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ABSTRACT
Citizen science represents an effective means of collecting ecological data; however, 
the quality/reliability of these data is often questioned. Quality assurance procedures 
are therefore important to determine the validity of citizen science data and to promote 
confidence in conclusions. Here, data generated by a marine citizen science project conducted 
at 12 sites across the United Kingdom was used to investigate whether the use of a simple, 
low-taxonomic-resolution field-monitoring protocol allowed trained citizen scientists to 
generate data comparable to those of professional scientists. To do this, differences between 
field estimates of algal percentage cover generated by different observer units (i.e., trained 
citizen scientists, professional scientists, and combined units), and digitally derived baseline 
estimates were examined. The results show that in the field, citizen scientists generated 
data similar to those of professional scientists, demonstrating that training, coupled with the 
use of a simple, low-taxonomic-resolution protocol can allow citizen scientists to generate 
robust datasets in which variability likely represents ecological variation/change as opposed 
to observer variation. The results also show, irrespective of observer unit, that differences 
between field and digital baseline estimates of algal percentage cover were greatest in 
plots with medium levels of algal cover, highlighting that additional/enhanced training 
for all participants could be beneficial in this area. The approach presented can serve as a 
guide for existing and future projects with similar protocols to assess their data quality, to 
strengthen participant training/protocols, and ultimately to promote the incorporation of 
robust citizen science datasets into environmental research and management.
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INTRODUCTION

Many marine ecosystems are at risk of degradation and 
decline as a result of multiple interacting global, regional, 
and local stressors, including climate change, pollution, and 
overfishing (Halpern et al. 2008; Pecl et al. 2017; Poloczanska 
et al. 2013). To detect and fully understand the impact of 
stressors on marine ecosystems, and to provide evidence 
that supports conservation measures, baseline information 
and continued monitoring over large spatiotemporal 
scales and including a diverse array of species is often 
required (Magurran et al. 2010; Mieszkowska et al. 2014). 
The establishment and persistence of large, long-term 
monitoring programmes however, requires sustained 
financial investment alongside a trained “workforce” (Cox 
et al. 2012). 

In recent decades, citizen science, widely defined as 
public participation in scientific research, has emerged as a 
powerful and cost-effective means of generating extensive 
ecological data sets across a multitude of ecosystems 
(Bonney et al. 2009; Dickinson, Zuckerberg, and Bonter 
2010; Earp and Liconti 2019). Involvement in such projects 
can increase environmental stewardship as participants 
develop a greater appreciation of natural environments 
(Cerrano, Milanese, and Ponti 2017; Evans, Gebbels, and 
Stockill 2008), and can enhance participant wellbeing 
through mental stimulation, social interaction, and 
improved fitness (O’Brien, Townsend, and Ebden 2010). 
In the marine realm, citizen scientists have participated, 
both in person and more recently online, in monitoring 
species and environmental conditions across ecosystems 
including coral reefs (Branchini et al. 2015; Marshall, Kleine, 
and Dean 2012; Mumby et al. 1995), seagrass meadows 
(Finn et al. 2010), temperate rocky reefs (Gillett et al. 2012; 
Rosenthal et al. 2018), and many more (Earp and Liconti 
2020; Sandahl and Tøttrup 2020; Thiel et al. 2014). Yet, 
despite its capacity to broaden the scope of monitoring 
initiatives, citizen science has yet to be fully embraced as a 
valid means of scientific investigation (Bonney et al. 2014), 
primarily due to concerns regarding data quality (Balázs et 
al. 2021; Burgess et al. 2017; Freitag, Meyer, and Whiteman 
2016; Penrose and Call 1995). 

The accuracy of citizen science–generated data may 
vary depending on the knowledge and/or experience of the 
participants, the task level, and the ecosystem in question 
(Kosmala et al. 2016). Techniques suggested to minimize 
error and/or biases and increase the robustness of citizen 
science data include retaining trained and/or experienced 
participants, training participants to use standardized 
protocols, reducing the taxonomic resolution or complexity 
of the task/protocol, verifying data (i.e., the checking 
of record correctness by experts), and comparing data 

collected by citizen scientists and professional scientists 
(Baker et al. 2021; Clare et al. 2019; Cox et al. 2012; 
Kosmala et al. 2016; Parsons, Lukyanenko, and Wiersma 
2011; Rambonnet et al. 2019; van der Velde et al. 2017; 
Zettler et al. 2017). 

