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ABSTRACT Within months of the COVID-19 pandemic being declared on March 20,
2020, novel, more infectious variants of SARS-CoV-2 began to be detected in geospa-
tially distinct regions of the world. With international travel being a lead cause of
spread of the disease, the importance of rapidly identifying variants entering a country
is critical. In this study, we utilized wastewater-based epidemiology (WBE) to monitor
the presence of variants in wastewater generated in managed COVID-19 quarantine
facilities for international air passengers entering the United Kingdom. Specifically, we
developed multiplex reverse transcription quantitative PCR (RT-qPCR) assays for the
identification of defining mutations associated with Beta (K417N), Gamma (K417T),
Delta (156/157DEL), and Kappa (E154K) variants which were globally prevalent at the
time of sampling (April to July 2021). The assays sporadically detected mutations asso-
ciated with the Beta, Gamma, and Kappa variants in 0.7%, 2.3%, and 0.4% of all sam-
ples, respectively. The Delta variant was identified in 13.3% of samples, with peak
detection rates and concentrations observed in May 2021 (24%), concurrent with its
emergence in the United Kingdom. The RT-qPCR results correlated well with those
from sequencing, suggesting that PCR-based detection is a good predictor for variant
presence; although, inadequate probe binding may lead to false positive or negative
results. Our findings suggest that WBE coupled with RT-qPCR may be used as a rapid,
initial assessment to identify emerging variants at international borders and mass quar-
antining facilities.

IMPORTANCE With the global spread of COVID-19, it is essential to identify emerg-
ing variants which may be more harmful or able to escape vaccines rapidly. To date,
the gold standard to assess variants circulating in communities has been the sequenc-
ing of the S gene or the whole genome of SARS-CoV-2; however, that approach is
time-consuming and expensive. In this study, we developed two duplex RT-qPCR
assays to detect and quantify defining mutations associated with the Beta, Gamma,
Delta, and Kappa variants. The assays were validated using RNA extracts derived from
wastewater samples taken at quarantine facilities. The results showed good correlation
with the results of sequencing and demonstrated the emergence of the Delta variant
in the United Kingdom in May 2021. The assays developed here enable the assess-
ment of variant-specific mutations within 2 h after the RNA extract was generated
which is essential for outbreak rapid response.
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The SARS-CoV-2 and its associated disease, COVID-19, have been responsible for
over 0.5 billion confirmed cases and 6.5 million deaths globally as of August 2022

(1). The rapid spread of the disease is partially a result of the emergence of novel viral
variants, which may be more transmittable than the wild-type Wuhan virus. For
instance, the Alpha variant (B.1.1.7 lineage), first detected in the United Kingdom in
December 2020 (2), had a 1.22 to 2.49 times higher reproduction numbers than the
Wuhan strain due to mutations in the angiotensin-converting enzyme 2 (ACE2) recep-
tor-binding site of the spike protein gene (3). During the same period, additional,
highly transmittable variants of concern (VOCs), associated with large numbers of
cases, emerged in South Africa (Beta variant, B.1.315 lineage) and Brazil (Gamma vari-
ant, P1 lineage) (4, 5). In mid-2021, the B.1.617 lineages, including the Delta and Kappa
variants, emerged in India. By April 2021, the Delta variant became the most common
variant in India and surrounding countries and had spread globally. Between July and
December 2021, the Delta variant was responsible for over 90% of SARS-CoV-2 infec-
tions in the United Kingdom, and also prompted new waves of COVID-19 outbreaks
across Europe, Indonesia, and the Americas (6). Since December 2021, these variants
have been progressively replaced by the more transmissible Omicron subvariants (7).

Approximately 40% to 45% of SARS-CoV-2 infections remain asymptomatic, and
hence, are missed by clinical surveillance (8). Furthermore, the proportion of clinical
reverse transcription quantitative PCR (RT-qPCR) false negative tests was estimated to
be between 2% and 29% with sensitivity of only 63% for nasal and 32% for throat
swabs, respectively (9, 10). Therefore, assessing the levels of infection solely on clinical
testing is challenging. As approximately 43% to 54% of infected people shed SARS-
CoV-2 in feces (11, 12), the viral RNA could be detected and quantified in wastewater.
The changes in viral quantities in sewage can supplement outbreak surveillance at
community level (13, 14). Hence, wastewater-based epidemiology (WBE) has been
implemented in many countries as a supplementary monitoring tool (15–21). WBE has
also been successful as an early warning system at the local infrastructure scale, includ-
ing university campuses and prisons (22–24), demonstrating that WBE can be utilized
for near-source monitoring. Furthermore, the usefulness of WBE for international bor-
der control has also been investigated. Preliminary studies focusing on airplane waste-
water surveillance, suggested that SARS-CoV-2 can also be detected, quantified, and
sequenced in such matrices (25, 26).

