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Abstract 

Individual differences m human behaviours including cognitive functions reflect the 

integration of genetic, epigenetic and environmental influences that regulate adaptation 

mechanisms across functional levels. How these different influences are integrated to regulate 

adaptation mechanisms across functional levels is a key question of contemporary research. 

One novel technique to investigate the integration of genetic and environmental influences at 

the level of neural networks and its relation to behaviour is genetic neuroimaging. We used 

this technique to investigate whether individual genetic differences influence the individual 

performance and task-related brain activity in working memory for emotional faces. Results 

revealed effects of variability in the gene for the synaptic protein dysbindin-1 on working 

memory performance and its neural conelates that depended on the type of emotional face 

expression. This suggests that genetic influences are integrated with environmentally-driven 

stimuli at the neural network level to regulate the behavioural response. 

Interindividual differences are also reflected in the degree of impairment m cognitive 

functions such as working memory in patients with schizophrenia. We were interested in the 

biological basis of relatively preserved cognitive functions in a subgroup of the patients with 

schizophrenia. Using fMRI we compared brain activity related to accurate WM performance 

in patients with matched control participants. Patients and controls showed activity increases 

and decreases in different brain regions. This indicates that patients with preserved WM 

function may compensate insufficient support from dysfunctional regions through 

hyperactivation in less affected regions. 
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General Introduction 

Working memory for emotional faces as an endophenotype for schizophrenia 

a) What is working memory? 

Most cognitive functions involve working memory (WM), e.g. comprehension, imagination, 

planning, thinking and coordination of actions. Cowan (Cowan, et a l. , 2005), defined WM as 

"the set of mental processes holding limited information in a temporarily accessible state in 

service of cognition". WM depends on short-term plasticity of neural networks1 for the 

transient (from hundreds of milliseconds to seconds) maintenance (i.e. accessibility) and 

transformation of nemal representations (that represent information with multiple continuous 

and discrete dimensions from low to high levels2
) that were induced by internally or 

externally-generated signals. The view of WM as a function for short-term maintenance and 

active processing of neural representations based on multi-unit system was introduced by 

Baddeley (Badde ley & Hitch, 1974). However in this model maintenance relies on various 

modality-specific units as well as on a processing-specific unit (Baddeley, 1992). Such a 

separation of executive from storage processes during WM tasks has been questioned by 

fMRI studies because a single region like the DLPFC can be engaged in both, maintenance 

and transfom1ation processes (J . D. Cohen, et a l., 1997; D'Esposito, Postle, & Rypma, 2000) 

as well as several prefrontal and parietal regions can interact during transformations (Wager 

& Smith, 2003). The neural networks of working memory comprise areas m sensory, 

somatosensory and often parietal, frontal and temporal cortex (D. Linden, 2007) . The 

recruitment and the degree of engagement of these areas depend on the specific combination 

of task characteristics such as the capacity demand ( e.g. load, delay length, inte1ference, task 

1 Shorl- term neural nelwork plasticity - Lhe neuronal activity-dependent adaptability of neural networks based on 
rapidly elic iled, trans ient adaptations of molecular, neuronal and neura l system functions 
2 Processing level low if selective for, e.g. contrast, spatial orientation, intensity or high level if selective for, e.g. 
object categories; continuous, e.g. intensity or discrete, e.g. object identity 
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complexity), sensory system(s) involved (e.g., visual, auditory), domain(s) of interest (time, 

location, object), object category(ies) (e.g., faces), abstraction level(s) of the representation 

(symbolic, non-symbolic), delay, time course of the task and type of process (maintenance, 

transfonnation) (0. E. Linden, et a l. , 2003; Mohr, Goebel, & Linden, 2006; Mohr & Linden, 

2005; Munk, et al., 2002; Olson, Page, Moore, Chatterjee, & Verfaellie, 2006). Coding 

through both highly selective (e.g. location-WM) as well as flexible (e.g. switching from 

object-WM to location-WM) frontal neurons could explain dissociation and overlap of neural 

activity within frontal regions across various cognitive tasks (Duncan & Owen, 2000). 

Overlap has been observed for some regions being active during perceptual processmg, 

transient maintenance and recognition phase with other regions being only involved during a 

single phase of delayed match-to-sample tasks (Pessoa, Gutierrez, Bandettini , & Ungerleider, 

2002). Task-related activity was found to be increased for correct compared to incorrect 

responses (Pessoa, et al., 2002). In particular during the maintenance phase a correlation was 

observed between the fMRI s ignal amplitude in a prefrontal-parieta l network and the task 

performance (Pessoa, et al., 2002). The relation between working memory performance and 

cortical activity depends on the brain region and for the prefrontal cortex is best modelled by 

an inverted-U function (J . H. Callicott, et a l. , 1999). 

Together these findings suggest that the specific task requirements during WM are reflected in 

the spatial-temporal pattern of brain activity. However, bow interactions between molecular, 

cellular and network plasticity mechanisms drive these changes and thus enable short-term 

plasticity in WM remains largely elusive. Short-term changes (as opposed to long-lasting 

changes) in whole-brain network activity may emerge form short-lasting changes in 

functional connectivity that rely on short-tenn changes in the activity of individual circuits, 

which are based on transient activity changes in individual neurons that depend on current or 

recent changes in their intercellular communication, their subcellular and molecular 

components (intracellular environment) as well as their extracellular environment. Currently it 
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remains an unsolved question how temporal-spatial changes in brain activity are regulated to 

dynamically integrate neural representations over very short time intervals. Inform ation is 

sparse regarding what short-term plasticity mechanisms at each of these functional levels are 

involved and how they interact in the regulation of short-lasting changes to integrate neural 

representations across short time intervals. Mechanisms for short-term plasticity may be based 

on the same principles across functional levels because of their functional similarities 

although they are realized by different structures or functional elements (Maex & Steuber, 

2009). One example is spatial-temporal switching between multiple discrete (stable) activity 

states. Discrete states of amplitudes or frequencies can be observed in cortical networks 

(Tsodyks, Kenet, Grinvald, & Arie li, 1999) and indiv idual neurons (Egorov, Hamam, 

Fransen, Hasselmo, & Alonso, 2002) . From the temporal relation between these discrete 

states emerge other discrete states, e.g. synchronization/desynchronization, synaptic 

facilitation/ depression, inhibition/ excitation. At the molecular level discrete activ ity states of 

signalling, receptor or channel proteins a lso exist mediated e.g. through 

phosphorylation/ dephosphorylation. The spatial-temporal coordination between multiple 

stable states within and across functional levels could play a role in the integration of neural 

representations across short time intervals. For example transient synaptic facilitation 

mediated by increased intracellular Ca2+-concentrations of neurons that were activated during 

encoding of the representation to transiently tag those neurons to faci litate their reactivation 

during retrieval has been proposed as a mechanism for short-term plasticity of WM 

(Mongillo, Barak, & Tsodyks, 2008) . Activation-induced transient changes in synaptic 

strength that fac il itate neuronal reactivation thus switching between synaptic state- and 

neuronal activ ity state-dependent represen tations could maintain neural representations across 

short-delays. Indeed it has been shown that the population average responses of stimulus

selective neurons in the inferior temporal cortex differ between match and non-match 
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conditions during delayeJ match-to-sample tasks (Sugase-Miyamoto, Liu, Wiener, Optican, 

& Richmond, 2008). 

Short-term synaptic facilitation/ depression could also be involved in the regulation of the 

temporal relation between discrete frequencies generated by neurons or neural networks 

dming WM tasks. For example the synchronization of discharges between interacting neurons 

could depend on short-term changes in synaptic strength mediated through facilitation/ 

depression (Fujisawa, Amarasingham, Harrison, & Buzsaki, 2008), or alternatively through 

short-lasting changes of membrane conductances (Marder, Abbott, Turrigiano, Liu, & 

Golowascb, 1996). The temporal relation between discrete frequencies produced by large 

networks of active neurons has been shown to dissociate between processes of information 

selection and maintenance as well as their influence on WM capacity (Sauseng, et al., 2009). 

These short-tenn changes at the neural network and neuronal level are mediated by short

lasting molecular changes, in particular the phosphatase-kinase ratio depending on 

intracellular Ca2+-concentration could be critical for WM function (Dash, Moore, Kobori, & 

Runyan, 2007). The Ca2+-dependent regulation of signalling proteins involved in synaptic 

vesic le exocytosis (R. C. Lin & Sche ller, 2000), permeability of ion-channels (Levitan, 2006) 

or receptor sensitivity (X. Y. Liu , et al. , 2009) are examples for molecular short-term 

modification of synapses. 

Future attempts to identify the neural basis of WM need to investigate interactions between 

short-term plasticity mechanisms across molecular, neuronal and neural network levels in 

tight combination w ith studies that address each level separately. Another interesting question 

is how genetic variability that affects short-term plasticity contributes to individual 

differences in WM capacity. 
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b) What is schizoplu·enia? 

Schizophrenia is a rnultifactorial complex psychiatric disorder that is characterized by 

pronounced clinical, biological and etiological heterogeneity (Tandon, Nasrallah, & 

Keshavan, 2009). It occurs with a lifetime risk average of about 0.7 percent (Saha, Chant, 

Wei ham, & McGrath, 2005) that varies with the degree of genetic predisposition (Allen, et al. , 

2008; Gottesman, 11 , McGuffin, & Farmer, l 987; Heston, 1966; Kendler, et al., 1993a) gender 

(Aleman, Kahn , & Selten, 2003; McGrath, et al. , 2004), urbanicity (G. Lewis, David, 

Andreassen, & Al lebeck, 1992; Pedersen & Mortensen, 200 I), migration (Cantor-Graae & 

Selten, 2005; Malzberg, 1964), prenatal infections (Penner & Brown, 2007), obstetrical 

complications (Byrne, Agerbo, Bennedsen, Eaton, & Mortensen, 2007; Geddes & Lawrie, 

1995; Geddes, et al. , 1999), drug abuse (Semple, McIntosh, & Lawrie, 2005) and parental age 

(Wohl & Gorwood, 2007). However how these genetic and environmental risk modulating 

factors interact and what neurobiological processes mediate their individual effects and 

interactions is cun-ently unknown (van Os & Marcelis, 1998; van Os, Rutten, & Poulton, 

2008). Until these neurobiological processes have been identified it will be impossible to 

prove that any of these factors influence the risk of schizophrenia . The identification of risk 

factors also depends on a second question, the very definition of schizophrenia itself. Defining 

schizophrenia has been proven difficult because of the relative symptom- and treatment

unspecificity with respect to other psychiatric disorders and lac of diagnostically-valid 

markers (including genetic, patho-physiological/psychological markers) (Moller, 2008). Some 

of the symptoms observed in patients with schizophrenia are also seen in patients diagnosed 

with other psychiatric disorders, e.g., personality disorders (Siever & Davis, 2004), affective 

disorders (Angst, 2002; Taylor & Amir, 1994) and autism (Esterberg, Trotman, Brasfield, 

Compton, & Walker, 2008) . This suggest the existence of some continuous transitions 

between disorders and disorder categories (H. Verdoux & van Os, 2002) as well as some 

overlap in neuropathology (O'Dushlaine, et al. , 20 l 0). Interestingly personality disorders are 
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more freq uent in re latives of patients with schizophrenia (Kendler, et al. , 1993b; Maier, 

Lichterrnann, Minges, & Heun, 1994). Characteristic symptoms according to DSM-[V 

(American Psychiatric Association, 2000) include delusions, hallucinations, disorganized 

language and behaviour or catatonic behav iour, negative symptoms (i.e. affective flattening, 

alogia, or avolition). Delusions, hallucinations, catatonic and negative symptoms overlap with 

the characteristic symptoms according to ICD-10 (World Hea lth Organisation, 1992) but 

differ for the symptoms thought echo/insertion/withdrawl/broadcasting and social and 

occupational dysfunction. Both systems require for the diagnosis of schizophrenia the 

exclusion of organic causes for symptoms and do not include the impairment of cognitive 

functions nor subjective experiences. The inclusion of the impairment of cognitive functions 

(Keefe, 2008) and subjective experiences (Raba llo, Saebye, & Parnas, 2009; Sass & Parnas, 

2003) as diagnostic criteria may be valuable, e.g. for early detection and treatment of the 

disorder as well as for the identification of pathological mechanisms and risk factors. Both 

classification systems differ with respect to the required number, specific ity and duration of 

symptoms. The diagnosis depends thus critically on the applied diagnostic classification 

system. Such differences in the degree of diagnostic concordance between classification 

systems for schizophrenia, e.g. duration and exclusion/inclusion of symptoms, affect the 

estimation of incidence rates, prevalence, heritability and outcome (Jansson & Parnas, 2007). 

At present there is increasing doubt in the validity and utility of these systems for the 

classificat ion of mental disorders (Craddock & Owen, 201 O; Eaton, Hall, Macdonald, & 

McKibben, 2007; Jansson & Parnas, 2007; Moller, 2008; van Os, 2009). 

The age-at-onset of schizophrenia varies with gender (Angermeyer & Kuhn , 1988) and fami ly 

history of schizophrenia (Esterberg, Trotman, Holtzman, Compton, & Walker, 20 I 0). ln cases 

with a family history of schizophrenia no effect of gender on the age-at-onset was evident 

(Esterberg, et al., 20 I 0) . A younger age-at-onset has been related to an increased severity of 

cognitive deficits (Rajj i, Ismail , & Mulsant, 2009). Course and outcome are also heterogenous 
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(Tandon, et al. , 2009), worse course and outcome of the illness have been reported for 

younger age-at-onset (Hollis, 2000; Rabinowitz, Levine, & Hafner, 2006) and more severe 

cognitive deficits (Bowie, et al., 2008; Braw, et al., 2008). The risk for death by suicide is 

relatively high in patients with schizophrenia (Pompili, et a l., 2007; Saha, Chant, & McGrath, 

2007). Comorbity of other psychiatric disorders, drug abuse, intellectual disability and a range 

of medical conditions has been observed with schizophrenia (Tandon, et al., 2009). The 

various treatments for schizophrenia are limited by vari abi lity in individual symptomatoloy 

and treatment response, insufficient effectiveness, treatment resistance, significant side effects 

and non-compliance (De Oliveira & Juruena, 2006; Dixon, et a l. ; S. Lewis & Lieberman, 

2008; Matheson, Green, Loo, & Carr; Tandon, et al. , 2008). Complete remission from 

schizophrenia is relatively rare but psycho-social and vocational rehabilitation may improve 

prognosis (Schennach-Wolff, et al. , 2009). 

The prevalence and high heritability of schizophrenia m human populations despite its 

negative effects has led to the idea that genes conferring risk to schizophrenia could also be 

involved in adaptive evolution of human cognitive functions (Crespi, Summers, & Dorus, 

2007). This view is supported by the finding that some of the sh·ongest and best-replicated 

schizoplu·enia-associated genes are under recent positive selection (Crespi , et al., 2007). 

Even though the diagnosis is categorical most of the current theoretical models of 

schizophrenia assume and experimental data support continuous structures of 

symptomatology, individual symptom phenotypes, pathophysiology and etiology of the 

disorder (Linscott & van Os) . Nevertheless these quantitative structures may give rise to 

qualitative structures at the population level (Linscott & van Os). Research and treatment of 

schizophrenia could be advanced through the improvement and empirical validation of the 

cunent concepts and diagnostic systems e.g., through the integration of categorical and 

continuous measures covering symptomatology, pathophysiology and etiology using unbiased 

methods (Keshavan, Tandon, Boutros, & Nasra llah, 2008; Linscott & van Os). Furthermore 
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the utility of traditional subtypes of schizophrenia has been queslioncd because they are 

unstable during the course of the disorder a11d futile to explain the heterogeneity in clinical 

profile, etiology, pathophysiology, treatment response, and outcome (Tandon, et al. , 2009). 

Instead of these traditional subtypes, the variable expression of individual symptom clusters 

could be used to better differentiate pathophysiological processes, risk factors, individual 

courses and h·eatment responses between patients (Tandon, et a l. , 2009). The decomposition 

of these symptom clusters in continuous measures ( endophenotypes) may also revea l how risk 

factors affect neurobiological processes (Tandon, et al. , 2009). 

c) The guest for endophenotyoes of schizophrenia 

The concept of endophenotype was invented to decompose complex, polygenetic and 

heterogeneous disorders (reviewed by (]. Gottesman & Gould, 2003)). This is based on the 

assumption that identification of the genetic contribution to a specific feature of a disorder

related phenotype ( e.g. expression level of a protein, neuropil size, ventricle size or cognitive 

deficit) will facilitate the association between disorder-related genotypes and phenotypes. The 

endophenotype was proposed to uncover functional relationships between genotype and 

disorder through the identification of genetically influenced modifications at various 

functional levels, e.g. at the molecular, cellular, neural network and behavioural level. 

Appropriate endophenotypic traits are more directly related to the biological effects of fewer 

genes, influenced by fewer factors, and less complex than their associated phenotype. 

According to Gottesman and Gould (1. Gottesman & Gould, 2003) suitable endophenotypes 

should fulfil the following five criteria: associated with the illness at the population level, 

heritable, present whether or not symptoms are present, within families co-segregate with the 

illness and presentation in affected individuals more similar or common in non-affected 

relatives than in the general population. 

14 



Susceptibility to schizophrenia is suggested to be multifactorial resulting from the complex 

interactions between genetic, epigenetic and environmental factors, with a heritability 

estimate3 of approximately 0.8 (Cardno & Gottesman, 2000; Ross, Margo lis, Reading, 

Pletnikov, & Coyle, 2006). The polygenetic and heterogeneous inheritance of schizophrenia is 

reflected in the individual variation of symptom combinations, the considerable heterogeneity 

of disorder course, outcome as well as its symptoms. The number of susceptibility loci, the 

disorder risk conferred by each locus, the extent of genetic heterogeneity, and the degree of 

interaction of loci all remain unknown (G Kirov, O'Donovan, & Owen, 2005). However 

recent evidence suggest that genetic risk of schizophrenia is conferred by common alleles of 

moderate to small effect and rare alleles of moderate to large effects in mul tiple genes (H. J. 

Wi lliams, Owen, & O'Donovan, 2009) . Because the individual effect of most putative risk 

alleles is small and those alleles are common in the general population various combinations 

of multiple risk alleles at multiple loci interacting with one another and environmental factors 

may underlie the pathogenesis and explain the heterogeneity of schizophrenia. In addition rare 

alleles of larger effect like copy number variations may contribute to the etiology in some 

cases of schizophrenia (G. Kirov, et al. , 2008; Walsh, et al. , 2008). The investigation of such 

complex patterns of risk variables is stil I lacking because of the difficulty to model such high

dimensional data without knowledge about the functional relations between the variables. 

Genome Wide Association Studies (GW AS) rely on individual testing of each variability 

marker/ haplotype i.e. multiple testing that requires very large samples to test whether the 

frequencies of genetic variants differ between affected indiv iduals and controls. The 

endophenotype approach instead focuses on relations between genetic variability and 

differences between patients and controls in disease-affected quantitative traits e.g. brain 

functions and strnctures. Understanding the impact of genetic variability on schizophrenia-

3 Heritability - is a measme of the strength of genetic effects on a trait, most generally defined as the proportion 
of the phenoty pic variance in a trnit that is attributable to genetic effects (heritability = genetic variance/ 
phenotypic variance) 
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related alterations of brain functions and structures may help to define more homogenous 

clinical phenotypes to assist diagnosis and treatment selection. Quantitative endophenotypes 

may also replace the case-control design to enhance the power of genetic association studies. 

Positive, negative, disorganized and cognitive symptoms in schizophrenia can affect multiple 

functions , e.g. perception, locomotion, emotion, social-interaction, executive functions and 

memory. Repeatedly, genetic influences on working memory and executive functions have 

been reported (Kuntsi, et al. , 2006; Stins, et al. , 2005), with heritability estimates of 43-49% 

(Ando, Ono, & Wright, 200 I) . During an fMRl working memory study unaffected twins of 

schizophrenia patients showed activation and performance intermediate to their affected 

siblings and healthy controls (K. Karlsgodt, et al., 2007). 

d) WM in schizophrenia 

Meta-analyses of working memory performance in patients with schizophrenia revealed 

significant deficits across various WM-tasks (Forbes, Carri ck, McIntosh, & Lawrie, 2009; 

Lee & Park, 2005). The performance on various WM-tasks has been reported to correlate with 

negative and disorganised symptoms in schizophrenia patients (Cameron, et a l. , 2002). 

During WM fo r the identity of verbal items reduced activity in frontal and parietal regions 

was found to correlate with higher scores of negative and disorganized symptoms (Sanz, et 

a l. , 2009). Furthermore, reduced activity in frontal and subcortical regions was found to 

correlate with lower scores of positive symptoms and better social functioning (Sanz, et a l., 

2009). Working memory performance was found to be significantly worse in patients with 

schizophrenia compared with healthy controls (Brahmbhatt, Haut, Csemansky, & Barch, 

2006). WM-perfo1mance of the patient's unaffected siblings was found to be neither different 

from controls nor the patients with schizophrenia (Brahmbhatt, et al. , 2006). When these 

groups were matched on WM-performance task-related temporal cortex activity was reduced 

in patients with schizophrenia compared to unaffected siblings and healthy participants 
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(Brahmbhatt, et al. , 2006). Changing the number of items to be maintained during the WM

task was less correlated w ith changes in brain activity in patients with schizophrenia than 

healthy controls (Johnson, et a l., 2006). The degree of task-related activity of fronta l-parietal 

(K. Kar lsgodt, et al. , 2007) and frontal-temporal (R. C. Wolf, Vasic, Hose, Spitzer, & Walter, 

2007) regions in patients wi th schizophrenia has been shown to correlate with the degree of 

WM-performance deficit. These findings suggest that the adaptation of neural network 

activity in response to WM-capacity demands could be dysfunctional in patients with 

schizophrenia disrupting the relationship between WM-performance and WM-related brain 

activity. Reduced functional connectivity between bilateral superior parietal cortex and 

parietal-occipital cortices during WM for the location of non-verbal items was found to 

correlate with higher scores of positive symptoms (Henseler, Fa lka i, & Gruber, 2009). During 

WM for the identity of verbal items altered frontal-temporal connectivity has been found in 

people with prodromal symptoms of schizophrenia that were even more pronounced in first

episode patients with the disorder (Crossley, et al. , 2009). Together these findings suggest 

some relation between WM-deficits and the symptomatology of schizophrenia. Because 

deficient working memory is also characteristic for people at risk for schizophrenia (Conklin, 

Curtis, Katsanis, & Iacono, 2000; Hambrecht, Lammertink, Klosterkotter, Matuschek, & 

Pukrop, 2002; Park, Holzman, & Goldman-Rakic, 1995) and pers ists even after amelioration 

of psychotic symptoms (Snyder, et al., 2008) it may be a suitable endophenotype closer linked 

to the underlying neuropathological mechanisms and genetic risk factors than psychotic 

symptoms. 

e) Facial emotion processing in schizophrenia 

For accuracy of facial memory and emotion processing, significant heritabi lity estimates have 

been obtained (Our, et al., 2007). Impaired processing of facial emotion with respect to the 

identification or differentiation of facial emotions has consistently been shown in patients 
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with schizophrenia (C. G. Kohler, Walker, Martin, Healey, & Moberg, 2009). Stronger 

impairment of facial emotion processing was shown to correlate with more negative and 

positive symptoms (C. G. Kohler, et al., 2009). Whether these deficits in facial emotion 

processing depend on the type of facial emotion (neutral, angry, happy, sad, fearful, 

disgusting and surprised) remains controversial with considerable variability across studies 

(Bediou, et al. , 2005; Bigelow, et al. , 2006; C. Kohler, et al. , 2003; Sachs, Steger-Wucbse, 

Kryspin-Exner, Gur, & Katschnig, 2004; Tsoi, et a l., 2008). During the identification of facial 

emotions patients with schizophrenia performed worse than their healthy siblings and both 

performed worse compared to healthy controls (Bediou, Asri, et al. , 2007). Further despite the 

improvement of clinical symptoms, performance deficits in facial emotion recognition 

persisted in patients (Bediou, Asri , et al., 2007). ERP-related activity over temporal areas was 

reduced in patients with schizophrenia compared to controls during the facial emotion but not 

during the gender identification task (Bediou, Henaff, et al., 2007). While over frontal areas 

ERP-signals were reduced in patients compared to controls for both tasks (Bediou, Henaff, et 

al. , 2007). Moreover ERP-signal modulations by the type of facial emotion observed over 

frontal, temporal and occipital regions in healthy participants were absent in patients (Bediou, 

Henaff, et a l., 2007). 

Patients with schizophrenia compared with age-and gender- matched controls showed 

reductions of BOLD-response in amygdala, fusiform, inferior fronta l, middle temporal and 

middle occipital gyms during facial emotion processing (Johnston, Stojanov, Devir, & Schall, 

2005). Because facial emotion processing is heritable, related to the symptomatology of 

schizophrenia and abnormal at both behavioural and neurophysiological levels in patients 

with schizophrenia and their relatives it may be an interesting endophenotype for 

schizophrenia. 
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.f) Emotion and WM 

It has been suggested that WM performance could be enhanced for stimuli with emotional 

compared to non-emotional content (Kens inger & Corkin, 2003). The immediate 

identification of schematic fac ial emotions was shown to be more accurate and rapid for 

happy and neutral compared to sad in healthy participants (Leppanen & Hietanen, 2004). 

Recently we have shown that WM performance for face identity (after one second delay) is 

modulated by the type of facial emotion in healthy volunteers (M. C. Jackson, Wu, Linden, & 

Raymond, 2009; M. Jackson, Wolf, Joluiston, Raymond, & Linden, 2008). At the level of 

neural networks we found significant effects of emotional expressions on WM-related activ ity 

in prefrontal and temporal areas (M. Jackson, et al. , 2008). However the facia l emotion 

(happy, angry and neutral) for which WM performance was supenor differed between 

individuals and samples studied (M. C. Jackson, et al. , 2009; Langeslag, Morgan, Jackson, 

Linden, & Van Strien, 2009) indicative of considerable interindividual variabi lity. 

In summary patients with schizophrenia show significant impairments in visual working 

memory as well as facial emotion processing tasks that have been related to abnormal 

functioning of prefrontal and temporal regions. Furthermore, in healthy adults, working 

memo1y capacity for face identity benefits from emotional expressions tlu·ough the 

engagement of temporal and prefrontal areas. However the type of emotional expression 

associated with superior working memory performance varies considerable between 

individuals. Genetic variability contributes to interindividual differences in face memory and 

emotion processing. Because the genetic risk for schizophrenia is continuous (Burns, 2008; H 

Verdoux & Cougnard, 2006), disorder-related gene variants that are common in the normal 

population could also contribute to interindividual variability in emotion-cognition 

interactions observed in unaffected individuals . Working memory fo r emotional faces thus 

appears to be an interesting endophenotype to investigate genetic contributions to variabil ity 
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in emotion-cognition interactions in healthy individuals as we ll as in patients suffering from 

schizoplu·enia. 

Genetic variables that affect proteins involved in neuroplasticity link schizophrenia and 

working memory 

Genes and non-coding sequences involved in the regulation of neuroplasticity can influence 

adaptability in response to environmental stimuli across functional levels and are implicated 

in schizophrenia. Cognitive functions depend on the regulation of appropriate changes at the 

involved functional levels. Therefore genetic and epigenetic interindividual variability that 

affects the regulation of adaptability may contribute to interindividual differences at these 

levels. Patients with schizophrenia may suffer from a limited adaptability across functional 

levels due to dysfunctional adaptation mechanisms. Adaptation mechanisms could be 

dysfunctional because of primary changes in regulatory genes and non-coding sequences. 

Such dysfunctions could also be the result of secondary changes caused by the interactions of 

regulators with their targets and their regulation by environmental factors. The responsiveness 

of regulators to environmen tal factors could explain the impact of stress, drugs, infections, 

etc. in the manifestation of the genetic propensity to schizophrenia. 

Neuropathological studies in schizophrenia have identified changes at molecular, cellular and 

neural network levels suggesting the dysfunction of regulatory mechanisms m 

neurodevelopment, neurotransmission and nemoplasticity (HaITison & Weinberger, 2005; D. 

Lewis & Lieberman, 2000; Owen, Wi ll iams, & O'Donovan, 2004b; Perlman, Weickert, Akil, 

& Kleinman, 2004; Ross, e t al. , 2006). Importantly these regulation mechanisms interact with 

environmental factors and thus could also explain the contribution of stress, drug abuse and 

infections to the susceptibility for schizoplu·enia. Findings at the individual neurofunctional 

levels are interlinked. For example anatomical and functional abnormalities in prefrontal and 

orbital-frontal cortex, parietal, temporal cortex and subcortical regions (Ross, et a l. , 2006) 
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could be related to reduced cell body size, myelination, numbers of dendritic spines and 

synaptic terminals of pyramidal neurons observed in hippocampus and neocortex (Harrison & 

Weinberger, 2005). Further deficient neuronal migration, survival and connectivity in 

neocortical areas during neurodevelopment (Han-ison & Weinberger, 2005) and activity

dependent neuronal adaptations could be linked to the dysregulated expression of 

neuroplasticity-related genes. Variability in genes encoding proteins involved m 

neuroplasticity, neurotransmission and neurodevelopment (e.g. neuregulin-1 and dysbindin-1) 

has been linked to both working memory and schizophrenia. Neuroplasticity-re lated genes 

have been indicated in schizophrenia by genetic linkage and association studies as well as due 

to changes in the composition and function of synaptic proteins in those brain areas w ith 

functional and structural abnormalities (Ross, et al. , 2006). 

The dysregulation of synaptic plasticity involving particularly glutamatergic, dopaminergic 

and GABAergic transmission of prefrontal-temporal circuits has been implicated in 

schizophrenia (Lisman, et al. , 2008). The interaction between glutamatergic and dopaminerg ic 

signalling is crucial for the generation and maintenance of neural activity in prefrontal and 

related networks that regulates neuronal adaptations critical for working memory and other 

cognitive functions (Castner & Williams, 2007). During working memory the involvement of 

dopaminergic transmission has been shown in PFC and hippocampus of humans (Aalto, 

Bruck, Laine, Nagren, & Rinne, 2005). The activity of dopamine receptors contributes to the 

glutamatergic regulation of GABAergic intemeurons in PFC which may be important to 

regulate the activity of prefrontal circuits involved in working memory (Yuen & Yan, 2009). 

NMDA receptor antagonists, such as ketamine or phencyclidine, reproduce some of the 

positive, negative, and cognitive symptoms of schizophrenia (Lisman, et al. , 2008). Within 

the hippocampus formation hypofunction of NMDA receptors located on GABAergic 

interneurons may con tribute to a reduction in GABA-mediated inhibition of pyramidal 

neurons (Lisman, et a l., 2008) . Such dis inhibition in the hippocampus region could induce 
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hyper-function of dopaminergic neurotransmission affecting various brain regions (Lisman, et 

al., 2008). Hyperactivation of the dopamine system has been related to psychosis and may 

interfere with the processing of sensory stimuli and working memory (Lisman, et al. , 2008). 

67-kDa glutamic acid decarboxylase (GAD67) encoded by GADJ is one of the GABA 

synthesizing protein isoforms in GABAergic neurons (Akbarian & Huang, 2006). SNPs 

residing in the non-protein coding sequences of GADJ have been linked to schizophrenia 

susceptibility, cortical gray matter reduction (Addington, et al. , 2005), variabili ty in GAD67 

mRNA levels, and cognitive functions in patients (Straub, et a l., 2007). It has been shown that 

NMDA receptor inhibition reduces GAD67 mRNA levels while the blockade of dopamine 1 

and 2 receptors increases GAD67 transcription including areas such as prefrontal and parietal 

cortex (Qin, Zhang, & Weiss, 1994). This indicates the regulation of GABA metabolism in 

cortical intemeurons through antagonistic effects of glutamatergic and dopaminergic 

transmission. GAD67 transcription and translation are changed in prefrontal, temporal and 

visual cortex of patients with schizophrenia (Akbarian, et al. , 1995; Oracheva, Elhakem, 

McGurk, Davis, & Haroutunian , 2004; lmpagnatiello, et al., 1998; Volk, Austin, Pierri , 

Sampson, & Lewis, 2000). A correlation was also reported between reduced GAD67 and 

reduced BDNF (brain-derived neurotrophic factor)/ TrkB (tyrosine kinase B) receptor mRNA 

levels in PFC of patients with schizophrenia (T. Hashimoto, et al., 2005). Diminished 

activation of TrkB receptors could reduce the inhibition mediated by GABAergic intemeurons 

in the PFC and thus compromise neural activity in its target regions. Both BDNF and TrkB 

transcription are regulated by neuronal activity (Nagappan & Lu, 2005; Zafra, Hengerer, 

Leibrock, Thoenen, & Lindholm, 1990). Increased BDNF transcription is mediated through 

the activation of glutamate receptors while reduced BDNF transcription dependents on 

activation of GABA receptors (Zafra, Castren, Thoenen, & Lindholm, 199 1 ). Interestingly 

BDNF enhances presynaptic glutamate release only if the postsynaptic neuron is 
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glutamatergic or excitatory but not if the postsynaptic neuron is GABAergic or inhibitory 

(Schinder, Berninger, & Poo, 2000) which promotes its own transcription. 

Patients w ith schizophrenia showed alterations in mRNA expression and composition of 

NMDA subunits in prefrontal, temporal, occipital (Akbarian, Sucher, et al., 1996; Beneyto, 

Kristiansen, Oni-Orisan, McCu llumsmith, & Meador-Woodruff, 2007; Beneyto & Meador

Woodruff, 2008; Dracheva, et al. , 200 I; Gao, et al. , 2000; Grimwood, Slater, Deaki n, & 

Hutson, 1999; Kristiansen, Beneyto, Haroutunian, & Meador-Woodruff, 2006), and increased 

receptor density in superior temporal but not in prefrontal cortex (Nudmamud and Reyno lds, 

200 I). Variability in the promoter region of GRIN], which encodes the NMDA receptor 

subunit NRl (Begni , et al. , 2003 ; Georgi, et a l., 2007) and GRIN2B, which encodes the NR2B 

subunit (D. Li & He, 2007), may influence schizophrenia susceptibility. However up to the 

present no evidence suggests a relationship between genetic variability in GRINJ/GRIN2 and 

the observed differences in NMDA receptor subunit expression observed in patients. This 

supports the idea that other factors involved in the regulation of NMDA receptor expression 

may be altered in schizophrenia. Levels of postsynaptic density proteins known to interact 

with NMDA receptors were decreased while their mRNA levels were increased in prefrontal 

regions of patients with schizophrenia (Kristiansen, et a l. , 2006). The composition of NMDA 

receptor subunits is regulated during development (Law, et al., 2003). Developmental studies 

in animals suggest that reduction of NMDA receptor function during a critical period of 

development can produce e.g. deficits in working memory (Stefani and Moghaddam, 2005). 

The regulation of the components, number and localization of NMDA receptors in response to 

neuronal activity that mediates some forms of long-term potentiation/ depression (LTP/D) and 

contributes to the development and plasticity of neural networks could be dysfunctiona l in 

schizophrenia (Lau & Zukin, 2007). 

