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Image Analysis of Microscope Slides for Palynofacies Studies 

Abstract 
Microfossil analysis is essential when identifying hydrocarbon resources for the 

petroleum industry. Such analysis is conducted by paleontologists who interpret the depo

sitional environment by examining microscope slides containing samples of organic micro

fossils known as palynofacies. The main goal of this thesis is to develop the components of 

an image analysis system for automatic segmentation of palynofacies. 

Microscope images of palynofacies contain three types of material: kerogen, pa

lynomorphs and amorphous matter. These types have very different appearances and sig

nificance for the image interpretation by the domain experts. Kerogen is a type of organic 

microfossil that yields oil upon heating. Two kerogen types are usually presented in images 

of palynofacies: inertinite and vitrinite. The prevalence and the appearance of the two 

types carry important information about the environment . Kerogen pieces are the darkest 

objects in the image, highly irregular in shape, overlapping and touching. Distinguishing 

between the two kerogen types is not straightforward even for the trained paleontologists. 

We propose a system for automatic classification of kerogen into vitrinite and in

ertinte using 5 image processing stages: image acquisition, background removal, microfossil 

segmentation, feature extraction and classification. 

Background removal corrects for uneven lighting using multiple lD parabolas. 

A marker-based segmentation method is proposed, called Centre Supported Segmentation 

(CSS) for identifying touching and overlapping objects in a binary image. Its only parameter 

expresses the acceptable degree of overlap in segmenting the individual objects. A measure 

of the segmentation quality is proposed to compare marker-based segmentation results. 

An expert palaeontologist labelled kerogen objects as either vitrinite or inertinite, 

which provided the ground truth labels for training a classifier . A study comparing ten 
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Abstract lV 

state-of-the-art classifiers singled the logistic classifier out as the most accurate one for the 

task. We show that the classifier is stable with respect to the overlap parameter of CSS. 

The palynomorph microfossils are deformed of folded around one another. They 

are presented in the image as semi-transparent, partly or entirely elliptical objects. We 

propose a scheme for classification of complete elliptic palynomorphs using the logistic 

classifier. After segmentation, two classes of objects are formed - "complete palynomorphs", 

and "other", containing the kerogen, amorphous matter and other unspecified debris. ROC 

curve analysis is used to select a certainty threshold for the classification. 

The methods and solutions proposed in this study offer a toolbox for developing 

commercial systems for palynofacies classification. 
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Chapter 1 

Research hypothesis 

Industrial sectors are continually developing old and new applications which per

tain themselves to image analysis solutions . With industrial backing, image analysis tech

niques are constantly enhanced and cultivated in areas such as astronomy, medicine, defence, 

robotics, security, remote sensing and microscopy. 

Analysing images of microscope slides containing assemblages of microfossils is one 

possible application within t he area of microscopy. An assemblage of acid-resistant organic 

microfossils recovered from deep below the ground is collectively known as palynofacies. A 

domain expert would spend about four hours examining a single microscope slide containing 

palynofacies. Their t ask is varied but typically includes categorisation of microfossils into 

predefined classes along with investigation of microfossil characteristics such as size, colour 

and shape. Such an arduous job is both time consuming and critical to the development of 

oil and gas prone sites within the hydrocarbon industry. 

Given the extremely subjective nature of palynofacies evaluation, together with 

the haphazard arrangement of microfossils on a slide, can an image analysis system be built 

to identify microfossils automatically? T he research hypothesis of this work is that such a 
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Chapter 1: Research hypothesis 2 

system can be developed, and will result in accurate, robust and fast fossil identification. 

The intention of this study is to propose and implement part of an overall block-structure of 

such an automatic system, as detailed next. The new image analysis techniques developed 

in the process will be usable within other domains. 

1.1 Chapter map 

Presented in this thesis is a system for analysing kerogen and palynomorph mi

crofossils on an image of a slide containing palynofacies. The "chapter map" is used to 

visualise each chapter of the thesis in accordance with the systems processes. Figure 1.1 

displays the chapter map. 

1.2 Contributions 

This thesis claims the following contributions: 

1. Background segmentation and background correction using Crossing Stripe Parabolas 
(CSP) method. 

2. Centre Supported Segmentation (CSS) method and hierarchical tree representation 
used for stability assessment. 

3. Segmentation evaluation measure 

4. Application of classification methods to kerogen classification and complete elliptic 
palynomorph recognition 

5. An overall system design for automatic palynofacies analysis 
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Chapter 2 

Image analysis of palynofacies 

Microfossils are used extensively by the petroleum industry when exploring for oil. 

Hydrocarbon palaeontologists consider them to be one of their main tools as t hey provide 

extensive information on the depositional environment. The two most common applications 

of microfossils within the petroleum industry are biostratigraphy and paleoenvironmental 

analyses. The study of stratigraphy involves looking at rocky layers to determine the pro

cesses that created it. The law of superposition states that layers of fossil-bearing stone are 

stacked in a sequence according to the age of deposition. It was discovered that a specific 

sequence will be present within many different locations. One of the earliest geologists to 

discover this was William "Strata" Smith (Palmer, 2005). He found that rock layers in road 

cuts and quarries were stacked in the same way in different parts of England. T his type of 

study can help form a correlation between various locations. 

Biostratigraphy is a branch of stratigraphy that only uses fossil assemblages con

tained within the rock layers; the usual aim is to form a correlation between land sites. 

This type of stratigraphy is important because t he age of rock layers can be calculated 

based upon the fossils they contain rather than the type of rock or sediment that makes 

4 



Chapter 2: Image analysis of palynofac ies 5 

up the layer. Furthermore, palyoenvironmental analysis is the interpretation of the type of 

environment that formed the rock, based upon the fossils it contains. 

When drilling for oil a fluid lubricates the drill bit and helps flush small pieces of 

rock from the bottom of the drill hole, these small pieces are known as cuttings. Cuttings 

contain microfossils that are mostly undamaged by the drilling process due to their small 

size ( < 1mm). A sample of cuttings contains an assemblage of organic microfossils known 

as Palynofacies, a term that was first introduced by a french geologist Combaz in 1964 

(Combaz, 1964). Although this assemblage contains many different types of microfossil 

they can be broadly classified into three sub-groups including palynomorphs, kerogen and 

amorphous material. Palynomorphs are the organic microfossil representing some form of 

living matter such as a cell, spore or tissue. Kerogen is the woody, plant material and 

amorphous matter is formed by bacterial and chemical activities of decaying palynomorphs 

or kerogen. 

2 .1 Palynomorphs 

Because palynomorphs are extremely resistant to most forms of decay other than 

oxidization, they are preserved when buried deep underground. They are around 5µm to 

500µm in size and composed of sporopollenin, chitin or other related compounds. 

The type of palynomorph found in rock are helpful for palyoenvironmental analysis 

and source potential for hydrocarbons (Al-Ameri and Batten, 1997). Also the colour of the 

palynomorph can be a crucial indicator for hydrocarbon exploration. The organic walls 

of palynomorphs change colour with increasing burial temperature and can be used to 

interpret post-depositional geothermal gradients. Colour changes can be reproduced by 

heating experiments in the laboratory (Epstein et al. , 1977) and it was found that these 
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Figure 2.1: Examples of palynomorphs all taken under the same microscope magnification. 

colour changes are irreversible and can be assigned to different temperature regimes (Pross 

et al. , 2007). Temperature plays a key part in hydrocarbon generation hence reconstructing 

the thermal history of sediments is a crucial task when exploring for petroleum. Example 

images of palynomorphs can be found in figure 2.1. Palynomorphs are pale brown to brown 

with a sharp distinct outline and maybe some internal structure. 
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2.2 Kerogen 

Kerogen is an organic chemical compound found in sedimentary rock that releases 

oil or gas upon heating. We can classify kerogen into two types, inertinite and vitrinite. 

These compounds are both reflective, inertinite being the most reflective. The maximum 

temperature subjected to a sample can be determined by a measure of vitrinite/inertinite 

reflectance (Burmham and Sweeny, 1989), making this an invaluable property. Furthermore 

the shape of these pieces can be used to predict the distance from the sediment source 

(Hoelstad et al., 1994; Tyson and Follows, 2000; Buckley, 2004). 

Inertinite is a black opaque fragment with sharp angular edges and usually lath

shaped. Very slight rounding can occur. These types of macerals are common in many 

samples but are most abundant in sandstone. Inertinite is derived from the tissues of 

higher plants and gelified amorphous material. 

Vitrinite is a term introduced by Stopes (1935) to describe the maceral derived 

from woody tissues of roots, stems, barks and leaves composed of cellulose and lignin (In

ternational Committee for Coal and Organic Petrology (ICCP), 1998). During the decom

position process cell structures can be lost or preserved and are visible to varying extents. 

Vitrinite is dark brown to black in colour and appears as an angular or rounded grain. 

There are only slight visual differences between inertinite and vitrinite. This is 

illustrated in figure 2.2, where vitrinite is grouped within a dashed boundary and intertinite 

within a solid boundary. Both types of microfossil can either be lath shaped or rounded; lath 

shaped pieces have been highlighted in grey. Notice that inertinite exhibits a sharp distinct 

outline with no internal structure whereas the internal structure of vitrinite is visible mainly 

nearer the periphery. 
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--------------, 

\ 

..... - - - - - - - - - - - - - -
Figure 2.2: Vitrinite is indicated by a dashed boundary, inertinite by a solid boundary. 
Rounded kerogen is shown and lath shaped piecs are highlighted in grey. 

2 .3 Amorphous material 

The term amorphous material is used to describe organic microfossils that do not 

possess a specific shape, structure or obvious outline. T here are many possible origins of 

amorphous material but it is mainly derived from chemically and physically degraded plants, 

animal debris, structured kerogen or original structureless material. It is very difficult to 

identify the original source of amorphous organic matter both optically or chemically. 

Amorphous organic microfossils (AOM) are pale to brown, grey or yellow and can 

be distinguished in four ways based upon textural differences (Thompson and Dembicki, 

1986). Oil-prone samples are defined by two types of AOM. The first appear as chunky 

compact masses with mottled network or weak polygon textures; the second is t hin, platy 

or has rectangular individual grains. Gas-prone samples contain two different types of 

AOM. The first is very small, dense, elongate, oval or rounded individual grains; the second 

has clumps with granular, fragmented or globular texture. Example images of extracted 

amorphous material can be seen in figure 2.3. 
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Figure 2.3: Examples of amorphous material all taken under the same microscope 
magnification. 

2.4 Image acquisition 

To form a microscope image containing palynofacies a sample of rock cuttings are 

taken, washed , sieved and then mounted on a microscope slide (a more detailed review 

of palynomorph preparation is provided by Riding and Kyffin-Hughes (2004)). These are 

known as dispersed preparation slides. 

The image of a microscope slide is stored using the JPEG format. This format was 

used due to hardware restrictions. In subsequent stages we will be applying image analysis 

techniques to the image to perform segmentation and ultimately classification. The JPEG 

format is not a lossless compression method, hence the compression factor should remain 

fixed between images ensuring any measurements t aken are consistent. Also the compression 

may cause minor changes to the microfossil boundaries and so most of the features we use 

to represent a microfossil such as size, shape and colour are chosen in order to ignore this 
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Figure 2.4: Illustration of microscope setup 

ar tefact. 