When WBE is applied, wastewater samples are usually clarified and concentrated to
quantitatively enrich viruses (27). Subsequently, the viral RNA is extracted and quanti-
fied using RT-qPCR or RT digital PCR (RT-dPCR), targeting conserved regions of the nu-
cleocapsid or envelope genes (19, 27–29). These assays enable the rapid detection and
quantification of the target virus; however, they do not indicate the presence of variant
of concerns (VOCs). Variant analysis is predominantly done by amplifying fragments of
the viral genome from RNA extracts, followed by sequencing (30). Sequencing and
data analysis may take several days, leading to delayed outbreak response. Therefore,
rapid qPCR assays targeting variant-specific mutations have been developed and used
for WBE in Israel (31, 32), Spain (33), and Canada (34) for example. However, variant-
level qPCR detection has not been rigorously tested in near-source wastewater envi-
ronments or for international border surveillance.

In this study, we describe two duplex RT-qPCR assays for the targeted detection of
variant-specific mutations of the Beta, Gamma, Delta, and Kappa variants for tracking
infections in wastewater at COVID-19 quarantine facilities associated with international
travel hubs. The assays targeted point mutations or deletions in the spike protein gene
specific to the aforementioned VOCs. The primer and probe sets were additionally tri-
aled on a droplet digital PCR (ddPCR) system and the results of PCR-based detections
were compared to those obtained from genome sequencing. The RT-qPCR assays were
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suitable for the rapid detection and quantification of the target VOCs in wastewater
samples.

RESULTS
RT-qPCR assay validation. Assay sensitivity and specificity were tested on a dilu-

tion series of synthetic viral RNA of the variants. Cross-reactivity was only observed for
the Beta VSM in the Beta-Gamma duplex VSM assay at high viral RNA concentrations
(>104 gc/mL standard solution), whereas no cross-reaction was observed at lower con-
centrations. Cross-reactivity was further tested on historic RNA extracts from waste-
water samples collected before the emergence of SARS-CoV-2 variants. These samples
were negative for all target mutations. All assays were highly sensitive with LOD values
of 1 to 4 gc/mL, whereas the LOQ values were lower for the Beta and Gamma VSMs
and higher for the Delta and Kappa VSMs (Table 1).

RT-qPCR assay applicability for wastewater samples in near-source setting.
Wastewater monitoring was carried out at 13 hotels used for quarantining interna-
tional air passengers entering the United Kingdom during the emergence of the Delta
variant. Out of the 820 sewage sample extracts tested, 459 were positive for the SARS-
CoV-2 N1 gene target. All 820 samples were tested for the Beta and Gamma VSMs
while 818 samples (as two samples were destroyed) were tested for the Delta and
Kappa VSMs using two separate duplex RT-qPCR assays (Fig. 1). In total, 110 samples
were positive for at least one variant, 19 were found positive for at least two variants,
seven were positive for at least three variants, while one was found positive for all four
variants (Fig. 1a). Interestingly, the Beta VSM was only detected by RT-qPCR in the pres-
ence of the Gamma VSM (n = 6), and all detections of the Beta VSM were at high con-
centrations of the SARS-CoV-2 N1 gene fragment. The most detected VSM was Delta
(109 positives, 13.3%), followed by Gamma (19 positives, 2.3%), Beta (9 positives, 0.7%)
and Kappa VSMs (3 positives, 0.4%). Almost all samples which tested positive for the
VSMs were positive for the N1 gene, except one Delta VSM positive sample. The Kappa
VSM was only detected in samples collected in April 2021 (2.5%), whereas the Beta,
Gamma, and Delta VSMs were more abundant throughout the study, with peak detec-
tions in May and lower concentrations in June to July (Table 2).

To verify the VSM RT-qPCR results, they were compared with the next generation
sequencing (NGS) data (Table S1). NGS and RT-qPCR data for the Beta, Delta, and
Kappa variants were available for the period of April 13, 2021 to June 18, 2021. At
least one variant was detected in 307 samples, and two variants were detected in
34 samples using NGS analysis. Only 13 samples were positive for the Beta variant
from the sequencing results; however, none of those samples were found positive
using RT-qPCR. For the Delta variant, 270 samples were NGS-positives, and of those
samples, 89 were also positive using RT-qPCR. The Kappa variant was positive in
35 samples that were sequenced, two of which were RT-qPCR positive. Among the
samples that tested negative with NGS, but positive with RT-qPCR, six were positive
for the Beta variant, 19 for the Delta variant, 19 for the Gamma variant, and one for
the Kappa variant. Using logistic regression, RT-qPCR detections of VSMs were found
to be a significant predictor of NGS VOC detection (P-value , 0.001; Table S1),
though use of RT-qPCR quantities rather than RT-qPCR detection did not improve the
misclassification error (15.1%).