Suppression of NMDA receptor activation induced by neuregulin-1 (}l_RG-1 ) is increased in 

patients with schizophrenia compared to controls (Hahn, et al. , 2006). Deficient s ignalling of 

23 



NRG- l protein isoforms via ErbB receptors (Buonanno & Fischbach, 200 I) could be 

involved in the hypofunction of AMPA and NMDA receptors (B. Li , Woo, Mei, & Malinow, 

2007), developmental dysregulation of cell differentiation, migration, myelination and 

proliferation of oligodendrocytes and neurons in schizophrenia (Akbarian, Kim, et al. , 1996; 

Akbarian, et al., 1993; Arnold, Ruscheinsky, & Han, 1997; Jakob & Beckmann, 1986). 

lsoform-specific changes of NRG-1 mRNA and protein expression have been observed in 

prefrontal cortex and hippocampus of patients with schizophrenia (Bertram, et al. , 2007; R. 

Hashimoto, et al., 2004; Meyer, et al. , 1997; Parlapani, et al. , 2008). NRG-1/ epidermal 

growth factor receptor B4 (ErbB4) s ignalling has been shown to trigger dopamine release and 

to depotentiate early-phase L TP via activation of dopamine 4 receptors in the hippocampus 

that decreases surface expression of glutamate-I receptor-containing AMPA receptors (Kwon, 

et al. , 2008). In addition neuregulin-1 regulates the subunit expression of the nicotinic 

acetylcholine (Y. Liu, Ford, Mann, & Fischbach, 200 l ), GABA(A) (Okada & Corfas, 2004; 

Rieff, et a l., 1999) and NMDA receptors (Ozaki, Sasner, Yano, Lu, & Buonanno, 1997). 

Convergent ev idence suggests that variability in the NRG-1 gene (non-coding sequence) may 

contribute to the genetic susceptibility for schizophrenia (Stefansson, et al. , 2003; Stefansson, 

et al. , 2002; Yang, et al. , 2003) while the specific alleles, SNPs and haplotypes linked to 

schizophrenia varied considerably between studies (Corvin , et al., 2004; Munafo, Attwood, & 

Flint, 2008; Thiselton, et a l. , 2004). Two risk markers (SNP8NRG221132 and 

SNP8NRG243177lrs6994992) have been associated with the transcription of distinct NRG-1 

isof01ms in the hippocampus of patients with schizophrenia and controls (Law, et al. , 2006). 

In initially healthy subjects at high risk of schizophrenia the risk TT-genotype of rs6994992 

compared to the CIT and CIC genotypes was associated with the development of psychotic 

symptoms (auditory hallucinations or persecutory ideas) (Lawrie, Hall , McIntosh, 

Curn1ingham-Owens, & Johnstone, 2008). Furthermore decreased activity of prefrontal and 

increased activ ity of temporal cortex during a sentence completion task (in the absence of 
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effects on task perfom1ance) and decreased scores in an intelligence test were found 

comparing risk and non-risk-genotype carriers (Lawrie, et al. , 2008). An effect on spatial 

working memory capacity was also reported for the SNP rs6994992 genotype (Stefan is, et al. , 

2007). Although in the absence of effects at the behavioural level, effects of a fu1iher NRG-1 

risk genotype (SNP8NRG221 533/rs35753505) were found on activity in limbic structures in 

patients with schizophrenia during a working memory task (Kircher, et al. , 2009). NRG-1-

induced activation of AKT protein has been found to be decreased in patients with 

schizophrenia (Keri , Seres, Kelemen, & Benedek, 2009a) and decreased level of NRG-1-

induced AKT activation predicted higher levels of delusional ideas and anxiety in healthy 

participants (Keri, Seres, Kelemen, & Benedek, 2009b ). Interestingly AKTJ is also one of the 

genes implicated in schizophrenia (Thiselton, et al., 2008). Both neuregulin-1 and dysbindin-1 

proteins have been shown to activate the PI3-kinase4-PKB/ AKT5 intracellular signalling 

pathway involved in the regulation of neuronal functions and survival (8. S. Li, et al., 2003; 

Numakawa, et al., 2004). 

Dysbindin-1 is another protein involved in the regulation of neuroplasticity (Guo, et al. , 2009; 

Talbot, et al. , 2006) and DTNBPJ (dysbindin/dystrobrevin-binding protein l gene) has been 

implicated as one of the top candidate genes for schizophrenia (Allen, et al. , 2008). 

Dysbindin- 1 directly interacts with 31 proteins involved in cell morphology, cellular 

development, intracellular and synaptic signalling located in synaptic vesicles, postsynaptic 

densities and microtubules (Guo, et al. , 2009; Talbot, et a l., 2006). The high relevance of 

DTNBP 1 for schizophrenia could be linked to the multiple interactions of dysbindin- 1 with 

other proteins in neuronal inter-and intracellular signalling pathways. Genetic variability in 

DTNBP 1 has been linked to performance differences in spatial working memory and higher 

cognitive functions between patients with schizophJenia (Burdick, et al., 2006; Donohoe, et 

al. , 2007). 

4 Phosphatidylinositol 3-kinase 
5 Protein kinase B (a serin-threonin kinase) 
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Reduced levels of dysbinclin-1 mRNA or protein have been found in key regions of 

schizophrenia pathology such as the hippocarnpus (Talbot, et al., 2004; Weickert, Rothmond, 

Hyde, Kleinman, & Straub, 2008) and DLPFC (Weickert, et al. , 2004) of patients with 

schizophrenia. Underexpression of dysbindin in glutamatergic presynapses of the 

hippocarnpus from patients with schizophrenia (Talbot, et al. , 2004) could be one possible 

molecular mechanism contributing to impaired synaptic plasticity. 

In the hippocampus of dysbindin- 1 knockout mice, reduced dopamine levels and increased 

dopamine turnover have been observed (Murotani , et al., 2007). Loss of dysbindin-1 

expression affected the size and density of synaptic vesicles, the size of synaptic cleft, the 

thickness of postsynaptic densities, and the amplitude of evoked excitatory postsynaptic 

currents (eEPSCs) of glutamatergic pyramidal neurons in the hippocampus (X. W. Chen, et 

al. , 2008). Further knockdown of dysbindin expression has been shown to affect the 

organization of actin filaments of the cytoskeleton and phosphorylation of c-Jun N-terrninal 

kinase which regulates neurite outgrowth (Kubota, et al. , 2008). 

In addition impaired neurite outgrowth has been demonstrated m cultured hippocampal 

neurons from mice deficient of BLOC-1 a dysbindin-1 containing multi-protein complex 

(Ghiani, et a l., 2009). BLOC-1 's interaction with SNARE complexes (Ghiani , et al. , 2009) 

supports its role in axonal growth (Chua & Tang, 2008; Hirling, et al. , 2000; Osen-Sand, et 

al., 1993) and synaptic vesicle exocytosis (Jahn & Scheller, 2006). Dysbindin protein levels 

have been shown to regulate the expression of SNAP-25 (synaptic membrane synaptosome

associated protein of 25kDa, member of the SNARE complex) and Synapsin-1 a synaptic 

vesicle-associated cytoskeletal protein) (Numakawa, et a l., 2004). BLOC-I and AP-3 

(adaptor protein 3) complexes regulate protein trafficking to lysosome-related organelles 

(Setty, et a l. , 2007), e.g. targeting proteins to the membrane surface (Dell 'Angelica, 

Sbotelersuk, Agui lar, Gahl , & Bonifacino, 1999; Salazar, et al. , 2006). 
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Furthermore reduction of this protein has been associated with enhanced phasic, reduced tonic 

dopaminergic, reduced glutamatergic and GABAergic neurotransmission in PFC and 

decreased WM-performance in mice (Jentsch, et a l. , 2009; Ji, et a l., 2009; Murotani, et al., 

2007; Takao, et a l. , 2008). Consistent with dysbindin's function in the BLOC-I complex 

involved in protein trafficking to lysosomes the inhibition of dysbindin protein expression has 

been shown to up-regulate the surface expression of dopamine 2 receptor (D2R) in cortical 

neurons presumably by blocking D2R traffic to lysosomes for its degradation (Ji, et al. , 2009). 

More recently similar effects of dysbindin protein levels have been shown on the surface 

expression ofNMDA receptor subw1it NR2A presumably through the regulation of lysosome

dependent degradation, on the amplitude and decay time of evoked NR2A-dependent 

excitato1y postsynaptic potentials and the magnitude of LTP in hippocampal pyramidal 

neurons (Tang, et al. , 2009). 

Variability in non-coding sequence of DTNBP I has been linked to mRNA changes in regions 

such as PFC, hippocampus and amygdala of the normal human brain (Weickert, et a l., 2004) 

as well as to normal individual variability in cognitive performance and brain function 

(Burdick, et a l. , 2006; Fallgatter, et al. , 2006). 

Another pre-and postsynaptically expressed protein (Paspalas, Selemon, & Amsten, 2009) 

implicated in schizophrenia pathogenesis and working memory functions, and operating 

through the regulation of intracellular and synaptic signalling is regulator of G-protein 

signalling 4 (RGS4). RGS4-accelarated GTP-ase activity regulates the effects of metabotropic 

G-protein-coupled receptor activity on various intracellular signalling pathways, e.g. mitogen

activated/extracellular-regulated protein kinase (MAPK/ERK.) and AKT signalling (Traynor 

& Neubig, 2005). 

RGS4 gene express ion at va1ying levels has been detected within inferior, superior frontal and 

cingulate cortex, insular and inferior temporal cortex, caudate, putamen and nucleus 
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accurnbens, parahippocarnpal gyrus, CA-pyramidal region and thalamus of humans (Erdely, 

et al. , 2004). Bo th RGS4 mRNA and protein levels are regulated through a variety of factors . 

Negative effects of phospbatidyl inositol triphosphate (PIP3) and phosphatidic acid on RGS4-

mediated GTP-ase activity can be prevented by ca2 ~/Calmodulin (Traynor & Neubig, 2005). 

RGS4 mRNA levels are influenced by glucocorticoids, chronic stress in a brain region

specific manner (N i, et al. , 1999) . Activation of Dl and D2 receptors exerts antagonistic 

effects on sh·iatal RGS4 mRNA level (Taymans, et al., 2004). Down-regulation of RGS4 

rnRNA in sh·iatum and medial PFC and protein in striatum by amphetamines has been 

observed (Schwendt, Gold, & McGinty, 2006). Furthermore this study found that 

amphetamine potentiated the Dl receptor antagonist-induced increase and the D2 receptor 

antagonist-induced decrease of RGS4 mRNA in the caudate putamen (Schwendt, et al., 2006). 

Effects of variability in the COMT gene on prefrontal and hippocampal RGS4 mRNA levels 

have also been reported in patients with schizophrenia and healthy controls (Lipska, et al., 

2006). 

In addition an interaction of COMT (Vall58Met) and RGS4 (rs951436) genotype effects has 

been reported on DLPFC activity during working memory in healthy participants (Buckholtz, 

Sust, et a l., 2007). Together these findings suggest the regulation of RGS4 mRNA levels 

through the convergent effects of environmental and genetic factors. 

Reduction of RGS4 mRNA expression has been observed in prefrontal, visual and motor 

cortex of patients with schizophrenia, which also showed con-elations of mRNA levels 

between regions (M imics, Middleton, Stanwood, Lewis, & Levitt, 200 1) . Recently a study 

investigated splice form-specific levels of RGS4 mRNA and found exclusively a reduction of 

the RGS4-3 isoform in DLPFC of patients with schizophrenia compared to controls (Ding & 

Hegde, 2009). Furthermore decreased expression of RGS4 protein in frontal cortex and 

mRNA in insular cortex, superior frontal, cingulate (Erdely, Tamminga, Roberts, & Vogel, 
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2006) and superior temporal gyrus (Bowden, Scott, & Tooney, 2007) was found in patients 

with schizophrenia compared to controls. 

However, despite the consistently observed decrease of RGS4 mRNA and protein expression 

as well as association between common variants in non-coding sequence of the RGS4 gene 

and schizophrenia susceptibility (Talkowski, Chowdari , Lewis, & Nimgaonkar, 2006), none 

of these variants were associated with RGS4 mRNA levels in PFC and hippocampus in 

patients or in healthy controls (Lipska, et al. , 2006). SNP rsl0917670 and rs951439 have been 

associated with measures of face memory in a large sample of patients with schizophrenia and 

the.ir relatives (Prasad, et a l. , 2009). SNP rs951439 has also been associated with 

frontoparietal and frontotemporal BOLD-response and functional connectivity during 

working memory as well as region-dependent alternations of gray and white matter volume 

(Buckholtz, Meyer-Lindenberg, et al. , 2007). 

In summary variation, in genes and non-coding sequences of several proteins involved in the 

regulation of neuroplasticity, specifically within glutamatergic, dopaminergic and GABAergic 

systems, has been associated with quantitative or qualitative changes at the transcription or 

translation level in schizophrenia. These changes may contribute to the functional and 

structural abnormalities at the neuronal and nemal network level that underlie the impairment 

of cognitive processes observed in patients with schizophrenia. Because the genetic risk for 

schizophrenia is thought to be continuous, genetic variants that are common (minor allele 

frequency > 0.10) among healthy people and associated with the neuropathology of cognitive 

and/or affective deficits in schizophrenia could also contribute to the normal interindividual 

variability in emotion-cognition interactions. However it remains a huge challenge to identify 

those genetic variants exhibiting effects at neural and behavioural levels. Inconsistent and 

contradictory findings have been reported for virtually all genes, variants and alleles that have 

been associated with schizophrenia. This heterogeneity remains even if accounting for 

confounding factors sucb as age, gender or age-at-onset of the disorder and rather appears to 
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be characteristic for the genetics of complex human diseases. Moreover if the effects of 

genetic variants on neuronal gene and protein expression or function are unknown the 

interpretation of results will be hampered. Recently it was found that experience-driven 

neuronal activity-dependent changes in gene and protein expression regulate neuroplasticity 

involved in learning and memory (described in chapter 3) (Flavell & Greenberg, 2008; Greer 

& Greenberg, 2008). This suggests that the effects of genetic variability not only depend on 

the interactions with other genes, proteins, epigenetic and environmental factors but are also 

influenced by neuronal activity driven by sensory, cognitive, emotional or motor experiences, 

e.g. during interactions between the individual and its social environment. ln order to account 

for the inconsistency and heterogeneity observed in genetic studies of schizophrenia we may 

therefore also require knowledge about how experience-driven neuronal activity contributes 

to changes in gene and protein expression to regulate neuroplasticity. 

What is the rationale for using genetic neuroimaging for the investigation of 

endophenotypes? 

How interindividual genetic variability contributes to interindividual differences at the level 

of neural networks and the related behavioural response, and how this can be altered m 

psychiatric disorders, are questions that can be addressed with genetic neuroimaging. 

Genetic neuroimaging can provide more specific and reliable endophenotypes that may help 

identify the contribution of genetic predictors to a neurophysiological response and its 

cognitive or behavioural. effects. 

The assay of endophenotypic variations by fMRl has been used to supplement phenotype

genotype association, e.g. to investigate the effects of candidate genes for sch izophrenia (J . 

Ca llicott, et a l. , 2005; Egan, et a l., 2004; Straub, et al. , 2007). This non-invasive, but 

physiological approach may help to quantify and specify the influence of genetic parameters 

on brain functions and behaviour. The neural network. level accessed with fMRl is supposed 
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to be more directly associated with physiological parameters under the influence of genetic 

parameters than a complex psychiatric disorder for example. At the level of neural networks 

genetic effects have been detected even in the absence of behavioural differences in cognitive 

tasks (Blasi, et a l. , 2005; Canli , et al., 2005; Schott, et al. , 2006). This suggests fMRI as one 

non-invasive method that can be applied to test for association between individual 

neurophysiological variation(s) and genotype variation(s) contributing to the understanding 

how genetic variation can impact functions at the neural network level (Hariri, Drabant, & 

Weinberger, 2006). Due to the correlative nature of this approach pre-validation of the genetic 

variables for effects on neurobiological functions and heritability of the endophenotype to 

some degree are paramount. This view bas been propagated by the founders of genetic 

neuroimaging and researchers currently working with this approach (Hariri & Weinberger, 

2003; A. Meyer-Lindenberg & D. R. Weinberger, 2006; Straub, et al., 2007). However with 

the improvement of imaging data analysis tools, reliability of genetic imaging may increase 

and thus could be used to identify new genetic variants (Potkin, et al. , 2009). 

Common genetic variants, which affect the expression or function of neuronal activity

regulated proteins and ncRNAs involved in neuroplasticity, are rarely known. Individual 

variation of endopbenotypes likely depends on the complex interaction of genetic, epigenetic 

and environmental factors whereas for the most part each individual factor confers only a 

moderate effect. The neurobiological function for the majority of transcription and translation 

products is still unknown. 

So far the genetic conh·ibution to individual variation of neuronal network activity involved in 

cognitive functions has been investigated for genes encoding receptors or enzymes of several 

neurotransmitter systems as well as BDNF (Egan, et al. , 2003 ; T. Goldberg & Weinberger, 

2004). The majority of those studies focused on two common polymorphisms 5-HTTLPR 

(SLC6A) within non-coding and COMT-Val158Met within protein-coding sequence of the 

serotonin transporter respectively the catechol-O-methyltransferase gene. Both 
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polymorphisms affect the protein expression level and in case of CO MT-Val 158Mct 

additionally the enzyme activity. Effects of genetic variability on brain activity were found in 

the absence of task-related behavioural effects and in a priori selected regions of interest 

(ROis) . Consistently, the 5-HTTLPR genotype has been reported to account for variability of 

amygdala activity in response to various tasks contrasting emotional stimuli (A Bertolino, et 

al., 2005; Canli , et al., 2005; Hariri , et a l., 2005; Hariri, et al., 2002; Heinz, et al. , 2005; 

Heinz, et al. , 2007; Smolka, et al., 2007). However observed differences for emotion contrasts 

have been shown to be driven by a general increase of brain activity in individuals with the 

low-5-HTT expression genotype (Canli , et a l., 2005). Recently, this genotype has been linked 

to performance in executive function tasks with conflicting results (Borg, et al. , 2009; Paaver, 

et a l. , 2007). Using similar, attention or memory tasks an effect of the COMT-Val158Met 

genotype has been found on activity in various brain regions (Blasi, et al., 2005; Drabant, et 

al. , 2006; Egan, et al. , 200 I; Ho, Wassink, O'Leary, Sheffie ld, & Andreasen, 2005; Schott, et 

a l. , 2006; Smolka, et a l., 2005). The majority of behavioural studies found better cognitive 

performance in various tests associated with the low-COMT activity Met-allele (Savitz, 

SohllS, & Ramesar, 2006) while this allele has been also associated with less efficient 

emotional processing in prefrontal and limbic regions (Drabant, et al., 2006; Smolka, et al. , 

2005). Such balance between advantageous and disadvantageous effects of the COMT

Val 158Met polymorphism may expla in the almost 50/50 ratio of population allele frequencies. 

Combined additive effects of both polymorphisms including a second 5-HTT polymorphism 

(rs2553 l ) that also affects 5-HTT mRNA expression, have been observed on activity in 

limbic regions during processing of emotional pictures (Smolka, et al. , 2007) . Also non

additive effects of polymorphisms within the COMT gene including Val 158Met (A Meyer

Lindenberg, et al. , 2006) as well as Val158Met in COMT and the rs6465084 polymorphism in 

the glutamate receptor 3 gene have been shown to modulate the working memory-related 

response of prefrontal networks (H . Tan, et al. , 2007). COMT contributes to the availability of 
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catechols and some other hydroxylated metabolites e.g. catecholamines and catecholestrogens 

(Mannisto & Kaakkola, 1999) and 5-HTT influences synaptic levels of 5-HT (Heinz, et al. , 

2000; K. Lesch, et a l., 1996; Murphy, Lerner, Rudnick, & Lesch, 2004) and other 

monoamines. By influencing the levels of these neurotransmitters and thus neural network 

activation, COMT has been suggested to modulate cognitive perfonnance (A. Meyer

Lindenberg & D. Weinberger, 2006) or emotion processing (Smol ka, et al., 2005) and 5-HTT 

emotiona l regulation (Can li & Lesch, 2007; Hariri & Holmes, 2006). It remains unclear how 

COMT and 5-HTT interact with other regulators of these transmitters and how regulators of 

COMT and 5-HTT contribute to their expression level and activity. 

The statement "COMT is a major enzyme in prefrontal areas because of a lack of the 

dopamine transporter in this region" (Kramer, et al., 2007) reflects a common misconception 

about the role of this enzyme in catecholamine metabolism. Most available evidence suggests 

that both isoforms of COMT are intracellular. More specifically, the membrane-bound MB

COMT has been localised to the rough endoplasmatic reticulum, and the soluble S-COMT to 

the cytosol and nucleus (Ulmanen, et al., 1997). If COMT is inside the cell the enzyme's 

access to synaptic dopamine depends on the availability of a reuptake mechanism. The lack of 

dopamine transporters in prefrontal cortex would thus severely limit the function of COMT if 

it were not for at least two reasons. First, norepinephrine transporters also transport dopamine 

(Horn, 1973), having a higher affinity for dopamine than does the dopamine transporter 

(Eshleman, et al. , 1999; H. Gu, Wa ll, & Rudnick, 1994). Second, dopamine reuptake in 

prefrontal cortex depends primarily on the n01·epinephrine transporter (Moron, Brockington, 

Wise, Rocha, & Hope, 2002) . 

COMT does seem to play an important role in prefrontal cortex, judging from the expression 

of its m.RNA, which is higher than in the striatum (Matsumoto, Weickert, Beltaifa, et al., 

2003), and this seems to be inversely related to the expression of dopamine transporters 
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(Moll, et al., 2000). It is thus tempting to reformulate the above sentence into " COMT is a 

major enzyme in prefrontal areas despite a lack of the dopamine transporter in this region". 

Variations and reduced mRNA expression in COMT (A. Bertolino, et al. , 2004; N. J. Bray, et 

al. , 2003; Egan, et al., 200 I ; Matsumoto, Weickert, Aki I, et al. , 2003; Shifman, et al., 2002; 

Talkowski, et al., 2008; H. J. Wi lli ams, Owen, & O'Donovan, 2007) and less convincingly in 

5-HTT (Dubertret, Hanoun, Ades, Hamon, & Gorwood, 2005; Golimbet, et al., 2004; 

Hranilovic, et al. , 2004; Zaboli, et al., 2008) have been implicated as contributors to the 

susceptibility for schizophrenia or deficits in schizophrenia. Further dopaminergic (Sesack & 

Carr, 2002) and serotonergic dysfunction (Geyer & Vollenweider, 2008) as well as their 

interaction (Esposito, Di Matteo, & Di Giovann i, 2008) have been linked to schizophrenia and 

to cognitive and affective symptoms in schizophrenia. 

The transcription, expression and activity of 5-HTT in neurons are regulated by multiple 

factors, including hormones, protein kinases, receptor activation (Blake ly, De Felice, & 

Hartzell , 1994), the SNARE protein syntaxin lA (Quick, 2003) and concentration of 5-HTT 

substrates. COMT mRNA expression is upregulated by hypoxia (X. C. Lu, et al., 2004) and 

COMT activity is inhibited by g lucocorticoids in the hypophys is and hypothalamus (Parvez & 

Parvez, 1973). Although limited the knowledge about the regulation of COMT and 5-HTT 

suggests that the action of COMT and 5-HTT is influenced by regulators while their own 

influence is restricted to the regulation of their substrates. Conflicting findings regarding the 

effects of genetic variability in COMT and 5-HTT may be due to the effects of regulators. 

Nevertheless studies combining genetics and fMRI have consistently demonstrated that 

variability in the genes encoding COMT and 5-HTT influences the activation of brain regions 

involved in cognitive and emotional processing in humans. However the outcome of these 

genetic differences appears to depend on additional regulatory factors and variability in other 

genes not yet sufficiently understood. Investigating these factors may also clarify the relation 

between genetic variability in COMT/5-HTT genes and schizophrenia vulnerability. 
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Only a few studies have used the combination of genetics and fMRI to investigate effects of 

genetic variability on endophenotypes such as working memory at the new-al network level in 

patients w ith schizophrenia (Diaz-Asper, et al., 2008; Kircher, et al., 2009; Meda, et a l. , 2009; 

Potkin, et al., 2009; Roffman, et al., 2008). However using this approach appears suitable for 

the investigation of genetic influences on working memory for emotional faces in healthy 

participants and patients with schizophrenia 

Notes on general methodical issues 

a) Selection of genes and the ir genetic variants related to the selected endophenotype 

For the choice of endophenotype relevant genetic variants, we considered genetic (variability, 

frequency, mRNA and protein expression) and neuro-physiological (effects on function and 

structure of brain regions and neurons) aspects of proteins involved in neuroplasticity (with 

focus on the neurotransmitters glutamate, dopamine, GABA, serotonin), associated with 

cognitive functions (particularly related to WM, emotion and face processing) and 

susceptibility to schizophrenia. 

Literature was searched to identify genetic variants based on convergent evidence for their 

likely involvement in modifications of nemoplasticity (intrace llular signalling, synaptic 

transmission, neuronal structures) and their relevance to variability/deficits in cognitive 

functions and/or pathogenesis/risk of schizophrenia. 

From the literature, the fo llowing information regarding cognitive functions or schizophrenia 

and other related disorders was used to select a number of genetic variants: function of the 

protein, related transmitter system(s), gene(s), chromosomal location of the gene, 

polymorphism(s)/ haplotypes, with respect to frequency (common minor alle le frequency > 

.l 0/ large difference between cases and controls), ethnicity (preferentially SNP data available 
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for Caucasian and UK samples), type of polymorphism, effects on mRNA and protein level, 

assumed functional effects, link with schizophrenia/cognition/emotion and animal model(s). 

As a result a primary list of genetic variants was generated (please refer to appendix A). 

b) Acquisition of methodical information to identify the selected genetic variants 

Another criterion for the selection of genetic variants was the availability and feasibility of 

methods to identify the genetic information of interest. For this purpose literature and gene 

banks were searched to provide information about the identity number of genes, the identity 

number of specific genetic variants (rs number), the sequences of primers and other important 

procedure details (appendix B). 

After combining the information generated in the first list and procedure details, 8 first and 9 

second choice genetic variants in 15 different genes concerning four transmitter systems were 

proposed as potential candidates of investigation. The distinction into first and second choice 

was made for the case in which some of the first choice variants were not feasible due to 

technical reasons. Then variants from the second choice list were used to ensure the final 

number of variants would not be smaller than 9 rather larger. This first proposal was revised 

and modified together with our collaborator C. Kiss ling according to practicability of the 

molecular genetic techniques (genotyping only based on restriction enzymes; preferably 

already established) and led to a final selection of 9 genetic variants in 8 different genes 

(appendix C). The rational for the final selection of these 8 genes has been given above 

(please refer to "Genetic variables that affect proteins involved in neuroplasticity link 

schizophrenia and working memory" and "What is the rationale for using genetic 

neuroimaging for the investigation of endophenotypes?". 
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c) Definition of tlu·ee participants groups 

The definition of partic ipant cohorts according to their ethnicity is necessary to avo id faulty 

associations and increase the chance to detect a true association. The reason is the presumably 

small size of genetic effects. Variability arising from typically large effects, like age, gender, 

IQ, etc. should be minimised because they can easily obscure these small potential gene 

effects. The combination of a genetic and imaging association study in cases (patients) and 

controls is susceptible to population stratification artefacts and ethnic matching within groups 

is potentially critical (Hariri & Weinberger, 2003). Thus, ethnicity and other confounding 

factors should be carefully controlled across compared groups/ individuals. We included age, 

gender, education, handedness and ethnicity as possible confounding factors. 

Participants of the combined tMRI-Genetic study were divided into three groups of Caucasian 

adult subjects. One group of Caucasian patients with schizophrenia, two groups of healthy 

controls comprise one Caucasian European and one Caucasian Welsh sample. 

For all patients bas ic clinical parameters (age at onset, years of illness, diagnosis and current 

medication) were documented. All patients were interviewed with the MINI International 

Neuropsychiatric Interview and the Positive and Negative Symptom Scale for current 

psychopathology (PANSS) involving questions about cunent and past symptoms in 

collaboration with Stefanie L inden (M.D.; psychiatrist). Patients were also tested with the 

National Adult Reading Test, Schizotypal Persona lity Questionnaire and the PC-based 

version of the emotional working memory task (to estimate performance) before their 

participation in the combined ±MRI-Genetic study. 

Control participants were interviewed (C.W.) prior to the experiment to exclude any 

neurological or psychiatric disease of participants or their relatives as well as MRI contra

indications (appendix E) . 
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Participants in the Welsh sample needed to fulfil the following criterion: all their four 

grandparents were born in Wales. This group was created to allow for closer ethic matching 

with the patient group. 

In order to allow matching for age and education, the contro l sample was designated to cover 

a broad age range from 18 to 50 years. Initially, 25 subjects for each control group and 15 

schizophrenics for the patient group were strived for the study. Because we were unable to 

recruit more than 8 patients who agreed to be scanned and also perfom1ed the task above 

chance level the investigation of genetic influences on brain function and behaviour in 

schizophrenia couldn't be realized. Instead we focused on our large control sample 

(combining the Welsh and European Caucas ian samples) to investigate genetic influences on 

interindividual differences in emotional working memory. 

d) The course of data analysis 

First behavioural and fMRI data was analysed to test the effects of emotion and load on WM 

performance (d'prime values averaged across load for each emotion/ averaged across emotion 

for each load/ overall performance across all 12 conditions/ d ' prime mean difference between 

emotions), WM capacity (Cowan's K and Cowan's Kmax for each emotion) and its neural 

correlates (beta values averaged across load for each emotion/ across emotion for each load/ 

beta differences between emotions). Both performance and imaging measures were tested for 

correlations to reveal task-performance/brain activity relationships comparing the different 

emotions. 

BQX imaging data analysis software did not allow the inclusion of one between- subject 

factor and two within-subject factors and even later when such design became feas ible the 

large amount of volume time course files (218) probably led the program to crash. Besides, 

the calculation of this data-intense GLM-analysis was imposs ible with a standard Windows

driven system due to insufficient working memory for the calculation. 
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Hence we choose a step-wise approach, based on the first-level RFX-GLM we computed a 

second-level RFX-within-subject two-factors ANOVA, extracted the beta values from all 

significantly activated clusters (ROis). Further analys is of these values combined with 

behavioural and genetic data was executed in SPSS. 

We were particularly interested in happy and angry faces because in previous studies the 

majority of participants showed WM performance benefits for happy and angry compared to 

neutral faces (M. C. Jackson, et a l. , 2009; M. Jackson, et al., 2008; Langeslag, et a l. , 2009). 

However, we had noted considerable interindividual variability, motivating the current study 

of its genetic basis. Genotype effects on WM performance differences were al l p > .13 except 

for DTNBPJ for the mean d ' prime difference between happy and neutral and for SLC6A4 for 

the mean d ' prime difference between ang1y and happy p < .05 (Tab.l). However, none of the 

regions that showed significant activity for the angry-happy contrast showed significant 

correlations between brain activity (beta difference) and perfonnance (d'prime difference) for 

the difference between angry and happy (all p's> .19; Appendix D). For this reason SLC6A4 

genotype effects on the WM performance difference between angry and happy were not 

followed up at the neural network level because our primary aim was to explain the 

interindividual differences for the emotion effect on WM. However we did find significant 

correlations between brain activity (beta difference) and performance (d'prime difference) for 

the difference between happy and neutral in the FF A, lTG and STS of the right hemisphere 

(all p 's < .05; Tab.2 Experimental chapter I) and additionally a number of regions that 

showed significant coffelations between brain activity (beta difference) and performance 

( d 'prime difference) for the difference between angry and neutral or/and significant 

correlations between brain activity (beta mean) and performance (d'prime mean) for happy 

and/or angry faces (Tab.2 Experimental chapter I) . Only these regions with significant 

activity-performance correlations were analysed for effects of DTNBP L genotype on brain 

activity. T his allowed us to test whether the observed DTNBP I genotype effects on the 
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interindiv idual variabili ty of emotion effects on WM perfo rmance could be explained by 

genotype-dependent differences of performance associated brain activity. ln this way we 

further reduced the number of genetic variants from our selection of 9 genetic variants in 8 

different genes that was based on their neurobiological plausibility for involvement in WM 

and emotional processing by identifying which variants could explain the interindividual 

variability of emotion effects on WM performance and associated brain activity. Furthermore 

our results of dysbindin-1 genotype effects on emotion-dependent WM performance and 

related brain activity are in agreement with reports in the literature regarding dysbindin-1 

mRNA distribution in human brain, effects of this genotype on dysbindin- l mRNA levels in 

normal brain, changes in dysbindin-1 mRNA and protein levels in brain tissue of patients with 

schizophrenia. For these reasons we decided to focus on dysbindin- 1 and not to pursue any 

further the analysis of the other genetic variants. Genotype and allele frequencies for all 9 

genetic variants can be found in Appendix D. Allele frequencies for all SNPs have been 

checked with Chi2-test (5%; OF= 2) and population is in HWE. 

Table I. Genotype effects on WM performance (d' prime mean differences for angry minus neutral, happy minus 
neutral and angry minus happy). 

Genotype angry-neutral happy-neutral angry-happy 

DTNBP I F(54, I) = 0.3 1 p = .58 F(54,1) = 4.3 1 p = .04 F(54, I) = 2.23 p = .14 

SLC6A4 F(53,2) = 2.03 p = .14 F(53,2) = 0.20 p = .82 F(53,2) = 3.57 p = .04 

RGS4 F(53,2) = 0.06 p = .95 F(53,2) = 0.37 p = .69 F(53,2) = 0.13 p = .88 

NRG! F(53,2) = 0.42 p = .66 F(53,2) = 0.06 p = .94 F(53,2) = l.09 p = .35 

GRINl F(54,1) = 0.27 p = .6 1 F(54, l)=0. ll p = .74 F(54, I) = 0.07 p = .80 

GRIN2B F(53,2) = 0.33 p = .72 F(53,2) = 0. 16 p = .86 F(53,2) = 0.09 p = .92 

COMT(Val/Met) F(53,2) = 0.74 p = .48 F(53,2) = 0. 10 p = .91 F(53,2) = 0.7 1 p = .45 

COMT rs48 18 F(53,2) = 0.33 p = .72 F(53,2) = 1.10 p = .34 F(53,2) = 0.30 p = .74 

GAD! F(53,2) = 0.04 p = .96 F(53,2) = 0. 14 p = .87 F(53,2) = 0.41 p = .67 
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Experimental Chapter I 

Bridging the gap between synaptic function and cognition: A genetic imaging study of 

dysbindin-1 genotype effects on emotional working memory and cortical activity. 

This chapter has been published in Molecular Psychiatry (C. Wolf, Jackson, Kissl ing, Thome, 

& Linden, 2009) with the following title and contributing authors and has been presented as a 

poster at the conference Exciting Biologies 2008: Biology of Cognition organized by 

Massachusetts General Hospital, Fondation Ipsen and Cell Press, at Chateau Hotel Mont 

Royal, in Chantilly, France, October 16-18, 2008. 
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Abstract 

We combined functional imaging and genetics to investigate the behavioural and neural 

effects of a dysbindin- 1 (DTNBP J) genotype associated with the expression level of this 

important synaptic protein, which has been implicated in schizophrenia. On a working 

memory (WM) task for emotional faces, participants with the genotype related to increased 

expression showed higher WM capacity for happy faces compared to the genotype related to 

lower expression. Activity in several task-related brain areas with known DTNBPl expression 

was increased, including hippocampus, temporal and frontal cortex. Although these increases 

occurred across emotions, they were mostly observed in areas whose activity correlated with 

perfo1mance for happy faces. This suggests effects of variability in DTNBP 1 on WM capacity 

and region-specific task-related brain activation in humans. Synaptic effects of DTNBP I 

implicate that altered dopaminergic and/or glutamatergic neurotransmission may be related to 

the increased WM capacity. The combination of imaging and genetics thus allows us to bridge 

the gap between the cellular/molecular and systems/behavioural level and extend tbe 

cognitive neuroscience approach to a comprehensive biology of cognition. 
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Introduction 

Inter-individual variability of cognitive skills is explained to a considerable degree by genetic 

factors (Ando, et al., 200 l ; Blokland, et al., 2008). The combination of molecular genetics and 

functional imaging allows for the effects of genetic variation in neurobiologically relevant 

proteins on neurophysiological responses in cognition- and emotion-related neural networks 

to be investigated in humans (Hariri , et al. , 2006). 

