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Modelling human short-term memory for serial order Abstract 

ABSTRACT 

Serial order is central to much of human behaviour including short-term memory. 

There exists a wealth of empirical data and a number of attempts have been made at 

providing a theoretical account of these data. However, no existing model accounts 

for more than a limited subset of the existing data, and no existing model allows 

examination of developmental improvement at the same time as covering a wide range 

of adult data. In the following thesis, two models of short-term memory are presented. 

The first, a developmental associative recall network, DARNET, uses gradient descent 

based learning to learn how to perform single trial learning and recall of novel paired 

associates. The second, a neurobiologically plausible oscillator-based associative recall 

model, OSCAR, uses Hebbian association to associate items with different states of a 

reinstatable dynamic control signal, the context. OSCAR is fitted to a range of 

empirical data including serial position curves, memory span, phonemic similarity 

effects and item versus order error distributions. Furthermore, it is suggested that if 

OSCAR is coupled with DARNET, they could provide a developmental account of 

short-term memory for serial order. 
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Modelling human short-term memory for serial order Chapter I 

CHAPTER I 

Approaches to modelling human memory 

1.1 Introduction 

The aim of this thesis is to develop new approaches to the modelling of human 

memory for serial order that combine the best features of existing models whilst avoid 

their limitations. In this short introductory chapter we briefly introduce the main issues 

covered in this thesis. 

1.2 Mathematical models 

A number of recent models of memory such as CHARM (Composite Holographic 

Associative Recall Model: Metcalfe Eich, 1982, 1985), and TODAM (Theory of 

Distributed Associative Memory: Murdock, 1982, 1983; Lewandowsky & Murdock, 

1989) rely on the mathematical processes of convolution and correlation for learning 

and recall respectively. These models also employ a distributed representation of 

information and store all associations in the same central location. We describe them in 

detail in chapter 3. These models have been successful in modelling a wide range of 

empirical data (e.g. Lewandowsky & Murdock, 1989) and offer a number of 

advantages including the ability to perform accurate single trial learning, a resistance to 

partial damage and gradual unlearning. However, the manner in which the associative 

and recall mechanisms are defined leads to a number of undesirable properties. In 

particular, as the associative mechanism is hard-wired into the architecture, so a 

developmental account of learning is not possible in such models, nor is it clear that 

they could be extended to provide one. 
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Modelling human short-term memory for serial order Chapter 1 

1.3 Connectionist models 

An alternative to the mathematical models described previously are connectionist 

models such as Rumelhart and McClelland's (1986) back-propagation model, the 

network model of the articulatory loop (Burgess & Hitch, 1992, 1996) and the 

competitive queuing architecture (Houghton, 1990, 1994a). 

A traditional advantage of connectionist architectures has been their ability to provide 

a developmental account of learning (Rumelhart & McClelland, 1986). The use ·of 

gradient descent learning procedures such as back-propagation (Rumelhart, Hinton & 

Williams, 1986) provides a mechanism for incremental learning. Connectionist 

networks also possess the ability to generalise learned behaviour to previously unseen 

stimuli. Their capacity for storage is not limited in the manner of mathematical models, 

as the only limit on the capacity of the network is the increase in time required for 

learning as the storage capacity is increased. 

One of the main disadvantages of developmental connectionist networks is their 

inability to perform single trial learning. However, this may be rejected as a number of 

recent connectionist models have demonstrated the ability to do so (e.g. Houghton, 

1990, 1994a; Burgess & Hitch, 1992, 1996). However, those connectionist models 

capable of performing single-trial learning fail to provide a developmental account of 

learning. Furthermore, McCloskey and Cohen ( 1989) criticise connectionist 

architectures for their susceptibility to catastrophic interference. This is the inability of 

a connectionist network to recall previously learned patterns as new patterns are 

learned (Ratcliff, 1990; Lewandowsky, 1991). 

In summary, connectionist frameworks for learning and recall have proved successful 

in providing a developmental account of learning (e.g. Rumelhart & McClelland, 

1986). They possess the ability to generalise learned behaviour to previously unseen 

stimuli. They have also been applied successfully to the problem of single trial learning 

(e.g. Houghton, 1990, 1994a; Burgess & Hitch, 1992, 1996). However, traditional 

connectionist architectures, such as those that implement back-propagation learning, 

2 



Modelling human short-term memory for serial order Chapter I 

are susceptible to catastrophic interference (Ratcliff, 1990; Lewandowsky, 1991) and 

can not perform single-trial learning. 

It is our aim to develop a novel architecture that is capable of performing the single

trial learning of the mathematical models as well as providing a developmental 

approach to learning similar to that provided by the connectionist architectures. 

1.4 DARNET 

The developmental associative recall network, DARNET, is a connectionist based 

architecture that learns to perform single trial learning and recall (Brown, Hyland & 

Hulme, 1994; Brown, Dalloz & Hulme, 1995; Brown, Preece & Hulme, 1995; Brown, 

Hulme & Dalloz, 1996). We illustrate how DARNET gradually learns to perform 

accurate single trial learning and recall to a level of performance at least as good as the 

mathematical models. We then demonstrate how DARNET can provide a 

developmental analysis of paired-associate recall data. 

1.5 OSCAR 

While DARNET provides us with a developmental account of single-trial learning, it is 

not capable of producing serial ordered behaviour. We therefore also develop a novel 

architecture for serial ordered learning and recall. OSCAR, an OSCillator-based 

Associative Recall network, is an independently-motivated model that employs item

to-context association as the mechanism for ordered learning and recall. A system of 

oscillators generates a reinstatable context to which items are associated by Hebbian 

learning during list presentation. Recall involves reinstating the learned-contexts in 

order that the items be retrieved from the memory trace. Finally, we demonstrate how 

the model can reproduce a range of serial order benchmarks including the serial 

position curve for immediate recall of visually presented stimuli, the phonemic 

similarity effect for alternating list conditions (Baddeley, 1968, experiment 5) and item 

and order error distributions (Healy, 1974). 
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Modelling human short-term memory for serial order Chapter I 

The proposal is to combine both these novel architectures to provide a developmental 

model of serial order capable of replicating the range of empirical data illustrating the 

development of short-term memory in children. 

1.6 Thesis overview 

This thesis is divided into three main sections. The first contains two literature 

reviews: one which presents significant empirical findings for human immediate 

memory for serial order (chapter 2); the second which describes a number of models 

and theories of association and short-term memory (chapter 3). It is observed that a 

wide range of empirical data has been accounted for by a range of models using 

different underlying associative mechanisms, e.g. item-to-item association 

(Wickelgren, 1965a; Jordan, 1986; Lewandowsky & Murdock, 1989), item-position 

association (Conrad, 1965), item-to-dynamic-control-signal (Houghton, 1990, 1994a; 

Burgess & Hitch, 1992, 1996) or activation gradients (Page & Norris, 1995). 

The second section introduces a novel developmental model of association, DARNET 

( chapter 4). It is applied to modelling empirical data for paired-associate learning 

(Metcalfe Eich, 1982). We demonstrate how a developmental account of association is 

necessary in order to address experimental findings (Brown, Preece & Hulme, 1995). 

The third section (chapters 5, 6 & 7) describes a novel model of serial order, an 

oscillator-based associative network, OSCAR. The influence of a number of free 

parameters and inhibitory processes is investigated. The model is shown to fit a range 

of empirical data including the phonemic similarity effect for alternating lists of 

Baddeley (1968, experiment 5) which has proved impossible for chaining based models 

to address (Baddeley, Papagno, & Norris, 1991; Burgess & Hitch, 1992; Henson, 

Norris, Page & Baddeley, 1996). 

Finally, chapter 8 presents a general discussion of the implication of the findings 

presented in this thesis while the appendices contain further investigations of both the 

effects of normalisation and the context control signal. 
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CHAPTER2 

Empirical data on short-term memory for serial order 

2.1 Introduction 

The problem of serial order concerns how the brain encodes, stores and retrieves 

temporally ordered information. In the following chapter, a number of experimental 

findings that provide benchmark empirical data for formal models of short-term 

memory for serial order are discussed. 

The first paradigm is the serial position curve. This illustrates how recall performance 

varies across the length of the list. For visually presented stimuli, the curve is bowed 

with a primacy effect for early items and last-item recency due to edge-effects (e.g. 

Baddeley, 1968). Section 2.3 discusses the 'reverse-S' shaped memory span curve (e.g. 

Crannell & Parrish, 1957). Conrad (1964) observed that acoustic, or phonemic, 

confusability between letters can account for the type of error produced not only when 

auditory presentation is used, but also with visual presentation. The affect of phonemic 

similarity on serial recall and memory span is discussed in section 2.4. In section 2.5, 

Baddeley's (1968, experiment 5) phonemic similarity effect for lists containing 

alternately confusable and nonconfusable items is reviewed. The fourth paradigm to be 

addressed is the distribution of order errors (section 2.6). In section 2.7 we discuss 

Healy's (1974) observation that as serial position curves of item and order errors are 

different, different mechanisms may be responsible for each. Finally, in section 2.8, we 

consider lists that contain repeated items and the Ranschburg effect. 

A model of short-term memory for serial order must be able to replicate the majority 

of the results described in this chapter. 
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2.2 Serial position curve 

Typically during a serial order task, subjects are presented with a number of items such 

as letters (e.g. Baddeley, 1968) or digits (e.g. Conrad, 1959). These may be presented 

visually (e.g. Conrad, 1965) or verbally (e.g. Jahnke, 1963). Recall in the correct serial 

order may be required immediately after the stimulus has been presented (e.g. 

Wickelgren, 1966) or after a short delay (e.g. Conrad, 1960b). 

In a typical immediate serial recall task (Jahnke, 1963), subjects were presented with a 

number of letters, selected from the nine most frequent English consonants, presented 

verbally at a uniform rate. Subjects were instructed to memorise the letters and to 

recall them in order, omitting letters they were unsure of, by filling in blank spaces on 

an answer sheet. Depending on the number of items presented during learning, 

subjects were expected to complete recall within 10 to 14 seconds. No letter occurred 

more than once in any one list. Subject performance was measured by recording the 

mean proportion of times each item was recalled correctly in its correct serial position 

and is presented in the serial position curve (figure 2.1). 

0.8 

~0.7 

5 0.6 
(J 

C ,g 0.5 
0 

~0.4 
c.. 

0.3 

0.2 

0.1 

o.___..___..___~-~-~-~-~-~ 
1 2 3 4 5 6 7 8 9 

Serial position 

Figure 2.1 Serial position curves after one trial for different list lengths 

(Adapted from Jahnke, 1963) 

Although the precise nature of the serial position curve depends upon the experimental 

details (such as the method of recall and modality of the stimuli), serial position curves 
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share a common set of features. Overall the curves are 'U'-shaped. There is a primacy 

component: the high degree of performance exhibited by subjects for items extending 

over the earliest list positions. There is also a recency component: an improvement in 

performance over the last ( couple of) serial positions. For visually presented items this 

will typically involve only the last item and may be attributed to edge effects. The 

minimum of the serial position curve is usually situated just after the middle of the list. 

Performance for short lists can be very high ( even 100% for each item) however as the 

list length increases, so the asymmetric bowing of the curve becomes more apparent, 

the depth of the minimum greater and, overall, performance decreases (Jahnke, 1963). 
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Figure 2.2 Serial position curves for memory span study 

(Adapted from Murdock, 1968) 

In one of a series of serial order recall experiments (Murdock, 1968, experiment 6), 

subjects were presented with a list of 10 digits, presented auditorily at a regular rate, 

and were required to recall the items in order by filling blank boxes on an answer 

sheet. Scoring was to the first error and, in contrast to Jahnke (1963), subjects were 

encouraged to guess when unsure. Every five trials, subjects participated in an 

alternate memory study. 

Murdock's results (figure 2.2) illustrate that subjects also produced the asymmetric 

bowed serial position curve, with a minimum in the seventh serial position. However, 

Murdock found that a very large, if brief, recency effect was produced with recall of 
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the last item being almost 100% in both the best subjects and worst subjects 

conditions. The primacy effect extends over the first six or seven items. 

Conrad and Hull ( 1968) confirm that the input modality of stimulus material can affect 

the form of the immediate recall serial position curve. In an experiment, they presented 

subjects with seven digit sequences and required that subjects fill their answers, in 

order, on a blank answer sheet, guessing when necessary. In the visual presentation 

condition, subjects read the digits silently. In the auditory condition, they read them 

aloud. Conrad and Hull report that in both conditions, the serial position curve 

(Conrad and Hull, 1968, figure 1) illustrated that there was an extended primacy effect 

stretching over the first four items. The minimum in both conditions was in the fifth 

serial position (recall recorded as 50% correct for the auditory condition, 43% correct 

for the visual condition). There was a sizeable recency effect for the auditory 

condition, with performance for the last item approximately 89%. However, in 

contrast, there was only a slight recency effect in the visual condition, with 

performance only improving 7% above the minimum in the fifth serial position. 

In summary, serial position curves illustrate recall performance in terms of the 

proportion of trials during which each item was recalled correctly in the appropriate 

target serial position. In order to eliminate modality effects, we focus on visually 

presented stimuli (e.g. Conrad & Hull, 1968). For visually presented stimuli, the serial 

position curve possesses only a small amount of last item recency. Replicating the 

serial position curve is one of the primary objectives for any of the formal models of 

serial order memory reviewed in chapter 3. However, until recently, the majority of 

models of serial order have had great difficulty in reproducing the serial position curve 

for visually presented stimuli. 

2.3 Memory Span 

A second fundamental serial-order result is the memory span function. This is a record 

of how the proportion of lists recalled correctly varies as the number of items to be 

learned, the list length, increases. 

8 
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In a similar fashion as before, subjects are presented with lists of items and required to 

recall them correctly in the appropriate serial positions. However, only lists recalled 

completely correctly are scored and hence the memory span curves reflect not the 

performance within the list, as does the serial position curve, but performance as a 

function of the length of each list. Therefore, the memory span function represents the 

capacity of short term memory. 
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Figure 2.3 Proportion of lists recalled correctly as a function of list length, for different types of 

stimulus material (Adapted from Crannell & Parrish, 1957) 

Although the precise shape of the memory span function depends upon experimental 

details, in particular the nature of the stimuli, the curves do share a number of common 

attributes. Performance for shorter lists is typically around 100% but decreases, in a 

'reverse-S' form towards 0% for longer lists. This is apparent in figure 2.3 where it is 

clear that the memory span for digits adheres to the 'reverse-S' shape, with 

performance for four item lists at 100%, dropping to 58% for seven item lists and 0% 

for 11 item lists. However, it also reveals how the nature of the stimuli affects 

performance. The memory span function for words is much poorer than that for digits: 

subjects recall four word lists correctly on approximately 78% of trials, dropping to 

0% with lists of seven or more items. 

However, there is a related indicator of short-term memory capacity, and that is simply 

memory span. This is drawn directly from the memory span function, and corresponds 
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to the list length at which subjects recall all items correctly 50% of trials. Therefore, 

based upon the data presented in figure 2.1, memory span for digits is approximately 

7.3 items, for letters approximately 6.2 items and for words, approximately 4.8 items. 

Clearly, memory span depends upon the nature of the stimuli, although Miller (1956) 

reports that memory span for arbitrary stimuli varies between five and nine items. 

Unique Random 
7 7 

-
~ ~ 

6 6 

C: 5 C: 5 
Cl:! Cl:! a. a. 
(/) (/) 

t4 t4 
E E 
Cl) Cl) 

E3 E3 
C: C: 
Cl:! Cl:! 
Cl) Cl) 

::E 2 ::E 2 

6 12 
Vocabulary size Vocabulary size 

Figure 2.4 Effect of vocabulary size on memory span for letters 

(Adapted from Drewnowski, 1980) 

Drewnowski ( 1980) confirms that memory span depends upon the stimulus material 

but reports that it does not depend upon the size of the vocabulary of items from 

which the stimuli are selected. In a memory span experiment, Drewnowski (1980, 

experiment 1) presented subjects with one of two types of consonant sequence: either 

unique, where no item was repeated, or random, where repeated items were 

permitted. Sequences varied in length and were drawn from either a vocabulary of six 

or 12 items. Subjects were requested to recall the lists in order and to guess when 

unsure by selecting an item from the vocabulary of items. Results indicated that there 

were negligible effects due to vocabulary size (figure 2.4). In an experiment examining 

the effects of phonemic similarity, Conrad and Hull (1964) found a similar effect for 

items selected from a vocabulary of three or nine items (figure 2.5). 

In summary, the memory span function is a 'reverse-S' shaped curve that illustrates 

short-term memory capacity. The gradient of the curve depends upon the nature of the 
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stimuli (Crannell & Parrish, 1957). Memory span (defined as the number of items 

recalled correctly 50% of trials) is typically approximately seven items (Miller, 1956). 

The size of the vocabulary from which stimuli items are selected does not affect 

memory span (Conrad & Hull, 1964; Drewnowski, 1980). Formal models of memory 

for serial order should ensure that they possess a memory span within the range of the 

empirical data and are capable of reproducing the memory span function. 

2.4 Phonemic Similarity 

So far we have not discussed the nature of the stimuli presented to subjects during 

learning, beyond referring to the differences in memory span observed by Crannell and 

Parrish (1957). When stimuli are presented visually, confusions occur which are similar 

to those that would be expected if the stimuli had been presented auditorily (Conrad, 

1964). This leads to an increase in order errors (Wickelgren, 1965a) and also a 

reduction in memory span (e.g. Conrad & Hull, 1964; Baddeley, 1966). In the 

following section we describe evidence that illustrates this, the phonemic similarity 

effect. 

In a serial order recall task, Conrad (1964) presented sequences of six consonants 

visually to subjects. Subjects, aware that the lists did not contain any repeated items, 

were told to recall the items in order and to guess at answers if they were unsure by 

selecting a response from a vocabulary of 10 items, visible throughout the experiment. 

The vocabulary contained two groups of letters, both with high within-group acoustic 

similarity and low between-group acoustic similarity (e.g. BCPTV and FMNSX). 

Analysis was limited to single substitution errors i.e. only sequences containing one 

incorrect letter and no other errors. Results were presented in the form of a lOx 10 

confusion matrix, illustrating which letters were written as which responses to which 

stimuli. In the second part of the experiment, subjects were required to listen to a pre

recorded tape containing spoken letters of the alphabet combined with a background 

of white noise. They were requested to record each letter as it was spoken and guess 

on the occasions where they were unsure. The results were presented as a 26x26 

confusion matrix. Conrad reported that the errors which occurred in the visual task 
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occurred within both groups of letters. He also observed that in the verbal task, 

misheard letters were invariably replaced by ones which sounded similar to the correct 

letter. Significantly, these errors were similar to those produced in the visual 

experiment. 

Subsequent to Conrad's ( 1964) finding that when stimuli are presented visually, errors 

occur between acoustically similar items, Conrad and Hull (1964) demonstrated that 

acoustic confusability had a significant influence over memory span. Six-letter 

sequences were selected from four vocabularies composing of either three or nine 

items, each either acoustically confusable or nonconfusable within-group. Items were 

presented visually and subjects were required to write down their recall attempt 

irnrnediately after presentation of each sequence. Once again, the vocabulary from 

which the items were drawn remained in sight during recall. 
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Figure 2.5 Immediate recall of confusable ( CJ and nonconfusable ( NC) six-letter sequences 

(Adapted from Conrad and Hull, 1964) 

Conrad and Hull scored one letter wrong if it was the incorrect letter for that serial 

position (i.e. a paired-transposition scored as two, a whole sequence incorrect, as six). 

They found that memory span was lower for the vocabularies containing acoustically 

confusable letters as is illustrated by figure 2.5. Conrad and Hull's findings illustrate 

that where the size of the vocabulary (i.e. hence information per item) is held constant, 

then memory span is affected by the probability of confusion within the vocabulary set. 
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More errors occur when the vocabulary contains letters that are acoustically 

confusable. This result also illustrates that the size of the vocabulary of items from 

which the stimuli are selected has little influence over memory span, consistent with 

the results of Drewnowski (1980). 

Both Conrad (1964) and Conrad and Hull (1964) found a phonemic similarity effect 

with letter stimuli. Baddeley (1966, experiment 1, acoustic similarity condition) in an 

investigation of acoustic, semantic and formal similarity for verbally presented three

letter words (e.g. man, mat, cat, can, etc .. ) reported a similar effect (figure 2.6). He 

demonstrated that the effect of acoustic similarity was considerably larger than the 

effect of semantic similarity. 
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Figure 2.6 Affect of acoustic similarity on memory span for words 

(Adapted from Baddeley, 1966) 

In an experiment in which subjects were presented with eight items, including both 

letters and digits, Wickelgren (1965b) reported that intrusion errors in short-term 

recall tended to have a vowel phoneme in common with the correct letter or digit. He 

observed that fewer errors occurred with digit stimuli than with letter stimuli, 

presumably as digits are more acoustically distinctive. Wickelgren ( 1965a) notes that 

acoustic similarity leads to failure to reproduce items in the correct order rather than 

failure to reproduce the items themselves. 
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In summary, phonemic or acoustic similarity between stimuli degrades serial order 

recall (Conrad, 1964; Conrad & Hull, 1964), increasing the number of order errors 

(Wickelgren, 1965a). This represents fundamental data that all formal models of serial 

order must address and must be taken into consideration when deciding how best to 

represent stimuli computationally. 

2.5 Baddeley's phonemic similarity effect 

In a series of experiments aimed at identifying why acoustically confusable items are 

more difficult to recall in order than nonconfusable items, Baddeley ( 1968) 

demonstrated that confusable and nonconfusable items are forgotten at similar rates. 

He inferred that order errors are not therefore attributable to an item storage process. 

However, in further experiments, Baddeley investigated whether these errors occurred 

during the retrieval stage and considered two hypotheses which made very different 

predictions about how performance would be affected when subjects were presented 

with a list of alternately confusable and nonconfusable items. 

/ 
The first hypothesis was based upon Wickelgren's (1965a) inter-item association 

theory1 in which each list item serves as the stimulus, or cue, for the next item. 

Wickelgren suggests that acoustically confusable items, with phonemes in common, 

are akin to repeated items in a list (Wickelgren, 1965c). As such, an acoustically 

confusable item in a specific serial position will provide a similar cue not only for the 

next list item, but also any other items that follow other acoustically confusable items 

in the list. This hypothesis predicts that subjects will recall acoustically confusable 

items in the wrong serial position, as order errors, and as a result they are likely to 

lose their place in the retrieval sequence. Therefore, in a list of alternately confusable 

and nonconfusable items, Wickelgren's hypothesis predicts that errors follow the 

similar items, and therefore that the nonconfusable items suffer the most during recall. 

1 Wickelgren's (1965a) chaining based model of short term memory is discussed in detail in the 
following chapter. 
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The second, Baddeley's "address hypothesis", suggests that the problem during recall 

is not one of the subject becoming confused over their location in the sequence during 

recall, but instead confusion as to which item to select during retrieval. If the items are 

more similar, so their retrieval cues become increasingly indistinguishable and hence it 

becomes harder to select the correct item given any one cue. When recalling a list of 

alternately confusable and nonconfusable items, this hypothesis predicts that the 

confusable items will suffer the most. 

Subjects were presented visually with sequences of letters, drawn from two different 

sets: a pool of acoustically confusable (or similar, represented by an S) letters or a pool 

of acoustically nonconfusable (or dissimilar, represented by a D) letters. Six different 

types of sequence were generated (table 2.1): type A, alternately dissimilar then 

similar; type B, alternately similar then dissimilar; type C, a triple of similar followed 

by a dissimilar triple; type D, a triple of dissimilar followed by a similar triple; type E, 

six dissimilar items; type F, six similar items. No sequence contained a repeated item 

and the vocabulary of all twelve items was available to the subject throughout recall in 

an attempt to eliminate item errors. 

Table 2.1 

Six letter arrangements used during phonemic similarity effect (Adapted from Baddeley, 1968) 

Type Arrangement Example 
A DSDSDS JCWPLD 
B SDSDSD CJPWDL 
C SSSDDD CPDJWL 
D DDDSSS JWLCPD 
E DDDDDD JWLYRK 
F ssssss CPDVBT 

Recall was immediate and performance recorded in terms of the proportion of errors 

produced in each serial position (where an error was the failure to reproduce the 

correct item in the target serial position). The results for this experiment are 

reproduced in figure 2.7, however, here they are in terms of the proportion of items 

recalled correctly (i.e. 1-(proportion of errors)) . 
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Figure 2.7 Phonemic similarity effect for alternating lists 

(Adapted from Baddeley, 1968) 

Chapter 2 

Examination of the mean proportion of recalls for each condition reveals that there is a 

clear phonemic similarity effect in the E and F conditions (mean proportion of errors: 

E=18.1%, F=49.2%) whereas there is very little difference in performance in the other 

four conditions where approximately 26% errors occur. 

However, the serial position curves produced for each condition allow a clear 

conclusion to be drawn with respect to the hypotheses being considered. It is clear that 

the alternating list conditions (A, B, C and D) are bounded by the two pure conditions 

(E and F). In the alternating list conditions, dissimilar items are unaffected by the 

presence of similar items. It is clear, however, that than in each of the four conditions, 

errors occur on the acoustically confusable or similar items. This led Baddeley to reject 

Wickelgren's chaining based hypothesis. 

In a replication of this experiment, Henson, Norris, Page and Baddeley (1996) observe 

that nonconfusable items are recalled better in the alternating conditions than in the 

pure condition, a result not evident in Baddeley's data, which Henson attributes to the 
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predictability of the consonants used in each list condition (Baddeley, Conrad & Hull, 

1965). 

In summary, in section 2.4 we reviewed evidence that acoustically confusable items are 

harder to recall accurately than acoustically nonconfusable items (e.g. Conrad & Hull, 

1964). In the current section, we suggest that retrieval may be the source of these 

errors (Baddeley, 1968). In the following section, a more thorough consideration of 

order errors in a study by Henson, Norris, Page and Baddeley (1996), reveals that 

more order errors occur between items in the acoustically similar group (Wickelgren, 

1965a) than in the acoustically dissimilar group. Baddeley's (1968, experiment 5) 

phonemic similarity effect has proved impossible for many formal models to replicate 

and as such, has become a benchmark by which to judge new models of serial order. 

2.6 Transposition gradients 

Serial position curves illustrate how the ability to recall the correct item in the correct 

serial position varies across list position. However, they do not reveal how errors are 

distributed across each serial positions (i.e. the distribution of order errors). 

For example, if a subject is presented with the list 6BQ327 and they recall it as 

6DQ237, both an order and item error have been committed. Where B has been 

recalled erroneously as D, an item error has occurred. While, an order error occurs 

where the 3 and the 2 have transposed (Murdock, 1974). 

It is possible to record the proportion of times that each item is recalled in each list 

position in order to generate a square array illustrating the distribution of order errors 

across a list (e.g. Fuchs, 1969; Estes, 1972; Henson, Norris, Page & Baddeley, 1996). 

Known as position functions, transposition gradients or distance functions, graphing 

these matrices allows a thorough analysis of order errors in serial recall tasks. 

In this section, three examples of distance functions are presented: the first (Healy, 

197 4) illustrate the most basic, symmetric distribution for a four item list (Estes, 
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1972); the second (Fuchs, 1969) illustrates the effect that repeated presentation of a 

list of five words in a probe test for recall, has on the distribution of order errors; and 

the third reconsiders Baddeley's experiment 5 (1968) and examines the distribution of 

order errors occurring during an alternating list condition (Henson, Norris, Page & 

Baddeley, 1996). 

In an attempt to address the differences in the shape of the serial position curves 

generated as a result of a two-part experiment separating item and order information, 

Healy (1974) considers the distance function for a four item list. These curves, 

generated as a result of her order only experimental condition ( explained in section 

2.7) illustrate how each item is recalled in various proportions in each serial position. 
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Figure 2.8 Distance functions for the order only experiment 

(Adapted from Healy, 1974, three digit delay condition) 

Figure 2.8 reveals that each item is recalled most often in its target serial position and 

that the number of transpositions that occur decreases as the distance from the target 

serial position increases. This is most evident in the. first list position where the first 

item is recalled the most, then each remaining item in smaller proportions than the item 

occupying the previous serial position. The figure also reveals that more transposition 

errors occur in the central two serial positions than in the outer positions. This 
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confirms Estes' (1972) hypothesis2 which states that the likelihood of two letters being 

transposed depends on the separation between them. Furthermore, Estes observes that 

the distance functions for the first two positions are symmetrical, almost mirror images 

of those for the last two positions, except for the slight differences due to primacy and 

recency. 

Fuchs (1969) in a probe recall task examining item and order errors in word recall, 

considers the effect of repeated presentation of stimuli on the form of the distance 

function. The results (figure 2.9) illustrate how each transposition gradient becomes 

more distinct, as the number of order errors decrease, after each presentation. For 

example, consider the third serial position in the single presentation condition (top 

row) with the corresponding position in the three presentations condition (bottom 

row). Clearly erroneous recalls involving the first and last item benefit only slightly 

from the repeated presentation of each list. However, the proportion of errors that 

involve the second and fourth item decrease with increased repetitions. Recall of the 

target item improves by 50% after the third repetition. 
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Figure 2.9 Distance functions for a five item list after I ,2 or 3 repetitions 

(Adapted from Fuchs, 1969) 

2 Estes' (1972) perturbation model of short term memory is discussed in the following chapter. 

19 



Modelling human short-term memory for serial order Chapter 2 

More precisely, the proportion of target responses increases, while the number of 

order errors decreases, with repeated presentation. Fuchs concludes that the order 

information for items in the centre of the list is learned more slowly than that same 

information for the items at the outer edges of the list. 

A thorough analysis of error distributions produced during the phonemic similarity 

effect is provided by Henson, Norris, Page and Baddeley (1996). In a series of 

experiments replicating Baddeley's experiment 5 (1968), they present error 

distributions for the alternating list conditions that illustrate how transpositions occur 

between confusable items (i.e. confusable items are replaced by non-target confusable 

items; e.g. Conrad, 1965). 
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Figure 2.10 Distance function for nonconfusable-confusable list 

(Adapted from Henson, Norris, Page & Baddeley, 1996) 

This is clearly evident in figure 2.10 which illustrates the transposition matrix for the 

type A list (nonconfusable followed by confusable item) condition. This figure reveals 

how the confusable items are recalled in higher proportions than the nonconfusable 

items in the list positions where confusable items were presented. For example, in the 
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fourth serial position, the fourth item is recalled the most. However, the second and 

sixth items are also recalled in large proportions (5% and 17% respectively). A similar 

effect is evident in the second and sixth serial positions. 

Clearly analysis of the serial position curve is insufficient when considering serial 

ordered recall performance. Distance functions allow the order errors produced during 

recall to be analysed. Curves produced by Healy (1974) confirm Estes' (1972) 

observation that transpositions involve greater proportions of the items occupying the 

serial positions immediately adjacent to a target serial position than those occupying 

the serial positions more distant from the target position. Henson, Norris, Page and 

Baddeley (1996), replicating Baddeley's experiment (1968, experiment 5), confirm that 

in the alternating list conditions, transpositions occur within acoustically-like groups. 

Clearly, any formal model of serial order must be capable of reproducing the 

distribution of order errors described here. 

2. 7 Item and Order errors 

In the previous section, distance functions were introduced as a means to analyse 

order errors. In the following section, order errors are considered alongside item 

errors, and data presented which leads to the conclusion that item and order errors are 

the result of different mechanisms (Healy, 1974). 

Conrad (1965) suggested that order errors were the result of pairs of item errors. 

However, Conrad's account fails to explain why transposition errors occur in such 

large quantities in short-term memory (e.g. Wickelgren, 1965a) and why loss of order 

information is faster than loss of item information (Bjork & Healy, 1974). 

In a series of experiments attempting to separate the processing of item and order 

information (also the effects of increasing the retention interval before recall), Healy 

(197 4) confirmed that serial position curves for item and order retention are different. 

In the first of two experiments, the order only experiment, Healy (1974) presented 
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subjects with letter stimuli3 in sequences four items long. During recall, subjects were 

required to complete four blank boxes with the letters they were presented with on 

that trial, in the same order that they were presented. In order to minimise the number 

of item errors, each subject was given details of the consonants that they would be 

presented with before the session. Healy observed that the serial position curve 

produced in the experiment was bowed, with a first-item primacy and last-item recency 

component. In the second, item only, experiment, Healy presented subjects (in the all

different context condition) with complete order information in order to eliminate the 

possibility of order error occurring during recall. The consonants for the four-letter 

strings were drawn from a vocabulary of 12 items. The vocabulary contained four 

subsets of (three) letters and during presentation, only consonants from a given subset 

appeared in a given serial position. In this manner, by presenting subjects with all the 

item information for each serial position, order errors could be eliminated. Healy 

observed that the curve produced in the item only experiment lacked the bowing 

present in the order only experiment. Item errors occur in similar proportions in each 

serial position. The serial position curves for both experiments are presented in figure 

2.11 and illustrate that order errors occur in greater proportions than item errors. 
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Figure 2.11 Order only and item only data for four item list 

(Adapted from Healy, 1974, three digit delay condition) 

4 The precise nature of the stimuli depends on which condition the subject is in: All-different, Paired 
or All-same. In the present discussion, we are concerned only with the All-different condition. 
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Analysis of the distance functions for the order only condition (figure 2.8), allows for 

rejection of Conrad's suggestion that order errors are in fact occurrences of item error 

couples. If this were the case, then the transposition errors revealed by the distance 

functions would be uniformly distributed across each serial position. Instead the 

transpositions are unevenly distributed about the target serial positions in accordance 

with Estes (1972) thus contradicting Conrad's hypothesis. Conrad's account also fails 

to explain why order information is lost more quickly than the item information (Bjork 

& Healy, 1974). 

In summary, Healy (1974) demonstrated in a series of experiments that, contrary to 

Conrad ( 1965), item and order errors are the result of different mechanisms. Item 

errors occur uniformly across each serial position and in fewer proportions than order 

errors, which occur more rapidly and most often in central serial positions. A formal 

model of serial order must provide an associative mechanism capable of accounting for 

the differences in the serial position curves for item and order errors. 

2.8 Repeated items and the Ranschburg Effect 

The findings described so far have each used lists containing only unique items: at no 

point is the same item (letter, digit or word) presented to a subject in two consecutive 

serial positions. In this final section, we consider recall of lists that contain repeated 

items. 

Wickelgren (1965c) presented subjects with sequences of between six and ten digits, 

at a constant rate of one digit per second (in a second experiment, this was increased 

to five digits per second). In the interval before the next sequence, subjects were 

requested to recall the previous sequence by filling-in the requisite number of blank 

spaces on an answer sheet. Subjects were allowed to guess or omit responses if they 

were unsure. Wickelgren tested each subject using twenty lists of digits for each of 

five list length conditions. Three lists contained no repeated items, the remainder 

contained at least one repeated item in one of a number of list positions. For example, 

one condition (i)iM) corresponded to a sequence containing one digit repeated, 
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separated by one digit in the middle (e.g. 154596). A second condition (ij--ij8e) 

represented a sequence containing two digits repeated in pairs and occurring at 

opposite ends of the sequence (e.g. 760476). 

Wickelgren analysed the data in terms of ordered and free recall for both individual 

items and sequences. He focused on errors that occurred after each repeated item, 

when both of the repeated items were recalled correctly. For example, for the 

sequence ijikl ... , Wickelgren was concerned with the frequency with which k was 

replaced by j in the fourth serial position during recall, and j replaced by k in the 

second serial position. Wickelgren (1965c) referred to these as associative intrusion 

errors. Wickelgren reported that the items that followed repeated items were more 

likely to be transposed with each other than items following non-repeated items. This 

provided Wickelgren ( 1966) with evidence to reject non-associative models of serial 

order (e.g. Conrad, 1965) in favour of an associative, chaining based, hypotheses. 

In Conrad's model, repeated items are maintained at more than one (fixed) location, so 

Wickelgren (1966) suggested that associative intrusion errors would therefore be 

counter intuitive in such a model. In contrast, he suggested, associative based models, 

where repeated items are only represented once but are connected by item-to-item 

associations, would permit errors of this form to occur. 

Recall of repeated items is further complicated by the Ranschburg effect (Jahnke, 

1969; Henson, in press). In order to demonstrate the Ranschburg effect, performance 

for a sequence of items (e.g. seven digits) containing no repeats is measured for the 

control condition. Subjects are then required to recall a similar list of items that this 

time contains a single repeated item, separated by a number of intervening items. The 

Ranschburg effect is defined as the poorer recall observed for the repeated items than 

was evident for the items in the corresponding serial positions in the control condition. 

Clearly lists containing repeated items provide further complications during recall. A 

formal model of serial order should provide some mechanism capable of learning and 

recalling lists contained repeated stimuli. 
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2.9 Summary 

In this chapter, a range of empirical findings for adult short term memory for serial 

order have been discussed. In the following chapter, a number of theories and models 

of short term memory, which attempt to account for one or more of these paradigms, 

are presented. 
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CHAPTER3 

Models and theories of memory for serial order 

3.1 Introduction 

The following chapter describes a number of different attempts at providing a formal 

model of the empirical data described in chapter 2. The models are classified by the 

manner with which they store serial order information for subsequent recall. 

The first class of model stores items in fixed locations in the order in which they were 

perceived during presentation. Recall involves "reading" the contents of each location 

in order. These models are described in section 3.2 and are represented by Conrad's 

bin model (1965). 

The second class of model, described in section 3.3, are the chaining models. First 

described by Ebbinghaus (1913), chaining models store order information in the links 

that connect one item to the next. Recall requires the first item to be recalled, then 

used as the recall cue for the next and so forth for each remaining item. More recently, 

chaining-based accounts (e.g. Lewandowsky & Murdock, 1989) have demonstrated 

the ability to reproduce a range of empirical results. Recurrent networks (Jordan, 

1986; Elman, 1989) also employ the use of a chaining mechanism during learning. 

Johnson (1970) and Estes (1972) both employ the use of a hierarchical structures to 

store learned sequences. Estes (1972) describes a model where item information is 

stored in a hierarchical structure while order information is preserved by a rehearsal 

process between each item and a control element. These hierarchical models are 

described in section 3.4. 
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The original network model of the articulatory loop (Burgess & Hitch, 1992) 

employed both item-to-item chaining and item-to-context association. Each of these 

models associates items with different states of a dynamic control signal. Item recall 

occurs when the learned-context is reinstated. Houghton's competitive queuing model 

(1990, 1994a) uses a two-dimensional control signal while Burgess and Hitch (1992; 

1996) employ a high dimensionality context signal. 

The final class of model to be introduced in this chapter, relies on an activation 

gradient across each learned item (e.g. Page & Norris, 1995). These models recall the 

most active item in each list position and are described in section 3.6. 

3.2 Bin models 

Conrad ( 1965) describes a non-associative (Wickelgren, 1966) model of memory that 

uses positional cues (fixed locations that Conrad referred to as bins) with which to 

temporally locate each stimulus item. 

Conrad ( 1965) presented order error data generated during an immediate recall task 

for sequences of letter stimuli. Analysis confirmed that when errors occurred, items 

were likely to be replaced by an acoustically similar letter (Conrad, 1964). 

Furthermore, Conrad suggests that these same letters tended to transpose when 

presented together in a sequence. He proposed that order errors could in fact be the 

result of pairs of item errors. In an attempt to address this, Conrad outlined a non

associative bin model of serial order memory. 

Figure 3.1 Non-associative theory of memory for a sequence of digits ( e.g. Conrad, 1965) 

Conrad suggests that each item perceived during learning is stored in a container 

whose location is fixed and corresponds to the to-be-learned items serial position 

(figure 3.1). During recall, subjects simply read the contents of each container in the 
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order requested by the experimenter. Item errors occur when the contents of a 

container, which decay over time, fall below a noise threshold and become 

imperceptible above the background noise as a result. 

Conrad uses the model in an attempt to account for the production of order errors. He 

suggests that during recall, when the signal corresponding to an item contained in one 

of the bins falls below the threshold and into the background noise, the perceptual 

process responsible for recall may be similar to that for perceiving letters against a 

background of noise. Conrad explains that when a subject fails to recall an item 

correctly, it is highly probable (particularly if the items are acoustically similar) that the 

response for the next bin will be selected. Therefore, when attempting to recall the 

contents of the next bin, and if the subject rejects repetition for any reason, then it is 

likely that they will select the response that was correct for the previous serial 

position. A transposition error can therefore be attributed to item errors occurring 

between confusable items. It is also possible that when a signal falls below the noise 

threshold, an omiss1on or guess may occur. This may involve the corresponding item 

from a previous sequence, resulting in a serial order intrusion error (Conrad, 1960a). 

Furthermore, Conrad describes a separate dynamic availability store of responses 

which subjects use to compare with the contents of the bins during recall. It is 

apparent how the model would not be affected by the size of item vocabulary (Conrad 

& Hull, 1964). 

Wickelgren ( 1966) applies a non-associative model of memory, similar to Conrad's bin 

model, to the problem of accounting for associative intrusion errors. Wickelgren had 

reported (Wickelgren, 1965c) that when subjects attempted to recall a list containing a 

repeated item, even when they recalled the repeated items correctly (and in the correct 

serial positions) there was a chance that subjects would transpose both of the items 

following the repeated items. If a to-be-learned list contains a repeated item, both 

representations of the item are stored in the model (e.g. figure 3.1). Wickelgren 

(1966), making the assumption that storage or recall errors do not depend upon the 

contents of each bin, concluded that there is no reason for associative intrusion errors 

to occur in a non-associative model. 
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Conrad's account also fails to explain why transposition errors occur in such large 

quantities in short-term memory (e.g. Wickelgren, 1965a) and why loss of order 

information is faster than loss of item information (Bjork & Healy, 1970). 