TABLE 1 Limit of detection (LOD) and limit of quantification (LOQ) values for each SARS-
CoV-2 variant target determined in duplex RT-qPCRs expressed as genome copies (gc) in
standard solution

Variant LOD (gc/mL) LOQ (gc/mL)
Beta 1.04 4.28
Gamma 0.75 4.40
Delta 1.88 25.72
Kappa 2.95 15.77
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RT-ddPCR assay applicability for wastewater samples in near-source setting.
The in-house designed oligos for qPCR-based detection of VSMs were first trialed on a
ddPCR platform using known concentrations of SARS-CoV-2 RNA or DNA standards.
We found that the RT-ddPCR gave similar results to RT-qPCR when DNA target oligos
were used; however, it was less sensitive with RNA targets (synthetic viral genomes).
Furthermore, ddPCR failed to detect the Kappa VSMs using DNA oligo as a target (Fig. S2).

We further tested the usefulness of ddPCR for detecting variants from sewage sam-
ples. We used RT-ddPCR with the in-house designed primers and probes on samples
that were RT-qPCR and/or NGS positive for variants. Overall, ddPCR resulted in higher
detection rates than qPCR, with limited samples testing positive for the variants by
both approaches (Table 3).

The concentrations of Delta and Gamma VSMs determined with RT-ddPCR and RT-
qPCR correlated closely (Fig. 2a; P-value , 0.001), but concentrations of Beta VSMs did
not. The concentrations of the VSMs determined by RT-ddPCR were higher (Beta me-
dian: 5.59 log10 gc/l; Gamma median: 4.74 log10 gc/l; Delta median: 4.24 log10 gc/l) than
the concentrations determined by RT-qPCR (Beta median: 4.46 log10 gc/l; Gamma median:
4.81 log10 gc/l; Delta median: 4.97 log10 gc/l), although the differences were not significant
(Fig. 2b; Wilcoxon rank sum exact test: (Beta) W = 6, P-value > 0.05; (Gamma) W = 16,
P-value > 0.05; (Delta) W = 15, P-value > 0.05). More samples were positive for VSMs when
using RT-ddPCR (n = 26) compared to RT-qPCR (n = 22); however, qPCR assays outper-
formed ddPCR for the detection and quantification of the Delta VSM (Fig. 2; Fig. S1). RT-
ddPCR had greater agreement with NGS (Fig. S1; Table S2; RT-ddPCR misclassification error:
52.4%; qPCR misclass. error: 85.7%). However, with this subset of data, neither PCR methods
were significant predictors of NGS (P-value > 0.05), which may be due RT-ddPCR testing
not being carried out on samples with negative results for both NGS and RT-qPCR.

FIG 1 Variant-specific mutations (VSMs) associated with the Beta (orange), Gamma (green), Delta (blue), and
Kappa (yellow) variants of concern (VOC) in wastewater using RT-qPCR. Panel (a) shows the codetection rates
for the VSMs and panel (b) shows the viral concentrations (log10 genome copies/ L) over time.

TABLE 2 Temporal changes in the detection frequency of the Beta, Gamma, Delta, and Kappa VSMs in wastewater from quarantining hotels
using RT-qPCR

Sampling date
SARS-CoV-2
(all variants)a Beta Gamma Delta Kappa

April 2021 56.1% (69/123) 0.8% (1/123) 1.6% (2/123) 5.8% (7/121) 2.5% (3/121)
May 2021 79.8% (83/104) 1.9% (2/104) 5.8% (6/104) 24.0% (25/104) 0% (0/104)
June 2021 50.6% (172/342) 0% (0/342) 1.8% (6/341) 10.2% (35/342) 0% (0/342)
July 2021 53.0% (133/251) 1.2% (3/251) 2.0% (5/251) 16.7% (42/251) 0% (0/251)
aThe values in parentheses denotes the number of positives relative to the total number of samples.
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Additionally, the six samples positive for the Kappa VSMs using NGS were negative using
PCR-based quantification.