Recent evidence suggests that variability m the dysbindin-1 ( dystrobrevin-binding 

protein 1) gene (DTNBP 1; OMIM 607145) contributes to interindividual variability of 

cognitive functions at both neurophysiological and behaviomal levels in healthy individuals 

as well as in patients with schizophrenia (Burdick, et al. , 2006; Donohoe, et a l., 2007; 

Donohoe, et al. , 2008; Fallgatter, et al., 2006). For example, 12% of variance in spatial WM 

performance in patients with schizophrenia were accounted by the C-A-T dysbindin-1 

haplotype (Donohoe, et a l. , 2007). At the molecular level, genetic variability markers in the 

DTNBPJ gene, including SNP rs1047631 located in a 3'UTR (untranslated region) have been 

shown to index dysbindin-1 mRNA expression (Bray, Buckland, Owen, & O'Donovan, 2003; 

Bray, et a l. , 2005; Weickert, et a l. , 2004). The G-allele of SNP rs1047631 is associated with 

17-19% increase of dysbindin-1 m-RNA levels (Bray, et a l. , 2005; Weickert, et al., 2004). 

Variability in non-protein coding sequences including UTRs has been proposed as a major 

source for interindividual differences of quantitative traits (J. Mattick & Makunin, 2006) . 

Furthermore it has recently been reported that SNP rsl047631 is positioned within a 

microRNA binding site (Luciano, et al. , 2009), which adds to the evidence that variability in 

this region is involved in gene regulation. Dysbindin-1 gene transcription has been observed 

in temporal neocortex, entorhinal cortex, orbitofrontal cortex, dorsolateral prefrontal cortex 

(DLPFC), amygdala and hippocarnpus of healthy adults, with higher abundance in gray than 

white matter (Weickert, et al. , 2004) . Reductions of dysbindin- l mRNA in DLPFC 

(Weickert, et al. , 2004), hippocampus (Talbot, et al. , 2004; Weickert, et a l. , 2008) and 
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dysbindin-1 protein in g lutamatergic pre-synapses of the hippocampus (Talbot, et a l., 2004) 

have been reported in patients w ith schizophrenia. Glutamatcrg ic synapses in these regions 

contribute to neuronal activity related to WM (Oegenetais, Thierry, Glowinski , & Gioanni, 

2003; Wall & Messier, 2001). Therefore interindividual differences in dysbindin-1 protein 

levels at prefrontal and hippocampal synapses may contribute to interindividual variability in 

WM-related activity. Dysbindin- 1 is involved in the regulation of neuroplasticity (Guo, et al. , 

2009; Talbot, et al. , 2006) and has also been implicated as a candidate gene for schizophrenia 

(Allen, et al. , 2008). Dysbindin- 1 directly interacts with 3 1 proteins involved in cell 

morphology, cellular development, intracellular and synaptic signalling at its different 

locations in synaptic vesicles, postsynaptic densities and microtubules (Guo, et al., 2009; 

Talbot, et al. , 2006). Recently BLOC-1 (Biogenes is of lysosme-related organe lles complex-I) 

a dysbindin-containing multi-protein complex has been identified in the murine cerebral 

cortex, hippocampus and cerebellum (Ghiani , et a l. , 2009). Furthermore this study revealed 

the developmental regulation of cortical dysbindin protein expression and neuri te outgrowth 

defects in hippocampal neurons of BLOC-I-deficient mice (Ghiani, et al. , 2009). The 

relevance of DTNBP 1 for schizophrenia might be linked to the multiple interactions of 

dysbindin-1 with other proteins in neuronal inter-and intracellular signalling pathways, e.g. 

the PI3-kinase-PKB/Akt intracellular signalling pathway (Numakawa, et al. , 2004). 

Interestingly, the Aktl gene has been implicated in schizophrenia as well (H. Y. Tan, et al. , 

2008; Thiselton, et al., 2008). Lack of dysbindin synthesis in Sandy mouse, a dysbindin-1 

knockout (W. Li, et a l. , 2003), has been found to affect the vesicle structure and kinetics of 

synaptic glutamatergic transmission of pyramidal neurons in the CAI region of the 

hippocampus (X. W. Chen, et a l. , 2008), to reduce evoked responses in prefrontal pyramidal 

neurons and to impair working memory performance (Jentsch, et al., 2009). Furthermore, 

knockdown of dysbindin expression has been shown to affect the organization of actin 

fi laments of the cytoskeleton and phosphorylation of c-Jun N-tenninal kinase, which regulates 
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neurite outgrowth (Kubota, et al., 2008). Increased dopamine turnover and reduced dopamine 

levels (Murotani, et al., 2007) in cortex and bippocampus have also been observed in Sandy 

mouse. In sum, there is converging evidence establishing a central role for dysbindin in the 

regulation of synaptic structure and function. 

With its multiple effects on both neocortical and limbic areas, dysbindin is an ideal 

candidate protein for the regulation of emotion-cognition interactions. influences of emotion 

on cognition have been documented in a wide range of domains, including attention, memory 

and reasoning (Dolan, 2002). Here we investigated working memory of emotional faces, and 

thus memory in a specifically social context, because significant heritability estimates have 

been obtained for both face memory and emotion recognition (Gur, et a l., 2007). We were 

interested in genetic influences on emotional face WM because we had noted considerable 

interindividual variabi lity of WM performance benefits for happy and angry compared to 

neutral faces (M. C. Jackson, et al. , 2009; M.C. Jackson, Wolf, Johnston, Raymond, & & 

Linden, 2007; M. Jackson, et al., 2008; Langes lag, et al. , 2009). Performance benefits for 

angry faces were related to enhanced neural processing of angry compared to happy and 

neutral faces in prefrontal, tempora1 and subcortical areas (M. Jackson, et al., 2008). Because 

of dysbindin-1 expression in a ll of these areas, association of the SNP rsl047631 with 

differences in dysbindin-1 expression, and dysbindin's role in both dopaminergic (lizuka, Sei, 

Weinberger, & Straub, 2007; Kumamoto, et al. , 2006) and glutamatergic neurotransmission 

(Numakawa, et al. , 2004; Ta lbot, et a l. , 2006; Ta lbot, et al., 2004), we hypothesized that 

genotypic differences for SNP rs I 047631 in healthy volunteers contribute to individual 

differences in emotion effects on WM at the neurophysiological and behavioural level. 
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Materials and methods 

Participants 

56 participants (31 males, 52 right handed, age 31.8 ± 9.1 years, min 19 max 51 years, all 

European Caucasians) were recruited from the local community and through the Bangor 

University participant panel and were paid £25 . Participants had no lifetime or family history 

of any psychiatric or neurological disease and normal or corrected to normal vision. They 

provided written informed consent prior to participation. The study was approved by the 

School 's ethics committee in Bangor. 

Stimuli 

Six adult, male, greyscale Ekman face images each displaying neutral, happy and angry 

expressions were used. Each image covered approximately 1.43° x 1.36°. Scrambled greyscale 

face images selected at random were displayed to cover the face locations during encoding of 

fewer than 4 faces. 

Working memory task for emotional faces 

The behavioural paradigm has been tested in detail in previous studies (M. C. Jackson, et a l. , 

2009; M. Jackson, et a l. , 2008). In an event-related design (Figure 1) the influence of 

emotional expressions on visual WM capacity for faces and task-related brain activity was 

investigated through the manipulation of face expression (angry, happy, and neutral) and the 

number of faces to be remembered (load 1, 2, 3, 4). Each of the 12 conditions consisted of 4 

match and 4 non-match trials. Trials were distributed over 4 runs with 48 trials each to 

minimize fatigue effects. Face expressions and face load varied randomly between trials and 

type of face expression was kept constant within one trial. Faces were presented at randomly 

alternating locations in a 2 x 2 matrix in the centre of the screen, and the centre of each image 
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within the matrix was positioned at a visual angle of approximately 1.27° from fixation to 

ensure that the fac~ display was foveal. In order to avoid eye movement artefacts, participants 

were asked to maintain fixation throughout each imaging session. All trials started with 

fixation towards a central cross on the display which served as baseline. This was followed by 

two seconds presentation of the memory an-ay, a delay of one second, and the test face, where 

participants bad to indicate a match or non-match response via the respective button. The 

between trials fixation interval jittered between 4500 - 6000 ms. 

4 -65 sec 

1 sec 

1 UC 

I SSl SS2 SS3 SS4 

I 
/encoding 

.---"---~ 
/delay 

/,ecogn,1ion 

2 sec 

1 sec 

.---~-~ 

2 sec 
'present' o, 

·•bsent' 
response 

Figure 1. Dynamic of tria ls and session structure of working memory task for emotiona l faces. 

Acquisition and analysis of behavioural and imaging data 

The task was generated and behavioural data recorded with the E-Prirne software (Version 

1. 1, Psychology Software Tools, Inc.). Scanning was performed with a Philips I.ST MRI 

whole-body scanner with a SENSE parallel head coil. Blood oxygenation level-dependent 

images were acquired by using a T2* weighted gradient echo planar sequence (repetition time 

(TR) = 2000 ms; echo time (TE) = 40 ms; matrix size = 96 x 96; fi eld of view (FOY) =256 x 
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256 rnm2; voxel size =3 x 3 x 3 mm3; 90° flip angle; 20 axial s lices; 5 mm slice thickness). 

The first two volumes of each session were discarded to reduce possible Tl saturation effects. 

During each of the four working memory sessions 343 volumes were acquired. A high

resolution T 1-weighted 3D anatomical MR data set was used for co-registration (TR/TE = 

l 1.5/2.95ms; FA = 8°; coronal sli ce thickness = 1.3 mm; acquisition matrix 256 x 256; in

plane resolution 1 x 1 mm\ 

Working memory accuracy was assessed by calculating d'prime values (d'prime = z

transformed Hits - z-transformed False Alarms) for each of the 12 conditions and each 

subject. Working memory capacity for faces was measured by individual Cowan's K Max 

values for each emotion (Cowan 's K Max = maximal K reached for this individual at any 

array size; Cowan's K values = array size* (Hits - FA)). 

Imaging data analysis was performed using the Brain Voyager 1.9 .10 software 

(Braininnovation, Maastricht, The Netherlands). Functional images were co-registered with 

the structural 3D image, spatially normalized to the Talairach system and resampled at a voxel 

size of 1 x 1 x 1 mm3
, resulting in 218 z-normalized volume time course files (vtcs), (six runs 

could not be used because of motion artefacts ; head motion > 3 mm or chance performance; 

FA mean > 0.5). Functional images were scan time corrected using sine interpolation, 3D 

motion corrected using trilinear interpolation, spatially smoothed (8 mm Gaussian kernel), 

and temporally high pass filtered (3 cyc les per time course). The 218 design matrix files (rtcs) 

for the general linear model (GLM) analysis incorporated predictors for each of the 12 

conditions for all correct trials, one separate predictor for all error trials and 6 predictors 

derived from the head motion correction for each subject. All but the motion predictors were 

convolved with a two-gamma haemodynamic reference function. 

Based on these vtcs and rtcs from all subjects we computed a random-effect general 

linear model (RFX-GLM) to obtain beta values per subject and condition at each voxel. These 

were used as dependent variable to compute a second-level RFX-within-subject two-factors 
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ANOVA with tbe within subject factors emotion (3 levels) and load (4 levels) to generate 

functional whole-brain 3D maps for the contrasts angry minus neutral and happy minus 

neutral faces. In order to reduce the probability of false negatives while sti ll reducing false 

positives, we corrected for multiple comparisons by using cluster-size tbresholding (Forman, 

et al. , 1995; Goebel, Esposito, & Fom,isano, 2006) for which we set a corrected significance 

threshold of p < .05. Cluster thresholds were set at 200 voxels and calculated usmg 

Brainvoyager QX Cluster-level Statistical Threshold estimator based on a Monte Carlo 

simulation with 1000 iterations. For each of these clusters an RFX-GLM region of interest 

(ROI) analysis was computed to extract beta values representing the mean activity over the 

entire cluster for all 12 task conditions (including only correct trials) per subject for 

subsequent con-elation with behavioural data and statistical analysis in combination with the 

genetic data. 

Finally we tested whether activity in regions affected by overall task performance 

overlapped with activity in regions affected by genotype. Whole brain maps including 

individual scores for global performance (z-transformed mean of hits across all 12 conditions 

minus z-transformed mean of false ala1ms across all 12 conditions) as covariate were 

computed for both emotion contrasts (angry-neutral and happy-neutral), and correlations 

between this perfo1mance score and the respective contrast were visualised at a threshold of r 

(54) = .26 (p<.05). Each correlation map was overlaid with the respective original contrast 

map. For regions with overlapping activity beta values were extracted for subsequent 

statistical analysis for genotype effects. 

Genotyping 

Genomic DNA was extracted from venous EDTA blood samples, using Invisorb® Blood Giga 

Kit (Invitek, Berlin). The DNA sequence fragment containing SNP rs 1047631 was PCR

amplified (5'-GGT TTG GCT ACA GTC AGC TCT T-3' and 5'-AGG ACA GCG ACT CTT 
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AAA TTG G-3 ' , annealing temperature 60°C; 36 cycles, amplification fragments length 

444bp). Genotypes were discriminated by digesting PCR-amplified gene products with 

restriction nuclease BsaA l (New England BioLabs, USA) at 37°C for 4.5 hours. The 

genotype fragments ( GG genotype 12 l bp and 32 l bp; AA-genotype 442bp; GA genotype 

12lbp, 321bp and 442bp) were separated via electrophoresis on a 2% agarose gel 

supplemented with ethidium bromide (Promega, UK) and visualized under UV-light. The 

genotyping results for 18% of the samples analysed were replicated with 100% accuracy to 

ensure high genotype fidelity. 

Statistical analysis 

a) Analysis of genetic data 

Hardy-Weinberg-Equilibrium was checked with x2-test (a- level .05; DF = 2), x2-test (a-level 

.05; DF = l) and independent-samples t-test (2-tailed) were used to test whether genotype 

groups differed on confounding factors. 

b) Genotype effects on WM-capacity 

We performed independent-samples (GA versus AA) t-tests (2-tailed) for d'prime mean 

differences (angry-neutral, happy-neutral, angry-happy and angry&happy-neutral) and 

maximal Cowan's K values (all 3 emotions) to assess DTNBPJ genotype effects on working 

memory accuracy differences (angry-neutral, happy-neutral, angry-happy and angry&happy

neutral) as well as on the individual working memory capacity for each emotion. 

c) Correlations between brain activity and WM-performance 

Beta value measures (beta means for angry, happy and neutral faces averaged across the four 

loads and beta mean differences between angry and neutral as well as happy and neutral) from 

each of the brain regions significantly activated for the angry-neutral and happy-neutral 

contrasts were tested for correlation (Pearson's correlation coefficient, 2-tailed) with 

behavioural measures (d'prime mean values for angry, happy and neutral faces averaged 
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across all loads and the d'prime mean differences between angry or happy and neutral), in 

order to determine task-performance relevant brain regions. Con-elations were used as a filter 

to select those regions for the analysis of dysbindin-1 genotype effect which were active in 

relation to working memory performance for angry and/or happy faces. 

d) Genotype effects on brain activity 

Only brain regions where activity significantly correlated with task-performance were 

analyzed for genotype effects. Mixed ANOVAs with two within-subjects factors (emotion: 

angry, happy, neutral and load: 1 to 4) and one between-subjects factor (DTNBP I genotype: 

GA, AA) were calculated to assess genotype effects on brain activation. We then tested the 

genotype effect for each emotion (averaged across load) separately and for the difference 

between angry or happy and neutral using independent-samples t-test (2-tailed). 

e) Power calculations 

Power calculation were carried out using the DSS Research Statistical Power Calculator 

software based on the observed means, standard deviations, sample size for an 5% a - level 

(2-tailed). The probability for not detecting the DTNBPl genotype effect on WM 

performance (d'prime) for the difference between happy and neutral faces (/J - l) was .52. At 

the neural network level the probability for not detecting the genotype effect (/J - l) for 

example in the right occipital cortex was .21 for angry, .18 for happy and .30 for neutral faces. 

Results 

Dysbindin-1 genotype 

The frequency for the G-allele of the DTNBP I SNP rsl 047631 was 0.12 with the genotypes 

distributed according to Hardy-Weinberg equilibrium. There were no individuals homozygous 

for the G-alle le. Participants in the GA (N = 13) and AA (N = 43) groups showed no 

s ignificant difference of age, years of education, gender or handedness (Table 1) . 

53 



Table 1. Participants with different genotype differed not significantly (p > .05) according to gender, handedness 
or age. Displayed are U1e uumber of subjects and the expected numbers (in brackets) in each group and Chi
square values for the categorical variables gender and handedness. and group means and p-value from t-test (2-
tailed) for age. 
confounding 
factor 
gender 

handedness 

age 

male 
female 
right 
left 

GA 
7 (7 .2) 
6 (5.8) 
12 ( 12.1) 
l (0.9) 

M = 33.69 
SD = 7.91 

DTNBPI 
AA 

24 (23.8) 
19(19.2) 
40 (39.9) 

3 (3. l) 
M= 31.28 
SD= 9.40 

Pearson Chi-Square or l-Test 
(DF = I) (DF = 54) 

.90 

.93 

.41 

Dysbindin-1 genotype affects working memory performance for happy faces 

When we pooled the angry and happy compared to the neutral condition, there was no 

significant (p = .44) effect of the DTNBPl genotype on WM accuracy (d'prime difference). 

The difference between angry and happy likewise was not affected significantly (p =.14) by 

the genotype. Both genotype groups showed better WM accuracy for angry compared to 

neutral faces (d ' prime difference angry minus neutral for GA group M = 0.35, SE= 0.22; for 

AA group M = 0.22, SE = 0.10), but there was no difference of this angry benefit between 

groups. Conversely, for happy vs. neutral faces only the GA group had s ignificantly better 

WM accuracy (d'prirne difference happy minus neutral for GA group M = 0.38, SE= 0.19; for 

AA group M = -0.02, SE = 0.09). This group difference was significant at t (54) = 2.08, p < 

.05, representing a medium effect r = .27 (7% of variance explained) of the DTNBP 1 

genotype (Figure 2a). 

The K max, an estimate of WM capacity, was also higher for happy faces in the GA 

group (M = 2.70, SE = 0.18) than in the AA group (M = 2.29, SE = 0.10), t (54) = 1.97,p = .05 

representing a medium effect (r = .26) of genotype on the maximal number of happy faces 

held in WM (Figure 2b ). 

When we added participant gender as a factor to our analysis of DTNBP l genotype 

effects on WM perfo1mance (d'prime and Kmax) we found neither an influence of gender nor 

any interaction between DTNBP l genotype, gender and type of emotion with all at least p 

>.l. 
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Figure 2. a) The d ' prime (WM-accuracy) mean difference between happy and neutral faces was significantly 
bigger (p < .05) in the GA group than AA group. Genotype groups differed not significantly for the d'prime 
difference between angry and neutral faces. Error bars display standard error of the mean. b) The K max mean 
values (WM-capacity) were higher (p = .05) for happy but not for ang1y or neutral faces in participants with GA
compared to AA-genotype. Error bars display standard error of the mean. 

Imaging data 

We sought to unravel why working memory performance for happy but not for angry faces 

was significantly improved in participants heterozygous for the G-allele. First we identified 

brain regions with significantly higher activity during WM for angry compared to neutral and 

happy compared to neutral faces, based on the performance benefit for these emotions. 

Second we tested those brain regions for significant correlations between WM-related activity 

and WM-accuracy for angry, happy or neutral faces. Third, we analyzed the activity in 

regions with significant activity-accuracy correlations for modulation by dysbindin-1 

genotype. 

l. Neural correlates of working memory for angry and happy faces 

There was no significant interaction between the factors load and emotion, and we thus report 

planned whole-brain contrasts (angry-neutral and happy-neutral) with emotions pooled across 

loads applying a cluster threshold correction for multiple comparisons of 200 voxels at p < 

.05. Higher activation for angry faces compared to neutral faces was observed in the left and 

right insula, right superior temporal sulcus (STS), right and left inferior temporal gyrus (ITG), 
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left and right globus pallidus (GP), right orbital-frontal cortex (OFC), left and right 

ventrolateral prefrontal cortex (VLPFC), right dorsolateral premotor cortex (DLPC), right 

middle frontal gyrus (MFG), right caudate nucleus (CN), right amygdala extended, left 

hippocampus, left and right fusiform face area (FF A), lower part of the right intra-parietal 

sulcus (IPS), right inferior parietal lobe (IPL), right and left occipital cortex (OC), right and 

left occipital face area (OFA, (Peelen & Downing, 2005), and left substantia innominata (SI) 

(Fig. 3a, Tab. Sla). 

Higher activation for happy compared to neutral faces was observed in the left and right OC, 

left and right OF A, left insula, left SI, right VLPFC, right and left inferior frontal gyrus, right 

OFC, right inferior and middle temporal gym s, right and left amygdala, left FF A, and left 

entorhinal cortex (Fig. 3b, Tab. Slb). 

a) b) 

Figure 3. a) Higher activation for angry than neutral faces in the right fusi form face area (FFA), left hippocampus, right and 
left substantia innominata (TS). b) Higher activation for happy than neutral faces in the right occipital face area (OFA), right 
inferior temporal gyrus (ITG) and right orbital frontal cortex (OFC), p < .05 and cluster-threshold 200 voxels. 

2. Activity-performance correlations of working memory for angry and happy faces 

Increased activ ity correlated significantly with better WM accuracy in 16 brain regions 

activated for the angry-neutral contrast and the happy-neutral contrast (Tab.2). All regions 
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with significant activity-accuracy correlations for happy faces showed con-elations between 

mean activity and mean accuracy for happy faces, and additionally fo r the difference between 

happy and neutral faces in the STS, ITG and FF A of the right hemisphere. For angry faces, 

only the right IPL, left OFA and bilateral ITG showed significant correlations between mean 

activity and mean accuracy, with all remaining activity-accuracy correlations for angry faces 

referring to the difference between angry and neutral faces. WM accuracy-activity 

correlations for emotions and emotion contrasts thus differed between brain regions. 

Tab.2 Brain re ions where activi si nificantl correlated with behavioural WM- erformance. 
Brain d ' prime mean by R· p Brain d 'prime mean R p 

region condition & region difference between 

mean beta values by conditions & 

condition beta mean difference 

between conditions 

Right happy .08 .040 Right angry & neutral .09 .027 

FFA amygdala 

extended 

Right happy .07 .042 Right CN angry & neutral .10 .02 1 

GP 

Right angry .08 .038 Right FFA angry & neutral .23 < .00 1 

IPL neutral . 10 .0 16 happy & neutral . 11 .012 

Right happy . 11 .01 I Left FF/\ angry & neutral . 13 .006 

IPS neutral . 10 .021 

Right happy .13 .006 Left hippo- angry & neutral .08 .030 

ITG angry .08 .033 campus 

Len happy . 10 .015 Right IPL angry & neutral .24 < .00 1 

ITG angry .07 .044 

neutral . 14 .005 

Right happy .07 .044 Right ITG angry & neutral .07 .049 

oc happy & neutral . 10 .01 6 

Right happy .07 .046 Left OC angry & neutral .08 .037 

OFA neutral .09 .024 

Left angry .09 .022 Right OF/\ angry & neutral .14 .005 

OFA happy .08 .039 

Right happy .09 .022 Left OF/\ angry & neutral . 10 .01 9 

OFC 

Right happy .13 .007 Right STS angry & neutral .15 .003 

STS happy & neutral .17 .001 
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3. Effect of dysbindin-l genotype on task-related brain activity measures 

Of the above areas that showed both higher activities for emotional compared to neutral faces 

and correlations of activation levels with performance, only FFA, lTG, OFC, QC and OFA of 

the right hemisphere and the left hippocampus showed a significant dysbindin-1 genotype 

effect. ln all brain regions the genotype effect was produced by enhanced activity for the GA 

compared to the AA group (Fig. 4a-f). 

Effect of dysbindin-1 genotype on brain activity 

a) rigtt FFA b) left ~ pocarrpus 
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beta means 1,4 
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Dysblrdn genotype tor SNP rs1047631 D;sblndil genolype for SIIP rsl 047631 D;sblndln genolype for Sllf' 1s1047631 

Figure 4. Effect of dysbindin-1 genotype on beta means for angry, happy and neutral faces (* p < .05, ** p < 
.01, *** p < .00 1) a) the right fusiform face area, b) le ft hippocampus, c) right occipital cortex, d) right orbital 
frontal cortex, e) right inferior temporal gyrus and f) right occip ita l face area. Error bars display standard error of 
the mean. 

In the left hippocampus (Fig. 4b, Tab. S2b) and right OC (Fig. 4c, Tab. S2c), the GA group 

showed significantly higher activity than the AA group for all face categories. In the right FFA 

(Fig. 4a, Tab. S2a), right OFA (Fig. 4f, Tab. S2f) and right ITG (Fig. 4e, Tab. S2e), activity 

for angry and happy but not for neutral faces was significantly higher in the GA versus AA 
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group. In the r ight OFC (Fig. 4d, Tab. S2d), activity for angry and neutral faces but not for 

happy faces was significantly enhanced in the GA versus AA group. 

4. Relationship between overall task performance and dysbindin-1 genotype on task-related 

brain activ ity 

A whole brain correlation analysis between the global perfo1mance and brain activity for each 

emotion contrast (angry-neutral/ happy-neutral) at p < .05 and cluster threshold 200 voxels 

(and even w ithout applying the cluster threshold) revealed no overlap with the respective 

original emotion contrast maps (Fig. S1) except in the right and left inferior frontal sulcus 

region for the happy-neutral maps. ANOV As revealed no significant DTNBP l effect on 

activity in the right (p = .49 and left (p = .74) DLPFC in agreement with our initial analysis 

that revealed no genotype effects in both these regions. 

Discussion 

W e report a dysbindin-1 genotype effect on WM performance for emotional faces that is also 

reflected in enhanced task-related brain activity. Participants heterozygous for the G-allele 

(the GA group) compared to homozygous A-allele carriers (the AA group) for SNP rsl047631 

showed better WM accuracy for happy faces compared to neutral faces and also higher 

individual maximal WM capacity for happy faces. At the neurophysiological level we found 

enhanced activity for happy faces in the right FFA, left hippocampus, right OC, right OFA 

and right ITG in the GA compared to the AA group. The GA group also showed increased 

activity for angry faces in these regions and additionally in the right OFC. Except for the 

occipital cortex for which expression data is still unavailable, these brain areas match with 

those where dysbindin-1 mRNA (Bray, et a l., 2005; Weickert, e t a l. , 2004) and protein 

expression have been reported (Ta lbot, e t al. , 2006; Talbot, et a l. , 2004) . The G-allele of SNP 

rsl04763 1 has been associated with a 17-19% mRNA expression increase in prefrontal and 
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temporal areas (Bray, et a l., 2005; Weickert, et al. , 2004). All these brain regions except the 

right FFA, right OFA and right ITG also showed higher activity for neutral faces in GA

genotype carriers. This suggests an effect of the GA genotype on WM-related brain activity in 

regions likely to express dysbindin-1. 

Neural correlates of working memory for angry and happy faces: 

lITespective of the genotype effect we identified brain regions with enhanced activity for 

angry or happy compared to neutral faces to test whether those regions contribute to WM 

performance for angry or happy compared to neutral faces. Correlations between WM 

perfom1ance and WM-related brain activity were significant in STS, FF A, OFC, OC, OFA, 

amygdala extended, hippocampus, ITG, GP, IPS, IPL and CN, regions repeatedly reported in 

fMRI studies of emotional face processing (Sambataro, et a l. , 2006; M. Will iams, McGlone, 

Abbott, & Mattingley, 2008) and face WM (M.C. Jackson, et al. , 2007; LoPresti, et al. , 2008; 

Rissman, Gazzaley, & D'Esposito, 2008). In addition electrophysiological evidence points to 

face and/or face expression processing neurons in the STS, OFC, FF A, ITG and the amygdala 

(Rolls, 2007), adding to the plausibility of brain areas with emotion effects in the present 

study. All significant correlations were positive, linking higher activation with better task 

performance. 

Although the DTNBP 1 genotype affected brain activity for all emotion conditions, at 

the behavioural level it only showed a significant effect on WM for happy faces. Interestingly 

in the FF A, ITG, OC and OFA of the right hemisphere, the significant enhancement of 

activity for happy faces in the GA group compared to the AA group was combined with a 

positive correlation of performance and activity for happy faces. Conversely, for angry faces 

we found a correlation between activity and performance and significantly increased activity 

for angry faces associated with the GA genotype only in the right ITG. The reason for the 

selective enhancement of WM capacity for happy faces may thus lie in the genotype-
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associated increases in activity and the positive effects of increased activity on task 

perfom1ance in these early visual areas for happy faces. 

Several previous studies of genotype effects on neural activity have observed activity 

changes that did not translate into performance differences (Blasi, et al. , 2005; Canl i, et al., 

2005; Schott, et al. , 2006). This observation suggests that the small neurochemical changes 

brought about by most functional polymorphisms need to influence performance-related 

neural activity in a critical number of regions within the task-related neural network before 

they will s ignificantly alter behavioural performance. 

Link with schizophrenia 

The G-allele of SNP rs l047631 ts included in a puta tive protective haplotype for 

schizophrenia that also comprises the G-allele of marker rs3213207 and T-allele of marker 

rs76076 l, which both were shown to be under-transmitted in patients with schizophrenia 

(Bray, et al., 2005). This haplotype has been strongly associated with high DTNBP 1 

expression (Bray, et a l. , 2005). The combination of the T-allele of SNP rs2619538, and the A

allele of rs3213207 with the A-allele of rs l047631 has been demonstrated to maximize the 

frequency difference (5.2%) between patients with schizophrenia and healthy controls (Bray, 

et al. , 2005). The relative expression of the A-allele of SNP rs l 04763 1 has been found to be 

more reduced in the presence than in the absence of this T-A-A risk haplotype (Bray, et al., 

2005). Even in the absence of this risk haplotype, interindividual variabi li ty of relative 

DTNBP 1 expression has been observed, demonstrating that this risk haplotype can account 

for some but not all variation in DTNBPl expression (Bray, et a l., 2005). Furthermore the low 

expression A-allele has been shown to be in phase w ith several previously identified risk 

haplotypes (Bray, et al., 2005). The alleles T and A of SNP rs2619538 and rs3213207 from 

the T-A-A risk haplotype are a lso included in the C-A-T haplotype associated with 

schizophrenia (N. Will iams, et a l., 2004) which has been linked to reduced bilateral occipital 

6 1 



response during low-level visual processing in patients with schizophrenia (Donohoe, et al. , 

2008). Schizophrenia patients and control participants carrying the T-allele of rs l01 8381, 

which is a tagging SNP for another dysbindin-1 haplotype linked to schizophrenia, showed 

significantly worse general cognitive ability (Burdick, et al., 2006). Interestingly, in this 

sample the T-allele was in complete linkage disequilibrium with the A-allele of rs 1047631, 

the risk allele of the polymorphism investigated in the present study (Burdick, et al., 2006). 

Taken together these findings suggest that SNP rs1047631 is probably non-independent of 

other markers that also index variability in DTNBP 1 gene expression, variability at the 

neurophysiological and the behavioural level, as well as the genetic risk for schizophrenia. 

Thus, future studies of neural and behavioural effects of DTNBP l variability should look at 

the entire haplotypes rather than individual SNPs. 

Although the associations between variability in the dysbindin gene and schizophrenia 

are still tentative, they are interesting in light of the reported reductions of DTNBP 1 mRNA 

and expression in the substantia nigra, hippocampus and PFC of patients with schizophrenia 

(Talbot, et al., 2004; Weickert, et al. , 2008; Weickert, et al. , 2004), which may be related to 

changes in dopaminergic states of these regions, negative symptoms and cognitive 

impairments in schizophrenia (Murotani, et al. , 2007). Underexpression of dysbindin may 

thus also contribute to the well-documented deficits in emotion processing in schizophrenia 

(Sachs, et al. , 2004; Tsoi, et al. , 2008). 

Neurobiological mechanisms for DTNBPJ effects 

How then can changes in DTNBP 1 expression affect neuronal functioning? Up

regulation of DTNBP 1 protein expression in cultured cortical nemons induced expression of 

the pre-synaptic proteins SNAP25 (SNAP25 is one component of SNARE protein complex, 

involved in intracellular vesicle trafficking and neurotransmitter release) and synapsin I 

(synaptic vesicle-associated, cytoskeletal protein) resulting in enhanced exocytotic glutamate 
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release (Numakawa, et al., 2004). Higher DTNBP 1 express ion also promoted neuronal 

func tion and survival via the phosphorylation of Akt protein (protein kinase B, PKB) 

mediated by activation of the phosphatidylinositide 3-kinase (Pl3K) pathway. The down

regulation of dysbindin-1 protein resulted in the opposite effects on glutamate release, protein 

expression and neuronal survival (Numakawa, et a l. , 2004). In neurons of the midbrain, 

knockdown of dysbindin- 1 increased dopamine release and SNAP25 protein expression, 

while up-regulation of dysbindin-1 showed no significant effect on SNAP25 protein 

expression (Kumamoto, et al. , 2006). 

These combined findings suggest a region and transmitter-system dependent role of 

DTNBP 1 expression. Thus a critical reduction of DTNBP 1 might reduce glutamatergic as well 

as dopaminergic signalling and SNAP25 expression in regions such as orbital frontal cortex 

and hippocampus while increasing dopaminergic signalling and SNAP25 expression in the 

midbrain. With respect to our results in healthy volunteers this suggests that the reduced task

related activ ity that we observed in regions such as hippocampus and orbital-frontal cortex in 

carriers of the genotype associated with reduced DTNBP 1 expression may be linked to 

reduced and/ or less efficient glutamatergic and dopaminergic signalling in these areas. 

Considering the reciprocal connections between these regions (Roberts, et al. , 2007), 

dopamine signalling in orbital frontal-cortex could affect hippocampal-prefrontal synaptic 

transmission and dopaminergic neurons in midbrain could be modulated by PFC and 

hippocampus. 

