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Mangrove ecosystems experienced significant deforestation over the last five decades, with as much as half global coverage lost. Recent awareness of mangroves’ roles in storm defence and carbon cycling has led to increased political will to conserve and protect these ecosystems, with declines in global deforestation rates as a consequence. Climate change is now regarded as the biggest threat to mangroves. Yet, it remains generally unclear how mangroves will respond under predicted climate change. This thesis investigates how understanding of mangrove functioning in an extreme environmental setting can refine global present-day estimates of mangrove productivity and carbon stocks and inform predictions of future mangrove productivity and carbon stocks. 

Mangrove research has centred on tropical humid settings, leaving their counterparts at the extremities of their climatic distribution under-represented. It is unclear how forest productivity and carbon stocks of arid and hot environment mangroves compare to their humid tropical counterparts. Chapters 2 and 4 of this thesis quantify mangrove primary productivity and carbon stocks in three mangrove stands in the hot and arid country of Qatar, the Arabian/Persian Gulf (‘the Gulf’). Here, data collected in situ in Qatari mangroves reveal that mangroves in the country are less productive and store less carbon than many humid tropical mangroves. The study also finds productivity and biomass dynamics of Qatar mangroves differ from those of humid regions, likely as a result of differing nutrient dynamics in arid settings. For instance, biomass and productivity of Qatari mangroves had an inverse relationship with tidal elevation, which is the opposite to many humid tropical locations. Chapters 3 and 5 incorporate the empirically derived biomass, carbon stock and productivity data into numerical models to estimate present and future global mangrove productivity and carbon stocks. Similarly to previous global modelling work, the thesis finds the greatest mangrove productivity and carbon stocks to occur in Southeast Asia. Future predictions suggest a likely increase in global carbon stocks, although productivity is unlikely to change significantly. Models show the most mangrove-rich countries might have a >10% increase in carbon stocks. However, under the more extreme climate change scenarios, the rising temperatures will elevate the probability that carbon stocks will decrease across countries. This finding is because models used in this dissertation, through the inclusion of new empirical data from Qatar, are trained on data that allocates greater representation to mangroves in hot arid climates than done in previous modelling. 

Inclusion of empirical data from the climatic extremes of global mangrove distribution, as done here, generates a more realistic prediction of what may occur to mangrove carbon stocks and productivity under predicted climate change, particularly through effects of heightened temperature. Mangroves are expanding their global distribution into higher latitudes, with forests on the edge of their climatic distribution likely to become more widespread. It is hoped that the increased understanding of mangrove functioning under extreme climatic conditions and predicted climate change delivered by this thesis will be instructive to the effective future management and conservation of the global mangrove ecosystem.


Chapters 2 (Mangrove primary productivity in an extreme environment) and 3 (Past, present and future global mangrove primary productivity) have not been published. However, chapter 4 (Mangrove carbon stocks and biomass partitioning in an extreme environment) was published in 2020 in Estuarine, Coastal and Shelf Science, and chapter 5 (Future mangrove carbon storage under climate change and deforestation) was published in 2022 in Frontiers in Marine Science.
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[bookmark: _Toc120622094]1.1	Mangrove Ecosystems
The mangrove forest environment is found around the world’s tropical and sub-tropical coastlines between approximately 30° N and 30° S latitude (Giri et al., 2011) (Figure 1.1). Forests are formed by mangrove trees, which are the world’s only woody halophytes (Alongi, 2009) and a group comprised of 27 genera and approximately 70 species (Alongi, 2009). Mangrove forests occupy the transition between terrestrial and marine environments and are found along shorelines at intertidal heights between the mean sea level to the level of the highest spring tide (Alongi, 2009). This intertidal environment is stressful for plants and forests experience high salinity, tidal oscillations and high sedimentation (Alongi et al., 2003; Kauffman et al., 2020; Price et al., 1993; Schile et al., 2017). Varying tolerances to salinity, aridity and inundation duration drive tree species zonation along environmental gradients ranging from near fully marine to fully terrestrial (Rivera-Monroy et al., 2017).

Current global mangrove cover estimates range from 83,000 km2 (Hamilton and Casey, 2016) to 137,000km2 (Giri et al., 2011) and the majority of global mangroves are situated within relatively few countries and regions. Globally, mangroves are found in 118 countries and approximately 75% of those are found in the top 15 most mangrove rich countries. Indonesia alone houses over one-fifth of global mangroves (Giri et al., 2011). On a continental scale, >40% of the world’s mangroves are located within Asia, while Africa (20%), North America (15%), Oceania (12%) and South America (11%) contain less than half of that in Asia (Giri et al., 2011).

[image: ]
Figure 1.1: Global mangrove distribution, mangrove presence data were taken from Giri et al. (2011).

Variation in mangrove area and biomass follows that of terrestrial forests as both decrease with increasing latitude (Giri et al., 2011; Hutchison et al., 2014). Regional scale variations in mangrove biomass and coverage are largely driven by large scale temperature and precipitation regimes (Ribeiro et al., 2019; Sanders et al., 2016). Generally, their global distribution is constrained by major ocean currents and colder winter sea surface temperatures below ~20°C (Alongi, 2009). Humid tropical regions are associated with the highest levels of mangrove biomass and productivity (Twilley et al., 2017). Aboveground biomass estimates from the tropics range from 160 to >300 Mg ha-1, which is in contrast to <100 Mg ha-1 at the arid extremities of global mangrove distribution, such as in western Mexico, the Arabian/Persian Gulf (hereafter referred to as “The Gulf”) and southern Australia (Hutchison et al., 2014). Freeze events have been shown to constrain tree biomass and increase mortality (Osland et al., 2020, 2014). Thus, Avicennia germinans mangroves at the northern limit of their global distribution display a shrub-like morphology, rather than the tall trees >30m in height that are commonplace in tropical mangroves (Osland et al., 2014). Temperatures ranging from -6.3C to -8.9C have been shown to be the lower thermal threshold for Avicennia germinans, which is a comparatively freeze tolerant mangrove species (Osland et al., 2017, 2013). In support of this, global modelling efforts that use climatic extremes, such as minimum temperatures, better predict mangrove biomass and productivity than models that use climatic averages (Hutchison et al., 2014; Ribeiro et al., 2019).

On local and sub-regional scales, mangrove ecological functioning is closely associated with coastal geomorphological setting (Ribeiro et al., 2019; Twilley et al., 2017). Mangrove forests occur over coastlines with variable river, tidal and wave forcings, which affect the rate and source of sediment input, rate of relative sea-level change and the nutrient availability to trees (Alongi, 2009; Twilley et al., 2017). Heterogeneity of these drivers combine to produce fine-scale variations in mangrove ecosystem functioning. For example, deltas, estuaries and lagoons all contain mangroves with varying productivity rates (Ribeiro et al., 2019), nutrient profiles (Breithaupt et al., 2014) and carbon sequestration rates (Rovai et al., 2018). Mangroves occurring where riverine inputs and tidal ranges are increased tend to be more productive and have greater biomass as these factors drive greater nutrient availability and reduce soil salinity, thus promoting greater tree growth and productivity (Castañeda-Moya et al., 2006; Ribeiro et al., 2019).

[bookmark: _Toc120622095]1.2	The functional importance of Mangroves
Mangrove ecosystems perform important ecological functions and ecosystem services to the global coast. For instance, forests can significantly reduce wave energy and thus are effective at storm and tsunami buffers (Kathiresan and Rajendran, 2005), they provide nursery and feeding grounds for economically valuable juvenile fish species (Igulu et al., 2014), they supports trophic webs in neighbouring habitats through outwelling mechanisms (Odum and Heald, 1972) and they act as significant carbon sinks (Donato et al., 2011). The following exemplifies the ecosystem services delivered by mangroves.

As mangroves occupy the interface between land and ocean, they are adapted to environmental pressures in the settings in which they are commonly found. Mangroves can act as a storm surge buffer and reduce erosion (Kathiresan and Rajendran, 2005). After the 2004 Southeast Asian Tsunami, studies found that human mortality and property damage were reduced in areas where mangroves were present, compared to areas where mangroves were not present or had been degraded (Kathiresan and Rajendran, 2005; Vermaat and Thampanya, 2006). High tree density and complex root matrices act to dissipate wave energy and maintain structural integrity (McIvor et al., 2016). Across only 100m of mangrove forest, wave energy can be reduced by 66% (McIvor et al., 2016, 2012). Globally, it has been estimated that the world’s mangroves provide >$US 65 billion annually in flood protection benefits alone (Menéndez et al., 2020). In addition, mangrove root systems trap and accrete sediment over soil profiles that are largely comprised of dead root material and which can reach up to 10 m depth (McKee et al., 2007). Thus, to a point, mangroves have the ability to keep pace with and protect shorelines against Sea Level Rise (SLR).

Coastal wetland habitats, including mangroves, contain dense aggregations of reef fish (Nagelkerken et al., 2002; Tse et al., 2008). Seagrass beds and mangroves can support increased fish biomass of 4000 and 265 kg ha-1 yr-1 compared to unvegetated seabed, respectively (Jänes et al., 2020). Coastal wetlands like these act as important habitats in the early life stages of many marine fish species (Igulu et al., 2014; Nagelkerken et al., 2002; Tse et al., 2008) and their structural complexity and high productivity provide ample feeding grounds and protection from predators to juveniles (Igulu et al., 2014). Mangroves in particular harbour high densities of juvenile reef fish (Igulu et al., 2014). For example in the Caribbean, reefs adjacent to mangroves contained significantly higher densities of common reef fish species when compared to reefs lacking mangroves (Nagelkerken et al., 2002). Moreover, in degraded coral reef habitats where nearby mangrove nurseries are available, the reef can support similar fish densities as in non-degraded reefs (Rogers and Mumby, 2019).

It has long been argued that mangroves export locally derived carbon, which contributes to trophic webs in adjacent coastal ecosystems (Odum and Heald, 1972). This principle, termed ‘outwelling’, is often cited as a reason for mangrove conservation. However, there is still considerable debate as to the significance of exported carbon to neighbouring habitats (Bouillon et al., 2008). Mass balance calculations show that, of total mangrove primary production, ~21% is exported as a combination of Particulate Organic Carbon (POC) and Dissolved Organic Carbon (DOC) (Bouillon et al., 2008). As much as 52% of carbon fixed in mangroves is unaccounted for and is potentially exported to neighbouring habitats as Dissolved Inorganic Carbon (DIC) (Bouillon et al., 2008; Lee, 1995). In support of this, direct field measurements found DIC outwelling to be between 4 and 5 times greater than that of POC and DOC (Santos et al., 2019). The scale of outwelling varies considerably between forests and is largely driven by heterogeneity in coastal geomorphology, tidal regimes, freshwater flow and productivity (Lee, 1995; Walton et al., 2014). For example, in an arid bay setting, a significant amount of mangrove carbon can be retained within the mangrove forest, likely due to the lack of freshwater inputs that would otherwise help drive export of primary production to downstream habitats (Walton et al., 2014). There is, therefore, reason to suspect that the fate of mangrove productivity and the land-sea connect in the flow of marine and terrestrial material might be different in arid settings than in high-rainfall parts of the world.

[bookmark: _Toc120622096]1.3	Importance of Mangroves in the context of carbon cycling
Mangroves play a significant role in the global carbon cycle and as a result have received much scientific and political interest as natural systems to mitigate climate change (Alongi, 2009; Bouillon et al., 2008; Cameron et al., 2019; Duarte, 2017; Murdiyarso et al., 2015). Mangroves comprise <1% of global tropical forests (Giri et al., 2011), yet they contribute between 10 and 15% to marine organic carbon burial (Silva et al., 2005). These wetland ecosystems generate significant above and below-ground ‘blue carbon’ stores with greater per-area carbon stocks than tropical upland forests (Alongi, 2012) (Figure 1.2). Total mangrove ecosystem carbon stocks average 1023 Mg C ha-1, which is more than triple that of boreal (326 Mg C ha-1) and temperate (315 Mg C ha-1) forests, while being over four times that of tropical (251 Mg C ha-1) upland forests (Alongi, 2012; Donato et al., 2011).


Figure 1.2: Above and below ground carbon stocks in different forest types. Adapted from Alongi (2012).

A significant proportion of mangrove carbon stocks are plant-derived and thus their comparatively high carbon stocks are, in part, due to their high primary productivity rates (Alongi, 2012; Bouillon et al., 2008). Mangrove aboveground productivity rates and biomass can rival those of highly productive tropical terrestrial forests (Alongi, 2012, 2009). Extrapolated leaf litter measurements from both mangrove and terrestrial forests show comparable aboveground Net Primary Productivity (NPP) rates. Mean and median mangrove NPP (mean: 11.1 t DW ha-1 yr-1; median: 8.1 t DW ha-1 yr-1) are comparable to those in terrestrial forests (mean: 11.9 t DW ha-1 yr-1; median: 11.4 t DW ha-1 yr-1) (Alongi, 2009). Maximum mangrove tree height (60 m) is also comparable to terrestrial forests (Simard et al., 2019, 2011). However, similar aboveground biomass and primary productivity rates do not explain why mangroves can have significantly greater organic carbon stored per unit of area, when compared to terrestrial forests. Evidence has shown mangroves allocate proportionally more biomass to root production than those in terrestrial forests (Lovelock, 2008). Mangrove above to below ground ratio estimates range from 1.1 to 4.4, compared to that of terrestrial forests that range from 3.96 to 4.52 (Komiyama et al., 2008). However, due to the logistical difficulties associated with sampling mangrove roots, robust estimates of below ground biomass are limited (Komiyama et al., 2005). For example, previous sampling efforts have only directly measured mangrove root biomass within a 2 m radius of the main stem and then extrapolated below ground biomass outside of that (Comley and McGuinness, 2005). Consequently, many estimates of below ground root biomass are likely to be underestimates and the proportion of mangrove biomass stored below ground is likely to be higher than what has previously been reported. 

Regardless of tree biomass, the majority of mangrove carbon, approximately 75%, is stored in its soils (Alongi, 2014). Accumulated organic carbon is stored in slowly decomposing, anoxic, waterlogged soils over long time-scales (Alongi, 2014). Inventories show that mangrove soil carbon is fixed within mangrove forests, as well as being imported from adjacent ecosystems. Tidal amplitude and river discharge, which are lacking or reduced in terrestrial forests, increase transportation of allochthonous material into mangrove forests, which are then trapped and become deposited in complex root structures and increase carbon burial in mangrove forests (Rovai et al., 2018). However, mangrove derived carbon still comprises the majority of carbon material in mangrove soils. Recent work has shown mangrove derived carbon accounted for up to 97% of top metre soil carbon stocks (Xiong et al., 2018). Additionally, organic carbon originating from within mangrove ecosystems (autochthonous origin) has been shown to be largely comprised of dead roots (Alongi, 2014). Between 75 and 95% of below ground tree carbon is stored in dead roots, which increases in size with stand age (Alongi et al., 2004, 2003). Similarly, mangrove accretion over dead root material can form soil profiles in excess of 10m depth (McKee et al., 2007). The presence of a large pool of dead roots is thought to serve as a mechanism for conserving nutrients, whereby new root growth actively recovers organic particles from old decaying roots (McKee, 2001). For example, growth of new roots have been found in old root channels (McKee, 2001).

Recently, the theory of mangrove outwelling has received attention from the perspective of carbon sequestration (Santos et al., 2021). The majority of work quantifying mangrove carbon capture and storage has focused on standing biomass stock and burial rates within soils (Kauffman and Bhomia, 2017; Schile et al., 2017). However, only focusing on these components of mangrove carbon capture does not take into account the mobile fraction of mangrove carbon that is outwelled. Ignoring the outwelled component of mangrove carbon capture may significantly underestimate the full extent of mangrove carbon sequestration: the combined export of POC and DOC account for almost double that of carbon buried within mangrove soils (Bouillon et al., 2008). In addition, DIC is likely to comprise a significant portion of unaccounted for mangrove primary productivity, which is currently estimated to be ~52% (Bouillon et al., 2008). Research has shown DIC can be up to five-fold that of carbon buried in sediment (Bouillon et al., 2008; Santos et al., 2019) (Figure 1.3). Thus, it stands to reason that a significantly greater amount of carbon that is captured in mangrove forests is outwelled and, more importantly not accounted for in carbon accounting studies.
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Figure 1.3: Comparison of carbon buried within mangrove sediment with Particulate Organic Carbon (POC), Dissolved Organic Carbon (DOC) and Dissolved Inorganic Carbon (DIC). Values are global scale estimates of carbon flux in Tg C yr-1. Adapted from Santos et al. (2021).

[bookmark: _Toc120622097]1.4	Threats and Current Knowledge Gaps
Even though mangroves sequester and store large amounts of carbon, deforestation has the potential to turn these stores of carbon into significant sources (Hamilton and Friess, 2018). Mangrove deforestation rates have significantly decreased compared to those from 1980 to 2000 (Hamilton and Casey, 2016), and approximately 50% of the world’s mangroves have been deforested since the 1980’s. Historical mangrove deforestation rates potentially emitted up to 0.45 Pg CO2e yr-1 (Pendelton et al., 2012). Blue carbon ecosystem restoration can potentially offset  3% of annual global fossil fuel emissions (Macreadie et al., 2021). However, while conservation and restoration projects are a profitable means of curbing GHG emissions and have the potential of attracting finance into mangrove conservation (Cameron et al., 2019; Zeng et al., 2021), the prevention of further loss is, by far, the most effective way of maintaining global mangrove carbon storage.

Climate change is likely to have a significant impact on mangrove ecosystems worldwide (Alongi, 2015; Ward et al., 2016). Increased storm intensity, changes to rates in relative sea level rise, increased temperatures and changes to precipitation regimes could all impact mangroves over the next century (Ward et al., 2016). Mangroves have adapted to climate change throughout their history and show a degree of resilience to changes in sea level and  climate regimes (Alongi, 2008). However, the combined effects of climate change with the general pressures exerted by humans may well see conditions change at faster rates than mangroves can adapt to (Alongi, 2008). It is still not clear how mangroves will adapt and persist under forecasted climate change. Climate change is also not expected to be spatially homogeneous throughout the 21st century (Giorgi et al., 2019; Soares et al., 2019). For example, while increases are forecast to the frequency of extreme precipitation events in the tropics of Asia and the Americas, northern Africa may experience expansion of semi-arid regions due to decreases in precipitation (Giorgi et al., 2019; Soares et al., 2019).

As previously mentioned, mangroves have experienced change in sea level throughout their history (Alongi, 2008). However, predicted rates of SLR exceed those of the past and it has been estimated that 96% of coastal wetlands, which includes mangroves, could be lost in the Middle East this century due to sea level rise alone, largely as a result of the low lying nature of countries in the region (Blankespoor et al., 2014). The impacts of SLR could be exacerbated when coupled with pressures of coastal development (Macreadie et al., 2019). A phenomenon referred to as ‘coastal squeeze’ (Figure 1.4) refers to the reduction of available space for mangroves due to increasing sea levels from a seaward direction and decreased accommodation space in a landward direction due to human coastal development (Blankespoor et al., 2014). Despite mangroves having adapted to changing sea levels over their history, the added pressure of coastal squeeze in the 21st century, may reduce mangroves’ ability to adapt (Blankespoor et al., 2014). Worst case estimates have projected lost carbon sequestration of 3.4 Pg by 2100 due to coastal ‘squeeze’ of mangrove ecosystems globally (Lovelock and Reef, 2020). 
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Figure 1.4: Mangroves natural response to relative sea level rise (a), to migrate landward; opposed to the (b) ‘coastal squeeze’ experienced when human development reduces landward space available to mangroves to migrate into.

Changing of precipitation regimes and increasing temperatures are also important factors that will be directly affecting mangrove wetlands throughout the 21st century. Similarly, to relative SLR, the projected changes in precipitation and temperature show significant variation spatially, temporally and between different forecasted emissions scenarios (Shared Socio-Economic Pathways 126, 245, 370 and 585). It is thought that increasing sea surface temperatures (SST) and increasing minimum winter temperatures will provide suitable conditions for mangroves to expand over saltmarsh wetlands to higher latitudes (Osland et al., 2017). However, moving beyond mangrove responses at the extremities of mangrove global distribution, it is still unclear how mangrove forests may respond to increasing temperatures and altered precipitation regimes in their existing localities. Increasing temperatures are currently thought to have ‘minimal impact’ on mangroves carbon stocks (Macreadie et al., 2019). However, as mangroves in the Gulf, where summer air temperatures regularly exceed 50C (Price et al., 1993), display limited carbon sequestration capabilities (Schile et al., 2017), increased temperatures are likely to impact carbon stocks. Moreover, as mangroves in hot and arid regions remain relatively understudied, assumptions that temperature will have limited impact are based on limited data. 

Evidence from the global extremities of global distribution can provide insight into how, not only mangroves, but other marine life, may respond at the climatic thresholds of their existence (Almahasheer et al., 2017; Osland et al., 2014; Schile et al., 2017); Supplementary Research SR1 and SR2). However, field data from extreme mangrove regions are still limited, particularly from hot, arid climates. As such, it remains unclear how mangrove productivity and carbon stocks are likely to be affected by heightened temperatures and aridity. Global mangrove modelling and forecasting work has given relatively little representation to mangroves from climatic extremes (Hutchison et al., 2014; Ribeiro et al., 2019; Rovai et al., 2018; Sanderman et al., 2018), thus not providing robust estimates of mangrove responses in the full spectrum of climatic conditions that the system tolerates. I argue that the lack of research representation of hot, arid mangroves in global mangrove modelling efforts contributes to the anticipation there will be ‘minimal impact’ on mangrove processes from elevated temperatures (Macreadie et al., 2019).

[bookmark: _Toc120622098]1.5	Study aims
This PhD addressed knowledge gaps concerning climatic effects on mangrove productivity and carbon storing. Advances to the field were made through collecting empirical data from mangroves in a hot, arid setting, Qatar, the Gulf, and incorporating these observations into global models of mangrove change. The over-arching aim was to provide more robust estimates of mangrove functioning under projected climate change. Two field-based research chapters delivered fundamental observations of mangrove primary productivity (Chapter 2) and mangrove carbon stock (Chapter 4) in Qatari mangroves. Data captured by these chapters were then incorporated into model upscaling with data from other regions to project global changes to mangrove productivity (Chapter 3) and carbon stock (Chapter 5) under climate change (Figure 1.5). 
The dissertation addressed the following specific research questions:
1) How productive are the mangroves in Qatar (chapter 2)?
2) Are Qatar mangroves less productive than their tropical counterparts (chapters 2 and 3)?
3) How much carbon is stored in Qatari mangroves (chapter 4)?
4) Do mangroves in Qatar store less carbon than their tropical counterparts (chapters 4 and 5)?
5) How can mangrove functioning in Qatar inform current global estimates of mangrove productivity and carbon stocks (chapter 3 and 5)?
6) How can mangrove functioning in Qatar inform estimates of global change in mangrove productivity and carbon stocks by the end of the 21st century (chapter 3 and 5)?


Mangrove productivity

Estimate future global mangrove productivity using weighted forecast climate data (chapter 3)
Estimate present day global mangrove productivity using present day climate data (chapter 3)
Train numerical model of mangrove productivity using combined dataset
Data from a literature search of mangrove productivity from other global locations (chapter 3)
Field based data quantifying mangrove productivity in Qatar (chapter 2)







Mangrove carbon stocks
Train numerical model of mangrove carbon stocks using combined dataset

Estimate present day global mangrove carbon stocks using present day climate data (chapter 5)
Field based data quantifying mangrove carbon stocks in Qatar (chapter 4)



Estimate future global mangrove carbon stocks using weighted forecast climate data (chapter 5)
Data from a literature search of mangrove carbon stocks from other global locations (chapter 5)




Figure 1.5:  Workflow for the present thesis. Field based data were collected from Qatari mangroves and combined with data collated from a literature search of other global regions.  These data were combined to numerically model present day and future global mangrove productivity and carbon stocks.
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[bookmark: _Toc120622100]2.1	Abstract



Mangrove ecosystems are among the most productive forests in the world and perform many important ecological functions. However, comparatively little data exists at the climatic extremities of the global distribution and the inter-stand dynamics of mangrove productivity are still generally unclear for arid mangroves. The aims of this study were to quantify mangrove productivity in Qatar and to compare Qatari forest productivity to that of tropical forests. The study quantified litterfall rates, below ground root growth and soil respiration rates in three arid mangrove stands in Qatar through sampling along the intertidal elevation gradient over a 24-month period. The study recorded overall mean leaf litter and root growth rates of 1.81 ± 0.09 g m2 d-1 (extrapolated to 6.60 ± 0.35 Mg ha-1 y-1) and 1.03 ± 0.03 Mg ha yr-1, respectively, which were comparable to mangroves in other arid regions, but markedly lower than wet tropical regions. Winter apical tip growth was >1.5 times that of summer and soil respiration in summer was significantly greater than winter. The observed decline in apical tip growth and soil respiration during summer suggest that the extreme conditions in summer restricts the productivity of mangroves in Qatar. Mangroves expansion into higher latitudes is predicted in the 21st century and their persistence in extreme environments is likely to become more commonplace. The study offers improved understanding of mangrove functioning at the extremities of their current global distribution, to give insights into how forests may function in a future under global warming. 
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[bookmark: _Toc120622101]2.2	Introduction
Mangrove ecosystems perform many important ecological functions, which include protecting coastlines from storms and tsunamis (Kathiresan and Rajendran, 2005), providing nursery and feeding grounds for juvenile fish species (Igulu et al., 2014), supporting trophic webs in neighbouring habitats (Odum and Heald, 1972) and acting as significant carbon sinks (Donato et al., 2011). As a result of these ecosystem services, the economic value of mangroves is considered to be substantial. For example, the value of annual flood protection from mangroves globally is estimated to be as high as US$ 65 billion per year (Menéndez et al., 2020) and investing in mangrove conservation and regeneration as a means of offsetting greenhouse gas (GHG) emissions can potentially yield up to US$ 3.7 billion per year through carbon trading, globally (Zeng et al., 2021). Much of the value mangrove ecosystems provide is derived from their primary production. It has been well documented that mangroves’ high rates of primary productivity support neighbouring trophic webs (Igulu et al., 2014). In addition, high retention of organic material in soils and relatively low emissions from forest fires and coastal erosion, make mangroves efficient long term stores of carbon (Adame et al., 2021; Alongi et al., 2001; Komiyama et al., 2008). Thus, while mangroves comprise <1% of global tropical forests (Giri et al., 2011) they contribute up to 14% of marine organic carbon burial (Alongi, 2012).

Global and local scale heterogeneity in mangrove productivity can largely be attributed to coastal geomorphological and climatic forcing (Ribeiro et al., 2019; Twilley et al., 2017). Mangroves in settings with higher riverine input and greater tidal range are generally more productive than mangroves in arid and micro-tidal regions (Hutchison et al., 2014; Ribeiro et al., 2019). This is because periodic flushing from river discharge and/or tidal inundation increases nutrient availability and reduces soil salinity to promote greater productivity (Castañeda-Moya et al., 2006; Ribeiro et al., 2019). On a continental scale, climatic setting plays a significant role in mangrove productivity (Alongi, 2009; Day et al., 1996; Ribeiro et al., 2019; Twilley, 1995) and regional trends in productivity have been associated with broad-scale gradients in precipitation and temperature (Ribeiro et al., 2019). For example, a combination of minimum air temperature and annual precipitation explain a significant amount of spatial variation in mangrove litterfall across the Neotropics (Ribeiro et al., 2019), with litter fall a commonly used proxy for aboveground primary production (Alongi, 2009). Productivity in mangrove forests in tropical Brazil (3.38 g m2 d-1) and the Indo-Pacific (2.98 g m2 d-1) are almost double that of Arabia and North Africa (1.62 g m2 d-1), where rainfall can be as low as  ~40 mm yr-1 (Gab-Alla et al., 2010; Sasekumar and Loi, 1983; Silva et al., 2007; Sukardjo and Yamada, 1992). Similar effects of rainfall can be seen even on a finer temporal scale. For instance, below ground root production more than triples during monsoon seasons compared to drier periods (Muhammad-Nor et al., 2019).

