_ type;
} ;

interface msSelect : msSchemaDefinedType
{

readonly attribute Identifiers type_identifiers;
} ;

interface msEnum: msSchemaDefined Type
{

readonly attribute Ident ifi ers Enumidenti f ier s ;
} ;

interface msDescr ibedType
{

msSchemaDefinedType

} ;

struct Type Descriptor
{

} ;

string value name;
any value; -

typedef sequence <TypeDescriptor> TypeDescriptors ;

readonly attribute TypeDescriptors type_descriptors;

int erface msConstantValue
{

readonly attribute a n y val ue ;
} ;

interface msSchemaconstant
{

readonly attribute Identifier constant_ name;
} ;

E.3 Meta-Schema Facility

#include "MSModel.idl"
#include " CosExternalization.idl"
#include "CosLifeCycle . idl"

module MSF
{

typedef string Identifier;
t ypedef sequence <Identifier> Identifiers ;

exception NotFound{};
exception MetainfoError{ string explanation; };

interface MetaSchemaBuilderFactory;

inter face MetaSchemaRespository: CosLifecycle: :LifecycleObject
{

Identifiers get schema list{};
Identifiers get- entity- list(in Identifier schema name) raises(NotFound);
Identifiers get-schema-defined type list (in Identifier schema name)

- - - - raises {NotFound);
I dentifiers get_schema_constant_list(in Identifier schema name)

r aises(NotFound);

CosStream: : Stream

259

Appendix E - Meta-Schema Model

) i

get_schema_meta_info(in Identifier schema_name) raises(NotFound);

CosStream: :Stream
get entity meta info(in Identifier schema name,

- - - in Identifier entity_name) raises (NotFound);

CosStream: :Stream
get schema defined type meta info(in Identifier schema name,

- - - - [n Identifier defined type-name)
raises(NotFound); - -

Co sstream: :Stream
get schema constant meta info(in Identifier schema name,

- - - In Identifier constant_name) raises(NotFound);

) i

interface MetaSchemaBuilderFact ory
{

MSModel: :msSchema create schema meta model(
in CosStream:: StreamIO schema_meta_info)
raises(MetainfoError);

MSModel : :msEntity create entity meta model(
in CosStream:: StreamIO schema_meta_info)
raises(MetainfoError);

MSModel::msSchemaDefinedType create schema defined type meta model(
in CosStream: : StreamIO schema meta info) -
raises(MetainfoError); - -

MSModel::msSchemaConstant create schema constant meta model(
in CosStream: :StreamIO schema -meta -info)
raises(MetainfoError); - -

) i

E.4 Meta-Schema Stream Format Syntax
Tag
Value Tag Name
(short)

1 Schema

2 schema constants
3 SchemaConstant
4 Constant Value
5 defined_ types
6 SchemaDefinedType
7 Select
8 type _identifiers
9 Typeldentifier
10 Enum
11 enum identifiers
12 Enumldentifierstring

Syntax

schema_ name: string
[no_ of_ schema_ constants: integer schema_ constants]
[no_ of_ defined_ types:integer defined_ types]
no of entities entities
Schema_ constant [schema_ constants]
name:string type:Base Constant_ value
value:VSBA
SchemaDefinedType [defined_types]
type_name:string (Select I Enum I Named I DescribedType)
no_ of_ type _identifiers: integer type _identifiers
Typeldentifier [type _identifiers]
string
no_ of_ enumldentifiers :integer enumldentifiers
Enum identifier [enum _identifiers]

260

Appendix E - Meta-Schema Model

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51

Named
Described Type
type_ descriptors
TypeDescriptor
entities
Entity

parents
parent
children
child
entity_ name
attributes
Attribute
attribute name
attribute_ keys
attribute_ key
Type

types
Entity Reference
references_ entity
inverse attribute
Key
Absolute
Aggregate

aggregate_ type
Array
Bag
Set
List
Any
Base
Literal

Base
no_ of_ type_ descriptors: integer type_ descriptors VSBA
TypeDescriptor [type_ descriptors]
value name value:Base
Entity [entities]
entity_ name abstract: boolean
[no_of_parents:integer parents]
[no_of_children:intger children]
no of attributes attributes
[no_ of_ attribute_ keys attribute_ keys]
parent [parents]
entity_ name
child [children]
entity_ name
string
Attribute [attributes]
attribute_name optional:boolean unique:boolean Type
string
attribute_ key [attribute_ keys]
attribute name
EntityReference I Aggregate I Any I
Defined I Base I UndefinedType
Type [types]
references_ entity [inverse attribute] (Key I Absolute)
entity_ name
attribute name
attribute_ keys

lower _limit:integer upper _limit:integer
aggregate_ type Type
Array I Bag I Set I List