Nevertheless the high percentage of carriers with the dysbindin-1 genotype associated 

with low expression suggests some advantage of reduced dysbindin-1 levels. These may be 

linked to its role as activator of the Pl3K-PKB pathway with ensuing effects on cell growth, 

cell division, cell differentiation, cell migration, and cell survival (Kalkman, 2006). 
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Investigation of genetically-driven interindividual variability in cognitive functions with 

genetic imaging - potentials and limitations: 

Genetic imaging holds the potential to detect geneti c effects that influence interindividual 

differences at the neural network level. It is encouraging that despi te the generally small size 

of genetic effects we found statistically significant associations between a single marker for 

variabili ty in the dysbindin-1 gene, brain activity and performance measures of a complex 

WM task for emotional faces. The size of our sample was large enough to detect significant 

effects at both behavioural and neural network level. The power to detect the DTNBP l 

genotype effect on WM performance (d 'prime) for the difference between happy and neutral 

was 48. 1 %. At the neural network level power to detect the genotype effect for example in the 

right occipita l cortex was 79.2% for angry, 82.4% for happy and 69.7% for neutral, which 

conforms to suggestions that brain activation measures are more sensitive to gene effects than 

behavioural measures. The effect sizes are comparable to previous genetic imaging work 

(Egan, et a l. , 2003) and a single variant in a single gene is certainly at best a small contributor 

to the overall interindividual variability in neurophysiological and behavioural measures of a 

complex trait (Canli & Lesch, 2007). Cognitive traits are modulated by multiple interacting 

genetic (Butcher, Davis, Craig, & Plomin, 2008), epigenetic (Tsankova , Renthal, Kumar, & 

Nestler, 2007) and environmental factors (Fish, et a l. , 2004). Indeed interindividual variability 

in the relative allelic expression for SNP rs104763 l has been shown, indicating additional 

cis/trans-acting, epigenetic or environmental influences (N. Bray, et al., 2003; Bray, et al. , 

2005) on the regulation of the turnover, translation and subcellular localization of dysbindin-1 

mRNA. We were particularly interested in SNPs within 3'UTRs because of theii- potential 

s ignificance for gene regulation by microRNAs, as assumed for SNP rs l 04763 1 (Luciano, et 

al. , 2009). The translational repression of synaptic proteins by rniRNAs has been shown to 

regulate dendritic growth (Klein, et al. , 2007; Schratt, et al., 2006; Wayman, Davare, et al., 

2008). 1n this way changes in regulative mRNA sequences could mediate genetically-driven 
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neurophysiolog ical changes with effects on cognitive functions as well as being a target of 

neuronal activity-dependent regulators with effects on gene expression. Genetic imaging can 

contribute to our understanding of the functions of non-coding sequences by investigating the 

effects of their variations on complex traits like cognition. However, the conclusions of this 

study, like of any genetic imaging study, would be strengthened by replication in an 

independent sample. 

The genotype selected for the present study may be paradigmatic of a new trend in the 

investigation of gene regulation, especially the role of regulative non-coding sequences, and 

their influence on interindividual differences in complex cognitive traits. Our results suggest 

that variability in a non-coding sequence of DTNBP 1 contributes to individual differences in 

emotional working memory and together with previous findings support a role of dysbindin-1 

in enhancing synaptic function. 

Acknowledgements 

This work was supported by the Wellcome Trust, grant no. 077185/0SZ, the Wales Institute 

of Cognitive Neuroscience (WICN) and the North West Wales NHS Trust. We would like to 

thank Tony Bedson and the radiography team at Ysbyty Gwynedd, Bangor for the acquisition 

of the imaging data, Tony Bedson and Stefanie Linden for taking of blood samples, Robert 

Walters, head of laboratory services at Ysbyty Gwynedd, for he lp with the blood sample 

logistics, Chris Whitaker for expert advice on statistics, John Parkinson for helpful comments 

on the manuscript and all our participants. 

Competing interest statement 

The authors declare that they have no competing financial interests. 

65 



For supp lementary information please refer to the supp lementary materials for experimental 

chapter I. 

66 



Experimental Chapter II 

Compensatory network activity supports working memory accuracy in patients with 

schizophrenia. 

This chapter has been submitted at Neuropsychobiology under the same title and contributing 

authors as indicated below. 

C laudia Wolf, 1* Stefanie Linden, 13 Margaret C. Jackson, 1 David Healy,3 Alison Baird, 2 David 

E.J. Linden 1
•
3 and Johannes Thome2

. 

1 Wolfson Centre for Cognitive and Clinical Neuroscience, School of Psychology, Bangor 

University, Brigantia Building, Bangor, LL57 2AS, UK 

2 Laboratory of Mol.ecular Psychiatry and Pharmacology, Institute of Life Science, School of 

Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK 

3 North Wales Clinical School, Bangor University, Bangor, LL57 2AS, UK 

*Correspondance: ClaudiaSophie Wolf@gmail.com 

Phone: +44-(0)1248-382564; Fax: +44 1248 382599 

67 



Abstract 

Dysfunctional working memory (WM) has been recognized as one of the most consistent 

deficits in schizophrenia. Studies that investigated the neural coITelates of WM-related 

pathology by comparing patients with schizophrenia and control participants have produced 

controversial results, repmting task-related hyper-or hypoactivity in fronto-parietal networks. 

We addressed this question by comparing BOLD-signals for accurate responses during a WM 

task for emotional faces between a bomogenous group of high performing patients and a 

control group. Our results confirm previous findings of left prefrontal hyperactivity as 

compensatory adaptation for hypoactivity in right prefrontal cortex to support WM 

performance. We also extend previous work by reporting enhanced activity in higher visual 

areas of patients during encoding and maintenance. We integrate our findings and those of the 

literature into a model where preserved visual cognition in high-functioning patients with 

hypofrontality is explained by compensation through contralateral homologue areas combined 

with enhanced recruitment of sensory areas. 
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Introduction 

Schizophrenia is a heterogenous psychiatric disorder reflected in its diversity of symptoms, 

severity, course and cognitive deficits and it appears to involve the combined effects of 

multiple genetic, epigenetic and environmental risk factors. Among the cognitive functions 

frequently affected in schizophrenia, working memory (WM) bas been recognized as one of 

the most consistent deficits (Forbes, Carrick, Mcintosh, & Lawrie, 2008; Lee & Park, 2005), 

that may appear even before the onset of the disorder (Eastvold, Heaton, & Cadenhead, 2007; 

Hambrecht, et al. , 2002) and can be present in first-degree relatives of patients with 

schizophrenia (Heydebrand, 2006; Park, et al., 1995). Reduced working memory accuracy for 

face identity and emotional face expressions has been observed in patients with schizophrenia 

compared to healthy participants (Y. Chen, Norton, McBain, Ongur, & Heckers, 2009; 

Gooding & Tal lent, 2004). Significant heritability estimates have been obtained for accuracy 

of facial memory and emotion processing (Gur, et al., 2007). Unaffected twins of 

schizophrenia patients showed BOLD-activation within prefrontal and parietal regions and 

performance intermediate to their affected siblings and healthy controls during a WM task (K. 

Karlsgodt, et al., 2007). Besides differences between patients and controls observed at the 

neural network level, changes at the cellular, sub-cellular (Akbarian, Kim, et al. , 1996; 

Arnold, et al., 1997; Arnold, Talbot, & Hahn, 2005; Honer & Young, 2004; Selemon, 

Rajkowska, & Goldman-Rakic, 1995) and gene express ion level (M imics, Midd leton, 

Marquez, Lewis, & Levitt, 2000) in prefrontal and temporal regions have been indicated by 

schizophrenia post-mortem studies. 

There is an ongoing debate (Barch, 2005; Honey & Fletcher, 2006; Manoach, 2003) about 

whether pathological changes are reflected in alterations of the BOLD-response in 

frontoparietal working memory networks (D. Linden, 2007). Against this, it has been argued 

that activity differences between groups are confounded by differences in task performance 
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and other factors such as level of education. Recent studies that addressed this issue by 

matching groups on task perfonnance reported WM performance-dependent (Perlstein, 

Carter, Noll , & Cohen, 200 I ) and -independent (Thermenos, et al. , 2005) activity differences 

between patients and controls in WM-related regions. We investigated whether emotional 

face WM-related neural network activity differs between high-performing patients with 

schizoplu·enia and healthy participants. ln particular we wanted to probe whether activity 

differences between groups in disease-associated areas ( e.g. PFC) would persist under these 

conditions. For this reason we included only clinically stable patients with at most mild 

cognitive impairments, good task performance, and matched patients with controls for 

additional confounding factors. Our results revealed a compensatory network that supports 

WM performance in patients with schizophrenia. 

Experimental Procedures 

Participants 

l O outpatients and two inpatients diagnosed with schizophrenia spectrum disorder (1 

schizoaffective, 11 paranoid schizophrenia) according to DSM-IV criteria were assessed with 

the Structured Clinical Interview for DSM-JV and recruited by a psychiatrist (S.L.) from the 

Psychiatry Unit at Gwynedd Hospital. Current clinical symptoms were evaluated with the 

Positive and Negative Symptoms Scales (Kay, 1986). An equal number of healthy volunteers 

matched for gender, handedness, ethnicity, age and education were selected from a large 

control data sample for the same fMRI paradigm (C. Wolf, et al. , 2009). Control participants 

had no lifetime or family history of psychiatric or neurological disease. Patients and controls 

had normal or corrected to nonnal vision. They provided written informed consent prior to 

participation and were paid £25. The study was approved by the ethics committees at the 

School of Psychology, Bangor University and at the North Wales NHS-Trust. 
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Stimuli 

Six adult, male, greyscale face images each displaying neutral, happy and angry expressions 

were used (Ekman, 1976). Each image covered approximately l .43° x 1.36°. Scrambled 

greyscale face images selected at random were displayed to cover the face locations during 

encoding of fewer than 4 faces. 

Working memory task for emotional faces 

In an event-related design (Figure 1) we investigated visual working memory for emotional 

faces and task-related brain activity through the manipulation of face expression (angry, 

happy, and neutral) and the number of faces to be remembered (load 1, 2, 3, 4). Each of the 12 

conditions consisted of 4 match and 4 non-match trials. Trials were distributed over 4 runs 

with 48 trials each to minimize fatigue effects. Face expressions and number of faces varied 

randomly between trials and type of face express ion was kept constant within one tiial. Faces 

were presented at randomly alternating locations in a 2 x 2 matrix in the centre of the screen, 

and the centre of each image within the matrix was positioned at a visual angle of 

approximately 1.27° from fixation to ensme that the face display was foveal. In order to avoid 

eye movement artefacts, participants were asked to maintain fixation throughout each imaging 

session. All trials started with fixation towards a central cross on the display which served as 

baseline. This was followed by two seconds presentation of the memory array, a delay of one 

second, and the test face, where participants had to indicate a match or non-match response 

via the respective button. The between trials fixation interval jittered between 4500 - 6000 ms. 
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Figure 1. Dynamic of trials and session structure of working memory task for emotional faces. 

Acquisition and analysis of behavioural and imaging data 

The task was generated and behavioural data recorded with the E-Prime software (Version 

l. l ; Schneider, Eshman, & Zucco lotto, 2002). Scanning was performed with a Philips 1.5T 

MRI whole-body scanner with a SENSE parallel head coil. Blood oxygenation level

dependent images were acquired by using a T2* weighted gradient echo planar sequence (TR 

= 2000 ms; TE = 40 ms; matrix size = 96 x 96; FOV =256 x 256 mni; voxel size =3 x 3 x 3 

mm3; 90° flip angle; 20 axial slices; 5 mm slice thickness). The first two volumes of each 

session were discarded to reduce possible T l saturation effects. During each of the four 

working memory sessions 343 volumes were acquired. For the co-registration with funct ional 

images one high resolution TI-weighted three-dimensional (3D) volume was acquired. 

Working memory accuracy was assessed by calculating d'prime values (d'prime = z

transformed Hits - z-transformed False Alarms) for each of the 12 conditions. Working 
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memory capacity for faces was measured by ind ividual Cowan's K Max values for each 

emotion (Cowan's K Max = maximal K reached for this individual at any array s ize; Cowan ' s 

K values= array size * (Hits - FA))(Cowan, 200 I ). 

Imaging data analysis was performed using the BrainVoyager 1.9. lO software 

(Braininnovation, Maastricht, The Netherlands). Functional images were co-registered with 

the structural 3D image and spatially normalized to the Talairach system (Talairach & 

Toumoux, 1988), resulting in 56 z-normalized volume time course files (vtcs), ( eight rnns 

could not be used because of motion artefacts or chance performance). Functional images 

were scan time corrected using sine interpolation, 3D motion corrected using trilinear 

interpolation, spatially smoothed (8 mm Gauss ian kernel), and temporally high pass filtered (3 

cycles per time course). The general linear mode l (GLM) of the experiment was computed 

with predictors for each of the 12 conditions for all correct trials, one separate predictor for all 

error trials and 6 predictors derived from the head motion correction for each subject. All but 

the motion predictors were convolved with a two-gamma haemodynamic reference function. 

We computed a random-effect (RFX-GLM), to obtain beta values per subject and condition at 

each voxel. These were used as dependent variable to compute a second-level RFX- mixed 3 

factors AN OVA with the within subject factors emotion (3 levels), load ( 4 levels) and the 

between subject factor group (2 levels) to generate functional whole-brain 3D maps for the 

main effect of group, the group x emotion interaction and the contrast load 4 minus 1. 

Clusters of activation were thresholded at p < .0 l for the main effect of group in order to 

minimise false positive effects. The interaction between group x emotion and the contrast load 

4 minus l were thresholded at p < .05 significance level. The cluster thresholds were 

calculated with Brainvoyager QX Cluster-level Statistical Threshold estimator to correct for 

multiple comparisons. For each of the obtained clusters an RFX-GLM region of interest 

(ROI) analysis was computed to extract beta va lues representing the mean activity over the 
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entire cluster for all 12 task conditions (including only correct trials) per subject for extended 

statistical analysis. 

Statistical analysis 

a) Matching of patients and controls 

Independent-samples t-tests were used to assess whether controls and patients differed 

according to age and education. 

b) Group effects on WM-performance 

Mixed ANOVA (between subject factor: group (controls, patients); within subject factors: 

emotion (angry, happy, neutral) and load (1-4)) was used to test the effect of emotion, load, 

group and possible interactions on accuracy of working memory for emotional faces. 

Independent-samples t-test was calculated to test for a group effect on load 4 (averaged across 

emotions). We performed another mixed ANOVA (between subject factor: group (controls, 

patients); within subject factor maximal Cowan's K values (all 3 emotions) to assess group 

effects on the individual working memory capacity for each emotion. 

c) Group effects on brain activity 

Mixed ANOVAs with two within-subjects factors (emotion: angry, happy, neutral and load: l 

to 4) and one between-subjects factor (group: controls, patients) were calculated to specify the 

strength of effects on brain activation for each cluster. We then tested the group and load 

effect on beta means for each load (averaged across emotion) using mixed ANOVAs with the 

within-subjects factor (load: 1 to 4) and one between-subjects factor (group: controls, 

patients). Group effects on beta means for each load averaged across emotions were analysed 

with 2-tailed independent-sample t-tests to identify at which loads groups differed. For the 

interaction between group and emotion, group effects on beta mean values for each emotion 

averaged across loads were analysed with 2-tailed independent-samples t-test to analyse how 

groups differed for each emotion. We also used 2-tailed independent-samples t-test to 
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compare between groups the % BOLD-signal change averaged across all 1. 2 conditions for 

each time point. All t-tcst results were Bonferroni corrected. 

Results 

Behavioural data 

Data from four patients (2 inpatients) with schizophrenia had to be excluded due to head 

movement artefacts and/or chance task perfo1mance. The clinical parameters for the 

remaining patients and matching details for patients and controls are shown in Tab.1-2. 

Patients with schizophrenia showed no significant performance deficits of working memory 

for emotional faces compared to healthy volunteers. 

The mixed ANOVA (between subject factor: group (controls, patients); within subject factors: 

emotion (angry, happy, neutral) and load (1-4)) for mean accuracy (d'prime) of working 

memory for emotional faces comparing controls and patients revealed a main effect of load F 

(3, 42) = 84.19, p < .001 (Fig.2) but no effects of group or emotion and no 2- or 3-way 

interaction (p > .05). 

Tab.I Control-Patient matching parameters 

confounding factors 

group gender handedness ethnicity age (years) education (years) 

male female right left UK Wales t(l4) = 0.15 t(l4) = 1.76 

Controls 6 2 7 4 4 M = 27.63; SD = 7.93 M = 14.25; SD=2. 19 

Patients 6 2 7 5 3 M = 27.00; SD = 9.20 M = l l.75; SD= 3.37 
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Tab.2 Assessment of patients with schizophrenia 

Clinical characteristics 

Illness duration in years 
Illness onset age in years 
Total PANSS score 
Negative Factor 
Posi tive Factor 

General Factor 
Cognitive Factor 
pre-morbid lQ (NARI) 
Chlorpromazine equivalents in mg/d 

N=8 
Mean (SEM) 

4.9 (l.8) 
22. 1 (2.0) 
61.1 (4.0) 
15.3 (1.8) 
15.5 (0.8) 

30.4 (2.3) 
7.8 (0.6) 

107.1 (3.7) 
256 (42.3) 

*Total PANSS score range 30 (no symptoms) - 2 10; negative and positive factor range 7 - 49; general factor 

range 16 - l l2; cognitive factor range 6 - 28 

5,00 

4,50 

4,00 

3,50 

3,00 
d'prime 

2 50 (N = 16) ' 
2,00 

1,50 

1,00 

0,50 

0,00 -+----~----~---~---~ 

2 3 4 

load 

-.tr- angryC 

---+- happyC 

-II- neutralC 

··6 angryP 

O happyP 

·· G ·· neutralP 

Fig.2 Comparison of d'prime (WM-accuracy) means for each emotion (angry, happy, and neutral) at each load 

(l -4) between controls (C) and patients wi th schizophrenia (P) showed no significant differences (p > .05). WM

accuracy sig. (p < .00 l) decreased with increasing load. Error bars show the +/-SEM. 

The mixed ANOVA (between subject factor: group (controls, patients); within subject factor: 

emotion (angry, happy, neutral) for K max values (WM-capacity) comparing controls and 

patients revealed only non-significant (p > .05) results for main effects and the interaction 

(Fig.3). 
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Fig.3 Comparison of K max mean values (WM-capacity) for happy, angry and neutral faces between patients 

with schizophrenia and controls showed no significant differences. There were no sig. differences between WM

capacities for different emotional faces. Error bars show the +/-SEM. 

Imaging data 

Only correct trials were included in the analysis of BOLD-response to compare WM 

accuracy-related areas between patients and controls. There was a significant interaction 

between emotion and group in the right VLPFC (Fig.4, Suppl. Tab.3). This effect was driven 

by lower activity for neutral faces in patients with schizophrenia compared with control 

participants. 

We found a main effect for group (Fig.Sa & 6, Suppl. Tab.I) in the left occipital-temporal 

cortex (OTC) and lateral PFC (driven by higher activation for patients), and right LPFC and 

MPFC ( driven by higher activation in controls). Post-hoc tests revealed that this main effect 

of group on beta means for load was driven by sig. increased activity in patients compared to 

controls at load 2 in the left OTC (p < .01 , Bonferroni corrected), and LPFC (p < .05, 

Bonferroni cmTected). The main effect of group was driven by sig. lower activity in patients 

compared to controls at load 3 (p < .05, Bonfen-oni corrected) in the MPFC (p < .05, 

Bonferroni con-ected) and right LPFC (p < .01 , Bonferroni coITected). The MPFC also 

showed a significant effect of load, as did right and left parietal cortex (Fig.6, Suppl. Tab.2). 
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Fig.4 The location of the ROI cluster for the emotion and group interaction (p < .05 and cluster threshold 1500 

voxels) and beta values for each emotion al each load are shown. Beta mean values for each emotion averaged 

across loads revealed that this interaction was driven by s ig. (p < .05, Bonferroni corrected) lower activity for 

neutral faces in patients compared to controls. Error bars show the +/-SEM. 

Event-related averaging showed the maximal BOLD-signal peak 8 seconds after the onset of 

encoding in the right LPFC in controls and in the left LPFC in patients while there was 

neither a clear peak response in the right LPFC in patients nor in the left LPFC in controls 

(Fig.Sa). In the left OTC patients showed the maximum BOLD-signal 6 seconds after 

encoding onset while controls showed an earlier and smaller peak after 4 seconds (Fig.6). ln 

all load-sensitive areas both groups showed BOLD-signal peaks 8 seconds after the onset of 

encoding except for the right parietal cortex in controls where BOLD-signal peaked 6 seconds 

after onset of encoding (Fig.6). 
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participants in the left occipital-temporal cortex and left lateral PFC. Be ta means for load were sig. (p < .0 I) lower in patients 

compared to controls in the right lateral PFC. Error bars show the +/--SEM. 
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Fig.6 The location of the ROI clusters for the contrast load 4 minus I (p < .05 and cluster threshold 500 voxels), 
percentage BOLD-s ignal change mean values and beta mean values averaged for each load across emotions are 
shown. Beta means for load increased with increasing load in the right (p < .0 l) and left (p < .05) parietal cortex 
and in the MPFC (p < .00 I). Additionally in the MPFC, beta means for load were sig. lower (p < .05) in patients 
with schizophrenia compared lo control participants. Error bars show the +/-SEM. 

Activity in the OTC (Fig.Sb, Tab.3a) differed less between patients and controls in the early 

phase of encoding (reflected in the time point 13, thus 4 seconds after onset of sample 

presentation), than during the later stages of the task (most s ignificant differences at time 

point 17). In the left LPFC (Fig.Sb, Tab.3b) activity differed between patients and controls 

solely during the later stages of the task (most significant differences at time point 17). 
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Fig.Sb Comparison of percentage signal change means (across all conditions) between groups for each time point in the le ft 
OTC and LPFC revealed significant (p < .00 I, Bonferroni corrected) g roup differences with the maximal difference at 17 
seconds. N ote that the difference in the left OTC started to become significant at 13s (thus, 4 seconds after onset of the 
sample array, reflecting the haemodynamic delay of first-pass neural processing) and in the left LPFC 2 seconds later at 15s. 

Tab.3 Comparison of% BOLD-signal change means across 12 conditions between groups at each time point 
time left OTC left LPFC 

points in Controls Patients Controls Patients 

seconds M SD M SD 1(22) M SD M SD 1(22) 

9 0.00 0.02 0.00 0.04 .29 0.00 0.03 -0.00 0.05 0.20 

I I 0.02 0.03 0.05 0.03 -2.23 -0.00 0.03 -0.00 0.03 0.1 I 

13 0. 14 0.04 0.20 0.03 -4.37*** -0.00 0.03 0.03 0,03 -2.48 

IS 0.12 0.04 0.27 0.04 -8.63*** -0.01 0.03 0.07 0,03 -6. 12*** 

17 0.06 0.03 0.24 0.03 - 14.9*** -0.01 0.03 0. 10 0.04 -8.5 1 *** 

19 0.07 0.02 0.1 3 0.04 -5.18*** 0.02 0.03 0.07 0,03 -4.67*** 

2 1 0.04 0.03 0.06 0.03 - 1.68 0.01 0.04 0.02 0.04 -0.73 

23 -0.00 0.03 0.02 0.03 -1.46 -0.02 0.04 -0.00 0.02 -1.47 

25 0,03 0.04 0.06 0,03 -2.55 -0.03 0.04 -0.01 0.02 -1.22 

*** p < .00 I (Bonferroni corrected) 
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Discussion 

Compensatory network supports WM accuracy in patients with schizophrenia 

Patients with schizophrenia compared to control participants showed decreased activity in the 

right lateral and load sensitive medial prefrontal cortex. This was contrasted by left lateralized 

hyperactivity in the lateral-prefrontal and the occipital-temporal region in patients compared 

to controls. Activation of the right lateral PFC and in particular right ventrolateral PFC for 

face WM has been described for healthy populations (Gray, Braver, & Raichle, 2002; M. 

Jackson , et al. , 2008; Rama, et al., 2004; Rama, Sala, Gi llen, Pekar, & Courtney, 200 l ). 

Activation of the left PFC has been shown to support task performance with increasing WM 

load in healthy volunteers (Mayer, et al., 2007). Dysfunction of the right LPFC in patients 

might thus be compensated through the recruitment of the left LPFC to support WM capacity. 

Activation of the left LPFC in patients could also reflect the use of verbal encoding for which 

left lateralisation has been shown (Gabrieli , Po ldrack, & Desmond, 1998). Hyperactivity of 

the occipita l-temporal cortex in patients compared to controls could indicate enhanced 

encoding and maintenance during WM. Both areas have been shown to be activated for 

correct versus inconect responses during encoding and maintenance (Pessoa, et a l. , 2002). 

Independent of activity during encoding increased BOLD-activity during maintenance was 

found to significantly predict correct WM performance in several regions including the left 

occipital, parietal and lateral prefrontal cortex (Pessoa, et a l. , 2002). Our findings are thus 

consistent with the evidence that WM involves the interaction between LPFC, temporal and 

occipital cortex (Curtis & D'Esposito, 2003; Fuster, 200 I ) and that increased activity within 

this network correlates with WM accuracy. 

Controls showed a normal pattern of initial posterior activation in the left OTC, which was 

followed by right prefrontal activation with a lag of ca. two seconds. This is a common 

finding of tMRI studies of WM (Mayer, et al., 2007) and may coITespond to the transfer of 
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information from sensory to prefrontal areas and formation of more stable, abstract 

representations (D. Linden, 2007). Increased activation of the left prefrontal region during the 

later stages of the task in patients is comparable to the onset of increased activity in the right 

LPFC in controls. Conversely, patients showed increased and more sustained activity in the 

OTC compared to controls, starting during the early stages of the task and spanning the 

maintenance phase, which further supports our interpretation of compensatory posterior 

activation in this group. Patients' strategy may rely on a more immediate visual 

representation, conforming to their reports of more vivid mental imagery (Sack, van de Ven, 

Etschenberg, Schatz, & Linden, 2005). Similar compensatory mechanisms involving 

activation of higher visual areas supporting configural processing of complex objects have 

been reported in patients with Alzheimer's disease (Prvulovic, et a l., 2002). 

Presumably, patients achieved similar performance to controls because of increased activity in 

the left lateral PFC and occipital-temporal region to compensate insufficient support by the 

right lateral and medial prefrontal regions. We observed an emotion-specific decreased WM

related activity for neutral faces in patients compared to controls in the left LFPC, which may 

indicate that patients need more salient (emotional) stimuli to activate this area to the same 

degree as controls. 

Similar emotional face WM performance in patients and controls 

WM accuracy decreased significantly with increasing face load in both groups. This is 

consistent with our previous finding of an effect of load on emotional face WM in healthy 

volunteers (M. Jackson, et al., 2008). In contrast to our previous study we did not find a 

significant effect of emotion on WM accuracy or capacity, which is likely owed to the small 

sample size. There were no significant WM performance differences between patients with 

schizophrenia and healthy participants, which are in keeping with the behavioural results of 

(Qui ntana, et al. , 2003) . However, it seems to be at odds with the majority of studies with 
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larger sample size, which have reported WM performance deficits for a variety of tasks and 

stimuli (Fleming, Goldberg, Go ld, & Weinberger, 1995; Forbes, et al. , 2008; Lee & Park, 

2005; Spindler, Sulli van, Menon, Lim, & Pfefferbaum, 1997; Weinberger & Cennak, 1973). 

Because of the relatively low power of this study we cannot infer that patients generally do 

not show a WM deficit (with an effect size for the group difference of r group= 0.16 [estimated 

based on the present data] we would have needed 103 subjects for each group to have 80% 

power). However, our group of patients only showed a very subtle, if any, performance deficit 

and is thus interesting for a study of compensatory mechanisms. Moreover, most of our 

patients were stable outpatients under treatment at the time of their participation, had a pre

morbid IQ above 100 and a PANSS Cognitive Factor below 8 (Tab.2), indicating low 

cognitive deficit. They thus represent a relatively homogenous and high functioning subgroup 

of patients with schizophrenia. Except one patient who had only 5 years of education all 

patients had a minimum of 10 years of education. Indeed it appears very complicated to find 

control participants with less than 10 years of education as none of our 56 controls had less 

than 10 years of education. Only 4 out of 56 participants had 10 years of education 

comprising 3 women. Our patients sample included only 2 women with at least 14 years of 

education. Thus matching for education would have compromised not only matching for age 

and ethnicity but also gender. Also we would argue that the difference in years of education 

between controls and patients (which was not significant p = .1) would have been of concern 

in case of significant performance differences between groups which we did not detect. 

However because significance tests do not test for false negatives, which would have been 

required in this case but is not possible we admit that matching between patients and controls 

for years of education was not perfect. It is al so known that education of patients is influenced 

by the course of the illness (Keefe, Eesley, & Poe, 2005) thus it may have been more 

appropriate to ins tead match for parental education. 
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Several previous studies have attempted to match the performance of patients and controls 

through comparison of activity at lower WM loads in patients with higher WM loads in 

controls or by exclusion of incon-ect trials from the analysis (Manoach, et al., 2000; Perlstein, 

et a l. , 2001; Thermenos, et al., 2005; Walter, Yasic, Hose, Spitzer, & Wolf, 2007). However, 

their findings have remained controversial, providing evidence both for and against 

performance-dependent activity differences between groups in the right PFC. We present 

evidence for a hemispheric dissociation of deficit (right LPFC) and compensatory (left LPFC) 

mechanisms supporting successful WM performance in schizophrenia. We thus corroborate 

the compensatory activation of the left LPFC reported by (K. H. Karlsgodt, et al., 2009; 

Manoach, et a l., 2000; Quintana, et a l., 2003). A longitudinal study found WM accuracy 

differences between patients and controls at the beginn ing but not after several weeks of 

clinical intervention (R. C. Wolf, et a l., 2007). This improvement of WM accuracy was 

associated with enhanced activation within fronta l-temporal regions (R. C. Wolf, et al., 2007). 

Karlsgodt et al., 2009 suggested that the degree of hyperfrontality could indicate the ability 

for compensatory adaptations in the high performing patients. 

Outlook: can we "train" compensatory networks? 

Because activity within occipital, temporal, parietal and pre-frontal regions has been associated 

with WM accuracy in healthy conh·ols (Haenschel, et a l. , 2007) and patients with 

schizophrenia (Quintana, et al. , 2003; Schlosser, et al. , 2008; Walter, et a l. , 2007; R. C. Wolf, 

et al., 2007) interventions that enhance activity in these regions could be particularly effective 

to improve cognitive functions in patients with schizophrenia. Wolf et al. have shown that 

improvement of WM accuracy in patients after multi-modal treatment to a level seen in 

controls correlated with decreased thought disorder and cogrutive deficits (R. C. Wolf, et al. , 

2007). Furthermore, enhancement of fronta l function during WM as well as performance 

improvement in other cognitive functions has been reported after pharmacological treatment 
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with both typical and atyp ical anti-psychotics (Green, et a l. , l 997; Honey, et al., 1999; 

Shanna & Mockler, 1998). Hyperactivation of the left LPFC has been reported during WM in 

patients h·eated with an atypical anti-psychotic compared to controls, which was also 

correlated with amelioration of WM perfonnance (Meisenzahl, et al., 2006). Furthermore, 

improvement of WM performance associated with enhanced frontal activation in patients with 

schizophrenia has been reported after pharmacological treatment with flumazenil an inhibitor 

of GABAergic neurotransmission (Menzies, et al. , 2007). 

However the beneficial effects of typical and atypical anti-psychotics on cognitive functioning 

appear to be small, vary between cognitive domains, and are influenced by practice effects (T. 

E. Goldberg, et al. , 2007; Keefe, et al., 2007). Besides such a neurotransmitter system-based 

treatment of cognitive deficits the modification of other targets such as neuronal activity

regulated proteins and RNAs involved in neuroplasticity may be more effective. In particular 

as these new targets would not only respond to neuropharmacological agents but also to 

interventions at the neural network ( e.g. neurofeedback) and behavioural level. Our findings 

of enhanced activity associated with accurate WM performance in highly functional patients 

with schizophrenia together with cognitive remediation studies in schizophrenia (McGurk, 

Twamley, Sitzer, McHugo, & Mueser, 2007) suggest that neurofunctional adaptations can 

compensate for pathophysiological changes in schizophrenia. 

Conclusion 

The results of our study combined with previous findings support a model where 

hypofrontality in high-functioning patients is explained by compensation tlu·ough 

hyperactivity in contralateral homologue areas and sensory areas. Our study also suggests the 

enhancement of working memory-related brain activity as a new target for clinical 

interventions. 
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Abstract 

Because liv ing systems depend on their environment (e.g., energy consumption, space), the 

evolution of environmental adaptability is inseparable from the evolution of life itself (Pross, 

2003). In animals and humans, environmental adaptability extents further to adaptive 

behaviour. More recently it has emerged that individual adaptability depends on the 

interaction of adaptation mechanisms at diverse functional levels. This interaction enables the 

integration of genetic, epigenetic and environmental factors for the coordinated regulation of 

adaptations at these different functional levels. First, we present the basis for the regulation of 

adaptation mechanisms across functional levels. Then, we focus on neuronal activity

regulated adaptation mechanisms that involve the regulation of gene expression to change the 

structural and functional properties of neurons. Finally, we discuss a number of key regulatory 

proteins and microRNAs and their consequences on brain structure, function and behaviour. 

Most of the evidence so far is based on invasive sampling of animal tissue or post-mortem 

studies in humans. However, we also present techniques that combine genetic with 

behavioural and neurophysiological measures in humans (for example genetic imaging) and 

discuss their potential and limitations. W e propose that the influence of variations in DNA 

sequences that code for proteins or RNA involved in the regulation of gene expression needs 

to be considered if we want to understand the biological underpinnings of individual 

variations in behaviour and cognitive performance. 

On the origin of adaptability 

The evolution of adaptability was central for the evolution of life (Pross, 2003) because living 

systems depend on their environment, e.g. for the continuous consumption of energy. 
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Adaptability requi res self-variation. Imperfect self-replication6 has been proposed as being at 

the origin of diversification and selection of systems with teleonomic7 properties (Lifson, 

1987). Errors during self-replication can produce exponential diversity as long as the net 

replication is positive8 (Lifson, I 987, 1997). Diversity enables environment-dependent 

selection and thereby adaptation to the environment. Imperfect self-replication is thus a 

mechanism that combines self-replication with self-variation. Incorporation of a dissipative 

reaction9 is necessary because imperfect self-replication is a thermodynamically unfavourable 

reaction (Pross, 2003). The dissipative reaction depends on an energy source in the 

environment. 

Increasing structural and functional complexity10 enhances the capability to replicate through 

a variety of catalytic effects and increases the energy demand (Pross, 2003). Increasing 

complexity not only increases the number of changes but also the variety of mechanisms to 

induce such changes. The positive selection of changes that improve the energy gathering 

reaction thus enable the further increase of complexity, replication capability ( or reproduction 

ability) as well as the variability during imperfect self-replication. This circularity implies the 

coevolution of imperfect self-replication, energy gathering reaction and structural/functional 

complexity. For these reasons imperfect self-replication is a diversification mechanism for 

natural selection that can explain the importance of the dynamic interaction between living 

6Self-replication - autocatalytic process whereby the self-replicating element (A) accelerates its own 
reproduction, this reaction exhibits enormous kinetic power (exponential growth) ➔ number of A= exp(n·ln2), 
if the self-replication is imperfect the newly produced self-replicating element is a modified copy ➔ mechanism 
for self-variation, the energy and material to produce more of the self-replicating element is supplied by reactants 
(R) that leave the reaction as thermodynamically more stable waste (W) ➔ dissipative reaction (towards the state 
of equilibrium), thus the replication reaction (away from the thermodynamic equilibrium) becomes possible: 
2n•I · R + 2"·1 ·A ➔ 2" · A+2n-I · W 
7 The teleonomic character of life manifests in is purposeful organization and behaviour, e.g. the replicating 
molecule has a structure that enables replication (Lifson, 1987; Pross, 2003). 
8 Positive rate of net replication means that the number of replicating elements that are produced exceeds the 
number of those that are decomposed. 
9 The free energy that is released during the dissipative reaction when reactants change from a higher to lower 
energy state can be used for the replication reaction. Such reactions towards the equil ibrium are 
thermodynamically preferred. The availability of reactants for the dissipative reaction from the environment 
limits the self-replication. 
1° Complexity depends on the number and individual functions of all units and their interactions. Biological 
complexity - structural, organizational and informational complexity, e.g. genes that control each other and form 
networks ➔ emergence of new properties 
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systems and their environment in the evolution of complexity and metabolism (Lifson , 1987, 

1997; Pross, 2003) . 