Soil respiration, which is an important component of mangrove forest carbon budgets, is the combination of root respiration and heterotrophic soil respiration from microbial decomposition of organic matter (Geoghegan et al., 2021; Lovelock et al., 2014). Research has shown that soil respiration rates can be correlated with litterfall, but their association is largely driven by comparable nutrient levels and soil redox (Lovelock, 2008). Despite this relationship, soil respiration rates are highly variable in space and time, making extrapolation to larger scales difficult (Alongi, 2014) and have received little attention until recently, despite representing up to 13% of total carbon lost from mangrove forests (Lovelock et al., 2015b). Seasonal increases in soil respiration in one location by over one-fifth have been shown (Arnaud et al. 2020). Similarly to tree productivity, soil respiration has been shown to vary with heterogeneity in temperature and precipitation (Lovelock, 2008). In addition, as relatively few soil respiration rates have been measured from the extremities of global mangrove distribution (Geoghegan et al., 2021; Lovelock et al., 2014; Vinh et al., 2019), there is a need to better understand soil respiration rates under a wider range of climatic environments. Of particular interest is the soil respiration rates in hot environments as increased temperatures have been shown to increase soil respiration rates and turn mangrove soils into net emitters of CO2 (Livesley and Andrusiak, 2012). Therefore, it stands to reason that mangrove soils in hot, arid climates could potentially act as a significant source of carbon to the atmosphere. 

Despite extensive global research on the aboveground productivity in global mangroves (Komiyama et al., 2008), mangroves at the extremities of their climatic distribution remain under-studied. The mangroves of the Arabian/Persian Gulf (hereafter referred to as ‘the Gulf’) offer an example of how forests cope with extreme salinity, heat and reduced rainfall (Sheppard et al., 2010). Summer air temperatures in the region regularly exceed 50°C and annual rainfall in Qatar, where the present study takes place, can be ~2% of tropical mangroves (Mamoon and Rahman, 2017). As a result of reduced research focus on arid mangroves, it is generally unclear how the ecological functioning of these systems and those at the extremities of global distribution compare to tropical locations (Bukoski et al., 2017; Sanders et al., 2016). At the southernmost limit of global mangrove distribution (1.79 g m2 d-1) (Emmerson and McGwynne, 1992), where minimum air temperatures reach as low as 10.5°C (Rajkaran and Adams, 2012), the litter fall rates are comparable to some mangroves of tropical Indonesia (ranging from 1.93 to 2.84 g m2 d-1) (Sukardjo and Yamada, 1992), where minimum air temperatures are >12°C higher (22.8°C) (Amien et al., 1996). In addition, little data exists globally on below ground productivity, let alone at the climatic extremities of global mangrove distribution. Logistical difficulties associated with sampling mangrove roots hamper data collection (Comley and McGuinness, 2005; Komiyama et al., 2008). Comley and McGuiness (2005), the only previous attempt to develop an A. marina below ground biomass allometric model, only sampled root material within a 2m radius of sampled trees, as they were unable to follow the full extent of roots. Such approaches likely significantly underestimate total below-ground biomass, as mangrove roots can reach >10m  from the main stem (Poungparn et al., 2004). There are also few data on seasonal fluctuations in soil CO2 flux in arid settings. Seasonal fluctuation can be significant in less harsh localities: in tropical mangroves, soil CO2 emissions in the same location can be up to four times greater in hotter, drier periods than colder, wetter seasons (Gnanamoorthy et al., 2019).  CO2 flux is, nevertheless, highly variable on small spatial scales, making extrapolation and interpretation of data difficult. For example, a single study of mangrove soils in Hong Kong reported a >13 fold difference between minimum to maximum measurements of CO2 flux (Chen et al., 2012). In the absence of data from arid settings, it is still not clear whether mangrove soils in arid geographical regions, such as the Arabian Gulf, are net emitters or sinks of CO2 and whether there are seasonal patterns in CO2 flux.

The aims of this study were to estimate litterfall rates, below ground root growth and soil respiration rates in arid mangroves of Qatar and to investigate their spatial and seasonal variations. We hypothesized that mangrove litterfall and soil respiration rates would be lower in the summer compared to the winter due to extreme summer temperatures experienced in Qatar. The present study provides data measured in situ for mangroves in an under-studied region of the world that can add to current understanding of mangroves at the extremities of their climatic distribution. Study data can also be included as representative of arid mangrove settings in global modelling of mangroves’ response to projected climate change, such as that done in chapter 3: Global modelling of mangrove productivity under climate change. 

[bookmark: _Toc120622102]2.3	Methods
[bookmark: _Toc120622103]2.3.1	Study locations
Three mangrove sites were selected for study on the north-east coast of Qatar (N 25.726251°, E 51.565021°, Figure 2.1). Seagrass beds and supra-tidal salt flats, known locally as “sabkha”, fringed the seaward and terrestrial sides of study sites, respectively. Mangrove forests in Qatar and the wider Gulf are monospecific Avicennia marina stands. All stands in the country occur along the eastern and northern coasts, with just a few isolated A. marina trees on the western coast. Sites around Al Khor and Al Dhakhira bays were selected for study as these stands comprise approximately 80% of total mangrove area in Qatar (Al-Khayat and Balakrishnan, 2014). These stands have an aerial extent of ~680 ha and provided a large enough area to study the effects of intertidal elevation throughout the mangroves. The Al Khor site was in the northern part of Al Khor bay and 4 km from Al Khor town. South and West Al Dhakhira sites were situated in southern and western portions of Al Dhakhira bay respectively and were separated by Al Dhakhira town and 3 km of sandy beach.
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Figure. 2.1: Map of study sites.

[bookmark: _Toc120622104]2.3.2	Sampling design
Three mangrove sites were each sampled by nine 10m x 10m plots: three plots along the lowest (seaward) and highest (landward) mangrove fringes, respectively, and three plots in the mid-mangrove that were placed at roughly equal distances along a transect running perpendicular to the shoreline (Figure A1). Transects ranged from 350m to 850m in length and, collectively, plot distribution sampled the effect of the intertidal elevation on productivity, leaving scope for contrasts between the low (n=3), mid (n=3) and high (n=3) mangrove (Figure A1).

[bookmark: _Toc120622105]2.3.3	Above and below ground production
Mangrove tree litterfall, which is a commonly used metric, was sampled as a relative index for above ground mangrove production (Alongi and Dixon, 2000; Coronado-Molina et al., 2012; Komiyama et al., 2008; Sanchez-Andres et al., 2010). In the forests, 0.25m2 nets were hung below the leaf canopy and above the highest tidal level, in the central-most tree of each plot. Leaf litter from each net was collected once a month for 12 months. Apical tip growth of the same trees was also measured to quantify change over time in the length of five marked shoot tips through measuring shoot length every three months over a 24-month period (Feller et al., 2003). To estimate below ground production, root growth was measured using implanted mesh bags in the soil, at the base of the same trees where leaf litter nets had been deployed (Sánchez, 2005). Root bags were a 3mm nylon mesh bag (30 cm long and 5.5 cm diameter) filled with root free mangrove soil and buried in the mangrove sediment approximately 1m from the stem of the tree. Roots were allowed to grow into the bag over a period of two years before root bags were retrieved. In the laboratory, leaf litter was sorted into somatic (leaves, stipules and stems) and reproductive (flowers and seeds) material. Somatic and reproductive components were oven dried to a constant weight at 60oC and weighed to obtain dry weight biomass (Silva et al., 2007). Root material was washed and sieved to separate soil from roots (Adame et al., 2014; Ezcurra et al., 2016). Separated roots were dried to constant weight at 60oC and then weighed to obtain dry weight biomass.

[bookmark: _Toc120622106]2.3.4	Soil respiration
Measurements of benthic respiration were taken in situ at low tide using a respiration chamber (PP Systems, TPS-2-CO2/H2O Analyser). Three benthic respiration measurements each at low, mid and high mangrove tidal heights at each site were taken. The respiration chamber was mounted onto the sediment over custom made PVC rings and a rubber sealant to form an airtight seal on the soil. Before sampling commenced, the PVC rings were carefully pushed 3 cm into the sediment and left for 10 minutes to allow for any disturbance to benthic communities to subside (Poungparn et al., 2009). The respiration chamber was placed on each PVC ring and CO2 flux measurements were taken and timed for 20 minutes (Migné et al., 2002; Silva et al., 2005). The respiration chamber was equipped with Photosynthetically Active Radiation (PAR) and light sensors. A thermometer probe was inserted 5 cm into the sediment to measure soil temperature (Poungparn et al., 2009). An air pump mounted within the chamber ensured adequate mixing of air inside the chamber during sampling. Incubations were performed under ambient (Net Community Primary Production NCP) and dark (Community Respiration CR: chambers were wrapped in aluminium foil to keep light out) light conditions. Light and dark incubations were performed consecutively halfway through the 20-minute sampling period. CO2 flux, measured as ΔCO2 mmol mol-1 min-1,  was calculated by regressing CO2 concentration and time during light and dark incubations (Migné et al., 2002; Silva et al., 2005). From this Gross Community Primary Production (GCP) was calculated as GCP = NCP – CR (Migné et al., 2002). Positive values indicate a net production of CO2 from sampled soils, while negative values represent an overall sink of CO2 to soils. 

[bookmark: _Toc120622107]2.3.5	Data analysis
A mixed effects modelling approach was used to test which predictors of sampling location, tidal height and season best explained variance in litterfall, root growth and soil respiration. Summer months were considered to be from June to September, while winter was from December to March (John et al., 1990). Average winter and summer air temperatures can be 18C and 34C, respectively. Repeated measurements of leaf litter were taken monthly, which violated the independence assumption of linear regression modelling. To determine the most suited random effects structure for leaf litter rate, three models only containing random effects were contrasted. Random effects compared were sampling month (factor, 12 levels), sampling plot (factor, 9 levels) and a combination of sampling month and plot. The random effects only model was selected based on the lowest Akaike Information Criterion (AIC) value (Boonstra et al., 2020; Zuur et al., 2013). All combinations of fixed effects were then added to the previously selected random effects only model. Fixed effects were added in a forward selection fashion (Arnaud et al., 2020) and consisted of sampling site (factor, 3 levels), tidal height (factor, 3 levels) and an interactive term of the two. Again, the final model was selected based on the lowest AIC value (Boonstra et al., 2020; Zuur et al., 2013) and contained the most suited random effects and fixed effects structure. This model selection process was repeated for apical tip growth, below ground root growth and soil respiration where random effects tested were sampling root bag replicate (root growth: factor, 2 levels; soil respiration: factor, 3 levels) and sampling plot (root growth: factor, 9 levels). Fixed effects contrasted for root growth and soil respiration were the same as leaf litter, while for apical tip growth and soil respiration the fixed effect of season was also investigated. Data were log10 transformed, where appropriate, to comply with model assumptions and residuals were visually inspected to determine if they met model assumptions. Mixed effects modelling was implemented in R’s lme4 package (1.1.21) and significance values were calculated from Satterthwaites’s method using the lmerTest package in R (3.1.3) (Boonstra et al., 2020). All statistical analyses were performed using R 3.6.1 software.

[bookmark: _Toc120622108]2.4	Results
[bookmark: _Toc120622109]2.4.1	Litterfall
Overall mean leaf litter rate was 1.81 ± 0.09 g m2 d-1 (extrapolated to 6.60 ± 0.35 Mg ha-1 y-1). Somatic litter comprised 81.5 ± 0.8% of total litterfall, while the remaining 18.5 ± 0.8% was reproductive litter. For eleven months of the year somatic growth comprised a greater proportion of the total than reproductive litter. However, in June reproductive litter comprised 62.9 ± 1.8% of total litter. Both somatic and reproductive litter production showed two peaks throughout the year, each time reproductive litter peaking after somatic litter (Figure 2.2). Somatic litter peaked during March and April (averaging 1.75 ± 0.09 g m2 d-1), and again between September and November (averaging 1.44 ± 0.17 g m2 d-1) (Figure 2.2). Reproductive litter peaked between June and July (averaging 1.14 ± 0.03 g m2 d-1) and again in November (averaging 1.00 ± 0.25g m2 d-1) (Figure 2.2). Total litter production peaked from September to November, at 3.17 ± 0.32 g m2 d-1, and coincided with the end of the summer in Qatar. During this time, somatic and reproductive litter averaged 1.85 ±0.17 g m2 d-1 (58.4 ± 0.05%) and 1.32 ± 0.16 g m2 d-1 (41.6 ± 0.05%) of the daily total respectively. The lowest period for total litter production was from December to February (Figure 2.2), when total litter averaged 0.94 ± 0.07 g m2 d-1 and 98.9% of the litter was somatic material. When grouped into winter and summer seasons, no significant difference in litterfall was detected in either the total (F2,11=0.29, p=0.75), somatic (F2,11=0.49, p=0.62) or reproductive (F2,11=2.50, p=0.13) litter. Mixed effects analysis revealed inter-tidal zone alone was the best fixed effects predictor of monthly total, somatic and reproductive litter (Figure 2.3). Total litter rates in low and mid tidal zones were both significantly higher than those in high tidal areas (F2,25=13.35, p<0.01, Figure 2.3a). Total litterfall in low and mid tidal zones were on average 0.56 ± 0.08 g m2 d-1 and 0.40 ± 0.01 g m2 d-1 greater than those in high tidal areas. Similarly, somatic and reproductive litterfall in low and mid tidal zones were significantly greater than those in high tidal zones (Figures 2.3b and 2.3c). Somatic litterfall was on average 0.50 ± 0.09 g m2 d-1 and 0.40 ± 0.09 g m2 d-1 greater than those in high tidal areas, while reproductive litter rates were on average 0.26 ± 0.13 g m2 d-1 and 0.01 ± 0.13 g m2 d-1 greater than those in high tidal areas.
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Figure 2.2: Lines and shadowed areas represent mean ± SE daily somatic and reproductive litterfall rate across different months averaged over all three sampling sites and faded points are sampling data points.  Lines are smoothed using a second order polynomial function.
 [image: ]c)
b)
a)

Figure 2.3: Daily litter rate of a) total; b) somatic and c) reproductive litterfall across tidal heights. Thick black lines represent median, while lower and upper limits of boxes represent 25th and 75th quantiles.

[bookmark: _Toc120622110]2.4.2	Aboveground apical shoot growth
Mean overall shoot tip growth was 1.24 ± 0.16 cm per month (mn-1). Growth in winter was >1.5 times that of growth in summer (Figure 2.4). Difference in shoot tip growth between summer and winter was statistically significant, as revealed by mixed effects analysis (F1,133=12.91, p<0.01) (Figure 2.4) and averaged 1.54 ± 0.10 cm mn-1, whereas in summer growth averaged 0.96 ± 0.09 cm mn-1. Unlike litterfall, shoot growth did not show variation between tidal heights (F2,24=0.92, p=0.41) (Figure 2.4). 
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Figure 2.4: Apical tip growth across tidal heights and different seasons. Thick black lines represent median, while lower and upper limits of boxes represent 25th and 75th quantiles. Negative shoot growth indicates when apical tips broke off and were shorter than the previous measurement.

[bookmark: _Toc120622111]2.4.3	Below ground tree growth
Mean below ground tree growth over the study period across all three sites and transect locations was 1.03 ± 0.03 Mg ha yr-1. Mixed effects analysis revealed tidal height (F2,46=4.81, p=0.01), site (F2,46=4.98, p=0.01) and an interaction of these two factors (F4,46=2.81, p=0.03) best explained annual root growth (Figure 2.5). Root growth across all lower tidal zones, averaging 1.69 ± 0.59 Mg ha yr-1, was significantly greater than mid 0.74 ± 0.21 Mg ha yr-1 and high 0.83 ± 0.14 Mg ha yr-1 zones (Figure 2.5). The difference in root growth in low tidal zones was primarily driven by significantly greater root growth in low tidal areas of Al Khor (4.82 ± 1.28 Mg ha yr-1), which was substantially higher than the low tidal zone root growth of South Dhakhira (1.10 ± 0.65 Mg ha yr-1) and West Dhakhira (0.52 ± 0.13 Mg ha yr-1, Figure 2.5).
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Figure 2.5: Annual root growth across tidal heights and different sampling sites. Thick black lines represent median, while lower and upper limits of boxes represent 25th and 75th quantiles.

[bookmark: _Toc120622112]2.4.4	Soil respiration
Mean overall soil respiration was 0.12 ±0.06 CO2 mmol m2 h-1; however, it varied significantly between tidal heights and with seasons. Soil respiration during summer (0.42 ± 0.10 CO2 mmol m2 h-1) was significantly greater than winter (0.47 ± 0.12 CO2 mmol m2 h-1) (F1,78=16.19, p<0.01, Figure 2.6). In winter, mangrove soils became a CO2 sink, with a mean flux rate of -0.04 ± 0.07 CO2 mmol m2 h-1. Mean soil respiration was also significantly greater in mid tidal areas (0.24 ± 0.13 mmol CO2 m2 h-1) than thigh tidal areas (-0.07 ± 0.11 CO2 mmol m2 h-1) (F2,78=2.92, p=0.05, Figure 2.6). 
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Figure 2.6: Soil respiration rate of across tidal heights and different sampling seasons. Thick black lines represent median, while lower and upper limits of boxes represent 25th and 75th quantiles. Positive values indicate a net production of CO2 from mangrove soils, while negative values represent a sink. 

[bookmark: _Toc120622113]2.5	Discussion
Country scale variations in mangrove productivity are associated with broadscale climate heterogeneity (Ribeiro et al., 2019) and results of the current study showed average overall mangrove litter rates in Qatar were comparable to mangroves in other arid and sub-tropical locations (Qatar: 1.81 ± 0.09 g m2 d-1, Saudi Arabia: 2.13 g m2 d-1, Florida: 1.85 g m2 d-1, South Africa: 1.77 g m2 d-1) (Coronado-Molina et al., 2012; Emmerson and McGwynne, 1992; Saifullah et al., 1989), as well as other monospecific A. marina stands in a temperate setting (New Zealand: 1.18 g m2 d-1) (Gladstone-Gallagher et al., 2014). Above and below ground productivity were considerably lower than wet tropical regions where litter rates can average 3.92 g m2 d-1 (Leach and Burgin, 1985) and root growth can be almost 30 fold greater (28.4 Mg ha-1 yr-1) than that measured in Qatar (Xiong et al., 2017). Despite these linkages between productivity and precipitation, average litter rates in sub-tropical Hong Kong (2.90 g m2 d-1) (Lee, 1989), where annual precipitation rates are ~1800 mm (Au, 1998), are comparable to some locations in tropical Indonesia (2.27 g m2 d-1) (Sukardjo and Yamada, 1992), where annual precipitation can be over 1.5 times higher (~2800 mm) (Avia, 2019) and >25% of the world’s mangroves occur (Hamilton and Casey, 2016) and where average net primary productivity rates as high as ~65 Mg ha-1 yr-1 have been reported (Analuddin et al., 2020). Average litter rates in the semi-arid Gulf of California can be even greater than that recorded in Indonesia, reaching up to 4.12 g m2 d-1 (Sanchez-Andres et al., 2010). A lack of association in litterfall rates across large precipitation gradients suggests that changes in precipitation alone is not the major driving factor in mangrove productivity. In support of this, Ribeiro et al. (2019) found the interaction between minimum precipitation of the driest month and minimum temperature of the coldest month to be the most influential factors in driving average mangrove litterfall rates on a continental scale. Mangrove litter rates and productivity can also be dependent on their geomorphological setting, where mangroves in deltaic and riverine environments display greater productivity than those in carbonate regions (Coronado-Molina et al., 2012), such as those in the western Gulf (Perri et al., 2018). It is likely that the comparatively high litter rate in semi-arid Gulf of California is as a result of its deltaic setting, conversely, in Egypt, where mangrove productivity has been shown to be reduced the mangroves in Egypt are located within a carbonate setting, (Coronado-Molina et al., 2012).

Mangrove productivity is not only variable across space, it also varies over time and season, with more monthly variation in subtropical locations than in the tropics. For example, while average litter rates in Qatar were low when compared to the world’s most productive mangroves, the months in which litter rates peaked in Qatar had greater litter fall rates (4.62 g m2 d-1) than the annual averages of productive tropical mangrove forests (4.34 g m2 d-1) (Ghosh et al., 1990). Mangroves in the hyper-arid southern Sinai region of Egypt, where monthly precipitation ranges between 0 and 4 mm (Mashaly et al., 2016), have seasonal peaks in litter (1.25 g m2 d-1) (Gab-Alla et al., 2010) that are comparable to the minimum litter rates in the highly productive wet tropical mangroves of Indonesia (1.38 g m2 d-1) (Sukardjo and Yamada, 1992). Monthly variation from the annual mean in litter fall is greater in sub-tropical locations (Qatar: 62%, Egypt: 53% and Saudi Arabia: 71%) than tropical ones (Papua New Guinea: 29% and Indonesia 29%) (Gab-Alla et al., 2010; Leach and Burgin, 1985; Saifullah et al., 1989; Sukardjo and Yamada, 1992). The greater seasonal variation in climatic factors in subtropical settings (eg temperature, rainfall) is likely to drive the observed high variation in monthly productivity data. For instance, the difference between summer and winter air temperatures in Qatar (40C) can be nine times that of tropical locations like Indonesia (5C) (Usup et al., 2004) (Figure A2). 

Variation in litterfall along sampling transects observed in the current study are likely to be in response to heterogeneity in nutrient availability and salinity stress along the tidal gradient. When freshwater inputs are lacking, such as in arid mangroves, it is likely porewater salinity increases with the tidal gradient and is greatest in higher tidal zones where tidal inundation is less frequent and evapotranspiration is higher (Bathmann et al., 2021). Increased salinity has been shown to be inversely related to mangrove productivity and biomass (Sherman et al., 2003). Moreover, as arid mangroves are generally low in nitrogen (N), which has been shown to limit mangrove growth (Lovelock et al., 2004), and concentrations in arid mangrove soils decrease with increasing tidal height (Adame et al., 2020), reduced litterfall observed in in high tidal zones may also be due to lower soil N concentrations. Conversely, N concentrations in humid tropical mangroves decrease in a seaward direction and mangrove tree height, which has been shown to be a good indicator of productivity (Rivera-Monroy et al., 2011), can be greater in high tidal areas compared to low tidal zones (Kauffman et al., 2011). Greater N concentrations in higher tidal zones in humid tropical mangroves suggests greater N inputs coming from a landward direction. Subsequently, mangroves in humid conditions can be highly productive outwelling systems, dependant on their geomorphological setting (Lee, 1995). Outwelling and inwelling processes are much less well understood in arid mangroves, although it is known that inwelling of downstream seagrass material is a substantial food source to mangrove fauna in Qatar (Al-Maslamani et al., 2013; Walton et al., 2014). A greater reliance on seaward nutrients may also help explain why tree productivity and biomass (Chatting et al., 2020) in Qatar is greatest in low and mid tidal zones.

Previous research has shown soil nutrient limitation of apical shoot tip growth (Feller et al., 2003; Lovelock et al., 2004). However, relatively little research has investigated how seasonal climatic variation may affect mangrove productivity. Apical tip growth observed in the current study was comparable to nutrient-limited dwarf mangroves in Panama (~1 cm mn-1) (Lovelock et al., 2004). However, apical tip growth in winter was >1.5 times greater than in summer. This suggests that mangrove growth in Qatar is somewhat reduced during the summer, observation during sampling, showed that some apical tips exhibited shriveling/drying during the peak summer temperatures, with some indication of die back. This suggests that the high summer temperatures may be a direct stress limitation to growth in the mangrove trees, with osmotic stress potentially exacerbated due to soil porewater evaporation. Seasonal variations in mangrove soil chemistry and growth are well documented (Mehlig, 2006; Nasrin et al., 2019) and higher soil salinities (up to 64) (Perri et al., 2018) and temperatures (regularly exceeding 50°C) (Mamoon and Rahman, 2017) experienced in Qatar during the summer may be depressing apical tip growth. In the Arabian Gulf, significantly greater air temperatures and evapotranspiration rates in summer than in winter are also likely to increase mangrove porewater salinity, which depresses mangrove productivity and biomass (Sherman et al., 2003).

Mean soil respiration rates in Qatari mangroves (0.12 ± 0.06 CO2 mmol m2 h-1) were at the low end of estimates from other biogeographical regions, where estimates range from 0.15 mmol CO2 m2 h-1 in a tropical to semi-arid lagoon (Leopold et al., 2013) to 10.35 mmol CO2 m2 h-1 in a subtropical estuary (Ouyang et al., 2017). Mangrove benthic community respiration rates vary considerably around the world and the majority of mangrove soils are thought to be a source of CO2 (Bouillon et al., 2008). However, similarly to other subtropical mangroves, Qatari mangroves’ soil uptake of CO2 in colder periods partially offset flux from hot periods (Chen et al., 2019). This is in contrast to tropical mangroves, where soils are a source of CO2 and seasonal changes in climatic conditions are not significant enough for soils to become a sink (Rosentreter et al., 2018). Higher rates of net CO2 flux are associated with higher temperatures and a seasonal increase of 4°C in air temperature can increase mean net soil respiration rates by 21% (Arnaud et al., 2020). Despite the comparatively high summer temperatures in Qatar, which regularly exceed 50°C (Mamoon and Rahman, 2017), summer soil respiration rates were ~1% (0.42 ± 0.10 CO2 mmol m2 h-1) of mean soil respiration rates in other sub-tropical mangroves (38.4 mmol m2 h-1, converted from mg m2 h-1) (Chen et al., 2012). Soil respiration was highest in the mid mangrove, and lowest in the high mangrove, which is likely as a result of greater tree density in mid mangrove zones in Qatar compared to high tidal areas  (Chatting et al., 2020). Greater canopy coverage is associated with increased soil respiration as a result of reduced light available for photosynthesis and lowered microphytobenthic production on the soil surface (Castillo et al., 2017). When compared to previous research, these results show the highly variable nature of mangrove soil respiration under different climatic settings and mangrove stand characteristics and illustrate the need for more field sampling of soil respiration, globally.

Results from the current study agree with previous work showing mangrove productivity in low-rainfall regions to be relatively low and that mangroves may not always be among the world’s most productive forests (Gab-Alla et al., 2010; Saifullah et al., 1989). The study also provides data on above and below ground mangrove productivity for an understudied and extreme environment and found productivity to be reduced in higher intertidal zones, possibly as a result of increased porewater salinity and reduced nutrient availability, which has previously been shown to depress mangrove productivity (Sherman et al., 2003). Monthly productivity was also shown to be highly seasonal, which is comparable to other subtropical locations and greater than that of humid tropical regions. These results were supported by significant seasonal differences in soil respiration and aboveground tree shoot growth. The observations suggest that the extreme summer environment in Qatar may be depressing mangrove productivity, in addition to the seasonally lower productivity observed in the cooler winter months, at what is close to the northerly range limit for A. marina. Minimum winter air temperatures have been shown to be a limiting factor in mangrove latitudinal expansion (Lovelock et al., 2016; Osland et al., 2018; Ribeiro et al., 2019), so weak productivity in the winter is to be expected. In addition, here in Qatar this study reports a summer period where productivity is higher but suppressed to some extent during the air temperature peak. As mangroves are expanding their distribution into higher latitudes (Osland et al., 2017; Saintilan et al., 2014), it is important to understand how these ecosystems will respond at the extremities of their global distribution, such as those in Qatar.
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[bookmark: _Toc120622115]3.1	Abstract 
Mangrove productivity plays an important role in the global carbon cycle. However, little work has examined spatial variabilities in productivity on a global/regional scale and even less work has investigated global/regional temporal trends in mangrove productivity. Productivity research has been limited to temporal changes on small local scales or to focusing on large global patterns in productivity at one point in time. This study leveraged previously published data on mangrove leaf litter to model global and regional scale mangrove productivity on a monthly timescale from 1980 to 2095. Regions were defined by the Marine Ecoregions of the World marine provinces framework. Models revealed minimal change to NPP, as global productivity rates dropped by only ~1.4% from 239.2 ±58.4 Tg yr-1 between 1980 and 1990 to 235.9 ±54.6 Tg yr-1 between 2085 to 2094. Despite little global change in NPP, significant regional change was detected, particularly in the subtropics. The Southwest Australian Shelf (60.58 ± 65.27%), the Warm Temperate Northeast Pacific (43.75 ± 43.81%) and the Warm Temperate Northwest Pacific (31.55 ± 37.15%) all increased their NPP by over one-third by the end of the 21st century. Southeast Asian marine provinces, the Java Transitional province (11.45 ±4.14%) and the Western Coral Triangle (7.61 ± 6.39%) had significant decreases in NPP relative to historical rates. This study is the first to predict monthly global and regional mangrove NPP into the 21st century. The models reveal significant regional changes not previously reported. These findings have implications for future mangrove carbon sequestration and coastal habitat carbon cycling. The relative shifts in NPP reported here would impinge on the input rates of mangrove derived organic matter and would greatly increase or decrease mangrove litter export to neighbouring ecosystems.

