
Bangor University

DOCTOR OF PHILOSOPHY

Developing a PPM based named entity recognition system for geo-located searching
on the Web

Bold, Kieran

Award date:
2023

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://research.bangor.ac.uk/portal/en/theses/developing-a-ppm-based-named-entity-recognition-system-for-geolocated-searching-on-the-web(b69fb6d9-c135-447a-be78-e317d3f9ec02).html

School of Computer Science and Electronic Engineering
College of Environmental Sciences and Engineering

Developing a PPM based named entity
recognition system for geo-located

searching on the Web

Kieran David Bold

Submitted in partial satisfaction of the requirements for the
Degree of Doctor of Philosophy

in Computer Science

Supervisor Dr. William Teahan

March 2023

Acknowledgements

„ Sometimes life is going to hit you in the head

with a brick. Don’t lose faith.

— Steve Jobs

Acknowledgements are difficult for me to write, as over the years it would be impossible

to mention everyone that has helped me. I would like to extend my special thanks to the

following people for their support during my PhD.

• This thesis and project were possible with thanks to the KESS 2 Knowledge

Economy Skills Scholarship. My sincere gratitude for this funding, as without

it, it would not have made my PhD possible. I would like to extend special

thanks to the company partners of this project, Mr. Edwin Smith and Mr. Warren

Greveson for their guidance and the contribution that they made to make this

project possible.

• Dr. William Teahan, my supervisor, I am forever thankful for all his guidance,

expertise and support throughout my PhD. Thank you especially for being there

throughout my family situations and for providing the best pastoral care any

student could ask for.

• To my Mum, Sister and Stepdad, thank you for supporting me thick and thin

throughout my entire PhD. I would like to especially mention my Nan, who

poured her heart and soul into my education and life, who got me to where I am

today. I’m grateful that you saw me graduate my undergraduate degree and saw

the start of my PhD. I severely miss you and I’m sorry that you didn’t get to see

the end of my PhD journey, but I know you are looking down at me proud of your

‘Marmite’ getting his PhD completed.

i

• Carrie, my girlfriend, for being my rock through the ups and downs I’ve had

throughout the past few years, her patience, tolerance and understanding when I

had to work late. Thank you for always keeping me going.

• The administrative team and academics at the Bangor University School of

Computer Science & Electronic Engineering who have supported me throughout

my PhD. I would like to extend special thanks to Yvonne, David, Julie and

Siân who without your kindness, chats, laughter, being a shoulder to cry on and

camaraderie, I wouldn’t know where I would have gone without you.

• Finally my dogs Buster and Tilly. For encouraging me to take the necessary breaks

away from the computer and reminding me that walks are the best medicine for

clearing my mind.

ii

Statement of Originality

The work presented in this thesis/dissertation is entirely from the studies
of the individual student, except where otherwise stated. Where derivations are
presented and the origin of the work is either wholly or in part from other sources,
then full reference is given to the original author. This work has not been presented
previously for any degree, nor is it at present under consideration by any other
degree awarding body.

Student:

Kieran David Bold

Statement of Availability

I hereby acknowledge the availability of any part of this thesis/dissertation for
viewing, photocopying or incorporation into future studies, providing that full
reference is given to the origins of any information contained herein. I further give
permission for a copy of this work to be deposited with the Bangor University
Institutional Digital Repository, the British Library ETHOS system, and/or in any
other repository authorised for use by Bangor University and where necessary have
gained the required permissions for the use of third party material. I acknowledge
that Bangor University may make the title and a summary of this thesis/dissertation
freely available.

Student:

Kieran David Bold

iii

Abstract

This thesis describes the development of a web-based interface to showcase a service for

searching for housing and jobs. The thesis explores different web scraping techniques

and directions taken during the development of the housing and job website using a

map-based interface without the reliance on external APIs.

This thesis also developed a novel approach to named entity recognition using Prediction

by Partial Matching (PPM). This involved creating a system for web mining of job and

housing information using PPM called Merlin. After evaluating the Merlin system

against the ground truth data, the best precision came to 91.0%, recall to 78.7%, and

F-measure to 84.4%. For job websites using the Merlin system, the best precision

came to 89.0%, recall to 75.0%, and F-measure to 86.9%. Notably, combining both

the housing and job information resulted in an precision of 77.0%, recall 65.0%, and

F-measure 70.5%.

The thesis compared the Merlin system to an existing state of the art named entity

recognition software called spaCy. Evaluating spaCy using the same data and ground

truth used for the Merlin system show that for data from housing websites, the best

precision for spaCy came to 50.0%, recall to 1.82% and F-measure to 3.5%. For

job websites using spaCy, the best precision came to 40.48%, recall to 28.33% and

F-measure to 33.33%. When combining both the housing and job information resulted

in an precision of 47.15%, recall 26.36% and F-measure 33.82%.

The experiments show that the new PPM-based method for named entity recognition is

significantly better both in terms of classifier performance and training time.

The final prototype showcases web scraped listings on a map-based interface using

tagged data from the Merlin system, stored in a database and searched by a query. The

prototype’s advantages are that the information displayed is simple to navigate, compare

iv

and explore the different housing and job listings. This prototype’s limitations are that

it uses static information, and the location for jobs is broad and not specific, unlike

housing results. The improvements needed for this prototype are a further crawl to find

the specific job search listings location to improve the placement of jobs and to make

the data dynamically updated when a user enters a query.

This thesis gathered feedback on the web service compared to an alternative interface

that relied on information provided from external vendors APIs. This website evaluation

study was conducted using the System Usability Scale to measure the usability of

each website. Our results indicate that a higher preference was with novel information

techniques developed in this thesis rather than the information provided by the external

vendor APIs.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Aim & Objectives . 2
1.4 Methodology . 3
1.5 Contributions . 5
1.6 Thesis Outline . 6

2 Background 7
2.1 Information Retrieval . 10

2.1.1 Ad hoc Information Retrieval 10
2.1.2 Keyword and Verbose Queries 10
2.1.3 Web Based Search Engines 11
2.1.4 Challenges with Web Based Search Engines 13
2.1.5 Web Crawlers . 14
2.1.6 Web Services and Search Engines 15
2.1.7 Legal Requirements for search engines and web crawlers . . . 15

2.2 Web Scraping . 18
2.3 Named Entity Recognition . 19
2.4 Text Mining & Information Extraction 22

2.4.1 Tasks and Subtasks for Information Extraction 23
2.5 Performance Metrics for Evaluating IR Systems 24
2.6 Agile Software Development . 25
2.7 Agile Development . 27
2.8 Software Development Plan . 29
2.9 Summary and Discussion . 30

3 A review of existing web services 31
3.1 Existing Web Services . 31
3.2 Features and Services . 34

3.2.1 Keyword Search . 35
3.2.2 Advanced Search Options . 37
3.2.3 Distance Filters . 38
3.2.4 Saved Searches . 38
3.2.5 Blog Articles / Information 39

vi

3.2.6 Property Alerts . 39
3.2.7 iOS/Android App . 40
3.2.8 Property Guides / Resources 41
3.2.9 Map Based Interface . 41
3.2.10 Place Search . 42
3.2.11 Quick Searches / Featured Jobs 43
3.2.12 Job Alerts via Email . 43

3.3 Features and Services of Housing Websites 44
3.4 Features and Services of Job Websites 45

3.4.1 Job Websites Results . 46
3.4.2 Housing Websites Results 47
3.4.3 Precision of existing web-based services of adhoc queries . . . 48
3.4.4 Indeed Results . 49
3.4.5 Reed Results . 49
3.4.6 Jobsite Results . 49
3.4.7 Conclusion . 50

4 A System for Web Mining of Job and Housing information using PPM 51
4.1 Summary . 51
4.2 Introduction . 51
4.3 Prediction by Partial Matching (PPM) 52
4.4 Successful use of PPM in other tasks 58
4.5 The Tawa Toolkit . 60
4.6 Overview of the Merlin System . 61

4.6.1 Pre-Processing the Raw Text 62
4.6.2 Design Text Models . 63

4.7 Implementing The Merlin System . 63
4.7.1 Training Models . 64

4.8 Language Segmentation . 69
4.8.1 Creating Ground Truth Files 69
4.8.2 Markup of Pre-processed Web Based Raw Text 71
4.8.3 Improving the Results . 72

4.9 Evaluation of the Merlin System Results 74
4.9.1 Housing Website Experiments 74
4.9.2 Experiment 1: Evaluating the markup of Zoopla website data . 75
4.9.3 Experiment 2: Evaluating the markup of OnTheMarket website

data . 76
4.9.4 Experiment 3: Evaluating the markup of Rightmove website data 78
4.9.5 Job Website Experiments . 80
4.9.6 Experiment 4: Evaluating the markup of Reed website data . . 81
4.9.7 Experiment 5: Evaluating the markup of Indeed website data . 83
4.9.8 Both Housing and Job Website Results 85

vii

4.10 Comparison of Merlin System with the spaCy Natural Language Toolkit 87
4.10.1 Experiment 6: Evaluating the markup of Zoopla website data

using spaCy . 89
4.10.2 Experiment 7: Evaluating the markup of OnTheMarket data

using spaCy . 90
4.10.3 Experiment 8: Evaluating the markup of Rightmove data using

spaCy . 92
4.10.4 Experiment 9: Evaluating the markup of Reed data using spaCy 93
4.10.5 Experiment 10: Evaluating the markup of Indeed data using

spaCy . 94
4.10.6 Both Housing and Job Website Results for spaCy 95

4.11 Summary and Discussion . 96

5 Developing and Evaluating Prototype Alpha 99
5.1 Introduction . 99
5.2 Five Design Sheets . 100
5.3 Design of the Alpha Prototype . 101

5.3.1 Sheet 1 — brainstorm . 102
5.3.2 Sheets 2, 3, 4 — Initial Designs 107

Sheet 2 — Initial Designs . 109
Sheet 3 — Initial Designs . 112
Sheet 4 — Initial Designs . 115

5.3.3 Sheet 5 — Realization . 118
5.3.4 Design Outcome . 120
5.3.5 Summary . 122

5.4 Implementation of Alpha Prototype 123
5.4.1 Use-Case Model Survey . 123
5.4.2 Architecture Diagram for the Alpha prototype 125
5.4.3 Home Page of the Alpha Prototype 125
5.4.4 Results Page of the Alpha Prototype 126
5.4.5 Component Diagram Process 126
5.4.6 Managing Web Pages of the Alpha Prototype 127
5.4.7 Connection for the Database for the Alpha Prototype 127
5.4.8 Styling the Web Pages of the Alpha Prototype 128
5.4.9 Processing and Saving: the data for the Alpha Prototype . . . 128
5.4.10 Modules of the Alpha Prototype 128

Google Maps . 129
Google Places . 129
Open Weather API . 129

5.5 Evaluation of the Alpha Prototype 130
5.6 Summary of Alpha Prototype . 132

viii

6 Developing and Evaluating Prototype Beta I 133
6.1 Introduction . 133
6.2 Beta I Prototype — Agile Design process 134

6.2.1 Design Outcome . 138
6.2.2 Conclusion of the Beta I design process 141

6.3 Implementation of Beta I Prototype 142
6.3.1 ESRI Maps . 142
6.3.2 Zoopla API . 144
6.3.3 Zoopla API Integration . 146
6.3.4 Indeed API . 151
6.3.5 Indeed API Integration . 152

6.4 Developing methods for scraping web content involving accommodation
and jobs . 155
6.4.1 Issues with the Beta I prototype 162
6.4.2 ParseHub . 162

6.5 Summary of Beta I Prototype Design 163
6.6 Evaluation of the Beta I Prototype 164

6.6.1 Beta I Prototype Questionnaire Evaluation — Results 167
6.7 Discussion and Findings . 181

7 Developing and Evaluating Prototype Beta II 182
7.1 Introduction . 182

7.1.1 Design Outcome . 184
7.1.2 Conclusion from the design process 186

7.2 Component Diagram Process . 187
7.3 Summary of the Beta II Prototype 190
7.4 Evaluation of the Beta II Prototype 191

7.4.1 Beta II Prototype — Results from Experimental Evaluation . . 191
Task 1 for Beta II Prototype — Jobs 192
Task 2 for Beta II Prototype — Housing 193
Task 3 for Beta II Prototype — Jobs & Housing 194
Final Prototype Feedback . 196

7.5 Limitations of Prototypes . 198
7.6 Discussion and Findings . 200

8 Lessons Learnt 202
8.1 Alpha Prototype . 202

8.1.1 Data Input . 205
8.1.2 Data Output . 206
8.1.3 Storage . 207
8.1.4 Interaction . 207
8.1.5 Visualisation . 208

ix

8.2 Beta I Prototype . 208
8.2.1 Data Input . 211
8.2.2 Data Output . 212
8.2.3 Storage . 212
8.2.4 Interaction . 212
8.2.5 Visualisation . 213

8.3 Beta II Prototype . 213
8.3.1 Data Input . 215
8.3.2 Data Output . 216
8.3.3 Storage . 216
8.3.4 Interaction . 216
8.3.5 Visualisation . 217

8.4 Summary and Discussion . 217

9 Conclusions and Future Work 219
9.1 Summary . 219
9.2 Review of Aim & Objectives . 219
9.3 Review of Research Questions . 220
9.4 Limitations of the Work . 221
9.5 Future Work . 222

References 223

x

List of Figures

2.1 Desktop vs Mobile vs Tablet Market Share Worldwide Jan 2009 — June
2020 . 8

2.2 Interest over time of Rightmove and Indeed from 2004 — present in the
United Kingdom . 9

2.3 Illustrating the process of web scraping 18

3.1 The impact of the Deepwater Horizon oil spill visualized in Google Maps
[143] . 32

3.2 Zoopla’s Smart Maps . 33
3.3 Rightmove’s Smart Maps . 33
3.4 Primelocation’s Smart Maps . 34
3.5 An example of a keyword Search — Rightmove website 36
3.6 An example of standard search and advanced search options — Zoopla

website . 37
3.7 An example of the use of Distance feature — Rightmove website 38
3.8 Saved Searches — Indeed website . 39
3.9 Blog Articles — Rightmove website 39
3.10 Property Alerts — Rightmove website 40
3.11 iOS App — Jobsite website . 40
3.12 Property Guides / Resources — Zoopla website 41
3.13 Smart Map — Zoopla website . 42
3.14 Place Search — Reed website . 42
3.15 Quick Searches — Reed website . 43
3.16 Job Alerts via Email — Indeed website 43

4.1 A overview of the Tawa Toolkit and its design [150] 61
4.2 The overview of the start to end process of the Merlin system. 61
4.3 The Merlin System workflow process, showing the different stages from

the start to the end. 62
4.4 Noise within the data shown by an example data set that shows in green

the correct data being captured and in red data that is noise. 63
4.5 The algorithm used for training a model [150] 64
4.6 TUI Training Application Developed by Dr. William Teahan at Bangor

University . 68
4.7 Ground Truth Sample — Housing . 70

xi

4.8 Ground Truth Sample — Jobs . 70
4.9 TUI Markup Application Sample Output 72
4.10 Confusion matrix for the markup output produced by the Merlin system

for the Zoopla housing data . 76
4.11 Confusion matrix for the markup output produced by the Merlin system

for the OnTheMarket housing data . 78
4.12 Confusion matrix for the markup output produced by the Merlin system

for the Rightmove housing data . 80
4.13 Confusion matrix for the markup output produced by the Merlin system

for the Reed job data . 83
4.14 Merlin Performance Result of Indeed job data 85
4.15 Confusion matrix for the markup output produced by the Merlin system

for the housing and job data . 86
4.16 spaCy’s training pipeline for named entity recognition 88
4.17 Confusion matrix for the markup output produced by the spaCy system

for the Zoopla housing data. 90
4.18 Confusion matrix for the markup output produced by the spaCy system

for the OnTheMarket housing data. 91
4.19 Confusion matrix for the markup output produced by the spaCy system

for the Rightmove housing data. 92
4.20 Confusion matrix for the markup output produced by the spaCy system

for the Reed jobs data . 93
4.21 Confusion matrix for the markup output produced by the spaCy system

for the Indeed jobs data . 94
4.22 Confusion matrix for the markup output produced by the spaCy system

for the housing and job data . 95

5.1 Sheet 1 produced during the Five Design Sheets process for the Alpha
prototype . 102

5.2 Sheet 2 produced during the Five Design Sheets process for the Alpha
prototype . 109

5.3 Sheet 3 produced during the Five Design Sheets process for the Alpha
prototype . 112

5.4 Sheet 4 produced during the Five Design Sheets process for the Alpha
prototype . 115

5.5 Sheet 5 produced during the Five Design Sheets process for the Alpha
prototype . 118

5.6 Homepage of Alpha prototype . 121
5.7 Results Page of Alpha prototype showing the results of the query, the

location searched and the temperature of the area 122
5.8 Alpha Prototype — Admin Use-case diagram 124
5.9 Alpha Prototype — User Use-case diagram 124

xii

5.10 Alpha Prototype — Diagram displaying the architecture of the MVC model125
5.11 Alpha Prototype — Component Diagram Process 126
5.12 Overview of Modules in Alpha prototype 129

6.1 Flow of Agile Design . 134
6.2 Design Beta I Prototype showing the iteration of Form options 135
6.3 Beta I Prototype — Iteration 2 — 3D map 136
6.4 Beta I Prototype — Iteration 2 — 2D map 137
6.5 Beta I Prototype — Iteration 2 — 2D map, infowindow and red circles . 138
6.6 Query statistics client—side by distance 139
6.7 Beta I Prototype — Design Overview 140
6.8 Beta I Prototype Design — Searching 141
6.9 ESRI Maps Initialization and Options within Prototype Beta I 143
6.10 ESRI Maps Process Flow within the Prototype Beta I 143
6.11 Zoopla API Input Parameters . 145
6.12 Zoopla API Output Parameters . 145
6.13 Beta I Sidebar Homepage for housing 148
6.14 The component process of how the searching and retrieving is performed

in the Beta I Prototype . 149
6.15 Beta I Example Result from sample query for housing 151
6.16 Indeed API Listing Output . 153
6.17 Beta I Sidebar Homepage for jobs . 154
6.18 Beta I Prototype Example Result from query for jobs 155
6.19 An Activity Diagram showing the process of how the created system

gathers elements from websites or external APIs with created scripts. . . 156
6.20 This structure explains the steps taken of the created system to gather jobs

and housing. 157
6.21 The process of scraping web content involving jobs and housing 158
6.22 An additional web scraping process created for Beta I prototype for

extracting elements from web pages 160
6.23 ParseHub Interface . 163
6.24 Beta I Prototype Vivo Coding Results for Q1 170
6.25 Beta I Prototype Vivo Coding for Q8 172
6.26 Beta I Prototype Vivo Coding for Q19 176
6.27 Beta I Prototype Vivo Coding for Q20 177

7.1 Beta II Prototype Design — Sketch of different Iterations of Pin Styles . 184
7.2 Beta II Prototype Design — Homepage 185
7.3 Beta II Prototype Design — Results 186
7.4 Component Diagram showing Beta II usage of data for the prototype . . 187
7.5 Stage 1: The process overview of the Beta II prototype’s searching and

saving functionality . 187

xiii

7.6 Stage 2: The process overview of the Beta II prototype setup and updating
functionality . 189

7.7 Beta II: Overview of the Beta II Prototype Database Structure 190
7.8 Beta II Prototype Results for Good Feedback question 196
7.9 Beta II Prototype Results for Bad Feedback question 197
7.10 Beta II Prototype Results for Feature Feedback question 198
7.11 Beta II Location Problem . 199

8.1 Homepage of Alpha prototype. 205
8.2 Results Page of Alpha prototype . 206
8.3 Beta I Input and Output . 211
8.4 Beta II Prototype Design — Homepage. 215

xiv

List of Tables

1.1 Overview of Chapters . 6

2.1 Example of confusion matrix for two classes. 24

3.1 Incremental Searching on Job and Housing websites 36
3.2 Key Information of Housing Websites 44
3.3 Features and Services with Housing Websites 44
3.4 Key Information of Job Websites . 45
3.5 Features & Services with Job Websites 45
3.6 Precision Results for Job Websites . 46
3.7 Precision Results for Housing Websites 47
3.8 Accuracy of identifying location data from Indeed website data 49
3.9 Accuracy of identifying location data from Reed website data 49
3.10 Accuracy of identifying location data from Jobsite website data 50

4.1 PPMD model after processing the string llanfairfechan with maximum
order of 2. 57

4.2 Training data used for building the Housing-based models 65
4.3 Training data used for building the Jobs-based models 65
4.4 Samples of each type of data used to create the models 67
4.5 Scaling of the files for Jobs in Reed . 73
4.6 Scaling of the files for Jobs in Zoopla 73
4.7 Queries used for evaluating Merlin’s performance on Housing Websites 74
4.8 Merlin Performance Results of Zoopla housing data 75
4.9 Merlin Performance Results of OnTheMarket housing data 77
4.10 Merlin Performance Results of Rightmove housing data 79
4.11 Queries used for evaluating Merlin’s performance on Job Websites . . . 81
4.12 Merlin Performance Results of Reed jobs data 82
4.13 Merlin Performance Results of Indeed jobs data 84
4.14 Performance measures of the Merlin system for the jobs and housing data 87
4.15 Comparison of the Merlin System and spaCy time taken to train the data.

This shows that the Merlin system performed better in time taken to train
and tag the data compared to spaCy. 97

4.16 Comparison of the Merlin System and spaCy classifer performance output
measures. This shows that the Merlin system performed better in all
experiments compared to spaCy. 97

xv

5.1 Database configuration settings for Alpha Prototype 127
5.2 The Alpha Prototype evaluation of queries searched with details and the

calculated relevance. 131

6.1 Zoopla API Listing Output . 147
6.2 Indeed API Parameters . 152
6.3 This shows a comparison of the source code and a sample after using the

web scraping process on Monsters website. Highlighted areas in bold on
the source code indicate the elements taken for the sample output 161

6.4 Beta I Prototype Likert Style Question Results 168
6.5 Beta I Prototype Questionnaire Statistics 169
6.6 Beta I Prototype Respondent Results for Q23 179
6.7 Beta I Prototype Respondent Results for Q24 180
6.8 Beta I Prototype Respondent Results for Q25 180

7.1 Results of the SUS Evaluation of the Jobs section of the website. Each
cell lists the number of respondents selecting that option for each question.
Odd numbered questions have a positive phrasing, meaning ‘strongly
agree’ is best. Even-numbered questions are negatively phrased, therefore
disagree is the desired answer. 193

7.2 Results of the SUS Evaluation of the Housing section of the website.
Each cell lists the number of respondents selecting that option for each
question. Odd numbered questions have a positive phrasing, meaning
‘strongly agree’ is best. Even-numbered questions are negatively phrased,
therefore disagree is the desired answer. 194

7.3 Results of the SUS Evaluation of the Housing and Jobs section of the
website. Each cell lists the number of respondents selecting that option
for each question. Odd numbered questions have a positive phrasing,
meaning ‘strongly agree’ is best. Even-numbered questions are negatively
phrased, therefore disagree is the desired answer. 195

8.1 Alpha Overview of technical elements 205
8.2 Beta I Overview of technical elements. 210
8.3 Beta II Overview of technical elements. 214

xvi

Chapter 1

Introduction

1.1 Motivation

There is no search service available at the moment that allows searching for both jobs

and housing at the same time. The overall aim for this project is to investigate whether

such a service is feasible. This project is in collaboration with a startup company

called CloodUp, and funded by the Knowledge Economy Skills Scholarships (KESS 2)

project 1. The inspiration behind the project came about by a personal experience of

one of the company directors Mr. Edwin Smith. The start-up company director’s son

decided to spend a year in Australia and his son wanted to move to Australia for work

but found it challenging to find both a job and a house that met the requirements of

what he was looking for. This resulted in the idea of having a single online service that

had the ability to extract housing and job information from multiple sources that would

produce the information on a map-based interface instead of having to go to multiple

websites to find and compare jobs and housing listings.

Therefore the aim of this project is to explore the development of a novel web service

that facilitates the searching of both jobs and accommodation at the same time. The

purpose of the web service is to find both job and accommodation information that

matches with the user’s needs without having to go to multiple websites to find the

same information. The purpose is to make it easier for the user to find suitable housing

and jobs in their own field of work, along with nearby housing that would not be a long

distance away. The project additionally provides the opportunity to fuse data and to use

named entity recognition for text on jobs and housing.

1Knowledge Economy Skills Scholarships (KESS 2) is a major pan-Wales operation supported by
European Social Funds (ESF) through the Welsh Government.

1

1.2 Research Questions

This project conducts an investigation into an effective way of merging web-based job

and accommodation based information. The specific research questions are as follows:

• What is the best way of extracting and then fusing information obtained from

housing and job sites such as sites like Rightmove and Zoopla into a singular

web-based platform?

• What is an effective interface design for such a platform? For example, would

a geographical based interface be more appealing to potential clients for such a

service?

The rationale is that no existing web service makes it easy to search for this information

all at the same time, and making decisions concerning future employment can require

substantial and tedious research which may overlook important local information

especially if one is moving to an unfamiliar region or abroad.

1.3 Aim & Objectives

The overall aim of the project is to create a web-based service that will allow users to

search within a given geographical region both for accommodation and employment

opportunities.

The specific objectives of the project are as follows:

• Produce a literature review of web services and technologies that provide

capabilities related to the proposed web service.

• Develop and evaluate a named entity tagger relating to jobs and accommodation

that is able to identify the unstructured text of HTML source code and is able to

identify and tag the unstructured data appropriately.

• Compare the performance of the created named entity tagger to the performance

of an existing state of the art named entity recognition software.

Introduction 2

• Design and implement prototypes using a web-based geographical search interface

that enables filtering of search criteria relating to jobs and accommodation using

dynamic filters.

• Evaluate the usability and effectiveness of the different web-based interfaces.

1.4 Methodology

The methodology adopted for this research was agile software development [21]. This

involves the evaluation and improvement of the prototypes that were created according

to the requirements of the project.

Three prototypes were developed, which were then evaluated by the company partners

involved with the project as well as potential users, and then improvements were made

based on their feedback.

Agile software development was used for this project as this approach finds solutions

through a collaborative effort between the supervisor, company partners and student.

Agile software development was used for the Beta I and Beta II prototype. The agile

process fundamentally incorporates the iteration and continuous feedback, also allowing

for adaptive planning, development, early delivery and continual improvements. It also

encourages rapid and flexible responses to change [39]. Rapid prototyping development

[110] [47] is used in this project as it provides many advantages such as:

• It has the ability to explore and realise concepts more quickly. This efficiency in

time and cost allows people to move beyond the mere visualisation of a product

and make it easier to grasp such a product’s properties and design.

• It involves repeated designs and incorporation of changes that involves for the

evaluation and testing of a product. This iterative process provides a roadmap to

developing and refining the final product.

• It results in concepts being communicated more concisely and effectively. Rapid

prototyping takes ideas, images, concepts from paper to a visual product.

Introduction 3

• It allows concepts to be thoroughly tested and refined as the process continues.

Minimising the design flaws with a rapid prototype allows eliminating costly

design flaws that might not be shown at early assessment.

• It allows for frequent interaction with company collaborators and provides for

regular feedback from the users.

The disadvantages of using this software development method are that it focuses

on working with the software and could lack on the documentation. As there are

many available software development models, this project’s suitability acknowledged

by people involved with this project believes it is best to work with agile software

development using rapid prototyping development.

The initial prototype (Alpha) involved investigation of different techniques for scraping

data from the web. To ensure this was relevant to housing and accommodation related

information, the investigation involved looking at local points of interest such as cafe’s,

local shops, cinemas for example within an area, extracting different elements and

placing the data onto a webpage. Evaluation of this prototype involved users conducting

various searches and the quality of the results shown by the system were evaluated

based on their relevance.

The second prototype (Beta I) involved investigation of the use of existing APIs for

housing and job websites. This involved designing, implementing and evaluating a

website that used these APIs. Evaluation of this prototype involved users conducting

searches and providing feedback with a questionnaire.

The third prototype (Beta II) involved investigating the use of static data and moving away

from the dependency of needing to use APIs. This involved designing, implementing

and evaluating a website with the static data gathered.

Evaluation methods such as accuracy, precision and recall are used on the named

entity tagger relating to jobs and accommodation. Ground truth is used to compare

how well the named entity tagger performs at extracting the individual components of

accommodation, jobs and combined housing and jobs.

Introduction 4

The evaluation of the two prototypes, Beta I and Beta II, involved performing a usability

study to evaluate the user interface. Feedback was gathered from 50 end-users, using

the System Usability Scale methodology.

Insights gained from the usability study evaluation for this prototype allowed further

improvements to be made to the final prototype. The final prototype used methods

of extracting housing and job website data and using features from earlier prototypes

with changes that were suggested by the end-users from the usability study. Another

usability study was performed for the final prototype as a final evaluation for the project

and to give the company partners scope to potentially take the project further.

1.5 Contributions

As this thesis is concerned with the design and development of an innovative way

that a web service can show information extracted from housing and job websites,

the main contribution of this thesis is the design, implementation and evaluation of

three prototypes and the use of innovative techniques for extracting such elements from

websites.

The significant results concerning the thesis are listed below:

• The development of a novel approach to named entity tagging that produces

structured tagged text for housing and jobs. This work is discussed within

Chapter 4: A System for Web Mining of Job and Housing information using

PPM.

• The comparison of using the Merlin PPM-based system as opposed to using an

existing state of the art named entity recognition tools has shown significantly

better performance for PPM. This work is discussed in Chapter 4: A System for

Web Mining of Jobs and Housing information using PPM.

• The development of effective methods for scraping web content concerning

accommodation and jobs, by exploring a new approach to extracting website

information with a step-by-step process. This work is discussed within Chapter 6:

Developing and Evaluating Prototype Beta I.

Introduction 5

• The design and implementation of an innovative accommodation and job website

using vendor APIs. This involved evaluating the APIs with a questionnaire to

gather quantified results of usability and performance. This work is discussed

within Chapter 6: Developing and Evaluating Prototype Beta I

• The design and implementation of a novel web service that provides

accommodation and jobs using methods from Chapter 7 along with other resources.

This work is discussed in Chapter 7: Developing and Evaluating Prototype Beta

II

1.6 Thesis Outline

Chapter 2 examines the background. This includes an introduction to the methods used

within the thesis. Chapter 3 discusses existing web services, and their features and

services along with their quality in terms of accuracy of the information they provide.

Chapter 4 presents a system that has been created for extracting information from

websites using PPM. Chapter 5 covers development and evaluation of prototype Alpha.

Chapter 6 discusses the development and evaluation of prototype Beta I. Chapter 7

discusses the development and evaluation of prototype Beta II. Chapter 8 discusses

the lessons learnt from the project and chapter 9 concludes the thesis and sets out the

direction for future work.

Chapters Title

Ch. 1 Introduction

Ch. 2 Background

Ch. 3 A review of existing web services

Ch. 4 A System for Web Mining of Job and Housing information using PPM

Ch. 5 Developing and Evaluating Prototype Alpha

Ch. 6 Developing and Evaluating Prototype Beta I

Ch. 7 Developing and Evaluating Prototype Beta II

Ch. 9 Conclusions and Future Work

Table 1.1: Overview of Chapters

Introduction 6

Chapter 2

Background

The purpose of this chapter is to give some contextual explanation of the background.

The background includes the following topics that are related to the research questions

and aim and objectives: information retrieval, web scraping, named entity recognition,

text mining & information extraction and performance metrics for evaluating IR Systems.

Web search services that extract relevant information based from a user query have

become one of the most important computer-based applications. As of April 2020, a

survey performed of internet users aged 16 to 64 have reported performing each activity

from the last month 1:

• 81% of people search online for a product or service.

• 74% have purchased online via any device and 66% use mobile apps.

• 90% have visited an online retail site or store.

The survey indicates a strong indication of how online web services are used in different

regards each day.

The way we search for information has changed as well, in figure 2.1 shows over how

the past decade the way desktop vs. mobile vs. tablet searching has changed.

1https://www.globalwebindex.com/reports/trends-19

7

Figure 2.1: Desktop vs Mobile vs Tablet Market Share Worldwide Jan 2009 — June 2020

In figure 2.1, the marketshare of desktop vs. mobile vs. tablet searches have changed

dramatically from a decade ago. January 2009 saw a 99.33% share of people using a

desktop computer to search, such as home PC’s and laptops. As of June 2020, 50.13%

of searches are now performed on a mobile device, 47.06% on a desktop device and

2.81% on a tablet device 2. The way we search has changed, the devices we use are now

more on the go, not requiring a laptop or being at a desk with a desktop instead of more

using smartphones to do our searching.

Web search engines are used each day to provide search results to queries sent. Google

search engine as of June 2020 has 91.75% of the market share world-wide 3. The

development of a robust and efficient search is required to handle daily tasks that we

perform each day online. The internet continues to grow exponentially with different

type of data and infiltrates into every element of our daily lives [122].

2https://gs.statcounter.com/search-engine-market-share
3https://gs.statcounter.com/search-engine-market-share

Background 8

Figure 2.2: Interest over time of Rightmove and Indeed from 2004 — present in the United
Kingdom

Be-spoke services such as e-commerce sales are projected to increase from 1.3 trillion

in 2014 to 4.5 trillion in 2021. By the end of 2021, 73% of e-commerce sales will take

place through a mobile platform 4. Be-spoke services such as job websites and housing

websites that provide listings to the user has also increased in popularity. Figure 2.2

shows the interest over time of Rightmove, a housing website and Indeed a job website

from 2004 to the present in the United Kingdom. Rightmove is the United Kingdom’s

biggest property website that has over 800,000 properties for sale at any given point

along with rental homes 5. Indeed is the most popular of all UK job websites and adds

ten jobs to the site every second 6.

Despite the rise of mobile devices being used in the market, the direction of this thesis

is to focus on the desktop development rather than to develop a mobile application.

The reason behind this is so that the company partners found the ability to incorporate

further functionality and features during this phase of research which could then be

expanded to the mobile device sector with investment.

4https://www.oberlo.co.uk/blog/ecommerce-trends
5https://www.bystored.com/blog/best-property-websites
6https://www.wikĳob.co.uk/content/features/useful-resources/10-best-uk-job-boards-2020

Background 9

2.1 Information Retrieval

This section reviews important terminology, concepts and background to Information

Retrieval (IR).

2.1.1 Ad hoc Information Retrieval

Information Retrieval (IR) is concerned with the structure, analysis, organization,

storage, searching, and dissemination of information. IR is found to be useful in office

automation and software engineering [57][34]. An IR system is designed to give stored

collection items available to users and has been in development since the 1940s. Early

IR systems consisted of stored bibliographic items, such as online catalogues and

scientific articles although in today’s world, the information is full-length documents

that are stored in a single location e.g., newspaper archives.

In ad hoc information retrieval, the user interacts with the retrieval system one or more

times in order to locate results for one information need [132]. In modern times for

retrieval systems such as in e-commerce, ad hoc what is used to return a ranking over

documents to increase the probability of relevance. An IR model’s effectiveness refers

to its ability to discriminate between relevant and non-relevant documents.

2.1.2 Keyword and Verbose Queries

Keyword queries are rather short compared to verbose queries which can contain

multiple pieces of information [63]. Keyword queries contain only a small selection of

keywords from a more verbose description of the actual information that is underlying

to the query.

Verbose queries are a significant part of the query in web search, and are common

in other applications such as collaborative question answering (CQA) [70]. Verbose

queries can be put into long keyword queries by the removal of ‘stopwords’ or ‘stop

structure’. Stopwords are high-frequency words that appear in many documents, e.g.,

‘she’, ‘if’, ‘do’ ‘with’ and ‘the’. An example of verbose queries is where description

topics often begin with ‘Find data about’ or ‘Find documents that describe’. In terms of

Background 10

stopwords, such as stop structures are phrases that do not provide information about the

topic of a text. [70].

Complete documents can be considered a form of verbose query. Retrieval using long

text as a query is known as query-by-document. An example is where several legal

search tasks, such as patent retrieval and invalidity search [58]. In search engines,

patent retrieval poses challenges [71]. Using extensive use of highly generic language,

acronyms, novel words, and technical terminology muddles documents semantics, while

there is a demand for high recall comes an expensive in terms of precision.

In regards to the ad hoc retrieval tracks, a particular type of query might provide

static sets of queries, including title queries. The title queries are keyword queries in

which they are sequences of content-bearing words with no syntax. Ad hoc queries

are associated with a description and narrative. The description is a natural language

description of information. The narrative is a short paragraph of text that details

information need [95].

2.1.3 Web Based Search Engines

There has been a growth in information on the World Wide Web over the years, which

has posed a challenge to traditional information research. There are no consistent

indexing or classification principles to order materials on the web. Additionally, there

are no filtering practices of web search situations to ensure credibility and quality being

provided to the user [144]. This has shown that web searchers provide little input [73]

and the users are sensitive to time and effort they put into a search [135]. The majority

of web users are sensitive to time and effort to find the information they require. This

means that the ability to optimise search order becomes important to the search engines

performance [40] [1] [141] [108] [32].

Cooper [40] stated that retrieval systems’ primary function is to save the user as

much time as possible in search for relevant information by pursuing and discarding

documents.

A popular web based search engine, Google, is one of the most heard terms on the

Internet. Google has become recognisable and now use it as a verb [80]. Using Google

Background 11

as a verb has made users say, "Hey, what is the solution to this query?" and people reply

with "I don’t know, Google it". Google Inc. is an American public corporation that

specialises in products and internet searching. Larry Page and Sergey Brin founded the

Google Company in 1998 [80].