A growing body of research has compared data collected 
by citizen and professional scientists to demonstrate 
that citizen scientists can generate data of similar and 
potentially greater quality than professional scientists (Cox 
et al. 2012; Crall et al. 2011; Finn et al. 2010; Fore, Paulsen, 
and O’Laughlin 2001; Forrester et al. 2015; Koss et al. 2009; 
Rosenthal et al. 2018; van der Velde et al. 2017). However, 
Koss et al. (2009) found that on subtidal rocky shores, 
estimates of percentage cover of algal species differed 
significantly between citizen and professional scientists, 
potentially due to misidentification and/ or confusion 
between morphologically similar species. Here, we use 
data collected as part of an intertidal ecology experiment 
conducted by a marine citizen science program to examine 
whether the use of a simple, low-taxonomic-resolution 
algal monitoring protocol allows citizen scientists to 
generate data comparable to those of professional 
scientists. To do this, we provide a novel means of assessing 
the reliability of field estimates of algal percentage cover 
generated by different types of observers (e.g., citizen 
scientists, professional scientists, and combined units of 
citizen scientists working with professional scientists), by 
comparing them to digitally derived baseline estimates. 

Firstly, we assessed differences between algal percentage 
cover estimates generated by a subgroup of citizen scientists 
in the field and digital baseline estimates generated by a 
professional scientist using three different digital analysis 
techniques. We then investigated differences between 
estimates of algal percentage cover generated by trained 
citizen scientists, professional scientists, and combined 
units in the field, and a single digital baseline estimate 
generated by a professional scientist (which represents a 
consistent method of estimation without observer bias). 
We also explored whether differences between field and 
digital baseline estimates of algal percentage cover were 
influenced by the level of algal coverage. This provided a 
simple means by which citizen science programmes with 
similar monitoring protocols may investigate the quality 
of their data, and ultimately, further evidence of the 
robustness of citizen science data to support its use in 
research and management. 

MATERIALS AND METHODS
CITIZEN SCIENTISTS
The citizen scientists involved in this study were recruited 
and trained as part of the Capturing our Coast marine 
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citizen science program (www.capturingourcoast.co.uk) 
that ran in the United Kingdom from 2015 to 2018. All 
citizen scientists attended a one-day training session 
delivered by professional marine scientists that covered 
rocky shore ecology, species identification, and monitoring 
methods. Training was supported by the distribution of 
reference materials and ongoing support (including field 
refreshers) from program staff to aid data quality and 
participant retention. 

STUDY SYSTEM
The study was conducted at moderately exposed to exposed 
shores (Burrows 2012, 2020) across the United Kingdom, 
including the west coast of Scotland (3 sites), north Wales 
(4 sites), northeast England (3 sites) and southwest 
England (2 sites) (Supplemental files 1 and 2: Appendix A). 
Sites were selected based on their proximity to Capturing 
our Coast training hubs, and thus trained citizen scientists, 
as well as their accessibility for participants from a range 
of demographics. At each site, surveys were undertaken on 
the low shore, where algal communities were dominated 
by the canopy-forming macroalgae, Fucus serratus.

FIELD SURVEYS 
Data were collected as part of an intertidal ecology 
experiment exploring rates of recovery from manipulated 
disturbances. Experimental plots of 0.25m2 were surveyed 
seasonally from autumn 2016 to spring 2018 by observer 
units comprised of (1) a group of 2 to 3 trained citizen 
scientists, (2) a professional scientist (i.e., individuals with a 
formal qualification in marine science who had undergone 
Capturing our Coast staff training), or (3) a combination 
of a citizen scientist and a professional scientist working 
together. Firstly, a non-gridded quadrat was placed over 
the plot, and a top-down photograph of the quadrat was 

taken. Algal percentage cover (0–100%) was then assessed 
by placing a 0.25m² gridded quadrat with 100 squares over 
the plot and estimating the number of squares covered 
by live, attached algae (including all canopy, turf, and 
encrusting species). To account for individual learning 
styles and approaches to visualisation (Gardner 1993), 
participants could estimate percentage cover using various 
methods explained during the one-day training session, 
including summing up partially covered squares to make 
whole squares, or considering covered areas as patches 
and visualising the number of squares they would cover 
if all the patches were moved together. The visualisation 
method utilised by different participants was not recorded, 
nor was the date of the most recent survey experience, or 
the approximate number of surveys they had undertaken 
previously. The simple protocol employed was selected 
over others to facilitate the collection of robust data while 
encouraging involvement from a broad range of participants 
(Deither et al. 1992; Parsons, Lukyaneko and Weisma 2011).