In summary, Conrad ( 1965) describes a model of serial order in which items are stored 

in order in fixed locations called bins. The contents of each bin decay with time. This 

introduces item errors (Conrad, 1964) and serial intrusion errors (Conrad, 1960a). 

Conrad also suggests that order errors result from pairs of item errors occurring in the 

same list. However, if this were the case, it would contradict the findings that item and 

order errors appear to be the result of different mechanisms (Bjork & Healy, 1970; 

Healy, 1974). Wickelgren (1966) observes that as errors occur at each bin, regardless 

of contents, associative intrusion errors occurring after repeated items are unlikely. 

Also, it is unclear how the bins come to be searched in the correct order during recall. 

3.3 Chaining models 

3.3.1 Basic chaining model 

One of the first theories for serial order recall was presented by Ebbinghaus (1913). 

Ebbinghaus suggested that items are stored in memory as a sequence of associations 

linking the internal representation of one item with the next, in the same order in which 

they were presented. The strength of the association between any one item and the 

next depends upon the displacement between the two items. The association is 

strongest between adjacent items. Associations are directional and point towards the 

next item in the sequence. Accurate serial recall depends upon the subject being able to 

recall the first item in the sequence, and then use it as a recall cue for the next item 

(e.g. Wickelgren, 1965a). 

For example, for the list of items, abed, the strength of the association between a and 

bis greater than the strength of the association between a and c, while the association 

between b and c is greater than that between b and d. The weakest association is 

between a and d. Ebbinghaus proposed that, during recall, if item a was recalled, then 
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the strongest forward association connected to a would be to item b. Therefore, the 

second item could be retrieved by presenting a as a cue, and recalling b in the next 

position. Once b has been recalled, so the strongest association connected to item b 

will be to the third item, c. By ensuring that only unidirectional associations are 

employed, recall can be maintained in one direction only. Therefore, in this manner 

each of the list items may be recalled in the order in which they were presented. 

Wickelgren (1966) examined the ability of a chaining, or associative, based model to 

account for intrusions in immediate recall of lists of digits containing repeated items. 

Figure 3.2 illustrates the list 14629237 and contains the repeated item 2. Each internal 

item representation is connected with the next in the sequence by a forward 

association. Also, note that although the item 2 is presented twice during learning, it 

only has one internal representation in a chaining model of the sequence. Wickelgi:en 

suggests that subjects will recall the early portion of the list correctly as 1462, before 

having to decide which item to recall next when presented with the first occurrence of 

the repeated item as a cue. 

Figure 3.2 Associative theory of memory for a sequence of digits 

Ideally, subjects will recall item 9 as the next in the sequence, and because of the bi

directional association connecting the 9 to the 2, will recall the second occurrence of 

the stimulus item, 2, next. The subject should now complete the sequence by recalling 

3 and 7. Wickelgren suggested that if item and order information were stored in this 

manner, associative intrusion errors occurring in sequences containing repeated items 

could be accounted for by a chaining based model containing single representations of 

each item interconnected by directional associative connections. 
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Wickelgren ( 1969) also outlines a structure for chairung that uses phonemic 

representation and includes order information by subscripting the current phoneme 

with information about the phonemes either side of it. These are referred to as 

wickelphones (Rumelhart & McClelland, 1986). For example, the word EVERY would 

be represented in typical chairung parlance as E-V-E-R-Y, however, in context 

sensitive chairung using wickelphone notation this would become sEv e Ve vEr eRy rYs. 

Here the $ corresponds to a start and end marker. 

Evidence against chairung based models is presented by Baddeley ( 1968, experiment 

5). Baddeley describes an experiment aimed at identifying whether a retrieval 

mechanism is responsible for the finding that acoustically confusable items are harder 

to recall than acoustically non-confusable items (Conrad & Hull, 1964). Wickelgren's 

(1965a) inter-item association theory would suggest that acoustically confusable items 

would act as poor recall cues and as a result, performance for the non-confusable 

items relying on the confusable cues, would suffer (Baddeley, 1968). In fact, the 

converse is found, which suggests that a chaining based model of serial order will be 

unable to account for Baddeley's ( 1968, experiment 5) phonemic similarity effect. 

Also, Lashley (1951) criticises item-to-item based models for their inability to account 

for the complexities of rule-based behaviour such as language generation and also the 

fact that the majority of serial order tasks (e.g. fast motor control such as that used to 

move fingers when playing the piano) require a swifter execution than is capable of a 

simple chaining account. 

In summary, a chairung based account of short-term memory is based upon internal 

representations of stimuli, interconnected by directional associations. Recall relies on 

items being presented as cues in order to recall the next item in the sequence. 

Repeated items are only represented in memory once, but are connected to 

neighbouring items in the sequence by bi-directional associations (Ebbinghaus, 1913; 

Wickelgren, 1965a). Chairung based models offer an explanation for associative 

intrusion errors that occur immediately after repeated items (Wickelgren, 1966) but 

fail to predict the phonemic similarity effect (Baddeley, 1968) and the complexity and 

efficiency of typical serial ordered behaviour (Lashley, 1951). 
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3.3.2 CHARM 

Metcalfe Eich (1982) introduces one of the first distributed models of memory that 

uses the mathematical processes of convolution and correlation for item storage and 

retrieval. CHARM (Composite Holographic Associative Recall Model), is based on 

the concept of holographic association5
• We discuss Metcalfe's model as convolution 

and correlation are important as the basic associative method that underlies a 

subsequent model of serial order. 

Items, or patterns of features, are represented in CHARM as multidimensional vectors 

with elements whose values are continuous (taking both positive and negative values) 

and have an expected mean of zero. Item features are ordered which means that the 

fifteenth feature of one vector represents the same attribute as the fifteenth feature in a 

second vector. In this manner, related items can be created by duplicating features for 

each of the items. The similarity between items can be measured by taking the dot 

product between each item. Furthermore, by normalising the items, Metcalfe Eich 

ensures that the dot product of any item with itself is one - a measure that one item is 

identical with the other. If the dot product of one item with an other is zero, the items 

can be said to be unique and completely unrelated to one another (see Goebel & 

Lewandowsky, 1991). 

Briefly, during learning CHARM performs accurate single trial learning storing the 

convolution of novel pairs of items in an episodic memory. The trace vector produced 

as a result, is of a larger dimensionality than the item vectors and bears no resemblance 

to any of the features in the stimuli. During retrieval, a cue is presented and correlated 

with the memory trace. If the stimuli are sufficiently distinct, then an approximation to 

the second of the stimuli can be recovered from the memory trace. However, if the 

stimuli are less distinct, a weaker approximation will be generated, blurred by the 

effects of noise and confusion between the stimuli. The retrieved item may then be 

deblurred by comparing it with the lexicon of recallable items and selecting the item it 

5 See Metcalfe & Murdock (1981), Metcalfe Eich (1982) and Murdock (1982) for more details. 
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bears most resemblance to by computing the dot products. This basic architecture is 

presented in figure 3.3. 

Item A Item B 

'. · · ·1- · ... ·l- .. ·: Episodic memory 

I CONVOLUTION I 
1 

Memory trace 

1 
CueitemA ---➔ CORRELATION 

Retrieved item 

: · · · · · ·1- · · · · · ·: Sema111ic memory 

' I RECOGNISER I . 
. . · 1 · ..... : 
Recalled item 

Figure 3.3 CHARM's method of item encoding, decoding and recognition 

However, thus far CHARM would only have the capacity to learn a single association. 

In order to increase the capacity for learning, CHARM uses a composite memory trace 

in which it accumulates, feature by feature, each memory trace as it is generated by 

each new pair of stimuli. The composite memory trace is analogous to a photograph 

that has been exposed repeatedly - the photograph will contain ghost images of all of 

the previous exposures. 

Table 3.1 

Composition of the memory trace vector after presentation of the/'' pair of items 

i Pair Composite trace vector 
1 A-B A*B 
2 C-D A*B + C*D 
3 E-F A*B + C*D + E*F 

As the first pair of items (A and B) is presented to CHARM, so the convolution 

(A *B) is stored in the composite memory trace. As the next pair of items is presented 

and the convolution calculated, so this too is combined with the current contents of 
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the memory trace. This process continues for each new pair of stimuli and is 

summarised in table 3.1. 

At recall, it is the composite trace that is correlated with each individual cue item. If 

each of the items stored in the composite trace are unrelated, then using a composite 

memory trace during recall has the effect of adding noise to the retrieved item. The 

composite trace introduces interference based forgetting. Metcalfe and Murdock 

( 1981, figure 1) demonstrate that as the number of associations stored in the 

composite trace increases, so performance degrades rapidly. This interference is even 

greater when there are a number of similar items in the list of to-be-learned items. 

Ambiguity at recall is minimised by the inclusion of the pattern recogniser component 

of the model which permits redintegration of stimuli. The pattern recogniser contains 

two parts: the first is the lexicon of items presented during learning which serves as a 

limited vocabulary of possible responses; and the second is a matching process, in this 

case implemented using the dot product between the retrieved item and each of the 

lexicon items. 

In summary, Metcalfe Eich (1982) outlines an architecture for association capable of 

single trial learning. Association is by convolution and recall by correlation. The 

memory trace generated during each presentation is accumulated in the composite 

memory trace which introduces interference based forgetting. CHARM, during a 

paired associate recall task, replicates the acoustic similarity effect ( cf. Conrad & Hull, 

1964) has also been shown to replicate the gradual-unlearning A-B A-D paradigm 

(Lewandowsky, 1991). However, in the next section we present a model of serial 

order that develops this associative mechanism. 

3.3.3 TODAM 

Metcalfe Eich (1982) applied a convolution and correlation distributed memory to the 

problem of paired associate learning. Murdock (1982, 1983, 1992, 1993) presents a 

general theory of distributed associative memory, TODAM, which stores item and 
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order6 information in a distributed composite memory trace. Like CHARM it 

represents items as vectors of features and uses convolution and correlation as the 

associative mechanisms. 

Like with CHARM (Metcalfe Eich, 1982), items are represented as vectors whose 

features take random values. Item and associative information is stored in the 

composite memory trace. Serial order information is derived from the associative 

information stored during each learning iteration. TODAM employs a chaining 

mechanism similar to that described by Wickelgren (1965a) where each item acts as 

the cue for the next. This may be modelled by overlapping successive associations: the 

first item is associated with the second, the second with the third, etc., for each item in 

the list. This process may be expressed mathematically as: 

M. = aM. 1 +yf. +ro(f.*f. 1) J J- J J J- (3.1) 

Here, fj and fj-1 are two items, and fj*fj-1 the convolution between the two items. M j-I 

represents the contents of the memory trace prior to this iteration. a represents the 

forgetting parameter, while y and ro represents the weighting parameters for the item 

and order information respectively. Information is therefore lost through both 

interference (through the use of a composite memory trace) and also decay (through 

the use of a forgetting parameter). 

As with Metcalfe Eich's (1982) CHARM model of association, convolution is used to 

associate the current stimulus item with the previous. As before, for n-dimensionality 

stimulus vectors, the vector resulting from the convolution will have dimensionality 

2n-1 elements which means that the individual features of each stimulus item will not 

correspond to features of the memory trace. Also, before each item is added to the 

larger composite trace vector, it is padded with zeros in the n-1 elements either side of 

the centralised item elements. The contents of the composite memory trace after the 

presentation of the Jh item are illustrated in table 3.2. 

6 In contrast to CHARM where only order information is stored in the associations between pairs of 
simuli. 
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Table 3.2 

Composition of the memory vector, Mj, after presentation of the j'" item 

1 
2 
3 

Item 
A 
B 
C 

M· 
A 
yB + co(B*A) + aA 
}C + co(C*B) + a. (yB + co(B*A)) + a.2A 

Chapter 3 

Item recall involves correlating the first item with the memory vector in order to 

generate an approximation to the second item. Item recognition relies on taking the 

dot product between the probe item (in this case, the approximation to the second 

item) and the memory vector. The decision as to whether or not the probe item was 

learned is taken on the basis of whether or not the dot product exceeds a threshold 

value. 

Serial-order recognition is instigated by reproducing the memory vector after each 

item has been recalled and comparing it with the original trace at the corresponding 

stage during learning by taking the dot product. In a similar fashion to before, whether 

or not the two are similar depends upon the dot product. This mechanism is significant 

as it allows TODAM to accurately recall the item information for a simple list, ABC, 

but to confuse the order information, recalling the list as ACB. 

TODAM has been applied to a range of serial-order data (Lewandowsky & Murdock, 

1989; Baddeley, Papagno & Norris, 1991; Murdock, 1993) with varying degrees of 

success. Lewandowsky and Murdock ( 1989) attempt to fit a refined version of 

TODAM to a number of serial order paradigms including serial learning, memory 

span, partial report effects, delayed recall, list length effects, hebb repetition effects, 

similarity, build up and release from Pl, the primacy and recency dissociation, forward 

and backward recall and positional probe effects. 

Lewandowsky and Murdock ( 1989) subscript the item and order information 

weighting parameters so that they can vary across serial position. Furthermore, 

Lewandowsky and Murdock suggest that when an item (fj_1) is presented as a cue for 

the next item (fj) in the sequence during recall, if the cue item has itself been recalled 

inaccurately, an approximation to it will be sufficient for accurate probing: 
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{

fj~J # M = r;~1 if retri~val j -1 successful;} 

fj-i # M = fj otherwise. 

Chapter 3 

(3.2) 

Significantly, Lewandowsky and Murdock suggest that, as defined, TODAM will not 

learn, as repeated presentation of the same items will not lead to better performance. 

Therefore, they suggest the following modification to the current open loop 

architecture: the addition of a feedback-loop which determines the amount of new item 

and order information provided by the t item. However, the development of this 

closed-loop architecture is at the expense of computational complexity and results in 

an inability to compute the probability of recall (Lewandowsky & Murdock, 1989, p. 

31). 

When implementing an open loop simulation, sequences are bounded by start and end 

signals (cf. Shiffrin and Cook, 1978). The order information parameter, co, decays 

exponentially with serial position, while y changes in complement to co (i.e. associative 

information is learned most strongly at the beginning of a sequence, while item 

information is learned most strongly at the end of a sequence). Furthermore, when an 

item is retrieved successfully, the retrieved item is added to the composite trace before 

it is presented to the composite trace as a probe for the next item. 

A series of alternate retrieval mechanisms are outlined including one which uses an 

anticipation paradigm, where a deblurred version of the previous item is always 

available as a probe, and a second, which allows the use of the retrieved approximation 

as a recall probe (equation 3.2). 

Implementing the closed loop model, sequences are bounded in a similar fashion to the 

open loop version. Each feature of the composite trace is reset to zero before training 

can proceed. Once again, co and y vary exponentially across serial position, although in 

this case apriori knowledge of the list length is expected (Lewandowsky & Murdock, 

1989, equation 7). Retrieval assumes that a deblurred item will be used as each recall 

probe. The closed loop architecture requires knowledge of which items are available 

for recall. As subjects seldom repeat an item they have already recalled, competitors 
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are selected from the target items following the probe (Lewandowsky & Murdock, 

1989, p. 35). Therefore, in the sixth serial position of a nine item list, competitors 

include only the sixth, seventh, eighth and ninth items. An additional N items are also 

available as competitors (although N is typically set to only zero or one). 

Finally, before considering how TODAM is fit to the empirical data, both the open and 

closed loop models share a number of fixed and free parameters. Fixed parameters, 

which aim to be constant for each simulation. include the size of the memory vector 

and the rec.all tolerance limits. Free parameters, which may alter for each simulation, 

include the forgetting parameter, the item and order weighting parameters and the 

number of competitors available during recall. 

Briefly, both the open loop and closed loop TODAM architectures are applied to the 

modelling of a number of serial order benchmark paradigms. In order to fit the open 

loop model using the anticipation procedure to the empirical data, a further free 

parameter is introduced which allows the rate constant for the exponentially 

decreasing associative weighting parameter, to decrease exponentially itself. 

The open loop implementation of TOD AM is applied to the problem of modelling the 

serial position curve. The fit is adequate, with slightly less recency than the empirical 

data. However the trough of each curve moves from the beginning of the list towards 

the end as learning increases in contrast to the empirical data where it is fixed. 

Applying the closed loop version of the model reveals a closer approximation to the 

empirical data (Lewandowsky & Murdock, 1989, figure 9). Attempting to fit the 

memory span data of Crannell and Parrish (1957) with the open loop model, the 

forgetting parameter a is varied in order to simulate the different materials learned 

during the empirical data. Once more an adequate fit is provided (Lewandowsky & 

Murdock, 1989, figure 12). Furthermore, the open loop model provides a fit to a 

partial report paradigm and also the delayed recall task (Lewandowsky & Murdock, 

1989, figures 13 & 14). 
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Although Murdock (1992, 1993) attempts to refine TODAM in order to account for 

chunking and paired-associate effects, TODAM is fundamentally a chaining based 

model of serial order, and is therefore susceptible to similar errors and deficiencies as 

the basic chaining model of Wickelgren (1965a). Baddeley, Papagno and Norris 

(1991) attempt to fit TODAM to Baddeley's (1968, experiment 5) phonemic similarity 

effect data. To review, a chaining based account would predict that when each 

confusable item is presented as a recall probe, recall of the nonconfusable item 

following it will suffer. However, the empirical data illustrates that the converse is 

true, nonconfusable items do not suffer from the proximity of confusable items. 

Baddeley, Papagno and Norris (1991, figure 10.3) illustrate how, for the DSDSDS list 

condition, performance for both the confusable and nonconfusable items is almost 

identical to that for the nonconfusable only list condition. There is no "sawtooth" 

effect and performance for the confusable items is as good as that for the 

nonconfusable items. A similar effect is present in the SDSDSD condition. 

Mewhort, Popham and James (1994) provide the first of two substantial critiques of 

TOD AM. They argue against three of the core assumptions: the chaining mechanism, 

the availability of competitors during recall and also the complementary relationship 

between the item and order weighting parameters. 

In addressing the first, Mewhort, Popham and James (1994) reject Lewandowsky and 

Murdock's ( 1989) suggestion that the use of a retrieved item as a cue will produce 

similar performance to that when using the correct probe item, regardless of whether 

or not it was recalled correctly (i.e. anticipation procedure). They observe that as soon 

as an error occurs, the cue item will be incorrect and as a result, recall will be 

prevented in the list positions following that containing the error (e.g. the chain will be 

broken). Lewandowsky and Murdock suggest that using either the retrieved, or 

facsimile, item (i.e. the item retrieved from the composite, before it is compared to the 

competitors and deblurred) or the correct cue item (e.g. the anticipation procedure) 

will produce similar performance during recall. However, Mewhort, Popham and 

James (1994) observe that using the facsimile item results in chance performance, the 

overall behaviour is dictated to by the free parameters, in particular the number of 
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competitors available during recall. This is confirmed by Lewandowsky and Li ( 1994) 

who demonstrate that under some conditions, cueing with the facsimile is more than 

adequate. 

Secondly, Mewhort, Popham and James (1994) argue that all of the lexicon of items 

should be available as competitors during recall and not just the remaining items, as 

this artificially introduces a high degree of recency into the system. 

Finally, Mewhort, Popham and James (1994) argue that TODAM is biased against 

items at the start of the list as the item weighting parameter is minimal at the beginning 

of a list. Furthermore, that as the item and order information weighting parameters 

complement each other, even when there is no item information, order information 

should be perfect. This suggests that perfect recall is possible even without any item 

information. Lewandowsky and Li ( 1994) counter this by highlighting that this only 

occurs for the context cue, recalled immediately before the first list item. 

Nairne and Neath (1994) provide the second critique of TODAM. They reject the 

sampling without replacement method by which items are removed from the lexicon of 

competitor items during recall. They illustrate that if, once an item has been recalled, 

correctly or otherwise, that recalled item is removed from the lexicon of competitors, 

all recency in the serial position curve is destroyed. However, if, in accordance with 

Lewandowsky and Murdock ( 1989), the target item for that position, regardless of 

whether or not it was in fact recalled correctly, is removed from the lexicon, a huge 

recency effect is introduced. Specifically, if the item for position five in an eight item 

list is retrieved, it is compared with items six, seven and eight. Regardless of which 

item is recalled from that subset, it is item five that will be removed from the lexicon of 

competitors before recall proceeds to the next serial position. Clearly, this will favour 

recall of the last item as there will be no competition during recall. By introducing the 

ad hoc free parameter, N, Lewandowsky and Murdock can vary the degree of recency 

by adding competitors to the list. This also results in truncated transposition gradients 

lacking the symmetry of those reported elsewhere (e.g. Estes, 1972; Bjork & Healy, 

1974; Henson, Norris, Page & Baddeley, 1996). 
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In response to the criticisms of the deblurring and sampling without replacement 

techniques employed by Lewandowsky and Murdock ( 1989), Lewandowsky and Li 

(1994) suggest the use of a brain-state-in-a-box in order to deblur retrieved items and 

the use of anti-learning with which to remove both associative and item information 

from the composite memory trace after recall. Employing both of these in a simulation, 

they report reasonable performance although the problem of asymmetric distance 

functions remains. 

In summary, TODAM (Murdock, 1982, 1983, 1992, 1993; Lewandowsky & 

Murdock, 1989; Lewandowsky & Li, 1994) is a chaining based distributed model of 

serial order. Items, represented as vectors of features, are associated in pairs by 

convolution and stored alongside representations of the items themselves, in a 

composite memory trace vector. Item recall involves presenting a recall cue, typically 

the current list item, and comparing the retrieved item with the memory trace in order 

to ascertain whether that item was presented during learning. If it was, then it can be 

used to recall the next item in the sequence. If it was not presented, then the 

approximation may be sufficient as a recall probe. Recall of order information is 

possible by trying to regenerate the memory trace vector using the recalled items, and 

comparing it with the original memory trace at each step. Once an item is recalled, it is 

removed from the lexicon of competitor items available during recall. However, if an 

item is incorrectly recalled, the target item that should have been recalled may in fact 

be removed from the competitors list. TODAM, in both the open loop and closed loop 

or feedback version, has been applied to a number of serial order paradigms 

successfully. These paradigms include the serial position curve, similarity and memory 

span effects. However, like previous chaining models, TODAM is unable to replicate 

Baddeley's (1968, experiment 5) phonemic similarity effect (Baddeley, Papagno & 

Norris, 1991). Furthermore, a number of criticisms are raised at TODAM (Nairne & 

Neath, 1994; Mewhort, Popham & James, 1994) in particular the limitations of the 

competitors lexicon, asymmetric transposition gradients, arbitrary weighting of item 

and order information across serial position and the underlying weakness of a chaining 

mechanism for recall. 

41 



Modelling human short-term memory for serial order Chapter 3 

3.3.4 Recurrent networks 

A second family of chaining based models are recurrent networks (Jordan, 1986; 

Elman, 1990; Chater & Conkey, 1994). These networks connect either the output 

units (Jordan, 1986) or the hidden layer units (Elman, 1986) to the input. This means 

that the network's output (i.e. current state) can become part of the input that acts as 

the cue for retrieval of the next item. 

Jordan ( 1986) describes a connectionist network whose recurrent connections 

associate a static pattern, or plan, with a serial ordered input pattern. When an input is 

presented to the network, the signal propagates first to the hidden layer of units and 

then to the output units. Learning is by back-propagation (Rumelhart, Hinton & 

Williams, 1986). However, also presented to the hidden units are the outputs from the 

state units. These units correspond to the previous state of the output units. Therefore, 

the Jordan network performs a series of chaining associations between the most recent 

set of input items and the previous state of the output units. This architecture is 

presented in figure 3 .4a. If such a network were required to learn and then recall the 

phoneme sequence /strlng/, it would recall them as the sequence, Isl, /ti, Ir/, /If and 

finally, /ng/. 

OUTPUT OUTPUT 

ffiDDEN HIDDEN 

INPUT 

Figure 3.4 (a) Jordon recurrent network (1986) (b) Elman recurrent network (1990) 

Elman (1990) refines the architect:ure by instead connecting the hidden layer of units to 

a hidden layer of context units via a set of fixed weights. Learned weights link the 

42 



Modelling human short-term memory for serial order Chapter 3 

input vector to the hidden layer, and also the hidden layer to the output layer of units. 

In this manner, every item presented to the network is associated with a context 

representing the state of the hidden units just prior to the item being presented. This 

architecture is presented in figure 3.4b. Elman (1990) applies the network to the 

problem of predicting the next letter in a sequence with some success even when the 

sequence contains repeated items. 

However, recurrent networks, like other chaining-based accounts of serial order, will 

erroneously predict that items following confusable items will suffer because of the 

similarity between the retrieval cues. This applies even though each cue is some 

composite of each of the previous items. Also, recurrent networks do not possess the 

ability to recall each item in a sequence autonomously as the sequential structure is not 

self-generated. Furthermore, recurrent networks that learn sequences by back

propagation are clearly unsuited to modelling single trial learning (Houghton & 

Hartley, 1995). 

3.4 Hierarchical models 

3.4.1 Chunking model 

Johnson (1970) develops a model based upon the concept of chunking in short term 

memory as first suggested by Miller (1956). Miller suggested that there is a limit on 

the number of chunks of information that can be held in immediate memory, although 

how much information (bits) those chunks may represent is not limited. For example, a 

memory span of five words could be described as a memory span of fifteen phonemes 

(given that each word contained, on average, three phonemes). Furthermore, subjects 

demonstrate that their ability to recall sequences of binary digits is improved if they 

recode the sequences into denary digits prior to learning (Miller, 1956). 

Johnson defines codes and chunks as follows. A chunk is a sequence which is 

represented in memory by a single code. A code can represent both item and order 

information and is logically distinct from the information it represents. During recall, a 
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code must be recovered before the information it represents can be extracted - an "all 

or nothing" recall strategy. 

If it is assumed that subjects chunk items in a hierarchical set during learning, then 

retrieval involves decoding the codes in the hierarchy into the information that they 

represent. Johnson's decoding operation assumes that in order for subjects to recall an 

ordered sequence, they must first recall a coding device that represents the entire 

sequence as a single chunk. Then the subject proceeds using a depth first search 

strategy through the hierarchy, decoding each of the codes into its components. Once 

the subject has expanded the very lowest level of that branch of the hierarchy, the 

subject extracts the next most recently stored component from short-term memory and 

proceeds to expand that branch of the hierarchy as before. 

In the first step, the stimulus elicits an arbitrary code ('1 ') that represents the entire 

sequence ( of nine letters, beginning with S, B and J) that the subject has just learned. 

The subject immediately decodes the stimulus into all of its immediate components, in 

the present case, the codes 'A', 'E' and 'U' that represent three chunks (figure 3.5). 

u 

Figure 3.5 Decoding the first memory code into the three codes representing the chunks A, E, U 

(Adapted from Johnson, 1970) 

Next, the most recent of the three is expanded whilst the remainder are committed to 

short-term memory. The first of the three chunks, 'A', is expanded to produce three 

further codes, 'S', 'B' and 'J'. As before, the first of these codes is expanded whilst 

the second and third are stored in short-term memory. However it is evident that this 

last level of codes is nonreducible, and can now be decoded to the letters from the 

sequence that they represent. Having first extracted the letter 'S' from its coded 

representation, the subject recovers the most recent item committed to short-term 
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memory, the code 'B'. Once again, this is decoded to extract the letter that it 

represents and the next most recent code retrieved from short-term memory (figure 

3.6). 

u 

S B 

Figure 3.6 Decoding operation for recalling a nine letter sequence (SBJ ... ) organised 

in three chunks (AEU) (Adapted from Johnson, 1970) 

However, having expanded the first chunk, 'A', in its entirety, the subject must once 

again retrieve the most recent item committed to short-term memory, the code, 'E' . 

This process is continued until the hierarchy has been expanded and the nine items 

recovered from memory in sequence. 

Johnson suggests that this decoding model can be formalised as a set of six postulates: 

(1) It is possible for a code to be recalled provided that it represents at least 

one item of information. 

(2) Whenever a subject recalls a code, he decodes it into the components at the 

next lower level. 

(3) After a subject has decoded a code into its components, he holds the 

components in a temporary memory store, except for the component whose 

ultimate members have temporal priority in the sequence. That component is 

further decoded. 
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(4) Whenever an overt response is produced, the subject returns to his 

temporary store and recovers the code whose ultimate members have temporal 

priority over the other codes. That code is then decoded. 

(5) A code is not analysed for the information it contains until it is decoded. 

(6) Whenever a subject is uncertain regarding a decoding step, he completely 

terminates his response attempt. 

Johnson explains that a code, containing both item and order information for a number 

of items, could be considered as an opaque container - opaque in that recovery of the 

code does not allow the subject to recover the items within that code (container) 

immediately without further decoding. The notion that the code can be considered as a 

container holding item information is similar to that outlined for previous non

associative models (e.g. Conrad, 1965) - except for the obvious difference that item 

and order information are held in Johnson's codes, while Conrad's bins contain only 

item information, the order being inferred from the relative serial position of the bin 

containing the item. Also, if the code is lost from memory, all the information "hidden" 

by that code is deemed irretrievable to the subject (Johnson, 1969) 

Although it has already been stated that Johnson's model stores both item and order 

information in each chunk, it is as yet unclear as to how the order information is 

represented. A number of possibilities are suggested: 

(1) Order could be inherent in the organisation itself, i.e. chunking could imply 

ordered recall. 

(2) Subjects could form weak inter-item or inter-code associations during 

learning. However, this would have to be refined as only weak associations 

would exist between the last item of one chunk and the first item of the next. 
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(3) Codes could be tagged with order information when the subject stores 

them in memory. A subject's ability to retrieve the position of an item would 

not depend on the subject's ability to recall any previous item with any degree 

of accuracy. 

This third hypothesis appears to be very similar to that suggested by Conrad ( 1965) 

and is the method by which Johnson models serial-order effects. 

Johnson's model relies on a measure of performance, the transitional-error probability 

(TEP) which is defined as the probability that an item in position i+ 1 will be recalled 

correctly given correct recall of item i. The TEP can go across chunk boundaries. 

Johnson reports that TEPs at chunk boundaries are consistently higher than they are 

within chunks which suggests that the problem during recall is reinstating a chunk 

rather than the items contained within (Murdock, 1974). 

In summary, Johnson (1970) outlines a model of short-term memory based upon the 

concept of chunking (Miller, 1957). Johnson describes a hierarchical structure of 

opaque containers, or codes, that contain both item and order information. Recall is all 

or nothing, if a code in the hierarchy is forgotten, all the paths below that code and 

their contents, are forgotten. However, it is unclear how this model could be 

implemented as the encoding and decoding processes are largely unspecified, 

particularly with distributed item representations and the associative mechanisms 

outlined in chapter 1. 

3.4.2 Perturbation model 

Estes (1972; Lee, 1992) considers the forgetting of item and order information and the 

effects of phonemic similarity, reviewing that when item errors occur (i.e. no loss of 

order information), then the letter replacing the correct letter is typically drawn from a 

similar acoustic confusion set (Conrad, 1964). Furthermore, order (transposition) 

errors are produced in greater proportions than item errors, the former being 

distributed about the central serial positions, the latter, uniformly across each serial 
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position (Bjork & Healy, 1970). Having rejected a number of theories of order effects: 

coding (e.g. Johnson, 1970), item-to-item association (e.g. Wickelgren, 1965a), 

positional-coding (e.g. Conrad, 1965; Johnson, 1970); Estes outlines a new model for 

association. 

Estes suggests that there exists in memory a pool of elements he calls control 

elements. If two items are presented in succession to the subject, then in contrast to an 

inter-item association model where the two items would be associated together in 

sequence, Estes suggests that the two items are instead associated to a control element 

(e.g. figure 3.7). 

C 

/\ 

11 h 

Figure 3.7 Neighbouring items connected to a control element (Adapted from Estes, 1972) 

A new control element is established at each discontinuity in the input sequence: at the 

beginning of a new chunk, for example, or between words in a sequence. Therefore, it 

is possible to develop a hierarchical structure constructed using associations between 

control elements or features. For example, consider learning a sequence containing a 

pair of letters with two features in each letter. The letter-features would be associated 

with a letter control element. Both letter control elements would then be associated 

with one overall sequence control element. Estes suggests that the control element has 

some temporal context component which must evolve over time until it may be 

stabilised through association with some element in long-term memory. 

Thus far, the model describes the storage of item information in a hierarchical 

structure not dissimilar to that outlined by Johnson (1970). However, there is no 

reference to the storage and retrieval of serial order information. Estes proposes that 

the problem of serial order can be divided into two sections: the first, the decay over 

time of a short-term representation of order; and the second, the establishing of a 

stable representation of order in long-term memory by rehearsal. The model addresses 
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the first of these by the inclusion of a reverbatory loop between the item representation 

and the contextual control element: 

Figure 3.8 Reverbatory loop for decay (Adapted from Estes, 1972) 

Here, the reverbatory loop reactivates the item at a rate determined by a phase within 

the system. If the control element is associated with more than one item then a 

reverbatory loop exists for each of the items, hence the items can be reinstated in 

sequence. It is because the phases of these reverbatory loops will alter over time due 

to random error and interference from other neuronal processes, that the timing of 

individual items will deviate sufficiently to introduce order errors into the system. If 

items are presented during the period between the list being presented and recall, 

perturbations in the reactivation cycles of the reverbatory loops may introduce order, 

intrusion and omission errors. Estes assumes that loss of order information is primary, 

and at a greater rate for closely spaced and similar items, with loss of item information 

derived from the loss of order. 

Estes applies the model to replicating the serial position and distance function curves 

of Healy (1971, cited in Estes, 1972) which it manages to predict reasonably well. 

Estes also presents an account of chunking (Miller, 1956; Johnson, 1970) and in 

particular how a chunk size of three or four items is optimal (Wickelgren,1964, 1967). 

In summary, Estes (1972) presents a model of serial order in which item information is 

stored in a hierarchy of item to control element associations (cf. Johnson, 1970). Order 

information is stored in the form of reverbatory decay loops between each item and the 

control element with which it is associated. Estes demonstrates that a model of this 

form is capable of reproducing the item and order serial position curves and distance 

functions of Healy (1971, cited in Estes, 1972) and Bjork and Healy (1970). It also 

provides an account for why chunk (Miller, 1956) sizes of three or four items produce 
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optimal results (Wickelgren, 1964, 1967). However, like the chunking model of the 

previous section, it is unclear how this could be model data at the level of individual 

trials with distributed representations. 

3.5 Dynamic context models 

3.5.1 Competitive Queuing model 

The competitive queuing (CQ) model is a connectionist model for sequence learning 

and recall that has been applied successfully to the problem of learning and recall of 

English monosyllabic words (Houghton, 1990, 1994a, 1994b; Houghton, Glasspool & 

Shallice, 1994). 

There are five main constraints placed upon the CQ model when applied to 

phonological retrieval of word forms: 

(1) Recall of a word should involve the network activating a sequence of states 

so that each phoneme of the word becomes the most active. In this manner, 

words are not stored as a copy or template, but recreated on-line as a dynamic 

activity pattern. 

(2) There should be no position specific coding of elements as these lead to 

problems when attempting to represent temporal order. 

(3) Phonemes should be pre-activated before being produced, and the ability to 

do so should be a prerequisite of the model. 

(4) The network should learn sequences through exposure to them followed by 

associative weight changes. During recall, excitatory feed-forward connections 

ensure that only learning of positive weights takes place. 

(5) Inhibitory mechanisms should be involved in all levels of operation. 

50 



Modelling human short-term memory for serial order Chapter 3 

The CQ model is a three layer architecture of on-centre (i.e. feedback positively to 

themselves) off-surround (inhibit and are inhibited by other units in the same layer) 

nodes (Houghton, 1990, figure 11.2). The model uses local representations to 

represent, for example, linguistic items such as phonemes. Node activations vary 

between 1 and -1, with O representing the background activation and negative values 

representing suppressed activation. 

Ll 

L3 

SEQUENCE NODES 
(Word Nodes) 

ITEM NODES 
(Phoneme Nodes) 

COMPETITIVE FILTER 

Figure 3.9 Inter-layer connections in basic CQ model 

(Adapted from Houghton, 1990) 

Figure 3.9 illustrates the basic CQ model. Each node in the first layer (Ll), the word 

node layer, represents a learned sequence of phonemes in L2. The first and second 

layers are fully interconnected with excitatory connections in both the feed forward 

and feed back directions. The weights on these connections are variable as it is here 

that learning takes place when a new word is presented. 

The first layer also contains pairs of initiator and end nodes (I-nodes and E-nodes 

accordingly) . The connections between L2 and L3 are feed forward one-to-one 

excitatory and essentially map the second layer on to the third layer. However, the 

lateral interactions between nodes in L3 are stronger than those in L2 making the layer 

a "winner-takes-all" architecture. It is possible that a number of nodes may be active in 

the second layer at any one time. Once an item has won in the third layer, a strongly 

inhibitive feedback connection ensures that that same item is inhibited in the second 

layer. In this manner, the third layer acts as a competitive filter. 
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Learning is a two stage procedure. The first is the initial exposure to the word and the 

phonemes required in order to reconstruct that word. Initially all the weights between 

the first two layers are set to zero (the background value). A word is represented as a 

sequence of delta vectors (zero in all but one of its elements, which takes a value of 

+ 1) that correspond to phoneme nodes in the second layer. At the onset of each new 

word, an I-node is fully activated and then decreases with each successive time step. 

The activation of each phoneme node in the second layer, ai, is computed as follows: 

a;(t) = rnin(l,8 a;(t-1) + l;(t)) 
(3.3) 

Here Ii represents the value of the /h element of the current input vector and o, the 

decay factor. Hence the activation of each node in the second layer either stays at zero 

or, once activated (to + 1) by the corresponding unit in the first layer, decays with time 

to zero. At the end of the sequence, the E-node becomes fully activated while the I

node has decreased to approximately zero activation. This is achieved by the inclusion 

of rate of change of activity detectors in the input pathway that detect when a new 

word is presented (and hence activate an I-node) and also when it has finished (and 

activate the corresponding E-node). 
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Figure 3.10 I-node and E-node activations for a seven item sequence 

(Adapted from Houghton, 1994b) 
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The combination of I and E-node signals allow serial position to be represented by a 

continuous distributed state (figure 3.10) which can provide temporal edges with 

which to bound the start and end of each word. Although only two dimensional, the 

signal could be of any dimensionality, however Houghton, Glasspool and Shallice 

( 1994) argue that a larger dimensionality control signal would be harder to account 

for. 

Learning in the weighted connections between the first two layers is by simple Hebbian 

association where ai represents the activation of the th phoneme node and ai represents 

the activation of the l I-node in the word layer: 

(3.4) 

As the word ends and the E-node activates, so the layer two activations are all 

decayed by a single time step and the weights from the E-node to the units in the 

second layer are changed according to the previous equation. This initial period of 

learning is unsupervised and is sufficient for shorter stimuli (Houghton, Glasspool & 

Shallice, 1994). However, learning is a two stage process and the second, practice, 

stage involves supervised learning. 

During practice, the weights that were formed in the initial exposure stage are altered 

by a process of supervised learning, until the model can reproduce the phonemes in the 

correct order. During this phase, the I-node corresponding to the target word is 

activated and the output from the competitive filter compared to the target word after 

each time step. If there is any error at the output, the top-down weights from the start 

and end nodes are changed. Weights to the appropriate response are increased while 

those to the incorrect response are decreased (Houghton, 1990, p. 300). Note that no 

error term is propagated during this process. As the I-node is most strongly associated 

with elements at the start of a sequence, and initial access to a sequence is by 

activation of the I-node, so the beginning of a list is the most readily recollected 

portion of a sequence. 
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Having learned a number of words, the system can be made to recall the items by 

setting the activation of the appropriate I-node to one. The activation feeds through to 

the second layer where phoneme nodes are updated as follows: 

{
o a (t) + (1- a;(t))f(net;(t)), 

a.(t+l)= 
' o a (t) + (1 + a;(t))f(net;(t)), 

if neti (t) > 0 

if neti (t) < 0 
(3.5) 

Here, & represents a passive decay parameter, (l±ai(t)) corresponds to a gain control 

which ensures that the increase in activation is proportional to the current activation, 

the function f represents a squashing function, such as the sigmoid function, that 

ensures that the function neti remains bounded between 1 and -1. Of great significance 

is the relationship between the I-node and the E-node. It has already been stated that 

the I-node is most active at the start of the word, and least at the completion of that 

word, the converse for the E-node. This is most simply achieved by the relationship: 

(3.6) 

Furthermore, the issue of how a word is terminated is addressed by the inclusion of a 

inhibitory control circuit that activates once activity in the phoneme level drops below 

a threshold value. Once active, it resets the word node activations to zero to prevent 

further phoneme nodes becoming activated. Hence, during recall, after an I-node has 

been activated and the activation propagated forward through the phoneme layer, the 

first items will have the greatest levels of activation. As the activation passes to the 

competitive filter layer, the most active unit will suppress the remainder before feeding 

back to the corresponding unit in the phoneme layer and deactivating itself. 

Meanwhile, the level of activation of the winning unit in the competitive filter layer 

will begin to decay rapidly. 
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Figure 3.11 The activation history of phoneme units during the recall of the word /string/ 

(Adapted from Houghton, 1990) 

Figure 3.11 illustrates a sequence of phonemes becoming the most active m the 

competitive filter layer during recall of the word string. Each curve is labelled by the 

phoneme it represents at the point it wins the competition in the competitive filter and 

is subsequently suppressed. It is clear from this figure also Houghton (1990, figures 

11.8, 11.9 & 11.10) that: 

(1) All the sequence elements, or phonemes, become activated in parallel. 

(2) Elements become gradually more activated with time until recall at which 

point they are rapidly suppressed. The gradual increase in activation is due to 

both the decrease in lateral inhibition and the increase in the activation of the 

sequence's E-node. 

(3) The relative activations at any particular time step should reflect the order 

in which the elements will be recalled. 