2 .4.1 Microscope Stepping Stage 

High resolution images (typically 1704 by 2272 pixels) are captured under trans

mit ted light using a digital camera attached to a microscope. The microscope setup consists 

of an automatic stepping stage that can be attached to any microscope and is controlled 

through Petrog software (Wells, 2008). A digital fl.rewire camera and control box are used 

to capture high resolution images and t ransfer them to a computer. 

The stepping stage holds the slide with a spring loaded arm. It will automatically 

move the slide in a discrete lattice arrangement. This allows the digital camera to capt ure 

over 400 high resolution images covering the entire sample. An illustration of this setup is 

shown in figure 2.4. 
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2.5 Digital Images 

A continuous grey scale image is defined as a two dimensional function J(x, y). 

The spatial coordinates are represented by the values of x and y. The intensity of the 

image at coordinates (x,y) is the output f. A digital image is formed by sampling the 

function J(x, y) at discrete values of x and y and through quantisation of the intensity f. 

2.5.1 Digital monochrome images 

For a monochrome image the intensity ranges between black and white. In a digital 

image it is common to define the intensities as integers where black is intensity 0 and white 

is intensity 255. 

Subsequent to sampling and quantisation the digital image is represented as a 

matrix of integer values containing M rows and N columns; we say the digital image is 

of size !vfxN. The elements of the matrix are known as pixels. For clarity the discrete 

coordinates x and y are integer valued and indicate row and column positions respectively. 

It is common to define the origin of the digital image as (0, 0), however the image processing 

toolbox in Matlab defines the origin to be (1, 1) and so we adopt this convention. For 

example the next pixel below the origin will be at (2, 1) and the pixel in the last row and 

last column is at position (M, N). It is important to note that the coordinate (x, y) in 

the digital image is the position of pixels and not the position of sampled points in the 

continuous image. The matrix representation of a digital image J(x, y) is shown below: 

J(l, 1) J(l, 2) 

J(x, y) = 
J(2,l) J(2,2) 

J(M,l) J(M,2) 

f(l, N) 

f(2, N) 

J(M,N) 
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Blue intensity image 

Green intensity image 

Red intensity image 
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r( 
p(x, y) = g( 

b( 

Colour image 

b(x, y) 

Figure 2.5: Digital colour image representation using the RGB colour system. 

2.5.2 Digital colour images 

12 

Colour images are composed of individual monochrome images. The RGB colour 

system uses three 2D component images r(x, y ), g(x, y) and b(x, y) represent ing the red , 

green and blue values respectively. The colour image can be thought of as a NI xN x3 array 

where the red, green and blue component images are stacked along the 3rd dimension. An 

illustration of this is shown in figure 2.5. The colour of a pixel (x, y) is characterised by 

a three dimensional vector [r(x, y),g(x, y ), b(x, y)]. When all three values are identical the 

pixel is displayed as grey. 

T he monochrome images used to construct the colour image define the total num

ber of colours available. The red , green and blue component images can contain 2b unique 

grey intensity values. Where b is the number of bits used to store a number on computer. 

For example an 8-bit image can contain 256 grey levels and a 16-bit image can contain 

65536 grey levels. Therefore a colour image contains (2b)3 unique colours. 

Ot her colour systems can be used to represent an image but, throughout this thesis 

we have adopted to use the RGB colour system as it is based on the human perception of 
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colours. 

2.6 Feature extraction 

Subsequent to image segmentation, object regions are identified. These regions 

will ideally represent individual objects (in our case miscrofossils) but can also contain non

objects . To further analyse these regions it is necessary to create a numerical representation 

usually in t he form of a vector. Each element of the vector describes a different feature. A 

vector representation allows the application of classification algorithms and the extraction of 

important statistical informat ion. A total of 32 numerical features are used accounting for 

shape, size, colour and texture. The majority of these features are general object features 

and are not specific to palynofacies. Similar studies (Weller et al. , 2005) have used these 

features by extracting them using the image processing package Halcon1 . Here all features 

are extracted using Mat lab. 

2.6.1 Colour features 

Colour features are more commonly processed on the RGB colour image. It was 

shown using the dichromatic reflection model proposed by (Shafer , 1985) that photometric 

phenomena such as shadows, specularities and illumination influence the red , green and 

blue values in an image. Because of this, colour feature detection algorithms have been 

developed so that they are invariant to these photometric affects (Gevers and Stokman, 

2004; Zickler et al. , 2008). 

It was demonstrated by Gevers and Stokman (2004) that there exists a balance 

between the discriminative power of colour features and their invariance to photometric 

1Halcon is a software environment for image processing (MVTec Software GmbH, 2008). 
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changes. Therefore the chosen colour features should only be invariant to the various forms 

of lighting that can occur within the image of interest. For best discrimination , colour 

features should be chosen so that they are only invariant to uneven lighting in the image. 

A normalised colour can be obtained that is invariant to surface orientation, illumination 

direction, and illumination intensity. Suppose the colour of a pixel is (r , g, b) then it is 

proven (Gevers and Stokman, 2004) that the normalised colour is (r,g,b)/(r + g + b). It 

is not necessary to use normalised colour provided the illumination across the microscope 

slide has been normalised beforehand. The colour features used are calculated from the 

normalised image; they comprise of the mean colour intensities. 

Mean colour intensities 

An extracted colour object is shown in figure 2.6. The object is a palynomorph, 

captured using 256 distinct intensity levels for the red, green and blue component images. 

Let O be the set of all object pixels. The component images from the colour image are used 

to find the features mean red f, mean green g and mean blue b: 

1 
r= TOI I:: r(p), 

p EO 

1 
g = TOI I:: g(p), 

pEO 

- 1 ~ 
b = TOI Lt b(p) . 

p EO 

The RGB colour image is converted to a grey level intensity image in Matlab using 

the function rgb2gray (). This function applies the following transform to the colour image 

gr 0.2989r + 0.5870g + 0.1140b 

Where gr(x, y) is the grey intensity image. The coefficients assigned to each colour channel 

were designed as an international standard on digital encoding of component colour tele

vision under the direction of the International Consultative Committee on Radio (CCIR). 



Chapter 2: Image analysis of palynofacies 15 

r = 174.13, g = 49.14, b = 19.12, gr= 83.06. 

Figure 2.6: Extracted palynomorph showing colour features, f, g, b and g-r 

This formula is within the recommendation known as CCIR recommendation 601-2 and is 

used to best describe human perception. The m ean grey gr feature is therefore: 

2.6.2 Size features 

The image of an object is a projection of the object from 3D to a 2D plane. In 

this study we measure object size in 2D. The most basic size feature area is simply the 

tot al number of pixels comprising the entire object . Object contour, C, is important for 

describing shape as well as size. For example perimeter is the number of pixels in C and 

t he diameter of an object is given by the largest distance between two pixels in C. Another 

feature, distance, is t he mean distance from the centre of gravity of the object to all contour 

pixels in C. The set of object pixels O is used to calculate the centre of gravity c: 

1 
C=ToT LP· 

p EO 
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Then distance is 

1 
8 = Tel L llc- qll, 

q EC 

where 11-11 is the Euclidean distance between two vectors. Hence 8 is a scalar, invariant to 

object rotation and translation. 

An alternative approach to measuring size is to bound the object in some way and 

measure the dimensions of the boundary. For instance, inner radius r in is the radius of the 

largest circle completely contained within t he object. The D istance function D(p ) of pixel 

p E O is 

D(p) = min IIP - qll, 
q EC 

i.e. the minimum distance from each object pixel p E O to a contour pixel q E C. Inner 

radius can be calculated as the maximum of all these distances: 

rin = max D(p). 
p EO 

The distance function can be computed on a binary image with the function bwdist () in 

Matlab. For each pixel in the binary image it will assign a number that is the distance 

between that pixel and the nearest nonzero pixel of the image. 

The feature outer radius rout is the radius of the smallest circle containing the 

whole object. An algorit hm to calculate the smallest enclosing circle in linear-time is pre

sented by Megiddo (1983) . The size feature combining both inner and outer radii is circle 

difference and found as rout - r in · 

Size features are illustrated in figure 2.7 on two kerogen microfossils. The kerogen 

piece on the left demonstrates where diameter is equal to the diameter of the smallest 

bounding circle. T his is not always t rue, as shown in the image to t he right . Such differences 
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.__ __ Smallest 

Largest 

inner circle 

Figure 2.7: Kerogen microfossils displaying size features 

between size features can be used as shape features. 

2.6.3 Texture Features 

17 

All texture features are extracted from the grey-level image. An object's texture 

contains information regarding the structure of its surface and its relation to the surrounding 

environment. All objects contain some type of texture and it is easy for human observers 

to recognise and describe it using terms such as coarse, smooth, fine, irregular etc. The 

textural properties of an image hold useful information for discrimination purposes. 

Entropy is a statistical measure of randomness that is used to characterise t he 

texture content of an image. For example, an image that contains only one intensity value 

will have zero entropy. An image of rough rock which is highly textured will have high 

entropy. To calculate entropy, a histogram hi of the relative frequencies of the grey values 

gr(p) of all pixels p E O is formed. The index i = 0, ... , (Ng - l ) represents t he grey value. 

Ng is the total number of distinct grey levels in the image, e.g. for an 8-bit image Ng = 256. 

if gr(p) = i 

otherwise 
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Entropy is then found using the following formula: 

N9-l 

entropy= - L hi log2 (hi)-
i=O 

The symmetry of the grey value distribution of the image is measured using the feature 

anisotropy. Let k be the smallest possible value such that ~ ~=O hi = 0.5, then, 

Inertinite is a black opaque object whereas the internal structure of vitrinite can 

be seen mainly towards the edges of the microfossil. One of our main goals is to distinguish 

between inertinite and vitrinite and so the feature rim variability was constructed. This 

measures the quantity of internal material visible around the periphery of the microfossil. 

Rim variability is computed using the grey scale image of the microfossil. The set 

of pixels Ru is formed as follows: Ru= {p I D(p) :'S ½rin }- This set comprises of all pixels 

in the object that are less than or equal to one fifth of t he inner radius away from the object 

boundary. Let gr(p) be the grey level intensity of pixel p , then rim variability is calculated 

as follows: 

rim_ variability 

This is a maximum likelihood estimate of the variance of grey values for the set of pixels 

Ru. 
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The grey level co-occurrence matrix (GLCM) 

The GLCM was originally used for texture measurements by Hara.lick et al. (1973) 

and is a computationally quick method for analysing textural properties of an image. The 

GLCM is defined over a grey level image and contains the distribution of neighbouring 

intensity values in a specific direction defined by an offset vector d = ( 8x, 8y). Let I be 

the grey intensity image of size (m x n) and pd be the non-normalised GLCM defined as 

follows: 

d .. ~~ { 1, ifl(p, q)=iand l (p+8x,q+8y)=j 
p (i,J)= L...,L..., ' 

p=l q= l 0, otherwise 

where i,j = 0, . . . , (Ng - 1), and the variable Ng is the total number of distinct grey levels 

in the image. 

The GLCM with offset d = (0, 1) is computed for the image in figure 2.8(a) 

displaying 4 grey levels. The results are shown in figure 2.8(b): The offset parameter 

specifies the distance and angle between the pixel of interest and its neighbour. In this 

example pixels horizontally adjacent to each other are compared. Altering the offset will 

control the direction of compared pixels. The highlighted red pixels in figure 2.8(b) indicate 

the pixels of interest with intensity 1 on the left and 3 on the right. There are two such 

occurrences hence the entry pd(l , 3) = 2 (note that the indexing of columns and rows in the 

matrix begins at O and not 1). The element in this matrix highlighted in green demonstrates 

the only occurrence of a pixel of interest with intensity O to the left of a pixel with intensity 

1. 