DIFFERENCES BETWEEN FIELD ESTIMATES AND 
DIGITAL BASELINE ESTIMATES GENERATED 
USING THREE DIFFERENT TECHNIQUES
Quadrat photographs were analysed by one professional 
scientist using Coral Point Count with Excel extensions 
[v4.1] (Kohler and Gill 2006). The point-intercept method 
was used to generate digital baseline estimates of algal 
percentage cover that were then compared with field 
estimates. To do this, a digital grid was positioned over 
each quadrat image in three different ways (Figure 1), 
and the underlying substrate at each grid intercept was 
identified as one of three categories: (1) live attached algae 
(including all canopy, turf, and encrusting species); (2) 
other (i.e., bedrock, dead encrusting algae, invertebrates); 
or (3) the quadrat frame. 

Figure 1 Comparison of the three different methods of digital grid placement. Grey squares represent the quadrat frame and coloured 
squares represent the digital grid outline (not including the intercepts). (a) Method 1 (purple) had a 10x10 point grid, (b) Method 2 (green) 
had a 10x10 point grid, (c) Method 3 (yellow) had a 13x13 point grid.
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The first method of digital grid placement involved 
placing a 10x10 point grid within the largest possible area 
of the plot while including as little of the quadrat frame 
as possible (Figure 1a). Algal percentage cover was then 
calculated as (Total algal intercepts/(Total number of 
intercepts – Total quadrat frame intercepts) * 100). The 
second method involved placing a 10x10 point grid within 
the largest possible area of the plot while excluding all 
of the quadrat frame (Figure 1b). Algal percentage cover 
was given as the total number of algal intercepts. The 
third method involved placing a 13x13 point grid across 
the entire area of the plot while including as little of the 
quadrat frame and beyond as possible (Figure 1c). A 13x13 
point grid was used as it was revealed to be the minimum 
grid size that ensured at least 100 intercepts fell within the 
plot area. Intercepts identified as quadrat frame or beyond 
were removed, and of the remaining intercepts, 100 were 
randomly selected to give an estimate of algal percentage 
cover. 

Differences between estimates of algal percentage 
cover generated by two randomly selected trained citizen 
scientist units in the field were compared with digital 
baseline estimates (generated by a professional scientist 
using the three different methods of grid placement) across 
15 plots. Differences were determined by subtracting the 
digital baseline estimate from the field estimate. 

The three methods of grid placement (and thus baseline 
estimate generation) were selected because they are less 
subjective, complex, and time consuming to implement 
compared with photograph manipulation to make the 
quadrats and digital grids align (which is not always 
possible due to the angle of some photographs) or with 
digital area analysis (which would be challenging given the 
patchy nature of certain algal species). The three methods 
were compared over a limited number of quadrats to 
ensure they generated analogous data and that the 
method selected for subsequent analyses represented a 
robust means of baseline estimation.

DIFFERENCES BETWEEN FIELD ESTIMATES AND 
DIGITAL BASELINE ESTIMATES GENERATED 
USING ONE TECHNIQUE ACROSS DIFFERENT 
OBSERVER UNITS AND LEVELS OF ALGAL COVER
Observer units that surveyed and photographed ≥ 8 plots 
per survey (i.e., per site, per season) were identified. This 
comprised 11 citizen scientist units (i.e., a group of 2 to 3 
citizen scientists that had attended a one-day Capturing 
our Coast training session), 18 professional scientist units 
(i.e., an individual with a formal qualification in marine 
science that had undergone Capturing our Coast staff 
training), and 13 combined units (i.e., one citizen scientist 
and one professional scientist working together), giving a 
total of 42 observer units. From each observer unit, eight 

of the surveyed plots were randomly selected for digital 
analysis (n = 336 plots). The low quality of one photograph 
meant digital analysis was not possible, and because no 
substitute plot from the same observer unit was available, 
n = 7 was used for one citizen scientist observer unit.

