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Abstract— A 5.8 GHz Continuous Wave (CW) radar was 

developed and integrated on a compact printed circuit board 

(PCB) for near-hive monitoring of honeybees. It supported non-

invasive detection of free-flying honeybees at 2 m and micro-

Doppler extraction of bee wingbeat signatures at a closer range 

using both a double balanced and an In-phase/Quadrature (IQ) 

mixer. An original technique combining full-wave simulations and 

Doppler-radar monitoring of pendulum motion was used for: 

radar calibration through spherical targets of different material 

and size; precise extraction of bee radar cross section (RCS) at 5.8 

GHz; estimation of detection range enhancement through partial 

silver coating of targets. Finally, the CW radar was integrated with 

machine learning (ML) to allow automated classification of 

incoming, outgoing and hovering honeybees. Different ML 

approaches were tested, where the highest accuracy of 93.37% was 

found in ternary classification via Support Vector Machine acting 

on Line Spectral Frequencies. 

 
Index Terms— Continuous wave radar, doppler radar, machine 

learning, micro-doppler 

 

I. INTRODUCTION 

HE decrease of insect biomass has impacted global 

industries and agriculture [1], [2] as insects are relied 

upon for pollination, nutrients cycling and detrivory 

functions [3]–[6]. The significant annual contribution of insects 

to ecosystem services is estimated to range between $235 to 

$557 billion in value [7]. Among such insects are bees (Apidae) 

– known as the most important pollinating insects – which 

include the European honeybee (Apis mellifera) and the buff-

tailed bumblebee (Bombus terrestris) [8]. Approximately 80% 

of global pollination services are attributed to honeybees, 

making them a key component of the ecosystem [9]–[11]. 

Recent findings show that the combinational exposure of 

stressors inflict detrimental effects on colony health, hive 

performance and their population level [12]. For example, 

honeybee absconding, a significant cause of colony loss in 

pollinators, has been linked to intra-colony food pattern 

changes and foraging stresses [13]. The development of 

monitoring technologies for real-time assessment of insect   
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activity is a key element in studies to further increase our 

understanding [14]–[16] and manage populations of Apidae.  

Multiple sensors can be used for real-time probing of hive 

internal or in situ parameters, such as temperature, humidity, 

weight, and activity [17]. Radio telemetry, harmonic radars, and 

RFID tags have also enabled insect tracking and potentially 

support statistical analysis of their behavior over the entire  

forage range [16], [18], [19]. Nevertheless, there has been 

concern that tagging of Apidae for tracking purposes hinders 

natural movement and considerably affect insect response.  

A generally adopted guideline prescribes that the tag’s weight 

should not exceed the maximum nectar and pollen load which 

typically achieves 59% of a honeybee’s body weight [20], but 

can reach 80% [20]. Thus, even placing tags as light as 30-50% 

of bee bodyweight can potentially alter their take-off ability, 

foraging inclination and overall performance [18], [21], [22].   

Moreover, bee catching, optimum tag positioning and 

attachment are inherently stressful and time consuming 

processes in tag-based tacking approaches.  

Tag-free CW radar systems have been designed ranging from 

5.8 GHz to 24 GHz [23]–[27] and basing on Doppler shift 

correlation with bee’s speed and acceleration. However, such 

systems were relatively invasive in that the radar was placed at 

the hive’s entrance. 

A primary aim for this work has been to develop a 

comparatively unobtrusive 5.8 GHz CW radar to monitor 

free-flying honeybees at a 2 m range from the hive and 

facing its entrance/exit. The 5.8 GHz frequency band was 

chosen as a compromise between signal quality, monitoring 

range, and the wide availability of off-shelf components. 

This allowed expanding on our original work [27] by 

integrating the CW radar into the single portable PCB in Fig. 

1(b). The final aim of this work has been to create an 

autonomous machine learning based radar for long term data 

collection supporting continuous hive health monitoring.  
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II. 5.8 GHZ CW RADAR DESIGN 

The setup of the 5.8 GHz CW radar is shown in Fig.1 (c). 

An important requirement that dictates the design of the CW 

radar is the RCS of the target. The RCS of honeybees has 

been experimentally investigated at different frequency 

bands between 5.8 GHz and 24 GHz [23]–[27]. At 9.4 GHz, 

the RCS of honeybees ranged from -40 to -45 dBsm [24], 

whereas at 24 GHz, free-flying honeybees RCS averaged at 

-50 dBsm for 11 bees [25]. Wolf et al.  mentioned honeybee 

RCS at 8-12 GHz to average between -65.9 dBsm and -61.5 

dBsm for horizontal and vertical polarization, respectively 

[26]. Finally, at 5.8 GHz, the RCS of honeybees averaged 

between -55 to -60 dBsm [27].  

The 5.8 GHz CW radar was designed with such parameters 

in mind, while factoring in a 2-3 m range from the hive. It 

was based upon inexpensive commercial Radio Frequency 

(RF) modules powered by a LiPo battery with Switch Mode 

Power Supplies (SMPS) for voltage regulation. This 

increased monitoring flexibility and allowed identification 

of a wider range of behaviors (e.g. hovering, flight patterns, 

and missing the entrance) than mere entry/exit.  