The World-Wide Web has a wide range of content. Users may browse the web

through entry points such as Google, but many information seekers use a web search

engine to begin their web activity. Users submit a query, which is usually a list of

keywords and then they receive a list of web pages that may be relevant. These web

pages typically contain the keywords [15]. The World Wide Web has revolutionised

the way that people access information and has opened to many new possibilities

for information dissemination and retrieval, education, commerce, health care and

entertainment services. There has been rapid development in the world wide web since

the incorporation [81].

Search engines use well-known information retrieval (IR) algorithms and techniques

[124] [50]. IR algorithms were developed for relatively coherent collections such as

newspaper articles or book catalogs. The Web is massive, less coherent, and changes

rapidly. This requires new techniques, or extensions to the old ones, to deal with

the gathering of the information, to make index structures scalable and efficiently

updateable.

There are ways in which a person can satisfy with a information need, such as visiting

a library, calling on the phone or searching the web. The Internet has become a key

information source to finding information online by browsing web pages, posting a

question to a question and answering site or using IM or email to contact someone.

Search engine use is the most popular approach to online information seeking [49].

There has been a rise in popularity of social networking sites, such as Facebook, Twitter

and Linked in as new options to finding information online. Related work has been

done by Morris on a comparison of information seeking using search engines and

social networks showing that subjects generally preferred searching as it provided more

personalised answers and increased confidence of search engine results [102].

Background 12

One of the first studies on Web user behaviour for searching on the web mainly

investigated aspects of browsing the World Wide Web [37] [29] [146]. Choo, Detlor

and Turnbull [33] investigated the information seeking behaviour of knowledge workers

over a period of two weeks. They combined surveys, interviews and client-side logging

and were able to charactise a number of information seeking behaviours of web users.

Navarro-Prieto, Scaife and Rogers [105] identified cognitive strategies related to Web

searching. They compared Web searchers with high and low experience and concluded

that expert searchers plan ahead in their searching behavior based on their knowledge

about the Web, while novice searchers hardly plan at all and are rather driven by external

representations (what they see on the screen) [68].

2.1.4 Challenges with Web Based Search Engines

Web search engines have difficult problems in maintaining or enhancing the quality

of their performance. This section will discuss the different elements Search Engines

encounter.

Spam: As discussed, users tend to look at the first page of search results [134].

Silverstein [135] shows that 85% of the queries only the first result screen is looked at,

meaning this only shows the top 10 results. This results in increased traffic to a websites

on that first page, whilst exclusion on the rest. Commercially-oriented websites on

those who income depends on the traffic will have their best interest to be ranked in

that top 10 for the queried result [66]. It is known that users will try and manipulate

their placement of this order rank on these search engines to achieve this goal, which

is known as search engine spam. Luckily as time has progressed search engines are

now tackling search engine spam with search engine optimisation, which identifies and

remove these spam listed websites.

Content Quality: There are also issues with ensuring that the quality of the articles

on the web are low-quality or full of noise. Web search engines try and tackle this for

instance with the PageRank [25] and other similar approaches to rate the web structure

and estimate the pages quality.

Background 13

Vaguely Structured Data: The structure present in data has a significant influence on

how search and retrieval is performed. The IR community focuses more on unstructured

text documents whilst for example a database community focuses on highly-structured

data. JSON and XML methods provide structured data although web pages, which are

in HTML come into the fold of not close to free text or well structured meaning this

would not allow for a corpora to be used for the web as a whole [66].

2.1.5 Web Crawlers

Crawling is the process of exploring the web automatically. It aims to discover the web

pages of a web application by navigating through the system. Web users increasingly

rely on search engines to find the data that they are requiring. In order to have an

effective search engine, as new data appears, the web crawler has to constantly update

the search engines database.

There are motivations to crawling which are:

• Content indexing for search engines meaning that each search engine must require

a web crawler to fetch data.

• Automated testing and model checking for the web application.

• Automated security and vulnerability assessment, allowing to detect issues and

security vulnerabilities and usability problems in an automated manner [20] [45]

[96].

When the users enter a query into a search engine, the search engine examines its index

and provides a listing of the best-matched web pages according to the criteria. This is

usually the title and a short description of the website text.

The usefulness of a search engine depends on the relevance when the results come back.

There may be millions of web pages for a specific word although some may be more

popular than others. Search Engines usually employ methods to rank the results to

provide good results first. How a search engine decides which pages should be in what

order varies depending on different search engine platforms [131].

Background 14

2.1.6 Web Services and Search Engines

A web service is “a software system designed to support interoperable machine-to-

machine interaction over a network” as defined by the World Wide Web Consortium 7.

Having this ability means that web services can achieve automatic and dynamic

interoperability between systems and tasks [152]. Web services are self-contained,

self-describing, modular applications that can be used across the web [152]. Web

services perform a range of functionalities, such as requests for information e.g., web

documents, JSON, XML and images, to creating and executing processes. Deployed

web services can invoke other applications or web services, allowing it to be discovered

by others. Web services provide the ability to create applications at ease, using reusable

software components. Asynchronous JavaScript And XML (AJAX) is a dominant

technology in Web services, that is used within this project for calling and the structuring

data being requested from APIs and other web services [52].

In contrast, search engines are a web service that allows user to search for documents by

specified keywords on the World Wide Web [64]. Additionally a search engine allows

users to find other web pages through this web service. Examples of search engines are

Google, Yahoo and Bing. Different web search engines can differ from one another,

the differences being how far crawling is reached, the frequency of the updates and the

relevancy of the analysis. Most users view only the first couple of page results from

search query results according to Spink and Jenson [138].

2.1.7 Legal Requirements for search engines and web crawlers

The legal liability of search engines requires an understanding of the framework that

search engines operate with. The technology that search engines use is an important

component to determine the potential liability from legal problems. The methods for

storing, collecting and disseminating Internet-based content determine the scope of

potential responsibility for a search engine [65]. Search engines use tools to catalog

websites using a process called “crawling” [98]. Search engines gather information

from the web pages and retain this information in a “cache”. The software extracts

information from these different websites and places them into an index. The search

results would then be returned to the user based on the submitted query [98].

7http://www.w3.org/TR/ws-gloss

Background 15

Search engines are Internet-based operations. There are Internet-based laws for the

content providers, host providers and online business operators, although this can be

challenging to apply to the search engines. Search engines are distinct and would

require legislatures and courts to address legal issues related to search engines from a

different perspective.

There was a case law in the United States that emerged after search engines came to

the Internet that primarily addressed the definition of search engine as distinct from

other Internet identities. ACLU v. Reno [43] was the first ruling where the functionality

and importance of web search engines were discussed. The ACLU v. Reno defined the

functionality of web search engines services that “allow users to search for Web sites

that contain certain categories of information” and provide a list of links to relevant

websites.

Courts have been dealing with legal issues regarding the further development of search

engine technology and as it expands, search engine law continues to grow. Search engine

operators face ever increasing legal action to related intellectual property and data

protection including third-party trademark infringement from advertising, copyright

violation from search result displays from the aggregated crawling [65]. Interventions

have occurred in courts, legislators and regulators alike have been issue-specific ranging

from meta tagging, spiders to caching and paid inclusion [59].

There have been different types of concerns and conflicts that have evolved over time and

made their way into the legal system. In the early years of web searching up to the year

2000, meta tagging was the most frequent subject of litigation involving search engine

operators [59]. Following meta tagging lawsuits, post-2000 lawsuits now are more

diverse against engine operators, primarily focusing on intellectual property issues. The

intellectual property issues ranging from trademark to more issues regarding copyright

issues. The number of claims based on defamation, privacy and other areas show the

ever increasing growth of search engines broadening what they do [59].

Web crawling is where a computer program technique is used to scrape a large amount

of data from websites, where information can be extracted and put into formats easily

read in structured formats, such as JSON or XML. An example of web crawling is

Background 16

where Search Engine Optimisation needs to create sitemaps and give their permissions

to let Google crawl their website, which helps Google to rank their websites.

Web crawling can have a negative connotation as it can be used for malicious purposes,

examples could be [60]:

• Scraping classified or private information.

• Disregarding the website’s terms and services, scraping without the permissions

owner.

• Requesting a large amount of data requests could lead to web server crashes,

especially with heavy load.

A data service provider could refuse a request if:

• The data is private.

• The Terms of Service prohibits the action of web scraping

• The data is copyrighted.

In 1999, the first web crawling case of a commercial purpose between eBay and

Bidder’s Edge was heard in US court [30]. eBay sued its competitor, Bidder’s Edge,

which used spiders to compile listings for specific items from several online auction

websites, including eBay and displayed them in an aggregated form on its own website.

Bidder’s Edge accessed eBay approximately 100,000 times without authorization [79] 8.

Technological measures aimed at blocking the competitor’s spiders failed, resulting in

eBay filing the suit and claimed that the defendant was committing trespass to chattels.

The court stated that the spiders used was likely to qualify as trespassing in eBays

servers, thereby consuming eBay’s bandwidth and server capability, depriving eBay of

the ability to use that portion for its own personal purposes [59].

8https://roboticsandautomationnews.com/2020/04/06/essential-legal-issues-associated-with-web-
scraping/31501/

Background 17

In 2019, the US Court of Appeals denied LinkedIn’s request to prevent an analytics

company (HiQ) from scraping its data. This verdict is a historic decision as it

demonstrated that any data publicly available that it is not copyrighted is legally valid

for the use of web crawlers. The decision did not grant HiQ or any other web crawlers

the freedom to use data obtained for unlimited commercial purposes [137] 9.

The legal requirements towards this project’s future development and investment is

important, as there will need to be further investigation into the legalities of how data is

obtained, processed and used in a commercial regard to ensure the issues as discussed

in this section do not arise.

2.2 Web Scraping

The term web scraping means the aggregation of data from multiple websites [103]

[136]. Web scraping occurs typically in a piece of software that is known as a web

crawler. A web crawler searches the world wide web and retrieves information from

the user’s set parameters from the query. Several algorithms can be used to scrape

information on the internet.

Figure 2.3: Illustrating the process of web scraping

The process of web scraping from Figure 2.3 shows the steps that are used when web

scraping occurs with websites:

• Multiple web pages are grouped in a file structure.

• The pages are then parsed using a selected web scraping technique.

9https://roboticsandautomationnews.com/2020/04/06/essential-legal-issues-associated-with-web-
scraping/31501/

Background 18

• The request sent from the parser then searches for information that meets the

criteria set by the user.

• The information found is then stored in a database.

The query parameters are essential when they are provided. They can give the web

crawlers precise information that can be found. The web crawler will be able gather the

information which may be at different areas and place it together.

Web scraping is very convenient when the user wants to search and gather data from the

internet Search engines would search the index for anything related to the user’s criteria.

This would result in the user seeing the results that have been found.

2.3 Named Entity Recognition

Named-entity recognition is a subtask of information extraction that seeks to locate and

classify named entities mentioned in unstructured text into pre-defined categories that

are set, e.g., locations, organisations [104] [99] [82] [119].

Named Entity Recognition (NER) is a field that has been around for more than twenty

years; it aims of extracting and classifying mentions of rigid designators from text, such

as proper names. There is a diversity of languages, domains, textual genres and entity

types in literature. Techniques employed to develop NER systems, from handcrafted

rules to machine learning approaches, are used. Handcrafted systems provide good

performance at a high system engineering cost. Whilst supervised learning is used,

there must be a prerequisite of an extensive collection of annotated data. NER can

significantly impact our society, such as NER systems monitoring trends in textual media

produced each day by organisations. NER comes from a general class of problems in

Natural Language Processing (NLP) called sequence tagging [48].

The use of “Named Entity”, which is now used in Natural Language processing, was

coined for the Sixth Message Understanding Conference (MUC-6) [62]. MUC was

focused on Information Extraction tasks where the structured information of company-

related activities and defence-related activities were extracted from unstructured texts.

In defining the task, people had noticed it is essential to recognise information units

Background 19

such as names, person, location and organisations, money, date, and times. Identifying

references to these entities in the text was recognised as being essential sub-tasks of

Information Extraction and was called “Named Entity Recognition and Classification”.

Early systems made use of handcrafted rule-based methods, whilst modern systems use

machine learning techniques. Research into automatically identifying named entities in

texts forms a vast pool of strategies, representations and methods. In the early stages,

one of the first research papers was presented by Rau [113] at the IEEE Conference on

Artificial Intelligence Applications. Rau’s paper explores the usage of a system that

will “extract and recognise [company] names”, and it relies on handcrafted rules. There

is additional previous research in Information Extraction that includes Named Entity

Recognition in a constrained manner [22][44][46][61][67][85].

FASTUS, a finite-state Processor for Information Extraction from Real-world Text

[14] system was created as approaches to text processing that rely on parsing the text

with a context-free grammar tend to be slow and error-prone due to the ambiguity

of sentences. FASTUS employs a nondeterministic finite-state language model that

produces sentences into noun groups, verb groups and particles.

There is early work within the NER problem of recognising “proper names” in general

[104]. The most studied types of “proper names” are names of “persons”, “locations”,

and organisations”. These are known as enamex since MUC-6 competition.

The “location” type can be put into “fine-grained locations” [54], such as city, state

etc. As well “fine-grained person” subtypes of “entertainer”, “lawyer”, “politican” for

example, appear in the work of M. Fleischman and Hovy [54].

The type “miscellaneous” is used in the CONLL conferences and includes proper names

falling outside the norm of “enamex”. The class is sometimes with the type of “product,”

e.g., Bick[23]. There is also “Timex”, which is a term within MUC that does types of

“date” and “time”, and the “numex” types “percent” and “money” are in the literature.

Marginal types are sometimes handled for specific needs for example “email address”

and “phone number” [156], “research area” and “project name” [158] and “job title”

[38].

Background 20

The ability to recognise unknown entities is an essential part of NER systems. This

ability relies upon recognition and classification rules triggered by distinctive features

associated with positive and negative examples. It can be done by handcrafted rules or

by supervised machine learning, which will automatically induce rule-based sequence

labelling algorithms or systems starting from a collection of training examples. When

there are no training examples available, handcrafted rules are applied. A noteworthy

example of this is in S. Sekine and Nobata [130] who developed a NER system with

200 entity types to acknowledge the unknown entities present on information.

The point of supervised learning for named entity recognition is to study the features

of positive and negative examples of a named entity over an extensive collection of

annotated documents and design rules that capture the type’s instances. The main issue

with this is that there must be a large amount of annotated corpora.

Tackling NER problems is accomplished using supervised learning. Supervised learning

techniques include the Hidden Markov Models (HMM) [53], Decision Trees [129], and

Support Vector Machines (SVM) [16] to name a few. These variants of the supervised

learning approach consist of a system that reads a large amount of annotated corpora,

memorises lists of entities, and then creates disambiguation rules based on different

features. A supervised learning method consists of tagging words of a test corpus

when annotated as entities in the training corpus. A baseline system’s performance will

depend on the vocabulary transfer, which is the proportion of words, without repetitions,

appearing in both the training and test corpus.

There has been some successful semi-supervised systems Ando and Zhang [12]; Suzuki

and Iszaki [142] have illustrated that unlabeled text can be used to improve NER

systems performance [119]. Qi et al [112] proposed an iterative Word Class Distribution

Learning (WCDL) framework and applied it to a set of Wikipedia webpages. WCDL

does not self-assign labels that may be subject to learning bias if the model introduces

incorrectly labelled examples to the corpus [119].

Background 21

2.4 Text Mining & Information Extraction

Text Mining obtains information resources that are relevant to the information need from

a collection of information resources. The tasks involved with text mining, for example,

are document classification and document clustering. Text Mining involves the use of

natural-language information extraction. In this instance, text mining’s relevance is that

housing and jobs listing are needed for the information need.

Text mining has received more importance as of late, according to Sebastiani [128]

due to the increasing number of electronic documents out there. The objective of text

mining is to extract information from text resources. It is pertinent to Natural Language

Processing (NLP), data mining, information retrieval, and machine learning techniques

that classify the patterns.

An early approach for text mining adopted in the 1980s involved knowledge engineering

by defining a set of rules based on expert knowledge about how to classify documents.

In the 1990s, many approaches to text mining started using machine learning techniques.

These machine learning methods involved composing an automatic classifier by learning

from a set of pre-labeled documents, which belong to specific categories. This approach

has achieved better accuracy than human experts [127]. Text categorization shares tasks

such as text mining, and information extraction [78] and can be considered an instance

of text mining [127].

Information Extraction (IE) is then an approach to text mining. Information extraction

takes knowledge from unstructured text by identifying references to the named entities

which are relationships between the entities [101]. Information Extraction is the given

name to processes that selectively structures and combines data that is found, explicitly

stated or implied, in one or more texts. The output of the extraction varies in every

situation. Still, it also involves the creation of structured representation to populate some

database. Examples could be the retrieval of documents from collections and tagging

of particular terms in the text. Information Extraction is relevant for this research as the

project requires extracting listings of information from both housing and job websites.

Background 22

Information extraction to reduce information is used frequently. An early implementation

for medical texts was devised by Sager [121]. Information extraction dates back to

the late 1970s [11]. An early commercial system from the mid-1980s was JASPER

which was built for Reuters by Carnegie Group Inc. with the aim of providing real-time

financial news to traders [154].

In 1987, Information Extraction (IE) was spurred by a series of Message Understanding

Conferences (MUC). MUC being a competition-based conference [41] that focused on

the following:

• MUC-1 (1987), MUC-2 (1989): Naval operations messages.

• MUC-3 (1991), MUC-4 (1992): Terrorism in Latin American countries.

• MUC-5 (1993): Joint ventures and microelectronics domain.

• MUC-6 (1995): News articles on management changes.

• MUC-7 (1998): Satellite launch reports.

At present, the significance of Information Extraction comes in the growing amount of

information in it unstructured form. The world wide web largely consists of unstructured

documents that lack any semantic metadata [125]. The knowledge contained within

these documents could be made more accessible for a machine by marking it up for

example by using XML tags. Typically, IE’s task is to scan a set of documents written

in a natural language and populate a database with information extracted [139].

2.4.1 Tasks and Subtasks for Information Extraction

Applying information extraction to text is linked to the problem of text simplification in

order to create a structured view of the information present in free text. The goal is

to create machine-readable text to process the sentences. The Information Extraction

tasks and subtasks include the following [42]:

• Event extraction: Given an input document, output zero or more event templates.

An example is a newspaper article might describe multiple terrorist attacks.

Background 23

• Template filling: Extracting a fixed set of fields from a document e.g., victims,

perpetrators, time. from a newspaper article about a terrorist attack. A newspaper

article may describe multiple terrorist attacks.

• Knowledge Base Population: Fill a database given a set of documents. A

database is usually in the form of triples e.g., (entity 1, relation, entity 2. e.g.,

Barack Obama, Spouse, Michelle Obama).

• Named entity recognition: recognition of known entity names e.g., people, and

organisations. Employing existing knowledge of the information extracted from

other sentences.

• Relationship extraction: identification of relations between entities, such as:

PERSON works for ORGANISATION (extracted from sentence “Bill works

IBM.”) PERSON located in LOCATION (extracted from the sentence “Bill is in

France.”).

2.5 Performance Metrics for Evaluating IR Systems

A confusion matrix, known as an error matrix, is used to describe the performance

of the classification algorithm [140]. Many evaluation measures have been proposed

and are currently employed in Information Retrieval (IR) [91]. At a basic level, an IR

system or model’s effectiveness is measured in terms of precision and recall [151].

Each row displayed in the confusion matrix represents the instances of the predicated

class while each column represents the actual instances of the class [111].

Class 1 Class 2

Predicted class
Class 1 (True Positives) (False Positives)

Class 2 (False Negatives) (True Negatives)

Table 2.1: Example of confusion matrix for two classes.

Here TP represents for the number of True Positives, FN the number of False Negatives

and TN the number of True Negatives.

Background 24

Calculating the Accuracy for each classification [107] [9], macro-averaging of the class

𝐶 accuracies occur:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
𝑁

∑︁
𝐶∈𝐶𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑃𝐶 + 𝑇𝑁𝐶

𝑇𝑃𝐶 + 𝑇𝑁𝐶 + 𝐹𝑃𝐶 + 𝐹𝑁𝐶

. (2.1)

𝐶𝑙𝑎𝑠𝑠𝑒𝑠 are the set of classes, and 𝑁 is the number of classes. In order to calculate the

Precision and Recall [9], macro-averaging is used:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1
𝑁

∑︁
𝐶∈𝐶𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑃𝐶

. (2.2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
1
𝑁

∑︁
𝐶∈𝐶𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑁𝐶

. (2.3)

In order to evaluate the performance further, F-measure is calculated as follows:

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
(
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

)
. (2.4)

2.6 Agile Software Development

Agile software development is the approach to finding solutions through a collaborative

effort. It allows for adaptive planning, development, early delivery and continual

improvement. It also encourages rapid and flexible responses to change [39].

The term agile was made famous in the Manifesto for Agile Software Development

[21]. The agile software development values are based on their combined experience of

developing software. There were seventeen signatories to the manifesto that proclaimed

that they value the following [21]:

• It would focus on individuals and the interactions instead of the process and tools.

Background 25

• It would work on ensuring the software is working instead of extensive

documentation.

• It would do customer collaboration over being a contract.

• It would respond to change instead of following a plan.

The Manifesto for Agile software development is based on principles developed in Utah

in 2001 [56]. The principles that are behind this are the following:

• The highest priority is to satisfy the customer with continuous delivery of software.

This is rather important towards this projects company partners.

• To welcome changing requirements, even if they are in the late of development.

The company partners want to be able to easily change and adapt elements at any

stage of development, making this suitable.

• To deliver working software frequently could be from a couple of weeks to a

couple of months. The company partners are relying on frequent edits to software

made.

• All people associated with the project must work together throughout the entire

project. This is suited towards this project as it keeps everyone involved from the

student, supervisor and company partners.

• To provide the individual with support and the environment they need and to

trust them. Support being provided by both the company partners and supervisor

meets the relevance of this.

• The most efficient and effective method of conveying information is to have a

face-to-face conversation.

• Working software is the primary measure of progress. The company partners

requires in this criteria for the project.

• Agile processes promote sustainable development.

Background 26

• The project team should be able to maintain a constant pace. The project follows

regular scheduled weekly and monthly meetings to ensure pace is being kept.

• There should be continuous attention to technical excellence and design.

• Simplicity is important. Maximizing the amount of work not done is important.

The company partners prefer to use ‘quick and dirty’ prototyping to allow for

effective but simple prototyping.

• Having regular intervals, so the team can reflect on how it can be more effective

and adjusts its behaviour accordingly [21].

It is essential to acknowledge the advantages and disadvantages of the different software

development approaches and why the decision has been taken to use agile software

development with rapid prototyping development.

The methodology meant for software development is considered a structure used for

planning and controlling the procedure of creating a specialised information system.

In relation to the current project, the tendency of these procedures is to offer customised

software development as per the project’s requirements. This means all software

developments must be examined before selecting which one to use 10.

2.7 Agile Development

Agile development provides the ability to create and respond to change. It is a way of

dealing with an uncertain and turbulent environment that can occur in a project such as

this. This process is best suited to this project as the user can encounter different paths

and routes, which ultimately could lead to a dead end. It would mean adaption would

need to occur. The user can think about how the user can understand what is going on

at the present moment, identify what uncertainty the user would face, and then adapt to

that as the user goes along.

10https://acodez.in/12-best-software-development-methodologies-pros-
cons/#Agile_Software_Development_Methodology

Background 27

The authors of the Agile Manifesto chose “Agile” as the label for this whole idea because

that word is represented as the adaptiveness and response to change, which was essential

to the approach [21].

The agile approach is suitable for designing and then implementing and evaluating a

piece of software carried out in this project. Alongside designing, implementing and

evaluating the software, there needs to communicate and produce rapid prototyping on

development. Using agile methodology alongside rapid prototype development is a

benefit of the process. It encourages feedback from the customers who in terms of this

project are the company partners.

Agile development also is beneficial as it allows the software to be released in iterations.

Iterative releases improve efficiency by allowing teams to find and fix defects and then

align expectations early. It also allows users to realise software benefits earlier on with

frequent incremental improvements.

A disadvantage of this method is that it relies on real-time communication, so new users

often lack documentation. It requires a big commitment in time and means that the

developer will have much labour-intensive work. Each feature will need to be fully

implemented within each iteration for company approval.

Agile software development refers to a group of software development methodologies

based on iterative development. It is where the requirements and solutions evolve by

collaboration between the supervisor, company partners and student. The agile process

fundamentally incorporates iteration and continuous feedback, refining the software

and delivering a software system.

Rapid prototyping development in which is to be considered for this project, provides

many advantages such as 11:

• It has the ability to explore and realise concepts more quickly. This efficiency in

time and cost allows people to move beyond the mere visualisation of a product

and make it easier to grasp such a product’s properties and design.

11https://www.3erp.com/blog/rapid-prototyping-advantages-applications/

Background 28

• It involves repeated designs and incorporation of changes that involves for the

evaluation and testing of a product. This iterative process provides a roadmap to

developing and refining the final product.

• It results in concepts being communicated more concisely and effectively. Rapid

prototyping takes ideas, images, concepts from paper to a visual product.

• It allows concepts to be thoroughly tested and refined as the process continues.

Minimising the design flaws with a rapid prototype allows eliminating costly

design flaws that might not be shown at early assessment.

• It allows for frequent interaction with company collaborators and provides for

regular feedback from the users.

The disadvantages of using this software development method are that it focuses on

working with the software and could lack on the documentation and get off-track as the

outcomes are not clear.

As there are many available software development models, the people involved with

this project believes it is best to work with agile software development using rapid

prototyping development as it suites the style and development processes required for

this project.

2.8 Software Development Plan

The research project conducted for this dissertation involved working in collaboration

with the KESS 2 initiative. This gave the opportunity to have an industrial Ph.D. to

research the development of several prototypes in order to investigate the feasibility of

its use for a future business for the company partners.

The plan after the prototypes were developed and fully evaluated was for the company

partners to approach investors for further investment to take the project forward in order

to fully exploit a potential financial opportunity.

Background 29

Throughout the time of the Ph.D., the company partners had meetings on a monthly

basis, where they would visit Bangor University for a few hours to discuss progression

of work and help to develop ideas. Each meeting had positive engagement between

both academic and company partners.

Weekly reports were provided to the company partners and a broad dialogue to both

the company partners and supervisor was given. The company partners had researched

heavily into the current market into what was available, and they took a keen interest

the research that was undertaken for the project, including investigations into existing

web services. Their feedback was taken into consideration for future amendments to

the prototypes.

The company partners engaged with the design process of the prototypes using the Five

Design Sheets and also took a keen interest into agile design.

The next steps from this industrial Ph.D. for the company partners are to potentially

reach out to investors and to take this research and further develop the prototypes in

order to create a product for public use.

2.9 Summary and Discussion

This chapter has examined the background to the topics that are presented in the

following chapters. We have reviewed Information Retrieval and relevant methods

that have been used in the subsequent chapters. We have also reviewed the subject

areas of Information Extraction, Text Mining and Web Scraping. This chapter also

reviewed existing Named Entity Recognition software since it is related to the web

mining approach adopted for this project.

Background 30

Chapter 3

A review of existing web services

The purpose of this chapter is to give a review of existing web services. This chapter

investigates various existing web services that are relevant to the objectives (stated in

section 1.3) of producing a review of existing web services.

3.1 Existing Web Services

Mapping solutions on the web are a growing people are searching for places of interest,

addresses, and exploring information related to geographical locations. Google Maps

API 1 allows the user to integrate data in a manner that is usable to the user. A good

example of how Google Maps API has been used is in the Deepwater Horizon oil spill

in the Gulf of Mexico back in 2010. Google Maps used to show the development of

spread over time visualised with different colours, and the shapes indicate the flow as

shown in figure 3.1 [143].

1https://pypi.python.org/pypi/googlemaps/

31

Figure 3.1: The impact of the Deepwater Horizon oil spill visualized in Google Maps [143]

Due to the ever-evolving development of Google Maps API (Application Programming

Interface), 2, there are many third-party applications and custom maps that have

annotation. Examples of how good applications and custom annotated maps are, is the

Health QOF (Quality and Outcomes Framework) database and the London July 2005

Terrorist Attacks map. As Google Maps has an extensive acknowledgement of XML

(eXtensible Markup Language), users are able to produce their own custom annotated

Google maps, e.g., based on their own GPS (Global Positioning System) location data,

the user could even tie in images and video to create interactive multimedia maps.

Zoopla 3, a housing website in the United Kingdom, uses SmartMaps that allows you to

view houses and flats for sale in the United Kingdom. The website allows the user to

search an area of interest by editing their area boundaries or drawing directly on the

map. Zoopla allows the user to search in a region that does not show the user housing,

but it also shows the user points of interest that are to the houses the user is viewing.

2https://console.developers.google.com
3https://www.zoopla.co.uk/for-sale/map/property/gwynedd/bangor/

A review of existing web services 32

Figure 3.2: Zoopla’s Smart Maps

The example shown in Figure 3.2 allows you to be able to visually see on the map the

housing locations using pins, similarly to how this project does. It also allows any

nearby points of interest such as shopping locations, health and education locations to

be visualised. Zoopla has done this by using Google Maps API, to overlay data that is

in a structured manner which provides data of the nearest amenities.

Figure 3.3: Rightmove’s Smart Maps

As shown in figure 3.3, Rightmove has a similar style to Zoopla although the main

difference is that it’s only showing the housing within the area and not the points of

A review of existing web services 33

interest. Similarly to Zoopla, Rightmove, a housing website in the United Kingdom

uses a map version of results, with a similar style to Zoopla.

Primelocation, a housing website in the United Kingdom, uses SmartMaps that allows

you to view houses and flats for sale in the United Kingdom. Notably, the company

also uses Zoopla’s map functionality although it is coloured different. This allows the

user to search for exactly where the user is interested in drawing an area boundary.

Primelocation allows the user to search in a region that does not show the user housing.

However, it also shows the user the local points of interest to the houses the user is

viewing.

Figure 3.4: Primelocation’s Smart Maps

3.2 Features and Services

An investigation has been conducted into the different features and services that have

been used for jobs and housing websites. The purpose is to gain a better understanding

of what is currently out there in the marketplace, what features are being used and why

they have been selected to help promote listings to potential customers.

This investigation has shown the following features are being used:

A review of existing web services 34

• keyword search;

• advanced search options;

• distance filters;

• saved searches’

• blog articles / information’

• property alerts;

• iOS/Android app;

• property guides / resources;

• map based interface;

• place search;

• job alerts via email.

These will now be discussed in more detail in the sections below.

3.2.1 Keyword Search

In traditional database applications, queries are fully specified by structured queries. In

this regard for the housing and job websites, the first task in our investigation was to

perform a keyword search as the information is not fully specified by a structured query.

A keywords search produces query results that gather relevant information that is usually

fragmented and scattered across multiple areas [31]. This feature was selected as it is

a known element of searching of stored information, and also provides the additional

ability to do incremental searching as an option as shown in figure 3.5. This is where

the user has the ability to search for a location of a job or housing and a keyword of a

job occupation.

A review of existing web services 35

Figure 3.5: An example of a keyword Search — Rightmove website

Incremental search is where the user typing text is provided with further real-time

suggestions in real-time via the user interface as in the example shown in figure 3.5.

As the user types text, one or more matches for the text are found and immediately

presented to the user. This immediate feedback allows the user to stop short of typing an

entire word they were looking for. This also allows the user to choose a closely related

option from the list presented.

Rightmove Zoopla Onthemarket Primelocation Trulia Monster JobSite Reed Cv-library Total Jobs Fish4Jobs

Incremental Searching ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Table 3.1: Incremental Searching on Job and Housing websites

Table 3.1 indicates which of the housing and job websites that were investigated provides

Incremental Searching. Only one website, Fish4Jobs, does not provide this feature.

This shows that incremental searching is being used broadly across housing and job

websites.

A review of existing web services 36

3.2.2 Advanced Search Options

Keyword search is the default standard for modern applications of Information Retrieval

(IR) such as Web search. Advanced search is the ability to take further search criteria

options from the user. Allowing advanced search options not only is helpful for the query

but it can produce more enhanced results as more specified information is being asked

from the outset. This was the reason why this feature was included in our investigation.

This approach is powerful although it does not support users well when they have

complex questions or they may have insufficient pre-search knowledge. Additionally,

the system which is being used maybe poorly-defined or has unpredictable indexing

[155].

Figure 3.6: An example of standard search and advanced search options — Zoopla website

A review of existing web services 37

In figure 3.6, the options in the blue outlined square are the keyword search options

available to the user upon visiting the website. The options in the red outlined square

are the advanced search options. This is an example of where the user can enter further

information of what was initially loaded to the user upcoming arriving to the website.

3.2.3 Distance Filters

In housing and job websites, the ability for the user to expand the distance from the

original set query is a useful way for them to search for more relevant results. If the user

were to take the keyword search of ‘Bangor, Gwynedd’, a useful feature many websites

provides is to allow the the user to expand the search location zone as shown in the

example in figure 3.7.

Figure 3.7: An example of the use of Distance feature — Rightmove website

3.2.4 Saved Searches

Saved searching is the ability of users for the website to keep a record of what they have

been searching for so that they can refer back to past searches. An example of this is

shown in figure 3.8. This feature also gives an indication whether there have been any

new listings since they have last visited.

A review of existing web services 38

Figure 3.8: Saved Searches — Indeed website

3.2.5 Blog Articles / Information

Blog Articles and information about the company is a feature that potential customers

could use to find further information about the company, trends or interesting property

news. An example of this is shown in figure 3.9 4

Figure 3.9: Blog Articles — Rightmove website

3.2.6 Property Alerts

Property Alerts is the ability to be informed of the latest housing that gets listed on the

website. This can be helpful for potential customers seeking out new properties on the

market as soon as they become available. This is shown in figure 3.10.

4https://www.rightmove.co.uk

A review of existing web services 39

Figure 3.10: Property Alerts — Rightmove website

3.2.7 iOS/Android App

To expand getting more customers, it is important to have a mobile application to

view websites listings. This could benefit users that do not have a laptop or a desktop

machine. This feature was decided by the company partners as without the use of a

bespoke mobile application it could limit the potential customers who can view the

listings. Jobsite advertise on the homepage there iOS and Android application. This is

shown in figure 3.11 5.

Figure 3.11: iOS App — Jobsite website

5https://www.jobsite.co.uk

A review of existing web services 40

3.2.8 Property Guides / Resources

A housing website providing guides to potential buyers can be helpful. In this regard,

new home buyers could be needing a helping hand from the company in question, so

having resources available can show credibility and trust from the company to the

customer. An example from Zoopla is shown in the figure 3.12.

Figure 3.12: Property Guides / Resources — Zoopla website

3.2.9 Map Based Interface

This project investigates the use of a Map Based Interface for jobs and housing listings.

It is important to explore housing and job websites on if they have this built in already.

It is noted that housing websites provide a Smart Map, this being the ability to see

housing on a map where as jobs do not. An example of a Smart Map that Zoopla uses

A review of existing web services 41

can be seen in figure 3.13. The figure uses pins to show the locations of the housing

and has the ability of showing points of interest nearby 6

Figure 3.13: Smart Map — Zoopla website

3.2.10 Place Search

Instead of having the ability to search a keyword, various websites have the ability for

the user to search by a place. An example can be seen in figure 3.14. This is place

searching on the homepage for Reed 7.

Figure 3.14: Place Search — Reed website

6https://www.zoopla.co.uk
7https://www.reed.co.uk

A review of existing web services 42

3.2.11 Quick Searches / Featured Jobs

The ability to quickly search for example a sector of industry in a job can be beneficial

to the user. A user could be in a situation where they just want to browse in different

areas and not think of specific keywords to use. Reed has put quick searching available

on the homepage. Reed’s example can be seen in figure 3.15. Reed has placed trending

jobs in the form of a button, which will take you to a listing of the criteria pressed.

Figure 3.15: Quick Searches — Reed website

3.2.12 Job Alerts via Email

The ability to get job alerts via email is another area of how potential customers could

be alerted of new jobs. The item was decided by the company partners as the ability to

show listings can be performed outside the usual way of a website. Figure 3.16 shows

from Indeed the email listings of new jobs that a user has signed up for a specific area

and keyword.

Figure 3.16: Job Alerts via Email — Indeed website

A review of existing web services 43

3.3 Features and Services of Housing Websites

Website URL Date Service Started Amount Of Users

Rightmove https://www.rightmove.co.uk January 2000 250 million unique visitors each month

Zoopla https://www.zoopla.co.uk January 2008 Approx 39 million unique visitors each month

Onthemarket https://www.onthemarket.com January 2015 Approx 22 million unique visitors each month

Primelocation https://www.primelocation.com January 2001 Approx 10 million unique visitors each month

Trulia https://www.trulia.com January 2004 Approx 59 million unique visitors each month

Table 3.2: Key Information of Housing Websites

The criteria for deciding the features on housing websites is to review each website

and make a note of all features that have been used on the website. This is needed to

understand what is being provided by these websites and what is not. Listed in table 3.2

are some key information about the different housing websites being investigated.

Features Rightmove Zoopla Onthemarket Primelocation Trulia

Keyword Search ✓ ✓ ✓ ✓ ✓

Advanced Searches ✓ ✓ ✓ ✓ ✓

Distance ✓ ✗ ✗ ✗ ✓

Saved Searches ✓ ✓ ✗ ✗ ✓

Blog Articles / Information ✓ ✓ ✓ ✓ ✓

Property Alerts ✓ ✓ ✓ ✓ ✓

iOS/Android App ✓ ✓ ✓ ✓ ✓

Property Guides / Tools / Resources ✓ ✓ ✗ ✓ ✓

Map Based Interface / Property Maps / Smart Maps ✓ ✓ ✓ ✓ ✓

Table 3.3: Features and Services with Housing Websites

The results from the table 3.3, indicate that the majority of every housing website

checked have many features from keyword search to mobile apps. Rightmove and Trulia

were the only two websites that had all the features and services mentioned. Zoopla,

Onthemarket and Primelocation do not allow the ability to search with distance filters.

