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Abstract 14 

The banded krait, Bungarus fasciatus is a widespread elapid snake, likely to comprise 15 

several distinct species in different geographic regions of Asia. Therefore, based on 16 

molecular phylogenetics and comparative morphology data, we present an overview of the 17 

systematic composition of the species to delimit potential biogeographic boundaries. Our 18 

phylogenetic analyses, based on four mitochondrial genes, reveal the existence of at least 19 

three evolutionary lineages within B. fasciatus, corresponding to Indo-Myanmar, Sundaic 20 

and eastern Asian lineages. We are convinced that there are at least three taxonomic 21 

entities within the nomen B. fasciatus and restrict the distribution of B. fasciatus sensu 22 

stricto to the Indo-Myanmar region. We also provide additional natural history data of the 23 

taxon from eastern India. Finally, we advocate further studies to establish the degree of 24 

reproductive isolation among these diverging evolutionary lineages and to reassess the 25 

systematic status of this species complex especially the Sundaic and eastern Asian 26 

lineages. 27 

Introduction 28 

Aside from its taxonomical importance, recognition and ascertainment of independently 29 

evolving lineages is crucial for understanding the evolutionary processes affecting the origin 30 

of population structure and species diversification [1]. Because of the growing availability of 31 

genetic methods for species delineation [2], numerous studies have uncovered cryptic 32 
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diversity within the widespread vertebrate species including in tropical and sub-tropical Asia; 33 

for instance, among fishes [3–5], amphibians [6–8], birds [9–11], and mammals [12–14]. 34 

Moreover, recent phylogeographical and molecular studies have refined our understanding of 35 

cryptic speciation across biogeographic boundaries or within biogeographic regions [15,16], 36 

and even propounded the suitability of reptiles in particular as biogeographic indicators 37 

[17,18]. Recent studies focussing on widespread reptilian species have also established the 38 

existence of previously unnoticed cryptic diversity, including in lizards [19–22] and snakes 39 

23–30]. 40 

Bungarus Daudin, 1803, collectively known as kraits, are venomous elapid snakes 41 

which inhabit the Asian subcontinent [31]. Most of the nominal Bungarus species are poorly 42 

understood. However, recent study on the diversification and evolution of elapid snakes have 43 

highlighted that the diversification of kraits occurred around 30–25 million years ago, and 44 

are close relatives of other Australasian elapid genera and sea snakes [32]. Bungarus 45 

fasciatus (Schneider, 1801), commonly known as the banded krait, is a nocturnal and 46 

conspicuous krait that grows up to 2,250 mm in total length and is morphologically 47 

characterized by its yellow (or cream) and black banded body [33]. It occurs in various 48 

habitat types such as primary forests, agricultural lands as well as domestic gardens up to 49 

2,300 m above sea level [33,34]. So far, B. fasciatus has been reported from eastern India, 50 

Nepal, Bhutan, Bangladesh, and Myanmar, extending southwards through Thailand, 51 

Malaysia and Singapore into the Indonesian archipelago, and eastwards through Laos, 52 

Vietnam and China [35,36]. The species is currently listed as a Least Concern (LC) species 53 

in the IUCN Red List [35]. Despite its wide distribution, studies have so far been conducted 54 

mainly on its potential medical significance [37], ecological importance [38,39], or 55 

characterization of venom [40–45]. 56 

Although there are no studies specifically on the molecular systematics of this 57 

species, several previous studies have highlighted intra-specific or geographical variability 58 

based on genetic barcoding [46–48]. Accurate species delimitation is crucial in view of the 59 

variability in snake venom composition [49] and its potential effects on antivenom efficacy 60 

[50]. Most of the existing taxonomic and systematic literature on Bungarus have apparently 61 

overlooked the intraspecific diversity of B. fasciatus [51–58]. Therefore, in this study we fill in 62 

the inherent knowledge gaps by providing comparative morphological evidence and 63 

molecular phylogeny based on four mitochondrial genes (COI, CYTB, ND4 and 16S rRNA) 64 

based on sequences from east and northeast India, Indochina, and the Greater Sunda islands. 65 

Moreover, given the minimal knowledge on the natural history, reproductive behaviour, and 66 
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ecology, which are important for assessing the population status of the species [34,59], we 67 

also provide natural history data for the populations of B. fasciatus from India. 68 

 69 

Materials and methods 70 

Sampling. For this study, we collected both morphological and genetic data for Bungarus 71 

fasciatus, which we compared to publicly available or unpublished data. We collected 72 

morphological data for the B. fasciatus population represented by 15 specimens from 73 

northeastern India between the years 2007–2022. We surveyed during the day and night, 74 

collected individuals by hand, and euthanized them with MS-222 following the standard 75 

procedure [60] in compliance with the American Veterinary Medical Association (AMVA) 76 

guidelines and approved by the Institutional Animal Ethics Committee (IAEC) (Permission 77 

No. MZU-IAEC/2018/12). We then fixed the specimens in 10% buffered formalin solution 78 

overnight, prior to their storage in 70% ethanol. We preserved liver tissue samples for DNA 79 

analysis in 95% ethanol, which were stored at −20 °C. Vouchered specimens were deposited 80 

at the Departmental Museum of Zoology, Mizoram University (MZMU). Additional blood 81 

samples from the caudal sinus were collected from the West Bengal (WB) populations and 82 

preserved in EDTA-Tris buffer; these specimens were subsequently released after taking 83 

necessary scale counts. Our study is reported in accordance with the ARRIVE 2.0 guidelines 84 

