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ABSTRACT 78 

Research on island species–area relationships (ISAR) has expanded to incorporate functional 79 

(IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little 80 

about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these 81 

three categories of island diversity–area relationship (IDAR). Here, we undertake the first 82 
comparative evaluation of IDARs at the global scale using 51 avian archipelagic datasets 83 

representing true and habitat islands. Using null models, we explore how richness-corrected 84 
functional and phylogenetic diversity scale with island area. We also provide the largest 85 
global assessment of the impacts of species introductions and extinctions on the IDAR. 86 

Results show that increasing richness with area is the primary driver of the (non-richness 87 
corrected) IPDAR and IFDAR for many datasets. However, for several archipelagos, 88 

richness-corrected functional and phylogenetic diversity changes linearly with island area, 89 
suggesting that the dominant community assembly processes shift along the island area 90 
gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest 91 

differences in slope between IDARs, indicating increased functional and phylogenetic 92 
redundancy on larger islands in these archipelagos. In several cases introduced species seem 93 
to have ‘re-calibrated’ the IDARs such that they resemble the historic period prior to recent 94 

extinctions. 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 



 104 

INTRODUCTION 105 

The island species–area relationship (ISAR) is a well-established global ecological pattern 106 

(MacArthur & Wilson, 1967; Rosenzweig, 1995; Lomolino, 2000; Triantis et al., 2012; 107 

Whittaker & Matthews, 2014; Matthews et al., 2019a, 2021). Following the increasing 108 

recognition in ecology that species richness only represents one dimension of diversity, ISAR 109 

research has expanded to incorporate functional (the island functional diversity–area 110 

relationship; IFDAR) and phylogenetic (the island phylogenetic diversity–area relationship; 111 

IPDAR) diversity (e.g., Ding et al., 2013; Whittaker et al., 2014; Si et al., 2016, 2017, 2022; 112 

Ross et al., 2019; Mazel & Thuiller, 2021; Dias et al., 2020; Zhao et al., 2020; Schrader et al., 113 

2021; Leclerc et al., 2022; Wang et al., 2023).  114 

Functional diversity (FD) measures the combination of functional traits expressed by 115 

a set of species in a community and can provide a link between species composition and 116 

ecosystem function (Petchey & Gaston, 2006). Phylogenetic diversity (PD) incorporates the 117 

evolutionary relationships among species in an assemblage and measures the amount of 118 

evolutionary history those species represent (Faith, 1992). Collectively, the ISAR, IFDAR, 119 

and IPDAR have been termed island diversity–area relationships (herein IDARs), and 120 

together their analysis aids in generating a more comprehensive understanding of the 121 

mechanisms driving the scaling of diversity (Ding et al., 2013; Mazel & Thuiller, 2021; 122 

Leclerc et al., 2022; Wang et al., 2023). However, in comparison to the ISAR, we know 123 

relatively little about IFDARs and IPDARs, and we lack synthetic comparative global 124 

analyses of variation in the form of these three categories of IDAR.  125 

A wide range of metrics has been proposed for measuring FD and PD. To construct 126 

IFDARs and IPDARs that compare easily with standard ISARs, FD and PD are often 127 

expressed as metrics that sum the branch lengths (e.g., of a functional dendrogram or 128 

phylogenetic tree) connecting all species co-occurring on an island (Morlon et al., 2011; Dias 129 

et al., 2020; Mammola et al., 2021; Si et al., 2022). While the use of tree/dendrogram-based 130 

FD and PD metrics ensures the ISAR, IFDAR and IPDAR are comparable, such metrics are 131 

generally correlated with species richness. For this reason, the calculation of FD and PD 132 

using tree metrics is often combined with a null model to generate (standardised) effect sizes 133 

(ES) that are independent of richness (Tucker et al., 2017; Mazel & Thuiller, 2021). In 134 

addition, the analysis of ES values has been argued to provide insights into the community 135 

assembly processes involved (e.g., neutral dynamics vs. competition vs. habitat filtering) and 136 



how these may change with island area (Matthews et al., 2020; Münkemüller et al., 2020; 137 

Mazel & Thuiller, 2021; Schrader et al., 2021). Herein, we refer to the emergent FD.ES and 138 

PD.ES patterns (random, overdispersed, clustered) as assembly patterns, and the potential 139 

mechanisms underlying these patterns (neutral dynamics, competition, habitat filtering) as 140 

assembly processes. However, we know very little about how FD.ES and PD.ES values scale 141 

with island area (rather than across continuous scales; see Kraft & Ackerly, 2010), and 142 

previous authors have called for a greater focus on scaling patterns in order to better 143 

understand community assembly processes on islands (Leibold & Chase, 2018; Dias et al., 144 

2020; Münkemüller et al., 2020; Zhao et al., 2020; Schrader et al., 2021; Si et al., 2022).   145 

Analysing variation in IDARs among archipelagos can emphasise the (i) form / shape 146 

of the relationship (e.g., Mazel et al., 2014), and (ii) slope of the curve. The former is 147 

important as different relationship forms (e.g., asymptotic vs. non-asymptotic or convex vs. 148 

sigmoidal) have different theoretical and conservation implications (Lomolino, 2000; Triantis 149 

et al., 2012). The latter tends to be undertaken using the power model, of the form S = c*Az, 150 

where S and A are richness and area, respectively, and c and z are fitted parameters 151 

(Rosenzweig, 1995; Matthews et al., 2021). Several studies have tested for systematic 152 

variation in ISAR slopes (e.g., Rosenzweig, 1995; Triantis et al., 2012; Matthews et al., 153 

2019a, 2021). However, there have been no comparable analyses of variation in the z-values 154 

(slopes) of IFDARs and IPDARs.  155 

Many island systems have been particularly affected by extinctions and the 156 

introduction of non-native species (herein ‘introduced species’) (Whittaker & Fernández‐157 

Palacios, 2007; Boyer & Jetz, 2014; Blackburn et al., 2016; Hume, 2017; Matthews & 158 

Triantis, 2021; Matthews et al., 2022). Recent work on the impacts of humans on island 159 

biogeographic patterns has illustrated how the exclusion of extinct species and the inclusion 160 

of introduced species can affect the form of ISARs (Cardoso et al., 2010; Helmus et al., 2014; 161 

Baiser & Li, 2018), but how these decisions affect other types of IDAR is less understood 162 

(Whittaker et al., 2014; Li et al., 2018). 163 

Here, we undertake the first comparative synthetic evaluation of IDARs at the global 164 

scale using a collection of 51 avian archipelago datasets representing different island types 165 

(true and habitat), encompassing 1,051 individual islands and 2,111 species. True islands are 166 

those surrounded by water (i.e., oceanic, continental-shelf, continental fragments, and lake 167 

islands), while habitat islands are those surrounded by contrasting terrestrial matrices (e.g., 168 



forest fragments surrounded by pasture; Matthews, 2021). True island datasets were further 169 

split into volcanic oceanic archipelagos, a subset of true island datasets comprising 170 

archipelagos of mainly volcanic origin never connected to continental land masses (all 171 

currently isolated from the mainland by >100km), and other true island archipelagos (e.g. 172 

continental-shelf islands, inland islands). For all bird species (extant [native and introduced] 173 

and extinct), we collected nine continuous trait measurements. In combination with 174 

phylogenetic data, we constructed the ISAR, IFDAR and IPDAR for all datasets. We used 175 

null models to generate FD.ES and PD.ES values and explore how these scale with island 176 

area. We also provide the largest global assessment of the impacts of species introductions 177 

and extinctions on the IDAR, thus furthering our understanding of the ‘island biogeography 178 

of the Anthropocene’ (Helmus et al., 2014). Figure 1 provides an overview of the 179 

methodological framework employed. We used this framework to answer four primary 180 

questions: 181 

Q1: Do richness, FD and PD scale with area in different ways (i.e., do different models 182 

provide the best fit to the ISAR, IFDAR and IPDAR)? 183 

Q2: Does the power model slope differ between the ISAR, IFDAR and IPDAR for a given 184 

archipelago, and what are the archipelago characteristics that determine such variation?  185 