Recall stops when either the correct number of items has been recalled, or when the 

average activation of all the nodes falls below a certain threshold, or finally, when a 

special "end of sequence" node becomes active. 

Subsequent refinements include a geminate node that facilitates the modelling of 

repeated items in adjacent serial positions (Houghton, Glasspool & Shallice, 1994, p. 
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385). These have to be identified and tagged accordingly during a pre-processing stage 

prior to learning. 

Houghton, Glasspool and Shallice ( 1994) attempt to fit the CQ model to word length 

data. However performance is poorer than the empirical data for each word length 

condition. Houghton attributes this to either the accumulation of noise which will 

decrease performance on later list items, or the limitations of a two dimensional 

control signal, particularly for longer items where seven separable events must be 

represented within the 90 degree phase space (figure 3.10). In fact, this last statement 

would suggest that the memory span of the CQ model occurs as a direct result of the 

limited discriminatory power of a two dimensional control signal. 

Houghton, Glasspool and Shallice (1994) also observe that the CQ model can produce 

a similar range of errors (insertions, deletions, exchanges, shifts and substitutions) to 

that reported in the empirical data. The CQ model also produces reasonable serial 

position curves, although Houghton observes that the peak of the error distribution 

curve occurs nearer to the end of the sequence than is apparent in the empirical data. 

In summary, Houghton (1990, 1994a) outlines an architecture for serial ordered recall 

that relies on a competitive queueing mechanism. The model uses a two dimensional 

control signal, implemented by I and E-nodes whose activations decay and rise in a 

manner which facilitates the modelling of the temporal order. A competitive filter 

selects the most active output node and inhibits all other output nodes during recall, 

before deactivating the representation of itself in the second layer and as such 

removing itself from the queue of potentially recallable items. The model is shown to 

produce realistic word length, serial position curve and error distribution data 

(Houghton, Glasspool & Shallice, 1994). However, the author would suggest that the 

limited ability of a two dimensional control vector to produce highly discriminable 

control states is responsible for the memory span performance. Furthermore, the use 

of such a limited capacity control signal facilitates the need for a more comprehensive 

inhibitory mechanism at recall. 
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3.5.2 Network model of the Articulatory Loop 

In the following section, a modular model of working memory, the articulatory loop 

(Baddeley & Hitch, 1974; Baddeley, 1986) is outlined, then the specific network 

implementation of Burgess and Hitch (1992) is described. 

Baddeley and Hitch (1974) and Baddeley (1986) outline a modular model of working 

memory that contains a number of different components including the central 

executive with its peripheral components: the visuo-spatial scratch-pad and an 

articulatory loop for processing language material. However, the main focus of 

attention for this section is the articulatory loop for phonological information. In its 

most basic form, Baddeley's articulatory loop can be described as a limited capacity 

phonological store, analogous to a short loop of tape, coupled with a sub-vocal 

rehearsal process. It is assumed that memory traces will decay, unless rehearsed, after 

a period of one or two seconds. 

There is much evidence to support the notion of a phonological store in memory7
. 

First, substitution errors that occur in a visually presented immediate recall task are 

similar to those that occur when presentation is auditory (Conrad, 1964). This led to 

the discovery of the phonemic similarity effect: that phonemically similar items are 

harder to recall in order than phonemically nonconfusable items (Conrad & Hull, 1964; 

Wickelgren, 1965a; Baddeley, 1966a). 

Evidence is also provided by the results of experiments that used articulatory 

suppression. Briefly, subjects are presented with sequences of acoustically confusable 

and nonconfusable items. Rehearsal through articulation is suppressed by requiring the 

subjects to vocalise a distractor (e.g. the word the; Murray, 1965, 1967). Only if the 

stimuli are presented visually, and rehearsal prevented in this manner, does the 

phonological similarity effect vanish (Murray, 1968). Further evidence for a 

phonological store is provided by word length effects (Baddeley, Thomson & 

Buchanan, 1975) which demonstrate that subjects find that they can recall more 

7 See chapter 2 for more details of the empirical data described briefly here. 

57 



Modelling human short-term memory for serial order Chapter 3 

shorter words than longer words from short term memory. A similar effect was 

reported by Ellis and Hennelley (1982) who demonstrated that bilingual subjects had a 

poorer memory span for Welsh digits than for English digits, which they subsequently 

attributed to the lengthier articulation times for Welsh digits. Suppression removes the 

word length effect for both visually presented and spoken stimuli (Baddeley, Lewis, & 

Vallar, 1984). This suggests that the articulatory loop must be refined in order to 

account for modality effects and phonemic similarity and word length. 

In this basic form, the articulatory loop has been shown to account for a range of 

findings (see Baddeley, 1986; Burgess & Hitch, 1992). However, it is unclear precisely 

how the model can be applied to the problem of serial order. Burgess and Hitch (1992) 

note that the phonemic similarity effect is explained by the articulatory loop in terms of 

the difficulty in being able to discriminate between the memory traces of similar items, 

much in accordance with Wickelgren (1965a). However, they observe that there is 

little explanation for why similar items transpose (Conrad, 1964) nor how a bowed 

serial position curve may result during ordered recall. Further, given the existence of 

data such as serial order intrusions (Conrad, 1960a) which may be accounted for by a 

positional model of order memory, Burgess and Hitch suggest a modification to the 

articulatory loop which includes both item-to-item and position-to-item associative 

mechanisms in order to account for serial order data. 

Therefore, Burgess and Hitch ( 1992) describe a network implementation of the 

articulatory loop, aiming to account for a series of empirical findings including the 

reverse-S shaped memory span curve, phonemic similarity, word length and 

articulatory suppression effects. They also wish to replicate the basic bowed shape of 

the serial position curve, order error distributions and phonemic confusion errors. 

The network, outlined in figure 3.12, is a four-layer feed-forward network with a 

feedback articulatory loop between the output phoneme layer and the input phoneme 

layer. Items are activated by phonemic input during presentation and reactivated by 

context and phonemic feedback during output. 
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Contextual Input Stimulus 

Context Nodes Input Phoneme Nodes 

Strong -ve 
Feedback 

Competitive Filter 

Output Phoneme Nodes 

Output 

Feedback 

Figure 3.12 Outline of the network model of the Articulatory Loop 

(Adapted from Burgess & Hitch, 1992) 

The contextual input for an item is represented by a pattern of activation that evolves 

with time. The context represents nonphonological information, including temporal 

information. As each word is presented, two-thirds of the context vector elements, 

selected at random, are updated. Of those that are updated, a random subset of six are 

assigned non-zero activations, while the remainder are zeroed. In this manner, the 

similarity between neighbouring contexts varies with their temporal separation. 

Items are represented at the input and output locally by phoneme nodes. There are 53 

input and output phoneme nodes, one for each phoneme. The activation of each (non

context) node depends upon the activations of the nodes which are connected to it and 

the weights connecting them to it. Activations take continuous values between -1 and 

+l. 

Selecting a word during recall involves a cyclic competitive queuing process 

(Houghton, 1990). Each word node is connected to a competitive filter node by an 

excitatory connection. However, there is strong lateral inhibition between the nodes in 

the competitive filter which results in the node from the competitive filter that is 

connected to the most active word node, suppressing all of the remaining competitive 
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filter nodes. The winning node then excites the corresponding output phoneme nodes. 

Using a set of strongly inhibitive feedback connections from the competitive filter to 

the word layer, the current word node may be suppressed when the word layer next 

becomes active by the winning competitive filter node. 

The weights responsible for the lateral inhibition in the competitive filter, also the one

to-one excitatory connections from word nodes to competitive filter nodes and the 

one-to-one inhibitory feedback from the competitive filter to the word nodes, are all 

fixed. Learning only occurs in the temporary excitatory weights between the context 

and word nodes, and also between the output phoneme and input phoneme layers in 

the feedback, chaining, loop. Learning is by "one-shot" Hebbian adjustment and both 

sets of weights decay after each phonemic time step. Noise is added to the learned 

weights in order to introduce errors. Relearning of the temporary weights during recall 

ensures that the weights do not decay to zero. 

The word layer contains 26 nodes corresponding to each letter of the alphabet. The 

weights connecting the relevant phonemes from the input phoneme layer and the word 

node are prelearned. In this manner, in order to learn to recognise the letter 'c', the 

input phoneme nodes for "s" and "ee" and the word node "c" must be activated and the 

weights updated accordingly. However, other word nodes that share either phoneme 

in common will also be activated (e.g. "b", "g", "s" or "x"). Phoneme nodes are not 

ordered and therefore the model treats "s-ee" and "ee-s" as equivalent. If words in a 

list share phonemes, erroneous activation of input phoneme nodes may occur. 

However, one of the most significant elements of the model is the ability to vary the 

degree to which it is either a chaining model or a context driven model. Fph determines 

the fraction of the input which comes from the phonological store rather than the 

context layer. When the input phoneme layer is driving the word layer, Fph tends 

towards unity, however when it is driven by the context layer, Fph tends towards zero. 

The model, as described here, is applied to a number of empirical paradigms. The first 

considers the models capacity measured in terms of memory span. Levels of 
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performance are comparable to those exhibited by humans and are determined by the 

level of noise in the system. Results confirm that the model (Fph=0.5) has a suitable 

memory span and exhibits a phonemic similarity effect (Burgess & Hitch, 1992, figure 

5). Further, when errors occur, they occur between phonemically similar items 

(Conrad, 1964). A word length effect, where time to articulate a word is proportional 

to the number of phonemes, is also reported. 

Next the model (Fph=0.5) is applied to the problem of reproducing the serial position 

curve. However, results report a significant lack of any recency effect. However, once 

again there is a phonemic similarity effect when items are selected from a vocabulary 

of similar letters. However, the lack of recency is still apparent in these curves. 

Analysis of the different categories of error produced by the model reveals that order 

errors occur in much greater proportions than item errors (Bjork & Healy, 1972), 

particularly when the model is configured as a chaining-only model (Fph=0.98). 

However, the model is incapable of producing omission errors without a modification 

to the architecture. When this modification is made, omissions occur towards the end 

of the list. The order error distribution about the target serial position is shown to 

depend upon the extent to which the model is a chaining based account (Burgess & 

Hitch, 1992, figure 11). When this is the case (Fph=0.98), transpositions are not 

clustered about the target serial position, however, when the context layer alone drives 

the model, transpositions occur more naturally (cf. Estes, 1972; Bjork & Healy, 1972; 

Henson, Norris, Page & Baddeley, 1996). In summary, the model produces a realistic 

distribution of errors, more order errors than item errors and phonemic similarity order 

errors. Transpositions occur naturally only when the degree of chaining in the model is 

minimal, although even in this case, the separation between transpositions appears 

unnaturally large. 

When Burgess and Hitch attempt to fit the network model of the articulatory loop to 

the phonemic similarity effect of Baddeley (1968, experiment 5), it fails to reproduce 

the "sawtooth" serial position curves required of the data (Burgess & Hitch, 1992, 

figure 15). Burgess and Hitch account for this poor performance by explaining that 
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when phonemically similar stimuli are used, there is as much chance of an error 

between the two items following the similar items as it happening between the items 

themselves. This is due to the chaining system within the phoneme layers. 

Burgess and Hitch suggest a number of modifications to the model's architecture in 

order to improve performance including a modification to their context signal. In order 

to reduce the number of transpositions occurring between widely temporally separated 

list items, it is suggested that a context is employed that has a zero correlation over 

these larger distances. Introducing a set of contexts which overlap between each 

temporal step resulting in a gradually decreasing similarity between successive states, 

allows a recency component to return to the serial position curve (Fph=0.02). This is 

due entirely to the increased difference between the last context and the earlier 

contexts. This also reduces the number of widely separated order errors (Burgess & 

Hitch, 1992, figure 17). 

A later implementation of the articulatory loop, a three layer connectionist architecture 

(Burgess, 1995; Burgess & Hitch, 1996), is fitted successfully to a range of empirical 

data including serial position curve, memory span and the phonemic similarity effect. 

In summary, the Burgess and Hitch (1992) implementation of the Baddeley (1986) 

articulatory loop model further illustrates the limitations of a chaining based account of 

serial order (cf. Lewandowsky & Murdock, 1989). They observe that the model 

performs best when there is little or no chaining relying instead on item-to-context 

association (Burgess, 1995; Burgess & Hitch, 1996). 

3.6 Activation gradient models 

Highlighting the inability of chaining models such as TODAM (Lewandowsky & 

Murdock, 1989) and the network model of the articulatory loop (Burgess & Hitch, 

1992) to address fundamental data such as the sawtooth serial position curves of 

acoustically confusable and nonconfusable items (Baddeley, Papagno & Norris, 1991; 
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Burgess & Hitch, 1992), Page and Norris (1995; Henson, Norris, Page & Baddeley, 

1996) outline a non-chaining model of immediate memory, the Primacy model. 

The primacy model stores order information in terms of the relative activation levels of 

list items. Items are represented locally by nodes and the temporal order of each item 

is represented by the pattern of activation across each node. Effectively, each item is 

associated to the start of list: the first item most strongly, then less so for each of the 

remaining items (figure 3.13). 

l l l 
2 3 4 5 6 

Figure 3.13 Primacy gradient for a six item list (Adapted from Page & Norris, 1995) 

More specifically, the activations across a four item list, ABCD, may be defined as: 

XA > Xs> Xe> Xo> 0, (3.7) 

and 

XA - Xs = Xs - Xe = Xe - Xo (3.8) 

Where x; represents the activation of the node representing item i. Thus the ordering 

of the node activations corresponds to the temporal ordering of the stimuli and is 

termed the primacy gradient. This means the during recall, the primacy gradient need 

only be established the once by cueing with a "pre-list" context (Henson, Norris, Page 

& Baddeley, 1996) in order to activate each item node in parallel. 
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Once established, ordered recall of each item is possible without the need for a 

separate recall cue for each position (cf. Burgess & Hitch, 1992). Recall is simply a 

iterative process of selecting and then suppressing the item corresponding to that with 

the greatest activation. Suppression could be achieved in a number of ways including 

the competitive filter of Houghton (1990). Page and Norris suggest that without the 

addition of gaussian noise, recall may be perfect. 

At present, there is only one free parameter in the primacy model: N which 

corresponds to the ratio between the inter-activation step (xA - XB) and the amount of 

noise added to each activation prior to selection. The model (N=2) can be shown to 

possess single item primacy and recency effects and a very high mean performance for 

a six item list (Page & Norris, 1995, figure 2). Furthermore, in accordance with the 

empirical data, the majority of the errors that occur are paired transpositions 

concentrated in the central list positions. However, it is with the addition of a second 

parameter introducing decay to the primacy gradient, D, that the model can be fitted to 

experimental data such as the lists of phonemically similar and dissimilar items of 

Baddeley (1968, experiment 5) and Henson, Norris, Page and Baddeley (1996, 

experiment 1) phonemic similarity effect data (Page & Norris, 1995, figures 14 & 15). 

Page and Norris observe that, unlike TODAM (Lewandowsky & Murdock, 1989) or 

the Burgess and Hitch (1992) model, the primacy model produces a desirable type of 

error referred to as fill-in. Fill-in errors occur when an early list item (e.g. B) is 

recalled in the serial position that corresponds to item A. Subsequently item A will 

most probably be recalled in the correct position for item B, ensuring that 

transpositions occur maximally for items separated by one serial position ( e.g. Estes, 

1972). This is in contrast to Burgess and Hitch's (1992) model where if item B was 

again recalled incorrectly (and then suppressed) in the first serial position, the context 

cue for the second serial position would activate both items A and C with equal 

strength. If C is in fact recalled, so the probability of recalling A will then decrease as 

each cue becomes increasingly dissimilar to the cue for A. This means that A may not 

be recalled until the last serial position where it will be the only response left 
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unsuppressed. Clearly this will reduce the degree of recency that such a model could 

exhibit (Henson, Norris, Page & Baddeley, 1996). 

It is evident therefore, that primacy occurs due to the nature of the primacy gradient 

and that as recall progresses and the primacy gradient decays, so more errors will be 

reported in the later list positions (Henson, Norris, Page & Baddeley, 1996). 

Introducing item errors, by use of a noise threshold above which items are recalled and 

below which they are omitted, Page and Norris can reduce the amount of last item 

recency to acceptable levels. This requires two further parameters: P, the peak value 

of the primacy gradient at the start of recall; and T, the threshold noise. With the 

addition of these two parameters, Page and Norris anticipate that the probability of an 

item error increases in each list position. The four parameter model can provide a very 

good fit to both the Baddeley (1968) and Henson, Norris, Page and Baddeley (1996) 

data (Page & Norris, 1995, figure 6). However, the distance functions produced in this 

same simulation (Page & Norris, 1995, figure 7), show few transpositions occurring 

between items in adjacent serial positions - the curves are too pointed. Page and 

Norris fit the primacy model to memory span data demonstrating both the 

characteristic reverse 'S' shaped curves with realistic values for memory span and also 

linear rate of articulation effects (Page & Norris, 1995, figures 8 & 9). 

However, most significantly, the model is fitted to the phonological similarity effect 

data of Baddeley (1968) and Henson, Norris, Page and Baddeley (1996). In order that 

a phonemic confusion effect be produced, the primacy model requires the addition of a 

second stage of processes before output. As before, an item is selected from the first 

stage, however now this activates a series of nodes corresponding to local 

representations of all possible outputs. In this manner, phonologically similar items will 

all be activated by some amount S when a similar item is forwarded to this layer. 

Dissimilar items will be unaffected by the layer. Before selection can be made, the 

output activations are multiplied by the corresponding primacy gradient activations in 

order to ensure that confusions also occur in accordance with the transposition locality 

gradient observed empirically (Henson, Norris, Page & Baddeley, 1996). Furthermore, 
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response suppression must occur independently at both stages in order to maintain the 

fill-in effects described previously. 

In summary, Page and Norris (1995) outline a model of immediate memory, the 

primacy model. Items are represented locally by nodes, the degree of activation of 

which determines the order in which they are recalled. This, primacy gradient of 

activation, decays over time in order to increase the likelihood of confusion in the later 

list positions. Recall involves the selection of the item with the greatest level of 

activation followed by immediate suppression to prevent it being recalled repeatedly. 

A second layer of nodes is introduced in order to facilitate the modelling of phonemic 

confusion effects such as those presented by Baddeley (1968, Experiment 5). The 

model is shown to produce realistic serial order performance with a minimum of 

parameters, although additional gaussian noise on the activations is required in order 

to introduce item errors during recall. The model is fitted to a number of empirical 

results including memory span, articulation rates and the phonemic similarity effect 

(Henson, Norris, Page & Baddeley, 1996). However, it should be observed that 

although the primacy model provides a good account of the data, it does so by making 

the assumption that there is prior knowledge of the list length. Examination of 

equation 3.8 suggests that in order to ensure that the difference in the primacy gradient 

of activation between adjacent items is constant for the whole list length, knowledge 

of the number of items in the list is required to ensure that the activation of the later 

items does not fall to zero. This may be clarified by considering figure 3.13 and 

extrapolating the gradient for a further item: the activation would be approximately 

zero. 

3.7 Summary 

In this chapter, a number of different models and accounts of short-term memory for 

serial order have been presented and considered in light of the empirical data that they 

can account for, and that which they fail to address. 
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Bin models 

In section 3.2 we summarised the item-to-position "bin" theory proposed by Conrad 

(1965) as an attempt to address both serial order intrusion errors (Conrad, 1960a), 

vocabulary size effects (Conrad & Hull, 1964) and phonemic effects during erroneous 

recall (Conrad, 1964). We observed that Conrad's hypothesis that order errors are in 

fact pairs of item errors could not account for Healy's (1974) finding that order and 

item errors occur in different distributions across serial positions. Conrad's account 

also fails to explain why transposition errors occur in such large quantities in short

term memory (e.g. Wickelgren, 1965a) and why loss of order information is faster than 

loss of item information (Bjork & Healy, 1970). We would also suggest that it is 

unclear why each "bin" should be searched in the correct serial order during recall. 

Chaining based models 

In section 3.3 we considered formal models that employ item-to-item associative 

chaining (e.g. Ebbinghaus, 1913; Lewandowsky & Murdock, 1989). Recall relies upon 

at least one of the previous items being used as the cue for the next (Wickelgren, 

1965a; Jordan, 1986). Wickelgren (1966) suggested that such a model could account 

for order errors occurring after repeated items in sequences (Wickelgren, 1965c). 

However, chaining based models are unable to predict the phonemic similarity effect of 

Baddeley (1968, Experiment 5) as they predict that items following confusable items 

suffer during recall. 

TODAM, a distributed chaining-based model of serial order that uses convolution and 

correlation ( cf. Metcalfe Eich, 1982) to perform serial order learning, is shown to fit a 

number of serial order paradigms including memory span and the serial position curve 

(Lewandowsky & Murdock, 1989). However, attempts to fit TODAM to Baddeley's 

(1968, experiment 5) phonemic similarity data by Baddeley, Papagno and Norris 

( 1991) reaffirm the observation that chaining models are not suitable for addressing 

such data (Henson, Norris, Page & Baddeley, 1996). Further inadequacies of TODAM 

include skewed transposition gradients and the sampling without replacement scheme 

(Nairne & Neath, 1994). Also, there is the arbitrary relationship between the item and 

order weighting parameters and item list position, and the manipulation of the number 
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of recallable items in order to introduce recency to the serial position curve (Mewhort, 

Popham & James, 1994), which clearly contradicts the empirical findings 

(Drewnowski, 1980). 

Recurrent networks (Jordan, 1986; Elman, 1990) are also chaining based accounts and 

are similarly flawed as a result. However, they learn sequences by repeated 

presentation and back-propagation and are therefore not suited to single-trial learning 

tasks. 

Hierarchical models 

A third category of models of serial order employ recoding of the stimuli into a 

hierarchical structure of memorial item and order information (Miller, 1956; Johnson, 

1970). An extension of this type of model is described by Estes (1972) in which item 

information is stored in a similar hierarchical form. Order information and forgetting is 

dependant upon a reverbatory loop between each item and the context associated with 

it. Estes demonstrates that such a model can provide a good account of chunking, in 

particular the finding that the optimal size for a chunk is three or four items 

(Wickelgren, 1964, 1967). Most significantly, Estes also demonstrates that the model 

can reproduce the distance functions typical of the empirical data (Healy, 1971; Bjork 

& Healy, 1970). Although these models provide a good theoretical account, it is 

unclear how they could be implemented to perform single trial trial-level learning and 

recall using distributed representations. 

Dynamic context models 

Section 3.5 reviews current models of serial order that employ the use of item-to

context association in order to model sequential behaviour. Houghton's competitive 

queuing network ( 1990, 1994a, 1994b; Houghton, Glasspool & Shallice, 1994) 

employs the use of a two dimensional control signal. The three layer architecture uses 

local representation at the phonemic level, each phoneme being associated with a pair 

of sequence nodes that represent the relative position of the current node in relation to 

start and end of the word. The network uses a competitive filter to select and then 

inhibit the most active item node. Houghton, Glasspool and Shallice ( 1994) 
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demonstrate that the model is capable of producing a reasonable fit to empirical data 

including word length effects, serial position curves, error distributions, and, with a 

modification to the network, lists containing repeated items. However, it would appear 

that the memory span of the network is determined in the main by the limited 

discriminatory capacity of the two-dimensional context signal. This limited 

dimensionality control signal also facilitates the need for a powerful inhibitory 

mechanism such as the competitive filter. 

In their network model of the articulatory loop, Burgess and Hitch (1992, 1996; 

Burgess, 1995) describe a multi-layer architecture that uses local representations of 

phonemes and a context signal that evolves with time. Selection is implemented with a 

competitive filter (Houghton, 1990) that selects the most active output node, inhibiting 

rival nodes, before inhibiting itself in order to prevent repeat errors in successive serial 

positions. Furthermore, the Burgess and Hitch model employs both item-to-item 

chaining and item-to-context associations, the degree of each being controlled by one 

of the model's parameters. The authors observe that the model performs best when 

there is little or no chaining. Burgess and Hitch fit the network model of the 

articulatory loop to a range of empirical data including the serial position curve, item 

and order errors and distance functions. However, like TODAM, the original model 

fails to reproduce the "sawtooth" serial position curves of Baddeley ( 1968, experiment 

5) although a refined version proves successful (Burgess, 1995; Burgess & Hitch, 

1996) .. 

Activation gradient models 

Finally, we present the primacy model of Page and Norris (1995). This is a simple 

model that relies on a gradient of activation produced by cueing for recall only once, 

that activates items in decreasing amounts as displacement from the first serial position 

increases. The most active node is recalled first then inhibited, and then the next most 

active is recalled, and so forth for the complete sequence. The model in its simplest 

form is shown to reproduce the serial position curve. However, with a noise 

component, added to introduce item errors, the model is fitted to memory span and 

articulation rate data. With the addition of a second stage of processing, the model is 
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shown to reproduce the serial position curves of Baddeley's (1968, Experiment 5) 

phonemic similarity data (Henson, Norris, Page & Baddeley, 1996). However, the 

manner in which the primacy gradient is generated would suggest that the model 

requires some apriori knowledge of the number of items in the sequence in order to 

ensure that the primacy gradient does not fall to zero before the end of the list. Also, 

analysis of the transposition gradients reveals that the primacy model does not produce 

a high proportion of errors with items from serial position immediately adjacent to the 

target serial position. 

Conclusion 

It is clear that none of the formal models described in this chapter can account for all 

of the adult data. Also, it is unclear how any of them could provide a developmental 

account of short-term memory. Therefore, we will now present two novel 

architectures for association and serial order recall. 
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CHAPTER4 

Developmental Associative Recall Network (DARNET) 

4.1 Introduction 

As reviewed in chapter 3, several recent models of human associative memory rely 

upon the mathematical processes of convolution and correlation. These provide the 

single-trial associative mechanisms with which to store and recall vectors of features in 

a distributed memory trace (Metcalfe Eich, 1982, 1985, 1991; Lewandowsky & 

Murdock, 1989; Murdock, 1982, 1983, 1992, 1993). In these models, pairs of 

previously unseen vectors are presented simultaneously to the network. Once 

convolved together, the association is stored in a composite memory trace. 

Consequently, one of the input vectors may be selected and used to probe the memory 

trace so that an approximation to the second of the input vectors may be generated at 

the output. This process requires the reverse of convolution, correlation. 

These models have proved to be very successful in modelling a wide range of human 

empirical data such as serial recall using TODAM (Lewandowsky & Murdock, 1989) 

and paired-associate learning using CHARM (Metcalfe Eich, 1982). Furthermore, 

when the requirement is to model traditional serial list learning and recall paradigms, 

their ability to perform one-shot learning has proved a significant advantage over other 

connectionist models that have to learn by a gradual gradient-descent learning process 

such as back-propagation (Rumelhart, Hinton & Williams, 1986). However, the very 

fact that the associative mechanisms of convolution and correlation are inbuilt within 

the architecture of these associative models, means that they are unable to provide a 

developmental account of associative memory. 

There is much empirical data examining the development of memory in children; a 

comprehensive review would be beyond the scope of this thesis. Much of this work is 
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concerned with the development of memory span (e.g. Gathercole & Adams, 1993) 

and rate of articulation (e.g. Hitch, Halliday & Littler, 1993). For example, rate of 

articulation increases with age and has been interpreted as the cause of developmental 

increases in memory span (e.g. Hulme, Thomson, Muir & Lawrence, 1984). Also, the 

phonemic similarity effect (Conrad, 1964) becomes more apparent as the age of the 

subject increases (e.g. from three years to ten years; Hulme & Tordoff, 1989). 

In an attempt to address the developmental nature of memory, a connectionist-like 

Developmental Associative Recall NETwork, DARNET, that learns-to-learn, has been 

developed (Brown, Hyland & Hulme, 1994; Brown, Dalloz & Hulme, 1995; Brown, 

Preece & Hulme, 1995; Brown, Hulme & Dalloz, 1996). DARNET uses a gradient 

descent learning process in order to learn how to associate novel pairs of input vectors 

and store them in a distributed memory trace. It can then accurately recall the second 

of the pair of input vectors when the first is selected randomly and presented as a 

probe to the memory trace. Once DARNET has learned how to form associations and 

retrieve items from the memory trace during this, the "phase one" stage of 

development, it performs single-shot associative learning at least as accurately as the 

convolution-correlation models described in chapter 3. Then, during "phase two" of 

the process, DARNET is applied to modelling some of the empirical data from studies 

of association including paired-associate learning (Metcalfe Eich, 1982). 

In the following chapter, DARNET is introduced and both phases of the learning 

process described. In the first section, DARNET's architecture is examined and how it 

is possible for a network to "learn-to-learn" is considered. Next, we discuss the effect 

that the few free parameters in the DARNET architecture have on its ability to learn 

during this phase, before examining the impact that varying the size of the memory 

trace can have on the speed with which DARNET learns to learn. Finally, we examine 

the phase two stage and examine DARNET's ability to perform paired-associate 

learning, in particular with reference to empirical data presented by Metcalfe Eich 

(1982). We also suggest how a developmental account of cue-intrusion errors might 

account for the counter intuitive findings of Metcalfe Eich's data. 
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4.2 Phase One learning 

DARNET has two distinct subnetworks: the first implements the storage of pairs of 

previously unseen item vectors in a memory trace and the second network implements 

accurate retrieval of the second of the pair when the memory trace is probed with the 

first. Initially all of the learned weights are assigned a small random value, so it is 

impossible for DARNET to accurately perform single trial learning and recall without 

additional training. During phase one learning, this process of storage and retrieval is 

optimised so that, during phase two, DARNET will be able to perform accurate single 

trial learning and retrieval. In this section we describe the DARNET architecture and 

address the question of how the network can "learn-to-learn". 

4.2.1 Storage Procedure 

As in convolution models such as CHARM (Metcalfe Eich, 1982, 1985, 1991) and 

TODAM (Lewandowsky & Murdock, 1989; Murdock, 1982, 1983, 1993) items are 

represented by normalised vectors, elements of which are selected randomly from a 

continuous normal distribution with mean of zero and variance of one. 

Item vectors are connected to a layer of hidden units called "product units" by a layer 

of fixed connections such that the pairwise combinations of the elements from one 

vector and those in the second vector are represented by a unique product unit. 

Moreover, the product unit layer can be considered as the n-by-n square matrix that 

results from the matrix multiplication of the two n-dimensionality input vectors. For 

example, if we consider the pair of two element input vectors a and b: 

a= [a,, a2] 

b = [b,, b2] 
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Then the product units take the following values: 

Pt= a1b1 

p2 = a1b2 

p3 = a2b1 

p4 = a2b2 

Chapter4 

(4.2) 

This layer of product units is fully connected to the trace vector by a layer of learned 

weights that are modified during the phase one learning stage. This architecture is 

illustrated in figure 4.1. 

Hidden layer of 
product units 

Trace Vector 

Figure 4.1 DARNET storage architecture 

During the storage procedure, items are presented simultaneously at the input to the 

network and the pairwise combinations of each vector element mapped on to the 

hidden layer of product units. As these values are propagated to each of the trace 

vector elements, they are modulated by the value ( or strength) of the appropriate 

learned weight between the product and trace vector unit. These storage weights are 

manipulated during the phase one learning in order to optimise the storage and 

retrieval process by minimising the error produced at the retrieval stage. 

It is assumed that the input vectors, a and b, are normalised and n-dimensional and 

that the trace vector, t, has dimensionality m. It is also assumed that the learned 

storage weight between the product unit representing the combination of the lh 

element of a and the l element of b, and the kth element of t, can be represented as 

S iik· It is thus possible to express the storage procedure for the kth element of the trace 

vector as: 
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n II 

tk = I,I,a;bjSijk 
i=I j = I 

(4.3) 

Hence it is possible for every element of the trace vector to be calculated by summing 

the product of each element of the hidden product layer by the appropriate storage 

weight connecting the elements. 

4.2.2 Recall procedure 

It has already been illustrated how it is possible to associate two vectors to produce a 

composite trace vector. During the recall procedure, one of these original input 

vectors is selected at random to act as a probe (i.e. a cue for retrieval) and is presented 

to the memory trace. In figure 4.2, item vector a has been selected as the probe. 

Trace Vector 

Hidden layer of 
1-.,._,___,____,____,___._t__J3 product units 

Retrieved 
Item Vector 

Figure 4.2 DARNET recall architecture 

In a manner similar to the storage procedure, all the elements of both the probe item 

and the trace vector are connected via fixed weights to a hidden layer of product units. 

Once again, each element of the product unit layer represents a unique probe-trace 

element combination. However, in this case the product layer may be considered to be 

an n-by-m dimensionality matrix resultant from the matrix multiplication of the n

dimensionality probe vector and the m-dimensionality trace vector. This layer of 

product units is fully connected to the retrieved vector, in this case b', by a layer of 

variable retrieval weights that are once again modified during the phase one learning 

stage. 
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During the recall procedure, the randomly selected probe item is presented along with 

the trace vector and the pairwise combinations of each probe-trace element mapped on 

to the hidden layer of product units by fixed strength weights. These values are then 

propagated to each of the retrieved vector elements and are scaled by the strength of 

the learned, retrieval, weight connecting the appropriate product and retrieved vector 

unit. 

As before, this process may be stated mathematically. We define the n-dimensionality 

retrieved vector as b', and let the learned storage weight between the product unit 

representing the combination of the pth element of the probe vector a, and the kth 

element of the trace vector t, and the qth element of the retrieved vector b', be 

represented as Rkpq• Therefore, the qth element of the retrieved vector may be 

expressed as: 

II m 

b~ = I, I,a,,tkRkpq 
p=lk=l 

(4.4) 

Hence it is possible to express every element in terms of either the probe and trace 

vectors, or by combining equation 4.4 with 4.3, in terms of the pair of input vectors by 

substituting for t in equation 4.4. 

As each of the weights stored in S and R is initialised with a small random value, it is 

impossible for DARNET to perform single trial learning and recall of item associations 

accurately without additional training. This training process, the phase one learning-to

learn stage, is described in the following section. 

4.2.3 Learning-to-learn 

During the phase one learning-to-learn stage, the task of DARNET is to minimise the 

error between the retrieved vector produced by probing the memory trace with one of 

the input vectors, and the second of the pair of input vectors, the target vector. It 

achieves this by repeatedly associating novel pairs of input vectors and altering the 

76 



Modelling human short-term memory for serial order Chapter4 

adjustable storage and retrieval weights, S and R respectively, in order to minimise 

the error between the latest target item and the retrieved item. In order to achieve this, 

a variant of the gradient descent algorithm (e.g. back-propagation; Rumelhart, Hinton 

& Williams, 1986) is employed and is presented here in an abridged form (see Brown, 

Hulme & Dalloz, 1996). 

When each new set of input items is presented to the network and the retrieved item 

generated at the output, the slight change in R, llR, is calculated as: 

(4.5) 

Where llRkpq is the small change made to the retrieval weight Rkpq during each learning 

iteration, hR is the learning rate coefficient for the retrieval weights, (bq-b'q) is the 

difference between the qth elements of the target and retrieved item vectors, tk is the kth 

element of the trace vector and ap, the pth element of the probe vector. 

The corresponding learning rule for the storage weights is: 

(4.6) 

where llSiik is the small change made to the storage weight Siik during each learning 

iteration, hs is the learning rate coefficient for the storage weights (and is typically 

equal to hR and take a small value of approximately 0.1), (bq-b'q) is again the difference 

between the qth elements of the target and retrieved item vectors and ai and bi are the 

ith and Jh elements of the input vectors, a and b. Also, ap, is the pth element of the 

probe vector and finally, R kpq, is the retrieval weight. 

This iterative process of presenting previously unseen items to the network, then 

changing both the storage and retrieval weights in order to minimise the error at the 

output, is repeated many times with novel pairs of items until DARNET has learned to 

accurately store and retrieve pairs of items from the composite memory trace. Clearly 
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the ability to learn and recall novel pairs of items in a single trial contrasts with 

traditional back-propagation models which learn a specific set of data by repeated 

presention during training. 

To summarise the phase one learning stage: novel items, represented by normalised n

dimensionality vectors, are presented in pairs to the network and the association 

between them, formed by propagating the product layer representation of the vectors 

by the learned storage weights, stored in the m-dirnensionality memory trace. During 

this learning-to-learn process, DARNET must alter the (learned) storage and retrieval 

weights that link the hidden layer of product units with either the memory trace or the 

retrieved item, by small amounts so as to minimise the error between the target item 

and the retrieved item. Once trained to a predetermined degree of accuracy, DARNET 

should be able to accurately store and recall previously unseen items to and from the 

memory trace in a single trial. 

In the next section, simulations are presented which illustrate how DARNET learns to 

learn, along with an investigation of the effects of manipulating the limited number of 

free parameters in the DARNET architecture. 

4.3 Simulations during the phase one learning stage 

4.3.1 Simulation 1: Learning-to-learn 

Introduction 

In the following simulation, the results of training the network to perform the item 

storage and retrieval described in section 4.2 are presented. The model was required to 

learn to associate novel pairs of items to a sufficient degree of accuracy such that the 

model could be shown to perform near perfect item storage and retrieval. The aim of 

this simulation was to replicate earlier results (e.g. Brown, Hulme & Dalloz, 1996) 

which illustrate how DARNET learns to learn. 
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Method 

For this simulation, DARNET was presented with novel pairs of ten element item 

vectors. Each element was selected randomly from a continuous normal distribution of 

scalars with mean zero and variance of one. Each item vector was normalised in order 

that the dot product between any one item vector and itself was unity. The association 

formed after presentation was stored in a memory trace of dimensionality 19 elements. 

(This trace vector dimensionality was selected in order to ensure that this latest 

implementation of the DARNET architecture could replicate earlier results presented 

in Brown, Hulme & Dalloz (1996) in which DARNET was trained to perform 

convolution where the dimensionality of the memory trace is required to be 2n-1 for n

dirnensionality input vectors). The storage and retrieval weights ·in network were 

initialised with small random values with mean of zero. 

Before each new learning epoch, each of the 19 memory trace elements was reset to 

zero and a novel pair of items generated at the input. These input vectors were then 

propagated via the hidden layer of product units and modulated by the storage weights 

in order to generate a memory trace vector. 

Next, one of the input vectors was selected at random and presented as a probe, along 

with the memory trace, to the second hidden layer of product units. The pattern of 

activation across these product units was then modulated by the retrieval weights and 

an approximation to the target item generated at the output. 

The error score between the target item and the approximation was calculated. Finally, 

the learning rules (equations 4.5 and 4.6) were applied to the storage and retrieval 

weights in order to minimise the error at the output. If the error at the output was 

found to fall below a specific criterion, phase one training ceased, otherwise a new 

epoch began and the process described here was repeated once more. 

Results 

Figure 4.3 illustrates how the mean squared error between the retrieved item and the 

target item decreases as the number of training epochs increases. The mean-squared 
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error score is calculated by summing the squared difference between each element of 

the target item and the corresponding element of the retrieved vector. However, if this 

error score is plotted alone, the learning curve generated can be erratic even though 

the overall trend is towards a decreasing error score (e.g. Brown, Hulme & Dalloz, 

1996, figure 5). This problem is overcome by averaging the error after each (set of) 

epoch(s). 

4 

3.5 

0'-------'-------'--------J 
0 1000 2000 3000 

Trials 

Figure 4.3 Error score between the output and the target item as DARNET learns-to-learn 

More precisely: in order to generate the smooth learning curve of figure 4.3, at the 

point when the error score was to be calculated, phase one learning was suspended 

and instead a number of novel input vectors were presented and the mean-squared 

error calculated as described above. However, this mean-squared error score was then 

averaged for a number of different input vector pairs and the average mean-square 

error calculated. The net result is that plotting the average mean-squared error score 

gives a more accurate indication of the performance of the network at any one time. 

It is clear from figure 4.3 that DARNET learns to perform accurate item storage and 

retrieval after three thousand epochs of phase one learning. 
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Discussion 

Comparison of the results presented here with data presented in Brown, Hulme and 

Dalloz (1996, figure 5) confirms that DARNET is in fact performing to a similar level 

of performance as would be expected from a convolution-correlation model. Brown, 

Hulme & Dalloz (1996) demonstrate that it is possible to train DARNET to perform 

convolution and correlation. Analysis of the learned weights and memory trace reveals 

that, although DARNET may use the same dimensionality memory trace vector as a 

convolution model, and a similar set of stimuli, DARNET does not use convolution as 

a default associative mechanism unless specifically trained to do so. 

In summary, we can confirm that DARNET can learn-to-learn. By applying a gradient 

descent based algorithm to the storage and retrieval weights, DARNET can learn to 

perform single-shot association and recall of novel pairs of item vectors to a degree of 

accuracy similar to that obtained by convolution-correlation based models such as 

CHARM (Metcalfe Eich, 1982, 1985, 1991) and TODAM (Lewandowsky & 

Murdock, 1989; Murdock, 1982, 1983, 1992, 1993). 

However, DARNET possesses a number of free parameters that can affect its ability to 

perform phase one learning. In the following simulation, the first of these parameters, 

the learning rate parameter, is manipulated and the effect on learning investigated. 

This represents the first in a series of simulations that explores the basic computational 

properties of the architecture prior to addressing the psychological data. 

4.3.2 Simulation 2: Effect of varying the learning rate 

Introduction 

Equations 4.5 and 4.6, the storage and retrieval weight change algorithms, include the 

learning rate coefficients, hs and hR, These determine the strength with which the error 

between the retrieved vector and the target vector is propagated across the weights in 

the network. Typically these take a small value in order to ensure that the learning 

process is gradual and less erratic than if they were greater. However, if the learning 

rate is increased slightly, it is anticipated that the network should learn-to-learn to a 
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similar degree of accuracy as the network in the previous section, but after a shorter 

period of training. 

In the following simulation, a similar network to that used before is presented. 

However, in this case the learning rate parameter is manipulated and the affect on 

phase one learning performance investigated. 