(Animal Research: Reporting of In Vivo Experiments) [61]. The distribution map was 85 

prepared using QGIS v3.16.2 and the digital elevation model (DEM) was downloaded from 86 

Open Topography (https://opentopography.org/). 87 

DNA extraction, amplification and molecular analyses. Liver tissue or blood was used to 88 

extract genomic DNA using DNeasy (Qiagen™) blood and tissue kits following the 89 

manufacturer’s instructions. Fragments of four mitochondrial (mt) markers (16S, COI, ND4 90 

and CYTB) were amplified in a 20 μL reaction volume, containing 1X DreamTaq PCR 91 

Buffer, 2.5 mM MgCl2, 0.25 mM dNTPs, 0.2 pM of each gene primer pair, approximately 92 

3.0 ng of extracted DNA, and 1 U of Taq polymerase. A negative control with reagent grade 93 

water instead of DNA template was always included. Target mt gene sequences were 94 

amplified using the thermal profiles and primers given in Supplementary Table S1. PCR 95 

products were checked using gel electrophoresis on a 1.5% agarose gel containing ethidium 96 

bromide. The PCR products were cleaned using ThermoFisher ExoSAP- IT PCR product 97 

cleanup reagent and subsequently sequenced using the Sanger dideoxy method using the 98 

ABI 3730xl DNA Analyzer at Barcode BioSciences, Bangalore, India. The generated partial 99 

gene sequences were deposited on the NCBI repository (GenBank accession numbers are 100 

https://opentopography.org/
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given in Supplementary Table S2). In this study, a total of one COI, six 16S, six ND4, and 101 

nine CYTB sequences were generated and were combined with published sequences of B. 102 

fasciatus obtained from the NCBI database; database sequences of B. caeruleus, B. 103 

candidus, B. ceylonicus, B. sindanus, and B. multicinctus were used as outgroups. The four 104 

mt gene alignments were concatenated in SequenceMatrix [62]. Using the CYTB dataset, 105 

the uncorrected p-distance was estimated in MEGA X using the complete deletion option 106 

for the treatment of gaps/missing data [63]. Prior to the Bayesian analysis, PartitionFinder 107 

v2.1 [64] was utilized to search the best partitioning schemes and the best fitting model 108 

through Bayesian Information Criterion (BIC) (Supplementary Table S3). Bayesian 109 

phylogeny (BI) was recon- structed using the selected models in Mr.Bayes v3.2.5 [65]. The 110 

MCMC was run with four chains (one cold and three hot chains) for 20 million generations 111 

and sampled every 5000 generations. Tracer v1.7 [66] was used to check the convergence of 112 

likelihood and the burn-in cut-off. The diagnosis of topological convergence and MCMC 113 

and mixing of chains was done in R-Studio [67] using the package, R We There Yet 114 

(RWTY) [68]. The BI tree was further illustrated using web-based tree annotator iTOL 115 

software v5 [69]. The Maximum Likelihood (ML) tree was reconstructed in IQ-TREE [70] 116 

using 10,000 Ultrafast Bootstrap (UFB) [71] based on the dataset partitioned by codon 117 

positions with the most appropriate model selected for each partition using ModelFinder 118 

[72] integrated in IQ-TREE [70]. The CYTB dataset, partitioned by codon, was utilized for 119 

performing BI and ML based Poisson Tree Processes (PTP) species delineation analyses [73] 120 

implemented in iTaxoTools v0.1 [74]. For the input file of PTP, a non-ultrametric tree was 121 

produced in IQ-TREE [70] with 10,000 UFB replicates [71] using the models selected for 122 

CYTB partitions. Only the CYTB dataset was selected for the species delimitation analysis 123 

as it contains more samples from different geographical regions compared to the other three 124 

genes. 125 

Morphology. We obtained morphometric (mensural and meristic) data for species 126 

comparisons, and distribution data from examined specimens (Java (JV), Mizoram (MZ) 127 

and WB) and published literature [54,75–77]. We measured the following characters to the 128 

nearest millimetre with a Mitutoyo digital caliper and Leica M50 (Leica Microsystems Inc.) 129 

dissecting microscopes: eye diameter (ED, horizontal diameter of orbit); eye–nostril length 130 

(EN, distance between anteriormost point of eye and middle of nostril); snout length (ES, 131 

distance between anteriormost point of eye and snout); head length (HL, distance between 132 

posterior edge of mandible and tip of snout); head width (HW, maximum width of head); 133 

snout–vent length (SVL, measured from tip of snout to anterior margin of vent); tail length 134 
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(TaL, measured from anterior margin of vent to tail tip). Meristic characters were taken as 135 

follows: supralabials (SL) and infralabials (IL) (first labial scale to last labial scale 136 

bordering gape); dorsal scale rows (DSR, counted around the body from one side of ventrals 137 

to the other in three positions, on one head length behind neck, at midbody and at one head 138 

length prior to cloacal plate); when counting the number of ventral scales (Ve), we scored 139 

values according to the method described by Dowling [78]. We counted subcaudal scales (Sc) 140 

from the first subcaudal scale meeting its opposite to the scale before the tip of the tail, the 141 

terminal scute is excluded when counting. Sex of the specimens was identified by examining 142 

everted hemipenes or by ventral tail dissection. We evaluated the relative size of the nuchal 143 

band, the number of the black cross bands of each individual. The number of cross bands on 144 

the body (BB) were counted from the first band posterior to the nuchal band on the nape up 145 

to the level of cloaca, the count on the tail from the level of cloaca to the tip of tail (BT), and 146 

number of vertebral scales covering the nuchal band (NBW). In addition, the number of 147 

vertebral scales covering the first cross band is also considered a reliable character for adult 148 

individuals. Values for bilateral head characters are given in left/right order. We followed 149 