Each housing website notably has a map-based interface, which gives the ability to see

listings on a map. Each website is similar in regards to having pins. The pins on each

website are the logo of the business. The map-based interfaces also provide the ability

for users to set different way points to find results in a region and only in that region.

The map-based interfaces also provide the opportunity at looking at areas of interest.

A review of existing web services 44

3.4 Features and Services of Job Websites

Websites URL Date Service Started Amount Of Users

Monster https://www.monster.co.uk January 1999 Approx 10 million unique visitors each month

Jobsite https://www.jobsite.co.uk January 1995 Approx 750,000 unique visitors each month

Reed https://www.reed.co.uk January 1995 Approx 8 million unique visitors each month

CV-library https://www.cv-library.co.uk January 2000 Approx 8 million unique visitors each month

Total Jobs https://www.totaljobs.com January 1999 Approx 14 million unique visitors each month

Fish4Jobs https://www.fish4.co.uk January 1999 Approx 350,000 unique visitors each month

Indeed https://www.indeed.co.uk November 2004 250 million unique visitors each month

Table 3.4: Key Information of Job Websites

The criteria for deciding the features on jobs websites is to review each website and

make a note of all features that have been used on the website. This is needed to

understand what is being provided by these websites and what is not. Listed in table 3.4

are some key information about the different job websites being investigated.

Features Monster Jobsite Reed Cv-library Total Jobs Fish4Jobs Indeed

Keyword Search ✓ ✓ ✓ ✓ ✓ ✓ ✓

Place Search ✓ ✓ ✓ ✓ ✓ ✓ ✓

Quick searches ✗ ✗ ✓ ✓ ✓ ✗ ✓

Distance ✗ ✓ ✗ ✓ ✓ ✓ ✓

Upload/Build CV ✓ ✓ ✓ ✓ ✓ ✓ ✓

Career Advice and Resources ✓ ✗ ✓ ✓ ✓ ✓ ✓

Saved Searches/Jobs ✓ ✓ ✓ ✓ ✓ ✗ ✓

Job Alerts via Email ✓ ✓ ✓ ✓ ✓ ✓ ✓

Blog Articles / Information ✓ ✓ ✓ ✓ ✓ ✗ ✓

Featured Jobs ✓ ✓ ✓ ✓ ✓ ✓ ✓

iOS/Android App ✓ ✓ ✓ ✓ ✓ ✗ ✓

Map Based Interface ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 3.5: Features & Services with Job Websites

The results from table 3.5 indicate that the majority of every job website checked have

many features from the keyword search to job alerts and mobile apps. Notably, the

searched job websites don’t have Map Based Interfaces, which allows users to use a

map to set a radius to see different jobs within a region.

A review of existing web services 45

The potential reason why these job websites do not have a Map Based Interface is

because they do not need to be as restrictive as housing. For example, searching with

a query such as ‘java programmer’, results indicate multiple unrelated search queries

which can frustrate the user as it’s not what they have queried for.

3.4.1 Job Websites Results
Queries Further Detail Fish4Jobs (%) Jobsite (%) Indeed (%) Monster (%)

Fashion Jobs Contract Type: Permanent. Hours: Full Time 25.00 94.00 56.00 46.00

computer science Contract Type: Permanent. Hours: Full Time 82.50 97.00 87.50 24.00

accountant Wales 60.00 62.50 60.00 62.00

accountant Within 25 miles of North Wales. Sectors: Accountancy 100.00 59.80 78.00 68.00

academic librarian Within 15 miles of North Wales. Sectors: Accountancy 42.85 0.00 43.00 45.00

animator jobs Full time, UK 0.00 64.00 100.00 70.00

estate agents 35 miles of North Wales 50.00 76.00 31.00 80.00

web designer Part time, 15 miles within LL57 38.00 92.00 60.00 87.00

engineering manager Full time, £30,000, Wales 75.00 64.00 48.00 61.00

finance advisor Contract Type: Part Time, within 20 miles of Cardiff 95.00 53.00 31.00 41.00

Average (%) 57.00 66.00 59.00 58.00

Table 3.6: Precision Results for Job Websites

In the table 3.6, these are the queries that were randomly selected to be searched by

the company partners for the the job websites. The first search results page of each

listing were noted and then checked to see if they were relevant to the query in question.

Precision was used to calculate the result.

In table 3.6, the queries column is the keyword that has been entered on each of the

job websites. The further detail column is any additional options on the search, known

as advanced searching. Precision is used and calculated as described in section 2.8 to

evaluate the listing results. The following will now discuss each of these websites.

Overview of Fish4: Fish4 allows you to enter keywords to find jobs within a region,

salary amount, contract type and sectors. Although after applying several filters to

narrow down a result, it either returns with very limited results or the website is unable

to find results. Notably, if the user were to remove the filters, the listings show results

of what the filter should pick up on when applied. A significant amount of results do

not have any relevance to what has been searched for. The ability to provide multiple

criteria in advanced searching provides a limited amount of search results. Despite the

A review of existing web services 46

listings having the criteria required by the filter, the results do not show the relevant

results.

Overview of JobSite: Jobsite tackles the accuracy better compared to Fish4. Keywords

that are provided by the user are highlighted in bold to emphasis the relevance to what

the user has requested. A quarter of the results from the results page show unrelated

query results. This is where results are showing outside the scope of what the user

entered.

Overview of Indeed: Indeed is one of the most popular job-hunting websites 8. Notably,

the results were found to be more focused on basic keyword searches. When adding

further options to the query, the results changed considerably. This led to fewer quality

results being returned.

Overview of Monster: The results indicated that the results were accurate without

advanced searching. Using advanced searching such as applying a region, this provided

results outside of the region which highly affected the precision results.

3.4.2 Housing Websites Results

In the table 3.7, these are the queries that were randomly selected to be searched by the

company partners for the the housing websites. The first search results page of each

listing were noted and then checked to see if they were relevant to the query in question.

Precision was used to calculate the result.

Query details Precision (%)

Location Price Range Property Type
Number of

bedrooms

Number of

bathrooms
Rightmove Zoopla Primelocation

LL57 £80,000 Semi-detached 3 1 100 100 100

LL29 £120,000 Detached 4 2 100 100 100

Conwy £35,000 — £50,000 Any 1 1 100 100 100

Colwyn Bay £50,000 Any 2 1 100 100 100

Rhos-on-Sea £120,000 — £140,000 Detached 4 2 100 100 100

Bangor £60,000 — £100,000 Terraced 2 1 100 100 100

Llanberis £50,000 Semi-detached 2 1 100 100 100

Abersoch £40,000 — £160,000 Detached 4 2 100 100 100

Average 100 100 100

Table 3.7: Precision Results for Housing Websites

8http://www.alexa.com/siteinfo/indeed.co.uk

A review of existing web services 47

The following will now discuss each of these websites.

Overview of Rightmove, Zoopla & Primelocation: Integration of a map based

interface has significantly improved the results provided. The interface of results

provides several views of either a list, grid or a map. On the right hand side of the

website, an outline is provided of a Google Map where results are within the radius

circle and outside of that area results aren’t provided. This is more effective for the user

as the query of what they are requesting is getting fulfilled without clutter.

3.4.3 Precision of existing web-based services of adhoc queries

Further investigation was undertaken to determine the precision of multiple job websites.

The purpose for this was to determine the effectiveness of existing websites. Precision

is calculated as discussed in section 2.8.

An investigation was conducted into various job websites to find out the precision of the

jobs that were returned for specific search queries. The criteria that set out to identify

the job websites were as follows:

• Was the postcode found in the location field of the job on the website? Y/N.

• Was the postcode explicitly found in the text? Y/N.

• Was the name of business/organisation explicitly in the text? Y/N.

• Was the postcode needed to be found manually by searching elsewhere? Y/N.

• Is the postcode Unknown due to the listing being an agency? Y/N.

• Is location Unknown when doing manual searching of the web?

The three job websites that were investigated were Indeed, Reed and Jobsite. A total of

100 adhoc queries were made per website. The full detailed results can be found below

9.
9https://www.dropbox.com/s/n0s01jl1v5oa3wi/QueriesIndeed3.xlsx?dl=0

A review of existing web services 48

3.4.4 Indeed Results

In table 3.8, the investigation into Indeed’s website job data indicates how out of 100

queries taken to find the location data, just below half of results were agency listings.

These listings are vague on information and do not provide the user with specific

location information. It also adds complications to as due to the vague information

provided, it’s hard to figure out where the job is located.

Postcode

found in

location

Postcode

explicitly

found

in text

Name

explicitly

in text

Found

postcode

manually

Unknown,

agency
Unknown

Yes (%) 1 6 52 49 45 2

No (%) 99 94 48 51 55 98

Table 3.8: Accuracy of identifying location data from Indeed website data

3.4.5 Reed Results

In the table 3.9, the investigation into Reed’s website job data indicates how out of 100

queries taken to find the location data, no postcode could be found in the location field

of the 100 listings. 66 of the listings came from agencies for which the specifc job

location could not be found.

Postcode

found in

location

Postcode

explicitly

found in

text

Name

explicitly

in text

Found

postcode

manually

Unknown,

agency
Unknown

Yes (%) 0 7 31 31 66 2

No (%) 100 93 69 69 34 98

Table 3.9: Accuracy of identifying location data from Reed website data

3.4.6 Jobsite Results

In table 3.10, the investigation into Jobsite’s website job data indicates how out of 100

queries taken to find the location taken, the ability to find the postcode in the listing

A review of existing web services 49

itself found 28 results where the postcode could be found in the location field. 23 results

could find the postcode explicitly in the text and 30 results could be found in the name

of the listing itself.

Postcode

found in

location

Postcode

explicitly

found in

text

Name

explicitly

in text

Found

postcode

manually

Unknown,

agency
Unknown

Yes (%) 28 23 30 4 67 2

No (%) 72 77 70 96 33 98

Table 3.10: Accuracy of identifying location data from Jobsite website data

3.4.7 Conclusion

Overall the results from searching indicate for job websites to find a location of a

job, the specifics of the whereabouts of a listing is difficult. Each of the job websites

investigated an average of 60% of listings were unknown due to them being agency

classed jobs. In this case, it would require the user to enquire about the job and wait for

a response back from the agency. For an average of 88% of the listings overall, the user

cannot find the postcode explicitly in the text. In order to find the postcode and location

details further, a manual search outside of the host website has to be done. An average

of 28% found listings location details from outside of the website.

The results strongly motivate the need for an integrated approach to job and housing

searches as advocated for this project. This is because the quality of job information

currently being provided is poor and also that there is no platform that we are aware out

there that can provide jobs and housing together. The results show that accommodation

web-based search does well, as the incentive of providing full accurate details to the user

upon the search is wanted. In contrast, job sites provide minimal information of where

the location of the jobs are and require you to get in contact for further information.

A review of existing web services 50

Chapter 4

A System for Web Mining of Job and

Housing information using PPM

4.1 Summary

This chapter describes an investigation into a new approach of web mining using the

PPM character-based text compression scheme. It describes the design, implementation

and evaluation of a web mining system called Merlin that uses the new approach. For

the evaluation, the focus is on specifically two types of websites: jobsites; and sites

that provide housing information. The effectiveness of the character based approach at

identifying unstructured text from the web is analysed using standard measures (Recall,

Precision, Accuracy and F-measure) by comparing it to ground truth data. The Merlin

system’s standard measures are then compared to another state of the art toolkit.

4.2 Introduction

This chapter investigates a new approach to web mining using the PPM Prediction by

text compression scheme. PPM has been used as it effective at many natural language

processing applications and therefore an investigation to see how it performs at web

mining with a specific focus on housing websites and job websites is of interest as it

relates to the objective of developing and evaluating a named entity tagger related to

jobs and accommodation.

The challenge with information extraction from websites is that they are noisy and

unstructured web based sources. Websites also change over time meaning standard

approaches (such as regular expressions where a specific pattern is used to extract

51

specific data from the web page) often do not work if the layout or identification of the

elements change [118].

The purpose of this chapter is to evaluate the effectiveness of a novel approach to web

mining by applying Prediction by Partial Matching (PPM) on website data, in particular

looking at accommodation websites and job websites. Specifically, the approach adopts

PPM techniques at marking up unstructured data using the Tawa toolkit [150].

The rest of this chapter is organised as follows. The design of the Merlin system is

described in the next section. This is followed by the implementation of the Merlin

system and the evaluation of the Merlin system.

The Merlin system’s standard measures are compared to spaCy. spaCy is an open-source

software library for advanced natural language processing.

4.3 Prediction by Partial Matching (PPM)

Prediction of Partial Matching (PPM) was introduced by Cleary and Witten [35]. It is

an adaptive lossless text compression method that processes characters in the text in a

sequential manner.

The PPM compression algorithm applies a statistical model that uses the number of

previous symbols to determine the model’s maximum order to predict the next symbol.

For example, if the PPM model’s maximum order is 4, the probability of the upcoming

symbol will be estimated based on the four previous symbols. There are several

variations of PPM, such as PPMA and PPMB [35], PPMC [97], PPM [36] and PPMO

[157].

Predictions are reduced to symbol rankings. Each symbol could be a letter or a character

ranked before it is compressed and the ranking system determines the corresponding

codeword. The ranking system determines the corresponding codeword (and therefore,

the compression rate). In compression algorithms, it is known that the ranking is

equivalent to probability mass function estimation. Given the previous letters (or given

a context), each symbol is assigned with a probability.

A System for Web Mining of Job and Housing information using PPM 52

For PPM, a variable order Markov-based model is updated dynamically as the text is

processed with both the encoder and decoder maintaining the same model at each stage

of the encoding and decoding processes. In order to predict the upcoming character in

the text, there is finite context used to predict the upcoming character [88].

PPM uses a fixed full context to make its initial prediction. (This defines the “order” of

the model).

It is known that text compression experiments with English and other natural language

texts have shown that a fixed maximum context length of 5 (an order of 5 model) works

the best. The method estimates probabilities for the upcoming character.

The model uses an “escape” mechanism according to the terminology defined in the PPM

literature, that ultimately smoothes the probability estimates by backing-off to a shorter

context when novel characters are experienced (e.g., those with zero probabilities).

The backing-off process may need to be undertaken multiple times in order to be able

to find the context where the character can be predicted. For characters that may not

have been seen anywhere previously in the text, the default order -1 context is used to

predict every character with equal probability.

Many escape methods have been devised in the past and have been used to define how

the escape probability is estimated. These escape methods are described in the literature

as PPMA and PPMB, for example.

The PPMC variant was developed by Moffat [97] and has now become the benchmark.

The probability of PPMC is based on using the number of characters that have occured

before, called the number of types:

𝑒(𝑋) = 𝑡 (𝑋)
𝑓 (𝑋) + 𝑡 (𝑋) and 𝑝(𝑥𝑖 |𝑋) =

𝑐(𝑥𝑖 |𝑋)
𝑛(𝑋) + 𝑡 (𝑋) (4.1)

where 𝑒(𝑋) represents the probability of the escape symbol for context 𝑋 , 𝑝(𝑥𝑖 |𝑋)

denotes the probability for character 𝑥𝑖 given context 𝑋 , 𝑐(𝑥𝑖 |𝑋) is the number of times

the context 𝑋 was followed by the character 𝑥𝑖, 𝑓 (𝑋) is the total number of times that the

A System for Web Mining of Job and Housing information using PPM 53

context X has occurred and the 𝑡 (𝑋) denotes the total number of types of the predictions

in that context [88].

There is another variant called PPMD variant by Howard in 1993 [69]. This variant is

similar to the PPMC variant with the exception that each count is incremented by a 1/2:

𝑒(𝑋) = 𝑡 (𝑋)
2 𝑓 (𝑋) + 𝑡 (𝑋) and 𝑝(𝑥𝑖 |𝑋) =

2𝑐(𝑥𝑖 |𝑋) − 1
2 𝑓 (𝑋) . (4.2)

Usually text compression algorithms are two types: statistical or dictionary-based [123].

The dictionary based methods use a dictionary data structure to save fragments of text

found in the original text. Whilst reading through the fragmented text, if there is a match

found in the dictionary, then a pointer to the dictionary entry is made in the compressed

stream, otherwise a new entry is added to the dictionary.

Statistical methods create statistical models of the text, where probabilities are allocated

to the input symbols. When the models are created, the coding is performed which

uses the model to encode the symbols. There are two different ways of creating the

models: context or frequency. Using a frequency model, the text symbols are allocated

probabilities which are dependent upon how often the symbol has appeared in the text.

Text symbols that appear more often are given shorter codes in most cases.

Context-based models, where the text symbol appears following a usually fixed-length

prior sequence of symbols (called the “context”), are also used to estimate symbol

probabilities. The encoder relies on the symbol’s past appearance earlier in the text

to calculate the probability. Context based models usually use an “order-N” Markov

model, where N is the number of symbols considered prior to the examined text symbol.

An example of a context-based compression system is the Prediction by Partial Matching

(PPM) text compression algorithm. PPM is regarded as one of the most effective

text compression algorithms available [89] [94]. PPM has the ability of streaming

compression, meaning the statistical models are adaptively updated as the compression

occurs. PPM is an example of an adaptive statistical based compression system, that has

the characteristics of carrying out the two main processes such as coding and modeling.

A System for Web Mining of Job and Housing information using PPM 54

The model builds a table of probabilities of all the symbols encountered in the context

so far, then uses this to predict what the next symbol might be. The compressor encodes

the actual symbol using the probability distribution that is used by the model. This uses

a Markov based-approach where the last few characters in the input stream, known as

the context, are used to predict what the next character is. The number of characters

used in the context is then used to define the order of the model. For example, a context

of length 1 is used for an order 1 model.

As each symbol is encoded, the probability distribution models for each order are then

created. The models are then combined into a single one using the escape mechanism,

which predicts the upcoming character using the highest fixed order first. Although this

may then “backs off” to a lower order model if the upcoming character has not been

seen.

The compression code length h for encoding a symbol 𝑠𝑖 in bits using an order 5 PPM

model can be represented by equation 4.3:

ℎ(𝑠𝑖) = −𝑙𝑜𝑔2𝑃(𝑠𝑖 |𝑠𝑖−5𝑠𝑖−4 . . . 𝑠𝑖−1). (4.3)

PPM usually starts with the highest order, k, that is requested by the user. Whilst

observing the symbols, if a new symbol is observed that has not been seen before, an

escape symbol is issued. The escape sequence then tells the PPM to reduce the order by

1 until the symbol is no longer novel. This escaping process may have to repeat if the

shorter contexts still aren’t able to predict the symbol.

If the order k reaches -1, then the same probability of 1
|𝐴| is assigned to all of the

characters. The A represents the size of the alphabet. The effect of the escape mechanism

is to “smooth” the probability estimates.

PPM also uses the technique of “full exclusion” where, when the escape mechanism is

used, all the symbols that were already predicted by higher orders are excluded.

A System for Web Mining of Job and Housing information using PPM 55

There are two prominent variants to PPM that have been made that use different methods

for calculating the escape probabilities, method C and method D. (These are called

PPMC and PPMD). Two equations are used for calculating the prediction probabilities,

one for calculating the escape probability, e, and one to calculate the probability of a

symbol occurring, p(s).

The equations for PPMC are shown in equations 4.4 and 4.5. The equations for PPMD

are shown in 4.6 and 4.7 [4]:

𝑒𝑃𝑃𝑀𝐶 =
𝑡

𝑛 + 𝑡
(4.4)

𝑝(𝑠)𝑃𝑃𝑀𝐶 =
𝑐(𝑠)
𝑛 + 𝑡

(4.5)

𝑒𝑃𝑃𝑀𝐷 =
𝑡

2𝑛
(4.6)

𝑝(𝑠)𝑃𝑃𝑀𝐷 =
2𝑐(𝑠) − 1

2𝑛
(4.7)

In the context of the above equations:

• t is the number of types that follows the context.

• n is the number of times a context has occurred.

• c(s) is the number of times a context was followed by the symbol s.

PPMD increments the symbol count by 2 when a previously seen symbol is encountered,

but increments the escape count by 1 and then assigns the initial symbol count of 1

for symbols that have not been seen before in the context. PPMC on the other hand

estimates the probability for each symbol that uses the raw frequency and assigns

A System for Web Mining of Job and Housing information using PPM 56

the number of types t to the escape count for estimating the probability of an escape

occurring when an upcoming symbol is previously unseen in the context.

In order to illustrate our PPMD works, it has been shown that PPMD outperforms

PPMC in most compression experiments. Table 4.1 shows what the PPMD model looks

like after it has encountered the string llanfairfechan.

Order 𝑘 = 2 Order 𝑘 = 1 Order 𝑘 = 0 Order 𝑘 = −1
Predictions 𝑐 𝑝 Predictions 𝑐 𝑝 Predictions 𝑐 𝑝 Predictions 𝑐 𝑝

ll → a 1 1
2 l → l 1 1

4 → l 3 3
28 → 𝐴 1 1

|𝐴|
→ 𝐸𝑠𝑐 1 1

2 → a 1 1
4 → a 5 5

28
→ 𝐸𝑠𝑐 2 2

4 → n 3 3
28

la → n 1 1
2 → f 3 3

28
→ 𝐸𝑠𝑐 1 1

2 a → n 3 2
6 → i 1 1

28
→ i 1 1

6 → r 1 1
28

an → f 1 1
2 → 𝐸𝑠𝑐 2 2

6 → e 1 1
28

→ 𝐸𝑠𝑐 1 1
2 → c 1 1

28
n → f 1 1

2 → h 1 1
28

nf → a 1 1
2 → 𝐸𝑠𝑐 1 1

2 → 𝐸𝑠𝑐 9 9
28

→ 𝐸𝑠𝑐 1 1
2

f → a 1 1
4

fa → i 1 1
2 → e 1 1

4
→ 𝐸𝑠𝑐 1 1

2 → 𝐸𝑠𝑐 2 2
4

ai → r 1 1
2 i → r 1 1

2
→ 𝐸𝑠𝑐 1 1

2 → 𝐸𝑠𝑐 1 1
2

ir → f 1 1
2 r → f 1 1

2
→ 𝐸𝑠𝑐 1 1

2 → 𝐸𝑠𝑐 1 1
2

rf → e 1 1
2 e → c 1 1

2
→ 𝐸𝑠𝑐 1 1

2 → 𝐸𝑠𝑐 1 1
2

fe → c 1 1
2 c → h 1 1

2
→ 𝐸𝑠𝑐 1 1

2 → 𝐸𝑠𝑐 1 1
2

ec → h 1 1
2 h → a 1 1

2
→ 𝐸𝑠𝑐 1 1

2 → 𝐸𝑠𝑐 1 1
2

ch → f 1 1
2

→ 𝐸𝑠𝑐 1 1
2

ha → n 1 1
2

→ 𝐸𝑠𝑐 1 1
2

Table 4.1: PPMD model after processing the string llanfairfechan with maximum order of 2.

As an illustration of the operation of PPM, Table 4.1 shows the state of the four models

with order k = 2, 1, 0 and -1 after the input string “llanfairfechan” has been processed.

For each model, all previously occurring contexts are shown with their associated

A System for Web Mining of Job and Housing information using PPM 57

predictions, along with occurrence counts 𝑐 and the probabilities 𝑝 that are calculated

from them. By convention, order 𝑘 = −1 designates the bottom-level model that predicts

all characters equally; it assigns them each probability 1
|𝐴| where A is the alphabet used.

If the next character in the string to be is a, we must take the prediction ll→a using the

order 2 context. Since the character a has been seen once before in the context ll, then a

probability of 1
2 will be assigned by using equation 4.7 as 𝑐 = 1.

However, if the subsequent character has not been seen previously in the order 2 context

(i.e. presuming the next letter would be n instead of a, say), it will be necessary to

conduct an escape procedure or back off to a lower order. In this case, the escape

probability will be 1
2 (calculated by equation 4.7), and a lower order of 1 will then be

used to make the prediction.

Prediction by Partial Mapping (PPM) is used in various natural language processing

and text mining applications. Teahan and Harper [149] in 2003 used PPM to recognise

the most relevant author of the text. Khmelev and Teahan [76] and Al-Kazaz and

Teahan [75] in 2016 used PPM to perform the automatic cryptanalysis of cyphers and

word segmentation in order to make the decoded text more readable. Altamimi and

Teahan [10] in 2017 used PPM to classify gender. Alamri and Teahan [5] used PPM for

the automatic correction of Arabic dyslexic text. As far as we know, no research before

this study has used PPM for web mining purposes and information extraction.

4.4 Successful use of PPM in other tasks

Prediction by Partial Mapping has had many successful uses in other tasks. Altamimi

[10] produced a paper on gender and authorship categorisation of Arabic text from

Twitter using PPM and achieved 90% and 96% accuracy for gender and authorship

respectively.

Tarmom [145] produced a comparison of PPM with a traditional machine learning

classifier Sequential Minimal Optimisation (SMO), implemented in Weka, working

on Arabic text taken from Facebook. The paper detailed research on ways to detect

code-switching in Arabic text automatically. Three experiments were conducted in order

A System for Web Mining of Job and Housing information using PPM 58

to: detect code-switching among Egyptian dialect and English, detect code-switching

among the Egyptian dialect, the Saudi dialect and English and detect code-switching

among the Egyptian dialect, the Saudi dialect, Modern Standard Arabic and English.

The experiments showed that PPM achieved a higher accuracy rate than SMO with

99.8% vs 97.5% in the first experiment and 97.8% vs 80.7% in the second. The third

experiment did receive a lower accuracy rate than SMO with 53.2% vs 60.%.

Classifying and Segmenting Classical and Modern Standard Arabic using Minimum

Cross-Entropy using PPM was a paper by Alkhazi [7]. Text classification was used to

process and assign the text to various predefined classes or categories to reflect their

contents. The paper adopts a PPM character-based compression scheme to classify and

segment Classical Arabic (CA) and Modern Standard Arabic (MSA) texts. The samples

produced in the paper resulted in an accuracy of 99.5%, an average precision of 0.958,

an average recall of 0.955 and a F-Measure of 0.954.

Classifying dyslexia text using PPM was a paper by Alamri and Teahan [150] and

achieved 100% accuracy on English and Arabic texts. Al-Kazaz [75] produced

cryptanalysis of transposition ciphers using PPM training and codelength. The paper

introduced a compression-based method adapted for the automatic cryptanalysis of

Arabic transposition ciphers. The paper presents how PPM performs when applied to

the different natural language processing tasks. The samples produced in the paper

resulted in 100% decryption of 90 cryptograms; 0.963 recall and precision after space

insertion.

Alkahtani [6] produced English-Arabic bilingual sentence alignment using PPM. The

paper discusses a new metric that has been applied to verify the quantity in translation

between sentence pairs in parallel corpora of Arabic-English. The results produced in

the paper show a 100% at identification of satisfactory and unsatisfactory English-Arabic

translations.

Emotion recognition in text using PPM was a paper produced by Al-Mahdawi and

Teahan [8]. In the paper an investigation were conducted into automatic recognition of

emotion in text. A proposed new method for emotion recognition based on PPM was

produced to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness,

A System for Web Mining of Job and Housing information using PPM 59

Sadness and Surprise). The samples produced in the paper resulted in an accuracy

of 96%, precision of 0.96 and recall of 0.99 at classifying Ekman’s 6 emotions in

LiveJournal blogs.

Identification of gene function in biological publications was a paper produced by

Mahoui et al. [90]. The paper describes the utilisation of text encoding and prediction

by PPM to identify gene functions within abstracts of biomedical papers. The samples

produced in the paper resulted in precision, recall for identification of gene functions

0.89 and 0.85; 0.85 and 0.94.

Liu and Teahan [84] produced English-Chinese bilingual sentence alignment and

achieved 94% at identification of satisfactory and unsatisfactory English-Chinese

translations. Teahan and Aljehane [148] produced Grammar-Based Pre-Processing for

PPM. The paper discusses applying a grammar-based pre-processing prior to using

PPM. The PPM achieves significantly better compression for different natural language

texts compared to other well-known compression methods. The results from the paper

had an improvement in compression between 11% and 20% on the Calgary Corpus.

‘Pre-processing for PPM: Compressing UTF-8 encoded natural language text’ was a

paper produced by Teahan and Alhawiti [147]. The paper details research of several

new universal preprocessing techniques that are described to improve PPM compression

of UTF-8 encoded natural language text. The results produced in the paper show an

improvement in compression over standard PPM (e.g, 25% for Arabic, 35% for Russian

and 32% for Persian).

4.5 The Tawa Toolkit

The Tawa toolkit [150] implements PPM models and can easily be applied to a broad

range of text mining and NLP applications (see Figure 4.1). Some applications of Tawa

include train, classify, encode and decode. The algorithms and pseudo-code of the

encoding, decoding, training and six other applications are described in detail in [150].

Other details, such as the implementation aspects and search algorithms applied in the

toolkit, are discussed.

A System for Web Mining of Job and Housing information using PPM 60

Figure 4.1: A overview of the Tawa Toolkit and its design [150]

The train and segment applications of Tawa are used within this project. This is

discussed in section 4.6 and 4.7.

4.6 Overview of the Merlin System

Figure 4.2: The overview of the start to end process of the Merlin system.

A System for Web Mining of Job and Housing information using PPM 61

Figure 4.3: The Merlin System workflow process, showing the different stages from the start to
the end.

The system that has been developed has been named Merlin. The overview of the system

which processes raw text to produce marked up text is shown in figure 4.2. The Merlin

system has two processes using the Merlin System and training the Merlin System.

The detailed specifics of the workflow of the Merlin system as shown in Figure 4.3

starts with the Web based Raw Text and consists of four stages. The first stage (Stage 1)

is a pre-processing stage. The second stage (Stage 2) involves the designing of the text

used for training the models. The third stage (Stage 3) involves the process of training

of the text file models. The final stage (Stage 4) involves the markup process of the

pre-processed web based raw text. More details about each stage are described below.

4.6.1 Pre-Processing the Raw Text

While preparing the data for annotating the unstructured data, some errors such as

back-end code (e.g., CSS, Javascript and jQuery) needed to be removed. It was identified

A System for Web Mining of Job and Housing information using PPM 62

as causing “noise” within the data, complicating the process, as shown in Figure 4.4. In

Figure 4.4, the green highlighted text indicates correct unstructured data, meaning this

is what is needed for the Merlin system. The red text in this instance is the “noise”, the

pre-processing has picked up Javascript code which is not wanted for the Merlin system.

Software in Python, was used to gather related housing and job text from the websites.

Figure 4.4: Noise within the data shown by an example data set that shows in green the correct
data being captured and in red data that is noise.

4.6.2 Design Text Models

In order to identify the different entities in the unstructured data using the compression-

based approach, text models by the Tawa toolkit [36] need to be created. These models

are created by training on relevant text that is specific to the kind of textual data being

identified. Section 4.6 provides details of how these text models were implemented.

4.7 Implementing The Merlin System

Tawa is a compression-based toolkit based on the API designed by Clearly and

Teahan [36]. It provides several tools, including for mining, classifying and transforming

unstructured text. The aim of Tawa is to help simplify the design and implementation

of applications that require texual models, such as text classification, word or language

segmentation amongst other text mining capabilities. The toolkit protects users from

modelling details and the probability estimation process. As of 2018 [150], Tawa

consists of eight main applications, align, classify, codelength, decode, encode, markup,

segment and train.

A System for Web Mining of Job and Housing information using PPM 63

Merlin makes use of two applications within the Tawa toolkit those being building the

models and language segmentation. The following section will provide more detail.

4.7.1 Training Models

The Tawa toolkit has library calls used for the implementation of the applications. An

example of one of the library calls is TrainFile, the algorithm shown below (see Figure

4.5) is used to train models from a source file text. Tawa processes each character

sequentially (line 3 of 4.5), using the Tawa library method called LM_update_context in

(line 4 of 4.5. The objective of this method is to train the compression-based language

models [150].

There are two different models that can be used in this method — a static model or

a dynamic model. The static model will not change once it has been created and it

will always return the same probability estimates. A dynamic model will change when

processing more files, requires various arguments such as the SourceFile which contains

the specific text used to train the Model, which is created separately.

The ModelType argument is used to specify the models type, which could be static

or dynamic. The argument ModelFileName is used to create the model output file

by calling TLM_write_model (see line 8 of Figure 4.5) which can be loaded latter by

calling TLM_load_model. It is important to note that the size of the model is usually

significantly smaller than the size of the text file [150].

Figure 4.5: The algorithm used for training a model [150]

A System for Web Mining of Job and Housing information using PPM 64

In order to get the models, the text files used for training required. The following text

files have been created for the purpose of providing training data for the models.

In terms of training the housing-based models, the system will need to have a set of text

files that contain the following information, as decided by the company partners:

Item Description

Companies A list of all registered companies in the United Kingdom.

Currency A list of prices.

Housing descriptions A text file containing many housing descriptions.

Telephone A list of telephones from the selected housing websites.

Street names A list of all registered streetnames in the United Kingdom.

Towns A list of all registered towns in the United Kingdom.

Table 4.2: Training data used for building the Housing-based models

In terms of training the jobs-based models, the system will need to have a set of text

files that contain the following information, as decided by the company partners:

Item Description

Location A list of locations in the United Kingdom.

Job descriptions A text file containing many job descriptions.

Companies A list of all registered companies in the United Kingdom.

Currency A list of prices.

Job titles A text file containing many titles.

Table 4.3: Training data used for building the Jobs-based models

The data sourced for the creation of each of the training files are from the following:

• Companies – The list of UK companies has been obtained from the Companies

House 1. The list contains the latest companies registered as of June 2019.

1https://www.gov.uk/government/organisations/companies-house

A System for Web Mining of Job and Housing information using PPM 65

• Street names and Towns – The list of UK street names and towns was obtained

via a purchased licence which is held by Royal Mail with the latest data from

April 2019.

• Housing Descriptions – The text used to train the Housing Descriptions was

obtained from hundreds of pages of extracted results from Zoopla, Rightmove

and OnTheMarket websites.

• Telephone Numbers – The list of telephone numbers was obtained from hundreds

of pages extracted from Zoopla, Rightmove and OnTheMarket websites.

• Job Descriptions and Job titles – The text used to train the Job Descriptions and

Job Titles was obtained from hundreds of pages of extracted results from Indeed

and Reed websites.

A sample of data can be shown in Table 4.4 for each of the training files.

A System for Web Mining of Job and Housing information using PPM 66

Item Data type Samples of training data Size of files

Companies Text

!Nspired Investments Ltd.

!Obac Uk Limited

"1St Rate" Psychology Services Ltd

"309" West End Lane Management Limited

"A Taste Of" Tours Limited

"A.K.Welding Service" Ltd

51.88 MB

Currency Text

£1

£2

£3

£4

£5

112.43MB

Housing descriptions Text

A spectacular four bedroom family

home which has undergone home improvements

to the highest of standards and offers a separate

office/potential annexe space. This superb property

which is stood behind wrought iron gates is situated

in a secluded setting and overlooks breathtaking views.

There is ...

1.33MB

Job descriptions Text

Examples of some of the day to day activities you should

expect include communicating with the Director, managing

formal correspondence, booking travel,.. Customers want

great products at great value which they can buy easily and

it’s our job to deliver this in the right way for them....

653.39KB

Telephone Text

024 7511 8874

01322 584475

01656 220944

024 7511 8874

0208033 7635

2.02KB

Street names Text

Union Street

Carnegies Brae

Crimon Place

Broad Street

Albyn Place

Broad Street

21.48MB

Locations / Towns Text

Cardiff

Cardiff City

Aberdeen

Aberfeldy

Abergavenny

Manchester M1

309.79KB

Table 4.4: Samples of each type of data used to create the models

A System for Web Mining of Job and Housing information using PPM 67

The text files are then loaded into an application named TUI (see Figure 4.6. TUI stands

for Text Understanding Interface. It is a tool based on TAWA currently developed at

Bangor University [150]. Once the ‘Build models’ button has been pressed, this then

creates a static order 5 PPM model, using escape method D. As stated in section 4.7 a

model provides the user with predictions for the sequence of symbols and a model can

be static or dynamic. Dynamic models keep on being updated when further files are

processed at a later time and a static model does not change, therefore it will always

give the same probability estimates [150] [35] [97].

Figure 4.6: TUI Training Application Developed by Dr. William Teahan at Bangor University

Once the processing of the models have been completed, six models were generated

using an order 5 PPMD character-based compression scheme using the respective

training data. These models are as follows:

• Location model

• Posted model

• Companies model

• jobDescriptions

A System for Web Mining of Job and Housing information using PPM 68

• jobTitles model

• Currency model

4.8 Language Segmentation

The Tawa toolkit has a segment tool that can be used to perform language segmentation.

Language segmentation involves marking up the text to indicate where “code switching”

has occurred between different languages. However the language segmentation tool

provided in the toolkit has a much wider application than just finding the boundaries

between languages i.e., where code-switching occurs. It can also be used in a new way to

demarcate between different styles of languages and even discover where named entities

such as names and dates occur in the text, and this is the solution that has been adopted

for this project. This use of PPM-based text mining in this way to perform identification

of named entities is novel and has not previously been published or evaluated in the

literature.

The specific approach that the toolkit uses for language segmentation is as follows.