DISCUSSION

In this study, we developed and validated novel RT-qPCR assays for the detection of
emerging SARS-CoV-2 variants. Since the Alpha, and subsequently other VOCs were
identified, many laboratories have been designing PCR-based assays for the rapid iden-
tification of new threats (Table 4). Most efforts have focused on defining mutations
specific to the Alpha variant, such as the 69-70DEL and 144DEL (34, 49–56). Assays are
also available for mutations common to the Alpha, Beta, and Gamma variants, such as
the N501Y and E484K SNPs (34, 49, 52, 54, 55, 57, 58). Only a few studies have
described qPCR-based assays for the individual detection of Beta, Gamma, and Delta
variants (31, 51, 52, 55, 59) that were circulating in the United Kingdom in the early
half of 2021.

In this study, we developed qPCR-based assays for quantitatively detecting VOC-
specific SNPs for the Beta, Gamma, and Kappa SARS-CoV-2 variants and a deletion spe-
cific to the Delta VOC by the time the study was conducted. Yaniv et al. also designed
a qPCR assay within the same region of the Delta genome that we targeted and used
the assay to successfully identify Delta in wastewater samples. To our knowledge, the
method described in this paper is the first qPCR assay selective for the Kappa variant.
For the Beta and Gamma VSMs, we targeted one SNP site responsible for the amino
acid changes of K417N and K417T, respectively. Previous studies have attempted to
target this SNP leading to K417N SNP using qPCR with a custom-designed or commer-
cial primer/probe sets (52, 55). However, these assays were tested only in clinical set-
tings, where the samples were derived from one patient and hence likely to represent
one genome.

In our study, the assays were performed using wastewater samples from quarantine

TABLE 3 Number of samples tested positive with qPCR and ddPCR only and with both assays

Target n
Positive with
qPCR

Positive with
ddPCR

Positive with qPCR
and ddPCR

Beta VSM 14 1 5 3
Gamma VSM 22 3 12 6
Delta VSM 23 1 9 9
Kappa VSM 6 0 0 0

FIG 2 Quantification and detection of the Beta, Gamma, Delta, and Kappa VSMs in wastewater with RT-qPCR and RT-ddPCR. Panel (a) shows
the correlation between quantities of VSMs determined with RT-ddPCR and RT-qPCR (Pearson's product-moment correlation: t = 2.3, df = 16,
P-value , 0.05), with the dashed line fitted using linear regression. Panel (b) shows the difference between absolute quantities determined
using both PCR methods.

SARS-CoV-2 Variant Detection in Wastewater Microbiology Spectrum

Month YYYY Volume XX Issue XX 10.1128/spectrum.03177-22 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

01
 F

eb
ru

ar
y 

20
23

 b
y 

14
7.

14
3.

86
.5

7.

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.03177-22


facilities, where they were expected to contain multiple SARS-CoV-2 lineages. We
found that the Beta VSM was detected using RT-qPCR only when the concentrations of
SARS-CoV-2 were high and when the Gamma VSM was also detected, which may sug-
gest that the assay was not specific to the SNP K417N or that the SNP may occur in
other, less transmittable lineages not identified by the time of the study. However, it is
also possible that the point mutation was introduced during the extension process of
the PCR assay due to polymerase base substitution errors (62, 63). Therefore, when the
K417N mutation is detected using qPCR, the results should be verified by targeting
another VSM using qPCR (56) or by sequencing.

We also assessed the usefulness of ddPCR for variant detection using synthetic RNA
and a subset of wastewater samples. We found high detection rates for three out of
four VSMs and a good correlation between qPCR/ddPCR and NGS results, suggesting
that this approach could be applicable for detecting SARS-CoV-2 and possibly other
viruses in wastewater. Previous research has also found good correlation between
ddPCR and targeted amplicon sequencing for the detection of SARS-CoV-2 in waste-
water samples (64). Comparative studies suggested that ddPCR may be superior to
qPCR for SARS-CoV-2 quantification in wastewater (65, 66). However, due to limitations
of the reagents used for reverse transcription and amplification, ddPCR could be less

TABLE 4 qPCR assays developed for SARS-CoV-2 variantsa

Reference Application Target variant Lineages Target VSM
49 Clinical Alpha B.1.1.7 69-70DEL

Alpha/Beta/Gamma/Omicron/Mu B.1.1.7; B.1.351; P1; B.1.617.2; BA.1-2;
BA.4-5; BA.2.12.1; B.1.621

N501Y

50 Clinical Alpha B.1.1.7 69-70DEL
59 Clinical Alpha B.1.1.7 D3Lb

Beta B.1.351 242-244DEL
53 Clinical Alpha B.1.1.7 69-70DEL; 144DEL
60 Clinical Omicron BA.1 211-214INSDEL
54 Clinical Alpha B.1.1.7 69-70DEL