The evolution of multi-cellular complexity has been supported by the superior energy yield of 

aerobic metabolism11 that evolved with the development of an oxygenic environment (Koch 

& Britton, 2008). Supported by improved energy supply, more complex organisms with 

diverse, functional levels (molecular, cellular, systemic and behavioural) evolved, capable of 

intra 12 -and trans 13 -generational adaptability via multiple self-variation mechanisms 14 at each 

functional level. The coordinated regulation of adaptations at these different functional levels 

depends on the interactions between self-variation mechanisms to integrate genetic, epigenetic 

and environmental factors. Some of these adaptive changes are heritable. How these self

variation (adaptation) mechanisms interact to regulate adaptations and thus control the 

adaptability of an individual during its own lifetime and also across generations is a core 

question of contemporary research. 

The nervous system - a self-variation system for the interaction with the environment 

The complexity of the nervous system (NS) con-elates with the environmental complexity and 

diversity to which a species is adapted (Emes, et al. , 2008; Shumway, 2008; Si lk, 2007). The 

NS enables the temporal and spatial regulation of adaptations for the interaction between 

individual and environment. It mediates, coordinates and represents via peripheral and central 

nervous systems, the interaction with the individual's external environment and its internal 

environment (all other systems of an organism). By coupling adaptation mechanisms at the 

organism's molecular, cellular, neural network and behavioural levels the NS integrates 

11 The complete oxidation of glucose to CO2 and l-12O yields ca 30 ATP compared to ca 3 ATP gained from 
anaerobic glycolysis. 
12 Intra-generational aclaplabilily is the ability of one individual lo adapt (e.g., mutation, regulation of gene 
expression, structure, function, behaviour). 
13 Trans-generational adaptabili ty can be inherited by genetic, epigenetic mechanisms and learning. 
14 Self-variation mechanisms range from imperfect self-replication (e.g. mutations, copy errors in DNA) lo 
regulative processes like changes of the epigenome, protein expression, morphology, physiology and behaviour. 
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environmental and internal signals. The regulation and variation mechanisms at those 

different functional levels as well as their interactions mcrease the adaptability of an 

individual. Gaining insight into these adaptation mechanisms and their interaction at the 

involved functional levels will help to unravel how interactions between genes and 

environment shape individual behaviour. 

Genetic and epigenetic adaptability 

Variation at the genome level includes changes of the genome and its epigenome 15
• Genome 

and epigenome dispose of intra-generational adaptability and if they are inherited also trans

generational adaptability. While changes of the genome and epigenorne can occur in every 

DNA containing cell, only dividing cells can inherit those changes. In complex multi-cellular 

organisms somatic cells that divide can transfer genetic and epigenetic changes within cell

lineages and germ cells transfer genetic and epigenetic changes across generations of 

individuals. 

Variation of the genome or epigenome can only affect phenotypic variation if they modify the 

genome's output by changing the transcriptome 16 and/or translatome 17
. Such changes can be 

initiated by variation of the genome via change of DNA sequence (including single nucleotide 

variation (SNPs), structural variation (ranging from a few base pairs to whole genome 

sequence rearrangement, deletion, insertion and repetition) and DNA recoding by DNA 

repair/editing enzymes) and/or DNA configuration (chromatin remodelling18
, DNA-

15 Epigenome refers to anything exclusive of DNA sequence that would be inherited during meiosis and/or only 
mitosis. Such heritable things include molecules (e.g. RNAs, proteins) and sub-cellular structures (e.g. 
mitochondria) as well as the dynamic configuration of DNA (the configuration of nucleotides, histones, non
histone-chromatin proteins and clu·omatin). Therefore cells with the same genome sequence can have different 
epigenomes. Epigenetic changes initiated by endogenous or environmental factors are important for the 
regulation of gene expression, e.g. via DNA-methylation/demethylation. 
16 Transcriptome is the total of DNA transcribed into RNAs. 
17 Trans Jato me is the total of mRN As translated into amino acid sequences. 
18 Chromatin remodelling refers to changes in the interaction between DNA and histones by chromatin 
remodelling proteins e.g. by histone modification enzymes and multi-protein chromatin remodelling complexes. 

92 



methylation) and/or genome output regulators (non-coding RNAs 19
, transcription factors, 

hormones, enzymes, etc.). Naturally all these different modes of change can interact with each 

other, as in the case of mutations in genes encoding regulators for epigenetic regulation (Ooi 

& Wood, 2008). Factors that regulate the genome's output through these variation 

mechanisms could influence the timing and location of genetic and epigenetic changes to 

allow phenotypic adaptation in response to the specific selective pressure (Rando & 

Verstrepen, 2007). The non-random distribution of changes in the genome suggests selection 

differences between regions (Venter, et a l., 200 I), which may result from differences in 

selective pressures between phenotypes (Rando & Verstrepen, 2007). Thus phenotypes under 

high selective pressure are more variable. Recent observations point to a correlation between 

genetic variation mechanisms, phenotypic variability and the variability of the acting selective 

pressures (Rando & Verstrepen, 2007). For example a genetic change responsible for the 

adaptation of camouflage in mice coincided with the colour change of the mice's habitat 

(Linnen, Kingsley, Jensen, & Hoekstra, 2009). Certain mutations show a higher frequency 

under positive selection as long as the selective pressure is non-lethal (Shapiro, 1995). The 

spectrum of DNA sequence changes differs during unselected und selected exponential 

growth in bacteria (Rosenberg, Longerich, Gee, & Harris, 1994). Homologous recombination 

and plasmid gene transfer have been shown to induce genetic changes to adapt metabolic 

functions in response to the change of metabolic substrates in bacteria (Foster & Trimarchi , 

1995; Radicella, Park, & Fox, 1995). Hence cells are equipped with biochemical systems to 

change their DNA in response to selective pressures on phenotypes like metabolism (Shapi ro, 

1995). 

A significant part(> 40%) of human DNA (Lander, et al. , 200 I) consists of small, repetitive, 

mobile DNA control elements (transposons) discovered by Barbara McClintock (McClintock, 

195 1 ). Most of these transposons refer to the type retrotransposons (Lander, et al., 200 I) that 

19 Non-coding RNA is RNA transcribed from DNA that does DOl encode amino acid sequences and instead 
serves as diverse types of RNA a variety of functions. 
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transcribe DNA-driven RNA into DNA (reverse transcriptase) before this DNA copy "jumps" 

into a new position in the genome (Ostertag & Kazazian, 200 I) . Retrotransposition thus 

represents a mechanism to vary the copy number of DNA sequences. Only about 65 of such 

retrotransponsons that belong to the LINE-1 (long interspersed nuclear elements) family are 

estimated to still be firnctional in any human genome today and transpositions occur at very 

low frequencies (Ostertag & Kazazian, 200 I). The remaining transposons (including retro

and DNA transposons) are considered to be fossils that have lost their functionality in the 

course of evolution (Ostertag & Kazazian, 200 I). If activated LINE-1 elements catalyse 

modifications ranging from small DNA sequence changes to large genomic rearrangements, 

that can alter gene regulation and thus could contribute to phenotypic diversity including 

individua l variability in susceptibility to complex diseases (Muotri, et a l., 2005; Muotri , 

Marchetta, Coufa l, & Gage, 2007; Muotri, Zhao, Marchetto, & Gage, 2009; Ostertag & 

Kazazian, 2005, 200 l ). 

In bacteria the frequency of transpositions is regulated in response to environmental signals 

suggesting some adaptive function (Hall , 1999). Because the mobility of these elements is 

regulated by ncRNAs (e .g., miRNAs) and proteins in response to different types of cellular 

stress, e.g. virus infections (van Rij & Berezikov, 2009) through their effects on gene 

expression they may contribute to individual adaptability. 

Accordingly, genetic variation mechanisms, which are encoded in the complex architecture of 

the genome, themselves appear to be under selection during evolution. The selection of these 

genetic variation mechanisms would depend on their capacity to generate phenotypic 

variability ( e.g. through adaptive mutation) that can "cope" with the selective pressure acting 

on the specific phenotype. This suggests that variability could be generated via diverse 

variation mechanisms if, where and when it is m ost likely to improve adaptabi lity. 
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The impact ("use") of these diverse variation mechanisms is presumably regulated by each 

cell indi vidually and also depends on the cell's environment. This would allow cell-specific 

changes of genomes in response to cell-specific environmental pressures. 

Another mechanism that has been suggested to generate environmentally-driven DNA/RNA 

sequence variability in protein-coding and ncRNA-coding sequences of immune and nervous 

system cells is the editing or recoding of DNA or RNA (J. S. Mattick & Mehler, 2008). DNA 

recoding could be the reason for DNA sequence variations in antibody receptor genes that are 

generated to provide the receptor diversity of antibodies required to recognize new antigens 

(J. S. Mattick & Mehler, 2008). Genes encoding DNA/RNA editing enzymes show signs of 

strong positive selection in the human genome (J. S. Mattick & Mehler, 2008). RNA editing 

is most active in the brain, important to brain function and humans show 2-fold increase of 

editing compared to mice (J. S. Mattick & Mehler, 2008). Most of this editing occurs in 

primate-specific non-coding RNA sequences e .g., in the UTRs of mRNA, and this mechanism 

has been related to the increased cognitive capacity of primates (J. S. Mattick & Mehler, 

2008). Thus RNA editing could be an important molecular mechanism for the regulation of 

neural development and plasticity, e.g. by modifying sequences and biophysical properties of 

glutamate and serotonin receptor subunits to modulate synaptic strength and neural network 

connectivity (J. S. Mattick & Mehler, 2008). It has also has been speculated that coupling of 

RNA to DNA editing and its coordination among synapses, neurons and neural networks 

would allow the genetic encoding of environmentally-driven changes in neural structure and 

function during brain development and cognitive plasticity (J. S. Mattick & Mehler, 2008). 

One could extend this speculation to the question how adaptation mechanisms in neurons, 

immune cells and germ cells could be coordinated to increase the intra-and transgenerational 

adaptability of an individual. 

In summary genetic and epigenetic adaptation mechanisms are extraordinary versatile and are 

regulated in response to internally and environmentally-driven signals. Although the evidence 
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is still spare it seems likely that the selection of genetic and epigenetic variation mechanisms 

depends on their capacity to generate phenotypic adaptations in response to selective 

pressures. If genetic changes like mutations can be regulated i.e. , induced or suppressed in 

response to the presence or absence of such pressures they belong into the "toolbox" of 

complex individual adaptability and not to chance. 

Interaction of adaptation mechanisms across functional levels 

Sensory input or behaviour that modulates the activity of specific neural networks can drive 

activity-dependent changes at the molecular, synaptic and cellular level. Conversely, these 

activity-dependent adaptations can temporally and spatially modulate the activity within 

networks and thus adapt cognitive capacity and sensory acuity (Kempermann, Kuhn, & Gage, 

1997; Paylor, Morrison, Rudy, Waltrip, & Wehner, 1992; Prusky, West, & Douglas, 2000). 

The regulation of neuronal properties is part of the regulation of neural network properties. 

Regulation of network properties enables the reorganisation of neural networks. Such 

reorganisation processes are presumably required for the updating of past with new 

experiences, increasing processing efficiency and capacity for learning and memory (Dudai, 

2004; Miyashita, Kubik, Lewandowski, & Guzowski, 2008; Shema, Sacktor, & Dudai , 2007). 

The ongoing adaptation process within individual neurons as well as neural networks depends 

on the dynamic intergation of internal and environmental changes (signals). For example 

reorganization of neural networks during learning depends on activity-induced remodelling of 

synaptic properties between neurons requiring neuronal adaptations that depend on molecular 

changes (signals). How these adaptations are coordinated at the molecular, cellular and 

network level to enable learning and memory processes is far from being understood. 

The regulation of transcriptome, translatome and proteome20 are mechanisms of molecular 

adaptation that contribute significantly to neuroplasticity2 1
• Collectively the various cell types 

20 Proteome is the lolal of proteins expressed. 

96 



of the NS express 80% of the coding genome, exceeding gene expression of any other organ 

(Ooi & Wood, 2008). The transcription-dependent neuroplasticity during learning and 

memory involves chromatin remodelling (Levenson, et a l. , 2004; Levenson & Sweatt, 2005; 

Vecsey, et al., 2007) and DNA-methylation (Miller & Sweatt, 2007). Adaptation mechanisms 

involved in learning and memory like synaptic strength (Barco, A larcon, & Kande l, 2002; 

Plath, et al., 2006) and dendri tic growth (Wayman, et al., 2006; Zhou, et al. , 2006) have been 

shown to depend on the coordinated expression of multiple genes in response to neural 

activity. Fonseca et al. have suggested that the strength of neuronal activity determines the 

dependency of long-term potentiation (LTP) 22 on protein synthesis (Fonseca, Nager!, & 

Bonhoeffer, 2006). The neuronal activity-dependent regulation of transcription and 

translation allows for the dynamic and local adaptation of quantity and type of neuronal 

proteins and other functional molecules. Rapidly induced post-translational modification and 

trafficking of pre-existing proteins appear to be important for regulation and maintenance of 

protein functions. Neuronal adaptation by regulation of pre-existing mRNA is limited to the 

type and quantity of available mRNAs. The neuroplasticity that includes DNA expression 

reqmres more time, energy and regulation but increases adaptabi lity compared with 

neuroplastici ty restricted to post-transcriptional or post-translational regulation. The 

regulation of these neuronal plasticity mechanisms is coordinated by intracellular signalling 

systems and depends on neuronal activity and other extracellular signals. Intracellular 

signalling systems can amplify signals to operate as a biochemical switch from low to 

maximal activation, realize time and location-dependent integration of diverse extracellular 

signals, induce transient or long-lasting activation of effector molecules and respond to 

positive or negative feedback mechanisms (Adams & Sweatt, 2002). Hence, intracellular 

2 1 Neuroplasticity is the adaptability of neurons in response to stimuli for which they are receptive. Neuronal 
aclaplalions range from instant to long-lasting and from molecular to morphological changes. 
22 L TP is a long-lasting potentiation of synaptic transmission. 
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signalling systems can coordinate the type and duration of adaptations at the molecular, 

synaptic and neuronal level with high input-specificity. 

s 
~ 
'i 

REGULATION '1, 
OF SYNAPTIC 

PROrllNS 
forltrlK1Ual 
afunctlot111I 
adaptotlons 

Fig.I Stimuli activate neural networks involving synaptic transmission between neurons. 

Extracellular stimuli activate intra-neuronal signalling proteins, which is mediated by Ca2
+. Depending on the Ca2'-signal 

signalling proteins regulate and coordinate the adaptation of neuronal properties by changing pre-existing proteins, mRN/\ 

translation and gene expression. Changes of gene expression require the regulation of transcription factors inside the nucleus. 

These neuronal activity-regulated transcription factors regulate immediate early genes (JEGs) that can encode other 

transcription factors (TR) or synaptic proteins (SP). MicroRNAs can regulate the transport and translation of mRNA for 
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transcription factors or synaptic proteins. [Jc novo synthesis of IEG transcription factors is required to regulate the g1;;nc 

expression of delayed response genes (DRGs) that encode synaptic proteins. These molecular adaptation mechanisms lead to 

structural and functional changes of neurons, thus providing the basis for ncuroplasticity and short-or long-lasting functional 

adaptations of neuronal properties. The adaptation of neuronal properties allows the functional adaptation of neural networks 

to regulate adaptations of the behavioural response, e.g. the memorizing of certain stimuli . 

. Functional and structural adaptation of neurons 

Developmental and activity-dependent adaptation of neuronal structure and function depends 

on the processing of extracellular signals (conveyed mainly by neurotransmitters, 

neuromodulators, neurotrophines, hormones, and cytokines, etc.) that regulate the adaptation 

of the neuronal protein network via intracellular signalling systems (Fig.1). The coordination 

of specific signalling pathways mediates input-specific modifications. Intracellular signalling 

can have local effects on the function of pre-existing synaptic molecules ( e.g. mRNA, 

proteins) or, if converted into an intra-nuclear signal, on gene expression. The conversion of 

an extracellular signal (first messenger) into an intracellular signal (second messenger) 

depends on the signal and receptor properties. Receptors coupled to intracellular second 

messenger systems can regulate the activity of enzymes ( e.g., protein kinases/ pbosphatases, 

phospholipases), which regulate target proteins (e.g., structural proteins, signalling enzymes, 

ion channels/pumps and transcription factors/cofactors) . For example the Ca2+-second 

messenger system invo lves Ca2+-binding proteins (e.g., phospholipase C and A2, protein 

kinase A/C, calmodulin, calcineurin). These proteins can regulate Ca2+-dependent signalling 

enzymes, e.g. Ca2+/calmodulin-dependent protein kinases (CaMKs) that can recruit 

transcription factors and cofactors to the promoters of neuronal activity-dependent genes 

(West, et a l., 200 I) . Transcription factors that regulate activity-dependent gene expression, 

like cAMP response element binding protein (CREB), myocyte enhancer factor 2 (MEF2), 

nuclear factor of activated T cells (NFAT), methyl-CpG-binding protein 2 (MeCP2) and 

serum response factor (SRF), can be a part of the transcription machinery and/or involved in 

chromatin remodelling (S. Cohen & Greenberg, 2008; West, et al. , 200 I). Transcription 

factors can change the activity-dependent expression of their target genes within minutes. 
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Such target genes include those coding for activ ity-induced transcri ption factors, like c-Fos 

and nerve growth factor-inducible protein A (NGFI-A) and for a large range of cel lular 

function proteins, e.g. activity-regulated cytoskeleton-associated protein (Arc), Homer 1 a and 

brain-derived new-otrophic factor (BDNF) (M iyashita, et al., 2008). Expression of these 

immediate-early genes (IEGs) is independent of de nova protein synthesis or transcription of 

other genes (Miyashita, et al., 2008). Activity-induced IEGs that encode transcription fac tors 

in turn regulate the transcription of delayed response genes (DRGs) (Miyashita, et al. , 2008). 

The transcription of DRGs therefore depends on these de nova synthesized transcription 

factors. DRGs encode proteins for long-term changes in neuronal functions, e.g. 

neurotransmitter and ho1mone receptor genes. Activity-regulated genes are expressed w ith 

distinct kinetics, differences in stimulus-responsiveness, cell-type and region-spec ificity 

(Flave ll & Greenberg, 2008; Miyashita, et al. , 2008) and this activity-dependent regulation of 

gene express ion patterns in neural networks has been found to distinguish stages of learning 

and mem ory (Miyashita, et a l., 2008). Furthermore the combined expression of learning state 

independen t and learning state dependent IEGs (Miyashita, et al. , 2008) may increase the 

range and thus the input-specificity of synaptic modifications. Neuronal activity-regulated 

proteins play central roles in the adaptation of metabolism, cytoskeleton changes, signalling 

pathways, neurotransmitter exocytosis, neurona l morphology and survival, number and 

properties of synapses and receptors. These molecular, synaptic and cellular adaptations can 

modify the properties of new-onal networks to faci litate behavioural adaptability. 

In addition to regulatory proteins, various types of non-coding RNAs (ncRNAs) regulate 

genes and proteins involved in neuroplasticity (Mehler & Mattick, 2006). These ncRNAs 

con tain regulatory sequences instead of protein-coding sequences and are transcribed from 

DNA together w ith protein-coding sequences, e.g. as untranslated regions (UTRs) and introns 

or independently of protein-coding sequence, e.g. fro m intergenic regions or antisense strands. 
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Regulatory ncRNAs dispose of cis-and/or trans-acting23 elements to engage in RNA-RNA, 

RNA-DNA, and RNA-protein interactions (J . Mattick & Gagen, 200 I). 1n this way they can 

regulate chromatin remodelling, transcription, mRNA processing, trans lation, mRNA stability 

and subcellular location, protein stability, activity and secretion (Costa, 2007; J. Mattick & 

Makunin, 2006; Szymanski , Barciszewska, Zywicki , & Barciszewski, 2003). Among the 

numerous regulatory ncRNAs expressed in the brain recent investigations have started to 

unveil the fi.mctions of neuronal microRNAs (miRNAs) (Kle in, lmpey, & Goodman, 2005). 

By binding with varying sequence compatibility to cis-acting elements in 3 'UTR, mi RN As 

can regulate the transport and translatability of mRNA targets in developing and mature 

neurons (Kosik, 2006). The translational repression of synaptic proteins by miRNAs has been 

shown to regulate dendritic growth (Kle in, et al., 2007; Schratt, et a l. , 2006; Wayman, 

Davare, et al., 2008). Moreover, the transcription of IEG miRNA can be enhanced by 

neuronal activity (Wayman, Davare, et al., 2008). 

Neuronal activity-regulated proteins and microRNAs involved in neuroplasticity 

This overview provides examples of how proteins and RN As (Tab.la-b) that can be regulated 

by neuronal activity can regulate the neuron' s structural and functional properties and how 

this regulation can influence behaviours and pathology. 

23 The cis-acting element is the target sequence of the regulated molecule to which the regulator binds with its 
trans-acting element (sequence). 
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Table 2a - Activity-regulated proteins and mi RN As 

Regulator 

(subcellular functions and 

locations can differ between 

protein isoforms) 

Arc - activity-regulated IEG 

encoding synaptic cytoskelcton 

protein regulates synaptic 

proteins 

CREB - activity-regulated 

transcription factor cAMP 

response clement binding 

protein regulates IEGs for 

transcription factors and 

synaptic proteins 

CaMKs- Ca2•1calmodulin

dcpcndcnt kinascs, activity

regulated signalling protein 

isoforms, regulate multiple 

proteins in synapse, cytoplasm 

and nucleus 

Calcineurin - activity

regulated phosphatase, 

regulator of multiple proteins in 

synapse, cytoplasm and nucleus 

c-Fos - activity-regulated IEG 

encoding transcription factor, 

regulates the transcription of 

DRGs 

Homer I - activity regulated 

IEG and continuously 

expressed gene encoding 

scaffolding protein isoforms 

that regulate synaptic proteins 

24 Alzheimer's Disease 

Expression in the brain 

(can differ between protein isoforms) 

hippocampus, amygdala, insula, 

cntorhinal cortex, anterior cingulatc 

cortex, DLPFC, orbital frontal cortex, 

ventral tcgmental area, substantia nigra, 

striatum, caudatc, putamen, nucleus 

accumbcns, sensory and motor cortices 

hippocampus, amygdala, cntorhinal 

cortex, PFC, occipital cortex, nucleus 

accumbcns, ventral tegmcntal area, 

striatum 

DLPFC, hippocampal formation, 

caudatc, putamcn, thalamus, 

hypothalamus, midbrain and visual 

cortex 

hippocampus, thalamus, striatum, 

nucleus accumbens, somatoscnsory 

cortex, PFC, cerebellum 

PFC, anterior cingulate, sensory and 

motor cortices, caudatc, pulamen, 

nucleus accumbens, striatum, 

paraventricular nucleus, hypothalamus, 

medulla, amygdala, hippocampus 

PFC, striatum, nucleus accumbcns, 

ventral tcgmcntal area, thalamus, 

parietal cortex, occipital cortex, 

amygdala and hippocampus 

l02 

Neuronal adaptations, affected behaviours, 

ncuroputhologics 

- structural, functional, neuronal survival 

- memory, learning 

- stress disorders (Ko7lovsky. cl al., 2008; Moltcni. ct al., 

2009; Ons. Marti, & Armario. 200-l), depression (de Faubert, 

O'Neill, & Zc11crstrom, 2007), addiction (Bramham, ct al., 

2009: Pandey. ct al.. 2008), cognitive impairment (D. C. 

Wang. Chen, Lee, & Chen. 2006) 

- stmctural, functional, promotes neuronal survival 

- memory, learning, emotion, stress response 

- major depression (Boer, ct al., 2007; Hcltcma, ct al.. 2009; 

Perl is. ct al., 2007), addiction (McClung & Nestler, 2003; 

Moron. ct al., 2009), anxiety (D. L. Wallace, ct al.. 2009), 

cognitive impairment (Bourtchuladzc. ct al., 1994), sexual 

behaviour (Barrot. ct al., 2005), schizophrenia (Kawanishi, 

Harada, Tachikawa. Okubo, & Shiraishi. 1999), AD2
' (Smith, 

Pozuctn, Gong, Arancio, & Shelanski, 2009), Rubinstcin

Taybi syndrome (Alarcon. ct al., 2004), Huntington's disease 

(Okamoto, ct al.. 2009) 

- structural, functional, promotes neuronal survival 

• memory, learning 

• AD (Gandy, C1ernik. & Grccngard, 1988; Z. Gu. Liu, & 

Yan, 2009), addiction (Kim, Ahn, Go, Wang, & Choe, 2009; 

Licata & Pierce, 2003: Marin. ct al., 2009: Pierce & Kalivas. 

1997) 

- functional, structural 

- learning, memory 

· schizophrenia (Eastwood. Burnet. & Harrison. 2005; 

Gerber, ct al., 2003; Yamada, ct al., 2007), AO (Abdul, ct al., 

2009; Kuchibhotla. ct al., 2008; Q. Lian, C. J. Ladner, D. 

Magnuson, & J. M. Lee, 200 I; Taglialatela. Hogan, Zhang, 

& Dinclcy, 2009) 

- structural, functional, promotes neuronal survival 

- attention, emotion, memory, learning, stress-response, sleep 

regulation 

· addiction (Caster & Kuhn, 2009: M. Xu, 2008), anxiety 

(Kabbaj & Akil, 2001: A. M. Linden, Greene, Bergeron. & 

Schoepp, 2004: Salomons, ct al., 2009) 

- structural, functional 

- attention, memory, emotion, stress response 

- schizophrenia (Norton. ct al., 2003; K. Szumlinski. Kali,·as, 

& Worley, 2006), addiction (Swanson. Baker. Carson, 

Worley, & Kalivas. 200 I; K. K. Szumlinski, ct al.. 2006; K. 

K. Szumlinski. ct al., 2004; Yano & Steiner. 2005; G. C. 

Zhang. cl al., 2007), anxiety ( Klugmann. ct al., 2005) 



Table lb- Activity-regulated proteins and miRNAs 

Regulator 

(subccllular functions and 

locations can di ffcr between 

protein isoforms) 

Mitogcn - activatcd/cxtraccllular

rcgulated pro lcin kinase 

(M/\PK/ERK) isoforms arc 

signalling proteins lhat regulate 

proteins in synapse and nucleus 

McC P2 - Mcthyl-CpG Binding 

Protein 2, activity-regulated 

transcription factor, regulates 

IEGs for transcription factors and 

synaptic proteins 

MEF2 - Myocytc Enhancing 

Factor, activity-regulated 

transcription factor, regulates 

I EGs for transcription factors and 

synaptic proteins 

NF/\T- Calcincurin/ BDNF/PKC

activatcd Nuclear factor o f 

Activated T-cclls , activity

regulated transcription factor, 

regulates pro -survival DRGs 

NGFI-A - Nerve Growth Factor

Inducible protein A = Zif268/Erg

l/Krox-24/TIS8/ZENK, activity

regulated I EG and continuously 

expressed gene encoding 

transcription factor, regulates 

expression of DRGs 

miR-134- expression temporally 

and spatially regulated by cxlra

ccllular signals, regulates 

translation of synaptic proteins 

miR- 132-cxprcssion regulated by 

neuronal activity, regulates 

translation of synaptic proteins 

Expression in the brain 

(can differ between protein isoforms) 

hippocampus, amygdala, basal ganglia, 

thalamus, hypothalamus, s triatum, 

substantia nigra, cerebellum, visual cortex, 

PFC 

hippocampus, amygdala, visual corlcx, 

hypothalamus, frontal cortex, caudatc, 

putamcn 

Neuronal :idaptations, affected behaviours, 

neuropathologics 

- funclional and s tructural 

- learning, memo ry 

- addiction (Ferguson, Fasano, Yang. Brambilla. & 

Robinson, 2006: L. Lu, cl al., 2005: L. Lu, Koya, Zhai, 

Hope. & Shaham, 2006: Sanna. Simpson, Lutjcns, & 

Koob. 2002; J. Q. Wang, Fibuch, & Mao. 2007), AD 

(Dinclcy, cl al.. 200 I: Giovannini. c t al. , 2008: 

Greenberg. Koo, Sclkoc. Qiu, & Kosik, 1994; Savage, 

Lin, C iallella, Flood. & Scott, 2002; Zhu, ct al., 2003) 

- functional and structural 

- learning, memory 

- Rett and Rclt-likc syndromes (Abuha17ira, Shcmcr, & 

Razin, 2009; Chahrour & Zoghbi. 2007; Montcggia & 

Kavalali, 2009: Samaco. ct al.. 2009), autism 

(Coutinho, cl al., 2007; Loat. cl al., 2008; Nagarajan, 

Hoga11, Gwyc. Martin, & LaSalle, 2006: Zoghbi, 2003) 

hippocampus, cerebellum, lhalamus, frontal - functional, s tructural, regulates neuronal 

cortex, nucleus accumbcns, striatum, visual diffcrcntialion, migration and survival 

cortex - locomotor sensitization 

hippocampus (all 4 isoforms), amygdala, 

frontal cortex, cerebellum, subslantia nigra, 

basal ganglia, lhalamus, hypothalamus 

hippocampus, amygdala, basal gang lia, 

thalamus, hypothalamus, visual cortex, 

somatoscnsory cortex, cingulalc, brainstcm, 

cerebellum, raphc nucleus, and auditory 

cortices 

primary cortex, cerebellum, hippocampus 

hippocampus 

103 

- addiction (Pulipparacharuvil, c t al., 2008), Rell 

syndrome (H. Li. ct al., 2008), autism (Morrow, ct al., 

2008), AD (Burton. Dibrov, Kashour, & Amara, 2002; 

Gonzalez, ct al. , 2007; X. Wang, She, & Mao, 2009) 

- funclional, structural and regulates neuronal survival 

- memory 

- addiction (R. D. Groth, ct al., 2008) 

- functional and structural and may neuronal survival 

- short and long-lcrm memory, sensory information 

processing, arousal, molivation, cmolion, stress 

responses, exploratory behaviour 

- maternal depress ion affects NGFl-A-rcgulatcd 

glucocortieoid receptor expression and stress-response 

(cortisol level) in neonates (Oberlander, ct al., 2008) 

- structural 

- AD (Hcbcrl & De S1roopcr, 2009) 

- functional and structural 

- AD (llcbcrt & De Stroopcr. 2009: Lukiw. 2007) 



Activity-regulated synaptic cytoskclcton protein 

Neuronal-activity dependent transient transcription and translation of the IEG Arc has been 

reported for many brain regions such as hippocampus, amygdala, neocortex and striatum 

(Miyashita, et al. , 2008). NMDA receptor-mediated LTP can initiate the transient expression 

of Arc within l-2min (Guzowski, McNaughton, Barnes, & Worley, 1999). Newly 

synthesized, Arc mRNA is trans-located to activated excitatory post-synapses (Steward, 

Wallace, Lyford, & Worley, 1998; Steward & Worley, 200 1) for consecutive protein 

synthesis (Moga, et al., 2004). Arc protein situated in the postsynaptic density (PSD) of 

glutamatergic neurons interacts with signalling, cytoskeleton and endocytosis proteins 

(M iyashita, et a l. , 2008) thereby regulating dendritic growth and AMPA receptor numbers 

(Chowdhw-y, et a l. , 2006; Rial Verde, Lee-Osbourne, Worley, Malinow, & Cline, 2006; 

Shepherd, et al., 2006). It has been associated with hippocampal late LTP and LTD

dependent memory formation (Plath , et al. , 2006). 

cAMP response element binding protein 

The transcription factor CREB activates Ca2
+ and cAMP-dependent transcription (Sheng, 

McFadden, & Greenberg, 1990). This involves coactivators e.g., CREB-binding protein 

(CBP) with intrinsic histone acetyltransferase activity (HAT) to remodel chromatin, and the 

recruitment and stabilization of RNA polymerase II (Flavell & Greenberg, 2008). Essential 

for its role in activity-dependent gene expression, the activity of CREB is regulated by 

various protein kinases and phosphatases (Greer & Greenberg, 2008). CREB has been 

proposed as a major contributor to the molecular transition from short- to long-term synaptic 

plasticity by faci litating hippocampal late-LTP (Barco, et a l., 2002). Target genes regulated 

by CREB and CaMK activity include c-Fos, BDNF, CPGI 5/neuritin, wnt-2 and miR-132, 

which likely mediate activity-dependent dendritic outgrowth (Flavell & Greenberg, 2008; 

Korte, 2008; Tanaka, et al., 2008). CREB has also been implicated in the stress response as 
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one of the regulators of corticotropin-releasing hormone gene (CRH) transcription (Y Liu, 

Kamitakahara, Kim, & Aguilera, 2008). The responsiveness of neurons in the nucleus 

accumbens is also modulated by CREB (Dong, et al., 2006). Genetic variability in CREEi bas 

been linked to anger expression in patients with major depression, particularly in males 

(Perlis, et al. , 2007). Further changes in CREB activity or expression have been implicated in 

emotional reactions, reward/aversion (Barrot, et al. , 2002; Barrot, et al. , 2005; Carlezon, 

Duman, & Nestler, 2005) and suicide risk (Dwivedi, et al., 2003) . 

. 
CaMKs 

Ca2+/calmodulin-dependent kinases are Serine/Threonine protein kinases that phosphorylate 

Ser/Thr residues of their protein substrates (Wayman, Lee, Tokumitsu, Silva, & Soderling, 

2008). The co-localisation of CaMKs with their substrates within multiprotein signalling 

complexes like PSD or subcellular compartments like the nucleus or membranes determines 

their signalling specificity and activation kinetics (Wayman, Lee, et al., 2008). Various 

CaMK-isoforms contribute to the temporal and spatial regulation of neuronal activ ity

dependent transcription and translation. The modulation of a-CaMKll activity by NMDA 

receptor NR2B subunit can modify AMPA receptor function involved in LTP (Wayman, Lee, 

et a l., 2008). Mutation-induced interference with a-CaMKII function impairs NMDAR

dependent LTP in a region-specific manner (Lamsa, Irvine, Giese, & Kullmann, 2007). Brain 

structure and function in healthy individuals have both been shown to be influenced by 

genetic variation in a-CaMKll (Rasetti, et al., 2007). CaMKK and CaMKl regulate axonal 

elongation or activity-dependent denclritic growth (Wayman, Lee, et a l., 2008). 

Calcineurin/protein phosphatase 2B 

Activity-regulated Ca2+/calmodulin-dependent Ser/Ther phosphatase calcineurin/ protein 

phosphatase 2B contributes to short- as well as long-term neuronal adaptations (R. Groth, 
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Dunbar, & Mermelstein, 2003). Genetic disruption of calcineurin impaired hippocampus

dependent working memory and episodic-like memory but not reference memory through 

changes in LTD and LTP (Zeng, et a l. , 200 1). Furthermore these knockout mice showed 

multiple abnormal behavioural traits that have been likened to symptoms of schizophrenia, 

including increased locomotor activity, decreased social interaction, and impaired attention 

(Miyakawa, et al. , 2003). Calcineurin is enriched in PSDs and the cell soma and can be 

targeted to its regulators and substrates in subcellular compartments and cytoplasm (R. Groth, 

et al. , 2003). Calcineurin is involved in the regulation of synaptic vesicles, endocytosis of 

AMPA receptors, NMDA and GABAA receptor activity, LTD-mediation by presynaptic 

group II metabotropic glutamate receptors and the synthesis of NO and GABA (R. Groth, et 

al. , 2003). The inhibitors of protein phosphatase I (PP 1) are deactivated by calcineurin. 