Method 

For the following simulation, the same method as that described in section 4.3.1.2 was 

employed. However, in this case, the storage delta weight and retrieval delta weight 

learning rate parameters, hs and hR respectively, were varied. However, in all cases hs 

was equal to hR. 

Results 

Figure 4.4 illustrates the average mean-squared error decreasing over two sets of 

20,000 epochs of phase one learning. In the first condition, the learning rate is 0.05 

while in the second it is assigned a value of 0.10. 
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Figure 4.4 Effect of increased learning rate during phase one training 

It is clear from these results that when the learning rate parameter is increased, 

DARNET reaches the asymptotic level of performance after approximately six 
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thousand trials. At this point, the condition with the lower learning rate is still 

performing slightly worse and does not in fact reach the same degree of performance 

until after a further ten thousand epochs of training. 

Discussion 

It is clear from the findings presented in figure 4.4 that judicious use of a learning rate 

coefficient can reduce the amount of time taken to train the network to perform 

accurate item association and retrieval. However, it is also clear from these results that 

the use of a learning rate parameter will not improve the overall performance of the 

network. It will only reduce the amount of time required by the network to train to 

that same level of performance. 

In the following section, the second of the free parameters, the momentum term, is 

manipulated and the impact that it has on the performance of the network during the 

phase one stage assessed. 

4.3.3 Simulation 3: Effect of varying the momentum parameter 

Introduction 

In the following simulation, a momentum coefficient was introduced to the DARNET 

architecture in order to improve performance during the phase one learning stage. 

Before examining the influence of this parameter, it is important to explain why this 

term should be introduced to the network. 

Consider the common analogy used when describing neural network learning, that of 

the path followed by a ball rolling down a slope. If you assume that a ball at the top of 

a hill represents the state of the network immediately before the first epoch, the base of 

the . hill as representing the state of the network when it is performing error free 

association and retrieval, then the displacement of the ball at any time from the base 

corresponds to the error in the network. So, the path followed by the DARNET 

network during the phase one learning stage can be compared to the path taken by the 
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ball, rolling from the initial state of maximum error to its final resting position when 

the network is considered to have learned how to perform accurately. 

During the phase one stage, when the first set of items has been presented to the 

network and the error between the item at the output and the target item calculated, 

the first set of delta-weights can be generated. These weights act to minimise the error 

between the current output and the target item. As this is the first time that any delta

weights have been calculated, we anticipate that they will produce the greatest change 

in the network as it should be in a state of maximum error. Referring back to the ball

on-slope analogy, as these weight changes are applied to the network, so we can 

imagine that the ball has become agitated and has started to travel in the steepest 

possible direction from the summit towards the base of the hill. Clearly, the ball acts to 

minimise its displacement (i.e. error) above the baseline as quickly as possible. 

Without a momentum term, the network recalculates the delta-weights again during 

the next epoch without any consideration of those calculated during the previous trial. 

Referring again to the ball-on-slope analogy, without momentum the ball will stop 

travelling before the next epoch. Its displacement above the base will be re-evaluated 

and a second set of delta weights calculated. Although this new velocity may not be in 

as steep a direction as during the first epoch, no consideration is made of the direction 

in which the ball was travelling prior to this latest epoch. The new velocity is based 

solely upon the current state of the network. However, the introduction of a 

momentum term ensures that before the new velocity is calculated, the direction in 

which the ball was travelling previously is taken into consideration. 

This may be clarified by considering the following equation in which the momentum 

term, MR, is shown to scale the previous delta-weights before they are combined with 

the current state of the network to produce the next set of delta-weights: 
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As before, ~Rkpq is the small change made to the retrieval weight Rkpq during each 

learning iteration. The corresponding learning rule for the storage weights is: 

Where ~Siik is the small change made to the storage weight Siik during each learning 

iteration and Ms the momentum term for the storage weights. 

The net result of the inclusion of a momentum term is that the path from maximum 

error towards the error free state should be shorter. Hence the network should learn 

over a shorter number of epochs. Therefore, in the following simulation, a momentum 

term is introduced to both the storage and retrieval delta-weights calculation. In the 

data presented here, Ms is equal to MR. 

Method 

The method employed during the following simulation is identical to that described in 

the first simulation (section 4.3.1.2). However, the addition of a momentum term 

means that rather than resetting the delta weights, ~Rkpq and ~Sijk, to zero before 

making the changes to the storage and retrieval weights, in accordance with equations 

4. 7 and 4.8, a proportion of the previous delta-weights is combined with the 

calculation of the current delta-weights before all of the weights were updated. 

Results 

The suggestion that a momentum term will improve the ability of the network to learn 

is largely confirmed by figure 4.5 where it is clear that the introduction of a large 

momentum term results in the network learning to associate and retrieve items with a 

high degree of accuracy after only two thousand epochs of phase one training. 

However, it is also clear that in this case, the network has suffered as the overall level 

of performance is reduced compared to that obtained by the previous, momentum free, 

method. 
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Discussion 
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Figure 4.5 Effect of momentum term during phase one training 
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It is evident from figure 4.5 that the inclusion of a momentum term can improve the 

rate at which DARNET learns-to-learn during the phase one training stage. However, 

it is clear that in this case, the reduction in phase one training time is at the expense of 

overall accuracy. 

In fact, it is probable that the network using the momentum term has become lodged in 

a deep local minimum in the error space. Returning to the ball-on-slope analogy once 

more, you could imagine that the ball has become lodged in a ravine somewhere on the 

descent. Hence the only way to make further progress towards the base, is to first 

climb back out of the ravine before resuming the downhill track once more. If the 

training were continued beyond the twenty thousand epochs presented here, the mean 

squared error would be expected to drop further, settling at a similar value to that 

exhibited by the momentum free version (see Haykin, 1994). 

However it is not just the additional momentum and learning rate parameters that 

effect DARNET's performance. The most dramatic effect results from varying the 

dimensionality of the memory trace vector. In all of the simulations presented so far, 
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this has been held constant at 19 elements for a 10 element input vector. In the next 

section, we examine the effect of increasing the dimensionality of the trace vector. 

4.3.4 Simulation 4: Trace dimensionality effects 

Introduction 

Convolution-correlation based models of association are forced to use a memory trace 

vector of dimensionality 2n-1 for n-dimensionality input vectors. This is one of the 

inherent requirements of the convolution process (see Metcalfe Eich, 1982). However, 

although we have illustrated in the simulations described thus far that DARNET will 

train the storage and retrieval weights to perform single-shot associative learning and 

recall with a memory trace whose dimensionality is calculated in a similar fashion, this 

need not be the case. 

DARNET, in contrast, does not rely on the trace being a specific dimensionality in 

order to perform item storage and recall adequately. For example, at one extreme it is 

possible to envisage a trace vector of dimensionality n2
, in which case DARNET could 

potentially recognise that the memory trace could contain one-to-one mappings of 

each of the hidden product units. We anticipate that recall should be near perfect and 

error free. At the other extreme, if the memory trace was only one element long, we 

could anticipate that DARNET might find storing and retrieving the association of a 

pair of 10 element input vectors impossible. 

Therefore, in the following simulation, we investigate the range of performance from 

DARNET when the trace dimensionality is varied within these bounds. Brown, Hyland 

and Hulme (1994) suggested that there an optimal trace dimensionality for DARNET 

is 0.5n(n+l). Here, we aim to replicate this finding. 

Method 

For the following simulation, the same method as was described in section 4 .3.1.2 for 

simulation 1 is employed. However, unlike the previous DARNET simulations, in the 

present simulation the dimensionality of the trace vector was varied for each of the five 
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conditions. In the first condition, it was assigned a value of four elements, equal to the 

dimensionality of the stimuli. Subsequent conditions employed dimensionalities of 

seven, ten, twelve and fourteen elements. In all cases, the network was trained over 

ten thousand phase one epochs. 

Results 

Figure 4.6 illustrates the result of plotting the average mean squared error over the ten 

thousand trials. Note that in this case, it is the log of the mean squared error that is 

reported as it provides a clearer indication of how the error is reducing over the later 

training epochs. The results clearly demonstrate that the dimensionality of the trace 

vector can have a huge effect on DARNET's ability to perform accurate single-shot 

associative learning. 
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Figure 4.6 Effect of increasing the trace length from 4 to 14 elements on the capacity to 

store and recall four element input vectors 

When the trace has the same dimensionality as the item vectors (n=4) performance is 

clearly poor as the error reaches an asymptotic level after only two thousand epochs. 

The same is also true when the trace has the same dimensionality as if it were a 

convolution-correlation model (2n-1 =7). However, as the dimensionality increases 

further, so the network takes advantage of the extra capacity of the memory trace and 

performance improves in all of the remaining cases. The model does not settle at an 

asymptotic level of performance even after the ten thousand epochs of phase one 
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learning. However, what is immediately clear is that the largest capacity memory trace 

does not guarantee the superior performance. In fact, it is when the memory trace has 

dimensionality 10 that the network performs with the highest degree of accuracy. 

Discussion 

As is evident from figure 4.6, performance is poor (but probably adequate) in the first 

two cases where the trace dimensionality is either identical to the n-dimensionality of 

the input vectors or the 2n-1 dimensionality of a convolution-based memory trace 

vector. In fact, this is significant as DARNET has already been shown to perform to a 

similar level of performance as convolution-correlation models when given a memory 

trace with dimensionality equal to that of the corresponding convolution-correlation 

associative network. The results presented in figure 4.6 suggest that performance in 

this condition is poor in comparison with that which might be attained if DARNET 

were trained using a larger capacity memory trace. 

Increasing the trace dimensionality to either 12 or 14 elements results in improved 

performance. However, although the error has not reached an asymptotic plateau 

after ten thousand epochs of phase one training, DARNET performs near perfect item 

storage and retrieval during a phase two learning task. In fact, the average mean 

squared error at these points is almost one thousandth of that of the network with the 

trace dimensionality 2n-1. 

However, the most startling result from this simulation using four element input 

vectors occurs when the memory trace vector has a dimensionality of 10 elements. In 

this case performance can be seen to fall between the two previous sets of results over 

the first 2500 epochs, however, around this point during the phase one training, the 

network appears to suddenly recognise how to store the associations accurately. As a 

result, the learning curve falls rapidly towards zero error. After 8000 epochs, the 

average mean squared error is approximately 0.0000001. This finding, that the optimal 

DARNET memory trace size for n-dimensionality input vectors is 0.5n(n+l), is 

confirmed by similar results using three element input vectors where the optimal trace 
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dimensionality is six elements. A similar result is presented in Brown, Hyland and 

Hulme (1994), however they made no attempt to explain it. 

Mathematical analysis of the weights arrays after phase one learning reveals that when 

given a trace with dimensionality 0.5n(n+ 1) elements, DARNET discovers a 

symmetric relationship between some of the storage and retrieval weights. 

Examination of the storage weights in table 4.1 reveals that Silk= -S22k. More 

specifically, the storage weights connecting every element of the trace vector to the 

hidden layer unit containing the product of first element of a and the first element of b 

are equal in magnitude, but of a different sign, to the storage weights connecting the 

corresponding elements of the trace vector to the hidden layer unit containing the 

product of the second element of a and the second element of b. A similar relationship 

links the product units containing the product of the first element of a and the second 

element of b, and that of the second element of a and the first element of b, except in 

this case the weights in both cases are identical for the corresponding trace vector 

elements: S12k= S21k-

Table 4.1 

Storage weights, S;jk, after training to high degree of accuracy using a trace length of 0.5n( n+ 1) 

k 
2 3 

i=l 
j=l -0.4280 0.3159 0.8509 
j=2 -0.2509 -0.9308 0.1336 

i=2 
j=l -0.2509 -0.9308 0.1336 
j=2 0.4282 -0.3160 -0.8508 

However, the choice of 0.5n(n+ 1) for the memory trace dimensionality may not in fact 

be desirable as this will increase the number of weights needing to be learned during 

the phase one stage. Although this may not be of concern given the small 

dimensionality stimuli used in this simulation, if larger (e.g. n=32) item vectors are 

required, the dimensionality of the memory trace may have to be reduced in order to 

allow adequate phase one training given limited time and computing resources. 
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4.3.5 Summary 

From the findings of the four simulations presented here, it is evident that DARNET 

can learn to associate pairs of novel input vectors, store them in a memory trace and 

subsequently retrieve one of the stimuli when the other is presented as a recall cue. 

It has also been shown that the introduction of both a learning rate and momentum 

term can influence the phase one learning. However, care must be taken in order to 

ensure that the overall level of performance does not suffer as a result of the reduction 

in time spent during phase one learning. Furthermore, it is clear that the dimensionality 

of the memory trace vector has a huge influence on the ability of DARNET to perform 

accurately. We suggest that for n-dimensional stimuli, a memory trace of 

dimensionality O.Sn(n+l) elements will provide optimal performance. However, the 

choice of memory trace dimensionality may be influenced by the resources available 

during the phase one training. 

It should also be clear that the gradual learning process employed by DARNET during 

the phase one stage means that DARNET can provide a developmental account of 

single-trial learning. In the following section, the performance of DARNET during 

phase two learning and recall is addressed. 

4.4 Phase Two learning 

In the previous section, the ability of DARNET to learn-to-learn during the phase one 

stage was described and results were presented that confirmed that DARNET can 

learn to store the association of previously unseen pairs of normalised vectors in a 

single trial, and accurately recall one of them given the other as a recall cue. 

In the present section, the ability of DARNET to perform paired-associate learning is 

examined. Firstly, the effect of increasing the trace dimensionality on the network's 

capacity for learning associations is considered for both confusable and nonconfusable 

stimuli. Closer analysis of DARNET's performance for confusable and nonconfusable 
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paired-associate learning and recall follows and includes a comparison with results 

from simulations using CHARM (Metcalfe Eich, 1982, simulation 1). 

In the final section DARNET is once again required to perform paired-associate 

learning and attention is focused in particular on a Metcalfe Eich prediction based 

upon simulations using CHARM. She suggests that subjects may exhibit a high 

proportion of cue intrusion errors during paired-associate recall of confusable stimuli. 

Metcalfe Eich's initial empirical findings (Metcalfe Eich, 1982, experiment 1) fail to 

support this prediction, however a refined experiment confirms them (Metcalfe Eich, 

1982, experiment 2). DARNET reproduces this finding and reveals that an equally 

high proportion of intrusion errors occur when a partially trained network attempts 

paired-associate learning and recall. However, the effect is minimal for a highly trained 

network, providing support for the suggestion that a developmental account of 

associative memory is required (Brown, Preece & Hulme, 1995). 

4.4.1 Simulation 5: Trace dimensionality effects 

Introduction 

For each of the phase two simulations, DARNET implements paired-associate learning 

and recall in accordance with the method outlined by Metcalfe Eich (1982). Using 

CHARM, Metcalfe Eich randomly selected six items, each represented as a 63-element 

vector, from a vocabulary of 12 items and presented them in pairs to the network. 

Association was achieved by the mathematical process of convolution and each 

memory trace that was generated, was accumulated in a composite trace, given by the 

equation: 

t = a*b + c*d + e*f (4.9) 

In equation 4.9, items are represented by the vectors a through f, and the convolution 

of the first pair of vectors, a and b, by the notation a*b. Importantly, CHARM's 

composite memory trace was truncated to the central 63-elements. 
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During recall, the first, third and fifth items were used to probe the composite memory 

trace. This process involved correlating each probe item with the memory trace in 

order to generate approximations to the second, fourth and sixth items at the output. 

The retrieved items were once again truncated to the central 63 features. The retrieved 

patterns were then compared with the vocabulary of 12 recallable items and the closest 

match, measured by summing the product of each element of the retrieved vector with 

the corresponding element of the vocabulary item, (the resonance score or inner 

product) recalled as the network's response. Metcalfe Eich repeated the simulation 

using 50% similar, confusable, items. These were generated by copying every other 

feature from the first item to each of the first six items. 

However, it must be noted that Metcalfe Eich confuses the issue of whether or not the 

similar stimuli were still normalised once the process of introducing similarity had been 

completed (Metcalfe Eich, 1982, p. 637). This is potentially very significant as the 

recognition process Metcalfe Eich describes relies on the stimuli being normalised in 

order that the dot product provide a suitable means for distinguishing between 

responses. For each of the DARNET simulations described here, items that are similar 

are also normalised. The process for introducing similarity without destroying the 

normalisation is described in detail in the appendix. 

In analysing the results, Metcalfe Eich classified each response into one of five 

response categories: target (e.g. item b if item a was presented); cue (e.g. item a if 

item a was presented); nontarget response (e.g. item d or f if item a was presented); 

nontarget cue (e.g. item core if item a was presented); or unrelated extralist (e.g. g, 

h, i, j, k or I, the distractor items completing the vocabulary). 

In this first phase two simulation, the effect of increasing the capacity of the memory 

trace during a phase two simulation is considered (see Brown, Hyland & Hulme, 

1994). 
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Method 

DARNET was trained to an asymptotic level (or for 20 000 epochs if an asymptote 

has not been achieved) during the phase one training stage using eight element stimuli 

in order to reduce the amount of time required to learn. The dimensionality of the 

composite memory trace was manipulated, being assigned values of either 8, 16 or 32 

elements. The state of the storage and retrieval weights once learning was complete 

was preserved by storing each set of weights so that further phase one training was 

unnecessary when replicating the simulation. 

During phase two, DARNET was presented with three pairs of normalised eight

element input vectors with elements drawn from a continuous normal sample with 

mean of zero and variance of one. In a manner similar to Metcalfe Eich (1982), three 

pairs of nonconfusable stimuli selected from a lexicon of 12, were presented 

sequentially to the network. Memory traces were calculated for each pair and 

accumulated in a composite memory trace. During recall, the first of each of the item 

pairs was presented to the network as a probe and the output compared with the 

lexicon of 12 recallable items. In the second condition, confusable stimuli were 

presented to the network. Using a normalising technique to ensure both 50% similarity 

and item normalisation, six confusable items were generated and presented to the 

network. Six nonconfusable distractor items were added to the lexicon of recallable 

items. 

By comparing the retrieved item in each case with the lexicon of allowed responses, 

and classifying the responses appropriately, it is possible to record the mean 

proportion of correctly recalled items, for each trace dimensionality condition, for both 

the nonconfusable and confusable list conditions. 

Results 

The mean proportion of correct responses for both nonconfusable and confusable 

items are presented in figure 4.7. For the nonconfusable condition, performance 

increases from 52% when the trace dimension is equal to that of the item vectors, to 

77% when the trace dimensionality is three times that of the stimuli. Likewise, for the 
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50% similar (confusable) items, performance increases steadily with the trace size, 

from 21 % to approximately 39%. 
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Figure 4.7 Effect of increasing the dimensionality of the composite memory trace during a phase 

two paired-associate learning task for both non.confusable and confusable stimuli 

Discussion 

The results summarised in figure 4.7 illustrate that increasing the capacity of the 

memory trace vector will result in improved phase two learning and recall 

performance. It is also apparent from the gradient of each plot that the degree of 

improvement for both the nonconfusable and confusable stimuli is similar. Given these 

findings, we can suggest that any overall reduction in performance exhibited by 

DARNET may be attributable to the limited dimensionality and capacity of the 

memory trace vector. 

4.4.2 Simulation 6: Paired-associate intralist intrusions 

Introduction 

The aim of the following simulation was to attempt to replicate the distribution of 

errors found by Metcalfe Eich (1982) using CHARM. Metcalfe Eich observed that 

CHARM scored highly when recalling nonconfusable items, but much poorer for 50% 

confusable items. This simulation also aims to replicate some of the findings of Brown, 

Dalloz and Hulme (1995, simulation 1). 
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Metcalfe Eich reported that CHARM performed better with unrelated (nonconfusable) 

items, recalling 99% of the items correctly in the unrelated condition compared with 

only 42% in the similar (confusable) condition. Furthermore, she observed that 

nontarget responses and nontarget stimulus scores were both identical, with 22% of 

responses in the similar condition. Also, in both conditions almost none of the 

unrelated extralist items were retrieved. These results are summarised in table 4.2. 

Table 4.2 

Mean percentage recall for CHARM (adapted from Metcalfe Eich, 1982, table]) 

Condition 
Unrelated 
Similar 

Target 
98.6% 
42.0% 

Cue 
0.6% 
14.6% 

Nontarget 
response 

0.6% 
21.7% 

Nontarget 
stimulus 

0.0% 
21.7% 

Unrelated 
extralist 

0.3% 
0.0% 

CHARM's predictions are largely confirmed experimentally by Metcalfe Eich ( 1982, 

experiment 1). She reports that human subjects also produce many more errors in the 

confusable (related or categorized) condition than in the nonconfusable (unrelated or 

uncategorized) condition: 80% versus 56% appropriately (cf. Conrad, 1965). 

However, Metcalfe Eich observed that in contrast to the prediction made by CHARM, 

no human subjects produced cue intrusion errors, which she attributes to the subject's 

use of a high-level strategy preventing the recall of a cue item as a response. This last 

issue is addressed in detail in the next section. 

Method 

The procedure for this simulation is identical to that for the previous simulation, 

except that the trace dimensionality remained constant. Also, Metcalfe Eich's 

simulation used 63 element input and memory trace vectors. However, because 

DARNET, in contrast to CHARM, requires phase one learning before it can be 

applied to a phase two task, the time required to train a DARNET model to a similar 

capacity was considered to be too great. Therefore, DARNET was trained for input 

vectors of dimensionality 10 and a trace vector of dimensionality 19 elements. 
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Results 

The results, presented in table 4.3, illustrate that DARNET performs adequately given 

the limitations of the dimensionality of both item and trace vectors. 

Table 4.3 

Mean percentage recall for DARNET replication of Metcalfe Eich's Simulation 1 ( 1982) 

Condition 
Unrelated 
Related 

Target 
69% 
39% 

Cue 
5% 
3% 

Non target 
response 

7% 
30% 

Nontarget 
stimulus 

4% 
27% 

Unrelated 
extra list 

15% 
2% 

Using unrelated stimuli, DARNET scores 69% correct and only 5% cue intrusion 

errors. Both nontarget responses and nontarget stimuli register low scores (7% and 

4% respectively). However, 15% of responses are classified as unrelated extralist 

responses. 

In contrast, when the 50% similar, confusable stimuli are used, DARNET's 

performance is reduced for every category (39% are target response, 30% as 

nontarget responses and 27% as nontarget stimuli responses) except for cue intrusions 

and unrelated extralist responses. In the former, the percentage decreases slightly to 

3% while in the latter, the percentage decreases from 15% to 2%. 

Discussion 

The results presented in table 4.3 compare favourably with both those of CHARM 

(Metcalfe Eich, 1982) and DARNET (Brown, Dalloz & Hulme, 1995). However, 

although the overall form of these results suggests that DARNET is performing 

paired-associate recall in a similar fashion to CHARM, there are three discrepancies 

between the results presented here and those of Metcalfe Eich. 

The first is that overall performance is reduced in comparison to that of CHARM: 

DARNET scores only 69% of responses as correct compared to CHARM's 99%. This 

reduction in accuracy may be accounted for by considering both the degree of phase 

one learning and the capacity (i.e. dimensionality) of the memory trace in comparison 

with that of the input vectors. As was stated previously, for this simulation phase one 
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training was halted at an asymptotic level. Recalling figure 4.6, it is clear that for a 

network using a trace dimensionality of 2n-1 elements, the performance reaches an 

asymptote quickly and further amounts of phase one learning are not rewarded with an 

improvement in performance. It is also highly likely that the limited dimensionality of 

the memory trace vector will have had a marked effect on overall performance. 

Simulation 5 demonstrated that increasing the dimensionality of the memory trace 

vector improves overall performance for both nonconfusable and confusable stimuli. 

The second difference between the DARNET data and the CHARM data is the 

increased number of unrelated extralist intrusion errors (15% compared with 0.3% for 

unrelated items). As before, this level of performance can be attributed to the inability 

of the network to accurately retrieve encoded items. This suggests, once again, that 

either the network is not sufficiently well trained to encode and decode items from the 

memory trace, or that the memory trace lacks the capacity to allow items to be stored 

accurately. 

The third observation is that there are many fewer cue intrusion errors, particularly in 

the case of the similar items, when compared with CHARM. In fact, although the 

performance of the network has been deemed poor for the unrelated condition when 

compared with that of CHARM, it appears that performance for similar items is in fact 

slightly better. In an effort to account for the high proportion of cue intrusions in the 

CHARM data, we will next consider DARNET's performance midway through the 

phase one training: this amounts to a developmental analysis of paired-associate · 

learning. 

4.4.3 Simulation 7: A developmental account for cue intrusions 

Introduction 

If one recalls the shape of the learning curve produced by recording the average mean

squared error during the phase one learning stage (figure 4.3), it is clear that if it was 

possible to capture the state of the model at intervals over the lifetime of this phase 

one training, it might be possible to examine the developmental nature of DARNET's 
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performance. By recording the state of the storage and retrieval weights at discrete 

intervals over the duration of the phase one learning stage, and reinstating each of 

these weight states during the phase two learning and recall procedures, it is possible 

to examine the developmental nature of phase two learning and recall. 

Metcalfe Eich (1982), in the simulation reported in section 4.4.2, observed a high 

proportion of cue intrusions when using the 50% similar items. She suggested that her 

finding, that almost 15% of responses (25% of all errors) are cue intrusions, is 

"counterintuitive" (Metcalfe Eich, 1982, p. 638) and in a follow up study (Metcalfe 

Eich, 1982, experiment 1) which found that subjects do not produce cue intrusion 

errors, suggested that this may be due to the presence of a rule to eliminate such 

responses. However, in a second experiment (Metcalfe Eich, 1982, experiment 2), she 

reports that a higher proportion of cue intrusion errors occur in a confusable synonym 

condition than occur in an unrelated condition (55% versus 39% in the unrelated 

condition), a finding in line with CHARM's prediction. 

Therefore, in the following simulation, DARNET was once again applied to the 

problem of paired-associate learning and recall, however in this case the ability of 

DARNET to perform these tasks at two different stages in its phase one development 

was addressed. 

Method 

In a replication of the procedure described in section 4.4.1.2, DARNET was presented 

with three 10 element paired-associates which it accumulated in a composite memory 

trace with dimensionality of 19 elements. In this case, items were selected from a 

vocabulary consisting of six 50% similar normalised items. A further six unrelated 

normalised items were added as distractor items during recall. 

However, DARNET employed the use of two different sets of storage and retrieval 

weights: a partially trained set, generated midway through the phase one learning 

stage when the mean-squared error in the network was around 50%; and a well 
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trained set, trained to a level of around 10% mean-squared error (identical to those 

used in the previous simulation). 

Once again, responses were categorised in the manner described by Metcalfe Eich 

(1982). However, in order to analyse the developmental nature of the errors, the 

proportion of errors which are cue intrusion errors was also recorded. 

Results 

The results for the partially and well-trained networks are summarised in table 4.4. It is 

clear that when compared with the performance of the well learned network, although 

there is a lower level of overall performance (27% correct compared with 39% 

correct), it is the cue intrusion errors that increase by the greatest extent (from only 

3% to 16%). The proportion of nontarget, nontarget stimulus and unrelated extralist 

errors remain similar for both conditions. Nontarget responses decrease by 5%, 

nontarget stimulus errors increase slightly by 2% while unrelated extra list errors 

increase by 6%. 

Table 4.4 

Mean percentage recall for confusable items with well trained and partially trained DARNET 

Non target Non target Unrelated 
Condition Target Cue response stimulus extralist 
Well trained 39% 3% 30% 27% 2% 
Partially trained 27% 16% 25% 25% 8% 

However, closer examination of the proportion of errors which are cue intrusions 

reveals the full extent to which they increase. In the well trained condition, cue 

intrusions provide only 5% of the errors exhibited by the network. However, this 

increases to 22% of all the errors in the partially trained condition. 

Discussion 

The results of the current simulation clearly demonstrate that a development account 

of paired-associate learning can provide a possible account for the distribution of 

errors occurring in the similar item condition. 
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It is clear that the level of associative ability exhibited by the network influences the 

type of error produced. The results also suggest that the proportion of cue intrusion 

errors produced by the network decreases as the ability to perform accurate 

association improves. These data suggest therefore, that human subjects might also 

exhibit a developmental distribution of error types. For example, the number of cue 

intrusions may decrease towards zero as the subjects develop (which accounts for 

Metcalfe Eich not finding any cue intrusions when testing her college-age subjects). 

Also, these results reveal that a particular type of error may be due either to the 

accuracy of the storage and retrieval mechanism employed by a model or the 

complexity of the task being undertaken. In the present case, it appears that higher 

numbers of cue intrusion errors could occur as a result of either the confusability 

between items or the associative ability of the network. 

It is possible to conclude from these results that a high proportion of errors, such as 

the cue intrusion errors reported by Metcalfe Eich in her CHARM simulation using 

50% similar items (Metcalfe Eich, 1982), may be reproduced by DARNET at an early 

stage in its development but eliminated at a later stage. And as such, Metcalfe Eich's 

results may reflect the inability of CHARM to perform accurately when presented with 

complex stimuli such as the 50% similar items. 

4.5 Summary 

In this chapter, a developmental associative recall network, DARNET, has been 

introduced. DARNET, a multi-layer gradient descent based network has been shown 

to learn how to form accurate single-trial association and recall during the phase one 

stage. The few free parameters that effect the ability of the network, the momentum 

and learning rate parameters, have been introduced and the effect of varying each 

parameter during phase one learning has been reported. The effect of varying the 

memory trace dimensionality demonstrated that for n-dimensionality input vectors, 

DARNET has an optimal memory trace size of O.Sn(n+ 1) elements. 
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Once DARNET has learned how to perform single shot item learning and retrieval to a 

level of performance similar to the convolution and correlation models of association 

(e.g. CHARM: Metcalfe Eich, 1982, 1985, 1991; TODAM: Murdock, 1982, 1983, 

1992, 1993), it can be applied to replicating data modelled by other such models such 

as the problem of paired-associate learning. 

Finally, the significance of a developmental account of learning was highlighted by 

examining paired-associate recall error data reported by Metcalfe Eich (1982) using 

CHARM. In particular, the proportion of cue intrusion errors that occurred when 

using three pairs of 50% similar items as the stimuli. In a replication of her simulation, 

DARNET was found to produce a similar proportion of cue intrusion errors in the 

case when the network had only been partially trained during the phase one stage. The 

cue intrusion errors were found to be almost completely eliminated when the phase 

one training was improved. 
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CHAPTERS 

Temporal representation and the OSCAR model 

5.1 Introduction 

Previous models of serial order memory fail to take into account the dynamic nature 

of memory, relying instead on linked lists or item to node associations and forgetting 

by decay and interference (e.g. Ebbinghaus, 1913; Conrad, 1965; Shiffrin & Cook, 

1978; Murdock, 1982). However, biological evidence is consistent with the idea that 

there exists a dynamic control signal which is, at least in part, responsible for a wide 

range of behaviour. This includes circadian based time of occurrence behaviour such 

as foraging (Beling, 1929, cited in Gallistel, 1990) and temporal interval behaviour 

such as the "trapline" behaviour of humming-birds (Gill, 1988, cited in Gallistel, 1990) 

that return to flowers at aperiodic intervals. More recently, Houghton (1990, 1994a) 

and Burgess and Hitch (1992, 1996; Burgess, 1995) have implemented models of 

serial order memory that use dynamic control signals during learning and recall. These 

models were reviewed in chapter 3; here we specifically address the nature of the 

control signal. 

A dynamic control signal is required to possess a number of properties. Gallistel 

( 1990) and Church and Broadbent ( 1990) suggest it should contain components from 

both fast and slower moving oscillators. In the following chapter, it is suggested that 

the signal should also satisfy two further requirements: the first, the similarity 

requirement that the control signal at any point should be highly similar to the signal at 

nearby points in time and much less similar to the control signal at a point much 

further away in time; and the second, a consequence of the first, is the non-repetition 

requirement, that the control signal must at no time repeat itself. 
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A number of attempts at modelling a temporal control signal exist. Church and 

Broadbent (1990), in an attempt at modelling interval estimation, implement a vector 

representation of the temporal control signal based upon Gallistel's (1990) insight into 

the representation of time. In Houghton's (1990) competitive queueing model for 

serial order, a temporal signal is implemented as a two-dimensional control signal 

comprising initiator and end node signals that decay and rise respectively. A third 

example is the context of Burgess and Hitch's ( 1992, 1996) model of serial recall, 

implemented as a large vector with a small non-zero component that travels across the 

width of the vector at each temporal step. 

In the following chapter, these components and models of temporal signals are 

discussed. An oscillator based control signal, the context vector is introduced and its 

properties explored. Next, the context is coupled with a Hebbian associator to form 

the OSCillator-based Associative Recall (OSCAR) model of serial order memory. This 

model, in its most basic form, is shown to reproduce the serial position curve typical of 

serial ordered recall tasks ( e.g. Baddeley, 1968). 

5.2 Evidence for and properties required of biological clocks 

There is evidence to suggest that a system of oscillators provide animals and plants 

with an internal representation of time vital for a wide range of behaviour. In animals, 

they are responsible for behaviours such as foraging for food (Beling, 1929; cited in 

Gallistel, 1990), estimating time and rate (Church & Broadbent, 1990; Gallistel, 1990), 

perception (Dehaene, 1993) and motor performance (Latour, 1967). Evidence 

suggests that similar mechanisms in plant life are responsible for opening leaves, 

releasing spores and flowering (Millar, Carre, Strayer, Chua & Kay, 1995). 

Beling (1929, cited in Gallistel, 1990) observed that bees were able to record the time 

at which food was presented to them at specific locations and subsequently anticipate 

when food becomes available at that location. Studies demonstrate that representations 

in bee memory, such as odour, location and colour, are all linked to a temporal record 

of when the smell, location or sight was discovered (Gallistel, 1990). 
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Gill (1988, cited in Gallistel, 1990) observed that hummingbirds employed the use of a 

different timing mechanism to that of the bees and rats. Hummingbirds forage by 

"traplining" i.e. regularly visiting plants at specific locations. The issue for the 

hummingbird is when to visit a flowering plant. The longer it waits, the more nectar 

the plant will have produced. Conversely, the longer it waits, the more likely it is that a 

different hummingbird will have already visited that same plant. As these variables are 

aperiodic, so the hummingbird relies on being able to represent intervals between visits 

accurately, even to the extent that the ability to do so may constitute a selective 

advantage. 

There is sufficient evidence to presume that animals (and plants) must have some 

temporal representation in order that they be able to measure temporal intervals, such 

as when the hummingbird decides on when next to visit a flower, and record time of 

occurrence, such as the bees and rats learn to anticipate feeding time. What is unclear 

is the precise nature of such timing mechanisms. Gallistel (1990) states that time could 

represented by the phase of a single oscillator. However, it would be impossible to 

distinguish intervals greater than the period of the oscillator. 

This is analogous to using the second hand on a clock in order to represent intervals 

greater than a minute in duration. If at the start point, the second hand pointed to 17 

seconds and at the end point, to 21 seconds, it would be impossible to know if the 

duration of the interval was four seconds or 64 seconds. Conversely, if the period were 

too long, it would be impossible to distinguish intervals much less than the period of 

the oscillator as the error in interpreting the interval may be similar in magnitude to the 

interval itself. Considering a clock face once more, this is analogous to using the hour 

hand in order to represent the interval. The hour hand has a period of 12 hours, so for 

a seven second interval, it would only rotate 0.06 degrees. This lack of resolution 

results in large errors when trying to estimate small intervals. Gallistel suggests that 

the solution is not to rely on the phase of a single oscillator, but to employ a number of 

oscillators and record the phases of each. 

105 



Modelling human short-term memory for serial order Chapter 5 

Although there are estimates of the frequency of human oscillators (Treisman, 

Faulkner, Naish & Brogan, 1990) there is speculation as to the range of frequencies 

required in order to account for such a wide range of behaviour ( e.g. Church & 

Broadbent, 1990). Gallistel ( 1990) suggests that in a system of coupled oscillators, 

one could have a circadian period: a period that cycles approximately once a day. 

Others could have periods in the range of milliseconds, seconds, minutes, hours, 

weeks, months or years (Aschoff, 1981, cited in Church & Broadbent, 1990). By 

recording the time at which events occur and noting the phases of a series of 

oscillators, it would be possible for animals to compute intervals between events. 

Church and Broadbent ( 1990) suggest that if the fastest oscillator in a system had a 

period of two hundred milliseconds, and that each subsequent oscillator had a period 

of double the previous, only thirty oscillators would be necessary to ensure that the 

slowest oscillator would not cycle in the three and a half year lifetime of a rat. 

This last point, that the slowest oscillator should not complete a cycle during the 

lifetime of the animal, leads to the first of two requirements of a dynamic context 

signal. That is that each context signal state should be unique and hence at no point 

during the systems lifetime should context states ever repeat themselves. As with the 

Church and Broadbent (1990) model, we can satisfy this, the non-repetition 

requirement, by ensuring that the frequency of the slowest oscillator in a system of 

coupled oscillators, is such that it will never complete a full revolution in the lifetime 

of the system. If the same method of period doubling as suggested by Church and 

Broadbent is employed, approximately thirty five oscillators would be sufficient for a 

human lifetime. The second requirement of the context signal is that neighbouring 

context signals, separated by a short temporal distance, must be more similar to each 

other than those separated by greater temporal distances. This. property appears to be 

intuitive in that although we appreciate that moments close together in time are in fact 

distinct, they are less so than moments separated by much greater distances8• This is 

referred to as the similarity requirement. In order to satisfy this requirement with a 

system of coupled oscillators, there must be a distribution of oscillator frequencies 

8 Note that Burgess and Hitch (1992, p454) suggest the use of a context that has zero 
correlation between widely temporally separated states. 
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such that the effect of the fastest oscillators rotating between steps will have less of an 

impact upon the similarity of immediately neighbouring context states than the impact 

of the slower moving oscillators rotating on context states that are more widely 

separated. The consequence of the similarity requirement being satisfied is that the 

non-repetition requirement will also be satisfied. 

Furthermore, we require the context signal to be reinstatable. The method by which 

each context vector is reinstated in sequence must be an integral part of the 

architecture. If this is not the case, then the problem of recalling a list of items 

becomes one of recalling the sequence of learning-context signals. Also, the 

mechanism underlying the context signal should be independently motivated and not 

constructed in a manner as to only address the memory phenomena it will be applied 

to. 

Before outlining our proposed solution to the problem of modelling temporal context, 

a number of current solutions are described. Specific details of these models may be 

found in chapter 3, in the following section attention is drawn solely to the manner in 

which the temporal signal is implemented. 

5.3 Models of the internal temporal signal 

5.3.1 Church and Broadbent's storage vector 

Church and Broadbent ( 1990) implement Gallistel's ( 1990) suggestion that temporal 

representation is possible given a number of coupled oscillators, each with one of a 

wide range of periods: from milliseconds to months and years in duration. For their 

model of interval timing, they choose to represent the current "time" by the state of an 

11-element storage vector. Each element corresponding to one of 11 adjacent 

oscillators with periods in ratios of 2: 1, the fastest of which rotates with a period of 

200 milliseconds, the next with a period of 400 milliseconds, and so on until the 11th 

which rotates with a period of 204.8 seconds. 
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Church and Broadbent suggest that although animals may not be able to resolve the 

phase of an oscillator with a high degree of accuracy, they may instead be able to 

recognise the half-phase i.e. + or - within each period. As such, the vector element 

representing the phase of the oscillator with which it is associated appears not to 

change continuously with the phase of the oscillator, instead it appears to toggle back 

and forth between two values: in the present case, + 1 or -1. The net result is a vector 

that appears very similar in behaviour to a binary counter as is evident from figure 5.1. 

t1 - + - + - - + - ++ -
h - + - + - - + - +++ 
t3 - + - + - - + + -
t4 - + - + - - + + - - + 
t5 - + - + - - ++ - + -

Figure 5.1 Five successive states of the 1 ]-element Church and Broadbent storage vector 

By representing time in this manner, Church and Broadbent's signal could satisfy the 

non-repetition property of a context signal only if the period of the slowest oscillator 

was sufficiently long. In the present case, this is only 204.8 seconds, deemed too short 

to be a realistic value. However, by increasing the capacity of their storage vector, 

they could accommodate much slower moving oscillators and hence satisfy the non

repetition property within a realistic animal lifespan. 
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Figure 5.2 Cosine similarity curve for the Church and Broadbent storage vector 

108 



Modelling human short-term memory for serial order Chapter 5 

However, the Church and Broadbent signal does not satisfy the similarity property. 

Examining the cosine between the start signal ( eleven zeroes and a single one 

representing food present) and seven subsequent steps, it is clear that although the 

overall trend is for the signal to become less like the initial signal, there are many 

occasions where confusions between equally similar states could occur. For example, 

the storage vectors three and five steps after the start signal each have an identical 

cosine of approximately 0.8 (figure 5.2). 

5.3.2 Houghton's control signal 

Houghton (1990) describes a competitive queuing model of serial order. Fundamental 

to the performance of the model is the behaviour of the sequence node layer of the 

network, which contains connected pairs of initiator (or start) and end nodes: I-nodes 

and E-nodes. These are used to represent the "temporal edges" that surround a 

temporally ordered pattern such as a word. 

During learning, at the onset of a word, an uncommitted I-node, which is initially fully 

activated, decays with each successive time step until the word is complete. At this 

point the corresponding E-node becomes fully active. In this manner, every element of 

the word will correspond to a particular state of the appropriate I and E-node pair. 

The behaviour of this two dimensional representation of context is explored further in 

a later report (Houghton, 1994b). Houghton reaffirms that the control signal should 

possess two components: the first a rising (i.e. the E-node) and the second falling (i.e. 

the I-node). 