Digital analysis was conducted by one professional 
scientist who generated a baseline estimate of algal 
percentage cover using the third method of grid placement 
(Figure 1c). The third method of digital grid placement was 
selected over other methods because it incorporated the 
greatest area of the plot and ensured 100 intercepts within 
each plot. Differences between field and digital baseline 
estimates of algal percentage cover were determined by 
subtracting the digital baseline estimate from the field 
estimate. A categorical variable for the level of algal cover 
was generated based on the field estimates of total algal 
percent cover, with 0% to 25% considered low, 26% to 50% 
considered low-mid, 51% to 75% considered mid-high, and 
76% to 100% considered high.

DATA ANALYSES
To investigate differences between estimates of algal 
percentage cover generated by a subgroup of citizen 
scientists in the field and digital baseline estimates 
generated by a professional scientist using three different 
digital analysis techniques, a linear mixed effect model 
(LMER) was used. Method type (i.e., field, digital method 
1, digital method 2, digital method 3) was set as a fixed 
factor, and quadrat ID and date were set as random 
factors. Site and season were not considered factors in this 
analysis because we were not investigating spatiotemporal 
variability in algal coverage, but rather variability across 
methods of estimating algal coverage. Data were converted 
to proportions (divided by 100), and logit transformed prior 
to analysis, with 0.025 added or subtracted from proportions 
equal to 0 or to 1 (Fox and Weisberg 2019; Warton and Hui 
2011). Data were visualised as the difference between 
the field estimate and each of the three different digital 
baseline estimates. 

To determine whether differences between estimates 
of algal percentage cover generated by trained citizen 
scientists, professional scientists, and combined units in 
the field and digital baseline estimates generated by one 
professional scientist using the third method of digital 
grid placement (Figure 1c) were significant, and whether 
differences were influenced by the level of algal cover, 
a LMER was used. Observer unit (i.e., citizen scientists, 
professional scientist, combined), algal cover (i.e., low, low-
mid, mid-high, high) and the interaction between these 
factors were set as fixed factors, and quadrat ID and date 
were set as random factors. As above, site and season were 
not considered factors in the analysis because the aim 
was to understand variability in the capacity of different 
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observer units to correctly estimate algal cover. Data 
were square root transformed prior to analysis. Data were 
visualised as the difference between the field estimate and 
the digital baseline estimate, with lower variation assumed 
to indicate greater accuracy of field estimates.

All analyses and plotting were undertaken in the 
statistical software R [v.4.1.0] (R Core Team 2021). Models 
were generated using the lme4 package (Bates et al. 
2015), and model fits were determined through visual 
examination of the quantile-quantile (QQ) and residual 
versus fitted values plots. Type II sum of squares were 
calculated using the Anova function of the car package (Fox 
and Weisberg 2019). Post hoc Tukey-adjusted comparisons 
were generated for individual fixed effects using the glht 
function of the multcomp package (Hothon, Bretz, and 
Westfall 2008). Graphs were produced using the ggplot2 
package (Wickham 2016). 

RESULTS
DIFFERENCES BETWEEN FIELD ESTIMATES AND 
DIGITAL BASELINE ESTIMATES GENERATED 
USING THREE DIFFERENT TECHNIQUES
Differences between field and digital baseline estimates 
of algal cover were not consistent across quadrats, nor 
the three digital baseline estimation methods, although 

in general, field estimates were lower than digital 
baseline estimates (Figure 2). However, estimates of algal 
percentage cover were not significantly different across the 
three estimation methods (χ2 = 4.8105, df = 3, p = 0.1862). 

DIFFERENCES BETWEEN FIELD ESTIMATES AND 
DIGITAL BASELINE ESTIMATES GENERATED 
USING ONE TECHNIQUE ACROSS DIFFERENT 
OBSERVER UNITS AND LEVELS OF ALGAL COVER
Differences between field and digital baseline estimates 
of algal percentage cover were, on average, greater for 
citizen scientist units (mean ± 1 SE; –3.68 ± 1.07) compared 
with professional and combined units (mean ± 1 SE; –0.74 
± 1.06 and –1.21 ± 1.29 respectively), although the range 
of difference values was greater for the latter two units 
(Figure 3a; Supplemental file 3: Appendix A). However, 
overall, differences did not significantly differ across the 
different observer units (χ2 = 6.1124, df = 2, p = 0.9453; 
Supplemental file 4: Appendix A), nor did different types 
of observers vary in their capacities to estimate algal 
percentage cover based on the field-estimated level of 
algal cover (χ2 = 6.1522, df = 6, p = 0.3070).