Keogh [79] for hemipenial terminology, and the extent of inverted hemipenis in terms of 150 

percentage of subcaudal scales (HpR). 151 

Statistical analyses. The morphological information was obtained from three different 152 

populations examined by us: recent and long-term preserved specimens from JV in 153 

Indonesia (n = 15), live specimens from WB (n = 8) and live, recent and long-term preserved 154 

specimens from MZ (n = 15) states in India. Before performing any further analyses, the 155 

meristic data were standardized to zero mean and unit standard deviation to avoid potential 156 

bias due to difference in the range of measurement among variables; for mensural data, the 157 

combina tion of characters with the highest R-squared score obtained through linear 158 

regression was selected as the best log transformation model to make linear relationship 159 

with body size. Since we do not have gender information from the WB population, the 160 

meristics of the remaining populations (JV and MZ) were first tested using separate one-161 

way analysis of variance (ANOVA) using sex and locality as factors along with Levene’s 162 

test [80] to test the homogeneity of variances; if the assumption of homoscedascity was 163 

violated, Brown-Forsythe test [81] was utilised as an alternative approach. For mensurals 164 

(TaL, HL, and HW), a two-way analysis of covariance (ANCOVA) was carried out with 165 

snout-vent length (SVL) as a covariate. The meristic variables identified with no sexual 166 

dimorphism were utilised for multiple comparison among the three populations by pooling 167 

sexes using one- way ANOVA using locality as a factor, and post-hoc was performed with 168 
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applying Bonferroni correction. In addition, a potential observer difference was screened by 169 

repeating measurements on the same specimens and then tested using one-way ANCOVA. 170 

The variable characters among lineages identified through the univariate analyses were 171 

utilized further for Principal Component Analysis (PCA) to visualize the clustering of the 172 

different populations. The correlation matrices between all pairs of the morphological 173 

variables, variance explained by each eigenvalue as well as the correlations of each variable 174 

to the first two components are explored. Specimens with missing characters were excluded in 175 

the multivariate analysis. Statistical analyses were performed using the SPSS v.25.0 statistical 176 

package (Armonk, NY: IBM Corp.). 177 

Results 178 

Phylogenetic relationship.    The first 25% of trees from the BI analysis were discarded as 179 

burn-in, and the standard deviation of split frequencies were < 0.005 when analyses 180 

terminated. The graphs created using RWTY in R-Studio also indicated satisfactory 181 

topological mixing. The inferred concatenated trees from BI and ML analyses were congruent 182 

with each other. The BI tree, created using Mr.Bayes v3.2.5 [65] and further illustrated using 183 

iTOL software v5 [69], is show in Fig. 1, with Bayesian posterior probabilities from the BI 184 

analysis and UFB values from the ML analysis. The CYTB dataset consisted of a total of 185 

1047 aligned characters, with 97 variable sites (excluding outgroups). 186 

Molecular phylogenetic based on the concatenated aligned matrix for four 187 

mitochondrial genes (16S, COI, ND4, and CYTB; 2850 bp in length), recovered a 188 

monophyletic clade consisting of three lineages within Asia. Both the phylogenetic analyses 189 

and the single-locus-based PTP species delineation approach significantly support these three 190 

distinct clades which we describe as, (i) B. fasciatus from the Sundaic region, especially 191 

from Great Sunda islands which we describe as the Sundaic lineage (Clade I; Fig. 1); (ii) B. 192 

fasciatus from Indo-Myanmar (Clade II; Fig. 1), and (iii) B. fasciatus from mainland 193 

Sundaland including southern China, here described as east Asian lineage (Clade III; Fig. 1). 194 

The overall mean intra-specific divergence across all lineages of B. fasciatus 195 

(uncorrected p-distance) was 3.5%. Furthermore, 0.4% intra-clade genetic divergence was 196 

observed within Clade I (between two locations in JV), 0.0%–1.3% within Clade II (between 197 

India and Myanmar), and 0.0%–6.5% within Clade III (among China, Vietnam, Thailand, and 198 

an unknown locality). The mean inter-clade genetic divergence is 5.0% between Clade I 199 

(Sundaic) and Clade II (Indo-Myanmar), 5.3% between Clade II (Indo-Myanmar) and III 200 

(east Asia); 5.7% between Clade I (Sundaic) and III (east Asia). Combined B. fasciatus 201 

(Clades I + II + III) shows the least inter- specific genetic divergence (19.5%–19.8%) with B. 202 
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candidus, while inter-specific distances among other species (B. sindanus, B. caeruleus, B. 203 

candidus, B. ceylonicus, and B. multicinctus) range from 3.0% (between B. candidus and B. 204 

multicinctus) to 19.0% (between these two species and B. ceylonicus) (also see 205 