The IF signal of the double balanced mixer (DBM) was 

amplified by a 60 dB custom-built Variable Gain Amplifier 

(VGA) with 100 dB CMRR and integrated a Low Pass Filter 

covering our frequency range of interest up to 408 Hz. The 

VGA’s output was recorded in 16-bit wave formats, fed to a 

laptop using an external USB sound card sampled at 44.1 

KHz. The recorded wave files were processed on a laptop 

equipped with MATLAB [28]. The 5.8 GHz CW radar 

parameters are summarized in Table 1. 

Circuit optimization enabled integrating the functional 

system in [27] into the 45 mm  40 mm 4-layer PCB in Fig. 

1(b) with an approximate cost of $75 and same 

specifications as the original system.  

While millimeter-wave modules afford superior radar 

resolution, the sensitivity-cost tradeoff achievable at 5.8 

GHz is critical in greenhouse scenarios requiring multiple 

receiver deployment. 

 

TABLE 1 

5.8 GHZ RADAR PARAMETERS 

 

 

 

 

 

 

 

 

 

 

 

III. PREDICTED VS  MEASURED RADAR SIGNATURES 

A. Doppler Signatures: DBM Receiver 

Although bee flight may involve composite/heterogeneous 

motion patterns, identification of uniform motion segments 

was a valuable abstraction to guide further analysis. 

Simplified Doppler shift models where first analytically 

derived by considering: ideal point scatterers; elementary 

motion segments with either uniform speed, uniform 

acceleration, or sinusoidally varying acceleration (pendulum 

motion); representative bee range, speed and acceleration as 

extracted from previous experiments [27]. 

MATLAB suites [28], [29] were then used for accurate 

spectrogram calculation accounting for: target range and 

angular deviation; spherical targets that matched the 

honeybee’s extracted RCS at 5.8 GHz (see section IV); 

power spectral density variation from path loss and TX/RX 

antenna directivity.  

The availability of measurement data for either  real 

honeybees or spherical calibration targets, resulted in the 

spectrogram pairs visible in Fig. 2(a)-(b) through (e)-(f) for 

each elementary motion segment. 

Notice that every modeled motion modulates the 

backscattered signal phase as a function of the motion basic 

parameters and transmitted signal wavelength . Since the 

models presented in (1)-(4) express Doppler frequency shift 

as a proxy for target radial speed vR(t), they effectively 

describe demodulation of frequency modulated waveforms 

with =2/ modulation index and vR(t) modulating signal.  

 

 

Parameter Parameter Value 

Frequency 5.8 GHz 

Peak transmitted power 28 dBm 

Radar range 2 meter 

Transmitter gain 12 dBi 

Transmitter beamwidth 42° H and V 

Receiver gain 17 dBi 

Receiver beamwidth 32° H and 76° V 

RF Receiver gain 38.40 dB 

Receiver noise figure 2.22 dB 

 
 

 

(c) 
Fig. 1. (a) Block diagram of the 5.8 GHz CW Radar and (b) PCB 

implementation. (c) Setup for the hive monitoring experiment. 
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Thus, from CW radar theory, the expected Doppler shift 

signature for a target moving at uniform radial velocity vR 

and a DBM receiver architecture is of the type: 

 

𝑓𝑑1(𝑡) =
2𝑣𝑅

𝜆
=

2𝑓0𝑣𝑅

𝑐
   (1) 

 

where  is dictated by the transmitter signal frequency f0 and 

the speed of light c, resulting in the predicted spectrogram in 

Fig. 2(a). The predicted Doppler signature for a uniform 

accelerated motion with radial acceleration aR is: 

 

𝑓𝑑2(𝑡) =
2𝑎𝑅𝑡

𝜆
   (2) 

 

leading to theoretical and measured signatures in 2(c) and 

(d), respectively. The spectrograms in Fig. 2(b) (2(d)) 

represent rare examples of bee free flights at constant speed  

(acceleration) in front of the radar over appreciable time 

spans. The predicted Doppler shift for a simple pendulum is, 

neglecting friction over small angle swings:  

 

𝑓𝑑3(𝑡) =
2𝑙𝜃̇

𝜆
cos 𝜃   (3) 

  

where l is the pendulum length and  is the swing angle 

coordinate. While not directly applied in bee flight analysis, 

such motion type was key to radar calibration and RCS 

extraction (section IV). It also supported the analysis of more 

articulate periodical motion patterns which were involved in 

bee hovering behavior. One such pattern is circular motion 

which was experimentally characterized by forcing 

pendulum circular swings at some distance from the 

observer. For a target rotating at angular speed 0 over a 

circumference of radius r centered at distance R0 and in the 

same plane as the radar, the predicted Doppler signal is:  

 

𝑓𝑑4(𝑡) = 2𝜔0𝑟
sin(𝜃+tan−1 sin 𝜃

𝑅0−cos 𝜃
)

𝜆
   (4) 

 

The resulting simulated and measured signatures also 

appear in Fig. 2(e) and (f), respectively, which outlines the 

resemblance with a simple pendulum motion. 