Q3: To what extent does island functional and phylogenetic community assembly depart from 186 

random expectation, and do assembly processes vary with island area in a systematic fashion? 187 

Q4: To what extent does the inclusion or exclusion of extinct and introduced species affect 188 

different IDAR properties? 189 

Theoretical expectations 190 

For each of the four primary questions above, we developed a theoretical expectation based 191 

on previous research on IDARs: 192 

Q1: We expect asymptotic models to provide relatively better fits to IFDAR and IPDAR data, 193 

compared with ISAR data, due to the previously reported finding of increasing functional and 194 

phylogenetic similarity between species (often interpreted as redundancy) with increasing 195 

area (e.g., Mazel et al., 2014; Dias et al., 2020).  196 

Q2: For the same reason as in Q1, we expect IFDAR and IPDAR power model slopes to be 197 

systematically less steep than ISARs.  198 



Q3: The Equilibrium Theory of Island Biogeography (MacArthur & Wilson, 1967) assumes 199 

in its simplest form that species are functionally equivalent and thus represents a null model 200 

of island assembly. By extension, there should be no relationship between richness-corrected 201 

FD and PD (ES) values and island area (Si et al., 2017; Ross et al., 2019), the increase in FD 202 

and PD with area being simply a function of richness. However, MacArthur & Wilson (1967) 203 

recognized entirely random assembly to be simplistic and subsequent work suggests that the 204 

relative importance of different traits and assembly processes could potentially vary along the 205 

island area gradient, thus influencing the scaling of FD.ES and PD.ES values with island 206 

area.  207 

In theory, community assembly may depart from random towards either clustering or 208 

overdispersion of traits. Considering true islands, small islands tend to contain a limited and 209 

simpler array of habitat types and more extreme abiotic conditions (Sfenthourakis & Triantis, 210 

2009; Ross et al., 2019; Chen et al., 2020). As a result, only a subset of closely related taxa 211 

with specific traits are adapted to these conditions and can persist (Si et al., 2017; Liu et al., 212 

2020; Schrader et al., 2021). This should lead to a degree of functional and phylogenetic 213 

clustering on small true islands, consistent with some recent empirical analyses (e.g., Si et al., 214 

2017; Ross et al., 2019; Matthews et al., 2020; Zhao et al., 2020; Schrader et al., 2021).  215 

Conversely, larger true islands will often support a broader range of habitats and 216 

potential niches (Whittaker & Fernández‐Palacios, 2007), allowing a wider set of species to 217 

be able to colonise and persist, leading to neutral or overdispersed patterns (Matthews et al., 218 

2020). Should it be general that island assembly patterns shift from clustering to random / 219 

overdispersion along the area gradient, we should then expect a positive relationship between 220 

FD.ES and PD.ES and area for true islands. A similar logic applies to habitat islands, where 221 

high habitat heterogeneity in large fragments (e.g., due to topographical variation or the 222 

presence of environmental gradients; dos Anjos et al., 2022) can support a broader range of 223 

bird guilds (e.g., Willrich et al., 2019). However, we predict less consistent patterns for 224 

habitat islands in general, which tend to be much noisier systems (Matthews, 2021).  225 

Q4: Regarding the inclusion of extinct species in oceanic true island datasets, we predict that 226 

IDAR slope will increase from the historic period to the current period. This prediction is 227 

based on the conceptual model of Franklin & Steadman (2008; see also Steadman, 2006) that 228 

was developed in the context of land birds on tropical oceanic islands, whereby, within an 229 

archipelago, most species are predicted to have occurred on each high elevation island above 230 



a minimum size prior to human colonisation, and contemporary positive ISARs are mostly 231 

the result of species being harder to drive to extinction on larger islands (e.g., due to larger 232 

population sizes and more refugia). We predict the slope of contemporary IDARs should 233 

increase with the addition of introduced species, as larger islands are known to experience 234 

more introductions (Blackburn et al., 2021). We also predict that extinctions and 235 

introductions will have dampened the theoretically expected slope of the ES–area 236 

relationships (Q3). This is because extinction and introduction are typically non-random 237 

processes, involving species with particular traits (e.g., large body size in regard to extinct 238 

species) and from certain taxonomic groups (Boyer, 2008; Fromm & Meiri, 2021; Matthews 239 

et al., 2022), which together would act to reduce FD.ES and PD.ES values (i.e., reduce 240 

overdispersion and increase clustering), particularly on the larger islands. 241 

METHODS 242 

Data collection 243 

We sourced true and habitat island bird datasets from the literature. For most datasets, we 244 

used previous synthetic ISAR analyses (e.g., Triantis et al., 2012; Matthews et al., 2021) to 245 

locate potential datasets, and returned to the source papers (and subsequent papers by the 246 

source paper authors) to obtain the species lists for each island. True island datasets were also 247 

supplemented using Baiser et al. (2017) and Sin et al. (2022), and habitat islands using Chase 248 

et al. (2019). For the former, we updated some of the datasets using a range of literature 249 

sources (see Appendix S1). For a number of true island cases (the Ryukyus Islands, the 250 

Azores, Canaries, New Zealand) we created new datasets through comprehensive literature 251 

and database searches (Appendix S1). For inclusion, datasets needed to contain at least seven 252 

islands (to enable the calculation of AICc, discussed below) and possess an accessible bird 253 

species list for each island. An exception was made for a Hawaiian dataset (Baiser et al., 254 

2017) which only had six islands, as its extreme isolation means it has particular value in 255 

representing isolated oceanic archipelagos. Note that two datasets sourced from Baiser et al. 256 

(Society Islands and Cook Islands) classify atolls (collections of small islets connected by 257 

sand banks) as individual islands (Appendix S1). All island areas were converted to km2. For 258 

the analyses, it was necessary to impose a criterion of a minimum of one species on an island, 259 

leading to the removal of a small number of islands with zero species (these were only 260 

present in a handful of datasets). 261 



As a first step, for each dataset and using either data provided by the source paper 262 

authors or using species range maps provided by the IUCN Red List (IUCN, 2021), we 263 

classified all species as native or introduced to that archipelago (or region for habitat islands). 264 

We then excluded from analysis all introduced species (but for some datasets created 265 

alternative versions with introduced species included; see below). Otherwise, we used the 266 

datasets as originally published in the source papers, meaning that the exact types of species 267 

included varied slightly between datasets due to the decisions of the original source paper 268 

authors (e.g., including / excluding marine and nocturnal species). However, to roughly 269 

standardise the datasets, we also created an alternative version of each by removing the 270 

marine, coastal, wetland and riverine species to produce a land birds only version, for which 271 

we re-ran the analyses (see Appendix S2 for details). This standardisation process involved 272 

removing two datasets when analysing just land birds as it resulted in several islands in these 273 

archipelagos having no or very few species (Appendix S2). We removed extinct species 274 