[bookmark: _Toc120622116]3.2	Introduction 
Mangroves are among the most productive forests in the world and play a major role in the global carbon cycle (Alongi, 2009; Bouillon et al., 2008; Duarte, 2017). While only comprising ~0.7% of tropical forests (Giri et al., 2011) they contribute between 10 and 15% to marine organic carbon burial (Kristensen et al., 2008). As a result, mangroves are considered significant carbon sinks, termed ‘blue carbon’, and have received much attention from policy makers as natural systems to mitigate climate change (Cameron et al., 2019; Murdiyarso et al., 2015).  Mangrove primary productivity is generally high in mangroves and can average 11 t DW ha-1 yr-1 in some regions (Alongi, 2009). With ten percent of the carbon buried in sediments attributed to this autochthonous productivity (Bouillon et al., 2008), the Net Primary Production (NPP) of humid tropical mangroves has an important role to play in global carbon budgets and coastal ecological processes in general. Of the remaining mangrove production, ~40% is exported to neighboring habitats (Bouillon et al., 2008; Twilley et al., 2017), while the remaining 50% of productivity is largely unaccounted for in carbon flow models (Bouillon et al., 2008). 

Much of global and local differences in mangrove productivity can be explained by variation in coastal geomorphology, climatic and tidal setting (Ribeiro et al., 2019; Twilley et al., 2017). Mangroves that grow where riverine inputs and tidal ranges are elevated are more productive than mangroves elsewhere (Hutchison et al., 2014; Ribeiro et al., 2019). Periodic flushing from river discharge and/or tidal inundation increases nutrient availability as mangroves usually suffer from nitrogen and phosphorus limitation (Lovelock et al., 2004) and reduces soil salinity to promote greater productivity (Castañeda-Moya et al., 2006; Ribeiro et al., 2019). Large scale patterns in mangrove NPP align with gradients in climatic variables (Bouillon et al., 2008; Ribeiro et al., 2019; Simard et al., 2019; Twilley et al., 2019). Globally, humid tropical regions are associated with higher mangrove productivity, as evidenced by high leaf litterfall rates, which is the most commonly used proxy for mangrove productivity (Twilley et al., 2017). For instance, daily litterfall rates in the hyper-arid mangroves of Egypt (0.6 g m2 d-1), which receives only ~40 mm rain per year, are less than one-sixth (14.6%) of those in Papua New Guinea (3.9 g m2 d-1), where annual precipitation is approximately 100 times higher (~4000 mm) (Gab-Alla et al., 2010; Leach and Burgin, 1985). Temperature is another important predictor of NPP and can limit mangrove productivity at the extremities of their global distribution (Bouillon et al., 2008; Osland et al., 2020). Thus, under higher temperatures and decreased rainfall it is likely that arid mangroves contribute less to autochthonous organic carbon inputs. 

As a result of being largely climate driven, broad scale patterns in mangrove NPP are not spatially or temporally uniform (Bouillon et al., 2008; Simard et al., 2019; Twilley et al., 2019). Spatial variation in mangrove productivity on large and local scales is well documented (Almahasheer et al., 2016; Coronado-Molina et al., 2012; Day et al., 1996; Gab-Alla et al., 2010; Leach and Burgin, 1985; Woodroffe, 1985). However, temporal variation in NPP has only been reported on local scales, where litterfall rates have been shown to increase 6 fold in one location within three months and vary by 40% inter-annually (Coronado-Molina et al., 2012). Numerous studies have contrasted within-region variation in litterfall rates (Day et al., 1996, 1987; Komiyama et al., 2008; Kristensen et al., 2008; Ribeiro et al., 2019; Sherman et al., 2003), based on location averages calculated across sampling periods from a few months to several years (Coronado-Molina et al., 2012). Through averaging, information on seasonal variation and cyclic events, such as El Niño and La Niña, is lost and temporal predictions with monthly resolution can no longer be made. As a result, global mangrove NPP estimates serve only as a ‘snapshot’ of mangrove NPP at one point in time (Bouillon et al., 2008; Ribeiro et al., 2019), making it difficult to investigate temporal shifts in mangrove NPP, or the implications of climate change on NPP. 

The current study collated monthly leaf litter values from previously published research literature to predict leaf litter rates on a monthly temporal scale, which has previously not been performed. In addition, the impacts of climate change on mangrove systems around the world are not expected to be spatially uniform (Alongi, 2015; Chatting et al., 2022; Saintilan et al., 2020). Shifts in large scale climatic regimes could place some regional mangroves at risk of significantly reduced NPP. For example, sea level rise would cause changes to inundation periods and durations, potentially increasing tree mortality and significantly reducing NPP (Ward et al., 2016). Moreover, decreases in winter air temperatures, which currently limits poleward expansion of mangroves, may cause reductions of mangrove NPP at their latitudinal limits (Osland et al., 2020). However, reduced mangrove NPP at their poleward limits may only shift productivity towards saltmarsh habitats (Osland et al., 2018).

This study explored how climate change will affect global rates of mangrove NPP. The study then compared these changes to past NPP and evaluated whether any shifts in productivity will vary between global mangrove regions. Emphasis was placed on predicting mangrove productivity at a monthly resolution, to examine if climate change will cause an increase or decrease in the seasonality of NPP. The study hypothesised that global NPP and NPP seasonality (seasonality is defined as variance from the annual mean (O’Donnell and Ignizio, 2012)) would increase by the end of the 21st century, particularly at the extremities of global distribution. To explore the aims and hypotheses, the study used predictive modelling of existing data sourced from the literature. To inform on how climate change will impact on primary productivity, the model projections were made to the middle and the end of the 21st century and under four different climate change scenarios. 

[bookmark: _Toc120622117]3.3	Methods
[bookmark: _Toc120622118]3.3.1	Sourcing literature data
Mangrove litterfall was used as a proxy for mangrove Net Primary Productivity (NPP), as is typically done (Alongi, 2009; Bouillon et al., 2008). The study collated a database of measured monthly litterfall rates, corresponding site coordinates and sampling dates from previously published literature. Only studies that reported litterfall rates at approximate monthly intervals were retained. Candidate studies were identified using Google Scholar (http://scholar.google.com/) and the following search terms: “mangrove” AND “litter” OR “productivity” OR “leaf litter” OR “litter fall” OR “litterfall”. Only Google Scholar was used as the literature indexed on the website is a superset of Web of Science and Scopus, two other commonly used search databases in meta-analysis studies (Martín-Martín et al., 2018). The longitude and latitude of sampling site were obtained from studies when reported. When studies only reported sampling locations graphically, images of graphics were captured and points were digitized in Plot Digitizer software by manually overlaying points onto graphical coordinates (Chatting et al., 2022; Rovai et al., 2018). Statistical uncertanties reported by studies (standard deviation with associated n and/or standard error) were included in the database to be propagated later in model development and when predicting litter-rate estimates. 

[bookmark: _Toc120622119]3.3.2	Method of predictive modelling
The general approach was to predict leaf litter rates from climate data for each month of the year, from the 1st of January 2015 to the 31st of December 2094. For comparison to past NPP rates, litterfall was also preditced from the 1st of January 1980 to the 31st of Decmber 2014. A suite of climatic variables (O’Donnell and Ignizio, 2012), commonly used in previous global mangrove modelling efforts (Table A1) (Chatting et al., 2022; Hutchison et al., 2014; Wagner et al., 2018) and hereafter collectively referred to as “bioclim”, were used as predictors of monthly leaf litter rates. Bioclim predictors were calculated from historical datasets of mean monthly precipitation (Pmean), mean monthly air temperatures (Tmean), daily maximum air temperatures (Tmax) and daily minimum air temperatures  (Tmin). Monthly averages were calculated for variables that had day-resolution data. Historical climate datsets were obtained from the Global Precipitation Climatology Centre (Schneider et al., 2011) (GPCC) and National Center for Environmental Prediction (NCEP) (Kalnay et al., 1996). Because many bioclim variables needed 12 months of climate data for before monthly averages could be determined (for example: mean temperature of the wettest quarter of the year, which requires 12 months of temperature and precipitation data to find the wettest quarter of the year), bioclim variables from the preceeding 12 months were averaged to predict one month of leaf litterfall. For instance, to predict leaf litterfall in January 1980, bioclim values were calculated for the period January to December 1979.

Multiple Linear Regression (MLR) and random forest predictive models were contrasted to test which better predicted leaf litter datasets. Data were split into an 80% training set and 20% test set (Rovai et al., 2018), which resulted in 915 training set data points and 229 test set data points. Models were fit using the training set and the test set was used in model selection. Metrics to determine which model better predicted test set data were Root Mean Squared Error (RMSE) and R2 values. The model with the lower RMSE and greater R2 values was selected (Rovai et al., 2018; Sanderman et al., 2018). Measures of uncertainty (stdev) compiled from literature were included as inverse weights in both linear and random forest modelling to account for reported sampling uncertainty. To comply with linear regression assumptions, response data for linear regression analyses were log10. Multiple linear regression predictors were chosen based on stepwise regression and multicolinearity was addresed by removing explanatory variables with a variance inflation factor >3.3 (Kock and Lynn, 2012). The random forest model was built using the randomForest package in R. Random forests are not subject to assumptions of normaility and multicolinearity, therefore, all predictors were used and the response data were left un-transformed. Out of sample performance was tested by k-fold cross validation using an 80-20% training-test split for both linear and random forest models (Masih, 2019). All statistical analysis was performed using R 3.6.2 software.


[bookmark: _Toc120622120]3.3.3	Generating monthly global leaf litter estimates from 1980 to 2094
Once the final model was selected, model outputs were projected onto a global mangrove mask (Hamilton and Casey 2016). Hamilton and Casey’s mangrove coverage for the year 2012 was used to predict mangrove litter rates worldwide. The original ~30m2 pixel spatial resolution was converted to ~3000x3000m2 spatial resolution by resampling points. This level of spatial resolution was selected as it reduced computational requirements, while still being fine enough to track regional level changes in climate and litter. Previously, 1km2 to ~25km2 pixel sizes have been used in global mangrove modeling studies (Hutchison et al., 2014; Rovai et al., 2018). The spatial resolution of the mangrove litter database was also aligned to the same resolution of the mangrove mask. When data points occurred within the same pixel for the same month, they were averaged. 

Historical monthly bioclim predictors were used to predict leaf litterfall rates (g m2 d-1) for all global mangrove pixels for each month from 1980 to 2015 using the final predictive model selected. Model standard errors were multiplied by 1.96 and either added or subtracted from mean predicted values to calculate upper and lower 95% confidence intervals (CI’s) for leaf litterfall rates (Zuur et al., 2013). It is estimated that leaf litter comprises ~20 to 60% of total mangrove Net Primary Productivity (NPP) To convert model litterfall estimates into Net Primary Productivity (NPP) (Bouillon et al., 2008; Twilley et al., 2017), thus the central estimate (40%) was used to convert litter rate estimates and CI’s into NPP using an 2.5 conversion factor (NPP = 2.5 × litterfall rate). This assumption is not likely to hold true globally as differing environmental climates have been shown to change mangrove biomass allocation. For example, Chatting et al. (2020) found greater below ground to above ground biomass allocation in an arid mangrove system when compared to the same species in a tropical location.

Future monthly litterfall rates and associated 95% CI’s (2015 to 2094) were predicted in the same way as historical day estimates. Breifly, future bioclims, depending on emissions scenario, were extracted from forecasted climate datasets (Pmean, Tmean, Tmin and Tmax) for all global mangrove mask points and the same random forest model as used for present day litterfall rates was used on future forecasted bioclim predictors. The main difference between present day and future llitterfall rates was that forecasted monthly climate data for all global mangrove coverage pixels were used instead of historical datasets. To calculate future climate data, the latest Coupled Model Inter-comparison Project phase 6 (CMIP6) climate scenarios were used (https://esgf-node.llnl.gov/search/cmip6/). The study used Shared Socioeconomic Pathways (SSP) scenarios 126, 245, 370 and 585 from the 6th IPCC Assessment Report (AR6), as they broadly represent a range of low to high global CO2 emissions scenarios by the year 2100 (Rogelj et al., 2018). Shared Socioeconomic Pathway 126 (SSP126) is the lowest emissions scenario and reaches negative annual global CO2 emissions by ~2075 (Rogelj et al., 2018); SSP245 reaches ~10 GtCO2 yr-1 by the year 2100, a reduction of ~67% from historical levels; both scenarios SSP370 and SSP585 represent significant increases (>250% under SSP370 and >400% under SSP585) on annual CO2 emissions by the end of the century (Rogelj et al., 2018).The ensemble of climate datasets (mean monthly precipitation (Pmean), mean monthly air temperatures (Tmean) daily maximum air temperatures (Tmax) and daily minimum air temperatures  (Tmin) that were used to calculate bioclim predictors (Table A1) were bias-corrected and mean-weighted, prior to applying the leaf litter predictive model to the climate data. Bias correction of future datasets was done for each ensemble member, based on their alignment with historical climate datasets, and performed using the following equations (Luo et al., 2018):
 




Where Cor Pmean (m, loc), Cor Tmean (m, loc) and Cor Tmax (m, loc) stand for corrected future precipitation and temperature on the mth month in the locth location. Prefaces Obs and Hist refer to observed historical and hindcasted historical data. Weighting coefficients for bias-corrected climate data was calculated depending on their ability to hindcast historical observed datasets using the following equation (Muhling et al., 2011): 


Where RMS was the model root mean square (RMS). From weighting coefficients, a bias corrected, mean weighted ensemble climate forecast dataset was then calculated for each predictor (Pmean, Tmean, Tmax, and Tmin). The ensemble was selected using climate forecasts (and hindcasted data) for each scenario (SSP126, SSP245, SSP370 and SSP585) and each predictor. Datasets were downloaded from the World Climate Research Programme (https://esgf-node.llnl.gov/search/cmip6/). Future monthly bioclim variables were then calculated from the mean weighted monthly climate forecast. Future global monthly leaf litter and 95% CIs were then predicted from the future calculated bioclim predictors, and the predictive model chosen.

[bookmark: _Toc120622121]3.3.4	Projecting climate driven changes in NPP across global marine provinces
Mangrove Net Primary Productivity (NPP) was partitioned over different marine provinces throughout the world to investigate the spatial heterogeneity of mangrove NPP response to climate change. The marine provinces scheme of the Marine Ecosystems of the World (MEOW) framework was used to group changes in NPP regionally (Spalding et al., 2007). Changes in NPP on an annual scale and monthly variability (seasonality) were investigated by historical (1980 to 1990), mid-century (2030 to 2040) and late century (2085 to 2095) time periods. The term ‘seasonality’ in this study refers to the variation of one month from the mean over a 12 month period (O’Donnell and Ignizio, 2012). Seasonality calculated how variable NPP estimates were from an annual NPP mean over a one-year period. The aim of seasonality is to capture annual variation in NPP rates with the eventual aim of comparing annual variability in NPP rates between years. Seasonality was calculated as (O’Donnell and Ignizio, 2012):



[bookmark: _Toc120622122]3.4	Results
Litterfall data were found from 20 studies and across 18 of 38 marine provinces where mangroves are found globally (Figure 3.1a). Mangrove litterfall measurements were taken from spanned latitudes N-31 to N26, which includes >80% of the latitudinal range where mangroves are found globally (N-38 to N32) (Giri et al. 2011). As latitude is a significant predictor of mangrove biomass and productivity (Hutchinson et al. 2014; Ribeiro et al. 2019) the majority of variation in biomass and productivity due to latitude was captured by the literature data. These studies yielded a total of 1,144 litterfall data points to later be used in modelling of global litterfall rates. Random forest modelling that used the full suite of bioclim predictor variables (Table A1) captured a greater proportion of variation in monthly leaf litter data (R2 = 55%) than Linear modelling (Multiple Linear Regression: F8, 463=31.00, p<0.01, R2=0.34). Random forest model was selected as the final model for predicting monthly leaf litterfall, as cross validation revealed it outperformed the linear model in making test dataset predictions (CV Random Forest: ∆R2 = +0.20). The most important predictor of monthly leaf litterfall was mean monthly air temperature, which when dropped, accounted for 14.2% increase in the model’s mean squared error (MSE, Figure 3.2a). The partial dependence plot for mean monthly air temperature predicted a significant increase in litterfall rates once mean monthly air temperatures were >~11C when the effects of other factors were excluded (Figure 3.2b). 

[image: ]
Figure 3.1: a) Locations of studies where litterfall data were taken from to develop the numerical model used in predicting mangrove productivity in space and time; b) Marine provinces (colour coded) used for grouping global mangrove Net Primary Productivity (NPP) spatially (Spalding et al., 2007). Provinces are: 1: Agulhas, 2: Andaman, 3: Bay of Bengal, 4: Central Indian Ocean Islands, 5: East Central Australian Shelf, 6: Eastern Coral Triangle, 7: Galapagos, 8: Gulf of Guinea, 9: Hawaii, 10: Java Transitional, 11: Lusitanian, 12: North Brazil Shelf, 13: Northeast Australian Shelf , 14: Northern New Zealand , 15: Northwest Australian Shelf, 16: Red Sea and Gulf of Aden , 17: Sahul Shelf, 18: Somali Arabian, 19: South China Sea, 20: South Kuroshio, 21: Southeast Australian Shelf, 22: Southern New Zealand, 23: Southwest Australian Shelf, 24: Sunda Shelf, 25: Tropical East Pacific, 26: Tropical Northwestern Atlantic, 27: Tropical Northwestern Pacific, 28: Tropical Southwestern Atlantic, 29: Tropical Southwestern Pacific, 30: Warm Temperate Northeast Pacific, 31: Warm Temperate Northwest Atlantic, 32: Warm Temperate Northwest Pacific , 33: Warm Temperate Southwestern Atlantic, 34: West African Transition, 35: West and South Indian Shelf, 36: West Central Australian Shelf, 37: Western Coral Triangle, 38: Western Indian Ocean; and c) mean global historical (1980 – 1990) Net Primary Productively (NPP) rates (Mg ha-1 yr-1).

[bookmark: _Toc120622123]3.4.1	Historical Net Primary Productivity Rates and Seasonality
Mangroves occurred within 38 Marine Ecoregions of the World (MEOW) global marine provinces (Figure 3.1b), the top 13 of which accounted for >90% of total global Net Primary Productivity (NPP) (Figure 3.1c). Total global historical (1980-1990) NPP was 239.2 ±58.4 Tg yr-1 and averaged 24.0 ±19.3 Mg ha-1 yr-1. Unsurprisingly, >95% of global mangrove NPP was in the tropics, and in Southeast Asia and the Indo Pacific. The highest total annual province NPP was in the Western Coral Triangle (46.8 ±10.4 Tg yr-1), with almost a fifth (19.6%) of total global NPP. The Sahul Shelf had 29.1 ±7.3 Tg yr-1, while the Sunda Shelf had 23.1 ±5.4 Tg yr-1 (Table A2). These three marine provinces together represented 41.4% of the world’s historical mangrove NPP (Table A2). On a per area basis, four of the top five most productive provinces were located in Southeast Asia and the Indo Pacific (Figure 3.1c). Mangrove forests with the highest productivity were located in the Bay of Bengal (34.4 ±26.1 Mg ha-1 yr-1), the Sahul Shelf (31.2 ±9.3 Mg ha-1 yr-1), Andaman (30.7 ±23.5 Mg ha-1 yr-1) and the Sunda Shelf (30.0 ±12.3 Mg ha-1 yr-1). Outside Southeast Asia and the Indo Pacific, the Tropical Northwestern Atlantic, the Gulf of Guinea and the North Brazil Shelf all had high amounts of total NPP with 25.8 ±5.9, 22.3 ±5.6 and 13.0 ±3.1 Tg yr-1, respectively (Table A2). The Gulf of Guinea also had the second highest NPP on a per area basis (31.2 ±15.6 Mg ha-1 yr-1).
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Figure 3.2: a) Partial dependance plot of mean monthly air temperature (bio6) and predicted litterfall; b) increase in Mean Squared Error (MSE) for litterfall when dropping a bioclim predictor from the predictive model.
When historical global monthly NPP estimates were averaged, two peaks a year were detected - one in May, where total global NPP was 20.2 ±4.8 Tg mn-1 and again in September (20.1 ±4.9 Tg mn-1) - while NPP was at its lowest in July (19.8 Tg ±4.9 mn-1) and December (19.6 ±4.9 Tg mn-1) (Figure 3.3). Despite these peaks and troughs, monthly NPP was fairly constant throughout the year. Monthly contributions to annual total NPP ranged from a minimum of 8.2% of annual NPP in December to 8.4% in May. However, the annual seasonality of monthly historical NPP, which refers to the variation (standard deviation / mean* 100) over one year, was not uniform across marine provinces, ranging from 0.5 ±3.1% in the Central Indian Ocean Islands to 33.1 ±42.3% in the Southwest Australian Shelf (Table 3.1). Historical seasonality in NPP was relatively low in the world’s most productive marine provinces. The Western Coral Triangle (1.0 ±1.5%), Sahul Shelf (3.1 ±2.5%), Tropical Northwestern Atlantic (6.7 ±4.1%), Sunda Shelf (1.2 ±2.4%) and Gulf of Guinea (1.1 ±3.8%) were all lower than the 9.2 ±6.1% global average in historical monthly seasonality (Table 3.1). The marine provinces where monthly NPP varied the most (Southwest Australian Shelf (33.1 ±42.3%), Warm Temperate Northwest Atlantic (24.8 ±12.1%), Warm Temperate Northwest Pacific (23.4 ±17.4%), the West Central Australian Shelf (19.2, ±7.5%) and the Warm Temperate Northeast Pacific (18.7 ±9.9%), were all located in the sub-tropics.
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Figure 3.3: Mean ±SE monthly global NPP from 1980 to 1990; 2030 to 2040 and 2085 to 2095.



Table 3.1: Mean± 95% confidence intervals of past (1980 to 1990) annual seasonality (standard deviation / mean x 100; and is expressed as a percent) of Net Primary Productivity (NPP) for all 38 global marine provinces that contain mangroves. Change in seasonality in NPP by mid-century (2030 to 2040) and late-century (2085 to 2095) under the low end SSP245 emissions scenario.

	Province
	Current Seasonality (%)
	Mid Century
	Late century

	
	
	Change in Seasonality (%)
	Change in Seasonality (%)

	Western Coral Triangle
	0.95 ± 1.45
	-0.46  ±  0.20
	-0.46  ±  0.20

	Sahul Shelf
	3.11 ± 2.47
	-0.86  ±  0.27
	-1.86  ±  0.27

	Tropical Northwestern Atlantic
	6.66 ± 4.05
	-1.38  ±  0.56
	-2.52  ±  0.56

	Sunda Shelf
	1.21 ± 2.35
	0.02  ±  0.62
	0.07  ±  0.62

	Gulf of Guinea
	1.09 ± 3.80
	0.74  ±  0.36
	0.57  ±  0.36

	North Brazil Shelf
	2.18 ± 4.05
	-0.32  ±  0.10
	-0.95  ±  0.10

	Western Indian Ocean
	7.72 ± 1.60
	-1.46  ±  0.24
	-3.49  ±  0.24

	Bay of Bengal
	7.44 ± 4.28
	-0.50  ±  0.39
	-2.25  ±  0.39

	Tropical East Pacific
	3.01 ± 2.34
	0.42  ±  0.87
	-1.01  ±  0.87

	Andaman
	3.32 ± 4.06
	0.42  ±  1.43
	-0.50  ±  1.43

	Eastern Coral Triangle
	2.27 ± 1.89
	-0.38  ±  0.97
	-1.23  ±  0.97

	Northeast Australian Shelf
	12.52 ± 3.81
	-1.18  ±  0.29
	-3.33  ±  0.29

	Tropical Southwestern Atlantic
	5.12 ± 1.89
	2.14  ±  0.43
	0.50  ±  0.43

	West and South Indian Shelf
	3.45 ± 3.13
	-0.07  ±  0.07
	-1.31  ±  0.07

	Tropical Southwestern Pacific
	6.12 ± 2.73
	-0.94  ±  3.66
	-1.88  ±  3.66

	West African Transition
	3.32 ± 2.77
	-1.92  ±  0.15
	-2.01  ±  0.15

	South China Sea
	17.82 ± 5.76
	4.61  ±  0.94
	2.62  ±  0.94

	Warm Temperate Northeast Pacific
	18.67 ± 9.92
	0.08  ±  1.50
	-2.89  ±  1.50

	Northwest Australian Shelf
	8.50 ± 3.37
	-0.21  ±  1.36
	-2.16  ±  1.36

	Java Transitional
	4.87 ± 5.67
	-1.83  ±  0.37
	-2.65  ±  0.37

	East Central Australian Shelf
	14.68 ± 8.04
	1.41  ±  2.91
	2.26  ±  2.91

	Red Sea and Gulf of Aden
	5.97 ± 3.92
	-0.17  ±  0.14
	-1.95  ±  0.14

	Warm Temperate Southwestern Atlantic
	15.09 ± 5.62
	0.10  ±  2.16
	0.44  ±  2.16

	Warm Temperate Northwest Atlantic
	24.81 ± 12.06
	-2.96  ±  5.46
	-4.04  ±  5.46

	Northern New Zealand
	8.71 ± 5.21
	2.68  ±  7.87
	1.18  ±  7.87

	Southern New Zealand
	8.60 ± 5.80
	3.34  ±  9.00
	1.47  ±  9.00

	Galapagos
	6.08 ± 2.42
	-2.77  ±  2.54
	-3.29  ±  2.54

	Tropical Northwestern Pacific
	3.20 ± 8.02
	-0.57  ±  1.18
	-0.91  ±  1.18

	Somali Arabian
	14.21 ± 6.77
	-0.79  ±  1.82
	-3.79  ±  1.82

	Warm Temperate Northwest Pacific
	23.40 ± 17.42
	-6.54  ± 11.73
	-3.78  ± 11.73

	Southwest Australian Shelf
	33.06 ± 42.28
	-3.30  ± 17.36
	-5.49  ± 17.36

	Southeast Australian Shelf
	9.12 ± 6.09
	15.23  ± 17.13
	9.88  ± 16.13

	South Kuroshio
	12.17 ± 4.96
	0.70  ±  1.42
	0.07  ±  1.42

	West Central Australian Shelf
	19.23 ± 7.52
	-0.42  ±  1.34
	-4.00  ±  1.34

	Hawaii
	2.94 ± 3.48
	1.08  ±  2.21
	1.06  ±  2.21

	Agulhas
	13.56 ± 6.09
	1.44  ±  0.69
	1.48  ±  0.69

	Central Indian Ocean Islands
	0.53 ± 3.11
	0.17  ±  1.34
	-0.04  ±  1.34

	Lusitanian
	16.19 ± 10.21
	-1.00  ±  1.91
	-1.69  ±  1.91



[bookmark: _Toc120622124]3.4.2	Forecasted Net Primary Productivity Rates and Seasonality
On a global scale, little difference (<1.5% difference by 2095) was found in total global litter rates between the four tested emissions scenarios (SSP126, SSP245, SSP370 and SSP585) (Figure 3.4). Regional differences in total NPP between scenarios were detected by late-century (Figure A3). For example, greater rates of change in NPP were forecast in lower and higher latitudes, respectively under the high emissions scenario (SSP585) when compared to lower emissions scenarios (Figure A3). However, these differences had comparable net effects to overall global NPP (Figure 3.4). Thus, only the low end SSP245 scenario was investigated on a marine province scale. Model predictions found the total global annual Net Primary Productivity (NPP) will show little change throughout the 21st century from historical rates. Compared to historical (1980 to 1990) NPP rates, modelling suggested NPP will drop by ~1.1% by the mid-century (2030 to 2040) to 236.5 ±55.2 Tg yr-1 and by ~1.4% to 235.9 ±54.6 Tg yr-1 between 2085 to 2094. Despite relatively little change in overall global NPP, different marine provinces will show both relatively large increases and decreases in NPP throughout the 21st century (Figure 3.5). Three marine provinces were predicted to increase in NPP by the mid-century by one-third relative to past NPP rates: the Southwest Australian Shelf (46.1±55.0%), the Warm Temperate Northeast Pacific (34.1±4.6%) and the Warm Temperate Northwest Pacific (32.7±39.8%) (Table A2). These three provinces will also have the largest gains in NPP by the end of the 21st century, by 60.58 ±65.27%, 43.75 ±43.81% and 31.55 ±37.15%, respectively (Table A2). By mid-century, the greatest reductions relative to historical NPP will be in the Southern and Northern New Zealand marine provinces, dropping 14.00 ±7.83% and -13.09 ±8.50%, respectively (Table A2). By the end of the century, the Java Transitional province will have the greatest decreases relative to historical NPP rates (11.45 ±4.14%, Table A2). Relative to historical NPP rates, the Western Coral Triangle marine province will have the third largest decreases (7.61 ± 6.39%) and largest absolute reductions (3.56 ± 2.99 Tg yr-1) in NPP by the end of the 21st century (Table A2). This reduction will diminish the contribution of mangrove NPP from the Western Coral triangle from representing 19.68 ± 0.44 % of global NPP over 1980 to 1990, to contributing 18.38 ± 0.21% by 2095.
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Figure 3.4: Total global NPP (solid lines) with 95% confidence intervals (dash lines) from 1980 to 2094 for the four forecasted emissions scenarios. a) SSP126; b) SSP245; c) SSP370 and d) SSP585.