Field experiments demonstrated the radar’s capability to 

detect free-flying honeybees from a 2 m range and for 

motion segments comparable to the idealized models. 

Representative instances of flight detection are shown in Fig. 

2(g).  A leaving flight is shown to result in a red shift of 254 

Hz corresponding to a speed of 6.46 m/s (23.25 km/h), which 

slightly deviated from the linear trend described by (1) due 

to saturation of the leaving speed. Similarly, a returning 

flight signature outlined blue shift from the initial 130 Hz 

value, corresponding to a speed of 3.35m/s (12.09 km/h), to 

the final 60 Hz value, corresponding to 1.55 m/s (5.52 km/h). 

The returning bee signal also featured a higher power 

spectral density indicating closer proximity to the hive.  

Notice that the initial linear deceleration trend was 

followed by bee speed oscillation before landing. The 

stationary, winding, or periodical aspect in similar segments 

was visually confirmed through the camera data and 

generally branded as “hovering”. An even more prominent 

instance of hovering appears in the Fig. 2(g) inset, evoking 

a spiraling down circular motion signature. Hovering was 

frequently observed both during takeoff and landing events, 

possibly in response to a busy hive entrance. Bees were also 

observed briefly flying out to instantly return to the hive’s 

entrance, resulting in net zero in/out logging. This spurred 

the hovering classification effort described in section V.B. 

 

 
(g) 

Fig. 2.  Doppler signatures for target motion across elementary segments (a), 

(c), (e) as predicted from CW radar theory + MATLAB models and for measured  

honeybee (b), (d) or (f) metal sphere target. (g) Measured near-hive bee 

signatures reproducing some of the modeled elementary motions. 
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B. Micro-Doppler Signatures: IQ Receiver 

Micro-Doppler analysis was additionally afforded to 

disentangle minor motion signatures, such as bee thorax 

vibration and wingbeat, from gross body translation. This 

enabled identification of different insect species (e.g. 

honeybee vs bumblebee), while potentially supporting 

disambiguation of more complex patterns with similar 

Doppler signals. In order to gain approaching and receding 

micro-motion discrimination, a micro-Doppler module was 

also developed to include a quadrature receiver.  

Micro-Doppler signatures of uniform speed flights were 

well approximated through linear scatterer combination of: 

constant speed body translation as ruled by (1) and harmonic 

(spring) motion to additionally model wing flapping: 

 

𝑓𝑑5(𝑡) =
2

𝜆
[𝑣𝑅 + 𝐴𝑤𝜔𝑤cos 𝜔𝑤𝑡]  (5) 

 

where Aw and w are the wingbeat amplitude (~1 mm) and 

angular speed (~2200 Hz), respectively. The ratio of 

honeybee wings to main body RCS used for Micro-Doppler 

signature prediction was of the order of 1:5 and both motions 

were radially directed in the approximate model. More 

accurate spectrogram calculation was obtained by modeling 

bee body as a 15 mm long 3 mm wide ellipsoid and wing 

length of 9.7 mm while also allowing both positive and 

negative Doppler shifts for IQ mixing response. 

Calculations were specifically carried out for a bumblebee, 

flapping wings at lower frequency than typical honeybee 

(~175 vs 220 Hz [30], [31]), and approaching the IQ receiver 

at low body speed of vR =0.05 m/s. Overlapping to uniform 

speed translation in (1) of the harmonic motion in (5) was 

more conveniently analyzed through phase modulation (PM) 

formalism. Hence, a quadrature-carrier description of the 

received micro-Doppler signal had the form: 

 

  𝑥𝑟(𝑡) = 𝐴[cos(𝛽 cos 𝜔𝑤𝑡) − sin(cos(𝛽 cos 𝜔𝑤𝑡))]      (6)  

 

where A is an RCS dependent amplitude term and = Aww 

~ 2 for Aw1 cm is the modulation index, thus indicating 

departure from a narrowband tone modulation (<1) 

scenario. Therefore, standard PM analysis [32] yielded: 

 

𝑥𝑟(𝑡) = 𝐴 ∑ 𝐽𝑛(𝛽)∞
𝑛=−∞
𝐸𝑣𝑒𝑛

(−1)
𝑛

2 cos(2𝜋(𝑓𝐵 + 𝑛𝑓𝑤)) +

−𝐴 ∑ 𝐽|𝑛|(𝛽)∞
𝑛=−∞

𝑂𝑑𝑑
(−1)

𝑛−1

2 sin(2𝜋(𝑓𝐵 + 𝑛𝑓𝑤)).
  (7) 

 

where fB, is the frequency shift for the main body translation, 

and Jn()  are the coefficient for the Bessel function of the 

1st kind. (7) only slightly deviate from standard PM 

formulas, since (5) forces a coswt, rather than the 

conventional sinwt dependence, and are seen to result in 

spectral lines at nfw  fB in Fig 3(a). Slow body speed also 

forces fB<<fw and fw  fB ~fw, unlike fB>>fw in narrowband tone 

modulation, which underpin the following experimental 

scenario and allow direct wingbeat frequency extraction. 