(when present) from the datasets, but also created alternative versions of certain datasets with 275 

extinct species included (discussed below). For each dataset, we formatted all species names, 276 

including extinct species (see Appendix S2), to match the nomenclature in the phylogenies 277 

provided by Jetz et al. (2012) (see Appendix S1). 278 

Dataset characteristics  279 

For each dataset (archipelago), and using only the islands / species present in the dataset, we 280 

recorded a number of variables predicted to affect IDAR form (see Triantis et al., 2012; 281 

Matthews et al., 2019a, 2021): (1) number of islands (Ni), (2) the ratio between the area of 282 

the largest and smallest island (AreaScale), (3) archipelago species richness (Gamma), (4) 283 

total archipelago land area (ArchArea), (5) annual mean temperature, and (6) maximum 284 

island elevation. FD and PD Gamma were calculated as the total FD or PD of an archipelago. 285 

For each true island dataset, we also calculated (7) isolation (distance) from the mainland and 286 

(8) intra-archipelago isolation (MeanDist). Appendix S2 details how these variables were 287 

sourced and calculated. 288 

Functional traits 289 

For functional traits, we sourced data for all of the world’s 9993 species (BirdTree taxonomy) 290 

from the AVONET trait dataset (Tobias et al., 2022), allowing us to build a functional space 291 

using all of the world’s birds and ensure distances between species in functional space 292 

represented the best estimates of the true distances. We used eight continuous morphological 293 



measurements: (1) total beak length (from the tip to the skull), (2) beak length to the nares, 294 

(3) beak width and (4) depth (at the nares), (5) wing length, (6) secondary length, (7) tail 295 

length, and (8) tarsus length. These measurements have been shown to provide accurate 296 

information on the functional role and trophic status of birds at the global scale (Pigot et al., 297 

2020). We also sourced body mass estimates (g) for each species from AVONET (Tobias et 298 

al., 2022). The four kiwi species (Apteryx) represent extreme outliers in terms of the wing 299 

length, secondary and tail length traits (e.g., for wing length, the kiwis had values 267 times 300 

smaller than the species with the next smallest wing length). To avoid these species affecting 301 

the functional space to an extreme degree (which occurred even when log-transforming the 302 

traits), for these three traits, we replaced the trait values for the four kiwi species with the 303 

mean values across all extant species excluding the kiwis. This approach was preferred to the 304 

option of simply removing the kiwis, as one of our analysed datasets comprised islands in 305 

New Zealand. 306 

 Four of the extinct species in our datasets were also in BirdTree and AVONET. For 307 

the remaining 154 extinct species in our datasets, we sourced data for the same set of traits 308 

(described below). Our final trait dataset comprised 10,147 species. All nine traits were log-309 

transformed and then scaled to have a mean of zero and unit variance.  310 

Because the eight morphological traits are correlated with body mass, we also re-ran 311 

the analyses using body-size corrected traits, generated by running eight simple linear 312 

regressions with body mass as the predictor and a given morphological trait as the response 313 

(both log-transformed). Here, the scaled residuals from each model were then used as the new 314 

trait along with log-transformed and scaled body mass.  315 

Calculating FD, PD and Effect Sizes 316 

We used FD and PD metrics based on summing branch lengths to ensure our diversity 317 

metrics shared the same mathematical framework and are thus directly comparable (i.e., they 318 

incorporate the sum of the differences in diversity accumulated between species; Tucker et 319 

al., 2017; Dias et al., 2020; Mammola et al., 2021). In addition, the use of trees allowed us to 320 

include islands with few species (e.g., one or two), which is not possible with FD metrics 321 

such as convex hulls when multiple traits are used (Petchey & Gaston, 2006; Jarzyna et al., 322 

2021). For FD, we built a global dendrogram comprising all 10,147 species. A Euclidean 323 

distance matrix was generated using all species and the nine trait axes. We then transformed 324 

this distance matrix into a dendrogram using the agglomerative hierarchical clustering 325 



method UPGMA (Petchey & Gaston, 2006). We checked the dendrogram quality using the 326 

tree.quality function in the ‘BAT’ R package (Cardoso et al., 2015). The values for our 327 

dendrograms were relatively high (0.70 and 0.95 for the dendrogram using the uncorrected 328 

and body-size corrected traits, respectively; one corresponding to maximum quality of the 329 

functional representation). For each island, we used the global dendrogram to calculate 330 

Petchey & Gaston’s (2006) FD metric (including the tree root) using the ‘picante’ R package 331 

(Kembel et al., 2010).  332 

For PD, we based our analyses on the BirdTree phylogenetic trees from Jetz et al. 333 

(2012) using the Ericson backbone tree with 9,993 species. We obtained a posterior 334 

distribution of 3,000 trees from BirdTree and created a maximum clade credibility tree (node 335 

heights = median heights) including all bird species, using the TreeAnnotator program 336 

(v1.10.4, Drummond & Rambaut, 2007). The resultant consensus tree had a small number of 337 

negative branch lengths which we resolved by converting negative branch lengths to zero, 338 

while shortening only the two branches immediately below by the same absolute amount to 339 

ensure the tree remained ultrametric and there were no polytomies (we have added this 340 

functionality to the ‘BAT’ R package; tree.zero function). The PD values generated using the 341 

original consensus tree and the consensus tree with the negative branches removed were 342 

highly correlated (Pearson’s r = 0.999). The 154 extinct species not in BirdTree were grafted 343 

on to this consensus tree (detailed below). We used this global maximum clade credibility 344 

tree to calculate Faith’s PD metric (including the tree root; Faith, 1992) for all islands in a 345 

dataset as outlined for FD. As a sensitivity check, we re-ran the analyses using a randomly 346 

selected tree from the 3,000 (grafting the extinct species onto this selected tree). 347 

As both FD and PD can be correlated with species richness, to calculate standardised 348 

FD and PD values we created a variant of the ‘taxa.labels’ null model (999 iterations) and the 349 

ses.pd function in the ‘picante’ R package. This null model worked by only shuffling the 350 

names of species found in a given dataset on the global tree / dendrogram (i.e., the null 351 

model, for a given dataset, uses the archipelagic species pool, not the global species pool, but 352 

does not prune the tree). We did this to ensure a consistent tree (i.e., the global tree) was used 353 

for calculating FD/PD across datasets, given that pruning the tree was found to affect DAR 354 

slopes in a small number of cases (full details provided in Appendix S2). 355 

Generally, standardised values of FD and PD are calculated using standardized effect 356 

sizes (SES). However, SES assume a normal distribution of null values, an assumption that is 357 



often violated, particularly where some samples contain most, or very few, of the species in 358 

the pool. Thus, we instead used the effect size (ES) approach used in Matthews et al. (2020). 359 

This works by calculating the empirical probability (P) that the observed value is less than 360 

expected using the formula: 361 

P = (length(null < obs) + (length(null = obs)) / 2)/(n + 1), 362 

where null is the vector of null distribution values, obs is the observed value and n is 363 

the number of null model iterations (here n = 999). This probability was then probit 364 

transformed to obtain the ES value (see Appendix S2 for further details). This process was 365 

done using both FD and PD, resulting in FD.ES and PD.ES values for each island in each 366 

dataset. Positive ES values > 1.96 were considered to represent cases of significant functional 367 

/ phylogenetic overdispersion, and negative ES values < -1.96 were taken to represent 368 

significant clustering. Non-significant ES values (-1.96 < ES < 1.96) were considered to 369 

represent random community structure.  370 

IDAR multimodel comparison 371 

For each dataset, we fitted twenty SAR models (see Table S2 in Appendix S2) to our three 372 

diversity variables (species richness, FD, and PD) using least squares non-linear regression 373 

and the ‘sars’ R package (Matthews et al., 2019b). These models represent a range of curve 374 

shapes (linear, convex-upward, sigmoidal), number of model parameters (2–4) and properties 375 