Due to the offset parameter, GLCM is sensitive to rotation of the input image. 

In order to introduce some degree of rotational invariance four GLCM's with angular re

lationship of 0° , 45°, 90° and 135° using offsets d 1 = (0, d), d2 = (-d, d) , d3 = (-d, 0) 

and d4 = ( -d, - d) respectively, are used. The parameter d specifies the distance between 
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pd= 

(a) 

(
3II] O 2) 
2 3 3 m 
0 4 3 0 
0 2 2 3 

(b) 

20 

Figure 2.8: ( a) Image contaning 4 grey levels. (b) GLCM of the image with offset d = (0, 1). 

Figure 2.9: Arrows show angular relationship 0°, 45°, 90° and 135° between pixel of interest 
(coloured grey) and neighbouring pixels. Offsets used are d1 = (0, d), d 2 = (-d, d), d3 = 
(-d, 0) and d4 = (-d, -d) respectively. 

neighbouring pixels. A demonstration of the angular relationships is shown in figure 2.9. 

In our example d = l. The four GLCM's are shown in figure 2.10. A final GLCM with 

rotation invariance is formed by calculating the average of these four matrices. 

This process does not produce a symmetric matrix. For instance, the number of 

times 1 appears to the left of 2 would not be the same as the number of times 2 appears 

to the left of 1. A symmetric matrix equivalent to t he GLCM described by Haralick et al. 

(1973) is formed by addition of two non-symmetric GLCM's. For example a symmetric 

GLCM P with angular relationship 0° is computed as follows 

Similarly this can be done with GLCM's of other angular relationships. The function 
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u 
1 0 

D u 
1 1 

D pd1 = 3 3 pdz = 3 3 
4 3 3 3 
2 2 2 1 

u 
4 0 

D u 
2 1 

D pda = 2 5 p<4 = 2 3 
3 3 3 1 
2 1 2 2 

Ave rage a ll four matrices 

( 

2.00 2.00 0.50 1.75 ) 
. . . 0.50 2.50 3.50 1.50 

Rotation mvanent GLCM = O.OO 
3

_25 2_
50 

1.25 
0.25 2.00 1.50 2.50 

Figure 2.10: Example demonstrating the calculation of a rotation invariant GLCM. The 
four matrices used were computed with respect to figure 2.8(a) and have offsets d1 = (0, 1), 
d 2 = (- 1, 1), d 3 = (-1, 0) and d4 = (-1, - 1), respectively. 

graycomatrix O in Matlab can be used to create both symmetric and non-symmetric 

GLCM's. 

Once a GLCM is formed, it can be normalised by dividing by a normalisation 

factor R calculated as the sum of all elements in the GLCM. For a GLCM formed on an 

image containing N9 grey levels, the normalisation factor is calculated as: 

(N9 - l) (N9 - l) 

R= L L pd(i,j). 
i= O j=O 

For clarity we define P i j to be the ( i, j lh element in the normalised rotation invariant 

GLCM. This specifies the probability of a pixel with grey intensity i being a neighbour at 

distance d from a pixel with grey intensity j. 
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Texture features derived from the GLCM 

GLCM mean. Two means can be calculated from the GLCM. The first µr is 

based upon the pixels of interest , 

N 9-l N9 -1 

µr = L L i P ij, 

i = O j=O 

this is the mean intensity of the pixel of interest. The second mean µc is based upon the 

neighbour pixels and is calculated as follows: 

N 9 -1 N 9-l 

µc= L L jPij, 

i=O j=O 

this is t he mean intensity of neighbour pixels. For a symmetric GLCM these two means 

will be identical because each pixel is counted once as a pixel of interest and once as a 

neighbour. 

GLCM Variance. Two variances of the GLCM are calculated depending upon 

the choice of reference pixels. The first variance (/; is based upon the pixels of interest, 

N9-l N9-l 

(J; = L L (i - µr)2
P ij • 

i = O j = O 

The second variance (/; is based upon the neighbour pixels and is calculated as follows: 

N9 -1 N 9 -l 

(J; = L L (j - µc)2 P ij · 

i=O j=O 

These variances are identical if the GLCM is symmetric. 

Energy. This feature is also known as the angular second-moment and describes 

the uniformity of the image. 
N9-l N9 -l 

energy = L L Pi;. 

i=O j=O 

The energy measure ranges between O and 1. An image with constant intensity will have 

energy 1. 
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Contrast. The intensity contrast between a pixel and its neighbour is measured 

over the whole image using the following funct ion: 

N 9-l N9 -l 

contrast= L L /i - j/2 
Pij · 

i=O j=O 

The contrast of an image ranges between O and (N9 - 1)2. A contrast measure of O corre

sponds to an image of constant intensity. 

Homogeneity. T his measure evaluates the closeness of the distributed elements 

in the GLCM to the GLCM diagonal. 

N 9-l N9-l 

" p. . homogeneity= L L l - / ?_ .
1

. 

i=O j = O i J 

High values correspond to a uniform image where there is little change in pixel intensities. 

Low values represent a more random image (Williams et al., 1998). This measure is also 

known as the inverse difference m oment. 

Correlation. The linear dependency of neighbouring pixels is evaluated using 

the correlation measure. 

N 9 - l N 9-l 
" " (i - µ )(j - µ )P. · correlation = L L r c tJ . 

i=O j=O O"rO"c 

The measure or correlation ranges between -1 and 1. A value of 1 or -1 means the image 

is perfectly correlated. A singularity occurs for an image with constant intensity. The 

(k, klh entry of a GLCM constructed on an image with constant intensity k will be the 

only entry greater than zero. Hence P kk = 1 and P ij = 0 for i # k and j # k. In this case 

the denominator of t he correlation measure O"rO"c = 0, t herefore the measure is undefined. 

Matlab handles this by defining the correlation to be NaN (Not-a-Number), however the 

correlation of the original pixel values is perfect, so preferably the GLCM correlation of a 

constant image should be 1. 
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(a) (b) 
energy 0.0021 energy 0.0077 
contrast 45.3427 contrast 9.4099 
homogeneity 0.3459 homogeneity 0.5270 
correlation 0.9159 correlation = 0.9144 

Figure 2.11: GLCM features calculated for two different palynomorphs (a) and (6). 

Matlab can be used to calculate energy, contrast , homogeneity and correlation 

using the function graycoprops (). This function requires as input the GLCM of the 

greyscale image. 

Example of GLCM texture features 

Two different types of palynomorph are presented in figure 2.ll (a) and 2.11(6). 

The palynomorph in figure 2.ll(a) has a dappled texture whereas figure 2.11(6) is smooth. 

The GLCM texture features are shown under each image. The most distinguishing features 

are contrast and homogeneity indicating that in comparison to figure 2.11(6), figure 2.ll(a) 

has a more random texture with relatively large changes in pixel intensities. Both images 

show high correlation; for the dappled palynomorph this signifies a uniform dappling. 

To illustrate the differences between the GLCM's of the two palynomorphs, fig

ure 2.12(a) and 2.12(6) show the GLCM's of figure 2.ll (a) and 2.11(6) respectively. The 

GLCM's are displayed as an image where higher intensities correspond to larger values 

within the matrix. 
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(a) (b) 

Figure 2.12: Illustration of GLCM's constructed on figure 2.ll(a) and 2.ll(b). Numbers 
within GLCM are represented as intensities, higher intensities for larger numbers. 

The extraction of t exture features can also be accomplished using alternative meth

ods to the GLCM. These methods include Gabor filters, Markov random fields, or local 

binary patterns. 

2.6.4 Shape features 

A human would describe shape in an approximate way using adjectives such as 

long, thin, fat , round, or we use a well known item for camparison e.g. "The object is 

shaped like a ... " . Hence expressing shape numerically is not straightforward. The usual 

approach is to combine size features in such a way t hat the dimensions cancel out. There 

are many types of size features result ing in many more dimensionless combinations that 

could be used as shape features. Due to this it is important to realise the inconsistency 

between the naming conventions of various shape features . 

Object shape can be numerically compared to well known geometric shapes, such 

as circles, ellipses and rectangles. In most cases a size feature of t he object is chosen and 

a common shape is constructed with the same size feature. The measure of dissimilarity 

between the common shape and object is found through comparison of other size features. 
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For example compactness of an object is measured as a ratio of areas between object and a 

circle with circumference equal to the object perimeter. 

Silhouette moments 

These moments are based upon the silhouette of the object . Let O = { (x, y) I 

(x,y) is an object pixel }. The normalised central moments of O are given by 

Where µx and µy are the mean coordinates in the x and y direction respectively. The 

normalisation factor A= IOI is the area of the object. The three features most commonly 

used are known as the variance in the x direction µ20; the variance in the y direction µo2 

and the covariance µ11 . 

Elliptic dimensions 

The semi-major and semi-minor axis lengths of an ellipse that approximately fits 

the shape of the object are used as features. These can be found by using silhouette 

moments. A covariance matrix can be formed from the moments as follow: 

The direction of largest and smallest variation can be found by comput ing the eigenvectors 

of C. The variances in these directions are the eigenvalues, the largest variance >.1 and 

smallest variance >-2. 

A1 = ½ (Mo + µ02 + J(µ20 - µ02)2 + 4µ i l) 

>-2 = ½ (µ20 + µ02 - J(µ 20 - µ02)2 + 4µr1 ) 
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These eigenvalues are used to find the dimensions of an approximating ellipse. If only 

the boundary pixels are considered when calculating the moments then ✓,\i" and A are 

the semi-major and semi-minor axis lengths of the ellipse (Tsai et al. , 1999). When all 

object pixels are used t he approach adopted by (Rocha et al. , 2002) finds the rectangle with 

equivalent covariance matrix. The length l and width w of the rectangle is found as 

l = ~ , 

w = v®:;. 

These dimensions are used as the semi-major and semi-minor axis lengths. In our case we 

choose to find the dimensions of an ellipse with equivalent covariance matrix to the object. 

An ellipse centred at the origin with major and minor axes parallel to t he x and 

y axes has the equation 

Here a is the major-axis length and bis t he minor-axis length. The variance of an ellipse in 

the x direction is equivalent to the normalised moment µ20 . This can be calculated in t he 

form of a double integral 

l l a j y(x) 
µ 20 = - b x2dydx, 

na - a - y(x) 

where t he normalisation factor nab is the area of an ellipse. Substit ut ing for the parametric 

representation of an ellipse x = a sin t and y = b cost, t E [0, 21r] enables us to integrate as 
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follows: 

2b la x2y(x)dx 
1ra -a 

2 11r/2 
- b a3b sin2 t cos2 tdt 
1ra -1r/2 

2a2 11r/2 
- sin2 t cos2 tdt 

7r - 7r /2 

a211r/2 
- sin2(2t)dt 
27r -1r/2 

a
2 

[! t + ! sin(2t)] 1r/
2 

27r 2 4 - 1r/2 
a 2 

4 

Similarly the normalised variance of the ellipse in they direction is µ 02 = b2 / 4. By equating 

t he variances of the ellipse with the eigenvalues of the object covariance matrix, we can solve 

for a and b: 

a2 = 
4 

a b 

The angle of t he ellipse can also be calculated but this is withheld from our list of features 

as it is not rotation invariant. 