Disruption of this disinhibition can cause abnormal dopaminergic neurotransmission of 

striatal neurons (F ienberg, et a l. , 1998). Together with protein kinases (e.g., PK.A, PKC, 

CaMKII and MARCKS) calcineurin regulates neuronal cytoskeleton proteins for activity

dependent adaptations of dendritic spine density (R. Groth, et al. , 2003). Decreased 

calcineurin activity has been proposed to cause abnormality of microtubule-associated 

proteins typical for Alzheimer's disease (Q. Lian, C. Ladner, D. Magnuson, & J . Lee, 200 I ). 

In addition to regulating the functions of pre-existing proteins for the rapid induction of 

neuronal adaptation, calcineurin is also involved in the regulation of transcription and de novo 

protein synthesis. Calcineurin-mediated dis inhibition of PP 1 prevents CREB activation by 

weak synaptic stimulation protecting from long-term changes in neuronal function induced by 

random-signalling (R. Groth, et al., 2003). Cooperatively with mitogen

activated/extracellular-regulated protein kinase (MAPK/ERK) or PKC, calcineurin activates 

NFAT-dependent transcription and also contributes to the regulation of inositol 1,4,5-

triphosphate (IP3) type 1 receptor expression (R. Groth, et al. , 2003). 
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c-Fos 

The activ ity-dependent transient transcription of the IEG c-Fos can be induced within 5min of 

the onset of neuronal activity (Flavell & Greenberg, 2008). CNS-specific knockout of c-Fos 

can impair long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity 

(Fleischmann, et al., 2003). The c-Fos promoter contains cis-acting calcium response 

elements (CREs) and serum response element (SRE). CRE3 is the binding site for the 

Ca2 ~/cAMP-regulated transcription factor CREB. SRE is required for serum- and calcium

dependent c-Fos expression and contains the binding sequences for the serum response factor 

(SRF) and Ets-like transcription factor l (Elk-1) (Flavell & Greenberg, 2008). SRE binding 

SRF and E lk-1 as well as binding SRF and other ternary factors25 can form a stable ternary 

complex to induce maximal Ca2+-dependent transcription (Flavell & Greenberg, 2008). c-fos 

together with Jun protein isoforms builds transcription-regulating activator protein 1 (AP-I) 

complexes that are important for the expression of several DRGs involved in neuronal 

survival, structural and functional neuroplasticity (Wu, et al. , 2004). 

Homerl 

The mammalian Homerl gene can be transcribed as neuronal activity-inducible IEG, such as 

Homerla, but also as continuously expressed isoforms, such as Homeric (K. Szumlinski, et 

al. , 2006). The various Horner! isoforrns are expressed within PFC, striaturn, nucleus 

accumbens, ventral tegmental area, thalamus, parietal cortex, amygdala and hippocampus (K. 

Szumlinski, et a l. , 2006). All Homer! protein isoforms contain the Ena/V ASP Homology l 

(EVHl) domain26 at the amino-terminus (Xiao, et al. , 1998). However the activity-dependent 

Homerl isofo1ms lack the coiled-coil (CC) motif at the carboxy terminus of constitutively 

expressed Homerl protein isoforms (K. Szumlinski , et al., 2006; Xiao, et al. , 1998). Homerl 

isofonns bind and regulate several Ca2+-signalling proteins via their EVH l domain, e.g. 

25 Ternary factors form three-molecule complexes. 
26 The EVH l domain binds proline-rich sequences acting as molecular adaptor. 
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mGluRs, Shank (NMDAR-scaffolding protein) and lP3Rs (Worley, et al., 2007). Homerl 

isoforms with CC domaiu can bind with each other, form isoform-specific multimers and thus 

act like a bimodular adapter to crosslink or couple proteins together for their interaction in 

PSD signalling complexes (Worley, et al. , 2007; Xiao, et al. , 1998). This adapter function of 

Homerl-CC-isoforms has been shown to facilitate glutamate-mediated excitatory signalling 

(Fagni, Worley, & Ango, 2002; Xiao, et a l., 1998). The competitive binding of Homerla 

disrupts CC-Homerl mediated interactions, which alters the molecular content of the PSD 

and reduces density and size of dendritic spines (Sala, et a l. , 2003). Homerla transcripts are 

increased within the cortico-limibic-striatal circuit by psychotropic agents (alcohol, cocaine) 

and stress (K. Szumlinski, et al., 2006). Reintroduction of Homerla expression in PFC 

reverses the heightened behavioural response to stressors in Homer 1 knockouts while 

restoration of CC-Homerlc isoform increases these effects (K. Szumlinski, et al. , 2006). CC

Homerlc isoform expression in PFC has been shown to regulate basal glutamate levels and to 

be critical for working memory and regulation of the emotional response to novelty (Lominac, 

et a l. , 2005). Overexpression of IEG-Homerla in hippocampus impaired working memory 

task performance (Klugmann, et al., 2005). These findings suggest that IEG-Homerla 

transcription within the cortex supports stress resistance and reduces cognitive performance 

(K. Szum linski , et a l. , 2006). Conversely, the expression of the CC-Homerlc isoform 

decreases the adaptability to stressors and enhances performance in tasks requiring attention 

and working memory (K. Szumlinski, et al. , 2006), which may reflect reciprocal inhibition of 

adaptations mediated by Homerl isoforms related to stress and learning. Stress adaptation 

may require reduced attention to stress-related signals and thus may prevent increased 

attention required for learning. Behavioural abnormalities, dysregulation of prefrontal 

glutamate transmission in Homerl knockout mice (K. Szumlinski, et al. , 2005) and genetic 

variation in human Homerl (Norton, et a l. , 2003) have all been linked to schizophrenia. 
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MAPK/ERK 

The mitogen-activatcd/extracellular-rcgulated protein kinase (MAPK/ER.K) signalling 

cascade is one family of the MAPK superfamily (other MAPK families are c-Jun N-terminal 

kinases and p38MAPKs) (Adams & Sweatt, 2002). Activation of the ERK pathway can be 

triggered by numerous extracellular signals, e.g. growth factor receptors, dopaminergic D2 

receptors, voltage-gated calcium channels, AMP A and NMDA receptors (Adams & Sweatt, 

2002). The ERK pathway is organized around the Ca2+/growth factor dependent protein 

kinase kinase kinases Raf-1 and B-Raf (Sweatt, 200 I) . Each of the two can phosphorylate the 

kinase kinase MAPK/ERK kinase (MEK) isoforms 1-4 (Sweatt, 2001). MEK activates the 

MAPK/ERK kinase isoforms 1 and 2 by threonine and tyrosine residue phosphorylation 

(Sweatt, 200 I ). The activation of ERK isoforms contributes to the regulation of the voltage

dependent K~ channel Kv4.2, cytoskeletal proteins ( e.g. MAP-2 and Tau), transcription 

factors ( e.g. Elk-1 and CREB) and signa lling proteins ( e.g. phospholipase A2, ribosomal S6 

kinase, mitogen- and stress-activated kinases) (Adams & Sweatt, 2002; Thomas & Huganir, 

2004). ERK signalling is necessary but insufficient for hippocampal and cortical LIP, can 

drive CaMKJI-mediated insertion of AMPA receptors and regulate dendritic spine numbers 

(Thomas & Huganir, 2004). ERK signalling thus contributes to synaptic plasticity and 

learning via the integration of neuronal input and the coordination of neuronal adaptations. 

Methyl-CpG Binding Protein 2 

The neuronal activity-regulated transcription regulator Methyl-CpG Binding Protein 2 

(MeCP2) binds methylated CpG dinucleotids of target genes (e.g., in promoter of BDNF and 

CRH) and unmethylated four-way DNA junctions (Chahrour & Zogbbi, 2007; S. Cohen & 

Greenberg, 2008). Binding of MeCP2 recruits DNA and histone methyltransferase, 

complexes of chromatin-remodelling enzymes, transcription fac tors and corepressors (Sin3A 

and his tone deacetylases 1 and 2) for chromatin condensation and transcriptional repression 
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(Chabrour & Zoghbi , 2007). Ca2+-dependent phosphorylation of MeCP2 by CaMKII releases 

MeCP2 from the promoter disinhibiting BDNF transcription (W. Chen, et al. , 2003) w ith 

effects on spine and dendrite development. MeCP2 thus participates in both arrest and 

induction of target gene transcription. Cooperation between MeCP2, CREB and MEF2 to 

recruit CBP to BN DF promoter IV could initiate BDNF transcription (Chah.rour, et al., 2008). 

Alternative splicing of exons leads to two MeCP2 isoforms (Chahrour & Zoghbi, 2007). The 

highly conserved 3' UTR contains multiple polyadenylation s ites for alternative mRNA 

processing generating four different MeCP2 transcripts (Chahrour & Zoghbi, 2007). MeCP2 

interacts w ith RNA and could be involved in RNA splicing (Chahrour & Zoghbi, 2007). 

MeCP2 is involved in the regulation of excitatory and inhibitory synapses, LTP and synaptic 

p lasticity in cortex and hippocampus and hippocampal short-term synaptic depression (Asaka, 

Jugloff, Zhang, Eubanks, & Fitzsimonds, 2006; Chao, Zogbbi , & Rosenmund, 2007; Dan i, et 

al. , 2005 ; Moretti, et al., 2006; Nelson, Kavalali , & Monteggia, 2006). 

Myocyte Enhancing Factor 2 

MEF2 activates its target genes by coordinating the regulation of chromatin structure and 

function of transcription factors (S. Cohen & Greenberg, 2008). The activity-induced, Ca2+

dependent dephosphorylation of MEF2A by calcineurin and subsequent switch from 

sumoylation to acetylation disrupts MEF2's interaction with histone deacetylases. This in 

turn, induces the transcription of IEG Nur77 (activity-regulated IEG transcription factor that 

regulates cell survival and growth) that restricts dendritic claw differentiation in granule 

neurons of the cerebellum (Shali zi, et al. , 2006). In hippocampal neurons, glutamatergic 

synaptic activ ity induces calcinemin-mediated dephosphorylation MEF2A and MEF2D that 

activate transcription of Arc and synaptic Ras guanosine triphospatase activating protein 

(synGAP) restricting synapse number (Flave ll , et a l. , 2006). MEF2 is also one of the 

regulators of neurotrophin-3 (NT-3) transcription that mediates BDNF-induced neuronal 
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survival (Shaliz i, et al. , 2003). MEF2 has furthermore been suggested to regulate spme 

density and Akt/PKB signalling in response to activation of voltage-gated Ca2
+ -channels or 

Dl receptors in spines of the nucleus accumbens (Pulipparacharuvil , et al., 2008). These 

effects are mediated by MEF2-regulated genes that encode regulators of cytoskeletal proteins 

and the expression PB-kinase (Pulipparacharuvil, et al. , 2008). 

Nuclear factor of Activated T-cells 

The Ca2
+ -signalling-dependent regulation of the nuclear trans location of NF AT represents a 

mechanism by which neuronal activity can regulate gene expression ( I. A. Graef, et al. , 1999). 

Deficient calcineurin-NFAT signalling impairs neurotrophins and netrin-dependent axon 

outgrowth (I. Graef, et a l. , 2003). Neurotrophins induce calcineurin activity to 

dephosphorylate NFAT for its translocation into the nucleus and activation of NFAT

dependent transcription of e.g. the IEG Nur77 (l. Graef, et a l. , 2003). NFAT-dependent 

transcription is terminated via its phosphorylation by nuclear kinases, which induces its 

translocation to the cytoplasm. Conditions that activate Akt/PKB inhibit glycogen synthase 

kinase-3 (GSK3) extending the nuclear presence of NF A Ts (Benedito, et a l. , 2005). NFAT3-

dependent transcription promotes neuronal survival and can protect granule neurons from the 

apoptotic effects of serum or K+ deprivation, presumably by its influence on the transcription 

of pro-survival genes (Benedito, et a l. , 2005). In hippocampal pyramidal neurons BNDF 

through TrkB-signalling has been shown to activate the NF AT-dependent transcription of the 

genes encoding IP3R l and BDNF (R. D. Groth & Mermelstein, 2003). NFAT-dependent 

transcription of IP3Rl and GluR2 genes is also initiated by D l receptor-mediated 

enhancement of calcium entrance through L-type channel in striatal neurons (R. D. Groth, et 

a l. , 2008). 
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Nerve Growth J;'actor-lnducible protein A 

Transcription of the lEG NGJi1-A encoding the transcription fac tor NG FI-A can be induced in 

response to neuronal activity or neurotrophic factors (Knapska & Kaczmarek, 2004). 

Activation of CREB, SRF (Serum Response Factor) and Elk- I, which can bind to the NGFI-A 

promoter elemen ts CRE (Calcium Response Element) and SRE (Serum Response Element), 

by MAPK/ERK pathway can up-regulate the transcription of NGFI-A (Knapska & 

Kaczmarek, 2004). Additional response elements in the promoter exist for the transcriptional 

regulation of NGFI-A by e.g., estrogen (Slade & Carter, 2000), auto-regulation by NGFI-A 

(Sakamoto, et a l., 199 1; Schwachtgen, Campbe ll , & Braddock, 2000) and inhibition by e.g., 

NGFI-A binding protein 1 (NAB 1) (Russo, Sevetson, & Milbrandt, 1995). Temporal and 

local regulation of NGFI-A mRNA and protein expression contribute to the transcriptional 

regulation of multiple DRGs (Knapska & Kaczmarek, 2004) encoding e.g., glucocorticoid 

receptor (GR) gene (NR3CJ) (Weaver, et a l. , 2004) and the synaptic vesicle-cytoskeleton

associated proteins synapsin I/II (Thie l, l 993). NGFl-A also interacts with several other 

transcription factors like, CBP (S ilverman, et a l. , 1998), c-Fos (Oragunow, Tse, Glass, & 

Lawlor, 1994; Gius, et a l., 1990) and NGFI-B (G. Wi lliams & Lau, 1993). NGFI-A protein is 

expressed throughout the brain e.g., in thalamus, hypothalamus, striatum, amygdala, 

hippocampus and sensory cortices (K.napska & Kaczmarek, 2004) . Up-regulation of NGFI-An 

expression in sensory cortices has been observed in response to sensory stimulation e.g., 

through environmental enrichment (Pinaud , et al. , 2002; C. Wallace, et al., 1995). However 

the regulation of NGFI-A expression is influenced by a large spectrum of stimuli including 

stress, seizures, hippocampal LTP-inducing stimuli and various types of learning (Knapska & 

Kaczmarek, 2004). 
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miR-134 

One of the BDNF-regulated mRJ."JAs that contains a binding site for miR-134 within its 

3'UTR is LIM-domain containing protein kinase I (Limkl ) (Schratt, et a l. , 2006). Binding of 

miR-134 contributes significantly to the reduction of Lim.kl mRNA translation thereby 

reducing Limk l protein levels at synapses unless BDNF cancels these effects (Schratt, et al., 

2006). Limkl targeted to excitatory postsynapses within dendrites of hippocampal neurons 

regulates actin filament dynamics, and decrease of Limkl protein reduces dendritic spine size 

(Schratt, et al., 2006). Thus, BDNF promotes and miR-134 inhibits dendritic outgrowth that 

depends on Limk I protein levels. 

miR-132 

The transcription of miR-132 is predominately initiated by neuronal activity-dependent CREB 

binding to the miR-132 promoter (Wayman, Davare, et al., 2008). Binding of miR-132 to a 

cis-acting element within the 3' UTR of p250GAP down-regulates the translation of p250GAP 

(Wayman, Davare, et al. , 2008). The reduction of PSD protein p250GAP levels attenuates its 

inhibitory effects on Rho family GTPases like Rae (Wayman, Davare, et al. , 2008). Reduction 

of p250GAP leads to denclritic growth that could be mediated by increased Rae activity or 

interactions of p250GAP with other post-synaptic proteins like, NMDA NR2B receptor 

subunit, scaffold protein PSD-95 and P-catenin (Wayman, Davare, et al., 2008). Moreover, 

miR-132 binding to a cis-acting element within the long 3'UTR transcript of MeCP2 

decreases MeCP2 protein level in cultured cortical neurons (Klein, et al. , 2007). 

Future research directions on genes, brain and behavioural adaptability 

How can genome output regulation interact with adaptation mechanisms at the behavioural 

level? 
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The interaction of an individual with its environment can induce changes at the genome level, 

which in turn can induce changes of the individual's behaviour. One example is the naturally 

occmTing variation in the degree of maternal care (grooming and nursing behaviour of rats) 

that has been shown to regulate the expression of the glucocorticoid receptor (GR) gene 

(NR3CJ) in the hippocampus of rat pups (Weaver, 2007; Weaver, et al., 2007; Weaver, 

Meaney, & Szyf, 2006). The genome configuration is regulated via acetylation/ deacetylation 

of specific histones and sequence rnethylation/ demethylation on the NGFI-A transcription 

factor response element of the GR promoter. The methylation status of this promoter 

sequence appears to be mediated through serotonin signalling at hippocampal 5-HT7 receptors 

activated in response to maternal care. Thus the regulation of the IEG NGFI-A expression 

depends presumably on neuronal activity induced by the dam-pub interaction. Additional 

activity-dependent transcription factors and cofactors are also likely to participate in the 

regulation of GR gene transcription. Depending on its histone(s) acetylation status and its 

methylation status the transcription factor NGFI-A can bind to this element in the GR 

promoter sequence. NG FI-A binding regulates the transcriptional activity of the GR gene and 

thus alters the expression of hippocampal glucocorticoid receptor levels. The transcription of 

NGFI-A is correlated with maternal care-induced GR gene express ion in the hippocampus 

(Weaver, et al. , 2007). The early-life maternal care-induced methylation status of the 

promoter sequence has been shown to persist and influence behaviour and hypothalamic

pituitary-adrenal stress response of the offspring in adulthood and to be reversible with cross

fostering (Fish, et al., 2004; Weaver, et al., 2004). The offspring of dams exhibiting a high 

degree of maternal care showed enhanced learning, memory, and exploratory behaviour and 

less stress reactivity. Apart from this intriguing interaction between genomic adaptability via 

epigenetic regulation and behavioural variability, epigenetic regulation has also been 

suggested to influence the expression of genes implicated in psychopathologies like 

schizophrenia (Abdolmaleky, et al., 2004; Graff & Mansuy, 2008; Tsankova, et al. , 2007). 
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The heterogeneity of complex psychiatric disorders like schizophrenia is best accounted for 

by multi-factorial models that incorporate genetic, epigenetic and environmental influences. 

The dysregulation of gene expression, intra-and extraneural s ignalling pathways, neural and 

neural network properties and behaviour are common features of complex psychiatric 

disorders (McClung & Nestler, 2008; Ramocki & Zoghbi, 2008; Ross, et al. , 2006). 

Responsiveness of these adaptation mechanisms to environmental factors and their role in 

neurodevelopment and neuroplasticity could also explain the impact of stress, drugs, 

infections, etc. in the manifestation of the genetic propensity to psychiatric disorders. For 

these reasons the dysregulation of adaptation mechanisms could be the common aspect of 

these disorders. 

What factors contribute to interindividual variability in neural and cognitive functions? 

Genetic interindividual variability contributes significantly to interindividual variability m 

cognitive functions (Ando, et al. , 200 I ; Blokland, et al. , 2008; C. Wolf, et a l. , 2009) and to 

complex neuropathologies (Owen, Will iams, & O'Donovan, 2004a; Prathikanti & 

Weinberger, 2005 ; Ross, et al. , 2006). Individual genetic variability is thus a key factor for the 

understanding of individual differences in behavioural or cognitive performance measures and 

their neurophysiological correlates. However, as described above genetic variability interacts 

with epigenetic variation and a large variety of regulatory factors that can mediate 

environmental influences. 

The total interindividual variability of the genome sequence in humans is estimated at 0.2% of 

which 40% are nucleotide variations (SNPs) and 60% structural changes (Sebat, 2007). 

Structural variations contribute presumably at least 20% to the variab ility of gene expression 

(Hurles, Dermitzakis, & Tyler-Smi th, 2008). Only a small proportion of the total DNA 

sequence variability will a lter protein coding sequences (Venter, et a l. , 200 I ) because these 

make up only about 2-3 % of the humane genome (J . Mattick, 200 I). Most of the variability 
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thus affects genome sequences that are transcribed into ncRNAs (J. Mattick, 200 I) and 

untranscribed sequences that are presumably also regulatory. Adaptively evolving loci have 

been identified in non-coding sequence of the human genome that may also affect neuronal 

regulatory regions (Kelley & Swanson, 2008). Genetic and also epigenetic variation within 

regulatory non-coding sequence is expected to be the major s ite for genetically-driven 

individual differences and in addition interacts with environmentally-driven regulation. 

Changes in regulative ncRNA sequences could result in subtle changes that contribute to 

interindividual variability of quantitative traits (J. Mattick & Makunin , 2006). In addition 

comparative genome analysis has revealed that most evolutionary conserved sequences in 

mammalian genomes are non-coding sequences and not genes (Lindblad-Toh, et al., 2005). 

These non-coding sequences are often found close to genes that encode transcription factors 

(Canestro, Yokoi, & Postlethwait, 2007) and often contain cis-acting regulatory elements that 

regulate the transcription of adjacent genes (Woolfe, et al., 2005). Through its cis- and trans

acting effects, non-coding sequence is involved in gene and protein regu lation. The variation 

and conservation of non-coding sequence may thus reflect its role in the diversification and 

maintenance of phenotypes during evolution. Most genes give rise to multiple mRNA 

transcripts for the regulation of translation to adapt the isoform, quantity or location of 

protein. Differences in the 3' and 5 'UTRs are critical for mRNA process ing as well as timing 

and location of translation via interaction with transacting factors. For example cytoplasmatic 

polyadenylation element binding protein l (CPEPl) is part of a multiprotein complex that 

binds to specific cis-acting elements of the 3 'UTR to regulate mRNA transport, 

polyadenylation and translation of several synaptic plasticity proteins (Wayman, Lee, et a l. , 

2008). The length of 3 'UTR sequence of BDNF rnRNA is thus important for the regulation 

of its transport, which has been shown to affect spine morphology and synaptic plasticity in 

hippocampal neurons (An, et al. , 2008). 3 'UTR removal of a.-CaMKII mRNA prevents its 

translocation, reduces protein expression in PSD, late-L TP stabi lity and memory (Wayman, 
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Lee, et al., 2008). 3 'UTR cis-acting elements signal the dendritic localization and translation 

of a-CaMKII mRNA (Mayford, Baranes, Podsypanina, & Kandel, 1996; Mori, Imaizumi, 

Katayama, Yoneda, & Tohyama, 2000). rniRNA expression also modulates synaptic plasticity 

and can regulate trans lation in the human brain by interacting with target gene sequences in 

3 'UTR (R. Zhang & Su, 2008). The variation of miRNAs themselves and their target gene 

sequences may increase variability in gene expression and thus influence phenotypic 

adaptability (R. Zhang & Su, 2008). 

In summary proteins and ncRNAs that regulate neuronal adaptation integrate genetic, 

epigenetic and extracellular signals within intracellular signalling networks. Genetic and 

epigenetic changes in regulatory non-coding sequences of regulators and their targets, (e.g. in 

cis-elements of promoters and UTRs, cis-and trans-elements of regulatory proteins and 

ncRNAs) can alter neuronal adaptation. Furthermore such alterations can interact with 

environmental factors. We expect that future research into variation within regulatory non

coding sequences of proteins and ncRNAs involved in the regulation of neuroplasticity will 

explain individual differences and impairments in learning and memory and complex 

psychiah·ic phenotypes. 

How can genetically-driven alternations of brain function and behaviour be detected? 

Methods interconnecting neuro-molecular, neuro-physiological and behavioural levels can 

reveal the impact of genetic variability to variations of brain functions and behaviour. One 

technique with the capacity to cover this spectrum of functions is genetic neuroimaging, 

which combines neuroimaging technolog ies such as fMRI with molecular genetics. However 

this technique is limited by two major constraints. First the analysis is restricted to DNA 

sequence variations because the genome is isolated from lymphocytes or other dispensable 

cells. For this reason genetic neuroimaging cannot provide information about the genome 

output variation in neurons. BOLD-MRl/fMRl can localise and quantify the change of the 
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haemodynamic signal at neural network level. By modelling the time course of the signal 

change as a function of the behavioural manipulation, e.g. a memory task, this method 

provides a correlate of task-related neural activity. This, points to the second main limitation, 

which is the correlative nature of genetic neuroimaging. Knowledge regarding the effects of 

genetic variants on expression and function of neuronal activity-regulated proteins and 

ncRNAs is thus a prerequisite to validate the results of genetic neuroimaging. Common 

genetic variants known to affect the expression or function of neuronal activity-regulated 

proteins and ncRNAs involved in neuroplasticity are rarely known, but might be found in 

non-coding regions. So far the genetic contribution to individual variation of nemonal 

network activity involved in cognitive functions has been investigated for genes encoding 

receptors or enzymes of several neurotransmitter systems as well as BDNF (Egan, et al. , 

2003; T. Goldberg & Weinberger, 2004). The strengths of fMRI are its high sensitivity and 

reasonable spatial resolution. Moreover, the correlation between genetic and task-related 

imaging and performance data a llows for the validation of effects across functional levels. 

This non-invasive but physiological approach may help to quantify and specify the influence 

of genetic parameters on brain functions and behaviour. Ultimately genetic neuroimaging 

would allow monitoring of not only a signal change dependent on the manipulation of 

behaviour but also a signal change dependent on genome output variation. Advanced invasive 

methods of neurogenetic activity imaging like catFISH (.~ellular compartment ~nalys is of 

!emporal activity by fluorescent In-.S,itu Hybridization) can localise, quantify and identify 

mRNAs and proteins within neuronal networks activated for distinct stages of learning and 

memory (Guzowski , et al., 1999; Miyashita, et al. , 2008). Another invasive way to investigate 

in vivo molecular changes involved in the regulation of neuronal activity, synaptic and 

neuronal plasticity, e.g. the regulation of IEG express ion at the network level is the transgenic 

or viral-introduction of neuronal activity fluorescent sensors (Barth, 2007). However, non

invasive in vivo-techniques will be necessary to study neuronal activity and plasticity-related 
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genome output regulation during cognitive activities in humans. Presently we will have to 

combine insights from invasive and non-invasive approaches in order to investigate the 

integration of adaptation mechanisms across functional levels. Only by understanding these 

interactions will we elucidate the interplay between genome, epigenome and environment for 

human behavioural adaptability and thus individuality. Fw-thermore without understanding 

the integration of adaptive mechanisms across the behavioural, neural network, cellular and 

molecular level we wi ll not be able to answer questions about cognitive functions such as 

what are the biological mechanisms that differentiate working memory and long-term 

memory. 
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General Conclusion 

First, we demonstrated that genetic 1magmg 1s a prom1s111g non-mvasrve technique to 

investigate the contribution of genetic effects to human interindividual differences m 

cognitive functions. Our experimental findings added to the knowledge about the potential 

impact of individual genetic variability in an important synaptic regulatory protein 

(dysbindin-1) on working memory (WM) for emotional faces. 

Second we aimed to investigate the dysbindin- 1 genotype effect on performance for 

emotional face WM and the related brain activity in patients with schizophrenia. As we 

expected the majority of our patients (seven out of eight) carried the schizophrenia risk

associated dysbindin-1 genotype ( data not presented). T his is due to the fact that the risk 

associated allele (A = .87 (Bray, et a l. , 2005)) is common in the general population as is the 

case for the majority of alleles associated with the risk for schizophrenia (Purcell, et a l. , 2009) 

but appears to be particularly so in the case of DTNBP 1 (Riley, et al., 2009). The risk that is 

conferred by these common alleles is very small ( 1.1 -1.5) thus explains only a small 

proportion of heritable risk (Manolio, et al., 2009) and implies that the number of common 

risk contributing variants is very large. Indeed new evidence suggests that common polygenic 

variants contribute at least one third of the total risk for schizophrenia (Purcell , et a l. , 2009). 

Interestingly more than 80% of variants associated with complex diseases fall inside non

coding regions emphasizing the importance of variabi lity outside genes (Manolio, et al. , 

2009). 

Our results support the conclusion that variations in non-coding sequence may be important to 

explain individual variability in cortical and neurocognitve functions in particular if such 

variants affect the expression of regulators involved in neuroplasticity (including regulatory 

ncRNAs, prote ins, e.g. dysbindin or activity-regulated proteins). 
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Despite every effort made to recruit the number of patients needed for suffic ient power to test 

our hypothesis about the dysbindin-1 genotype effect on emotional face WM, we fa iled to 

obtain the aimed for sample size of 30 patients. Advantageously, the small group of patients 

analysed, was exceptionally homogenous showing only mild cognitive impairments. For these 

reasons we reduced the number of variables in our design (excluding the genotype) and 

focused on brain activity differences related to accurate WM performance between patients 

and matched healthy participants. Our results suggest that highly functional patients achieve 

correct WM performance because they utilise compensatory adaptations to cope with 

pathological changes. Future investigations that address the regulation of these adaptations 

may reveal new therapeutic interventions, e.g. the selective enhancement of brain activity 

through neurofeedback provided by fMRI. 

Finally we introduced the concept of adaptabili ty to connect the molecular, cellular, neural 

network and behavioural levels. Then we reviewed the regulation of adaptation mechanisms 

that depends on the integration of genetic, epigenetic and environmental factors across 

functional levels. We discussed why the investigation of adaptation mechanisms across 

functional level is needed to answer complex questions in cognitive and clinical neuroscience. 

For example questions about the basis of interindividual differences in cognitive functions, 

and dysfunctions observed in psychiatric disorders as well as the dissociation between 

cognitive functions. 

Limitations and future directions 

A larger sample including 100 participants or more in the control group and particularly a 

much larger patient sample would have allowed to include more independent variables for 

example to extend the number of genes for the investigation of interaction effects between 

genes and genes and environmental fac tors. Furthermore it would have been interesting to 

investigate haplotypes instead of focusing on single nucleotide polymorphisms. We also did 
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collect serum samples of all participants, which are not yet analysed. Analysis of these 

samples could be used to correlate e.g. the protein profiles or concentration of specific 

neurotransmitter metabolites or hormones (at least in the male participants) with the genetic 

data. 

Most previous genetic imaging studies have detected genotype effects with small to medium 

effect sizes using sample sizes of 20-40 participants (A. Meyer-Lindenberg & D. R. 

Weinberger, 2006; Munafo, Brown, & Hariri , 2008). In particular fMRI bas been suggested to 

exhibit more power to detect genetic effects in smaller samples compared with other more 

complex phenotypic measures (Egan, et al. , 2003). A study that investigated the false positive 

rates in genetic imaging suggested appropriate control of type I errors by standard false 

d iscovery correction methods but testing of more than one SNP would require additional 

correction (A. Meyer-Lindenberg, et al. , 2008) . Sizes of genetic effects also depend on the 

targeted endophenotype, the reliability and strength of the imaging signal e licited by the 

paradigm, confounding factors and data analysis (A. Meyer-Lindenberg & D. R. Weinberger, 

2006). We detected in our study medium effects concordant with previous reports . In order to 

increase the power and include more genetic (GW AS) and other variab les in genetic imaging 

studies larger samples (N=500- l 000) and more sophisticated data analysis techniques are 

required (de Geus, Goldberg, Boomsma, & Posthuma, 2008; Potkin, et a l., 2009). A new 

approach uses the differences in imaging data between cases and controls ( or grouping 

according to other criteria) to explain genetic variability between groups instead of asking 

whether genetic variability explains variability in the imaging data (Potkin, et a l. , 2009). This 

allows the genome-wide discovery of genetic variants associated with imaged or otherwise 

quantified endophenotypes. 

The more information is available about the :functional significance of a genetic variant the 

more likely are consistent findings, the easier their interpretation and the less likely are 
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spurious associations (Pemeger, 1998). With our approach of genetic imaging we focused 

thus on neurobiological plaus ibility when selecting the investigated geneti<.; variants (e.g., 

genes known to be expressed in the brain, genetic variants preferentially associated w ith 

gene/protein expression or function, involved in functional/ structural neuroplasticity, likely 

to be expressed in regions commonly activated by WM/emotion tasks/face processing, likely 

to influence these cognitive functions and likely to be involved in susceptibility to 

schizophrenia) based on previous research as opposed to more explorative studies where such 

prior knowledge is unavailable. This biased our selection towards well-studied genes with 

respect to their putative involvement in these brain functions and schizophrenia. Associations 

between cognitive functions and most of the genes selected had previously been found with 

neuroimaging (COMT, SLC6A, DTNBPI, RGS4, GADJ) or/and cognitive tests in humans 

(DTNBPJ, COMT, SLC6A, NRGJ, GADJ) or animal studies (NRGJ, GRJNJ, DTNBPJ, 

COMT, SLC6A). COMT, DTNBPJ, NRG/ had been linked with schizophrenia based on the 

convergent findings of statistical significance, reproducibility of associations, animal models 

and human endophenotype studies (Gogos & Gerber, 2006). More recently a systematic meta

analyis of genetic candidate genes for schizophrenia found strong significant effects for 16 

genes including DTNBP 1, COMT, SCL6A and GRJN2B (Allen, et al. , 2008). Our selection 

criteria thus merged statistical and neurobiological evidence although we did not 

systemematically quantify or qualify these criteria. We were further constrainted by the 

re latively small number of selected variants, commoness of minor alleles (frequency > .10) 

both owed to the size of our sample and available genotyping resources. 

Even with biological evidence being available the selection of genetic variants remams 

difficult because there is a multitude of interacting factors (genetic, epigenetic and 

environmental) that may blur individual effects, ev idence from association studies is often 

inconsistent with respect to the effect sizes, specific genes, variants and alleles associated and 

no rule or established way exist to guarantee success. For genetic imaging we think it is 
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helpful to have background info1mation on the neurobiological and cognitive plausibility of 

variants in order tailor the paradigm and method of analysis to the variants investigated. For 

example does the task activate areas of the brain that have shown differential expression or 

function of the product influenced by this genetic variant? Despite all these information being 

available in the case of the COMT and 5-HTT polymorphisms, which we did select in 

particular because of their potential effects on emotion processing and working memory, we 

were unable to replicate these earlier findings in our large control sample. Future selection 

may be facilitated using Bayesian approaches that allow the quantification of the prior 

probabili ty of genetic variants. Also the analysis of interactions of a suspected gene/protein 

with other genes/proteins through signalling pathways like the one available for dysbindin-1 

(Guo, et al., 2009) may deliver new testable hypothesises. A priori genetic variants may also 

be identified through the analysis of interactions across functional levels that may converge 

on a limited number of genes that at the same time may reveal new testable endophenotypes. 