(asymptotic and non-asymptotic) (see Triantis et al., 2012 for a review).  376 

We designed a grid search method for selecting model starting parameter values to be 377 

used in the non-linear regressions; this method has now been added to the ‘sars’ package 378 

(version 1.3.5; available from CRAN) (see Appendix S2 for details). For each twenty-model 379 

set, models were compared and ranked using Akaike’s information criterion corrected for 380 

small sample size (AICc) (Burnham & Anderson, 2002). As the denominator in AICc must 381 

not be negative, for the Hawaii dataset (with only six islands) it was necessary to exclude the 382 

two four-parameter models from the model set. For each dataset and diversity metric, we 383 

stored the model ranks, and a multi-model curve was constructed using the AICc weights 384 

from all converged model fits (see Matthews et al., 2019b). In each case, we also extracted 385 

the z-value and c-value from the non-linear power model fit; this model converged in all 386 

cases. To ensure the same models were fitted in all cases, we did not remove model fits based 387 

on residual assumptions checks (e.g., normality). However, given that the least square 388 

parameter estimates equal the maximum likelihood estimates only under the assumption of 389 



normal errors with constant variance (see discussion in ‘sars’ package vignette), and given we 390 

are using AICc, we re-ran the model selection including checks for both these properties. As 391 

an additional sensitivity test, we also re-ran the various power model z-value analyses using 392 

the z-value from the log10–log10 (linear) power model. 393 

The majority of these twenty models were originally chosen to fit SAR data (Triantis 394 

et al., 2012; Matthews et al., 2021) based on the expected shape of the SAR (e.g., convex-395 

upward or sigmoidal). However, the work on island FD.ES–area and PD.ES–area 396 

relationships to date (e.g., Diaz et al., 2020; Matthews et al., 2020; Schrader et al., 2021) has 397 

shown that they are not well characterised by such model shapes and thus it is not necessarily 398 

appropriate to fit the same set of models to these data. Instead, based on our theoretical 399 

expectations, we compared the fit of a linear regression model with an intercept-only null 400 

model in semi-log space (i.e., log area but not richness) using AICc. We used a semi-log 401 

transformation (log10) as there is no a priori reason to log-transform ES values and it has 402 

previously been shown to be an effective method for assessing ES–area relationships 403 

(Matthews et al., 2020; Schrader et al., 2021).  404 

Exploratory modelling of IDAR slope variation 405 

First, we tested whether there were significant differences between the z-values of the ISAR, 406 

IFDAR and IPDAR. As the IDAR z-values within a dataset were not independent, we 407 

compared the z-values between datasets using a generalised linear mixed effects model (beta 408 

family and logit link; fit using restricted maximum likelihood) and the ‘glmmTMB’ R 409 

package (Brooks et al., 2017), with diversity type (i.e., richness, FD, PD) as a categorical 410 

fixed effect, and the dataset as a random effect. We used the same approach to compare the 411 

slopes from the FD.ES and PD.ES–area relationships, except here we used the Gaussian 412 

family as many of these slopes were negative. 413 

Second, we assessed what archipelago characteristics drove variation between 414 

datasets in the (i) z-value of the ISAR, IFDAR and IPDAR, and (ii) slope of the ES–area 415 

relationships. Following Marx et al. (2017), we undertook an exploratory modelling approach 416 

using Pearson’s correlations, which were preferred over regression analyses due to the 417 

relatively small size of our dataset. The z-values of one of the ISAR, IFDAR or IPDAR were 418 

correlated against each of our archipelago-level predictor variables in turn, using log-419 

transformations when necessary to meet assumptions. As the IFDAR and IPDAR z-values 420 

were correlated with the ISAR z-value, we also ran a series of partial correlations with these 421 



two variables, allowing us to control for the ISAR z-value. We ran the modelling using all 422 

datasets (i.e., true and habitat islands) and using as predictor variables: Ni, Gamma (or FD / 423 

PD Gamma), AreaScale, ArchArea, (maximum) elevation, temperature, and the power model 424 

c-value. We then re-ran the modelling using just the true island datasets and adding in as 425 

predictors both MeanDist and isolation from the mainland. We then re-ran these correlation 426 

tests but instead used the slope of the linear model fitted to the FD.ES–area and PD.ES–area 427 

relationships as variables.  428 

The effect of including extinct and introduced species on diversity scaling relationships 429 

For ten true island datasets (Canaries, Cook Islands, Hawaii, Lesser Antilles, Marianas, 430 

Society Islands, Cape Verde, New Zealand, Azores, and Ryukyu Islands), there were a 431 

relatively large number of species introduced to each archipelago (ranging from 11 to 60% 432 

[median = 19%] of the total contemporary archipelago bird fauna). For these datasets, we also 433 

created alternative versions representing the current faunas with introduced species included 434 

(we only considered currently established introduced species; see Appendix S1). For the first 435 

eight of those, we were also able to build datasets representing the historic fauna, i.e., the 436 

island composition around 1500 CE, including extinct species and extirpated extant species. 437 

For five datasets where (coarse) data were available (Hawaii, Marianas, Cook Islands, New 438 

Zealand, Canaries), we also built datasets representing the prehistoric fauna (i.e., prior to 439 

human colonisation of the islands; including all species known to have gone extinct in the last 440 

~125,000 years) excluding marine species (Appendix S2). For the Marianas and Cook Island 441 

prehistoric datasets, we removed a number of islands as we decided to focus on islands where 442 

more fossil data were available. 443 

The historic and pre-historic datasets (i.e., including extinct species) were built using 444 

a range of literature sources (see Appendix S2 for details). The functional traits of extinct 445 

species were initially sourced through measurements made on specimens in various museums 446 

and literature searches. For 135 of the 158 species, we were able to acquire at least one 447 

measurement from skin or skeleton (or both) specimens in museums, with body mass being 448 

estimated for the remaining species (see Appendix S2). All gaps were then imputed using 449 

Bayesian Hierarchical Probabilistic Matrix Factorization (Schrodt et al., 2015). We ran the 450 

imputation ten times, averaging the imputed values across the ten runs. As a sensitivity test, 451 

we re-ran the analyses using a randomly selected individual imputation run rather than 452 

averaging. Extinct species were also grafted onto our consensus phylogeny. Appendix S2 453 



provides a detailed description of the extinct species data collection, trait inference and 454 

phylogeny grafting.  455 

We then re-ran the power and linear model fitting for the historic and introduced 456 

species datasets, storing the power model z-values for the ISAR, IFDAR, IPDAR, and the 457 

slopes (of the linear model) of the two ES–area relationships. We compared the values with 458 

those from our main analyses (i.e., current fauna excluding introduced species) using paired 459 

Wilcoxon signed-rank sum tests. We also re-fitted the models using the prehistoric datasets. 460 

Unless otherwise stated, all analyses were undertaken in R (Version 4.2.0; R Core 461 

Team, 2019), and the analyses were run on a 500GB cluster using 51 cores (~2,000 core-462 

hours). 463 

 464 

RESULTS 465 

In total, we sourced 51 datasets (26 true island and 25 habitat island archipelagos), 466 

incorporating 1,051 islands and 2,111 species (1,953 extant and 158 extinct species) 467 

(Appendix S1). The size of habitat islands ranged from 0.004 km2 to 1592 km2, and true 468 

islands from 0.001 km2 to 150,437 km 2. A map of the locations of these datasets is provided 469 

as Figure S1 in Appendix S3. All best fit models, and the power and linear model parameters, 470 

for all five relationships across all datasets are provided in Table S3 in Appendix S3. 471 