Shape features derived from elliptic axes 

The dimensions of the fitted ellipse are combined to form shape features. The 

feature anisometry measures t he inequality in the dimensions of an object: 

. a 
arnsometry = b. 

For a perfect circle, i.e. an object with equal dimensions, the anisometry = 1. T he relation 

of elliptic area to object area is used to determine the bulkiness 

1rab 
bulkiness = A . 
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A circle with radius equal to the semi-major axis length a is compared to the object by 

combining two shape features into one feature known as structure factor: 

structure factor bulkiness * anisometry - 1, 

1ra2 

A - 1. 

Elliptic shape features have been calculated for two palynomorphs, t heir silhou

ettes are shown in figure 2.13(a) and 2.13(b). Overlaid on each image is the ellipse with 

equivalent covariance matrix, the axes of the ellipse are shown with a dashed line and feature 

values are displayed underneath. Anisometry for both palynomorphs is close to 1 indicat

ing their circular/rounded appearance. The ' legs' of the palynomorph in figure 2.13(b) are 

characterised by the features bulkiness and structure factor. Bulkiness is greater than 1 

and structure factor is greater than zero, implying there are holes within the object or the 

object boundary differs to that of an ellipse/ circle. Compare this to figure 2.13(a) where 

the palynomorph is rounded and contains no holes, bulkiness is near 1 and structure factor 

is near 0. 

Other shape features 

The most compact shape is a circle; the measure of compactness relates circle area 

to object area. Compactn ess is defined as the ratio of areas between object and a circle 

with circumference equal to the objects perimeter length p. 

41rA 
compactness = -

2
-

p 

Standard deviation of all distances from the centre of the object to each perimeter 

pixel is used as a measure of object irregularity along the periphery. Let P be the set of all 
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(a) 
anisometry = 
bulkiness 
structure factor 

1.0910 
1.0328 
0.1268 

anisometry 
bulkiness 
structure factor 

(b) 
1.2002 
1.6396 
0.9679 
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Figure 2.13: Elliptic shape features for the silhouettes of a rounded palynomoph ( a) and 
palynomorph with legs (b) 

contour pixels. The measure sigma a is calculated as follows: 

This feature is used together with distance in order to obtain the new feature roundness: 

sigma 
roundness = 1 - - -

0
-

Convexity is t he ratio of the convex hull area Ac to the object area. 

. A 
convexity = Ac 

The basic rectangle of an object is defined as a bounding rectangle with major axis length 

equal to the object diameter d. T he ratio of minor to major axis length of the rectangle 

forms the feature eccentricity: 

. . w 
eccentnc1ty = d' 
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where w is the minor axis length of the rectangle. 

The number of sides required to construct t he shape if a regular polygon were used 

is known as t he feature sides (MVTec Software GmbH, 2008). It is defined as follows: 

( J) 0.4724 
sides = 1.41 -;;. 

F inally we chose to include the feature equant lath which measures the equant to 

lath ratio of the object. This is an important feature concerning kerogen microfossils. The 

distance travelled by kerogen from its init ial deposit is correlated with equant to lath ratio 

(Tyson and Follows, 2000; Hoelstad et al. , 1994), providing valuable information regarding 

hydrocarbon potential. Equant to lath ratio is defined as the ratio between lengths inner 

radius r in and diameter d 

2.6.5 Summary of features 

Tin 
equant lath = d. 

A total of 32 features describing size, colour, texture and shape are chosen to 

numerically represent an object. These features are summarised in table 2.1 containing a 

brief explanation. 

2. 7 Stages of the image processing 

A system for automatic identification of palynomorphs can be split into 4 image 

processing stages, Image acquisition; background segmentation; microfossil segmentation 

and classification. The image acquisition processes explained in section 2.4 results in a 

digital colour image of size 1704 by 2272 pixels. These images of interest contain microfossils 

and other organic debris on a light background. A typical example is shown in figure 2.14(a). 

These images are taken using a lOx objective microscope lens and the circular field of view 

is approximately 500µm in diameter. 
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Table 2.1: Groups of features 

Type Feature Notation Explanation 

Colour mean red f 

mean blue b 
mean green g 
mean grey g-r 

Size inner radius r;n Radius of the largest circle contained entirely 
within the object 

outer radius rout Radius of the smallest circle which contains the 
entire object 

diameter d The maximum distance between 2 contour pixels 
perimeter p Number of pixels on the border between object 

and background 
circle difference rout - r; n Difference between the outer and inner radii 
area A Total number of pixels comprising the object 
distance 0 Mean distance from centre of gravity to all con-

tour pixels 

Texture entropy Entropy of the grey-level histogram taken as a 
pdf 

anisotropy Symmetry of the grey-level histogram a bout its 
median 

correlation Correlation between grey level intensity of neigh-
bouring pixels 

homogeniety Homogeniety of neighbouring pixels in the grey 
level image 

contrast Contrast of neighbouring pixels in the grey level 
image 

energy Energy of neighbouring pixels in the grey level 
image 

*rim variability Variance of the grey level intensity in a "rim" of 
width ri/5 

Shape anisometry a/b Ratio of the lengths of the major and minor el-
liptic semi-axes 

eccentricity d_/d Ratio of the length of the minor axis of the object 
to d 

rectangularity A/Ab Ratio of object area to the area of smallest bound-
ing rectangle 

bulkiness 71'ab 
A Ratio of the areas of a corresponding ellipse and 

the object 
convexity A/Ac Ratio of the object's area to its convex area 
variance x µ20 Variance across x-axis with respect to centre of 

gravity 
variance y µ02 Variance across y-axis with respect to centre of 

gravity 
covariance µll 
compactness 41r A/p2 Ratio of the area to that of a circle with the same 

perimeter 
sigma O' Standard deviation of distances from centre of 

gravity to contour 
roundness 1 - 0'/0 
sides 1.41 (¾)°"4724 Number of pieces of a regular polygon 
*equant/ lath r; 11/d Equant/lath ratio 
structure factor 71'(a)2 - 1 anisometry x bulkiness - 1 A 

*Features developed for this application. 
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(b) (c) (d) 

Figure 2.14: Typical example of microscopy image containing palynofacies 
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The next step in the system is to identify regions containing only microfossils. 

This is accomplished through background segmentat ion. The main difficulty arises due to 

uneven light intensity across the image. This prevents the use of simple approaches such as 

applying a global threshold to grey intensity values. To solve this we develop a new local 

thresholding technique which is detailed in chapter 3. 

Regions categorised as microfossil are fed into the next level of segmentation. 

Touching and overlapping microfossils are split into individual pieces by an algorithm pre

sented in chapter 4. The material on the slide is tricky to segment even by human eye. Some 

palynomorphs are semi-transparent and form clumps that hide certain features including 

edge information . T his makes it near impossible to recognise individual palynomorphs 

from clumps. In manual procedures, the operator uses a small brush to push the clumps 

apart; an automatic system (being unmanned) has no such luxury. An example of clumped 

palynomorphs is shown in figure 2.14(d). 

Amorphous material by nature does not have a clear outline and can even merge 

with background intensities. Although this effect hinders background segmentation it causes 

problems when distinguishing between closely packed amorphous material. These difficulties 

are illustrated by an example in figure 2.14(b) . 

The kerogen matter poses a different problem. Kerogen has a sharp distinct outline 

that is easily identified on a light background. However , due to its dark colouring this out line 

is lost when kerogen is overlaid or touches other kerogen material. These effects are shown 

in figure 2.14(c) . 

Next, extracted microfossils are classified in chapter 5. Each fossil is represented 

as a vector of features and used as input to a classification algorithm. The first step is to 

analyse kerogen and group it into inertinite or vit rinite classes. In chapter 6 we extend the 

automatic recognition to ident ification of complete palynomorphs. 
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Figure 2.15: Flow diagram showing processes for automatic analysis of palynofacies 
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Analysis of the microscope slide concludes by extracting important information 

such as percentage of inert inite or mean equant to lath ratio of kerogen. The final analysis 

depends on the output of previous processes, so it is important to study the sensitivity 

of a stage output with respect to the input. For example small changes in background 

segmentation would ideally not affect classification accuracy. A flow diagram in figure 2.15 

shows the image processing stages. 



Nomenclature 1 

C Covariace matrix. 

D Euclidean distance function/transform. 

P Set of all contour pixels. 

pd Non-normalised GLCM with offset vector d. 

Pij Normalised rotation invariant GLCM. 

n Mathematical constant ~ 3.14159265359. 

b Blue intensity of a pixel. 

g Green intensity of a pixel. 

gr Grey intensity of a pixel. 

p Perimeter length. 

r Red intensity of a pixel. 

Ujk Silhouette moment. 
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Background segmentation 

A non-trivial task in image analysis is that of segmentation. Usually this is t he first 

step in preparing the image for input into an automatic system (Petrou and Bosdogianni, 

1999). The process consists of partitioning the image into non-overlapping labelled regions. 

Each region should contain identical sets of attributes or properties (Gonzalez et al. , 2004). 

Formally, the segmentation of an image Risa set of regions {R1, R2 , ... RN}, where I¼, is 

a set of pixels from the image and i is the label given to a region. The segmented regions 

should satisfy the following requirements: 

1. Uf:1 f¼, = R. 

2. I¼, n Rj = 0, for i -=f. j . 

3. P(l¼, ) = True, Vi. 

4. P(l¼, U Rj) = False, for i -=f. j. 

Where P returns true if all the pixels in a region have the same property, false otherwise. 

An example of a pixel property would be if it's grey intensity is equal to a predefined 

value. The outcome of the segmentation is based entirely upon the choice of properties. 

Requirement (1) ensures the whole image can be formed by combining all regions; (2) implies 

37 
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no two regions overlap1 . Requirement (3) certifies a meaningful segmentation. The last 

requirement guarantees two regions labelled differently will not satisfy the same properties 

when combined. 

There are three possible approaches to segmentation: Edge detection, boundary 

detection or direct detection of the regions. Edge detection techniques try to find the edges 

of objects and then combine them to form region boundaries. In noisy images a popular 

choice of edge detection algorithm is that proposed by Canny (1986). The idea of boundary 

detection is to bypass edge detection altogether and find the boundaries in one step. This 

can be accomplished through the use of level sets Osher et al. (2002); a curve is propagated 

until an energy function has been minimized. 

There are many well established techniques to directly detect regions. These in

clude thresholding, clustering, region merging, region growing, region splitting and merging 

and application of pattern recognition classifiers. In section 3.2 we detail methods that de

tect regions directly. These methods will be applicable to background segmentation within 

microscope images. 

In the case of background segmentation only two regions are necessary, back

ground and foreground. There are infinitely many types of images containing their own 

unique background and foreground (defined by the observer). Hence each one requires 

its own method of segmentation. The next section will outline the specific problems with 

background segmentation in microscopy images. 

3.1 Microscopy images 

A microscope is an optical system built from lenses, mirrors and or prisms. The 

digital camera used to capture the image generally consist s of a lens and Charged Coupled 

1Overlapping regions will be treated later. 
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Device (CCD). Defects in the apparatus causes blurring, colour changes and geometric 

distortions in the captured image (Du Buf and Bayer, 2002). 

Microscopy images are commonly afflicted with uneven brightness. The periphery 

of the image is usually poorly illuminated and this is known as vignetting. There are three 

main types of vignetting: mechanical, optical and pixel. Mechanical vignetting is caused by 

the physical construction of the optical viewing device while optical vignetting is inherent 

in the lens design. Pixel vignetting only occurs in digital cameras due to less light hitting 

a photon cell in t he photon sensor at an oblique angle, i.e., towards the edges of the image. 

