

#### Madagascar's extraordinary biodiversity: Evolution, distribution, and use

Antonelli, Alexandre; Smith, Rhian J; Perrigo, Allison L; Crottini, Angelica; Hackel, Jan; Testo, Weston; Farooq, Harith; Torres Jiménez, Maria F; Andela, Niels: Andermann, Tobias: Andriamanohera, Andotiana M: Andriambololonera, Sylvie; Bachman, Steven P; Bacon, Christine D; Baker, William J; Belluardo, Francesco; Birkinshaw, Chris; Borrell, James S; Cable, Stuart; Canales, Nataly A; Carrillo, Juan D; Clegg, Rosie; Clubbe, Colin; Cooke, Robert S C; Damasco, Gabriel; Dhanda, Sonia; Edler, Daniel; Faurby, Søren; de Lima Ferreira, Paola; Fisher, Brian L; Forest, Félix; Gardiner, Lauren M; Goodman, Steven M; Grace, Olwen M; Guedes, Thaís B; Henniges, Marie C; Hill, Rowena; Lehmann, Caroline E R; Lowry, Porter P; Marline, Lovanomenjanahary; Matos-Maraví, Pável; Moat, Justin; Neves, Beatriz; Nogueira, Matheus G C; Onstein, Renske E; Papadopulos, Alexander S T; Perez-Escobar, Oscar A; Phelps, Leanne N; Phillipson, Peter B; Pironon, Samuel; Przelomska, Natalia A S; Rabarimanarivo, Marina; Rabehevitra, David; Raharimampionona, Jeannie; Rajaonah, Mamy Tiana; Rajaonary, Fano; Rajaovelona, Landy R; Rakotoarinivo, Mijoro; Rakotoarisoa, Amédée A; Rakotoarisoa, Solofo E; Rakotomalala, Herizo N; Rakotonasolo, Franck; Ralaiveloarisoa, Berthe A; Ramirez-Herranz, Myriam; Randriamamoniy, Jean Emmanuel N; Randriamboavoniy, Tianjanahary; Randrianasolo, Vonona; Rasolohery, Andriambolantsoa; Ratsifandrihamanana, Anitry N; Ravololomanana, Noro; Razafiniary, Velosoa; Razanajatovo, Henintsoa; Razanatsoa, Estelle; Rivers, Malin; Sayol, Ferran; Silvestro, Daniele; Vorontsova, Maria S; Walker, Kim; Walker, Barnaby E; Wilkin, Paul; Williams, Jenny; Ziegler, Thomas; Zizka, Alexander; Ralimanana, Hélène Science

DOI: 10.1126/science.abf0869

Published: 02/12/2022

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

*Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):* Antonelli, A., Smith, R. J., Perrigo, A. L., Crottini, A., Hackel, J., Testo, W., Farooq, H., Torres Jiménez, M. F., Andela, N., Andermann, T., Andriamanohera, A. M., Andriambololonera, S., Bachman, S. P., Bacon, C. D., Baker, W. J., Belluardo, F., Birkinshaw, C., Borrell, J. S., Cable, S., ... Ralimanana, H. (2022). Madagascar's extraordinary biodiversity: Evolution, distribution, and use. *Science*, *378*(6623), Article eabf0869. https://doi.org/10.1126/science.abf0869



# Supplementary Materials for

## Madagascar's extraordinary biodiversity: Threats and opportunities

Authors: Hélène Ralimanana<sup>1\*†</sup>, Allison L. Perrigo<sup>2,3†</sup>, Rhian J. Smith<sup>4,3†</sup>, James S. Borrell<sup>4</sup>, Søren Faurby<sup>2,3</sup>, Mamy Tiana Rajaonah<sup>1</sup>, Tianjanahary Randriamboavonjy<sup>1</sup>, Maria S. Vorontsova<sup>4</sup>, Robert S. C. Cooke<sup>5,2,3</sup>, Leanne N. Phelps<sup>6,7</sup>, Ferran Sayol<sup>,8,3</sup>, Niels Andela<sup>9</sup>, Tobias Andermann<sup>10,11,2,3</sup>, Andotiana M. Andriamanohera<sup>1</sup>, Sylvie Andriambololonera<sup>12</sup>, Steven P. Bachman<sup>4</sup>, Christine D. Bacon<sup>2,3</sup>, William J. Baker<sup>4</sup>, Francesco Belluardo<sup>13,14,15</sup>, Chris Birkinshaw<sup>12,16</sup>, Stuart Cable<sup>4</sup>, Nataly A. Canales<sup>17</sup>, Juan D. Carrillo<sup>18,3,11,19</sup>, Rosie Clegg<sup>20,4</sup>, Colin Clubbe<sup>4</sup>, Angelica Crottini<sup>13,14,15</sup>, Gabriel Damasco<sup>21,2</sup>, Sonia Dhanda<sup>4</sup>, Daniel Edler<sup>22,2,3</sup>, Harith Farooq<sup>2,3,23</sup>, Paola de Lima Ferreira<sup>24,2,3</sup>, Brian L. Fisher<sup>25</sup>, Félix Forest<sup>4</sup>, Lauren M. Gardiner<sup>26</sup>, Steven M. Goodman<sup>27,28</sup>, Olwen M. Grace<sup>4</sup>, Thaís B. Guedes<sup>29</sup>, Jan Hackel<sup>4</sup>, Marie C. Henniges<sup>4,30</sup>, Rowena Hill<sup>4,30</sup>, Caroline E.R. Lehmann<sup>7,6</sup>, Porter P. Lowry II<sup>16,31</sup>, Lovanomenjanahary Marline<sup>1,3,27</sup>, Pável Matos-Maraví<sup>24,3</sup>, Justin Moat<sup>4</sup>, Beatriz Neves<sup>32,3</sup>, Matheus G. C. Nogueira<sup>32,33,3</sup>, Renske E. Onstein<sup>34,35</sup>, Alexander S. T. Papadopulos<sup>36</sup>, Oscar A. Perez-Escobar<sup>4</sup>, Peter B. Phillipson<sup>16,31</sup>, Samuel Pironon<sup>4,37</sup>, Natalia S. Przelomska<sup>4,38</sup>, Marina Rabarimanarivo<sup>12</sup>, David Rabehevitra<sup>1</sup>, Jeannie A. Raharimampionona<sup>12</sup>, Fano Rajaonary<sup>12</sup>, Landy R. Rajaovelona<sup>1</sup>, Mijoro Rakotoarinivo<sup>39</sup>, Amédée A. Rakotoarisoa<sup>1</sup>, Solofo E. Rakotoarisoa<sup>1</sup>, Herizo N. Rakotomalala<sup>1</sup>, Franck Rakotonasolo<sup>1</sup>, Berthe A. Ralaiveloarisoa<sup>1</sup>, Myriam Ramirez-Herranz<sup>40,3,41</sup>, Jean Emmanuel N. Randriamamonjy<sup>1</sup>, Vonona Randrianasolo<sup>1</sup>, Andriambolantsoa Rasolohery<sup>42</sup>, Anitry N. Ratsifandrihamanana<sup>43</sup>, Noro Ravololomanana<sup>12</sup>, Velosoa Razafiniary<sup>1</sup>, Henintsoa Razanajatovo<sup>1</sup>, Estelle Razanatsoa<sup>44</sup>, Malin Rivers<sup>45</sup>, Daniele Silvestro<sup>11,19,2,3</sup>, Weston Testo<sup>28,2,3</sup>, Maria F. Torres Jiménez<sup>46,2,3</sup>, Kim Walker<sup>4,47</sup>, Barnaby E. Walker<sup>4</sup>, Paul Wilkin<sup>4</sup>, Jenny Williams<sup>4</sup>, Thomas Ziegler<sup>48,49</sup>, Alexander Zizka<sup>50</sup>, Alexandre Antonelli<sup>2,3,4,51\*†</sup>.

#### Affiliations:

<sup>1</sup> Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar.

<sup>2</sup> Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.

<sup>3</sup>Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden.

<sup>4</sup> Royal Botanic Gardens, Kew, Richmond, Surrey, UK.

<sup>5</sup> UK Centre for Ecology and Hydrology, Wallingford, UK.

<sup>6</sup> School of GeoSciences, University of Edinburgh, Edinburgh, UK.

<sup>7</sup> Royal Botanic Garden Edinburgh, Edinburgh, UK.

<sup>8</sup> Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK.

<sup>9</sup> School of Earth and Environmental Sciences, Cardiff University, Cardiff, Wales, UK.

<sup>10</sup> Department of Organismal Biology, SciLifeLab, Uppsala University, Sweden.

<sup>11</sup> Department of Biology, University of Fribourg, Fribourg, Switzerland.

<sup>12</sup> Missouri Botanical Garden, Madagascar Program, Antananarivo, Madagascar.

<sup>13</sup> CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.

<sup>14</sup> Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal

<sup>15</sup> BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.

<sup>16</sup> Missouri Botanical Garden, St Louis, Missouri, USA.

<sup>17</sup> Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.

<sup>18</sup> CR2P, Muséum National d'Histoire Naturelle, Paris, France.

<sup>19</sup> Swiss Institute of Bioinformatics, Fribourg, Switzerland.

<sup>20</sup> Department of Geography, University of Exeter, Exeter, Devon, UK.

<sup>21</sup> Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.

<sup>22</sup> Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden.

<sup>23</sup> Faculty of Natural Sciences, Lúrio University, Pemba, Cabo Delgado Province, Mozambique.

<sup>24</sup> Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic.

<sup>25</sup> California Academy of Sciences, San Francisco, California, USA.

<sup>26</sup> Cambridge University Herbarium, Department of Plant Sciences, University of Cambridge, Cambridge, UK.

<sup>27</sup> Association Vahatra, Antananarivo, Madagascar.

<sup>28</sup> Field Museum of Natural History, Chicago, Illinois, USA.

<sup>29</sup> Instituto de Biologia, Universidade Estadual de Campinas, Unicamp, Campinas, São Paulo, Brazil.

<sup>30</sup> School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.

<sup>31</sup> Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Paris, France.

<sup>32</sup> Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

<sup>33</sup> Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

<sup>34</sup> Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, the Netherlands

<sup>35</sup> German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.

<sup>36</sup> School of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales, UK.

<sup>37</sup> UN Environment Programme World Conservation Monitoring Center (UNEP-WCMC), Cambridge, UK.

<sup>38</sup> Department of Anthropology, Smithsonian National Museum of Natural History, Washington, D.C., USA.

<sup>39</sup> Department of Plant Biology and Ecology, University of Antananarivo, Antananarivo, Madagascar.

<sup>40</sup> Instituto de Ecología y Biodiversidad, University of La Serena, La Serena, Chile.

<sup>41</sup> Programa de Doctorado en Biología y Ecología Aplicada, Universidad Católica del Norte,

Universidad de La Serena, La Serena, Chile.

<sup>42</sup> Ileiry Geospatial Services, Antananarivo, Madagascar.

<sup>43</sup> WWF, Antananarivo, Madagascar.

<sup>44</sup> Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, South Africa.

<sup>45</sup> Botanic Gardens Conservation International, Kew, Richmond, Surrey, UK.

<sup>46</sup> Institute of Biosciences, Life Sciences Centre, Vilnius University, Lithuania.

<sup>47</sup> Royal Holloway, University of London, Egham, Surrey, UK.

<sup>48</sup> Cologne Zoo, Cologne, Germany.

<sup>49</sup> Institute of Zoology, University of Cologne, Cologne, Germany.

<sup>50</sup> Department of Biology, Philipps-University Marburg, Marburg, Germany.

<sup>51</sup> Department of Biology, University of Oxford, Oxford, UK.

\* Correspondence to: <u>H.Ralimanana@kew.org</u>; <u>a.antonelli@kew.org</u>

† Authors contributed equally

#### This PDF file includes:

Materials and Methods Fig. S1 Tables S1 to S7 Appendix A: Malagasy and French translations of the Extended Abstract

## **Materials and Methods**

These Supplementary Materials contain details of the data compilation and analyses conducted under each relevant section of the main paper. While as much information as possible is provided here, some of the datasets are too large to present, and these are available in an associated Zenodo repository (135). The datasets not presented here are listed below under the sections they link to. All methods are described in detail, and code is available upon request in cases where it is not directly linked below.

### 1. IUCN threat categories for plants and animals from Madagascar

Extinction risk categories were extracted from the IUCN Red List of Threatened Species (19), with the addition of the global trees dataset from the *Red List of Trees of Madagascar* (5). Since IUCN only reports extinct species after 1500 CE, we complemented this list with known anthropogenically extinct animal species that occurred during the Late Pleistocene and Holocene periods, before 1500 CE (see associated Zenodo repository (135)). No anthropogenic plant extinctions are known from before 1500 CE. The final list includes the main groups of animals and plants native to Madagascar. Animal groups included: mammals (N=231 species), birds (N=209), reptiles (N=340), amphibians (N=296), freshwater fish (N=164), arthropods (N=374), and mollusks (N=67). Plants include asterids (N=1105 species), rosids (N=1704), other eudicots (N=81), magnoliids (N=225), monocots (N=822), gymnosperms (N=6), and ferns and lycophytes (N=33).