Supplementary Table S4). 206 

Morphometric analysis.   In this study, despite limited sampling, morphometric analyses 207 

were performed to identify taxonomically informative characters among the examined 208 

populations (WB, MZ and JV). Only the mensurals such as TaL (p < 0.001), HW (p < 0.05) 209 

and HL (p < 0.05) showed significantly dimorphic characters between males and females 210 

within JV and MZ populations. For meristic characters, inter-population differences were 211 

statistically significant (p < 0.001) for Ve (MZ vs. JV), BB, BT, and NBW (the latter three 212 

characters are tested among three populations), all of which showed a higher number in the 213 

MZ population; for mensural characters, inter-population differences were also statistically 214 

significant for TaL (p < 0.05) and HL (p < 0.001) (Table 1). Post-hoc tests conducted among 215 

the three populations for BB, BT, and NBW showed that, except for BT between MZ and 216 

WB populations (p > 0.05), significant differences are seen for all characters: BB (p < 0.001 217 

across all the populations), NBW (p < 0.001 in MZ vs. WB, and JV vs. WB; p < 0.05 in MZ 218 

vs. JV), and BT (p < 0.001 in MZ vs. JV; p < 0.01 in JV vs. WB). Comparison was also 219 

made based on the identified variable meristic characters among the three populations using 220 

a PCA. The correlation matrix showed weak correlations between pairs of variables (r < 221 

0.7); thus, all variables were retained for this analysis. The first two components accounted 222 

for 84% of the total variation of the data, with PC1, PC2 and PC3 representing 64%, 20% 223 

and 11%, respectively. The loadings of all variables are high on the first axis, while only Ve 224 

loads considerably highly on the second axis, with Ve having less effect on PC1 than PC2 225 

(Supplementary Table S5). The representation of the first two components depicts 226 

substantial separation of the Javanese and the Indian populations on the first axis (PC1), and 227 

marginal separation of the WB and MZ populations on the second axis (PC2) (Fig. 2). Given 228 

that the samples from the three populations (WB, MZ and JV) were examined by different 229 

recorders, we also tested for potential recorder bias between the East Indian and northeast 230 

Indian specimens; however, no significant differences were seen after re-examination of the 231 

same specimens (p > 0.05). 232 

Systematics. We present diagnostic morphological, morphometric, and meristic data taken 233 

for Bungarus fasciatus Clade II from east and northeast India (Supplementary Table S6). 234 

The examined specimens of B. fas ciatus from India are morphologically distinguishable 235 

from the Sundaic population (see Table 2). Based on the present study, we postulate the 236 
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existence of at least three different taxonomic entities within the nomen B. fasciatus, and also 237 

confirm that populations in eastern India (e.g. Odisha, WB, etc.) and northeastern India (e.g. 238 

MZ, Assam, etc.) are conspecific. Based on the original description of Pseudoboa fasciata, 239 

minimum three specimens were available or referable to Schneider [82]; hence syntypes. 240 

Among these syntypes two specimens (ZMB 2771, 2772) have been deposited at ZMB from 241 

the collection of Marcus Bloch (fide Bauer [83]). In addition, one of syn- types was depicted 242 

in Russell [84] (page 3, plate 3) as the “Bungarum Pamah”, an adult from “Mansoor Cottah” 243 

(now Gobalpur, Odisha (Orissa), India), specimen is now lost (fide Bauer [85]). So far, the 244 

only existing name-bearing type specimens are the two syntypes in the collection of Berlin 245 

Zoological Museum (ZMB 2771–72) originating from “Indien” (=India) fide ZMB 246 

catalogue [36] a detailed taxonomic revision will be published elsewhere (Amarasinghe et 247 

al. in preparation). We affirm that the specimen used by Russell [84] for his illustration is the 248 

same specimen (syntype) housed in the ZMB, thus we adhere with the type locality given by 249 

Russell [84]. Therefore, here we postulate the Indo-Myanmar populations (Clade II) as B. 250 

fasciatus sensu stricto, while considering the populations from Sundaic region, especially 251 

from Greater Sunda Islands (Clade I) and mainland Sundaland including southern China 252 

(Clade III) as B. fasciatus sensu lato. Consequently, we redescribe the B. fasciatus sensu 253 

stricto, including hemipenis morphology, based on MZ population, from where a large 254 

number of samples are available. 255 

Bungarus fasciatus (Schneider, 1801) sensu stricto 256 

(Tables 1, 2; Figs. 3A–E, 4A–B, 5) 257 

[English: Banded krait; Bengali: Sankhamuti/Sankhini/Chamorkasa; Mizo: 258 

Chawnglei/Tiangsir] 259 

Pseudoboa fasciata Schneider, 1801 260 

Bungarus annularis Daudin, 1803. 261 

Bungarus fasciatus bifasciatus Mell, 1929. 262 

Bungarus fasciatus insularis Mell, 1930. 263 

Examined materials. Males (n=7; MZMU 933, 1314, 1320, 1417, 1421, 1883, 2935) and 264 

Females (n=8; MZMU 1319, 1321, 1550, 1562, 1561, 1548, 1572, 2481) collected from 265 

Mizoram, northeast India. 266 

Species redescription. Based on the overall examined MZ materials with combined sexes, 267 

adults SVL 444.0–1220.0 mm, tail length 47.0–133.0 mm; head elongate (HL 2.0–3.5% of 268 

SVL), wide (HW 71.8–92.1% of HL), slightly flattened, indistinct from neck; snout elongate 269 