[Constant_value] (Literal I LiteralArray)
String I Double I Float I Unsigned_long I Unsigned_integer I
Long I Integer! Character I Byte I Boolean
size:integer Literal LiteralArray

VSBA1

Defined
size:integer

SchemaDefinedType
String
Double
Float
UnsignedLong

1 YSBA-Yarjable Sized Binary Array

261

Appendix E - Meta-Schema Model 262

52 Unsignedlnteger
53 Long
54 Integer
55 Character
56 Byte
57 Boolean

Appendix F

Persistent Data Access Service

Presented here is material related to the Persistent Data Access Service, including: -

• Persistent Data Access Service

• Entity Data Object Service

• Variable Sized Binary Array Manager Interface

• Retrieval Map

• Structured Entity Stream Format syntax

F .1 Persistent Data Access Service

module PDAS
{
// PDAS - Persistent Data Object Service
exception I nvalidAttri bute{) ;
excepti on IllegalCast {) ;
exception InvalidEnumid{);
excepti on Inval idSe lect Type{) ;
exception NullReference{) ;
exception InvalidRefenceAssi gnment{) ;
exception NotFound{) ;
exception CreateFailure{CosPropertyService: : Properties reason , any fur ther info);
exception Del eteFailure{CosPropertyService::Properties reason, any further-info);
exception StoreFailure{CosPropertyService: :Properties reason, any further_info);
exception ExactCopiesNotSupportedByModel{);
exception TransactioninPrograss();

interface EntityReference;
typedef sequ ence <EntityReference> EntityReferences ;

interf ace PDASServer : :Datastor eserver ;
interface VSBA::VSBAManager;

Appendix F - Persistent Data Access Service 264

// The client session interface allowing entity instance creation/deletion/copying,
II access to Meta-Schema information on data, querying and static binding of CORBA
// objects.

interface Session
{

: CosConcurrencyControl : :LockSet

} ;

EntityReference create{in string entity type name)
raises(NotFound,CreateFailure);

EntityReference copy(in EntityReference source entity)
raises(CreateFailure,ExactCopiesNotSupportedByModel);

void delete(in EntityReference entity) raises(DeleteFailure);

void save_all_updates() raises(StoreFailure);

MSModel: : msSchema get schema model();
RetrievalModel ::RetrievalMaps get_retrieval_ maps();

CosQuery : :QueryEvaluator get_ query_evaluator();

Object bind object(in EntityReference er,
- in CosLifeCycle : :FactoryFinder finder)

raises(CosLifeCycle: : NoFactory);

EntityReference find_entity_ by_ oid(in long oid) raises(NotFound);

void close_ session{) raises(TransactioninProgress) ;

interface NonTransactionalSession Session
{
} ;

interface TransactionalSession: Session,
CosTransactions: : TransactionalObject

} ;

// SessionFactory interface for creating and initialising a client session

interface SessionFactory
{

} ;

Se ssion create(in PDASServer::DatastoreServer datastore server,
in string datastore name,
in boolean transactional session,
in CosConcurrencyControl::lock_mode initial_l ock_mode,
in CosPropertyService :: Properties
initialisation attributes)
raises(Creat eFailure);

// EntityReference interface represent a handle to a entity instance,
// allowing manipulation of its attributes and gaining information of
// on the t ype of entity.

interface EntityReference
{

boolean is same(EntityReference other entity);
boolean is=kind_of(string entity_type=name);

MSModel : : msEntity get entity type();
MSModel: : msType get attribute type(in string attr_name)

raises(InvalidAttribute);

long get_entity_session_ oid();

void save_updates() raises(StoreFailure);

void release();

// Operations to set the values of entity attributes

Appendix F - Persistent Data Access Service 265

c)

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

set String(in string attr name, in strings)
raises (InvalidAttribute"; Illegalcast);

set Double(in string attr name, in doubled)
raises (InvalidAttribute"; IllegalCast);

set Float(in string attr name, in float f)
raises(InvalidAttribute,IllegalCast);

set UnsignedLong(in string attr name, in unsigned long ul)
raises(InvalidAttribute,IllegalCast);

set Unsignedinteger(in string attr name, in unsigned short ui)
raises(InvalidAttribute,IllegalCast);

set Long(in string attr name, in long 1)
raises(InvalidAttribute,IllegalCast);

set Integer(in string attr name, in short i)
raises(InvalidAttribute;IllegalCast);

set Char(in string attr name, in char c)
raises(InvalidAttribute,IllegalCast);

set Byte(in string attr name, in octet o)
raises(InvalidAttribute,IllegalCast);

set Boolean(in string attr name, in boolean b)
raises(InvalidAttribute;IllegalCast);