Global annual NPP seasonality will not show much change by the mid-century (Δ+1.0 ±0.1%), compared to the period between 1980 and 1990 (9.2 ±6.1%). Relative to the historical period (1980-1990), global monthly NPP will invert between 2030 and 2040 (Figure 3.3): July will change from being the trough in global NPP over 1980-1990 to become the peak in global NPP from 2030 to 2040 (Figure 3.3), and while September to November had high productivity historically, prior to 1990, it will represent a trough in NPP by the mid-century (Figure 3.3). On a regional scale, seasonality in NPP will markedly increase (Δ+15.2 ±17.3%) in the Southeast Australian Shelf by the mid-century (Table 3.1). The second highest increase in annual variation in NPP will be in the South China Sea, where NPP seasonality will increase by 4.6 ±0.9%. By the late 21st century, global seasonality in monthly NPP will drop (Δ-1.0 ±1.1%) relative to the historical 1980-1990 period (Table 3.1). In 2085-2095, the Southwest Australian Shelf will still show the greatest amount of seasonality in NPP (27.6 ±21.9%), although the strength of seasonality will drop relative to what it was in the historical 1980-1990 period (33.1 ±42.3%).
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Figure 3.5: Global change in annual Net Primary Productivity (NPP) rates under the low emissions (SSP245) scenario by a) mid-century (2030 to 2040) and b) late century (2085 to 2095).
[bookmark: _Toc120622125]3.5	Discussion
This study is the first to incorporate seasonal forecasting of global mangrove Net Primary Productivity (NPP) into the 21st century under different levels of climate change. We leveraged spatial and temporal components of previously published data to predict global mangrove NPP on a monthly scale, rather than estimating global NPP at one point in time. The approach of high temporal resolution to forecasting allowed us to estimate global monthly mangrove NPP over a 115-year study period and to detect long changes to seasonality on a regional and a global scale. 

Our projections showed little difference in global mangrove NPP between climate change scenarios (SSP126, SSP25, SSP370 and SSP585) and little change in overall global NPP throughout the 21st century (Figure 3.4). Using only the SSP 245 emissions scenario, global productivity showed little change by the end of the 21st century, dropping <1.5% compared to historical rates. Despite little overall change in global NPP, significant regional changes were detected. Six mangrove provinces were forecast to experience >20% gains in NPP relative to the historical 1980-1990 period. All these provinces are located in the sub tropics (the Southwest Australian Shelf, Warm Temperate Northeast Pacific, Warm Temperate Northwest Pacific, Warm Temperate Southwestern Atlantic, Warm Temperate Northwest Atlantic and the Somali/Arabian province, which straddles over the sub-tropics and tropics). These findings are consistent with previous work that forecasted mangrove expansion throughout the subtropics in the 21st century (Osland et al., 2017; Ward et al., 2016), likely as a result of elevated winter minimum air temperatures, which have been shown to historically limit poleward mangrove distribution and productivity (Osland et al., 2020, 2017; Ribeiro et al., 2019). For example, mangroves in Southern Australia have been expanding since the 1950’s and future increases in air temperature are thought to aid further mangrove expansion in that region (Ward et al., 2016). Incidentally, our forecasts showed the Southwest Australian Shelf to have the greatest relative increases in NPP (60.58 ±65.27 %) by the end of the century, relative to historical productivity.

Despite marked relative gains in NPP, the increases were small in absolute in terms.  The sum increase in NPP in all subtropical provinces (the Southwest Australian Shelf, Warm Temperate Northeast Pacific, Warm Temperate Northwest Pacific, Warm Temperate Southwestern Atlantic, Warm Temperate Northwest Atlantic and the Somali/Arabian province) was only ~0.6% (1.5 ±1.6 Tg yr-1) of total global NPP and only 3.2% of productivity in the world’s most productive marine province (the Western Coral Triangle, 46.8 ±10.4 Tg yr-1). In contrast to relative increases in NPP, relative decreases formed a significant portion of global NPP in absolute terms. The greatest decrease in NPP, relative to historical productivity rates, was 11.45 ±4.14% in the Java Transitional province, which was 4.87 ±5.67% of total global NPP. Apart from this province, five provinces had reductions in NPP >5% (the Southeast Australian Shelf, the Western Coral Triangle, Sunda Shelf, Northern New Zealand and Southern New Zealand). The sum of top six provinces with the greatest relative decreases in NPP (46.2 ±59.3 Tg yr-1) was approximately one-fifth (19%) of total global NPP.

The greatest rates of NPP were predicted to occur in Southeast Asia (the Western Coral Triangle, the Sahul Shelf and the Sunda Shelf) and four of the world’s top five most productive provinces straddled Southeast Asia and the Indo-Pacific (the Bay of Bengal, Sahul Shelf, Andaman and Sunda Shelf). These marine provinces are where the majority of the world’s mangroves and the most carbon dense mangroves occur (Chatting et al., 2022; Hamilton and Casey, 2016; Murdiyarso et al., 2015). Indonesia alone has been reported to have >25% of the world’s mangrove cover and 24.3 ±0.6% of the world’s total mangrove organic carbon stock (Chatting et al., 2022; Hamilton and Casey, 2016). Countries that straddle the most productive marine province (Indonesia, the Philippines, Malaysia, Myanmar and Papua New Guinea) have a combined 41.7 ±1.3% of the world’s mangrove total organic carbon stocks (Chatting et al., 2022), which is comparable to the >40% of the world’s NPP found in the current study. Much of the above and below ground production that occurs in mangroves contributes to in situ ecosystem carbon storage (Bouillon et al., 2008). Litter fall is a key component of total mangrove production and an important contributor to soil carbon stocks (Santos et al., 2021). Mangrove soil carbon stocks where litter fall is known to contribute close to half of organic carbon stocks can be almost three times greater than where leaf litter contributes ~5% of soil carbon stocks (Kusumaningtyas et al., 2019). As a consequence of this litter fall to carbon stocks association, it is largely the same climate drivers that influence mangrove productivity and biomass, as will influence carbon stocks. For example, increased precipitation decreases soil salinity concentrations, which in turn increases primary productivity (Gabler et al., 2017; Osland et al., 2018) – a principle which explains why tropical humid mangroves store up to ten times the organic carbon than those in arid regions (Chatting et al., 2020; Donato et al., 2011; Schile et al., 2017).

Relatively little change to the annual seasonality of NPP was detected throughout the 21st century, with only ~1% change in seasonality forecast by the late-century relative to the historical 1980-90 period. Moreover, most change in seasonality was by less than 5%, only two marine provinces had shifts in seasonality >5% by mid-century (the Southeast Australian Shelf and the Warm Temperate Northwest Pacific) or late century (the Southeast Australian Shelf and the Southwest Australian Shelf). Only the Southeast Australian Shelf was predicted to increase in seasonality 15 % by the midcentury and decreasing to 10% by late century. While increases in seasonality may not be large, only small changes could cause increases in periods where mangroves act as carbon sources. Measurements of Net Ecosystem Production (NEP), which take into account community respiration in calculating overall forest productivity (Gnanamoorthy et al., 2020), found a seasonal drop in primary productivity of ~8% coupled with increases in air temperature and reductions in precipitation were enough for a mangrove stand to become a carbon source rather than a carbon sink during certain seasons (Gnanamoorthy et al., 2020). Moreover, this phenomenon could become more common as air temperatures are predicted to increase and precipitation decrease in some regions (Soares et al., 2019) throughout the 21st century it is possible that even small monthly reductions in NPP could trigger some mangroves to become carbon sources, rather than sinks. In addition, increased intensity or frequency of droughts can cause rapid shifts in terrestrial forest soil biogeochemistry and increased CO2 emissions (O’Connell et al., 2018). 

Estimates of total historical global mangrove litter rates were comparable to previous estimates. Ribeiro et al. (2019) calculated a global total mangrove leaf litter rate of 84.0 Tg yr-1 (back calculated using calculations described by Ribeiro et al. (2019)). While Bouillon et al. (2008) estimated a total annual global litter rate of 156 ±45 Tg yr-1, they used a global mangrove extent estimate of 160,000km2 (approximately double that used by the current study). When global mangrove extent is standardized to ~83,000 km2 (Hamilton and Casey, 2016), the global litter rate of Bouillon et al. (2008)’s would be 80.9 ±23.3 Tg yr-1. Similarities in global NPP estimates likely arise from the use of comparable approaches to calculating global NPP. Similarly to the current study, Ribiero et al. (2019) and Bouillon et al. (2008) both used leaf litter data collated from a literature search as a proxy for NPP.

Our study assumed constant mangrove coverage from 1980 to 2095. Constant cover is unlikely and mangrove expansion will not occur uniformly around the world. Mangroves in temperate regions have been forecast to expand to higher latitudes with climate change (Saintilan et al., 2014). Moreover, increases in minimum air temperatures will likely help poleward dispersion of mangroves in North and South America, Australia, New Zealand and eastern Asia (Osland et al., 2017). Also, the interaction between sea level rise and coastal development will likely influence mangroves ability to migrate landward in response to sea level rise (Lovelock and Reef, 2020). Available landward space for mangroves to migrate into may be limited due to coastal development where mangroves occur in close proximity to human infrastructure (Lovelock and Reef, 2020). Up to 3.4 Pg sequestered C may be lost by 2100 due to coastal “squeeze” (Lovelock and Reef, 2020). In addition, varying geomorphological settings have been shown to play significant roles in mangrove functioning and productivity (Ribeiro et al., 2019; Rovai et al., 2018). For example, high nutrient availability and reduced soil salinity in riverine mangroves are associated with comparatively high aboveground biomass and productivity rates. (Twilley et al., 2019). However, as the aim of the current study was to predict the potential effects of climate change on mangrove NPP, only climatic predictors were used. Despite leaving out geophysical parameters and soil salinity from predictive models, the predictive power of the model used in this study was higher (ΔR2=+0.30) than that used by Ribeiro et al. (2019), who used a combination of climate and geophysical predictors to estimate continental scale mangrove litter fall rates.

Despite these limitations, our study is a first to predict global mangrove Net Primary Productivity (NPP) on a monthly scale over a 115-year time period. We estimate little net change global in NPP by the end of the 21st century, however, significant regional changes may still occur, particularly at the extremities of global mangrove distribution. These results have implications for ecosystem services that mangroves provide. Mangroves’ ability to capture and store carbon over long time horizons, which has received much scientific and political interest (Donato et al., 2011; Kauffman et al., 2011), is closely associated to NPP (Bouillon et al., 2008). Relative shifts in NPP by as much as +60.58 ±65.27% to -11.45 ± 4.14% would also result in significant changes to input rates of mangrove derived organic matter in respective mangrove regions, thus impacting mangrove sequestration rates. In addition, as ~50% of mangrove litter is exported to neighbouring ecosystems (Twilley et al., 2017) significant changes would occur in adjacent ecosystems carbon cycling. 
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[bookmark: _Toc120622127]4.1	Abstract
Global inventories that show mangrove forests have rich carbon stores currently lack data from arid areas where carbon stocks may be functionally impoverished relative to humid regions. We quantified total carbon stocks (C) of three arid Avicennia marina stands in Qatar and report an aboveground biomass allometric equation and the first below ground biomass allometric equation in the region.  The allometric relationships indicate that below ground mangrove C stocks in arid locations are more important than previously reported. Comparison of previously published and our locally developed allometric equations show that A. marina in Qatar allocate comparatively more biomass to below ground components than the same species in tropical humid settings, which is consistent with plant adaptations to living in stressed conditions. Total C stocks were 45.70 ±3.70 Mg C ha-1, of which tree and soil C stocks to 50 cm depth represented 10.18 ±0.82 Mg C ha-1 and 35.52 ±2.88 Mg ha-1 respectively. Soil C stocks to 1 m depth were 50.17 ±6.27 Mg C ha-1. Overall, mangroves sustain relatively small C stocks in the arid, hypersaline environment of Qatar, which may be due to both relatively low tree productivity and growth, as well as limited rainfall-driven transport of terrigenous sediment inputs. By providing further estimates of mangrove carbon at their climatic extremes, these results can contribute to a better quantification of global mangrove carbon, reduce uncertainty in below ground tree C estimates from arid mangroves and have implications for mangrove carbon stocks in the face of climate change.

[bookmark: _Toc120622128]4.2	Introduction
Research over the past decade has shown that coastal wetlands, mangroves, salt marshes and seagrass beds represent significant global carbon sinks (Alongi, 2014; Donato et al., 2011; Fourqurean et al., 2012; Murdiyarso et al., 2015). Accumulated organic carbon (C) is stored in slowly decomposing, anoxic soils over long time-scales (Alongi, 2014), generating deep below-ground ‘blue carbon’ stores with greater per-area carbon stocks than tropical upland forests (Alongi, 2012; Donato et al., 2011; Fourqurean et al., 2012). Coastal wetlands are also of greater importance to ocean carbon dynamics than their relatively small area would suggest (Donato et al., 2011; Fourqurean et al., 2012). Among coastal wetlands, mangroves are particularly carbon rich; total tree and soil carbon stocks contain up to 1023 Mg C ha-1 in the tropics, five times that of the most productive seagrass beds (~ 200 Mg C ha-1) and almost double that of saltmarshes (~ 600 Mg C ha-1) (Alongi, 2014; Donato et al., 2011). Consequently, mangrove carbon-storage potential has attracted much scientific and political interest as a means of mitigating against greenhouse gas (GHG) emissions (Cameron et al., 2019; Donato et al., 2011; Fourqurean et al., 2012; Liu et al., 2014; Schile et al., 2017; Wang et al., 2013). While mangrove soil carbon accumulates over centuries, current rates of deforestation makes the soil vulnerable to oxidation, with significant risks of increased GHG emissions (Almahasheer et al., 2017; Donato et al., 2011; Ezcurra et al., 2016; Kauffman et al., 2017). Conservation and restoration programmes have been identified as a profitable means of curbing GHG emissions that is comparable to investment in traditional asset classes (Cameron et al., 2019), although the prevention of further loss is, by far, the most effective way of maintaining wetland carbon storage (Kauffman et al., 2017). 

Carbon stocks in mangrove forests are mainly derived from estimates in the wet tropics, but there is limited emerging empirical data on how the ecological functioning of arid mangroves compares to that of their tropical humid counterparts (Almahasheer et al., 2017; Sanders et al., 2016; Schile et al., 2017). Annual rainfall and air temperature are important drivers of carbon stocks in tropical and sub-tropical mangroves (Rovai et al., 2018; Sanders et al., 2016). Increased rainfall is associated with higher mangrove productivity, which can become stored in the soil (Xiong et al., 2018). In China, up to 97% of carbon in the top 1m has been found to be of mangrove origin (Xiong et al., 2018), though terrigenous sediment contributions may be higher where there is freshwater-mediated input from river catchments (Adame et al., 2010). In estuarine soils across a large geographical area, strong inverse relationships have been found between rainfall and salinity and positive relationships between precipitation, plant productivity and soil organic matter (Osland et al., 2018). Mangroves in the western Arabian/Persian Gulf (hereafter referred to as “the Gulf”) persist in very arid conditions, with rainfall as low as 54 mm yr-1 (Price et al., 1993), compared to even the semi-arid mangroves of Senegal, where precipitation averages 650 mm yr-1 (Kauffman and Bhomia, 2017) and with heightened salinity (~60, Practical Salinity Units) (Perri et al., 2018). Air temperatures are also extreme in the Gulf, ranging from 50oC in the summer to below 0oC in winter (Al-Khayat and Jones, 1999; Halwagy et al., 1982; Price et al., 1993; Sheppard et al., 2010), which likely limits northerly mangrove distribution of the Gulf. Recent studies indicate carbon stocks are low in arid and semi-arid mangroves, with averages of 218.4 Mg C ha-1 in the United Arab Emirates (Schile et al., 2017) and 463 Mg C ha-1 in Senegal in soils deeper than 1m. However, carbon stocks are not universally impoverished in arid regions - soil carbon can reach up to 1130 Mg C ha-1 in arid parts of Baja California from cores up to 2 m depth (Ezcurra et al., 2016). 

Tropical humid mangroves can hold a significant proportion of their carbon stocks in above and below ground biomass (Donato et al., 2011; Kauffman et al., 2011), often estimated from species-specific allometric equations (Komiyama et al., 2008). Relatively little work has investigated allometric equations of mangroves in arid regions, particularly the Gulf. Schile et al. (2017) applied an Avicennia marina allometric equation from a tropical humid area of Australia to estimate tree carbon pools in the arid environment of the United Arab Emirates. There is also a lack of below ground biomass allometric equations, due to the logistical difficulties involved in sampling and accurately estimating mangrove root material (Komiyama et al., 2008). Many previous efforts have used either generic allometric models or equations developed in different climatic settings in estimating below ground biomass and carbon stocks (Hamilton and Friess, 2018; Hutchison et al., 2014; Schile et al., 2017), which may not necessarily provide accurate estimates. Past research has shown tree growth morphology and mangrove carbon allocation can vary between species and across climatic gradients (Banerjee et al., 2013; Chave et al., 2005; Komiyama et al., 2005; Smith and Whelan, 2006). Under stressful conditions previous work has shown that mangroves boost below ground partitioning and increase root biomass, which may be associated with increased soil salinity (Sherman et al., 2003). Thus, arid mangroves may have lower shoot to root ratios, and proportionally greater below-ground carbon allocation than mangroves in higher rainfall, tropical humid locations.

The current study provides results that are relevant to other arid regions where mangroves occur, for example, western Australia, western Africa, western South America, north-western Mexico and the western Gulf of Mexico. These results can also add to our knowledge of C stocks globally by refining estimates in arid countries. This study reports an aboveground biomass allometric equation and the first below ground biomass allometric equation for A. marina in the Gulf. This will add insight to the hypothesis that arid mangroves allocate more biomass below ground and will help reduce uncertainty in arid environment estimates. The study also aimed to develop and test regionally driven differences in above and below ground Avicennia marina allometric relationships. 

[bookmark: _Toc120622129]4.3	Methods
[bookmark: _Toc120622130]4.3.1	Study Sites
Three mangrove sites were selected for study on the north-east coast of Qatar (N 25.726251o, E 51.565021o, Figure 2.1). Salinity can be highly variable, ranging from 37 to 64 in a lagoonal setting (Al-Maslamani et al., 2013; Perri et al., 2018). Despite low annual precipitation, no incidents of drought-induced mortality, expansion or contraction in response to rainfall have been reported. Intertidal areas where sampling sites were located were dominated by mangroves. Sites were fringed by seagrass beds on the seaward side and, on the terrestrial side, by sabkha (supra-tidal salt flats vegetated with nonvascular halophytes) and microbial mat habitats, above which was a rocky desert landscape. Mangroves in Qatar are monospecific Avicennia marina stands. All stands occur along the eastern and northern coasts, with just a few isolated A. marina trees on the western coast. Sites around Al Khor and Al Dhakira bays were selected for study as they represent ~80% of total mangrove area in Qatar (Al-Khayat and Balakrishnan, 2014) and cover ~680 ha, providing a large enough area to study effects of tidal gradients throughout the mangroves. The Al Khor site was in the northern part of Al Khor bay and 4 km from Al Khor town. South and West Al Dhakira sites were situated in southern and western portions of Al Dhakira bay respectively and were separated by 3 km of sandy beach.

[bookmark: _Toc120622131]4.3.2	Sampling design
Mangrove sites were sampled by nine 10 x 10 m plots in three zones (Figure A1): three plots along the seaward and landward fringes, respectively, and three plots in the mid-mangrove that were placed at roughly equal distances along a transect running perpendicular to the shoreline. Collectively, plot distribution sampled the effect of the intertidal gradient on carbon stocks, while leaving scope for factorial contrasts between the low (n = 3 plots), mid (n = 3) and high (n = 3) mangrove stands. Each plot was marked using a handheld GPS and distance to the seaward edge and each transect length were measured a priori in Google earth. Transect lengths were, 2500m, 990m and 1250m in Al Khor, South Dhakira and West Dhakira, respectively.  Tidal ranges in Qatar are microtidal, <2m with a mean high water of circa 1.5m, which is the difference between annual average of high tides and annual average of low tides, with a relative height difference of approximately 0.7m between the low to high stations within the mangrove.

[bookmark: _Toc120622132]4.3.3	Field and laboratory methods
Above and below-ground carbon stocks of mangrove trees are normally estimated from empirically-determined allometric relationships between tree dry mass and tree diameter at breast height (DBH) (Clough et al., 1997). DBH is not a good predictor of dry mass for arid countries, such as Qatar, where trees branch low to the ground and form multi-stemmed, bushy growths (Clough et al., 1997). Here, tree crown diameter (CD) and tree height were used instead of DBH for biomass and carbon allometry analysis (see below), as used by Woodroffe et al. (1985) and Parvaresh et al. (2012)  for multi-stemmed trees (Clough et al., 1997). All trees in each plot were measured for height, the diameter across the widest part of the canopy (Crown Length: CL) and the canopy diameter perpendicular to CL (Crown Width: CW). Crown Diameter (CD) was calculated as (CL + CW)/2. Below ground, the mass of large roots (>20 mm diameter) were estimated after establishing allometric equations (see below). The mass of fine roots (1-20 mm) (Sherman et al., 2003) was sampled using four 4.5 cm diameter 60 cm deep cores per plot (Alongi et al., 2000). Soil depth profile throughout the sites comprised an organic rich fine-root layer (ranging from 0 to <20 cm depth), below which was a homogenous soil layer to bedrock. The fine-root layer was a clearly visible horizon. The depth of the fine-root layer was measured in four cores per plot. The contents of all cores were washed and sieved to 1 mm and all fine root material was dried to constant weight (60 oC for 48 hours). Soil depth was observed at each plot by inserting a steel pole to the bedrock. To estimate dry bulk density (DBD) and organic carbon content, a hole was dug and two 5.5 cm diameter 3 cm deep cores were inserted horizontally into the soil, one to represent the fine root layer at <20 cm depth, the other at >30 cm depth (Mizanur Rahman et al., 2015) (Figure A3). Rather than sampling the whole depth range of the soil, subsamples were taken to represent a particular depth range as this strategy has been found to be adequate for mangroves where carbon content generally changes slowly with depth (Kauffman & Donato 2012). Samples were dried to constant weight at 60oC for 48 hours and weighed to obtain DBD. Soil organic matter content was determined by loss on ignition (LOI) where samples were placed in a blast furnace at 400oC for 16 hours (Kauffman and Donato, 2012) and converted to organic soil carbon content (hereafter referred to as soil C as wt%) using a recently published conversion equation (0.21LOI1.12, R2 = 0.86) (Ouyang and Lee, 2020), which used 844 data points from 53 countries and included data from arid mangrove settings including the adjacent United Arab Emirates. Soil C density (mg C cm-3) was calculated as (DBD (g cm-3) x (%C/100)) x 1000. 

[bookmark: _Toc120622133]4.3.4	Tree excavation to establish allometric equations
Allometric relationships were established using 17 excavated trees designated for destruction by a coastal infrastructure project located in a bay 70 km south of the study sites (N 25.027395o, E 51.614390o). These mangroves were in a similar habitat to the study sites: sandy sediment and located adjacent to saltmarshes and seagrass beds. Isolated trees were selected to ensure that cable root material around the tree only originated from that tree (Matsui, 1998). It is possible choosing isolated trees may have biased the below ground biomass being recorded. It is plausible that isolated trees may have comparatively greater below ground biomass than non-isolated trees due to a lack of competition for below ground space. However, it was decided that choosing isolated trees was a better trade off to ensure all root biomass captured originated from the selected tree. Tree height (H), CL and CW were measured prior to excavation. Trees were marked at ground level before excavation to allow later separation of above and below ground biomass. The ground was excavated to 0.5 m depth (Komiyama et al., 2000), including the area falling below the canopy of each tree, plus 0.5 m radius beyond the edge of the canopy. This method provides a best estimate of below-ground biomass, as the excavation plot is proportional to the canopy size; it is superior to excavating in a constant 2 m radius for all excavated trees, irrespective of tree size (Comley and McGuinness, 2005). The mass of removed trees was divided into leaf, branch, stem and below-ground large root materials (>20 mm), and the dry weight of each component was established after drying at 60oC for 48 hours.