Q1 and Q2: ISAR, IFDAR and IPDAR model form 472 

The non-asymptotic convex-upward Kobayashi, power and logarithmic models were always 473 

the three models with the highest mean AICc weight values for the ISAR, IFDAR and IPDAR 474 

(but not always in the same order), across the 51 datasets (Fig. 2). Inspecting the plots of 475 

model fits provided further evidence for the convex-upward nature of most of the ISARs, 476 

IFDARs and IPDARs (e.g., Fig. 3). In terms of the number of best fits (i.e., cases of lowest 477 

AICc for a given IDAR and dataset), the top model was always the power model, with the 478 

linear, logarithmic and Kobayashi models alternating in second and third position (Fig. S2). 479 

The results were similar when looking at true and habitat islands separately (Figs. S3–S6 in 480 

Appendix S3). 481 

The power model provided a reasonable approximation of the form of the three 482 

IDARs (mean R2 across all datasets and the three IDARs = 0.62). In general, for a given 483 

dataset, the z-value of the ISAR was larger than that of the IPDAR, which was slightly larger 484 



than that of the IFDAR, and these differences became more pronounced the steeper the ISAR 485 

was (Fig. 4). Using a mixed-effect model with the diversity type as a fixed effect and the 486 

dataset as a random effect revealed that the z-values significantly differed between the ISAR 487 

(mean z = 0.19), IFDAR (mean z = 0.14) and IPDAR (mean z = 0.16) (Type II Wald χ2 test 488 

for the categorical fixed effect, χ2 = 163.5, P < 0.001). This was also the case when 489 

considering only true islands or only habitat island datasets. 490 

Figure 5 provides the results of the exploratory modelling of correlations between 491 

IDAR slopes and archipelago features. When considering all datasets, ISAR, IFDAR and 492 

IPDAR slopes were significantly positively correlated with Ni (number of islands), and 493 

significantly negatively correlated with (maximum) elevation and temperature. When 494 

considering only the true island datasets, there was still a significant negative correlation 495 

between elevation and the slopes of the three IDARs. There were also negative correlations 496 

with ArchArea, although for the ISAR this was not significant. When controlling for ISAR 497 

slope, there were no significant correlations, either for all datasets or just true island datasets. 498 

Q3: Avifaunal community assembly: FD and PD effect sizes and their scaling relationships 499 

The avifauna of most islands (87% for FD, and 79% for PD) exhibited random structure 500 

regarding FD.ES and PD.ES values, with a small proportion being characterised as 501 

significantly clustered (11% for FD, and 19% for PD). Very few island avifaunas were 502 

significantly overdispersed (2% for both metrics). Mean ES values were -0.51 for FD and -503 

0.89 for PD, indicating a slight tendency toward clustering (Fig. S7a). FD.ES and PD.ES 504 

significance results were equivalent for most islands, but there were notable exceptions (Fig. 505 

6); for example, 126 of the islands had significantly negative PD.ES values, but non-506 

significant FD.ES values (Fig. 6). 507 

Across all datasets, the intercept-only model had the higher mean AICc weight, and 508 

provided the best fitting candidate model the most times, for both the FD.ES and PD.ES–area 509 

relationships (i.e., lowest AICc in 34 and 37 out of 51 datasets, respectively). However, there 510 

were notable exceptions, with some FD.ES and PD.ES–area relationships exhibiting positive 511 

and negative linear relationships (Fig. 3). When looking at true and habitat islands separately 512 

(Figs. S3-S6 in Appendix S3), it was apparent that, for true islands, the relative performance 513 

of the linear model, regarding both ES–area relationships (but particularly PD.ES), improved.  514 

Considering cases where the linear model provided the best fit, there were nine 515 

positive and eight negative relationships for the FD.ES–area, and eight and six respectively 516 



for the PD.ES–area relationship. The majority of significant linear cases were true island 517 

datasets (11 cases for both the FD.ES and PD.ES relationships) (see Appendix S3). The 518 

median slope of the linear model across all datasets was 0.02 (-0.03 and 0.03 for true and 519 

habitat island datasets, respectively) for the FD.ES–area and 0.15 (0.13 and 0.15) for the 520 

PD.ES–area relationship (Fig. S7b). Interestingly, when only focusing on the ten volcanic 521 

oceanic island datasets, the median linear slope values were higher: 0.35 and 0.55 for the 522 

FD.ES and PD.ES–area relationships, respectively (see Fig. S8 in Appendix S3).  523 

The slope values from the FD.ES and PD.ES–area relationships significantly differed 524 

according to a mixed-effects model when considering all datasets together (χ2 = 4.5, P = 525 

0.03), but not true and habitat islands separately. Considering all datasets, there were 526 

significant positive correlations between the FD.ES and PD.ES–area relationship slopes and 527 

(maximum) elevation (Fig. 5). Considering only the true island datasets, there were 528 

significant positive correlations between both slopes and MeanDist, isolation, and elevation, 529 

and a significant negative correlation between PD.ES–area slope and AreaScale (Fig. 5). 530 

Q4: The effect of including extinct and introduced species on diversity scaling 531 

relationships 532 

The power model z-value for the ISAR, IFDAR and IPDAR followed an interesting and 533 

relatively consistent pattern across the three dataset types: historic fauna (A), current fauna 534 

excluding introduced species (B) and current fauna including introduced species (C) (Fig. 7). 535 

For these three IDAR types, z decreased or remained roughly constant between A and B, and 536 

then generally increased between B and C. This pattern was stronger for certain datasets (e.g., 537 

Society Islands, Marianas) compared to others (Fig. 7). The (paired) Wilcoxon signed-rank 538 

tests indicated that the differences between A and B were significant for the ISAR (P = 0.03), 539 

IFDAR (P = 0.02) and IPDAR (P = 0.02). The differences between B and C were also 540 

significant for all three IDAR types (P = 0.02, 0.02 and 0.04 for the ISAR, IFDAR and 541 

IPDAR, respectively), while the differences between A and C were non-significant. For the 542 

FD.ES–area and PD.ES–area relationship slopes, there were significant decreases in slopes 543 

between A and B (P = 0.01 and 0.04) and A and C (P = 0.04 and 0.01), but the differences 544 

between B and C were not significant (P > 0.05) (Fig. 7).  545 

Comparing models for the prehistoric and current avifaunas (excluding introduced 546 

and marine species) for five datasets, the z-values decreased or remained relatively constant 547 

for the ISAR, IFDAR and IPDARs, with the exception of Hawaii, for which z-values 548 



increased (Fig. 8). For the FD.ES and PD.ES–area relationships, with two exceptions 549 

(Marianas for FD.ES and New Zealand for PD.ES) the slope of the relationships decreased 550 

between the two time periods (Fig. 8). 551 

Sensitivity analyses 552 

The full results of all sensitivity analyses are presented in Appendices S4-S7. First, re-553 

running the analyses using body-size corrected traits to construct the functional dendrogram 554 

resulted in very similar findings (Appendix S4). Second, re-running the analyses after 555 

subsetting the datasets to only include land birds also generated mostly similar results 556 

(Appendix S5). The main differences here related to the exploratory correlations (e.g., no 557 

significant associations involving the number of islands or isolation), and the introduced and 558 

extinct species analysis: while some datasets followed the same pattern as the main results, 559 

the general pattern was less clear and none of the ISAR, IFDAR or IPDAR paired Wilcoxon 560 

tests were significant, although this is perhaps expected given the smaller number of datasets 561 

involved (Appendix S5). Third, undertaking the model selection using residual assumption 562 

checks resulted in very similar results (Appendix S6). The power model passed the 563 

assumption checks for 41, 41 and 45 datasets for the ISAR, IFDAR and IPDAR, respectively. 564 