There are two types of photon sensor a Charged-coupled device (CCD) or less commonly 

used Complementary metal-oxide-semiconductor (CMOS). 

The microscopy images of interest in this study contain dark microfossils on a 

light background. The images are taken with transmitted light microscopy. This uses a 

light source below the microscope slide for illumination purposes. The concentrated light 

source compounds the effect of vignett ing causing even worse illumination across the image. 

An example image is shown in figure 3.1 (a) . The contrast of the image has been adjusted 

to better show the uneven illumination effect in figure 3.1 (b). The vignetting effect can 

be reduced through careful setup of equipment . Inevitably though the equipment becomes 

misaligned and readjustment is necessary. For instance, the brightness of the halogen bulb 

illuminating the slide will dim with time. 

The uneven lighting distribution is problematic when it comes to background seg

mentation. Therefore, either the light ing can be corrected prior to background segmenta

tion, or accounted for within the segmentat ion method. 
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(a) (b) 

Figure 3.1: Image of a palynofacies slide illustrating the uneven light ing across the image. 
The slide is lighter in the centre and becomes progressively darker towards the edges. (a) 
Original gray scale image. (b) Contrast adj ustment of original image to better show the 
effect of uneven lighting 

3.2 Segmentation methods based on thresholding the origi
nal image 

Background segmentation splits the image into two regions, background and fore

ground. This segmentation can be represented by a binary image consisting of ones and 

zeros. There is no convention specifying that the foreground should be labelled 1 or 0. Here 

we represent foreground as O and background as 1. The binary image is displayed in black 

and white. A pixel is white if 1 and black if 0. Hence foreground will be shown as a black 

region on a white background. 

3.2.1 Global thresholding 

One of the simplest segmentation methods is that of thresholding grey levels in 

the image (Weszka, 1978; Sankur and Sezigin, 2004). Our images of interest contain dark 

objects on a light background, hence the darker pixels should be set to foreground. Let 

M be the set of all image pixels. The binary image B is formed by thresholding M at 
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TE [O, Ng], where Ng is the total number of distinct grey levels: 

{ 

1, if gr(x, y) > T 
B (x,y) = , 

0, if gr(x , y) :ST 
(3 .1) 

here gr(x, y) is the grey intensity at pixel (x, y). The value x and y are t he column and row 

positions of the pixel respectively, as described in section 2.5. The threshold can be chosen 

manually by adjusting T until a good segmentation is achieved. In most image processing 

applications this process is usually aided by using t he grey level histogram of the image. 

Some automatic threshold selection methods will also use histogram information, such as 

shape and curvature. 

This histogram is formed by counting the number of pixels with a specific grey 

intensity. For an image with dark objects on a light background the histogram will contain 

two peaks. The peak containing lower intensities represents the foreground and the peak 

containing higher intensities represents the background . The challenge is to find a threshold 

value that best separates these two peaks. This is a relatively simple task for a bimodal 

histogram as the threshold can be chosen where the grey value is at a minimum between 

the two peaks of the histogram. In most cases t he histogram will contain noise and require 

smoothing or approximating (Ramesh et al. , 1995) prior to automatic analysis. A refined 

analysis can be conducted by using vector quantisation to reduce the number of histogram 

bins. 

Optimal threshold 

If the foreground and background pixels have a known grey level probability dis

tribution then the image can be optimally thresholded (Kittler and Illingworth, 1986). The 

optimal threshold for grey scale image is as follows. Let Pb(x) be the probability density 

function of the grey levels in t he background region. Let PJ(x) be the probability density 
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function of the grey levels in the foreground region. Suppose 0 is the proportion of back

ground pixels then (1 - 0) is the proportion of foreground pixels. The optimal threshold 

value T is found by solving 

(3.2) 

For real world images the distributions are usually unknown. Even so, there are 

algorithms that can approximate this optimal threshold (Ramesh et al., 1995). 

Clustering image histogram 

Clustering methods can also be used to approximate the optimal threshold . Grey 

level values are used as input to clustering techniques, two clusters are searched for that 

represent the two peaks of the histogram. A number of authors propose fitting a mixture 

of Gaussians to the histogram of relative frequencies (Sankur and Sezigin, 2004). In this 

case we can solve equation (3.2). Let the background Gaussian have mean µb and variance 

al and the foreground Gaussian have meanµ! and variance a7. Then the distributions are 

as follows: 

Pb(g) (3.3) 

(3.4) 

where g is grey intensity. Substituting into equation (3.2) yeilds the quadratic 

(3.5) 
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where 

A (o-; - o}), 

B = 2(µbaJ - µJal), 

C 2 2 2 2 2 2 ( ab(l - 0) ) 
µJab - µbaJ - 2abaJln aJB . 

This can be solved for T, there are two solutions but only one will be feasible. 

Another popular clustering method is t hat proposed by Otsu (1979). It does not 

depend upon modelling the probability density functions of grey levels in background and 

foreground regions. A threshold value is chosen that minimises the within class variance and 

maximises the between class variance. A comparison of over 20 global thresholding tech

niques conducted by Sahoo et al. (1988) showed Otsu's method to have best performance. 

Two drawbacks to this technique are that the two clusters are only described by their means 

and variance; this may not be sufficient to accurately model them. Secondly the method as

sumes a bimodal histogram and this may not necessarily be true. However, Otsu's method 

of thresholding can be generalised to more than two classes using a multilevel threshold 

selection procedure (Ping-Sung Liao and Chung, 2001). The Otsu method of thresholding 

is coded as a standard Matlab function, graythresh (), in the Image Processing Toolbox 

(IPT). 

Our images of interest contain darker and lighter objects (two foreground classes) 

and the background. The dark and light objects correspond to kerogen and palynomorph 

or amorphous material respectively. Because three classes are present in the grey level 

histogram, Otsu's method of thresholding becomes unsatisfactory. We propose searching 

for three clusters within the image histogram. As an example we fit three Gaussians to the 

grey level histogram of the image in figure 3.1 using maximum likelihood estimation. The 

three fitted Gaussians are overlaid on the histogram in figure 3.2. A threshold is found by 
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solving equation (3.5) for the two Gaussians with highest means, this is shown in figure 3.2. 
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Figure 3.2: The grey level histogram of the image in figure 3.1 (a) and the fitted mixture 
of three Gaussians. The threshold is marked with a large dot. 

F itting three Gaussians gave consistent ly better segmentation results than Otsu's 

method when applied to our images. Nevertheless, due to the uneven light ing across the 

slide microfossils towards the edge of the image were lost within a black rim, see figure 

3.3 (a) . In fact there exists no global threshold that will separate the background from 

the foreground in these images . We can try decreasing t he threshold found by fit ting t hree 

Gaussians to correct ly segment the outer microfossils. However, microfossils in the centre 

of the image become lost, see figure 3.3 (b) . 

T his type of problem is encountered frequently in segment ing microscopy images. 

It was found by Bollmann et al. (2004) that certain prerequisites prior to global threshold

ing of microfossils are essential for optimal segmentation. T hey consist of constant light 

intensity and high contrast. If these conditions are not met then a common alternative is 

to use adaptive thresholding. 
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Figure 3.3: (a) Grey-scale image from figure 3.1 thresholded by fitting three Gaussians. 
(b) Microfossils at the centre of the image are lost in an attempt to correctly segment 
microfossils at the edge by lowering the threshold 

3.2.2 Adaptive thresholding 

A global threshold applied to images with non-uniform background illumination 

could work well for some image regions and poorly for others. In these cases a threshold 

function can be applied that changes depending upon position; such a method is called 

local/adaptive thresholding (Nakagawa and Rosenfeld, 1979). Let M be the set of all image 

pixels. The binary image B is formed by thresholding M at T(x, y) E [O, Ng] , where Ng is 

the total number of distinct grey levels: 

B(x,y) ~ { 

Hysteresis thresholding 

1, if gr(x, y) > T(x, y) 

0, if gr(x , y) :S T(x, y) 
(3.6) 

Sometimes the valley between the two peaks is not very well defined. This occurs 

when background regions contain the same intensity values as foreground regions. In such 

cases it is possible to use two thresholds, this is known as hysteresis thresholding (Canny, 

1986) . 
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Ideally the segmented image obtained using the highest threshold should contain 

all microfossil regions in black; misclassified microfossil pixels should be disconnected from 

these regions. However, for our images t his condition cannot be upheld. For this reason 

hysteresis t hresholding is unsuitable and causes incorrect segmentation around the edge of 

the image. 

Windowing 

Another method of adaptive thresholding is to divide the image into sub-images 

and apply a global threshold to each sub-image separately (Eikvil et al., 1991; Sund and 

Eilertsen, 2003). When the thresholded images are recombined some adjustment may be 

necessary because threshold values may differ greatly between neighbouring sub-images. 

As an example we adaptively threshold the image shown in figure 3.4 (a) . This 

image is of size 1704 by 2272 pixels. A windowing method can be applied by subdividing 

the image into squares of width 450 pixels which we call windows. A threshold is found for 

each window by fitting three Gaussians ( discussed in section 3.2.1). Results can be seen in 

figure 3.4 (b) . The threshold value used for each window is shown as an image in figure 

3.4 (c). 

The drawback of this method is its sensitivity to window size. A window has to be 

chosen so that it contains enough foreground and background to produce a histogram that 

can be split into t hree classes: light objects, dark objects and background. On the other 

hand, it has to be small enough so that the background is of near uniform intensity. For 

demonstration we set the window size to 200; the results can be seen in figure 3.4 (c) . Notice 

that windows containing only one or two of the three classes are incorrectly segmented. 

Microfossils vary in size within individual images and also between images due to 

changes in magnification. Therefore, this method is best used under supervision whereby 
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(a) 

(c) 

Figure 3.4: (a) Microscopy image containing palynofacies. (b) Adaptive threshold on mi
croscopy image using square window of width 450 pixels. ( c) Local threshold function 
displayed as an image. (d) Adaptive threshold using square window of width 200 pixels. 
Incorrectly segmented regions are shown. 
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the user can adjust window size until a good segmentation is achieved. 

Background fitting 

The threshold function generated though the method of windowing can have large 

intensity changes between neighbouring windows, see figure 3.4 (d). One solution is to in

terpolate a smooth function at the threshold values in the centre of each window (Nakagawa 

and Rosenfeld, 1979). 

Alternatively, it was suggested by Yanowitz and Bruckstein (1989) that a surface 

could be interpolated at points where the image gradient is high. Points of high gradient are 

usually at the edges of foreground objects. Intensities at these positions are between back

ground and foreground grey levels. The surface is fitted through successive over-relaxation 

as the solution of the Laplace equation. Other more recent techniques also use these points 

of high gradient as interpolation points (Blayvas et al. , 2006; Chan et al. , 1998). 

A quadratic function has been used to model the background illumination with 

some success in astronomy images (Montage, 2007). The effect of vignetting is similar 

through a telescope as it is through a microscope. Thus we will attempt to fi t a quadratic 

surface to the background illumination in the grey-scale microscopy image shown in figme 

3.1 (a) using the following steps: Let the function gr(x , y) be the grey intensity of a pixel 

( x, y). Set the value of i equal to l. 