Choosing rare variants with large frequency differences ( controls/ patients) is not 

useful for the genetic imaging approach if one relies on opportunistic-sampling, relatively 

small sample size </=100 (cost-effectiveness) because the likelihood to get carriers with the 

rare allele is very low. We selected one variant with a minor allele frequency below 10% 

(GRIN I rs 11146020) for which we found no significant effects on behavioural measures in the 

control sample. Rare variants are problematic if one relies on opportunistic-sampling and 

relatively small samples (n< 100). Provided that numbers of rare allele carriers are sufficient 

(family-studies or very large samples) and effects are large enough, rare variants can be 

investigated with genetic imaging. Presently genetic imaging studies for rare variants like 

copy number variation are still rare (K. P. Lesch, et al., 20 I 0). The individually rare and 

highly penetrant copy number variations (chromosomal deletion and insertions) that may 

contribute to the genetic risk of schizophrenia particularly in spontaneous cases (B. Xu, et a l., 

2008) appear to be different between individuals, fami lies and subpopulations (Tam, Redon, 
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Carter, & Grant, 2009). These mutations are more difficult to detect and verify because they 

are rare, can occur de nova and throughout the genome affecting many different genes. The 

excess of CNVs was found to be small comparing patients with schizophrenia and controls 

(Delis i, 2009). At present it remains unknown whether they would be sufficient to explain the 

genetic predisposition in all cases of schizophrenia (Delisi, 2009). However structural genome 

changes are an important source for interindividual variabi lity in health and disease (Sebat, 

2007; H. J. W illiams, et al., 2009). 

Apart from genetic imaging using fMRI numerous other imaging techniques including 

stmctural imaging (Ohnishi, et al. , 2006), EEG (Fa llgatter, et al. , 2006), DTI (McIntosh, et al. , 

2008) and MEG (AJweninen, et a l., 2006) have been applied for the investigation of genetic 

influences on brain function and structure. As already pointed out above, because of the 

correlative nature of genetic neuroimaging the validation of results depends on convergent 

findings from studies applying invas ive techniques, and are less dependent on modelling of 

data. Without the information provided by post-mortem and animal and cell culture studies 

we would not have been able to interpret our findings. 

Recently such studies provided new insights about the interactions between genes, neurons 

and behaviour by showing neuronal activity-dependent initiation of new gene transcription. 

This is required for de nova protein synthesis that plays an important role in LTP and 

structural plasticity (Bramham, 2008). 

In vitro s tudies that use florescence makers to trace gene expression in combination with 

electrophysiology, e.g. by time-lapse live-cell fluorescence imaging can identify neuronal 

activity-dependent changes in gene transcription (Kawashima, et al., 2009). 

The investigation of these mechanisms is crucial because they are involved in the regulation 

of neuroplasticity, such as neuronal activity-dependent synapse number (Flavel I, et a l., 2006), 

dendritogenesis (Fiore, et a l. , 2009) or adult hippocampal neurogenesis (Ma, et a l. , 2009). 

Genetic manipulation of activity-dependent transcription factors that induce the transcription 
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of immediate early genes (IEGs) has been shown to impair learning and memory through their 

effects on structural synaptic plasticity (Barbosa, et al. , 2008). Impai1ments in these neuronal 

activity-dependent regulation mechanisms have been linked to genetically complex mental 

di sorders (Swanberg, Nagarajan, Peddada, Yasui, & LaSalle, 2009). The regulation of 

activity-dependent gene expression has also been shown to play an important role during the 

development of GABAergic synapses (Y. Lin, et al. , 2008), which could be relevant for the 

pathogenesis of schizophrenia. Neuronal activity-responsive IEGs and their transcription 

factors are expressed in regions important for emotion and cognition such as prefrontal, 

orbital frontal, occipital cortex, hippocampus and amygdala. 

Genes make up only about 1.06% of human DNA (compared to 1.27% genes in mouse DNA) 

(Church, et a l. , 2009), the rest is non-coding sequence that is likely to play an important 

regulatory role for the adaptive use of genes (in particular the regulation of gene expression). 

This suggests that variations in sequences for how proteins are build may be less relevant for 

phenotypic differences than variations in sequences for how genes and proteins are used 

(where, when, how much, in what form and function), not to mention epigenetic variability 

(Cubas, Vincent, & Coen, 1999). At present the effects of genetic variability in non-coding 

sequence on the expression of neuronal activity-regulated non-coding RNAs or regulatory 

proteins are largely unknown. But recent evidence suggests the importance of non-coding 

sequence for cis- and trans-binding interactions between RN As and RN As and proteins during 

the regulation of gene expression (X. Wang, et a l., 2008). Variability in non-coding sequence 

that affects regulation of gene expression bas been related to psychiatric disorders (Zhao, et 

al. , 2009), nmmal variation of cognition (Gosso, et al. , 2008), emotional and social 

behaviours (Hammock, Lim, Na ir, & Young, 2005). 

Hence it would be interesting to investigate variability particularly in non-coding regulatory 

sequences (e.g. UTRs) of these synaptic activity-regulated genes/ proteins with genetic 

neuroimaging also with respect to schizophrenia. Another interesting target, for future genetic 
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imaging studies are activity-regulated microRNAs that are like CEGs expressed in response to 

synaptic activity and regulate the translation of synaptic proteins involved in structural 

plasticity (Vo, et al., 2005; Wayman, Davare, et al., 2008). Because these micro-RNAs, 

transcription factors and proteins that are expressed or regulated in response to neuronal 

activity regulate synaptic proteins involved in functional and structural adaptations of 

neurons, genetic variation that affects these regulators may contribute to interindividual 

variability in cognitive functions as well as their dysfunction in disorders like schizophrenia. 
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Supplemental material for experimental chapter I 

Suppl. table 1 a. Brain regions significantly higher activated for angry compared to neutral faces at a-level .05 
and voxel threshold of200 voxcls for 56 control participants. 

Brain region Talairach coordinates cluster size in voxels/ 

mm3 

X y z 

Left fusiform face area -37 -50 - 14 1137 

Left globus pallidus -21 -4 - I 601 

Left hippocampus -20 -27 -4 21 1 

Left inferior temporal gyms -42 -34 -23 636 

Left insula -26 2 -8 2602 

Left occipital cortex -31 -82 -7 285 

Left occipital face area -33 -73 - 10 377 

Left substantia innominata -21 -6 -6 1593 

Left ventrolateral prefrontal cortex -46 29 14 1744 

Right amygdala (extended) 2 1 -2 - 11 2107 

Right caudate nucleus 16 -4 20 364 

Right dorsolateral premotor cortex 36 0 39 865 

Right fus iform face area 39 - 15 -18 2916 

Right globus palidus 17 -5 0 609 

Right inferior temporal gyms 44 -37 -22 1980 

Right insu la 25 11 - 11 57 1 

Right intra-parietal lobe 33 -61 41 800 

Right intra-parietal sulcus 26 -74 24 422 

Right middle frontal gyrus 35 - I 39 525 

Right occipital cortex 30 -86 -8 287 

Right occipital face area 37 -73 -13 2039 

Right orbital frontal cortex 27 38 2 392 

Right superior temporal sulcus 55 -52 5 4471 

Right ventrolateral prefrontal cortex 49 27 12 5039 
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Suppl. Table I b. Ora in regions significantly higher activated for happy compared to neutral faces at a -level .05 
and voxel threshold of 200 voxels for 56 control participants. 

Brain region Talairach coordinates cluster size in voxels/ 

X y z mm3 

Left amygdala -1 8 -7 -20 294 

Left entorhina l cortex -38 -13 -28 419 

Left Fusi form face area -37 -52 -13 709 

Left inferior frontal gyrus -42 19 27 1601 

Left inferior frontal gyrus -48 39 10 1426 

Left insula -31 7 - 12 446 1 

Left occipital cortex -3 1 -84 -7 3269 

Left occipita l face area -3 1 -76 - 12 940 

Left substantia innominata -1 8 -6 -6 203 

Right amygdala 16 -5 - 14 313 

Right inferior frontal gyrus 44 9 29 829 

Right inferior temporal gyrus 47 -33 -22 1450 

Right middle tempora l gyrus 55 7 -13 1181 

Right occipital cortex 30 -84 -8 3873 

Right occipital face area 33 -75 - II 265 1 

Right orbital-fronta l gyrus 28 38 0 401 

Right ventrolateral prefrontal cortex 48 26 12 2286 

Right ventrolateral pre frontal cortex 33 27 -6 289 
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Suppl. Table 2a. Right FFA significantly higher activated for ang1y compared to neutral faces, activity significantly 
correlating with task-performance measures and signi ficantly affected by dysbindin-1 genotype. 

ANOY A results for main effects of the bc1wccn-subjcct factor independent samples t-tcst results fo r DTNBP I genotype 

DTNBP/ genotype and the within-subject factors emotion and load, 

thei r interactions, and post-hoc comparisons 

Factor/ interaction F (degrees of freedom) or Bonfcrroni corrected 

pair-wise comparisons 

Emotion F (2, I 08) 

5.88 ** 

angry vs. neutral • • 

Load F (3, 162) 

9.30 • • • 

load I vs. load 2, 4 ••• 

load I vs. load 3 •• 

Loadx DTNBPI F(3, 162) 

3.59 • 

DTNBPI F ( l ,54) 

4.72 • 

• p < .05, •• p < .0 I, ••• p < .00 I 

effect on beta means for each emotion type 

(DF = 54) as well as the amount of variability in beta mean 

for the emotion type explained by DTNBP I genotype 

(uncorrected for 

multiple 

comparisons) 

angry 2. 18 * 

happy 2.41 * 

neutral 1.79 

R 

.08 

.10 

.06 

Suppl. Table 2b. Left hippocampus significantly higher activated for angry compared to neutral faces, activity signifi cantly 
correlating with task-performance measures and significantly affected by dysbindin-1 genotype. 

A NOVA results for main effects of the between-subject fac tor independent samples t-tcst results for D TNBPI genotype effect 

DTNBPI genotype and the within-subject factors emotion and load, 

their interactions, and post-hoc comparisons 

Factor/ interaction F (degrees of freedom) or Bonfcrroni corrected 

pair-wise compar isons 

Emotion F(2, 108) 

3.58 • 

angry vs. neutral • 

DTNBPI F( I , 54) 

7. 14 • 

* p < .05, •• p < .0 I, *** p < .00 I 
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on beta means for each emotion type 

(OF = 54) as well as the amount of variability in beta mean for 

the emotion type explained by DTN/JP I genotype 

(uncorrected fo r 

multiple comparisons) 

angry 2.88 •• 

happy 2.24 • 

neutral 2. 14 * 

R' 

.13 

.08 

.08 



Suppl. Table 2c. Right OC significantly higher activated for both emotion contrasts, activity significantly correlating wi th 
task-performance measures and significantly affected by dysbindin-1 genotype. 

ANO VA results for main effects of the bclwccn-subjccl factor independent samples t-tcst results for OTNBPI genotype effect 

DTNBP I genotype and the within-subject factors emotion and load, 

their interactions, and 1>ost-hoc comparisons 

on beta means for each emotion type 

(DF = 54) as well as the amount of variability in beta mean for 

the emotion type explained by DTNBPI genotype 

Factor/ interaction F (degrees of freedom) or Bonfcrroni corrected 

pair-wise comparisons (uncorrected fo r 

multiple 

comparisons) 

R' 

Emotion F(2, 108) 

I 0.94 *** 
angry vs. neutral • 

happy vs. neutral *** 
Load F (3, 162) 

4.34 •• 

load I vs. load 2, 3, 4 * 
Emotion x DTNBPI F (2, 108) 

2.45 

DTNBPI F(l ,54) 

7.39 ** 

* fl < .05, •• fl < .0 I , ***fl < .001 

angry 2.76 •• .13 

happy 2.97 •• . 14 

neutral 2.30 • .09 

Suppl. Table 2d. Right OFC significantly higher activated for both emotion contrasts, activity significantly correlating with 
task-performance measures and signi ficantly affected by dysbindin-1 genotype. 

ANOVA results for main effects of the independent samples I-test results for DTNBPI genotype effect on beta means for 

between-subject factor DTNBP I genotype and 

the within-subject factors emotion and load, 

their interactions, and post-hoc comparisons 

Factor/ interaction F (degrees of freedom) or 

Bonfcrroni corrected pair-wise comparisons 

Emotion F(2, 108) 

2.99 

angry vs. neutral fl = .054 

Emotion x DTNBP I F (2, I 08) 

2.79 

DTNBPI F ( I , 54) 

8.58 ** 

• fl < .05, ** p < .0 I , •• • p < .001 

each emotion type 

(DF = 54) as well as the amount of variability in beta mean for the emotion type 

explained by DTNBPl genotype 

R' 

(uncorrected for multiple comparisons) 

angry 3.16 •• .16 

happy 1.63 .05 

neutral 2.99 •• .14 
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Suppl. Table 2e. Right ITO significantly higher activated for both emotion contrasts, activity significantly correlating with 
task-perfom,ance measures and significantly affected by dysbindin-1 genotype. 

A NOVA results for main effects of the between-subject factor independent samples 1-tcst results for D7iVBP I genotype 

DTN/3P I genotype and the within-subject factors c11101ion and load, 

their interactions, and post-hoc comparisons 

Factor/ interaction F (degrees of freedom) or Bonfcrroni corrected 

puir-wisc comparisons 

Emotion F (2, I 08) 

6.44 ** 
angry vs. neutral • 

happy vs. neutral •• 

DTNBPI F (l, 54) 

5.55 • 

• p < .05, •• p < .01, ••• p < .001 

effect on beta means for each emotion type 

(DF = 54) as well as the amount of variability in beta mean 

for the emotion type explained by DTNBP I genotype 

(uncorrected for 

multiple 

comparisons) 

angry 2.40 • .10 

happy 2.28 * .09 

neutral 1.95 .07 

Suppl. Table 2f. Right OFA significantly higher activated for both emotion contrasts, activity significantly correlating with 
task-performance measures and significantly affected by dysbindin-1 genotype. 

ANOVA results for main effects of the between-subject factor independent samples t-test results for DTNBP/ genotype effect 

DTNBPI genotype and lhe within-subject factors emotion and load, 

their interactions, and post-hoc comparisons 

Factor/ interaction F (degrees of freedom) or Bonfcrroni corrected 

pair-wise comparisons 

Emotion F(2, 108) 

l 0.72 ••• 

angry vs. neutral ••• 

happy vs. neutral •• 

Load F (3, 162) 

7.02 ••• 

load l vs. load 2, 3, 4 • • 

Emotion x DTNBP I F (2, I 08) 

2.52 

DTNBPI F(l , 54) 

6. 14 * 

• p < .05, ** p < .01, *** p < .001 
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on beta means for each emotion type 

(DF = 54) as well as the amount of variability in beta mean for 

the emotion type explained by DTNl3PI genotype 

(uncorrected for 

multiple 

comparisons) 

angry 2.65 • 

happy 2.72 •• 

neutral 1.99 

angry-neutral 2.19 • 

R' 

.12 

.12 

.07 

.08 



Figure SI. Overlay of the original maps for the angry-neutral (red) and happy-neutral (green) contrasts with the respective 

correlation maps with g lobal performance scores (blue) revealed overlap in the right and left inferior frontal sulcus region (on 

the boundary between DLPFC and VLPFC) for the angry-neutral maps (left panel). Performance-correlated activity within 

these regions was not significantly (p = .49 right and p = .74 left) affected by the DTNBP I genotype. For the happy-neutral 

maps, activity in right OFC did not overlap (right panel). 
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Supplemental material experimental chapter II 

Tab. I Main effect of group (RFX OLM): p < .0 I, cluster threshold 200 voxcls 

Location R/L X y z Cluster size 

LPFC L -27 19 26 320 

LPFC R 54 10 18 443 

occipital-temporal cortex L -22 -74 -9 612 

MPFC 2 18 43 270 

Tab.2 Load 4-1 contrast (RFX GLM): p < .05, cluster threshold 500 voxels 

Location R/L X y z Cluster size 

MPFC 2 16 49 4021 

parietal cortex R 27 -55 40 715 

parietal cortex L -31 -58 45 1523 

Tab.3 Interaction of emotion and group (RFX GLM): p < .05, cluster threshold 1500 voxels 

Location R/L X y z Cluster size 

VLPFC R 37 20 1760 
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Appendix A primary list of genetic variants 

Related Protein Gene(s) Chromo- Poly- Frequency mRNA and Assumed Animal References 
Transmitter soma! 

~ 
protein level Functional Model(s) 

System(s) Local- Affect J relation to 
isation cognition/ 

schizophrenia 
Glutamate Neuregulin l NRG! 8pl2- rs221132 JG 0. l 2J0.88 Modulation of NRGl knock- Stefansson et 

p2 1 rs221533 C 0.30 glutamate activity out mice al., 2002; p.a. 
rs241930 JG 0.34J0.66 (decrease) Regulation severe Stefansson et 
rs243 l 77 J IT J J0.33 of neuronal abnormalities al., 2003; p.a. 
433El006 A/G 0. 15J0.85; development of neuronal Stefansson et 
rs3924999 NRG l elicit neuronal development, al., 2004; 
rs2954041 signal for cell abnormal Williams et 
SNP8NRG22 1533 proliferation and cell behaviour and al., 2003; p.a. 

survival, synapically expression of Yang et al., 
expressed, regulates less efficient 2003; p.a. 
activation and NMDA Tang et al. , 
expression of receptors 2004; p.a. 
neurotransmitter Corvin et al., 
receptors, e.g. 2004; p.a. 
Regulates expression Li et al., 
ofNMDA and GABAA 2004; p.a. 
receptors Zhao et al., 

2004; p.a. 
Iwata et al., 
2004; n.a. 
Thiselton et 
al., 2004; n.a. 
Law et al. , 
2004; 
Kerber et al., 
2003; 
Hashimoto et 
al., 2004; p.a. 
Falls DL. 
2003; 
Liu et al. , 
2005; 



Buonanno 
and 
Fischbach, 
2001; 
Murphy et 
al., 2002; 
Bao et al., 
2003; Ozaki 
M. 2001; 
Crone and 
Lee, 2002; 
Roysommuti 
et al., 2003; 
Michailov et 
al., 2004 

Related Protein Gene(s) Chromo- Poly- Frequency mRNA and Assumed Animal References 
Transmitter soma! ....... protein level Functional Model(s) 
System(s) Local- Affect I relation to 

isation cognition/ 
schizophrenia 

Glutamate NMDA GRINl 9q34.3 1719 GIA; 0.9710.03; NRlmRNA Modulation of Mice with low Sakurai et 
Receptor IVS2-22 TIC; 0.9710.03; was lower and glutamate activity; NMDA al., 2000; p.a. 
Subunit IVS2-l l GIA; 0.9710.03; the level of transient NMDA receptor NRl Mohn et al., 
NRl IVS4-34 CIT; 1.0010.00 NR2BmRNA receptor blockade in subunit 1999; id.a. 

GlO0 l C higher in the early development behaviour Miyamoto et 
hippocampus, causes lasting cognitive neuroleptic al., 200 l ;id.a. 
superior deficits relevant to drugs Stefani and 
temporal schizophrenia, Moghaddam, 
cortex of significant genetic 2005 id.a.; 

NMDA GRIN2B 12pl2 T4197C patients with interaction between the Qin et al. , 
receptor T5988C schizophrenia G 1001 C in the GRIN l 2005 p.a. ; 
subunit NR2B C366G (Gao XM et gene and the T4 l 97C Ohtsuki et 

G-200T (5'UTR) al., 2000; and T5988C al., 200 l; p.a. 
Rs l806201 Grimwood et polymorphisms in the Martucci et 

al. , 1999) GRIN2B gene ➔ al., 2006 p.a. 
Expression of suggest that the Di Maria et 
NR(I) and combined effects of the al., 2004 p.a. 
NR(2A) but polymorphisms in the 
notNR(2B) GRIN I and GRIN2B 
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subunits was genes might be 
higher in the involved in the 
dorsolateral etiology of 
prefrontal schizophrenia 
cortex and the 
occipital 
cortex of 
patients with 
schizophrenia 
(Dracheva et 
al., 2001) 

Related Protein Gene(s) Chromo- Poly- Frequency mRNA and Assumed Animal References 
Transmitter soma! iiiiii... protein level Functional Model(s) 
System(s) Local- Affect I relation to 

isation cognition/ 
schizophrenia 

Glutamate Metabotropic GRM3 7q21-22 Rsl87993 T/G; 0.68/0.32; No significant Predominantly Egan et al. , 
glutamate Rs9 l 707 l CIT 0.70/0.30; effect presynaptic 2001 ; fMRl 
receptor 3 HCVl 1245618 0.73/0.27; localization, Inhibits Fujii et al., 

AIG 0.73/027; adenylate cyclase 2003; p.a. 
Rsl468412 A/T 0.75/0.25; activity, postsynaptic Lewis et al., 
HCV2536213 GRM3 Ca2+increase, 2003; 
GIA implicated by the Cartmell and 

agonists glycine and Schoepp, 
PCP 2000; 
Affects hippocampal De Blasi et 
and PFC functions, al., 2001 ; 
Heteroreceptor Spooren et 
modulating dopamine al., 2003; 
and serotonin Chen et al. , 
transmission and 2005; p.a. 
associated effects, 
modulatory role, by 
contributing to fine-
tuning of synaptic 
efficacy, and control of 
the accuracy and 
sharpness of the 
transmission 
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Related 
Transmitter 
System(s) 

Glutamate, 
Dopamine, 
GABA 

Protein 

Dysbindin 

Gene(s) 

DTNBPl 

Chromo
somal 
Local
isation 

6p22.3 

Poly- I Frequency 

iiiii... 
rs760761 CIT 
rs909706 GIA 
rsl0 11313 CIT 
rs l 01838 1 CIT 
rsl04763 1 GIA I 0.1310.87 
rs2005976 GIA 
rs2619522 A/C 
rs2619528 CIT 
rs26 l 9538 A/T 
rs2619539 CIG 
rs2901727 TIC 
rs32 13207 A/G 
rs 15580740 A/G 
rsl5643772 TIC -- . - - -- ' 

-- . - -

-, . . -

P1 578 
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mRNA and 
protein level 

Reduced 
Dysbindin 
expression m 
schizophrenia, 
➔ confers 
risk, while 
high 
expression 
confers a 
protective 
effect 
Decrease of 
presynaptic 
dysbindin in 
hippocampus 
m 
schizophrenia; 
reduced 
mRNAand 
protein in 
DPFC, 
Differential 
expression of 
Dysbindin 
alleles 
suggesting 
cis-acting 
regulatory 
elements; 

Assumed 
Functional 
Affect I relation to 
cognition/ 
schizophrenia 
Modulation of 
glutamatergic 
transmission; 
Trafficking and 
tethering ofNMDA, 
nicotinic, and GABAA 
receptors and signal 
transduction proteins, 
Expressed pre-and 
postsynaptically by 
many neuron 
populations, including 
pyramidal neurons in 
hippocampus and 
DPFC, substantia nigra 
and striatum 
Dysbindin might 
regulate the dopamine 
release of the 
dopaminergic system 
via modulation of 
SNAP25 expression. 
Down-regulation of 
dysbindin in cortex 
primary cultures 
resulted in reduction of 
SNAP25 expression 
and glutamatergic 
release. (rs2619528 & 
rs76076 l ) were found 
associated with the 
NoGo-anteriorization 
(NGA) measured as an 
event-related potential 

Animal 
Model(s) 

Sandy mouse 
with deletion 
mutation in 
DTNBPJ gene 
resulting in 
loss of 
dysbindin-1 
protein (Li, W. 
et al., 2003) 

References 

Bray et al. , 
2005 ; p.a. 
Kirov et al., 
2004; p.a. 
McClintock 
et al., 2003; 
p.a. 
(proteome) 
Schwab et 
al. , 2003; p.a. 
van den 
Bogaert el 
al., 2003; p.a. 
Funke et al., 
2004; p.a. 
Weickert et 
al., 2004; p.a. 
Talbot et al., 
2004; p.a. 
Husi et al. , 
2000; lnoue 
and Okabe, 
2003; 
Straub et al., 
2002; p.a. 
Benson et al. , 
2001; 



elicited during the 
continuous 
performance test, 

Related Protein Gene(s) Chromo- Poly- Frequency mRNA and Assumed Animal References 
Transmitter soma! --- protein level Functional Model(s) 
System(s) Local- Affect / relation to 

isation cognition/ 
schizophrenia 

Glutamate D-Amino- DAAO 12q24 Reduced D- Increased Oxidation of Chumakov et 
Acid-Oxidase G72 13q34 serine levels D-serine ➔decreased al., 2002 p.a. 

interacts in brain and D-serine for aUosteric Kumasbiro et 
with blood of activation ofNMDA al., 1995; 
DAAO schizophrenics receptor Hashimoto et 

al.,2005 
Schumacher 
et al., 2004 
p.a. 

Related Protein Gene(s) Chroma- Poly- Frequency m.RNA and Assumed Animal References 
Transmitter soma! --- protein level Functional Model(s) 
System(s) Local- Affect / relation to 

isation cognition/ 
schizophrenia 

Glutamat Praline- PRODH2 22ql 1 PRODH*l945 Proline-dehydrogenase PROHD- Lui et al., 
dehydrogenase TIC involved in glutamate deficient mice 2002; p.a. 

synthesis ➔ decreased Fan et al., 
PROHD 2003; n.a. 
activity, deficit Ohtsuki et 
in prepulse al., 2004; n.a. 
inhibition Williams et 

al., 2003a, 
2003b; n.a. 
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Jacquet et al. , 
2002; 

Amine and Regulator-of- RGS4 lq2 l-22 Rsl59728879 Decrease of ROS-proteins decrease Chowdari et 
arninoacid G-Protein- AJG; RGS4 gene effects of G-protein- al.,2002; p.a. 
neurotransmitter Signaling-4 Rsl59729374 transcription coupled receptor Morris et al., 
(e.g. glutamate, T/G; and translation agonists by Increase of 2004; p.a. 
dopamine, Rsl59729723 in brain of GTPase activity of G- Williams et 
GABA, GIA; schizophrenics protein-a-subunits ➔ al., 2004 p.a. 
serotonin) Rsl 59735809 inactivation of G- Geurts et al., 

AJG proteins ➔ shortens 2002; 
Rs951439 _J duration of G-protein-
CIT coupled synaptic signal 

transmission 

Related Protein Gene(s) Chromo- Poly- Frequency mRNA and Assumed Animal References 
Transmitter soma! ..... protein level Functional Model(s) 
System(s) Local- Affect / relation to 

isation cognition/ 
schizophrenia 

Catecholamine Catechol-O- COMT 22ql I itvtetJVal 0.46/0.45±0.03 Val-hap lo type COMT catabolize COMT- Shifman el 
neurotransmitter Methyl- polymorphism ofCOMT catecholamine deficient mice al., 2002; p.a. 
(e.g. dopamine, Transferase 226491 reduced neurotransmitters changes in Kunugi et al., 
norepinephrine) Rs737865 mRNA levels Dopaminergic catecholamine 1997; p.a. 

Rsl65599 ofCOMT neurotransrnission levels and Li et al., 
altered in PFC and behaviour 1999, 2000; 
subcortical structures p.a. 
of schizophrenics, Chen X. et 
high COMT activity al., 2004; p.a. 
associated Val allele Bilder et al, 
preferentially 2003; 
transmitted in DeMille et 
schizophrenia, al., 2002; 
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significant COMT Palmatier et 
genotype effect: al. , 1999; 
Val/Val individuals Glatt et al., 
lowest n-back 2003;p.a. 
performance, and Malhorta et 
Met/Met individuals al., 2002; 
highest performance Goldberg et 

al., 2003; 
Egan et al. , 
2001; fMRl 
Call icott et 
al., 2003 ; 
£MRI 
Bertolino et 
al., 2004; 
fMRl 
Ho et al, 
2005;tMRl 
Smolka et 
al.,2005; 
fMRl 
Aki! et al., 
2003; p.a. 
Gogos et al., 
1998; 
Huotari et 
al. , 2002 

Related Protein Gene(s) Chromo- Poly- Frequency m.RNA and Assumed Animal References 
Transmitter somal ...... protein level Functional Model(s) 
System(s) Local- Affect / relation to 

isation cognition/ 
schizophrenia 

dopamine Dopamine DRD I 5q35. l A-48G D I receptors high Mutant mice Xu et al., 
receptor 1 intronless concentration in DPFC, exhibit 1994; 

G-protein coupled locomotor Sunahara et 
receptor, that hyperactivity, al., J 990; 
stimulates Adenylate no response to Lee F.J. et 
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cyclase, DRD l receptor al., 2002; 
DRD lmodulates agonists and Castner S.A. 
NMDA glutamate antagonists et al., 2000; 
receptor-mediated Kojima et al., 
functions through 1999; n.a. 
direct protein-protein Rybakowski 
interactions, Chronic elal.,2005 
blockade of dopamine p.a. 
D2 receptors, a Abi-
common mechanjsm of Dargham et 
action for antipsychotic al., 2002; 
drugs, downregulates 
D l receptors in the 
prefrontal cortex and, 
produces severe 
impairments in 
working memory, these 
deficits were reversed 
in monkeys by short-
term co-admmistration 
of a D I agonist, 
regulate neuron growth 
and duferentiation 

Related Protein Gene(s) Chromo- Poly- Frequency mRNA and Assumed Animal References 
Transmitter soma! --- protein level Functional Model(s) 
System(s) Local- Affect / relation to 

isation cognition/ 
sch izophrerna 

dopamme Doparrune DRD2 l l q22- Ser3 l l /Cys; D2 receptor Alternations in Arinarru et 
receptor 2 23 Yall96Ala; density, dopamme transrrussion al., 1997; p.a. 

Pro310Ser; elevated in and doparrune 0 hara et :ii., 
A-241/G; post-mortem receptors in 1998; p.a. 
insertion/deletion brain putamen schizophrerua, D2 Jonsson E.G. 
- 14 1 ofC 0.78/0.22 and caudate receptors target of all et al., 1999; 

nucleus, even antipsychotic drugs Li T. et al. , 
in tissues from 1998; n.a. 
neuroleptic- Breen G. et 
free or drug- al., 1999; p.a. 
naive oatients Seeman and 
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Niznik, 
1990; 
Glatt et al. , 
2003 ; p.a. 

Related Protein Gene(s) Chromo- Poly- Frequency rnRNA and Assumed Animal References 
Transmitter soma! --- protein level Functional Model(s) 
System(s) Local- Affect I relation to 

isation cognition/ 
schizophrenia 

dopamine Dopamine DRD3 3ql3.3 Ser9Gly/rs6280/ Activation of Crocq et al., 
receptor 3 Bal I in exon I intracellular second 1992; p.a. 

messenger cascades, Williams et 
Significant effect on al., 1998; p.a. 
striatal habit learning Anney R.J. et 

al., 
2002; n.a. 
Jonsson E.G. 
et al., 2003; 
p.a. 
Hellstrand et 
al., 2004; 
Szekeres et 
al., 2004; p.a. 
Keri et al., 
2005; p.a. 

dopamine Dopamine DATI 5p l 5.3 -48 A/G amine transporter, DAT knockout Moron et al. , 
transporter -67 A/T terminates the action of mice 2002; 

40-bp VNTR dopamine by its high Khodayari G. 
affinity sodium- et al. , 2004; 
dependent reup-take p.a. 
into presynaptic Li T. et al., 
terminals, 1994; n.a. 
integral membrane 
protein, PFC function 
e.g.WM 
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Related Protein Gene(s) Chromo- Poly- Frequency mRNA and Assumed Animal Model(s) References 
Transmitter soma! -- protein level Functional 
System(s) Local- Affect / relation to 

isation cognition/ schizophrenia 
serotonin Serotonin 5-HIT 17qll.l- 5-HITLPR, Altered via uptake of serotonin Abnormal Lesch et al., 1996; 

transporter ql2 allele s/ allele 0.41/0.59 transcription and impact on serotonergic development of Lesch and 
I expression of 5- neurotransmission, changes somatosensory Mossner. , 1998; 

HIT in synaptic concentrations, projections in 5- Heinz et al. , 2004; 
impact on amygdala HIT knockout fMRl 
biology mice Ikeda M. et al., 

2005; n.a. 
Dubertret C. et al. , 
2005; p.a. 
Hairi et al., 2002; 
fMRl 

serotonin Serotonin HTA2A I 3q 14- Cl02/T Association lnayama et al. , 
receptor q21 A-1438/G between C allele 1996; p.a. 
2A and schizophrenia Williams et al., 

1996, p.a. 1997; 
n.a. 
Spurlock et al. , 
1998; p.a. 
Abdolmaleky et al. , 
2004; n.a. 

serotonin Serotonin HTR3A l lq23. l- Cl78T Altered Expressed in amygdala, Koyama et al. , 
receptor 23.2 translation ➔ hippocampus, cingulate 2000; Staubli and 
3A altered expression gyrus, Xu, 1995; Bloom 

ofHTR3A, 5-HT3 receptor inhibits and Morales, 1998; 
Less common T memory and learning in the Turner T.J. et al., 
allele related to amygdala and hippocampus 2004; 
an increase of through GABAergic Niesler B. et al., 
HTR3A inhibitory mechanism, 200 1; n.a. 
expression modulator of neural Iidaka et al., 2005; 

activation in the human p.a. 
amygdala 

178 



Related 
Transmitter 
System(s) 

GABA 

Protein 

Glutamic acid 
decarboxylase 
GAD61 

Gene(s) 

GADI 

Chromo
somal 
Local
isation 

2q31 

Poly- I Frequency 

mof hism(s)I 

HCV2177469 
GIA; 0.6510.35 
HCV2177469 
TIC; 0.7710.23 
HCV11637 130 
GIA; 0.75.0.25 
Rs8721 23 TIC 0.6610.34 
HCV2 177452 
GIA 0.8510. 15 
Rs2270335 err 0.6810.32 
Rs2241165 0.6510.35 
A/G 
HCV8823462 0.6010.40 
TIC 
HCV2177441 0.6210.38 
CIT 
HCV2177434 I 0.7710.23 
CIG 0.8010.20 
Rs769390 A/C 
HCV8823482 I 0.7010.30 
CIT 0.8710.13 
Rs3791850 
GIA 0.7210.28 
HCV8823522 
A/G 0.65 

mRNA and protein 
level 

Decrease of mRNA 
level in neurons in 
DPFC in 
schizophrenics, 
Decreased GAD67 

expression in PFC 
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Assumed 
Functional 
Affect I relation to 
cognition/ schizophrenia 

Major GABA-
synthesizing enzyme, 
Associations with 
Increased rate of frontal 
gray matter volume loss, 
eye-tracking deficits, 
childhood-onset of 
schizophrenia 

Animal Model(s) 

Only heterozygous 
GAD67 Knockout 
mice survive that 
have ~ 1/3 reduction 
in GABA 

References 

Addington 
et al, 2005; 
p.a. 
Akbarian et 
al., 1995; 



Abbreviations: p.a.- positive association; n.a.- negative association; w.a.- weak association and i.d.- indirect support for association; fl'vfRI- genetic neuroimaging 
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Appendix B methodical details 

Gene JD SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GRINJ Rs6293 ACAACAGCA TCCACCTGAG CTTCCTGCGC ACCGTGCCGC PIP synonymo G: 0.32 Multi-

CCT ACTCCCA CCAGTCCAGC GTGTGGTTTG AGATGATGCG us National 

TGTCT ACAGC TGGAACCACA TCATCCTGCT GGTCAGCGAC 

GACCACGAGG GCCGGGCGGC TCAGAAACGC CTGGAGACGC 

TGCTGGAGGA GCGTGAGTCC AAGGCAGAGA AGGTGCTGCA 

GTTTGACCCA GGGACCAAGA ACGTGACGGC CCTGCTGA TG 

GAGGCGAAAG AGCTGGAGGC CCGGGTCA TC A TCCTTTCTG 

CCAGCGAGGA CGATGCTGCC ACT GT AT ACC GCGCAGCCGC 

GA TGCTGAAC A TGACGGGCT CCGGT ACGT GTGGCTGGTC 

GGCGAGCGCG AGATCTCGGG GAACGCCCTG CGCT ACGCCC 

CA/GGACGGCA T CCTCGGGCTG CACCTCATCA ACGGCAAGAA 

CGAGTCGGCC CACA TCAGCG ACGCCGTGGG CGTGGTGGCC 

CAGGCCGTGC ACGAGCTCCT CGAGAAGGAG AACA TCACCG 

ACCCGCCGCG GGGCTGCGTG GGCAACACCA ACATCTGGAA 

GACCGGGCCG CTCTTCAAGA GAGTGCTGAT GTCTTCCAAG 

TA TGCGGATG GGGTGACTGG TCGCGTGGAG TT CAA TGAGG 

A TGGGGACCG GAAGTTCGCC AACT ACAGCA TCATGAACCT 

GCAGAACCGC AAGCTGGTGC AAGTGGGCA T CT ACM TGGC 

ACCCACGTCA TCCCTAATGA CAGGAAGATC ATCTGGCCAG 

GCGGAGAGAC AGAGAAGCCT CGAGGGT ACC AGA TGTCCAC 

CA 
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Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GRIN I Rs1114 Forward 5'-GTCCAGTTTCCAGGCTCTC-3' - Untrans lat C: 0.09 in Caucasians 
6020 Reverse 5'-CTCCCCA CAAGGTTCA GAAA-3' ed controls and 

(Begni S. et al., 2003) (promo tor 0.12-0.16 in 
Method: PCR amplification and digestion with restricti on region) schizophrenics 
endonuclease BseRl (Begni S. et al, 

2003 ; Rice S.R. 
et a l., 2001) 

Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GRIN2 Rs1806 Forward 5'-AGCGCCAGTCTGT AA TGA-3' TIT synonymo A: 0.26 in Caucasians 
B 201 Reverse 5'-biotin-TTCACACCAGACAGGTTGC-3' us controls 

Sequencing primer: 5'-AATGAACTCCCCCAC-3' 
(Tadic A. et al., 2005) and see also Alderborn et al., 2000 
Method: PCR amplification and real time sequencing 

Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GRM3 Rs 9170 Forward 5'- -3' - w1translat T: 0.27 in Caucasians 
71 Reverse 5'- -3' ed controls and 

(Egan et al. , 2004; Fujii et al. , 2003; Fukumaki & Shibata, 0.28 in 
2003; Norton N . et al., 2005) schizophrenics 

(Norton et a l., 
2005) 
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... 