 For experimental validation a bumblebee was placed in a 

transparent container allowing restrained flight range along 

with simultaneous video recording of both the insect motion 

and the radar output. Video segments were selected for 

comparison with the radar readouts where the insect was 

either dashing and rubbing its limbs against the box walls 

without flapping its wings, or fluttering/flying through wing 

flapping. The corresponding radar recorded files were 

processed as an STFT to extract micro-Doppler signatures 

with a window length of 256 samples out of the 44.1K 

samples and an overlap of 250. Fig. 3(b) represents the 

recorded micro-Doppler signature and clearly outlines the 

expected features from theoretical calculations.  

The spectral power density mainly concentrated around the 

expected 2 Hz component corresponding to body fluttering 

at 0.05 m/s. Although this was somewhat cluttered by 

coexistence of additional motion types (e.g. rubbing of limbs 

against box walls) fluttering was captured in the video footage 

and precisely timed by audio recording of “buzzing bursts”.  

Weaker but clear horizontal bands at (nfwvR) for n=1,2 

confirmed coexistence and mixing of the translation and 

harmonic motions components, as from the model in (5)-(7). 

Furthermore, the extracted wingbeat frequency fw=175 Hz 

matched the typical bumblebee range [30]. 

 
(a) 

 
(b) 

Fig. 3.  (a) Predicted micro-Doppler signal for bumblebee approaching the radar 

at 0.05  m/s constant speed and using IQ receivers. (b) micro-Doppler signal 

recorded though IQ mixer for mostly fluttering bumble bee motion in a 

transparent container. 

 

2fw + fB 352Hz

fw + fB 177 Hz

fB 2 Hz

-(fw- fB )  -173Hz

-(2fw- vR )  -348 Hz



5 

TMTT-2022-02-0294 

This confirmed the approach applicability to classify insect 

species, or even micro-Doppler profiling of individuals within 

a species. However, due to the late adoption of the IQ mixing 

approach, the ML analysis in section V could be only supported 

through double balanced mixing. 

C. Classification of More Complex Free-Flight Patterns 

While the elementary motion segments described so far 

assist identification and logging of near-hive activities, free-

flying bee patterns are markedly different because: uniform 

motion patterns represent a minority of all recorded motions; 

direction and motion type changes occur frequently and at 

unpredictable rate; individual bee flights and their radar 

image are heavily influenced by other insect flights within 

the detection cone; non-flying non-targets such as bees 

crawling (and still flapping wings, or buzzing) on the hive 

walls in the detection cone result in significant clutter; in 

outdoor experiments wind is also a source of noise forcing 

flight path alteration, hive and radar setup shaking and EM 

background (e.g. grass, bushes, branches) fluctuation. 

The specificity of honeybee behavior unpredictability and 

interference from collective dynamics add to the general 

challenge in radar detection, for example from warping of 

the received signal due to the antenna radiation pattern. As 

such, extraction of microwave features, from a traditional 

signal processing standpoint, is a challenging task in most 

outdoor bee detection scenarios. This explains why the ML 

algorithms described in section V focused on behavioral 

classifications more than, or independently of, direct 

microwave features extraction.  

Building a ML model to classify simple and separable 

away/towards, and circular motion segments as in section 

II.A results in accuracy in excess of 95%. The availability of 

analytical models to tune upon enables extraction of Doppler 

radar features such as effective speed, and periodical 

features with accuracy between 85% (when circular motion 

is included) and 97% (without circular motion). However, 

the key point is that  ML is largely unnecessary for such 

“well-behaved” flight instances where direct spectrogram 

readout allows efficient  feature extraction. 

Pursuing too strict a comparison between traditional signal 

processing and ML-extracted features might be misleading 

and overlook potential opportunities in new approaches. ML 

has the capacity to enable correct behavioral classification  

even when microwave features extraction, whether through 

traditional processing or ML, is impossible. This is largely 

due to the fact that confirmation from video footage and 

expert beekeeper insight is used for algorithm training even 

for instances where distinct motion types produce virtually 

identical spectrograms (e.g. radial vs circular oscillations in 

section II.A).  

Assessing where ML-feature extraction breaks down due 

to overlapping of multiple signals or sheer clutter is a 

compelling research question. The topic appears however 

conveniently explorable in a more forgiving scenario than 

outdoor free-flying bee detection. 

 

IV. RCS AND RANGE INCREASE USING SILVER COATING 

Additional investigations were directed at increasing the 

honeybee’s RCS as a means to enhance detection range 

without drastic hardware changes. While higher RCS could 

be achieved at 10.5 GHz, or 24 GHz [25], frequency increase 

was ruled out to maintain the low-cost and commercial 

availability of the present components, along with coherence 

with earlier pollinators telemetry systems [15], [16], [27]. 

The RCS for spherical targets of different material were 

first simulated as a function of the target diameter using CST 

Microwave studio. The simulated RCSs are shown in Fig. 

4(a) for steel spheres and wooden spheres. The simulated 

RCS for a full-wave model of a honeybee is reported in Fig. 