Repository file:

| Title                                                     | Filename                       | Description                                                                                      |
|-----------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|
| List of<br>anthropogenic<br>extinctions<br>before 1500 CE | extinct_animals_madagascar.csv | Comma-separated table of all<br>known anthropogenic extinctions<br>before 1500 CE in Madagascar. |

# 2. Approximation of IUCN categories for non-assessed plants from Madagascar

At present, approximately one third of plant species occurring in Madagascar have an assessment published on the IUCN Red List of Threatened Species (www.iucn.org). To increase the representation of the Malagasy flora in our analyses, we used a Bayesian Neural Network (BNN), following (136) and (20), to estimate the conservation status and threats for species that are so far not evaluated. We trained our BNN on existing conservation assessments from the IUCN Red List, using species-level predictors calculated from occurrence records combined with data on climate, topography, biomes, forest cover, human footprint, and sampling bias.

#### 2.1. Data compilation

<u>Species checklists.</u> We used a checklist of plant species native to Madagascar from the Catalogue of the Vascular Plants of Madagascar (Madagascar Catalogue) from March,

2021(137). At the time of download, the Madagascar Catalogue listed 11,919 species of plants from 1,722 genera in 251 families. We used the taxonomic backbone and binomial names from this checklist as a base to obtain occurrence records and merge them with data on IUCN Red List categories and plant use. All scripts for record cleaning and predictor preparation are available in our Zenodo repository (135). Occurrence data. We obtained publicly available georeferenced occurrence records for all species from the Madagascar Catalogue checklist. Occurrence records from public databases can be error-prone (138, 139). Therefore, we followed a conservative approach of only using records from a validated data source. This approach included records from iNaturalist Research-grade Observations (140) and records based on specimens from the Missouri Botanical Garden (141), both obtained from www.gbif.org. We limited the search to vascular plant ("Tracheophyta") records from Madagascar with geographic coordinates associated, and only used records of presence (Occurrence status = present). We then added another batch of records from the Kew Madagascar Conservation Centre unpublished database. We obtained a total of 277,411 occurrence records for 13,229 taxa. We further increased the input data quality by applying geographic filters to remove common errors caused by automated georeferencing procedures. These filters comprised: i) Retaining only records inside Madagascar's bounding-box (longitude between 42 and 54 degrees W and latitude between 30 to 10 degrees South); ii) Removing records with an individual count of 0; and iii) Using the CoordinateCleaner R package (142) to remove records falling on the coordinates of Antananarivo (the capital), the centroid of Madagascar or its provinces, or the location of registered biodiversity institutions. After geographic filtering, we only retained records for species binomial names listed in the Madagascar Catalogue CPM checklist. This process left us with 187,141 records from 9,960 species for further analyses. Presence-only occurrence records compiled from specimens collected in the field are often subject to sampling bias, for example because easily accessible areas are overrepresented (143, 144). We generated two features quantifying the average bias at collection locations for each species to account for this effect. We used the sampbias method (145) to obtain the median sampling bias at the occurrence locality for each species and the range (0.05–0.95 quantiles) of bias values across occurrence records for each species. Species-level features. We obtained species-level features by combining occurrence records with different publicly available environmental datasets (as well as separate data on plant use, see below) and calculating summary statistics on all records for each species. We generated 57 features as input for the BNN (see Table S1 for a summary and our Zenodo repository (135) for the feature input data and the R-scripts we used for data generation, see "Scripts and data to predict IUCN and threat status" under Species checklists). To improve model convergence, we normalized all features to a similar range, using procedures specific to each feature-type (Table S1). During normalization, we ignored missing values ("NAs"), which may result from a lack of data in the environmental layers (e.g., some may contain lakes, others may not) or imprecision in the occurrence records (e.g., coordinate values within lakes). Geographic features. We generated two sets of geographic features to account for potential changes in the ranges of species since collection began: one set using all available records, and another solely using records collected since 2000. See Table S1 for the full list of geographic features used, and details of their normalization. The IUCN Red List assessment metrics Area of Occupancy (AOO) and Extent of Occurrence (EOO) were calculated using the package rCAT (146, 147). We extracted the elevation at the locality of each collection record in our dataset from a global elevation model (148) to obtain the median elevation value and the elevational range (0.05 - 0.95 quantile) for each species. We normalized via division by 600. We used a spatially explicit, global biome scheme (149) to classify each species as present in a biome if at least 5% of the species' records occurred in

this biome (see (150) for more information on the 5% threshold). We used a binary feature on presence/absence for each biome with at least one species present. The resulting five binary features were: "Tropical & Subtropical Moist Broadleaf Forests", "Tropical & Subtropical Dry Broadleaf Forests", "Montane Grasslands & Shrublands", "Deserts & Xeric Shrublands", and "Mangroves". We extracted climate conditions from publicly available climate data (148) at each occurrence record in our database. See Table S1 for a full list of climate-based features and their normalization. Environmental data. We obtained data on Madagascar's protected areas (PAs) from the World Database of Protected Areas, modified as detailed below. We used these data to calculate three features for each species: i) the fraction of occurrence records in IUCN category I or II PAs (strictly protected); ii) the fraction of occurrence records IUCN categories III-VI (protected); and iii) the fraction of occurrence records outside PAs. We extracted human footprint from spatially explicit estimates of human impact across Madagascar (151) for each species' occurrence records. We calculated eight features from this human footprint, including the fraction of species' occurrence in four impact categories (quantiles from low impact to high impact) for two time-points (1993 and 2009) each. We used spatially explicit forest cover data for Madagascar from (38) (https://bioscenemada.cirad.fr/maps/) to calculate the per-species-fraction of occurrence records in cells with forest cover in 1973 and 2014, yielding two features. Plant uses. We obtained information on known uses of Malagasy plant species for 1,591 species from a currently compiled global plant use database (152). We generated binary features of plants used as animal food, fuel, human food, building materials, medicine, and in social uses. We also used the number of use-types for each species, divided by 10, as another feature. Training labels from IUCN. We downloaded all global IUCN Red List assessments for species native to Madagascar, covering a total of 4,500 species (19) and added 151 assessments for tree species, obtained from Botanic Gardens Conservation International, which had not been uploaded to the IUCN Red List at the time but have since been added. We retained only species assessed under version 3.1 of the IUCN criteria (4), and excluded species labeled as Extinct in the Wild (EW) or Extinct (EX). We included species assessed as Data Deficient (DD) in the pool of species for which we predicted the conservation status. Final dataset. Our final dataset consisted of 9,960 species (83.5% of the known native species from Madagascar) for which we could obtain usable occurrence records and hence prepare features for model training and prediction. Of these species, 4,073 (40.9%) had global conservation assessments available while 5,887 (59.1%) were unlabeled. We used the species with assessments to train the BNN (training data) and the unlabeled species to predict conservation status and major threats. We used a total of 57 features for training and prediction.

#### 2.2. Predicting IUCN categories

We used a BNN to predict the IUCN Red List category of the 5,887 unlabeled species for which we could extract features. We reserved 10% of the 4,073 species with assessments as a test set and trained our BNN on the remaining 90%. We used the BNN implementation described in (153) (https://github.com/dsilvestro/npBNN), with one hidden layer comprising 20 nodes plus an additional bias node ( $20 \times (57+1)$  weights) and a parametric ReLU activation function (154) with an estimated coefficient shared across all nodes. The output layer of the BNN included 5 nodes ( $20 \times 5$  weights) transformed into the parameters of a categorical distribution using the softMax function. We performed Monte Carlo cross-validation by repeating the analyses five times using different random seeds and different train/test splits. For each BNN, we used Gibbs sampling to draw 50 million MCMC samples of the network weights, which we thinned to 5,000 posterior samples. After assessing the

performance of the trained BNNs on the test sets (see below), we combined the posterior weights from the 5 replicates to perform predictions for the unlabeled species.

#### 2.3. Assessing the performance of the BNN

We quantified the performance of our BNN predictions in different ways. We first computed the cross-validation test accuracy, which averaged 66.9% across replicates (range: 65– 68.2%). Second, we measured the accuracy of our BNN after removing predictions for species where the mean posterior probability of the most likely category fell below a threshold. In practice, this threshold would be used to prevent an IUCN Red List category being predicted for a species when confidence in the prediction is low. We found that applying a threshold of 0.808 to the mean posterior probability of the most likely category resulted in 90% classification accuracy. We used this as the threshold in our "conservative" approach to predicting the IUCN Red List category for unlabeled species. Third, we assessed how accurately the trained BNN could recover the observed number of species in each IUCN Red List category in the test set. We predicted the posterior category probabilities for the species in our test set using each of the 5,000 posterior samples of our network weights. We then used these posterior category probabilities to draw samples from the respective categorical distributions. This procedure resulted in 5,000 predicted IUCN Red List categories for each species in the test set. We counted membership of these categories for every round of samples, yielding 5,000 estimates for the number of species in each category. We calculated the mean absolute percentage error of these estimates from the observed counts in the test set. We found the mean absolute percentage errors per category to be lower than 0.1 (CR: 0.082, EN: 0.014, VU: 0.056, NT: 0.035, LC: 0.032) and with small variability across replicates (standard deviations: 0.04, 0.005, 0.024, 0.024, 0.018).

#### 2.4. <u>IUCN predictions using the BNN</u>

Under our conservative threshold of 0.808, we were able to classify 975 species (18.2% of the unlabeled species) with high confidence. Of these, 39 were classified as CR, 254 as EN, and 681 as LC. The full output of the BNN classification, including the mean posterior probabilities for each class and each species are provided in our Zenodo repository (*135*). We aggregated these predictions to estimate the number of species in each IUCN Red List category across all unlabeled plants (5,887 species) as well as within large plant groups: asterids (1,948 spp), eudicots (248), ferns & lycophytes (377), magnoliids (80), monocots (1,256), and rosids (1,444). The results of these estimates are shown in Table S2.

#### 2.5. Feature importance

We used permutation feature importance to measure each feature's effect on the prediction accuracy of our trained BNN. In this approach, a model's change in performance is measured after randomly shuffling a feature's values repeatedly. Random shuffling effectively mutes the features' information content. We measured the change in performance as the mean decrease in accuracy of predictions (delta accuracy) - a larger delta accuracy indicates a more important feature. In our implementation, we defined blocks of similar features (Table S3), which we shuffled jointly to determine the impact of the whole block on the prediction accuracy. We calculated the feature importance using the complete set of labeled species (training + test set). We found that current geography was the most important feature block (delta accuracy = 0.26). The climatic features (delta accuracy = 0.14) and geographic features incorporating the last 20 years (delta accuracy = 0.11) were the next most important blocks. We calculated another feature importance for the species in our test set with high confidence

predictions (mean posterior probability of the most likely class greater than the conservative threshold of 0.808, see above). For these high confidence species, we found similarly high feature importance of the current geography feature block (delta accuracy = 0.24), followed by the past geography feature block (delta accuracy = 0.10), and the anthropogenic utilization feature block (delta accuracy = 0.05).

| Repository files:                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title                                                      | Filename                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Scripts and data<br>to predict IUCN<br>and threat status   | predicting_species_IUCN_status.zi<br>p | Zipped archive containing data,<br>scripts and an Rstudio project to:<br>(1) prepare features for using<br>IUCNN v1.0 to predict the<br>conservation status for Not<br>Evaluated species<br>(01_feature_preparation); (2)<br>predict species IUCN status<br>assessment using neural networks<br>(02_predicting_species_IUCN_sta<br>tus); (3) predict species' threat<br>status using neural networks<br>(03_predicting_species_threats) |
| Bayesian<br>Neural Network<br>Threat Status<br>predictions | threat_predictions_iucnn.txt           | Tab-separated table with results of<br>the conservation status prediction<br>from a Bayesian Neural Network<br>for 5,887 species of vascular<br>plants from Madagascar. Values<br>are the mean posterior<br>probabilities for each IUCN Red<br>List category                                                                                                                                                                            |

#### 3. Threats and prediction of threats

We compiled threat categories, as defined by the IUCN (*37*), for terrestrial and freshwater vertebrates (1,332 species with IUCN assessments) and plants (3,381 species with IUCN assessments). As above, we only considered species assessed under version 3.1 of the IUCN criteria. We then used a Bayesian neural network analysis to predict the threats for an additional 5,887 unassessed plant species. We predicted threats at the broadest available level (level 1) and lumped threat categories listed for only a small number of species into the category "Other". The categories that we lumped comprise: "Climate change and severe weather", "Geological events", "Human intrusions and disturbance", "Invasive and other problematic species genes and diseases", "Other options", "Pollution", and "Transportation service corridors".

Of the unassessed species, more than 70% were predicted to be threatened by threat categories 1, 2, 4, with less than 10% potentially affected by one or more of the other threats. A summary of the results is presented in Table S4, and more detail on which taxa predictions were applied to can be found in our Zenodo repository (*135*). We used neural networks

optimized through the Python library Tensorflow (v. 2.4; tensorflow.org) to predict the causes of threat as defined by the IUCN Red List. We used a multi-label binary classifier, as species often have more than one identified threat. The BNN architecture included 3 hidden layers with 60, 60, and 20 nodes, respectively, using a bias node at each layer and a tanh activation function. The output layer included 6 nodes (i.e., the six potential causes of threat) with a sigmoid activation function. After splitting the labeled data into training (80%), validation (10%), and test (10%), we trained the model using the validation loss to determine the optimal number of epochs, with the 'patience' parameter set to 5'.

We evaluated the reliability of our predictions on the test set by computing: i) the test accuracy for each threat; ii) the frequency of true positives (i.e., correctly predicting a threat); and iii) the frequency of false positives (i.e., erroneously predicting a threat). These summary statistics computed on the test set are reported in Table S5.