Gene lD SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GRM3 Rs1468 Forward 5'- -3' - intron T: 0.27 in Caucasians 
412 Reverse 5'- -3' controls 

(Egan et al., 2004; Fujii et al., 2003; Fukumaki & Shibata, (Norton et al, 
2003; Chen Q. et al., 2005; No1ton N. et al., 2005) 2005) 

T: 0. 17 in East Asia 
controls (Chen 
et a l., 2005) 

Gene SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
[0 Chang minor alle le 

e 
GRM3 Rs6465 Fo1ward 5'- -3' - intron G: 0.27 in Caucasians 

084 Reverse 5'- -3' controls (Egan 
Method: TaqMan 5'-exonuclease allelic discrimination assay et al., 2004) 
(Egan et al., 2004; ) G: 0.25 in 

controls and 
schizophrenics 
(Norton et al. , 
2005) 
Marenco S. Et 
al. ,2006 
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Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

NRGJ rs39249 Forward 5'-ACTGGTTTCACACCGAAGGAC-3' ArglGI nonsynon G: 0.36 in East Asia 
99 Reverse 5'-CCAAGA TGAGATCCATTTTCGC-3' n ymous schizophrenics 

(Yang J.Z. et al. , 2003) Method: PCR-RFLP (Yang et al, 
2003) 
A: 0.49 in 
controls (Lin et 
al., 2005) 
A: 0.40 in Caucasians 
controls (Hong 
et al, 2008) 

Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor aUele 

NRGl Rs3575 Forward 5'-GCATTAGAACTAGAACTTGCGTGA-3' N G nonsynon C: 0.30 in Caucasians 
3505 Reverse 5'-TGGGAACTCTCCATCTCTTTCA-3' ymous controls and 

(Yang J.Z. et al., 2003) Method: dHPLC 0.38 in 
>SNP8NRG221533 AP201 LEN401 chr8 SNP= TIC schizophrenics - - -
AAATGCATTAGAACTAGAACTTGCGTGATTTTAAATT Stefansson et 
TTATTAGAAGTAGGTGTCAAGTTACCTAAGATGTCCA al., 2002) 
AGAGACAGCTGATGGGTTATGAGTTAAATTTTGGGTT T: 0.33 in East Asia 
CTGCTTATCATTTCTTAGAAATCAATTTAAGGCATCA schizophrenics 
GTTTTCAATAGCTTTTTTATGTATAACTAAAAAAGAG Yang J.Z. et al., 
ATATATGATATTTGG TIC 2003) 
AAAATAAAGATACATGGCTTCCAGTCTCTTGAGACAT T: 0.48 in East Asia 
CTGTCTTCATGAAAGAGATGGAGAGTTCCCATTTCTA controls and 
CTTACAAGAATGAATGTATGTCATAATAAAGACCAG 0.46 in 
CTATCATTTGTTATATACAAAATATGTGGTTCTTTCTT schizophrenics 
TGACTTTTTTTCTGGATTTAGACAACCACAGATGACA (Zhao X. et al., 
ITT ATGAGAAA TGAA (Stefansson et al., 2002) 2004) 
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Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

NRGl Rs? l . Amplification Reaction Argini nonsynon A: 0.15 in Caucasians 
Forward 5'-CCTACCCCTGCACCCCCAATAAATAAA-3' ne/Gly ymous controls and 
Reverse 5'-CTTCCTGTCGAGTGCCCCCTGCT- 3' cme 0.12 in 
2. Amplification Reaction schizophrenics 
Forward 5'-TGCCACTACTGCTGCTGCT-3' (Stefansson et 
Reverse 5'-ACCTTTCCCTCGATCACCAC- 3' al., 2002) 
(Stefansson et al., 2003) Method: Nested PCR A: 0.12 in and 
SNP8NRG433El006 al lelePos=31 total !en = 60 SNP= GIA controls 0.11 in 
clu·8 schizophrenics 
GCGGCGGCCG GCAACGAGGC GGCTCCCGCG GIA (Stefansson et 
GGGCCTCGGT GTGCTACTCG TCCCCGCCCA al., 2003) 
(Stefansson et a l., 2002) 
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Gene JO SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor a llele 

DTNBP Rs2619 Forward 5'- - intronic C: 0.31 in East Asia 
l 539 AGTTTTTA TCACT AA TCAAAA TGAAACAGCCTTT-3' contro ls and 

Reverse 5'-CTCA TTCTGTT AT AACT AGTCTGACA TGGT- 0.32 in 
3' schizophrenics 
Probe 1 5'-VlC-TA TT AGCT A TGATAGTGTTTTAT-MGB-3' (Numakawa T. 
Probe2 5'-FAM-ATTAGCTATGATAGTCTTTTAT-MGB-3' et al., 2004) 
(Numakawa T. et al., 2004) Method: TaqMan 5'-exonuclease G: 0.43 in Caucasians 
alle lic discrimination assay schizophrenics 

(Kirov G. et al., 
2004) 
G: 0.41 in 
contro ls 
(Fallgatter et 
al. , 2006) 
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Gene JD SNPTD Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

DTNBP Rs3213 Forward 5'-GGAACTTTTCTTTGAAGACTTCCTTTCG-3' - intronic G: 0.01 in East Asia 
I 207 Reverse 5'-ACCACT AACAACCAAAAAGAAAACAAACA- controls and 

3' 0.03 in 
Probe! 5'-VIC-TAAA GCCAA T AA TT ACC-MGB-3' schizophrenics 
Probe2 5'-FAM-AGCCAGTAATTACC-MGB-3' (Numakawa T. 
(Numakawa T. et al., 2004) et al., 2004) 
Method: TaqMan 5'-exonuclease allelic discrimination assay G: 0.10 in Caucasians 

schizophrenics 
(Kirov G. et al., 
2004) 
G: 0. 11 in 
controls 
(Fallgatter et 
al., 2006) 

Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

DTNBP Rs1011 Forward 5'-GAT A TGACTCCTT AA TTCACAGGCT ACAG-3' - intronic A: 0.15 in East Asia 
I 313 Reverse 5'-GTTACTGCACACAAGCAACTGTTAA- 3' controls and 

Probel 5'-VIC-AATGGATGTTGCATTAGT-MGB-3' 0.1 7 in 
Probe2 5'-FAM-ATGGATGTTGCGTT AGT-MGB-3' schizophrenics 
(Numakawa T. et al., 2004) Method: TaqMan 5'-exonuclease (Numakawa T. 
all elic discrimination assay et al., 2004) 

A: 0.08 in Caucasians 
schizophrenics 
(Kirov G. et al. , 
2004) 
A: 0.08 in 
controls 
(Fallgatter et 
al. , 2006) 
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Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

DTNBP Rs7607 Forward 5'-CCAATCCATTCTTTTATTGACATGGAGTTT- - intronic T : 0.07 in East Asia 
I 61 3' controls and 

Reverse 5'-TGATTTTGACCAAGTCCATTGTGTCT- 3' 0. 10 in 
Probel 5'-VIC-AAAAGCACAAACAACAAG-MGB-3' sch izophrenics 
Probe2 5'-FAM-AAAAGCACAAATAACAAG-MGB-3' (Numakawa T. 
(Numakawa T. et a l. , 2004) et al., 2004) 
Method: TaqMan 5'-exonuclease allelic discrimination assay Schwab et al., Caucasians 

2003 
T : 0.20 in 
controls 
(Fallgatter et 
al., 2006) 

Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

DTNBP Rs2619 Forward 5'-TCTGTT A TGTGCCA TTCACTGTTTT-3' - intronic A: 0.02 in East Asia 
1 538 Reverse 5'-TAGGGCTGGGATTGGATGA- 3' controls and 

/Rs261 9 Probe I 5'-VIC-AGCAGTTTACTCTTGGG-MGB-3' 0.04 in 
528 Probe2 5'-F AM-AGCAGTTTACATCAGGG-MGB-3' schizophrenics 

(Numakawa T. et al., 2004) (Numakawa T. 
Method: TaqMan 5'-exonuclease allelic discrimination assay et al., 2004) 

A: 0.47 in Caucasians 
schizophrenics 
(Kirov G. et al., 
2004) 
Schwab et al. , 
2003 
A: 0.20 in 
controls 
(Fallgatter et 
al. , 2006) 
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Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

DTNBP Rs1047 Forward 5'-GTGGTGAGGACAGCGACTCT-3' - 3'UTR G: 0 .13 Caucasians 
l 631 Reverse 5'-GCTGTTCTTTAAGTTTCTCACACA-3' 

Extension primer 5'-TTCTCACACATTATTGGCAATTA-3' 
(Bray N.J. et a l., 2005) M ethod: ' Hot Star ' taq polymerase and 
genotyping by primer extension w ith SNAPshot Multiplex Kit 

Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

DAO Rs3741 Forward 5'-AAAATTCAGCTTTAAAATCACTCC-3' - intronic G: 0.34 in East Asia 
775 Reverse 5'-AAAA TTCAGCTTTAAAA TCACTCT-3' controls and 

5'-TAGGATGTCAGACTTTATTCTAA-3' 0.25 in 
(Liu X. et a l, 2004) schizophrenics 

(Liu X. et al, 
2004) 
G : 0.49 in Caucasians 
controls and 

I 0.50 in 
I 

i schizophrenics 
: 

(Chumakov et 
I al, 2002) 
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Gene JD SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

RGS4 Rs9514 F 01ward 5'-cagaagcctccctccttctt-3' - 5'UTR T: 0.47 in Caucasians 
36 Reverse 5'-tatacagcatcctccagccc-3' (typically controls and 

F P primer 5'-TCT TTG CTI TIT AGT CCT AAA A-3' regulates G: 0.49 in 
( www. wgi c. gi tt. edu/research/scb izgene/research/rgs4/ data/ind gene schizophrenics 
ex/htm l) express10n (Zhang F. et a l., 
Method: allele specific PCR ) 2005) 

Wi ll iams et al., 
2004 
Morris et al. 
2004 
Prasad K.M. et 
al, 2005 

Gene JD SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

RGS4 Rs9514 F 01ward 5 '-agaaagaaagcttgggaggc-3' - 5'UTR A: 0.38 in Caucasians 
39 Reverse 5 '-gttcaca tcctgctgtgtgg-3' (typically controls and 

(www.wgic.gitt.edu/research/schizgene/researcb/rgs4/data/ind regulates 0.44 in 
ex/html) gene schizophren ics 
Method: allele specific PCR expression (Zhang F. et al., 

) 2005) 
Morris D.W. et 
al. 2004 
Corde iro Q. et 
al. , 2005 
Fall in et al. , 
2005 
Prasad K.M. et 
a l, 2005 

190 



Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

RGS4 Rs266 13 Forward 5'-tggggcagagagataaggaa -3' - intronic A: 0.44 in Caucasians 
19 Reverse 5'-aggtttggctccatcatcag-3' controls and 

FP primer 5' CTC CAT CAT CAG AAA GGC ACT A 3' 0.48 in 
(www.wgic.gitt.edu/research/schizgene/research/rgs4/data/ind schizophrenics 
ex/html) (Zhang F. et al. , 
Method: a llele specific PCR 2005) 

Williams et a l. , 
2004 
Corde iro Q. et 
al. ,2005 
Prasad K.M. et 
al, 2005 

Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

DRDL DI.I - F01ward 5'-ACTGACCCCTATTCCCTGCT-3' 5'UTR A: 0. l l in Caucasians 
lntron- 48 Reverse 5'-AGCACAGACCAGCGTGTTC-3' (Cichon S. et controls 
less . (5'UTR) al., 1994) (Cichon et al. , 

Method: PCR-RFLP. restriction enzyme Ddel 1994) 

i 
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Gene ID Poly- Primer sequences or 200bp before and after polymorphism AA Type Av. frequency Pop. 
mor- Change minor allele 
phism 

DRD2 14 1C l. Dop2-Ex-Fo1ward 5'-CTGGGTGGTGGGTGGGAGC-3' Insertion/ Del: 0.1. l in Caucasian 
Ins Del Dop2-Ex-Reverse 5'-TCGGCACTGAAGCTGGACAG-3' Deletion controls and 

2. Dop2-14lc-Forward 5'-TTCCCGCCTCAAAACAAG-3' in the 0.06 in 
Dop2-14lc-Reverse 5'-TGAAGCTGGACAGCTCTGC-3' promoter schizophrenics 
(Jonsson E.G. et al. , 1999) Method: Nested PCR region (Jonsson E.G. et 
Fo1ward 5'-ACTGGCGAGCAGACGGTGAGGACCC-3' al., 1999) 
Reverse 5'-TGCGCGCGGTGAGGCTGCCGGTTCGG-3' Del: 0.10 in Caucasian 
(Arinami T. et al., 1997; Ohara K. et al. , 1998; Li T. et al. , controls and 
1998; Himei A. et al. , 2002) 0.13 in 
Method: Amplification and RFLP on amplified fragments, schizophrenics 

digested with BstN I 
(Li T. et al., 
1998) 
Del: 0.180 in East Asia 

Fo1ward 5'-ACTGGCGAGCAGACGGTGAGGACCC-3' controls and 

Reverse 5'-TGCGCGCGGTGAGGCTGCCGGTTCGG-3' 0.197 in 

(Aiinami T. et al. , 1997; Ohara K. et al., 1998; Li T. et al., schizophrenics 

1998; Himei A. et al., 2002) (Himei A. et al., 

Method: Amplification and RFLP on amplified fragments, 2002) 
Del: 0.22 in East Asia 

digested with BstNl controls and 
0.14 in 
schizophrenics 
(Arinarni T. et 
al., 1997) 
Del : 0.16 in East Asia 
controls and 
0.10 in 
schizophrenics 
(Ohara et al., 
1998) 
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Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

COMT Rs4680 Forward 5'-CA CCTGTGCTCACCTCTCCT-3' Val/M A/G G: 0.4 1 in Caucasians 
Reverse 5'-GGGTTTTCAGTGAACGTGGT-3' et nonsynoy controls and 
Extension primer 5'-CGGATGGTGGATTTCGCTGGC-3' mous 0.46 in 
(Smolka et al., 2005) Method: HotS tar Taq-Polymerase or schizophrenics 
Forward 5'-TCGAGATCAACCCCGACTGT-3' (Galderisi S. et 
Reverse 5'-AACGGGTCAGGCATGCA-3' al., 2005) 
5'-6FAM-CCTTGTCCTTCACGCCAGCGA-3' G: 0.45 in Caucasians 
5'-VlC-ACCTTGTCCTTCATGCCAGCGAAAT-3' controls (Egan 
(Chen et a l., 2004) Method: TaqMan 5'-exonuclease assay et al., 2001) 
Forward 5'-CTCATCACCATCGAGATCAA-3' A: 0.47 in Caucasians 
Reverse 5'-CCAGGTCTGACAACGGGT-3' controls and 
(Galderisi S. et al. , 2005) Method: based on Lachman H.M. et 0.49 in 
a l. , 1996, using 1.5 U Tag polymerase schizophrenics 
Fmward 5'-GCCCGCCTGCTGTCACC-3' (Daniels et al., 
Reverse 5'-CTGAGGGGCCTGGTGATAGTG-3' 1996) 
(Han D.H. et al., 2004) A : 0.46 in Caucasians 
Method: PCR-RFLP amplification and digestion by Nlalll controls 
enzyme (N01ton et al., 

2002) 
G: 0.27 in East Asia 
controls (Chen 
et al., l 999) 
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Gene ID SNP TD Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

DRD3 Ser9Gly Forward 5'-GCTCTATCTCCAACTCCTACA-3' Ser/ Exonic Gly: 0.28 in Caucasians 
Reverse 5'-AAGTCTACTCACCTCCAGGTA-3' (Lannfelt et Gly NG conn·ols and 

, al. , 1992; Reynolds et a l. , 2005) 0.30 in R 
Method: PCR-RFLP and digestion with restriction schizophrenics 
cndonuclease Mscl and 0.37 in NR 
Forward 5'-GCTCTATCTCCAACTCCTACA-3' schizophrenics 
Reverse 5'-AAGTCTACTCACCTCCAGGTA-3' (Durany N. (Joober R. et 
et al., 1996; Keri S. et al., 2005) al., 2000) 
Method: PCR with 1.5 U Taq polymerase and digestion with I 

· U Msc.l/15~d 
, Forward 5'-GCTCTATCTCCAACTCTCACA-3' 

Reverse 5'-AAGTCTACTCACCTCCAGGTA-3' 
(Joober R. et al., 2000) 
Method: PCR with 1 U ofTaq polymerase, amplified 
fragments digested with 2 U of Msc I 
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Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

DATl 40bp- F 01ward 5'-TGTGGTGTAGGGAACGGCCTGAG-3' No 40-bp 9 repeat: 0.25 in Caucasians 
VNTR Reverse 5'-CTTCCTGGAGGTCACGGCTCAAGG-3' sequen repeat in controls and 

: 9 repeat (Joober R. et al., 2000) ce 3' untrans- 0.26 in R 
/ IO Method: PCR with I U of Taq polymerase change lated schizophrenics 

repeat F01ward 5'-TGTGGTGTAGGGAACGGCCTGA-3' m region of and 0.30 in N R 
Reverse 5'-CTTCTTGGAGGTCACGGCTCAA-3' DAT exon 15 schizophrenics 
(Gel.emter J. et al., 1998) protein (Joober R. et 
Method: PCR amplification with PCR cycler and Taq al., 2000) 
polymerase, gen types by size resolution of the a lleles by gel 9 repeat: 0.27 in Caucasians 
electrophoresis of PCR product controls 

(Doucette- Africans 
Stamm L.A. et 
al., 1995) 
9 repeat: 0.22 in 
controls 
(Hemmings 
S.M.J et al., 

I 2003) 
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Gene ID SNPTD Primer sequences or 200bp before and after polymorphism AA SNP type A v. frequency minor Pop. 
Change allele 

SLC6A .er Fotward 5'-GGCGTTGCCGCTCTGAATGC-3' 44-bp short: 0.42 in Caucasians 
4 (5- HTTLPR Reverse 5'-GAGGGACTGAGCTGGACAACCAC-3' insertion/ d controls and 0.43 in 
HTT) ~14-b1) (Malhotra A.K. et al., 1998; Serretti A. et al., 1999; Han D.H. et eletion in schizophrenics, 

111'.'d·•rlf(.Jn al., 2004) the 5 ' (0.38 in paranoid 
I 'dr,!r)tlOf", 

Method: PCR amplification I U of Taq DNA polymerase promoter subtype and 0.46 in 
F01ward 5'-GGCGTTGCCGCTCTGAA TC-3' region non-paranoid) 
Reverse 5'-GAGGGACTGAGCTGGACAACCAC-3' (Stober et al. , 1998) 
(Collier D.A. et al., 1996) short: 0.34 in Caucasians , 
Forward 5'-GGCGTTGCCGTCTGAATGCC-3' controls (Gall inat J. 
Reverse 5'-CAGGGGAGATCCTGGGAGAGGT-3' et al., 2005) 
(Stober G. et al., 1998) long: 0.21 in East Asia 
Method: Standard PCR 0.5 U Taq DNA polymerase controls and 0.18 in 
Forward 5'-A TGCCAGCACCTAACCCCTAA TGT-3' schizophrenics (Pae 
Reverse 5'-GGACCGCAAGGTGGGCGGGA-3' C.-U. et al., 2005) 
(Gelernter J. et al. , 1997) short: 0.37 in Multinational 

! Method: PCR using KlenTaq polymerase schizophrenics 
I 
' Fmward 5'-GGCGTTGCCGCTCTGAA TGC-3' (Malhotra A.K. et 

Reverse 5'-GAGGGGACTGAGCTGGACAACCAC-3' al., 1998) 
(Pae C.-U et a l. , 2005; Heils et al. , 1996) short: 0.44 in Caucasians 

controls and long: 
0.46 in 
schizophrenics 
(Sanj uan J. et al. 
2005) 
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Gene JD Polymor- Primer sequences or 200bp before and after polymorphism AA Type of Av. frequency tri- Pop. 
phism ID Change polymor- allelic variant 

phism 
SLC6A VNTR Forward 5'-GCTGTGGACCTGGGCAATGT-3' 17bp 12: 0.71 Caucasians 
4 I Reverse 5'-GACTGAGACTGAAAAGACA T AA TC-3' VNTR in 10: 0.28 
(5- I (BeUivier F. et al., 2002) intron2 9 : 0.01 
HTT) Method: PCR in controls 

I (women) 
(Lauzurica N. et 
al. , 2003) 
12: 0.59 Caucasians 
LO: 0.40 
9 : 0.01 

in controls 
(Ogi lvie A.D. et 
al., 1996) 
12: 0.54 Caucasians 
10: 0.45 

I 

9: 0.01 
I in controls 
I 

(Collier D.A. et 
al. , L 996) 
12: 0.54 Caucasians 

' 10: 0.45 ' 

i 9: 0.01 
i 

in controls 
' (Stober et al., 

1996) 
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Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

HTR2A c·1021T 13 1 to 112 5'-TTAAATGCATCAGAAGTGTT-3' - near the T: 0.38 Africans 
-6 1 to -42 5'-AGCAGAAACTA TAACCTGTT-3' promoter in controls 

' and region m (Hemmings 
349 to 330 5'-CAAGTGACATCAGGAAATAG-3' exonl S.M.J. et al. , 
38 to 57 5'-CAACTACGAACTCCCTAATG-3' position 2003) 
(Ish igaki T., 1996) 102 T: 0.43 in Caucasians 
Method: PCR with Taq Polymerase r➔c controls and 
Forward 5'-TCTGCTACAAGTTCTGGCTT-3' 0.40 in 

' Reverse 5'-CTGCAGCTTTTTCTCTAGGG-3' sch izoplu·enics 
Method: PCR amplification C: 0.43 in East Asia 
(Warren J.T et al., 1993; Arranz M.J. et al. , 1997; Joober R. et controls and 
al. , 1999; Golimbet V.E. et a l., 2002) 0.41 in 

schizophrenics 

' 
(Abdolmaleky 
H.M. et a l., 
2004) 

I T: 0.40 in Caucasians 
controls (Joober 
R. et a l., 1999) 
C: 0.34 in East Asia 

i 

' I 
controls and 
0.33 in 

I schizophrenics 
(Chen R.Y.L. et 

- al., 2001) 
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Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

5- Al596G : Forward 5'-CCATGGGAAACCACTGCAGCC-3' - 1n exon 9 G: 0.24 in Caucasians 
HTR3A Reverse 5'-GCGTACTGCCAGA TGGACC-3' A➔G controls and 

, Method: PCR for single-strand conforn1ational polymorphism 0. 18 in 

: 
(SSCP), exon-specific primers (Niesler B. et al., 2001) schizophrenics 

1 
F01ward 5'-TGCTGGACAAGCTGCTATTC-3' (Niesler B. et 
Reverse 5'-CCAGATGGACCAGAGCAT AAC-3 ' a l., 200 l) 
Sequencing primer 5'-AGGCCAGCACCGC-3' 

- Method: Pvrosequencing (Nordfors L. et al., 2002) 
Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 

Change minor allele 

5- Cl 78/f Fotward 5'-TTTCCTCCCGCCTGAAAC-3' 5' UTR T: 0.20 in Caucasians 
HTR3A Reverse 5'-AAGTCCTGCTGCTTCCCG-3' T➔C controls 

' Method: PCR-RFLP (lidaka T. et a l. , 2005) (Melke J. et al., 
Fo1ward 5'-AGCTGGCCCTTGGTGGGCCCCG-3' 2003) 
Reverse 5'-CAGATGGTCAACCAAGTCC-3' 
Method: PCR, foiward primer modified in its 3' end, creating 

I 

5' part of an Acil resh·iction s ite C/CCGC, 3' part of tbe ! 

resh·iction site is the more common C alle le, cleavage of the 
: 175-bp PCR product of the C alleles by the enzyme Acil : 

! (Melke J. et al., 2003) or 
Forward 5'-biotin-AGGCTGGCTGGGACATGAG-3' 

' Reverse 5'-AGTGTGGGGAGGAGCAAGGC-3' ' 
Sequencing primer 5'-CCTCCGAGTGCTCAG-3' 

I Pyrosequencing, PCR products generation with Hotstar Taq 
I 

polymerase (Qiagen Inc); primer amplify a 151-bp product 
surrounding the Cl 78T, detection of the SNP with reagent kit 
(PSQ 96 System; Pyrosesequencing AB) and sequencing 
primer (Nordfors L. et al. , 2002) 
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Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GABB Rs29218 Forward 5'- -3' A➔G in G: 0.24 in Multinatio□ 
Rl A- Reverse 5'- -3' promoter controls and al 

7265G Method: reg10n 0.17 in 
() schizophrenics 

(Zai G. et al., 
2005) 

Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GABB Rs29225 Forward 5'- -3' - T➔Cat C: 0.11 in Multination 
Rl Ser-491- Reverse 5'- -3' exon 12 controls and al 

Ser- Method: PCR-RFLP 0.16 in 
Tl473C () schizophrenics 

(Zai G. et al., 
2005) 
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Gene JD SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GADl Rs 19783 - 5'Flanking A : 0 .25 in Multination 
40 region schizophrenics a l 

(Addington 
A .M . e t a l., 
2005) 

Gene JD SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GADI Rs87212 - 5'Flan king C: 0 .34 in Multination 
3 region schizophrenics a l 

(Addington 
A.M. et al. , 
2005) 

Gene ID SNP ID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor a llele 

GADI Rs3 7490 - 5'UTR in A: 0. 15in Multina tion 
34 exon I schizoplu-enics al 

(Addington 
A.M. et a l., 
2005) 

Gene ID SNPID Primer sequences or 200bp before and after polymorphism AA SNP type Av. frequency Pop. 
Change minor allele 

GAD! Rs1270, - In intron l T: 0.32 in Multination 
35 schizophrenics a l 

(Addington 
A .M . et a l. , 
2005) 
T: 0.25 in 90% 
controls (Straub Europeean 
et al., 2007) A merican 

10% Af.A. 
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Gene ID SNPID Primer sequences or 200bp before and after polymorphism 

GAD] Rs2241 l 
65 

Legend: Yellow - first selection 
Orange - second selection 
Green - confirmed (Listed) 
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AA 
Change 

-

SNP type Av. frequency Pop. 
minor allele 

1n intron 2 G: 0.35 in Multination 
schizophrenics al 
(Addington 
A.M. et al., 
2005) 



Appendix C final list 

Gene ID Methodical details 
rs number 

Forward primer Reverse Primer Annealing Amplificati Cutting Cut genotype 
Tin °C on fragment enzyme fragment 

length in bp lengths in bp 
SLC6A4 

5' -
5'-

SS=484 
5-HTT-LPR GAGGGACTGAGCTGGACAACCAC- 61 I I 

GGCGTTGCCGCTCTGAA TGC-3' 
3 

LL=528 

NRGl 5' - 5'- AA= 
rs3924999 AACTGGACTCCAACTTCTGAG ACACCGAAGGACTAGTTTGGAA- 60 500 Mfe I 441bp+59bp 

G-3' 3' GG=S00bp 
DTNBP l CC allele 121 
rsl047631 

5'-
and 321 

GGTTTGGCTACAGTCAGCTCTT 
5' -

60 444 BsaA I 
TT allele 442 

AGGACAGCGACTCTT AAA TTGG-3' CT allele 
-3' 

121,321 and 
442 

GRINl CC allele 157 
rsll 146020 

5' -
and 375 

TCAGTTGCTATTGGAAATGGT 
5 '-ATATTTCGGCTCCTGACTCTTG-

60 534 PshAI 
GG allele 

3' 532 
G-3' 

GC allele 
157, 375,532 

GRIN2B AA allele 
rsl 806201 

5'-
118 and 302 

TGGTGGTAGTGATCTTGGTAC 
5 '-TTTGTGGTCATTTCTAGCCTCT-

58 422 Bts I 
GG allele 

3' 420 
A-3' 

AG allele 
118,302,420 
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Gene ID Methodical details 
rs number Forward primer Reverse Primer Annealing Arnplificati Cutting Cut genotype 

Tin°C on fragment enzyme fragment 
length in bp lengths in bp 

COMT CC allele 348 
rs4818 

5'- GG allele 

CACCTGTGCTCACCTCTCCT-3' 5' -GGGTTTTCAGTGAACGTGGT-3' 60 348 Bel I 159and189 
CG allele 
159, 189, 348 

COMT GG allele 23 
rs4680 and 86 

5' -
5 '-CCAGGTCTGACAACGGGTCA-3' 58 386 Nla III 

AA allele 18 
CTCATCACCATCGAGATCAA-3' and 68 

GA allele 18, 
23,68, 86 

RGS4 CC allele 43, 
rs951439 

5'- 5' - 100,272 

GGAAATTGTCATCTGAAGTGG TGGGAGGCAGAGTAAAAGAATA- 58 416 Bsr I 
TT allele 43 
and 371 T-3' 3 ' 
TC allele 43, 
100, 272,371 

GADl TT allele 96, 
rs2270335 110 and 195 

5' - 5'- CC allele 32, 
TCCGAGGGAGAACGTAAAGAT GGAGAGACAAGAGGGAGGAAAG- 60 403 Bsr I 96, 110, 163 
A-3 ' 3 ' CT allele 32, 

96, 110, 163, 
195 
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AppendixD 

Genetic variants Genotype frequency Allele frequency Pearson Chi-Square 
and p-value 

(DF = 2) 
SLC6A4 5-HTI-

LL = 21 LS = 24 SS = 11 ALL = 0.59 ASS = 0.41 0.47 .79 
LPR 
COMT rs4680 AA = 12 GA= 32 GG = 12 AAA = 0.50 AGG = 0.50 0.57 .75 
COMT rs4818 CC = 16 CG= 32 GG = 8 ACC = 0.57 AGG = 0.43 0.76 .67 
NRG I rs3924999 GG = 22 AG = 28 AA= 6 AGG = 0.64 AAA= 0.36 0.17 .92 
DTNBPI rsl04763 I CC= 0 CT = 13 TT=43 ACC = 0.12 ATT = 0.88 l.04 .60 
GRIN l rs 11146020 CC = 0 GC = 4 GG = 52 ACC = 0.04 AGG = 0.96 0.00 L. 
GRIN2B rs l 80620 I AA = 5 AG = 25 GG = 26 AAA = 0.31 AGG = 0.69 0.04 .98 
RGS4 rs951439 TI = 7 CT = 33 CC= 16 ATT = 0.42 ACC = 0.58 1.39 .50 
GAD I rs2270335 TT= 16 CT = 32 CC= 8 A TT = 0.57 ACC = 0.43 0.76 .67 
OR are not applicable because genotype data is from control sample 

Con·elation between brain activity (beta difference) and WM performance (d'prime difference) for the difference 
between angry and happy faces 
ROI 
left cingulate gyrus 
left frontal eye field 
right frontal eye field 
left frontal gyrus or SMA 
right inferior frontal gyrus 
right inferior frontal gyrus 
right middle frontal gyrus 
right middle frontal gyrus 
right occipital temporal junction 
right occipital temporal parietal ju. 
ri •ht STS 

0.00 
0.01 
0.00 
0.00 
0.00 
0.0 1 
0.00 
0.00 
0.00 
0.01 
0.03 

P (2-tailed) 
.64 
.49 
.89 
.95 
.94 
.47 
.97 
.85 
.66 
.50 
.19 

ROls based on the contrast angry-happy at p < .05 and clusterthreshold 200voxels 



Appendix E 

Screening questions for control participants: 

Have you or any of your relatives ever consulted a clinical psychologist, psychiatrist or 
neurologist? 

Did you or any of your relatives ever suffered from any mental illness, psychiatric or 
neurological condition, e.g. Schizophrenia, Bipolar Disorder, Depression, Alzheimer's 
Disease, Parkinson Disease, ADHD? 

Have you suffered from a head injury? 

Do you take any medication? 

Did you have a surgery? 

Do you have any implants? 

ls it possible that you have any metal or magnetic objects in your body? 

Did you ever work with metal (metal grinding)? 

Are you claustrophobic? 

ls it possible that you are pregnant or are you trying for a baby? 

Details Patients 

ID Illness Illness Dia- Medication Total Negative Positive General IQ NART 
duration onset gnosis PANSS Factor Factor Factor premorbid 
in years age in score 

years ICD10 
1 7.9 35. 1 SA 20mg 62 16 16 30 106 

Olanzipine 
2 1 17 PS Perphenazine 76 18 18 40 118 

6mQ 
3 4.9 18.1 PS Clozapine 53 7 19 27 108 

100mg 
aripiprazole 
10ma 

4 0.8 20.2 PS 4mg 76 23 14 39 86 
Risperidone 

5 2.1 25.9 PS Depot all 4 49 14 11 24 107 
weeks 
50mg/ml 
Pipotiazine 

6 16.6 21.4 PS 800mg 45 9 15 21 116 
Amiloorid 

7 5.3 21.7 PS Clopixole 58 15 15 28 119 
deoot 200ma 

8 0.8 17.2 PS Olanzapine 70 20 16 34 97 
20mg 

mean 4 .9 22.1 61.1 15.3 15.5 30.4 107.1 
so 1.8 2.0 4.0 1.8 0.8 2.3 3.7 
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