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Enhancing fishery-dependent information in data-poor

fisheries; integrating gear-in–gear-out sensors and mobile

reporting technology in a mixed Irish Sea

static-gear fishery
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School of Ocean Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey LL59 5AB, UK
*Corresponding author: tel: +44 1248 382842; email: m.coleman@bangor.ac.uk

Inshore static gear fisheries such as those targeting predominately shellfish play an import socio-economic role across the northeast Atlantic.
Despite this, assessment techniques are heavily reliant on fishery dependent data which is typically aggregated over large spatial scales and
lacking in key environmental and biotic data. In this study, we trialled the implementation of an enhanced electronic reporting system (EERS)
and gear-in–gear-out (GIGO) technology in a data-limited, mixed species, static gear fishery for brown crab Cancer pagurus and European lobster
Homarus gammarus. EERS/GIGO systems were deployed on two commercial vessels for 12 months and collected data from 812 strings,
equating to 29826 pots, with precise geo-located landings per unit effort (LPUE) and environmental data. Cluster analysis identified spatially
distinct patterns in fishing activity, corresponding to different target species. Generalized additive modelling was used to investigate the effect
of environmental variables, inter-specific interactions and geo-location on LPUE in both species. Sea bottom temperatures had a significant
positive effect on LPUE in both C. pagurus and H. gammarus. In addition, GAM analysis showed the importance of inter-specific interactions;
increases in capture of competing non-target commercial species (H. gammarus/C. pagurus) resulted in the decreases in target species LPUE (C.
pagurus/H. gammarus).The significant effect of environmental variables and inter-specific interactions demonstrate the value of understanding
these interactions in order to produce robust standardized LPUE metrics. The EERS/GIGO system successfully demonstrated its application,
and value in collecting geospatially defined fishery dependent data in historically data limited fisheries. Co-development of such an approach
between fisheries administrations and industry has the potential to significantly enhance data collection and management in many data poor
fisheries.
Keywords: brown crab, data-storage-tags, electronic reporting, e-logbook, European lobster, gear-in–gear-out technology, mobile technology.

Introduction

Effective management of wild capture fisheries combines con-
sideration of both ecological and economic viability. In or-
der to achieve this, fisheries managers rely on a suite of data
to inform and support decision-making. This approach ide-
ally incorporates bio economic models and scientific stock-
assessments which, through use of biological reference points
can inform harvest control rules for a sustainable fishery
(Jensen and Marshall, 1982; Caddy, 2004; Shertzer et al.,
2008) In the northeast Atlantic ∼78% of stock fishes are cur-
rently classed as being fished within biological sustainable lim-
its (Stankus, 2021). This number, however, can provide an in-
accurate assessment of small scale inshore fisheries such as
those targeting crab and lobster. Such fisheries are historically
overexploited (Mesquita et al., 2017; CEFAS, 2020a), classed
as data-poor and are assessed using data limited methods or
receive no formal level of assessment (Lart, 2019).

Whilst stock assessments are a critical component of the
evidence required to achieve the goal of sustainable fisheries
(Gebremedhin et al., 2021), the development of “indicators”
that track trends in fisheries-dependent data are becoming
more accepted in the provision of management advice, par-
ticularly for data-poor fisheries (Trenkel et al., 2007; Ye et al.,
2011; Tidd, 2013; Trenkel et al., 2013; Miethe et al., 2016).

Miethe et al. (2016) highlighted a number of possible fisheries-
dependent indices that may be considered as proxies for tradi-
tional biological reference points (BRP), including the use of
landings-per-unit-effort (LPUE) as an indicator to inform BRP
development. For example, two Marine Stewardship Coun-
cil certified fisheries, for Cancer pagurus in Shetland (Cappell
and Addison, 2021) and Homarus gammarus in Normandy
and Jersey (Ernst and Addison, 2020) use such indicators as
the primary mechanism in assessment and management. How-
ever, there are a number of methodological concerns associ-
ated with the use of fisheries-dependent LPUE as a BRP in
static gear fisheries (e.g. green crab Carcinus maenas—Murray
and Seed 2010; king scallop Pecten maximus—Murray et al.
(2013); brown crab C. pagurus; and European lobster H.
gammarus—Skerritt et al. 2020), as well as underlying issues
of data resolution, precision, and accuracy of reporting sys-
tems. These concerns relate to the effect of both environmental
and biotic factors affecting overall catchability and interaction
of the target species with the fishery/gear, such as inter- and
intra-specific interactions (Skerritt et al., 2020), bait attraction
(McQuinn et al., 1988), temperature (Lizárraga-Cubedo et al.,
2015; Mullowney, 2016; Bakke et al., 2019), soak time (Ben-
nett, 1974), and fisher targeting behaviours and associated lo-
cal ecological knowledge (Santos et al., 2019). Factors that
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create variability in commercial LPUE are often overlooked
because of over-simplistic approaches and static-environment
assumptions, which are frequently built into traditional as-
sessment and management tools (Szuwalski and Hollowed,
2016). Complexity within fisheries-dependent data is often ig-
nored in data-poor fisheries (Mangi et al., 2018; Bradley et
al., 2019). Here, we look to address this issue by piloting an
enhanced electronic reporting system (EERS) in a data-poor
static gear (baited pot) fishery targeting C. pagurus and H.
gammarus in the northern Irish Sea (ICES Area VIIa).