4(a . The honeybee’s model length was varied between 10 

and 15 mm. Interestingly, the bee model matched both the 

amplitude and slope of the 4mm steel sphere RCS vs size 

curve. The 4 mm water sphere dispersive model (DC ’=78, 

=1.59 S/m) in Fig. 4(a) was also extrapolated to match the 

RCS calculation at 10.5 and 24 GHz in [25].  

Although the simulated RCS of the 4mm wood sphere was 

-83.9 dBsm, which is below the radar detection threshold       

(-80 dBsm), coating the wood sphere with a ~100 μm silver 

layer (=6.30×107 S/m) was predicted to increase the RCS 

by an average of 11.7 dBsm and to a detectable -72.06 dBsm. 

The ~100 μm  coating was obtained through a small brush 

stroke and validated by profilometer measurements to guide 

later application of silver nanoparticle layers. 

The simulation results in Fig. 4(a) also show that while the 

coated wood sphere achieved higher RCS compared to the 

uncoated wood sphere, it featured a decisively lower RCS 

than the 4 mm steel or water sphere.  

Experimental validation of the RCS increase through silver 

coating, was achieved through IQ radar detection of target 

oscillations in a pendulum setup [27]. Targets were 

suspended through a nonmetallic support and a thin 15 cm 

thread placed 0.5 m from the radar. Oscillations of 30 were 

allowed perpendicularly to the radar antenna’s main beam 

axis and alternatively suspending: no target; a 4 mm wood 

sphere; a 4 mm coated wood sphere; a 4 mm steel sphere. 

The results shown in Fig. 4(b) indicate that the uncoated 

wood sphere was poorly detected as its RCS was below the 

minimum detectable signal, resulting in a barely distinct 

signature from the unloaded wire case. 

By contrast, a clear oscillating behavior was detected for 

the coated wood sphere. Finally, the steel sphere showed an 

even stronger signature in accordance with the higher RCS, 

confirming the simulated trend shown in Fig. 4(a). 

Silver coating was expected to enhance bee detection range 

in accordance with the modeled RCS increase, also through 

no hardware modifications. The predicted radar detection 

range for uncoated and coated targets is reported in Fig.5 (a). 

The present study informed a theoretical and experimental 

cost-benefit analysis of using coating to increase bee radar 

detection range. Notice the uncoated bee detection is within 

approximation of the 4 mm steel sphere, which agrees with 

[25], [27]. 
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A coated bee model was developed as suggested in Fig. 

4(a) and used to plot the curves visible in Fig. 4(a) and 5(a). 

Such model aimed at maximizing the bee’s coated surface 

while not impairing its flight capacity nor obstructing the 

breathing ability, by avoiding coating of bee wings and 

spiracles.  

Feasibility of applying silver coating through a single 

small brush stroke was experimentally tested using (dead) 

specimens. The Scanning Electron Microscope (SEM) 

picture shown in Fig. 5(b) outlines a honeybee’s layer of 

coated hair (seta  with length ranging from 300 to 900 μm. 

The bee’s surface available for coating favors distribution of 

silver coating in a closely packed arrangement that could 

approach the performance of the coating layers used for the 

RCS study. As shown in Fig. 4(a) and 5(a) the RCS and 

detection range improvement for a partially coated honeybee 

could achieve 18 dBsm and ~4 m, respectively. Such 

enhancement seems potentially interesting to dynamic 

tracking applications, drastically reducing tag load along 

with the challenges in higher frequency modules. 

Nevertheless, for near-hive monitoring via stationary 

transceivers, the ~2 m range achieved while avoiding the 

invasiveness/inconvenience of the coating process might be 

preferable. 

  
V. MACHINE LEARNING 

The volume of data collected using the DBM were suitable 

for ML. Many data quantification techniques are available 

for audio signals derived from the RF Doppler signature, 

such as Line Spectral Frequencies (LSFs), Linear Predictive 

Codes (LPCs), and Mel-Frequency Cepstral Coefficients 

(MFCCs) [33]–[35]. These were chosen to specifically 

address the lack of directional information in the DBM data.  

Simple temporal features of the signal were additional 

candidates for ML including mean amplitude, RMS, zero-

crossing rate, short-time energy, spectral centroid, kurtosis, 

skew, standard deviation, mean, variance, and energy. These 

were combined as the temporal data. 

A. Binary Classification 

Initial concern was the classification of the signals into two 

separate classes of bees entering the hive and bees leaving. 

This was not as simple as looking at the direction 

(toward/away from the radar) of flight as insects could move 

in a completely free environment irrespective of the radar. 

Our previous work looked at using spectrograms of the 

signatures as a means of classifying the radar signals, 

building from the MobileNet V2 architecture [36]. This 

achieved 88.7% accuracy but was a computationally 

 
(a) 

 
(b) 

Fig. 4.   (a) Simulated RCS values of steel, water, wooded spheres and a bee. 