Figure 5.3 illustrates seven vectors (i.e. one for each of the learned items) created as a 

result of the function of the combined E-node and I-node activations. From this is it is 

evident that, if the angle between vectors is used as the measure of similarity between 

successive states, the control vectors at either end of the list are most likely to be 

confused. This is confirmed by examining the cosine similarity curve generated by 
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plotting the cosine between the first control vector and each of the subsequent vectors 

illustrated in the previous figure. 

C 
0 

0.9 

0.8 

0.7 

j0.6 

"lij 0.5 
Cl) 
"O e o.4 
w 

0.3 

0.2 
2 0.1~~~~~====== 

0.2 0.4 0.6 0.8 
~node activation 

1=1 

Figure 5.3 I-node and E-node activations for a seven item sequence 

(Adapted from Houghton, 1994b, figure 1) 

Clearly, the control signals immediately adjacent to the reference signal are very 

similar to that reference. However, the control signals become different very quickly in 

the central positions (i.e. t=3, t=4 and t=5) where the cosine between them and the 

reference signal decreases rapidly. 
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Figure 5.4 Cosine similarity curve for the Houghton 1-E node control signal 
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It is clear from figure 5.4 that the Houghton control signal satisfies the similarity 

property required of an effective context: neighbouring control signals are more similar 

to each other than those separated by a wider temporal distance. However, the 

similarity property exhibited by the control signal is linked closely to its ability to 

satisfy the second, non-repetition property. Given such a limited dimensionality control 

signal, if a number of control vectors were required, although controls would not need 

to be repeated (and as such the control signal satisfies the non-repetition property) the 

increased number of vectors within the single two dimensional quadrant of space 

available to the control signal could result in a set of vectors that are very similar to 

each other. Therefore, the similarity property of the signal may be affected by the 

change in inter-control vector spacing. 

5.3.3 Burgess and Hitch's "context" 

Burgess and Hitch ( 1992), in an implementation of Baddeley's ( 1986) articulatory loop 

model of short-term memory, develop a representation of the nonphonological and 

temporal information presented to the model, the context. They implement this as a 

random pattern of activation that alters progressively with time. However, because the 

context is generated randomly, it is unclear how it may be reinstated reliably during 

recall. 

The context vector has a dimensionality of 50 elements (nodes) and when each new 

item is presented to the model, a random two-thirds of these nodes are updated. All 

but six of these updated nodes are reset to zero, the remainder are given a nonzero 

activation that reflects the average activation in the model's phoneme layer. On 

average, nine of the context nodes are active for each new item. 

By ensuring that some nodes are unchanged when new items are presented, there is 

some overlap of contexts and hence temporal correlation between contexts for 

successive items. Burgess and Hitch note that when using a context vector of this 

form, the similarity of activation between neighbouring items will vary monotonically 

with their separation. 
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However, in assessing the properties of the model using such a context signal, Burgess 

and Hitch suggest a modification of the basic context vector in order that transposition 

errors be localised to either side of the current item. This is achieved by ensuring that 

there is zero correlation between temporally well separated states (table 5.1). 

Table 5.1 

Three successive states of the modified Burgess and Hitch context signal (Adapted from Burgess & 

Hitch, 1992) 

Time Activation of context nodes 
t, * * * * * * 0 0 0 0 0 
t2 0 0 * * * * * * 0 0 0 
t3 0 0 0 0 * * * * * * 0 

Examination of the cosine similarity function for this modified Burgess and Hitch 

context (figure 5.5) confirms that the similarity between a fixed context and 

subsequent contexts decreases linearly as the temporal separation increases. The 

cosine between the reference context and that one step later is 0.66, with the context 

two steps later is 0.33, and zero with all other contexts. 
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Figure 5.5 Cosine similarity curve for the Burgess and Hitch context vector 

It is clear that the later Burgess and Hitch context signal satisfies the similarity and 

reinstatability properties required of a temporal signal. The similarity is greater for 

closely spaced contexts than it is for those more widely separated. However, it is 

difficult to know whether, over an arbitrary period of time, the Burgess and Hitch 
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context vector could be extended to satisfy the non-repetition property. If the context 

vector is updated in the manner suggested, the number of separate context vectors that 

could be modelled is limited by the dimensionality of the context vector. It is unclear 

what the active elements of the context signal should do once they have "travelled" the 

full width of the context. However, the impression is that the Burgess and Hitch 

context vector does not satisfy the non-repetition requirement for a context signal, as 

the only option available to them when the pattern of activation reaches the end of the 

context is to return to the opposite end of the context. 

5.4 An oscillator based control signal: the context vector 

5.4.1 Introduction 

In the following section, a temporal control signal composed of a number of coupled 

oscillators with a wide range of frequencies, the context vector, is introduced. Not only 

must the context vector satisfy the two properties described previously: the non

repetition requirement and the similarity requirement, but it should also remain 

normalised for each discrete step in order to improve its applicability to learning and 

recall modelling tasks. Having described the generation of such a signal, its properties 

are explored in detail prior to its application to the problem of modelling serial ordered 

memory. 

5.4.2 The context vector 

Developing the ideas of Gallistel (1990) and Church and Broadbent (1990), it is 

possible to generate a model of the temporal context by combining a number of 

oscillators with a wide range of frequencies in order that different elements of the 

context will evolve at different rates. The rate at which the context will evolve will 

depend upon the frequency of each of the oscillators and the manner in which they are 

combined to produce each context element. By careful consideration of the 

distribution of the oscillators to each of the context elements, it is possible to generate 

a context vector that satisfies the non-repetition and similarity requirements. 
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By assuming that the fastest moving oscillators are common to only a few of the 

context vector elements, it is possible to satisfy the similarity property. This can be 

explained by considering two adjacent contexts (i.e. little temporal separation). 

Comparing the state of the oscillators at both times, it is apparent that the slowest 

evolving oscillators will have changed very little, if at all. Even with the fastest 

evolving oscillators, they too will have evolved very little in the time between the two 

contexts. However, as the temporal distance separating the two contexts increases, so 

the difference between the states of the fastest moving oscillators will become more 

apparent and hence the context vectors will become increasingly dissimilar as more of 

the oscillators evolve away from their state at the time of the first context. 

Furthermore, by ensuring that elements of the slowest moving oscillators are common 

to each of the context vector elements, it is possible to satisfy the non-repetition 

property of the dynamic signal. Simply, if we assume that the slowest oscillator will 

never complete a cycle in the system's lifetime, so we can ensure that the state of the 

context will never be identical to any other. However, if there are insufficient slow 

moving oscillators common to each of the elements of the context signal, then 

although the context could still satisfy the non-repetition property, it is very likely that 

widely separated contexts could become very similar to each other. To avoid this, we 

must ensure that sufficient slow moving oscillators are common to each of the context 

elements. 

We also suggest that if the context is developed using a system of predictable 

oscillators, it should be possible to reinstate a sequence of context states by reinstating 

just the first of the sequence. 

In summary, the fast evolving components of the context will serve to distinguish 

between contexts separated by short temporal distances (and hence satisfy the 

similarity requirement), whilst the slow moving components of the context will serve 

to distinguish between contexts separated by large temporal distances (and satisfy the 

non-repetition requirement). In order to ensure that the context satisfies both of these 
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requirements and in order to maintain normalisation9, oscillators are coupled together 

in the manner illustrated by figure 5.6. 

Oscillators Context vector 

High frequency @ : : _ 

Co1111ectio11s omitted for clarity 

Figure 5.6 Context vector generation from oscillator array 

Although the connections from the central pair of oscillators have been omitted in 

order to improve clarity, this figure illustrates how the low frequency oscillator is 

connected to each context vector element, while the high frequency oscillator is linked 

to only a subset of the oscillators. More precisely, the slowest oscillator (01) is 

common to each of the context vector elements whilst the fastest evolving (04) is 

common to only two elements. In this manner, the slowest moving oscillators 

contribute most to the overall state of the context while the fastest moving oscillators 

contribute the least. 

c(l) = cos(01) * cos(02) * cos(04) 
c(2) = cos(01) * cos(02) * sin(04) 
c(3) = cos(0,) * sin(02) * cos(05) 

c(4) = cos(01) * sin(02) * sin(05) 

c(5) = sin(01) * cos(03) * cos(06) 
c(6) = sin(01) * cos(03) * sin(06) 
c(7) = sin(01) * sin(03) * cos(07) 

c(8) = sin(01) * sin(03) * sin(07) 

Figure 5.7 Composition of the 8 element context vector, c 

In order to simplify the computational process involved in modelling the contexts, and 

in order to improve the recall process, we ensure that each context vector is 

normalised. Hence, the solution we suggest here is an n-dimensionality context vector, 

9 To facilitate item recognition and recall. 

115 



Modelling human short-term memory for serial order Chapter 5 

c, generated by combining the sine and cosines of n-1 oscillators. The context vector, 

c, illustrated in figure 5.7, contains eight elements, c(l) to c(8). Each is the product of 

three sine or cosine terms. These terms take the angle (in radians) of each of the 

oscillators, 0m as their input. In contrast to the models of Church and Broadbent 

(1990), Houghton (1990) and Burgess and Hitch (1992), these are initialised with 

random angles: i.e. the initial state of the context is arbitrary. However, each of 0m is 

incremented by a small amount, 80m radians10 after each simulated time cycle. The 

magnitude of <>0m increases in some relation with m. Therefore, as 01 has the smallest 

increment and hence the slowest frequency, it is common to each of the context vector 

elements. Conversely, 03, with a higher frequency, is common to only half of the 

elements. However, as 07 takes the largest value of 80m, and hence evolves with the 

highest frequency, it is common to only the last two elements of the vector. 
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Figure 5.8 Eight bit context vector evolving through eight successive states 

By linking elements of the context vector to the oscillators in such a manner, it is 

possible to cluster the fastest and slowest evolving components at opposite ends of the 

context vector (e.g. figure 5.8). This has the advantage that is will be possible to vary 

the nature of the reinstated context vectors used during recall. For example, one might 

to Note that all angles are recorded in radians. There are 2*1t radians in a complete revolution and 
therefore rr/4 radians is equal to 45°. Where o0 values are given it may be assumed that the values are 
given in radians unless stated otherwise. 
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wish to copy the fastest evolving elements of the last context vector to all of those 

used during learning in order to examine the effects of immediate recall. 

However, although it has been stated that the oscillators should vary in frequency, and 

that the range of frequencies should be widely distributed in order that the signal 

should satisfy the properties outlined previously, the precise nature of these 

frequencies has not yet been described. 

In the following section, the effect of implementing this template for a context vector 

with different ranges of 80m is examined. 

5.4.3 Exploring the properties of the context vector 

In the previous section, the structure of the context vector was outlined: a system of 

coupled oscillators with different frequencies, combined in such a manner as to ensure 

that the fastest and slowest evolving components may be localised and that the vector 

remains normalised for each step. In the following section, two different methods for 

distributing the range of oscillator frequencies are considered. Further investigations 

are presented in the appendix. 

5.4.3.1 Simulation 8: Constant delta theta size 

Introduction 

In this first simulation, each of the oscillators, 0m, is incremented at each discrete step 

by the same amount, 80m, 

Method 

A sixteen element context vector was constructed in the manner as described in 

section 5.4.2. Each 0m was seeded with a random angle such that the first context 

vector was at some arbitrary state. The values of 80m were calculated, in this case they 

were constant for all m. Each 0m was incremented by the constant (equal to n/16) and 

the next context vector was generated. 32 successive states of the context were 
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calculated and the similarity, measured as the cosine, between every context with 

every other was recorded and averaged over 100 different trials in order to minimise 

any effect due to the initial state of the context. 

Results 

It is clear from figure 5.9 that the context vector generated in this manner fails to 

satisfy the non-repetition property as after approximately 8 steps the contexts start to 

become increasingly similar to the original context. Finally, after 16 steps, the context 

is identical to the original context. 

0.9 

0.8 

0 .7 

~ 0.6 
·c 
~ 0.5 
.§ 

i 0.4 
-~ 

0.3 (.) 

0.2 

0.1 

0 

·0.1 

30 

20 

Temporal separation 
Temporal separation 

0.9 

0.8 

0.7 

0.6 

0.3 

0 .2 

0.1 

0 

·0.1 ~-'--~---'-~-~-'--
5 10 15 20 25 30 

Temporal separation 

Figure 5.9 End-on and cut-away view of cosine between neighbouring context vectors 

Discussion 

Analysis reveals that the results of simulation eight are exactly as would be expected. 

If the inner product between the first context and a second at some arbitrary time t is 

reduced, it reveals that the inner product ( or similarity cosine as the contexts are 

normalised) equates to: 

(5. 1) 

118 



Modelling human short-tenn memory for serial order Chapter 5 

i.e. the inner product between neighbouring eight bit contexts, when 00m is constant 

for all m, is equal to the cosine to the fourth function of oe at time t. It also illustrates 

that the initial state (i.e. position) of the context has no bearing on its behaviour during 

subsequent states. It is influenced solely by the small increase in 0. 

Subsequent analysis has confirmed that for a 2° element context vector, if 00m is 

constant for all m, then the inner product may be expressed as: 

co.Ct= cos0 (00 t) (5.2) 

However, as these contexts clearly fail to satisfy the non-repetition requirement of a 

temporal signal, they must be rejected in favour of a more refined context. 

5.4.3.2 Simulation 9: Non-linear delta theta size 

Introduction 

A number of different methods for generating and combining the oscillators have been 

considered including the use of a linear relationship between one oscillator phase and 

the next. However, we suggest that, given the shortcomings of these methods and in 

line with previous independently motivated models that consider the requirements of 

natural oscillators (e.g. Church and Broadbent, 1990), a wide distribution of 

frequencies such as that provided by a 2m (where m corresponds to the mth context 

vector element) function be employed. Therefore, the highest frequency (and hence 

shortest period of oscillation) could represent milliseconds whilst the lowest frequency 

(e.g. with a periodicity of 0.001 *i16 seconds) would be more than adequate to ensure 

that there could be no repetition during the lifetime of the system. 

Method 

An eight element context vector was constructed in the same manner as described 

previously and illustrated in figure 5.7. Each of 0m was seeded with a random angle 

such that the first context vector was at some arbitrary state. However, the increment 

in 0m at each discrete step, 00m was increased non-linearly by scaling with 2m: 
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(5.2) 

Note that rand is a small random value uniformly distributed between zero and one, 

that helps to produce a smoother performance. In order to prevent the possibility of 

the random scaling value having sufficient small magnitude to effectively transpose the 

o0m values (e.g. 0.99*0.02*22 > 0.001*0.02*23
) each of the o0m values is sorted into 

ascending order. By averaging over sufficient trials it is presumed that the i gradation 

will hold. 

Each of 0m was incremented by the respective value and the next context vector 

generated. 32 successive states of the context were calculated and the similarity 

between each averaged over 100 different trials. 

Results 

Figure 5.10 confirms that the measure of similarity between the reference context 

vector and those before and after that vector decreases as the temporal spacing 

between them increases, in either direction, from the reference. Furthermore, the 

similarity between the reference vector and those towards the extremes of the system 

lifespan remains approximately, or below, zero. 

Discussion 

This method for generating context vectors is deemed the most reliable option. The 

similarity requirement appears to be satisfied as the contexts separated by the smaller 

temporal distances are more similar to the reference context than those separated by 

greater temporal distances. However, it is clear that the similarity function drops 

steeply in an almost concave manner from the start point. This may be deemed 

inappropriate as we anticipate that, in order for the signal to satisfy the similarity and 

non-repetition properties, those contexts immediately neighbouring the reference 

should be more similar (cf. Houghton's 1-E node context of figure 5.4). 
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Figure 5.10 End-on and cut-away view of cosine between neighbouring context vectors 

We can be sure that this context will satisfy the non-repetition property as the slowest 

evolving oscillator will have sufficiently slow frequency (e.g. approximately 0.04 

radians) for this system. 

5.4.4 Summary 

In summary, we have shown that it is possible to generate a plausible representation of 

the dynamic internal state, or context, during learning, using a system of oscillators 

with a wide range of frequencies. These have been shown to satisfy both of the 

requirements we suggest for a context signal. Firstly, the similarity property, which 

states that the similarity (measured by the inner product or cosine between a pair of 

context signals) should decrease with increasing temporal separation. Secondly, the 

non-repetition property which states that the context vectors should not return to any 

previous state during the lifetime of the system. The present oscillator based context 

signal is of a much greater dimensionality to that of Houghton's ( 1990; 1994) and it is 

anticipated that this improved capacity will mean that fewer inhibitory mechanisms will 

be required in order to produce serial ordered behaviour. 
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We now wish to apply the idea of a dynamic context signal to the problem of memory 

for serial order. In the next section we will outline one solution as to how this problem 

may be solved. 

5.5 An oscillator based associative recall model of memory: OSCAR 

5.5.1 Introduction 

In this section, the context vector described in section 5.4 is coupled with a simple 

associator to model the storage and recall of sequences of items. Items are represented 

by normalised vectors containing elements taken randomly from a set of scalars, 

normally distributed about zero with variance of one. Each context corresponds to a 

discrete moment in time which in turn corresponds to the precise moment when the 

appropriate item was presented for learning during training. Learning of the item-to

context associations is by simple Hebbian association with the additions that the 

memory trace, or weights, decay over time and that items may be stored in the 

memory trace with decreasing strength as their displacement from the first item 

increases. 

Table 5.2 

Summary of the learning and recall sequence employed by the context based OSCAR model 

Step 
1 
2 
3 
4 
5 
6 

Step 
1 
2 
3 
4 
5 
6 

Learning process 
Generate context vector 
Associate stimulus item with context vector by Hebbian learning 
Decay current contents of memory trace 
Store latest association in the memory trace 
Evolve the context vector by incrementing each oscillator 
Return to step I until every stimulus item has been learned 

Recall process 
Reinstate learned context vector 
Probe memory trace with context vector 
Compare retrieved item with lexicon of recallable items 
Recall lexicon item most similar to retrieved item 
Update lexicon of recallable items 
Return to step I until every stimulus item has been recalled 
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Recall involves reinstating the dynamic context signal and presenting it as a cue for 

recall in order that an approximation to the item associated with that context during 

learning be generated as the output. This approximation is then compared with a 

vocabulary containing both items presented during learning and a number of previously 

unseen distractor items. The item it most closely resembles, measured by taking the 

cosine between the two vectors, is recognised as the item retrieved from memory. 

Recall of subsequent items is by reinstating each of the corresponding contexts and 

presenting them as cues to the system. Typically a simple inhibitory mechanism 

prevents items being recalled repeatedly. This process is summarised in table 5.2. 

5.5.2 Modelling sequential events with the context vector 

In order to simplify the modelling of time for sequence memory, one further 

assumption must be made. Time should be considered to be not continuous, but 

instead a sequence of discrete temporal steps. These steps may in fact be so small as to 

give the impression of a continuous sequence. However, to each of these discrete 

moments in time we assign a unique context vector representing the internal cognitive 

state of the system at that moment in time (cf. time tags; Estes, 1972). Therefore, at 

any moment in time, t0 , there is a corresponding context, c0 , that represents the state of 

the system at time tn, This may be expressed more precisely as: 

t,. HC11 (5.3) 

Therefore, if items are presented at discrete intervals during learning, these items will 

be associated with the context that corresponds to the particular moment in time when 

the item was presented. 

t.2 c_2 i1 
t1 C_t 

to Co h 
t1 Ct 

ti C2 h 

Figure 5.11 Associating items presented at discrete intervals to the contexts that correspond 

to those moments in time 
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This is best illustrated by figure 5.11 where the latest item presented is h and hence all 

the time steps and contexts are numbered relative to that position. Figure 5.12 

illustrates the effect of using six "highly distinct" contexts for the item association. The 

similarity value is unity for each context in its target serial position. However, it is 

clear that, taking the context vector in the third serial position as an example, the 

context from the previous serial position and that for the next serial position both have 

similarities of approximately 0.4 in the third serial position. More specifically, the third 

context is highly unlikely to be confused with those contexts in the second and fourth 

positions because in the present serial position, they report very low measures of 

similarity. This can be seen to confirm the intuitive belief that a set of "highly distinct" 

contexts will be easily distinguished from each other. 
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Figure 5.12 Similarity of six "highly distinct" contexts 

Figure 5 .13 illustrates the similarity of a set of "less distinct" contexts. Once again 

taking the third serial position as a reference, that the similarity measure for the second 

and fourth contexts at the third serial position, is much higher than previously (a 

cosine of approximately 0.85). Furthermore, whereas before the similarity measure 

was effectively zero beyond the serial position immediately neighbouring the reference 

position, in this case the similarity measure for the first and fifth contexts at the third 

serial position is in fact around 0.6. Again this confirms the intuition that if the context 

124 



Modelling human short-term memory for serial order Chapter 5 

vectors are evolving more slowly, so neighbouring contexts are going to have more 

elements in common, i.e. more overlap, and hence be more similar to each other. 
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Figure 5.13 Similarity of six "less distinct" contexts 

However, it is apparent that if the "less distinct" contexts were sampled at greater 

intervals, they would appear to behave like "highly distinct" contexts. This is a useful 

observation as it suggests that one set of context vectors is sufficient and that by 

manipulating the spacing between to-be-associated contexts, the distinctiveness 

between them may be controlled. In this manner the degree of confusion at cueing may 

be limited. 

We also suggest that this property will give rise naturally to order errors. If the "less 

distinct" contexts are used during learning, and the third context reinstated at recall 

and presented as a retrieval cue, it is clear that it is highly likely to become confused 

with the retrieval cue for both the second and the fourth serial positions. Therefore, 

there is a good possibility that confusion will occur resulting in either the second or 

fourth item being recalled erroneously in the third serial position. Furthermore, we 

predict that as the retrieval cues for the first and last serial position can only be 

confused with the contexts immediately following or preceding them, so there is less 

probability of an error occurring at these end positions. The consequence of this is that 
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more errors should occur in the central serial positions resulting in a bowed serial 

position curve. 

However, it was stated during section 5.4.3 that in order to produce the similarity 

function from the set of contexts, the similarity function had to be averaged for a 

number of different sets of contexts. This appears to have serious implications for 

learning if one novel set of contexts is insufficient to ensure that the model will behave 

as predicted. However, we argue that this processes of averaging over a number of 

sets of contexts is akin to the use of one larger, high dimensionality "overall context" 

that consists of each of these smaller, low dimensionality "contexts". Simply, this 

allows for a smoother and more predictable performance, and therefore for the 

remainder of this thesis, where averaging the contexts is discussed, it should be 

thought of as simply resulting in a higher dimensionality context vector. 

A further issue to be considered when applying the context signal to the problem of 

sequence memory is how to update the context signal before recall. This problem can 

be approached in either of two ways: the first, and simplest, method is to reinstate the 

context exactly as it was during the learning stage. However, the second, and 

preferred approach, is to partially reinstate the context. We assume here that recall 

begins almost immediately after the last item is presented. We implement this by 

copying the fastest moving elements of the context-at-recall to all of the contexts prior 

to recall. We expect that this could preferentially influence the most recent items and 

hence reduce primacy in the serial position curve. 

In fact, the majority of the data presented later in this section is generated by the 

former method although some investigation of the latter is described. 

In summary, we suggest that there exists a unique representation of internal state, a 

context, and that these contexts may be assigned to discrete moments in time. Further, 

by associating items, presented to the system at regular intervals, to the corresponding 

contexts, it is possible to model serial ordered behaviour. We have also demonstrated 

how the rate of context evolution and inter-context spacing are analogous to each 
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other and have suggested how they may influence performance. In the next section, 

the question of how the model can store these associations by simple Hebbian learning 

is addressed. 

5.5.3 Learning by Hebbian association 

We have already outlined how serial order information may be modelled by associating 

items presented sequentially with the appropriate context state. Now we examine how 

this may be simulated using a Hebbian associator network and single trial learning. 

Let each item and context be represented by the p-by-1 dimensionality vectors i and c 

respectively: 

ikl Ckl 

ik = 
ik2 Ck2 

(5.4) Ck= 

ikp Ckp 

Each item vector element is a scalar selected at random from a normalised distribution 

about zero with a variance of one. In order to facilitate the retrieval process, each item 

vector is also normalised. Items are presented sequentially to the network. As each 

item is presented, so it is mapped to a unique context vector: 

k=l, 2 ... q (5.5) 

Here q corresponds to the number of item-context associations to be stored by the 

network during the learning phase, or list-length. It is possible to refine equation 5.5 

with the introduction of W(k), the weight matrix generated as a result of the single 

item-context association, k: 

(5.6) 
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Therefore, the association between the item, ik, and the context, ck, may be stored in 

the weight matrix W(k). However, at present this only accounts for the association of 

a single item-context pair of vectors. As each item is presented sequentially to the 

network, so each association generated dynamically must be stored in the memory, in 

this case the associative memory matrix M: 

q 

M = lW(k) (5.7) 
k= I 

Hence equation 5.7 describes the accumulation of each association in order to produce 

the memory trace M. It is also possible to express the storage procedure in terms of 

the contents of the memory matrix as a function of the list position: 

k=l, 2 ... q (5.8) 

Equation 5.8 illustrates that, for the kth item-context pair, the contents of the memory 

matrix Mk are equal to the contents of the memory trace as a result of the previous 

association, Mk-I plus the weight matrix generated by the association of the kth item

context pair. 

Furthermore, we can express an approximation to Min terms of the stimuli vectors as: 

(5.9) 

Here, M represents an approximation to the contents of the memory matrix, M, after 

each item-context vector pair has been presented. The vector ck T represents the 

transpose of the context vector ck and q once again represents the total number of 

items in the list. Note that the term ik ck T represents the outer product between the 

probe pattern, ck, and the memorised pattern, ik. As both of the stimuli have matrix 

dimensions of p-by-1 so the outer product will have square dimensions p-by-p. Hence 

we can further refine equation 5.8 to incorporate equation 5.9: 
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(5.10) 

Therefore, the Hebbian learning process may be expressed in vector notation as 

described by equation 5.10. The memory matrix Mk is equal to the contents of the 

memory trace as a result of the previous association, Mk-I plus the outer product 

between the key pattern, the context vector ck, and the memorised pattern, the item h. 

The storage process is clarified by the signal flow diagram of figure 5.14. This 

illustrates how the nth item and context vector pair are associated together and 

combined with the contents of the memory trace, Mn-I• Next the updated contents of 

memory, Mn are delayed whilst the next item and context vector pair are presented to 

the network. 

Figure 5.14 Open loop implementation of OSCAR 

We have described the process of item, context, association and storage by Hebbian 

learning in a memory matrix. Next we address the problem of item recall and 

recognition. 

5.5.4 Recall and Recognition 

During item recall, the context vectors are presented sequentially to the memory trace 

in the same order as they were originally stored during the learning stage. Refining 

equation 5.6 to include the approximation to M, M, and considering the output 

generated, i', when the context vector, Cj , is presented to the memory matrix M: 
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A 

i' = Mc. 
J (5.11) 

Substituting equation 5.9 and expanding this as follows: 

(5.12) 

It should be apparent from equation 5.12 that ck Tei is the scalar inner product between 

the context probe and the context stored in the original association, ck. Therefore it is 

possible to simplify equation 5.12 as we can assume that all the context vectors are 

normalised, to: 

i' = (c;cj) ij + f(c;cj) ik 
k=I 

(5.13) 

k~j 

It is evident from equation 5.13 that if the context, ci is reinstated and used as the 

probe presented to the memory trace, the retrieved vector will contain the target item, 

ii and some noise. The strength of the noise will depend upon the similarity between 

the probe and every other context vector. 

However, the item recall process is not yet complete. A further stage of item 

recognition is required in order for the correct item to be reinstated at the output. The 

retrieved item, i', is presented to a lexicon of recallable items containing uncorrupted 

copies of each item presented to the model during learning along with a number of 

distractor items (the number of distractor items is typically either zero or equal to the 

number of items presented). As the recalled item is presented to each vocabulary item, 

so the cosine, once again the measure of similarity, between the recall item and each of 

the vocabulary items is calculated. The vocabulary item that has the greatest similarity 

(i.e. the highest cosine value) to the recalled item is recalled from the vocabulary and 

presented as the output. 

130 



Modelling human short-term memory for serial order Chapter 5 

We have outlined how it is possible to recover an item from the OSCAR memory 

matrix given the reinstatement and subsequent presentation of a context vector to the 

network. Furthermore, we have shown that the quality of the recalled item 

approximation depends upon the similarity (i.e. distinctiveness) of the context vectors. 

We have also explained how the recalled item is compared with a vocabulary of items, 

possibly including a number of distractor items, and how the item to which recalled 

item bears most similarity, is retrieved from this vocabulary and presented as the 

models output. 

In the following section we demonstrate how the model described so far is capable of 

performing serial ordered learning and recall, and further that it is already capable of 

reproducing the distribution of order errors observed by Estes (1972). 

5.6 Simulation 10: Serial ordered learning and recall 

Introduction 

In order to demonstrate that the ability to perform serial ordered learning and recall 

occurs as a natural consequence of the OSCAR architecture, a simple network 

implementing the storage and recall rules described thus far was applied to the 

problem of learning and recalling a sequence of six items. We anticipate that the model 

should be capable of producing a serial position curve that includes a degree of 

primacy (improved performance for the early items) and recency (an improvement in 

the last serial position). Examination of the transposition curve should confirm that 

order errors occur most often in the serial positions immediately adjacent to the target 

serial position. 

Method 

The following method will be employed, with only minor alterations to parameter 

values, for each of the OSCAR simulations. Therefore, here it is described in detail, 

while in subsequent sections we will refer the reader back to this section, highlighting 

any methodological differences. 
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OSCAR was presented with previously unseen lists of six items. Items were 

normalised and of dimensionality 16. Vector elements were drawn randomly from a 

normal distribution about zero with variance of one. During training, each item was 

associated with a 16-element context vector by Hebbian association and the 

association accumulated in the composite memory store. Recall involved reinstating 

each context vector from the sequence and presenting it as a probe for recall to the 

memory store. During each experiment, one set of vocabulary items was generated and 

each of the contexts reinstated and presented sequentially in order to generate a 

retrieved item for each serial position. This process was repeated for each of the 20 

sets of context vectors using the same set of vocabulary items and the retrieved items 

were averaged accordingly. Finally, each of the retrieved items was compared with 

each of the items in the vocabulary by taking the cosine between the two. The 

vocabulary item which was most similar to the retrieved item was recalled as the 

output for that serial position. In order to average the results, a new set of vocabulary 

of items was generated and the training and recall process repeated for each of the sets 

of context vectors. 

The context distinctiveness was controlled by setting the inter-context spacing 

between items to three simulated steps. Twenty sets of context vectors were used and 

the results were averaged for 1000 different sets of vocabulary items. 

Results 

The serial position curve generated as a result of this simulation is presented below in 

figure 5.15. The curve exhibits the typical bowed shape with best performance for the 

items occupying the first and last serial positions. Performance in both of these serial 

positions is at 99% correct, dropping to 70% in each of the remaining serial positions 

(except for the third position, where performance drops to 69%). 

Figure 5.16 illustrates the distribution of order errors, the transposition gradient, which 

accompanies the serial position curve of the previous figure. This figure illustrates 

clearly that each item is recalled maximally in its target serial position. For example, if 

we consider the items recalled in the third position. The third item is recalled correctly 
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67% in the third serial position. However, for 15% of trials both the second and fourth 

items are recalled erroneously in this position. In contrast, the sixth item is recalled 

99% of trials in the sixth serial position. 
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Figure 5.15 Serial position curve for basic OSCAR network 

Discussion 

These results clearly illustrate that even this most minimal implementation of the 

OSCAR architecture is capable of producing serial ordered behaviour. The serial 

position curve is bowed with a high degree of first item primacy and last item recency. 

However, there is no extended primacy effect (i.e. extended over the first two or three 

items) and the last item recency is greater than was observed empirically (cf. Jahnke, 

1963; Baddeley, 1968) for visually presented stimuli. 

These effects are attributed to edge effects (cf. Page & Norris, 1995) resulting from 

confusability between the context vector cues. More precisely, when the first ( or last) 

context vector is presented as a cue for recall, confusion can only occur between 

contexts in one direction: towards the centre of the sequence. However, when the 

third or fourth context is presented as the cue for recall, it may be similar with those 

contexts occupying serial positions in either direction towards the ends of the list. In 

this manner, more item order errors are expected to occur in the central serial 
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positions than in the end positions. If this is the case, a bowed serial position curve 

should be the natural consequence. 

Position 1 Position2 Position3 Position4 Positions Positions 
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Figure 5.16 Distance functions for basic OSCAR network 

In fact, this prediction is supported by the distance function (figure 5.16) which 

illustrates how more order errors occur in the central list positions. This finding is in 

accordance with a wealth of empirical data (e.g. Estes, 1972; Healy 1974; Henson, 

Norris, Page & Baddeley, 1996). 

However, although it is clear that OSCAR is capable of producing realistic serial order 

performance, the model does not possess the ability to fit the range of empirical results 

we require. In order that this may be attempted, a number of free parameters must be 

added to the network. These are introduced in the following section and explored in 

detail in the following chapter. 
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5. 7 Additional parameters 

Thus far we have introduced the underlying mechanism employed by OSCAR for 

learning and recall of item-context associations. Although this model performs serial 

order recall tasks adequately, the serial position curves generated possess symmetric 

primacy and recency effects (figure 5.15). They lack the extended primacy and small 

last item recency typical of serial position curves obtained for sequential recall of 

visually presented stimuli. Therefore, in order to provide a closer match of empirical 

data using OSCAR, further parameters must be introduced to the system. 

In the first instance, two free parameters are introduced: "A , the learning rate and 8 the 

weights decay rate: 

(5.14) 

The first parameter is the weights decay rate. This introduces recency to the model by 

degrading the memory trace of earlier list items. 
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Figure 5.17 Non-linear learning rate decaying with serial position, i 

(Lrate=0.9;.J and Lrate=O. i ·1
) 
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The second parameter introduced here is the learning rate. The learning rate effects the 

strength with which each new item-context pairing is stored in the memory trace. 

Typically this value is also high, such as 0.9, and constant for each serial position. 

However, in a number of experiments described here, we use a learning rate term that 

decreases exponentially with serial position (figure 5.17). This introduces primacy and 

reflects the intuition that later list items are progressively less surprising or attention

demanding than earlier items. 

A number of other parameters are introduced into the system in order to improve 

performance and are discussed in the next chapter. In order to add output interference, 

noise is added to the weights matrix during recall. The effect of adding noise to the 

matrix during the intervals between each item being presented is also considered. The 

addition of a noise threshold during the retrieval stage supplements the order errors 

that occur naturally in the model with item and omission errors. Furthermore, a 

number of inhibitory processes are investigated. 

5.8 Summary 

In this section, an oscillator-based associate recall model of serial ordered learning and 

recall, OSCAR, has been introduced and its basic architecture outlined. The notion of 

a reinstatable temporal signal with a non-repetition property and a specific similarity 

function has been introduced and a method for generating a suitable signal described. 

By associating novel distributed vectors of features with successive context vectors, it 

is possible to produce serial ordered learning and recall. This is reflected in the bowing 

of the serial position curve and the natural distribution of order errors about target 

serial positions. However, without additional parameters, the model is unable to fit 

sufficient of the empirical data we wish to address. In the next chapter, we examine 

how the introduction of these parameters influences the behaviour of the model. 
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CHAPTER6 

Investigating OSCAR parameter space 

6.1 Introduction 

At the end of the previous chapter, it was shown that the simplest implementation of 

the OSCAR architecture was capable of producing a bowed serial position curve and 

a natural distribution of order errors. We also explained the need for two important 

free parameters: the constant weights decay rate, ◊, and the variable learning rate, A, 

that may decrease exponentially with serial position. In the following chapter, a 

summary of the effects of varying OSCAR's free parameters, either independently or 

in combination, is presented. The purpose of this is to gain a computational 

understanding of OSCAR's behaviour. The psychological data is addressed in chapter 

7. 

6.2 Simulation 11: Reducing the distinctiveness of the context vectors 

Introduction 

It was suggested in section 5.5.2 that the ability to discriminate between learned items 

might depend upon the distinctiveness of the context vectors. To review, we 

predicted that the use of "less distinct" contexts would result in more item errors as 

the recall cues would be easily confused while the use of "highly distinct" contexts 

would result in a high degree of performance. The distinctiveness can be controlled 

by manipulating the degree to which the oscillators evolve during the simulated time 

interval between each being selected. For example, if the oscillators are allowed to 

evolve for a long period then the contexts will be "highly distinct". However, if the 

contexts are selected rapidly and the oscillators prevented from evolving far during 

each inter-context interval, then the resulting set of contexts will be "less distinct". In 
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practice, the distinctiveness is controlled by selecting context vectors from a sequence 

and controlling the gap between each context, the jump. 

Method 

The method employed in the following simulation is the same as that outlined for 

simulation 10. However, during the first part of the simulation, the distinctiveness 

between the contexts was varied by selecting contexts separated by distances of either 

two, four or six steps. Performance for each condition is examined in terms of the 

serial position curve. In the second half of the simulation, the distinctiveness was 

manipulated by increasing the spacing between context vectors from one step through 

to ten. For each case, the mean proportion of items recalled correctly in their correct 

serial position was recorded. 

In both simulations, twenty sets of context vectors were used and the results were 

calculated using the average of 500 different sets of vocabulary items. No inhibitory 

processes, learning rate or decay rate parameters were introduced during this 

simulation and as such the results reflect the performance of the basic OSCAR 

architecture. 

Results 
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Figure 6.1 Serial position curves for six item lists as the inter-context spacing is 

increased from two to six steps 
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Figure 6.1 illustrates the results of reducing the distinctiveness of each set of context 

vectors by selecting closer spaced sets of context vectors. Performance when the 

spacing is large (six steps) is nearly 100% for each of the six serial positions. 

However, as the contexts become "less distinct" and the spacing is reduced (to only 

two steps) so performance drops to approximately 45% for the first and last serial 

positions and approximately 40% for the central list positions. 

Figure 6.2 illustrates the mean proportion of items recalled correctly for six item lists 

as a function of increasing distinctiveness, presented as increasing inter-context 

spacing. Mean recall improves from approximately 25% when the inter-context 

spacing is unity, to approximately 83% when the inter-context spacing is four steps, 

to a ceiling value of approximately 100% for inter-context spacing of seven steps or 

more. 
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Figure 6.2 Mean proportion correct recalls for increasing inter-context spacing 

Discussion 

The results of this simulation are clearly illustrated in figures 6.1 and 6.2. As 

predicted, when the inter-context spacing and distinctiveness between the contexts is 

increased, so recall performance improves. Figure 6.2 illustrates that recall 

performance increases towards the 100% ceiling level as the distinctiveness increases. 

It is clear from these results that an inter-context spacing of four or five simulated 

139 



Modelling human short-term memory for serial order Chapter6 

time steps is sufficient, as at this level the serial position curve is adequately bowed 

and performance is sufficiently high to produce realistic levels of recall. 

In fact, it is important to consider not only the effect of inter-context spacing on the 

models ceiling performance, but also the effect that the capacity of a Hebbian 

network for accurate storage and retrieval of non-orthogonal data may have on the 

models behaviour. A Hebbian network can only store and recall the associations of n 

n-dimensional vectors and orthogonal contexts with absolute accuracy 11
• In the case 

of OSCAR, where the item and context vectors are non-orthogonal, performance is 

much reduced and hence large dimensionality vectors have to be used. 

In the light of the simulation described here, in subsequent simulations a more 

distinct set of contexts will be employed in order to improve performance. In 

simulation 10, an inter-context spacing of three steps was used, however for all future 

simulations, the comparison between the refined model and the basic architecture will 

use an inter-context spacing of four unless stated otherwise. 

However, although OSCAR can produce serial position curves without the use of any 

free parameters, it is only by introducing additional parameters to the model that its 

performance may be fitted to empirical data. 

6.3 Effect of decay rate and learning rate 

There is much evidence to suggest that memory traces decay over time (e.g. Conrad, 

1960) and the majority of models of short-term memory implement the decay of 

memory contents in some manner by scaling the current contents of memory prior to 

each new association being combined with the current contents of memory. For 

example, the forgetting parameter, a, of TODAM (Lewandowsky & Murdock, 1989) 

which implements forgetting through decays by premultiplying the contents of the 

memory vector before the next item and association are added to the composite 

memory trace. Without weights decay, each weights matrix element could grow 

11 Imagine each context is a binary vector with zeros occupying n-1 elements and a one in the 
element that corresponds to the list position of the stimuli item. 
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towards infinity. Furthermore, it is also commonplace to weight the strength with 

which each new item is stored in the memory trace by the use of a learning rate 

parameter (cf. the item and order weighting parameters, y and ro, of TODAM 

(Lewandowsky & Murdock, 1989)). The effect of manipulating OSCAR's learning 

rate and weights decay parameters both separately and in combination is reported in 

this section. 

6.3.1 Simulation 12: Introducing a decay rate parameter 

Introduction 

In the following simulation, a "decay rate" parameter which varies over the range O to 

1, &, is introduced in order to scale the composite memory trace before each new 

association is added to the store (see equation 5.14). It is anticipated that this 

parameter will introduce an extended recency effect to the serial position curve as it 

will degrade the earliest associations. Thus, earlier items will be harder to restore in 

comparison with those occupying the last serial positions. 

Method 

The procedure employed during the following simulation was identical to that 

described for simulation 10. However, in contrast, the inter-context spacing between 

items was equal to four. Furthermore, a "decay rate" parameter was introduced during 

the learning stage. This scales the contents of the Hebbian memory matrix prior to 

adding the next association to the memory. This was assigned a value of 0.9 which 

corresponds to a decay of memory of 10% before every association. 

Results 

Figure 6.3 illustrates the effect of introducing a decay rate parameter of 0.9 to the 

OSCAR architecture and contrasts it with the performance of the most basic OSCAR 

architecture (with inter-context spacing of four) . 