1. An estimate of the initial background illumination is calculated using a 2D quadratic 

function zo(x, y) = a+ bx+ cy + dx2 + ey2 + f xy. The coefficients a , b, c, d , e and f 

are found using a least squares approximation to gr(x, y). 

2. The most "certain" foreground pixels are removed to form a reduced set {(x, y) I 

gr(x, y) > Zi-l - a 2
}, where a 2 is the standard deviation of (zi-l - gr). A new 

background estimate zi+1 = a + bx+ cy + dx2 + ey2 + f xy is formed using a least 
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squares approximation to the reduced set. 

3. i +- i + 1. 

4. Repeat from step 2 until i = 4. 

It was found empirically that repeating from step 2 unt il i = 4 gave the best results. The 

outcome z3 is an approximation to the background illumination. This can be used directly 

as a threshold function. 

Advantages of this method are that it requires no input parameters; it is com

pletely automatic and can be computed relatively quickly compared to previous method. 

On the downside however in most of t he images we tested the method would fail to segment 

some microfossils. An example segmentation using this method was applied to the image 

in figure 3.1 (a). Figure 3.5 (a) demonstrates the approximation z3 to the background il

lumination . . Segmentation using this as a threshold function is illustrated in figure 3.5 (b) . 

Many microfossils in the lower section of the image are only partially captured or missing. 

This is possibly due to lack of flexibility within the quadratic function. However, fitting 

polynomials of higher degree using the same approach resulted in even worse segmentation 

results. 

Grey-scale morphology - Bothat transform 

Grey-scale morphology can be used to reduce the effects of uneven illumination. 

A secondary image is constructed where the darker regions are suppressed. This is then 

used to correct the original image. Grey-scale dilation of the image f with a structuring 

element b is defined as 

(f EB b)(x, y) = max {gr(x - x' , y - y' ) + b(x, y) I (x' , y') E Db } . (3.7) 



Chapter 3: Background segmentation 50 

(a) 

Figure 3.5: (a) 2D quadratic approximation of background illumination for image in figure 
3.1 (a). (b) Segmentation using fitted 2D quadratic as a threshold function. 

The function gr(x, y) is the intensity of the pixel at (x, y) . A structuring element is a small 

image containing an origin. The shape of the image is defined by the domain Db. The 

origin is defined as the position (0, 0) E Db. We will only be concerned with flat structuring 

elements where b(x, y) = 0 i.e. have a height of 0. For example, we will create a flat 

structuring element shaped as a <lisle The origin of the structuring element will be at the 

geometric centre. This can be viewed pictorially in figure 3.6. Black pixels show the domain 

Db. A structuring element can be created in Matlab using the function strel (). 

With a flat structuring element image dilation becomes 

(f tIJ b)(x,y) = max{gr(x-x',y - y') I (x' , y') E Db} . (3.8) 

When the structuring element is positioned with its origin over a pixel in the image, Db is 

used to define its neighbourhood. Grey-scale dilation with a flat structuring element can 

be thought of as replacing pixel intensity with the maximum intensity within its neighbour

hood. 

The opposite effect to dilation is grey-scale erosion. When a flat structuring ele-
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Figure 3.6: Flat disk shaped structuring element. Origin positioned at disk centre. Domain 
Db is shaded in black. 

ment is used, grey-scale erosion is defined as 

(f e b) (x, y) = min {gr (x - x' , y - y') I (x' , y') E Db}. (3.9) 

Dilation and erosion can be implemented in Matlab with the functions imdilate () and 

imerode () respectively. 

A combination of dilation and erosion can be used to suppress darker regions 

within an image. This is known as the closing (Gonzalez et al. , 2004). The closing off is 

defined as 

f ob= (f e b) EB b, (3.10) 

this is the erosion of f followed by the dilation of the result. 

Subtracting the original image from the morphological closing is a common tech

nique used to remove noise. This is called the bothat transform (Meyer, 1978). Used with 

the appropriately shaped and sized structuring element, the bothat t ransform can be used 

to remove uneven lighting across the image. A global t hreshold can then be applied. The 

size and shape of the structuring element should be chosen so that it is not swallowed up 

by the dark regions in the image. 

As an example we applied the bothat transform to the image shown in figure 



Chapter 3: Background segmentation 52 

Figure 3.7: (a) Bothat transform of image in figure 3.4. (b) Manual threshold of image in 
(a). 

3.4 (a) . A disk shaped structuring element was used with r adius 100 pixels. The Matlab IPT 

function imbothat O carrios out the bothat transform on an image given as an argument. 

The output image is shown in figure 3.7 (a). A global threshold is chosen manually, the 

result is shown in figure 3.7 (b). 

An ideal structuring element should be larger than the maximum sized foreground 

region. On the other hand, it should also be small enough to remove uneven background 

illumination. For an automatic approach the most appropriately sized structuring element 

can by manually chosen on a set of images and then fixed for subsequent images. For 

our images of interest microfossils vary in size between slides. A single sized structuring 

element could not be found that would produce satisfactory results. Microfossils were partly 

captured or completely missing in the segmentation output. A refinement to this technique 

can be found by using various structuring elements of different size and shape and then 

combining the results. 
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3.2.3 Clustering 

Segmentation splits the image into non-overlapping regions. Each region satisfies a 

set of properties. Therefore it is natural to think of segmentation in the form of a clustering 

problem. Image pixels are represented by vector data points identifiable by features. For 

example this could be, posit ion or colour. A feature space can be formed depending upon 

the choice of features. Similarity between pixels is measured as distance within the feature 

space. Pixels belonging to background are expected to be similar to one another and 

dissimilar to foreground pixels. Two clusters of data points should then be present. Clearly 

the choice of features is important for a successful segmentation. Prior to clustering, features 

can be automatically selected to improve the clustering method. A method using wavelets 

is proposed by Porter and Cana.garajah (1996). 

A common choice of clustering algorithm to use is K-means (Duda et al. , 2001). 

Let X be the set of all data points. Initially k means are arbitrarily chosen from the elements 

of X, denoted µ 1 , ... , µ k. In each iteration these means are updated as 

(3.11) 

where Xi E Xi, The set Xi are all data points that a.re closest to µ i using the square 

Euclidean distance Jlx - µill2
, where x E X. The means are updated using equation (3.11) 

until there is no change in µ i. Specific clustering algorithms for image segmentation are 

available. A clustering system proposed by Cinque et al. (2004) adopts a fuzzy approach 

for image segmentation. 

As an example we apply this method to the image in figure 3.8 (b) containing 

palynofacies. These types of images contain three regions: light objects, dark objects and 

background. Hence better results were found when three clusters are used. A dataset is 

formed by representing each pixel as a data point. The red, green and blue values of a 
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pixel are chosen to be the features. The clustering method using k-means was applied 

to a random sample of 150 pixels from the image in figure 3.8 (b). Three clusters were 

identified , t heir projection onto the "red" and "green" dimension is shown in figure 3.8 (a) . 

The covariance matrices of t he clusters were estimated and the pixels in the original image 

were then labelled into foreground and background using the Mahalanobis distances to the 

cluster centres as follows: Let I:;i and µ i be the covariance matrix and mean of the i th 

cluster respectively. Also let pixel (x, y) be represented as x = (r,g, b), where r, g and b 

are the pixels red, green and blue intensity values respectively. Without loss of generality 

let cluster i = 1 represent background pixels. The pixel (x, y) is labelled as background iff: 

(3.12) 

for i i= l. The final segmentation is displayed in figure 3.8 (c) . Although this approach 

is completely automatic the results are not acceptable . Some microfossils are incorrectly 

segmented near the edge of the image. No improvement was found when using a larger 

sample of pixels. 

3.3 Lighting correction methods 

As previously demonstrated , global thresholding produces poor segmentation re

sults under uneven illumination. However, global thresolding becomes a powerful tool if the 

lighting is corrected first. 

In microscopy images a simple solution is to acquire a background image where a 

blank slide is used in place of a sample. This image can be used to "flatten" subsequent 

images in a process called background subtraction. T his term can often be used incorrectly. 

If the capturing device is logarithmic (i.e. uses a CMOS photon sensor) then the correct 

procedure is to subtract t he background image (pixel by pixel) from the sample image. 
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Figure 3.8: ( a) Three clusters identified using k-means. (b) Colour image of palynofacies. 
(c) Output segmentation using k-means clustering. 
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A digital logarithmic capturing device measures the rate of photons hitting t he photon 

sensor continuously and produces an output that is proportional to the logarithm of the 

light intensity. More often the capturing device is linear (these can use CCD or CMOS 

photon sensors) and measures the number of photons hitt ing the sensor over a discrete 

period of time. These devices produce an output that is linearly proportional to the light 

intensity. In these cases the sample image should be divided by the background image. This 

process has been used for microfossil images by Weller et al. (2005) and France et al. (2000). 

There is a similar approach used in video segmentation where the currently recorded scene 

is "subtracted" from the next recorded scene to correct or remove background (Iwamoto 

et al. , 2001). 

An image f taken with a linear capturing device can be represented as the product 

of two functions 

f (x, y) = i (x, y)r(x, y) . (3.13) 

The intensity of the illuminating light source is given by i(x, y) (the illumination image) 

and the reflectance of the objects within the image by r (x, y) (the reflectance image) . An 

image of a blank slide will correctly estimate i(x, y) . Dividing f (x, y) by i(x, y) yields only 

the reflectance image. Multiplying this by a constant will restore a uniform illumination to 

the image. 

Obtaining a blank slide is not ideal for an automatic procedure. The light ing 

across a slide is affected by many factors including, microscope setup, bulb brightness and 

the thickness of the sample under examination. For this reason it is better to estimate the 

background light ing or filter out the uneven illumination through homomorphic filtering 

(Pan et al. , 2004; Gonzalez and Wintz, 2002; Brinkmann et al. , 1998). 
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3.3.1 Homomorphic filtering 

Using the model of an image in equation (3.13), the reflectance can vary between 

zero and one. A perfectly reflective surface has a reflectance of one but an opaque surface 

has reflectance of zero. The illumination will tend to vary smoothly across the image and 

can be viewed as a signal of low frequencies. On the other hand, object surface will vary 

according to its properties such as physical texture. For this reason reflectance can be 

thought of as a signal containing high frequencies. Therefore the two functions should be 

separable within the frequency domain. We first compute the logarithm of the image, 

ln(f) = ln(i) + ln(r) . (3.14) 

A high-pass filter can be applied to the logarithm of the image. This will suppress the illu

mination and enhance the reflection. T his type of filtering is called homomorphic filtering. 

Homomorphic filtering assumes that the illumination field i(x, y) and reflectance 

field r(x, y) are seperable, in general this is not the case. T his is why filtering will usually 

introduce unwanted artefacts. When applied to our microscopy images this method failed 

to produce reasonable results. 

3.3.2 Estimating image background 

With an estimated background image the uneven illumination across the sample 

image can be corrected (as demonstrated at the beginning of section 3.3). There are many 

proposed methods for acquiring an estimated background image. The state of the art 

techniques are outlined in t his section. 

Convolution 

Convolving the image with a low pass filter such as a Gaussian kernel will remove 

high frequency information. The idea is to apply the filter until t he image is devoid of fore-
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ground material (Leong et al., 2003; Universal Imaging Corporation, 2004). This technique 

is m1-automated and will need t he assistance of a human controller to set parameters and 

make corrections within graphics editing software. 