Repository file:

| Title                                | Filename                           | Description                                                                                                                                                      |
|--------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Observed and<br>predicted<br>threats | observed_and_predicted_threats.csv | Comma-separated table with the<br>number of species with each listed<br>threat, as defined by the IUCN or<br>predicted by our model, across<br>taxonomic groups. |

#### 4. Protected area database and shapefile

Attributes of Madagascar's terrestrial protected areas (PAs) and areas assessed for potential protection, and the associated spatial data, were compiled and manually reconciled using datasets from the Madagascar Protected Area System (SAPM), Directorate for the National System of Protected Areas (DSAP) (155), UNEP-WCMC/IUCN Protected Planet (73) and Alliance for Zero Extinction (156), Critical Ecosystem Partnership Fund (157), S. Goodman (70, 72), Key Biodiversity Areas (74), and personal knowledge. We follow (72) as closely as possible, except for areas with status updates in (70) and areas not treated. PAs designated as orphan sites are those that have been "abandoned by the former manager and [are] under the direction of the Ministère de l'Environnement et du Développement Durable (MEDD)" (70). They were scored from the dataset in (70), most recently updated in November 2020.

Data on PAs scored from (72) include visitation rates between 2012-2016; vegetation cover in 1996, 2006, and 2016; fires detected within PAs, and within a 5km radius of these in 2006 and 2016, and the corresponding changes in vegetation cover and the number of fires; state of knowledge of animal groups; and year of first botanical collections and collection density. Anthropogenic pressures reported by managers for each PA included vegetation cutting, hunting and illegal fishing, agriculture, grazing, wildfires, mining, collection of secondary forest products, and were manually scored as 0, 1, or N/A for missing data. An assessment was made of the infrastructure (camp sites, accommodation availability, offices, amenities, and research facilities) at each PA site that would enable or inhibit biologist access: data was sourced from each chapter in (72), from the information found under 'Infrastructure'. This information was assessed on the basis of the relative size of each area in hectares, and locality maps found in each of the PA sections, as well as the overview maps found in (*158*), particularly page 42. The assessment resulted in a grading system on whether the area was judged to have: No (0); Low (1); Medium (2); or High (3) levels of relative infrastructure/access, including for research.

A synthesized shapefile for terrestrial PAs is provided in our Zenodo repository (135). The terrestrial dataset is clipped to land using the Madagascar shapefile (159). Marine areas were removed by filtering for only PAs made up of more than 20% land. We calculated the area of each PA from the polygons using a Behrmann projection ("AREA"). The year of protection ("YEAR\_PROT"), is set to the year when it was first protected, if that value was present ("year\_old"). If this value was missing, we set the year of protection to the year when the PA was established in its current form, if that value was present ("SG2018year"), or to the year when the area was designated according to the WDPA database ("STATUS\_YR").

We also provide a web application for interactive exploration of the PAs, vegetation and topography, available at <u>https://www.mapequation.org/madagascar/</u>.

| 1 2                            |                                                |                                                                                                                             |
|--------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Title                          | Filename                                       | Description                                                                                                                 |
| Protected Area<br>Shapefile    | madagascar_terrestrial_protected_a<br>reas.zip | ESRI Shapefile for the<br>synthesized protected areas of<br>Madagascar, including Key<br>Biodiversity Areas and attributes. |
| Protected Area<br>Data         | madagascar_terrestrial_protected_a<br>reas.csv | Comma-separated values<br>matching the data within the<br>Protected Area Shapefile except<br>the shapes.                    |
| Protected Area<br>Data Sources | madagascar_protected_areas_sourc<br>es.csv     | Comma-separated table with<br>comments and sources for<br>columns in the protected area data<br>in the csv and shapefile    |

#### Repository files:

# 5. Assessment of progress against international targets and the percentage of taxa occurring in at least one PA

In order to assess the extent of land protection in Madagascar, we intersected the polygons of the PAs assembled in this study, with polygons of Madagascar as a whole (*159*). We calculated the proportion under protection for each PA class, (including KBAs, retrieved from (*74*)). We also intersected the PAs with the vegetation types delineated in this paper (see Fig. 5 and above) to evaluate the percentage of each vegetation type under protection.

We calculated the proportion of each vegetation type under protection for each polygon as well as for the entire country. The percentage of each existing vegetation type currently within a PA is shown in Table S6. We also used IUCN (19), inferred and author-curated ranges of native vertebrates (amphibians = 364, freshwater fish = 87, reptiles = 418, mammals = 221, birds = 203) and plants (160) to calculate the percentage of species with

known distributions that overlap with the current protected area network and which taxa are not covered by any PA. We did the same for native threatened species. Only species from mainland Madagascar, Nosy Boraha, and Nosy Be were used. All analyses were performed in python version 3.6 and R version 4.0.0. A list of threatened vertebrate species with ranges that do not overlap with the existing PA network is provided in Table S7, but there are many more species yet to be assessed that may be threatened – see above and our Zenodo repository for more information (*135*). The ranges of all birds overlapped with at least one PA, this was also true when we filtered the analysis to only include resident and breeding areas (seasonality = 1 or 2 in the birdlife shapefiles http://datazone.birdlife.org/species/spcdistPOS).

#### Repository file:

| Title                                                   | Filename                                       | Description                                                                                                                                                                                           |
|---------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Catalogue of<br>the vascular<br>plants of<br>Madagascar | catalogue_of_vascular_plants_of_madagascar.csv | Comma-separated table<br>with comprehensive<br>taxonomic database of<br>plants of Madagascar,<br>from the "Catalogue of<br>the Plants of<br>Madagascar" project.<br>Date of download, 12<br>May 2022. |

#### 6. Trends in anthropogenic pressures in PAs

We surveyed three potential proxies of anthropogenic impact across Madagascar's protected area network (see Table S8):

i) Annual burned area was averaged from 2006–2016 to produce mean burned area (161) and rescaled to 5 arc minutes. Mean burned area itself is not an indicator of human influence, as fire is a complex product of vegetation-climate-human interactions (162) and mean burned area naturally varies among ecosystem types (163). Across the tropics, temporal trends in fire are primarily a product of antecedent rainfall due to the strong control exerted by rainfall on the continuity and availability of fuel to burn, and any potential anthropogenic signal must be parsed from the dominant rainfall trend (164). In high-rainfall regions with litter-based fuels, such as that typified by forests, periods of increased fire tend to be associated with drought and below-average rainfall (165). In these environments, human actions can increase fire through opening up canopies, facilitating curing of fuel and the spread of fire. In contrast, in seasonally dry ecosystems with grassy ground layers, such as grasslands and savannas, drought tends to reduce fire, as there is little fuel available to burn; increasing human impacts here are associated with declines in fire, as the fragmentation of landscapes reduces fire spread (166). Hence, increases or decreases in fire cannot be universally associated with anthropogenic impacts and must be viewed through an ecological lens (162). For post hoc comparison, we identified pixels with significant trends in burned area (2006-2016) that could not be explained by antecedent precipitation (104). Significant pixels (p < 0.05) indicated the t-value of burned area trends could not be explained by precipitation from the previous one or two years combined, whereas zero values indicated pixels with no evidence

of burned area throughout the study period. NA values indicated pixels without a significant trend or where a significant trend could be attributed to antecedent rainfall.

**ii) Harmonized global night-time lights** were analyzed from the period 1992–2018 (*167*). Night-time lights are an indicator of the distribution of human settlement and activity, and enable monitoring of aspects of human activity within PA boundaries (e.g., expansion or intensification, such as electrification of settlements) (*167*). We retained intensity values >8 following (*168*) and assessed changes in total night-time light intensity within PAs by comparing averages of the first three and last three years of the study period.

**iii)** Changes in forest cover were assessed using the published national forest cover maps of (*38*), for the years 1990 and 2017, to achieve moderate consistency with the periods available for burned area and night-time lights. Forest loss may have multiple causes, and detection accuracy may vary by biome, but has been used as an indicator of human pressure in multiple previous conservation assessments in Madagascar (*38*, *77*, *169*). We treated areas of no forest as zero in the baseline map. We then subtracted 2017 forest cover from a 1990 baseline and scaled 0-100 to identify proportional forest loss in each cell. We emphasize that interpretation of variables such as fire pressure may differ between biomes. We report the most frequently recorded biome for each PA based on (*106*).

### 7. Ex situ analyses

We matched the list of plant species native to Madagascar from the Catalogue of the Vascular Plants of Madagascar (*160*) to records held in BGCI's PlantSearch database (*10*). Matches were made on the species binomial; infraspecific ranks and cultivars were ignored. In addition, we added known *ex situ* collections not currently stored in PlantSearch (Jardin Botanique Educatif and Parc Ivoloina). For each species, we recorded the presence or absence of a species in an *ex situ* collection (including both living collection and seed bank collections). The dataset is provided in our Zenodo repository (*135*).

We used the curated list of native Malagasy terrestrial and freshwater vertebrates in our Zenodo repository (135) to search for all vertebrate species globally held in zoos and the species that had successfully reproduced in the last 12 months based on collection information from ZIMS (Zoological Information Management Software, https://zims.species360.org) database. This search was performed in February 2021. The dataset is provided in our Zenodo repository (135).

#### Repository files:

| Title                                | Filename           | Description                                                                                                                                                                                               |
|--------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Ex situ</i> collections of plants | ex_situ_plants.csv | Comma-separated table with<br>numbers of <i>ex situ</i> conserved plant<br>species, per family, from BGCI's<br>PlantSearch database and<br>collections of Jardin Botanique<br>Educatif and Parc Ivoloina. |

*Ex situ* ex\_situ\_vertebrates.csv collections of vertebrates Comma-separated table with the list of extant native Malagasy vertebrates with information on their presence in at least one international zoo holding and whether they have been bred successfully over the last 12 months. Data from the Zoological Information Management (ZIM) Software performed in February 2021.

#### 8. Summary of software used

**IUCN analysis.** We prepared all analyses in R (*170*), and used the tidyverse v1.3.0 (*171*), tibble v3.0.5 (*172*), dplyr v1.0.3 (*173*), tidyr v1.1.2 (*174*), readr v1.4.0 (*175*), and ggplot2 v3.3.3 ((*176*), pg 2) packages for data wrangling and visualization; the ncdf4 v1.17 ((*177*), pg 4), sp v1.4-5 (*178*), sf v0.9-7 (*179*), raster v3.4-5 (*180*), rnaturalearth v0.1.0 (*181*), rnaturalearthdata v0.1.0 (*182*), and stars v0.4-3 (*183*) packages for spatial analyses; CoordinateCleaner v2.0-18 (*142*) for cleaning geo-referenced occurrence records, IUCNN v0.9.3 (*20*, *136*) to generate the geographic, climatic, and biome features; sampbias v1.0.4 (*145*) to calculate the bias features; and taxize v0.9.99 (*184*), lcvplants v1.1.1, and LCVP v1.0.4 (*185*) to test the effect of alternative taxonomic scrubbing on the results. **Protected Areas.** NumPy v1.21.0 (*186*), Pandas v1.3.0 (*187*), GeoPandas v0.9.0 (*188*), Rasterio v1.2.6 (*189*), xarray v0.18.2 (*190*), rioxarray v0.4.3 (*191*), GDAL v3.3.1 (*192*), Matplotlib v3.4.2 (*193*), Seaborn v0.11.1(*194*).

## Supplementary figure



**Fig. S1.** Distribution of Malagasy population in relation to protected areas (PAs). (A) Population density (*102*). (B) Distance to nearest PA calculated using buffer shapes of increasing distance around each PA, from 1km to 100km. (C) Frequency distribution of distances to nearest PA, weighted by area (constant) and by population, showing that the population is non-randomly distributed towards PAs.

## **Supplementary Tables**

**Table S1.** A summary of the features used for predicting species conservation status and threats. Feature = Feature name. ID = Feature ID. Cat = category. Norm = normalization. Source = Data Source.