Accurate geolocations would help improve the integration
of fisheries-dependent LPUE into assessments of data-poor
fisheries (Skerrit et al., 2020). In the EU, vessel monitoring
systems (VMS) have been useful for monitoring, control, and
surveillance purposes as well as producing evidence for some
ecological indicators (EC, 2008). However, the usefulness of
VMS in enabling spatially defined LPUE is limited by the low-
frequency of reports that are unable to take account of fine-
scale spatial data clusters (Gerritsen et al., 2012; Murray et
al., 2013) and the exclusion of smaller vessels. In the EU, for
example vessels <12 m, which make up 70% of the registered
fishing fleet, are not required to use VMS (Needle et al., 2015;
Russo et al., 2016; STECF, 2016). While similar technology
is being adopted in smaller inshore fleets [e.g. inshore vessel
monitoring systems (iVMS)], which are typically more likely
to be targeting data-poor stocks (Rossiter, 2015; Coleman and
Rodrigues, 2017), the value of iVMS/VMS for assessment pur-
poses may be limited considering that catch-data is typically
reported for entire fishing trips, and individual data points
cannot therefore be verified against specific catch and effort
data.

In the UK, pot fisheries have historically had a lower
profile than well-documented fin-fisheries, although many
have undergone significant expansions in effort and land-
ings. The main C. pagurus and H. gammarus fisheries in
the UK are considered to be either fully exploited or over-
exploited (Mesquita et al., 2017; CEFAS, 2020a, b), although
due to the open access nature of these fisheries and lack of
total allowable catch limits, regulatory responses to overfish-
ing currently hinges primarily on access/effort limitations and
implementation of technical measures (Skerrit et al., 2020).
Furthermore, mandatory reporting systems for the majority
of inshore vessels <12 m targeting these fisheries have been at
low spatial resolution and relied on paper submissions which
are prone to (unintentional) inaccuracies. Even, where efforts
have been made to improve reporting through app based log-
books (e.g Catch App—MMO 2019; FISH1—Marine Scot-
land, 2018), such records fail to capture important fishing ac-
tivity variables (e.g. pot-type/pot-volume, bait-species, soak-
time, pot-density), observations of the physical environment
(e.g. sea-bottom-temperature; SBT, tidal conditions, depth),
ecological parameters (e.g. by-catch, discarding, population
structure), or precise fishing activity locations among poten-
tially highly heterogeneous fishing grounds. The inclusion of
such variables are known to play a significant role on target
species behaviour and subsequent interaction with fishing gear
(Lizárraga-Cubedo et al., 2015) with consequent impacts on
catchability and perceived abundance derived from fishery de-
pendant data. Such variables are currently not routinely in-
cluded in standardization of fishery-dependant data in part
due to their lack of availability (Ernst and Addison, 2020). De-
velopment and widespread use of EERs that integrate gear-in–
gear-out (GIGO) technology, passive environmental sensors,

and mobile technology may provide such high-resolution data
to be collected.

Here, we describe an integrated EERS for pot fisheries that
allows submission of effort and catch reports at high spatial-
temporal resolution in a historically data poor fishery. The
system developed is enhanced through GIGO sensor technol-
ogy that passively records potentially important environmen-
tal and abiotic variables. We show how such a system can be
used to assess drivers of variability in LPUE, thus, providing
insight into the added value of utilizing such variables in the
standardization of fisheries-dependent data that could be ap-
plied at either a fleet level or via a reference fleet programme.

Material and methods

Fishery

The Isle of Man (IoM) is situated in the northern Irish Sea
(ICES statistical Area VIIa), with the territorial sea (TS) en-
compassing six ICES statistical rectangles (Figure 1). C. pagu-
rus and H. gammarus are both targeted using a net-enclosed
metal-bar based trap, commonly referred to as a pot or creel.
Active targeting behaviour by fishers occurs between target
species, i.e. Bait type and/or spatial distribution of fishing
activity mirroring species-specific preferential habitat (Sker-
ritt et al., 2020). The targeted IoM crab fishery typically oc-
curs outside of the 1 nm limit, on sandy to mud substrate at
depths ≥25 m. Conversely, the targeted lobster fishery occurs
primarily within the 1nm limit, typically at depths ≈20 m on
rocky/sublittoral reef habitats (Emmerson, person obv). The
IoM inshore fishery is populated by mainly <10 m vessels,
with several vessels 10–12 m and >12 m; each component
complies with different statutory data collection systems in
accordance with IoM, UK and EU legislation and licence con-
ditions (Table 1). The data provides the Department for Envi-
ronment, Food and Agriculture (DEFA; fisheries authority for
the IoM) with the ability to view daily landings and effort by
ICES Rectangle one month retrospectively. Since, the IoM TS
is composed of several partial ICES Rectangles (see Figure 1),
resolving landings inside and outside the management juris-
diction is problematic. The fishery is not currently subject to
harvest control rules and there are no agreed biological refer-
ence points. The IoM static gear fisheries is managed through
species-specific authorization and the use of effort (input) lim-
its. Vessels with crab and lobster authorization are entitled to
fish no more than 500 pots, of which no more than 300 can
be within the 3 NM zone. Technical measures include a mini-
mum conservation reference size (MCRS) of 140 mm carapace
width (CW) for crab and 90 mm carapace length (CL) for lob-
ster and mandatory escape gaps fitted to all pots fished within
the 3 NM zone.