set LiteralArray(in string attr name, in any la)
raises(InvalidAttribute,IllegalCast);

set Enum(in string attr name, in short enum id)
raises(I nvalidAttribute,IllegalCast,InvalidEnumid);

set Select(in string attr name, in any s)
raises(InvalidAttribute°;IllegalCast,InvalidSelectType);

set Any(in string attr name, in any a)
raises(InvalidAttribute,IllegalCast);

set_Aggregate(in string attr_name, in CosCollection::Collection

raises(InvalidAttribute,IllegalCast);
set EntityReference(in string attr name, in EntityReference er)

raises(InvalidAttribute,IllegalCast,InvalidRefenceAssignment);

// Operations to get the values of entity attributes
string get String(in string attr name)

ra1ses(InvalidAttribute,IllegalCast);
double get Double(in string attr name)

rai-ses(InvalidAttribute,IllegalCast);
float get Float(in string attr name)

raises (InvalidAttribute°; IllegalCast);
unsigned long get UnsignedLong(in string attr name)

raises(InvalidAttribute,IllegalCast); -
unsigned short get Unsignedinteger(in string attr_name)

raises(InvalidAttribute,IllegalCast);
long get Long(in string attr name)

raises(InvalidAttribute,IllegalCast);
short get Integer(in string attr name)

raises(InvalidAttribute,IllegalCast);
char get Char(in string attr name)

raises(InvalidAttribute,IllegalCast);
octet get Byte(in string attr name)

ralses(InvalidAtt ribute,IllegalCast);
boolean get Boolean(in string attr name)

raises(InvalidAttribute,IllegalCast);
any get LiteralArray(in string attr name)

-raises(InvalidAttribute,IllegalCast);
short get Enum(in string attr name)

raises(InvalidAttribute,IllegalCast);
any get Select(in string attr name)

-raises(InvalidAttribute,IllegalCast);
any get Any(in string attr name)

-raises(InvalidAttr1bute,IllegalCast);

CosCollection : :Collection get Aggregate(in string attr_name)
raises(InvalidAttribute,IllegalCast);

VSBA::VSBAManager get DescribedType data(in string attr_ name)
raises(Invalic!Attribute,Illegalcast);

Appendix F - Persistent Data Access Service

} ;

} ;

EntityReference get Entity(in string attr name)
raises(Inval-idAttribute,IllegalCast,NullReference);

EntityReference get Entity using map(in string attr name,
- - - RetrivalMap map name)

raises(InvalidAttribute,IllegalCast,Nul lReferenc:e);

// PDASServer module contains all interfaces concerned with the
// server side of the Persistent Data Access service .

module PDASServer
(

typedef sequence <octet> BinaryData;
typedef sequence <long> OIDs;

interface ServerSession;

//interface to create and start a server session in the server process
interface DatastoreServer

(
ServerSession start server session(in string datastore name,

in boolean transactional session,
in CosConcurrencyControl::lock mode initial lock mode,
in CosPropertyservice::Properties initialisation-attributes)

raises(PDAS::CreateFailure); -
} ;

//The server side session
interface ServerSession: CosConcurrencyControl::LockSet

(

266

DataObjectService: :DataObjectServer get_ data_object_server();

) ;

} ;

MSModel: : msSchema get meta schema model();
MSR::MetaSchemaRespository-get_meta_schema_repository();

RetrievalModel::RetrievalMaps get_retrieval_maps();

CosQuery::QueryEvaluator get_server_query_evaluator();

void close_session() raises(PDAS: :TransactioninProgress);

interface NonTransactionalServerSession ServerSession
{
} ;

interface TransactionalServerSession: ServerSession
CosTransactions::Resource,
Cosconcurrency::LockCoordinator

) ;

Appendix F - Persistent Data Access Service

F .2 Entity Data Object Service

// The EntityDObService module contains the interfaces that extend
// the Data Object Service to allow access and management of entity instances.

module EntityDObService
{

typedef sequence <long> oid array;
// DataObjectService extension interfaces

// Data Object Identifier Extensions
interface Entity DOb ID : DataObjectService::DOb ID

{ - - -
attribute long oid;
attribute string attr_name;

} ;

interface OID_Array: DataObjectService::DOb_ID
{

oid_array OIDs;
} ;

interface EntityGraph DOb ID : Entity_DOb_ID
{ - -

attribute string retrival_map;
} ;

interface Aggregate_DOb_ID
{
} ;

Entity_DOb_ID

interface AggregateEntity_ DOb_ID: Aggregate_DOb_ID
{

attribute long entity_ number;
} ;

interface DescribedType_ DOb_ ID: Entity_ DOb_ ID
{
} ;