[bookmark: _Toc120622134]4.3.5	Converting Field Observations into Tree Carbon Stocks
The derived allometric equations were used at our study sites to convert CD measurements from plots to mean tree aboveground biomass (AGB) and large root (>20 mm) biomass ha-1. Fine-root biomass (1-20 mm) obtained from plot cores was added to the large root biomass to obtain the below ground biomass (BGB) per plot. Biomass was converted to above and below ground tree carbon (onwards referred to as CAG and CBG) using 48% and 39% carbon content conversion, respectively (Kauffman and Donato, 2012). Measurements of soil C stocks are reported from soil depths that ranged from 16.25 to >200 cm depth. We standardised soil C stocks to a maximum 50 cm depth when sites were deeper than 50 cm. When sites were shallower than 50 cm we calculated soil C stocks to bedrock to avoid overestimation of soil C stocks. To make comparisons with other reported stocks in the literature we also calculated stocks to 1 m depth. Out of our 27 soil cores, 15 were at least 50 cm and 7 were >1 m depth. The calculation was made by extrapolating the deeper soil layer to a total soil depth of 50 cm or 1 m by assuming that the deeper root-layer had constant soil properties (BD and %C) from 30 cm depth to 1 m. This method may lead to under or over-estimation of soil C stocks in deeper soils as %C may change with depth (Kauffman and Donato, 2012).  Soil carbon stocks to 50 cm (C50) and 1 m (C100) depth for each mangrove plot was calculated as:

Soil C50 stocks (Mg C ha-1) = ((Fine-root layer DBD (g cm-3) x depth (cm) x (%C / 100)) + ((Deeper soil layer DBD (g cm-3) x (50 – Fine-root layer depth) (cm) x (%C / 100)).     (Kauffman and Donato, 2012)

Soil C100 stocks (Mg C ha-1) = ((Fine-root layer DBD (g cm-3) x depth (cm) x (%C / 100)) + ((Deeper soil layer DBD (g cm-3) x (100 – Fine-root layer depth)  (cm) x (%C / 100)).     (Kauffman and Donato, 2012)

[bookmark: _Toc120622135]4.3.6	Statistical Analysis
Two-way Analysis of Variance (ANOVA) were used to test for effect of study sites (random factor, 3 levels) or mangrove zone (3 levels: high, mid and low mangrove) on TreeCD and tree height. Linear regression was used to test for effect of distance to the seaward fringe on the responses of CAG, CBG and C50. Log-transformations were used where required to comply with test assumptions. Significant ANOVAs were followed by Tukey honest significant differences (HSD) post hoc comparisons of treatments. Regression analysis was used to establish allometric relationships of tree above and below ground biomass with CD and H. A logarithmic transformation was used to linearize the relationship between variables and ensure homogeneity of variance in model residuals (Estrada et al., 2014). A high degree of collinearity was detected between crown diameter and tree height so multiple regression was not used. Comparison of R2 and AIC, an estimate of the relative quality of statistical models, values was performed to determine the better predictor. After using allometric equations on log transformed data, the results were then back transformed for conversion to Mg ha-1 values for biomass estimation (Estrada et al., 2014). 

To explore whether arid mangroves allocate proportionally more biomass below ground than mangroves in non-arid regions, we contrasted the allometric relationships of Qatari A. marina with those of other previously published work from two other regions: Iran (Parvaresh et al., 2012) and Australia (Comley and McGuinness, 2005). Both studies were used to compare aboveground biomass, while only the Australian study was used to compare below ground biomass. As Connolly and McGuiness (2005) used DBH as a predictor of biomass, raw tree data measurements from Schile et al. (2017) were used to develop an equation to predict CD from DBH (Table 4.1 for equation). Analysis of Covariance (ANCOVA) was used to test for a difference between aboveground biomass and CD in different locations (factor: 3 levels) as well as below ground biomass between Qatar and Australia (factor: 2 levels). Log x + 1 transformations were used to comply with ANCOVA test assumptions.
Table 4.1: Allometric equations developed from tree removal and raw data from Schile et al. (2017). B = biomass (kg), CD = crown diameter (m), DBH = diameter at breast height (cm). *This equation was developed using raw data from Schile et al. (2017).
	Tree component
	Equation
	R2
	
	N
	

	Aboveground biomass
	Log(AG) = 2.14 x Log(CD) + 0.20 
	0.94
	
	17
	

	Below ground biomass
	Log(BG) = 2.67 x Log(CD) -0.11
	0.89
	
	17
	

	Leaf biomass
	Log(B) = 2.41 x Log(CD) - 0.13
	0.88
	
	17
	

	Branch and stem biomass
	Log(B) = 2.09 x Log(CD) + 0.15
	0.89
	
	17
	

	Convert DBH to crown diameter
	CD = 0.3831 x DBH + 0.6863*
	0.53
	
	6978
	



[bookmark: _Toc120622136]4.4	Results
[bookmark: _Toc120622137]4.4.1	Stand Characteristics of Qatar Mangroves
Mean ± standard error (s.e.m) tree density, crown diameter (CD) and tree height (H) were 2589 ± 267 trees ha-1, 1.57 ± 0.08 m and 1.92 ± 0.09 m, respectively (Table 4.2). Trees excavated for use in allometric models had mean CD and a mean H of 1.18 ± 0.10 m and 1.03 ± 0.67 m respectively, which was similar to those in the studied sites where mean CD and H were 1.27 ± 0.10 m and 1.71 ± 0.67 m, respectively. Site and mangrove zone had interactive effects on CD (ANOVA: F4, 691 = 5.03, p<0.01) and height (ANOVA: F4, 691 = 16.02, p<0.01, p<0.01). A greater CD was generally associated with low tidal zones and the tallest trees were in West Al Dhakira. Shorter trees were found in high tidal areas, particularly in Al Khor. Tree biomass averaged 23.93 ± 1.39 Mg ha-1, substantially greater below ground (14.54 ± 0.98 Mg ha-1) than aboveground (9.39 ± 0.94 Mg ha-1), with below ground biomass ratio averaging 0.61 ± 0.02. 

[bookmark: _Toc120622138]4.4.2	Tree Allometry
Crown Diameter (CD) was a better predictor than tree height (H) for all tree components. Subsequently, only CD was used as a predictor in allometric equations (Table 4.1). The relationship between aboveground biomass and CD varied between global locations. With increase in size (CD), Australian trees grew proportionally more aboveground and below ground biomass than Qatari trees, however, Qatari trees had a steeper above and below ground biomass increase with size than Australian trees. ANCOVA confirmed these differences between Australia, Qatar and Iran aboveground (ANCOVA: F5,32 = 51.63, p<0.01, Figure 4.1a) and below ground biomass (ANCOVA: F3,25 = 194.7, p<0.01, Figure 4.1b).
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Figure 4.1: Allometric relationships of a) aboveground and b) below ground biomass with crown diameter for A. marina trees of three global locations. Australia data were from Connolly and McGuiness (2005), Iran data from Parvaresh et al. (2012). Solid and dashed lines represent mean and 95% CI’s colour coded for each location.

	Intertidal depth
	Density trees ha-1
	CD (m)
	H (m)
	BGB Mg ha-1
	AGB Mg ha-1
	BGB ratio

	Al Khor

	Low
	1433 ± 190.52
	2.04 ± 0.15
	1.98 ± 0.07
	10.55 ± 1.83
	11.99 ± 2.00
	0.47 ± 0.007

	Mid
	3500 ± 94.28
	1.32 ± 0.08
	2.02 ± 0.06
	12.84 ± 2.68
	11.59 ± 3.36
	0.54 ± 0.029

	High
	2100 ± 374.17
	1.25 ± 0.04
	1.41 ± 0.04
	7.47 ± 2.17
	7.19 ± 2.23
	0.51 ± 0.010

	West Al Dhakira

	Low
	1233 ± 118.63
	2.20 ± 0.08
	2.81 ± 0.16
	15.17 ± 2.59
	15.76 ± 2.87
	0.49 ± 0.005

	Mid
	4700 ± 1143.10
	1.17 ± 0.09
	1.81 ± 0.05
	16.17 ± 1.65
	13.48 ± 3.68
	0.56 ± 0.066

	High
	2767 ± 427.74
	1.39 ± 0.12
	1.65 ± 0.06
	14.68 ± 2.45
	5.80 ± 0.87
	0.72 ± 0.006

	South Al Dhakira

	Low
	1567 ± 347.48
	1.95 ± 0.15
	1.88 ± 0.13
	18.96 ± 1.46
	6.92 ± 0.71
	0.73 ± 0.005

	Mid
	2933 ± 54.43
	1.47 ± 0.09
	2.07 ± 0.07
	21.21 ± 3.04
	6.89 ± 1.03
	0.76 ± 0.009

	High
	3067 ± 625.98
	1.35 ± 0.10
	1.54 ± 0.03
	13.77 ± 1.18
	4.89 ± 0.18
	0.74 ± 0.017


Table 4.2: Mean ± st. error tree density, mean plot crown diameter (CD), tree height (H), below ground and aboveground biomasses (Mg ha-1) and aboveground to below ground biomass ratio in different sites and intertidal depths in Qatar mangroves.
[bookmark: _Toc120622139]4.4.3	Tree and Soil Carbon stocks
Across all sites, wood biomass contained a mean carbon content (C) of 10.18 (± 0.82) Mg C ha-1. Of that, mean above and below ground tree C were 4.51 Mg ha-1 (± 0.44) and 5.67 Mg ha-1 (± 0.38), respectively. Distance to the seaward edge had a significant effect on overall tree C (Regression: F1,25 = 7.34, p = 0.01). Aboveground C did not vary with distance to the seaward edge (Regression: F1, 25 = 2.74, p = 0.11, Figure 4.2a). However, below ground tree C was inversely related to distance to the seaward edge (Regression: F1,25 = 6.85, p = 0.01, Figure 4.2b). Across all tidal heights, tree stocks accounted for 23.98% of total carbon (CTOT) (Figure 4.3). Overall mean total stocks were 45.70 ±3.70 Mg C ha-1. Soil C50 were 30.48 ±5.11, 44.39 ±5.63 and 31.69 ±3.39 Mg ha-1 in low, mid and high tidal zones respectively. When extrapolated to 1m depth, overall mean soil C100 stocks were 50.17 ±6.27 Mg C ha-1. There was no significant effect of distance to the seaward edge on soil C50 (Regression: F1,25 = 0.45, p = 0.51). Carbon density was significantly higher in the fine root layer closer to the sediment surface than in the soil below the fine-root layer (ANOVA: F1,52 = 27.46, p<0.01). Mean soil C density across all sites in the fine root layer was 11.81 ± 1.49 mg cm-3, compared to 6.98 ± 0.74 mg cm-3 in deeper soil (Table 4.3). Mean BD was 1.18 ±0.13 g cm-3 and %C was 1.51 ±0.35%, as a result, overall mean soil C density was 9.40 ±0.66 mg cm-3. Soil C  in the mid mangroves were characterised by comparatively low BD (0.82 ±0.07 g cm-3) and high %C (2.73 ±0.37), whereas, high and low mangroves had higher BD (high = 1.35 ±0.07 g cm-3; low = 1.36 ±0.05 g cm-3) and lower %C (high = 1.19 ±0.29; low = 0.62 ±0.04).
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Figure 4.2: a) aboveground and b) below ground tree C distance to seaward edge in the three different mangrove sampling locations. Black solid lines and dashed lines represent overall mean and 95% CI’s respectively. 
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Figure 4.3: Total C across tidal zones in Qatari mangroves. Mean ± SEM aboveground, root and soil carbon stocks across the three mangrove shore heights, at three sites in Qatar.
	Intertidal Depth
	Soil Interval
	Soil layer depth (cm)
	Soil Depth (cm)
	Bulk Density g cm-3
	Carbon content %
	C density mg cm-3
	Interval soil C Mg ha-1
	Soil C50 Mg ha-1

	Al Khor

	Low
	Fine-root
	8.82 ± 0.50
	43.33 ± 3.56
	1.36 ± 0.05
	0.52 ± 0.05
	7.03 ± 0.52
	6.23 ± 0.67
	24.31 ± 4.26

	
	Deeper
	34.51 ± 3.97
	
	2.00 ± 0.05
	0.26 ± 0.04
	5.17 ± 0.74
	18.08 ± 4
	

	Mid
	Fine-root
	9.23 ± 0.12
	50.00 ± 0.00*
	0.43 ± 0.12
	2.72 ± 0.65
	10.06 ± 1.32
	9.31 ± 1.3
	39.42 ± 2.79

	
	Deeper
	40.77 ± 0.12
	
	1.44 ± 0.17
	0.52 ± 0.04
	7.38 ± 0.69
	30.1 ± 2.89
	

	High
	Fine-root
	8.00 ± 0.00
	50.00 ± 0.00*
	1.15 ± 0.32
	0.99 ± 0.29
	9.58 ± 0.65
	7.66 ± 0.52
	30.94 ± 2.76

	
	Deeper
	42.00 ± 0.00
	 
	1.88 ± 0.20
	0.3 ± 0.04
	5.54 ± 0.61
	23.28 ± 2.56
	

	West Dhakira

	Low
	Fine-root
	12.88 ± 2.13
	50.00 ± 0.00*
	0.94 ± 0.02
	1.17 ± 0.01
	11.03 ± 0.39
	14.2 ± 2.33
	46.85 ± 6.29

	
	Deeper
	37.12 ± 2.13
	
	1.30 ± 0.13
	0.65 ± 0.09
	8.62 ± 1.79
	32.65 ± 7.98
	

	Mid
	Fine-root
	14.49 ± 0.02
	49.00 ± 0.82
	0.35 ± 0.03
	6.9 ± 1.5
	23.27 ± 3.52
	33.74 ± 5.16
	64.72 ± 5.69

	
	Deeper
	34.51 ± 0.98
	
	1.16 ± 0.14
	0.79 ± 0.09
	8.97 ± 0.29
	30.97 ± 1.59
	

	High
	Fine-root
	11.44 ± 0.87
	50.00 ± 0.00*
	1.45 ± 0.21
	0.75 ± 0.14
	10.27 ± 0.24
	11.73 ± 0.73
	41.29 ± 5.65

	
	Deeper
	38.56 ± 0.87
	 
	1.44 ± 0.17
	0.52 ± 0.04
	7.6 ± 1.48
	29.56 ± 6.37
	

	South Dhakira

	Low
	Fine-root
	15.36 ± 4.20
	29.25 ± 10.49
	1.13 ± 0.13
	0.7 ± 0.09
	7.64 ± 0.02
	11.72 ± 3.17
	20.28 ± 7.14

	
	Deeper
	13.89 ± 6.39
	
	1.46 ± 0.11
	0.43 ± 0.04
	6.19 ± 0.25
	8.56 ± 4.01
	

	Mid
	Fine-root
	10.64 ± 0.52
	38.75 ± 2.50
	0.22 ± 0.02
	4.97 ± 0.29
	10.94 ± 1.88
	11.45 ± 1.45
	29.03 ± 1.88

	
	Deeper
	28.11 ± 2.63
	
	1.33 ± 0.017
	0.47 ± 0.01
	6.26 ± 0.08
	17.57 ± 1.43
	

	High
	Fine-root
	8.25 ± 0.73
	21.67 ± 2.68
	0.76 ± 0.30
	4.05 ± 2.74
	16.48 ± 4.91
	13.76 ± 4.24
	22.84 ± 3.60

	
	Deeper
	13.41 ± 3.29
	 
	1.44 ± 0.17
	0.52 ± 0.12
	7.12 ± 0.77
	9.08 ± 1.17
	 


Table 4.3: Mean± st. error fine root and deeper soil layer depths (cm), depth to bedrock (cm), bulk density (g cm-3), carbon content (%), carbon density (mg C cm-3) and soil carbon pools (Mg C50 ha-1) of sampled plots in Qatari mangroves. * these sampling locations had soil depths deeper than 50 cm, however, all measurements were standardised to 50 cm depth. 
[bookmark: _Toc120622140]4.5	Discussion
This study is in agreement with recent findings, which report lower overall C stocks for the arid mangroves of the Arabian Peninsula compared to global averages. Mangrove C stock extrapolated to 1 m depth in Qatar (50.17 ±6.27 Mg C ha-1) are comparable to 43 - 76 Mg C ha-1 in 1 m depth soil reported from the Red Sea to the Gulf (Almahasheer et al., 2017; Cusack et al., 2018). However, these results are much lower than 728 – 1363 Mg C ha-1 reported throughout the tropics to comparable depths (Alongi, 2012; Gress et al., 2017; Kauffman et al., 2011; Murdiyarso et al., 2015). Mean above and below ground tree C stocks (CAG = 4.51 ± 0.44 Mg ha-1 and CBG = 5.67 ±0.38 Mg ha-1) and tree sizes (CD = 1.57 ± 0.10 and H = 1.86 ± 0.03) were comparable to other arid regions in which mangroves occur. Mean tree C stocks of 27.50 Mg C ha-1, of A. marina in the Gulf, and 47.5 Mg C ha-1, in arid mangroves of West Africa, have been reported (Kauffman and Bhomia, 2017; Schile et al., 2017). Across the UAE, Schile et al. (2017) found an inverse relationship in mangrove tree C stocks with distance from the mouth of the Gulf and attributed this effect to increases in salinity. In the UAE tree C stocks ranged from 147.50 Mg C ha-1 at the entrance of the Gulf to 29.46 Mg C ha-1 at their most western sampling location (Schile et al. 2017). These estimates are considerably lower than those reported from other tropical humid regions where total tree C stocks have been reported up to 10 times greater (Alongi, 2012; Donato et al., 2012; Kauffman et al., 2011). A. marina in Qatar were much smaller than 7 – 10 m height and 3 – 6 m CD of the same species in tropical locations (Komiyama et al., 2008; Suhardiman et al., 2016). Higher salinities in Qatar (34 – 67) (Al-Maslamani et al., 2013; Perri et al., 2018) , compared to 4 - 36 in tropical locations (Chowdhury et al., 2019; Pestana et al., 2017), could be limiting tree biomass and productivity, subsequently reducing locally derived carbon inputs. In coastal wetlands, Osland et al. (2019) found strong associations between rainfall, salinity, productivity and soil organic matter, where increased precipitation was linked to lower salinity, increased productivity and increased soil organic matter.

The values reported by the current study further support the contention that mangroves in low-rainfall, hypersaline areas have a limited capacity for carbon storage, as recently suggested (Almahasheer et al., 2017; Sanders et al., 2016; Schile et al., 2017). The current study found lower BD and %C than tropical humid areas where BD and %C range from 0.19 to 0.92 g cm-3 and 1.74 to 26.3 % respectively,  as a result, soil C density in Qatar is up to a tenth of soil C densities reported in the tropics where they can reach 152 mg C cm-3 (Rovai et al., 2018). Carbon stores in mangrove soils are largely attributed to autochthonous mangrove inputs, through tree biomass material being deposited in soils (Almahasheer et al., 2017; Saintilan et al., 2013; Xiong et al., 2018). As mangrove productivity is reduced in arid settings (Cintron et al., 1978), the amount of locally derived mangrove material available for soils is also reduced (Saintilan et al., 2013). Low rainfall also restricts riverine and runoff input of allochthonous carbon to mangroves (Saintilan et al., 2013; Xiong et al., 2018). Walton et al (2014) estimated that 60-80 % of organic material in sediments at the sites investigated in this study (Al-Khor and Al-Dhakira) originated from mangroves, with the balance accounted for by inwelling of allochthonous material from seagrass and coastal planktonic sources.

In Qatar, within stand tree distribution differed from tropical humid areas, smaller trees were found on the landward edge than the rest of the stand (Donato et al., 2011; Kauffman et al., 2011), which may reflect the nutrient-poor and/or hypersaline habitat in which A. marina are found in the Gulf. These results provide insight into the nutrient dynamics of arid mangroves and are comparable to Western Australia where mangroves nitrogen decreases in a seaward to landward direction (Adame et al., 2020). Mangroves in humid conditions can be highly productive outwelling systems, dependant on their geomorphological setting (Lee, 1995) but the relative importance of outwelling and inwelling processes are much less well understood in arid mangroves. Emerging research shows inwelling of material from the sea can be important in arid mangroves (Al-Maslamani et al., 2013; Walton et al., 2014). In Qatari mangroves seagrass production has been shown to be a contributor to both food webs supporting mangrove-resident fauna (Al-Maslamani et al., 2013) and soil within mangroves (Al-Maslamani et al., 2013; Walton et al., 2014), with the greatest input to soils at the mangrove fringe, indicating potential higher nutrient availability for seaward as opposed to landward trees.

Differences were found in allometric growth relationships developed by the present study and those developed in other areas. Below ground biomass of Qatari mangroves had a steeper biomass increase with increasing crown diameter (CD) when compared to A. marina from a tropical humid area of Australia (Comley and McGuinness, 2005). Additionally, the relationship between aboveground biomass and CD in A. marina derived from Iran was more like that of Australia. Interestingly, the study site used to develop an A. marina allometric equation in Iran was on the coast of the Oman Sea, and the location where mangroves were sampled receives freshwater runoff and is considered biologically separated from the Gulf (Price et al., 1993). It is possible that the environmental setting in Iran may be why the relationship in Iran was more like tropical humid Australian mangroves than of the geographically adjacent Qatari mangroves. The below ground biomass ratio recorded here (0.61) is higher than that reported anywhere else (0.1 - 0.55) for Avicennia trees (Alongi and Dixon, 2000; Kristensen et al., 2008; Matsui, 1998) and support the principle that mangrove trees boost energy allocation to below ground biomass when environmental conditions are stressful, for example under reduced rainfall or increased salinity (Adame et al., 2020, 2014; Asbridge et al., 2015; Duke et al., 2019; Lovelock, 2008; Lovelock et al., 2016). Relatively high below ground biomass ratios of up to 0.67 and 0.77 have been recorded for Rhizophora spp. dominated stands, although these were estimated from allometric equations that were not species-specific (Kauffman et al., 2011; Komiyama et al., 2005). Avicennia germinans has shown a similar pattern of increasing below ground biomass from tropical to sub-tropical climates (Day et al., 1987; Fromard et al., 1998; Smith and Whelan, 2006). This previous work coupled with our present results indicate that previous predictive studies of above and below ground mangrove tree C stocks need to take into account regional differences in growth patterns to reduce uncertainty in their estimates. Our findings imply that previous studies may underestimate below ground mangrove tree C in arid or extreme environments by using equations developed in less harsh environments. For example, Bhomia and Kauffman (Kauffman and Bhomia, 2017) and Banerjee et al. (Banerjee et al., 2013) found an inverse relationship of biomass with soil salinity and developed different allometric equations based on salinity zones in Bangladesh. However, it is difficult to confirm these findings with the data provided in the present study as there was little overlap in the size data of A. marina trees in Qatar compared to those in Australia. A. marina trees in Qatar do not grow to the same sizes as those in Australia and Iran where previous below ground biomass allometry work has been done. 

The current study further supports the previous indications that mangroves in low-rainfall, hypersaline areas have a limited capacity for carbon storage (Almahasheer et al., 2017; Sanders et al., 2016; Schile et al., 2017). The allometric equations developed here show that mangroves in Qatar have a greater increase in below ground biomass relative to tree size than other less extreme environments. The study also found mangrove height was lower and crown diameter smaller in Qatar than other regions, which accounts for the comparatively low aboveground tree C stocks. Within-stand mangrove distribution showed an inverse relationship between density and distance to the seaward fringe, which contrasts with other regions and suggests differing nutrient dynamics in arid mangrove systems. Allometric equations presented here can reduce uncertainty in below ground biomass and C estimates for mangroves in arid regions and also implies that previous work from these locations may have underestimated below ground mangrove C stocks, an important component of carbon storage in mangroves. These results have implications for mangroves in the face of climate change: as mangroves are expanding their distribution pole-ward into temperate and sub-tropical regions (Osland et al., 2017; Saintilan et al., 2014), mangrove ecosystems on the edge of their global distribution are likely to become more expansive and widespread. Precipitation regimes across the sub-tropics are projected to increase and decrease (J Sillmann et al., 2013). In areas where precipitation declines, carbon storage may be significantly reduced. As a result of reduced and less frequent precipitation, carbon impoverished arid mangroves are likely to become more common in the sub-tropics in the 21st century.


[bookmark: _Toc120622141]5.	Future mangrove carbon storage under climate change and deforestation

Mark Chattinga,d, Ibrahim Al-Maslamanib, Mark Waltonc, Martin W. Skovd, Hilary Kennedyd, Sinan Husrevoglue and Lewis LeVayc

aEnvironmental Science Centre, Qatar University, Doha, Qatar
bOffice for Research and Graduate Studies, Qatar University, Doha, Qatar
cCentre for Applied Marine Science, Bangor University, Menai Bridge, Anglesey, UK
dSchool of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
eInstitute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey

Published in Frontiers in Marine Science: https://doi.org/10.3389/fmars.2022.781876 

Author Contributions:
MC, LL, MW, MS and IM conceived the study. MC and SH performed all the modelling and statistical analyses. MC wrote the manuscript draft with editorial support from LL, MW, MS, HK and IM. LL, MW, MS, HK and IM contributed to design of the work and critical evaluation of the manuscript during the extensive drafting process. All authors helped write and edit the final version of the paper.

107


[bookmark: _Toc120622142]5.1	Abstract
Mangroves are important sinks of organic carbon (C) and there is significant interest in their use for greenhouse gas emissions mitigation. Adverse impacts on carbon storage potential from future climate change and deforestation would devalue such ambitions, thus global projections of future change remains a priority research area. We modelled the effects of climate change on future C stocks and soil sequestration rates (CSR) under two climate scenarios (‘business as usual’: SSP245 and high-emissions: SSP585). Model results were contrasted with CO2 equivalents (CO2e) emissions from past, present and future rates of deforestation on a country specific scale. For C stocks, we found climate change will increase global stocks by ~7% under both climate scenarios and that this gain will exceed losses from deforestation by the end of the 21st century, largely due to shifts in rainfall. Major mangrove-holding countries Indonesia, Malaysia, Cuba and Nigeria will increase national C stocks by >10%. Under the high-end scenario, while a net global increase is still expected, elevated temperatures and wider temperature ranges will likely increase the risk of countries’ C stocks diminishing. For CSR, there will likely be a global reduction under both climate change scenarios: 12 of the top 20 mangrove-rich countries will see a drop in CSR. Modelling of published country level mangrove deforestation rates showed emissions have decreased from 141.4% to 6.4% of annual CSR since the 1980’s. Projecting current mangrove deforestation rates into the future resulted in a total of 678.50 ±151.32 Tg CO2e emitted from 2012 to 2095. Reducing mangrove deforestation rates further would elevate the carbon benefit from climate change by 55-61%, to make the proposition of offsetting emissions through mangrove protection and restoration more attractive. These results demonstrate the positive benefits of mangrove conservation on national carbon budgets, and we identify the nations where incorporating mangrove conservation into their Nationally Defined Contributions offers a particularly rewarding route towards meeting their Glasgow Agreement commitments.

[bookmark: _Toc120622143]5.2	Introduction
Mangroves, tidal marshes and seagrass meadows accumulate organic rich soils that can often extend to many meters depth and provide long-term storage of organic carbon (C). Termed ‘blue carbon’ ecosystems (BCE), these habitats occupy a relatively small area of the global ocean (~0.2%), but are major contributors to marine sediment carbon burial (Duarte et al., 2013). Mangroves are of particular interest as they store and sequester comparatively high amounts of C in both biomass and soils (Almahasheer et al., 2017; Donato et al., 2011; Ezcurra et al., 2016; Kauffman et al., 2017). Mangroves store up to five times as much carbon as tropical upland forests (Donato et al., 2011). A combination of high productivity and slow soil decomposition rates significantly increases mangroves’ ability to capture and store carbon, particularly in their soils (Alongi, 2012). Aboveground net primary productivity (NPP) rates in mangroves (8.1 t DW ha-1 yr-1) rival those of highly productive tropical terrestrial forests (11.1 t DW ha-1 yr-1) (Alongi, 2012). In addition, complex mangrove root structures and waterlogged soils trap allochthonous organic material on top of deep carbon rich peat composed mainly of dead root material, sometimes extending up to 10 m depth (McKee et al., 2007); soil carbon can comprise up to 90% of mangrove carbon stocks (Cooray et al., 2021). As a result, mangroves have received a great deal of scientific interest as natural systems for offsetting greenhouse gas (GHG) emissions (Donato et al., 2011; Fourqurean et al., 2012). 