Essentially, the method determines which model (from a set of specific models passed

to the algorithm) that compresses each subsequence of the text best in order to minimise

the overall compression of the text. The Viterbi algorithm is used to perform the

language segmentation. The Viterbi algorithm is an algorithm that was developed by

Viterbi (1967) to find the most probable path via a trellis-based search [55] [120].

The algorithm involves generating multiple search paths for each character being

processed. This means that the method searches for all possible segmentations of the

text based on the models passed to the algorithm. The Viterbi algorithm ensures that

the best compression codelength is returned when the search is finished [150].

4.8.1 Creating Ground Truth Files

Ground truth files were created in order to evaluate the Merlin system. This involved

manually marking up the sample data from the extracted text from the listings and going

through line by line adding tags to each of the relevant models. The sample data was

obtained from listings from various housing and job websites.

A System for Web Mining of Job and Housing information using PPM 69

Samples of the ground truth data that was used in the evaluation in Figures 4.6 and 4.7.

Originally the extracted data had the text without the tags at the front and end of each

line. Going through each line, the manual process of adding the tags were performed.

An example being ‘Marked by W Owen - Bangor.’ would be classed as a ‘company’ -

so the ‘<companies> </companies>’ tag was wrapped around that text line.

Figure 4.7: Ground Truth Sample — Housing

Figure 4.8: Ground Truth Sample — Jobs

The ground truth data used 5 pages of extracted listings from each of the housing and

job websites. This meant that 50 results were being tagged per website. The ground

truth data was randomly obtained through selecting various housing and job websites

for the purpose of the evaluation performed in this chapter. The process of marking

up each unstructured text file took time to add the tags manually to each line to the

A System for Web Mining of Job and Housing information using PPM 70

appropriate data. The tags were added manually by the developer, going through line

by line and attaching the relevant tag to that sentence. To allow for easier readability

whilst tagging the text, a text-editor called Sublime was used.

The tags that were used for housing are the following:

• companies

• currency

• housingDescriptions

• location

• streetnames

• telephone

The tags that were used for jobs are the the following:

• companies

• currency

• jobDescriptions

• jobTitles

• location

• posted

4.8.2 Markup of Pre-processed Web Based Raw Text

Using the pre-processed web based raw text, the markup process involves using the text

models and the segmentation tool to tag information relevant to what has been trained.

The web-based raw text was pre-processed using effective methods of extraction which

A System for Web Mining of Job and Housing information using PPM 71

is discussed in Chapter 6, section 6.7. Figure 4.9 shows the screenshot of sample

markup output from the application:

Figure 4.9: TUI Markup Application Sample Output

4.8.3 Improving the Results

The results from the initial experiments showed that some of the larger models (produced

with much larger training data) overwhelmed the smaller ones, and consequently become

better at predicting the English language that was common across all testing data. This

is a known issue with using PPM for segmentation [9]. To rectify this, the larger models

needed to be reduced in size. An iterative approach was used to reduce the size of the

models. Firstly the models were reduced to half size by removing odd numbered lines in

the file. This was repeated until there were no changes in the segmentation classifications

generated using the models, or the overall classification accuracy decreased.

A System for Web Mining of Job and Housing information using PPM 72

Reference Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6

<companies> 50MB 50MB 50MB 50MB 50MB 50MB

<currency> 3.6MB 3.6MB 3.6MB 3.6MB 3.6MB 3.6MB

<jobDescriptions> 2.0MB 2.0MB 2.0MB 2.0MB 2.0MB 2.0MB

<jobTitles> 575KB 363KB 223KB 223KB 200KB 125KB

<location> 128KB 128KB 128KB 1.8MB 1.8MB 1.8MB

<posted> 3.7KB 3.7KB 3.7KB 3.7KB 3.7KB 3.7KB

Accuracy (%) 0.9127 0.9132 0.8848 0.8906 0.8303 0.9113

Recall (%) 0.7658 0.7739 0.7115 0.7240 0.6257 0.7783

Precision (%) 0.6756 0.6846 0.6578 0.8308 0.7263 0.8512

F1 Score (%) 0.7179 0.7265 0.6836 0.7737 0.6723 0.8131

Table 4.5: Scaling of the files for Jobs in Reed

The different variations of the training sizes for the models is used for each variant of

the experiment (labelled Variant 1 to 10 in Tables 4.5 & 4.6).

Variant 6 was used from Table 4.5 on the experiments for evaluation. Each iteration

improved results slightly and the final variant produced the best output.

Reference Variant 7 Variant 8 Variant 9 Variant 10

<companies> 27.2MB 13.6MB 6.8MB 6.8MB

<currency> 117.9MB 117.9MB 117.9MB 117.9MB

<housingDescriptions> 2KB 2KB 2KB 1.4MB

<streetnames> 22.5MB 22.5MB 22.5MB 22.5MB

<location> 328KB 328KB 328KB 11KB

<telephone> 2KB 2KB 2KB 2KB

Accuracy (%) 0.8432 0.8305 0.8493 0.9113

Recall (%) 0.6530 0.7584 0.7915 0.7783

Precision (%) 0.6970 0.7213 0.7781 0.8512

F1 Score (%) 0.6743 0.7394 0.7847 0.8131

Table 4.6: Scaling of the files for Jobs in Zoopla

Another approach was used when models shared a significant amount of duplicate

text. For example, company names often contain the name of a town or city where

A System for Web Mining of Job and Housing information using PPM 73

the company is based. To balance the models, the company model was modified by

removing all words which were shared in the location model.

4.9 Evaluation of the Merlin System Results

This section discusses results from a series of experiments that were performed to

evaluate the performance of the Merlin system.

Each tag generated by the system on test data was compared against the ground truth.

From this information, confusion matrices were constructed and then used to calculate

the accuracy, recall, and precision to determine the suitability of the various classification

models. If there are no improvements against previously marked up text, the model is

left as is, and other models are modified as described in Section 4.5.1. This is repeated

until the maximum possible accuracy, recall, and precision values are attained.

4.9.1 Housing Website Experiments

The first set of experiments investigated how well the Merlin system performs with

Zoopla, Rightmove and OnTheMarket website data. To do this, ten different queries

were used and the results have been averaged. The queries used for the housing website

are shown in Table 4.7:

Query

Bangor, Gwynedd

Cardiff

Sheffield, South Yorkshire, £10,000 to £40,000

London, £100,000 to £300,000, 3 beds

Dundee, £400,000 to £800,000, 4 beds

Wrexham, £100,000 to £140,000, 2 beds

Surrey, £120,000 to £180,000

West Yorkshire, Flats

Fife, £125,000, 2 beds

Northern Ireland

Table 4.7: Queries used for evaluating Merlin’s performance on Housing Websites

A System for Web Mining of Job and Housing information using PPM 74

4.9.2 Experiment 1: Evaluating the markup of Zoopla website data

Table 4.8 lists results for Zoopla housing website data with using Table 4.7 as the

searching criteria. The Merlin system output was compared against ground truth data

that was manually created for the test data. This was done by creating a confusion

matrix that compared the predicted output to the ground truth data. The results from

Zoopla data was the following:

Query
Acc.

(%)

Recall

(%)

Prec.

(%)

F1

Score

(%)

Bangor, Gwynedd 84.0 79.0 77.0 78.0

Cardiff 85.0 72.0 86.0 78.3

Sheffield, South Yorkshire,

£10,000 to £40,000
83.0 70.0 84.0 76.3

London, £100,000 to

£300,000, 3 beds
91.0 84.0 89.0 86.4

Dundee, £400,000 to

£800,000, 4 beds
89.0 81.0 90.0 85.2

Wrexham, £100,000 to

£140,000, 2 beds
81.5 63.3 70.4 66.7

Surrey, £120,000 to

£180,000
88.2 76.5 88.5 82.1

West Yorkshire, Flats 86.8 70.4 73.9 72.1

Fife, £125,000, 2 beds 85.6 70.2 69.3 69.7

Northern Ireland 82.7 70.6 81.6 75.7

Average 86.5 77.2 85.2 77.0

Table 4.8: Merlin Performance Results of Zoopla housing data

The confusion matrix can be seen in figure 4.10. The average accuracy from Zoopla

housing data for table 4.8, was 86.5%, average recall 77.2%, average precision of 85.2%

and average F1-Score of 77.0%. As shown in the figure, 31 occurrences of prediction

based a streetname when it should have been location. 150 occurrences of predicated

housingDescriptions when these should have been companies.

A System for Web Mining of Job and Housing information using PPM 75

Figure 4.10: Confusion matrix for the markup output produced by the Merlin system for the
Zoopla housing data

Several mistakes made by the Merlin system are readily apparent as shown in Figure 4.10.

Notably, streetnames and locations are being tagged incorrectly. Overall performance is

excellent as indicated by the results in Figure 4.10.

4.9.3 Experiment 2: Evaluating the markup of OnTheMarket

website data

Table 4.9 lists results for OnTheMarket housing website data with using Table 4.7 as

the searching criteria. The Merlin system output was compared against ground truth

data that was manually created for the test data. This was done by creating a confusion

matrix that compared the predicted output to the ground truth data. The results from

OnTheMarket data was the following:

A System for Web Mining of Job and Housing information using PPM 76

Query
Acc.

(%)

Recall

(%)

Prec.

(%)

F1-Score

(%)

Bangor, Gwynedd 94.0 74.0 90.0 81.2

Cardiff 92.2 73.9 87.4 80.1

Sheffield, South Yorkshire,

£10,000 to £40,000
84.0 66.0 81.0 72.7

London, £100,000 to

£300,000, 3 beds
92.0 78.0 88.0 82.6

Dundee, £400,000 to

£800,000, 4 beds
89.0 78.0 79.0 78.4

Wrexham, £100,000 to

£140,000, 2 beds
93.0 70.4 88.4 78.4

Surrey, £120,000 to

£180,000
85.1 71.0 85.7 77.7

West Yorkshire, Flats 94.6 78.8 89.6 83.9

Fife, £125,000, 2 beds 92.2 73.9 87.4 80.1

Northern Ireland 89.2 72.2 84.8 78.0

Average 90.2 73.8 85.0 79.2

Table 4.9: Merlin Performance Results of OnTheMarket housing data

The confusion matrix can be seen in figure 4.11. The average accuracy from

OnTheMarket housing data for table 4.9, was 90.2%, average recall 73.8%, average

precision of 85.0% and average F1-Score of 79.2%. The figure shows 144 predicted

occurrences were inaccurately predicated and these should have been companies.

Additionally 72 of these should have been location, 87 occurrences should have been

currency and 53 occurrences should have been companies. This is clear that the models

had some confusion, primarily the housingDescriptions model.

A System for Web Mining of Job and Housing information using PPM 77

Figure 4.11: Confusion matrix for the markup output produced by the Merlin system for the
OnTheMarket housing data

Several mistakes made by the Merlin system are shown in shown in Figure 4.11. Notably,

streetname is being tagged as a currency. However, overall performance is excellent as

indicated by the results in Figure 4.11.

4.9.4 Experiment 3: Evaluating the markup of Rightmove website

data

Table 4.10 lists results for Rightmove’s housing website data with using Table 4.7 as

the searching criteria. The Merlin system output was compared against ground truth

data that was manually created for the test data. This was done by creating a confusion

matrix that compared the predicted output to the ground truth data. The results from

Rightmove data was the following:

A System for Web Mining of Job and Housing information using PPM 78

Query
Acc.

(%)

Recall

(%)

Prec.

(%)

F1-Score

(%)

Bangor, Gwynedd 91.0 69.0 91.0 78.4

Cardiff 83.0 70.0 72.0 70.9

Sheffield, South Yorkshire,

£10,000 to £40,000
79.0 65.0 66.0 65.4

London, £100,000 to

£300,000, 3 beds
91.0 65.0 77.0 70.4

Dundee, £400,000 to

£800,000, 4 beds
93.3 78.7 91.0 84.4

Wrexham, £100,000 to

£140,000, 2 beds
82.0 57.3 68.9 62.6

Surrey, £120,000 to

£180,000
91.7 75.7 86.2 80.6

West Yorkshire, Flats 80.6 50.3 60.8 55.1

Fife, £125,000, 2 beds 91.2 70.7 82.4 76.1

Northern Ireland 83.5 53.0 67.0 59.1

Average 87.4 69.4 79.4 70.3

Table 4.10: Merlin Performance Results of Rightmove housing data

The confusion matrix can be seen in figure 4.12. The average accuracy from Rightmove

housing data for table 4.10, was 87.4%, average recall 69.4%, average precision of 79.4%

and average F1-Score of 70.3%. The confusion matrix shows that 110 occurrences of

companies predicated should have been streetnames. Additionally 12 occurrences of

predicated housingDescriptions should have been currency.

A System for Web Mining of Job and Housing information using PPM 79

Figure 4.12: Confusion matrix for the markup output produced by the Merlin system for the
Rightmove housing data

Several mistakes made by the Merlin system are apparent as shown in Figure 4.12.

Notably, currency is being tagged as a housing description. However, overall

performance is excellent as indicated by the results in Figure 4.12.

4.9.5 Job Website Experiments

The first set of experiments investigated how well the Merlin system performs with

Indeed and Reed website data. To do this, ten different queries were used and the results

have been averaged. The queries used for the job websites are shown in Table 4.11:

A System for Web Mining of Job and Housing information using PPM 80

Query

Bangor, Gwynedd

Cardiff, Support Worker

Sheffield, Customer Service

London, Accountant

Dundee, Finance Manager

Birmingham, Delivery Driver

Wolverhampton, GP

Stoke on Trent, Paramedic

Welshpool, Food Production

Milton Keynes, System Analyst

Table 4.11: Queries used for evaluating Merlin’s performance on Job Websites

4.9.6 Experiment 4: Evaluating the markup of Reed website data

Table 4.12 lists results for Reed’s job website data with using Table 4.11 as the searching

criteria. The Merlin system output was compared against ground truth data that was

manually created for the test data. This was done by creating a confusion matrix that

compared the predicted output to the ground truth data. The results from Reed’s data

was the following:

A System for Web Mining of Job and Housing information using PPM 81

Query
Acc.

(%)

Recall

(%)

Prec.

(%)

F1-Score

(%)

Bangor, Gwynedd 86.0 73.0 82.0 77.2

Cardiff, Support Worker 87.0 79.0 78.0 78.4

Sheffield, Customer Service 89.0 86.0 88.0 86.9

London, Accountant 88.0 77.0 78.0 77.4

Dundee, Finance Manager 92.0 85.0 89.0 86.9

Birmingham, Delivery Driver 80.9 74.6 74.2 74.4

Wolverhampton, GP 83.8 79.1 77.6 78.3

Stoke on Trent, Paramedic 87.4 76.5 82.0 79.2

Welshpool, Food Production 85.6 78.3 82.9 80.5

Milton Keynes, System Analyst 85.8 78.6 81.8 80.2

Average 84.8 80.0 83.0 79.9

Table 4.12: Merlin Performance Results of Reed jobs data

The confusion matrix can be seen in figure 4.13. The average accuracy from Reeds jobs

data for table 4.12, was 88.4%, average recall 80.0%, average precision of 83.0% and

average F1-Score of 79.9%. 50 predicated occurrences were classed as jobTitles although

they should have been companies. Additionally 31 occurrences of jobDescriptions

should have been companies.

A System for Web Mining of Job and Housing information using PPM 82

Figure 4.13: Confusion matrix for the markup output produced by the Merlin system for the
Reed job data

Several mistakes made by the Merlin system are apparent as shown in Figure 4.13.Notably,

location is being tagged as a company. However, overall performance is excellent as

indicated by the results in Figure 4.13.

4.9.7 Experiment 5: Evaluating the markup of Indeed website data

Table 4.13 lists results for Indeed’s job website data with using Table 4.11 as the

searching criteria. The Merlin system output was compared against ground truth data

that was manually created for the test data. This was done by creating a confusion

matrix that compared the predicted output to the ground truth data. The results from

Indeed’s data was the following:

A System for Web Mining of Job and Housing information using PPM 83

Query
Acc.

(%)

Recall

(%)

Prec.

(%)

F1-Score

(%)

Bangor, Gwynedd 89.0 77.0 83.0 79.8

Cardiff, Support Worker 90.0 77.0 87.0 81.6

Sheffield, Customer Service 83.0 62.0 82.0 70.6

London, Accountant 88.0 62.0 88.0 72.7

Dundee, Finance Manager 83.0 70.0 69.0 69.4

Birmingham, Delivery Driver 89.2 73.6 85.7 79.2

Wolverhampton, GP 85.0 71.0 80.0 75.2

Stoke on Trent, Paramedic 80.2 66.3 83.2 73.8

Welshpool, Food Production 83.8 77.9 82.3 80.0

Milton Keynes, System Analyst 85.1 77.1 80.8 78.9

Average 86.6 69.6 81.8 76.1

Table 4.13: Merlin Performance Results of Indeed jobs data

The confusion matrix can be seen in figure 4.14. The average accuracy from Indeeds

jobs data for table 4.13, was 86.6%, average recall 69.6%, average precision of 81.8%

and average F1-Score of 76.1%. 70 occurrences of jobTitles predicated should have been

companies. Additionally 14 occurrences of jobTitles should have been jobDescriptions.

A System for Web Mining of Job and Housing information using PPM 84

Figure 4.14: Merlin Performance Result of Indeed job data

Several mistakes made by the Merlin system are apparent as shown in Figure 4.14.

Notably, job titles and posted tags are being tagged incorrectly. However, overall

performance is excellent as indicated by the results in Figure 4.14.

4.9.8 Both Housing and Job Website Results

This section describes a further experiment that involved merging the best result from

the housing website, that being the query “Bangor, Gwynedd” from OnTheMarket from

Table 4.9 and the best result from the job website, that being the query “Cardiff, Support

Worker” from Indeed 4.13, to see how well the Merlin system can cope with two sets of

different sources of data. Taking these two best results, an experiment was performed

to see how well the two top performing results would perform when they are merged

together.

A System for Web Mining of Job and Housing information using PPM 85

As this section is looking at the best two results from both housing and jobs, a

singular precision, accuracy, recall and F1-Score was produced. Figure 4.15 indicates

accuracy of 82.0%, a recall of 65.0% and precision of 77.0%. The F1-Score for

this is 70.4%. The outcome from the confusion matrix shows that the predictions

of the jobTitles,jobDescriptions and housingDescriptions models have predicted a

large amount of occurrences incorrectly. An example would be housingDescriptions

predictions, 255 predicted occurrences should have been location, 134 occurrences

should have been streetnames.

Figure 4.15: Confusion matrix for the markup output produced by the Merlin system for the
housing and job data

As anticipated, these have dipped in performance as there occurrences coming from

both housing and jobs models, in particular the housing and jobs descriptions model

that are getting incorrectly tagged. This is where a job description is getting partly

A System for Web Mining of Job and Housing information using PPM 86

tagged as a housing description and job description and vice versa although the overall

performance is still excellent.

High accuracy, precision and recall rates from the evaluation experiments for the

different job and housing websites as shown in the Table 4.14.

Website
Average

Acc.

(%)

Average

Recall

(%)

Average

Prec.

(%)

Average

F1-Score

(%)

Zoopla 86.5 77.2 85.2 77.0

OnTheMarkeet 90.2 73.8 89.6 83.9

Rightmove 87.4 69.4 79.4 70.3

Reed 84.8 80.0 83.0 79.9

Indeed 86.6 69.6 81.8 76.1

Table 4.14: Performance measures of the Merlin system for the jobs and housing data

4.10 Comparison of Merlin System with the spaCy

Natural Language Toolkit

This section describes experiments to compare the well-performing spaCy Natural

Language Toolkit to the Merlin system’s performance based on the previous experiments.

spaCy’s 2 tagger, parser, text categoriser and other components are powered by statistical

models. The decision these components make for example such as which part-of-speech

tag to assign, or whether a word is a named entity, is produced by prediction based on

the model’s current weight values. The weight values are estimated based on examples

the model has seen during training.

In order to train a model, the developer needs to have training data to train the models

using neural networks. In this instance, the same training data was used as for the

Merlin system. The developer then needs to label the models that are being used to

predict the class labels.

2https://spacy.io/usage/training

A System for Web Mining of Job and Housing information using PPM 87

Training is then an iterative process in which the model’s predictions are compared

against the reference annotations in order to estimate the gradient of the loss. The gradient

of the loss is used to calculate the gradient of the weights through backpropagation.

The gradients indicate how the weight values should be changed so that the model’s

predictions become more similar to the reference labels over time.

In order to know how the model is performing and whether it is learning the right

patterns, the developer needs not just training data but evaluation data.

If the user were to test the model with the data it was trained on, you will have no idea

how well it is generalising. In this instance as stated we are using the same ground truth

data that was used to train the Merlin system for the evaluation data

Figure 4.16: spaCy’s training pipeline for named entity recognition

Figure 4.16 demonstrates the spaCy’s training pipeline 3:

• Training data: Examples of the training data and their annotations.

• Text: The input text the model should predict a label for.

• Label: The label the model should predict.

• Gradient: The direction and rate of change for a numeric value. Minimising the

gradient of the weights should result in predictions that are closer to the reference

labels on the training data.

spaCy does more than just memorise examples. It also comes up with the theory that

can be generalised across unseen data.

3https://spacy.io/usage/training

A System for Web Mining of Job and Housing information using PPM 88

spaCy [100] uses deep learning for implementing NLP models, which is summarised as

“embed, encode, attend, predict” [109]. spaCy’s approach to text is that it is inserted in

the model in the form of a unique numerical value (ID) for every input that can represent

a token of a corpus or a class of the NLP task. At the embedding stage, features such as

the prefix, the suffix, the shape and the lower form of a word are used for extraction of

hashed values that reflect word similarities.

spaCy is an open-source library that provides natural language processing tools for

the Python programming language. Jiang et al. [74] indicates that this tool performs

second best among four well-established open-source NER tools regarding F-measure.

spaCy’s NER tool extracts named entities in eighteen categories: persons, nationalities

or religious groups, facilities, organisations, geopolitical entities, locations, products,

events, works of art, law documents, languages, dates, times, percentages, money,

quantities, ordinals, and cardinals [77]. spaCy also allows the developer to train and

update components of the developer’s own data and to integrate custom models.

The following subsections discuss results from a series of experiments that were

performed to evaluate the performance of spaCy.

Precision, recall and F1 Score calculated from the confusion matrices were used in

order to perform the direct comparison with the Merlin system.

4.10.1 Experiment 6: Evaluating the markup of Zoopla website

data using spaCy

In the Merlin System, the best result for Zoopla housing data was 84.0% recall, 89.0%

precision and 86.4% F1 score.

A System for Web Mining of Job and Housing information using PPM 89

Figure 4.17: Confusion matrix for the markup output produced by the spaCy system for the
Zoopla housing data.

The confusion matrix for the spaCy comparison can be seen in figure 4.17. The overall

results from Zoopla housing data was 50.0% precision, 1.82% recall and 3.5% F1 score.

There were many mistakes made by spaCy on the Zoopla housing data as seen in the

confusion matrix. Housing descriptions, companies and locations are unable to be

predicted accurately, which has resulted in them being labelled as “no category”. This

is where spaCy could not predict the text against any of the models. No street names or

locations have been identified correctly.

4.10.2 Experiment 7: Evaluating the markup of OnTheMarket

data using spaCy

In the Merlin System, the best result for OnTheMarket housing data was 74.0% recall,

90.0% precision and 81.2% F1 score.

A System for Web Mining of Job and Housing information using PPM 90

Figure 4.18: Confusion matrix for the markup output produced by the spaCy system for the
OnTheMarket housing data.

The confusion matrix for the spaCy comparison can be seen in figure 4.18. The results

from OneTheMarket housing data was 10.0% precision, 1.71% recall and 2.93% F1

score.

There were many mistakes made by the spaCy performance on the OnTheMarket

housing data, such as streetnames, telephones and location being identified under

housing descriptions. Streetnames, telephones, currency and companies did not get

predicted. A few instances spaCy predicted companies as streetnames, location and

currency.

A System for Web Mining of Job and Housing information using PPM 91

4.10.3 Experiment 8: Evaluating the markup of Rightmove data

using spaCy

In the Merlin System, the best result for Rightmove housing data was 78.7% recall,

91.0% precision and 84.4% F1 score.

Figure 4.19: Confusion matrix for the markup output produced by the spaCy system for the
Rightmove housing data.

The confusion matrix for the spaCy comparison can be seen in figure 4.19. The results

from Rightmove housing data was 10.0% precision, 1.43% recall and 2.50% F1 score.

There were many mistakes made by the spaCy performance on the Rightmove housing

data, such as housing descriptions not being able to be tagged correctly. No streetnames

or locations were predicted correctly.

A System for Web Mining of Job and Housing information using PPM 92

4.10.4 Experiment 9: Evaluating the markup of Reed data using

spaCy

In the Merlin System, the best result for Reed jobs data was 75.0% recall, 89.0%

precision and 86.9% F1 score.

Figure 4.20: Confusion matrix for the markup output produced by the spaCy system for the
Reed jobs data

The confusion matrix for the spaCy comparison can be seen in figure 4.20. The results

for spaCy from Reed job data was 36.0% precision, 26.47% recall and 30.51% F1 score.

spaCy’s processing of the jobs data for Reed has done significantly better than all the

housing data experiments. spaCy predicted a large number of job descriptions correctly

and posted although some predictions included job descriptions as companies. spaCy

predicted no locations and made the mistakes in job descriptions and no category. Many

A System for Web Mining of Job and Housing information using PPM 93

of the categories were predicted under housing descriptions such as the streetnames and

companies.

4.10.5 Experiment 10: Evaluating the markup of Indeed data using

spaCy

In the Merlin System, the best result for Indeed jobs data was 77.0% recall, 87.0%

precision and 81.6% F1 score.

Figure 4.21: Confusion matrix for the markup output produced by the spaCy system for the
Indeed jobs data

The confusion matrix for the spaCy comparison can be seen in figure 4.21. The results

from Indeed job data was 40.48% precision, 28.33% recall and 33.33% F1 score.

spaCy’s processing of the jobs data for Indeed again has done significantly better than

all the housing data experiments. As shown in figure 4.21. spaCy predicted a large

A System for Web Mining of Job and Housing information using PPM 94

number of companies and currency correctly although it struggled with everything else.

Many of the categories predicted by spaCy came under companies, such as the job

descriptions. No locations, posted or job descriptions were predicted by spaCy.

4.10.6 Both Housing and Job Website Results for spaCy

In the Merlin System, the best result for both housing and job data was 65.0% recall,

77.0% precision and 70.4% F1 score.

Figure 4.22: Confusion matrix for the markup output produced by the spaCy system for the
housing and job data

The confusion matrix for the spaCy comparison can be seen in figure 4.22. The results

for both housing and jobs data was 47.15% precision, 26.36% recall and 33.82% F1

score.

spaCy predicted many housing descriptions as no category, meaning it could not predict

the text. In this instance, spaCy could not recognise the majority of housing descriptions.

A System for Web Mining of Job and Housing information using PPM 95

There were also mistakes also made for companies and job descriptions. spaCy could

not predict any job titles or companies. In the housing descriptions, spaCy predicted a

portion of streetnames and location when and these were wrong.

4.11 Summary and Discussion

This chapter introduced an approach called the Merlin system for the automatic

annotation of data scraped from the web. The method uses character-based PPM

language models implemented by the Tawa toolkit [150] to segment the text into

different classes of text. The chapter discusses the overview of how Merlin works, the

implementation of each step and the evaluation of the web mining system.

The Merlin system works well overall. The experiments have shown that with the

iterations of balancing the size of the PPM models, this allows models that have been

built from smaller training text not to be overwhelmed by the models that have been

built from a much larger training data.

The results in this chapter highlighted how there needs to be a balance between each

model, to avoid the chance of one model classifying everything over another or for a

model to be ignored. For example, despite the location model having been trained from

the text containing many locations, the larger companies model would often dominate in

the classification as it also included many location names. This was offset by balancing

the data and by removing the location names.

The investigation concluded that the Merlin process works well at automatically tagging

the data.

As a comparison to the Merlin system, annotation using spaCy was also performed.

The results show spaCy produced very poor results.

There were many instances where spaCy could not predict what the text was and

provided no markup for the data, primarily for the housing data when the housing and

jobs data were combined.

A System for Web Mining of Job and Housing information using PPM 96

spaCy additionally took a considerable amount of time to train compared to the

compression-based approach taken by the Merlin system. The times taken for both

Merlin and spaCy can be seen in Table 4.15.

The Merlin system outperforms spaCy’s performance in terms of standard measures of

precision, recall and F1 score (see Table 4.16). Additionally the amount of time to train

the models is considerably less when using Merlin compared to spaCy.

Website Merlin System spaCy

Time Taken

to Train

Time Taken

to Train

Zoopla 8 minutes 3 days, 2 hours and 23 minutes

OnTheMarket 7 minutes 2 days, 3 hours and 22 minutes

Rightmove 9 minutes 2 days, 5 hours, 42 minutes

Reed 10 minutes 3 days, 10 minutes

Indeed 10 minutes 2 days, 5 hours and 13 minutes

Housing and Jobs 10 minutes 3 days, 6 hours and 27 minutes

Table 4.15: Comparison of the Merlin System and spaCy time taken to train the data. This
shows that the Merlin system performed better in time taken to train and tag the data compared
to spaCy.

The direct comparison of using the Merlin system to spaCy performance on the same

data is shown in Table 4.16.

Website Merlin System spaCy

Precision

(%)

Recall

(%)

F1 Score

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Zoopla 89.0 84.0 86.4 50.0 1.82 3.5

OnTheMarket 90.0 74.0 81.2 10.0 1.71 2.93

Rightmove 91.0 78.7 84.4 10.0 1.43 2.50

Reed 89.0 75.0 86.9 36.0 26.47 30.51

Indeed 87.0 77.0 81.6 40.48 28.33 33.33

Housing and Jobs 77.0 65.0 70.4 47.15 26.36 33.82

Table 4.16: Comparison of the Merlin System and spaCy classifer performance output measures.
This shows that the Merlin system performed better in all experiments compared to spaCy.

A System for Web Mining of Job and Housing information using PPM 97

The comparison of the Merlin system and spaCy shows why the Merlin system using PPM

was used for the prototypes discussed in subsequent chapters with better performance

results and a much quicker time to train the models. The comparison between the F1

Scores shows a significant difference in performance, for example only 3.5% for spaCy

compared to 86.4% for Merlin on the Zoopla data; and for the combined Housing and

Jobs data, spaCy achieved an F1 score of 33.82% compared to 70.4% for Merlin.

The modification and balancing of models to provide a greater accuracy in classification

could be automated rather than using the manual approach described in this chapter for

the Merlin system. By automatically reducing or increasing the size of models, better

optimised classifications could be made. Additional pre-processing steps could also be

used to improve classification to remove further noise.

A System for Web Mining of Job and Housing information using PPM 98

Chapter 5

Developing and Evaluating Prototype

Alpha

5.1 Introduction

This chapter discusses the development and evaluation of the initial Alpha prototype.

This includes the methodology Five Design Sheets [115] [117] that was used to consider

alternative design ideas.

The Alpha prototype explores data extraction of local points of interest within the

North Wales area. The Alpha prototype also features the retrieval of local points of

interest, cinema and weather information. The aim of this prototype is to provide proof

of concept for extracting data. The company partners wanted an initial prototype to

discuss the possibility of extracting information and these areas were chosen.

The database of the developed prototype stores information about points of interest,

which is obtained with different web scraping techniques. The information provides the

name, where it is located and the category that has been defined for the point of interest.

The web scraping techniques include document parsing and HTML parsing. The

application requires the user to enter a search query into the text box. The query is

then used to search the database and return the points of interest that match the criteria

entered. The results returned will then appear in a table which is displayed to the user.

This prototype provides weather information based on the entered query, local points of

interest and cinemas. The information may include highest rated, a random selection or

recently updated listings of points of interest.

99

5.2 Five Design Sheets

Five Design Sheets [115][116] is a design methodology where the developer creates

five design-sheets that describe the design of the project through ongoing interaction

with the client. By the end of the design process, the developer will have produced five

sheets of paper with many designs and information associated with them. The aim of

this method is to provide a structured process for the developer to follow to design a

software tool. The Five Design Sheets methodology enables a developer to create and

sketch ideas, discuss them with the clients and then refine the ideas to a solution that is

workable. This is where the client would be involved with the ideation and the creation

process.

The Five Design Sheets methodology contains several parts which are as follows:

• Five sheets: one brainstorm sheet, three design sheets and one realisation sheet.

• Five stages: The developer and client would meet, the developer would brainstorm

some ideas, create three design-sheets, discuss with the client and then a realisation

design is generated. This realisation design would then be implemented using

techniques discussed by the developer.

• Five parts to brainstorm: In this process, the developer ideate the ideas, filter

the ideas down followed by categorising and combine any similar designs created.

The user would then refine the design and question what has been created.

• Five parts to each sheet: Layout of the design: this is the vision of what the

final visualization would look like. Meta-information should be included, such

as title, author, date, sheet number and the task. Focus of the design: this could

be key techniques or a novel approach that has been used to create this design.

Operations are iincluded which are sketches and some brief descriptions of how

the user operates or controls the interface. A discussion of the advantages and

disadvantages of the technique are also included in the sheet [115].

Developing and Evaluating Prototype Alpha 100

5.3 Design of the Alpha Prototype

To devise a design that meets the requirements of the project outline, there needs to be

a methodology that allows the developer to approach different designs from multiple

mini-designs and concepts. [115].

Five Design Sheets was adopted as it allowed for an iterative process of design and

allowed the team to collaborate with regard to the final design.

Developing and Evaluating Prototype Alpha 101

5.3.1 Sheet 1 — brainstorm

Figure 5.1: Sheet 1 produced during the Five Design Sheets process for the Alpha prototype

The idea of the first sheet that was produced during the Five Design Sheets design

process, as shown in figure 5.1, is to consider the data and compose initial designs. This

stage is the ‘brainstorming’ sheet. The process allows the developer to put multiple

Developing and Evaluating Prototype Alpha 102

ideas in a large space of A3 paper. This sheet is where the developer would generate all

possible ideas. This encourages the developer to be creative and imaginative in this

process.

There are five steps in this sheet:

1. Generate Ideas. This is where the developer sketches out as many ideas as

possible. These may be mini-ideas or may be comprehensive and complete ideas

or ideas that aren’t fully materialized or simple ideas or concepts that may be

unrealistic or even crazy.

2. Filter the ideas. This step takes the ideas the developer has made and starts to

remove any duplicates. Any ideas made should be put together.

3. Categorize the sketches. This step orders and categorises the sketches into

mini-ideas. Any concepts that are similar should be placed together.

4. Combine and Refine. This step starts to organise the mini-ideas into bigger

solutions. Multiple views can occur here, and there could be different aspects

with the same data shown with multiple views.

5. Questions. This stage is the final part, where the developer would reflect on what

has been created and ask themselves is this the solution that the client wants,

and is it fit for the purpose of what is needed to be created? Does it answer the

specification requirements asked by the user?

For example, considering point one of the five steps, this involves sketching different

overall views of the homepage and results page, alongside with information about how

the elements could be placed and what materials could be used.

Taking each of these considerations, the numbering below corresponds to the various

points of Sheet 1 shown in figure 5.1.

1. The overall homepage should display a mixture of random jobs and housing along

with highly rated local points of interest. There is a drop down hover feature for

Developing and Evaluating Prototype Alpha 103

the navigation bar, that shows the different features available. This would include

recent searches from the results page. These are shown on the homepage to allow

accessibility to see what the user has recently searched.

2. There is a search field with specific requirements based on the searching criteria.

The homepage shows newly listed data. This includes bold text on the categories

to emphasis each part.

3. The search field and title are on the left side of the page. The navigation and logo

are at the top of the web page. There is a highlighted information in three sections

on the right side of the web page.

4. There are image tiles of places around the world, and different type of cities to

allow a shortcut to specific areas of information. The logo and title are at the top

and the search field in the center.

5. There is a blue background, with a square navigation bar. The information about

Cloodup is broken up in sections at the bottom of the page. There are three titles

which indicate the main elements of the website.

6. The bottom of the webpage is split into five sections. The sections are showing

the popular listings, the recently recently viewed listings, the browsing of housing

in an area and browsing of jobs in an area alongside popular attractions.

7. The webpage is split into two sections. These sections show different sets of

information.

8. The results are shown in a table format. This displays all available information

from each section based from the query.

9. The webpage is split into equal parts showing housing, jobs, local events and

local points of interest e.g., bars.

Developing and Evaluating Prototype Alpha 104

10. The search results show attractions in the area on the right hand side. There is a

mixture of housing and jobs on the left side of the webpage with a pattern of how

they are presented.

11. The webpage shows recently searched information in pie charts, which shows the

significance of each part. This is where you can hover over a section of the chart

in order to expand the information.

12. The results webpage has local weather displayed on the right side and a map of

the local area searched on the left side. There is a table of queried search results

in the center of the web page.

13. There are audio buttons reading out different text sections meaning it is accessible.

The navigation bar is listed on the left side of the webpage and logo on the top

right of the webpage.

14. There are square fielded inputs and rounded field inputs considered.

15. The text is bold with Ariel font being used as it provides visual accessibility in

reading the text.

16. There are bullet points and dashed points for information.

Further point two to five involves the filtering stage. Points 8, 12, 9 and 10 can be

filtered:

1. Points 8 and 12 are very similar. The possibility of merging the map and weather

information into one.

2. Points 9 and 10, a possibility of filtering into one and merge local areas of interest

in the region. e.g., London jobs and houses could display both and also attractions

e.g., London eye.