// Data Object Manager Extension
interface EntityDObManager: DataObjectService: :DataObjectManager

{
void store_Enti ty(in PDAS::EntityReference er);

void store_Entities(in PDAS ::EntityReferences ers);

void stor e_EntityGraph(in PDAS::EntityReference root_er);

void store_Aggregate(in CosCollection::Collection c);

void store_DescribedType(in BinaryData data);

267

PDAS::EntityReference retrieve_Entity() raises(PDAS::NotFound);

PDAS: :EntityReferences retrieve_Entities() raises(PDAS: :NotFound);

PDAS::EntityReferences retrieve_EntityGraph() r aises(PDAS: :NotFound) ;

CosCollection::Collection retrieve Aggregate()
raises(PDAS::NotFound); -

BinaryData retrieve_DescribedType() raises(PDAS::NotFound);
} ;

// Streamable interface used as a container for multiple:- Entity instances,
// Explicit Aggregates and Explicit DescribedTypes.

interface EntityContainer: CosStream::Streamable, CosLifeCycle :: LifeCycleObject

Appendix F - Persistent Data Access Service

{
void add Entity(in EntityReference er);
void add-Aggregate(in long entity oid,

- in string attr name,
in CosCollection::Collection c);

void add DescribedType(in long entity oid,
- in string attr name,

in BinaryData data);

PDAS :: EntityReference get Entity(in long oid)raises(PDAS: : NoFound);
CosCollection::Coll-ection get Aggregate(in long entity oid,

- in string attr name)
raises(PDAS : :NotFound); -

BinaryData get DescribedType(in long entity oid,
- in string attr name)

raises(PDAS: :NotFound);
) ;

interface EntitycontainerFactory
{

) i
EntityContainer create(MSModel: :msSchema schema_model) ;

// StructuredEntityStreamIO used for wrapping the low level StreamIO interface.
// This interface adds to the Stream, tag information to maintain the structure
// of entities in their serialised form.

except ion StructuredStreamFormatError;

interface StructuredEntityStreamIO
{

void write_ Entityidentifier(in long o id);

void write StringAttribute(in string value);
void write-DoubleAttribute(in double value);
void write-FloatAttribute(in float value);
void write- UnsignedLongAttribute(in unsigned long value);
void write- UnsignedintegerAttribute(in unsigned short value);
void write-LongAttribute(in long value);
void write-IntegerAttribute(i n short value);
void write-CharAttribut e(in char value);
void write-ByteAttribute(in octet value);
void write-BooleanAttribute(in boolean value);
void write- LiteralArrayAttribute(

- in MSModel: :msLiteral::LiteralType element_type,
in any val ue);

void write EnurnAttribute(in short value);
void write-SelectAttribute (in any value);
void write=AnyAttribute(in any value);

void write AggregateAt tribute(in long number of elements,
- in boolean write as block);

void write AggregateElement(in long element number, -
- in any element);

void write_AggregateBlock (in any elements);

void write_DescribedType(in BinaryData data);

void write EntityReferenceAttribute(in l ong oid) ;
void write=NullEntityReferenceAttribute();

268

void write_ExplicitAggregate(in long oid, in string attr_name);

void write ExplicitDescribedType(in long oid ,
- in string attr name ,

in BinaryData data);

Appendix F - Persistent Data Access Service

short read contained tag()
raises(StructuredStreamFormatError); -

long read_Entityidentifier() raises(StructuredStreamFormatError);

string read StringAttribute() raises(StructuredstreamFormatError);
double read-DoubleAttribute() raises(StructuredStreamFormatError);
float read FloatAttribute() raises(StructuredStreamFormatError);
unsigned long read UnsignedLongAttribute()

- raises(StructuredStreamFormatError);
unsigned short read UnsignedintegerAttribute()

- raises(StructuredStrearnFormatError);
long read LongAttribute() raises(StructuredStrearnFormatError);

269

short read IntegerAttribute() raises(StructuredStreamFormatError);
char read CharAttribute() raises(StructuredStrearnFormatError);
octet read ByteAttribute() raises(StructuredStreamFormatError);
boolean read BooleanAttribute() raises(StructuredStreamFormatError);
any read LiteralArrayAttribute(

- out MSModel::msLiteral::LiteralType element type)
raises(StructuredStreamFormatError);

short read EnurnAttribute() raises(StructuredStreamFormatError);
any read SelectAttribute() raises(StructuredStreamFormatError);
any read-AnyAttribute() raises(StructuredStreamFormatError);
long read AggregateAttribute(out boolean read as block,