Historic rates of mangrove deforestation posed a serious risk of significant GHG emissions; since the 1950’s it has been estimated that up to 50% of the world’s mangroves have been deforested, largely due to land-use change (Alongi, 2002). Despite estimates of recent global mangrove loss slowing to 4.0% of global coverage between 1996 and 2016 (Richards et al., 2020), it has been estimated that >300 million Mg of CO2e were emitted as a result of mangrove deforestation between 2000 and 2012 (Hamilton and Friess, 2018). Between 2000 and 2016, 87% of mangrove loss in the West Coral triangle, where the vast majority of the world’s mangroves carbon is stored, was due to mangrove to agri/aquaculture land-use conversion (Adame et al., 2021). Mangrove conservation and restoration programs on a national scale have been identified as an efficient means of offsetting GHG emissions (Cameron et al., 2019; Murdiyarso et al., 2015; Taillardat et al., 2018), although the prevention of further forest loss, by far, outweighs gains from restoration (Kauffman et al., 2017). 

While the potential for GHG emissions from mangrove deforestation are well documented (Atwood et al., 2017; Hamilton and Friess, 2018; Kauffman et al., 2014; Lang’at et al., 2014; Lovelock et al., 2011), the effects of climate change on global mangrove C stocks are less frequently addressed (Adame et al., 2021) and are therefore a priority research area for blue carbon science (Macreadie et al., 2019). Sea level rise has been identified as potentially the most significant climate change factor affecting mangrove distribution and C stocks (Lovelock and Reef, 2020; Macreadie et al., 2019). Sea level rise would cause changes to inundation periods and durations, potentially increasing tree mortality (Ward et al., 2016). It has been estimated that 96% of coastal wetlands, which includes mangroves, could be lost in the Middle East this century due to sea level rise (Blankespoor et al., 2014). Where mangroves occur adjacent to human settlements, coastal ‘squeeze’ may occur, between rising sea level and expanding human settlements/agriculture behind the mangrove (Lovelock and Reef, 2020). Worst case estimates have projected lost C sequestration of 3.4 Pg by 2100 due to coastal ‘squeeze’ (Lovelock and Reef, 2020). Change in climatic regimes could also prove a significant factor in changing overall stocks in mangroves through altering forest biomass and productivity and its subsequent contribution to soil C stocks and soil sequestration rates (CSR). Recent evidence from extreme climatic regions of global mangrove distribution (Almahasheer et al., 2017; Chatting et al., 2020; Kauffman and Bhomia, 2017; Schile et al., 2017) shows that under extreme salinity, heat and reduced rainfall total C stocks and CSR may be reduced when compared to tropical humid mangroves (Sheppard et al., 2010). In addition, it is well established that climate change will not have spatially uniform impacts around the world (Giorgi et al., 2019; Soares et al., 2019). The Asian and American tropics are forecast to experience an increase in the frequency of extreme precipitation events (Giorgi et al., 2019), while reductions in precipitation in northern areas of African tropics suggest that expansion of semi-arid conditions is possible (Soares et al., 2019). Little is known about what the sum effect of these regional changes in temperature and precipitation regimes could be on regional mangrove C stocks or CSR  (Wang et al., 2020) and whether any regions are at risk of significant losses in stocks and reductions in CSR.

Here we use predictive models to forecast how climate change and forest degradation singularly and in combination affect future C stocks and CSR in mangroves. Data collated from previously published literature were used to develop predictive models to estimate the difference between current and future global total C stocks (biomass + soil) and CSR. We contrasted the impacts of climate change against GHG emissions from past, present and forecasted future rates of mangrove deforestation to examine the carbon benefits from current conservation efforts on a country-specific scale.

[bookmark: _Toc120622144]5.3	Methods
[bookmark: _Toc120622145]5.3.1	Literature data
In order to predict mangrove C stocks and soil sequestration rates (CSR) globally and on a country-specific scale, two separate databases of previously published data were compiled. Measured soil C stocks and CSR estimates were compiled from previous work. Keywords “mangrove” AND “soil” OR “sediment” AND “carbon stocks” OR “sequestration rate” OR “burial rate” were searched in Google Scholar (http://scholar.google.com/) only, as google scholar search results are a superset of Web of Science and Scopus, two commonly used search databases in meta-analysis studies (Martín-Martín et al., 2018). In addition, publicly available unpublished datasets were searched in the Centre for International Forestry Research (CIFOR) online repository (http://data.cifororg) (Sasmito et al., 2019). When possible, studies’ C stocks core interval measurements (eg. 0-15cm, 15-30cm, 30-50cm and 50-100cm) from individual sampling sites were used to calculate soil C stock to 100cm depth (C100). Individual sampling site measurements were used to maximize the amount of data to later be used in predictive modelling and to reflect the high variability in soil C stocks, however, when unavailable, study means were collated. Soil C sequestration rates were obtained from studies using Pb210, Cs137 dating methods or if organic carbon sequestration was calculated from total sediment accretion. When studies reported data graphically, images of graphics were captured and points were digitized in plot digitizer software by manually overlaying points onto graphical points. When soil stocks or characteristics (dry bulk density (DBD) and soil C%) were reported, they were included and soil C stocks were calculated from the following equation then mutliplied by 100 to estimate C100 stocks (Donato et al., 2011):

[bookmark: _Hlk54262861]Where studies’ reported measurement uncertainties (standard deviation with associated n and standard error) as well as DBD to soil C (g cm-3) conversion equation uncertainties, these were included in the database to later be propagated in model development. Site longitude and latitude were extracted from studies when reported. For studies that did not report site coordinates, any maps included were used in combination with Google Earth images to obtain site coordinates. Only intact mature mangroves were included; data from mangroves reported as degraded, newly colonised or planted were excluded from the dataset.

[bookmark: _Toc120622146]5.3.2	Estimating current soil stocks and sequestration rates
Statistical models were developed to predict mangrove soil carbon where it had not been measured. A suite of climatic variables commonly used in species distribution modelling and in previous global mangrove modelling efforts (Hutchison et al., 2014; O’Donnell and Ignizio, 2012) (Table A1) were calculated from historical climate datasets for all global mangrove points using a global mangrove presence/absence mask reported by Hamilton and Casey (2016). Previous global soil C mangrove modelling studies have incorporated non climatic predictors, such as tidal range, river discharge and geomorphological setting (Rovai et al., 2018; Sanderman et al., 2018). However, only climatic predictors were used here, given the identified need to better understand how the magnitude of projected climate change will affect future mangrove C stocks and CSR. Even though future climate will have an affect on river discharge, river discharge was excluded as a predictor from the analysis. Global historical climate datasets used were monthly precipitation (Pmean) (from 1901 to 2010), mean monthly air temperatures (Tmean) (from 1901 to 2010), daily maximum temperatures (Tmax) and daily minimum temperatures  (Tmin) (from 1979 to 2010). These datsets were obtained from the Global Precipitation Climatology Centre (Schneider et al., 2011) (GPCC) and National Center for Environmental Prediction (NCEP) (Kalnay et al., 1996) and aligned to the period from 1982 – 2018, the longest concurrent period of all datasets (the last 36 years). Means of the aligned period were then calculated to be used in model development. The ability of climate datasets to explain variation in soil C stocks data was also compared to models that contained non climate predictors previously used in modelling studies, for example tidal range (Carrere et al., 2012) and river discharge (Fekete et al., 2002).

Parametric (multiple linear regression) and machine learning (random forest) approaches were contrasted to test which better predicted both current soil C100 stocks and CSR datasets. Measurement and conversion equation uncertainties that were compiled from literature were included as inverse weights in both linear and random forest modelling to account for reported sampling uncertainty. Log10 transformation was performed on response data for linear regression analyses to comply with regression assumptions and predictors were chosen based on stepwise regression. Linear regression multicolinearity was addresed by removing explanatory variables with a variance inflation factor > 3.3 (Kock and Lynn, 2012). Random forest models were built using the randomForest package in R. Random forests are not subject to assumptions of normaility and multicolinearity, therefore, all predictors were used and response data were not transformed. Both linear and random forest model out of sample performance was tested by k-fold cross validation using an 80-20% training-test split (Masih, 2019; Rovai et al., 2018). All statistical analysis was performed using R 3.6.2 software.

[bookmark: _Toc120622147]5.3.3	Present day stocks and soil sequestration rates
The global mangrove mask reported by Hamilton and Casey (2016) was assumed to be present day global mangrove coverage. For the purposes of this study, 2012 was selected as it was the latest previously published global mangrove extent map. As the study aimed to estimate national scale stocks and CSR, the original ~30x30m pixel spatial resolution was converted to ~3000x3000m by resampling points. This level of resolution was selected as it reduced computational time significantly, still represented a high enough detail to discern country level changes in climate and was comparable to previous global and country level mangrove modelling work. For example, Rovai et al. (2018) used a ~25km pixel resolution when predicting mangrove soil carbon stocks globally, Zeng et al. (2021) used a 1km spatial resolution when investigating country level emissions in mangroves; and Hutchinson et al. (2014) aboveground mangrove biomass to a 30 arc-second (1km) resolution. Aboveground biomass (Mg ha-1) for all global mangrove pixels was estimated using a previously developed climate predictive model (AGB t ha-1 = 0.295Bio10 + 0.658Bio11 + 0.023Bio16 + 0.195Bio17 – 120.3 (Hutchison et al., 2014). Where Bio 10 and 11 are the mean temperatures of the warmest and coldest quarters of the year, respectively, and Bio16 and 17 are precipitation in the wettest and driest quarters, respectively. Below ground biomass was estimated using a total above to below ground biomass allocation ratio of 0.5 (Hamilton and Friess, 2018). Model residuals reported by Hutchinson et al. (2014) were used to propagate aboveground biomass standard errors. Uncertainties were multiplied by 1.96 and either added or subtracted from mean predicted values to calculate upper and lower 95% confidence intervals (CI’s) for above and below ground model outputs (Zuur et al., 2013). Above and below ground tree biomass estimates and CI’s were then converted into above and below ground tree C stock using 0.48 and 0.39 conversion factors respectively (Schile et al., 2017). Using our newly derived predictive model, soil C100 stocks and CSR and their associated uncertainties were applied to all global mangrove pixels. 95% CI’s were calculated in the same way as aboveground biomass. Hectare level total stocks estimates, CSR and upper and lower confidence bounds were grouped by country. Country level total C stocks and 95% CI’s were then calculated by summing all hectare value estimates within each country. Carbon stocks and CSR were grouped into countries to put these findings into perspective with countries Nationally Determined Contributions (NDC’s) to the Paris Agreement.

[bookmark: _Toc120622148]5.3.4	Forecasted stocks and soil sequestration rates
Constant global mangrove coverage was assumed from 2012 to 2095, to estimate potential change in mangrove C. Future (year 2095) global total mangrove carbon stocks, CSR, climate data and associated 95% CI’s were predicted in the same way as present day estimates, however, forecasted climate data for all global mangrove coverage pixels were used instead of historical datasets. To calculate future climate data, the latest Coupled Model Inter-comparison Project phase 6 (CMIP6) climate scenarios were used. Shared Socioeconomic Pathway 2 radiative forcing 4.5 (SSP245) and Shared Socioeconomic Pathway 5 radiative forcing 8.5 (SSP585) were selected as they represent mid and high-level GHG emissions futures respectively. Scenario SSP245 was selected as it represents a ‘business as usual’ scenario where historical patterns of development are continued and could be compared to a more extreme scenario (SSP585), which forecasts high economic development and increased reliance on fossil fuels, subsequently high GHG emissions (Riahi et al., 2017). Prior to applying C stocks and CSR models to climate data, an ensemble of climate datasets were bias corrected and mean weighted. For each ensemble member, bias correction of future datasets, based on their alignment with historical climate datasets, was performed using the following equations (Luo et al., 2018):
 


Where Cor Pmean m, loc, Cor Tmean m, loc and Cor Tmax m, loc stand for corrected future precipitation and temperature on the mth month in the locth location. Prefaces Obs and Hist refer to observed historical and hindcasted historical data. Weighting coefficients (Table A2) for bias corrected climate data was calculated depending on their ability to hindcast historical observed datasets using the following equation (Muhling et al., 2011): 

Where RMS is the model root mean square (RMS) and n is the number of climate forecast models. From weighting coefficients, a bias corrected, mean weighted ensemble climate forecast dataset was then calculated for each predictor (Pmean, Tmean, Tmax, Ts and Tmin). The ensemble was selected where climate forecasts (and hindcast data) for each scenario (SSP245 and SSP585) and each predictor were available. Datasets were downloaded from the World Climate Research Program (https://esgf-node.llnl.gov/search/cmip6/). Global mangrove biomass C stocks, soil C stocks and soil sequestration rates were then predicted from the mean weighted climate forecast using the same predictive models as present day from 2059 – 2095 (36 years, as was done for present day). Future estimates of total C stocks (biomass C and soil C100), CSR and 95% CI’s were then, subtracted from current (2012) estimates on a pixel basis. The resulting differences per pixel and CI’s were then summed per country to express change in total C stocks or soil sequestration rates on a country level with uncertainty levels. The resulting values were split into two groups depending on whether the country was forecasted to experience net a gain or loss in total mangrove C (factor: gain vs. loss). A binomial Generalized Linear Model (GLM, gain vs. loss in total mangrove C stock) was then used for each climate predictor to test for the probability of increase in a countries’ total C stock with the associated change in climate predictor.

[bookmark: _Toc120622149]5.3.5	Mangrove deforestation
Global and country level mangrove coverage for the years 1980, 1990 and 2000 were obtained from a previously published Food and Agricultural Organization of the UN report (FAO, 2007). Data in this report was gathered by a combination of questionnaires distributed worldwide to members of the International Society for Mangrove Ecosystems (ISME) and satellite imagery (FAO, 2007). From 2000 to 2010, high resolution (~30m) satellite imagery has been used to estimate global mangrove coverage (Giri et al., 2011; Hamilton and Casey, 2016). Our pre 2000 estimates are based on the 2007 FAO report (FAO, 2007), however, there is much debate about the uncertainties surrounding these data (Friess and Webb, 2014). Even determining the trend of mangrove coverage in some countries during this period is difficult (FAO, 2007). However, this period represents peak rates of global mangrove deforestation, some estimates of mangrove loss during this period are up to 30-50% (Alongi, 2002; Duke et al., 2007). In addition, this report is the most comprehensive historical record of global mangrove coverage prior to 2000. As such, estimates of coverage change, and therefore emissions, from 2000 should be considered more accurate than prior to 2000 estimates as they are based on high resolution satellite imagery. Estimates of country level mangrove coverage and deforestation from 2000 to 2012 were obtained from Hamilton and Casey (2016) using the Mangrove Forests of the World dataset (MFW) (Giri et al., 2011). A constant reference deforestation rate was assumed for the period 2012 to 2095 (Adame et al., 2018). Rates of loss were based on previous country specific rates for the period 2011-2012 (Hamilton and Casey 2016). Hamilton and Casey (2016) reported country wise global mangrove deforestation rates from 2000 to 2012. Only one year was chosen (2011 to 2012) for the current study as every year since 2000, mangrove deforestation rates have been decreasing and the last years’ country wise deforestation rates were assumed to be more representative of current deforestation rates than an average of 2000 to 2012 rates. 

[bookmark: _Toc120622150]5.3.6	Country level emissions
Mean present day hectare level C stocks and 95% CI’s for each country were calculated and multiplied by the number of hectares lost for each decadal period from 1980 to 2095 (Atwood et al., 2017). The current study assumed that deforestation of 1 hectare of mangrove results in 43% loss in soil C in addition to all tree C (Adame et al., 2018; Atwood et al., 2017), which was then divided by 10 to calculate an annual lost C over a ten year period. Lost C from mangrove deforestation and change in C stocks from climate change were summed to calculate total potential change in C stocks in the 21st century from climate change and mangrove deforestation. When not combining mangrove deforestation and climate change mangrove C stocks changes, deforested C stocks and associated 95% CI’s were multiplied by 3.67  to convert lost C to CO2e emissions, as is standard for reporting emissions from deforestation (Adame et al., 2018; Atwood et al., 2017; Hamilton and Friess, 2018).

[bookmark: _Toc120622151]5.4	Results
The literature search resulted in 785 data points of soil C100 stocks from 87 individual studies conducted in 44 countries and 105 data points of soil C sequestration rates (CSR) from 31 individual studies in 17 countries. Data points were available for seven out of the top ten countries reported by Sanderman et al. (2018) to hold the largest mangrove areas, Papua New Guinea, Myanmar and Cuba were the only countries in this list that lacked data.
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Figure 5.1: Estimated current global C stocks in mangrove a) trees, b) soils to 1m depth, and c) mangrove soil sequestration rates. Data presented are mean predicted values from present day climate datasets. Tree carbon was estimated from a model developed by Hutchinson et al. (2014) and the soil carbon and sequestration rates estimates were from modelling performed by the current study.


Linear modelling only captured 27% of the variation in the soil C stocks (C100) data (Regression: F3,635=79.21, p<0.01, R2=0.27, standardised to 1m depth), whereas random forest modelling captured over double that variation (R2 = 65%). The most important predictor was precipitation of the coldest quarter, which when dropped, accounted for 17.15% increase in the model’s mean squared error (MSE, Figure A4a). The final model selected to predict soil C100 stocks was the random forest model as cross validation revealed it outperformed the linear model in making out of sample predictions (CV Random forest: R2 = 0.65, RMSE = 98.53 Mg C ha-1; CV Linear model: R2 = 0.32, RMSE = log10(0.24) Mg C ha-1). Inclusion of tidal range and river discharge did not improve model performance (CV Random forest: R2 = 0.65, RMSE = 98.85 Mg C ha-1). The linear model captured 45% of the variation in the CSR data (Regression: F2,91=13.89, p<0.01, R2=0.45), whereas random forest modelling captured less of the variation in CSR (R2 = 31%). However, the random forest model outperformed the linear model in making out of sample predictions (CV Random forest: R2 = 0.69, RMSE = 113.44 g C m2 yr-1; Linear model: R2 = 0.46, RMSE = log10(0.30) g C m2 yr-1). Therefore, the random forest model was selected to predict CSR. The most important predictor was precipitation of the wettest month, which accounted for a 7.64% increase in the model MSE (Figure A4b).
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Figure 5.2: Probability of countries experiencing gains in mangrove C stocks or sequestration rates with change in 21st century climate; a), b) and c) refer to significant differences under the ‘business as usual’ scenario (SSP245), while d) and e) refer to significant differences under the high emissions scenario (SSP585). Temperature seasonality refers to the annual variation of temperature. Black lines are the mean probability, while shaded areas represent 95% confidence intervals.
[bookmark: _Toc120622152]5.4.1	Present day carbon stocks and sequestration rates
We estimated mean per hectare total C stocks (biomass + soil) of 472.7 ±56.4 Mg C (mean ± 1 standard error). The highest per hectare total C stocks were around Southeast Asia, particularly Indonesia and the Philippines (Figure 5.1a and 5.1b). Indonesia alone accounted for almost a quarter of current global C stocks (24.27 ±0.61%), while the top 5 mangrove holding countries (Indonesia, Australia, the Philippines, Brazil and Mexico) held >50% of the world’s mangrove C stocks (Table 5.1). Similar to C stocks, the highest CSR were found in Southeast Asia, (Figure 5.1c). The median predicted soil sequestration rate was 172.5 C m2 yr-1 (95% confidence interval: 101.4 – 321.7 C m2 yr-1). Indonesia again accounted for the majority of global annual mangrove CSR (23.72 ±0.09%, Table 5.2).
	Country
	Current Total Stocks (Tg C)
	% of Global Total
	Global Cumulative %
	SSP245
	SSP585

	
	
	
	
	Potential Total Stock Change (Tg C)
	% of Total Country Change
	Potential Total Stock Change (Tg C)
	% of Total Country Change

	Indonesia
	1099.24 ± 103.77
	24.27 ± 0.61
	 24.27 ± 0.61
	123.67 ± 80.57
	 11.25 ± 7.33
	119.76 ± 84.06
	10.89 ± 7.65

	Australia
	 406.78 ± 56.65
	 8.93 ± 0.18
	 33.20 ± 1.04
	 28.31 ± 43.72*
	  6.96 ± 10.75
	 41.61 ± 47.65*
	10.23 ± 11.71

	Philippines
	 325.13 ± 30.13
	 7.18 ± 0.19
	 40.38 ± 1.66
	 18.72 ± 22.41*
	  5.76 ± 6.89
	 21.84 ± 24.36*
	 6.72 ± 7.49

	Brazil
	 265.59 ± 32.94
	 5.84 ± 0.03
	 46.22 ± 2.25
	 11.36 ± 23.72*
	  4.28 ± 8.93
	  8.64 ± 24.24*
	 3.25 ± 9.13

	Mexico
	 174.14 ± 26.21
	 3.82 ± 0.12
	 50.04 ± 2.72
	  8.83 ± 18.63*
	  5.07 ± 10.70
	 10.70 ± 20.45*
	 6.15 ± 11.75

	Malaysia
	 170.47 ± 16.66
	 3.76 ± 0.08
	 53.80 ± 3.27
	 20.48 ± 12.54
	 12.01 ± 7.35
	 18.61 ± 13.01
	10.92 ± 7.63

	Myanmar
	 154.59 ± 33.68
	 3.36 ± 0.34
	 57.16 ± 3.48
	 -7.98 ± 21.32*
	 -5.16 ± 13.79
	 -3.55 ± 21.73*
	-2.30 ± 14.06

	Papua New Guinea
	 143.14 ± 14.80
	 3.16 ± 0.05
	 60.32 ± 3.74
	  9.44 ± 11.46*
	  6.60 ± 8.01
	 13.46 ± 11.92
	 9.40 ± 8.33

	Cuba
	 135.15 ± 13.29
	 2.98 ± 0.06
	 63.30 ± 4.06
	 19.37 ± 11.16
	 14.33 ± 8.25
	 20.28 ± 13.20
	15.00 ± 9.77

	Nigeria
	  96.81 ± 10.66
	 2.13 ± 0.02
	 65.44 ± 4.41
	 10.06 ± 7.89
	 10.39 ± 8.15
	 10.32 ± 8.22
	10.66 ± 8.49

	Thailand
	  94.27 ± 9.37
	 2.08 ± 0.04
	 67.52 ± 4.79
	 -2.46 ± 6.94*
	 -2.61 ± 7.36
	 -3.67 ± 7.59*
	-3.89 ± 8.05

	Guinea-Bissau
	  92.21 ± 12.75
	 2.02 ± 0.03
	 69.54 ± 5.14
	  2.18 ± 9.89*
	  2.36 ± 10.72
	  6.20 ± 10.13*
	 6.73 ± 10.98

	India
	  87.16 ± 11.72
	 1.92 ± 0.03
	 71.45 ± 5.47
	 -1.20 ± 8.91*
	 -1.37 ± 10.22
	  2.70 ± 9.63*
	 3.10 ± 11.04

	Madagascar
	  82.27 ± 11.22
	 1.81 ± 0.03
	 73.27 ± 5.76
	 -0.03 ± 7.70*
	 -0.03 ± 9.36
	  0.81 ± 7.77*
	 0.98 ± 9.44

	United States
	  69.20 ± 8.55
	 1.52 ± 0.00
	 74.79 ± 6.05
	  6.54 ± 6.84*
	  9.45 ± 9.88
	  9.94 ± 7.75*
	14.37 ± 11.20

	Mozambique
	  68.76 ± 8.78
	 1.51 ± 0.01
	 76.30 ± 6.33
	  3.62 ± 6.27*
	  5.26 ± 9.12
	  4.59 ± 6.82*
	 6.68 ± 9.91

	Colombia
	  68.08 ± 12.23
	 1.49 ± 0.09
	 77.79 ± 6.52
	  1.17 ± 8.78*
	  1.73 ± 12.89
	 -1.07 ± 8.53*
	-1.57 ± 12.53

	Vietnam
	  61.15 ± 6.74
	 1.35 ± 0.01
	 79.14 ± 6.72
	 -1.58 ± 5.20*
	 -2.58 ± 8.51
	 -0.23 ± 5.61*
	-0.37 ± 9.17

	Venezuela
	  61.10 ± 7.26
	 1.35 ± 0.01
	 80.48 ± 6.93
	  2.50 ± 5.44*
	  4.10 ± 8.91
	  0.28 ± 5.87*
	 0.45 ± 9.61

	Solomon Is.
	  55.98 ± 5.74
	 1.23 ± 0.02
	 81.72 ± 7.16
	  2.87 ± 4.78*
	  5.13 ± 8.55
	  3.54 ± 5.01*
	 6.32 ± 8.95


Table 5.1: Mean ± 2 standard errors mangrove C stocks held by the 20 most mangrove-rich countries, and their forecasted gains under two climate scenarios (SSP245 and SSP585) based on bias-corrected and means-weighted forecasted climate data. Negative values imply losses in carbon, * denotes gains, losses or no change may be predicted.
When aggregated by country, changes in CSR were spatially heterogeneous and declines under scenario SSP245 were experienced in countries with predicted decreases in mean temperatures of the wettest quarter of the year (Binomial GLM: SE=0.18, p=0.05, Figure 5.2a). Changes in total C stocks were also spatially heterogeneous for both climate scenarios (SSP245 and SSP585). Under the business-as-usual scenario, reductions in total C stocks were predicted in countries that saw declines in precipitation. Decreases in precipitation of the wettest quarter (Binomial GLM: SE=0.003, p=0.01, Figure 5.2b) and the wettest month (Binomial GLM: SE=0.001, p=0.01, Figure 5.2c) were significant predictors of declines in countries’ total C stocks. Egypt, Taiwan and Myanmar were predicted to have the three greatest reductions in precipitation in the wettest month of the year (-197.76mm, -172.58mm and -166.66mm, respectively) and wettest quarter of the year (-446.83mm, -224.82mm and -576.60mm, respectively). Under a high-end scenario (SSP585), it was an elevation in mean temperature or temperature ranges that caused the greatest reduction in C stocks. Countries forecast to experience significant increases in temperature seasonality (Binomial GLM: SE=0.43, p=0.02, Figure 5.2d) and higher mean annual temperatures (Binomial GLM: SE=0.08, p=0.01, Figure 5.2e) were also predicted to have diminished C stocks by 2095. Qatar, Bahrain and Sudan were predicted to have the three greatest changes in temperature seasonality (1.14°C, 1.08°C and 0.94°C, respectively), with New Zealand, South Africa and Morocco experiencing the greatest increases in mean annual temperatures (7.77°C, 5.07°C and 4.25°C, respectively). 
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Figure 5.3: Decadal global CO2e emissions from mangrove deforestation from a) 1980; b) 1990 and c) 2000.
[bookmark: _Toc120622153]5.4.2	Emissions from mangrove deforestation
Global emissions from mangrove deforestation from 1980 to 2000 were more than three-times higher than those estimated from 2000 onwards (Figure 5.3). Annual rates of mangrove deforestation dropped from 0.99% in the 1980’s to 0.83% from in the 1990’s, resulting in global emissions of 193.2 ±44.4 Tg CO2e yr-1 and 149.6 ±33.3 Tg CO2e yr-1 respectively (Figs. 3a and 3b). Emissions then dropped to 8.8 ±2.0 Tg CO2e yr-1 (0.24% annual deforestation) between 2000 and 2010 (Figure 5.3c). To put that value into perspective, annual emissions from mangrove deforestation from 2000 to 2010 were 5.44 to 11.97% of total present day CSR. If countries continue current rates of mangrove deforestation (global average of 0.19%) from 2012 to 2095, a total of 678.50 ±151.32 Tg CO2e will be emitted due to mangrove deforestation, equivalent to mean global emissions of 8.18 ±1.83 Tg CO2e yr-1. From 2012 to 2095, the top 23 emitting countries could account for over 90% of predicted global emissions from mangrove deforestation (Table A3), with four countries (Indonesia, Brazil, Papua New Guinea and Malaysia) accounting for over 50% of all future emissions (Table A3).