Differences between field and digital baseline estimates 
of algal percentage cover were, however, found to be 
related to the level of algal cover alone (χ2 = 58.5496, 
df = 3, p < 0.000). Average differences were greatest for 

Figure 2 Differences between field estimates of algal percentage cover generated by trained citizen scientists and digital baseline 
estimates generated by a professional scientist using the three different methods of grid placement across 15 plots. Coloured circles 
represent differences, calculated as a field estimate minus a digital baseline estimate, per digital baseline method (Figure 1). Black 
squares and error bars represent the mean difference across the three baseline estimation methods ±1 standard error. 
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plots with a medium level of algal cover (mean ± 1 SE; 
low-mid (26–50%) –6.40 ± 3.16 and mid-high (51–75%) 
–7.02 ± 2.21) compared with plots with high (76–100%) 
and low (0–25%) levels of cover (mean ± 1 SE; 0.78 ± 0.47 
and –1.06 ± 1.69, respectively; Figure 3b). Pairwise post hoc 
analyses revealed that the most significant differences 
were between plots with a high (76–100%) level of algal 
cover compared with those with low-mid (26–50%) and 
mid-high (51–75%) levels of cover (Figure 3b; Supplemental 
file 4: Appendix A).

DISCUSSION

Concerns regarding data quality remain a key barrier to 
the wider use of citizen science datasets (Burgess et al. 
2017; Penrose and Call 1995). Therefore, data verification 
and comparisons with professionally generated data 
are critically important to determine data validity and 
to promote confidence in the conclusions. This study 
demonstrates a novel means of digitally assessing field data 
collected by citizen scientists, and places variation in the 

Figure 3 Differences between field and digital baseline estimates of algal percentage cover across (a) three different types of field 
observer units and (b) different levels of algal cover. Yellow circles represent differences, calculated as field estimates minus digital 
baseline estimates (generated using the third method of digital grid placement; Figure 1c) per plot. Black squares and error bars represent 
the mean variation across all plots ±1 standard error. Values in turquoise represent the number of plots. Significant post hoc Tukey-
adjusted comparisons for single fixed effects are indicated as *** = p < 0.05.
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data collected by trained citizen scientists and professional 
scientists in the same context. We demonstrate that 
when using a simple, low-taxonomic-resolution field-
monitoring protocol, trained citizen scientists can generate 
estimates of algal percentage cover comparable to those 
of professional scientists. We also show that irrespective 
of the type of observer, field estimates of algal cover are 
most variable in plots with medium (26–50% and 51–75%) 
levels of algal cover. Here we discuss these trends, identify 
areas for further research, and provide considerations for 
future citizen science programmes. We also highlight the 
strengths and limitations of digital verification and field 
approaches to citizen science. 

TRENDS IN ESTIMATES OF ALGAL PERCENTAGE 
COVER AND CONSIDERATIONS FOR FUTURE 
WORK
Trained citizen scientists within this study generated data 
that were comparable to those of professional scientists, 
which is consistent with findings of previous studies 
involving marine citizen scientists (Cox et al. 2012; Delaney 
et al. 2008; Edgar and Stuart-Smith 2009; Hidalgo-Ruz and 
Thiel 2013; Rosenthal et al. 2018). In this case, we believe 
the result is likely due, in part, to the use of a simple, 
low-taxonomic-resolution field-monitoring protocol 
(i.e., estimating total algal percentage cover as opposed 
to functional group or species-level cover). Estimating 
percentage cover is a simple yet effective means of 
gathering data from intertidal environments, which is more 
accurate (i.e., closer to digital baseline estimates) and 
repeatable (i.e., less intra- and interobserver variation), and 
is less time-consuming to implement (thus allowing for 
greater replication) compared with methods such as point 
quadrats (Dethier et al. 1993; Meese and Tomich 1992). 
The low taxonomic resolution of the protocol reduced the 
scope for error through misidentifications (e.g., confusion 
between morphologically similar species) (Gardiner et al. 
2012; Koss et al. 2009; Parsons, Lukyanenko, and Wiersma 
2011), as well as the likelihood of overestimations by 
participants who may be eager to report rare species 
(Galloway, Tudor, and Vander Haegen 2006). Participant 
training is also known to increase the quality of the data 
generated (Edgar and Stuart-Smith 2009), and coupled 
with the provision of ongoing participant support, is also 
likely to have contributed to the generation of comparable 
data within this study, although comparisons with 
untrained participants are required to support this. 