| Feature     | ID     | Description                | Cat.   | Туре   | Norm.  | Source              |
|-------------|--------|----------------------------|--------|--------|--------|---------------------|
| Median bias | bias_  | The median bias value      | sampl  | fracti | x /    | https://github.com  |
|             | media  | extracted for occurrence   | ing    | on     | 100    | /azizka/sampbias    |
|             | n      | records of this species    | bias   |        |        |                     |
|             |        | from a projected bias grid |        |        |        |                     |
|             |        | from sampbias              |        |        | ,      |                     |
| Bias range  | bias_r | The range of bias value    | sampl  | contin | X /    | https://github.com  |
|             | ange   | extracted for occurrence   | ing    | uous   | 100    | /azizka/sampbias    |
|             |        | records of this species    | Dias   |        |        |                     |
|             |        | from sampling Panga is     |        |        |        |                     |
|             |        | the 95-05 quantile         |        |        |        |                     |
| Tropical &  | biome  | Are at least 5% of the     | hiome  | hinary | none   | https://www.worl    |
| Subtropical | 1      | species records present in | bioinc | omary  | none   | dwildlife.org/bio   |
| Moist       | -1     | this biome?                |        |        |        | me-                 |
| Broadleaf   |        |                            |        |        |        | categories/terrestr |
| Forests     |        |                            |        |        |        | ial-ecoregions      |
| Montane     | biome  | Are at least 5% of the     | biome  | binary | none   | https://www.worl    |
| Grasslands  | _10    | species records present in |        |        |        | dwildlife.org/bio   |
| &           |        | this biome?                |        |        |        | me-                 |
| Shrublands  |        |                            |        |        |        | categories/terrestr |
|             |        |                            |        |        |        | ial-ecoregions      |
| Deserts &   | biome  | Are at least 5% of the     | biome  | binary | none   | https://www.worl    |
| Xeric       | _13    | species records present in |        |        |        | dwildlife.org/bio   |
| Shrublands  |        | this biome?                |        |        |        | me-                 |
|             |        |                            |        |        |        | categories/terrestr |
| Mangroyas   | hiomo  | Are at least 5% of the     | biomo  | hinory | nono   | https://www.worl    |
| Mangroves   | 1/1    | species records present in | biome  | omary  | none   | dwildlife org/bio   |
|             | -14    | this biome?                |        |        |        | me-                 |
|             |        |                            |        |        |        | categories/terrestr |
|             |        |                            |        |        |        | ial-ecoregions      |
| Tropical &  | biome  | Are at least 5% of the     | biome  | binary | none   | https://www.worl    |
| Subtropical | _2     | species records present in |        | 5      |        | dwildlife.org/bio   |
| Dry         |        | this biome?                |        |        |        | me-                 |
| Broadleaf   |        |                            |        |        |        | categories/terrestr |
| Forests     |        |                            |        |        |        | ial-ecoregions      |
| Annual      | clim_b | The median value of this   | climat | contin | x / 15 | https://www.worl    |
| Mean        | io1    | bioclimatic layer for the  | e      | uous   |        | dclim.org           |
| Temperatur  |        | occurrence records of a    |        |        |        |                     |
| e           |        | species. Records with NA   |        |        |        |                     |
| 1           |        | values removed             | 1      |        |        |                     |

| Mean<br>Temperatur<br>e of Coldest<br>Quarter                        | clim_b<br>io11           | The median value of this<br>bioclimatic layer for the<br>occurrence records of a<br>species. Records with NA<br>values removed                                    | climat<br>e | contin<br>uous | x / 15           | https://www.worl<br>dclim.org |
|----------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------|-------------------------------|
| Annual<br>Precipitatio<br>n                                          | clim_b<br>io12           | The median value of this<br>bioclimatic layer for the<br>occurrence records of a<br>species. Records with NA<br>values removed                                    | climat<br>e | contin<br>uous | log10(<br>1 + x) | https://www.worl<br>dclim.org |
| Precipitatio<br>n<br>Seasonality<br>(Coefficient<br>of<br>Variation) | clim_b<br>io15           | The median value of this<br>bioclimatic layer for the<br>occurrence records of a<br>species. Records with NA<br>values removed                                    | climat<br>e | contin<br>uous | log10(<br>1 + x) | https://www.worl<br>dclim.org |
| Precipitatio<br>n of Driest<br>Quarter                               | clim_b<br>io17           | The median value of this<br>bioclimatic layer for the<br>occurrence records of a<br>species. Records with NA<br>values removed                                    | climat<br>e | contin<br>uous | log10(<br>1 + x) | https://www.worl<br>dclim.org |
| Temperatur<br>e<br>Seasonality<br>(standard<br>deviation<br>×100)    | clim_b<br>io4            | The median value of this<br>bioclimatic layer for the<br>occurrence records of a<br>species. Records with NA<br>values removed                                    | climat<br>e | contin<br>uous | log10(<br>1 + x) | https://www.worl<br>dclim.org |
| Range of<br>Annual<br>Mean<br>Temperatur<br>e                        | clim_r<br>ange_<br>bio1  | The range of value of this<br>bioclimatic layer for the<br>occurrence records of a<br>species. Records with NA<br>values removed. Range is<br>the .9505 quantile. | climat<br>e | contin<br>uous | x / 15           | https://www.worl<br>dclim.org |
| Range of<br>Mean<br>Temperatur<br>e of Coldest<br>Quarter            | clim_r<br>ange_<br>bio11 | The range of value of this<br>bioclimatic layer for the<br>occurrence records of a<br>species. Records with NA<br>values removed. Range is<br>the .9505 quantile. | climat<br>e | contin<br>uous | x / 15           | https://www.worl<br>dclim.org |
| Range of<br>Annual<br>Precipitatio<br>n                              | clim_r<br>ange_<br>bio12 | The range of value of this<br>bioclimatic layer for the<br>occurrence records of a<br>species. Records with NA<br>values removed. Range is<br>the .9505 quantile. | climat<br>e | contin<br>uous | log10(<br>1 + x) | https://www.worl<br>dclim.org |
| Range of<br>Precipitatio<br>n<br>Seasonality                         | clim_r<br>ange_<br>bio15 | The range of value of this<br>bioclimatic layer for the<br>occurrence records of a<br>species. Records with NA                                                    | climat<br>e | contin<br>uous | log10(1 + x)     | https://www.worl<br>dclim.org |

| (Coefficient<br>of |                   | values removed. Range is the .9505 quantile. |        |        |            |                           |
|--------------------|-------------------|----------------------------------------------|--------|--------|------------|---------------------------|
| Variation)         |                   | 1                                            |        |        |            |                           |
| Range of           | clim_r            | The range of value of this                   | climat | contin | log10(     | https://www.worl          |
| Precipitatio       | ange_             | bioclimatic layer for the                    | e      | uous   | 1 + x)     | dclim.org                 |
| n of Driest        | bio17             | occurrence records of a                      |        |        |            |                           |
| Quarter            |                   | species. Records with NA                     |        |        |            |                           |
|                    |                   | values removed. Range is                     |        |        |            |                           |
| D C                | 1.                | the .9505 quantile.                          | 1.     |        | 1 10/      | 1                         |
| Range of           | clim_r            | The range of value of this                   | climat | contin | log10(     | https://www.worl          |
| Temperatur         | ange_             | bioclimatic layer for the                    | e      | uous   | 1 + x)     | dclim.org                 |
| e<br>Saaaa 134aa   | b104              | occurrence records of a                      |        |        |            |                           |
| Seasonality        |                   | species. Records with NA                     |        |        |            |                           |
| (standard          |                   | values removed. Range 1s                     |        |        |            |                           |
| deviation v100)    |                   | the .9505 quantile.                          |        |        |            |                           |
| ×100)<br>Median    | elevati           | The median value of                          | elevat | contin | <b>v</b> / | https://www.worl          |
| elevation          | on me             | elevation for the                            | ion    |        | 600        | delim org                 |
| cicvation          | dian              | occurrence records of a                      | 1011   | uous   | 000        | deminiong                 |
|                    | ululi             | species Records with NA                      |        |        |            |                           |
|                    |                   | values removed                               |        |        |            |                           |
| Elevational        | elevati           | The range of value of                        | elevat | contin | x /        | https://www.worl          |
| range              | on ran            | elevation for the                            | ion    | uous   | 600        | dclim.org                 |
| 8                  | ge                | occurrence records of a                      |        |        |            | 8                         |
|                    | 0                 | species. Records with NA                     |        |        |            |                           |
|                    |                   | values removed. Range is                     |        |        |            |                           |
|                    |                   | the .9505 quantile.                          |        |        |            |                           |
| Fraction           | forest_           | The fraction of records of                   | forest | fracti | none       | https://bioscenem         |
| forest cover       | frac_1            | this species in forested                     | cover  | on     |            | ada.cirad.fr/maps/        |
| 1973               | 973               | grid cells in 1973                           |        |        |            | _                         |
| Fraction           | forest_           | The fraction of records of                   | forest | fracti | none       | https://bioscenem         |
| forest cover       | frac_2            | this species in forested                     | cover  | on     |            | ada.cirad.fr/maps/        |
| 2014               | 014               | grid cells in 2014                           |        |        |            |                           |
| Area of            | geo_a             | The area of occupancy.                       | geogr  | contin | log10(     | Calculated from           |
| Occupancy          | 00                | Calculated by rCAT                           | aphic  | uous   | 1 + x)     | the GBIF records          |
| Extent of          | geo_e             | The extent of occurrence.                    | geogr  | contin | log10(     | Calculated from           |
| Occurrence         | 00                | Calculated by rCAT. For                      | aphic  | uous   | 1 + x)     | the GBIF records          |
|                    |                   | species with less than 3                     |        |        |            |                           |
| T 1' 1             | 1                 | records set to AOO                           |        |        | 1 10/      | $O(1, 1) \in \mathcal{M}$ |
| Latitudinal        | geo_la            | The latitudinal range (.95                   | geogr  | contin | $\log 10($ | Calculated from           |
| range              | t_rang            | quantile05 quantile).                        | aphic  | uous   | 1 + x)     | the GBIF records          |
| Longituding        | e                 | The longitudinal range                       | 0000   | acatia | 10210/     | Coloulated from           |
|                    | geo_lo            | 1 ne iongitudinal range                      | geogr  | contin | 10g10(     | the CDIE records          |
| 1 range            | n_rang            | (.95 quantile)                               | apine  | uous   | 1 + X      | ule GDIF records          |
| Maan               |                   | The mean latitude of all                     | 0000   | contin | v / 00     | Calculated from           |
| latitude           | geo_III<br>ean la | records of this species                      | aphic  |        | л / 90     | the GRIF records          |
| Tallude            | t                 | records or uns species                       | apine  | uous   |            |                           |
| 1                  | ι                 | 1                                            |        | 1      | 1          |                           |

| Mean        | geo_m       | The mean longitude of all          | geogr | contin | x /        | Calculated from  |
|-------------|-------------|------------------------------------|-------|--------|------------|------------------|
| longitude   | ean_lo      | records of this species            | aphic | uous   | 180        | the GBIF records |
| Number of   | n<br>goo to | The total number of                | googr | contin | 10010(     | Calculated from  |
| occurrences | geo_io      | occurrences available for          | aphic |        | 1 + x      | the GBIF records |
| occurrences | 1_000       | this species                       | upine | uous   | 1 + A)     | the ODI records  |
| Number of   | geo_u       | The number of                      | geogr | contin | log10(     | Calculated from  |
| geographica | ni_occ      | geographically unique              | aphic | uous   | (1 + x)    | the GBIF records |
| lly unique  |             | records available for this         |       |        |            |                  |
| occurrences |             | species                            |       |        |            |                  |
| Area of     | geo20       | The area of occupancy.             | geogr | contin | log10(     | Calculated from  |
| Occupancy   | _aoo        | Calculated by rCAT,                | aphic | uous   | 1 + x)     | the GBIF records |
|             |             | using occurrence records           |       |        |            |                  |
|             |             | 2000                               |       |        |            |                  |
| Extent of   | geo20       | The extent of occurrence.          | geogr | contin | log10(     | Calculated from  |
| Occurrence  | _eoo        | Calculated by rCAT,                | aphic | uous   | 1 + x)     | the GBIF records |
|             |             | using occurrence records           | _     |        |            |                  |
|             |             | collected since the year           |       |        |            |                  |
|             |             | 2000. For species with             |       |        |            |                  |
|             |             | less than 3 records set to         |       |        |            |                  |
| Latitudinal | geo20       | AOU<br>The latitudinal range ( 95  | geogr | contin | 10010(     | Calculated from  |
| range       | lat ra      | quantile - 05 quantile)            | aphic |        | 1 + x      | the GBIF records |
| Tunge       | nge         | calculated using                   | upine | uous   | 1 1 1 1    |                  |
|             | 0           | occurrence records                 |       |        |            |                  |
|             |             | collected since the year           |       |        |            |                  |
|             |             | 2000.                              |       |        |            |                  |
| Longitudina | geo20       | The longitudinal range             | geogr | contin | log10(     | Calculated from  |
| l range     | _lon_r      | (.95 quantile05                    | aphic | uous   | 1 + x)     | the GBIF records |
|             | ange        | quantile), calculated using        |       |        |            |                  |
|             |             | collected since the year           |       |        |            |                  |
|             |             | 2000.                              |       |        |            |                  |
| Mean        | geo20       | The mean latitude of all           | geogr | contin | x / 90     | Calculated from  |
| latitude    | _mean       | records of this species,           | aphic | uous   |            | the GBIF records |
|             | _lat        | calculated using                   |       |        |            |                  |
|             |             | occurrence records                 |       |        |            |                  |
|             |             | collected since the year           |       |        |            |                  |
| Maan        | aaa 20      | 2000.<br>The mean lengitude of all | ~~~~  | aantin |            | Coloulated from  |
| longitudo   | geo20       | records of this species            | geogr | contin | X /<br>180 | the GRIE records |
| Iongitude   | lon         | calculated using                   | apine | uous   | 100        |                  |
|             |             | occurrence records                 |       |        |            |                  |
|             |             | collected since the year           |       |        |            |                  |
|             |             | 2000.                              |       |        |            |                  |
| Number of   | geo20       | The total number of                | geogr | contin | log10(     | Calculated from  |
| occurrences | _tot_o      | occurrences available for          | aphic | uous   | 1 + x)     | the GBIF records |
|             | сс          | this species, calculated           |       |        |            |                  |