Performance for the first item is almost exactly the same as for the parameter free 

model at around 90% correct. However, for each of the subsequent items, 

performance improves until recall is almost 100% for the sixth item. 
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Discussion 
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Figure 6.3 Serial position curve with decay rate parameter 

Chapter6 

What is immediately evident from figure 6.3 is that performance for the decay 

condition is better overall than for the parameter free condition. The first item has not 

suffered even though the association between it and the first context has been scaled 

repeatedly. However, the relative first item primacy has been reduced due to the 

increase in performance for the second, and all the subsequent, items. The fact that 

performance is as good for the first item with inclusion of the decay rate parameter as 

it is without is attributed to the fact that the associative and recall mechanisms are 

robust enough to be able to recognise that the first item is associated with the first 

context. It would be reasonable to predict that if the contexts were less distinct (i.e. 

the inter-context spacing was reduced) or the decay rate parameter reduced, then the 

performance for the first item would be reduced further. The second point that should 

be observed is that the recency component of the last item over the second to last 

item remains approximately constant for both conditions. 

However, the question remains as to why performance for the decay condition, 

although as predicted (i.e. better for later than earlier items), is better overall than for 

the parameter free condition. We would suggest that as the learning and recall 

process is robust, once the first item has been recalled, the likelihood of recalling the 

next item increases as it will be less decayed than the previous item. Increasing the 

magnitude of the decay would once again decrease performance overall. 
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Therefore, although the serial position curve contains a primacy and recency 

component, the primacy component is not similar to that which we would anticipate 

for a immediate recall task for visually presented stimuli. In order to address this, the 

inclusion of a learning rate parameter is considered in the following simulation. 

6.3.2 Simulation 13: Introducing a learning rate parameter 

Introduction 

In the following simulation, a non-linear learning rate parameter, A, which varies 

over the range Oto 1, is introduced in order to scale the strength with which each new 

association is added to the composite memory store (see equation 5.14). As the 

learning rate will be greatest for the first association, decreasing non-linearly for each 

of the subsequent associations, it is anticipated that it will introduce primacy to the 

serial position curve by reducing the strength with which the later items are combined 

to the memory trace. However, this may be at the expense of overall performance. 

Method 

The procedure employed during the following simulation was identical to that 

described in experiment 10 but with the following differences. The context vector 

distinctiveness was controlled by setting the inter-context spacing to four. The decay 

rate parameter described previously was excluded from the current simulation. 

However, a non-linear learning rate parameter was introduced and took a value of 

unity for the first association and then 90% of the previous value for each of the 

subsequent associations (cf. figure 5.17). Performance is compared with a parameter 

free version of OSCAR with identical context distinctiveness. 

Results 

The effects of introducing a non-linear learning rate parameter to the OSCAR 

architecture are illustrated in the serial position curve of figure 6.4. As before, 

performance is unchanged for the first item but decreases to a low of approximately 

65% for the fifth item. Performance improves slightly for the last item with a four 

percent last item recency effect, but, overall, falls below that of the parameter free 

version. 
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Figure 6.4 Serial position curve with learning rate parameter 

Discussion 

It is evident from figure 6.4 that the reverse effect to that demonstrated by the decay 

rate parameter (figure 6.3) occurs. In the present case there is a primacy effect 

extending over the first four items and a reduction in last item recency to four 

percent. 

As in the previous simulation, performance for the first item is unaltered by the 

inclusion of this parameter. In this case, however, this is exactly as would be 

expected as the learning rate for the first item is identical to that for the parameter 

free condition. As the first association is in no way degraded, we would expect 

performance to reflect the maximum possible for a network with normalised 

distributed stimuli and contexts. It should also be observed that unlike the previous 

simulation, the mean performance is worse than the parameter free condition. 

Having outlined the effects of adding decay and varying the learning rate across serial 

position, the next step is to combine these two parameters and vary the degree to 

which each controls the performance of the serial order recall task. Therefore, the 

following simulation examines the effects of employing a combination of both the 

learning rate and weights decay parameters during performance. 
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6.3.3 Simulation 14: Combining decay and learning rate 

Introduction 

In the following simulation, the non-linear learning rate, 'A, and the weights decay 

parameter, 8, are introduced in different combinations to the model. The simulation 

consists of three different conditions: in the first the learning rate will dominate; in 

the second, the weights decay parameter will have the greatest influence; in the third 

condition, both parameters will have similar influence on performance. 

It is anticipated that the subtle combination of the two free parameters should be 

sufficient to introduce the extended primacy and last item recency desired of the 

model without degrading the overall mean performance. 

Method 

The procedure employed for the following simulation is identical to that described in 

experiment 10. However, for each of the three conditions the learning rate and 

weights decay parameters are varied. In the first condition, the learning rate 

parameter is assigned a value of 0.7 and the weights decay a value of 0.9. In the 

second condition, the learning rate parameter is assigned a value of 0.9 and the 

weights decay a value of 0.7. In the third condition, both the learning rate parameter 

and the weights decay are assigned values of 0.9. In each condition, the context 

distinctiveness is controlled by setting the inter-context spacing to four. Performance 

in each condition is compared with the basic OSCAR network. 

Results 

The results for the three conditions are illustrated in figure 6.5. In the first condition, 

the learning rate influences the serial recall performance. There is extensive first item 

primacy (30% ), however performance decreases for each subsequent item and all 

recency is eliminated. In the second condition, the opposite is found as all primacy is 

eliminated while performance increases to almost 100% in the last serial position 

with a 10% last item recency effect. In the third condition, where the learning rate 

and weights decay parameters are assigned identical values, the subtle influence of 

each parameter upon the serial position curve is evident. 
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Performance in this condition is better than for the parameter free condition in each 

serial position. There is an extended primacy effect with approximately 9% first item 

primacy. The last item recency effect is considerable (approximately 14%) while the 

curve replicates the asymmetry typical of the empirical data for immediate serial 

order recall of visually presented stimuli (e.g. Jahnke, 1963; Baddeley, 1968). 

Discussion 

Figure 6.5 (condition 1) illustrates that with such a steep learning rate, it is the 

learning rate that proves responsible for the general shape of the curve. There is an 

excellent first item primacy effect. The learning rate benefits the item in the first 

serial position as it is stored in the memory trace with a weighting of one, whereas 

the next item weighted by a factor of 0.7 before storing, then by 0.49 for the next 

item and so forth for each of the remaining serial positions. The net result is that the 

first association is by far the strongest presented to the memory matrix and hence the 

first item is recalled 99% of the time. However, this is at the expense of any of the 

recency provided by the decay rate term. 
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The overall shape of the curve illustrated in figure 6.5 (condition 2) is provided by 

the decay rate. Comparing this figure with that of figure 6.3, it appears that 

performance is almost identical to that reported by the use of a decay rate term alone 

(Simulation 12). However, in the present simulation the small degree of primacy 

apparent in figure 6.4 is eliminated due to the reduction in the decay rate parameter. 

Clearly the decay rate parameter has a very large influence on the model and should 

therefore be assigned large values (e.g. <>=0.9) in order to ensure that the primacy 

effect is not eliminated at the expense of improved performance of the latter half of 

the list. 

Finally, the results of the third condition illustrate that when the learning rate and 

decay rate parameters are combined and used more subtly, the effect of each can be 

controlled to produce a serial position curve with both an extended primacy effect, 

last item recency and the asymmetry typical of the empirical data (e.g. Jahnke, 1963; 

Baddeley, 1968) for immediate recall of visually presented stimuli. However, here we 

do no attempt to reproduce the empirical data exactly as it is unclear how these 

parameters will interact with others, such as inhibition. 

6.4 Effect of output inhibition 

6.4.1 Introduction 

The data presented so far has all been generated in the same manner: an output 

vector, generated by probing the memory matrix with one of the context vectors 

presented during learning, is compared with a vocabulary of items, some, but not 

necessarily all of which, were presented during the learning stage. The model 

calculates the cosine between the retrieved vector and each of these vocabulary items. 

The vocabulary item that results in the greatest cosine (i.e. closest to unity, where 

unity would signify that the item was identical to the target item) is recalled. 

However, given such a simple model, there is a tendency for many items to be 

recalled in more than one serial position. This results in more errors than would be 

expected from the model and an unnatural error distribution. 
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One solution to this problem is the introduction of a number of simple inhibitory 

processes during recall (Burgess & Hitch, 1992, 1996; Henson, 1996; Houghton, 

1990, 1994a; Page & Norris, 1995). 

Houghton (1990; 1994a) describes an opponent processing system in the "competitive 

filter" of the competitive queuing model. A layer of opponent nodes, driven by 

corresponding item nodes, first select the most active item node, then inhibit laterally 

in order to suppress the other outputs. Finally, they inhibit the most active item node, 

permitting competition for the next output. Such a process necessitates the need for a 

"doubling" mechanism that allows sequences containing repeated items to be recalled 

(Houghton, Glasspool & Shallice, 1994). Henson, Norris, Page and Baddeley (1996) 

observe that where repeat errors occur, they are usually consist of early items being 

repeated at the end of the list. Attempting to account for this effect with the primacy 

model, Page and Norris ( 1995) suggest a decaying inhibitory mechanism such that 

the likelihood of a repeat error increases with serial position. A similar process is 

outlined by Burgess and Hitch (1996) in order to produce a more localised 

distribution of order errors. 

In the following section, the effects of extending the OSCAR retrieval stage with one 

of two simple inhibitory processes is considered. The first is a simple process which 

prevents the same item being recalled in adjacent serial positions. This may be 

thought of as a simplistic representation of the decaying inhibitory mechanism 

outlined by Page and Norris (1995). The second process is a more powerful 

mechanism which prevents any item being recalled twice in any one sequence. 

Nairne and Neath (1995) observe that the sampling without replacement of TODAM 

(Lewandowsky & Murdock, 1989) is effectively a no-repeated-items inhibitory 

mechanism. 

6.4.2 Simulation 15: Simple inhibitory process during recall 

Introduction 

The first inhibitory process investigated here is a rule which prevents the successive 

recall of any one item in neighbouring positions, such as with the incorrect recall of 
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the list ABCDEF as ABCDDF. In this case, the second D would be prevented from 

being recalled, and the next most similar item retrieved. This rule is particularly 

important because the majority of the order errors produced by the model in its most 

basic form are due to the similarity of the cue context with those contexts in the 

immediately adjacent serial positions. By inhibiting the recall of any one item in 

successive serial positions, recall should be dramatically improved but should still 

allow repeat errors to occur later in the list. 

For example, if the first item is recalled accurately the majority of times, then the 

second item is more likely to be recalled correctly because the recall of the first item 

in the second serial position will be prevented. This improvement may be propagated 

throughout each serial position. However, the converse is also true, in that if the first 

item is mistakenly recalled in the first serial position as the second item, then in the 

next serial position it will be impossible to retrieve the correct item even if it is the 

most similar when compared with the recalled item. This will prevent the second item 

being retrieved correctly. By the third serial position, the model will be able to 

recover, unless the item retrieved in the previous position was in fact the third item. 

When an item is erroneously recalled in a serial position immediately before its target 

position (e.g. item p recalled in position p-1), most probably the item that will be 

recalled next will be the one that should have been recalled correctly in the current 

serial position (e.g. item p-1 recalled in position p). Page and Norris (1995) refer to 

this property as fill-in and is a feature of the primacy model not shared by TOD AM 

(Lewandowsky & Murdock, 1989) or the Burgess & Hitch (1992; 1996) model. Fill

in occurs in the Page and Norris (1995) primacy model as a result of the bias towards 

earlier list items built into the primacy gradient. 

In the following simulation we examine the effect of the addition of a simple 

inhibitory mechanism in order to prevent the same item being recalled in successive 

serial positions. 
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Method 

The following experiment implements the same procedure as was described in 

experiment 10 with the following additions. For both the experimental condition and 

the control (parameter free) condition, a more distinct set of context vectors is 

employed. This is implemented by increasing the inter-context spacing to four. 

Furthermore, a simple inhibitory process was added to the retrieval stage. Simply, 

when the most similar item was retrieved from the lexicon of recallable items, if it 

was identical to that recalled in the previous serial position, it was inhibited and the 

next most similar item selected instead. 

Results 

Figure 6.6 illustrates the effect that combining this rule with the basic OSCAR 

architecture has on the serial position curve. It is clear that overall, performance has 

decreased, although the first and second items are almost unaffected by the inhibitory 

mechanism (this is not surprising as the rule can only apply to the second and all 

consecutive items). Performance decreases for subsequent items and reaches a trough 

of 69% in the fifth serial position. There is a last item recency effect of 11 %. 
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Figure 6.6 The effect of a simple inhibitory process during recall 

Figure 6. 7 illustrates the distance function that accompanies the serial position curve 

of figure 6.6. It is evident that the first item was recalled in the first, and correct, 
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serial position approximately 89% of the time. The second item was recalled 10% of 

trials in this position, while the sixth item was not recalled at all in this position. 

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 
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Figure 6.7 Distance functions illustrating the effect of a simple inhibitory process during recall 

The distance functions also illustrate that each item is the most active in its own, 

target, serial position. For example, consider the fourth serial position in figure 6.7. 

The first and second items are only recalled in 1 % or 2% of trials. However, the third 

item is recalled in 8% of trials, the fourth item maximally in 70%, the fifth in 18% 

and the sixth in only 2%. Note that plotting the proportion of correct recalls in each 

target serial position reproduces the serial position curve of figure 6.6. 

Discussion 

These results would appear to confirm the suspicion that performance on later items 

suffers by the inclusion of a simple inhibitory rule. The serial position curve bears a 

striking similarity to the curve generated with the inclusion of a learning rate 

parameter alone (cf. figure 6.4). However, analysis of the distance function provides 

a more thorough account of why the curve is generated in this manner. 
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The first item is recalled correctly 89% of the time in the first serial position and the 

simple inhibitory mechanism prevents it being recalled in the second position. 

However, the second item benefits little from this, and is recalled slightly less than 

during recall without the rule. It is by examining the third and fourth serial positions, 

however, that the reason for the gradual reduction in performance becomes apparent. 

Item three is not recalled in the first serial position ( due to the lack of similarity 

between the third and first contexts), however it is recalled almost 17% of trials in the 

second serial position (i.e. before the target, third, serial position). This is significant 

as the third item is recalled a smaller proportion of times in the fourth serial position, 

approximately 8% of the time. A similar effect is found for the fourth item. This 

would suggest that when errors are occurring earlier in the list where OSCAR has 

failed to select the appropriate item for recall, it chooses to recall the next item as 

recall of the previous item is prevented. This is reflected in the asymmetry of the 

order errors about the target serial position (cf. figure 5.16). Clearly, as items are 

being recalled erroneously before their target serial position, so performance in the 

target positions is reduced. For this reason, OSCAR produces a poorer serial position 

curve than that produced without the inclusion of the inhibitory rule and although 

fill-in (Page & Norris, 1995) occurs, it is only in a small proportion of trials. 

However, accepting that performance overall is reduced, the serial position curve 

retains the desired extended primacy and last item recency effects of the empirical 

data (e.g. Jahnke, 1963; Baddeley, 1968), and now possesses a more natural error 

distribution with fewer duplicate item errors occurring in neighbouring serial 

positions. 

6.4.3 Simulation 16: Preventing item replication during recall 

Introduction 

A second and more powerful inhibitory rule is one which prevents repeated items 

occurring anywhere in the serial position curve. For example. during recall of the list 

ABCDEF, errors such as ABCDDF and also ADCDEF would be prevented (where 

the underlined item would be prevented). 
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The fact that a list must not contain a repeated item is often stated explicitly during 

empirical procedures (e.g. Baddeley, 1968, experiment 5). Nairne and Neath (1994) 

observe that the use of the "sampling without replacement" mechanism in TODAM 

(Lewandowsky & Murdock, 1989) can be likened to the use of a rule preventing 

repeated items occurring in a recall sequence. They observe that such a process 

eliminates the recency portion of the serial position curve (Nairne & Neath, 1994, 

figure 1). We would anticipate that a similar effect would be demonstrated here using 

OSCAR. 

Method 

The following experiment executes the same procedure as was described in 

experiment 10 with the following additions. For both the experimental condition and 

the control (parameter free) condition, a more distinct set of context vectors is 

employed. This was implemented by increasing the inter-context spacing to four. 

Furthermore, if the item selected from the lexicon as providing the closest match to 

the retrieved item was identical to any of the items recalled in any previous serial 

position, then recall of that item was prevented and the lexicon item with the next 

greatest cosine (that had not been recalled previously) was recalled instead. 

Results 

The results of this simulation are illustrated in the serial position curve of figure 6.8 

and the corresponding distance function of figure 6.9. 

As before, recall of the first two items appears to be unaffected by this inhibitory rule 

(again, this is as would be expected given that the rule does not affect the first item 

and, given the accuracy of recall of the first item, influences the second item very 

little also). However, recall performance reduces for each of the subsequent serial 

positions, dropping to a low of approximately 63% in the fifth serial position. Most 

noticeably there is only a 1 % last item recency effect. 
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The distance function of figure 6.9 illustrates the effect of the inhibitory process. 

Estes' ( 1972) observation that distance functions appear symmetric about the central 

list position clearly does not apply in this case. Performance in the first serial position 

is similar to the parameter and inhibition free condition. The first item is recalled the 

most and any order errors occur with items immediately adjacent to the target item. 

However, this is not the case in the sixth serial position, where order errors occur 

evenly with each of the five previous items occurring in equal proportions in the sixth 

serial position. Furthermore, the inhibition is reflected in the asymmetry of order 

errors in the central list positions. Previously, order errors occurred in approximately 

equal proportions about the target item. 

However, in the current condition, clearly order errors occur in greater proportions 

with items that are yet to be recalled in their target serial positions. This is illustrated 

most clearly by the errors that occur in the fourth and fifth serial positions where the 

early items are recalled in less than 1 % of trials. However, even in the list positions 

immediately prior to the target list position, the errors only occur in small proportions 

(e.g. the third item is recalled only 4% of trials in the fourth serial position, while the 

fifth item is recalled 22% of trials). 
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preventing repeated item errors during recall 

Discussion 

Chapter6 

It is clear from the results that, in accordance with Nairne and Neath (1994), the 

inclusion of the rule preventing repeated item errors during recall eliminates the 

recency portion of the serial position curve (figure 6.8). This effect may be explained 

by close examination of the accompanying distance function of figure 6.9. 

The inhibitory process preventing items being recalled more than once in any one 

trial forces errors to occur in a number of different ways. It is immediately evident 

that there is now a more pronounced asymmetry within the distance function: items 

are more likely to be recalled erroneously before their target serial position than after. 

It is also evident that for each item, once its target serial position has been reached, 

and the peak recall returned at this point, recall drops to (near) zero for each of the 

remaining serial positions with the exception of the sixth, and last, serial position. In 

this case, it is clear that each of the items is recalled approximately 7% or 8% of trials 

as an intra-list intrusion in the sixth serial position. 
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Given that there is no vocabulary of distractor items (i.e. unlearned items) to choose a 

response from, and no opportunity to omit to recall an item for any serial position 

(i.e. all errors are order errors), the model is forced to recall whichever item is yet 

unrecalled by this point. So, if, for example, the model recalled item B in the first 

serial position (in favour of item A), there is a good chance that when probed with the 

context for the second serial position that item C may be retrieved because recalling 

B is prevented. From this serial position onwards, the chances of recalling A decrease 

as the contexts corresponding to the latest serial position and the first serial position 

become less similar. But as more items (correct or otherwise) are retrieved from the 

vocabulary, so the chances of A being recalled in error will increase until, by the final 

serial position, it has to be recalled as there are no other suitable competitors for that 

serial position. This accounts for the low performance and lack of recency in this last 

serial position. Nairne and Neath (1994) observe a similar effect with TODAM 

(Lewandowsky & Murdock, 1989) and, as Lewandowsky and Murdock use the 

property to control recency, regard it as unfavourable. Here, we observe that the 

effect exists and that it can be explained fully by examination of the distance 

functions that accompany the serial position curve. 

Given that the elimination of the recency component of the serial position curve may 

be accounted for by the lack of alternate lexicon items available for selection in the 

serial positions where the target item has already been erroneously recalled in a prior 

serial position, it would be prudent to examine the effect of offering a vocabulary of 

distractor items to the network during recall. 

6.4.4 Simulation 17: Inhibition and vocabulary of distractor items 

Introduction 

In the previous data, it was demonstrated that if there was no lexicon of distractor 

items available at recall, then, in the presence of an inhibitory process preventing the 

recall of any item twice, the serial position curve would lose the recency component. 

In the following simulation where inhibition is once again present, the effect of 

expanding the lexicon of recallable items to include a number of previously unseen, 

and unlearned, distractor items, is considered. Given that the lack of recency in the 
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previous simulation is attributed to the lack of recallable items for the last serial 

position, we predict that the addition of a lexicon of unlearned distractor items should 

reintroduce some degree of recency into the serial position curve. 

Method 

The following experiment uses the same procedure as was described in experiment 10 

with the following additions. For both the experimental condition and the control 

(parameter free) condition, a more distinct set of context vectors is employed. This 

was implemented by increasing the inter-context spacing to four. 

Furthermore, for each set of simulations, when a new stimulus vocabulary was 

created, so too was a similar set of vocabulary items. This latter set of items, although 

not presented to the network during learning, was added with those stimuli that were 

learned and made available as the lexicon of recallable items during the retrieval and 

deblurring stage. 

As with the previous simulation, if the item selected from the lexicon as providing 

the closest match to the retrieved item was identical to any of the items recalled in 

any previous serial position, then recall of that item was prevented and the lexicon 

item with the next greatest cosine, that had not been recalled previously, was recalled 

instead. 

Results 

The serial position curve for this simulation is presented in figure 6.10 and the 

accompanying distance function in figure 6.11. 

Once again, performance over the first two serial positions is similar to that of the 

basic, inhibition free, OSCAR model (at 89% and 77% respectively). Performance 

decreases steadily to a trough of approximately 64% in the fifth serial position. There 

is a sizeable last item recency effect of 12%. 
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The distance function illustrated in figure 6.11 confirms that the asymmetry of the 

inhibited OSCAR model remains although there are noticeably fewer intra-list 

intrusion errors occurring in the sixth serial position (cf. figure 6.9). The asymmetry 

within the distance function is clear. For example, in the fourth serial position we 

would expect the third and fifth items to be recalled in approximately the same 

proportions. However, this is clearly not the case as the third item is recalled in only 

3% of trials whilst the fifth item is recalled in over 16% of trials. However, it is clear 

that in contrast to the previous simulation, very few intra-list errors occur in the sixth 

serial position and this is reflected in an increase in last item recency ( cf. figure 6.10). 

Discussion 

The most striking feature of figure 6.10 when compared with figure 6.8 is that the 

recency component of the serial position curve has returned with the inclusion of a 

vocabulary of distractor items at recall. 

This behaviour may be explained by once again examining the distance function 

(figure 6.11). It is evident that items are recalled erroneously more often before, than 

after, their target list position. However, in order to account for the reinstatement of 

the recency component and the absence of the cluster of intra-list intrusion errors in 
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the sixth serial position, we need to consider the distribution of the errors in earlier 

serial positions. 
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Figure 6.11 Distance functions illustrating the effect of an inhibitory process preventing 

repeated item errors with the addition of a vocabulary of distractor items during recall 

Unlike the previous simulation, if an item is unable to be retrieved correctly at its 

target serial position as it has already been recalled erroneously in one of the 

preceding list positions, OSCAR is not forced to select one of the remaining list items 

and commit an order error. Instead, OSCAR may select one of the distractor items 

and although the accuracy measure suffers for this serial position, the error does not 

affect each of the subsequent serial positions. For example, the first three items of a 

list may be recalled as ABD. In this case, the third item has been replaced by the 

target item for the fourth serial position. Its recall in the correct serial position is 

prevented by the inhibitory mechanism. Although it is possible that the item recalled 

for the fourth serial position is the letter C (and this would produce a neighbour 

transposition effect), here we assume that this is not the case. In the previous 

simulation, OSCAR would be forced to select one of the remaining vocabulary items 

presented during training: most probably E, which resulted in the increase in number 

of intra-list intrusions occurring towards the end of the list. However, in the present 
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case, OSCAR may retrieve one of the distractor items instead. Therefore, recall of the 

list may read ABDX, which benefits the latter list items by allowing the letter E to be 

recalled in its correct serial position: ABDXEF. 

In this manner, it is possible to see how a vocabulary of distractor items can help 

improve recall of items towards the end of the lists if there is some inhibitory 

mechanism preventing recall of items recalled erroneously in prior serial positions. 

However, an alternate suggestion to reduce the number of forced intra-list errors 

towards the end of the list is to include a recall threshold, based upon the similarity 

between the retrieved item and each of the vocabulary items, below which items are 

omitted. This hypothesis is examined in section 6.7. 

6.4.5 Summary 

In this section, the effect of a simple inhibitory process on OSCAR has been 

investigated. Simulation 15 revealed that a very simple inhibitory process preventing 

the same item from being recalled in successive serial positions could have a marked 

affect on performance: reducing performance overall whilst introducing extended 

primacy and last item recency. Simulation 16 illustrated that a more complex 

inhibitory process, in this case one which prevented items being recalled twice in the 

same list regardless of serial position, could have a dramatic effect on serial order 

performance: eliminating the last item recency effect by forcing many more intra-list 

errors in the last serial position. However, by introducing a vocabulary of distractor 

items, as reported in simulation 17, this recency component may be returned to the 

serial position curve and a more natural order error distribution produced. 

6.5 Adding noise during learning or recall 

6.5.1 Introduction 

Up to this point, the only degenerative aspects of the model's behaviour have been 

due to the distinctiveness of the context vectors, the limited capacity of the Hebbian 

memory matrix, the item-to-context associations decaying with time in the weights 
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matrix or the effect of varying the strength with which these associations are stored in 

the memory. 

For the following simulations (18, 19 and 20) interference is added to the network by 

adding noise to the Hebbian matrix in the "intervals12
" between each association being 

learned or recalled. Output interference is produced as a result of a small amount of 

random noise being added to each element of the memory matrix immediately after 

an item has been recalled from the lexicon. Input interference is produced by adding 

small amounts of random noise to each element of the memory matrix immediately 

after each new association has been stored in the memory trace. The "learning noise" 

condition is motivated by the intuition that if learned items are only using every (e.g.) 

third or fourth context vector, there must also be some information associated with 

the "unused" contexts during learning. The "recall noise" condition is motivated by 

implementing interference based forgetting or the idea that each item is recoded in 

the memory trace after recall. Interference during recall is expected to improve 

primacy effects by degrading recall performance for later items. 

6.5.2 Simulation 18: Adding noise during learning 

Introduction 

During the following simulation, noise is added during the learning stage, 

immediately after each item-to-context association is combined with the current 

contents of memory. More specifically, after each association is stored in the 

composite memory matrix, small amounts of random noise are added to each element 

of the matrix. In this manner, a degree of input interference besides that due to the 

similarity of the item-to-context associations is implemented in the model. As has 

already been stated, there is an upper limit on the capacity of the network for the 

"These "intervals" are due to the manner in which context distinctiveness is modelled. During 
learning, every n"' context vector is associated with a list item. If the contexts are very distinct, then n 
will be large (e.g. four or five) whilst if they are less distinct, then n will be quite small (e.g. one or 
two). Clearly modelling distinctiveness in this manner means that there will be many "unused" 
context vectors that are not associated with stimuli items. Here we propose that some form of input 
interference during learning occurs as a result of the storage of the association between the cognitive 
state at these times and the unused contexts. We model these associations as random noise. 
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number of associations of non-orthogonal vectors that can be stored and retrieved 

successfully from a Hebbian matrix. 

By adding noise to the memory matrix during learning, we are reducing its capacity 

and hence the ability to accurately store and recall item-context associations. We 

would predict either that items earlier in the sequence will suffer the most as they will 

be degraded more than later items by the addition of noise in the network, or that 

performance will be reduced for each serial position as the capacity of the network 

for storing associations breaks down. 

Method 

The same procedure as was employed for experiment 10 is used in the current 

simulation. The context distinctiveness was controlled by fixing the inter-context 

spacing in each condition to four. However, after each item-to-context association 

was stored in the composite memory matrix, a small amount of random noise was 

added to each of the matrix elements. The proportion of learning noise was varied 

between 0%, 50% and 100%. Performance is recorded in terms of the serial position 

curve for each condition. 

Results 

Parameter free 

50%nolse 

100°/4 noise 

2 3 4 5 6 
Serial position 

Figure 6.12 Adding increasing levels of noise to the Hebbian memory matrix during learning 
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The results of this simulation are presented in the serial position curve of figure 6.12. 

Clearly, adding noise during the "intervals" between each item-to-context association 

being learned degrades performance uniformly across serial position. The serial 

position curves in both the 50% and 100% learning noise conditions retain the 

symmetric bowing of the parameter free condition. However, mean performance 

drops from approximately 0.85 to 0.69 for the 50% condition and then approximately 

0.5 for the 100% noise condition. 

Discussion 

Clearly we must reject our earlier prediction that adding noise to the network in this 

manner would degrade performance only in the early list positions. Instead, learning 

noise degrades performance uniformly across serial position. In retrospect, given the 

limited capacity of the Hebbian matrix for storing non-orthogonal vectors of 

continuous features, this is not surprising, as the memory matrix is effectively storing 

the information of six associations plus six "noisy associations". Next we consider the 

effect of adding noise during recall: output interference. 

6.5.3 Simulation 19: Adding noise during recall 

Introduction 

During the following simulation, noise is added to the memory matrix during the 

item recall stage. After each item has been recalled from memory, a small amount of 

noise will be added to the contents of the memory trace. It is anticipated that, in 

contrast to the previous simulation, this will introduce primacy by degrading the later 

associations in the sequence. 

Method 

The same procedure as was employed for experiment 10 is used in the current 

simulation. The context distinctiveness was controlled by fixing the inter-context 

spacing in each condition to four. However, after each item-to-context association 

was recalled from the composite memory matrix, a small amount of random noise 

was added to each of the matrix elements. The proportion of noise was varied from 
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0% to 50% and then 100%. Performance in each condition is presented as the serial 

position curve for each condition. 

Results 

The results of this simulation are presented in figure 6.13. Clearly adding noise 

during recall reduces performance for all but the first item. Recall drops from 90% in 

the first serial position to a trough of 52% in the fourth. There is a small recency 

effect extending over the fifth and sixth items with performance in the last serial 

position approximately 58%. 
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Figure 6.13 Adding increasing levels of noise to the Hebbian matrix during recall 

Discussion 

The results of this simulation illustrate that adding noise during recall, to introduce 

interference, clearly benefits the early list items and introduces a large primacy effect 

as a result. Performance for the first item is unaffected by the noise as a result of the 

method by which noise is added: i.e. after each item has been recalled. For 

subsequent items, the effect of noise is huge and is reflected in the 28% drop in 

performance in the second serial position. Next we examine the effect of combining 

learning and recall noise on the serial position curve. 
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6.5.4 Simulation 20: Adding noise during learning and recall 

Introduction 

During the following simulation, noise is added to the Hebbian matrix both during 

the learning stage after each association has been stored in the memory matrix, and 

during the recall stage after each item has been retrieved from memory. In light of the 

results of the previous two simulations, it is predicted that adding noise in both these 

intervals should reduce performance over each serial position while maintaining the 

extended primacy effect and last item recency revealed by the previous simulation. 

Method 

The same procedure as was employed for experiment 10 is used m the current 

simulation. However, after each item-to-context association was stored in the 

composite memory matrix, a small amount of random noise was added to each of the 

matrix elements. Then, after each item-to-context association was recalled from the 

composite memory matrix, a further amount of random noise was added to each of 

the matrix elements. The proportion of noise (both during learning and recall) was 

constant at 50%. Performance in each condition was recorded as a serial position 

curve. The context distinctiveness was controlled by fixing the inter-context spacing 

in each condition to four. 

Results 
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Figure 6.14 Adding noise to the Hebbian matrix during both training and recall 
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The results of this simulation are presented in the serial position curve of figure 6.14. 

This illustrates how performance in the noise condition in each of the six serial 

positions is poorer than in the corresponding positions in the parameter free 

condition. As predicted, there is also an extended primacy effect over the first three 

serial positions (75% in the first position, then 63% and 61 %) before reaching the 

trough of 58% in the fourth serial position. Recency extends over the last two serial 

positions, with last item recency of 8%. 

Further analysis of the effect of noise in learning and recall is provided by the 

distance function of figure 6.15 which reveals that order errors occur uniformly in 

each of the serial positions at least two positions away from the target serial position. 

For example, the fourth, fifth and sixth items are each recalled in similar proportions 

in the second serial position. Similarly, the first, second and third items in the sixth 

serial position. 
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Figure 6.15 Distance functions illustrating the effect of adding noise to the 

Hebbian matrix during both training and recall 
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Discussion 

These results (figure 6.14) illustrate that adding noise during both learning and recall 

degenerates performance overall ( due to the impact of learning noise on the Hebbian 

matrix's capacity for associations) whilst introducing extended primacy (due to the 

output interference provided by the noise during recall). 

The distance function of figure 6.15 contrasts with the distance function of the 

parameter free condition (figure 5.16) where items are only recalled erroneously in 

the serial positions immediately adjacent to the target position. In the present case, 

order errors occur evenly across all serial positions for all items in addition to those 

order errors that occur about the target serial positions in accordance with Estes 

(1972). 

6.5.5 Summary 

Clearly adding noise to the model can have a significant impact on performance for 

serial ordered recall. If noise is added to the memory trace during the "intervals" 

between each association being stored in the composite memory matrix, learning 

noise, performance is reduced evenly across each serial position (figure 6.12). 

Conversely, if recall noise is added to the memory trace during the "intervals" after 

each item has been recalled from the composite memory, performance is reduced for 

the later items and extended primacy introduced. If components of both learning and 

recall noise are added to the network, performance overall is reduced while 

maintaining the extended primacy and last item recency desired of the model. 

Introducing output interference by adding noise during recall will clearly reduce the 

recency exhibited by the items occupying the latter half of the list positions. 

Furthermore, introducing small amounts of input interference will reduce 

performance across all list positions. However, before OSCAR can be applied to the 

problems of fitting a range of empirical benchmarks, the effect of item confusability 

must first be addressed. 
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6.6 Simulation 21: Effects of item similarity 

Introduction 

All the data presented thus far has been generated using nonconfusable or dissimilar 

item vectors. Each vector element is selected randomly from a normalised 

distribution about zero with variance of one before the vector is normalised to 

improve the recall deblurring process. However, as much of the empirical data in 

chapter 2 considered the effects of using phonologically similar stimuli (e.g. Conrad, 

1964; Conrad & Hull, 1964; Wickelgren, 1965a; Baddeley, 1968; Henson, Norris, 

Page & Baddeley, 1996), it is necessary to consider the effect that making a 

proportion of each item vector identical will have on the model. It is unclear exactly 

how best to model phonemic similarity given the nature of stimuli in computational 

models of memory (Eich, 1982; Lewandowsky & Murdock, 1989). However, in 

accordance with a number of previous models, similarity is implemented by 

employing a degree of overlap between one stimulus item and another. More 

precisely, where stimuli are represented as n-dimensional vectors of features, similar 

or confusable stimuli share a proportion of features, or elements, in common. 

As has already been illustrated (Chapter 4; Brown, Preece & Hulme, 1995) it is 

important that item normalisation remain intact when item confusability is 

introduced. To summarise the method described in the appendix, item vector stimuli 

are generated by filling each vector element with a scalar randomly selected from a 

normalised distribution. The first item is used as the standard and is normalised first. 

Next, before the remaining confusable stimuli are normalised, a percentage (typically 

25%, 50% or 75%) of the normalised elements of the first item are copied to each of 

the remaining item vectors. Then a process of normalisation is undertaken which 

leaves those elements copied from the first item undisturbed, while ensuring that we 

have a set of confusable yet normalised item vectors. 

In this simulation, the effect of increasing the confusability of the stimuli is 

presented. The predicted results are twofold: firstly, that performance, measured in 

terms of the serial position curve, will reduce as the degree of confusability increases; 
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secondly, that this reduction in overall performance will be reflected in an increase in 

the proportion of order errors that occur (Wickelgren, 1965a). 

Method 

The same procedure as was employed for experiment 10 is used in the current 

simulation. However, items selected from four different vocabularies of stimuli were 

presented during each condition. In the first condition, nonconfusable stimuli were 

selected. In each of the remaining conditions, increasingly confusable stimuli were 

presented: each with either 25%, 50% or 75% overlap. For each of the four 

conditions, a distinct set of contexts was used, generated with an inter-context 

spacing of four simulated time steps. 

Results 

The serial position curves generated for each of the nonconfusable and then 

increasingly confusable conditions are illustrated in figure 6.16. These illustrate 

clearly how increasing the inter-item confusability results in an even decrease in 

performance across each serial position. 
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Figure 6.16 The effect of increasing item similarity (% overlap) on serial order performance 

Furthermore, analysis of the proportion of order errors by presenting the distribution 

of item recalls in the third serial position for each condition (figure 6.17) reveals that 

as the stimuli become more confusable, so order errors increase. This is reflected in 
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the manner in which the spike about the target serial position (cf. the nonconfusable 

condition) broadens as stimulus confusability increases (cf. the 75% confusable 

condition). For example, the first, fifth and sixth items are recalled infrequently in the 

third serial position in the nonconfusable condition. However, in the 75% confusable 

condition, these same items are recalled in approximately 7% of trials. This (21 %) 

increase in intra-list errors is reflected in the reduction of correct recalls. 
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Figure 6.17 The effect of increasing item similarity on distribution of order errors 

in the third serial position 

Discussion 

It is evident from these results that performance for the parameter free version of 

OSCAR is reduced dramatically as the similarity between each stimuli item increases. 

As would be expected, the increase in item similarity has little effect on the shape of 

the serial position curve: there are still reasonable recency and primacy edge effects. 

Analysis of the distance function in the third serial position for each condition reveals 

that as similarity increases, so order errors occur in greater proportions as distant 

items are recalled more often in the third serial position. 
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However, results so far have concentrated on the distribution of order errors. 

Although OSCAR is capable of producing item errors when the lexicon of recallable 

items contains unlearned, distractor, items, it is not capable of omitting to recall an 

item. In the next section, this deficiency is addressed by the addition of a mechanism 

which introduces item omission errors into the OSCAR architecture. 

6. 7 Simulation 22: Omission errors 

Introduction 

There remains a highly significant parameter that needs to be described before 

simulations of the empirical data can be attempted. As the model stands at present, if 

an error occurs during recall and it is unclear which item should be retrieved from the 

lexicon of recallable items, OSCAR will be forced to recall the item that is most 

similar to that retrieved from the memory trace. However, this means that OSCAR 

will always recall something for every serial position, with the result that errors may 

be forced to occur in the later serial positions (e.g. simulation 16). However, we 

know from the empirical data (Conrad, 1965; Henson, Norris, Page & Baddeley, 

1996) that subjects often fail to recall any item. Conrad ( 1965) suggests that this may 

be due a failure in recognising the signal that corresponds to the learned item above 

the background noise. Clearly, with the addition of output interference such as that 

described in simulation 19, there is a high probability that the associations will 

become lost in the noise of the Hebbian matrix. 

Omission errors may be introduced to the model by the addition of a noise threshold 

below which items are omitted during recall. More precisely, when the retrieved item 

is compared with each of the recallable lexicon items, if the similarity of retrieved 

item to each recallable item falls below an arbitrary threshold, then an omission is 

recorded and recall proceeds to the next serial position (cf. Conrad, 1965; Page and 

Norris, 1995). 

In this manner it is possible to introduce omission errors into the model. In the 

current simulation, the distribution of omission errors is considered. 
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Method 

The procedure employed during the following simulation was identical to that 

described in experiment 10 but for the following differences. The context vector 

distinctiveness was controlled by setting the inter-context spacing to four. The decay 

rate parameter described previously was set to a value of 0.9. A non-linear learning 

rate parameter was introduced and took a value of unity for the first association and 

then 90% of the previous value for each of the subsequent associations ( cf. figure 

5.17). Furthermore, an arbitrary noise threshold was set in order to introduce 

omission errors. During recall, if the value of the cosine between the retrieved item 

and the lexicon item fell below the threshold (noise threshold = 0.5), recall of that 

item was prevented. If every available lexicon item failed to be recalled, an omission 

was recorded. Results are presented as the proportion of errors which were omission 

errors for each serial position. 

Results 

The results clearly demonstrate that omission errors account for increasing 

proportions of all the errors across serial position. In the first position, approximately 

31 % of errors are omissions. This increases to approximately 53% in the third, fourth 

and fifth serial positions, before peaking at 85% in the sixth serial position. 
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Figure 6.18 Proportion of errors that are omissions for each serial position 
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Discussion 

Clearly the results presented here are in accordance with the empirical data which 

demonstrates that when omission errors occur, they do so most often in the last serial 

position (cf. Burgess & Hitch, 1992, table 3). 

6.8 Summary 

This chapter has explored the range of free parameters introduced to the OSCAR 

architecture. Here we summarise each parameter briefly while in the following 

chapter, the model is applied to the problem of reproducing a range of empirical data. 

Context vector distinctiveness 

This parameter is controlled by manipulating the inter-context spacing and influences 

the overall performance of the model by controlling the distinctiveness, or 

confusability, of the learned contexts. The use of "highly distinct" contexts produces 

a high level of performance. "Less distinct" contexts introduce errors due to the 

similarity of the reinstated contexts resulting in poorer performance overall. In any 

one simulation, the context distinctiveness is fixed and constant (e.g. figure 6.1). 

Decay 

Forgetting is implemented by introducing a weights decay parameter that scales the 

contents of the current memory trace prior to storing the next association. The decay 

parameter introduces recency to the model (e.g. figure 6.3) and is constant for any 

one simulation. Note that the weights decay during both learning and recall. 