Considering the five steps from this sheet, points three to five involve categorising

the ideas. Points 7, 8 and 10 can be categorised according to the layout of results,

Developing and Evaluating Prototype Alpha 105

providing a simplistic view of splitting up the screen into sections. Points 2 and 3 can

be categorised by the information of jobs and houses that are newly listed. Points 3 and

4 include a large amount of information from different areas on the homepage which

could be considered messy. Two categories that may be a possibility for the homepage

and result page are a detailed and ‘full of information to the user’ or a simplistic view

of housing enough information but does not overload the user.

Point four involves combining and refining the ideas made. In this instance, points 1

and 4 for the homepage were combined:

• The user can enter job and houses query in the search.

• There would be three areas at the bottom that allow the user to see the latest

entries and highest rated.

• There would be bold text and enhanced font for highlighted entries.

• There would be primary colours used.

• A simplistic design and the ability to make changes for the future.

Ideas 8 and 12 were also combined and refined for the results page:

• There would be four colours used one for the logo, name, location, category and

rating.

• The red colour would be the image of the house.

• The green colour would be the name of the company or house.

• If the user were to click the information, it is hyperlinked to further information.

• The user would see results in table with information and information about

weather and a map of the searched area.

Developing and Evaluating Prototype Alpha 106

Questioning

The final point from the brainstorming sheet involves questioning. The first prototype

needs to rely on the scraping of information. The reason for using North Wales for the

first prototype is because it provides a convenient sample, and an area known to the

author. The prototype design needs to have a simplistic view within the homepage and

results page. In terms of the ideas discussed, this initial design achieves this goal as the

prototype can gather local points of interest when searching for an area. It is important

that the idea can be adapted for future developments.

Future prototypes might include data from social media events or local crime rates,

points of interest and school ratings. This would provide more information about the

user to the area they are searching for.

The prototypes for this project primarily involve housing and jobs and anything further

could be an additional benefit for the future.

5.3.2 Sheets 2, 3, 4 — Initial Designs

After the first design sheet, the design in collaboration with the client creates three

individual design sheets to place three ideas that were generated from the initial Sheet 1

brainstorming exercise. The reason why there are three sheets and not one is because it

facilitates a more thorough discussion that goes into the detail of every element and

ideas that have been created. Without it, this would mean that there would be too few

designs. However, if there are too many designs, it would waste the client’s time. It

could be that there are only two designs that are reasonable / realistic. However, it is

better to create a third design even if it seems unfeasible. This is because the client

might be able to take aspects of each sheet and might be able to extend ideas created

through discussion. The client could potentially see the idea of the application further

than the developer may see it.

The content on these sheets contains:

1. The Layout of the Design. This provides the vision of what the final design

prototype would look like. This would be a sketched version of the application.

Developing and Evaluating Prototype Alpha 107

2. Focus. The developer may need to display data in multiple aspects or views.

There could be some specific parts that the developer might want to focus on or

zoom into.

3. Operations. This is where sketches and brief descriptions of how the developer

would operate around the application / user interface.

4. Discussion. The developer discusses the advantages and disadvantages of the

technique considered. This is a brief discussion of the designs.

5. Meta-information. The developer should include a title, authors, date, sheet

number and what the task is.

Developing and Evaluating Prototype Alpha 108

Sheet 2 — Initial Designs

Figure 5.2: Sheet 2 produced during the Five Design Sheets process for the Alpha prototype

On figure 5.2, Sheet 2 produced from the Five Design Sheets process provides the

overall view of the initial prototype and then discusses the layout of the homepage and

results page:

Developing and Evaluating Prototype Alpha 109

Homepage

• The user user inputs related keyword information.

• The database shows three sections. The main highlights are recently uploaded

and added.

• There is also a highest ranking. This could be modified of each job / house

depending on data availability.

• The ability of a random selection of jobs and housing would appear.

Results from query

• The map would be provided by Google’s API that would visualise the local area

based on the query.

• Weather would provide current and forecast weather to the area being searched by

the user.

• The list of related information would come from the query.

• The table of information would result from the user clicking on any item for a

detailed further page of information clicked.

The operations that can be performed as defined in the layout from Sheet 5.2 are the

following:

• The user would have the ability to submit the query by pressing the button next to

the input field.

• The information will be hyperlinked to related information in the square boxes.

• Each individual element in the square boxes are hyperlinked to detailed pages

from the basic information shown.

Developing and Evaluating Prototype Alpha 110

The discussion section from sheet 5.2 is that the design uses the KISS principle [114]

to show the information.

Additionally the advantages and disadvantages of this design are:

Advantages

• It has a clear appearance, and it is not cluttered.

• The information displayed is in a table which is neatly organised.

• It provides local attractions, such as cinemas, restaurants and bars of what is

being searched.

• It incorporates fonts and sizes that are helpful for the visually impaired.

Disadvantages

• The rating of points of interest, e.g., cinemas, shops and cafes, might not be so

relevant to Alpha prototype at this stage.

• The design could incorporate more HTML 5 elements.

• There could be more services included in the prototype.

Developing and Evaluating Prototype Alpha 111

Sheet 3 — Initial Designs

Figure 5.3: Sheet 3 produced during the Five Design Sheets process for the Alpha prototype

As shown in Figure 5.3, Sheet 4 from the Five Design Sheets provides the overall view

of the prototype and then discusses the layout of the homepage and results page:

Developing and Evaluating Prototype Alpha 112

Homepage

• The user inputs information in the search query box.

• The main title that is bold will indicate to the user that you can find a information

that suits you.

• It provides company information.

• The bottom of the page indicates jobs and housing in North Wales.

Results page

• There are two sections — one jobs in North Wales and the other side being

housing.

• Each title would be hyperlinked to another web page for details of the listing.

• Dependent on what button is clicked and then searched, it could show jobs,

housing or both.

The operations defined in the layout from Sheet 5.3 are the following:

• The user clicks the buttons and sets the search field for the results page.

• The homepage for each listing has a hyperlink for more information.

• The navigation bar allows for hovering to show the sub-categories.

From the discussion section from Sheet 5.3, the advantages and disadvantages of the

design are:

Advantages

• There is a range of useful information straight on the homepage to catch the users’

attention.

Developing and Evaluating Prototype Alpha 113

• There is the ability to define what you are searching for with the option filters.

• The prototype will have the ability to go directly to the properties and jobs from

the homepage.

Disadvantages

• The usage of results page could be more detailed.

• There could be some simple services for example, weather.

Developing and Evaluating Prototype Alpha 114

Sheet 4 — Initial Designs

Figure 5.4: Sheet 4 produced during the Five Design Sheets process for the Alpha prototype

As shown in figure 5.4, Sheet 4 from the Five Design Sheets provides the overall view

of the prototype and then details the layout of the homepage and results page:

Developing and Evaluating Prototype Alpha 115

Homepage

The design for the homepage includes the following:

• User input for query (keyword) information.

• Company information.

• Social media.

• A range of jobs and housing in North Wales.

Results page

The design for the results page includes the following:

• A table of related query results.

• A Google Maps of the area.

• Localised weather of the searched criteria.

The operations section from Sheet 5.4 are the following:

• Images on the homepage faded and if hovered over would illuminate.

• A description also provides a hyperlink to further information.

• A navigation bar can be hovered over for sub-categories.

Developing and Evaluating Prototype Alpha 116

Concerning Sheet 5.4, the advantages and disadvantages of the design are:

Advantages

• Evenly laid out, the prototype provides jobs and houses straight on the homepage.

• The prototype design provides a clear yet a simplistic design view.

• The interface provides interactive pie charts that if clicked would navigate to

further information.

Disadvantages

• The results page could be better structured.

• The prototype design could have less colours for the homepage and instead have

a plain background or image.

Developing and Evaluating Prototype Alpha 117

5.3.3 Sheet 5 — Realization

Figure 5.5: Sheet 5 produced during the Five Design Sheets process for the Alpha prototype

The designer in collaboration with the client then progresses onto the final sheet which

is the realization sheet. The developer would consider at this stage what the visulisation

tool could look like. The designer is in collaboration with the client would also look

Developing and Evaluating Prototype Alpha 118

into what specific features and services that the product will have and also how the

users operates it e.g., operations / functions that may be used. The noted difference

between this sheet and the other sheets is that discussion is different with detail. The

details section should include detailed discussion of how the product would work or

how it will be created. Details that could be included are:

1. Description of what the algorithms are going to be used.

2. Any dependencies. This would be if there are any software libraries that would

be needed to build the tool you are using.

3. Estimates of the cost or time to build this product, this could also man-months

required of effort into the product.

4. Specific requirements. This is such as a details of any materials and quantities

that may be required for example hardware requirements.

Figure 5.5 presents the realisation of the design for the initial prototype. This was

arrived after the Five Design Sheets process. Using the information above, the elements

are the following:

Homepage

• The user can input keywords related to what they are requiring. Concerning a

house or job in North Wales.

• The Homepage shows database information of jobs and housing in North Wales.

• The final sheet gives the user jobs and housing directly on the homepage with the

ability to go directly to each listing for further detail.

The elements for the results from the query are as follows:

• The map would be from Google’s API to be able to see local area.

• The weather information will come from the search query.

Developing and Evaluating Prototype Alpha 119

• There is a table displaying the jobs and houses information.

• There is the ability to click on the name for detailed information.

The operations for figure 5.5 are:

• You can submit the search field with the criteria.

• There are hyperlinks to the jobs and houses throughout the homepage and results.

• There is other information and hyperlinks to further information on the pages.

The detail for figure 5.5 is as follows:

• Algorithms: This first prototype will use HTML5/CSS for the website.

• The database will be SQLite. It’s simple to use, manage and create tables.

• The scripts to extract data from the websites will be implemented in Python using

modules such as BeautifulSoup, Scrapy and Django. The reasoning for using

Python is that it provides an easy-to-use framework to build upon.

• This prototype should demonstrate extraction of website data to ensure it works.

• Services such as Google Places, local weather and Google Maps will be used

within the results.

• The hardware requirements are: a Local machine that has a Unix based command

interface; interactive development environment IDLE that is built within Python;

and using Sublime Text for general code.

5.3.4 Design Outcome

The feasibility of the approach depends on whether the data extraction and fusion

between two data sources is going to be a viable product. The data that will be used in

this prototype will be produced from Google Places, which will do a search of a place

Developing and Evaluating Prototype Alpha 120

and it’s points of interest from a specified location query. This could be adapted in the

future to include further data within the area.

Website Design: The design process has resulted in a simplistic two-page design, one

being the homepage of where the user would input the search query (see Figure 5.6),

the other page being the results from the query (see Figure 5.7). The Five Design Sheet

methodology for this has been followed through, taking into consideration different

design concepts and also ensuring accessibility standards have been followed e.g.,

setting a minimum font size to ensure people with visual impairment can view the

websites 1. The pages that will be created use HTML5, CSS and Semantic UI. Semantic

UI allows fluidity of the design instead of having static buttons, navigation bar and so

on.

Figure 5.6: Homepage of Alpha prototype

The homepage of the website provides the logo of the business, a search field and three

boxes. The three boxes indicate websites that have been recently updated, these include

“Recently Updated”, “Highest Rank” and “Random selection”. This is triggered when

searching is done prior to searching. The highest rating element would rank them in

order. Random selection is where each time the homepage is refreshed, new results

would appear.

1http://www.bbc.co.uk/guidelines/futuremedia/accessibility/html/

Developing and Evaluating Prototype Alpha 121

Figure 5.7: Results Page of Alpha prototype showing the results of the query, the location
searched and the temperature of the area

The results page of the website provides a table of scraped results. It also includes

a Google Map of the area being searched and the temperature of the local area. The

Google Map was made small as it only needed to provide the specific area entered. The

temperature of the area was used as the company partners felt that this would be a good

contribution to show dependent on the activity the person is searching for. The website

uses a range of different services to provide a platform that extracts points of interest

such as cafes, cinemas, local areas of interest and schools.

5.3.5 Summary

The company partners found the Five Design Sheet design process to be lengthy. Mr.

Edwin Smith said “I had difficulty breaking down elements of this design as I already

had pictured what I wanted.” Edwin reflected that the Five Design Sheets provides an

opportunity to look into the finer detail that you could ignore. Mr. Warren Greveson

said “I appreciate the process of the Five Design Sheets. It does allow a project to be

given a broader scope and for ideas to be flown more easily. I would however not use

this myself in the future as I prefer to work over several iterations and processes”.

When these comments were made from the company partners, a discussion was held

on why the developer had found using the Five Design Sheet methodology helpful

and allowed for further creativity and opportunity. The insights gained from this

early prototype led to the design for the next prototype. Additionally it provided the

Developing and Evaluating Prototype Alpha 122

opportunity to include different elements that were not considered initially by the

company partners.

These pages were presented to the founder of the Five Design Sheets, Professor Jonathan

Roberts of Bangor University. He stated that the design could have have gone even

further by breaking down the individual elements of the ideas on sheet one, instead of

drawing a whole web page and considering elements. If the approach of using Five

Designs Sheets were to be done again, the focus on more individual aspects related to

the design would be investigated more thoroughly.

5.4 Implementation of Alpha Prototype

There are many ways of performing data extraction from the web. This section focuses

on creating a prototype that investigates extracting information from a few websites

that hold information about cinemas or local areas of interest. This has been done for

proof of concept for extracting elements from websites. The prototype has been called

Alpha for reference. The Alpha prototype also involved setting up an essential structure

for a website and allowing the user to understand how extraction is done. The Alpha

prototype explored the different methods of data extraction that can be used.

5.4.1 Use-Case Model Survey

The Alpha prototype has two different types of users: Admin and User.

Admin

The Admin does the maintenance, configuration and installation of the system. Figure

5.8 is the Use-case diagram of the Admin user.

Developing and Evaluating Prototype Alpha 123

Figure 5.8: Alpha Prototype — Admin Use-case diagram

The use-case scenarios as illustrated in the figure is as follows:

• Configure Database: This involves the configuration of the database settings and

maintenance.

• Configure Server: Maintenance of the software, running operations.

• Populate Database: Add new points of interest to the existing database tables.

• Control of web scraping techniques: This is used to retrieve points of interest.

User

The user has access to the main functions of the system. Figure 5.9 provides the

Use-case diagram for the User.

Figure 5.9: Alpha Prototype — User Use-case diagram

The use-case scenarios as illustrated in the figure is as follows:

Developing and Evaluating Prototype Alpha 124

• Input Search Query: A user can submit a search query to the Alpha prototype

interface.

• View Query Results: Then the user can view results that the query returns.

• Filter Results: The user can apply filters to tailor the returned results.

5.4.2 Architecture Diagram for the Alpha prototype

The architecture diagram, Figure 5.10, gives an overview of how the Alpha prototype

works. Each column represents a tier of the MVC design pattern. The boxes inside each

column represent the processes of the Alpha prototype.

Figure 5.10: Alpha Prototype — Diagram displaying the architecture of the MVC model

5.4.3 Home Page of the Alpha Prototype

The home page of the Alpha prototype is the landing page that the user will be interacting

with. The elements for this prototype that the home page will need to contain are:

• a form where the user can supply a search query;

• search button which is used to start the query;

Developing and Evaluating Prototype Alpha 125

• three individual tables that display the recently updated locations, highest rated

locations and a random selection of different places.

5.4.4 Results Page of the Alpha Prototype

The Results page of the Alpha prototype displays the query that the user submitted. The

Results page template has the following elements included:

• google maps displaying the location of the criteria that matches the search;

• weather information based on the location queried;

• a table that contains all the results found from the query entered.

5.4.5 Component Diagram Process

The Alpha prototype has five steps for the system process. The component diagram of

this prototype can be found in Figure 5.11.

Figure 5.11: Alpha Prototype — Component Diagram Process

• Configuration: The admin would ensure that configuration files are setup for the

Alpha prototype to run and maintained.

• Style: This involves the styling of the Alpha prototype web pages.

• Process: This involves the methods of how the Alpha prototype is processed.

• Save: This involves saving any new information from web scraping techniques

into the database.

• Features: This involves any additional functionality or features used within the

Alpha prototype such as weather and temperature services.

Developing and Evaluating Prototype Alpha 126

5.4.6 Managing Web Pages of the Alpha Prototype

The urlopen 2 module within Python’s library takes a web page address input and returns

the web page content in a Python string. This string contains all of the HTML elements

containing the class tags, which are needed to be displayed.

The Alpha prototype uses information provided by http://ukcinemas.org.ukwhich

is a website that contains information about cinemas located in the United Kingdom.

Cinemas were used as part of the Alpha prototype as they provide many locations and

details, such as name, ranking and meta information. The website is structured and an

excellent candidate to experiment with web scraping for this prototype.

If a user were to enter an unrelated query to the cinemas’ website, it would then use

Google Place’s API to populate the database with results found.

5.4.7 Connection for the Database for the Alpha Prototype

As Django is built-in to Python, upon installation, a file that contains the settings is

created for the database. If the developer needs to change the database type, they would

need to change the file’s connection setting. If the project were to be taken outside of

the localhost, it would require the project’s settings to be changed. The connection

details for the Alpha prototype are in table 5.1.

Engine: The database engine used.

Name: The name of the database.

User: The username used to connect to the database.

Password: The password for the database.

Host: The location of the database.

Port: The port used to connect to the database.

Table 5.1: Database configuration settings for Alpha Prototype

When the database is connected and configured, it can then be accessed. Python’s list

data structure allows a user to query the database and store all of the data from the

query in a list. A major benefit of Django is that when queries are constructed, they are

2https://docs.python.org/3/library/urllib.html

Developing and Evaluating Prototype Alpha 127

http://ukcinemas.org.uk

performed on the application side and then translated to work with the database that has

been chosen.

5.4.8 Styling the Web Pages of the Alpha Prototype

The web pages are linked to the styling sheets via the template language. This website

uses Semantic UI 3, which is a framework that is used to design web pages.

The tagging system is characterised into different sections. This allows different design

functions to be placed onto an element by inputting a keyword to the HTML class name.

The advantage of Semantic UIs is that all of the styles are independent. This approach

adopts the keyword-based styling instead of structure, parent classes or parent tags.

5.4.9 Processing and Saving: the data for the Alpha Prototype

A database model is created by a function called PointsOfInterest for the Alpha Prototype,

which allows for the database to save facility information about a specific cinema venue.

The Alpha prototype venue variables include name, location, description, category,

rating, website, logo and last updated listings have been created to store information.

The homepage returns the top 5 points of interest ranked from lowest to largest. Updating

objects or even inserting objects is done by constructing a data set that matches the

table of requirements and then saving the data.

As the data is being processed for the website that is extracting information about

cinemas, the software also populates the database from the search query.

When all the data has been retrieved, the data needs to be saved to the connected database.

Data is stored in a list with a total of points of interest and number of categories. The

data can be saved into the database by looping through the list and saving each list index

to the respective table.

5.4.10 Modules of the Alpha Prototype

Figure 5.12 shows the main modules that were used to implement the Alpha prototype.

3https://semantic-ui.com

Developing and Evaluating Prototype Alpha 128

Figure 5.12: Overview of Modules in Alpha prototype

Google Maps

The Google Maps feature is connected to a web service Python wrapper module

of googlemaps 4. The service allows the interface to have a map by supplying it

with coordinate or place information. The information that is then supplied allows

interactivity between the map and the user. The location query that the user enters

is coded to find the place, and then this is paired with the map address and it is then

supplied back.

Google Places

Google Places 5 is an API service that returns information about places using HTTP

requests. The Places API provides establishments, geographic locations and points

of interest. Parameters can be passed to the API such as the name of the facility, the

category of the facility or location. The information that can be returned can vary from

basic information such as name and location to detailed information such as opening

and closing times.

Open Weather API

OpenWeatherMAP 6 is a service that provides weather data for free, including the current

weather, forecast and also historical data. It’s implemented using PyOWM 7 which

is a client Python library for the OpenWeatherMap API. It allows easy consumption

of OWM weather data from Python applications by a simple object model. The API

would return a JSON file that contains different information, including weather status,

temperature and humidity.

4https://pypi.python.org/pypi/googlemaps/
5https://console.developers.google.com
6http://openweathermap.org/api
7https://pyowm.readthedocs.io/en/latest/

Developing and Evaluating Prototype Alpha 129

5.5 Evaluation of the Alpha Prototype

This section evaluates the Alpha prototype that have been created for the project. The

Alpha prototype investigated into extracting different local areas of interest with a

keyword query. The Alpha prototype used the Google Places API to retrieve data

relevant for the search. The prototype was created as experimentation to explore

extraction methods utilising an API.

The evaluation of the Alpha Prototype uses keywords entered by the developer and then

an relevance is calculated from the results.

Figure 5.2 lists the results from the evaluation. The table indicates the keywords that

were used to query the prototype, how many results were found and how many results

from the results found were used for the sample.

Additionally the table mentions the relevance and the average score from the sample. The

results indicated that some search results found results outside of the region specified;

for example, the query ‘schools in Colwyn Bay’ gave results of schools outside of the

Colwyn Bay area, although they were still related to schools.

Further design implementations and features would need to be incorporated for a more

precise search result.

Developing and Evaluating Prototype Alpha 130

Keywords
Results

Found

Results

Used
Relevance

Accuracy

(%)

cinema 1000+ 100 100 out of 100 100

cinema UK 300 30 20 out of 30 66

schools Colwyn Bay 20 20 19 out of 20 95

shops in Bangor 60 20 12 out of 20 60

coffee shops in London 400 30 21 out of 30 70

garden centre Llandudno 15 15 13 out of 15 86

car garages Bangor 25 25 23 out of 25 92

pubs in Rhyl 40 40 40 out of 50 80

restaurants in Conwy 300 100 80 out of 100 80

leisure centres centres in conwy 20 20 18 out of 20 90

church gwynedd 120 50 35 out of 50 70

schools Bangor 70 30 20 out of 30 66

banks in llandudno 30 30 28 out of 30 93

pet store in abergele 20 20 18 out of 20 90

bicycle stores in mochdre 12 12 8 out of 12 66

beach in conwy 4 4 4 out of 4 100

hospitals gwynedd 6 6 6 out of 6 100

dentist holyhead 7 7 6 out of 7 100

hotel in abersoch 120 120 70 out of 120 58

supermarkets in llandudno 24 24 20 out of 24 83

Table 5.2: The Alpha Prototype evaluation of queries searched with details and the calculated
relevance.

Developing and Evaluating Prototype Alpha 131

5.6 Summary of Alpha Prototype

The Alpha prototype has demonstrated that data extraction methods conducted make it

possible to extract facility data from Google Places, which can be incorporated into the

information provided by this project’s website. However this was not felt necessary for

the initial prototypes that were developed for this project as it was out of scope and has

been left for future work.

The results from Table 5.2 indicate a good range of accuracy results that are being

retrieved from Alpha prototype evaluation queries. The lowest accuracy was 58% and

the highest being 100%. These results are promising as it demonstrates proof of concept

of retrieving and displaying relevant results to a user search query. These methods will

now be enhanced and improved, incorporating them into the following chapters for

housing and jobs.

Developing and Evaluating Prototype Alpha 132

Chapter 6

Developing and Evaluating Prototype

Beta I

6.1 Introduction

This chapter discusses the development and evaluation of the Beta I prototype that

was produced for this project. This includes the methodology that was used for this

prototype and the suitability of its design for this project.

The Agile Design process involves taking tasks and breaking them into small increments

with minimal planning. Iterations using this design process are done within short

times. Agile design [93] [51] allows you to build a product through communication,

collaboration, and small but rapid iterations in order to sustain agility that allows the

development team to adapt to a changing environment. This model relies heavily on the

customers being apart from the team so that changing requirements are adapted to.

Agile development has several main components, which are:

• Selection of the project and coming up with the vision.

• Initiation of the project by obtaining the stakeholder participation, funding and

creators team.

• Rapid development to create iterations that meet the changing needs of the

stakeholders. There are release iterations that may not be fully completed or

functional, although the designers believe that it is good enough for the purpose

of the users.

133

• Release of the product (end game).

• Production — ensure that there is continued development, maintenance and

support for the system.

• Retirement — remove the prototype when no longer needed.

Figure 6.1: Flow of Agile Design

6.2 Beta I Prototype — Agile Design process

The Beta I prototype uses Agile Design as stated in section 6.1. As a result, all the

stakeholders could rapidly change the needs of the prototype. The iterations do not need

to be completed in full and they can be created if it is not fully completed or functional.

The company partners wanted to take what was made in the Alpha prototype but allow

for a dynamic perspective of visualising the data. The vision they had was to display

the information on a map instead of a traditional table / listing. This approach is used

with some housing websites as an option to view housing on a map. However with jobs,

at present no job website has a map functionality. We collaborated together and drew

mock-up elements of the websites:

Developing and Evaluating Prototype Beta I 134

Figure 6.2: Design Beta I Prototype showing the iteration of Form options

Referring to figure 6.2, the first iteration of design looked into how the user would

search. We sketched out a table with a search query, with some fields. The company

partners felt that this would not be most suitable as tables should be avoided with HTML

5.

We then decided to put the query fields on the left side of the webpage in its own

separated dividers, resulting in the code being more HTML5 friendly. It also looked

better not having a table.

The company wanted to use the Beta I Prototype as an experiment to have both the

map and search field on the same web page. This would mean that the user would have

the ability to search for the criteria on the left hand side and then it would produce the

results on the same page. They wanted to see if it was possible to use Google Earth,

a platform that you can download and search for criteria and then zoom into the area.

This resulted in the following design:

Developing and Evaluating Prototype Beta I 135

Figure 6.3: Beta I Prototype — Iteration 2 — 3D map

Figure 6.3 shows the webpage with a 3D map. This required an investigation to see if

it was viable to use Google Earth through websites. It was discovered that at present,

Google Earth is only available to download and use through through a computer. It did

not allow for cross compatibility from Desktop to Smartphone either.

This led to another iteration. Instead of using a 3D globe, we thought of using a 2D map

of the area on the right hand side of the search field. This can be seen in Figure 6.4.

Using a query and map solution has been used by many researchers in the past. Dynamic

queries are used to cope with information overload. Having the ability to select, and

adjust the information by means of an interface [133].

A geographical visualisation has been created for the Beta I prototype. This is a form

of information visualisation in which principles from geographic information systems

have been integrated into the output of the dataset [86].

Developing and Evaluating Prototype Beta I 136

Using a geographic visualisation places the emphasis onto using a map and provides a

dynamic display that the users can manipulate with a dynamic query. This results in the

map changing in response to changes of the data and the actions from the user [87].

Figure 6.5 is using multiple views for information visualisation. On the left hand side

the query is displayed and upon submission of the submit button, the results load directly

on the map on the right hand side. As the data-set is large, it was important to load

the data in a way that the information is accessible upon clicking on detail-on-demand

windows. This will avoid having potential problems with memory usage [153].

Ahlbery’s [3][2] approach to information visualisation has used toggle boxes, drop-

downs and detail-on-demand windows, the theory being to use these type of accessibility

options to enhance user experience. Detail-on-demand windows allow the overviews

of data that is important to the user to be provided only when they are requested

dynamically. The Beta I prototype in this instance allows for the specific housing

and job query to be highlighted upon searching the query as shown in Figure 6.4.

Detail-on-demand windows are demonstrated in Figure 6.5 and selecting on the pins

would generate specific housing or job information windows when they are requested.

Figure 6.4: Beta I Prototype — Iteration 2 — 2D map

Developing and Evaluating Prototype Beta I 137

On the results page from jobs and housing websites, the web page has a wealth of

information that you can view, although on a map, it isn’t possible to view everything in

a presentable manner. The information would need to be condensed and presentable

to the user. As well, a decision on how you pinpoint the information on the map was

needed.

Referring to Figure 6.5, a decision was made to use a red circle to pinpoint the

information for this prototype. The reason why red was used as there was a motivation

to use this for accessibility. If the user were to click the red circle, an information

window will appear listing the title, short description, location and a link to the specific

web listing. This allows for basic information to be provided to the user and the ability

for them to view the listing further on the website in question.

Figure 6.5: Beta I Prototype — Iteration 2 — 2D map, infowindow and red circles

6.2.1 Design Outcome

The vision set in this prototype was to have everything on one page, the ability to search

and to view the results at the same time instead of having to have multiple pages to get

to the results. At this stage, the source of the jobs and housing elements are on two

separate websites although the design element is the same for both.

Developing and Evaluating Prototype Beta I 138

ArcGIS API for JavaScript 1 was used for this prototype as shown in Figure 6.7. The

reasoning behind this was because the demo examples illustrate that it is possible to

produce impressive results. An example of this can be shown in Figure 6.6 where the

sample demonstrates how distance-related queries are used to process geographical-

based statistics with the results produced in a series of charts. This app displays

homicide data from 50 U.S. cities between 2007 and 2017, gathered by The Washington

Post 2.

Figure 6.6: Query statistics client—side by distance

1https://developers.arcgis.com/javascript/
2https://www.washingtonpost.com/graphics/2018/investigations/unsolved-homicide-database/

Developing and Evaluating Prototype Beta I 139

Figure 6.7: Beta I Prototype — Design Overview

As shown in figure 6.7, the website for the Beta I prototype has the search area on the

left hand side of the web page, including the ability to:

• Search for a location in the UK.

• Minimum price of the property.

• Maximum price of the property.

• Property type — housing or flat.

• Number of bedrooms.

In figure 6.8, once a search is performed, the results will then be pinned on the map

with red circles and if clicked will show basic information of the listing and a hyperlink

to the specific web page of the listing.

Developing and Evaluating Prototype Beta I 140

Figure 6.8: Beta I Prototype Design — Searching

6.2.2 Conclusion of the Beta I design process

Using agile design, several iterations of the Beta I design prototype were created and

the design methodology used achieved the creation of a design to display the housing

and job results on a map based interface. There has been the process of breaking down

the elements of the website design into small increments.

Agile design was much preferred by the company partners. Mr. Edwin Smith said:

“I found this much easier to work with, it allows collaboration and many iterations of

the processes as required. It allowed for rapid prototyping and design development.”

Agile Design allowed for more frequent discussions with the company partners and

allowed for there to be multiple iterations and additions as the design was being made.

The company partners were happy with this design although for the Beta II prototype,

a further design was required due to the change in structure of the website, using the

Merlin system instead of the APIs. Additionally the company partners preferred the

icons to be further distinctive to make it clear to the user what a job and housing is from

the results. This is discussed in the next section.

Developing and Evaluating Prototype Beta I 141

6.3 Implementation of Beta I Prototype

Some housing and job websites have APIs that are publicly available to use and, at

the time of writing, were free of charge without restrictions. Two available APIs that

were investigated were Zoopla for housing website data and Indeed for job website data.

These APIs provide documentation which describe what elements are included in the

API and how they can be adapted to a map overlay with latitude and longitude data 34.

The housing and jobs have been created on separate websites to make it easier to explore

the effectiveness of the individual APIs. A benefit from creating this prototype is that

the code used has been adaptable and reusable for both APIs. Beta I has a design

objective from the previous section of following Agile Design.

6.3.1 ESRI Maps

On both the housing and jobs website element, ESRI maps have been used. The ArcGIS

API for Javascript 5 provides developers the ability to build compelling web applications

that allow an interactive user experience with 2D and 3D visualizations.

In this prototype, an ESRI map is initialised along with the key elements of what is

required for displaying the results on the map. A function has been created as part of

the ESRI required modules ArcGIS API. The elements are the creation of the map, the

information window, the layering on the map, the symbol pins and then the event to add

the points onto the map.

Figure 6.9 shows the creation of the ESRI Maps functionality within the Beta I prototype.

3https://developer.zoopla.co.uk
4https://uk.indeed.com/?r=us
5https://developers.arcgis.com/javascript/

Developing and Evaluating Prototype Beta I 142

Figure 6.9: ESRI Maps Initialization and Options within Prototype Beta I

Each of the element process from Figure 6.9 are as follows:

1. Create Map: a function is created to invoke the Google Map module and set

configuration settings on the map and the layout style.

2. Create Info Windows: a function is created to invoke the Info Window module

and adding the capability of adding infowindows to the HTML structure.

3. Create Layers: a function is created to create the different layers for both housing

and jobs, and to be able to return the results of the list arrays and display them on

the map.

4. Create Symbols: a function that sets up the symbols for both housing and jobs,

invoking the marker modules and returning these markers on both the housing

and jobs listings.

Figure 6.10 shows the process of the ESRI Maps functionality following from the

creation steps within the Beta I prototype.

Figure 6.10: ESRI Maps Process Flow within the Prototype Beta I

Developing and Evaluating Prototype Beta I 143

Each of the functionality element processes from Figure 6.10 are as follows:

1. Add points from completed search: a function is created to state when the search

is completed to then ensure the layer is clear, the function then adds the points to

the layer.

2. Add locations to the points for the housing and job layers: a function is set to

add locations to the points, the function then creates the point graphics for the

location coordinates and displays the points on the overall layer.

3. Create point graphic: a function created that invokes the point module for the

latitude and longitude, this then applies the attributes to the points and returns the

created graphic points.

4. Create information template: this created the content that will be displayed from

the returned array lists, such as the titles and then it returns the generated returned

results.

5. Generate info template from returned content: the created function loops through

the returned content, sets the content and then applies the information to

infowindows. Additionally this function returns the content onto the map.

6.3.2 Zoopla API

Zoopla launched an open API to allow developers to create applications using local data

of over 27 million homes. There are over 1 million sale and rental listings available in

this data, comprising 15 years of sale price data 6.

Zoopla’s API requires the user to sign up and create an API key to use the available

data. The methods for accessing the data are via standard API methods and protocols,

all of which use the GET method of HTTP protocols.

Zoopla’s API provides standard input parameters, such as keywords, although several

different methods can be used. If several parameters are specified, a higher chance of

better results would be produced.

6https://developer.zoopla.co.uk

Developing and Evaluating Prototype Beta I 144

Figure 6.11: Zoopla API Input Parameters

Figure 6.11 shows the available input parameters that the user can develop to request the

API to retrieve from the search form. The Beta I primarily uses the first eight options

from the figure.

Figure 6.12: Zoopla API Output Parameters

Developing and Evaluating Prototype Beta I 145

Zoopla’s API would then provide a standard set of parameters for output that is generated

containing information about the matched data according to the input parameters

provided, as shown in figure 6.12.

6.3.3 Zoopla API Integration

The Beta I prototype has been developed using the parameters shown in Figure 6.12.

All the parameters except bounding_box have been used to request the API to search

property listings. For example, using the postcode parameter, the user might enter

‘LL57’. The response would be the following, as shown in table 6.1.

Developing and Evaluating Prototype Beta I 146

Begin tag Text End tag

<listing> </listing>

<agent_address> 282 High Street, Bangor </agent_address>

<agent_logo> https://st.zoocdn.com/zoopla_static_agent_logo_(640059).png </agent_logo>

<agent_name> Beresford Adams - Bangor Sales </agent_name>

<agent_phone> 01248 308913 </agent_phone>

<category> Residential </category>

<country> Wales </country>

<country_code> gb </country_code>

<county> Gwynedd </county>

<description>
Rich in history and bursting at the seams with character, the

former Hillgrove School is a rare and exciting opportunity for any
</description>

<details_url>
https://www.zoopla.co.uk/for-sale/details/54144846?utm_source=

v1:5bnJADncHQDN6geyKa1ztDj-OUc5xa-Y&utm_medium=api
</details_url>

<displayable_address> Ffriddoedd Road, Bangor, Gwynedd LL57 /displayable_address>

<first_published_date> 03/02/2020 21:12 </first_published_date>

<floor_plan> https://lc.zoocdn.com/3f1e89c402fbec0d9ed27a3b825131b2cd329bdb.jpg </floor_plan>

<image_150_113_url> https://lid.zoocdn.com/150/113/bb5a119d2ebf67e7a0b4a747037871ae11aef718.jpg </image_150_113_url>

<image_354_255_url> https://lid.zoocdn.com/354/255/bb5a119d2ebf67e7a0b4a747037871ae11aef718.jpg </image_354_255_url>

<image_50_38_url> https://lid.zoocdn.com/50/38/bb5a119d2ebf67e7a0b4a747037871ae11aef718.jpg </image_50_38_url>

<image_645_430_url> https://lid.zoocdn.com/645/430/bb5a119d2ebf67e7a0b4a747037871ae11aef718.jpg </image_645_430_url>

<image_80_60_url> https://lid.zoocdn.com/80/60/bb5a119d2ebf67e7a0b4a747037871ae11aef718.jpg </image_80_60_url>

<image_caption> Front </image_caption>

<image_url> https://lid.zoocdn.com/354/255/bb5a119d2ebf67e7a0b4a747037871ae11aef718.jpg </image_url>

<last_published_date> 21/05/2021 11:45 </last_published_date>

<latitude> 53.22418 </latitude>

<listing_id> 54144846 </listing_id>

<listing_status> sale </listing_status>

<location_is_approximate 0 </location_is_approximate>

<longitude> -4.141412 </longitude>

<num_bathrooms> 1 </num_bathrooms>

<num_bedrooms> 6 </num_bedrooms>

<num_floors> 1 </num_floors>

<num_recepts> 1 </num_recepts>

<outcode> LL57 </outcode>

<post_town> Bangor </post_town>

<price> 1200000 </price>

<date> 03/02/2020 19:40 </date>

<percent> 0% </percent>

<price> 1500000 </price>

<date> 12/09/2020 18:57 </date>

<direction> down </direction>

<percent> -20% </percent>

<price> 1200000 </price>

<direction> down </direction>

<last_updated_date> 12/09/2020 18:57 </last_updated_date>

<percent> -20% </percent>

<property_type> Detached house </property_type>

<short_description>
Rich in history and bursting at the seams with character, the

former Hillgrove School is a rare(...)
</short_description>

<status> for_sale </status>

<street_name> Bangor Gwynedd </street_name>

<thumbnail_url> https://lid.zoocdn.com/80/60/bb5a119d2ebf67e7a0b4a747037871ae11aef718.jpg </thumbnail_url>

Table 6.1: Zoopla API Listing Output

Developing and Evaluating Prototype Beta I 147

As shown in table 6.1, the API has produced an XML tagged structure output with the

response from the query entered, which in this instance was ‘LL57’. The API produces

XML or JSON formatted responses so the developer can pick the selected elements that

are required for the application’s purpose.