GIGO and EERS technology

From September 2018 to September 2019, two IoM licensed
static-gear vessels (one under 10 m total length and one 10–12
m total length) were invited to participate in a trial to improve
data collection and reporting in IoM static-gear fisheries. The
technology used in the trial, developed by Zebra-Tech C© (ww
w.zebra-tech.co.nz), offered an integrated enhanced electronic
reporting system that is centred on a Zebra-Tech C© Decklog-
ger device. This technology has been utilized and trialled pri-
marily in New Zealand fisheries (Neubauer, 2017; Middle-
ton et al., 2021). This system collects and stores data through
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2128 Emmerson et al.

Figure 1. The Irish Sea showing British Fishing Administration territorial limits (12 NM—thick red line and 6 NM—thin red line) against a bathymetry
layer. Yellow line represents the median-line between the British and Irish EEZ. Bold text shows ICES Statistical Rectangles.

Table 1. Current data reporting requirements imposed on the IoM static-gear sector by length category.

Sector Spatial data (iVMS/VMS) Electronic reporting Effort data Legislation

<10 m NO (ICES rectangle) NO (Monthly paper
logbook)

YES IOM/UK

10–12 m NO (ICES rectangle) NO (Daily paper logbook) YES UK/EU
>12 m YES (2 h poll) YES (Daily e-logbook) NO UK/EU

manual input and by automatically synchronizing with wire-
less GIGO environmental sensors called Zebra-Tech C© wet-
tags (Figure 2).

Upon surfacing, wet tag data including geopositional in-
formation is wirelessly transferred to the Decklogger and is
linked with manually entered data on total number of pots
in that string (string specific effort) along with quantities of
retained catch by species (landings). For the purposes of this
trial, the firmware was designed to capture the same informa-
tion as demanded by existing mandatory logbooks (landings

and effort only—albeit at a string by string resolution as op-
posed to an amalgamated daily total) in addition to the au-
tomatic GIGO-captured wet tag data. Recordings were taken
every two minutes with the accuracy of depth data stated as
+/-1% of the full depth range or better, and temperature ac-
curacy +/-0.1◦C. Wet tags were rated to a depth of 150 m.

At the beginning of each fishing trip, the fisher is prompted
to enter information on sea-state and wind-direction, after
which the Decklogger searches for a valid GPS signal. At the
end of the fishing trip, which typically lasts 7–9 h in the IoM
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Figure 2. Left: The Zebra-Tech C© decklogger and right: Zebra-Tech C© wet-tag (Zebra-Tech, 2017).

inshore fishery, the fisher is prompted to review a catch sum-
mary page on the Decklogger. If the data are accurate, the skip-
per offloads the data from the device via cellular mobile signal.
The data is sent as a .csv file to a specified email address. Each
Decklogger and wet tag record has a unique identifier, which
is appended to data so that vessel and string can be identified
day-by-day.

EERS data analysis

A total of 340 daily records of haul-events were generated by
the two participating vessels; 190 and 150 d for the under
10 and the 10–12 m vessels, respectively. In total, 812 indi-
vidual string-lifts were reported, equating to 29826 pot-hauls.
The total harvest reported from these pots was 45 tonnes of
C. pagurus and 4 tonnes of H. gammarus, equating to 7% of
effort and 10% of landings during the same period for the
whole fishery (DEFA, IoM logbook submissions).

Data generated by the two vessels were used to explore spa-
tial clustering of fishing activity and assess spatial and tem-
poral variability in parameters (temperature, soak time) re-
vealed by the Wet Tags. General additive modelling (GAM)
approaches were then used to explore the effect of environ-
mental drivers on LPUE and hence, gain insight into variables
driving catch rates and the potential usage of such variables
in the standardization of fisheries dependant data.

All data analyses were run in (R Core Team, 2017).

Spatial analysis
Cluster analysis techniques were used to investigate whether
groupings existed within the spatial data using the cluster
package in R (Maechler et al., 2013). The latitude and lon-
gitude, hereafter referred to as geolocation, of each wet tag
record was mapped and analysed using Euclidean geome-
try. The total within cluster sum of squares value was calcu-
lated from the Euclidean distance between haul-events and a
range of clustering scenarios, ranging from one to ten cluster-
centroids (K). An elbow plot was visually inspected to deter-
mine the value of K at which the total within sum of squares

value reaches an asymptote, i.e. additional cluster-centroids
do not identify statistically different groups of haul-events.
The elbow plot method was supported by silhouette analy-
sis, which determines how well each haul-event location fits
into its K-means determined cluster group. For each cluster-
ing scenario, the silhouette width, S(i), was calculated for each
haul-event. Values range from -1 to 1, where a value of 1 in-
dicates that the observation is well matched to the assigned
cluster, 0 indicates it is on the border between two clusters
and -1 indicates that a better cluster assignment is possible.
S(i), is calculated using the Cluster Distance (the average Eu-
clidean distance of each observation to every other observa-
tion within the same cluster; C) and the closest Neighbour
Distance (the average Euclidean distance from each point to
the closest neighbouring cluster; N) and is described using the
formula:

S (i)

⎧⎪⎨
⎪⎩

1 − C(i)
N(i) , ifC (i) < N (i)

0 , ifC (i) = N (i) .
N(i)
C(i) − 1 , ifC (i) > N (i)

Visual interpretation of the average S(i) value over a range
of K values was used in conjunction with the “elbow plot”
to estimate the number of spatial clusters in the data. Each
haul-event was then assigned to a named fishing area.

Statistical analysis

Fishery descriptive statistics
Prior to statistical comparisons data were tested for normal-
ity using the Shapiro–Wilk Test for normality and inspected
visually using Kernel Density and Normal Q-diagnostic plots.
Heteroscedasticity was tested using Levene’s test and out-
liers identified using the Cook’s distance plot. Kruskal–Wallis
rank sum tests were used to test for differences in SBT, soak-
time, depth, and LPUE by fishing area (assigned via cluster
analysis) with post-hoc pairwise comparisons conducted us-
ing Wilcoxon rank sum tests (R-package: stats) due to data
listed failing normality assumptions (Shapiro–Wilks normal-
ity test: SBT—W = 0.86; p < 0.001; Soak Time—W = 0.71;
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Figure 3. The total-within sum of squares for one to ten cluster centroids of WT data collected during the trial (elbow plot, left). The silhouette width for
the same K-means determined cluster centroids (right).

p < 0.001; depth—W = 0.94; p < 0.001; and LPUE—Crab
W = 0.92; p < 0.001 and lobster W = 0.70; p < 0.001).

General additive modelling
A generalized additive model (GAM) was used to investigate
the relationship between both brown crab and lobster LPUE,
geolocation and environmental variables using a Gaussian
distribution of errors within the mgcv package in R (Wood,
2015). A 2D smoothed interaction term (Latitude and Longi-
tude) was used to characterize geolocation data. The starting
model constructed for both C. pagurus and H. gammarus was:

Brown crab C. pagarus:

LPUE ∼ s(Longitude, Latitude, by = Month)

+ s(averagebottomtemperature) + s(SoakTime)

+ s(LobsterLPUE) + Vessel + Month).

European lobster H. gammarus:

LPUE ∼ s(Longitude, Latitude, by = Month)

+s(averagebottomtemperature) + s(SoakTime)

+s(BrownCrabLPUE) + Vessel + Month).

Smoothing parameterization within the GAM was reached
via the restricted maximum likelihood method (REML). The
relationship between species LPUE and all predictors (SBT,
depth, soak time, month, Vessel, and bycatch species) includ-
ing the 2D smoothed term for geolocation was also modelled
using a GAM approach. Model complexity was reduced us-
ing a backward selection approach by comparing AIC values.
Model diagnostics were run using the “mgcViz” package in R
(Fasiolo et al., 2020) to plot linear predictors against residu-
als, residual frequency distributions, and fitted values against
response values, and determine that basis dimension choices
were adequate. Covariate dependence in fitted GAM mod-
els was also tested using the concurvity function in the mgcv
package in R (Wood, 2015).

Figure 4. Idenfitifcation of three distinct clusters of fishing activity based
on geolocation derived from EERS deckloggers. Spatial identifiers are
omitted due to the commercial sensitivy of the data.

Results

EERS data

The geolocation was successfully appended to each haul-event
recorded by the decklogger. Elbow plots indicated that ac-
tivity of the two vessels took place in three discrete spatial
clusters within 37E5 (Figure 3), categorized as “East”, “In-
shore Southwest”, and “Offshore Southwest” (Figure 4). Fur-
ther analysis using the average silhouette width shows S(i) =
0.62 and 0.57 for K = 2 and K = 3, respectively, confirming
that spatial data are well matched to several cluster groups.
Where data are assigned to four or more cluster groups, spatial
data become less well matched to assigned cluster centroids
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Figure 5. Median monthly sea bottom temperature (◦C) recorded by wet
tags, by fishing ground. Boxplots denote median and 95% CI. Residuals
denoted in grey, outliers denoted in black.

(Figure 3), although the fact that silhouette width values re-
main above 0 for K values up to 10, suggests that spatial
data are well matched to fine-scale clustering even when using
many cluster groups (Figure 3). Three distinct clusters were
chosen as this best described known fishery distributions be-
tween grounds and targeting behaviour of vessels.

Fishery descriptive statistics

Temperature data from wet tags showed spatial and tempo-
ral differences between fishing areas identified through clus-
ter analysis (Figure 5). All three grounds showed spring/early
summer warming and autumnal cooling, indicating the poten-
tial for spatial variation in temperature to drive activity and
hence catchability of crabs/lobsters.