	Country
	Current Total Soil Sequestration
(Tg C yr-1)
	% of Global Total
	Global Cumulative %
	SSP245
	SSP585

	
	
	
	
	Potential Change in Soil Sequestration (Tg C yr-1)
	% of Total Country Change
	Potential Change in Soil Sequestration (Tg C yr-1)
	% of Total Country Change

	Indonesia
	4.34 ± 0.19
	23.72 ± 0.09
	23.72 ± 0.09
	-0.08 ± 0.14*
	 -1.95 ± 3.29
	-0.37 ± 0.14
	 -8.55 ± 3.26

	Australia
	1.43 ± 0.08
	 7.80 ± 0.04
	31.51 ± 0.15
	 0.03 ± 0.06*
	  2.29 ± 4.06
	 0.05 ± 0.06*
	  3.44 ± 4.18

	Philippines
	1.20 ± 0.06
	 6.56 ± 0.01
	38.06 ± 0.23
	-0.08 ± 0.04*
	 -6.53 ± 3.35
	-0.09 ± 0.04
	 -7.55 ± 3.38

	Brazil
	1.03 ± 0.05
	 5.62 ± 0.00
	43.69 ± 0.30
	 0.02 ± 0.04*
	  1.53 ± 3.71
	-0.08 ± 0.04
	 -8.06 ± 3.57

	Myanmar
	0.94 ± 0.05
	 5.14 ± 0.05
	48.83 ± 0.32
	-0.13 ± 0.04
	-13.52 ± 4.12
	-0.17 ± 0.04
	-17.96 ± 4.13

	Malaysia
	0.80 ± 0.04
	 4.36 ± 0.01
	53.19 ± 0.34
	-0.14 ± 0.03
	-17.12 ± 3.15
	-0.17 ± 0.02
	-21.43 ± 3.13

	Mexico
	0.68 ± 0.04
	 3.71 ± 0.02
	56.89 ± 0.35
	-0.08 ± 0.03
	-11.74 ± 3.81
	-0.09 ± 0.03
	-12.78 ± 4.15

	Papua New Guinea
	0.62 ± 0.03
	 3.38 ± 0.00
	60.27 ± 0.35
	 0.06 ± 0.02
	 10.36 ± 3.60
	 0.06 ± 0.02
	  8.98 ± 3.67

	Colombia
	0.43 ± 0.02
	 2.33 ± 0.03
	62.59 ± 0.37
	 0.01 ± 0.01*
	  2.39 ± 2.61
	-0.01 ± 0.01*
	 -1.26 ± 2.63

	Nigeria
	0.42 ± 0.02
	 2.30 ± 0.01
	64.90 ± 0.38
	-0.04 ± 0.02
	 -9.28 ± 3.57
	-0.08 ± 0.01
	-19.14 ± 3.46

	Cuba
	0.41 ± 0.02
	 2.24 ± 0.01
	67.14 ± 0.40
	 0.07 ± 0.01
	 17.82 ± 3.59
	 0.05 ± 0.02
	 11.88 ± 3.92

	India
	0.36 ± 0.02
	 1.99 ± 0.02
	69.13 ± 0.40
	-0.02 ± 0.02*
	 -5.29 ± 4.47
	 0.00 ± 0.02*
	 -0.02 ± 4.65

	Thailand
	0.36 ± 0.02
	 1.96 ± 0.00
	71.10 ± 0.41
	-0.01 ± 0.01
	 -1.53 ± 3.42
	-0.02 ± 0.01
	 -6.67 ± 3.47

	Guinea-Bissau
	0.32 ± 0.02
	 1.75 ± 0.01
	72.84 ± 0.41
	 0.09 ± 0.02
	 27.51 ± 5.20
	 0.08 ± 0.02
	 24.73 ± 5.09

	Madagascar
	0.28 ± 0.01
	 1.56 ± 0.01
	74.40 ± 0.41
	 0.00 ± 0.01*
	 -0.72 ± 4.33
	-0.03 ± 0.01
	-10.99 ± 4.33

	Guinea
	0.28 ± 0.02
	 1.52 ± 0.02
	75.92 ± 0.43
	 0.00 ± 0.01*
	  1.66 ± 3.44
	 0.01 ± 0.01*
	  2.65 ± 3.80

	Mozambique
	0.25 ± 0.01
	 1.35 ± 0.01
	77.27 ± 0.44
	-0.03 ± 0.01
	-10.24 ± 3.33
	-0.01 ± 0.01*
	 -5.73 ± 3.84

	United States
	0.24 ± 0.01
	 1.34 ± 0.01
	78.61 ± 0.44
	 0.01 ± 0.01*
	  3.57 ± 4.13
	-0.01 ± 0.01*
	 -2.98 ± 4.14

	Sierra Leone
	0.24 ± 0.01
	 1.29 ± 0.02
	79.89 ± 0.46
	-0.01 ± 0.01*
	 -2.71 ± 3.20
	 0.01 ± 0.01*
	  2.93 ± 3.66

	Panama
	0.23 ± 0.01
	 1.27 ± 0.00
	81.17 ± 0.47
	-0.05 ± 0.01
	-20.93 ± 2.83
	-0.06 ± 0.01
	-25.77 ± 2.92


Table 5.2: Mean ± 2 standard errors mangrove C sequestration rates of the 20 highest sequestering countries, and their forecasted gains under two climate scenarios (SSP245 and SSP585) based on bias-corrected and means-weighted forecasted climate data. Negative values imply declines in sequestration rates, * denotes gains, losses or no change may be predicted.

[bookmark: _Toc120622154]5.4.3	Net change in global carbon stocks and sequestration rates
Our projections showed that, globally, increases in total C stocks (biomass + soil) induced by climate change would exceed emissions from mangrove deforestation between 2012 and 2095 (Table 5.3). Under a ‘business as usual’ climate scenario these net gains represent an increase of 7.05 ±7.89% (SSP245) or 7.71 ±9.47% under a high-end scenario (SSP585) of present day global total C stocks. Total global losses from mangrove deforestation from 2012 to 2095 (Table 5.3) were estimated to be 61.4 ±10.1% (SSP245) or 55.6 ±9.1% (SSP585) of the potential gains in C stocks due to climate change. In contrast, CSR were forecast to decline by 2.60 ±3.57% under scenario SSP245 and by 6.44 ±3.63% under scenario SSP585 (Table 5.3).

	Global Total Stocks (Tg C)

	
	Current day
	Forecasted
	Losses from deforestation
	Net change

	
	Tree C stocks
	Soil C stocks
	Tree C stocks
	Soil C stocks
	
	

	SSP245
	1246.9 ±427.1
	3296.1 ±114.8
	1382.0 ±450.6
	3481.4 ±121.3
	196.7 ±32.3
	123.7 ±1146.1

	SSP585
	
	
	1439.8 ±502.5
	3457.0 ±125.6
	
	157.1 ±1202.3

	
	
	
	
	
	
	

	Global Sequestration Rates (Tg C yr-1)
	
	
	

	
	Current day
	Forecasted
	Net change
	
	
	

	SSP245
	18.3 ±0.9
	17.8 ±0.9
	-0.5 ±1.8
	
	
	

	SSP585
	
	17.1 ±0.9
	-1.2 ±1.8
	
	
	


Table 5.3: Mean ± 2 standard errors of the net effects of climate change and mangrove deforestation on total global mangrove carbon stocks and sequestration rates. Forecasted stocks and sequestration rates represent global estimates for the year 2095. Soil C stocks are estimated to 1m soil depth. Net change is forecasted stocks/sequestration rates minus current day stocks/sequestration rates minus losses from deforestation.

[bookmark: _Toc120622155]5.5	Discussion
Our study predicted a global net increase in mangrove C stocks under two climate projections (SSP245 and SSP585). Predicted climate change in Mainland Southeast Asia and southern Brazil resulted in lower C stocks, whilst higher C stocks were predicted in the Caribbean, the Malay Archipelago, Australia, and West and East Africa (Figure A5). Our results identify particularly mangrove C rich countries where significant gains will occur and can reinforce the value of mangroves as a practical tool for offsetting emissions to national governments. Under a ‘business as usual’ scenario (SSP245), Indonesia, Malaysia, Cuba and Nigeria, all of which are currently in the top 10 mangrove holding countries (Hamilton and Casey, 2016), could hold >10% higher C stocks than at present (Table 5.2). Under the high emissions scenario (SSP585), these countries plus the USA and Australia would have >10% higher total C stocks (Table 5.2). These nations’ C stocks would also see significant benefit from reduced mangrove deforestation. The Malay Archipelago in particular, could emit 774.1 Tg CO2e by 2100 from mangrove clearing and conversion to agri/aquaculture (Adame et al., 2021). Projections of C stocks in the current study are only to 1m soil depth and are likely to be underestimates. Global mangrove soil C stocks to 2m soil depth have been estimated to be almost double that of 1m depth (Sanderman et al., 2018). Hence emissions from mangrove deforestation reported here (678.50 ±151.32 Tg CO2e from 2012 to 2095) are also likely to be underestimated. Other studies have projected up to 3392 Tg CO2e emissions by 2100, with 712 Tg CO2e being lost in the West Coral Triangle alone (Adame et al., 2021). 

Despite an overall gain in C stocks, a likely decrease in global soil sequestration rates (CSR) was predicted under both climate projections (SSP245 and SSP585), with a different spatial distribution to predicted gains in C stocks; depressed CSR were mainly forecast in the Malay Archipelago and the Southern Caribbean (Figure A5). More than half of the top 20 mangrove holding countries would experience decreases in CSR. Some of these losses will be significant, Panama’s annual CSR could reduce by 20.93 ±2.83% under SSP245 or over a quarter (25.77 ±2.92%) under SSP585 (Table 5.2). These reductions may be compounded by emissions from erosion, which is expected to be the main driver for mangrove losses on the Caribbean coast of Panama by 2100 (Adame et al., 2021). Malaysia and Myanmar could experience total reductions in CSR by 17.43% and 21.96%, respectively (Table 5.2). These two countries’ future emissions from mangrove losses are also expected to be largely driven by land-use change to agri/aquaculture (Adame et al., 2021) and would exacerbate the climate driven reductions in CSR. On a more positive note, even though overall reductions in global CSR were predicted, our study suggests global mangrove CSR has previously been underestimated. Our estimate (18.3 Tg C yr-1) is more than double that of the most recent previous estimate (Alongi, 2020), which used the same global mangrove extent as us (8.6 Tg C yr-1, mangrove extent: ~83,000 km2). Alongi (2020) used a median CSR value (103 gC m2 a-1) obtained from a literature study and multiplied this by the global coverage as opposed to our spatial modelling approach. The approach used by Alongi (2020) assumed all mangroves will have the same CSR, even though it has been shown to vary widely (1.0 – 1722 gC m2 a-1) (Alongi, 2020).When global mangrove extent is standardized to 83,000 km2, our calculation is higher than most previous estimates (range: 8.3 - 18.8 Tg C yr-1) (Alongi, 2020; Bouillon et al., 2008; Breithaupt et al., 2012; Chmura et al., 2003; McLeod et al., 2011). Mangroves have the ability to increase soil elevation, thus increasing soil C stores and, up to a point, keep pace with sea level rise (Ezcurra et al., 2016). Coastal wetlands that experienced rapid relative sea level rise (RSLR) during recent millennia have significantly greater soil carbon density than coastlines where relative sea level was stable (Rogers et al., 2019) and RSLR is considered to be an important driver in predicted increases in wetland soil carbon accumulation rates (Wang et al., 2020). Even though sediment accretion and increased surface elevation may reduce coastal flooding as a result of climate change driven sea level rise, accretion rates in mangroves are not likely to compensate for increases in sea level of greater than 6.1 mm yr-1 (Saintilan et al., 2020). As a result of the approach we used, we have been able to capture spatial variation in CSR and produce country-specific estimates, including those where CSR data are currently unavailable. Generally, model predictions have been shown to vary considerably from the IPCC’s default estimates of greenhouse gas inventories, likely as a result of applying model predictions to locations where in situ measurements have not been taken as opposed to applying a mean across all global mangroves. 

Recent work has suggested higher temperatures would have ‘minimal impact’ on carbon stocks (Macreadie et al., 2019). Our study showed that, under a high-emissions scenario, temperature increases would be high enough in some countries to impact national scale total C stocks and CSR. Under a business as usual scenario, temperature increases were not significant enough to detriment national scale mangrove C stocks. Peak photosynthesis productivity reduces above 38°C and increased temperatures would also increase evaporation rates which will in turn increase salinity stress (Clough et al., 1982). Our modelling showed, under SSP585, mean annual air temperatures could increase from 29.7C to 32.5C, while maximum temperature of the warmest month could be as high as 44.2C. Increases in mean temperatures and their annual variability, under the high-end scenario (SSP585), significantly increases the probability of a country experiencing losses in mangrove C stocks (Figure 5.2d and Figure 5.2c). This is likely as a result of our study giving mangrove C stocks from arid regions at the climatic extremes of global mangrove distribution greater representation than previous modelling efforts. Apart from Sanderman et al. (2018), data from arid regions such as those of North Africa and the Arabian Peninsula, where mangroves have low carbon stocks and CSR (Almahasheer et al., 2017; Chatting et al., 2020; Eid and Shaltout, 2016; Schile et al., 2017), have not been incorporated into global models (Jardine and Siikamäki, 2014; Rovai et al., 2018).  

Model predictions that global C stocks will increase, while CSR will decrease may seem contradictory. However, total C stocks here are only quantified for the top 1m of soil depth, in effect a measure of soil C density, with any change being the balance of gain by sequestration and losses by erosion and mineralisation. Hence modelled C stocks may increase if climatic conditions result in increased soil C density, even if CSR declines. Over and above this effect, stocks throughout the whole soil depth profile could still increase substantially over time as more soil is accreted, even with lower sequestration rates (Alongi, 2015, 2012). Differences in estimates of global total mangrove C stocks and CSR largely arise from different methods calculating global mangrove extent (Alongi, 2020; Breithaupt et al., 2012; Hamilton and Friess, 2018; Sanderman et al., 2018). When projecting soil C stocks globally, our approach assumed pixels either had 100% or 0% mangrove coverage, similarly to Sanderman et al. (2018). However, this is unlike Hamilton and Friess (2018), where mangrove coverage was estimated to range from 0 to 100% per pixel. Global CSR estimates have ranged from 8.6 to 38.0 Tg C yr-1 (Alongi, 2020, 2009; Bouillon et al., 2008; Breithaupt et al., 2012; Chmura et al., 2003; Duarte et al., 2005; Jennerjahn and Ittekkot, 2002; Twilley et al., 1992a), where differences are mainly due to varying global mangrove extents used in calculation. Additional uncertainties arise when estimating change in C stocks and CSR at the end of the 21st century. Our study assumed constant mangrove coverage from 2012 to 2095, however, on a global scale, mangroves in temperate regions have been forecast to expand to higher latitudes (Saintilan et al., 2014). Also, the interaction between sea level rise and coastal human development will likely influence mangroves ability to migrate landward in response to sea level rise (Lovelock and Reef, 2020). Moreover, by subtracting future from present day C stocks and CSR and not incorporating estimated mangrove deforestation rates, this study assumed a constant rate of change from 2012 to 2095 and will lead to overestimates of C stocks and CSR. While this approach may be an oversimplification of the complex process by which mangroves sequester and store C, calculations of future estimates apply the same logic as has been performed for numerous estimates of present day C stocks (Hamilton and Friess, 2018; Hutchison et al., 2014; Rovai et al., 2018; Sanderman et al., 2018).

[bookmark: _Hlk87886148]In addition to higher soil sequestration rates, our estimates of C emissions from mangrove deforestation between 2000 and 2010 are at the lower end of the 6.60 – 29.80 Tg CO2e yr-1 previously reported (Hamilton and Friess, 2018; Sanderman et al., 2018). A combination of higher global soil C sequestration rates than previously reported, coupled with comparatively low emissions estimates associated with mangrove deforestation (0.24% annually), largely due to significant reductions in deforestation rates, means that C emissions from mangrove deforestation are now <12% global annual soil sequestration rates. By contrast, in the 1980’s global emissions from mangrove deforestation were almost three-times global mangrove annual soil C sequestration (Figure 5.3). Despite the great uncertainties surrounding historical estimates of mangrove deforestation rates (Friess and Webb, 2014), this decrease since the 1980’s is a noteworthy success for mangrove conservation globally.  Moreover, at a national level, our estimates show that for many countries rates of C sequestration in mangrove soils could be higher than previously thought, so that governments may choose to place greater value on their mangroves as a means of offsetting emissions. The outcomes of this modelling study demonstrate the positive effect of future mangrove protection and restoration on national C budgets, providing governments useful data on their mangrove soil sequestration rates in comparison to likely emissions and C stocks, which have not previously been available.  Reducing emissions from mangrove deforestation is an achievable way to help countries’ meet their Nationally Determined Contributions (NDC’s) towards meeting the Paris Agreement and COP26 updates to this accord. Indonesia has pledged almost 60% of their unconditional emissions reductions by 2030 to come from forestry and other land use sectors (Ministry of Environment and Forestry Directorate General of Climate Change, 2021). Globally, emissions from mangrove deforestation have been estimated to be as high as 19% of global total deforestation emissions (Pendelton et al., 2012). Financing of mangrove conservation is also a viable option for offsetting emissions where countries cannot directly reduce their own emissions (Zeng et al., 2021). Selling carbon credits gained from avoided mangrove deforestation in voluntary carbon markets has been shown to have similar returns on investment to investing in traditional asset classes (Cameron et al., 2019). Mangroves alone will not mitigate fully against climate change, however, their conservation can be used as a practical tool to facilitate countries’ moving towards carbon neutrality, as well as securing additional co-benefits through the enhancement of mangrove-derived ecosystem services.

[bookmark: _Toc120622156]6.	General discussion

[bookmark: _Toc120622157]6.1	Aims of the thesis
The overarching aims of this thesis were to compare the functioning of mangroves in the extreme environment of Qatar to their tropical counterparts and to see how these data can inform current and future estimates of global mangrove productivity rates and carbon stocks. To that aim, two chapters report data collected on mangrove functioning in an extreme, understudied environment. In the modelling chapters, these findings are included with global datasets to inform models of current and future global mangrove productivity rates and carbon stocks.  The research questions raised by this thesis can be summarised as:
1) How productive are the mangroves in Qatar (chapter 2)?
2) Are they less productive than their tropical counterparts (chapters 2 and 3)?
3) How much carbon is stored in Qatari mangroves (chapter 4)?
4) Do mangroves in Qatar store less carbon than their tropical counterparts (chapters 4 and 5)?
5) How can mangrove functioning in Qatar inform current global estimates of mangrove productivity and carbon stocks (chapter 3 and 5)?
6) How can mangrove functioning in Qatar inform estimates of global change in mangrove productivity and carbon stocks by the end of the 21st century (chapter 3 and 5)?

[bookmark: _Toc120622158]6.2	Summary of findings 
These questions can be grouped into two overarching groups. First, quantifying mangrove productivity and carbon stocks on a local scale, in Qatari mangroves, and how they compare to their tropical counter parts; secondly, how can this knowledge inform estimates of current and future mangrove carbon stocks and productivity. The aims are grouped below and will be discussed on a local scale and then on a global/regional scale.

How productive are the mangroves in Qatar (chapter 2)? Are they less productive than their tropical counterparts (chapters 2 and 3)? How much carbon is stored in Qatari mangroves (chapter 4)? Do mangroves in Qatar store less carbon than their tropical counterparts (chapters 4 and 5)?

Results of the current study showed productivity and overall carbon stocks of mangroves in Qatar to be lower than their tropical counterparts. Above and below ground productivity and carbon stocks were comparable to mangroves in other arid locations but were markedly reduced when compared to tropical humid mangroves. Total mangrove carbon stocks in Qatar were less than one-twentieth of tropical mangroves and were comparable to other arid regions in which mangroves occur (Almahasheer et al., 2017; Donato et al., 2011; Murdiyarso et al., 2015; Schile et al., 2017). Total tree biomass and carbon stocks have been reported as >10-fold greater in tropical locations (Donato et al., 2011) and A. marina in Qatar were much smaller than the same species in tropical locations (Comley and McGuinness, 2005; Parvaresh et al., 2012). Data also suggested seasonal shifts in mangrove productivity, in response to the extreme summer experienced in Qatar, as evidenced by greater shoot tip growth observed in winter than in summer and markedly greater uptake of CO2 in mangrove soils during winter, when compared to summer. Previous research has shown higher salinities, which are present in Qatar (Al-Maslamani et al., 2013; Perri et al., 2018), compared to in tropical locations (Chowdhury et al., 2019; Pestana et al., 2017), could be limiting tree biomass and productivity in the summer subsequently reducing locally derived carbon inputs.

Interestingly, the current study showed productivity, biomass and carbon stocks to be inversely associated with tidal height, which is the opposite to those observed in tropical locations. The variations observed along the tidal gradient in Qatari mangroves are likely a result of a lack of freshwater input from a landward direction, resulting in reduced nutrient availability and increased salinity stress in higher tidal zones. Allometric equations developed by the current study showed A. marina in Qatar to have a higher below ground biomass ratio (0.61) than has previously been reported (0.1–0.55) for Avicennia trees (Alongi and Dixon, 2000; Kristensen et al., 2008; Matsui, 1998). These findings suggest that A. marina in Qatar may differ from their tropical counterparts by increasing energy allocation of below ground biomass growth in response to a stressful environmental setting, for example under reduced rainfall and increased salinity (Adame et al., 2020, 2014; Asbridge et al., 2015; Duke et al., 2019; Lovelock, 2008; Lovelock et al., 2016).

How can mangrove functioning in Qatar inform current global estimates of mangrove productivity and carbon stocks (chapter 3 and 5)? How can mangrove functioning in Qatar inform estimates of global change in mangrove productivity and carbon stocks by the end of the 21st century (chapter 3 and 5)?

Overall global modelling results from the current study found comparable levels of mangrove litterfall rates and carbon stocks to other global modelling efforts. Mean global mangrove litterfall rates (3.1 g m2 d-1) in the current study were similar to Ribeiro et al. (2019)’s estimate of 3.2 g m2 d-1. Likewise, soil carbon estimates in the current study ranged from 80.8 to 653.2 Mg C ha-1, compared to Sanderman et al. (2018) who estimated a global range from 86 to 729 Mg C ha-1. In agreement with previous work, this study showed the greatest current carbon stocks to occur in Southeast Asia and the Indo-Pacific (Rovai et al., 2018; Sanderman et al., 2018). There were, however, differences in soil carbon estimates regionally, likely as a result of differing datasets and modelling approaches used in estimating global soil carbon. For example, Rovai et al. (2018) predicted soil carbon stocks >450 Mg C ha-1 in the Red Sea (Saudi Arabia, Eritrea and Sudan), which is where the current study estimated some of its lowest soil carbon values (90 to 290 Mg C ha-1), which is likely as a result of Rovai et al. (2018) not giving mangrove data from the Arabian region (The Gulf and Red Sea) any representation in their training dataset. Moreover, Sanderman et al. (2018) predicted lower soil carbon stocks in the Sundarbans (~90 Mg C ha-1) (India and Bangladesh) than in the Gulf (~200 Mg C ha-1) (Qatar, UAE and Saudi Arabia). Field measurements from the current study show that Sanderman et al. (2018)’s estimates of soil carbon stocks in Qatar are overestimates (mean measured soil carbon stocks were 50 ± 6.27 Mg C ha-1) and estimates from neighbouring Saudi Arabia and the United Arab Emirates are also overestimates, as measured soil carbon stocks ranged from 43–76 Mg C ha−1 in 1 m soil depth (Almahasheer et al., 2017; Cusack et al., 2018).

Results from the current study can inform global forecasts of mangrove functioning under predicted climate change. Modelling efforts performed in the present study gave greater representation to mangroves at the climatic extremities of their global distribution than previous global modelling efforts (Figures 6.1a, 6.1b and 6.1c). As previously mentioned, Rovai et al. (2018) and Ribeiro et al. (2019), estimated mangrove soil carbon stocks and productivity on a global and continental scales, respectively, without including data from arid locations. Of previous global mangrove modelling efforts, only Sanderman et al. (2018) has included data from arid regions, for example Egypt, where annual rainfall can be <10% of that in Qatar (Teraminami et al., 2014). However, maximum air temperatures of 38.7C experienced by these mangroves (Afefe et al., 2021), is lower than seen in n Qatar and the wider Gulf, where maximum air temperatures can reach >50C (Al-Khayat and Giraldes, 2020). As numerical models do not perform well for values falling outside of the range of data originally used to train the model, outputs generated in the current study can be considered more realistic of mangrove functioning at the climatic extremes of their global distribution, and more specifically higher temperatures, than models that did not use as wide a range of climatic settings. In addition, model estimates in the current study suggest that, under a high-emissions scenario, air temperature increases would be high enough in some countries to impact national scale total carbon stocks and soil sequestration rates. Countries predicted to experience a high enough increase in air temperatures had an increased probability of experiencing losses in total mangrove carbon stocks. These results are also in contrast to recent work that suggested elevated air temperatures would have little impact on mangrove carbon stocks (Macreadie et al., 2019), which is likely as a result of this study giving greater representation to mangroves at the climatic extremes of global distribution than in than previous modelling efforts.
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Figure 6.1: a) Maximum temperatures, b) precipitation and c) sea surface temperatures in the locations used in previous global mangrove modelling studies. Maximum temperatures >45C, precipitation <10 mm mn-1 and sea surface temperatures <17C are highlighted red.

[bookmark: _Toc120622159]6.3	What this thesis can add to mangrove science
This thesis presents several “firsts” for mangrove science: 
1) Prediction of global mangrove Net Primary Productivity (NPP) over space and time, and not just a single ‘snapshot’ of productivity at one point in time; 
2) Prediction of current and future global mangrove soil carbon sequestration and
3) Projections for change in total mangrove carbon stocks in the 21st century. 

Findings from this thesis reinforce previous research that shows mangrove productivity and carbon stocks in low-rainfall regions to be relatively low (Almahasheer et al., 2017; Gab-Alla et al., 2010; Schile et al., 2017). Allometric equations developed in the present study showed A. marina in Qatar had a steeper below biomass increase with increasing crown diameter (CD) when compared to the same species from a tropical humid area of Australia (Comley and McGuinness, 2005) and from a geographically adjacent but humid region in Iran. These findings can refine below ground biomass and carbon stocks estimates for mangroves in arid regions as previous work may have underestimated below ground carbon stocks by using allometric equations from less extreme environments. As mangroves are expanding their distribution to higher latitudes (Osland et al., 2017; Saintilan et al., 2014), mangroves on the edge of their global distribution are likely to become more widespread. Changes to precipitation regimes across the sub-tropics are projected to be heterogeneous, for example  increased water limitation is predicted in southern areas of African subtropics, while some areas of Asian subtropics are forecast to experience significant increases in precipitation (Giorgi et al., 2019; J. Sillmann et al., 2013; Soares et al., 2019). Thus, in areas where precipitation declines, productivity and carbon storage may not only be reduced but may be re-allocated so that greater biomass is stored below ground.

In predicting global change in mangrove productivity rates, carbon stocks and soil carbon sequestration rates, significant future regional changes were detected, particularly at the extremities of global mangrove distribution. These findings have implications for country level management of mangroves into the 21st century, especially in an era of Nationally Determined Contributions (NDS’c) to reduce greenhouse gas emissions. This thesis identifies nations where effective mangrove conservation and restoration may be used as a contribution to meeting their NDC’s, as well as countries where mangrove carbon storage is likely to increase significantly. For example, the Indonesian government has declared 60% of their emissions reductions by 2030 will come from forestry and land use sectors (Ministry of Environment and Forestry Directorate General of Climate Change, 2021), of which mangroves can comprise a significant portion. The study also predicted four out of the top ten mangrove holding countries to increase their total mangrove carbon stocks by >10%, which may provide greater impetus towards mangrove conservation and restoration.