Alpha/Beta/Gamma/Omicron/Mu B.1.1.7; B.1.351; P1; B.1.617.2; BA.1-2;
BA.4-5; BA.2.12.1; B.1.621

N501Y

Beta/Gamma/Eta/Iota/Mu B.1.351; P1; B.1.525; B.1.526; B.1.621 E484K
52 Clinical Alpha B.1.1.7 69-70DEL

Alpha/Beta/Gamma/Omicron/Mu B.1.1.7; B.1.351; P1; B.1.617.2; BA.1-2;
BA.4-5; BA.2.12.1; B.1.621

N501Y

Beta/Gamma/Eta/Iota/Mu B.1.351; P1; B.1.525; B.1.526; B.1.621 E484K
Beta B.1.351 K417N

55 Clinical Alpha B.1.1.7 69-70DEL
Alpha/Beta/Gamma/Omicron/Mu B.1.1.7; B.1.351; P1; B.1.617.2; BA.1-2;

BA.4-5; BA.2.12.1; B.1.621
N501Y

Beta/Gamma/Eta/Iota/Mu B.1.351; P1; B.1.525; B.1.526; B.1.621 E484K
Beta B.1.351 K417N
Kappa/Delta B.1.617.1; B.1.617.2 L452R
Delta/Omicron B.1.617.2; BA.1-2; BA.4-5; BA.2.12.1 T478K

57 Clinical Alpha/Beta/Gamma/Omicron/Mu B.1.1.7; B.1.351; P1; B.1.617.2; BA.1-2;
BA.4-5; BA.2.12.1; B.1.621

N501Y

58 Clinical Alpha/Beta/Gamma/
Omicron/Mu

B.1.1.7; B.1.351; P1; B.1.617.2; BA.1-2;
BA.4-5; BA.2.12.1; B.1.621

N501Y

61 Clinical Omicron BA.1-2; BA.4-5; BA.2.12.1 S477N
51 Wastewater Alpha B.1.1.7 69-70DEL

Beta B.1.351 241-243DEL
31 Wastewater Delta B.1.617.2 157-158DEL

Gamma P1 28269-28273INSc

34 Wastewater Alpha B.1.1.7 69-70DEL; D3Lb

Alpha/Beta/Gamma/
Omicron/Mu

B.1.1.7; B.1.351; P1; B.1.617.2; BA.1-2;
BA.4-5; BA.2.12.1; B.1.621

N501Y

56 Wastewater Alpha B.1.1.7 69-70DEL; 144DEL; A570D
aVariant and lineage information were adopted from https://covariants.org/, as accessed on the May 31, 2022. VSM indicate point mutations, insertions (INS), and deletions
(DEL) in the amino acids of the S protein gene, unless stated otherwise.

bMutation in N gene.
cFour-nucleotide insertion in ORF8.
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sensitive than qPCR-based detection for some targets. As up to 10 mL of RNA extract
can be assayed (compared to the maximum of 4 to 5 mL in qPCR), this limitation could
be overcome. Nonetheless, the ddPCR approach is more expensive and time-consum-
ing than qPCR (Table 5) and would require more validation and optimization to gain
reliable results.

In this study, we implemented WBE for monitoring COVID-19 in hotels used as tem-
porary accommodation for people travelling to the United Kingdom from countries
with high COVID prevalence. Travelers were expected to stay for 10 days in the hotels
and take two COVID-19 PCR tests on days 2 and 8. We conducted wastewater testing
at the early stages of the third COVID-19 wave due to the emergence of the Delta vari-
ant in April to July 2021. As expected, the majority (56%) of the wastewater samples
tested positive for SARS-CoV-2. Using RT-qPCR, we sporadically detected defining
mutations associated with the Beta, Gamma, and Kappa variants. The VSM associated
with the Delta variant was commonly detected since May 2021, which coincided with
the emergence of the Delta variant in the United Kingdom (67). Sequencing-based
detection also identified the target variants, and a strong correlation between the var-
iants identified using qPCR and sequencing was found. However, the deletion targeted
by qPCR to detect the Delta variant fell in the overlap between amplicons of the used
primer scheme for sequencing, thus, a direct comparison of its detection between the
two approaches was not possible.