9 

(ES 22.8–40.1% of HL), moderate, flat in dorsal view, rounded in lateral profile, rather 270 

depressed. Rostral shield large, flat, slightly visible from above, pointed posteriorly; 271 

interorbital width broad; internasals subtriangular; nostrils rather large, nasals large, divided, 272 

and elongated, in anterior contact with rostral, and internasal and prefrontal dorsally, 1st and 273 

2nd supralabial ventrally, preocular posteriorly; no loreal; prefrontal rather large, broader 274 

than long, and pentagonal; frontal large, hexagonal, short, slightly longer than width; 275 

supraoculars narrow, elongate, subrectangular, posteriorly wider; parietals large, elongate, 276 

butterfly wing-like in shape, bordered by supraoculars, frontal, upper postocular anteriorly, 277 

anterior and upper posterior temporals, and five or six nuchal scales posteriorly; one 278 

preocular, vertically slightly elongated, hexagonal, in contact with prefrontal and posterior 279 

nasal anteriorly, supraocular dorsally, and 2nd and 3rd supralabials ventrally; eye moderate 280 

(ED 10.7–21.7% of HL), round, about half of the size of snout length (ED 41.7–69.9% of 281 

ES), pupil rounded; two postoculars, subequal or upper one larger, pentagonal, upper 282 

postocular in broad contact with supraocular, parietal and anterior temporal, lower 283 

postocular in contact with anterior temporal and 5th supralabials; temporals 1 + 2, large, 284 

slightly elongated, subrectangular or pentagonal; anterior temporal larger than posterior 285 

temporal, in contact with parietal and both postoculars dorsally, and 5th and 6th 286 

supralabial ventrally; lower posterior temporal in contact with 6th and 7th supralabials 287 

ventrally. Supralabials seven (on both sides), 5th–7th largest in size; 1st supralabial in contact 288 

with rostral anteriorly, nasals dorsally, 2nd with posterior nasal and preocular dorsally, 3rd 289 

with preocular and orbit dorsally, 4th with orbit; 5th with orbit, lower postocular, and 290 

anterior temporal dorsally, and 6th with anterior and lower posterior temporals dorsally, 7th 291 

with lower posterior temporal dorsally and scales of the neck posteriorly. 292 

Mental large, triangular, blunt posteriorly; first infralabial pair larger than mental 293 

plate and in broad contact with each other, in contact with anterior chin shields posteriorly; 294 

seven infralabials, 1st–4th in contact with anterior chin shields, 4th infralabial largest in size 295 

in contact with both anterior and posterior chin shields; 4th–7th infralabials in contact with 296 

gular scales; two larger anterior chin shields, and two slightly smaller posterior chin shields; 297 

anterior chin shields in broad contact between them; posterior chin shields bordered 298 

posteriorly by seven gular scales. 299 

Body robust, elongate and subcylindrical; dorsal scales in 15 midbody rows, all 300 

smooth and pointed posteriorly; 222–228 ventrals in males and 224–231 in females; cloacal 301 

plate divided. Tail comparatively short, TaL 8.9–10.4% of total length in males and 13.5–302 

17.1% of total length in males, robust and thick; subcaudals 35–37 in males and 32–36 in 303 
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females, divided. 304 

Coloration.  In preservative, dorsum and venter white or yellow; 22–27 black cross bands 305 

along the body and 4 or 6 on the tail; cross bands complete laterally, and reaching the 306 

ventrals except the nuchal band; the bands on the tail distinct; the nuchal band on the nape 307 

anteriorly inverted V-shaped covering 15–20 vertebral scales; nuchal band starts from mid 308 

frontal; snout, anterior head, and lateral head black making remaining the white dorsal color 309 

an inverted V-shaped marking; first black band on the body covering 6 or 7 vertebral scales; 310 

inter-band width covers with 3–5 vertebral scales; lower parts of the supralabials white; 311 

ventral head white until the first black band; tail tip black dorsally, white ventrally. 312 

In life (Fig. 4A), same color as in preservative, but the white body color may vary 313 

from white, cream, pale yellow to bright yellow. One juvenile with cream and black body 314 

bands was encountered in Saikhawthlir, MZ (Fig. 4B), but the snake escaped before 315 

recording morphological data. 316 

Variation. Except the anomalous specimen (MZMU1321) which had three postoculars on 317 

left and two on right, and temporals 1 + 2 on the left and 2 + 2 on the right, all other meristic 318 

and morphometric characters obtained so far did not show any significant variation between 319 

the examined populations, and also correspond to the conventional taxonomical characters 320 

provided in previously published literature [77,86,87]. 321 

Hemipenis. Based on MZMU2935, the organ is single and subcylindrical, relatively short, 322 

robust, and capi tate; inverted hemipenis extends to 4th–7th subcaudal level (i.e. 11.1–20% 323 

from the total number of Sc); sulcus spermaticus bifurcate below the crotch, shallow and 324 

centripetal; apical lobe less evident with only slight apical flaring; calyculate organ with a 325 

complex ornamentation of retiform ridges, papillate flounces, and spines; spines on the upper 326 

basal areas enlarged and decreasing the size towards the proximal portion; apical region 327 

sharply separated from the basal portion by a well-defined demarcation, so the apex is free 328 

and the apical part of the hemipenis is richly capitate (Fig. 5). 329 

 330 

Distribution. Within India, B. fasciatus has been reported from Uttar Pradesh (Gorakhpur, 331 

fide Masson [88]; also see Anwar [89] and Das et al. [90]) in the north and central 332 