Learning rate 

The non-linear learning rate reflects the intuition that list items become progressively 

less surprising or attention-demanding as a sequence advances. The learning rate 

introduces a primacy effect into the serial position curve (e.g. figure 6.4) and used 

alongside weights decay is sufficient to produce a reasonable serial position curve 

(e.g. figure 6.5, condition 3). 
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Output inhibition 

Two different types of output inhibition have been explored. "Simple inhibition" 

prevents any one item being recalled in two successive serial positions (e.g. figure 

6.6). A more complex inhibitive process that provides "repeated item inhibition" 

prevents the same item being recalled at any two serial positions (e.g. figure 6.8). 

This latter process eliminates recency from the serial position curve unless a larger 

lexicon of recallable items is provided. 

Noise 

If small amounts of noise are added to the weights matrix during learning, 

performance is reduced uniformly across each serial position (e.g. figure 6.12). This 

reflects the limited capacity of the Hebbian matrix for storing associations of non

orthogonal vectors. If output interference, another source of forgetting, is 

implemented by adding small amounts of noise to the weights matrix during recall, 

recency becomes eliminated from the serial position curve (e.g. figure 6.13). 

However, if small amounts of both types of noise are added, it is possible to produce 

a serial position curve with extended primacy and last item recency (e.g. figure 6.14). 

Item confusability 

As items are represented by vectors of features, it is possible to introduce inter-item 

confusability by overlapping stimuli i.e. letting different stimuli items share features 

in common. Increasing the confusability of the stimuli in this manner reduces 

performance overall (e.g. figure 6.16) and introduces order errors (e.g. figure 6.17). 

Noise threshold 

If a noise threshold is introduced to the model during the retrieval stage, below which 

items are not recalled, it is possible to introduce omission errors to supplement the 

order errors and few item errors that occur naturally in OSCAR. 

Conclusion 

Having gained a general computational understanding of OSCAR's behaviour, we are 

now in a position to apply the model to specialised psychological data. This is the 

task of the next chapter. 
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CHAPTER 7 

OSCAR simulations of empirical data 

7.1 Introduction 

In the following section, the OSCAR model is applied to the problem of modelling the 

empirical data reviewed in chapter 2 and summarised in table 7 .1. 

OSCAR is first shown to reproduce the serial position curve (Baddeley, 1968) before 

being applied to the problem of modelling memory span (Crannell & Parrish, 1957). 

The effect of acoustic similarity on memory span is addressed (Conrad, 1965; 

Baddeley, 1966). In simulation 26, the effect of increasing the size of the item set is 

examined (Drewnowski, 1980). In the first of three related simulations examining the 

distribution of order errors, OSCAR attempts to reproduce the transposition gradient 

data of Henson, Norris, Page and Baddeley (1996). Next, we consider OSCAR's 

ability to replicate the characteristic "sawtooth" serial position curves of Baddeley's 

(1968, experiment 5) phonemic similarity effect. Simulation 29 examines the 

distribution of item and order errors further and compares them with the distance 

functions of Healy (1974). 

Table 7.1 

Summary of empirical data addressed by OSCAR 

Simulation 
23 
24 
25 
26 
27 
28 
29 
30 

Empirical result 
Serial position curve 
Memory span 
Acoustic effect on memory span 
Size of item set 
Transposition gradient 
Phonemic similarity effect 
Item and order errors 
Partial reinstatement of context 
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Source of data 
Baddeley, 1968 
Crannell and Parrish, 1957 
Baddeley, 1966a 
Drewnowski, 1980 
Henson et al., 1996 
Baddeley, 1968 
Healy, 1974 
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The final simulation in this chapter examines the partial report serial position curves of 

Murdock (1968) to illustrate the effect of assuming that the dynamic-learning context 

signal can be only partially reinstated at the time of retrieval. 

7.2 Simulation 23: Serial position curve 

Introduction 

One basic result from serial order memory experiments is the serial position curve. The 

data we are concerned with is obtained from subjects who are presented visually with 

a list of items and required to recall them, immediately or after a short interval, in the 

order in which they were presented. Performance is measured by reporting the 

probability that an item will be recalled correctly in its correct list position. 

Example serial position curves were illustrated in chapter 2 (e.g. Jahnke, 1963; 

Baddeley, 1968; Murdock, 1968). However, although the precise nature of the curve 

depends upon the details of the recall task, the data have a number of properties in 

common. 

The most significant properties of the asymmetric serial position curve include the 

extended primacy effect over the first few serial positions and the last item recency. 

The primacy effect is the high performance exhibited during recall for the items 

occupying the earliest list positions. For visually presented stimuli, this extends over a 

number of items. The recency effect is a similar property but for the latter half of the 

list. Typically recency extends over two or three items. However it may only appear 

for the last item in a visually presented list. These elements are clearly visible in the 

Baddeley ( 1968) data illustrated in figure 2. 7 where letters were presented visually to 

the subjects. 

In the following simulation, OSCAR is applied to the basic properties of the serial 

position curve. Specifically, we attempt to fit OSCAR to the Baddeley (1968, 

experiment 5), DDDDDD data. This data corresponds to the six nonconfusable (i.e. 

six different, D) letters condition and has been selected as the stimuli are presented 
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visually and recall is immediate. (We will return to these data in simulation 28 where 

OSCAR is applied to the problem of phonemic confusability in alternating list 

conditions). 

Method 

For the present simulation, OSCAR was presented with lists of six previously unseen 

items. Items of dimensionality 16 with elements drawn randomly from a normal 

distribution about zero and variance of one were normalised. During training, each 

item was associated with a 16 element context vector by Hebbian learning and the 

association stored in the composite memory matrix. Recall involved reinstating each 

context vector from the sequence in order and presenting it as a probe for recall to the 

memory store in order to generate a retrieved item for each serial position. This 

process was repeated for each of the 20 sets of context vectors, each using the same 

set of vocabulary items, and the retrieved items averaged accordingly. Finally, each of 

the retrieved items was compared with each of the items in the lexicon of recallable 

items. The lexicon item that was most similar to the retrieved item was recalled as the 

output for that serial position. In order to average the results, a new vocabulary of 

items was generated and the training and recall process repeated with each set of 

context vectors. 

OSCAR's free parameters were assigned values in order to maximise the quality of the 

fit to the empirical data. The distinctiveness of the dynamic learned-contexts was 

controlled by setting the inter-context spacing to five. Forgetting was provided by the 

weights decay13 parameter (0.90) and output interference (20% noise). Performance 

was reduced overall by introducing a small amount of noise during learning (20% 

noise). The noise threshold below which items are omitted was set to zero. The non

linear learning rate (A;+1=0.9Ai) ensured that the model exhibited primacy. Finally, a 

lexicon of recallable items consisting of the six items presented during learning and an 

additional six items was present during the retrieval and recall process. An inhibitory 

process prevented repeated item errors. The results were averaged over 2000 trials. 

13 Note that the weights continued to decay during recall. 
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The mean proportion of items recalled correctly in each serial position was recorded 

and the results presented as a serial position curve. 

Results 
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Figure 7.1 OSCAR modelling the serial position curve of Baddeley 

(1968, experiment 5, DDDDDD condition) 

The serial position curve generated by OSCAR in this recall task is presented 

alongside the target empirical result of Baddeley (1968) in figure 7.1. OSCAR exhibits 

an extended primacy effect with recall performance decreasing steadily over the first 

four serial positions from 96% to a low of 77% in the fifth serial position (cf. 

Baddeley's data which drops from 95% to 71 % in the fifth serial position). There is a 

last item recency effect of 4%, identical to Baddeley's data. 

Discussion 

It is clear from figure 7 .1 that OSCAR possesses the correct attributes for a serial 

position curve: there is an extended primacy portion of the curve and there is a degree 

of last item recency, although it is not an exact fit of the Baddeley data as performance 

for the latter half of the list is too high. However, there is some variation in the form of 

the serial position curve, and given that OSCAR exhibits the main properties of a serial 

position curve, it would be fair to say that OSCAR has provided an adequate fit to the 

empirical data. 
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In fact, the parameters selected for this simulation were not selected in order to 

minimise the error between the serial position curves of Baddeley and OSCAR. 

Instead, they were selected in order to capture Baddeley's (1968, experiment 5) 

phonemic similarity effect described in Simulation 28 and as such provide a better fit 

to the data overall than to the nonconfusable stimuli condition specifically. 

The primary features of the model that contribute to the observed serial position curve 

are the components that introduce primacy. Most notably, these are the reducing 

learning rate and the interference due to noise during recall. The components 

responsible for recency include the weights decay. However, as was illustrated by the 

simulations of the previous chapter, the inhibitory mechanism coupled with the 

extended range of recallable lexicon items may also be partly responsible for the 

recency effect during recall. 

7.3 Simulation 24: Memory span 

Introduction 

In a memory span simulation, subjects are required to recall all of the items learned in 

a single trial correctly and in the correct order. When this probability of correct 

responses is recorded for different list lengths, a characteristic 'reverse-S' shaped 

curves (figure 2.1) is produced. Performance, which is initially 100% for small lists, 

decreases as the list length increases until it drops to 0% for lists of 10 or 11 items or 

greater. Memory span is defined as being the number of items that are correctly 

recalled 50% of the time. Typically this is approximately seven items. The precise 

nature of the memory span curve depends on the nature of the stimuli: Crannell and 

Parrish ( 1957) demonstrate that performance is better for digits than words. In order 

to model the effect of using different types of stimuli, OSCAR's learning rate 

parameter is varied to reflect the assumption that the better-remembered items will be 

learned more strongly (cf. Lewandowsky & Murdock, 1989). 
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Method 

This simulation employed the same procedure and parameter values as were used in 

simulation 23 with the following variations. Forgetting is provided by the weights 

decay parameter (0.87) and output interference (10% noise). Performance is reduced 

overall by introducing a small amount of noise during learning (10% noise). The 

precise number of stimuli items, the list length, was varied between two and 11 items. 

The non-linear learning rate was varied, taking values of 0.9, 0.8 and 0.7 to reflect the 

different types of stimuli. The learning rate of 0.9 corresponds to digit stimuli, of 0.8 

to letter stimuli and 0.7 to word stimuli. No distractor items were added to the lexicon 

of recallable items and no inhibitory processes were used. The mean proportion of 

completely correct sequences recalled, memory span, was recorded for each list 

length. 

Results 
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0.9 0.9 

0.8 0.8 

0.7 0.7 

~0.6 
t: 
8 
5 0.5 
'i: 
0 

~ 
a. 0.4 

0.3 0.3 

0.2 0.2 

0.1 0.1 

0 L--'----'----'-~ll----'---_J_-"l--""!11 0 
4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 

Number ot list items Number ot list items 

Figure 7.2 OSCAR memory span for digits (A-=0.9), letters (A-=0.8) 

and words ( A=O. 7) compared with Crannell & Parrish ( I 957) 
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The results of this simulation are presented in figure 7 .2 alongside the empirical data of 

Crannell and Parrish (1957). For the digit condition (A-=0.9), recall decreases from 

100% for two item lists to 0% for eleven item lists. The memory span for OSCAR in 

this condition, measured as the number of items recalled accurately 50% of the time, is 

7.1 items. Memory span for letters (A=0.8) is approximately 6 items and for words 

(A-=0.7), memory span drops to approximately five items. 

Discussion 

These results demonstrate that OSCAR is capable of reproducing the form of the 

empirical data for memory span of Crannell and Parrish (1957). Manipulating the 

learning rate parameter to model the effects of learning different stimuli provides an 

adequate fit to the digits, letters unlimited and words unlimited conditions of Crannell 

and Parrish (1957). Significantly, the memory span of 7.1 for digits is in line with 

empirical findings (e.g. Crannell & Parrish, 1957; Miller, 1956). 

Although similar parameters to those responsible for the serial position curve of the 

previous simulation are also responsible for the nature of the memory span functions, 

these curves also reflect the capacity of the Hebbian memory matrix and would, 

therefore, also be susceptible to interference due to noise during learning. 

7.4 Simulation 25: Acoustic similarity and memory span 

Introduction 

In chapter 2 we reviewed much evidence to suggest that performance for stimuli that 

sound alike is poorer than if the stimuli are distinct (e.g. Conrad, 1964; Conrad & 

Hull, 1964; Wickelgren, 1965a, 1965b). In a series of simulations, Baddeley (1966) 

investigated the affect of acoustic, semantic and formal similarity on memory span for 

lists of five words. Baddeley reported that recall was significantly better for lists of 

acoustically nonconfusable words (9.6%) than for acoustically confusable words 

(82.1 % ). In the following simulation, we aim to replicate these specific findings using 

OSCAR. In the simulation, item similarity is modelled as overlapping features. 
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Method 

This simulation employed the same procedure and parameter values as were used in 

experiment 23 but with the following variations. Context distinctiveness was 

controlled by setting the inter-context spacing to four simulated time steps. Forgetting 

was provided by the weights decay parameter (0.87) and output interference (10% 

noise). Performance was reduced overall by introducing a small amount of noise 

during learning (10% noise). The confusable items overlapped 75% of features. No 

distractors items were added to the lexicon of recallable items, nor were any inhibitory 

processes used during recall. The mean proportion of completely correct sequences 

recalled was recorded for both dissimilar (nonconfusable, NC) and similar (confusable, 

C) items. 

Results 
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Figure 7.3 OSCAR fit to effect of acoustic similarity on memory span (Baddeley, 1966) 

The results of this simulation are presented in figure 7 .3 alongside a reproduction of 

Baddeley's ( 1966a) results for verbally presented acoustically confusable and 

nonconfusable items. Performance for nonconfusable items (81 % ) is comparable with 

that reported by Baddeley (82. 1 % ), although there is greater discrepancy between the 

model and the empirical data for the confusable items condition (19% recalled by 

OSCAR versus 9.6%). 
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Discussion 

These results confirm that confusable stimuli are harder for the model to recall 

accurately. Previously we demonstrated how serial position curve performance 

suffered as item confusability increased (simulation 21, figure 6.16). Here we 

demonstrate that the same effect can be seen for memory span and that the magnitude 

of the effect in OSCAR is comparable to that exhibited by the empirical data. 

Simulation 21 also illustrated that this reduction in performance reflects an increase in 

order errors. Although this is not explored here, in simulation 27 distance functions for 

both nonconfusable and confusable items will confirm this increase. 

However, performance for the confusable items condition is almost twice that of the 

empirical data. This may be attributed to the arbitrary manner in which item similarity 

is implemented by models using distributed vector representations of stimuli. In the 

present case, given the accuracy of the associative mechanism, the similarity between 

the items would have to be increased beyond 75% in order to reduce performance 

further. 

7.5 Simulation 26: Vocabulary size effects 

Introduction 

The following simulation examines the effect of manipulating the size of the lexicon of 

recallable items available to the model during the retrieval stage. This is significant as a 

similar mechanism is responsible for controlling the degree of recency exhibited by 

TODAM (Lewandowsky & Murdock, 1989; Mewhort, Popham & James, 1994; 

Nairne & Neath, 1994). However, Drewnowski (1980) reports that increasing the size 

of the vocabulary of recallable items should have no effect on memory for serial order 

for familiar items. Conrad and Hull (1964) also demonstrated that the size of 

vocabulary of recallable items made little difference to recall performance. Clearly this 

poses a problem for TODAM, so for the following simulation, the effect of increasing 

the lexicon of recallable items with OSCAR is addressed. 
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Method 

This simulation employed the same procedure and parameter values as were used in 

experiment 23 but with the following variations. The size of the vocabulary of 

distractor items was varied between zero (i.e. there were no distractor items) and three 

(i.e. a total of the three times the number of learned items were added to the 

vocabulary during recall e.g. for a four item list, the vocabulary consisted of the four 

items plus a further 12 distractor items). The simulation was repeated for four different 

list lengths: four, five, six and seven item conditions. No inhibitory mechanisms were 

used during recall. Performance was measured in terms of the mean proportion of 

items recalled as a function of the number of items in the distractor vocabulary. 

Results 
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Figure 7.4 Mean proportion of items recalled correctly as a function of size of 

distractor vocabulary (list length, n=4,5,6 & 7) 

The results presented in figure 7.4 illustrate that increasing the number of distractor 

items available at recall has little or no effect on the mean proportion of items recalled 

correctly for each of the four list lengths. For the shortest list length (n=4), recall is 

unaffected at 100% for each of the conditions (i.e. where the vocabulary size is equal 

to four items plus either zero, four, eight or twelve items). A similar result is found in 

the five and six item conditions, where performance drops only 1 % to 98% and 2% to 

94% respectively. However, when there are seven items in the list, performance does 
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decrease slightly as the vocabulary increases: initially recall averages at 92%, but it 

drops steadily to 88% for the vocabulary of 21 items. 

Discussion 

Clearly these results are in accordance with Drewnowski ( 1980) as increasing the size 

of the lexicon of recallable items available during retrieval has little affect on 

performance. Any learned item that has not yet been recalled will always more likely to 

be recalled than an unlearned extra-list item. The chances of an extra-list item 

becoming activated when cued by a learned-context are very remote. Therefore, even 

when the vocabulary of recallable items is large, only very few intra-list intrusions 

should occur. However, if there are extra-list items that are similar to the learned 

items, we anticipate that more intra-list intrusions might occur. However, it is 

important to note that this data has been produced without the use of any of OSCAR's 

inhibitory mechanisms. Simulation 16 illustrated that when OSCAR employed an 

inhibitory mechanism preventing repeated items during recall, the recency component 

of the serial position curve would be eliminated unless a vocabulary of distractor items 

expanded the lexicon ofrecallable items (simulation 17, figure 6.10). A similar finding 

is reported with TODAM, where limiting the number of recallable items as a result of 

the sampling without replacement process controls the recency portion of the serial 

position curve (Nairne & Neath, 1994, figure 1). 

7.6 Simulation 27: Transposition gradients 

Introduction 

Simulation 25 illustrated how memory span for confusable stimuli was poorer than that 

for nonconfusable items (figure 7.3; Baddeley, 1966). However, evidence reveals that 

this poorer performance is reflected in an increase in the number of order errors 

(Wickelgren, 1965a). Analysis of the distribution of order errors is possible if the 

proportion of items recalled in each serial position is presented. Distance functions 

reveal this distribution and should confirm that when OSCAR is presented with a list 

of confusable stimuli, many more order errors should occur than when the stimuli are 

nonconfusable. In the following simulation, OSCAR is compared with data presented 
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by Henson, Norris, Page and Baddeley (1996) in which transposition gradients for six 

item lists of both nonconfusable (figure 7.5) and confusable (figure 7.7) items are 

learned. 

Method 

This simulation employed the same procedure and parameters as were used for 

experiment 23 but with the following variations. The confusable items shared 50% of 

features in common. No inhibitory mechanisms were used during recall. 

Results 

The results of the simulation are presented in figures 7.6 and 7.8, for the lists of 

nonconfusable and confusable items respectively, alongside the corresponding figures 

from Henson, Norris, Page and Baddeley (1996). 

Figure 7.6 reveals that, for nonconfusable items, OSCAR provides a good fit to 

Henson et al. 's data. The target item is recalled most often in each of the six serial 

positions. The majority of errors involve an item from one of the adjacent serial 

positions being recalled erroneously. Furthermore, there is extended primacy and last 

item recency of 8%. This is in line with the empirical data presented in figure 7.5 

(Henson, Norris, Page & Baddeley, 1996, figure 3). For example, in the second serial 

position, the first item is recalled 10%, the second item 78% and the third item, 9%. 

The fourth, fifth and sixth items are not recalled at all in this list position. Henson et al. 

report for the same serial position that the first item is recalled 4%, the second item 

recalled 84%, the third item 6%. The fourth, fifth and sixth items are recalled 

approximately 2% of trials. 

Figure 7.8 illustrates the results of exchanging the vocabulary of nonconfusable items 

with one of confusable items. Performance for the confusable condition is poorer than 

in the nonconfusable condition. As with the nonconfusable condition, the majority of 

the errors involve items from the serial positions immediately adjacent to the target 

serial position being recalled. 
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Figure 7.5 Distance functions for six item lists of nonconfusable items 

(Adapted from Henson, Norris, Page & Baddeley, 1996) 
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Figure 7.6 OSCAR transposition matrices for six item lists of nonconfusable items 
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Once again, the results compare favourably with the empirical data of figure 7.7 

(Henson, Norris, Page & Baddeley, 1996, figure 2) with extended primacy and a last 

item recency effect of 8%. However, in contrast to figure 7.6, many more order errors 

involve items from more distant list positions. For example, in the sixth serial position, 

the first four items are each recalled approximately 4.5% of trials. However, it is also 

apparent that OSCAR commits fewer of these order errors than is evident from 

Henson et al. 's data. This may be accounted for by considering the artificial manner in 

which similarity is modelled in the OSCAR simulation. 

Discussion 

OSCAR would appear to have replicated Henson, Norris, Page and Baddeley's (1996) 

data with a reasonable degree of accuracy. Each transposition gradient reports 

maximal response in the target position. There is reliable primacy and recency in each 

of the conditions. Performance is considerably better for nonconfusable items than 

confusable. What is also very clear from these results is that, like the empirical 

findings, these error distributions are bounded by a locality constraint (Henson, 

Norris, Page & Baddeley, 1996), such that transposed items tend to be localised about 

their target serial position (Estes, 1972; Healy, 1974). 

In the nonconfusable stimuli condition, OSCAR produces more order errors that 

consist of recalling the items immediately adjacent to the target item than is apparent in 

the empirical data. This effect may be attributed to the distinctiveness of the learned

contexts. Although the contexts are very distinct (the inter-context spacing is five 

simulated steps) there is still a high degree of similarity between contexts in 

neighbouring serial positions. If the context distinctiveness was increased further, this 

effect could be reduced, however this would also reduce the degree of bowing in the 

serial positon curve which occurs naturally as a result of the learned-context similarity. 

Also, performance for the confusable condition is better later in the list than is evident 

in the empirical data. This is attributed to the artificial manner in which item similarity 

is simulated. In this case, each item is 50% similar to every other (i.e. they share 50% 

of their features in common). 
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Figure 7.7 Transposition matrices for six item lists of confusable items 

(Adapted from Henson, Norris, Page & Baddeley, 1996) 
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Figure 7 .8 OSCAR transposition matrices for six item lists of confusable items 
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In order to increase errors due to item similarity, the degree of similarity would need 

to be increased. Unfortunately, when the similarity is increased to 75%, performance 

degrades in each of the target serial positions. It appears therefore, that it would be 

prudent to develop a vocabulary of items with a more expansive range of similarity 

(e.g. 66% similarity; cf. TODAM; Baddeley, Papagno & Norris, 1991). 

However, these findings confirm that increasing item similarity introduces order errors. 

Comparison of figures 7.6 and 7.8 reveals that although more errors occur in the 

confusable condition with items immediately adjacent to the target item, the difference 

is greater for items further away from the target item. This is most evident when 

comparing the proportion of items recalled in the sixth position. In the nonconfusable 

condition, the first three items are each recalled 1 % of trials. However, in the 

confusable condition this increases to approximately 3.5% for each item. 

However, the results are further compounded by the inclusion of the lexicon of 

distractor items. This introduces intrusion errors and will have reduced the number of 

order errors that might have occurred had no distractor items been available during 

recall. 

7.7 Simulation 28: Phonemic similarity effect for alternating lists 

Introduction 

The phonemic similarity effect for alternating lists (Baddeley, 1968, experiment 5) is 

an important empirical finding as it contradicts what would be predicted by chaining 

based accounts of short-term memory (e.g. Wickelgren, 1965a). This is reflected in the 

number of recent chaining based models of serial order that have failed to reproduce 

the effect. These include TODAM (Baddeley, Papagno & Norris, 1991) and the 

original network model of the articulatory loop (Burgess & Hitch, 1992). 

Briefly, Baddeley (1968, experiment 5) demonstrated that if a sequence of alternately 

phonemically confusable and nonconfusable items were presented visually to subjects, 

errors occurred between the confusable items and not the nonconfusable items. This 
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finding contradicts what would be expected if short-term memory were chaining 

based. If this were the case, then a series of six items, for example, a confusable

nonconfusable list (C1, NC1, C2, NC2, C3, NC3) could be considered instead as five 

cue-target item pairs (C1-NC1, NC1-C2, C2-NC2, NC2-C3, C3-NC3). A chaining based 

account would predict that if, for example, an error occurred in the first serial position 

and C2 was recalled in favour of C1, this would now become an incorrect cue for the 

next pair. Therefore there is every chance that NC2 would be recalled, as the accurate 

response to that cue, instead of NC1 which would in fact be the correct response for 

that serial position. If this were the case, and cue errors were occurring, then the 

nonconfusable items would suffer the most. 
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Figure 7.9 Serial position curves for the alternating list conditions of Baddeley's 

phonemic similarity experiment ( 1968, experiment 5) 

In fact, Baddeley's results (figure 7.9) illustrate that the converse is occurring: errors 

only occur for phonologically confusable items. This leads to the conclusion that order 

errors must occur during the retrieval process. Using the previous example once more, 

when C2 is recalled in favour of C1, retrieval of NC1 does not suffer as C2 is not used 

as the cue for the second serial position. However, recall of the next confusable item 

will suffer as recall of the same item in a second serial position is prevented i.e. order 
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errors are occurring during retrieval. Therefore, recall of the nonconfusable items will 

not be affected by performance for the confusable items as is confirmed by Baddeley's 

results. Henson, Norris, Page and Baddeley (1996) refer to this property, that order 

errors only occur between phonemically-similar items, as the similarity constraint. In 

the following simulation, OSCAR is applied to the problem of modelling Baddeley's 

phonemic similarity effect. 

Method 

This simulation employed the same procedure and parameters as were used for 

experiment 23. However, in an attempt to replicate Baddeley's study, OSCAR is 

presented with a sequence of six items in one of six different arrangements: six 

nonconfusable items (DDDDDD); six confusable items (SSSSSS); alternating 

confusable and nonconfusable items (SDSDSD); alternating nonconfusable and 

confusable items (DSDSDS); three confusable followed by three nonconfusable items 

(SSSDDD); three nonconfusable followed by three confusable items (DDDSSS) . 

Further, in compliance with Baddeley's simulation, the six items were selected from a 

vocabulary of twelve (i.e. for the DSDSDS list, the lexicon included the learned items 

and a further six unlearned DSDSDS items). Confusable items shared 75% similarity 

and all model parameters were held constant for the six conditions in this simulation. 

Results 

Figure 7 .10 illustrates OSCAR's attempt to fit the four arrangements of confusable and 

nonconfusable items described by Baddeley. 

The nonconfusable-only serial position curve is identical to that presented in simulation 

23, with extended primacy and last item recency due to the edge effects. The 

confusable-only serial position curve is less well defined than the nonconfusable-only 

condition. There is extended primacy and a trough which occurs in the fifth serial 

position, however the last item recency effect is only approximately 2%. Initially it 

would appear that OSCAR does in fact replicate Baddeley's data. In each of the first 

two cases (SDSDSD and DSDSDS), the "sawtooth" curve is bounded by the 
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nonconfusable-only and confusable-only serial position curves m keeping with the 

experimental data. 

Performance for phonologically confusable items in the alternating list conditions is 

poorer than for the nonconfusable items in accordance with Baddeley. However, recall 

of the nonconfusable items is poorer in the alternating list conditions than in the 

nonconfusable-only condition which contradicts the prediction in section 7 .7 .1. 
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Figure 7 .10 Serial position curves for OSCAR's fit to the alternating list conditions 

of Baddeley's phonemic similarity experiment ( 1968, experiment 5) 

In the second pair of results (the SSSDDD and DDDSSS conditions), the similarity to 

the empirical data is more apparent. Performance is again bounded by the 

nonconfusable-only and confusable-only lists, however in this case the nonconfusable 

items in both conditions are unaffected by the presence of the confusable items in the 

list. In order to facilitate an evaluation of the performance of OSCAR in this task, the 

transposition matrix for the nonconfusable, confusable (DSDSDS) list from simulation 

27 is presented in figure 7. I 1. Note that performance is higher than that presented here 

primarily as a result of the set of more distinct contexts used in that simulation and the 

less confusable stimuli (50% overlap). 
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Figure 7.11 OSCAR transposition matrices for six item list of nonconfusable, confusable items 

(Data taken from simulation 27) 

Figure 7 .11 reveals that recall in the first serial position is unaffected by the presence 

of the confusable items in the list. The first item is recalled correctly in 96% of trials in 

the target serial position. The second item is recalled in 1 % of trials, while none of the 

other learned items are recalled at all (n.b. this implies that the remaining 3% of recalls 

may be classified as intrusion errors). 

However, in the second serial position, the first position where the target item is 

confusable, the target item is recalled approximately 61 % of the time. The distribution 

of errors about the target item in the second serial position warrants close 

examination. The first item is not recalled in the second serial position while the third 

item is only recalled in 5% of trials. This is in stark contrast to the large proportion of 

recalls involving items from the serial positions immediately adjacent to the target item 

in the confusable-only condition of the previous simulation. However, we would 

expect, in accordance with the locality constraint observed in the previous simulation, 

that the fourth, fifth and sixth items would be recalled only a very small proportion of 
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trials. This is clearly not the case as the fourth and sixth items are both recalled in 6% 

of trials each, accounting for 41 % of all the errors that occur in the second list position 

(again we note that 12% of errors are distractor item intrusions). A similar effect is 

observed in the fourth, and most strikingly in the sixth, serial position. 

Discussion 

Before attempting to draw a conclusion from these findings, it is important to first 

summarise the key results. OSCAR was applied to the problem of replicating the 

phonemic similarity effect illustrated by the Baddeley (1968, experiment 5). OSCAR 

produced serial position curves using identical parameter settings for four different list 

conditions: alternately confusable and nonconfusable (SDSDSD); alternately 

nonconfusable and confusable (DSDSDS); a confusable triple followed by a 

nonconfusable triple (SSSDDD); and finally, a nonconfusable triple followed by a 

confusable triple (DDDSSS). Recall of each learned list was influenced by the inclusion 

of a lexicon of unlearned items at recall and an inhibitory mechanism preventing 

repeated items. 

The results are presented in the serial position curves of figure 7 .10 and the distance 

functions of figure 7 .11. Examination of the serial position curves reveals that 

performance for each of the four conditions is bounded by the nonconfusable-only and 

confusable-only conditions. Recall for the list of confusable items is poorer that for the 

list of nonconfusable items (Conrad, 1964). For the alternating list conditions, this is 

also the case, and results in the characteristic "sawtooth" shape of the serial position 

curves with confusable items occupying the troughs and nonconfusable items, the 

peaks of the curve. However, in contrast to the empirical data, nonconfusable items 

suffer in the alternating list conditions. Henson, Norris, Page & Baddeley (1996) 

observe that a similar effect is found in the empirical data as knock-on effects: poorer 

performance for nonconfusable items that follow an erroneously recalled confusable 

item. This is not the case for the SSSDDD and DDDSSS conditions where 

performance mirrors that of the empirical data. 
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In these conditions, order errors are clustered within the phonemically-like groups. For 

example, at the boundary condition where the last confusable item is recalled in the 

third serial position and the first nonconfusable item is recalled in the fourth position, 

errors only involve items from the same phonemically-like groups. Within these 

groups, however, edge effects mean that the first and third items are recalled better 

than the central item. This is evident as bowing in both the nonconfusable portion of 

the SSSDDD list condition and the confusable portion of the DDDSSS list condition. 

However, in the alternating list conditions, this effect is not as apparent. 

Analysis of figure 7 .11 (generated during simulation 27) reveals that in these 

alternating-list conditions, order errors also involve items from the phonemically-like 

groups. This is illustrated most clearly by the order errors that occur in the sixth serial 

position where the target is a confusable item. The nonconfusable items are recalled in 

decreasing amounts as the distance between them and the target item increases (i.e. 

item five is recalled in 2% of trials, item three in only 1 % and item one not at all). 

However, the confusable items are both recalled in 6% of trials. 

Clearly errors occur because of two different mechanisms controlled by OSCAR. The 

first, which affects cueing, is the distinctiveness of the context vectors. We have 

demonstrated (simulation 11) that reducing the distinctiveness of the contexts results 

in poorer serial order performance across each serial position. Figure 7 .11 confirms 

that even in the alternating-list conditions, the proximity constraint still applies and the 

majority of order errors do involve items that are immediately adjacent to the target 

item. However, the second mechanism, which affects retrieval, is the similarity of the 

confusable stimuli. This too has been shown to reduce performance when the 

confusability is increased (simulation 21). 

Further, this analysis is supported by consideration of the transposition matrix of figure 

7 .11. This confirms that errors occur due to the similarity of neighbouring contexts: 

i.e. target items are recalled in decreasing amounts in the serial positions adjacent to 

the target position. This is very apparent for the nonconfusable items in the odd serial 

positions. However, in the even serial positions occupied by the confusable serial 
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positions, further errors are caused (across a greater spread of incorrect positions than 

in the nonconfusable condition) by errors during retrieval where the retrieved item is 

incorrectly recalled as one of the incorrect confusable items. This is apparent in the 

subtle increase in the proportion of errors in the serial positions where the target is a 

confusable item than in the position nearby where the target is distinct. 

In conclusion, superficially, OSCAR appears to have replicated the phonemic similarity 

effect reported by Baddeley (1968, experiment 5) in that the serial position curves 

presented in figure 7 .10 do replicate the general form of Baddeley's (Figure 7. 9). This 

confirms the hypothesis that errors due to (phonemic) similarity are occur during the 

retrieval stage. However, closer examination of the transposition matrix reveals that 

the errors occurring at retrieval are in addition to errors occurring at cueing due to the 

proximity and hence similarity of the context vectors. These errors are localised to the 

positions immediately neighbouring the target serial position and result in a 

degradation of performance most noticeably for the nonconfusable items. 

In fact, simulations in which the spacing between the list items has been varied have 

illustrated that it is possible for OSCAR to produce the reverse effect to that reported 

here: i.e. supporting the prediction by the chaining account that nonconfusable items 

suffer the most in recall tasks of this nature. 

7.8 Simulation 29: Item and order errors 

Introduction 

In a series of experiments, Healy (1974) attempts to separate item and order errors. In 

the first simulation, the Order Only Experiment, Healy asked subjects to remember 

only the order in which four items were presented. This was made possible by 

repeatedly presenting the same four items in one of 24 different orders in order to 

eliminate any item errors. In the second experiment14, the Item Only Experiment, 

subjects were requested to recall only the items that were presented. This was 

implemented by presenting subjects with a set of three items for each serial position 

14 The all-different context condition. 
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and therefore providing the subjects with all order information during recall. By 

eliminating order errors in this manner, Healy could examine item effects in isolation. 

Her results, presented in figure 7.12 confirm that bowed serial position curves are 

produced in the order only experiment and not for the item only experiment. 
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Figure 7.12 Order only and item only data for four item list 

(Adapted from Healy, 1974, figure 1 and figure 3, three digit delay condition) 

Furthermore, examination of the distance function for the order only simulation 

confirms that the probability of a letter being replaced by another decreases as the 

distance between them increases (figure 7.13). In the following simulation, we aim to 

replicate these findings and separate item and order information for recall of a four 

item list. 

Method 

This simulation employed the same procedure and parameters as were used in 

simulation 23 but for the following variations. The context distinctiveness was 

controlled by reducing the inter-context spacing to four. No noise was introduced to 

the network and recall was inhibition free. Also, in order to replicate Healy's Order 

Only Experiment, OSCAR was presented with a list of four items (selected from a 

vocabulary of 12). However, a more complex approach was required to replicate the 

Item Only Experiment: Healy reports that each subject is given a choice of three items 
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at each serial position. Therefore, in the following item only simulation, OSCAR was 

presented with three items (the target and two distractors) for each serial position 

during recall. The distractor items are different for each serial position. The free 

parameters were held constant for both the item only and order only conditions. 

Results 
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Figure 7 .13 Distance functions for the order only simulation 

(Adapted from Healy, 1974, figure 2, three digit delay condition) 

The serial position curves for both the order only and item only simulations are 

presented in figure 7.14. These confirm that only the order only serial position curve 

exhibits the bowing (performance dropping from 78% for the first serial position to 

58% and 56% for the central positions, before rising again to 72% for the fourth item). 

The item only serial position curve is almost level for each serial position: 98% for the 

first item and approximately 96% for each of the other positions. Both the order only 

and item only serial position curves compare favourably with the empirical data ( cf. 

figure 7.12). 
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Figure 7.14 OSCAR serial position curve for order only and item only simulations 

More complex analysis is possible if the distance function for the order only simulation 

is analysed separately. The distribution of order errors is clearly visible in figure 7.15 

and, once more, OSCAR's simulation compares favourably with the empirical data 

(figure 7 .13). It is clear that items are recalled most often in their target serial position 

and the probability of them being recalled outside this position decreases sharply as the 

displacement from the target serial position increases (in either direction). 
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Figure 7.15 OSCAR distance functions for the order only simulation 
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Discussion 

Comparison of the both the general form of the item and order serial position curves 

(figure 7.14), and the error distribution of order errors (figure 7.15), with the empirical 

data presented by Healy ( figures 7 .12 and 7 .13) reveals that OSCAR provides an 

adequate fit to the data. Although OSCAR is performing with a slightly lower degree 

of accuracy during the order only simulation, it still reproduces the symmetric error 

distribution in the distance function. 

Healy concludes from these findings that as the serial position curves for both the 

order only and item only conditions are different, so different mechanisms, isolated by 

the different conditions employed in this simulation, must be responsible for the error 

distributions. Estes (1972) suggests that the order only serial position curve is bowed 

because the probability of a transposition between one item and another decreases as 

the items become more widely separated. Therefore, as the second and third items 

have more neighbours, so they have a higher probability of being recalled out of order, 

which is reflected in the poorer performance for the central positions. Item only errors 

are accounted for by considering that these errors will only occur due to degradation 

of the item elements (features) and as the probability of this occurring can be assumed 

to be constant for each item, so the item only serial position curve should be flat 

(Estes, 1972). 

This analysis is confirmed by OSCAR's performance. In the order only simulation, 

errors are occurring at retrieval due to the similarity of the cue context with those in 

the neighbouring serial positions: there is more chance of the context confusing with 

those in the serial position immediately adjacent to the target serial position which 

results in the bowing of the serial position curve. Therefore, order only performance 

could be reduced by either reducing context vector distinctiveness or by using a 

vocabulary of more confusable items. 

In the item only simulation, retrieval errors are eliminated as only the target item and 

two distractor items are available at redintegration for each serial position. We 

demonstrated in simulation 26 how increasing the number of unlearned distractor 
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items available at recall has little effect on performance (cf. Drewnowski, 1980). 

Therefore, all of the errors occurring in this simulation are due to the inaccuracies of 

the associative and deblurring mechanisms. The context distinctiveness has no 

influence on the ability to recall item only information. Furthermore, it is predicted that 

if a vocabulary of similar items were used (i.e. each of the four learned items and each 

of the twelve distractor items were 50% similar) so retrieval errors could be 

introduced into the system, resulting in a curve that would still remain flat, but with a 

lower level of performance overall. 

Clearly OSCAR provides a single mechanism that is capable of reproducing the 

different item and order behaviour illustrated by the empirical data. 

7 .9 Simulation 30: Partial reinstatement of context 

Introduction 

This simulation aims to illustrate the effects of recalling serial position information 

from a perspective near to the end of the list. All the simulations described thus far 

require ordered recall of the whole list of items. As a result, there is no overlap 

between the retrieval context and the learned-context for items late in the list. 

However, if these late items could be recalled first they would be at an advantage as 

the learned-context would not have evolved far from the state it was in when those 

items were learned. This, we predict, would benefit the late items and introduce 

recency into the serial position curve. 

In order to compare OSCAR with an empirical result, a probed recall task for visually 

presented stimuli is presented (Murdock, 1968, experiment 3). During probed recall, 

subjects are requested· to recall the item that occurred in the nth serial position 

immediately after recall. A different list is then presented and recall for a different 

serial position requested. Murdock presented subjects with lists of five, eight or eleven 

items and demonstrated that in each condition there was a strong recency effect (figure 

7 .16). The extent of this recency effect is in sharp contrast to that exhibited by 

complete serial recall where the last item recency effect is typically very small ( cf. 
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figure 7.1). These results are consistent with the idea that the context at recall is more 

similar to that for the most recently learned items, which is reflected in improved recall 

for the last items resulting in an increase in recency. 
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Figure 7.16 Proportion of recall as a function of serial position ( ordinal probe) 

( Adapted from Murdock, I 968, figure 3) 

In the following simulation, OSCAR attempts to replicate the probe recall serial 

position curve of Murdock (1968, experiment 3). 

Method 

This simulation employed the same procedure and parameters as were used for 

simulation 23 but with the following variations. The context distinctiveness was 

controlled by reducing the inter-context spacing to four. Forgetting was provided by 

the weights decay parameter (0.80) and output interference (10% noise). Performance 

was reduced overall by introducing a small amount of noise during learning ( 10% 

noise). No vocabulary of distractor items was added to the lexicon of recallable items 

and no inhibitory mechanisms were used during recall. The number of list items was 

varied in order to replicate the empirical data. 

However, without additional controls, the model would perform recall by reinstating 

the learned-contexts completely. However, we have stated that in order to model these 

effects, partial reinstatement of contexts is required. We model this with OSCAR by 
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ensuring that a small proportion (20%) of the reinstated context probes are unable to 

be reinstated and are instead identical to the context at the end of the list. 