With respect to the prototype created, the user has to fill out a search form, and when it

is submitted, the query is sent to the API.

Figure 6.13: Beta I Sidebar Homepage for housing

In figure 6.13, on the sidebar of the homepage, the user has different options that they

can use for the query. Suppose the user were to type ‘Gwynedd’ for the location. It

would then take the parameter ‘area’ from figure 6.11 and perform a call to the API.

Developing and Evaluating Prototype Beta I 148

The reason for using the area parameter is because it is the required option to select

from the API documentation.

Figure 6.14: The component process of how the searching and retrieving is performed in the
Beta I Prototype

Developing and Evaluating Prototype Beta I 149

An example using the above with the code created for this prototype is shown in Figure

6.14. A function has been created to identify the API version, how big the page sizes are

and the API key. The way this prototype has been created uses standard implementation

techniques although the way of how the data is processed and displayed is unique to

this project.

Upon the user pressing the ‘Search’ button from Figure 6.13, this then takes what the

user has entered and sets it into ‘ajaxData’; in this instance ‘Gwynedd’ would be the

location parameter as shown in step 2 of Figure 6.14.

The parameters are then sent to Zoopla’s API using the JSON format. Step 3 of Figure

6.14 process involves the results being returned. If more than 3000 house listings are

found, an error message will appear requesting that the search be refined and made

more specific. If there are no housings from the listing, an error message indicating

there is no housing available; otherwise, it will fetch the results.

Step 4 of the process from Figure 6.14, checks how many pages are returned and then

stored.

For step 5 of the process, a function has been created to ensure the coordinates are split

and stored correctly.

The final step, step 6, involves fetching the pages with an AJAX call. Once all the pages

have been finished, the results would be stored and produced on the map.

The results are then presented back to the user as shown in Figure 6.15. Pins are

loaded onto the map and the user can click on the circles and the info window shows

the information of the listing for that coordinate. In this figure, the user has queried

‘Gwynedd’ with a maximum price of ‘£10,000’ and the Alpha prototype has returned

all listings with the relevant inputs.

Developing and Evaluating Prototype Beta I 150

Figure 6.15: Beta I Example Result from sample query for housing

6.3.4 Indeed API

Indeed’s API allows developers to create applications that search Indeed’s job listings

on their own platform. Indeed’s API requires the user to sign up and gain a publisher

key to use the data available.

The methods for accessing the data involve standard API methods and protocols,

using the GET method of HTTP protocols. Indeed’s API provides a range of request

parameters for the developer to use as shown in Table 6.2 in order to use Indeed’s

listings.

Developing and Evaluating Prototype Beta I 151

Parameter Description

q
This stands for Query. The URL displays the expected

formatted for the parameter, an example:

q=developer or q=java+developer

l
This stands for Location. A post code,

city, state or region combination can be used.

An example: l=Conwy, UK

radius
This is the distance from the search location.

The unit for this parameter is local to the country searching.

jt
This is the job type. The user can specify the following:

fulltime, parttime, contract, internship or temporary.

salary This is the amount of salary per year the user is requesting.

limit This is the maximum number of results to return per query.

co This is the country the user is searching for.

latlong This is the latitude and longitude information.

Table 6.2: Indeed API Parameters

6.3.5 Indeed API Integration

The Beta I prototype has been developed that uses all the parameters in Table 6.2 to

request the API to search job listings. For example, the parameters required to search a

request for Java developers (q) in Austin, TX (l) using the Indeed API parameters as

shown in Figure 6.2.

Developing and Evaluating Prototype Beta I 152

Figure 6.16: Indeed API Listing Output

Figure 6.16 lists the output returned from the query input. The API produces XML

or JSON formatted responses, so the developer can easily select which elements are

required for the application.

Developing and Evaluating Prototype Beta I 153

Figure 6.17: Beta I Sidebar Homepage for jobs

In figure 6.17, the sidebar of the jobs homepage is shown. This allows the user to enter

different options for the query.

An example of using the above query with the code created for this prototype is similar

to the previous housing section.

A function is created to identify the version of the API and initialise the jobFetcher.

This is shown in part 1 of Figure 6.14.

Once the user has submitted the form, part 2 of Figure 6.14 would execute, where the

searched input on the form would be fetched.

The parameters are then sent to Indeed’s API in the format of JSON. Part 3 of Figure

6.14 processes the results returned. If there are more than 20,000 results returned, it

will require the query to be more specific. If no jobs are found, an error message will

inform the user of this; otherwise, it would fetch the request’s jobs.

Developing and Evaluating Prototype Beta I 154

Part 4 of Figure 6.14 involves checking how many results have been returned and stores

them. Part 5 of Figure 6.14 gets the coordinates and splits them in order to place them

onto a map. Part 6 of Figure 6.14 finalises fetching the pages.

The results are then presented back to the user, as shown in figure 6.18.

Figure 6.18: Beta I Prototype Example Result from query for jobs

6.4 Developing methods for scraping web content

involving accommodation and jobs

Beta I explored different methods for scraping web content involving accommodation

and job websites relying on vendor APIs to produce the information. A problem

occurred during the development of the prototype with the vendors tightening up the

usage of their APIs. It called for the project to explore alternative approaches that

remove the reliance on APIs since external factors could come into play, such as charges

or the removal of the API itself, and as a result would be out of our control.

The creation of an alternative be-spoke structured system to extract elements from the

housing and job websites using regular expressions was then explored.

Developing and Evaluating Prototype Beta I 155

Figure 6.19: An Activity Diagram showing the process of how the created system gathers
elements from websites or external APIs with created scripts.

Figure 6.19 illustrates the process that was developed for the be-spoke system. The

process is explained as follows:

1. The user sends the request.

2. PHP Scripts have been created with different methods for scraping different

elements from multiple websites come into operation.

3. The scripts send requests to the tagged HTML elements or external APIs.

4. The results are returned.

5. The process returns the HTML to the user and repeats this cycle for both housing

and job websites.

Developing and Evaluating Prototype Beta I 156

Figure 6.20: This structure explains the steps taken of the created system to gather jobs and
housing.

Extending from figure 6.19, a system was created as shown in figure 6.20 to demonstrate

the process of how the be-spoke process would work. The process for this is the

following:

1. Step 1 shows the the branches of the system, the individual websites for housing

and jobs. These files consist of regular expressions and parsing XML data.

2. Step 2 brings all the websites for jobs together and all the websites for housing

together. The input is a postcode, and the output is an array of objects for jobs

and an array of objects for housing.

Developing and Evaluating Prototype Beta I 157

3. Step 3 combines both housing and jobs arrays together. This combined array is

used to produce the output to the user.

4. Step 4 is an AJAX call bringing the previous steps together, then an output is

produced of housing and jobs.

The prototype software created for this process is as follows:

Step one from Figure 6.20 lists the individual websites. The created system structure

has its own file for each housing and job website, and includes regular expressions

within them to allocate and retrieve the elements from the HTML source.

Figure 6.21: The process of scraping web content involving jobs and housing

Figure 6.21 shows the flow of the methods that were developed for scraping web content.

Step 1 of the process does the following:

Developing and Evaluating Prototype Beta I 158

• A function is created with the a postcode parameter, that is passed as a parameter

to the function.

• Initialised the URL, defined the postcode parameter in the URL structure.

Executed the URL and created an array to store the returned data.

• Regular expressions are created to match the patterns to the source code of the

individual job and housing websites. The returned matches would then be stored

into the array.

• A loop is set up to cycle through the returned elements from the regular expressions.

The loop then assigns the array into distinguishable parts e.g., amount, title,

description, salary etc.

• The loop is then returned and pushed to part 2.

In step 2 of Figure 6.21, a jobs file and a housing file has been created and the function

for it gathers the individual arrays of the housing websites into one array list and the

jobs websites into one array list.

In step 3 of Figure 6.21, this stage combines all housing and jobs from the two

dependency files in the previous step.

In step 4 of Figure 6.21, this would display the outputted loop to the developer, the

developer could then incorporate into a Google Map.

The problem with this created system is that the developer must specify fixed regular

expressions patterns to match the HTML source code. If the source code or elements of

the website were to change, this would result in the regular expressions and selected

<div> HTML elements become broken.

An example of where the regular expression patterns have become broken was when

Indeed did a re-design of its website in May 2019. When the site owners decided to

take this action, it resulted in the elements changing, meaning the structure had changed.

This then resulted in our system we had designed breaking. The previously designed

Developing and Evaluating Prototype Beta I 159

regular expressions would no longer match returning null information. This is a problem

with relying on API’s.

Figure 6.22, is the created method process in Python for the Beta I prototype.

Figure 6.22: An additional web scraping process created for Beta I prototype for extracting
elements from web pages

Table 6.3, is the output from the method process from Figure 6.22. This results in the

title, company, location, date posted and currency being scraped from the web content.

Developing and Evaluating Prototype Beta I 160

Sample Output Source Code

Test Engineer

Ardia Solutions

£40k - £55k Per Year

Bangor

Test Engineer Remote/Bangor Up to 55k

On behalf of our rapidly growing client,

we are recruiting for an enthusiastic Test

Engineer. As Test Engineer you will be

thoroughly testing products to identify

potential problems and defects,

optimising quality, and ensuring regulatory

compliance.This role offers remote working

but you wi...

<h2 class="card-title" title="Test Engineer"

name="card_title">Test Engineer</h2>

<h3 name="card_companyname"

>Adria Solutions</h3>

<span name="card_job_location"

class="card-job-location">Bangor

</div><div class="d-md-none

results-mata-holder set-margin">

<div class="meta-info-sm"

name="card_location">Bangor

</div><div class="meta-info-sm"

name="card_salary"><div class=

"card-salary" name="card_salary">

£40k-

£55k Per Year</div>

</div></div>

<div name="card-job-description"

class="col-12 results-card-description">

<div name="sanitizedHtml"

class="sanitizehtmlcomponent__

SanitizedContent-sc-1s5wjr7-0 kVyGpI">

Test Engineer Remote/Bangor Up to 55k

On behalf of our rapidly growing client, we are

recruiting for an enthusiastic Test Engineer. As

Test Engineer you will be thoroughly testing

products to identify potential problems and

defects, optimising quality, and ensuring

regulatory compliance.

This role offers remote

working but you wi...

</div>

Table 6.3: This shows a comparison of the source code and a sample after using the web
scraping process on Monsters website. Highlighted areas in bold on the source code indicate
the elements taken for the sample output

Developing and Evaluating Prototype Beta I 161

6.4.1 Issues with the Beta I prototype

We found that there were many issues with using the external APIs when creating our

system and creating web extraction methods for the project.

There have been complications with the source code changing from time caused by

the continuing development of the housing and job websites, resulting in our created

system breaking easily and it not being future proof.

There has also been the issue of the APIs being restrictive over time. Indeed and Zoopla

have changed policy on how each API can now be used since the project started in 2016.

There were also complications with our requests sometimes being blocked by the

websites. This was due to the user agent being unidentifiable to the website and the

server rejecting our requests. The pace of gathering results was also another factor;

the speed of the requests became a problem with the server preventing further access.

This resulted in 403 forbidden requests at points, requiring substantial trial and error

when trying to web scrape the content. Bots were allowed under the websites’ terms

and conditions at the time of this project.

Despite these complications, these methods were eventually successful at scraping the

web content, although they cannot be solely relied on due to the external factors outside

of our control.

For this reason, we investigated the use of the third-party web scraping application

called ParseHub.

6.4.2 ParseHub

ParseHub is a free third-party web scraper that can extract data by clicking on the

elements the user requires 7.

7https://parsehub.com

Developing and Evaluating Prototype Beta I 162

Figure 6.23: ParseHub Interface

Figure 6.23, provides a screenshot of the interface of ParseHub. On the sidebar, the

user can load up the website and select the web page elements and extract the text.

The extracted elements can be shown in a preview under the CSV/Excel output on the

bottom of the screen.

Using Parsehub allowed us to save time on the bulk amount of web scraping, which

further enhanced the methods created for the Beta I Prototype.

6.5 Summary of Beta I Prototype Design

The Beta I prototype has demonstrated that external APIs give the possibility of

using their own listings in a structured manner, meaning that it does not require any

manual scripts to extract elements by using regular expressions. However during the

implementation, both APIs from Zoopla and Indeed now require payment to use them.

This resulted in the realisation from the project team that this API-based solution would

not be suitable as there were too many external factors would be out of our control.

An alternative way was made by creating our own system for scraping individual website

elements using a language modelling approach as described in Chapter four. It was

noted however that this approach was still not future proof and could break if a website

owner from either jobs or housing websites were to change the structure of the website.

Developing and Evaluating Prototype Beta I 163

The scope of the project only required to create a mockup prototype of housing and

jobs together using static data. The use of trying to use live data was out of scope and

has been left for future work.

6.6 Evaluation of the Beta I Prototype

This section evaluates the Beta I Prototype that has been created for the project. The

Beta I prototype evaluation involved the website created with APIs and poses questions

to sample users to find out preferences of specific options that the company partners

wanted to investigate.

The questionnaire was devised from a discussion with the company partners and

supervisor involvement. The questionnaire was conducted once the prototype was ready

for evaluation.

The evaluation methodology used for the Beta I prototype uses open-ended style

questions with 5-point Likert scale style questions. The System Usability Scale

questions were altered in this questionnaire to find out answers in relation to housing and

job queries so further adaptions could be made to the Beta II prototype. Ethics approval

was granted for the questionnaires, the reference for this is: CSEE-P-2019-CG-012.

For the evaluation of the Beta I prototype, the creation of a mock-up of the

accommodation and job website using vendors APIs was presented to university

students to gain qualitative and quantitative data to analyse how students feel about

using this given prototype. Students were selected as a suitable representative for the

questionnaire because they are often seeking housing each year and also potentially

looking for part-time employment because they could be finishing their degree and end

up seeking both employment and housing opportunities.

A total of 50 respondents responded to this questionnaire. All respondents were

University students, with the target population being 3rd year undergraduate students

and Postgraduate students. An equal proportion of male and females were asked to

complete this questionnaire.

Developing and Evaluating Prototype Beta I 164

The data storage and website used was using Microsoft forms, with excellent data

security as a result. The form used required as minimal personal information as possible,

being designed so it does not ask who they are. As it is held anonymously, the data

cannot be removed later on as there is not a way to confirm that they did submit that

questionnaire. If the user decides part way through to no longer take part, they can just

close the browser window and it will be abandoned.

Using a questionnaire with this prototype was a convenient way of collecting comparable

data from a large number of individuals although the questionnaire can only produce

valid and meaningful results if the questions are precise and clear, and additionally they

are asked consistently across the respondents.

Using a Likert-scale questionnaire was used for measuring user preferences with relative

ease [106]. The respondents can specify their level of agreement or disagreement on

an agree-disagree scale for a series of statements [19]. The Likert scale questions can

capture the users feelings for a particular item. The results of analysis of multiple items

then reveals a pattern that has scaled properties [83] [72] [28]. The questionnaire uses a

5-part Likert and it is used throughout the questionnaire.

There were three tasks for the user to complete and for them to fill out the questionnaire:

• Task 1 — Jobs: Complete the task of searching for a job and then return to the

questionnaire to answer the following questions.

• Task 2 — Housing: Complete the task of searching for a house and then return to

the questionnaire to answer the following questions.

• Task 3 — Housing and Jobs: Complete the task of searching for a house and job

together and then return to the questionnaire to answer the following questions.

The questions asked in the Beta I prototype were:

1. What do you consider the main advantage this website has over existing job and

housing websites?

Developing and Evaluating Prototype Beta I 165

2. How useful would it be if the search included job and housing results from

countries worldwide?

3. How useful would it be to able to establish distances between a job and a housing

location.

4. Was it easy to get started on this search?

5. Was it easy to do the search on this topic?

6. Are you satisfied with your search results?

7. Did you have enough time to do an effective search?

8. Please write down any other comments that you have about your searching

experience with this information retrieval system here. Thank you.

9. How easy was it to perform a search on the website?

10. How easy was it to use this website?

11. How well did you understand how to use the website?

12. Do you agree with the following statement: I think that I would like to use this

website frequently.

13. Do you agree with the following statement: I found the website unnecessarily

complex?

14. Do you agree with the following statement: I thought the website was easy to use.

15. Do you agree with the following statement: I think that I would need the support

of a technical person to be able to use this website?

16. Do you agree with the following statement: I felt very confident using the website.

Developing and Evaluating Prototype Beta I 166

17. How much did you like using the website?

18. Is there any platform you are aware of that you can search requiring both job-based

and housing-based websites son a single platform?

19. What did you like about the website?

20. What did you dislike about the website?

21. How much experience have you had searching on commercial websites?

22. How often do you conduct a search on a job website?

23. How often do you conduct a search on a housing website?

24. Have you used any of the following websites?

25. For job-based searching, which of the websites would you prefer to use?

26. For housing-based searching, which of the websites would you prefer to use?

6.6.1 Beta I Prototype Questionnaire Evaluation — Results

Table 6.4 shows the results from the Likert style questionnaire, providing how many

respondents responded to each of the Likert options. In this section, a discussion

for each of the questions in the questionnaire will be examined in turn. Additionally

the median, mean, standard deviation and minimum and maximum response for each

question has been calculated in Table 6.5.

Developing and Evaluating Prototype Beta I 167

Question
Strongly

Disagree

Somewhat

Disagree

Neither

Agree

Nor

Disagree

Somewhat

Agree

Strongly

Agree

2 0 0 2 18 30

3 0 0 2 7 17

4 0 0 0 10 40

5 0 0 0 9 41

6 0 0 2 17 31

7 0 0 0 3 47

9 0 0 0 12 38

10 0 0 3 19 28

11 0 0 0 17 33

12 0 0 3 27 20

13 46 2 2 0 0

14 0 0 1 19 30

15 47 0 0 3 0

16 0 0 0 21 29

17 0 0 0 32 18

21 0 1 4 21 24

Table 6.4: Beta I Prototype Likert Style Question Results

Developing and Evaluating Prototype Beta I 168

Question Median Mean
Standard

Deviation

Minimum

Value

Maximum

Value

2 5 4.56 0.57 3 5

3 5 4.52 0.64 3 5

4 5 4.89 0.40 4 5

5 5 4.82 0.38 4 5

6 5 4.58 0.57 3 5

7 5 4.94 0.24 3 5

9 5 4.76 0.43 4 5

10 5 4.54 0.57 3 5

11 5 4.66 0.47 4 5

12 4 4.34 0.59 3 5

13 1 1.00 0.00 1 1

14 5 4.58 0.53 3 5

15 1 1.18 0.71 1 4

16 5 4.58 0.49 4 5

17 4 4.36 0.48 4 5

Table 6.5: Beta I Prototype Questionnaire Statistics

Q1: What do you consider the main advantage this website has over existing job

and housing websites?

The purpose of this question was to explore the users’ thoughts on what they believed

the main advantage of the website was over existing sites out there. This question was

open-ended (non-Likert-scale) for the user to provide a longer text-based response.

Developing and Evaluating Prototype Beta I 169

Figure 6.24: Beta I Prototype Vivo Coding Results for Q1

An inductive approach was used on the open-ended questions from the questionnaire

using vivo coding. The vivo coding method has the ability to read through the data and

name codes based on words and phrases utilised by the participant [92]. Reviewing

the comments received from the question, participants found the main advantages of

this prototype were “use a map”, “map”, “map instead of list” and “simple” are the

higher ranked phrases used by the comments in the responses provided. It was evident

in the results shown that users found it convenient to have the ability to interact with a

map-based interface instead of a list. A few of the comments are below:

• ‘Using a map instead of a listing result.’

• ‘Nice and simple, easy to use, and having a map instead.’

• ‘It is refreshing and nice to see something easy to use compared to the usual

listing of results on other websites.’

It was clear that users enjoyed the view of a map instead of a list with the ability to

see and explore further details by clicking on the circle pins than they would having

produced in a static list.

Developing and Evaluating Prototype Beta I 170

Q2: How useful would it be if the search included job and housing results from

countries worldwide?

Since there is no single search service that provides a search service with housing and

jobs together, this question explored whether the respondent felt that finding results

from another country would be beneficial if the user was planning to move abroad. A

Likert scale was used in this question and the breakdown is discussed in Table 6.5. 29

out of 50 participants rated this the maximum.

The results show from Table 6.5 show that there is a desire for a website that can provide

both housing and jobs from a worldwide aspect.

Q3: How useful would it be to able to establish distances between a job and a

housing location?

The question posed was to ask if a user would like the ability to pin where a job is

located to where a house is located to show the distance between both of them, a factor

which could encourage them based on the time factor to get to work and home. A Likert

scale was used in this question and the breakdown is discussed in Table 6.5. 17 out of

50 participants rated this the maximum.

Q4: Was it easy to get started on this search?

The question asked was to explore how easy the user felt the website was to use. 40 out

of 50 participants had rated this the maximum value, being extremely easy to use. A

Likert scale was used in this question and the breakdown is shown in Table 6.5.

Q5: Was it easy to do the search on this topic?

The question’s purpose was to determine if the participant managed to find it easy to

search for jobs and housing. 41 out of 50 participants had rated this the maximum value,

being very easy to use. A Likert scale was used in this question and the breakdown is

discussed in Table 6.5.

Q6: Are you satisfied with your search results?

Developing and Evaluating Prototype Beta I 171

The question’s purpose was to determine if the participant was satisfied with the overall

search results that they were querying. A Likert scale was used in this question and

the breakdown is discussed in Table 6.5. 31 out of 50 participants had rated this the

maximum value, being very satisfied.

Q7: Did you have enough time to do an effective search?

The questionnaire set out a time frame to complete all questions and use the website

within 15-20 minutes. This question was designed to ask if the participant felt that they

had enough time to do effective searching for housing and jobs.

A Likert scale was used in this question and the breakdown is discussed in Table 6.5.

47 out of 50 participants had rated this the maximum value, indicating that they had

enough time for the search.

Q8: Please write down any other comments that you have about your searching

experience with this information retrieval system here. Thank you.

An optional question was posed by asking participants if they had any further comments

about their searching experience. Out of 50 participants, 13 participants left comments.

Figure 6.25: Beta I Prototype Vivo Coding for Q8

Developing and Evaluating Prototype Beta I 172

The vivo coding results in figure 6.25 shows the amount of responses to the inductive

labels. It indicates that the website was preferred with a “map instead of a list” although

sometimes the results had the “wrong job location”. A few of the comments are listed

below. This question was posed as an open-ended question.

• ‘Sometimes, it was a little slow to put the information on the map. Sometimes it

was wrong for jobs.’

• ‘Nice to see the ability to show the information on the map instead of a listing.’

• ‘It works well, the housing places well the jobs not so much.’

• ‘I noticed the odd job I searched for being pinned incorrectly to where it should

be, although it was in the general area.’

Q9: How easy was it to perform a search on the website?

The question’s purpose was to find out how easy it was for the participant to perform a

search on the website.

38 out of 50 participants had rated this the maximum value, that is being extremely easy

to perform a search. The results indicate that most people found it very easy to perform

a search on the website. A Likert scale was used in this question and the breakdown

can be shown in Table 6.5.

Q10: How easy was it to use this website?

The question’s purpose was to find out how easy it was to use the website: the general

overall aspect of the search, appearance, and usage. This factor will be essential to see

how many participants felt it was easy to use.

A Likert scale was used for this question and the breakdown is discussed in Table 6.5.

28 out of 50 participants had rated this the maximum value, that is being extremely easy

to perform a search. The results indicate that the website was easy to use overall.

Q11: How well did you understand how to use the website?

Developing and Evaluating Prototype Beta I 173

The question was to find out how the participant understood how to use the website,

meaning if they managed to use the website well enough.

33 out of 50 participants had rated this the maximum value of 5, extremely easy to

understand the website. A Likert scale was used for this question and the breakdown is

discussed in Table 6.5.

Q12: I think that I would like to use this website frequently

The question’s purpose was to find out if the participant would frequently use this

website. This will depend on how the participant searches for jobs and housing in their

own lives, but it will provide an insight on whether they are willing to use this website

specifically frequently.

A Likert scale was used for this question and the breakdown is discussed in Table 6.5.

Results indicate that the majority of participants would frequently use this website.

Q13: I found the website unnecessarily complex?

The question’s purpose was to determine if the participant found this website

unnecessarily complex, resulting in difficulties in managing or searching for what

they have queried. This indication is important to see if drastic changes are required to

a future prototype.

A Likert scale was used for this question and the breakdown is discussed in Table 6.5.

Results indicate that almost all participants did not find it unnecessarily complex.

Q14: I thought the website was easy to use.

The question’s purpose was to find out if the participant found this website easy to use.

It is essential to understand if significant changes need to be made or not for the future

prototype.

Developing and Evaluating Prototype Beta I 174

A Likert scale was used for this question and the breakdown is discussed in Table 6.5.

Results indicate that 30 out of 50 participants strongly agree that the website was easy

to use.

Q15: I think that I would need the support of a technical person to be able to use

this website?

The question’s purpose was to find out if the participant needed the support of someone

technically minded to use this website. No matter who uses the website, they should

find it easy and straightforward to use without requiring the help of a technical person.

A Likert scale was used for this question and the breakdown is discussed in Table 6.5.

Results indicate that 47 out of 50 participants strongly disagree that they would not need

a technical person, compared with 3 people feeling that they would require a technical

person to help them with the website.

Q16: I felt very confident using the website

The question’s purpose was to find out if the participant felt confident in using the

website. The prototype’s purpose is to ensure that the person using it is confident and

does not feel stressed or frustrated using it.

A Likert scale was used for this question and the breakdown is discussed in Table 6.5.

All participants felt confident with using the website.

Q17: How much did you like using the website?

The question’s purpose was to find out if the participant liked using the website. The

prototype’s likability is essential to ensure that people will come back to it.

Overall, all participants liked the website, which strongly supports the case for future

versions using a similar front end for the user.

Q18: Is there any platform you are aware of that you can search requiring both

job-based and housing-based websites on a single platform?

Developing and Evaluating Prototype Beta I 175

The question’s purpose was to determine if the participant knew of any platform that

the user can search for both jobs and housing on one website. Research has shown no

existing website does this, but it would be essential to catching it here if a website is

known. The results indicated that no one knew of a website that does this.

Q19: What did you like about the website?

The question’s purpose was to find out if the participant wished to leave a comment

about whether they liked the website. The vivo coding results in figure 6.26 has ‘easy

to use’, ‘map feature’ and ‘simple to search’ being the most frequently stated comments

about whether they liked the website.

Figure 6.26: Beta I Prototype Vivo Coding for Q19

Below are a few comments provided as answers to this question:

• ‘The map, the way it shows it in a simple way and easy to read and see.’

• ‘The pins, the map, the simplicity.’

• ‘Finding jobs and housing using a map, something I have not seen before.’

Q20: What did you dislike about the website?

Developing and Evaluating Prototype Beta I 176

The question’s purpose was to find out if the participant wished to leave a comment

about whether they disliked something about the website.

The vivo coding results in figure 6.27 has ‘zoom in manually’ and ‘sometimes incorrect

jobs’ being the most frequently stated comments about whether they disliked the website.

Figure 6.27: Beta I Prototype Vivo Coding for Q20

The comments noted that sometimes the website would freeze, or it would have to be

refreshed, and people would have to zoom in on the map instead of it automatically

doing it upon the request:

• ‘Some jobs were misplaced, not many but a few.’

• ‘I had to zoom into the area I searched for.’

• ‘Having to refresh sometimes as it would break.’

Q21: How much experience have you had searching on commercial websites?

The question’s purpose was to find out how much experience the participant has in

using commercial job and housing websites.

As the table 6.4 shows, the results vary depending on the experience with looking for a

job or house using commercial websites.

Developing and Evaluating Prototype Beta I 177

Q22: How often do you conduct a search on a job website?

The question’s purpose was to find out how often a participant performs a search on

a job website. The options provided were: Never, a few times a year, at least once a

month, at least once a week.

The results were the following:

• Never — 0%.

• A few times a year — 40.00% (20 respondents).

• At least once a month — 14.00% (7 respondents).

• At least once a week — 46.00% (23 respondents).

Q26: How often do you conduct a search on a housing website?

The question’s purpose was to find out how often a participant performs a search on a

housing website. The options provided were: Never, a few times a year, at least once a

month, at least once a week.

The results indicated the following:

• Never — 2% (1 respondent).

• A few times a year — 50.00% (25 respondents).

• At least once a month — 14.00% (7 respondents).

• At least once a week — 34.00% (17 respondents).

Q23: Have you used any of the following websites?

The question’s purpose was to find out how often does a participant use different job

and housing websites.

Developing and Evaluating Prototype Beta I 178

Website Never Rarely
Very

Often
Total

Zoopla 1 12 37 50

Indeed 0 9 41 50

Monster 1 12 37 50

Jobsite 0 15 35 50

Google Jobs 48 1 1 50

Total Jobs 10 16 24 50

Primelocation 11 14 25 50

Rightmove 1 13 36 50

OnTheMarket 2 12 36 50

Reed 4 17 29 50

Glassdoor 11 18 21 50

Fish 4 Jobs 13 18 19 50

Table 6.6: Beta I Prototype Respondent Results for Q23

The results in figure 6.6 indicate that Zoopla and Indeed are highest ranked, meaning

these websites are used very often. This compares with Google Jobs, whose website is

rarely being used by the participants.

Q24: For job-based searching, which of the websites would you prefer to use?

The question’s purpose was to find out which website the participant prefers to use. The

options and results are shown in Table 6.7:

Developing and Evaluating Prototype Beta I 179

Website Respondents

Indeed 28

Jobsite 16

Reed 9

Monster 6

Total Jobs 5

Fish 4 Jobs 5

Glassdoor 5

Google Jobs 0

Total 50

Table 6.7: Beta I Prototype Respondent Results for Q24

Results in Table 6.7 show that 56% of responses use Indeed. Following that, Jobsite

received 32% of responses. Notably, Google Jobs did not receive any response although

at the time of this questionnaire, Google Jobs was a new addition to Google.

Q25: For housing-based searching, which of the websites would you prefer to use?

The question’s purpose was to find out which housing-based website the participant

prefers to use. The options and results are shown in Table 6.8:

The breakdown of each website is listed below:

Website Respondents

Primelocation 10

Rightmove 21

Zoopla 21

OnTheMarket 14

Total 50

Table 6.8: Beta I Prototype Respondent Results for Q25

Table 6.8 shows that both Rightmove and Zoopla had 21 responses each. Primelocation

received the lowest amount of responses with 10.

Developing and Evaluating Prototype Beta I 180

6.7 Discussion and Findings

The Beta I prototype investigated using existing APIs that are available to the public.

Originally they were free to use but during the start of the evaluation process, both

APIs became pay to use. Although after emailing both API companies explaining

the research nature of this project, they granted us temporary access to finish off the

research. We investigated using these together to provide a solution for the project.

However, it was soon realised that we could not control these APIs, and a potential

payment scheme could be required for these APIs at any point in the future.

The project required an understanding of what existing APIs provide and found out how

users felt about how the data was presented to them.

A questionnaire was created and sent out to 3rd year university students and postgraduate

students to evaluate the Beta I prototype. The questionnaire involved a few tasks-based

search queries, searching for a job, searching for a house and then searching for both

housing and jobs. Those tasks were for the users to search for specific jobs and housing.

A series of survey questions were then presented to users. The users were asked to

provide a rate of 1 (for strongly disagreed) up to 5 (for strongly agrees).

The questions asked have provided thorough detail on the likes, dislikes of the Beta I

prototype. The questions allow for us to be able to consider changing different elements

and features for the following Beta II prototype.

The findings of the survey found details on which websites respondents prefer for

housing and jobs and have provided detail on how often the participants use housing and

job websites. These details have been helpful as they give an insight on what direction

is needed in the Beta II prototype.

Developing and Evaluating Prototype Beta I 181

Chapter 7

Developing and Evaluating Prototype

Beta II

7.1 Introduction

This chapter discusses the development and evaluation of the Beta II prototype that

was produced for this project. This includes the methodology that was used for this

prototype and the suitability for this project. This prototype uses Agile Design as stated

in section 6.1. For the final prototype design, the company partners wanted to have

a homepage which the user could enter search criteria and then have the information

display onto another page with a map. Additionally, it was important for both jobs and

housing information to be brought together into one website.

Focus and context visualisation is used for the Beta II prototype. First, the user has an

overview of the website, and upon submitting the information for the form, a detailed

view of the information is provided [24]. Search user interfaces such as Google have a

homepage which is as simple as possible, providing a search field and submit button.

Upon submission, the results are then displayed on another page. Jobs and Housing

websites that provide listings also do the same process of separating out the results.

An interactive map has been used to visualise the data for this Beta II prototype. The user

has the ability to interactively manipulate the data. The map uses the presentation method

of coloured shaped signs to demonstrate the different jobs and housing presented to the

user [13]. The prototype uses a collaborative method of GIS of bringing geographic

information to an information system with using jobs and housing [17].

182

An important consideration was that the input parameters on the page needed to be

displayed in a clean presentable way, meaning it is not cluttered for the user to enter the

input. There were iterations of the forms performed, one putting the fields next to each

other in a row and the final outcome of having it in a divider with columns. This can be

seen in Figure 6.2.

When the user has entered a query, the results then load in the Google Map. The results

are displayed using pins scattered on the map. Figure 7.1 shows the different iterations

used on the pin styles.

Once the user clicks on one of the coloured pins, an information window appears listing

the title, short description, location and a link to the specific web listing. A red pin

with the letter H indicates a house and a green pin with the letter J indicates a job. The

reason behind this is because the company partners wanted the map to display different

types of information. This allows for the clear separation of jobs and housing. The

information searched in the query was also discussed in different iterations. This is

shown in figure 7.1.

Developing and Evaluating Prototype Beta II 183

Figure 7.1: Beta II Prototype Design — Sketch of different Iterations of Pin Styles

7.1.1 Design Outcome

The vision in this final design prototype was to have a homepage for entering the search

query and the ability in the future to expand the homepage with different elements such

as news, events, company information and discovery of places.

The Google Maps API was used for this prototype. This is because it provides a bigger

diverse set of tools and options to use.

Developing and Evaluating Prototype Beta II 184

Figure 7.2: Beta II Prototype Design — Homepage

In figure 7.2, the homepage shows the overview of the form that the user has to fill in to

get results. This includes:

• Search terms for jobs

• Search terms for housing

• Search location for jobs

• Salary of job required

• Period of job

• House Price Range

• Number of Bedrooms

In figure 7.3, once the search has been performed, the results will then be pinned on a

map with red and green pins showing jobs and housing. If the user clicks on one of the

pins, it will show an infowindow with basic information of the listing and a hyperlink

to the specific web page listing. It also provides the details of the form to remind the

user what they have requested. The decision behind this was because compared to other

Developing and Evaluating Prototype Beta II 185

services as discussed in Chapter 3, the information windows do not provide details of

the results on the map and only the pins.

Figure 7.3: Beta II Prototype Design — Results

7.1.2 Conclusion from the design process

The final prototype takes the work from Beta I Prototype and provides the ability to

search for jobs and housing on one website. It ensures that the search functionality

is shown together on the homepage with a clear separation of results. This prototype

was developed using agile development which provides the flexibility and freedom of

iterations without having to implement many components. The design is simplistic

and can be developed with more advanced design techniques, but this website design

provides results of both housing and jobs with a clear difference between each.

Developing and Evaluating Prototype Beta II 186

7.2 Component Diagram Process

Figure 7.4: Component Diagram showing Beta II usage of data for the prototype

The final prototype uses a mixture of methods created in Beta I and tagged results in

the Merlin system as shown in Figure 7.4. The final prototype uses a database that has

records of housing and job listings. Beta II has a design objective from the previous

chapter of following Agile design. The user fills out a search form, and SQL statements

are used to retrieve the information.

Figure 7.5: Stage 1: The process overview of the Beta II prototype’s searching and saving
functionality

Developing and Evaluating Prototype Beta II 187

The Beta II prototype has two stages. Figure 7.5 discusses the first stage. The first part

of the Beta II’s functionality comes from the unique created process created as shown

in Figure 7.5 which comprises five steps.

Figure 7.5 step 1 describes the method that has been used in Beta II’s prototype to

display the results. The functionality starts by obtaining the data entered on the search

form and then echos the requested inputs onto the webpage. The purpose of this is to

show what the user had entered and display it to the user on the results page. This is

done as as reminder for the user to remember what they had queried on the form.

Figure 7.5, step 2 performs the initialisation, including the get and set functions and

establishes a connection with the database.

Figure 7.5, step 3 performs a function that gathers all records in the table where there

are null latitude and longitude. Additionally, another function gets any information

from the database relevant to the queried inputs.

Figure 7.5, step 4, sets the latitude and longitude of the data with null values. Additionally,

the map is loaded here.

Figure 7.5, step 5, updates the data with the latitude and longitudes from the Google

Geolocation API and saves the new coordinates to the database.