|                                                             |                                   | using occurrence records<br>collected since the year<br>2000.                                                                                                                                       |                            |                |                  |                                     |
|-------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|------------------|-------------------------------------|
| Number of<br>geographica<br>lly unique<br>occurrences       | geo20<br>_uni_o<br>cc             | The number of<br>geographically unique<br>records available for this<br>species, calculated using<br>occurrence records<br>collected since the year<br>2000.                                        | geogr<br>aphic             | contin<br>uous | log10(<br>1 + x) | Calculated from<br>the GBIF records |
| Human<br>footprint<br>year 1993<br>lowest<br>impact         | human<br>footpri<br>nt_199<br>3_1 | The fraction of records in<br>areas of the lowest<br>category of human<br>footprint in the year 1993.<br>Footprint was categorized<br>so that categories<br>represent roughly<br>quantiles.         | huma<br>n<br>footpr<br>int | fracti<br>on   | none             | https://wcshuman<br>footprint.org/  |
| Human<br>footprint<br>year 1993<br>intermediate<br>impact 1 | human<br>footpri<br>nt_199<br>3_2 | The fraction of records in<br>areas of the second lowest<br>category of human<br>footprint in the year 1993.<br>Footprint was categorized<br>so that categories<br>represent roughly<br>quantiles.  | huma<br>n<br>footpr<br>int | fracti<br>on   | none             | https://wcshuman<br>footprint.org/  |
| Human<br>footprint<br>year 1993<br>intermediate<br>impact 2 | human<br>footpri<br>nt_199<br>3_3 | The fraction of records in<br>areas of the second<br>highest category of<br>human footprint in the<br>year 1993. Footprint was<br>categorized so that<br>categories represent<br>roughly quantiles. | huma<br>n<br>footpr<br>int | fracti<br>on   | none             | https://wcshuman<br>footprint.org/  |
| Human<br>footprint<br>year 1993<br>highest<br>impact        | human<br>footpri<br>nt_199<br>3_4 | The fraction of records in<br>areas of the highest<br>category of human<br>footprint in the year 1993.<br>Footprint was categorized<br>so that categories<br>represent roughly<br>quantiles.        | huma<br>n<br>footpr<br>int | fracti<br>on   | none             | https://wcshuman<br>footprint.org/  |
| Human<br>footprint<br>year 2009<br>lowest<br>impact         | human<br>footpri<br>nt_200<br>9_1 | The fraction of records in<br>areas of the lowest<br>category of human<br>footprint in the year 2009.<br>Footprint was categorized<br>so that categories                                            | huma<br>n<br>footpr<br>int | fracti<br>on   | none             | https://wcshuman<br>footprint.org/  |

|                                                             |                                   | represent roughly quantiles.                                                                                                                                                                        |                            |              |      |                                                                      |
|-------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|------|----------------------------------------------------------------------|
| Human<br>footprint<br>year 2009<br>intermediate<br>impact 1 | human<br>footpri<br>nt_200<br>9_2 | The fraction of records in<br>areas of the second lowest<br>category of human<br>footprint in the year 2009.<br>Footprint was categorized<br>so that categories<br>represent roughly<br>quantiles.  | huma<br>n<br>footpr<br>int | fracti<br>on | none | https://wcshuman<br>footprint.org/                                   |
| Human<br>footprint<br>year 2009<br>intermediate<br>impact 2 | human<br>footpri<br>nt_200<br>9_3 | The fraction of records in<br>areas of the second<br>highest category of<br>human footprint in the<br>year 2009. Footprint was<br>categorized so that<br>categories represent<br>roughly quantiles. | huma<br>n<br>footpr<br>int | fracti<br>on | none | https://wcshuman<br>footprint.org/                                   |
| Human<br>footprint<br>year 2009<br>highest<br>impact        | human<br>footpri<br>nt_200<br>9_4 | The fraction of records in<br>areas of the highest<br>category of human<br>footprint in the year 2009.<br>Footprint was categorized<br>so that categories<br>represent roughly<br>quantiles.        | huma<br>n<br>footpr<br>int | fracti<br>on | none | https://wcshuman<br>footprint.org/                                   |
| Not<br>protected                                            | pa_not<br>protect<br>ed           | The fraction of records of<br>this species outside<br>protected area                                                                                                                                | protec<br>ted<br>area      | fracti<br>on | none | https://www.prote<br>ctedplanet.net/en/t<br>hematic-<br>areas/wdpa   |
| Protected                                                   | pa_pro<br>tected                  | The fraction of records of<br>this species in protected<br>area, IUCN categories III-<br>VI or not specified                                                                                        | protec<br>ted<br>area      | fracti<br>on | none | https://www.prote<br>ctedplanet.net/en/t<br>hematic-<br>areas/wdpa   |
| Strictly<br>protected                                       | pa_stri<br>ctlypro<br>tected      | The fraction of records of<br>this species in strictly<br>protected areas, IUCN<br>categories I + II                                                                                                | protec<br>ted<br>area      | fracti<br>on | none | https://www.prote<br>ctedplanet.net/en/t<br>hematic-<br>areas/wdpa   |
| Use Animal<br>food                                          | use_A<br>nimalF<br>ood            | Is this species used for<br>this use type? Yes/no                                                                                                                                                   | plant<br>use               | binary       | none | https://knb.ecoinf<br>ormatics.org/view<br>/doi:10.5063/F1C<br>V4G34 |
| Use fuel                                                    | use_F<br>uels                     | Is this species used for<br>this use type? Yes/no                                                                                                                                                   | plant<br>use               | binary       | none | https://knb.ecoinf<br>ormatics.org/view<br>/doi:10.5063/F1C<br>V4G34 |
| Use human<br>food                                           | use_H<br>umanF<br>ood             | Is this species used for this use type? Yes/no                                                                                                                                                      | plant<br>use               | binary       | none | https://knb.ecoinf<br>ormatics.org/view                              |

|             |         |                            |       |        |        | /doi:10.5063/F1C   |
|-------------|---------|----------------------------|-------|--------|--------|--------------------|
|             |         |                            |       |        |        | V4G34              |
| Use         | use_M   | Is this species used for   | plant | binary | none   | https://knb.ecoinf |
| material    | aterial | this use type? Yes/no      | use   |        |        | ormatics.org/view  |
|             | S       |                            |       |        |        | /doi:10.5063/F1C   |
|             |         |                            |       |        |        | V4G34              |
| Use         | use_M   | Is this species used for   | plant | binary | none   | https://knb.ecoinf |
| medicine    | edicin  | this use type? Yes/no      | use   |        |        | ormatics.org/view  |
|             | es      |                            |       |        |        | /doi:10.5063/F1C   |
|             |         |                            |       |        |        | V4G34              |
| Social uses | use_S   | Is this species used for   | plant | binary | none   | https://knb.ecoinf |
|             | ocialU  | this use type? Yes/no      | use   |        |        | ormatics.org/view  |
|             | ses     |                            |       |        |        | /doi:10.5063/F1C   |
|             |         |                            |       |        |        | V4G34              |
| Total       | use_T   | The total number of uses   | plant | count  | x / 10 | https://knb.ecoinf |
| number of   | otals   | recorded for this species. | use   |        |        | ormatics.org/view  |
| uses        |         | Count, max 10.             |       |        |        | /doi:10.5063/F1C   |
|             |         |                            |       |        |        | V4G34              |

| Stat<br>us | All plants<br>(5353) | Asterids<br>(1948) | Eudicots<br>(248) | Ferns &<br>lycophytes<br>(372) | Magnoliids<br>(80) | Monocots<br>(1256) | Rosids<br>(1444) |
|------------|----------------------|--------------------|-------------------|--------------------------------|--------------------|--------------------|------------------|
| CR         | 988                  | 337                | 41                | 62                             | 16                 | 266                | 267              |
|            | [903, 1067]          | [300, 370]         | [30, 49]          | [48, 74]                       | [11, 21]           | [235, 294]         | [236, 293]       |
| EN         | 1749                 | 657                | 77                | 126                            | 27                 | 395                | 466              |
|            | [1647, 1849]         | [610, 698]         | [64, 88]          | [107, 144]                     | [20, 33]           | [355, 430]         | [430, 500]       |
| VU         | 193                  | 76                 | 8                 | 15                             | 3                  | 41                 | 50               |
|            | [147, 234]           | [54, 95]           | [ 2, 13]          | [ 7, 24]                       | [0, 5]             | [27, 56]           | [32, 65]         |
| NT         | 869                  | 342                | 39                | 64                             | 13                 | 181                | 231              |
|            | [773, 959]           | [296, 385]         | [28, 49]          | [49, 79]                       | [ 7, 18]           | [148, 212]         | [199, 261]       |
| LC         | 1555                 | 536                | 83                | 110                            | 21                 | 374                | 430              |
|            | [1463, 1644]         | [495, 572]         | [71, 93]          | [ 90, 128]                     | [15, 26]           | [340, 404]         | [398, 461]       |

| Table S   | 2. Predicte | d number  | r of species | in IUCN     | Red List a | ssessment | classes for n | najor |
|-----------|-------------|-----------|--------------|-------------|------------|-----------|---------------|-------|
| groups of | of vascular | plants. 9 | 5% credible  | e intervals | are shown  | in square | brackets.     |       |

**Table S3.** The defined feature-blocks ranked by decreasing feature importance. Feature importance is measured as the mean decrease in accuracy (delta accuracy) when values in a given feature block are randomly shuffled. The mean and standard deviation (std) were determined over 100 permutation replicates

| Feature block                | Prediction type | Delta accuracy<br>(mean) | Delta accuracy (std) |
|------------------------------|-----------------|--------------------------|----------------------|
| Geographic                   | conservative    | 0.2384                   | 0.0109               |
| Geographic, last<br>20years  | conservative    | 0.1003                   | 0.0064               |
| Plant use                    | conservative    | 0.0549                   | 0.0058               |
| Climate                      | conservative    | 0.0457                   | 0.0063               |
| Bias                         | conservative    | 0.0003                   | 0.0005               |
| Human footprint              | conservative    | 0.0001                   | 0.0002               |
| Deforestation                | conservative    | 0                        | 0.0001               |
| Biome                        | conservative    | 0                        | 0                    |
| Elevation                    | conservative    | 0                        | 0                    |
| Protected area               | conservative    | 0                        | 0                    |
| Geographic                   | naive           | 0.2608                   | 0.0062               |
| Climate                      | naive           | 0.1391                   | 0.0059               |
| Geographic, last 20<br>years | naive           | 0.1078                   | 0.0045               |
| Plant use                    | naive           | 0.0426                   | 0.0032               |
| Human footprint              | naive           | 0.018                    | 0.0035               |
| Bias                         | naive           | 0.012                    | 0.003                |
| Deforestation                | naive           | 0.0073                   | 0.0025               |
| Elevation                    | naive           | 0.0062                   | 0.0022               |
| Biome                        | naive           | 0.0051                   | 0.0025               |
| Protected area               | naive           | 0.0035                   | 0.0025               |

**Table S4**. Threats to Malagasy biodiversity. The number of species with each listed threat, as defined by the IUCN (vertebrates) or predicted by our model (plants), across taxonomic groups.

| Higher    | Taxonomic | Threat           | No. species | Total   | % of        |
|-----------|-----------|------------------|-------------|---------|-------------|
| taxonomic | group     |                  | with threat | species | species     |
| group     |           |                  | listed      |         | with threat |
|           |           |                  |             |         | listed      |
| Plants    | Asterids  | Agriculture      | 2822        | 3204    | 88.1        |
| Plants    | Asterids  | Energy/mining    | 554         | 3204    | 17.3        |
| Plants    | Asterids  | Other            | 118         | 3204    | 3.7         |
| Plants    | Asterids  | Overexploitation | 2750        | 3204    | 85.8        |

| Plants | Asterids       | System<br>modifications | 2270 | 3204 | 70.8 |
|--------|----------------|-------------------------|------|------|------|
| Plants | Asterids       | Urban<br>development    | 63   | 3204 | 2    |
| Plants | Ferns          | Agriculture             | 404  | 415  | 97.3 |
| Plants | Ferns          | Energy/mining           | 35   | 415  | 8.4  |
| Plants | Ferns          | Other                   | 2    | 415  | 0.5  |
| Plants | Ferns          | Overexploitation        | 392  | 415  | 94.5 |
| Plants | Ferns          | System<br>modifications | 286  | 415  | 68.9 |
| Plants | Ferns          | Urban<br>development    | 0    | 415  | 0    |
| Plants | Gymnosperms    | Agriculture             | 6    | 6    | 100  |
| Plants | Gymnosperms    | Energy/mining           | 1    | 6    | 16.7 |
| Plants | Gymnosperms    | Other                   | 0    | 6    | 0    |
| Plants | Gymnosperms    | Overexploitation        | 4    | 6    | 66.7 |
| Plants | Gymnosperms    | System<br>modifications | 5    | 6    | 83.3 |
| Plants | Gymnosperms    | Urban<br>development    | 0    | 6    | 0    |
| Plants | Magnoliids     | Agriculture             | 252  | 283  | 89   |
| Plants | Magnoliids     | Energy/mining           | 82   | 283  | 29   |
| Plants | Magnoliids     | Other                   | 13   | 283  | 4.6  |
| Plants | Magnoliids     | Overexploitation        | 276  | 283  | 97.5 |
| Plants | Magnoliids     | System<br>modifications | 180  | 283  | 63.6 |
| Plants | Magnoliids     | Urban<br>development    | 8    | 283  | 2.8  |
| Plants | Monocots       | Agriculture             | 1594 | 1835 | 86.9 |
| Plants | Monocots       | Energy/mining           | 342  | 1835 | 18.6 |
| Plants | Monocots       | Other                   | 98   | 1835 | 5.3  |
| Plants | Monocots       | Overexploitation        | 1516 | 1835 | 82.6 |
| Plants | Monocots       | System<br>modifications | 1132 | 1835 | 61.7 |
| Plants | Monocots       | Urban<br>development    | 44   | 1835 | 2.4  |
| Plants | NA             | Agriculture             | 8134 | 9268 | 87.8 |
| Plants | NA             | Energy/mining           | 1770 | 9268 | 19.1 |
| Plants | NA             | Other                   | 387  | 9268 | 4.2  |
| Plants | NA             | Overexploitation        | 8069 | 9268 | 87.1 |
| Plants | NA             | System<br>modifications | 6388 | 9268 | 68.9 |
| Plants | NA             | Urban<br>development    | 279  | 9268 | 3.0  |
| Plants | Other Eudicots | Agriculture             | 354  | 390  | 90.8 |