- out boolean ExplicitRetrieval)
raises(StructuredStreamFormatError);

any read AggregateElement(out long element number)
- raises(StructuredStreamFormatError);

any read AggregateBlock() raises(StructuredStreamFormatError);
BinaryData read DescribedType(out boolean ExplicitRetrieval)

- raises(StructuredStreamFormatError);
long read EntityReferenceAttribute()

- raises(StructuredStreamFormatError);
void read ExplicitAggregate(out long oid, out string attr name)

- raises(StructuredStreamFormatError);
BinaryData read ExplicitDescribedType(out long oid,

- out string attr name)
raises(StructuredStreamFormatError);

void remove () ;
) i

interface StructuredEntityStreamIOFactory
(

StructuredEntitystreamIO create(in Cosstream::StreamIO
basicIO) ;

) i

) i

F.3 Variable Sized Binary Array Manager

The Variable Sized Binary Array(VSBA) Manager is an interface for the manipulation of data

contained in a described type value, where the structure of the data is explicitly known by the

application.

module VSBA
(
// VSBA - Variable Sized Binary Array
exception EndOfArray{};

// Interface to access the binary data of DescribedTypes

Appendix F - Persistent Data Access Service

interface VSBAManager
{

) ;
) ;

long getArrayPointer();
void seek(in long offset) raises(EndOfArray);
long length();
void setlength(in long ArrayLength);

octet readByte() raises(EndOfArray);
Bytes readBytes(in long NoOfBytes) raises(EndOfArray);
char readChar() raises(EndOfArray);
string readString() raises(EndOfArray);
boolean readBoolean() raises(EndOfArray);
short readShort() raises(EndOfArray);
unsigned short readUShort() raises(EndOfArray);
long readLong() raises(EndOfArray);
unsigned long readULong() raises(EndOfArray);
float readFloat() raises(EndOfArray);
double readDouble() raises(EndOfArray);

void writeByte(in octet aByte);
void writeBytes(in Bytes someBytes);
void writeChar(in char aChar);
void writeString(in string aString);
void writeBoolean(in boolean aBoolean);
void writeShort(in short aShort);
void writeUShort(in unsigned short aUShort);
void writeLong(in long aLong);
void writeULong(in unsigned long aULong);
void writeFloat(in float aFloat);
void writeDouble(in double aDouble);

F .4 Retrieval Map

module RetrievalModel
{

interface RetrievalMap;
typedef sequence <RetrievalMap> Maps

interface Node;

interface TraverseRelationship;
typedef sequence <TraverseRelationship> TraverseRelationships;

interface RetrievalMaps
{

attribute Maps maps;
RetrievalMap get_map(in string map_name);

) ;

interface RetrievalMap
{

) ;

attribute string map name;
attribute Node root_entity;

interface Node
{

) ;

attribute MSModel : :msEntity associated entity type;
attribute TraverseRelationships attributes; -

interface TravserseRelationship
{

attribute MSModel: :msAttribute referenced attribute;
attribute boolean referenced_ attribute_has_ a_node;

270

Appendix F - Persistent Data Access Service 271

attribute Node node;
} ;

} ;

Appendix F - Persistent Data Access Service 272

F.5 Structured Entity Stream Format Syntax

Tag Value Tag Name
(short)

I. Contents
2. Containedltem
3. Entityldentifier
4. Attributes
5. Attribute

6. StringAttribute
7. DoubleAttribute
8. FloatAttribute
9. UnsignedLongAttribute
10. Unsignedinteger Attribute
II. LongAttribute
12. Integer Attribute
13. Char Attribute
14. ByteAttribute
15. BooleanAttribute
16. LiteralArrayAttribute
17. EnumAttribute
18. SelectAttribute
19. Any Attribute
20. AggregateAttribute

21. Aggregate Element
22. AggregateBlock
23. DescribedTypeAttribute
24. Entity Reference
25. ExplicitAggregate
26. ExplicitDescribedType
27. Litera!Type

28. AnyValue
29. AnyType

30. StringType
31. Double Type
32. FloatType
33. UnsignedLongType
34. UnsignedintegerType
35. LongType
36. IntegerType
37. CharType
38. ByteType
39. Boolean Type
40. Litera!ArrayType
41. EnumType
42. Aggregate Type
43. EntityReferenceType