(b) Signal amplitude increasing as pendulum target increases in RCS. The four 

wave files were combined to demonstrate the increase in amplitude. 
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(b) 
Fig. 5.   (a) Increased detection range of both coated wooden sphere and 

coated bee (displayed in the top right corner). (b) SEM image of honeybee 

thorax displaying the coated honeybee seta.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  (a).  Increased detection range of both coated wooden sphere and 

coated bee (displayed in the top right corner). (b) SEM image of honeybee 

thorax displaying the coated honeybee seta.   
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expensive approach. In addition, it was shown that such 

Neural Networks (NN) maladapted to this data due to their 

training on real-world objects rather than radar signatures.  

Spectrograms are a two-dimensional representation of a one-

dimensional signal, whereas image-processing NN are 

designed primarily to classify three dimensional objects 

represented in two dimensions. 

To retrain such a network requires a large quantity of data 

on par with MobileNet’s original work. Audio (rather than 

spectrogram) processing was a feasible alternative as all the 

5.8 GHz output radar signals contained relevant information 

at sub 1 KHz frequencies. Audio files were subdivided into 

0.4 s segments, with each being vetted for a minimum signal.  

The window of 0.4 s was deemed a suitable tradeoff in 

view of the system application as a real-time monitor. This 

window matched our initial observation of the smallest 

complete event in the dataset. Subdividing this event further 

would risk failing to supply complete information to the ML. 

Larger windows did not offer sufficient improvements in 

accuracy to combat the additional cost in terms of samples. 

For rapid in-and-out signals the window of 0.4 s emerged as 

a threshold between clear separation and overlapped, 

unusable samples. Some windows without sufficient 

information, such as tail ends of a signal (representing less 

than 5% of the length of the sample), were discarded. This 

created approximately 700 bee-in to 600 bee-out signals.  

To generate more data, augmentation approaches were 

investigated. These included adding artificial noise, time-

shifting, and pitch shifting. The sensitive, RF nature of our 

data meant that noise and pitch alteration could not be 

enacted without compromising the ability for predictions, 

thus time-shifting was used.  

As each signal was 0.4 s long, shifting could be affected at 

0.1, 0.2, and 0.3 s, allowing for a fourfold volume increase, 

in addition to balancing the dataset. Support Vector Machine 

(SVM), Random Forest and NN were learning algorithms to 

generate the augmented data set [37]–[39]. A standard train-

test split ratio of 4:1 was used, with the NN taking an 

additional 10% of the training data as a validation set.  

Data quantized by the above methodologies were much 

smaller than spectrogram images and therefore did not need 

the raw predictive power associated with MobileNet’s 

capabilities. A smaller sequential model was chosen, using 

two densely connected layers of 32 neurons each, activated 

by a SELU function. Although RELU was first used as an 

activation function, we noted that SELU performed slightly 

better across all datasets. This difference was small (<2% 

accuracy) but significant enough to warrant the change. The 

final layer had a dropout rate of 0.5 to minimize risk of 

overfitting from the smaller than ideal number of samples. 

The model itself was optimized using the Adam algorithm 

due to the number of parameters (~1400 in the case of the 

MFCC/BFCC approach) [40]. Larger networks were also 

tried, both increasing the layer and neuron count, but it was 

found that the network quickly reached a point of overfitting 

even when increasing the dropout rate significantly. 

For comparison, the random forest and SVM used runtime 

hyperparameter tuning. For each data quantization method, 

the hyperparameters were chosen via Bayesian optimization, 

which was done on four-fold cross-validation with each 

cross-validator running five times. The random forest used 

values from the following possible hyperparameters: 

• Estimator count between 100 and 1000, in 

increments of 100. 

• Split criterion of either Gini impurities or entropy 

for information gain. 

• The number of features to consider for a split being 

either the square root or log2 of the total number of 

features. 

Additionally, the SVM hyperparameters were from the 

following possibilities: 

• A regularization parameter between 1e-6 and 100. 

• Kernel coefficient of 1e-6 to 100. 

• Polynomial kernel function degree between 1 and 5. 

• A kernel choice of either linear, polynomial, radial 

basis function, or sigmoid. 

 

Initial experiments showed that the MFCC and LSF 

approaches were the strongest predictors with both 

achieving approximately 85% accuracy. Mel-Frequency in 

MFCC refers to the melodic scale used to attune audio to 

match how it is processed by the human ear. The simplest 

form of this is expressed in (1) where Fm is the Mel-

Frequency of natural frequency F. The constant (C) is 2595 

and the denominator (D) is 700 in the original equation. 

 

𝐹𝑚 =  𝐶 ∗  𝑙𝑜𝑔10(1 +  
𝐹

𝐷
)  (8) 

 

Though this gave relatively reliable results, it has little to 

do with MFCCs original use of approximating human ear 

perceived frequency. Our data was from the radar and, while 

stored as audio, did not represent physical sound. The two 

primary parameters of the equation (the constant and the 

denominator) allowed for tuning and subsequent impact 

assessment on the final algorithm precision.  