Developing and Evaluating Prototype Beta II 188

Figure 7.6: Stage 2: The process overview of the Beta II prototype setup and updating
functionality

In Figure 7.6 shows the Beta II prototypes second stage. The second stage of the Beta

II prototype involves setting up the Google Map, showing the pins, infowindows and

updating the null addresses with Google’s Geocoding API 1. Google Geocoding API is

a service that provides geocoding and reverse geocoding of addresses. In the instance

where listings may only provide a brief location, this API can process the latitude and

longitude of such location to put it onto a map.

In Figure 7.6, step 1, the function loads the maps initial settings of the map and geocoder.

In Figure 7.6, step 2, sets up the markers, infowindows and icons. Step 2 also defines

how the infowindows will operate and what imagery is being used for the icons of

housing and jobs.

In Figure 7.6, step 3, a created function calls the Geocoder API and requests the latitude

and longitude of the null entries from the database. This function then updates the

1https://console.developers.google.com

Developing and Evaluating Prototype Beta II 189

relevant column in the table. Additionally a further function is created as an AJAX call

to update the data with the latitude and longitudes of rows in the database that had null

latitude and longitude values.

The records that were created from the output from the Merlin system and other methods

created in Chapter 6 are stored on a database on an InnoDB storage engine. The database

has 43,493 records. 22,493 records are jobs, and 21,000 are housing. The structure of

the database can be seen in figure 7.7.

Figure 7.7: Beta II: Overview of the Beta II Prototype Database Structure

7.3 Summary of the Beta II Prototype

The Beta II prototype has demonstrated that using the data gathered from the Merlin

System and the Beta I methods of extracting web content, has successfully been able to

place both housing and jobs listings onto pins onto a map. This is significant as this has

met the requirements for the project. Mr. Edwin Smith, the company partner said “It

is remarkable to have such a prototype that finally brings together housing and jobs

onto a simple but effective map based website. This is an exciting time as now we as

Cloodup will be able to take this prototype to investors to show them how beneficial and

useful it would be to have this as the future for the jobs and housing market.”

Developing and Evaluating Prototype Beta II 190

7.4 Evaluation of the Beta II Prototype

This section evaluates the Beta II Prototype that has been created for the project. The

Beta II prototype was evaluated with the system usability scale methodology [26] in order

to gain insight into the users’ likes and dislikes. The questionnaire was completed by

the user once they had interacted with the prototype during the experimental evaluation.

50 respondents participated in the questionnaire.

For the evaluation of the Beta II prototype, the creation of a combined accommodation

and job website has been presented to the same students who took part in the evaluation

of the previous prototype.

The criteria of the respondents and why they were selected is the same as for the Beta

I prototype as discussed in section 6.6. The data sorted followed the same principles

as discussed in section 6.6. Ethics approval was granted for the questionnaire, the

reference for this is CSEE-P-2019-CG-012. Students were not timed to complete each

task, although they took an average of 10 minutes to complete each task and to answer

the questionnaire.

The System Usability Scale (SUS) [27] set of 10 questions were used to evaluate the

usability of the Beta II prototype. This methodology was used in order to gain insights

into the users’ likes and dislikes.

7.4.1 Beta II Prototype — Results from Experimental Evaluation

This section discusses the results from the experimental evaluation for the Beta II

Prototype. The experimental evaluation comprised three tasks — searching for jobs,

searching for housing and searching for both jobs and housing.

There were three tasks for the user to complete and for them to fill out the questionnaire:

• Task 1 — Jobs: Complete the task of searching for a job and then return to the

questionnaire to answer the following questions.

Developing and Evaluating Prototype Beta II 191

• Task 2 — Housing: Complete the task of searching for a house and then return to

the questionnaire to answer the following questions.

• Task 3 — Housing and Jobs: Complete the task of searching for a house and job

together and then return to the questionnaire to answer the following questions.

The questions used for the following tasks came from the System Usability Scale

methodology [26]:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this

system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

Task 1 for Beta II Prototype — Jobs

The first task for the Beta II prototype was for the participant to devise their own queries

to search for jobs on the website. Figure 7.1 shows the detailed for breakdown this

evaluation.

Developing and Evaluating Prototype Beta II 192

The SUS questions alternate in their forms, with odd-numbered questions requesting a

positive affirmation and even ones a negative affirmation. This specific form of questions

using a Likert scale uses a score out of 40; however, it is commonly multiplied by 2.5

to achieve a score out of 100, although it is not a percentage. Subsequent testing by

Sauro of the scale that uses over 500 trials resulted in an average score of 68, meaning

anything above 68 is above average [126].

The Beta II prototype for the jobs task scored an average of 76.60 / 100 for the SUS.

This score places it on the Good/Excellent boundary [18]. In order to get an Excellent,

a score of 80 / 100 must be achieved.

Question
Strongly

Disagree

Somewhat

Disagree

Neither Agree

Nor Disagree

Somewhat

Agree

Strongly

Agree

1 0 1 24 20 5

2 28 11 11 0 0

3 0 0 7 39 4

4 46 4 0 0 0

5 0 0 8 36 6

6 0 15 23 12 0

7 0 0 8 31 11

8 41 5 3 1 0

9 0 0 4 27 19

10 48 2 0 0 0

Table 7.1: Results of the SUS Evaluation of the Jobs section of the website. Each cell lists the
number of respondents selecting that option for each question. Odd numbered questions have a
positive phrasing, meaning ‘strongly agree’ is best. Even-numbered questions are negatively
phrased, therefore disagree is the desired answer.

Task 2 for Beta II Prototype — Housing

The second task for the Beta II prototype was for the participant to devise their own

queries to search for housing on the website. Figure 7.3 shows the detailed breakdown

for this evaluation. The same methodology has been used here as before in Task 1.

The Beta II prototype for the housing section scored an average of 90.65 / 100 for the

SUS. This score places it on the Excellent category [18].

Developing and Evaluating Prototype Beta II 193

Question
Strongly

Disagree

Somewhat

Disagree

Neither Agree

Nor Disagree

Somewhat

Agree

Strongly

Agree

1 0 0 11 31 8

2 45 5 0 0 0

3 1 0 0 27 22

4 46 4 0 0 0

5 0 0 1 45 4

6 48 2 0 0 0

7 0 0 0 33 17

8 48 2 0 0 0

9 0 0 0 6 44

10 46 4 0 0 0

Table 7.2: Results of the SUS Evaluation of the Housing section of the website. Each cell lists
the number of respondents selecting that option for each question. Odd numbered questions have
a positive phrasing, meaning ‘strongly agree’ is best. Even-numbered questions are negatively
phrased, therefore disagree is the desired answer.

Task 3 for Beta II Prototype — Jobs & Housing

The third task for the Beta II prototype was for the participant to devise their own

queries to search for query both housing and jobs on the website. Figure 7.3 shows the

detailed breakdown for this evaluation. The same methodology that was used for Task 1

and Task 2 has been done here.

The final prototype for the housing section scored an average of 94.26 / 100 on the SUS.

This score places it on the Excellent category [18].

Developing and Evaluating Prototype Beta II 194

Question
Strongly

Disagree

Somewhat

Disagree

Neither Agree

Nor Disagree

Somewhat

Agree

Strongly

Agree

1 0 0 2 29 19

2 50 0 0 0 0

3 0 0 0 2 48

4 50 0 0 0 0

5 0 1 0 9 40

6 11 24 16 0 0

7 0 0 0 6 44

8 50 0 0 0 0

9 0 0 0 1 49

10 50 0 0 0 0

Table 7.3: Results of the SUS Evaluation of the Housing and Jobs section of the website. Each
cell lists the number of respondents selecting that option for each question. Odd numbered
questions have a positive phrasing, meaning ‘strongly agree’ is best. Even-numbered questions
are negatively phrased, therefore disagree is the desired answer.

Developing and Evaluating Prototype Beta II 195

Final Prototype Feedback

Respondents were also asked to provide open-ended comments for the following

questions. This section discusses the feedback received.

What did you like about the website?

Figure 7.8: Beta II Prototype Results for Good Feedback question

Using the comments provided by the users, Vivo Coding has been adaopted to showcase

the frequently used words within the comments. The Vivo Coding can be seen in Figure

7.8. Users indicated that they felt the website was ‘great’, ‘easy’, ‘nice’ to use overall:

• ‘It was great to navigate and manage. Nice bubbles of information.’

• ‘The zooming in the area after the search, the information provided was good and

not overpowering.’

• ‘Overall a fantastic website to use. Zoom in, search, compare, look, explore.’

Developing and Evaluating Prototype Beta II 196

What did you dislike about the website?

Figure 7.9: Beta II Prototype Results for Bad Feedback question

Using the comments provided by the users, Vivo Coding has been adopted to showcase

the comments. This can be seen in figure 7.9. Users indicated that they felt the website

could have ‘better’ ‘design’ and that sometimes the ‘job’ ‘data’ location was ‘wrong’.

• ‘Some inconstancy within the jobs element of the website, where some information

was shown incorrectly.’

• ‘The website design seemed a bit dull and could do with a fresh update.’

• ‘Sometimes I had to refresh when the data did not load.’

Developing and Evaluating Prototype Beta II 197

What feature would you like to see introduced?

Figure 7.10: Beta II Prototype Results for Feature Feedback question

Using the comments provided by the users, Vivo Coding has been produced to showcase

what was frequently mentioned. The results can be seen in figure 7.10. Users indicated

that they would like to see ‘weather’, ‘crime’, ‘school’ information as future features to

be added.

7.5 Limitations of Prototypes

This section discusses the limitations of the prototypes that have been highlighted from

the feedback. There were some instances where job listings would be tagged incorrectly

by Google’s Geocoder API from the Beta II prototype.

An example of this would be where the API would select the wrong location of what is

being provided; this can be shown in figure 7.11.

Developing and Evaluating Prototype Beta II 198

Figure 7.11: Beta II Location Problem

Figure 7.11 shows two jobs listed in the USA. The location provided by the data

extraction methods only had ‘Manchester Airport’ as the location available. Google’s

Geocoding API took this location information and provided the latitude and longitude.

The latitude and longitude provided in this case have placed these jobs in the USA.

It was highlighted by the company partner Mr. Edwin Smith that when entering an

amount of search query into the form, sometimes the outputted results wouldn’t retrieve

the exact data being required. Search results may bring back no results or missed results.

Mr. Edwin Smith said:

“In some instances if you enter a price as 5000 as opposed to 50,000 you may get

different results. If you put the same job criteria in for jobs but add permanent to one of

them, you get a different result. If I set house price at 400,000, I get houses listed at

1,400,000 and 3,400,000. If I search for jobs and housing in Sheffield with no other

criteria, I get lots of jobs and houses, one of which is Head of Delivery with a salary of

£60,290. If I search Jobs only and input this criteria i.e., Sheffield - Head of Delivery -

£60,290, I get nothing even though the job exists. If I then go back and add Sheffield to

the housing criteria, the job appears.”

Developing and Evaluating Prototype Beta II 199

Reviewing Mr. Edwin Smith’s comments, the reasoning for these instances is because

of how the SQL statement is setup to search the database with the inputted query.

Additionally, the listing data in the database is not standardised.

An example of this is where within the database there is a column to identify if the

job is ‘Permanent / Temporary’. Not all job websites that were scrapped provide that

information on their listings.

This meant that if a user were to enter either Permanent or Temporary as an option on

the input form, it would miss out other potential listings within the database if they had

a null field in that column.

The limitation behind this is due to how the implementation of the code was done.

This is because the SQL statement requires on finding an option of either of those two

statements or it being left blank, if it’s specified, that means some listings would not be

included with the returned output results.

7.6 Discussion and Findings

A questionnaire was created and sent out to University students to evaluate the prototype

Beta II. The 50 university students selected were 3rd year undergraduate and postgraduate

students. The students were approached by email and through face-to-face discussions

on asking if they could use the prototype and ask A few tasks-based search queries

provided as part of the experimental evaluation were for the users to search for jobs and

housing.

A series of questions were then presented to users. The users were asked to provide a

rate of 1 (for strongly disagreed) up to 5 (for strongly agrees).

The Beta II prototype was given to the same users that were surveyed in the evaluation

of Beta I prototype. The questionnaire involved three tasks. The tasks given to the users

were to search queries for just a job, then a housing query followed by both housing &

jobs query.

Developing and Evaluating Prototype Beta II 200

The results showed that users had a stronger liking towards the final Merlin-based Beta

II prototype than the API-based Beta I Prototype. The evaluation also highlighted that

the jobs information obtained from the online jobsites causes problems regarding the

location being too broad and not specific enough. The implications would be that the

jobs would need to be further refined for future developments to make the results more

accurate to the user.

Developing and Evaluating Prototype Beta II 201

Chapter 8

Lessons Learnt

8.1 Alpha Prototype

The Alpha prototype was created as a foundation to the overall thesis. The Alpha

prototype allowed for a mechanism to identify the scope of the overall project. The

approach for the Alpha project was to use agile software development to allow the

flexibility of amending, creating and discussions with the company partners on a regular,

quick basis to allow for rapid development.

The communication for the Alpha prototype was discussed with the company partners

and my supervisor, of which we met every month face to face to discuss the latest

workings on the Alpha prototype. Additionally a weekly round up email was sent to

the company partners and the supervisor to provide latest thoughts and development.

As a research student and developer of this project, the recommendation is to have as

much communication with the stakeholders and relevant parties is key. This allows

not only yourself to feel confident about what you are doing, but it also allows for the

individual to express any concern and openly discuss how you are feeling. Starting on a

new project and a new research student can be formidable, but having the approach of

breaking individual parts down is key.

In the Alpha prototype, a decision was made to take a “quick and dirty” software

development approach. This was a technical decision to allow to explore ways of

tackling the approach of extracting some point of interest data but in a way that can be

presented.

202

The requirements set for the Alpha prototype came from the company partners and

supervisor, to create a mockup prototype capable of extracting data from the Internet.

The decision that was made here allowed for the student to explore ways of creating a

platform that can perform extraction on points of interest but in a way that was “quick

and dirty”.

The technical decision made for the Alpha prototype was to use Python as the main

source of coding this prototype with using the modules of BeautifulSoup, Scrapy and

Django. Using these modules allowed the flexibility of creating a prototype that could

demonstrate the proof of concept working and allows the company partners to see that

the overall project of creating a website that brings housing and jobs together in some

aspect is possible.

As a new project is approached, not only the development needs to be considered but

how to go about designing the approach for that prototype. Despite in this instance

wanting a quick and dirty approach to coming up with a solution to show the concept

and idea would work, it is also important to allow the design aspect of the prototype to

be thoroughly considered.

The approach taken in the Alpha prototype was to use a methodology that allowed to

drill down into each element and to detail each working part of the prototype. The

company partners had the vision of one overall view but this was difficult to understand

thoroughly without drawing it out. Additionally they found it difficult to expand their

horizon and view of what it should be. The Five Design Sheets allowed for all this

functionality, where the idea of the company partners could be visualised together face

to face within a meeting and then drilling down into the working parts.

The Five Design sheets allowed for further ideas to be conceptualised and after

the process was completed with thanks to the methodology, the realisation from the

company partners was that what they wanted to do was not possible due to the technology

constraints of Google Earth.

The suggested recommended for design would be to take the Five Design sheets

methodology and perform this on the initial prototype. This process allowed for the

student to check if what the company partners wanted to do were possible. If this

Lessons Learnt 203

process did not happen, the idea the company partner would have been approached and

whilst trying to implement this, would have been found to not work and would have

had time wasted. The Five Design sheets allowed time to be saved and opened the eyes

of the company partners of why using such an approach of the Five Design Sheets is

important to software development.

As a proof of concept for the initial prototype, with housing and jobs brought together

on a single website, it is even important to test the proof of concept prototype to see

how well the existing modules and techniques worked at bringing together of points of

interest. Using standard known evaluation techniques such as precision and accuracy

to gather how well the results are performing is key. The testing and evaluation of the

initial prototype can help lead the way to using either similar implementation methods

for further prototypes or to raise attention that something different needs to be done.

The Alpha prototype produced results that ranged from 58% to 100%, dependent

on what was searched. This resulted in the next prototype needing to develop new

techniques for the implementation in order to retrieve results more efficiently. Having a

proof of concept prototype for an overall project similar to this is important, as it allows

for exploration, development and for a chance where mistakes can be made and there

are chances to make corrections through communication, development and evaluation

of the prototype. It was also a chance to work with the company partners on the designs

and different approaches researched.

The Alpha prototype itself is split into five technical parts, as shown in the figure below:

Lessons Learnt 204

Alpha Prototype

Category Description

Data Input
The data used for this prototype is from the Google Places API,

using local points of interest in the area. The data was used as a

proof of concept.

Data Output
The data output provides local points of interest such

as information about local cafes, cinemas and shops.

Storage
The results of from the API are inserted into an SQL database and

is regularly updated with new listings when the user calls the API.

Interaction
The user interacts with the Alpha prototype within a web page,

allowing the user to interact with a table and drill down further into

the specific entry.

Visualisation

The user enters a search query, upon submitting, the results display

in a table format with columns and rows. The results are then

displayed to the user. The user has the ability to

filter the returned results.

Table 8.1: Alpha Overview of technical elements

8.1.1 Data Input

These technical elements will now be discussed in turn.

Figure 8.1: Homepage of Alpha prototype.

Lessons Learnt 205

The Alpha prototype uses data available from Google Places API to gather local points

of interest that is queried from the input. In order to query the API itself, a homepage

had to be created as displayed in Figure 8.1. To query the API, the search field is filled

by the user. The methodology “keep it simple” was used in the instance of creating the

prototype, along with the quick and dirty methodology approach. This ensured that the

core functionality and purpose could be achieved to continue development. The chosen

data selected was points of interest with Google Places API as it was similar in context

to the overall project abstract. As the API was already structured, all this required was

an input from the user.

The lessons learnt from the data input solution in the Alpha prototype were that the

search query only worked well for short keyword terms. If the user were to express a

sentence for the query, the results would not provide the search results that they were

looking for. The current implementation only looked for short keywords and it was

found that users would like to express their search with a further advanced search.

Going forward to the second prototype, it was clear that the input of a field needed to be

expanded with further options, which provides a better user experience with the results

that were shown.

8.1.2 Data Output

Figure 8.2: Results Page of Alpha prototype

The Alpha prototype provides results to the user on a separate page in a table as shown

in Figure 8.2. This provides a table of different points of interest, from the area searched

Lessons Learnt 206

for. The API is queried and a list of results is given. These results have then been placed

into a table. The decision to use a table in this initial prototype was to provide one way

of displaying the results from the API and allow for the user to drill down further into

the specific result. We believed that showing just enough detail initially is required but

having the choice to drill further down should be an option.

The lessons learnt from the data output solution in the Alpha prototype were that using

the table to display the results although it was organised, did not allow much flexibility

with the visualisation of the information shown. The output of the information on some

instances were too broad meaning irrelevant information was being output from the

search query. Better visualisation of the data output was needed for the Beta I prototype

along with a more refined search.

8.1.3 Storage

The Alpha prototype allows for the student to explore different ways of either storing or

displaying the data live. In this instance, the results were stored onto an SQL database

which meant that we were not constantly calling the API. If the decision was made

where we would not store the results, this would mean there would be a cost for calling

the API repeatedly. The decision was made to store results into an SQL database and

on a periodic basis, there would be a call to update the stored database results. This

resulted in reduced costs involved with paying for the use of the API.

The lessons learnt from the storage solution of the Alpha prototype were that this

allowed the ability to store results locally and saved calling the API each time to retrieve

the results. The downside of this though was the method required periodic cleanup

of the results and the information on the listings would change. The Alpha prototype

provided a demonstration of the need to the balance between the costing of using APIs

and storing data to avoid calling the relevant APIs for the same query with the exact

result.

8.1.4 Interaction

The Alpha prototype allows for the user to enter a query, interact with the recently

updated, highest rated and a random selection of places. When the user enters the

Lessons Learnt 207

query, we wanted the ability for the user to look at a mini map of the area that they have

searched for and to know what the temperature and weather is at that location. The

decision here to show the results in a table and for the user to interact with the results

by drilling down into a specific result was taken to make things clear and simple. Proof

of concept and the ability to show retrieval works was key in this aspect of design of the

Alpha prototype.

The lessons learnt from the Interaction solution of the Alpha prototype were the user

would see a table of results and could drill further into the specific result. However

some of the results did not provide precise information. The ability for the user to

explore and search an area was highlighted here as just having a table of results did

not give a conceptual understanding of the query entered. The next prototype clearly

required having a more precise and accurate results that would make it easier to interact

with. Interacting with results that were not relevant to what was input in this prototype

was confusing.

8.1.5 Visualisation

The Alpha prototype was simple in its design and visualisation, to keep to rapid agile

software development, “quick and dirty” and “keep it simple” methodologies. The

focus of proof of concept was on placing the results onto a table or basic HTML.

The lessons learnt from the Visualisation solution were that it is important to have a

better way of presenting the data to the user, using a map that can be interacted with

along with consolidating the information into better spaces and views.

8.2 Beta I Prototype

The Beta I prototype now focused on the task of looking at existing APIs for housing

and jobs that were available, using scripts to automatically scrape HTML elements

from websites. Beta I continued from the Alpha prototype with an emphasis on using

agile software development although changing the way information is retrieved and

displayed.

Lessons Learnt 208

The communication for the Beta I prototype was similar in context to the Alpha

prototype. We would meet up once a month and have weekly roundup emails to discuss

progression.

The Beta I prototype requirements was now to use any free APIs currently available

for both jobs and housing and then produce a design to display the results from the

structured data.

As development of the Beta I prototype occurred, both APIs started to become pay

per use. This resulted in further discussions concerning whether we should create a

prototype that we had more control over, and these considerations needed to be made

for the final prototype. At this stage, we made the decision to investigate methods of

extraction from the APIs by creating Python scripts that extract elements from website

and stores the information locally.

The technical decision was made for the Beta I prototype to use JavaScript, PHP and

HTML5 for further web development and to move away from the pre-built modules in

Python. This resulted in further development and the ability to create functions without

the constraints of what was available in the pre-built modules in Python.

The design used in the Beta I prototype was agile design, as this allowed for a quicker

turnover time of workflow which suited the company partners better. The Five Design

Sheets produce good collaboration on starting and discussing ideas.

The results from Beta I prototype were encouraging that using an API with structured

data results was a good idea and for Beta II, the consideration of creating our own web

mining software was important for the project moving forward to move away from the

reliability of other external sources.

The Beta I prototype is split into five technical parts, as shown in the figure below:

Lessons Learnt 209

Beta I Prototype

Category Description

Data Input

The data used is from a range of housing and job websites using

public APIs. The APIs have structured data using json output.

Additionally regular expressions was explored to extract website

elements.

Data Output The data output provides structured data of housing and jobs.

Interaction

The Beta I prototype allows the user to explore an interactive map

by dragging and zooming into out of different areas of the UK. The

user fills out a form and submits it for the data to be processed

and returned.

Visualisation

The user is presented with a form on the left side of a webpage

and the map loaded to the right side of the page. The results

are displayed with circular pins distinctive with different colours

and upon pressing, info windows are displayed with the returned

results.

Storage
The results of the API are live and not stored. The regular

expressions used on the housing and job websites are saved and

placed into a database which is then linked to the results.

Table 8.2: Beta I Overview of technical elements.

Lessons Learnt 210

8.2.1 Data Input

Figure 8.3: Beta I Input and Output

The Beta I prototype uses data retrieved from public free APIs for housing and job

websites. In order to query the API itself, a homepage had to be created as displayed in

8.3. To query the API, the search field is filled by the user. As the API was structured,

it was ready to be output in any way the developer wanted.

Additionally, the user would enter a query and the results would be shown to them in a

text format. This was an additional step towards the end of the Beta I prototype required

when the two APIs that were used became pay to use.

The lessons learnt from the Data Input solution from the Beta I prototype were that

compared to the Alpha prototype, the ability to have further searching criteria (i.e.

minimum/maximum price, house type and bedrooms) allowed for the user to have a

better experience expressing what they would want to find. The final prototype also

needed to have integration of jobs.

Lessons Learnt 211

8.2.2 Data Output

The Beta I prototype provides results to the user on the same page when they press the

search button. The API is queried and a set of results is given in a json format. These

results have then been placed into pins with infowindows as we felt to keep it clean and

easy to use.

The lessons learnt from the Data Output solution from Beta I prototype were that the

results provided clear and concise results related to the data input. The next challenge

for the final prototype were to include jobs into the form submission.

8.2.3 Storage

The results for the Beta I are live and not stored coming from the two APIs for housing

and jobs. This was done for evaluation purposes so that the accuracy, precision and

recall could be precisely calculated. The decision was taken to display these non-live

results for the Beta II prototype which then would not require using the API which had

become pay to use.

The lessons learnt from the Storage solution for the Beta I prototype were that having

live data being used instead of storing it allowed for the results to be dynamic and not

static. It also provided the ability to check accuracy, precision and recall metrics to

evaluate the quality of the API data. At this stage the APIs were free to use and the

restrictions were limited.

8.2.4 Interaction

The interaction for the Beta I prototype are all on one page, meaning the map and the

search field are together. The user has the ability to zoom in and out, providing a more

detailed look at the local area of what has been searched. Additionally pins were used

to highlight the location of the housing. Info Windows were used to contain a wide

range of information about the relevant listing.

The lessons learnt from the Interaction solution for Beta I prototype were to use less

information in the Info Windows and having better pins to identify housing and jobs.

Lessons Learnt 212

8.2.5 Visualisation

The visualisation for the Beta I prototype uses a map to display the results on a map and

use pins with information windows to display the content at the relevant latitude and

longitude coordinates. The lessons learnt from the Visualisation solution for Beta I was

that users preferred to have the map results on separate pages.

8.3 Beta II Prototype

The Beta II prototype was the final prototype produced for this thesis. The prototype

uses methods used in Beta I and has a database of static listings of housing and jobs.

Beta II led from the Beta I prototype and has similar functionalities for searching and

displaying the results. The main difference between the prototypes is that the search

form and map are separated on two pages.

The final prototype used a static database which has many housing and job listings.

When the user submits a search, it queries the database and returns the relevant results.

The design decisions made for the final prototype of the Beta II prototype follows the

same principles made in the Beta I prototype. The design that was used was agile

design, which allowed for quicker designs and development through changes being

made incrementally to the Beta I prototype.

The Beta II prototype moved away from needing to use APIs, but took advantage of the

methods used in the Beta I prototype to store a large quantity of listings for housing and

jobs.

The Beta II prototype is split into five technical parts, as shown in the figure below:

Lessons Learnt 213

Beta II Prototype

Category Description

Data Input

The data used is used is from data extracted from housing and job websites,

including APIs and using third party software to gather bulk listings.

The Merlin system was also used of tagging done with housing

and job data.

Data Output
The data output is structured data that has been saved into SQL database,

the input is queried from the user and the results are retrieved

from the database.

Interaction

The Beta II prototype allows the user to explore an interactive

map by dragging and zooming into out of different areas of the UK.

The user fills out a form and submits it for the data to

be processed and returned.

Visualisation

The user is presented with a form on the homepage and upon

submission of the form, a results page with a map is presented

to the user with the results. The results are displayed with circular

pins distinctive with different colours and upon pressing, info

windows are displayed with the returned results.

Storage
The results of the data that has been processed is stored into an

SQL database which is called when the user submits the form.

The data used is static and not live.

Table 8.3: Beta II Overview of technical elements.

Lessons Learnt 214

8.3.1 Data Input

Figure 8.4: Beta II Prototype Design — Homepage.

The Beta II prototype uses data extracted from APIs, third party software, the Merlin

system and other created scripts that have extracted website data from housing and jobs.

The data used is static.

The data was chosen from housing and job websites in the UK. Using custom made

scripts was then used to extract the text from the websites, this was done to move away

from the now paid for API’s. The Merlin system was then used with different models to

organise the different types of text that needs to be classified, such as price, description

and title. The Merlin system used ground truth data created from samples of job and

housing listings to do a comparison to see how well the output performed. The models

are then trained based on the text files for the different categories.

There have been many lessons learnt in the final Beta II prototype which has evolved

substantially the first two prototypes. In figure 8.4, the user was provided with a further

enhanced search compared to the previous prototype. The search input was expanded

to include salary, house price and bedrooms.

Lessons Learnt 215

8.3.2 Data Output

The Beta II prototype provides results to the user on a separate page compared to Beta I.

The results appear on a map and the database is called with the results. These results

have then been placed into pins with info windows. The data was put into different

columns within a table on database, with the relevant sections of a job or house e.g., job

title, price, description which is then retrieved and displayed.

The lessons learnt from the data output solution that the results provided a further

detailed result related to the data input. This solution included both jobs and housing

on the form submission.

8.3.3 Storage

The Beta II has a database that has stored many listings of housing and jobs. As the

APIs turned to being paid for during the development of these prototypes, using a

database to store queried results allowed for less frequent calls to the API overall. The

results are static in this final prototype.

During this project there had been blockages through free APIs becoming paid and

their need to move away from a need of services available through APIs. The project

involved exploring different ways of gathering these results and through the Merlin

system, this performed well to be stored in the database in a structured way.

The lesson learnt for the Storage solution for the final prototype is that although there is

a storage mechanism for the final prototype, it was the best way forward for the company

partners to keep this prototype more affordable with storing the results, instead of

constantly calling an API.

8.3.4 Interaction

The interaction for the Beta II prototype was split into two web pages. The search

form was initially presented to the user and upon submitting the form, the results were

then presented. This did provide a split between the company partners and from the

evaluations made, as there was slightly more preference for having the interaction that

Lessons Learnt 216

was performed in Beta I. The company partners wanted the ability to express more of a

homepage for the future and not having the map as it were in Beta I.

The lesson learnt for the Interaction solution for this final prototype was having better

defined pins to identify the different housing and jobs. The interaction from the company

has been key to the interaction and visualisation of the prototypes.

8.3.5 Visualisation

The Visualisation for the Beta II prototype followed similar suit to the Beta I, the only

difference being the separation of the search form and the results into two web pages.

The visualisation overall was simple but effective and allowed the ability for future

developments on the prototype.

The lesson learnt for the Visualisation solution for this prototype was having the ability

to adapt to user feedback. In future development would focus on the ability of putting

different visualisations into the output to allow different options to the user.

8.4 Summary and Discussion

The journey throughout the different prototypes has provided many lessons. Taking the

approach of separating out the work provided into prototypes allows the developer to

develop and progress at a steady pace. It gives the insight of the need to come up with

designs first before jumping straight into the implementation of the work.

The development of each of the prototypes have come from the reflection of the

evaluations taken and comments received. Future development would take different

approaches of design so the user could have a choice of options to view the data input

and output differently.

The different approaches used for the design and implementation has allowed flexibility.

Using a mixture of agile development, quick and dirty and keep it simple methodologies

have allowed for different approaches to be taken with the work.

Lessons Learnt 217

The ability to communicate with the company partners and have frequent meetings over

work allowed for frequent amendments and learning to new directions.

Following through a software engineering process, it is important for the company

partners to provide continuing guidance, with important insights and lessons learnt in

order to further develop the work.

Lessons Learnt 218

Chapter 9

Conclusions and Future Work

This chapter summarises this thesis and the conclusions. The next section will summarise

the main work and the findings. The following section revisits the aim and objectives

and research questions from the first chapter to see if they have been met. The final two

sections explore the limitations of the current work and then the future work.

9.1 Summary

The concept of creating a jobs and housing website was explored and three different

prototypes created: Alpha prototype, Beta I prototype and Beta II prototype. A system

was also created for web mining of job and housing information using PPM called

Merlin along with a comparison with an existing state of the art named entity recognition

software spaCy. The results were significantly better using Merlin compared to spaCy

in terms of performance and training time. A discussion of the lessons learnt has been

provided concerning the design, development and process of the Alpha, Beta I and Beta

II prototypes.

9.2 Review of Aim & Objectives

In the first chapter, the aims and objectives were set out:

To create a web-based service that will allow users to search within a given geographical

region both for accommodation and employment opportunities.

The specific objectives of this thesis were:

219

• Produce a literature review of web services and technologies that provide

capabilities related to the proposed web service.

• Develop and evaluate a named entity tagger relating to jobs and accommodation

that is able to identify the unstructured text of HTML source code and is able to

identify and tag the unstructured data appropriately.

• Compare the performance of the created named entity tagger to the performance

of an existing state of the art named entity recognition software.

• Design and implement prototypes using a web-based geographical search interface

that enables filtering of search criteria relating to jobs and accommodation using

dynamic filters.

• Evaluate the usability and effectiveness of the different web-based interfaces.

The first objective was achieved in chapter 3. A review of existing web services

on housing and job websites was conducted, including features and services and a

discussion on existing web services capabilities.

The second objective was achieved in chapter 4, creating a web mining system for job

and housing information using PPM called Merlin.

The third objective was achieved in chapter 4, which conducted a comparison of the

same housing and job data on an existing state of the art named entity recognition

software called spaCy.

The fourth objective and fifth objective was achieved in chapters 5, 6 and 7. These

chapters discuss the design, implementation and evaluation of the prototypes created.

9.3 Review of Research Questions

The research questions designed for this study were the following:

Conclusions and Future Work 220

• What is the best way of extracting and then fusing information obtained from

housing and job sites such as sites like Rightmove and Zoopla into a singular

web-based platform?

• What is an effective interface design for such a platform? e.g., Would a

geographical based interface be more appealing to potential clients for such a

service?

The first research question was addressed in chapter 6. The implementation chapter

explored existing vendor APIs and developing effective methods for scraping web

content involving accommodation and jobs alongside other resources. The answers

to the research question for this are that the best ways of fusing information obtained

were a mixture of regular expressions and different libraries that could retrieve specific

elements.

The second research question was addressed in chapters 5, 6 and 7. The design

methodologies used and collaborative discussion on combining housing and jobs listing

onto one website using a map-based interface was achieved. The evaluation of the

prototypes against users preferred the way presented on being able to see a map compared

to the traditional list and grid search results. The answers to the research question for

this are that an effective interface design for a platform being a geographically based

interface would be more appealing to users for searching and exploring quickly across a

map as discussed in sections 6.6 and 7.4.

9.4 Limitations of the Work

We have encountered a few limitations whilst creating the prototypes. These limitations

are discussed below:

• The prototypes created use static information, which is a snapshot of data from a

period of time. This means that the data is not crawled dynamically and updated

with the latest housing and job listings.

• The methods created in the prototypes are not sustainable to futureproof external

factor changes, meaning if housing or job websites were to change their design,

Conclusions and Future Work 221

the methods of retrieval would break. Additionally, if websites were to adopt new

blocking techniques, this could make it challenging to retrieve results. To make

this more sustainable in the long term, a partnership with the relevant companies

would be necessary. If these companies were to make changes to their systems,

knowing in advance would help a developer more quickly adapt to those changes.

• The location of job listings is limited to what is being provided by the search

listings websites, meaning the results for jobs are broader to an area than a specific

street.

9.5 Future Work

In this thesis, several potential directions for future work have been identified that could

significantly enhance the scope and efficacy of the research. Firstly, incorporating

points of interest, such as cafes and shops, into the queried map overlay would provide

users with a more comprehensive understanding of the area in question. Additionally,

integrating crime and education statistics into the system could further enrich the

user’s experience by offering a broader range of relevant data. Secondly, refining the

text processing methodology to eliminate noise from housing and job information

might lead to improved results for the Merlin system’s classification performance.

Thirdly, leveraging the data utilised in training the Merlin system could offer valuable

opportunities to annotate larger corpora, thereby serving as a ground truth for training the

PPM models, ultimately enhancing their performance. Lastly, expanding the application

of the PPM approach to Named Entity Recognition (NER) to encompass other types of

web-based data could potentially lead to novel insights and improved understanding of

various data sources, thus contributing to the advancement of this field.

Conclusions and Future Work 222

References

[1] T. Agata, M. Nozue, N. Hattori and S. Ueda, ‘A measure for evaluating search

engines on the world wide web: Retrieval test with expected search length,’

Library and Information Science, no. 37, pp. 1–11, 1997 (p. 11).

[2] C. Ahlberg, ‘Spotfire: An information exploration environment,’ ACM SIGMOD

Record, vol. 25, no. 4, pp. 25–29, 1996 (p. 137).

[3] C. Ahlberg and E. Wistrand, ‘Ivee: An information visualization and exploration

environment,’ in Proceedings of Visualization 1995 Conference, IEEE, 1995,

pp. 66–73 (p. 137).

[4] N. Ahmed and W. J. Teahan, ‘Using compression to find interesting one-

dimensional cellular automata,’ Complex & Intelligent Systems, vol. 6, no. 1,

pp. 123–146, 2020 (p. 56).

[5] M. M. Alamri and W. J. Teahan, ‘Automatic correction of arabic dyslexic text,’

Computers, vol. 8, no. 1, p. 19, 2019 (p. 58).

[6] S. Alkahtani, W. Liu and W. J. Teahan, ‘A new hybrid metric for verifying

parallel corpora of arabic-english,’ arXiv preprint arXiv:1502.03752, 2015

(p. 59).

[7] I. S. Alkhazi and W. J. Teahan, ‘Classifying and segmenting classical and

modern standard arabic using minimum cross-entropy,’ International Journal

of Advanced Computer Science and Applications, vol. 8, no. 4, 2017 (p. 59).

[8] A. Almahdawi and W. J. Teahan, ‘Emotion recognition in text using ppm,’

in International Conference on Innovative Techniques and Applications of

Artificial Intelligence, Springer, 2017, pp. 149–155 (p. 59).

[9] A. J. Almahdawi and W. J. Teahan, ‘A new Arabic dataset for emotion

recognition,’ in Intelligent Computing-Proceedings of the Computing

Conference, Springer., 2019, pp. 200–216 (pp. 25, 72).