| Plants      | Other Eudicots    | Energy/mining           | 55   | 390  | 14.1 |
|-------------|-------------------|-------------------------|------|------|------|
| Plants      | Other Eudicots    | Other                   | 23   | 390  | 5.9  |
| Plants      | Other Eudicots    | Overexploitation        | 319  | 390  | 81.8 |
| Plants      | Other Eudicots    | System<br>modifications | 315  | 390  | 80.8 |
| Plants      | Other Eudicots    | Urban<br>development    | 15   | 390  | 3.8  |
| Plants      | Rosids            | Agriculture             | 2702 | 3135 | 86.2 |
| Plants      | Rosids            | Energy/mining           | 701  | 3135 | 22.4 |
| Plants      | Rosids            | Other                   | 133  | 3135 | 4.2  |
| Plants      | Rosids            | Overexploitation        | 2812 | 3135 | 89.7 |
| Plants      | Rosids            | System<br>modifications | 2200 | 3135 | 70.2 |
| Plants      | Rosids            | Urban<br>development    | 149  | 3135 | 4.8  |
| Vertebrates | Ray-finned fishes | Agriculture             | 10   | 203  | 4.9  |
| Vertebrates | Ray-finned fishes | Invasives/disease       | 53   | 203  | 26.1 |
| Vertebrates | Ray-finned fishes | Other                   | 25   | 203  | 12.3 |
| Vertebrates | Ray-finned fishes | Overexploitation        | 90   | 203  | 44.3 |
| Vertebrates | Ray-finned fishes | System<br>modifications | 29   | 203  | 14.3 |
| Vertebrates | Ray-finned fishes | Urban<br>development    | 7    | 203  | 3.4  |
| Vertebrates | Amphibians        | Agriculture             | 261  | 308  | 84.7 |
| Vertebrates | Amphibians        | Energy/mining           | 29   | 308  | 9.4  |
| Vertebrates | Amphibians        | Invasives/disease       | 243  | 308  | 78.9 |
| Vertebrates | Amphibians        | Other                   | 26   | 308  | 8.4  |
| Vertebrates | Amphibians        | Overexploitation        | 258  | 308  | 83.8 |
| Vertebrates | Amphibians        | System<br>modifications | 104  | 308  | 33.8 |
| Vertebrates | Amphibians        | Urban<br>development    | 201  | 308  | 65.3 |
| Vertebrates | Birds             | Agriculture             | 56   | 219  | 25.6 |
| Vertebrates | Birds             | Energy/mining           | 6    | 219  | 2.7  |
| Vertebrates | Birds             | Invasives/disease       | 34   | 219  | 15.5 |
| Vertebrates | Birds             | Other                   | 53   | 219  | 24.2 |
| Vertebrates | Birds             | Overexploitation        | 70   | 219  | 32.0 |
| Vertebrates | Birds             | System<br>modifications | 24   | 219  | 11.0 |
| Vertebrates | Birds             | Urban<br>development    | 5    | 219  | 2.3  |

| Vertebrates | Mammals  | Agriculture             | 162 | 221  | 73.3 |
|-------------|----------|-------------------------|-----|------|------|
| Vertebrates | Mammals  | Energy/mining           | 34  | 221  | 15.4 |
| Vertebrates | Mammals  | Invasives/disease       | 20  | 221  | 9.0  |
| Vertebrates | Mammals  | Other                   | 18  | 221  | 8.1  |
| Vertebrates | Mammals  | Overexploitation        | 138 | 221  | 62.4 |
| Vertebrates | Mammals  | System<br>modifications | 74  | 221  | 33.5 |
| Vertebrates | Mammals  | Urban<br>development    | 6   | 221  | 2.7  |
| Vertebrates | NA       | Agriculture             | 757 | 1332 | 56.8 |
| Vertebrates | NA       | Energy/mining           | 114 | 1332 | 8.6  |
| Vertebrates | NA       | Invasives/disease       | 360 | 1332 | 27   |
| Vertebrates | NA       | Other                   | 146 | 1332 | 11.0 |
| Vertebrates | NA       | Overexploitation        | 827 | 1332 | 62.1 |
| Vertebrates | NA       | System<br>modifications | 309 | 1332 | 23.2 |
| Vertebrates | NA       | Urban<br>development    | 241 | 1332 | 18.1 |
| Vertebrates | Reptiles | Agriculture             | 268 | 381  | 70.3 |
| Vertebrates | Reptiles | Energy/mining           | 45  | 381  | 11.8 |
| Vertebrates | Reptiles | Invasives/disease       | 10  | 381  | 2.6  |
| Vertebrates | Reptiles | Other                   | 24  | 381  | 6.3  |
| Vertebrates | Reptiles | Overexploitation        | 271 | 381  | 71.1 |
| Vertebrates | Reptiles | System<br>modifications | 78  | 381  | 20.5 |
| Vertebrates | Reptiles | Urban<br>development    | 22  | 381  | 5.8  |

| Tests          | threat 1 | threat 2 | threat 3 | threat 4 | threat 5 | threat 6 |
|----------------|----------|----------|----------|----------|----------|----------|
| Test accuracy  | 0.74     | 0.837    | 0.734    | 0.666    | 0.917    | 0.92     |
| True positive  | 0.972    | 0.972    | 0.321    | 0.845    | 0.034    | 0.036    |
| False positive | 0.24     | 0.139    | 0.053    | 0.243    | 0        | 0        |

**Table S5.** Summary statistics describing the performance of the multi-label predictions of species threats.

**Table S6.** Percentage of each existing vegetation type currently within a protected area. Degraded vegetation types were reclassified to their primary vegetation type. See also text and Table S1 above, and Fig. 5.

| Vegetation type    | Percent within protected area |
|--------------------|-------------------------------|
| Mangroves          | 29.4%                         |
| Spiny forest       | 21.5%                         |
| Humid forest       | 18.5%                         |
| Tapia              | 17.9%                         |
| Dry forest         | 13.3%                         |
| Subhumid forest    | 5.7%                          |
| Grassland-woodland | 1.8%                          |
| mosaic             |                               |

Table S7. Threatened vertebrates with ranges not overlapping with the current PA network.

| Group      | IUCN-assessed threatened<br>species with no range |
|------------|---------------------------------------------------|
| Amphibians | Genhyromantis mafy                                |
| Ampinotans | Gephyromaniis majy                                |
| Mammals    | Lepilemur grewcockorum                            |
| Mammals    | Lepilemur septentrionalis                         |
| Mammals    | Microcebus marohita                               |
| Reptiles   | Calumma capuroni                                  |
| Reptiles   | Calumma vohibola                                  |
| Reptiles   | Lygodactylus ornatus                              |
| Reptiles   | Paracontias minimus                               |
| Reptiles   | Phelsuma masohoala                                |
| Reptiles   | Phelsuma pronki                                   |
| Reptiles   | Xenotyphlops grandidieri                          |

**Table S8.** Trends in stable night lights, proportion of forest cover and fire for Malagasy protected areas (PAs). Values are provided at 1km resolution for night lights and forest loss, and 5km for fire trends. Minimum and maximum values within PAs are reported. For forest cover, we report loss, and exclude areas of potential recent gain. NA values denote no data, i.e., no baseline forest cover, and no significant trend in fire. The three potential proxies are not implicitly equivalent.

| Protected area name                            | Predominant biome             | Change in<br>stable | Proportion<br>forest loss | Trend in<br>fire 2006-<br>2016 (min |
|------------------------------------------------|-------------------------------|---------------------|---------------------------|-------------------------------------|
|                                                |                               | 1992_2018           | $(\min_{x} \max)$         | 2010 (IIIII-<br>max)                |
|                                                |                               | (min-               | (IIIII-IIIax)             |                                     |
|                                                |                               | (inini<br>max)      |                           |                                     |
| Lake Tsarasaotra                               | Humid forest                  | 1.23 (0.82-<br>1.6) | NA (-)                    | 0 (0-0)                             |
| Lake Sofia                                     | Grassland-<br>woodland mosaic | 0 (0-0)             | NA (-)                    | NA (-)                              |
| Ambatofotsy (Anosibe<br>An'Ala) NPA            | Humid forest                  | 0 (0-0)             | 16.51 (2.34-<br>44.91)    | NA (-)                              |
| Ankorabe<br>(Antadonkomby)                     | Grassland-<br>woodland mosaic | 0 (0-0)             | NA (-)                    | NA (-)                              |
| Analalava Foulpointe<br>NPA                    | Humid forest                  | 0 (0-0)             | 3.75 (3.35-4.15)          | NA (-)                              |
| Analalava                                      | Dry forest                    | 0 (0-0)             | NA (-)                    | 0 (0-0)                             |
| Ambararata Londa                               | Dry forest                    | 0 (0-0)             | 2.37 (0-19.56)            | 0.2 (0-1.7)                         |
| Ambatotsirongorongo<br>NPA                     | Humid forest                  | 0 (0-0)             | 8.29 (0.78-<br>22.26)     | 0 (0-0)                             |
| Ambohidray NPA                                 | Humid forest                  | 0 (0-0)             | 6.91 (0.33-23.8)          | NA (-)                              |
| Ambohijanahary Special                         | Humid forest                  | 0 (0-0)             | 4.06 (0-30.05)            | NA (-)                              |
| Réserve                                        |                               |                     |                           |                                     |
| Angavo Androy NPA                              | Spiny forest                  | 0 (0-0)             | 1.37 (0-19.19)            | 0 (0-0)                             |
| Bemarivo Special<br>Réserve                    | Dry forest                    | 0 (0-0)             | 9.59 (0-48.82)            | 0 (0-0)                             |
| Bongolava Classified<br>Forest (Marosely) NPA  | Dry forest                    | 0 (0-0)             | 6.8 (0-41.63)             | -1.73 (-5.74-<br>3.81)              |
| Kasijy Special Réserve                         | Dry forest                    | 0 (0-0)             | 1.11 (0-15.7)             | -2.29 (-2.29<br>2.29)               |
| Maningoza Special<br>Réserve                   | Dry forest                    | 0 (0-0)             | 5.51 (0-21.9)             | -2.51 (-2.51<br>2.51)               |
| Ranobe PK32 NPA                                | Spiny forest                  | 0 (0-0)             | 36.71 (0-95.2)            | 0.95 (-2.24-<br>3.74)               |
| Tampoketsa-<br>Analamaintso Special<br>Réserve | Humid forest                  | 0 (0-0)             | 3.96 (0-33.78)            | 2.86 (2.72-<br>2.97)                |
| Mahavavy-Kinkony<br>wetlands NPA               | Dry forest                    | 0 (0-0)             | 8.04 (0-65.51)            | 0.04 (-2.99-<br>2.39)               |
| Mangoky Ihotry                                 | Dry forest                    | 0 (0-0)             | 10.61 (0-84.53)           | -0.28 (-4.15-2.77)                  |

| Tsitongambarika NPA                                        | Humid forest                  | 0 (0-0)        | 14.71 (0-70.3)         | -0.03 (-1.35-<br>0)   |
|------------------------------------------------------------|-------------------------------|----------------|------------------------|-----------------------|
| Torotorofotsy Wetlands                                     | Humid forest                  | 0.75 (0-4.98)  | 24.58 (0.15-<br>67.37) | NA (-)                |
| Beanka NPA                                                 | Dry forest                    | 0 (0-0)        | 0.39 (0-5.66)          | 0 (0-0)               |
| Sahafina Forest                                            | Humid forest                  | 0 (0-0)        | 0.9 (0-10.05)          | 0 (0-0)               |
| (Anivorano-Brickaville)<br>NPA                             |                               |                |                        |                       |
| Corridor Ankeniheny<br>Zahamena                            | Humid forest                  | 0 (0-0)        | 10.21 (0-90.43)        | 1.47 (0-4.53)         |
| Ambositra-Vondrozo<br>Corridor NPA (COFAV)                 | Humid forest                  | 0 (0-0)        | 10.52 (0-73.63)        | 0 (-2.71-2.36)        |
| Antoetra NPA                                               | Humid forest                  | 0 (0-0)        | 4.44 (0.15-<br>13.51)  | 0 (0-0)               |
| Bombetoka Belemboka                                        | Dry forest                    | 0 (0-0)        | 2.76 (0-25.02)         | -1.31 (-3.87-<br>0)   |
| Ambondrombe (Belo sur<br>Tsiribihana) NPA                  | Dry forest                    | 0 (0-0)        | 21.99 (1.21-<br>66.35) | NA (-)                |
| Lake Alaotra NPA                                           | Grassland-<br>woodland mosaic | 0 (0-0)        | 0 (0-0)                | 0 (0-0)               |
| Nosivolo wetland NPA                                       | Humid forest                  | 0 (0-0)        | 13.81 (0-36.62)        | 0 (0-0)               |
| Avenue of the Baobabs                                      | Grassland-<br>woodland mosaic | 0 (0-0)        | NA (-)                 | 2.87 (2.81-<br>2.91)  |
| Anjozorobe-Angavo-<br>Tsinjoarivo Corridor                 | Humid forest                  | 0 (0-0)        | 24.33 (0-80.48)        | 5.03 (3.58-<br>5.27)  |
| Loky Manambato NPA                                         | Humid forest                  | 0 (0-0)        | 2.11 (0-34.43)         | 0.21 (0-3.15)         |
| Menabe Antimena                                            | Dry forest                    | 0 (0-0)        | 11.31 (0-92.87)        | 0.74 (-2.32-<br>3.3)  |
| Maromizaha                                                 | Humid forest                  | 0 (0-0)        | 22.17 (0.15-<br>74.03) | 3.03 (3.03-<br>3.03)  |
| Tsinjoriake-Andatobo<br>MPA                                | Spiny forest                  | 0 (0-0)        | 2.55 (0-13.67)         | 0 (0-0)               |
| Ampanganandehibe-<br>Behasina                              | Grassland-<br>woodland mosaic | 0 (0-0)        | 0.08 (0.08-0.08)       | NA (-)                |
| Nosy Antsoha                                               | -                             | NA (NA-<br>NA) | NA (-)                 | NA (-)                |
| Analalava-Analabe-<br>Betanantanana<br>(Ambatosoratra) NPA | Humid forest                  | 0 (0-0)        | 5.58 (1.02-<br>12.89)  | NA (-)                |
| Mahialambo NPA                                             | Grassland-<br>woodland mosaic | 0 (0-0)        | NA (-)                 | NA (-)                |
| Mangabe-Ranomena-<br>Sahasarotra NPA                       | Humid forest                  | 0 (0-0)        | 37.57 (0.34-<br>89.23) | 2.51 (2.51-<br>2.51)  |
| Agnalazaha                                                 | Humid forest                  | 0 (0-0)        | 17.56 (0.31-<br>66.32) | 0 (0-0)               |
| Ampasindava                                                | Dry forest                    | 0 (0-0)        | 23.67 (0-91.48)        | 0 (0-0)               |
| Alandraza Analavelo                                        | Humid forest                  | 0 (0-0)        | 0.46 (0-3.76)          | -2.52 (-2.52<br>2.52) |
| Galoko Kalobinono                                          | Dry forest                    | 0 (0-0)        | 23.01 (0-71.65)        | 0.36 (0-2.4)          |