Although not significant, trained citizen scientists tended 
to underestimate algal percentage cover compared with 
both digital baseline estimates and other field observer 
units (i.e., professional scientists and combined units), yet 
in the laboratory, they overestimated algal cover in to-

scale photos compared with professional scientists (Grist et 
al. 2019 unpublished data in Vye et al. 2020). We suggest 
that these differences, plus the small range of difference 
values observed for citizen scientists, may be due to the 
perceived importance of real-life field data that results 
in extra care being taken to get the data right, as well as 
the ability to physically manipulate specimens in the field. 
However, the experience level (e.g., previous monitoring 
experience) of citizen scientists was not considered, and 
thus further investigations are required to see if and how 
this may influence the findings. Similarly, an individual’s 
interpretation of instructions, or their experience on the 
training day, could have influenced the data they generated 
(Gollan et al. 2012), but it was not possible to assess this in 
our analysis. 

On average, differences in estimates generated by 
professional scientists were lower than differences in 
estimates generated by citizen scientists. This may be 
explained by the higher experience level of professional 
scientists who often undertake regular field monitoring 
as part of their employment, and therefore the data 
they generate is often considered to be more accurate 
and consistent (Gollan et al. 2012), although, the range 
of differences in estimates was slightly greater for 
professional scientists owing to a small number of outliers. 
While the cause of these outliers remains unclear, they 
could be attributed to survey fatigue, a survey-specific 
factor (e.g., becoming time/tide limited or being distracted 
by participants they are supervising) (Swanson et al. 2016) 
or errors in image processing, although the latter is unlikely. 
These outliers demonstrate, like others (e.g., Cox et al. 
2012), that professionally generated data may also contain 
discrepancies. 

Pairing citizen scientists with professional scientists 
(i.e., combined units) was shown to reduce some of the 
observed disparity between citizen and professionally 
generated field data. While we acknowledge that such 
pairings may not be a feasible and/or cost-effective option 
for all citizen science projects, where possible, they could 
be suggested as a beneficial means of supporting citizen 
scientists with their transition from training to independent 
surveying, and have been suggested as a means of 
increasing the appeal of citizen science programmes (Crall 
et al. 2011). Such pairings may also be beneficial at certain 
time intervals to re-align citizen scientists and professional 
scientists, allowing citizen scientists to continue their 
development and granting professional scientists a 
dedicated opportunity to reflect on their own surveying 
skills and potentially enhance their teaching practices. 

Irrespective of observer unit, estimates of algal 
percentage cover were most variable in plots with medium 
(26–50% and 51–75%) levels of algal cover. This indicates 



8Earp et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.483

that some observers may find these plots more challenging 
to survey, potentially because of the patchy nature of algae 
within these plots. The different visualisation methods 
participants may have used to determine algal cover 
in the field may also have contributed to some of the 
observed variation in plots with medium levels of algal 
cover. Investigations into whether different field estimation 
techniques influenced the data generated were not possible 
here but would be beneficial for future efforts to determine 
the most appropriate technique to estimate percentage 
cover. Additionally, investigations into other potential 
drivers of the variability in plots with medium coverage 
are required, for example, the number of recent surveys 
a participant has undertaken, as those with more recent 
survey experience may “have got their eye in” and therefore 
generate more accurate estimates. In the meantime, 
future citizen science project facilitators should consider 
placing greater emphasis on training all participants (i.e., 
professionals and citizen scientists) to monitor plots with 
medium levels of coverage, and increasing replication in 
ecological studies to account for this variability.

Accurate estimates of percentage cover generated 
using simple, low-taxonomic-resolution protocols, 
although limited in terms of resolution, can be beneficial 
to scientists addressing certain ecological questions, for 
example, by identifying areas where changes are occurring 
(e.g., large scale losses/recovery of canopy algae) so that 
scientists may target these areas for further investigation. 
In addition, the use of these protocols provides important 
field experience for citizen scientists, allowing them to 
become confident employing a monitoring protocol in a 
realistic setting. The complexity of the protocol can then be 
enhanced depending on the confidence of observers, the 
quality of the data generated, and the requirement of the 
area, although data verification techniques would need to 
be adapted, and further training provided. 