Using the z-values from the linear (log10–log10) power model also generated similar results 565 

(Appendix S6). Fourth, using a randomly selected trait imputation run in combination with an 566 

individual Jetz et al. (2012) phylogeny resulted in very similar findings (Appendix S7). 567 

 568 

DISCUSSION 569 

 570 

Q1 and Q2: The form of island diversity–area relationships 571 

In general, and in contrast to our prediction (Q1) that asymptotic models would provide a 572 

better relative fit to the IFDAR and IPDAR, the three island diversity–area relationships 573 

(IDARs; i.e., the island species–area relationship [ISAR], the island functional diversity–area 574 

relationship [IFDAR], and the island phylogenetic diversity–area relationship [IPDAR]) were 575 

best modelled by non-asymptotic convex-upward models, although the linear model provided 576 

the best fit in certain cases (see also Triantis et al., 2012). Inspection of the model fit plots 577 

(Fig. 3) also showed that the form of the three primary IDARs was generally convex-upward. 578 

This matches the recent findings of a study on habitat islands by Dias et al. (2020), but for a 579 

much larger number of datasets and broader range of island types.  580 



As expected (Q2), we observed that, for a given dataset, the ISAR was generally 581 

steeper than the IPDAR, which was in turn steeper than the IFDAR. These results indicate 582 

that as island area increases, more species are sampled from the archipelagic pool. These 583 

additional species initially add novel traits and phylogenetic branches to the island 584 

communities, but this process slows down with increasing richness as an increasing 585 

proportion of these species are functionally, and to a slightly lesser extent phylogenetically, 586 

redundant (see also discussion in Karadimou et al., 2016; Schrader et al., 2021; Ferreira-587 

Arruda et al., 2022). 588 

Our exploratory correlation modelling indicated that IDAR slope was significantly 589 

negatively associated with elevation, when focusing on all datasets and true islands datasets 590 

separately. For true islands, this may seem counterintuitive as many of the relatively isolated 591 

(mostly oceanic) archipelagos (e.g., Hawaii, Cape Verde, New Zealand) have high elevation, 592 

and previous studies have theorised and shown that ISAR slope increases with isolation 593 

(Whittaker et al., 2017). This pattern could be specific to birds: due to their relatively high 594 

dispersal ability and the fact that many of the oceanic archipelago datasets are lacking very 595 

small islands, it is possible that many bird species are present on most islands, thus lowering 596 

IDAR slope. There could also be an effect of anthropogenic extinctions given that these 597 

archipelagos are also those that have likely experienced the most extinctions, and our results 598 

indicate that in many cases (when excluding introduced species) these extinctions have 599 

lowered IDAR slope. For the true island dataset correlations, while few associations were 600 

significant, OLS regression models including all predictors explained a relatively large 601 

proportion of the variation in the slope of the ISAR, IFDAR and IPDAR (R2 values: 0.72 – 602 

0.76; adjusted R2 values: 0.56–0.63). This matches the results of previous studies (e.g. 603 

Triantis et al., 2012; Matthews et al., 2019a) and suggests that the lack of significant 604 

correlations here may be due to smaller sample sizes and thus a lack of power. 605 

Q3: Island community assembly patterns and processes 606 

Overall, we found that the majority of island avifaunas were classified as being randomly 607 

assembled in terms of functional diversity (FD) and phylogenetic diversity (PD), although a 608 

sizable minority were significantly clustered (11-19%). This could indicate that neutral 609 

dynamics predominate on most islands, as assumed within the core model of island 610 

biogeography (MacArthur & Wilson, 1967). It should be noted that our null model used the 611 

archipelago species list as the pool rather than a wider (mainland) species pool, as we were 612 



not focused on testing for the effects of mainland to island filters (see Triantis et al., 2022). 613 

Nonetheless, if these results were viewed in isolation, it would be tempting to conclude that 614 

there were no patterns of interest beyond the ‘null’ observation that most islands had random 615 

functional and phylogenetic structure. However, analysis of the scaling of these assembly 616 

patterns (effect size [ES] values) reveals a more complex picture, at least in certain cases. For 617 

many datasets, the relationships between ES values (assembly patterns) and island area are 618 

indeed relatively flat. This indicates that, for these datasets, the convex-upward scaling of 619 

unstandardized FD and PD with area was primarily a result of increasing richness with island 620 

area, rather than changes in the dominant community assembly processes. However, there 621 

were numerous exceptions to this pattern, particularly regarding the FD.ES–area relationship, 622 

where the linear model provided a better fit for a third of the 51 datasets. 623 

Based on previous work (e.g., Chen et al., 2020; Matthews et al., 2020), we had 624 

hypothesised that, owing to limited habitat availability, smaller true islands would be 625 

characterised by functional and phylogenetic clustering. In contrast, larger true islands, with a 626 

wider range of habitat types, were expected to display functional and phylogenetic neutrality 627 

or overdispersion (Carvajal-Endara et al., 2017; Matthews et al., 2020). Together, this would 628 

result in a positive linear relationship between richness-corrected FD and PD and island area 629 

(i.e., less clustering with increasing area). However, approaching half of the datasets where 630 

the linear model provided the best fit exhibited a negative relationship (i.e., more clustering 631 

with increasing area). This is the opposite of our theoretical prediction (Fig. 3), but has been 632 

observed previously, such as for exotic plants in US National Parks (Li et al., 2018) and 633 

mammals on oceanic islands (Si et al., 2022). One explanation for this pattern can be found in 634 

Diamond’s (e.g., 1975; for a review see Whittaker & Fernández‐Palacios, 2007) work on 635 

assembly rules, which argues that very small islands can only support one bird species per 636 

guild (e.g., one fruit pigeon) due to limited niche space and increased interspecific 637 

competition. As island area increases, the number of species per guild or habitat type (which 638 

will be relatively functionally redundant) able to coexist on an island also increases. If the 639 

amount of niche space and number of guilds increases with area at a slower rate than for the 640 

number of species, this will increase the amount of functional and to a lesser extent 641 

phylogenetic redundancy on islands. Following this logic, smaller island assemblages would 642 

be expected to be overdispersed, with clustering increasing with island size, ultimately 643 

resulting in a negative relationship between richness-corrected FD and PD and island area 644 

(see also Si et al., 2017). Future research could test this theory by analysing the density of 645 



species per guild or habitat type for archipelagos that have negative ES–area relationships. 646 

The scaling of speciation rate with island area (see Whittaker & Fernández‐Palacios, 2007) 647 

could theoretically also result in this pattern, at least for archipelagos where speciation is a 648 

source of new bird species. Specifically, if a small number of colonizers radiate on the larger 649 

islands into numerous closely related species without substantial trait disparification, this 650 

could result in increased clustering on the larger islands. 651 

Interestingly, boxplots of the linear slope values across island types indicate that the 652 

average slope of both the FD.ES and PD.ES–area relationships was larger on oceanic islands 653 

(relative to other true islands and habitat islands; Fig. S8), particularly for PD.ES, and, in our 654 

exploratory correlations restricted to true islands, isolation, elevation and MeanDist had 655 

positive correlations with the slope. Thus, it could be the case that our theoretical prediction 656 

is more applicable to large isolated oceanic island systems, than to other island types. 657 