Syntax

Containedltem [Contents]
Entity Identifier I ExplicitAggregate I ExplicitDescribedType
entity_ type_ name(string) oid _ value(long) Attributes
Attribute [Attributes]
StringAttribute I DoubleAttribute I FloatAttribute I UnsignedLongAttribute I
UnsignedlntegerAttribute I LongAttribute I IntegerAttribute I Char Attribute I ByteAttribute I
BooleanAttribute I LiteralArrayAttribute I EnumAttribute I SelectAttribute I Any Attribute I
AggregateAttribute I DescribedTypeAttribute I EntityReferenceAttribute
value(string)
value(double)
value(/loat)
value(unsigned long)
value(unsigned short)
value(long)
value(short)
value(char)
value(octet)
value(boolean)
Literal Type number_ of_ elements(long) values
value(short)
AnyValue
AnyValue
explcit_retrieval(boolean) [number_ of_ elements(long) write _as_ block(boolean)
AggregateElement I AggregateBlock]
AnyValue [AggregateElement]
AnyType values
explcit_retrieval(boolean) [value(seq. of octet)]
oid(short) 1-1 (short) "null reference"
oid(short) attribute_name(string) AggregateAttribute
oid(short) attribute_ name(string) DescribedTypeAttribute
StringType I Double Type I FloatType I UnsignedLongType I UnsignedintegerType I Long Type I
IntegerType I CharType I ByteType I BooleanType
AnyType value
String Type I Double Type I FloatType I UnsignedLongType I UnsignedintegerType I LongType I
IntegerType I CharType I Byte Type I Boolean Type I LiteralArrayType I EnumType I Aggregate Type
I EntityReferenceType

References

[Amar]

[Ambler 99]

[Amirb 97]

[Baker 97]

[Ball 98]

[Ball 99]

V.Amar, A.Zarli. Linking STEP and COREA standards for

applications interoperability. Centre Scientifique et Technique du

Batiment, France. http://cic.cstb.fr/ilc/.

S.W.Ambler. Mapping Objects To Relational Databases(White

paper). AmbySoft Inc., http://www.AmbySoft.com/.

V.Amirbekyan, K.Zielinski. What COREA/ODE integration

technique to choose: Adaptor vs. Wrapper. Workshop #21:

Experiences Using Object Data Management in the Real-World,

OOPSLA'97, Atlanta, Georgia, USA, Oct. 1997.

S.Baker. COREA Distributed Objects Using Orbix. ACM Press,

Addison Wesley, 1997.

C.H.Ball, S.Hope. Data Access and Transportation Services for the

COREA Environment. TOOLS '98 Conference, Santa Barbara,

USA, Aug. 1998

C.H.Ball, S.Hope. A Framework of Data Access Services as a

necessary alternative to Object Persistence to provide access to

Persistent Data for COREA. Uni. Of Wales, Bangor, U.K. , 1999.

ftp://ftp . sees. banger. ac. uk/craig/.

[Bernstein 97] P.A.Bemstein, E.Newcomer. Principles of Transaction Processing

for the Systems Professional. Morgan Kaufmann, 1997.

[Chorus 97] Chorus Systems. COOL-ORB v4.1 Programmer's Manual.

Chapter 8 - Roles of the Persistent Data Access Service

[Coad 90] P.Coad, E.Yourdon. Object-Oriented Analysis. Yourdon Press,

1990.

[Coad 91] P .Coad, E.Yourdon. Object-Oriented Design. Yourdon Press, 1991.

[Coulouris 88] G.F.Couloris, J.Dollimore. Distributed Systems Concepts and

Design. Addison Wesley, 1988.

[DBTools 98] Rogue Wave Software. DBTools.h++. Rogue Wave Software, Inc.,

Boulder, Colarado, USA, 1998.

[EXPRESS 92] ISO 10303, Industrial Automation Systems and Integration -

Product Data Representation and Exchange - Part 11. Description

Methods: The EXPRESS Language Reference Manual, ISO TC

184/SC4, 1992.

[Fleming 97]

[Fowler 96]

[Godfrey 97]

[Grasso 96]

[Grasso 97]

[Grasso 97b]

[Joseph 90]

K.Fleming, S.Aslam-Mir, J.Damstra, M.Vilicich. Distributed

Transactions using COREA. Expersoft Corporation.

J.Fowler. STEP for Data Management, Exchange and Sharing.

Technology Appraisals, 1996.

M. Godfrey. The OpenSpirit E&P Component Framework - A White

Paper. Prism Tech, Houston, Texas, USA

http ://www.openspirit.com/

E.Grasso. Passing Objects by Value in COREA. OMG Document

orbos/96-07-03 .

E.Grasso, N.Perdigues-Charton. Transaction Concepts in

Connection Management Applications. TINA Conference 97,

Santiago, Chile, Nov. 17-21, 1997.

E.Grassio. Implementing Interposition in COREA Object

Transaction Service. l st International Enterprise Distributed Object

Computing, Gold Coast, Australia, 24-26 October 1997.