Soak time varied both within and among the three fish-
ing areas (Figure 6). There was a significant difference in me-
dian soak time between different areas (Kruskal–Wallis rank
sum test; χ2 = 15, df = 2; p < 0.001). Pots were soaked for

shorter periods in the Offshore West (median = 2.1 d) ground
compared to both Inshore West (median = 2.9 d, Pairwise
Wilcoxon rank sum test; p = 0.012) and East fishing grounds
(3.1 d, Pairwise Wilcoxon rank sum test; p < 0.001). The three
fishing grounds were also characterized by significantly differ-
ent depth profiles (Kruskal–Wallis rank sum test, χ2 = 455,
df = 2; p < 0.001), with the deepest fishing areas in the west-
ern grounds, which were generally deeper in the offshore clus-
ter (Figure 6).

Brown crab
Across the 12-month time series, average monthly LPUE data
ranged from 0.29 to 3.46 kg pot−1 haul, with an annual mean
of 1.45 kg pot−1 haul across all areas (Figure 7). The aver-
age weight of brown crab at MLS (140 mm CW) is ∼0.5 kg,
suggesting that an average of ∼3 crabs were caught every
pot-haul. The temporal trend in LPUE data shows a clear sea-
sonal pattern with a peak occurring in September and Oc-
tober and depressed catch rates from December through to
April. Monthly average LPUE peaked during the autumn fish-
ery (3.46 kg pot−1 haul) corresponding to a 138% increase
from the annual average catch-rate (Figure 7). LPUE varied
significantly between all fishing grounds (Kruskal–Wallis rank
sum test, χ2 = 135, df = 2; p < 0.001), with the greatest catch
rate recorded in the Offshore West area and poorest in the
East (Figure 7). Catch rates showed a significant difference of
0.5 kg pot−1 between Inshore and Offshore Southwest areas
(Pairwise Wilcoxon rank sum test; p = 0.011).

European lobster
Across the 12-month time series, monthly average LPUE
ranged from 0.09 to 0.58 kg pot−1 haul, with an annual mean
of 0.305 kg pot−1 haul across all areas (Figure 8). The average
weight of European lobster at MLS (90 mm CL) is ∼0.4 kg,
suggesting an average catch rate over the year of less than
one lobster per pot. There was a clear seasonal pattern in
mean LPUE with a peak occurring in September to Decem-
ber and depressed catch rates from January through to Au-
gust. Monthly average LPUE peaked during the autumn fish-
ery (October–0.58 kg pot−1 haul) corresponding to a 90%
increase from the annual average catch-rate (Figure 7). LPUE
varied significantly between all fishing grounds (Kruskal–
Wallis rank sum test, χ2 = 64, df = 2; p < 0.001), with

Figure 6. Median soak-time and mean depth associated with fishing activity recorded by wet tags via the EERS.
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Figure 7. Mean LPUE of the C. pagurus fishery through the 12-month sampling programme undertaken with ERS ± standard error (left) with smoother.
Median LPUE by fishing area (right). Boxplots denote median and 95% CI.

Figure 8. Mean LPUE of the H. gammarus fishery through the 12-month sampling programme undertaken with ERS ± standard error (left) with
smoother. Median LPUE by fishing area (right). Boxplots denote median and 95% CI.

the greatest catch rate recorded in the east, followed by in-
shore west and poorest in offshore west (Figure 8). Catch rates
showed a significant difference of 0.125 kg pot−1 haul be-
tween East and Inshore Southwest areas (Pairwise Wilcoxon
rank sum test; p < 0.001).

Landing-per-unit-effort (LPUE) GAM model

Brown crab
GAM selection (by minimum AIC; Table 2) identified Geolo-
cation, SBT, H. gammarus bycatch and Vessel as having a sig-
nificant effect on crab LPUE (Figure 9). This model accounted
for 68% (r2 = 0.64) of the deviance explained. Geolocation
had a significant effect on LPUE, with significant differences
in LPUE geospatially [edf = 14.941, F (19.499) = 5.777; p <

0.001]. Similar patterns are observed in raw fisheries descrip-
tive statistics for C. pagurus, with LPUE greater in the offshore
area compared to inshore areas (Figure 7; Figure 9). Average

sea bottom temperature was a significant smoother contrib-
utor [edf = 2.17, F (2.66) = 4.227; p = 0.009] indicating
a strong non-linear positive effect of temperature on LPUE
(Figure 9). The effect of H. gammarus LPUE on C. pagurus
LPUE was significant [edf = 2.33, F (2.9) = 3.6; p = 0.02]
with increasing catch rates of H. gammarus negativley influ-
encing C. pagurus catch rates. Low covariate dependence was
recorded in the estimates for the final model (Table 3), with
values observed to be <0.6.

European lobster
GAM selection (by minimum AIC; Table 2) identified Geolo-
cation, SBT, crab bycatch, and Vessel effect as having a signifi-
cant effect on European lobster LPUE (Figure 10). This model
accounted for 41.8% (r2 = 0.40) of the deviance explained.
SBT was the most significant smoother contributor [edf = 1.2,
F (4.37) = 31.3; p = 0.001] indicating a positive near linear
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Table 2. Generalized additive model selection for C. pagurus and H. gammarus LPUE models using backwards stepwise selection approach using AIC
values.