However, it should be noted that, while the median slope was relatively high, for most of the 658 

oceanic dataset ES–area relationships the best model was in fact the intercept-only model. 659 

This could partly be because most of these datasets have relatively few data points (a 660 

characteristic of many oceanic archipelagos), reducing the power of the test and increasing 661 

the effect of noise in the data (e.g., due to anthropogenic impacts). For habitat islands, there 662 

was a larger proportion of cases where the intercept-only model provided the best fit. This 663 

likely reflects the fact that they are often relatively noisy systems (Matthews, 2021), and can 664 

vary substantially in terms of various properties. For example, large forest fragments may 665 

contain a range of habitat types or be relatively homogenous (e.g., see Fig. 1 in Willrich et 666 

al., 2019; dos Anjos et al., 2022). 667 

It is important to note that there are several limitations associated with the community 668 

assembly framework used here (see Münkemüller et al., 2020, for a review). These include (i) 669 

a focus on specific patterns ignores the reality that a given FD / PD pattern can be produced 670 

by multiple processes (Mayfield & Levine, 2010); and (ii) that, as mentioned above, defining 671 

the species pool as the archipelago species list can only underestimate filtering by excluding 672 

species unable to reach or persist on the archipelago (Carvajal-Endara et al., 2017; Si et al., 673 

2022), but (iii) also underestimates competition by ignoring ‘dark diversity’ (i.e., species 674 

excluded from the archipelago due to past competition will not be present in the pool; 675 

Münkemüller et al., 2020). 676 

Q4: The effect of anthropogenic introductions and extinctions on IDARs 677 



Humans have introduced hundreds of species to islands (Blackburn et al., 2021). Our results 678 

supported our prediction (Q4) that the inclusion of introduced species would generally lead to 679 

steeper IDARs. These increases in z-values were relatively modest in absolute terms but were 680 

statistically significant. It is known that larger islands tend to have higher rates of 681 

anthropogenic colonisation pressure and thus experience more introductions (Baiser & Li, 682 

2018; Blackburn et al., 2021), which will, all else being equal, have the effect of steepening 683 

the ISAR.  684 

Particularly on certain oceanic island archipelagos, human colonisation precipitated a 685 

wave of avian extinctions (Whittaker & Fernández‐Palacios, 2007; Boyer, 2008; Boyer & 686 

Jetz, 2014; Sayol et al., 2021; Matthews et al., 2022; Triantis et al., 2022). However, while 687 

recent work has started to look at the effects of species extinctions on island diversity and FD 688 

(e.g., Boyer & Jetz, 2014; Sobral et al., 2016; Matthews et al., 2022; Si et al., 2022; Triantis 689 

et al., 2022), how these extinctions have affected IDARs has not been fully evaluated. 690 

Interestingly, and in contrast to our theoretical prediction (Q4), we found that the slopes of 691 

the ISAR, IFDAR and IPDAR significantly decreased between the historic and current period 692 

(excluding introduced species). This could indicate (i) that extinctions were more prevalent 693 

on the larger islands due to greater human impact, or (ii) that there is a bias resulting from 694 

greater knowledge of the historic fauna on larger islands. One other caveat is that Franklin & 695 

Steadman’s (2008) conceptual model was based on all extinctions, but for most archipelagos 696 

we lack adequate data at the island-level for species that went extinct prior to 1500 CE. 697 

However, many archipelagos are known to have suffered numerous extinctions prior to 1500 698 

CE (Steadman, 2006; Hume, 2017; Sayol et al., 2021). Our analysis of five datasets that did 699 

include pre-1500 extinct species (Fig. 8) broadly confirmed the decrease in the ISAR, IFDAR 700 

and IPDAR slope between the pre-human colonisation avifauna and the current avifauna 701 

excluding introduced species, although Hawaii was an exception (Fig. 8).  702 

Taking both the above findings together, it appears in several cases that introduced 703 

species have ‘re-calibrated’ the IDARs such that the slopes are more like the historic period 704 

including extinct species; indeed, there were no significant differences in the z-values 705 

between the historic and current (with introduced species) assemblages. A similar pattern is 706 

observed with the power model R2 values, with higher values observed for the historic 707 

(average R2 of power model across ISAR, IFDAR and IPDAR = 0.66) and introduced 708 

datasets (0.63), with lower values for the current fauna without introduced species (0.53), for 709 

all three IDARs. Interestingly, Hawaii again provides an exception to this pattern, with the 710 



inclusion of introduced species lowering or not changing IDAR slopes. This could indicate 711 

that introductions to that archipelago (or at least the islands in the archipelago that comprise 712 

our dataset) are occurring more independently of island area. 713 

We also observed that extinctions resulted in a statistically significant decrease in 714 

slope for the FD.ES and PD.ES–area relationships (Fig. 7), a pattern also apparent in the 715 

analysis of the five pre-1500 datasets (Fig. 8). One interpretation of this is that anthropogenic 716 

extinctions are leading to more random patterns of community assembly, or even greater 717 

clustering due to the selective extinction of certain types of species (e.g., large-bodied; Boyer, 718 

2008; Boyer & Jetz, 2014; Hume, 2017; Matthews et al., 2022). 719 

A notable caveat is that the prehistoric and historic datasets analysed here likely 720 

underestimate the true island composition at these time periods. First, there are known biases 721 

in the (sub)fossil record, such as large-bodied species being more likely to leave material 722 

evidence than small-bodied species. Second, the fossil record is likely incomplete for almost 723 

all islands. Third, several studies present data on which islands extinct species occurred on, 724 

with fewer presenting data on the past distributions of extant species. Finally, the trait 725 

estimation and imputation, and phylogeny grafting, procedures obviously involve a certain 726 

degree of uncertainty. Appendix S2 provides a more detailed discussion of these issues. 727 

Concluding remarks 728 

Overall, we have shown that increasing richness with island size is the main driver of the 729 

IPDAR and IFDAR for most datasets, although there are numerous exceptions to this pattern. 730 

We also find that archipelagos with the steepest ISARs exhibit the biggest differences 731 

between ISARs and the IFDAR / IPDAR. These results indicate that, within a given 732 

archipelago, there is an increasing amount of functional and phylogenetic redundancy on 733 

larger islands. As a next step, it is necessary to test whether the patterns observed here are 734 

consistent across taxonomic groups, particularly those with lower dispersal ability compared 735 

to birds, given that ISAR slope has been shown to vary between taxa (Triantis et al., 2012). In 736 

addition, as more data on extinct island species distributions become available, it will be 737 

necessary to evaluate further how anthropogenic extinctions, in combination with 738 

introductions, have affected IDAR form and slope, and whether this re-calibration effect is a 739 

general pattern. This will ultimately improve our knowledge of the ‘island biogeography of 740 

the Anthropocene’. 741 

 742 



ACKNOWLEDGEMENTS 743 

The comments of Anderson Saldanha Bueno, Jonathan Chase and three anonymous reviewers 744 

greatly improved the paper. The computations described in this paper were performed using 745 

the University of Birmingham's BlueBEAR HPC service, and the data compilation was 746 

supported by the University’s GEES Research Support Fund. FS was supported by a Beatriu 747 

de Pinós postdoctoral fellowship (2020 BP 00067) from the Ministry of Research and 748 