J.V.Joseph, S.M.Thatte, C.W.Thompson, D.L. Wells. Object

Oriented Databases.Design and Implementation. Proceedings of the

2

Chapter 8 - Roles of the Persistent Data Access Service

[JDK]

[JIDL]

[Kim 95]

[Klein 95]

[Klein 96]

[Klein 96b]

IEEE. Vol. 79, no. 1, p 42-62, Jan 91.

Sun Microsystems. Java Development Kit vi.I. Sun Microsystems

Inc., http://www.javasoft.com/products/jdk/l. l / .

Sun Microsystems. JavaIDL Object Request Broker. Sun

Microsystems Inc.,

http://www.javasoft.com/products/jdk/idl/index.html.

W.Kim (ed.). Modern Database Systems - The Object Model,

Interoperability, and Beyond Addison Wesley, 1995.

I.Kleindienst, F.Plasil, P .Tuma Implementing COREA Persistence

Service. Tech. Report No. 117, Charles Uni., Prague, Czech

Republic, Dec. 1995.

I.Kleindienst, F.Plasil, P .Tuma. Lessons Learnt from Implementing

the COREA Persistence Service. OOPSLA '96, San Jose, Oct.

1996.

I.Kleindienst, F.Plasil, P .Tuma. What We Are Missing in the

COREA Persistent Object Service Specification. Charles Uni.,

Prague, Czech Republic, 1996.

[McFadden 94] F.R.McFadden, I.A.Hoffer. Modern Database Management.

[ODMG93]

[OOSA 97]

[OMAG90]

[OMG 95]

Addison Wesley, 1994.

Object Database Management Group. The Object Database

Standard: ODMG-93 Rel. I.I. R.G.G.Cattell(ed.), Morgan

Kaufmann, 1994.

IONA Technologies. Orbix+ObjectStore Adaptor(White Paper).

IONA Technologies Ltd., Dublin, Ireland, April 1997.

Object Management Group. The Object Management Architecture

Guide: Object Management Group, Inc., Framingham, MA. Nov 90.

Object Management Group. The Common Object Request Broker

Architecture and Specification; Revision 2.0. OMG 96-3-4. Object

3

Chapter 8 - Roles of the Persistent Data Access Service

Management Group, Inc., Framingham, MA., July 1995.

[OMG 95b] Object Management Group. Object Services RFP 5. OMG TC

Document 95-3-25, 1995.

[OMG 97] Object Management Group. OMG Background Information.

http:/ /www.omg.org/.

[OMG COSS] Object Management Group. CORBAservices: Common Object

Service Specification. Object Management Group, Inc.,

Framingham, MA ..

[ONTOS]

[OODB 1]

[OODB 2]

[OODB 3]

[Orbix]

[Orfali 94]

[Orfali 96]

[Orfali 97]

[OVA 97]

[Owen 93]

ONTOS. ONTOS*Integrator - Object/Relational Mapping

Concepts. ONTOS.

Versant. Versant Object Database Management System. Versant

Inc., http://www.versant.com/.

Objectivity. Objectivity Technical Overview Version 4. Objectivity

Inc., http://www.objectivity.com/.

Object Design. Objectstore. Object Design Inc.,

http://www.odi.com/.

Iona Technologies. Orbix Object Request Broker. Iona

Technologies, http://www.iona.com/.

R.Orfali, D.Harkey. Client/Server Survival Guide. Van Nostrand

Reinhold. 1994.

R.Orfali, D.Harkey, J.Edwards. The Essential Distributed Objects

Survival Guide. Wiley, 1996.

R.Orfali, D.Harkey. Client/Server Programming with Java and

COREA. Wiley, 1997.

IONA Technologies. Orbix+ Versant Adaptor, IONA Technologies

Ltd. , Dublin, Ireland, 1997.

J. Owen. STEP: An Introduction. Information Geometers Ltd, 1993.

4

Chapter 8 - Roles of the Persistent Data Access Service

[POSC 92]

[POSC 95]

[POSC 95b]

[Prism 98]

[POSIX 97]

[Prism 98b]

[Prism 99]

[Prism Tech]

[PSS 98]

[PSS 98b]

[PSS RFP]

[Reverbel 97]

[Rieken 92]

Petrotechnical Open Software Coporation. Technical Program

Overview, POSC Document TR-1,1992.

Petrotechnical Open Software Corporation. Software Integration

Platform Specification, Epicentre Data Model, Version 2. 0. POSC,

Houston, Texas, October 1995.

Petrotechnical Open Software Corporation. Data Access and

Exchange Version 2. 0 for Epicentre Logical Model. POSC,

Houston, Texas, March 1995.

Prism Tech. Prism Tech Mapping Manager Project.

http://www. prism tech. co. uk/products/.

B.R.Butenhof Programming with POSIX Threads. Addison Wesley,

1997.