Results 

The results of this simulation are presented in figure 7 .17. Clearly partial reinstatement 

of contexts introduces a strong degree of recency into the serial position curve. This is 

in stark contrast to the serial recall of visually presented items of the previous 

simulations. 
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Figure 7.17 Serial position curves for five, eight and eleven item lists with only partial 

reinstatement of learned contexts 

Discussion 

Although the fit provided by OSCAR to Murdock's (1968, experiment 3) data is not 

accurate, as it lacks the bowing and extended primacy gradient of the empirical data, 

the curves do possess the large proportion of last item recency. Clearly partially 

reinstating the learned-contexts by ensuring that a proportion of it is identical to the 

state of the context at the end of the learning stage, improves recall of the last couple 

of items. This result is in sharp contrast to the serial order recall data presented 

previously where complete reinstatement of the learned contexts was possible and 

recency effects were slight. 
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7.10 Conclusion 

In this chapter, we have attempted to replicate a range of empirical data using 

OSCAR. Here, we briefly summarise each simulation and present a summary of the 

parameter values used in each. 

Initially, OSCAR was fitted to Baddeley's (1968, experiment 5) serial position curve 

for serial recall of visually presented stimuli. OSCAR demonstrated the extended 

primacy and last item recency apparent in the empirical data. In the second simulation, 

OSCAR attempted to replicate the memory span functions for digits, letters and words 

of Crannell and Parrish (1957). This it was able to do by manipulating the strength 

with which each item was learned. OSCAR was found to have a memory span for 

digits of approximately 7 .1 items, in line with the empirical data. 

Modelling phonemic similarity by allowing a proportion of vector elements to be 

shared between items, it was possible to investigate the effect of phonemic similarity in 

a number of conditions. Simulation 25 illustrated that memory span for confusable 

items was poorer than for nonconfusable items (Baddeley, 1966; Conrad, 1965; 

Wickelgren, 1965a). 

In the next simulation, the effect of increasing the number of recallable items available 

during retrieval, by adding unlearned distractor items to the vocabulary, was reported 

and compared with that found by Drewnowski (1980). In accordance with the 

empirical data, it was found that increasing the number of recallable items had little 

effect on the proportion of items recalled correctly for a number of different list 

lengths. 

In the first of three simulations addressing item and order errors, simulation 27 

compared the distance function, or transposition gradients, generated by OSCAR 

when recalling lists of six nonconfusable or confusable items, with those presented by 

Henson, Norris, Page and Baddeley (1996). Distance functions highlight the 

distribution of order errors across each serial position illustrating how order errors 
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mainly involve items occupying immediately adjacent serial position. OSCAR 

reproduced the form of Henson et al.'s curves with the extended primacy, small last 

item recency and localised distribution of order errors (Estes, 1972). 

Next, OSCAR was applied to the problem of matching Baddeley's (1968, experiment 

5) phonemic similarity data for alternating confusable and nonconfusable lists. This 

result illustrates that when lists of alternately confusable then nonconfusable (or vice 

versa) stimuli are learned, confusable items suffer most during recall. This contradicts 

the prediction made by chaining-based hypotheses of memory that predict that 

nonconfusable items suffer due to cueing errors. This is reflected in the inability of 

chaining based models such as TODAM (Lewandowsky & Murdock, 1989; Baddeley, 

Papagno & Norris, 1991) and the original network model of the articulatory loop 

(Burgess & Hitch, 1992) to reproduce the result. OSCAR replicates the general form 

of the curves, although in contrast to the empirical data, performance for the 

nonconfusable items is reduced in the alternating list conditions. 

Simulation 29 is an attempt to replicate Healy's (1974) experiment that examined the 

distribution of item and order errors. OSCAR is adapted in order to facilitate the 

modelling of this data and replicates the finding that order errors result in a bowed 

serial position curve while item errors occur equally across each serial positions. This 

result is significant as it demonstrates that OSCAR's learning and recall mechanism is 

capable of reproducing the different distributions of item and order errors. 

Finally, the effect of partially reinstating the learned-context on OSCAR's ability to 

perform serial recall is considered. It is proposed that by overlapping the reinstated 

contexts with the state of the learned-context when the last item has been learned, 

recall will favour the last few items. OSCAR is fitted to data from a probed recall for 

visually presented stimuli task (Murdock, 1968, experiment 3). In accordance with the 

empirical data, OSCAR's serial position curves exhibit a huge recency effect, however 

the primacy component of the curve is poorer than in Murdock's experiment. 
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Table 7.2 

Summary of parameter values for each simulation of the empirical data presented in this chapter 

Simulation 
Parameters 23 24 25 26 27 28 29 30 
Number of contexts 20 20 20 20 20 20 20 20 
Context dimensionality 16 16 16 16 16 16 16 16 
Context distinctiveness 5 4 4 5 5 5 4 4 
Number of items 6 var 5 var 6 6 4 var 
Similarity of items(%) n/a n/a 75 n/a 50 75 n/a n/a 
Number of distractor items 6 0 0 var 6 6 var 0 
W eights decay 0.9 0.87 0.87 0.9 0.9 0.9 0.9 0.8 
Non-linear learning rate scale 0.9 var 0.9 0.9 0.9 0.9 0.9 0.9 
Learning noise (%) 20 10 10 20 20 20 0 10 
Recall noise(%) 20 10 10 20 20 20 0 10 
Output threshold 0 0 0 0 0 0 0 0 
Inhibition ereventing reeeats yes no no no no yes no no 

In conclusion, OSCAR has demonstrated the ability to fit a number of fundamental 

serial order paradigms with the minimum of free parameters. These parameters, and 

the values they are assigned, are summarised in table 7.2. Although in some cases, the 

fit to the empirical data is not as close as might be desired, OSCAR has been shown to 

possess the majority of the characteristics of each empirical paradigm. 
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CHAPTERS 

General Discussion 

8.1 Introduction 

The following chapter summarises the findings of this thesis. In the first section, we 

consider the respective advantages and disadvantages of connectionist and 

mathematical models of memory. Next, we introduce the developmental connectionist 

architecture, DARNET. In section 8.4 we present the OSCAR model of serial order. 

We review its architecture and compare it with other formal models of serial order. 

Section 8.5 examines the success of OSCAR, in comparison with other formal models 

of memory, in addressing a range of empirical data. Finally, we suggest that further 

research should integrate the DARNET and OSCAR architectures to produce a 

developmental account of serial order. 

8.2 Comparison of model architectures 

Recent models of immediate memory have fallen into two categories: the first are 

mathematically-based models such as CHARM (Metcalfe Eich, 1982) and TODAM 

(Murdock, 1982); the second are connectionist models, including the competitive 

queuing model (Houghton, 1990, 1994a), recurrent networks (Jordan, 1986) and the 

network model of the articulatory loop (Burgess & Hitch, 1992, 1996). Before 

developing a novel architecture, these approaches must be evaluated. 

Mathematical models 

Mathematical models offer the ability to perform single-trial learning. This is an 

inherent property of their associative mechanism, often the mathematical process of 

convolution (e.g. Metcalfe Eich, 1982). However, because the ability to perform 

single-trial learning and recall is hard-wired into the architecture of models such as 

208 



Modelling human short-term memory for serial order Chapter 8 

CHARM and TODAM, they can not offer a developmental account of learning, nor is 

clear how they could be extended to do so. Also, association by convolution requires 

that the dimensionality of the association is proportional to the dimensionality of the 

stimulus. Because of this, the capacity of a composite memory vector is limited by the 

dimensionality of the stimuli. 

Connectionist models 

Connectionist models offer a more developmental approach to learning by 

implementing gradual error correction learning rules, such as back-propagation 

(Rumelhart, Hinton & Williams, 1986). Furthermore, connectionist architectures 

possess the ability to generalise learned behaviour to patterns of previously unseen 

stimuli (Rumelhart & McClelland, 1986). Also, in contrast to convolution based 

mathematical models, there is no limit on the capacity of the memory trace (e.g. the 

number of hidden units in a multi-layer back-propagation network). However, 

traditional developmental connectionist networks have been unable to perform single 

trial learning. Where recent models, such as the competitive queuing model 

(Houghton, 1990, 1994a) and network model of the articulatory loop· (Burgess & 

Hitch, 1992, 1996), have demonstrated the ability to do so, these models have then 

been unable to provide a developmental account of learning. Connectionist networks 

are also susceptible to catastrophic interference (McCloskey & Cohen, 1989; Ratcliff, 

1990; Lewandowsky, 1991). 

Conclusion 

The primary objective for developing the DARNET architecture was to provide a 

developmental account of learning. In their present form, mathematical approaches 

have to be rejected on the grounds that the ability to perform single-trial learning is 

already a feature of these models and they are therefore unable to provide a 

developmental account. Therefore, we developed a connectionist-based network, that 

employed a gradient descent learning algorithm in order to learn to perform single trial 

learning. 
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All that was required of the OSCAR architecture was the ability to perform single trial 

learning. Therefore, the choice of mathematical versus connectionist-based network 

was arbitrary, however we opted for a connectionist-based architecture because their 

capacity is not limited in the same manner as the convolution-based models. 

8.3 DARNET 

Need for a developmental account 

There is much empirical data that examines the development of memory in children 

(e.g. Gathercole & Adams, 1993; Hitch, Halliday & Littler, 1993; Hulme, Thomson, 

Muir & Lawrence, 1984; Hulme & Tordoff, 1989). Much of this work is concerned 

with the development of memory span and rate of articulation. For example, memory 

span increases with age. Furthermore, the phonemic similarity effect (Conrad, 1964) is 

more apparent in older subjects (Hulme & Tordoff, 1989). As the current associative 

models that employ convolution and correlation as their associative mechanism are 

unable to provide a developmental account of learning, there is need for such an 

architecture. 

DARNET architecture 

DARNET, a developmental associative recall network (Brown, Hyland & Hulme, 

1994; Brown, Dalloz & Hulme, 1995; Brown, Preece & Hulme, 1995; Brown, Hulme 

& Dalloz, 1996) is a connectionist network that employs a gradient descent learning 

algorithm to learn how to associate novel pairs of input vectors in a distributed 

memory trace. During phase one training, DARNET is presented with novel pairs of 

normalised vectors of features. The association between the two items is stored in a 

memory trace of arbitrary dimensionality. DARNET is then presented with one of the 

items, selected at random, as a probe for recall. The error between the output and the 

target item (the second of the pair of stimuli) is calculated and used as the basis for the 

error correction learning algorithm. This alters the learned storage and retrieval 

weights in order to minimise the magnitude of the error between the retrieved item and 

the target item. The phase one learning process is repeated until the model has learned 

to accurately store and recall novel stimuli. 
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During the phase two learning stage, DARNET stores pairs of novel stimuli in a 

composite memory trace in order to attempt paired associate learning (e.g. Metcalfe 

Eich, 1982). Neither the storage or retrieval weights are updated during this phase. 

DARNET offers a significant advantage over other mathematical models of single trial 

association such as CHARM (Metcalfe Eich, 1982) and TODAM (Murdock, 1982) as, 

unlike convolution-correlational based models of association, the capacity of the 

composite memory trace is not rigorously defined by the learning algorithm. In section 

4.3.4, we demonstrated how increasing the capacity of the memory trace during phase 

one learning can significantly reduce the amount of time required to train the network 

to an optimal level of performance. During phase two, an increase in memory trace 

capacity resulted in an improvement for paired associate storage and recall, for both 

confusable and nonconfusable stimuli (section 4.4.1). 

Paired associate learning 

It is possible, by storing the storage and retrieval weights of a partially trained 

DARNET midway through phase one training, to examine the development of paired 

associate learning (Metcalfe Eich, 1982). In section 4.4.2, we demonstrated that the 

network can be trained to perform paired associate learning and recall at a level 

comparable with CHARM. At this level of performance, DARNET demonstrated a 

similarity effect when presented with confusable stimuli (Conrad, 1964) and produced 

very few cue intrusion errors. In a second condition, where phase one training was 

stopped before DARNET was performing optimally, DARNET exhibited many more 

cue intrusion errors in the similar item condition (section 4.4.3). This provides 

evidence that a developmental account of associative memory is desirable as the 

proportion of errors exhibited by the model may reflect its associative ability. It may 

also be the case that similar developmental effects are exhibited by human subjects 

(Brown, Preece & Hulme, 1995). 

8.4 OSCAR 

DARNET provided us with a developmental account of association. However, it was 

unable to perform serial order learning and recall. In an attempt to address this, a novel 
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architecture for serial order was developed, OSCAR. Here we describe the model and 

review its ability to perform serial recall. We compare the model to recent formal 

models of serial order. 

Basic architecture 

The oscillator based associative recall model, OSCAR, attempts to overcome the 

shortcomings of previous models of serial ordered immediate recall. OSCAR aims to 

provide a neurobiologically plausible distributed single-trial learning model of 

immediate memory for serial order. The model implements item-to-context association 

by Hebbian single trial learning. In order to improve the retrieval and deblurring 

process, items and contexts are represented in the model by normalised vectors of 

features (Metcalfe Eich, 1982; Goebel & Lewandowsky, 1991). 

Dynamic context signal 

Examining control signals employed by recent models of memory, such as the two 

dimensional control of Houghton ( 1990) and the context of Burgess and Hitch (1992, 

1996), it is clear that a control signal must possess a number of properties. The first 

property is that contexts which represent states that are close together in time must be 

more similar to each other than those which represent widely separated points in time. 

This leads to the second property, which is that the context must not repeat itself. In 

fact, a representation that would prove suitable is outlined by Church and Broadbent 

(1990). Church and Broadbent describe a vector for interval timing, built up from a 

series of oscillators, each with a frequency of twice that of the previous oscillator, 

based around a circadian period. 

In section 5.4, a context vector was developed which not only satisfied these 

requirements but was also more plausible than the context of Burgess and Hitch 

( 1992) as it employed vectors of continuous features and was more powerfµl than 

Houghton's (1990) control signal due to its increased dimensionality. The context 

vector is reinstatable so that during recall, only the first state of the context is required 

in order to "rebuild" each context vector in the sequence. 

212 



Modelling human short-term memory for serial order Chapter8 

Single trial learning and recall 

Single trial learning is facilitated by employing Hebbian learning, although alternative 

single trial learning algorithms would also be suitable (e.g. convolution and 

correlation). In section 5.5 we demonstrated how items were presented in sequence to 

the network and were associated with the context vector that corresponded to the 

moment in time that the item was presented to the network. After a list had been 

presented, the Hebbian memory matrix was shown to contain a number of associations 

between list items and the appropriate context vector. Recall involved reinstating the 

learned-context for each item and presenting it to the memory trace as a recall probe. 

The retrieved item was compared with a lexicon of available responses and the item 

that bore the most similarity to the retrieved item, recalled. 

Parameter free pe,formance 

The basic model was shown to produce bowed serial position curves with primacy and 

recency components (section 5.6). These occurred as a direct result of edge effects 

due to the similarity of the context vectors. Furthermore, even in its most basic form, 

OSCAR demonstrated the ability to produce order errors, distributed in accordance 

with Estes (1972). 

Model parameters 

With the addition of a number of free parameters, OSCAR was fitted to a range of 

empirical data (see section 8.5). Forgetting in the model occurred as a result of 

weights decay, interference between item-to-context associations in the Hebbian 

matrix, the distinctiveness of learned-contexts or the failure to reinstate learned

contexts during recall. The weights decay and noise during learning parameters helped 

to introduce recency into the model. The learning rate parameter decayed non-linearly 

during learning to reflect the intuition that successive list items in a sequence became 

progressively less surprising during learning. Output interference and the learning rate 

parameter introduced primacy to the model. The effects of learning rate and decay 

were explored in section 6.3. 
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An option for output inhibition was also available (cf. Burgess & Hitch, 1992, 1996; 

Houghton, 1990; Page & Norris, 1995) which either prevented the same item being 

recalled in successive serial positions, or prevented items being repeated in any two list 

positions. In contrast to some recent models (e.g. Page & Norris, 1995), the effect of 

inhibition did not decay with list position, although the inhibitory process that 

prevented the same item being recalled adjacent serial positions could be thought of as 

a weak implementation of such a process. A noise threshold, above which items were 

recalled and below which they were omitted, was shown to introduce item omission 

errors to the network (section 6.7). Clearly these inhibitory and threshold mechanisms 

are primitive and we suggest that a new implementation of the architecture should 

consider the use of a competitive filter such as those seen in a number of recent models 

(Houghton, 1990, 1994a; Burgess & Hitch, 1992, 1996) or an anti-learning process 

(Lewandowsky & Li, 1994). 

There was also control over the number of recallable items available to the model 

during the retrieval stage. Typically this included only those items that were presented 

during learning. However, this could be manipulated to include unlearned items which 

introduced further item errors during recall. In section 6.4.4, we demonstrated that the 

combined effects of the inhibitory processes and the number of items in the lexicon of 

recallable items could affect the recency component of the serial position curve. 

Comparison with other architectures 

OSCAR has little in common with chaining models such as TODAM (Lewandowsky 

& Murdock, 1989) and recurrent networks (Jordan, 1986; Elman, 1990). These 

models implement some form of chaining between at least one of the previous items 

and the next. OSCAR, in contrast, employs only item-to-context association (cf. 

Burgess & Hitch, 1992, 1996). Furthermore, OSCAR relies upon single trial learning, 

provided by Hebbian association, whereas recurrent networks require back

propagation in order to learn one sequence of stimuli. It has also been observed that 

the magnitude of lexicon items available during recall has no effect on OSCAR 

(Drewnowski, 1980) whereas it is a fundamental component of the TODAM recall 
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procedure and is responsible for the degree of recency exhibited by the model 

(Mewhort, Popham & James, 1994; Naime & Neath, 1994). 

OSCAR, like the Houghton (1990) model, employs the use of a fixed-dimensionality 

learning-context signal that is reinstatable and does not repeat over long periods of 

time. However, in contrast to Houghton's model, OSCAR's learning-context signal is 

of much greater dimensionality and hence possesses greater discriminatory power. It is 

also motivated by research from other domains (Church & Broadbent, 1991; Gallistel, 

1990). 

Page and Norris (1995) observe that the primacy gradient, when it is first reinstated 

before any noise or decay occurs, is akin to the activation of each item in a item-to

context model, such as OSCAR, when the first context is presented to the network. 

However, the author would argue that in OSCAR's case, unlike the primacy model 

which would appear to require that every list item possesses a positive activation 

(although this does suggest apriori knowledge of the list length), the degree of 

activation when OSCAR is cued will depend on the distinctiveness of each of the 

contexts in the sequence. If the contexts are "less-distinct", we would expect each item 

to become active, the first item most becoming the active and then less so for each of 

the remaining items. However, if each context is "highly-distinct" then we would 

anticipate that the presentation of the first context would only activate the first few 

items and not every list item. 

Page and Norris (1995) also describe the addition of a second stage of processing 

which facilitates the modelling of phonemic similarity effects. In particular, they 

describe the addition of a second primacy gradient to ensure that confusions within the 

phonemically-like groups obey the transposition locality gradient observed empirically 

(Henson, Norris, Page & Baddeley, 1996). A similar effect occurs naturally with the 

OSCAR architecture. For example, if one considers the recall of the first confusable 

item in the sequence NC, C, NC2 C2 NC3 C3, then clearly the context cue for C 1 will 

be more similar to that for C2 than for C3• Clearly, this eliminates the need for any 

mechanism such as that employed by Page and Norris. 
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Limitations of the OSCAR model 

The OSCAR model, as defined in the current thesis, fails to provide an account for a 

range of data. 

It is unclear how the model could account for rehearsal effects (cf. Baddeley, 1986), 

although the author would suggest that rehearsal of stimuli items and their respective 

contexts may have the effect of making the learned contexts more distinct, and hence 

recall may require only partial reinstatement of the learned contexts for an adequate 

level of performance. A second suggestion might be that items are rehearsed at a 

slower rate than that during presentation, and hence each item may become associated 

with a more highly distinct context during this phase. 

The model also fails to demonstrate any long term learning effects (e.g. Hebb effect 

(Hebb, 1961; cited in Lewandowsky & Murdock, 1989)). As effects such as these 

have been modelled by previous models of serial order, (e.g. TODAM: Lewandowsky 

& Murdock, 1989, p40), it is important that the model be expanded to include a long 

term component in order to do so. 

Furthermore, it is unclear how the OSCAR model could account for the effect that it is 

easier to recall items forwards rather than backwards. 

8.5 Accounting for the empirical data 

There is a wide range of empirical data that illustrates the behaviour of immediate 

memory. During a typical serial order task, subjects are presented with a sequence of 

stimuli such as letters (e.g. Baddeley, 1968) or digits (e.g. Conrad, 1959). These may 

be presented either visually (e.g. Conrad, 1965) or verbally (e.g. Jahnke, 1963). Recall 

is typically immediately after learning. Many of the models introduced in chapter 3 

have been fitted to data such as that presented here. Their ability, or otherwise, to 

account for these results exposes the strengths and weaknesses of each model. Here 

we compare the ability of these models with OSCAR to account for a range of 

empirical data. 
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Serial position curve 

The serial position curve has been replicated by the majority of the models of serial 

order. Lewandowsky and Murdock (1989) fit the chaining-based TODAM to a 

number of serial position curves successfully (Lewandowsky & Murdock, 1989, figure 

15). However, Nairne and Neath (1994) argue that the recency component of the 

TODAM serial position curve is a direct result of the sampling without replacement 

scheme employed by TODAM during recall. Burgess and Hitch (1992) also attempt to 

fit the network model of the articulatory loop to serial position curves. However, 

although the curves ·have a primacy component both when the model is fully chaining 

or fully context driven, neither produces a recency component without adaptation of 

the model (Burgess & Hitch, 1992, p. 454). Page and Norris (1995) also provide a 

reasonable series of serial position curves, firstly with the most basic primacy model as 

a direct result of end-effects (Page & Norris, 1995, figure 2), but later providing a 

good fit to both Baddeley (1968) and Henson, Norris, Page and Baddeley (1996) with 

the four parameter primacy model (Page & Norris, 1995, figure 6). 

Although the ability to produce a symmetric serial position curve occured naturally 

with OSCAR as a consequence of the end effects (figure 5.15), OSCAR also 

demonstrated the ability to reproduce a serial position curve possessing both the 

extended primacy and last item recency of immediate recall of visually presented 

stimuli (Baddeley, 1968). Only the addition of learning rate and both decay and noise 

during learning and recall was required (figure 7.1). 

Memory span function 

Lewandowsky and Murdock fit the open loop version of TODAM successfully to 

Crannell and Parrish's (1957) memory span functions (Lewandowsky & Murdock, 

1989, figure 12). Burgess and Hitch (1992) provide a range of adequate memory span 

data (Burgess & Hitch, 1990, figures 5-8) and also a function of articulation rate 

against memory span (Burgess & Hitch, 1990, figure 7) with a model using a 

combination of the chaining and context mechanisms. The primacy model (Page & 

Norris, 1995, figure 7) also demonstrates the ability to reproduce a set of memory 
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span functions along with the linear memory span against articulation rate function of 

Hulme, Maughan and Brown (1991, cited in Page & Norris, 1995). 

OSCAR was also fitted to the family of reverse 'S' shaped memory span functions of 

Crannell and Parrish (figure 7.2). The learning rate parameter, corresponding to the 

strength of encoding, was varied in order to model the effects of stimulus modality on 

memory span. The limited capacity of the Hebbian matrix and the effect of output 

interference was reflected in these list length effects. 

Phonemic similarity 

The phonemic similarity effect is exhibited by a number of models of association and 

serial order. In particular, when items are represented as distributed vectors of features 

and acoustic similarity can be modelled by an overlap of vector features. For example, 

when Metcalfe Eich (1982) presents CHARM with a series of paired associates drawn 

from a lexicon of similar items, she reports that performance is worse for confusable 

than nonconfusable stimuli (Conrad, 1964). Lewandowsky and Murdock (1989) 

observe a phonemic similarity effect with the open-loop implementation of TOD AM in 

a memory span task (Lewandowsky & Murdock, 1989, figure 17). Baddeley, Papagno 

and Norris (1991, figure 10.3) also demonstrate that an increase in similarity between 

stimuli reduces performance for the serial position curve. A phonemic similarity effect 

is also apparent in the network model of the articulatory loop for memory span 

(Burgess & Hitch, 1992, figure 5) and also serial position curves (Burgess & Hitch, 

1992, figures 9 & 10). 

Baddeley ( 1968, experiment 5) describes an experiment in which phonemically 

confusable items are sandwiched between phonemically nonconfusable items. When 

subjects are presented with lists of alternately phonemically confusable and 

nonconfusable items, the serial position curves produced have a "sawtooth" form. 

Performance is good for nonconfusable items and poor for confusable items. 

Performance for the nonconfusable items is not affected by the proximity of the 

confusable items in the alternating list conditions. This is a significant effect as it is not 

predicted by chaining based accounts of memory. Baddeley, Papagno and Norris 
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(1991, figure 10.3) attempt to fit TODAM to this effect, but without success. Burgess 

and Hitch (1992, figure 15) also fail to reproduce this result with the half-chaining 

half-context driven model of the articulatory loop, although a refined version of the 

model (Burgess, 1995; Burgess & Hitch, 1996, figure 3.4) does replicate the result. 

However, Henson, Norris, Page and Baddeley (1996) fit the primacy model (Page & 

Norris, 1995) to the empirical data, and also provide transposition gradient based 

analysis of empirical findings which confirm that order errors occur within confusably

like groups. 

The acoustic similarity effect for memory span (Baddeley, 1966) was replicated by 

OSCAR (figure 7.3). OSCAR also provided a reasonable fit to the phonemic similarity 

effect of Baddeley ( 1968, experiment 5), although performance for the nonconfusable 

items suffered when in the presence of confusable items in the alternating list 

conditions (figure 7 .10). Henson, Norris, Page & Baddeley (1996) observe that a 

similar effect is found in the empirical data as a result of knock-on effects (i.e. poorer 

performance for nonconfusable items that follow an erroneously recalled confusable 

item). Clearly representing item confusability by overlapping features provides a 

suitable means for distributed models to model acoustic similarity. The amount of 

overlap between each confusable item vector controls the degree to which 

performance is reduced by similarity. The OSCAR replication of Baddeley's 

experiment 5 (1968) was also affected by the number of lexicon items available during 

recall and the context distinctiveness. For example, if fewer distractor items had been 

available during recall, we anticipate that more order errors would have occurred. 

Vocabulary size effects 

Many models limit the size of the lexicon of items available for selection during recall. 

Drewnowski (1980) observes that increasing the size of the lexicon of recallable items 

does not influence performance. OSCAR was shown to produce a similar effect for 

different list length conditions (figure 7.4). Clearly this is in contrast to TODAM 

(Lewandowsky & Murdock, 1989) where the number of recallable items available to 

the model controls the degree of recency exhibited during serial recall tasks (Mewhort, 

Popham & James, 1994; Nairne & Neath, 1994). 
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Distance functions 

Burgess and Hitch (1992, figure 11) observe that when the network model of the 

articulatory loop is primarily chaining based, transpositions involve similar proportions 

of each remaining list item. However, when the model is primarily context driven, 

transpositions mainly involve those items immediately adjacent to the target item in 

accordance with Estes' (1972) observation. The four parameter primacy model (Page 

& Norris, 1995, figure 7) attempts to fit transposition gradients from Henson, Norris, 

Page and Baddeley (1996). However, very few transpositions occur between items in 

the serial positions immediately adjacent to the target position with the result that the 

distance functions are too sharp. 

A natural distribution of order errors about the target serial position was shown to 

occur in the parameter free version of OSCAR as a consequence of the item similarity 

and the context distinctiveness (figure 5.16). If the contexts were "highly-distinct" then 

few order errors occurred, however if they were "less-distinct", and hence more easily 

confused, more order errors occurred and the transposition gradients become spread 

out. Item similarity also affected the transposition gradient: confusable items produced 

more order errors. OSCAR's distance functions adhered to the locality constraint 

(Estes, 1972) which states that transposition errors involve items from those serial 

positions immediately adjacent to the target serial position. We demonstrated that 

where the stimuli were confusable, order errors occurred in large proportions (figures 

7.6 & 7.8). Furthermore, in the alternating list conditions of the Baddeley experiment 

5 (1968) simulation, order errors were shown to occur within confusably-like groups 

(figure 7 .11 ). 

Item versus order effects 

Few recent models of serial order have attempted to address Healy's (1974) 

observation that order errors produce a bowed serial position curve whilst item errors 

occur equally across each serial position. Conrad's ( 1965) suggestion, that order errors 

result from pairs of item errors, clearly cannot account for this difference. However, 

using OSCAR we replicated both the item only and order only error distributions 

observed by Healy (figure 7.14). This is significant as Healy suggested that different 
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mechanisms must be responsible for maintaining item and order information. However, 

OSCAR stores both item and order information at the same location in the composite 

memory matrix and uses the same recall cue (the appropriate context vector) for both 

conditions. Clearly, OSCAR provides a single mechanism capable of reproducing the 

different item and order error distribution illustrated by the data. 

Partial reinstatement of context 

We also demonstrated the effect of only partially reinstating the learned-context during 

recall (figure 7 .17). The reinstated contexts overlapped with the state of the context at 

the end of the list. This introduced recency and compared favourably with a probe 

recall task where ordered recall was not required (Murdock, 1968). No recent model 

of serial order has considered partial reinstatement of context. 

8.6 Developmental model of immediate memory for serial order 

As has already been stated, there is clearly a need for a developmental account of 

memory. In order to address the developmental nature of serial order paradigms such 

as memory span (e.g. Gathercole & Adams, 1993; Hitch, Halliday & Littler, 1993; 

Hulme, Thomson, Muir & Lawrence, 1984; Hulme & Tordoff, 1989), the model needs 

to be able to perform single trial learning with varying degrees of accuracy. 

This ability was demonstrated by DARNET when applied to the problem of paired 

associate learning and recall. DARNET was tested with a partially learned set of 

storage and retrieval weights, corresponding to an inaccurate single trial learning 

mechanism. It was later tested with a well learned set of weights which corresponded 

to a highly accurate single trial learning mechanism. In this manner, and by choosing a 

wider range of learning abilities, it would be possible to apply the DARNET learning 

algorithm to the problem of a developmental account of learning. 

It was observed that OSCAR requires a learning algorithm capable of performing 

single trial learning and recall, such as Hebbian association or convolution. Therefore 

it is feasible that the DARNET learning and recall algorithm could be employed 

instead of the Hebbian association currently in use. 
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Figure 8.1 Developmental oscillator based associative recall model 

Chapter8 

What is proposed is a refinement of the DARNET learning and recall architecture in 

which item-to-context associations are stored in the composite memory trace (figure 

8.1). An inhibitory process and more complex lexicon of items would have to be 

included with the refined architecture. Such a network should be capable of producing 

a developmental account of a range of immediate memory for serial order paradigms. 

Future work will see further application of OSCAR to the problem of modelling 

empirical data and also the integration of OSCAR and DARNET, in order to 

investigate the developmental nature of short-term memory for serial order. 

8. 7 Conclusion 

To conclude, two novel architectures for immediate memory have been proposed. The 

first, a developmental associative recall network, DARNET, employed a gradient

descent learning algorithm in order to learn to perform accurate storage and retrieval 

of novel pairs of vectors. The model demonstrated the ability to perform as accurately 

as current mathematical models of association, but without the constraints on capacity 

that they exhibit. More significantly, the use of a connectionist learning algorithm 

meant that DARNET could provide a developmental account of single trial learning by 
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examining performance after different amounts of phase-one learning. The model 

demonstrated how a developmental model may provide an account for current 

findings. 

The second architecture, an oscillator-based associative recall network, OSCAR 

provided us with a neurobiologically plausible account of serial order learning and 

recall. The model developed the notion of a time dependent control signal introduced 

both in other models of immediate memory and elsewhere in other domains. Driven by 

a set of oscillators, the context was shown to satisfy both the similarity and non

repetition constraints. Items were presented sequentially to the network and were 

associated to different states of the context signal by the single trial Hebbian learning 

algorithm. Recall involved reinstating each context in turn and presenting it as a recall 

cue to the network. The parameter free model demonstrated the ability to produce 

order errors, such as the bowed serial position curve and the transposition locality 

gradient, comparable to the empirical data. With the addition of a weights decay, 

learning rate and noise parameter, the model was shown to fit a range of empirical data 

including serial order curves, memory span, phonemic similarity, size of vocabulary, 

transposition gradient effects and item and order error distributions. 
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APPENDIX 

Appendix A: Normalising similar items 

One of the arguments levelled at Metcalfe Eich's (1982) simulations using confusable 

items and CHARM is that it is not clear whether the confusable items remain 

normalised once the process of introducing the similarity is complete. As normalised 

stimuli are vital to the retrieval process which implements the dot product as the 

measure of similarity (Goebel & Lewandowsky, 1991), it is clear that similar confusion 

should not arise for the DARNET and OSCAR simulations presented here. 

The following algorithm implements a method for generating confusable stimuli items 

which retain their normalisation. In order to build a vocabulary of confusable items, a 

reference item (the first list item) is produced and normalised as normal. Next, a 

proportion of the elements of this first vector are copied to the corresponding element 

positions in each of the remaining vocabulary items. In this manner, each of confusable 

items contains a proportion of elements identical to those in the reference item, along 

with values drawn from a normalised distribution about zero with variance of one 

occupying every remaining vector element. In order to ensure normalisation and 

confusablity, it is only the features occupying these latter positions that must be 

updated during the normalisation process. 

Before considering the general case, consider an 8-dimensional vector of features, I, 

which contains 4 elements (in the odd positions) which we wish to remain unaffected 

by the normalisation process: 

(Al) 
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We know that when the dot product of a normalised vector with itself is calculated, 

the answer is uriity. We wish to find the constant, k, which scales each non-similar 

element of the vector in order to satisfy this last condition: 

I. I= 1 

⇒ i/ + ( ~) 

2 

+ if + ( ~ J + i; + ( ~ J + 4 + ( ~ J = 1 (A.2) 

Simplifying this equation it is possible to extract k: 

k= (A.3) 

Therefore, in order to normalise a vector which contains an arbitrary number of 

elements which must remain unaltered (i.e. because they are the elements in common 

with the reference vector in a confusable item), each of the unique vector elements 

must be divided by the constant k. For the current case, where 50% of the reference 

vector is copied to each of the confusable items, k is calculated by talcing the square 

root of results of the sum of the squares of the "to-be-normalised" elements divided by 

one minus the sum of the squares of the "elements-in-common". The general case is 

expressed below: 

k= 
sum of the squares of the "to - be - normalised" elements 

1-(sum of the squares of the "elements - in - common") 
(A.4) 

If confusable vocabularies are generated using this algorithm, we can ensure that items 

are both similar and normalised. 
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Appendix B: Methods to ensure reliable data generation 

In order to ensure that these simulations are reliable, a number of processes are 

undertaken to minimise the possibility of erratic results. We have already discussed the 

manner in which the context vectors are averaged, akin to using a much higher

dimensionality context vector, in order to ensure smoother context similarity profiles. 

However, a number of other methods are employed in an attempt to eliminate erratic 

results. 

For example, before each sequence of context vectors is presented to the network, a 

random start position is selected for that context vector set. For example, each set of 

context vectors contains over a hundred contexts, but for a six item list, with a inter

context spacing of four, only twenty four contexts are required from that set in order 

to simulate the data. In this case we randomise the start position in order to ensure 

that for every trial using that set of contexts, we are not just using the first twenty four 

contexts. 

Many of the processes use the computer's ability to generate random numbers (e.g. for 

selecting values from the normal distribution of features). However, computer random 

number generators are notoriously pseudo-random. Therefore, wherever the computer 

random number generator is required, it is seeded with a random seed based upon the 

date and time of simulation. We would anticipate that this would minimise the chance 

of (e.g.) the same set of item vectors being used in any two simulations. 

Furthermore, all of the simulations presented here are the result of a averaging over a 

number of trials. For a serial recall task, where a serial position curve is required to 

illustrate the network's performance, typically between 500 and 2000 trials are 

required in order to ensure that the curve presented is representative of the network's 

performance. However, as all of the simulations described here have been executed on 

desktop computers (e.g. Apple Macintosh Power PC or IBM compatible 486DX4-

100) often the number of trials executed have been constrained by the requirements of 

the larger networks. 
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Appendix C: Further variations on methods for context generation 

Simulation 31: Random delta theta size 

Introduction 

Although one of the requirements of the context vector is to employ an array of 

oscillators with a wide range of frequencies (cf. Church & Broadbent, 1990), in the 

following experiment, the step for each oscillator phase 0m after each simulated time 

step, o0m takes a small random value, uniformly distributed between zero and one 

radians. 

Method 

An eight element context vector was constructed in the same manner as described 

previously in section 5.4.2 and illustrated in figure 5.7. Each of 0m was seeded with a 

random angle such that the first context vector was at some arbitrary state. The 

increment in theta at each discrete step, o0m was also assigned a small random value 

uniformly distributed between zero and one. Each of 0m was incremented by the 

respective value and the next context vector generated. 32 successive states of the 

context were calculated and the similarity between averaged recorded over 100 

different trials. 

Results 

The similarity curves presented in figure C.1 clearly illustrate that the context vector 

formed in this manner reduces in similarity as the temporal separation increases. There 

is very little noise in the similarity curve once the context are more than 15 steps apart. 

Discussion 

The contexts formed in this manner clearly satisfy the non-repetition and similarity 

requirements of a suitable context vector. However, the problem with the context 

vector in this case is the random distribution of phases across the context elements. 

Fast and slower evolving context vector elements are not clustered at opposite ends of 

the vector: instead, randomly distributed across each element. However, this system of 
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coupled oscillators does appear to produce a very well organised set of contexts 

(Strogatz & Stewart, 1993) and contexts generated in this form could be used as an 

idealised set of contexts. 
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Figure C.1 End-on and cut-away view of cosine between neighbouring context vectors 

Simulation 32: Alternate method for context generation 

Introduction 

In the following experiment, the context vector elements were constructed in a 

different manner to that described in 5.4.2. Instead of the distribution of components 

illustrated in figure 5.7, the following organisation was implemented. 

Method 

An eight element context vector was constructed in the manner illustrated in figure 

C.2. Each of 0m was seeded with a random angle such that the first context vector was 

at some arbitrary state. The increment in theta at each discrete step, 00m was also 

assigned a small random value uniformly distributed between zero and one. 32 
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successive states of the context were calculated and the similarity between averaged 

recorded over 100 different trials. 

c(l) = cos(01) * cos(02) * cos(03) 
c(2) = cos(01) * cos(02) * sin(03) 
c(3) = cos(01) * sin(02) * cos(03) 
c(4) = cos(01) * sin(02) * sin(03) 
c(5) = sin(01) * cos(02) * cos(03) 
c(6) = sin(01) * cos(02) * sin(03) 
c(7) = sin(01) * sin(02) * cos(03) 
c(8) = sin(01) * sin(02) * sin(03) 

Figure C.2 Composition of the eight element context vector, c 

Results 

The similarity function for the contexts generated with this new distribution is 

presented in figure C.3. This reveals that once again, the similarity curve decreases 

rapidly towards zero and again oscillates at between small values of approximately 

zero. 
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Figure C.3 End-on and cut-away view of cosine between neighbouring context vectors 
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Discussion 

Again, this appears to be a suitable method for generating context vectors: these 

satisfy the non-repetition and similarity properties of the context signal. However, 

once again the frequencies of the oscillators that form the components of the context 

vector elements are not widely distributed and it is for this reason that the 2m relation 

(section 5.3.3) is chosen as the most suitable distribution for context vector 

generation, even though the similarity function may not appear to be as desirable as 

those illustrated elsewhere. 
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Appendix D: Convolution and correlation as associative mechanisms 

Introduction 

As was discussed in Chapter 3, a number of successful models of association and serial 

order have relied upon the mathematical processes of convolution and correlation for 

item association (e.g. CHARM: Metcalfe Eich, 1982; TODAM: Murdock, 1982). In 

this appendix, we briefly review these associative mechanisms, although for a full 

description of these, we refer the reader to Metcalfe Eich (1982; see the Appendix). 

Convolution 

The convolution operation combines two item vectors into a common memory trace 

vector. For example, if we consider the convolution of the three-element item vectors 

a and b which are represented as distributed vectors of random scalar elements: 

a= [ a1 a2 a3] 

b = [ b1 b2 b3] (D.1) 

The convolution, the trace vector t, is a five-element vector that contains information 

from both of the to-be-learned items. The dimensionality of the convolution trace is 

fixed and is determined by the equation: 

(D.2) 

Where n1 corresponds to the dimensionality of the trace vector and ni to the 

dimensionality of the stimuli items. Two properties of the trace vector are that it bears 

no resemblance to either of the original stimuli items and that an approximation to the 

second of the pair of item vectors may be retrieved from the association when either of 

the vectors is presented as a probe. 

The trace vector, t, is composed as illustrated in equation D.3. Each element consists 

of the sum of a number of products between elements of both stimuli vectors. 
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t1 = a1b1 

ti= a1b2 + a2b1 

t3 = a1b3 + a2b2 + a3b1 

t4 = a2b3 + a3b2 

ts = a3b3 

Appendix 

(D.3) 

In order that an item may be recovered from this convolution memory trace, one of the 

items must be presented to the memory trace, and the reverse process of correlation 

performed in order that an approximation of the second item be generated at the 

output. 

Correlation 

For the current example, we will assume that item a has been selected as the probe 

item and has been correlated with the memory trace vector, t . The resultant output 

vector, b', is a ni dimensionality vector: 

b'1 = a3t1 + a2t2 + a1t3 

b'2 = a3t2 + a3t3 + a3t4 

b'3 = a3t3 + a3t4 + a3t5 (D.4) 

It is clear from this last equation that each element of the output vector contains the 

sum of a number of products between elements of the probe item and elements of the 

trace vector. Metcalfe Eich (1982, p632) demonstrates how the output vector, b', can 

become the to-be-retrieved stimulus item, b , and that normalising each stimuli item can 

improve accuracy during retrieval and recall. 

Conclusion 

Convolution and correlation provide a formally specified method of single trial 

association and retrieval. They have formed the basis of a number of successful models 

of association. However, the capacity of the convolution memory trace is limited by 

the manner in which the trace dimensionality relates to that of the stimuli items. 
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