Image averaging 

Many microscopy slides can be averaged to produce a background estimate. This 

method relies on foreground material varying in position between slides. The position 

of palynofacies on a slide upholds this condition. However , the averaging still produces 

unreasonable results due to foreground microfossils occupying a large proportion of the 

image area and frequent alteration in lighting conditions. Due to these changes in light ing 

a single estimate will not be suitable for all images. This is why we seek a method for 

unique background estimation based solely on the image provided. 

Background fitting using a B-spline 

Because the variation in background brightness is smooth with relatively low gra

dient it can be approximated by simple functions such as polynomials. Surface polynomials 

of order greater than two have also been used but, typically these are applied to images cap

tured using techniques where vignetting is not the cause of uneven illumination (Zawada, 

2003). 

In the case of microscopy images t he lighting is distorted due to vignetting, uneven 

illumination from the bulb and variation in sample thickness. It was proposed by Yu and 

Chung (2004) t hat a hyperbolic function should be used to correct for vignetting only. This 

method requires calibration for the camera or optical sensor. First the image of an ordinary 

white paper captured using the camera is used as a reference sample. A hyperbolic function 

is fitted to this image which models the intensity profile of the camera . This method will 

remove imbalanced brightness due to vignett ing, provided the image has been captured 
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under uniform light ing. 

A popular choice for background fitting is to use uniform cubic B-spline functions 

(Bartels et al. , 1987). These functions are always C2 continuous (i.e. the function can be 

differentiated twice) and flexibility is adjusted using cont rol points . Fitting a cubic B-spline 

function can be expressed as a least squares problem and is therefore solved efficient ly. A 

uniform cubic B-spline is completely determined by the set of cont rol points. 

It was suggested by Zijdenbos et al. (1991) that a B-spline function could be used 

to model the RF field inhomogeneity within magnetic resonance images (MRI). Intensities 

of certain tissues that should be similar throughout an image are distorted due to the radio 

frequency (RF) field produced by the imaging device. In this application the user manually 

picks the control points on the image. 

As shown previously, an image f (x, y) can be modelled using the illumination 

image i(x, y) and reflectance image r(x, y) . An iterative procedure proposed by Lindblad 

and Bengtsson (2001) fits a uniform cubic B-spline function to the illumination image 

i(x,y) . Lindblad's method assumes i(x, y) to be smooth and contain no sharp edges i.e. 

C 2-different iable. The image capturing device used is assumed to be logarithmic and so the 

image is modelled as 

J(x, y) = i(x, y) + r (x, y). (3.15) 

If t he image capturing device is linear then the logarithm of the image can be taken and 

modelled in the same way. The objective to correct the background is to remove i(x, y) 

from the equation, result ing in f (x, y) = r(x, y) . To fit the B-spline function control points 

located only in the background of the image have to be established, this is done in an 

iterative manner: 

1. Let <1? be the set of background pixels, initially we set t his to contain all image pixels. 
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Let k = 0. A poor first guess at the corrected image is made, Jk = f. 

2. Estimate background pixels by thresholding f~ at 2ak, where ak is the standard 

deviation of grey intensity values for all pixels in <I>. 

3. Update <I> so that it only contains the estimated background pixels. 

4. Fit a uniform cubic B-spline ik to the intensities of estimated background pixels in 

<I> , using a least squares fit. A 5x5 grid of control points are selected to minimize 

5. Calculate a new estimate to the corrected image A+1 = f - ik. 

6. if the standard deviation of (ik -ik-i) :s; 8 we are finished , otherwise set k - k+ l and 

repeat from step 2. It is suggested by Lindblad that the stoppage criterion 8 = 1/1000 

of the range in intensity values of the input image. 

T he result should be an image /k+1 with uniform background. The background image 

estimate will be given by ik . 

This method was applied to the image in figure 3.4 (a). T he corrected image is 

shown in figure 3.9 (a) . The background estimate is shown in figure 3.9 (b). 

3.4 Crossing Stripe Parabolas ( CSP) 

Rather than fitting a two-argument function to obtain a background estimate, we 

propose to fit multiple "horizontal" and "vertical" parabolas (Charles et al., 2008b). This 

estimate will then be used as a thresholding function across the entire image. The uneven 

lighting across microscopy images is predominantly due to the bulb, located beneath and 

central to the slide. Suppose we take a horizontal stripe across the image. An example of a 

horizontal stripe of a microscopy image containing microfossils is shown in figure 3.10 (a). 
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(a) 

Figure 3.9: (a) Corrected background lighting of image from figure 3.4 (a) using a method 
by Lindblad and Bengtsson (2001). (b) Background estimate of image in figure 3.4 (a) using 
a uniform cubic B-spline. 

The intensities on each stripe are averaged across the smaller dimension of the stripe so that 

a single mean line is obtained. The intensities across this line are plotted against horizontal 

position in figure 3.10 (b) as a continuous black line. 

(a) 
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(b) 

Figure 3.10: (a) An image of palynofacies with a stripe cut along the x-axis (shown in a 
dashed rectangle). (b) Grey level intensity of the mean line and the three subsequently 
fitted parabolas for the stripe in (a) . 

A I-dimensional parabolic curve can be fitted to model the background intensities 

in the mean line (see figure 3.10 (b)). The whole image can be segmented by segmenting 
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many stripes using their fitted parabolic curve in a method described below: 

3.4.1 The method 

We have named this method crossing stripe parabolas (CSP) due to the nature of 

the algorithm. The grey level intensity image is split into Ky vertical and K x horizontal 

stripes. A mean line is calculated for each stripe. A parabola is fitted on each mean line 

using an iterative procedure similar to that found in estimating background in powder 

diffraction patterns or x-ray spectra (Steenstrup, 1981; Vekemans et al. , 1995; Bruckner, 

2000) . Consider horizontal stripe i . Denote the intensities on the mean line of the stripe 

by gri(x), where x spans the width of the image. Using least squares, fit a parabola 

z;1)(x) = ai + bix + cix2 to approximate gri(x). As the mean line includes intensities of 

both background and foreground pixels, z?\x) will not model the background only. Figure 

3.10 (b) shows the mean line for the stripe from figure 3.10 (a). Plotted with the dot marker 

is z;1)(x) . 

To exclude the foreground points, a second parabola is fitted , denoted z;2\x), 

using a reduced set of points on the mean line { x lgri(x) > z?) (x) } . By requiring that 

the grey level intensity exceeds z?)(x), the most "certain" foreground pixels are eliminated 

from the approximation. The resultant parabola z;2) (x) is shown in figure 3.10 (b) with 

a dashed line. A third iteration is carried out in the same way, this time using the set 

{ x lgri(x) > z;2\x)} to derive z}3\x) (triangle maker in figure 3.10 (b)). It was found 

empirically that three iterations give a sufficient ly good result. 

Consider a pixel (x ,y) with grey intensity gr(x,y) . Let the pixel be contained 

within the i-th horizontal stripe. To produce the horizontal scan we label the pixel as 

foreground iff 

(3.16) 
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Figure 3.11: Final segmentation using the crossing stripes parabola method 

Similarly we can produce a vertical scan by labelling pixels (x, y) found in the j-th vertical 

stripes as foreground iff 

(3.17) 

The thresholds ~ and Tj are automatically calculated as explained later. Sometimes un

wanted artefacts in the form of skidmarks are present in both the horizontal and vertical 

scan. These are slashes of image regions incorrectly segmented. Such effects are caused by a 

large number of objects in the centre of the stripe. In t hese cases the fitted parabola would 

be a trough rather than a hill and cause an incorrect segmentation. It is unlikely the same 

effect will occur within the stripe orthogonal to this. To remove the artefacts both scans 

are combined to form the final segmentation. Only when a point is labelled as foreground 

in both images will its overall label will be returned as "foreground". The label for a pixel 

(x, y) contained in the i-th horizontal stripe and j-th vertical stripe is foreground iff 

(3.18) 

The segmented image is obtained by labelling all pixels in the image in this way. The result 

of combining the scans is shown in figure 3.11. 

The thresholds Ti and Tj are determined automatically from the respective parabo-
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las z?) (x) and zf\x). The parabola gives the "middle" background intensity in the stripe. 

However, fluctuations about the curve may also belong in the background. The following 

heuristic threshold Ti is proposed for horizontal stripe i 

_ (3) (3) 
~ - maxx zi (x) - meanx zi (x) (3.19) 

Tj is calculated in the same way for the vertical stripes. Using the standard deviation of the 

points or the maximum residual are additional possibilities for constructing the thresholds. 

3.4.2 Forming a background estimate 

A background estimate can also be formed with a slight adaption to the CSP 

method. Let pixel (x, y) be contained in the i-th horizontal stripe and j -th vertical stripe. 

The background image b(x, y) is calculated as 

(3.20) 

3.5 Evaluation and results 

We ran the crossing stripes parabola method against the 5 most successful seg

mentation techniques for our images (global thresholding, bothat transform, fitting a 2D 

parabola, clustering and Lindblad 's method) and compared the results visually against the 

original. The comparison was conducted using 6 microscopy images. As shown in section 

3.2.1, global thresholding will not work for background segmentation on images with un

even illumination. The next step was to try an adapt ive thresholding technique. The best 

segmentation results in this category were found using the bothat transform, see section 

3.2.2. However, this method was unsuitable for use in an automatic procedure as the correct 

sized structuring element was vital for a good segmentation. A fully automatic procedure 

of fitting a 2D parabola to the background illumination was suggested in sect ion 3.2.2 but 
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Table 3.1: Errors on generated images shown as a percentage of misclassified pixels for 
Lindblad and CSP methods. 

Ring radius (%) 

Lindblad 
CSP 

5 

1.79 
0.36 

10 

2.78 
1.23 

15 

3.66 
1.86 

20 

5.41 
2.90 

25 30 35 

9.30 12.20 18.80 
4.24 7.52 13.32 

40 

28.20 
16.88 

45 

6.27 
17.85 

50 

4.04 
6.45 

t he inflexibility of the model resulted in the loss of some microfossils. Clustering colour 

image pixels using the k-means algorithm was also a fully automatic approach and was an 

improvement over the 2D parabola. Nevertheless, microfossils near the edge of the image 

were still incorrectly segmented. Correcting the background illumination prior to applying 

a global threshold gave the most promising segmentation. Best results in this category were 

obtained by fitt ing a uniform cubic B-spline to the background illumination using Lind

blad 's method (section 3.3.2) and then thresholding by fitting three Gaussians to the image 

histogram (section 3.2.1). The quality of segmentation using this method closely matches 

that of CSP but, in certain circumstances the CSP is better than Linblad 's method. 

To compare CSP against Lindblad's method we generated 10 non-uniform back

grounds of size 200 by 200 pixels. For each background a dark ring was placed in the centre 

as a foreground object. The CSP technique and Lindblad's method were both used to seg

ment the ring from the image. The error was estimated by calculating the percentage of 

pixels misclassified by the methods. 

Ten rings of constant thickness (30 pixels) with increasing inner radius were created 

and placed one at a time in the centre of the background. The inner radii of the circles, 

expressed as a percentage of the image width, were 5%, 10%, ... , 50%. The average error 

for both methods over all 10 images is shown in table 3.1. For images with inner radius less 

than 5% to 40%, the CSP method was better than Lindblad's method while at radii 45% 

and 50% Lindblad's method was better. 
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a b C d 

Figure 3.12: (a) Generated image. (b) The true background. (c) The background estimated 
by Lindblad 's method. (d) The background estimated using the CSP algorithm. 