To date, this is the first study using WBE in a quarantine facility in the context of
border surveillance. Our results suggest that PCR-based VSM detection is a good predictor
for variant presence in wastewater samples. However, due to the nature of PCR-based
detection, false identification may occur, thus positive samples can be used to determine
whether further tests and sampling is necessary. This approach supports the timely identi-
fication of SARS-CoV-2 variants among people entering the United Kingdom, given that
sampling can be done daily without invasive or sampling bias. The use of qPCR-based
VSM detection further reduced analysis time to a few hours, as opposed to several days
required for sequencing (including library preparation, sequencing run, data analysis, and
interpretation). Overall, qPCR results on VSMs may be available within 24 to 48 h post-
sampling, depending on the length of the wastewater processing methods. In conclusion,
we have shown that wastewater-based RT-qPCR-based assays can be readily deployed to
track the entry of different variants of SARS-CoV-2 across international borders and to vali-
date the usefulness of travel quarantining facilities.

MATERIALS ANDMETHODS
Primer and probe design. Reference sequences for the Beta (EPI_ISL_678597), Gamma (EPI_ISL_792683),

Delta (EPI_ISL_1544014), and Kappa (EPI_ISL_1662307) SARS-CoV-2 variant genomes were taken from the
GISAID database (35). The probes were designed to target-defining mutations of each variant, as detailed in
Table 6, which were identified using Nextstrain resources (36). The primers and probes were designed using
Geneious Prime v2021.1.1 (Biomatters, New Zealand). For each target, two to four primers and one to two
probes were designed. All oligos were tested in different combinations, and the most sensitive assays were
selected for further testing (Table 6). To enable duplexing, the probes targeting the Gamma and Delta VSMs

TABLE 5 Comparison of the qPCR and ddPCR approaches for SARS-CoV-2 detection

Criterium qPCR ddPCR
Platform tested QuantStudio Flex 6 384 platform

(Applied Biosystems, Inc., USA)
QX200 Droplet Digital PCR System
(Bio-Rad Laboratories, USA)

Samples / run 184 94
Run time 1.5 hours (1 step) 1 day (3 steps)
Quantification type Relative to standards Absolute
Quantification range 3 to 1,000,000 copies/reaction 5 to 15,000 copies/reaction
Equipment cost £37,000 £110,000
Reagent cost/90 samples £445 £520 to 600
Sample vol/reaction 4mL 10mL
Amplicon sequencing Yes No
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were labeled with FAM as a reporter, whereas the Beta and Kappa probes were labeled with HEX. The primers
and probes were purchased from Integrated DNA Technologies (IDT; USA) and Eurogentec S.A. (Belgium).

RT-qPCR assay. The RT-qPCR assays were carried out using the QuantStudio Flex 6 real-time PCR
system (Applied Biosystems, USA). Each 20 mL reaction mix contained 1� TaqMan Fast Virus 1-Step
Master Mix (Applied Biosystems, USA) with 10 pmol forward primer, 20 pmol reverse primer, 5 pmol
probe, 16 nmol MgSO4, 1mg bovine serum albumin (BSA), and 4mL sample/standard/control. Amplification
was carried out using the following thermal cycling conditions: reverse transcription at 50°C for 30 min fol-
lowed by enzyme inactivation at 95°C for 20 s, then 45 amplification cycles of 95°C for 3 s, 55°C/58°C/60°C
for 30 s. Our preliminary data showed that the assays performed the best with annealing/extension at 58°C;
hence, this temperature was used in subsequent reactions.

Each reaction plate contained two to four nontemplate controls (NTCs), where molecular grade
water was added to the reaction mix instead of samples to confirm the absence of contamination. We
used a serial dilution of standards with a concentration range of 10° to 105 genome copies (gc)/mL of
standard in duplicate for method development and quantification. We used commercially available syn-
thetic RNA standards for the Beta, Gamma, and Delta variants (Standard 16-17-18, Twist Bioscience, USA)
which were identical to the reference genomes used for primer and probe design. Due to the lack of
commercially available genome standards, we used synthetic DNA incorporating the target sequence,
based on the VoC reference genome (detailed above), for the Kappa variant (IDT, USA).

After each run, the threshold values were manually adjusted when the noise levels were high. The stand-
ard curves met the criteria described in the MIQE guidelines (37), with the slope and efficiency being within
recommended limits of 23.1 to 3.6 and 90% to 110%, respectively, as detailed in Table 7. The sample RNA
concentrations were calculated using the QuantStudio Flex 6 Real-Time PCR software v1.7 and expressed as
gc/mL RNA extract. The virus RNA concentration in the wastewater samples were calculated as:

Wastewater virus concentration ðgc=lÞ ¼

concentration of the RNA extract gc
ml

� �
� RNA extract volume 0:1mlð Þ

volume of sample processed 150mlð Þ � 1000ml

RT-ddPCR. RT-ddPCR assays were carried out using the QX200 AutoDG Droplet Digital PCR System (Bio-
Rad, USA). The 20 mL reaction mix, containing 1� One-step RT-ddPCR Super Mix, 1� One-step RT-ddPCR
Reverse transcriptase, 15 mM DTT, 10 pmol forward primer, 20 pmol reverse primer, 5 pmol probe, and 4mL
wastewater extract or standard was subject to automated droplet generation. The resulting mixture was sub-
ject to PCR amplification with the following reaction conditions: reverse transcription at 50°C for 60 min, inac-
tivation at 95°C for 10 min, 40 cycles of denaturation at 95°C for 30 s and annealing-extension at 58°C for
4 min, followed by deactivation at 98°C for 10 min, and hold at 4°C. The concentrations were determined
using a QX2000 Droplet reader. The optimal annealing-extension temperature was determined using RNA/
DNA standards with concentrations of approximately 500 gc/mL with 55°C to 65°C gradient.

Limit of detection and limit of quantification. We tested the limit of detection (LOD) and limit of
quantification (LOQ) for the two duplex RT-qPCR assays targeting the Beta/Gamma and Delta/Kappa var-
iants by spiking wastewater extracts with viral RNA standards (Twist Bioscience, USA) at nominal concen-
trations of 100, 50, 20, 10, 5, and 2 gc/mL. Ten replicates of each dilution were then tested and quantified
using a dilution series of RNA/DNA standards, detailed above. The LOD was determined as the lowest
concentration where all 10 replicates were positive and the LOQ was determined as the lowest concen-
tration where the coefficient of variance was below 0.25 (38).

Assessment of cross-reactivity. To assess whether the assays are specific for the target VSMs, each
primer and probe set was tested using RT-qPCR assays on dilution series of RNA from the Wuhan strain,
the Alpha, Beta, Gamma, Delta, and Kappa variants. For all variants, we used synthetic RNA (Twist
Bioscience, USA). For the Wuhan strain and the Alpha, Beta and Delta variants, we also used RNA extracts

TABLE 6 Summary of the primers and probes designed to target variant-specific mutations
(VSM) of the Beta, Gamma, Delta, and Kappa variants of SARS-CoV-2

Target variant
Target
VSM Oligo type Sequencea

Beta (B.1.315) K417N Forward primer TGAAGTCAGACAAATCGCTCC
Reverse primer CAAGCTATAACGCAGCCTGT
Probe HEX-AGGGCAAACTGGAAATATTGCTG-BHQ

Gamma (P1) K417T Forward primer TGAAGTCAGACAAATCGCTCC
Reverse primer CAAGCTATAACGCAGCCTGT
Probe FAM-ACTGGAACGATTGCTGATTATAATT-MGB

Delta (B.1.617.2) 156-157DEL Forward primer GATCCATTTTTGGGTGTTTATTACC
Reverse primer GGCTGAGAGACATATTCAAAAGTG
Probe FAM-TGGAAAGTAGAGTTTATTCTAGTGCG-MGB

Kappa (B.1.617.1)
including B.1.617.3)

E154K Forward primer GCCGGTAGCACACCTTGTAA
Reverse primer GTTGGAAACCATATGATTGTAAAGGA
Probe HEX-TGGTGTTCAAGGTTTTAATTGTTAC-BHQ

aThe dye names are present in bold.

SARS-CoV-2 Variant Detection in Wastewater Microbiology Spectrum

Month YYYY Volume XX Issue XX 10.1128/spectrum.03177-22 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

01
 F

eb
ru

ar
y 

20
23

 b
y 

14
7.

14
3.

86
.5

7.

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.03177-22


from in vitro cultured and heat-inactivated SARS-CoV-2, kindly provided by Richard Stanton (Cardiff
University, UK).

Wastewater sample collection and process. The duplex RT-qPCR assays were tested on composite
wastewater samples taken daily at 13 managed quarantine facilities as part of the English COVID-19
wastewater surveillance program (21). These facilities constituted large hotels adjacent to international
air travel hubs where passengers were placed into self-isolation for 8 days upon entry to the United
Kingdom. The sampling team were able to confirm at each location that all laundry and industrial clean-
ing services took place off-site, thus reducing the risk of sample contamination and/or signal reduction.

Samples of wastewater were taken from either the main sewer drain leaving each hotel, or from
sumps/pumping stations where access to a main sewer drain was not viable. Sampling weas conducted
using diurnal refrigerated composite autosamplers between April 1, 2021 and July 23, 2021 at Sites 1 to 5;
between April 1, 2021 and July 19, 2021 at Sites 6 to 9, and between June 12, 2021 and July 23, 2021 at
Sites 10 to 13. The samplers were configured to draw 250 mL of wastewater every 15 min over a 24-h pe-
riod at each sampling location. In total, 820 samples were collected. Samples were transported at 4°C
within 24 h to the laboratory, spiked with phi6 bacteriophage (process control virus) and concentrated
using ammonium sulfate precipitation, followed by NucliSens extraction reagents (bioMérieux, France) as
described elsewhere (39). The extracted samples were tested for phi6 concentrations to assess viral recov-
ery in each sample (39) and for the N1 fraction of the SARS-CoV-2 genome (28, 40) prior to VSM RT-qPCRs.