Predictor Model AIC R2

Crab LPUE s(Longitude, Latitude)+s(AV_temp)+s(Soak_time)+s(Lob_LPUE)+Month + Vessel 476.87 0.63
s(Longitude, Latitude)+s(AV_temp)+s(Lob_LPUE)+Month + Vessel 475.69 0.63
s(Longitude, Latitude)+s(AV_temp)+s(Lob_LPUE)+Vessel 467.10 0.63

Lobster LPUE s(Longitude, Latitude)+s(AV_temp)+s(Soak_time)+s(Lob_LPUE)+Month + Vessel 26.67 0.38
s(Longitude, Latitude)+s(AV_temp)+s(Lob_LPUE)+Month + Vessel 25.19 0.37
s(Longitude, Latitude)+s(AV_temp)+s(Lob_LPUE) +Vessel 11.43 0.39

Figure 9. GAM smoothed term outputs for the effect of; (left) geolocation by month; (middle) average sea bottom temperature ◦C; (right) H. gammarus
LPUE on C. pagurus LPUE. Buffered lines denoted 95% CI and residuals. Gradient in 2D plot should be interpreted with gradient of red positive and
yellow negative effect on LPUE.

Table 3. Concurvity test results from generalized additive models for the effects of geolocation and environmental variables on C. pagurus and H. gammarus
LPUE.

GAM model Variables
Factor

variable
Longitude ×

Latitude
Sea bottom
temperature

Lobster/Crab
bycatch

Crab Factor variable 1 <0 <0 <0
Longitude × Latitude 1 0.51 0.57
Sea bottom temperature 0.12 0.1
Lobster bycatch 1

Lobster Factor variable 1 <0 <0 <0
Longitude × Latitude 1 0.59 0.48
Sea bottom temperature 1 0.22
Crab bycatch 1

effect of temperature on LPUE. C. pagurus bycatch rates had
a significant non-linear effect on LPUE [edf = 3.1, F (3.8) =
6.7; p < 0.001]. In addition, there was a significant effect of
“Vessel” (p < 0.001) and Geolocation [edf = 2.153, F (2.29)
= 4.382; p = 0.01]. Geospatial LPUE was seen to vary lon-
gitudinally, with an increasing positive effect on LPUE. Low
covariate dependence was recorded in the estimates for the
final model (Table 3), with values observed to be <0.6.

Discussion

This technology trial, designed in collaboration with the fish-
ing industry, demonstrates the utility of an EERS that al-
lows skippers to remotely submit high-resolution catch and
effort data electronically to a central database on a daily ba-
sis. Data resolved at the scale of individual haul-events is a
step-change in resolution compared to aggregated daily re-
ports resolved to ICES Statistical Rectangles (30 NM2 areas),
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Figure 10. GAM smoothed term outputs for the effect of (left) geolocation; (middle) average sea bottom temperature; and (right) C. pagurus LPUE on H.
gammarus LPUE. Buffered lines denote 95% CI and residuals. Gradient in 2D plot should be interpreted with gradient of red postive and yellow negative
effect on LPUE.

at no greater burden on the fishing vessels standard operating
procedures. In addition, passive monitoring of additional vari-
ables has enabled statistical modelling of both C. pagurus and
H. gammarus LPUE using a generalized additive modelling
approach, demonstrating the significant effect of spatial, bi-
otic and abiotic variables. More generally, the precision and
modelling capacity of the fisheries-dependent data collected
through this trial demonstrates the utility that GIGO and
mobile technologies can offer to management of data-poor
fisheries that lack fisheries-independent stock assessment ap-
proaches and/or funding for on-board observer programmes.

High spatial-resolution GIGO data

In contrast to the spatial data collected in this trial, which is
the precise geolocation of hauling activity triggered by GIGO
technology, previous studies investigating spatial data require-
ments in data-poor pot fisheries have mostly focussed on the
utility of continuous polling GPS and iVMS systems (Mendo
et al., 2019a, b). Mendo et al. (2019a) found that an opti-
mal polling interval of 1 min is required in order to accu-
rately estimate effort metrics such as the number of hauls,
total area fished per trip, and spatial extent of fishing activ-
ities in static-gear fisheries. This is 120 times greater than cur-
rent EU VMS requirements for >12 m vessels (EC, 2011) and
greater than trials in other data-poor fisheries (e.g. Shelmer-
dine and Leslie, 2015), some of which required an especially
high frequency poll-rate to monitor potentially damaging fish-
ing activity within sensitive European Marine Sites (ICES,
2016). Mendo et al. (2019b) found that iVMS/GPS with a
low polling frequency made it increasingly challenging to de-
tect discrete hauling events in pot fisheries, as well as produc-
ing increasingly erroneous estimates of the spatial distribu-
tion of fishing activity since many data are recorded during
transitory activity. An EERS that integrates GIGO technology
can overcome many of the approximation issues associated
with VMS data. For example, in the case of a pot-fishery as
used in this case-study, each GIGO record represents the ex-
act location of a haul-event associated with a declared number

of pots, which could more simply and accurately be used to
calculate the effective area fished with basic information on
fishing gear configuration (e.g. distance between consecutive
pots).