| Makirovana-<br>Ambatobiribiry Complex                            | Humid forest                  | 0 (0-0)       | 12.12 (4.12-<br>24.2)  | NA (-)                 |
|------------------------------------------------------------------|-------------------------------|---------------|------------------------|------------------------|
| NPA                                                              |                               |               |                        |                        |
| Massif d'Ibity NPA                                               | Grassland-<br>woodland mosaic | 0 (0-0)       | NA (-)                 | NA (-)                 |
| Oronjia NPA                                                      | Dry forest                    | 0 (0-0)       | 3.06 (0-6.47)          | 0 (0-0)                |
| Pointe à Larrée NPA                                              | Grassland-<br>woodland mosaic | 0 (0-0)       | 9.61 (1.92-<br>18.38)  | 0 (0-0)                |
| Vohidava Betsimalao                                              | Spiny forest                  | 0 (0-0)       | 1.47 (0-13.47)         | 0 (0-0)                |
| Site Bioculturel                                                 | Dry forest                    | 0 (0-0)       | 2.47 (0-21.68)         | -1.05 (-2.52-          |
| d'Antrema                                                        |                               |               |                        | 0)                     |
| Ambatovaky Special                                               | Humid forest                  | 0 (0-0)       | 9.28 (0-56.41)         | 0.15 (0-2.69)          |
| Réserve                                                          |                               |               |                        |                        |
| Ambohitantely Special                                            | Humid forest                  | 0 (0-0)       | 1.95 (0-10.06)         | NA (-)                 |
| Réserve                                                          |                               |               |                        |                        |
| Analamazaotra                                                    | Humid forest                  | 0 (0-0)       | 2.71 (0.46-8.41)       | NA (-)                 |
| Analamerana Special<br>Réserve                                   | Dry forest                    | 0 (0-0)       | 1.97 (0-36.46)         | 0.38 (0-2.4)           |
| Andranomena Special                                              | Dry forest                    | 0 (0-0)       | 11.18 (0-51.27)        | 0.04 (0-2.65)          |
| Réserve                                                          |                               |               |                        |                        |
| Andringitra National<br>Park                                     | Humid forest                  | 0 (0-0)       | 0.7 (0-20.21)          | 0 (0-0)                |
| South Anjanaharibe                                               | Humid forest                  | 0 (0-0)       | 1.59 (0-23.34)         | 0 (0-0)                |
| Special Réserve and                                              |                               |               |                        |                        |
| extension                                                        |                               |               |                        |                        |
| Ankarafantsika                                                   | Dry forest                    | 0 (0-0)       | 12.79 (0-88.28)        | 0.48 (-1.42-<br>3.03)  |
| Ankarana Special<br>Réserve                                      | Dry forest                    | 0.02 (0-1.68) | 1.5 (0-21.49)          | 0 (0-0)                |
| Baly Bay National Park                                           | Drv forest                    | 0 (0-0)       | 2.05 (0-49.1)          | 0 (0-0)                |
| Tsingy de Bemaraha<br>National Park and Strict<br>Nature Réserve | Dry forest                    | 0 (0-0)       | 1.09 (0-28.52)         | -0.97 (-2.65-<br>1.39) |
| Betampona Strict Nature<br>Réserve                               | Humid forest                  | 0 (0-0)       | 1.08 (0-3.71)          | 0 (0-0)                |
| Beza Mahafaly Special<br>Réserve                                 | Spiny forest                  | 0 (0-0)       | 9.89 (0-43.51)         | 0 (0-0)                |
| Bora Special Réserve                                             | Dry forest                    | 0 (0-0)       | 18.33 (2.18-<br>59.04) | 2.52 (2.52-<br>2.52)   |
| Cape Sainte Marie<br>Special Réserve and<br>extension            | Spiny forest                  | 0 (0-0)       | NA (-)                 | 0 (0-0)                |
| Sahamalaza-Radama<br>Islands National Marine<br>Park             | Dry forest                    | 0 (0-0)       | 3.29 (0-14.1)          | 0 (0-0)                |
| Isalo National Park                                              | Tapia                         | 0.21 (0-2.69) | 0.13 (0-8.45)          | -1.05 (-2.78-<br>0)    |
| Kalambatrika Special<br>Réserve                                  | Humid forest                  | 0 (0-0)       | 0.31 (0-6.24)          | -2.28 (-4.41<br>0.24)  |

| Kirindy Mite National     | Dry forest      | 0 (0-0) | 15.74 (0-92.47)  | 0.05 (0-2.85) |
|---------------------------|-----------------|---------|------------------|---------------|
| Park and extension        |                 | 0 (0 0) | 0.00 (0.6.1)     | 0 (0 0)       |
| Lokobe Strict Nature      | Dry forest      | 0 (0-0) | 0.99 (0-6.1)     | 0 (0-0)       |
| Mananara North            | Humid forest    | 0 (0-0) | 3 28 (0 01-      | 0 (0-0)       |
| National Park             | Tuilliu loiest  | 0 (0 0) | 21.19)           | 0 (0 0)       |
| Mangerivola Special       | Humid forest    | 0 (0-0) | 4.29 (0-37.49)   | 3.17 (3.17-   |
| Réserve                   |                 |         |                  | 3.17)         |
| Manombo Special           | Humid forest    | 0 (0-0) | 10.73 (0-40.65)  | 0 (0-0)       |
| Réserve                   |                 |         |                  |               |
| Manongarivo Special       | Humid forest    | 0 (0-0) | 9.51 (0-64.85)   | 0 (0-0)       |
| Réserve and extension     |                 |         |                  |               |
| Mantadia National Park    | Humid forest    | 0 (0-0) | 5.24 (0-55.35)   | NA (-)        |
| and Analamazaotra         |                 |         |                  |               |
| Special Réserve           |                 |         |                  |               |
| Marojejy National Park    | Humid forest    | 0 (0-0) | 1.45 (0-20.61)   | 0 (0-0)       |
| Fandriana-Marolambo       | Humid forest    | 0 (0-0) | 10.08 (0-67.25)  | -0.22 (-2.42- |
| Forest Corridor NPA       |                 |         |                  | 0)            |
| (COFAM)                   |                 |         |                  |               |
| Marotandrano Special      | Humid forest    | 0 (0-0) | 7.38 (0-65.63)   | -2.92 (-2.92  |
| Réserve                   |                 |         |                  | 2.92)         |
| Masoala National Park     | Humid forest    | 0 (0-0) | 2.17 (0-44.9)    | 0 (0-0)       |
| Midongy South National    | Humid forest    | 0 (0-0) | 10.23 (0-74.17)  | 0.26 (0-2.92) |
| Park                      |                 |         |                  |               |
| Mikea NPA                 | Spiny forest    | 0 (0-0) | 15.72 (0-94.21)  | 0.05 (0-2.61) |
| Montagne d'Ambre          | Humid forest    | 0 (0-0) | 2.8 (0-35.42)    | 0.16 (0-2.27) |
| National Park and         |                 |         |                  |               |
| Special Réserve           |                 |         |                  |               |
| Nosy Mangabe Special      | Humid forest    | 0 (0-0) | 0 (0-0)          | 0 (0-0)       |
| Réserve                   |                 |         |                  |               |
| Pic d'Ivohibe Special     | Humid forest    | 0 (0-0) | 0.45 (0-4.18)    | NA (-)        |
| Réserve                   |                 |         |                  |               |
| Ranomafana National       | Humid forest    | 0 (0-0) | 3.63 (0-37.14)   | 0.56 (0-2.33) |
| Park and extension        |                 |         |                  |               |
| Tsaratanana Strict Nature | Humid forest    | 0 (0-0) | 9.44 (0-73.44)   | 0.65 (0-2.81) |
| Réserve and extension     |                 |         |                  |               |
| Tsimanampetsotse          | Spiny forest    | 0 (0-0) | 6.89 (0-85.08)   | 0 (0-0)       |
| National Park and         |                 |         |                  |               |
| extension                 |                 |         |                  |               |
| Tsingy de Namoroka        | Dry forest      | 0 (0-0) | 2 (0-26.15)      | 0.5 (0-2.41)  |
| National Park             |                 |         |                  |               |
| Zahamena National Park    | Humid forest    | 0 (0-0) | 1.22 (0-32.81)   | 2.89 (2.51-   |
| and Strict Réserve        |                 |         |                  | 4.53)         |
| Zombitse-Vohibasia        | Subhumid forest | 0 (0-0) | 5.09 (0-87.97)   | 0.79 (-1.28-  |
| National Park and         |                 |         |                  | 2.82)         |
| extension                 |                 |         |                  |               |
| Ambatoatsinanana          | Humid forest    | 0 (0-0) | 2.44 (0.08-9.86) | NA (-)        |
| Petriky                   | Humid forest    | 0 (0-0) | 0.73 (0.02-1.47) | 0 (0-0)       |

| Mandena NPA                                        | Humid forest                  | 3.57 (3.17-<br>4.07) | 1.31 (0.41-2.79)        | 0 (0-0)                |
|----------------------------------------------------|-------------------------------|----------------------|-------------------------|------------------------|
| Massif d'Itremo NPA                                | Grassland-<br>woodland mosaic | 0.27 (0-2.38)        | 0 (0-0)                 | 2.59 (2.35-<br>2.85)   |
| Montagne des Francais<br>NPA                       | Dry forest                    | 0 (0-0)              | 5.44 (0.2-16)           | 0 (0-0)                |
| Tsimembo-<br>Manambolomaty-<br>Bemamba Complex NPA | Dry forest                    | 0 (0-0)              | 9.58 (0-78.97)          | 0.18 (-2.65-<br>2.71)  |
| Mandrozo                                           | Dry forest                    | 0 (0-0)              | 7.03 (0-29.56)          | 0 (0-0)                |
| Bemanevika (Ankaizina<br>wetlands) NPA             | Humid forest                  | 0 (0-0)              | 3.86 (0-31.87)          | -2.44 (-2.44<br>2.44)  |
| Mahimborondro                                      | Humid forest                  | 0 (0-0)              | 2.24 (0-29.46)          | 0 (0-0)                |
| Manjakatompo-<br>Ankaratra Massif NPA              | Humid forest                  | 0 (0-0)              | 15.41 (0-44.17)         | 2.12 (0-3.34)          |
| Andreba NPA                                        | Humid forest                  | 0 (0-0)              | 0.85 (0.3-1.24)         | 0 (0-0)                |
| Makira Natural Park                                | Humid forest                  | 0 (0-0)              | 3.31 (0-42.81)          | 0 (0-0)                |
| Ankodida NPA                                       | Spiny forest                  | 0 (0-0)              | 2.89 (0-17.08)          | 0 (0-0)                |
| COMATSA Nord                                       | Humid forest                  | 0 (0-0)              | 5.6 (0-59.56)           | 0.08 (0-2.71)          |
| COMATSA Sud                                        | Humid forest                  | 0 (0-0)              | 3.46 (0-66.83)          | 0 (0-0)                |
| Ifotaky Complex NPA                                | Spiny forest                  | 0 (0-0)              | 3.11 (0-25.54)          | 0 (0-0)                |
| Ambanitazana<br>(Antsiranana)                      | Humid forest                  | 0 (0-0)              | 37.45 (26.53-<br>46.55) | NA (-)                 |
| Ambato-Boeny                                       | Dry forest                    | 0 (0-0)              | 38.14 (5.01-<br>80.7)   | 2.63 (2.63-<br>2.63)   |
| Ambatofinandrahana                                 | Grassland-<br>woodland mosaic | 0.03 (0-1.95)        | NA (-)                  | -2.68 (-3.26<br>2.31)  |
| Ambereny                                           | Dry forest                    | 0 (0-0)              | 5.15 (0-48.1)           | 0 (0-0)                |
| Ambondrobe (Vohemar)                               | Humid forest                  | 0 (0-0)              | 4.39 (0-19.91)          | 0 (0-0)                |
| Anena (Beloha)                                     | Spiny forest                  | 0 (0-0)              | 7.98 (0.03-<br>55.03)   | 0 (0-0)                |
| Angodoka-Ambakoa<br>(Besalampy)                    | Dry forest                    | 0 (0-0)              | 20.43 (0.38-<br>76.82)  | 0 (0-0)                |
| Ankafina<br>(Ambohimasoa)                          | Humid forest                  | 0 (0-0)              | NA (-)                  | NA (-)                 |
| Ankarabolava-<br>Agnakatriky                       | Humid forest                  | 0 (0-0)              | 14 (14-14)              | 0 (0-0)                |
| Antanifotsy Nord<br>(Diana)                        | Dry forest                    | 0 (0-0)              | 2.66 (0-7.89)           | NA (-)                 |
| Antanifotsy Sud (Diana)                            | Dry forest                    | 0 (0-0)              | 1.58 (0.06-5.38)        | 0 (0-0)                |
| Loza Bay                                           | Mangroves                     | 0 (0-0)              | 1.53 (0-15.41)          | -1.11 (-2.66-<br>2.96) |
| Belalanda                                          | Grassland-<br>woodland mosaic | 0 (0-0)              | NA (-)                  | 0 (0-0)                |
| Bobakindro (Salafaina)                             | Humid forest                  | 0 (0-0)              | 8.81 (0.68-<br>18.69)   | NA (-)                 |
| Cap Saint-André                                    | Dry forest                    | 0 (0-0)              | 6.6 (0-43.65)           | 0 (0-0)                |
| Mahajamba Bay -<br>Anjavavy Complex                | Dry forest                    | 0 (0-0)              | 8.04 (0-72.87)          | -0.47 (-5.54-<br>4.58) |