Historic sample analysis. To demonstrate specificity, RNA extracts from 12 wastewater samples
taken at six large centralized urban wastewater treatment sites on the weeks commencing April 14,
2020 and May 18, 2020 were also tested. The samples were concentrated using ultrafiltration and
extracted as described previously (41). The N1-specific RT-qPCR assays suggested that 10 samples were
positive for SARS-CoV-2 with concentrations between 1 and 629 genome copies (gc)/mL RNA extract.

Next-generation sequencing. Tiled amplicon sequencing libraries were generated from extracted
samples using the EasySeq SARS-CoV-2 WGS Library Prep kit (NimaGen, the Netherlands) using Nimagen
V2 (February 2021 to May 2021) and V3 (May 2021 to January 2022) primer schemes. Sequencing was per-
formed as described elsewhere (42). In brief, the method contained three sections: (i) clean up using
AMPure RNA XP beads (Beckman Coulter Agencourt) or Mag-Bind TotalPure NGS beads (Omega Bio-Tek);
(ii) reverse-transcription using the LunaScript RT SuperMix kit (New England Biolabs); and (iii) reverse com-
plement PCR (RC-PCR) using the EasySeq RC-PCR SARS-CoV-2 WGS kit (NimaGen). Amplicons were then
pooled, and libraries purified with Mag-Bind (T) Total Pure NGS beads (Omega Bio-Tek) before sequencing
on an Illumina NovaSeq 6000 (2 � 150 bp) at the University of Liverpool and Exeter sequencing centers or
on an Illumina NextSeq 500 (2 � 150 bp) at the University of Nottingham sequencing center.

Raw reads were processed following the ARTIC pipeline (ncov2019-artic-nf; Illumina workflow;
https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html. First, amplicon reads were filtered
using Trim Galore v0.6.5 (https://github.com/FelixKrueger/TrimGalore) and then mapped to the refer-
ence SARS-CoV-2 genome (NCBI GenBank Accession MN908947.3) (43) using BWA v0.7.17 (44). Adapter
trimming was performed using iVar v1.3 and bed files containing the genome positions of the 154 pri-
mers used to generate the amplicons (Nimagen V2 and V3 primer schemes). The resulting BAM files
were sorted and indexed using SAMtools v1.13 (45) and then were submitted to VarScan v2.4.4 (46) to
identify SNPs and InDels. In parallel, the indexed Bam files were submitted to COJAC (47) to identify
cooccurring SNPs on the same amplicon. An in-house python script was then used to match SNP profiles
and cooccurring SNPs to SARS-CoV-2 variant definitions provided by PHE (https://github.com/phe
-genomics/variant_definitions). The output was a list of the variants detected in each wastewater sam-
ple. A visual review was performed to add a “Confirmed,” “Possible,” or “Not detected” status to each
detection, reflecting how closely the profile matched the variant definition. Here, a sample was consid-
ered positive for a variant when both a “Confirmed” or “Possible” detection was assigned.

Data analysis. RT-qPCR assays were analyzed using the QuantStudio Real-Time PCR Software v1.7.2
(Applied Biosystems, Waltham, USA). RT-ddPCR assays were analyzed using Bio-Rad QX One c1.2 software (Bio-
Rad Laboratories Ltd., UK). Exported quantification values were analyzed in R v4.1.2 (48) utilizing packages
“readxl” and “tidyverse.” PCR methods for detecting VSMs were compared with NGS using generalized linear
models with binomial residuals and evaluated by parameter significance and misclassification error. Median viral
gene copies quantified with RT-qPCR and RT-ddPCR were compared using Wilcoxon rank sum exact tests, and
correlations between quantities from each method were compared using Pearson's product-moment correlation.

Data availability. All data are available upon request.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.4 MB.

TABLE 7 Standard curve slope, efficiency, and R2 values for each target variant-specific
mutation of SARS-CoV-2

Target Slope R2 Efficiency %
Beta –3.1 0.999 110
Gamma –3.2 0.983 107
Delta –3.6 to –3.3 0.957 to 0.998 92 to 103
Kappa –3.1 to –3.2 0.987 to 0.998 108 to 109
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