The EERS technology provided high-resolution data on the
spatial-temporal distribution of fishing activity over the 12-
month trial. Existing logbook requirements, which report fish-
ing activity data to ICES statistical rectangle (30 NM2 ar-
eas), results in aggregation of data into arbitrary delineations
that do not reflect stock boundaries, the spatial dynamics of
commercial activity, or jurisdictional/territorial limits. Our ap-
proach represents a step-change in data resolution with con-
sequent benefits for provision of effective management advice.
When considering temporal trends in catch data (e.g. declin-
ing landings), fisheries advice must necessarily take into ac-
count fine-scale spatial dynamics of fishing activity in order for
management decisions to reflect any requirement for interven-
tion. For example, the three fishing grounds identified through
our work occur within the same ICES statistical rectangle but
differ in their characteristics, LPUE and associated fisher tar-
geting behaviours. A shift in fishing effort and targeting be-
haviour, for example, from west coast to east coast grounds,
perhaps driven by economic factors (decrease in value of crab
compared to other species caught with the same gear-type,
such as European lobster) and displacement effects (i.e. ex-
clusion from favourable fishing grounds due to competition
with mobile gear or other marine developments) would likely
lead to a significant decline in C. pagurus LPUE within ICES
Rectangle 37E5. In the absence of spatially resolved fisheries-
dependent data, a biological reference point based on an LPUE
threshold for the whole of 37E5 may trigger harvest control
rules such as catch restriction, effort restrictions, or spatial clo-
sures that are neither necessary nor appropriate for protecting
crab stocks because the LPUE data that triggered the harvest
control rules reflects aspects of behavioural change in the fish-
ing fleet rather than that of stock decline. This hypothetical ex-
ample highlights the need for highly resolved spatial data to
inform area-based assessment, advice, and management (Bab-
cock et al., 2005).
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Integrating environmental observations into EERS

The inclusion of SBT in the LPUE model has provided valu-
able insight into the thermoregulatory dynamics of the fishery;
there was a clear positive effect of temperature on LPUE for
C. pagurus and H. gammarus, increasing linearly from ∼9◦C
to the maximum observed temperature of 15◦C (Figure 9;
Figure 10). Our measurements showed the clear large sea-
sonal variation in temperature, which drives LPUE, but also
more subtle variation over local spatial scales (Figure 5). Tem-
perature has an important effect on a range of processes in
both C. pagurus and H. gammarus including moulting, mat-
ing, and migration (Bennett, 1995; Tallack, 2007; Bakke et
al., 2018; Coleman et al., 2021) which is linked to catcha-
bility (Lizárraga-Cubedo et al., 2015) and hence to fishing
activity (seasonal and spatially defined effort). Our empiri-
cal observations and modelling approach suggest that abi-
otic drivers of catch can theoretically be used to standard-
ize fisheries-dependent indicators. Such an approach has been
recommended for stock assessments of baited fishing gear for
some time (see Stoner 2004). Similarly, utilization of LPUE
as part of an inter-annual abundance survey for crustacean
stocks using baited traps (e.g. for the assessment of impacts of
offshore developments; Roach et al. 2018) should also seek to
incorporate in-situ monitoring of SBT to accurately perform
post-hoc adjustments of LPUE indices for temporal-spatial
comparisons. More generally, the inclusion of SBT monitor-
ing as part of EERSs may assist scientists, fisheries authorities,
and industry to develop a greater understanding of thermo-
regulatory dynamics that affect fisheries. Such understanding
will naturally facilitate development of long-term manage-
ment plans that take into account environmental triggers and
thresholds relating to stock health, which will be particularly
important within the context of ocean warming (Cheng et al.,
2019).

Haul-specific catch and effort data

The EERS trial has also demonstrated the utility of highly
resolved spatial-temporal fisheries-dependent catch and ef-
fort data within the context of data-poor mixed-species fish-
eries. As opposed to current statutory logbooks that report
the landed weight of individual species for an entire fishing
trip, the EERS data contain information on the catches of
multiple species for each individual haul event. In this case,
C. pagurus and H. gammarus populations are often targeted
within a mixed fishery owing to their overlapping spatial dis-
tribution (Smith et al., 2001). Historically, fisheries-dependent
catch analysis has failed to address the potential for inter-
specific interactions among multiple captured species to dis-
tort estimates of relative abundance using LPUE data. The
potential for this has been highlighted clearly by Skerritt et al.
(2020) working on a mixed brown crab and European lob-
ster fishery on the north east coast of the English coast. They
showed that pots pre-loaded with European lobster had signif-
icantly lower catchability of brown crab compared to control
pots. In contrast, they found no effect of C. pagurus on the
catchability of H. gammarus.