Universities of the Government of Catalonia. 749 

 750 

FIGURES 751 

 752 

 753 

 754 

 755 

 756 



 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

Figure 1. The analytical workflow followed, linked to the four primary research questions. Top row: 787 
we used the full presence-absence matrix for a given dataset (used to calculate island species richness, 788 
S), alongside a functional dendrogram (used to calculate island functional diversity, FD) and a 789 



phylogeny (used to calculate island phylogenetic diversity, PD). Second row: we fit a set of 20 790 
diversity–area relationship (IDAR) models to the island area, SR, FD and PD data (here the coloured 791 
lines represent the fit of the power model; blue = ISAR, red = IPDAR, and yellow = IFDAR), and 792 
assessed variation in the slope of the power model. Third row: for each dataset, we used a null model 793 
to calculate island FD and PD effect sizes (ES) independent of richness. For each dataset, we fitted a 794 
linear model to the log10(Area)–ES relationships, comparing it with an intercept model. We used the 795 
ES values to test the association between FD.ES significance and PD.ES significance at the island 796 
level (+ = significantly positive ES value; - = significantly negative ES value; NS = non-significant 797 
ES value). Bottom row: for subsets of datasets, we ran the analyses three times – the historic fauna 798 
including extinct species (A), and the current fauna excluding (B) or including (C) introduced species.  799 
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 803 

 804 

Figure 2. Generally, the shape of IDARs consistently had a convex-upward nature with some 805 

variation in exact model shape between the ISAR, IFDAR, and IPDAR. Regarding the ES–806 

area relationships, the intercept model had the higher mean AICc weight for both FD and PD, 807 

meaning a lack of relationship between FD.ES and PD.ES and area for many datasets. The 808 

bar charts show the mean model AICc weights across all datasets in which a model fit 809 

converged, for the five IDARs. The total number of datasets is 51. Full model names can be 810 

found in Table S2. For the FD.ES–area and PD.ES–area relationships, the two models were 811 

fitted in semi-log space, for the other IDARs in untransformed space. 812 
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 815 

 816 

Figure 3. Some island systems exhibited positive FD.ES and PD.ES–area relationships, and 817 

others negative relationships. The top two rows show the IDARs of a dataset of birds 818 

(number of species = 54) in 11 true islands in the Galápagos, generated using five diversity 819 

metrics: species richness (ISAR), functional diversity (IFDAR), phylogenetic diversity 820 

(IPDAR), and the FD (FD.ES–area) and PD (PD.ES–area) effect sizes. The bottom row 821 

shows the two ES–area relationships for a dataset of birds (number of species = 101) in 77 822 

true islands in the Aegean (Simaiakis et al., 2012). In the top row plots, the different coloured 823 

lines represent the fits of up to twenty competing models, and the thick black line represents a 824 

multi-model averaged curve generated using the AICc weights of the individual model fits. In 825 

the middle and bottom row plots (left and middle), the dark green line is the fit of a standard 826 

linear model, while the light grey line is the fit of an intercept-only model. For the FD.ES–827 



area and PD.ES–area relationships, the two models were fitted in semi-log10 space, for the 828 

other IDARs in untransformed space. Increasing ES values from zero denote greater 829 

overdispersion, while decreasing values from zero denote greater clustering. The two bird 830 

photos show example species from each archipelago: the middle right plot shows a lava gull 831 

(Larus fuliginosus), the rarest gull in the world and a species endemic to the archipelago, and 832 

the bottom right plot shows a Rüppell's warbler (Sylvia rueppelli), a species that breeds in 833 

Greece, Turkey and the Aegean Islands. Middle row photo by Andy Morffew and under 834 

license (https://creativecommons.org/licenses/by/2.0/); bottom row photo by Mick Sway and 835 

under license (https://creativecommons.org/licenses/by-nd/2.0/). 836 
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 839 

Figure 4. The difference between the ISAR z-value and the IPDAR and IFDAR z-values 840 

increases with increasing ISAR z-value. The figure shows the relationships between the z-841 

values of three IDARs, plotted as a function of the ISAR z-value rank (higher rank = steeper 842 

ISAR): the ISAR (black lines and points), the IPDAR (blue lines and points), and the IFDAR 843 

(red lines and points). Different symbols are used for habitat (circles) and true island 844 

(triangles) systems. The z-values were generated from fitting the non-linear power model to 845 

the bird IDARs of 51 island datasets. 846 
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 850 

Figure 5. Some characteristics of archipelagos are correlated with IDAR slopes. The figures 851 

show Pearson’s rank correlation heatmaps, with IDAR slope on the x-axis and various 852 

archipelago-level predictors on the y-axis. For the ISAR, IFDAR and IPDAR, slope was 853 

measured as the power model z-value. Correlations for IFDAR and IPDAR z-values were 854 

also undertaken using partial correlation using ISAR z-values as a covariate. For the ES–area 855 

relationships, the slope was the slope of a linear model fitted in semi-log10 space. Correlations 856 

were undertaken twice, once using all 51 datasets (A), and once using only the 26 true island 857 

datasets (B). Significant coefficient values (P < 0.05) are indicated using black circles. Cell 858 

colour indicates correlation strength. Grey cells indicate a correlation was not undertaken for 859 

that variable combination. Predictor acronyms are GA = Gamma, C = power model c-value, 860 

AA = ArchArea, AS = AreaScale, NI = number of islands, MD = MeanDist, IS = isolation, 861 

EL = elevation, and TP = temperature. Note that for the IFDAR and IPDAR correlations, 862 

Gamma was the total functional or phylogenetic richness. 863 
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 871 

Figure 6. The relationship between FD.ES values and PD.ES values for 1,051 islands varied 872 

from a 1:1 relationship, but most values were not significantly different from the null 873 

expectation. ES values were generated using a null model (999 iterations; see main text for 874 

details). The thick black line is the fit of a standard linear model, while the thin line is a line 875 

with intercept of zero and slope of one. Points are coloured based on a pairwise comparison 876 

of significance for FD.ES and PD.ES values and match the inset grid. Within the inset grid, a 877 

‘-’ sign indicates significantly negative ES values, and ‘+’ indicates significantly positive 878 

values; NS = non-significant values.  879 
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 888 

 889 

Figure 7. Species extinctions and introductions change IDAR slopes in a variety of ways 890 

across different island systems. The figure shows the effects of including vs. excluding 891 

extinct and introduced species on the power model slope of the ISAR, IFDAR and IPDAR 892 

(top row), and on the slope of the linear model fitted to the (semi-log10) FD.ES and PD.ES–893 

area relationships (bottom row), for ten true island datasets. Each trio of the same-coloured 894 

circles joined by the same-coloured line represents three different datasets for the same 895 

archipelago: (A) historic fauna including extinct species, (B) current fauna excluding 896 

introduced species, and (C) current fauna including introduced species. For two datasets 897 

(Azores and Ryukyu Islands) there is no historic dataset (i.e., period A). Note the different y-898 

axis scales in the different plots. 899 
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 906 

Figure 8. The figure shows the effect of including vs. excluding all known extinct species 907 

(prehistoric and historic extinctions) on the power model slope of the ISAR, IFDAR and 908 

IPDAR (top row), and on the slope of the linear model fitted to the FD.ES and PD.ES–area 909 

relationships (bottom row), for five true island datasets (Mar. = Marianas, NZ = New 910 

Zealand; Haw. = Hawaii; Cook = Cook Islands; Can. = Canaries). Each pair of coloured 911 

circles joined by a black line represents two different datasets for the same archipelago: pre-912 

historic fauna including extinct species, and current fauna excluding introduced species. In 913 

this analysis, all marine species were removed from the datasets prior to model fitting and 914 

some islands were removed due to a lack of fossil data (i.e. the Modern z-values may differ 915 

from those in Figure 7). Note the different y-axis scales in the different plots. 916 
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