Maharashtra in the west [91–93], extending across Telangana (Hyderabad, fide Kinnear 333 

[94], Andhra Pradesh [95], Chhattisgarh [96,97], Jharkhand (Koderma, fide Smith [86]; also 334 

see Husain [98]), Bihar [99], Odisha (Mahanadi valley, fide Wall [99]; also see Boruah et al. 335 

[100]), and northern part of WB [101] to northeastern India, including Arunachal Pradesh 336 

[102,103], Assam [99,104,105], Meghalaya [106], MZ [107,108], Tripura [109], Manipur 337 
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[110] and Nagaland [111]. A few unverified records are available from Madhya Pradesh 338 

[36], Uttarakhand [35], and southern peninsular India in Tamil Nadu, Karnataka and Kerala 339 

[98].  340 

Here we provide additional distributional records for B. fasciatus sensu stricto based 341 

on 44 new localities from MZ, and two from WB, India (Supplementary Table S7). The 342 

lowest elevation among these new records is 4 m a.s.l. at Chitrasali in Hooghly District, WB 343 

and the highest is 1426 m a.s.l. at Champhai Jailveng in Champhai District, MZ. Based on 344 

the previous distribution of the species, the elevation range was between 40 and 2300 m a.s.l. 345 

[33,34]. Moreover, an estimated distribution range of the species was plotted (Fig. 6) 346 

following WHO’s range estimation for B. fasciatus [112]. 347 

Natural history. Although B. fasciatus is a common species, details on the ecology, habitat, 348 

population, and breeding are still sparse and further studies are needed. Therefore, here we 349 

provide some natural history data based on two clutches of eggs encountered from two 350 

localities in WB State, India: 351 

(i) On 16th May 2020, at ca. 20:00 h, from Chitrasali village, Hooghly, the snake was 352 

encountered on the bank of a pond adjacent to a house in the middle of a village. The female 353 

was found coiling around a clutch of 19 eggs. The breeding site was located inside a naturally 354 

occurring burrow at the base of a dead tree with decayed roots. The burrow was on the bank 355 

ca. 6 feet from the pond. The pond had a gentle slope and was surrounded by plentiful 356 

vegetation. On the day of the egg collection, the recorded ambient temperature at the natural 357 

breeding site was 28–38 °C with average humidity of 78%. The eggs were relocated and 358 

incubated in a dedicated herpetoculture room at 27.6 °C using 3 cm thick vermiculite 359 

bedding in a perforated box. On 10th June at 20:18 h, the first egg slits were observed, and 360 

hatching was completed on 18th June at 05:45 h. The fluctuating room temperature and 361 

average humidity from the start of hatching until hatching was completed were 26–35 °C and 362 

81.1%, respectively. Notably, hatchlings crawled out from the pipped eggs on the 12th, 13th, 363 

and 14th June. Upon investigation, we found that a total of six eggs failed to hatch, out of 364 

which three eggs were unfertilized, two contained partially developed embryos showing 365 

deformities, and one egg had a fully developed embryo, possibly unable to cut through the 366 

eggshell. On 18th June, we recorded the biometric data of the 13 hatchlings (5 females with 367 

average SVL 322.2 mm, TaL 32.4 mm, and body weight 21.2 g; 8 males with average SVL 368 

318.6 mm, TaL 36.5, body weight 19.9 g), and were subsequently released close to where 369 

the eggs were collected. 370 

(ii) On 05th May 2021 at 12:30 pm, from a construction site at Ankuni village, Hooghly. 371 
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A clutch of eight eggs were uncovered under a pile of old bricks at the base of a dead tree 372 

with lots of burrows. The breeding site was located on the bank of a pond, and the entire 373 

rubble pile was covered in vegetation. However, in this case, the female snake was not found 374 

near the eggs, and it is possible that the excavation work might have scared the female away. 375 

The eggs were relocated and incubated in the same herpetoculture room using 3 cm thick 376 

vermiculite bedding in a perforated box. The room temperature recorded on 5th May 377 

fluctuated between 24 and 33 °C, with a relative humidity of 65%. Egg slits were seen on 6th 378 

June at ca. 22:00 h. On 8th June at ca. 08:00 h, hatching was completed and all of the 379 

juveniles had emerged from the eggs. From the egg relocation until the completed hatching 380 

(6th–8th June), the temperature and humidity fluctuated between 24 and 39 °C and 65–75%, 381 

respectively. On 8th June, the biometric data of the eight hatchlings were taken (3 females 382 

with average SVL 333.3 mm, TaL 38.7 mm, and body weight 21.3 g; 5 males with average 383 

SVL 351.0 mm, TaL 43.2, body weight 21.4 g), and they were also released close to the site 384 

from which the eggs had been collected. 385 

Discussion 386 

Bungarus fasciatus sensu stricto. Evidence from this study, based on morphology and 387 

molecular data, defines three distinct clades of B. fasciatus with non-overlapping 388 

distribution clusters. The high genetic divergence among lineages also suggests distinct 389 

species-level groups within B. fasciatus as currently conceived. Our morphometric data 390 

analysis also provides evidence of their morphological distinctiveness between Clade I and 391 

II. Moreover, the lineage from east Asia is basal to the other two lineages but, if these clades 392 

were to be accepted as full species, the name-bearing lineage is Clade II. Thus, according to 393 

our newly presented evidence, and partly according to Russell [84], the distribution range of 394 