STRENGTHS AND LIMITATIONS OF DIGITAL AND 
FIELD APPROACHES TO CITIZEN SCIENCE 
Owing to recent improvements in photographic 
technology, the analysis of digital imagery has become 
a common method of monitoring marine environments 
(Durden et al. 2016; Swanson et al. 2016) that can 
generate reliable estimates of abundance for low-
resolution taxonomic groups (e.g., coral cover) (Carleton 
and Done 1995). Here, we have shown that digital 
analysis of photographs also represents a beneficial 
means of validating certain field monitoring data and 
understanding observer variation. All three methods of 
digital analysis generated comparable estimates of algal 
percentage cover that correlated well to field estimates 
despite slight differences in the approach (i.e., visual 
estimation versus point-intercept). 

Digital analysis approaches are expected to increase 
in the coming years due to technological advances such 
as mobile applications and machine learning (Garcia-
Soto et al. 2021). Such techniques can be considered a 
cost-effective means of generating monitoring data that 
constitutes a permanent visual record (Carleton and Done 
1995). Furthermore, they can remove observer variability 
as field quadrats are often monitored once per time point, 
and usually by different observers over time and across 
sites, whereas digital analysis of a photograph can be done 
multiple times and by multiple people to minimise observer 
error and/or biases. Digital analysis can also increase the 
scope of citizen science projects because it allows for 
participation by individuals who may otherwise be unable 
(e.g., due to their location or physical ability). For example, 
online platforms (e.g., Zooniverse; www.zooniverse.org) 
have allowed citizen scientists to participate remotely in 
research by identifying, classifying, and marking factors 
of interest in images, videos, and audios (Simpson, Page 
and De Roure 2014), in turn reducing the time-consuming 
nature of digital analysis for professional scientists. Further 
research is required to understand the variation in data 
generated digitally by citizen scientists compared with 
professional scientists (but see Swanson et al. 2016 for an 
example), particularly in terms of percentage cover.

A major limitation of digital analysis, and therefore a 
strength of field monitoring, is the capacity to increase 
taxonomic resolution. Although this was not a problem 
during this study, it could become an issue should a 
more complex field protocol be employed (i.e., examining 
functional groups or a greater taxonomic resolution) 
because the three-dimensional nature of algal canopies 
would result in sub-canopy individuals being obscured 
from the photograph and thus inaccurately quantified, 
while smaller, cryptic, and finely branched species may 
go undetected. Additionally, digital baseline estimates 
could have been influenced, to a degree, by difficulty in 
determining the status (i.e., dead or alive) of encrusting 
species such as Lithophyllum sp. on some photographs. 
While this was minimised by using high resolution 
photographs, and would likely have influenced digitally 
generated estimates across all observer units and levels of 
algal cover equally, future efforts could consider excluding 
encrusting algae from estimates of algal abundance 
to minimise this issue. Furthermore, there are several, 
often unquantified, benefits that can be derived from 
field citizen science approaches, meaning they cannot 
simply be replaced by digital approaches. For example, 
being outdoors can improve fitness and allow for social 
interaction among participants that can in turn reduce 
stress levels and enhance mental wellbeing (O’Brien, 
Townsend, and Ebden 2010). Field approaches also allow 
participants to witness the natural world and the threats it 
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faces firsthand, which may lead to increased environmental 
stewardship, positive behavioural change, and greater 
acceptance of management strategies among participants 
compared with those involved only in digital approaches 
(Cerrano, Milanese, and Ponti 2017; Evans, Gebbels, and 
Stockill 2008).

CONCLUSION

Confidence in the data generated by citizen science 
programmes is critically important if citizen science is to 
be fully embraced by the scientific community and used 
to inform management initiatives. While there is natural 
variation among observers, digital analyses and placing 
data generated by citizen scientists in the same context 
as professionally generated data are effective means of 
quantifying and examining this variation and ensuring data 
quality. The low taxonomic resolution estimates of algal 
percentage cover generated by citizen scientists as part 
of the Capturing our Coast programme can be considered 
accurate, with reported changes over time more likely to 
represent actual changes in marine ecological communities 
as opposed to differences among observer units. The 
validity of the data generated was likely due to the use of 
a simple, low-taxonomic-resolution monitoring protocol 
alongside effective training of participants and ongoing 
support and resources that collectively reduced the scope 
for error. Current and future citizen science projects, 
including those in the terrestrial realm, would benefit 
from adopting similar approaches to ensure and evaluate 
data quality, to strengthen training and protocols, and to 
promote the wider application of citizen science data. 
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