223

[10] M. Altamimi and W. J. Teahan, ‘Gender and authorship categorisation of arabic

text from twitter using PPM,’ International Journal of Computer Science and

Information Technologies, vol. 9, pp. 131–140, 2017 (p. 58).

[11] P. M. Andersen, P. J. Hayes, S. P. Weinstein, A. K. Huettner, L. M. Schmandt

and I. B. Nirenburg, ‘Automatic extraction of facts from press releases to

generate news stories,’ in Third Conference on Applied Natural Language

Processing, Trento, Italy: Association for Computational Linguistics, Mar. 1992,

pp. 170–177. doi: 10.3115/974499.974531 (p. 23).

[12] R. K. Ando, T. Zhang and P. Bartlett, ‘A framework for learning predictive

structures from multiple tasks and unlabeled data.,’ Journal of Machine Learning

Research, vol. 6, no. 11, 2005 (p. 21).

[13] G. L. Andrienko and N. V. Andrienko, ‘Interactive maps for visual data

exploration,’ International Journal of Geographical Information Science, vol. 13,

no. 4, pp. 355–374, 1999 (p. 182).

[14] D. E. Appelt, J. R. Hobbs, J. Bear, D. Israel and M. Tyson, ‘Fastus: A finite-state

processor for information extraction from real-world text,’ vol. 93, Jan. 1993,

pp. 1172–1178 (p. 20).

[15] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and S. Raghavan, ‘Searching

the web,’ ACM Transactions on Internet Technology (TOIT), vol. 1, no. 1,

pp. 2–43, 2001 (p. 12).

[16] M. Asahara and Y. Matsumoto, ‘Japanese named entity extraction with redundant

morphological analysis,’ in Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computational Linguistics on Human

Language Technology-Volume 1, Association for Computational Linguistics,

2003, pp. 8–15 (p. 21).

[17] S. Balram and S. Dragicevic, ‘Collaborative geographic information systems:

Origins, boundaries, and structures,’ in Collaborative geographic information

systems, Igi Global, 2006, pp. 1–23 (p. 182).

[18] A. Bangor, P. T. Kortum and J. T. Miller, ‘An empirical evaluation of the system

usability scale,’ Intl. Journal of Human–Computer Interaction, vol. 24, no. 6,

pp. 574–594, 2008 (pp. 193, 194).

[19] A. Barua et al., ‘Methods for decision-making in survey questionnaires based

on likert scale,’ Journal of Asian Scientific Research, vol. 3, no. 1, pp. 35–38,

2013 (p. 165).

REFERENCES 224

https://doi.org/10.3115/974499.974531

[20] J. Bau, E. Bursztein, D. Gupta and J. Mitchell, ‘State of the art: Automated

black-box web application vulnerability testing,’ in 2010 IEEE symposium on

security and privacy, IEEE, 2010, pp. 332–345 (p. 14).

[21] K. Beck, M. Beedle, A. Van Bennekum et al., ‘Manifesto for agile software

development,’ (pp. 3, 25, 27, 28).

[22] D. J. Besemer and P. S. Jacobs, ‘Flush: A flexible lexicon design,’ in 25th Annual

Meeting of the Association for Computational Linguistics, 1987, pp. 186–192

(p. 20).

[23] E. Bick, ‘A named entity recognizer for danish.,’ in LREC, Citeseer, Lisbon,

Portugal: European Language Resources Association, May 2004 (p. 20).

[24] S. Bjork and J. Redstrom, ‘Redefining the focus and context of focus+ context

visualization,’ in IEEE Symposium on Information Visualization 2000. INFOVIS

2000. Proceedings, IEEE, 2000, pp. 85–89 (p. 182).

[25] S. Brin and L. Page, ‘The anatomy of a large-scale hypertextual web search

engine,’ Computer networks and ISDN systems, vol. 30, no. 1-7, pp. 107–117,

1998 (p. 13).

[26] J. Brooke, ‘System usability scale (sus): A quick-and-dirty method of system

evaluation user information,’ Reading, UK: Digital Equipment Co Ltd, vol. 43,

pp. 1–7, 1986 (pp. 191, 192).

[27] J. Brooke, ‘Sus: A “quick and dirty” usability,’ Usability evaluation in industry,

vol. 189, 1996 (p. 191).

[28] J. Carifio and R. J. Perla, ‘Ten common misunderstandings, misconceptions,

persistent myths and urban legends about likert scales and likert response formats

and their antidotes,’ Journal of social sciences, vol. 3, no. 3, pp. 106–116, 2007

(p. 165).

[29] L. D. Catledge and J. E. Pitkow, ‘Characterizing browsing strategies in the world-

wide web,’ Computer Networks and ISDN systems, vol. 27, no. 6, pp. 1065–1073,

1995 (p. 13).

[30] E. W. Chang, ‘Bidding on trespass: Ebay, inc. v. bidder’s edge, inc. and the

abuse of trespass theory in cyberspace-law,’ AIPLA QJ, vol. 29, p. 445, 2001

(p. 17).

[31] Y. Chen, W. Wang, Z. Liu and X. Lin, ‘Keyword search on structured and

semi-structured data,’ in Proceedings of the 2009 ACM SIGMOD International

REFERENCES 225

Conference on Management of data, Association for Computing Machinery,

2009, pp. 1005–1010 (p. 35).

[32] M. H. Chignell, J. Gwizdka and R. C. Bodner, ‘Discriminating meta-search:

A framework for evaluation,’ Information processing & management, vol. 35,

no. 3, pp. 337–362, 1999 (p. 11).

[33] C. W. Choo, B. Detlor and D. Turnbull, ‘Information seeking on the web–an

integrated model of browsing and searching.,’ 1999 (p. 13).

[34] G. G. Chowdhury, Introduction to modern information retrieval. Facet

publishing, 2010 (p. 10).

[35] J. Cleary and I. Witten, ‘Data compression using adaptive coding and partial

string matching,’ IEEE transactions on Communications, vol. 32, no. 4,

pp. 396–402, 1984 (pp. 52, 68).

[36] J. G. Cleary and W. J. Teahan, ‘Unbounded length contexts for PPM,’ The

Computer Journal, vol. 40, no. 2_and_3, pp. 67–75, 1997 (pp. 52, 63).

[37] A. Cockburn and S. Jones, ‘Which way now? analysing and easing inadequacies

in www navigation,’ International Journal of Human-Computer Studies, vol. 45,

no. 1, pp. 105–129, 1996 (p. 13).

[38] W. W. Cohen and S. Sarawagi, ‘Exploiting dictionaries in named entity extraction:

Combining semi-markov extraction processes and data integration methods,’ in

Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, New York: Association for Computing

Machinery, 2004, pp. 89–98 (p. 20).

[39] K. Collier, Agile analytics: A value-driven approach to business intelligence

and data warehousing. Addison-Wesley, 2012 (pp. 3, 25).

[40] W. S. Cooper, ‘Expected search length: A single measure of retrieval

effectiveness based on the weak ordering action of retrieval systems,’ American

documentation, vol. 19, no. 1, pp. 30–41, 1968 (p. 11).

[41] M. Costantino and P. Coletti, Information extraction in finance. WIT Press,

2008, vol. 8 (p. 23).

[42] J. Cowie and W. Lehnert, ‘Information extraction,’ Communications of the

ACM, vol. 39, no. 1, pp. 80–91, 1996 (p. 23).

[43] S. L. Davis, ‘American civil liberties union, et. al. v. janet reno: American

library association, inc., et. al. v. united states department of justice, et. al., 929

REFERENCES 226

f. supp. 824 (ed pa. 1996),’ Circles: Buffalo Women’s Journal of Law and Social

Policy, vol. 5, no. 1, p. 95, 1997 (p. 16).

[44] G. DeJong, ‘Skimming stories in real time: An experiment in integrated

understanding (technical report yale/dcs/tr158),’ Tech. Rep., 1979 (p. 20).

[45] A. Doupé, M. Cova and G. Vigna, ‘Why Johnny can’t pentest: An analysis of

black-box web vulnerability scanners,’ in International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment, Springer, 2010,

pp. 111–131 (p. 14).

[46] M. G. Dyer and U. Zernik, ‘Encoding and acquiring meanings for figurative

phrases,’ in 24th Annual Meeting of the Association for Computational

Linguistics, Citeseer, 1986, pp. 106–111 (p. 20).

[47] T. E. Endres, ‘Advantages of rapid prototyping,’ SAE Technical Paper, Tech.

Rep., 1999 (p. 3).

[48] H. Erdogan, ‘Sequence labeling: Generative and discriminative approaches,’

Proc. 9th Int. Conf. Mach. Learn. Appl., 2010, pp. 1–132 (p. 19).

[49] D. Fallows, ‘Search engine use,’ 2008 (p. 12).

[50] C. Faloutsos, ‘Access methods for text,’ ACM Computing Surveys (CSUR),

vol. 17, no. 1, pp. 49–74, 1985 (p. 12).

[51] J. Ferreira, J. Noble and R. Biddle, ‘Agile development iterations and UI design,’

in Agile 2007 (AGILE 2007), IEEE, 2007, pp. 50–58 (p. 133).

[52] C. Ferris and J. Farrell, ‘What are web services?’ Communications of the ACM,

vol. 46, no. 6, p. 31, 2003 (p. 15).

[53] S. Fine, Y. Singer and N. Tishby, ‘The hierarchical hidden markov model:

Analysis and applications,’ Machine learning, vol. 32, no. 1, pp. 41–62, 1998

(p. 21).

[54] M. Fleischman and E. Hovy, ‘Fine grained classification of named entities,’ in

Proceedings of the 19th international conference on Computational linguistics-

Volume 1, Association for Computational Linguistics, 2002, pp. 1–7 (p. 20).

[55] G. D. Forney, ‘The viterbi algorithm,’ Proceedings of the IEEE, vol. 61, no. 3,

pp. 268–278, 1973 (p. 69).

[56] M. Fowler, J. Highsmith et al., ‘The agile manifesto,’ Software development,

vol. 9, no. 8, pp. 28–35, 2001 (p. 26).

[57] W. B. Frakes and R. Baeza-Yates, Information retrieval: data structures and

algorithms. Prentice-Hall, Inc., 1992 (p. 10).

REFERENCES 227

[58] A. Fujii, M. Iwayama and N. Kando, ‘Introduction to the special issue on

patent processing,’ Information Processing & Management, vol. 43, no. 5,

pp. 1149–1153, 2007 (p. 11).

[59] U. Gasser, ‘Regulating search engines: Taking stock and looking ahead,’ Yale

JL & Tech., vol. 8, p. 201, 2005 (pp. 16, 17).

[60] R. Gorwa and D. Guilbeault, ‘Unpacking the social media bot: A typology to

guide research and policy,’ Policy & Internet, vol. 12, no. 2, pp. 225–248, 2020

(p. 17).

[61] R. Grishman and R. Kittredge, Analyzing language in restricted domains:

sublanguage description and processing. Psychology Press, 2014 (p. 20).

[62] R. Grishman and B. Sundheim, ‘Message understanding conference-6: A brief

history,’ in COLING 1996 Volume 1: The 16th International Conference on

Computational Linguistics, 1996 (p. 19).

[63] M. Gupta and M. Bendersky, ‘Information retrieval with verbose queries,’ in

Proceedings of the 38th International ACM SIGIR Conference on Research

and Development in Information Retrieval, Now Publishers, Inc., 2015,

pp. 1121–1124 (p. 10).

[64] S. Gupta, ‘A survey on search engines,’ Journal for Research Volume, vol. 2,

no. 11, 2017 (p. 15).

[65] G. Gürkaynak, İ. Yılmaz and D. Durlu, ‘Understanding search engines: A legal

perspective on liability in the internet law vista,’ Computer Law & Security

Review, vol. 29, no. 1, pp. 40–47, 2013 (pp. 15, 16).

[66] M. R. Henzinger, R. Motwani and C. Silverstein, ‘Challenges in web search

engines,’ in ACM SIGIR Forum, ACM New York, NY, USA, vol. 36, 2002,

pp. 11–22 (pp. 13, 14).

[67] J. R. Hobbs, ‘The finite string newsletter: Site report: Another from the darpa

series, overview of the tacitus project,’ Computational Linguistics, vol. 12, no. 3,

1986 (p. 20).

[68] C. Hölscher and G. Strube, ‘Web search behavior of internet experts and

newbies,’ Computer networks, vol. 33, no. 1-6, pp. 337–346, 2000 (p. 13).

[69] P. G. Howard, The design and analysis of efficient lossless data compression

systems. Brown University, 1993 (p. 54).

[70] S. Huston and W. B. Croft, ‘Evaluating verbose query processing techniques,’ in

Proceedings of the 33rd international ACM SIGIR conference on Research and

REFERENCES 228

development in information retrieval, Association for Computing Machinery,

2010, pp. 291–298 (pp. 10, 11).

[71] M. Iwayama, A. Fujii, N. Kando and A. Takano, ‘NTCIR patent: A test collection

for patent retrieval/classification,’ in Proceedings of Patent Retrieval, workshop

of the 23rd international ACM SIGIR conference on Research and development

in information retrieval, 2000 (p. 11).

[72] S. Jamieson, ‘Likert scales: How to (Ab)use them?’ Medical education, vol. 38,

no. 12, pp. 1217–1218, 2004 (p. 165).

[73] B. J. Jansen, A. Spink, J. Bateman and T. Saracevic, ‘Real life information

retrieval: A study of user queries on the web,’ in ACM SIGIR Forum, ACM New

York, NY, USA, vol. 32, 1998, pp. 5–17 (p. 11).

[74] R. Jiang, R. E. Banchs and H. Li, ‘Evaluating and combining name entity

recognition systems,’ in Proceedings of the Sixth Named Entity Workshop, 2016,

pp. 21–27 (p. 89).

[75] N. R. Al-Kazaz, S. A. Irvine and W. J. Teahan, ‘An automatic cryptanalysis

of transposition ciphers using compression,’ in International conference on

cryptology and network security, Springer, 2016, pp. 36–52 (pp. 58, 59).

[76] D. V. Khmelev and W. J. Teahan, ‘A repetition based measure for verification

of text collections and for text categorization,’ in Proceedings of the 26th

annual international ACM SIGIR conference on Research and development in

informaion retrieval, ACM, 2003, pp. 104–110 (p. 58).

[77] B. Kleinberg, M. Mozes, A. Arntz and B. Verschuere, ‘Using named entities for

computer-automated verbal deception detection,’ Journal of forensic sciences,

vol. 63, no. 3, pp. 714–723, 2018 (p. 89).

[78] K. Knight, ‘Mining online text,’ Communications of the ACM, vol. 42, no. 11,

pp. 58–61, 1999 (p. 22).

[79] V. Krotov and L. Silva, ‘Legality and ethics of web scraping,’ 2018 (p. 17).

[80] K. K. Lavania, S. Jain, M. K. Gupta and N. Sharma, ‘Google: A case study

(web searching and crawling),’ International Journal of Computer Theory and

Engineering, vol. 5, no. 2, p. 337, 2013 (pp. 11, 12).

[81] S. Lawrence and C. L. Giles, ‘Searching the world wide web,’ Science, vol. 280,

no. 5360, pp. 98–100, 1998 (p. 12).

REFERENCES 229

[82] J. Li, A. Sun, J. Han and C. Li, ‘A survey on deep learning for named entity

recognition,’ IEEE Transactions on Knowledge and Data Engineering, 2020

(p. 19).

[83] R. Likert, ‘A technique for the measurement of attitudes.,’ Archives of psychology,

1932 (p. 165).

[84] W. Liu, Z. Chang and W. Teahan, ‘Ppm compression-based method for english-

chinese bilingual sentence alignment,’ in 2nd international Conference on

Statistical Language and Speech Processing (SLSP 2014), 14-16 October 2014,

Grenoble, France, 2014 (p. 60).

[85] S. L. Lytinen and A. Gershman, ‘Atrans automatic processing of money transfer

messages.,’ in AAAI, vol. 86, Citeseer, 1986, pp. 1089–1093 (p. 20).

[86] A. M. MacEachren, F. P. Boscoe, D. Haug and L. W. Pickle, ‘Geographic

visualization: Designing manipulable maps for exploring temporally varying

georeferenced statistics,’ in Proceedings IEEE symposium on information

visualization (Cat. No. 98TB100258), IEEE, 1998, pp. 87–94 (p. 136).

[87] A. M. MacEachren and M.-J. Kraak, Exploratory cartographic visualization:

Advancing the agenda, 1997 (p. 137).

[88] A. Al-Mahdawi, ‘Automatic emotion recognition in english and arabic text,’

Ph.D. dissertation, Bangor University, 2019 (pp. 53, 54).

[89] M. Mahoney, Large text compression benchmark, 2011 (p. 54).

[90] M. Mahoui, W. J. Teahan, A. K. Thirumalaiswamy Sekhar and S. Chilukuri,

‘Identification of gene function using prediction by partial matching (ppm)

language models,’ in Proceedings of the 17th ACM conference on information

and knowledge management, 2008, pp. 779–786 (p. 60).

[91] C. D. Manning, P. Raghavan and H. Schütze, Introduction to Information

Retrieval. Cambridge university press, 2008 (p. 24).

[92] J. Manning, ‘In vivo coding,’ The international encyclopedia of communication

research methods, vol. 24, pp. 1–2, 2017 (p. 170).

[93] R. C. Martin, Agile software development: principles, patterns, and practices.

Prentice Hall, 2002 (p. 133).

[94] V. M. Matthew, ‘Adaptive weighing of context models for lossless data

compression,’ Florida Institute of Technology CS Dept, Technical Report

CS-2005-16, 2005 (p. 54).

REFERENCES 230

[95] K. T. Maxwell, ‘Term selection in information retrieval,’ Ph.D. dissertation,

University of Edinburgh, 2016 (p. 11).

[96] S. M. Mirtaheri, M. E. Dinçktürk, S. Hooshmand, G. V. Bochmann, G.-V.

Jourdan and I. V. Onut, ‘A brief history of web crawlers,’ arXiv preprint

arXiv:1405.0749, 2014 (p. 14).

[97] A. Moffat, ‘Implementing the ppm data compression scheme,’ IEEE

Transactions on communications, vol. 38, no. 11, pp. 1917–1921, 1990 (pp. 52,

53, 68).

[98] V. R. Moffat, ‘Regulating search,’ Harv. JL & Tech., vol. 22, p. 475, 2008

(p. 15).

[99] B. Mohit, ‘Named entity recognition,’ in Natural language processing of semitic

languages, Springer, 2014, pp. 221–245 (p. 19).

[100] I. Montani, M. Honnibal, M. Honnibal, S. Landeghem, A. Boyd, H. Peters et

al., ‘Spacy: Industrial-strength natural language processing in python,’ Zenodo,

2021 (p. 89).

[101] R. J. Mooney and R. Bunescu, ‘Mining knowledge from text using information

extraction,’ ACM SIGKDD explorations newsletter, vol. 7, no. 1, pp. 3–10, 2005

(p. 22).

[102] M. R. Morris, J. Teevan and K. Panovich, ‘A comparison of information

seeking using search engines and social networks,’ in Fourth International

AAAI Conference on Weblogs and Social Media, 2010 (p. 12).

[103] S. Munzert, C. Rubba, P. Meißner and D. Nyhuis, Automated data collection

with R: A practical guide to web scraping and text mining. John Wiley & Sons,

2014 (p. 18).

[104] D. Nadeau and S. Sekine, ‘A survey of named entity recognition and

classification,’ Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007

(pp. 19, 20).

[105] R. Navarro-Prieto, M. Scaife and Y. Rogers, ‘Cognitive strategies in web

searching,’ in Proceedings of the 5th Conference on Human Factors & the Web,

1999, pp. 43–56 (p. 13).

[106] T. Nemoto and D. Beglar, ‘Likert-scale questionnaires,’ JALT 2013 conference

proceedings, 2014, pp. 1–8 (p. 165).

[107] D. L. Olson and D. Delen, Advanced data mining techniques. Springer Science

& Business Media, 2008 (p. 25).

REFERENCES 231

[108] C. Oppenheim, A. Morris, C. McKnight and S. Lowley, ‘The evaluation of

www search engines,’ Journal of documentation, 2000 (p. 11).

[109] E. Partalidou, E. Spyromitros-Xioufis, S. Doropoulos, S. Vologiannidis and

K. Diamantaras, ‘Design and implementation of an open source greek pos

tagger and entity recognizer using spacy,’ in IEEE/WIC/ACM International

Conference on Web Intelligence, 2019, pp. 337–341 (p. 89).

[110] S. M. Peltola, F. P. Melchels, D. W. Grĳpma and M. Kellomäki, ‘A review

of rapid prototyping techniques for tissue engineering purposes,’ Annals of

medicine, vol. 40, no. 4, pp. 268–280, 2008 (p. 3).

[111] D. M. Powers, ‘Evaluation: From precision, recall and F-measure to ROC,

informedness, markedness and correlation,’ arXiv preprint arXiv:2010.16061,

2020 (p. 24).

[112] Y. Qi, R. Collobert, P. Kuksa, K. Kavukcuoglu and J. Weston, ‘Combining

labeled and unlabeled data with word-class distribution learning,’ in Proceedings

of the 18th ACM conference on Information and knowledge management, 2009,

pp. 1737–1740 (p. 21).

[113] L. F. Rau, ‘Extracting company names from text,’ in [1991] Proceedings. The

Seventh IEEE Conference on Artificial Intelligence Application, IEEE, vol. 1,

1991, pp. 29–32 (p. 20).

[114] B. R. Rich, ‘Clarence leonard (kelly) johnson 1910-1990: A biographical

memoir,’ Biographical Memoirs, vol. 67, pp. 221–241, 1995 (p. 111).

[115] J. C. Roberts, C. Headleand and P. D. Ritsos, ‘Sketching designs using the five

design-sheet methodology,’ IEEE transactions on visualization and computer

graphics, vol. 22, no. 1, pp. 419–428, 2015 (pp. 99–101).

[116] J. C. Roberts, C. J. Headleand and P. D. Ritsos, Five Design-Sheets: Creative

Design and Sketching for Computing and Visualisation. Springer, 2017 (p. 100).

[117] J. C. Roberts, C. Headleand and P. D. Ritsos, ‘Sketching designs using the five

design-sheet methodology,’ IEEE Transactions on Visualization and Computer

Graphics, vol. 22, no. 1, pp. 419–428, 2016. doi: 10.1109/TVCG.2015.

2467271 (p. 99).

[118] X. Roche, ‘Copying websites,’ in Web Archiving, Springer, 2006, pp. 93–114

(p. 52).

[119] A. Roy, ‘Recent trends in named entity recognition (NER),’ arXiv preprint

2101.11420, arXiv–2101, 2021 (pp. 19, 21).

REFERENCES 232

https://doi.org/10.1109/TVCG.2015.2467271
https://doi.org/10.1109/TVCG.2015.2467271

[120] M. S. Ryan and G. R. Nudd, ‘The viterbi algorithm,’ Tech. Rep., 1993 (p. 69).

[121] N. Sager, C. Friedman and M. S. Lyman, Medical language processing: computer

management of narrative data. Addison-Wesley Longman Publishing Co., Inc.,

1987 (p. 23).

[122] P. Sahoo and R. Parthasarthy, ‘An efficient web search engine for noisy

free information retrieval.,’ The International Arab Journal of Information

Technology., vol. 15, no. 3, pp. 412–418, 2018 (p. 8).

[123] D. Salomon and G. Motta, Handbook of data compression. Springer, 2010

(p. 54).

[124] G. Salton, ‘Automatic text processing. addison welsley,’ Reading, Massachusetts,

vol. 4, 1989 (p. 12).

[125] S. Sarawagi et al., ‘Information extraction,’ Foundations and Trends® in

Databases, vol. 1, no. 3, pp. 261–377, 2008 (p. 23).

[126] J. Sauro, ‘A practical guide to the system usability scale: Background,’

Benchmarks & best practices, 2011 (p. 193).

[127] F. Sebastiani, ‘Machine learning in automated text categorization,’ ACM

computing surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002 (p. 22).

[128] F. Sebastiani, ‘Text categorization,’ in Encyclopedia of Database Technologies

and Applications, IGI Global, 2005, pp. 683–687 (p. 22).

[129] S. Sekine, R. Grishman and H. Shinnou, ‘A decision tree method for finding

and classifying names in Japanese texts,’ Montre’al, Quebec, Canada: ACL,

1998. [Online]. Available: https://aclanthology.org/W98-1120 (p. 21).

[130] S. Sekine, K. Sudo and C. Nobata, ‘Extended named entity hierarchy.,’ in The

International Conference on Language Resources and Evaluation, European

Language Resources Association, May 2002 (p. 21).

[131] T. Seymour, D. Frantsvog, S. Kumar et al., ‘History of search engines,’

International Journal of Management & Information Systems (ĲMIS), vol. 15,

no. 4, pp. 47–58, 2011 (p. 14).

[132] X. Shen and C. Zhai, ‘Active feedback in ad hoc information retrieval,’ in

Proceedings of the 28th annual international ACM SIGIR conference on

Research and development in information retrieval, ACM, 2005, pp. 59–66

(p. 10).

[133] B. Shneiderman, ‘Dynamic queries for visual information seeking,’ IEEE

software, vol. 11, no. 6, pp. 70–77, 1994 (p. 136).

REFERENCES 233

https://aclanthology.org/W98-1120

[134] C. Silverstein, M. Henzinger, H. Marais and M. Moricz, ‘Analysis of a very

large altavista query log,’ Technical Report 1998-014, Digital SRC, Tech. Rep.,

1998 (p. 13).

[135] C. Silverstein, H. Marais, M. Henzinger and M. Moricz, ‘Analysis of a very

large web search engine query log,’ in ACM SIGIR Forum, ACM New York,

NY, USA, vol. 33, 1999, pp. 6–12 (pp. 11, 13).

[136] D. S. Sirisuriya, ‘A comparative study on web scraping,’ 2015 (p. 18).

[137] B. Sobel, ‘HiQ v. LinkedIn, Clearview AI, and a New Common Law of Web

Scraping,’ LinkedIn, Clearview AI, and a New Common Law of Web Scraping,

2020 (p. 18).

[138] A. Spink, B. J. Jansen, V. Kathuria and S. Koshman, ‘Overlap among major

web search engines,’ Internet Research, 2006 (p. 15).

[139] R. K. Srihari, W. Li, T. Cornell and C. Niu, ‘Infoxtract: A customizable

intermediate level information extraction engine,’ Natural Language

Engineering, vol. 14, no. 1, pp. 33–69, 2008 (p. 23).

[140] S. V. Stehman, ‘Selecting and interpreting measures of thematic classification

accuracy,’ Remote sensing of Environment, vol. 62, no. 1, pp. 77–89, 1997

(p. 24).

[141] L. T. Su, H.-l. Chen and X. Dong, ‘Evaluation of web-based search engines

from the end-user’s perspective: A pilot study.,’ in Proceedings of the ASIS

Annual Meeting, ERIC, vol. 35, 1998, pp. 348–61 (p. 11).

[142] J. Suzuki and H. Isozaki, ‘Semi-supervised sequential labeling and segmentation

using giga-word scale unlabeled data,’ in Proceedings of ACL-08: HLT, 2008,

pp. 665–673 (p. 21).

[143] G. Svennerberg, Beginning Google Maps API 3. Apress, 2010 (pp. 31, 32).

[144] M.-C. Tang and Y. Sun, ‘Evaluation of web-based search engines using user-

effort measures,’ Library and Information Science Research Electronic Journal,

vol. 13, no. 2, pp. 1–8, 2003 (p. 11).

[145] T. Tarmom, W. Teahan, E. Atwell and M. A. Alsalka, ‘Compression versus

traditional machine learning classifiers to detect code-switching in varieties and

dialects: Arabic as a case study,’ Natural Language Engineering, vol. 26, no. 6,

pp. 663–676, 2020 (p. 58).

REFERENCES 234

[146] L. Tauscher and S. Greenberg, ‘How people revisit web pages: Empirical

findings and implications for the design of history systems,’ International

Journal of Human-Computer Studies, vol. 47, no. 1, pp. 97–137, 1997 (p. 13).

[147] W. J. Teahan and K. M. Alhawiti, ‘Preprocessing for ppm: Compressing utf-8

encoded natural language text,’ International Journal of Computer Science &

Information Technology, vol. 7, no. 2, p. 41, 2015 (p. 60).

[148] W. J. Teahan and N. O. Aljehane, ‘Grammar based pre-processing for ppm,’ Int.

J. Comput. Sci. Inf. Secur, vol. 9, 2017 (p. 60).

[149] W. J. Teahan and D. J. Harper, ‘Using compression-based language models for

text categorization,’ in Language modeling for information retrieval, Springer,

2003, pp. 141–165 (p. 58).

[150] W. J. Teahan, ‘A compression-based toolkit for modelling and processing natural

language text,’ Information, vol. 9, no. 12, p. 294, 2018 (pp. 52, 59–61, 63, 64,

68, 69, 96).

[151] C. Van Rĳsbergen, ‘Information retrieval: Theory and practice,’ in Proceedings

of the Joint IBM/University of Newcastle upon Tyne Seminar on Data Base

Systems, vol. 79, University of Newcastle-upon-Tyne Computing Laboratory,

1979 (p. 24).

[152] H. Wang, J. Z. Huang, Y. Qu and J. Xie, ‘Web services: Problems and future

directions,’ Journal of Web Semantics, vol. 1, no. 3, pp. 309–320, 2004 (p. 15).

[153] M. Q. Wang Baldonado, A. Woodruff and A. Kuchinsky, ‘Guidelines for using

multiple views in information visualization,’ in Proceedings of the working

conference on Advanced visual interfaces, 2000, pp. 110–119 (p. 137).

[154] Y. Wilks, ‘Information extraction as a core language technology,’ in International

Summer School on Information Extraction, Springer, 1997, pp. 1–9 (p. 23).

[155] M. L. Wilson, M. Schraefel and R. W. White, ‘Evaluating advanced search

interfaces using established information-seeking models,’ Journal of the

American Society for Information Science and Technology, vol. 60, no. 7,

pp. 1407–1422, 2009 (p. 37).

[156] I. H. Witten, I. H. Witten, A. Moffat, T. C. Bell, T. C. Bell and T. C. Bell,

Managing gigabytes: compressing and indexing documents and images. Morgan

Kaufmann, 1999 (p. 20).

[157] P. Wu and W. J. Teahan, ‘A new PPM variant for chinese text compression,’

Natural Language Engineering, vol. 14, no. 3, pp. 417–430, 2008 (p. 52).

REFERENCES 235

[158] Z. Xiaojin, ‘Semi-supervised learning literature survey,’ Computer Sciences

TR, vol. 1530, 2008 (p. 20).

REFERENCES 236

	Title Page
	Acknowledgements
	Statement of Originality & Availability
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Aim & Objectives
	1.4 Methodology
	1.5 Contributions
	1.6 Thesis Outline

	2 Background
	2.1 Information Retrieval
	2.1.1 Ad hoc Information Retrieval
	2.1.2 Keyword and Verbose Queries
	2.1.3 Web Based Search Engines
	2.1.4 Challenges with Web Based Search Engines
	2.1.5 Web Crawlers
	2.1.6 Web Services and Search Engines
	2.1.7 Legal Requirements for search engines and web crawlers

	2.2 Web Scraping
	2.3 Named Entity Recognition
	2.4 Text Mining & Information Extraction
	2.4.1 Tasks and Subtasks for Information Extraction

	2.5 Performance Metrics for Evaluating IR Systems
	2.6 Agile Software Development
	2.7 Agile Development
	2.8 Software Development Plan
	2.9 Summary and Discussion

	3 A review of existing web services
	3.1 Existing Web Services
	3.2 Features and Services
	3.2.1 Keyword Search
	3.2.2 Advanced Search Options
	3.2.3 Distance Filters
	3.2.4 Saved Searches
	3.2.5 Blog Articles / Information
	3.2.6 Property Alerts
	3.2.7 iOS/Android App
	3.2.8 Property Guides / Resources
	3.2.9 Map Based Interface
	3.2.10 Place Search
	3.2.11 Quick Searches / Featured Jobs
	3.2.12 Job Alerts via Email

	3.3 Features and Services of Housing Websites
	3.4 Features and Services of Job Websites
	3.4.1 Job Websites Results
	3.4.2 Housing Websites Results
	3.4.3 Precision of existing web-based services of adhoc queries
	3.4.4 Indeed Results
	3.4.5 Reed Results
	3.4.6 Jobsite Results
	3.4.7 Conclusion

	4 A System for Web Mining of Job and Housing information using PPM
	4.1 Summary
	4.2 Introduction
	4.3 Prediction by Partial Matching (PPM)
	4.4 Successful use of PPM in other tasks
	4.5 The Tawa Toolkit
	4.6 Overview of the Merlin System
	4.6.1 Pre-Processing the Raw Text
	4.6.2 Design Text Models

	4.7 Implementing The Merlin System
	4.7.1 Training Models

	4.8 Language Segmentation
	4.8.1 Creating Ground Truth Files
	4.8.2 Markup of Pre-processed Web Based Raw Text
	4.8.3 Improving the Results

	4.9 Evaluation of the Merlin System Results
	4.9.1 Housing Website Experiments
	4.9.2 Experiment 1: Evaluating the markup of Zoopla website data
	4.9.3 Experiment 2: Evaluating the markup of OnTheMarket website data
	4.9.4 Experiment 3: Evaluating the markup of Rightmove website data
	4.9.5 Job Website Experiments
	4.9.6 Experiment 4: Evaluating the markup of Reed website data
	4.9.7 Experiment 5: Evaluating the markup of Indeed website data
	4.9.8 Both Housing and Job Website Results

	4.10 Comparison of Merlin System with the spaCy Natural Language Toolkit
	4.10.1 Experiment 6: Evaluating the markup of Zoopla website data using spaCy
	4.10.2 Experiment 7: Evaluating the markup of OnTheMarket data using spaCy
	4.10.3 Experiment 8: Evaluating the markup of Rightmove data using spaCy
	4.10.4 Experiment 9: Evaluating the markup of Reed data using spaCy
	4.10.5 Experiment 10: Evaluating the markup of Indeed data using spaCy
	4.10.6 Both Housing and Job Website Results for spaCy

	4.11 Summary and Discussion

	5 Developing and Evaluating Prototype Alpha
	5.1 Introduction
	5.2 Five Design Sheets
	5.3 Design of the Alpha Prototype
	5.3.1 Sheet 1 — brainstorm
	5.3.2 Sheets 2, 3, 4 — Initial Designs
	Sheet 2 — Initial Designs
	Sheet 3 — Initial Designs
	Sheet 4 — Initial Designs

	5.3.3 Sheet 5 — Realization
	5.3.4 Design Outcome
	5.3.5 Summary

	5.4 Implementation of Alpha Prototype
	5.4.1 Use-Case Model Survey
	5.4.2 Architecture Diagram for the Alpha prototype
	5.4.3 Home Page of the Alpha Prototype
	5.4.4 Results Page of the Alpha Prototype
	5.4.5 Component Diagram Process
	5.4.6 Managing Web Pages of the Alpha Prototype
	5.4.7 Connection for the Database for the Alpha Prototype
	5.4.8 Styling the Web Pages of the Alpha Prototype
	5.4.9 Processing and Saving: the data for the Alpha Prototype
	5.4.10 Modules of the Alpha Prototype
	Google Maps
	Google Places
	Open Weather API

	5.5 Evaluation of the Alpha Prototype
	5.6 Summary of Alpha Prototype

	6 Developing and Evaluating Prototype Beta I
	6.1 Introduction
	6.2 Beta I Prototype — Agile Design process
	6.2.1 Design Outcome
	6.2.2 Conclusion of the Beta I design process

	6.3 Implementation of Beta I Prototype
	6.3.1 ESRI Maps
	6.3.2 Zoopla API
	6.3.3 Zoopla API Integration
	6.3.4 Indeed API
	6.3.5 Indeed API Integration

	6.4 Developing methods for scraping web content involving accommodation and jobs
	6.4.1 Issues with the Beta I prototype
	6.4.2 ParseHub

	6.5 Summary of Beta I Prototype Design
	6.6 Evaluation of the Beta I Prototype
	6.6.1 Beta I Prototype Questionnaire Evaluation — Results

	6.7 Discussion and Findings

	7 Developing and Evaluating Prototype Beta II
	7.1 Introduction
	7.1.1 Design Outcome
	7.1.2 Conclusion from the design process

	7.2 Component Diagram Process
	7.3 Summary of the Beta II Prototype
	7.4 Evaluation of the Beta II Prototype
	7.4.1 Beta II Prototype — Results from Experimental Evaluation
	Task 1 for Beta II Prototype — Jobs
	Task 2 for Beta II Prototype — Housing
	Task 3 for Beta II Prototype — Jobs & Housing
	Final Prototype Feedback

	7.5 Limitations of Prototypes
	7.6 Discussion and Findings

	8 Lessons Learnt
	8.1 Alpha Prototype
	8.1.1 Data Input
	8.1.2 Data Output
	8.1.3 Storage
	8.1.4 Interaction
	8.1.5 Visualisation

	8.2 Beta I Prototype
	8.2.1 Data Input
	8.2.2 Data Output
	8.2.3 Storage
	8.2.4 Interaction
	8.2.5 Visualisation

	8.3 Beta II Prototype
	8.3.1 Data Input
	8.3.2 Data Output
	8.3.3 Storage
	8.3.4 Interaction
	8.3.5 Visualisation

	8.4 Summary and Discussion

	9 Conclusions and Future Work
	9.1 Summary
	9.2 Review of Aim & Objectives
	9.3 Review of Research Questions
	9.4 Limitations of the Work
	9.5 Future Work

	References