PrismTech. The EXPRESSIVE Mapping Language (Version I.I)

Specification. PrismTech Ltd., Sept 1998.

PrismTech. OpenFusion CORBA Services - A White paper.

PrismTech Ltd., March 1999.

http://www. prismtech. co. uk/

Objectivity Inc., Secant Tech. Inc., SUN Microsystems Inc ..

Persistent State Service 2.0. OMG Document orbos/98-12-01, Dec.

1998.

lnprise Corp., Persistence Software Inc .. Persistent State Service

2.0. OMG Document orbos/98-12-11, Dec. 1998.

Object Management Group. Persistent State Service 2. 0 Version of

RFP. OMG Document orbos/97-06-07.

F.C.R.Reverbel, AB.Maccabe. Making CORBA Objects Persistent:

the Object Database Adaptor Approach. USENIX Association,

Conf. on Object-Oriented Technologies and Systems, June 1997.

B.Rieken, L.Weiman. Adventures in UNIX Network Applications

5

Chapter 8 - Roles of the Persistent Data Access Service

[Rumb 91]

[Sauder 97]

[Sessions 96]

[Shan 98]

[Siegel 96]

[Sloman 87]

[Sol Man]

Programming. Wiley, NY, USA, 1992.

J.Rumbaugh, M.Blaha, W.Premerlani,, F.Eddy, W.Lorenson.

Object-Oriented Modeling and Design. Prentice Hall, 1991.

D.A.Sauder. An Implementation of the Standard Data Access

Interface Using an Object-Oriented Database and a Distributed

Object System(CORBA). STEP project, NIST, 1997.

Roger Sessions. Object Persistence - Beyond Object-Oriented

Databases. Prentice Hall PTR, 1996

Y.Shan, R.H.Earle. Enterprise Computing with Objects - from

Client/Server Environments to the Internet. Addison Wesley, 1998.

I.Siegel. COREA Fundamentals and Programming. Wiley, 1996.

M.Sloman, J.Kramer. Distributed Systems and Computer Networks.

Prentice Hall, 1987.

SUN Microsystems. Safaris 2.5 Manual Pages. Sun Microsystems

Inc ..

[Somvil 89] I.Sommerville. Software Engineering. Addison Wesley, 1989.

[STEP 94] International Standards Organization. STandardfor the Exchange of

Product model data, STEP. ISO Standard 10303, 1994.

[STEP SDAI] ISO 10303, Industrial Automation Systems and Integration -

Product Data Representation and Exchange - Part 22.

Implementation Methods: Standard Data Access Interface.

[STEP

SDAib]

[STEP

SDAic]

ISO 10303, Industrial Automation Systems and Integration -

Product Data Representation and Exchange - Part 23.

Implementation Methods: C++ programming language binding to

the Standard Data Access Interface.

ISO 10303, Industrial Automation Systems and Integration -

Product Data Representation and Exchange - Part 26.

Implementation Methods: Interface Definition Language binding to

6

Chapter 8 - Roles of the Persistent Data Access Service

the Standard Data Access Interface.

[SUN 97] Sun Microsystems. JDBC: A Java SQL AP/ Version 1. 1.

G.Hamilton, R.Cattell, Sun Microsystems Inc., Jan 1997.

[SUN 97b] Sun Microsystems. Java Native Interface Specification. Sun

Microsystems Inc., May 1997.

[SUN 98] Sun Microsystems. Enterprise JavaBeans Technology - Server

Component Mode/for the Java Platform (White paper).

[Stevens 90] R.Stevens. UNIX Network Programming. Prentice Hall, 1990.

[Streu 91] B.Stroustup. The C++ Programming Language, second edition.

Addison Wesley, 1991.

[Vadaparty 95] K.Vadaparty. Persistent pointer: 1. Journal of Object-Oriented

Programming, July-Aug. 1995.

[Vander 93] R.F.Vander Lans. Introduction to SQL. Addison Wesley, 1993.

[Vasu 94] V.Vasudevan, R.Anthony. Approaches for the Integration of

COREA with OODBs. Motorola SATCOM, Aug. 1994.

[Vinoski 96] S.Vinoski. COREA: Integrating Diverse Applications Within

Distributed Heterogeneous Environments. IEEE Communications

Magazine, Vol. 14, No. 2, Feb. 1997.

[Visibroker]

[Winblad 90]

[Yang 95]

Inprise. Visibroker Object Request Broker. lnprise Corp.,

http://www.inprise.com/.

A.L.Winblad, S.D.Edwards, D.R.King. Object-Oriented Software.

Addison Wesley, 1990.

Y.Yang. STEP Application Protocol Implementation. P.D.I.T., Oct.

1995. http://www.pdit.com/.

7