Our analyses are in partial agreement with those of Skerrit
et al. (2020). In the brown crab fishery increases in H. gam-
marus LPUE resulted in declining C. pagurus LPUE. Interest-
ingly, the model suggests that the negative effect on C. pagurus
LPUE is minimal until H. gammarus LPUE reaches 0.75 kg
(Figure 10), which is approximately the average weight of a

single lobster at MLS (87 mm carapace length) (unpublished
data, J. Emmerson). Thereafter, the effect of H. gammarus
LPUE on brown crab LPUE showed a negative linear relation-
ship to the point where C. pagurus LPUE average reaches zero
when H. gammarus LPUE reaches 1.5 kg pot−1, i.e. when there
are approximately three above-MCRS H. gammarus caught
per trap. We found a similar relationship in the opposite di-
rection; H. gammarus LPUE declined with increasing C. pagu-
rus LPUE (Figure 10). The apparent contradiction with Sker-
rit et al. (2020) observation of no effect of the presence of C.
pagurus on H. gammarus catch may be explained by the den-
sity/biomass utilized in the experimental work. Skerrit et al.
(2020) used a maximum pre-loaded pot threshold for C. pagu-
rus of ≈1kg; our observations suggest that negative effects of
C. pagurus on H. gammarus start once this density/biomass is
exceeded. The work of Rayner and McGaw (2019) is in gen-
eral agreement for the potential of negative impacts of crab
bycatch on lobster catch. They showed that high densities of
C. maenas around and within pots reduced overall H. ameri-
canus interaction and catchability.

Our work shows clearly that inclusion of “commercial by-
catch” alongside more traditional data such as sea tempera-
ture will clearly be beneficial in deriving standardized LPUE
for C. pagurus and H. gammarus. However, the importance
of considering inter-specific effects is not unique to this fish-
ery, and is becoming increasingly pertinent as ecosystem ap-
proaches to fisheries (EAF) continue to be developed (Bianchi
and Skjoldal, 2008). Our data comes from a spatially and tem-
porally limited EERS trial within a specific mixed fishery, but
the analysis and results have demonstrated that inter-specific
effects within a mixed fishery are possible to capture, model,
and estimate. We envisage that this level of reporting would
be beneficial for other mixed fisheries using a wide variety of
fishing methods.

Feeding into scientific advice and fisheries
management

Increased application of area-appropriate fisheries advice and
management tools are needed in order to sustain stock abun-
dance and fisheries harvests in data-poor fisheries (Hilborn et
al., 2020). If fisheries-dependent data, in the form of indicators
such as LPUE, are to be used as a foundation for the delivery
of scientific recommendations and management in these fish-
eries (Miethe et al., 2016), catch reporting systems must nec-
essarily be sufficiently capable of capturing the relevant data
at an appropriate resolution. EERS-derived indices have the
potential to provide this and in so doing could enable highly
responsive, accurately informed and proportionate manage-
ment for many fisheries, including but not limited to data-poor
contexts. For example, continuous data from commercial ac-
tivity could trigger the need for intervention harvest control
rules in near-real-time, as opposed, or, in addition to FAs set-
ting fixed harvest control rules resulting from annual fisheries-
independent scientific surveys. For data-poor fisheries specif-
ically, GIGO technology and well-designed EERSs generally
represent an opportunity for step-change in data acquisition
and consequently management, with minimal additional data
submission demands on skippers. The system described is also
cost-effective when considered against the resource require-
ments of collecting data with a similar spatial-temporal reso-
lution using fisheries-independent methods (e.g. survey vessels
and observer programmes).
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Conclusion and recommendations

To summarize, we have demonstrated through the use of read-
ily available technology, the value in providing accurate ge-
olocated catch and effort data combined with environmen-
tal variables and information on the effect of species interac-
tions in a data poor fishery. Such data allow the estimation of
reliable fisheries-dependent indices and address the call from
Skerritt et al. (2020) for commercial providers to develop on-
board electronic data logging and retrieval kit as part of a fully
documented strategy to fill data gaps.

We recommend that fisheries authorities and fisheries sci-
entists work with the fishing industry to co-develop fisheries-
specific EERS solutions for trials. As in this study, initial tests
should use sentinel fleets of fisheries in key areas in order to
assess whether EERSs can fulfil the data-requirements needed
to provide fisheries advice for data-poor fisheries. The EERS
trial reported here demonstrates the considerable potential
for EERSs to harness GIGO sensory technology and mobile
communications to (1) increase the spatial-temporal resolu-
tion of catch and effort data to exact locations of haul-events
and identify discrete fishing and management areas without
complicated analytical methods that introduce error, (2) mon-
itor and model significant drivers of variation in fisheries-
dependent LPUE with no substantial changes to standard fish-
ing procedures, and (3) provide high-precision daily reports
with little administrative and resource burden. We acknowl-
edge that EERSs are a panacea for all of the issues facing data-
poor fisheries; sound fisheries advice is only one element of the
pre-requisites for effective fisheries management; the others
include appropriate institutional and legal frameworks, mon-
itoring, control, and surveillance capacity, and good stake-
holder engagement through co-management. Nonetheless, we
see EERS as being a valuable tool in the development of ap-
propriate fisheries advice for data-poor fisheries.
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