[bookmark: _Toc120622160]6.4	Limitations 
This study has shed some light on the functioning of the arid mangroves in Qatar and how they compare to mangroves in topical humid locations. Results from this work are important in helping to elucidate how arid mangroves fit into global estimates of change in productivity and carbon stocks under forecasted climate change as well as providing more robust projections of how mangroves may respond under elevated heat and reduced precipitation. Despite these findings, there are limitations in the methods and assumptions made by the study in both the local scale chapters (chapters 2 and 4) and the global scale modelling chapters (chapters 3 and 5). These limitations have been grouped together and discussed below.
Qatar productivity and Qatar carbon stocks (chapters 2 and 4)
These chapters utilised field data collected from mangrove stands in Qatar and had comparable shortcomings. Additional data collection would have provided more robust statistical analysis. Comparisons of carbon stocks and productivity between mangrove tidal heights and sites were performed with a total of nine data points, where three data points each from low, mid and high tidal zones were collected per site. Nine data points from each site were chosen as the best compromise between enough data to perform statistical comparisons and the logistical difficulties of sampling in mangroves in Qatar during the summer months where air temperatures regularly exceed 50C. While this amount of data is acceptable, more data points would have provided more robust statistical analysis and comparisons between sampling sites where only nine points each were used.

As well as additional sampling, collection of pore water salinity and nutrient data would have aided interpretation of results, especially when dealing with variations in productivity and carbon stocks across the tidal gradient. Mangrove soil salinity and nutrient availability are closely associated with biomass, productivity and soil carbon stocks (Schile et al., 2017; Sherman et al., 2003) and correlating variations in mangrove productivity and carbon stocks throughout the tidal gradient could have provided more robust interpretation of the differences between tidal heights that were observed.

Global productivity and global mangrove carbon stocks (chapters 3 and 5)
These chapters modelled global change in mangrove productivity, carbon stocks, soil sequestration rates and emissions from mangrove deforestation on a global scale up to late 21st century (the year 2095). As is standard in numerical modelling studies, numerous assumptions had to be made to quantify change in mangrove functioning in space and time. The study assumed constant mangrove coverage for the entire study period from 1980 to 2095. Constant mangrove cover is very unlikely, in addition, mangrove expansion will not occur uniformly around the world. Temperate regions, where minimum air temperatures are predicted to increase, mangrove colonization of saltmarsh is expected (Saintilan et al., 2014). Specifically, poleward dispersion of mangroves in North and South America, Australia, New Zealand and eastern Asia has been predicted (Osland et al., 2017). Pressures from sea level rise and coastal development are also likely to impact mangrove coverage globally (Lovelock and Reef, 2020). The phenomenon is called “coastal squeeze”, where the amount of available space is reduced due to relative sea level rise from a seaward direction and human coastal development from a landward direction, has been estimated to emit 3.4 Pg C by 2100 (Lovelock and Reef, 2020).

In addition, the geomorphological setting where mangroves occur, for example, riverine, deltaic or carbonate, is an important driver in mangrove carbon stocks and productivity but was not included as a predictor in modelling (Ribeiro et al., 2019; Rovai et al., 2018). Riverine mangroves are associated with comparatively high aboveground biomass, productivity rates and carbon stocks due to greater nutrient availability and reduced soil salinity (Twilley et al., 2019), whereas, mangroves in carbonate settings have lower productivity rates and carbon stocks (Ribeiro et al., 2019; Rovai et al., 2018). However, as the aim of the current study was to predict the potential effects of climate change on mangrove NPP, only climatic predictors were used and the predictive power of models used were comparable to recent global modelling work (Ribeiro et al., 2019; Rovai et al., 2018; Sanderman et al., 2018).

Results in the global modelling chapters also carried large uncertainty ranges and it was often difficult to determine whether increases or decreases were likely to happen. For example, mean total global soil sequestration was predicted to decrease by 0.5 Tg C yr-1, however, the associated 95% confidence interval was >3 times that value (1.8 Tg C yr-1). Thus, the 95% confidence range of the change in soil sequestration is from -2.3 to 1.3 Tg C yr-1 and it was difficult to determine an overall trend of increasing or decreasing soil carbon sequestration rates. Similarly, regional scale projections of change in productivity or carbon stocks carried large uncertainties. Associated uncertainty values were as much as five times the mean predicted value. For example, change in Net Primary Productivity in the Tropical Northwestern Atlantic was predicted to be 0.52 ± 2.95 Mg ha-1 yr-1, again making it difficult to determine an overall trend of increasing or decreasing productivity. 

Obtaining accurate estimates of global mangrove coverage carries significant logistical problems, and the global mangrove extent is still debated. Subsequently, differences in estimates of global total mangrove C stocks, soil carbon sequestration and productivity rates largely arise from different methods calculating global mangrove extent (Alongi, 2020; Breithaupt et al., 2012; Hamilton and Friess, 2018; Sanderman et al., 2018). Present day estimates of global mangrove coverage range from ~83,000 to ~167,000 km2 (Hamilton and Casey, 2016). For example, global soil carbon sequestration rates have ranged from 8.6 to 38.0 Tg C yr–1 using differing global mangrove coverage estimates (Alongi, 2020, 2009; Breithaupt et al., 2012; Chmura et al., 2003; Duarte et al., 2005; Jennerjahn and Ittekkot, 2002; Kristensen et al., 2008; Twilley et al., 1992b). 

[bookmark: _Toc120622161]6.5	Future research and applications of results
The future for mangrove science is closely tied to climate change mitigation. Since mangrove conservation has been identified as a potentially effective and profitable means to offsetting greenhouse gas emissions, national governments and private companies have started directing finance towards mangrove conservation and restoration efforts (Cameron et al., 2019; Zeng et al., 2021). Coincidentally, climate change itself has been identified as the biggest threat to mangrove habitats worldwide (Macreadie et al., 2019) and there is still uncertainty over regional and global mangrove response to predicted climate change. As a result, as well as other logistical issues, the long-term efficacy of mangrove conservation/restoration as a means to offset greenhouse gas emissions still carries considerable uncertainties. Thus, the future for mangrove science is two-fold: 1) future directions of research to reduce uncertainties in current data from both regional and global perspectives and to aid predictions of the effects of climate change to mangrove habitats; and 2) the practical side of using these data to calculate emissions reductions in conservation/restoration efforts and to assess their efficacy.

From a regional perspective, there is still a lack of in situ long term experimental data investigating resilience and response to climate change in mangroves. For example, research has shown mangroves are resilient to a degree of sea level rise (Ellison, 1993; McKee et al., 2007), however, little in situ experimental work has been carried out on effects of changes to precipitation and temperature regimes over long time-horizons and it is still unclear under what range of changes in climate mangroves can persist. Recent work has suggested that millennial-scale shifts in sea level had a weaker effect on mangrove proliferation than changes to air temperature (Zhang et al., 2021). As shown by the current study (chapter 5) high air temperatures, previously thought to have minimal impact on mangrove carbon stocks, may result in lower mangrove carbon stocks in some regions. In addition, large uncertainties still remain in mangrove research in response to climate change on a global scale. Studies have looked at differing climate change variables in isolation (Chatting et al., 2022; Lovelock et al., 2015a; Lovelock and Reef, 2020; Saintilan et al., 2020). However, understanding of the net effect of climate change impacts, such as temperature, precipitation, sea level rise, coastal squeeze, is still lacking. Moreover, the modelling work in this thesis in particular would have benefited from estimates of global mangrove coverage change in the 21st century in response to climate change. Questions such as “where will expansion or contraction of mangroves occur globally?” have been investigated at local levels (Osland et al., 2020), but are still to receive much attention globally. Mangrove expansion into saltmarsh areas has been reported (Osland et al., 2017) and is forecasted to become more common this century (Saintilan et al., 2014). Additional research could overlay global climate projections used in the current study onto a global mask of mangroves and saltmarshes. A combination of these data could be used to estimate where mangroves and saltmarshes meet and which of these areas future climate conditions would better suit mangroves or saltmarshes.

Even though mangrove research has received much scientific attention in recent years, the majority of work is still centred around quantifying carbon stocks and productivity rates in various locations around the world. These data are important to continually update global datasets of spatially and temporally variable carbon stocks and productivity rates and increase the amount of ground-truth data used to train global models. However, there is a need to move on from solely quantifying mangrove functioning and integrate knowledge gained from these data into management plans identifying opportunities for protection and restoration of mangrove habitats. Moreover, as the potential for mangroves, and wider coastal vegetated wetland habitats, to contribute to climate change mitigation has been identified and mangrove conservation is starting to be used as an emissions offsetting tool, the long-term efficacy of these initiatives is still not well understood. 
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Table A1: Names of climatic variables tested as predictors and how to calculate them.
	Code
	Name
	Equation
	Reference

	Bio1
	Annual Mean Temperature
	

	



	Donnell and Ignizio 2012

	Bio2
	Annual Mean Diurnal Range
	

	



	Donnell and Ignizio 2012

	Bio3
	Isothermality
	

	



	Donnell and Ignizio 2012

	Bio4
	Temperature Seasonality
	}

	



	Donnell and Ignizio 2012

	Bio5
	Maximum Temperature of the Warmest Month
	}

	



	Donnell and Ignizio 2012

	Bio6
	Minimum Temperature of the Coldest Month
	}

	



	Donnell and Ignizio 2012

	Bio7
	Annual Temperature Range
	

	



	Donnell and Ignizio 2012

	Bio8
	
	Mean Temperature of the Wettest Quarter



	The maximum of 12 consecutive quarters' precipitation are first calculated then:

	Donnell and Ignizio 2012

	Bio9
	Mean Temperature of the Driest Quarter
	The minimum of 12 consecutive quarters' precipitation are first calculated then:

	Donnell and Ignizio 2012

	Bio10
	Mean Temperature of the Warmest Quarter
	The maximum of 12 consecutive quarters' mean temperature are first calculated then:

	Donnell and Ignizio 2012

	Bio11
	Mean Temperature of the Coldest Quarter
	The minimum of 12 consecutive quarters' mean temperature are first calculated then:


	Donnell and Ignizio 2012

	Bio12
	Annual Precipitation
	
	Donnell and Ignizio 2012

	Bio13
	Precipitation of the Wettest Month
	}

	Donnell and Ignizio 2012

	BIo14
	Precipitation of the Driest Month
	}

	Donnell and Ignizio 2012

	Bio15
	Precipitation Seasonality (Coefficient of Variation)
	 X 100

	



	Donnell and Ignizio 2012

	Bio16
	Precipitation of the Wettest Quarter
	The maximum of 12 consecutive quarters' precipitation
	Donnell and Ignizio 2012

	Bio17
	Precipitation of the Driest Quarter
	The minimum of 12 consecutive quarters' precipitation
	Donnell and Ignizio 2012

	Bio18
	
	Precipitation of the Warmest Quarter



	The maximum of 12 consecutive quarters' mean temperature are first calculated then:

	Donnell and Ignizio 2012

	Bio19
	Precipitation of the Coldest Quarter
	The minimum of 12 consecutive quarters' mean temperature are first calculated then:

	Donnell and Ignizio 2012

	PET
	Potential Evapotranspiration
	 **
	Thorntwaite 1948, however, R function thornthwaite() from SPEI package 1.7 was used

	arid
	Aridity Index
	

	



	Tsakiris and Vanelis 2005

	sst
	Sea Surface Temperature
	Mean of all month’s SST
	Data taken directly from source

	tas
	Mean monthly temperature
	Mean of all months
	Data taken directly from source

	precip
	Mean monthly precipitation
	Mean of all month’s precipitation
	Data taken directly from source





Table A2: Mean±95% confidence intervals of Net Primary Productivity (NPP) per unit of area, total NPP for an entire marine province, global proportion and cumulative % for all 38 global marine provinces that contained mangroves. Potential absolute change and relative change in NPP by mid-century (2030 to 2040) and late century (2085 to 2095) under the low end SSP245 emissions scenario. 
	Province
	Historical
	Mid Century
	Late century

	
	Total Province NPP Tg yr-1
	Proportion of global NPP (%)
	Cumulative Proportion of global NPP (%)
	NPP Mg ha-1 yr-1
	Potential Change Mg ha-1 yr-1
	Relative change in NPP (%)
	Potential Change Mg ha-1 yr-1
	Relative change in NPP (%)

	Western Coral Triangle
	46.82 ± 10.44
	19.68 ± 0.44
	19.68 ± 0.44
	29.78 ± -6.61
	-1.22 ± 0.60
	-4.10 ±  8.42
	-3.56 ± 2.99
	-7.61 ±  6.39

	Sahul Shelf
	29.09 ± 7.25
	12.14 ± 0.06
	31.83 ± 0.82
	31.15 ±  9.31
	 0.14 ± 0.09
	0.45 ± 12.40
	-0.01 ± 3.47
	-0.02 ± 11.93

	Tropical Northwestern Atlantic
	25.79 ±  5.85
	10.82 ± 0.19
	42.65 ± 1.39
	25.60 ±  5.67
	-0.06 ± 0.00
	-0.24 ± 10.17
	0.52 ± 2.95
	2.02 ± 11.42

	Sunda Shelf
	23.12 ±  5.43
	 9.68 ± 0.09
	52.34 ± 2.05
	30.03 ± 12.34
	-1.34 ± 0.65
	-4.46 ±  8.64
	-1.62 ± 1.67
	-6.99 ±  7.22

	Gulf of Guinea
	22.30 ±  5.58
	 9.31 ± 0.06
	61.64 ± 2.66
	32.07 ± 15.35
	-0.48 ± 0.19
	-1.50 ± 10.88
	-0.46 ± 2.32
	-2.08 ± 10.40

	North Brazil Shelf
	12.98 ±  3.14
	 5.43 ± 0.01
	67.07 ± 3.27
	29.44 ± 19.60
	-0.45 ± 0.19
	-1.52 ± 11.25
	-0.41 ± 1.31
	-3.12 ± 10.12

	Western Indian Ocean
	12.23 ±  3.18
	 5.09 ± 0.08
	72.17 ± 3.80
	27.21 ± 18.16
	-0.22 ± 0.07
	-0.79 ± 11.45
	0.05 ± 1.42
	0.42 ± 11.64

	Bay of Bengal
	11.06 ±  2.76
	 4.62 ± 0.03
	76.79 ± 4.30
	34.36 ± 26.05
	-0.15 ± 0.02
	-0.44 ± 11.66
	0.42 ± 1.56
	3.80 ± 14.14

	Tropical East Pacific
	10.93 ±  3.03
	 4.53 ± 0.16
	81.32 ± 4.64
	29.22 ± 21.33
	-0.14 ± 0.02
	-0.49 ± 12.68
	-0.26 ± 1.20
	-2.39 ± 10.98

	Andaman
	 9.35 ±  2.17
	 3.92 ± 0.05
	85.24 ± 5.03
	30.71 ± 23.53
	-0.19 ± 0.05
	-0.63 ± 10.52
	0.19 ± 1.19
	2.00 ± 12.72

	Eastern Coral Triangle
	 6.02 ±  1.29
	 2.53 ± 0.08
	87.77 ± 5.50
	28.10 ± 23.38
	-1.04 ± 0.48
	-3.71 ±  8.16
	-0.28 ± 0.46
	-4.64 ±  7.72

	Northeast Australian Shelf
	 4.19 ±  1.17
	 1.73 ± 0.06
	89.50 ± 5.90
	24.22 ± 21.19
	 0.47 ± 0.33
	1.94 ± 14.52
	0.14 ± 0.60
	3.43 ± 14.25

	Tropical Southwestern Atlantic
	 3.42 ±  0.85
	 1.42 ± 0.00
	90.93 ± 6.30
	26.88 ± 24.31
	 0.17 ± 0.14
	0.63 ± 12.00
	0.00 ± 0.37
	-0.11 ± 10.87

	West and South Indian Shelf
	 3.21 ±  0.77
	 1.35 ± 0.01
	92.28 ± 6.71
	30.01 ± 27.56
	 0.20 ± 0.24
	0.66 ± 11.74
	0.16 ± 0.47
	4.94 ± 14.65

	Tropical Southwestern Pacific
	 3.16 ±  0.72
	 1.33 ± 0.03
	93.60 ± 7.14
	28.78 ± 26.34
	-1.04 ± 0.49
	-3.61 ±  8.50
	-0.10 ± 0.26
	-3.27 ±  8.37

	West African Transition
	 2.96 ±  0.80
	 1.23 ± 0.04
	94.83 ± 7.53
	29.88 ± 27.72
	 0.81 ± 0.46
	2.71 ± 14.81
	0.05 ± 0.41
	1.66 ± 13.81

	South China Sea
	 2.14 ±  0.68
	 0.88 ± 0.06
	95.70 ± 7.86
	21.24 ± 19.79
	 0.24 ± 0.21
	1.12 ± 15.30
	0.29 ± 0.48
	13.52 ± 22.70

	Warm Temperate Northeast Pacific
	 2.07 ±  0.83
	 0.83 ± 0.15
	96.53 ± 8.04
	16.10 ± 14.86
	 5.49 ± 2.87
	34.09 ± 39.44
	0.91 ± 0.91
	43.75 ± 43.81

	Northwest Australian Shelf
	 1.33 ±  0.34
	 0.56 ± 0.01
	97.09 ± 8.22
	25.73 ± 24.74
	 1.03 ± 0.58
	4.01 ± 14.57
	0.11 ± 0.22
	8.03 ± 16.68

	Java Transitional
	 1.10 ±  0.26
	 0.46 ± 0.00
	97.55 ± 8.40
	29.97 ± 29.12
	-1.39 ± 0.63
	-4.65 ±  8.36
	-0.13 ± 0.05
	-11.45 ±  4.14

	East Central Australian Shelf
	 1.05 ±  0.32
	 0.43 ± 0.03
	97.98 ± 8.55
	16.19 ± 15.46
	 0.48 ± 0.37
	2.98 ± 17.41
	0.11 ± 0.23
	10.62 ± 21.51

	Red Sea and Gulf of Aden
	 0.97 ±  0.25
	 0.40 ± 0.01
	98.38 ± 8.69
	25.38 ± 24.66
	 1.07 ± 0.67
	4.20 ± 15.04
	0.07 ± 0.16
	7.73 ± 16.83

	Warm Temperate Southwestern Atlantic
	 0.93 ±  0.36
	 0.38 ± 0.05
	98.76 ± 8.78
	16.93 ± 16.35
	 2.21 ± 1.16
	13.07 ± 26.50
	0.25 ± 0.32
	26.42 ± 34.67

	Warm Temperate Northwest Atlantic
	 0.54 ±  0.17
	 0.22 ± 0.01
	98.98 ± 8.86
	16.85 ± 16.48
	 2.58 ± 1.38
	15.32 ± 23.12
	0.13 ± 0.15
	24.47 ± 28.18

	Northern New Zealand
	 0.48 ±  0.16
	 0.20 ± 0.02
	99.19 ± 8.91
	18.33 ± 18.01
	-2.40 ± 1.07
	-13.09 ±  8.50
	-0.03 ± 0.06
	-5.74 ± 12.91

	Southern New Zealand
	 0.36 ±  0.12
	 0.15 ± 0.01
	99.34 ± 8.96
	18.80 ± 18.55
	-2.63 ± 1.22
	-14.00 ±  7.83
	-0.02 ± 0.05
	-5.49 ± 12.77

	Galapagos
	 0.33 ±  0.09
	 0.14 ± 0.00
	99.47 ± 9.00
	26.94 ± 26.69
	 1.52 ± 0.79
	5.65 ± 13.99
	0.02 ± 0.04
	4.61 ± 13.35

	Tropical Northwestern Pacific
	 0.19 ±  0.04
	 0.08 ± 0.00
	99.56 ± 9.05
	26.28 ± 26.13
	-1.21 ± 0.56
	-4.60 ±  8.15
	-0.01 ± 0.02
	-4.41 ±  7.96

	Somali Arabian
	 0.18 ±  0.05
	 0.08 ± 0.01
	99.63 ± 9.09
	20.01 ± 19.88
	 2.79 ± 1.88
	13.93 ± 22.61
	0.04 ± 0.05
	23.24 ± 27.57

	Warm Temperate Northwest Pacific
	 0.17 ±  0.06
	 0.07 ± 0.01
	99.70 ± 9.12
	12.91 ± 12.80
	 4.22 ± 2.37
	32.68 ± 39.76
	0.05 ± 0.06
	31.55 ± 37.15

	Southwest Australian Shelf
	 0.16 ±  0.07
	 0.06 ± 0.02
	99.77 ± 9.13
	 7.33 ±  7.23
	 3.38 ± 1.82
	46.12 ± 54.98
	0.10 ± 0.11
	60.58 ± 65.27

	Southeast Australian Shelf
	 0.14 ±  0.05
	 0.06 ± 0.01
	99.82 ± 9.14
	10.48 ± 10.39
	-0.85 ± 0.36
	-8.14 ± 14.60
	-0.01 ± 0.02
	-8.96 ± 15.90

	South Kuroshio
	 0.11 ±  0.04
	 0.04 ± 0.00
	99.87 ± 9.14
	23.48 ± 23.40
	-0.01 ± 0.11
	-0.02 ± 13.30
	0.00 ± 0.02
	3.66 ± 15.05

	West Central Australian Shelf
	 0.11 ±  0.03
	 0.04 ± 0.00
	99.91 ± 9.14
	21.81 ± 21.73
	 1.13 ± 0.62
	5.19 ± 16.73
	0.01 ± 0.02
	8.68 ± 18.14

	Hawaii
	 0.09 ±  0.02
	 0.04 ± 0.00
	99.95 ± 9.15
	26.28 ± 26.20
	 0.03 ± 0.07
	0.13 ± 10.21
	0.00 ± 0.01
	-0.65 ±  9.92

	Agulhas
	 0.04 ±  0.01
	 0.02 ± 0.00
	99.97 ± 9.16
	16.67 ± 16.64
	-0.54 ± 0.15
	-3.27 ± 14.79
	0.00 ± 0.01
	4.84 ± 20.25

	Central Indian Ocean Islands
	 0.03 ±  0.01
	 0.01 ± 0.00
	99.98 ± 9.17
	26.89 ± 26.87
	-0.44 ± 0.11
	-1.65 ±  8.24
	0.00 ± 0.00
	0.55 ±  9.78

	Lusitanian
	 0.01 ±  0.00
	 0.00 ± 0.00
	99.98 ± 9.18
	21.36 ± 21.35
	 1.17 ± 0.62
	5.47 ± 20.38
	0.00 ± 0.00
	9.72 ± 22.31







Table A3: Climate ensemble members and weighting coefficients for forecasted climate datasets.
	
	Weighting coefficients
	

	Climate Model
	Pmean
	Tmean
	Tmax
	Tmin

	CanESM5
	0.22
	0.84
	1.56
	0.76

	FGOALS-g3
	<0.01
	1.27
	0.92
	0.96

	GFDL-ESM4
	3.77
	0.73
	0.19
	0.15

	IPSL-CM6A-LR
	3.00
	0.87
	0.97
	0.98

	MIROC6
	<0.01
	1.45
	1.09
	1.60

	MPI-ESM-1-2-HR
	<0.01
	0.69
	1.28
	1.49

	MRI-ESM2-0
	0.01
	1.15
	1.00
	1.05




Table A4: Mean ± 2 standard errors emissions (Tg CO2e yr-1) for top 30 individual countries from mangrove deforestation with their % contribution and % cumulative contribution to the global total from 2010 to 2095.
	Country
	Emissions Tg CO2e yr-1
	% of total
	Cumulative %

	Indonesia
	2.57 ± 0.49
	32.58 ± 1.37
	32.58 ± 1.37

	Brazil
	0.79 ± 0.19
	9.54 ± 0.14
	42.12 ± 1.51

	Papua New Guinea
	0.51 ± 0.10
	6.42 ± 0.21
	48.54 ± 1.72

	Malaysia
	0.48 ± 0.09
	6.10 ± 0.26
	54.64 ± 1.98

	Australia
	0.26 ± 0.08
	2.95 ± 0.26
	57.59 ± 2.24

	Nigeria
	0.28 ± 0.07
	3.35 ± 0.02
	60.94 ± 2.26

	Myanmar
	0.24 ± 0.08
	2.65 ± 0.33
	63.58 ± 2.59

	Mexico
	0.22 ± 0.07
	2.37 ± 0.30
	65.95 ± 2.89

	Venezuela
	0.23 ± 0.06
	2.65 ± 0.11
	68.60 ± 3.00

	Colombia
	0.22 ± 0.06
	2.57 ± 0.07
	71.16 ± 3.07

	Philippines
	0.23 ± 0.05
	2.9 ± 0.10
	74.06 ± 3.17

	Thailand
	0.20 ± 0.04
	2.51 ± 0.07
	76.57 ± 3.24

	Bangladesh
	0.15 ± 0.05
	1.63 ± 0.16
	78.20 ± 3.40

	Cuba
	0.15 ± 0.04
	1.78 ± 0.01
	79.97 ± 3.41

	Panama
	0.14 ± 0.03
	1.73 ± 0.02
	81.70 ± 3.43

	United States
	0.13 ± 0.04
	1.47 ± 0.08
	83.17 ± 3.51

	Cameroon
	0.13 ± 0.03
	1.54 ± 0.01
	84.70 ± 3.52

	Gabon
	0.10 ± 0.03
	1.19 ± 0.05
	85.89 ± 3.57

	Mozambique
	0.10 ± 0.03
	1.08 ± 0.10
	86.96 ± 3.67

	Ecuador
	0.08 ± 0.03
	0.77 ± 0.17
	87.73 ± 3.84

	Guinea
	0.09 ± 0.03
	0.99 ± 0.06
	88.72 ± 3.90

	Guinea-Bissau
	0.07 ± 0.02
	0.80 ± 0.07
	89.52 ± 3.97

	Madagascar
	0.07 ± 0.02
	0.80 ± 0.07
	90.31 ± 4.04

	India
	0.07 ± 0.02
	0.76 ± 0.05
	91.07 ± 4.09

	Sierra Leone
	0.07 ± 0.02
	0.76 ± 0.05
	91.82 ± 4.14

	Vietnam
	0.07 ± 0.02
	0.76 ± 0.05
	92.58 ± 4.19

	Nicaragua
	0.06 ± 0.02
	0.67 ± 0.01
	93.25 ± 4.20

	Honduras
	0.05 ± 0.01
	0.63 ± 0.02
	93.87 ± 4.22

	Solomon Is.
	0.05 ± 0.01
	0.63 ± 0.02
	94.50 ± 4.24

	Fiji
	0.05 ± 0.01
	0.59 ± 0.04
	95.08 ± 4.28





[bookmark: _Toc120622165]8.2	Figures
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Figure A1: Transect sampling design used at the three sites. Experimental plots were placed approximately equidistant apart along each transect. Every mangrove tree rooted within each plot was measured.

[image: Chart
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Figure A2: Monthly air temperatures from weather station data around Qatar from December 2018 to October 2019. Black points represent individual temperature measurements, while the blue line is the mean for each month. Note standard errors are included but as there were so many data points, the SE’s are too close to the mean line to distinguish them. These data were recorded from Qatar meteorology department.

[image: ] 
Figure A3: Estimated change in annual global NPP rates by late-century (2085 to 2095) under scenarios a) SSP126, b) SSP245, c) SSP370 and d) SSP585. Data presented are mean predicted values.

[image: ]
Figure A4: Soil carbon sampling method where each sample consisted of two sub-samples, one in the fine root layer and the other in the deeper sediment layer, a steel pole was also driven into the ground to measure depth to bedrock, however, as many sites were shallower than 50 cm soil depth, estimates were standardised to 50 cm.
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Figure A5: Increase in Mean Squared Error (MSE) for mangrove a) carbon stocks and b) soil sequestration rates when dropping a bioclim predictor from the numerical models. 
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Figure A6: Estimated change in global C stocks in mangrove a) trees, b) soils to 1m depth, and c) mangrove soil sequestration rates by the year 2095. Data presented are mean predicted values.
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