Bungarus fasciatus sensu stricto (Indo-Myanmar clade) comprises east and northeast India 395 

extending towards Myanmar. (Figs. 1, 6). 396 

Systematic challenges. In this study, we elucidate the presence of three independent 397 

lineages within B. fasciatus, which is crucial for future nomenclatural revision. In the CYTB 398 

gene, while negligible intra-clade genetic divergence was observed within Clade I (0.4%; 399 

between two locations in JV) and Clade II (0.0–1.3%; Myanmar, east and northeast India), a 400 

wide range of intra-clade genetic divergence (00.0–6.5%) was evident within Clade III 401 

(China, Vietnam, Thailand). Consequently, we speculate that there might still be cryptic 402 

diversity within the east Asian lineage (Clade III). Moreover, for robust delimitation of the B. 403 

fasciatus complex, it is necessary to establish whether these lineages have undergone some 404 

degree of extrinsic or intrinsic reproductive isolation to be evolving separately [113]. For 405 
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instance, due to the high evolutionary rate of hemipenial traits com- pared to the other 406 

morphological traits [114,115], the organ has commonly been used to provide a picture of 407 

sexual barrier even among cryptic species [116–118]. 408 

Although it has been previously stressed that delimiting the taxonomic status of 409 

geographically diversified populations of venomous snakes alone cannot necessarily predict 410 

patterns of venom variation, it can play a pivotal role in overcoming the consequential 411 

variability of venoms [119–121]. Fry et al. [120] further indicated that the medical 412 

importance of B. fasciatus has been overestimated. Moreover, the possible existence of 413 

undiscovered cryptic species accompanied by more venom diversity with uncharacterized 414 

components had been pointed out [122]. Siqueira-Silva et al. [123] observed that more 415 

productive environments favour more complex venom, with more toxins in similar 416 

proportions. Based on the verbal autopsy we have conducted so far within MZ, there are 417 

three cases of fatal envenomation potentially from the bite of banded krait. Therefore, here we 418 

highlight the importance of analyzing the venom compositions in different populations in 419 

each biogeographically isolated clade. 420 

Further work. The combination of multivariate morphometric analysis and mitochondrial 421 

gene-based phylogeography has been applied successfully for species delineation 422 

[24,124,125] as well as for testing species boundaries [126]. However, nuclear genes 423 

provide an independent test of species boundaries [127] as they are capable of measuring the 424 

extent of gene flow, and for this reason, recent work has increasingly used a combination of 425 

nuclear and mitochondrial genes for phylogeographic analyses and species delineation 426 

[128]. Consequently, we believe that the potentially species-level diversity across different B. 427 

fasciatus populations depicted in this study cannot be overlooked, and a thorough 428 

comprehension of B. fasciatus systematics is still a fundamental challenge. 429 

Data availability 430 

The generated partial gene sequences were deposited on the NCBI repository (GenBank 431 

accession numbers are given in Supplementary Table S2). 432 
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species complex in Central and West Africa (Serpentes: Elapidae). Zootaxa. 4455, 68–840 

98; https://doi.org/10.11646/zootaxa.4455.1.3 (2018). 841 

Figure Legends 842 

Fig 1. Bayesian inference (BI) phylogenetic tree based on concatenated mitochondrial 843 

16S, COI, ND4 and CYTB genes; lineage partitions recovered from CYTB-based 844 

PTP analyses are presented besides the BI tree (only the CYTB dataset was utilized 845 

for PTP analyses because it contains more representative samples from the three 846 

clades compared to the other genes). Values at each node represent Bayesian posterior 847 

probabilities (PP) and Ultrafast Bootstrap (UFB) values from the Maximum 848 

Likelihood (ML) analysis (PP/UFB). Abbreviations of country and state/province 849 

names are: ID: Indonesia, JW/J: Java; MM: Myanmar, AY: Ayeyarwady; IN: India, 850 

WB: West Bengal, MZ: Mizoram, AS: Assam; VN: Vietnam, VC: Vinh Phuc; CN: 851 

China, GZ: Guizhou, GX: Guangxi, GD: Guangdong, YN: Yunnan; TH: Thailand. 852 

Fig 2. Ordination of Bungarus fasciatus populations from Mizoram, West Bengal and 853 

Java along the first two principal components based on a PCA of the characters Ve, 854 

BB, BT, and NBW. Total variance associated with the PC1 and PC2 are 64% and 855 

20%, respectively. 856 

Fig 3. Bungarus fasciatus sensu stricto (MZMU1883) from Northeast India: (A) 857 

dorsal view of full body, (B) ventral view of full body, (C) dorsal view of head, (D) 858 

lateral view of the left side of head, and (E) ventral view of head. 859 

Fig 4. Live individuals of Bungarus fasciatus sensu stricto (A) from Keitum village, 860 

Mizoram, India (MZMU1421), and (B) a juvenile with creamish dorsum coloration 861 

from Saikhawthlir village, Mizoram, India. 862 

Fig 5. Sulcal (left) and asulcal (right) views of the right hemipenis of Bungarus 863 

fasciatus sensu stricto (MZMU2935) from Mizoram, India. 864 

Fig 6. Map showing the distribution range of Bungarus fasciatus sensu lato, based on 865 

the latest species map provided by the World Health Organization (2022); the 866 

coloration corresponds to the three distinct evolutionary lineages recovered in the 867 

phylogenetic analyses. The type locality of Bungarus fasciatus sensu stricto is 868 

indicated by a black star. Localities of specimens used in the morphological analyses 869 

are indicated by black filled diamonds (WB), circles (MZ), and triangles (JV). 870 