The parameters were changed to 1250 for C and 175 for D 

as a test point. These were chosen to maintain the new curve 

close to the original MFCC curve but emphasized 

frequencies below 500 Hz, where most activity was 

observed. The resulting estimate is demonstrated in Fig. 6(a) 

and resulted in a 2% accuracy improvement for the Random 

Forest model. At each point, the random forest was retrained 

and tested on the data five times, with each iteration having 

a bootstrapped randomized copy of the data. This ensured 

that only a mean accuracy was used, and the results would 

be replicable. The generated grid gave a clear indication of 

the optimal parameters to be used as demonstrated in Fig. 

6(b), though it is noted that this figure has been smoothed 

via a gaussian filter to allow improved parsing. The results 

suggest that the best parameters in our case were a constant 

(C) of 2325 and a denominator of 260 (D).  
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When these parameters were returned into the equation for 

testing it showed an increased accuracy of 91.1%, an 

improvement even on the more computationally expensive 

spectrogram approach. The hyperparameters found to 

achieve these results were 900 estimators, entropy as a split 

criterion, and the square root of total feature count being 

used as a baseline when looking for the best split. A full 

breakdown of results, including all algorithms used 

alongside each quantization method are present in Table 2. 

The strength of this Bee-Frequency Cepstral Coefficient 

(BFCC) technique is that the original experiment can now 

serve as a testbed for when the dataset size is increased. 

Sample points can be taken from the original, 

computationally expensive, modeling and compared to later 

results to test for deviation, which would indicate that the 

constant and denominator need further refinement. This can 

be achieved without remodeling the parameters entirely. 

B. Ternary Classification 

Adding hovering to entry and exit movement was deemed a 

critical improvement to the system. Hovering is defined as all 

behavior where the bee might fly close to the entrance of the 

hive but make no attempt to enter or leave the area. 

The bee might move closer, or further away, from the radar. 

It might also move in and out of the detection cone rapidly or 

stay in view for prolonged periods. In essence, the bee moves 

freely causing signals that resemble those of bees entering and 

leaving as in Fig. 7(a). Classifying this behavior is valuable in 

both a commercial and research setting, firstly by removing the 

potential for these hovering flights to be falsely classified as 

entry and exit. In addition, it may prove that standalone 

hovering flights, or hovering before leaving, can be 

attributed to bee orientation flights, which can be a good 

indicator of growth, measured by the rate of young bees first 

leaving the hive [41]. 

Following the previous procedure of windowing, 200 

samples were recovered of strictly hovering behavior. It 

should be emphasized that we also revisited the original data 

and split any samples that contained hovering and either of 

the other types. To balance the dataset, samples of hovering 

were given additional time shifts of 0.15 and 0.25s creating 

an approximate equilibrium between all three classes.  

With log loss being unsuitable for ternary predictions, and 

to find comparable loss values between ML models, hinge 

loss was chosen as a suitable replacement [42]. It was 

observed from the results that both MFCC and BFCC 

algorithm lost almost all predictive power, in contrast to the 

binary results. At best, these techniques were closely 

matched at 64% accuracy.  

Full accuracy and loss values are provided in Table 2 for 

each learning algorithm alongside each quantization method. 

Line spectral frequencies, however, improved significantly 

over binary results. An improvement was seen in SVM 

prediction, with an achieved accuracy of 93.4%. Not only is 

this the best result in ternary results but it is also a significant 

improvement in prediction across all models trained. 

 

TABLE 2 

ACCURACY AND LOSS BREAKDOWN FOR DIFFERENT LEARNING 

ALGORITHM AND CLASSIFICATION APPROACH 

 

The hyperparameters found for this accuracy were a 

regularization parameter of 13.9, a polynomial degree of 2 

and a kernel coefficient of 25.2, using a polynomial kernel. 

These results appear as an outlier for SVM, both from the 

binary (best result 71.2%) and ternary (second-best result 

65.8%) classifications. The SVM was trained in 15 separate 

instances with separate permutations of test and train data. 

This 15-fold cross-validation returned an average accuracy 

of 91.02% with a loss of 0.3046. Even when moving 20% 

additional random data from the training set into the testing 

set, for a 3:2 ratio of train and test, the accuracy only dropped 

to 89.5% with a loss of 0.3774. The results are also supported 

by the NN that achieved 89.2% accuracy and 0.2933 loss, 

only trailing the SVM results slightly. 

The random forest also achieved 88.9% accuracy, though 

with significantly higher loss. The final step for ML was to 

compare with the potential of the previous spectrogram 

approach. The spectrogram system was expanded to 

incorporate three classes with no other changes with respect 

to the previous work [27]. This three-class, NN system 

achieved an accuracy of 75.5%, much below its original two 

class success of 88.7%. A full visual breakdown of the 

results across both works is demonstrated in Fig. 7(b). The 

spectrograms accuracy reduction for three way classification 

is likely due to the limitations in image resolution and lack 

of visual difference between the three classes. In theory, the 

availability of both positive and negative frequency shifts 

enabled by IQ data would likely increase spectrogram 

diversification and classification accuracy. This would 

however come at the expense of increased computational 

costs associated with image processing neural networks. 

Finally, a higher resolution ADC and a higher frequency 

radar providing a higher RCS for honeybees are expected to 

overcome the limitations in image resolution. 