| Fanambana (Vohemar)     | Dry forest      | 0 (0-0)              | 18.97 (0.72-<br>52.4)  | NA (-)               |
|-------------------------|-----------------|----------------------|------------------------|----------------------|
| Onive Classified Forest | Humid forest    | 0 (0-0)              | 12.5 (0-81.13)         | 0 (0-0)              |
| Sainte Marie Island     | Humid forest    | 0 (0-0)              | 9.63 (0.23-            | 0 (0-0)              |
| (Ambohidena)            |                 |                      | 35.61)                 |                      |
| Ilevika (Matsaborilava) | Dry forest      | 0 (0-0)              | 41.07 (24.76-<br>49.3) | 2.35 (2.32-<br>2.39) |
| Lake Andrapongy and     | Dry forest      | 0 (0-0)              | 5.95 (0-41.22)         | 0.37 (-2.54-         |
| Anjingo River           |                 |                      |                        | 2.32)                |
| Lake Itasy              | Grassland-      | 0 (0-0)              | NA (-)                 | 0 (0-0)              |
| -                       | woodland mosaic |                      |                        |                      |
| Lake Tseny              | Dry forest      | 0 (0-0)              | 2.94 (0.25-7.51)       | NA (-)               |
| Lakes Anony and         | Grassland-      | 0 (0-0)              | 3.84 (0-26.02)         | 0 (0-0)              |
| Erombo                  | woodland mosaic |                      |                        |                      |
| Mahatsara (Mahambo      | Humid forest    | 0 (0-0)              | 7.47 (4.54-            | NA (-)               |
| Foulpointe)             |                 |                      | 13.25)                 |                      |
| Makay                   | Subhumid forest | 0 (0-0)              | 7.55 (0.72-            | -0.21 (-1.19-        |
| Monduolto               | Ilumid forest   | 0 (0 0)              | 27.14)                 | (0)                  |
| Manufaka                | Humid Torest    | 0 (0-0)              | 52.08)                 | NA (-)               |
| Nankinana               | Humid forest    | 0 (0-0)              | 1.51 (0-17.22)         | NA (-)               |
| (Ambodibonara-          |                 |                      |                        |                      |
| Masomeloka)             |                 |                      |                        |                      |
| Ambakoana/Analabe       | Humid forest    | 0 (0-0)              | NA (-)                 | NA (-)               |
| NPA                     |                 |                      |                        |                      |
| Ambohipiraka NPA        | Dry forest      | 0 (0-0)              | 17.36 (7.11-<br>24.92) | NA (-)               |
| Ankafobe NPA            | Humid forest    | 1.78 (1.74-<br>1.83) | NA (-)                 | NA (-)               |
| Mahafaly Plateau Forest | Spiny forest    | 0 (0-0)              | 34.37 (0.02-<br>86.4)  | 0 (0-0)              |
| Nosy Be Crater NPA      | Dry forest      | 0 (0-0)              | 3.38 (0-51.07)         | 0 (0-0)              |
| Fierenana NPA           | Humid forest    | 0 (0-0)              | 4.94 (0.01-            | 0 (0-0)              |
|                         | Trainia Torest  | , , ,                | 45.84)                 | · · ·                |
| Vohibola Classified     | Humid forest    | 0 (0-0)              | 17.6 (1.99-            | NA (-)               |
| Forest NPA              |                 |                      | 48.14)                 |                      |
| Port-Bergé wetlands     | Dry forest      | 0.01 (0-1.63)        | 13.24 (0-70.44)        | 3.04 (2.72-          |
| NPA                     |                 |                      |                        | 3.21)                |
| Nosy Varika             | Humid forest    | 0 (0-0)              | 2.16 (0-8.93)          | 0 (0-0)              |
| North Pangalane         | Humid forest    | 0 (0-0)              | 10.23 (0-43.06)        | 0 (0-0)              |
| Anja Community          | Humid forest    | 0 (0-0)              | 1.73 (0-3.47)          | NA (-)               |
| Réserve                 |                 |                      | 6 45 (2 21             | 0 (0 0)              |
| Ankavia-Ankavanana      | Humid forest    | 0 (0-0)              | 6.45 (3.21-            | 0 (0-0)              |
| River (Antalaha)        |                 |                      | 2.75(0.24.8.10)        |                      |
| Antaimbalana-           | Humid forest    | 0 (0-0)              | 2.73 (0.24-8.19)       | 0 (0-0)              |
| Andranofotsy Kiver      |                 |                      |                        |                      |
| (Iviaroanisetra)        | Unmid format    | 0.0-0)               | NA (-)                 | 0 (0-0)              |
| Magyarana Diver         | Dry forest      | 0 (0-0)              | 3 73 (0 03-            | 0 (0-0)              |
| Iviat varallo Kiver     | Dry totest      |                      | 13.16)                 |                      |
| Mahanara River          | Humid forest    | 0 (0-0)              | 3.27 (0.03-8.23)       | 0 (0-0)              |

| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA (-)                                                                                                                                 | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA (-)                                                                                                                                 | 2.16 (1.48-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        | 2.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.92 (1.92-1.92)                                                                                                                       | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dry forest                    | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.23 (0-16.92)                                                                                                                         | 3.15 (3.15-<br>3.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA (-)                                                                                                                                 | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Grassland-<br>woodland mosaic | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA (-)                                                                                                                                 | NA (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.43 (0-43.39)                                                                                                                         | 1.25 (0-3.67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 (0-0)                                                                                                                                | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dry forest                    | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.56 (0-1.77)                                                                                                                          | 2.47 (2.14-<br>2.55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.88 (2.09-<br>25.66)                                                                                                                 | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dry forest                    | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.89 (0.67-<br>57.96)                                                                                                                 | NA (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.59 (10.7-<br>22.38)                                                                                                                 | NA (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dry forest                    | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8 (0-5.05)                                                                                                                           | -2.89 (-3.05<br>2.77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mangroves                     | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.06 (0-31.13)                                                                                                                         | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.54 (7.21-<br>56.31)                                                                                                                 | NA (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mangroves                     | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.04 (0-26.08)                                                                                                                         | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Grassland-                    | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.46 (0.79-                                                                                                                            | -2.07 (-2.95-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| woodland mosaic               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.78)                                                                                                                                 | 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dry forest                    | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.55 (0-9.04)                                                                                                                          | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dry forest                    | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.42 (0-58.35)                                                                                                                         | 0.7 (-3.52-<br>2.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.93 (8.29-<br>58.82)                                                                                                                 | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.42 (0-32.98)                                                                                                                         | NA (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spiny forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.22 (0.14-5.41)                                                                                                                       | NA (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.58 (0-37.95)                                                                                                                         | NA (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.53 (0-75.65)                                                                                                                        | 0.1 (0-2.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.73 (0-36.59)                                                                                                                         | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.44 (4.27-<br>86.36)                                                                                                                 | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Spiny forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.21 (0-53.82)                                                                                                                         | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.74 (0-37.28)                                                                                                                        | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mangroves                     | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.65 (0-1.79)                                                                                                                          | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Humid forest                  | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.58 (1.12-2.04)                                                                                                                       | 0 (0-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | Humid forestHumid forestDry forestHumid forestGrassland-<br>woodland mosaicHumid forestHumid forestHumid forestDry forestHumid forestDry forestHumid forestDry forestMangrovesGrassland-<br>woodland mosaicDry forestHumid forestDry forestHumid forestMangrovesGrassland-<br>woodland mosaicDry forestHumid forest | Humid forest  0 (0-0)    Humid forest  0 (0-0)    Dry forest  0 (0-0)    Dry forest  0 (0-0)    Grassland-  0 (0-0)    Woodland mosaic | Humid forest    0 (0-0)    NA (-)      Humid forest    0 (0-0)    NA (-)      Humid forest    0 (0-0)    1.92 (1.92-1.92)      Dry forest    0 (0-0)    3.23 (0-16.92)      Humid forest    0 (0-0)    NA (-)      Grassland-    0 (0-0)    NA (-)      woodland mosaic    0    0      Humid forest    0 (0-0)    NA (-)      Woodland mosaic    0    0      Humid forest    0 (0-0)    5.43 (0-43.39)      Humid forest    0 (0-0)    0.66 (0-1.77)      Humid forest    0 (0-0)    13.88 (2.09-<br>25.66)      Dry forest    0 (0-0)    19.89 (0.67-<br>57.96)      Humid forest    0 (0-0)    17.59 (10.7-<br>22.38)      Dry forest    0 (0-0)    2.06 (0-31.13)      Humid forest    0 (0-0)    34.54 (7.21-<br>56.31)      Mangroves    0 (0-0)    34.54 (7.21-<br>56.31)      Mangroves    0 (0-0)    34.54 (0.79-<br>37.78)      Dry forest    0 (0-0)    1.55 (0-9.04)      Dry forest    0 (0-0)    9.46 (0.79-<br>37 |

| Mangoky river                                                   | Grassland-<br>woodland mosaic | 0 (0-0) | 4.8 (0-33.05)           | 1.86 (-3.51-<br>2.59)  |
|-----------------------------------------------------------------|-------------------------------|---------|-------------------------|------------------------|
| Mangoky-Ankazoabo<br>Complex NPA                                | Subhumid forest               | 0 (0-0) | 4.81 (0-38.59)          | -0.72 (-3.66-<br>2.37) |
| Menabe Central Corridor<br>NPA                                  | Dry forest                    | 0 (0-0) | 31.81 (0-98.2)          | 0.44 (0-3.31)          |
| Menarandra<br>Forest/Vohindefo NPA                              | Spiny forest                  | 0 (0-0) | 18.59 (0-80.08)         | 0 (0-0)                |
| Vohidefo                                                        | Spiny forest                  | 0 (0-0) | 8.27 (0.04-<br>36.96)   | 0 (0-0)                |
| Rigny Bay Complex                                               | Dry forest                    | 0 (0-0) | 1.18 (0-11.87)          | 0 (0-0)                |
| Amoron'i Onilahy and<br>Onilahy River NPA                       | Spiny forest                  | 0 (0-0) | 28.07 (0-94.74)         | -0.06 (-2.74-<br>0)    |
| Saint Augustin Forest                                           | Spiny forest                  | 0 (0-0) | 15.89 (0.11-<br>57.65)  | 0 (0-0)                |
| Seven Lakes NPA                                                 | Spiny forest                  | 0 (0-0) | 8.51 (0.07-<br>33.97)   | 0 (0-0)                |
| Sorata                                                          | Humid forest                  | 0 (0-0) | 7.54 (0-50.93)          | NA (-)                 |
| Southwestern Coastal<br>Wetlands and Nosy<br>Manitse Future MPA | Spiny forest                  | 0 (0-0) | 3.99 (0-26.85)          | 0 (0-0)                |
| Tambohorano wetland<br>NPA                                      | Dry forest                    | 0 (0-0) | 7.39 (0-39.74)          | 0 (0-0)                |
| Vohibe-Ambalabe<br>(Vatomandry) NPA                             | Humid forest                  | 0 (0-0) | 36.32 (16.88-<br>55.76) | NA (-)                 |
| Vondrozo Classified<br>Forest NPA                               | Humid forest                  | 0 (0-0) | 7.84 (0-52.97)          | 0.14 (0-1.85)          |
| West Itampolo -<br>Mahafaly                                     | Spiny forest                  | 0 (0-0) | 0.05 (0-1.59)           | 0 (0-0)                |
| Zafimaniry Classified<br>Forest NPA                             | Humid forest                  | 0 (0-0) | 11.59 (0.23-<br>43.86)  | NA (-)                 |
| Mamela Honko                                                    | Spiny forest                  | 0 (0-0) | 0.66 (0-2.74)           | 0 (0-0)                |
| Ambalibe Menabe                                                 | Dry forest                    | 0 (0-0) | 24.93 (0-85.01)         | 2.44 (-1.02-<br>3.86)  |