Abbreviations for countries are: IN: India, NP: Nepal, BT: Bhutan, BD: Bangladesh, 871 

LK: Sri Lanka, CN: China, MM: Myanmar, LA: Laos, TH: Thailand, VN: Vietnam, 872 

https://doi.org/10.11646/zootaxa.4455.1.3
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KH: Cambodia, MY: Malaysia, BN: Brunei Darussalam, ID: Indonesia (KA: 873 

Kalimantan, SM: Sumatra, JW: Java). 874 

875 
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Figure 1. 878 
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Figure 2. 882 
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Figure 3. 886 
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Figure 4. 890 
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Figure 5. 894 
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Figure 6.900 
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Table 1. Evaluation on the meristic and mensural characters measured for 38 Bungarus fasciatus individuals from Java (JV), Mizoram (MZ), 901 

and West Bengal (WB), including mean, standard deviation, minimum and maximum values. Standardized meristic data were utilised for the 902 

following tests: Ve of Java and Mizoram was tested for inter-population difference and sexual dimorphism using separate one-way ANOVA 903 

with locality and sex as the factors, respectively; Sc of Java and Mizoram was tested using two-way ANCOVA using sex and locality as factors; 904 

BB and NBW were tested for inter-population difference (among the three populations) and sexual dimorphism (within JV and MZ) using 905 

separate one-way ANOVA with locality and sex as the factors, respectively; since BT violated the assumption of homoscedascity, it was tested 906 

using the alternative Brown-Forsythe test and was indicated by octothorp (#). For mensurals, two-way ANCOVA was performed for the log 907 

transformed TaL, HL, and HW values from JV and MZ by using the log transformed SVL as a covariate, with locality and sex as the factors. 908 

The characters with statistically significant variations at the alpha level of 0.05 are shown in boldface. The characters tested for inter-population 909 

difference across the three populations are indicated by asterisk (*). Significant values are in bold. 910 

911 
Characters Sex Java (n=15) Mizoram (n=15) West Bengal (n=8) 

unsexed 

Sexual dimorphism Inter-population difference 

Mean±SD Range Mean±SD Range Mean±SD Range 

Ve Male  205.44±3.43 199–210 226±2.10 222–228 217.63±3.12 212–222 F1,28 = 1.35 p = 0.256 F1,28 = 469.80 

 

p < 0.001 

 Female 206.83±1.94 205–210 229.11±2.15 224–231 

Sc Male  34.43±0.98 33–36 35.83±0.75 35–37 34.63±1.49 31–36 F1,25 = 2.44 p = 0.131 F1,25= 1.30 

 

p = 0.266 

 Female  31.17±1.60 30–34 33.75±1.28 32–36 

BB Male  22.67±1.12 21–25 24.33±1.97 22–27 28.38±1.73 26–31 F1,28 = 0.44 p = 0.511 F2,35= 39.78* 

 

p < 0.001* 

 Female  21.83±1.17 20–23 25.00±1.58 23–27 

BT Male  3.22±0.67 2–4 5.00±0.00 5 5.25±1.09 4–7 F1,21 = 0.12# p = 0.728# F2,12 = 17.86*# p < 0.001*# 

Female  3.17±0.41 3–4 4.22±0.44 4–5 

NBW Male  19.00±1.00 18–20 18.20±0.45 18–19 15.63±1.11 14–17 F1,27 = 0.40 p = 0.533 F2,34= 22.16* 

 

p < 0.001* 

 Female  19.00±0.63 18–20 17.67±1.73 15–20 

TaL Male  120.74±20.01 90–145 101±38.92 47–133 - - F1,24 = 18.96 p < 0.001 F1,24 = 6.01 

 

p = 0.022 

 Female  107.86±23.43 85–145 97.88±15.56 76–119 

HL Male 35.06±4.97 27.10–40.90 21.60±5.71 12.80–26.60 - - F1,24 = 4.37 p =0.047 F1,24 = 79.38 p < 0.001 

Female  34.81±6.19 25.90–44.50 21.03±5.03 15.74–29.68 

HW Male  20.88±4.03 13.80–25.70 17.79±5.10 12.18–22.46 - - F1,25 = 4.33 p =0.048 F1,25 = 0.97 p = 0.334 

Female  20.70±3.13 16.40–26.20 16.12±4.30 10.40–22.76 



35 

Table 2. Some comparative morphological data of Bungarus fasciatus sensu lato in each 

biogeographic region, based on this study and published data. 

 

Character 

Population / clade 

Indo-Myanmar 

(n=23) 

East Asia 

(n=11) 

Greater Sunda 

(n=15) 

Ventrals 200–234 217–237 199–210 

Subcaudals 23–39 33–41 30–36 

Number of dorsal bands on body 22–31 19–21 20–25 

Number of dorsal bands on tail 4–7 ? 2–4 

Nuchal band covered by vertebral scales 14–20 ? 18–20 

Background body color Yellow / cream Yellow Yellow / cream 

Source 
Smith [75] 

This study 

Yang & Rao 

[76]; 

Chen et al. [54]; 

Leviton et al. 

[77] 
 

This study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