  Binary 

Classification 

Ternary 

Classification 

Algorithm Approach Accuracy Loss 

 

Accuracy Loss 

Neural 

Network 

LPC 69.02% 0.4787 66.54% 0.5896 

LSF 85.48% 0.3647 89.22% 0.2933 

MFCC 79.01% 0.4718 58.36% 0.6636 

BFCC 79.77% 0.4528 58.18% 0.6498 

Temporal 72.05% 0.5602 52.23% 0.6293 

Random 

Forest 

LPC 73.42% 0.5979 65.43% 0.9348 

LSF 84.66% 0.4634 88.85% 0.7117 

MFCC 85.23% 0.4255 63.20% 0.9091 

BFCC 91.13% 0.3693 63.75% 0.8943 

Temporal 70.68% 0.5750 65.80% 0.8645 

Support 

Vector 

Machine 

LPC 55.61% 0.6590 65.80% 0.9149 

LSF 67.67% 0.5066 93.37% 0.2667 

MFCC 63.56% 0.5566 58.36% 0.9126 

BFCC 71.23% 0.5145 59.29% 0.8930 

Temporal 64.38% 0.5806 52.42% 0.9927 
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C. Machine Learning Summary 

Results from both binary and ternary (audio-based) 

classification show that the dataset has potential to be used 

in ML applications. In particular, the processed Doppler data 

has the potential to make predictions more accurate enabling 

species identification and monitoring of traffic in a more 

diverse area, such as wild woodland.  

A real-time implementation of either binary or ternary 

classification to monitor hive entrance activity over 

extended periods of time would make for an interesting 

research topic, especially correlating activity to several other 

metrics such as hive health, pollination success, and 

reproductive success. The present algorithms reliance on 

audio-frequency rather than image/spectrogram processing 

is a key enabler for edge-computing  architectures. Similarly, 

the cost-capacity tradeoff achieved at 5.8 GHz benefits from 

the requirement for processing boards with lower data 

compression than in higher frequency systems. 

Commercially, being able to monitor traffic would provide 

information on which hives are inactive and in need of 

replacement for maximum pollination efficacy.  

The future availability of IQ data could potentially support 

a comparative study of our ML based ternary classification 

approach to classical signal processing techniques such as 

Hidden Markov Model (HMM). 

  It should be noticed that application of HMM to the DBM 

data to detect entering, leaving and hovering motion resulted 

in very poor accuracy of 53%. By providing insight on bee’s 

direction IQ data would allow for more robust classification 

algorithms ultimately ushering higher prediction accuracy. 

VI. CONCLUSION 

This paper demonstrates that the current 5.8 GHz CW radar 

can be deployed to monitor free-flying honeybee activity. 

This allows long term data collection that facilitates hive 

surveillance. The radar system was able to identify different 

near-hive behavior such as leaving, entering and hovering. 

In addition to the ability to record free-flying honeybees, the 

radar was also capable of detecting micro-Doppler signals  

associated to bee wing/limb motion, using both a DBM and 

an IQ mixer. The developed simulation model accurately 

predicted calibration target RCS and detection range 

increase when adding silver coating whose applicability was 

both theoretically and practically explored.   

The volume and quality of the data collected by the radar 

using the DBM setup was suitable for ML analysis, which 

was investigated in depth. The BFCC algorithm resulted in 

  
(a) 

  

(b) 
Fig. 6.  (a) Natural versus modified frequency values as produced by altering 
the standard Mel-frequency algorithm, showing the original difference, the 

first estimate, and the eventual best version. (b) Plot of the two parameters 

of the MFCC algorithm (constant and denominator) and the effect that their 
change has on the accuracy of results. The z-axis shows the absolute 

difference between the accuracy and loss of the trained Random Forest. 

 
 

(b)

 

(a) 

 
(b) 

Fig. 7.   (a) Visualization of a bee hovering in front of a hive. The bee might 

come closer or move further away in addition to its other movements. (b) 

Visual plot of the progress from two to three classes across all included 

audio quantization methods, in addition to two benchmark lines for 

comparison to the NN, spectrogram method featured in the previous work. 

 

 
 

 

 
 

 

 
 

 

 

(a)

(b)

(a)

(b)
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the highest classification accuracy of 91.13% and loss of 

0.3693 when using the Random Forest algorithm in Binary 

classification. In Ternary classification, the LSF approach 

exhibited the highest accuracy rate of 93.37% and lowest 

loss of 0.2667 when using the SVM algorithm. It is believed 

that IQ data, higher ADC resolution and advanced signal 

processing techniques could further improve the already 

considerable accuracy rate.  

Due to the potential of both real-time hive status 

monitoring and complex behavior classification, the system 

can support the extraction of behavioral data as a proxy for 

important hive health metrics. Real-time and automated 

monitoring could additionally provide beehive owners with 

data on inactive hives or potential need for human 

mitigation. This would not only assist bee farms in hive 

surveillance tasks; it would also empower soft fruit industry 

stakeholders with innovative means to monitor biological 

pollinator behavior and efficiency at relevant locations 

and/or the impact of specific flower patches and polytunnels 

settings to increase the overall yield. 
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