Figure 3.12 demonstrates why CSP works bet ter than Lindblad 's method. Figure 

3.12 (a) shows the generated image with a dark ring. Figure 3.12 (b) shows only the 

generated background. Figure 3.12 (c) shows the estimated background using Lindblad's 

method. The CSP algorithm can also estimate the background of the generated image; this 

is shown in figure 3.12 (d) . Not ice that the foreground has pulled the background estimate 

of the B-spline towards lower intensity values however the crossing stripes parabola ignores 

these low intensity values creating an adequate background estimate. 

The problems associated with the most popular background segmentation tech

niques are solved using the crossing stripes parabola method. Background fitt ing using 

this method is flexible enough to model the background and ignore foreground information. 

The number of parameters that are tuned automatically within CSP far exceeds those of 

the standard methods and this is why a better segmentation is found. Fitting a quadratic 

function entails tuning 6 parameters for the coefficients of the function. Clustering in RGB 

space uses 27 parameters, each of the three clusters has a centre in three dimensions and 

an associated covariance matrix. The covariance matrix contains 9 values but due to the 

symmetry only 6 of these are independent. The B-spline method uses a mesh of size 5x5 as 

the cont rol points for the surface, hence 25 parameters are used. The CSP method uses 3 

coefficients of a parabola fitted to each mean row and column. In our example we used 15 
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Table 3.2: Computation times (shown in seconds) for the top 5 segmentation methods are 
displayed against the computation t ime for the proposed CSP algorithm. 

Method Imagel Image2 Image3 Image4 Image5 Image6 Average 

3 Gaussians 8.16 3.94 3.17 5.87 4.32 10.13 5.93 
Bothat 2.57 2.11 2.09 2.07 2.08 2.08 2.17 
2D Parabola 0.42 0.15 0.14 0.14 0.14 0.14 0.19 
Clustering 1.41 1.19 1.21 1.21 1.07 1.14 1.20 
Lindblad 58.92 76.15 63.02 58.99 68.55 80.53 67.69 
CSP 0.85 0.97 0.86 0.75 0.89 0.67 0.83 

parabolas for t he horizontal fit and 19 for the vertical fit , which results in 102 parameters. 

The input parameters of the crossing stripes parabola method specifies the number 

of stripes used within the horizontal and vertical direction, I<x and Ky respectively. The 

accuracy of the segmentation increases as the number of stripes is increased. By decreasing 

the number of stripes the computational speed is decreased. For an image of size 1704 

by 2268 pixels, we found that a good compromise between speed and accuracy is to set 

K x = ceiling(No. Rows/40) and Ky= ceiling(No. Columns/40). These parameters can be 

calculated like this for microscopy images with resolutions up to 10 times lower than 1704 

by 2268 with unobservable loss in accuracy. 

The computation speed for each method was timed on 6 microscopy images of 

size 568 by 768 using a PC running a 2.0GHz CPU and 1GB of RAM (all methods were 

tested using Matlab). The results are shown in table 3.2. The segmentation offered by 

Lindblad's method is in most cases as accurate as the one obtained by the crossing stripes 

parabola method. However, the crossing strips parabola method takes a fraction of the time 

Lindblad's method needs. 

The CSP method accounts for vignetting and central light source within its cor

rection procedure. It is likely that CSP can be applied to any image were these type of 

effect occurs but particularly within microscopy or astrophotography. 



Nomenclature 2 

B Binary image. 

M Set of all image pixels. 

N9 Number of distinct grey levels. 

R Set of regions. 

~ Set of pixels. 

T Threshold value. 

µb Mean grey intensity of background region. 

µ J Mean grey intensity of foreground region. 

<Yb Standard deviation of grey intensity of background region. 

<7 f Standard deviation of grey intensity of foreground region. 

0 Proportion of background pixels. 

b Structuring element. 

f Digital image. 

gr Grey intensity of a pixel. 

i Illumination image. 

Pb Probability density function of grey levels in the background region. 

pf Probability density function of grey levels in the foreground region. 

r Reflectance image. 
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Chapter 4 

Microf ossil segmentation 

An image is a projection from 3D to 2D, hence overlapping microfossils on the 

microscope slide will appear as one connected object or touching objects within t he mi

croscopy image. This is known as the shelving or Holmes effect. Furthermore, the material 

being analysed has arisen from biological remains. These remains are subjected to init ial 

distress at time of deposit ion and subsequently altered and deformed by burial stresses and 

tectonic deformation. The remains are then retrieved from their current position deep in t he 

Earth by techniques which were not designed primarily for optimum sample preservation. 

Kerogen in part icular can be altered considerably by such stresses and the shape of t hese 

pieces is unknown prior to examination. 

The next stage in our automation of microfossil analysis is to quantify the kerogen 

material present on a microscope slide by counting the total number of separate pieces and 

measuring features as discussed in chapter 1. Counting objects in an image is straightfor

ward for disconnected objects or objects of a particular known shape. However, counting 

connected or overlapping objects of arbitrary shape can prove difficult . 

Shape and size features maybe important when we come to classify kerogen into 

vit rinite and inertinite. Touching or overlapping microfossils inhibits the extraction of these 

parameters . Separation of these touching part icles is therefore crucial in calculating an 

69 
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accurate estimation of microfossil size and shape. In our case the use of an automated image 

analysis technique is prompted by the impracticalit ies of a physical separation method. 

4.1 Segmenting kerogen from the background 

Kerogen corresponds to t he darker regions m the image. The first step is to 

segment these areas out as foreground. This is achieved in a similar way to segmenting all 

palynofacies from the slide (see section 3.4). 

A background estimate is formed using the CSP method and "subtracted" from 

the input image as explained in section 3.4.2. The grey level histogram of the corrected 

image has two distinct peaks, the left peak corresponding to the kerogen material and the 

right peak represent ing everything else. A segmentation threshold is t hen applied, chosen to 

be the intensity corresponding to the minimum between the peaks. This is found by fi t ting 

two Gaussians to the grey level histogram as discussed in section 3.2.l. After thresolding, 

a binary image is obtained where black regions indicate the kerogen and white regions 

represent the background. 

The image shown m figure 4.1 (a) is a typical example of a slide containing 

palynofacies. The result of applying t he above method for locating kerogen regions is 

illustrated in figure 4.1 (b) . 

4.2 Segmentation of touching objects 

Having recovered all kerogen regions using the background removal procedure, 

further analyses will involve separating "touching" kerogen objects. This will need to be 

accomplished as an automatic procedure. A pixel p with coordinates (x, y) has an 8-

neighbourhood consisting of the set Ns(P) = { (x + 1, y), (x - 1, y) , (x, y + 1), (x, y - 1), (x + 

1, y - 1), (x + 1, y + 1), (x - 1, y - 1), (x - 1, y + 1) }. T wo pixels p and q are 8-connected if 
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(a) (b) 

Figure 4.1: ( a) Typical example slide containing palynofacies . (b) Binary image displaying 
automatic location of kerogen shown as black regions. 

t here exists a path of pixels between p and q where each pixel in the path is of the same 

intensity and in the 8-neighbourhood of the next pixel. 

Definition 1. A set of pixels that are all 8-connected to one another is called 

a connected component. 

Definition 2. We use the term object to define a connected component 

where all pixels in the connected component are from a single item of inter

est within the image. To clarify, an object is a connected component with 

meaning. 

In some circumstances it can be beneficial to analyse an image using only one of 

the three colour channels. In t he majority of images it is found that the blue channel will 

contain the most amount of noise. Hence, this channel could be removed. However , due to 

the dark colouring of kerogen in our images, edges separating the touching pieces are not 

visible. The only visual guide to split ting t he connected regions into kerogen objects is the 
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shape of its silhouette. Therefore, it is only necessary to consider the binary image where 

kerogen regions are labelled as O and non-kerogen regions are labelled as 1. To split up 

these regions we intend to use a segmentation method based only upon this binary image. 

4.2.1 Recent methods 

There are methods found in the literature that at tempt to separate touching par

t icles based upon their shape. Zhang et al. (2005) separates grains by fitting ellipses using 

a direct least squares algorithm. However , the method was only successful if the grains 

themselves were ellipt ic. It was described by Visen et al. (2001) how ellipses with equiva

lent inertia are fit ted to each region classed as containing grains. The ratio of region area to 

ellipse area is computed and a threshold value is determined to establish whether a region 

contains more than one grain. Once touching grains have been identified the region perime

ter is analysed for corners. The grains are then split by identifying pairs of corners. The 

algorithm was only t ested on groups containing at most 3 touching grains. It· is undeter

mined whether this method would work for larger groups. In a similar algorithm proposed 

by Pia (1996) overlapping circles are separated by identifying perimeter segments based on 

the derivative of the curvature. Segments are then clustered using a suitable criterion. For 

our application we cannot assume the shape of overlapping objects; this feature will need 

to be assessed after segmentation. 

An increasingly popular method of segmentation is to identify the intersection 

points of touching objects (van den Berg et al. , 2002; Honkanen et al., 2005; Pla, 1996; 

Visen et al., 2001). A line of separation can then be drawn between opposite corners 

(van den Berg et al. , 2002). For images containing many objects this approach is usually 

very slow to compute. 

The method based upon erosion and dilation of the binary image requires t he use 
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of structuring elements to separate touching objects (Russ, 2006; Shatadal et al. , 1995). 

For example, we can erode the binary image until all objects have been separated but not 

completely removed. Dilation is then applied in order to grow the separated regions back to 

their original size. Restrict ions are set so that while regions are growing they cannot become 

larger than their original size or touch other neighbouring regions . To separate touching 

seeds in an image Shahin and Symons (2005) used an iterative application of erosion and 

dilation to the binary image and then later separated them based on size and shape. This 

type of system is inappropriate for our images as different sized structuring elements are 

required to separate objects with various degree of overlapping. Also t his technique is prone 

to deforming objects and it is even possible that some objects will be completely removed 

from the image if a structuring element is not chosen carefully. 

4.2.2 Watershed segmentation 

The watershed algorithm (Meyer , 1994) is a traditional method of segmenting 

touching objects . It cannot be applied to the binary image directly and it is necessary to 

first computer the Euclidean distance transform (EDT). 

Euclidean distance transform 

This transform converts a binary image into a greyscale image by assigning every 

pixel a value equal to the straight line (Euclidean) distance from the nearest background 

pixel. To calculate the Euclidean dist ance from all background pixels to each foreground 

pixel in order to determine the shortest distances would be incredibly inefficient . To speed 

up this process, approximations to the Euclidean distance can be used where distance is 

measured in only a few directions . Examples include measuring in 90° directions only, this is 

known as t he city block distance. If 45° directions are included then the measure is known as 

the chessboard distance. However , results obtained using the watershed algorithm improve 
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(a) (b) (c) (d) 

Figure 4.2: (a) Binary image, black is foreground, white is background. Distance function 
of (a) using cityblock, chessboard and Euclidean distances are shown in (b) , (c) and (d) 
respectively. 

as the approximation approaches the true Euclidean distance. T he image processing toolbox 

(IPT) in Matlab uses a fast algorithm bwdist () to compute the exact Euclidean distances 

for the transform. The amount of computation to perform this operation is proportional 

to the number of pixels in the binary image i.e. O(nm) where n and m are the number of 

image rows and columns respectively. The algorithm used is the second algorithm described 

by Breu et al. (1995). Formally we can express the Euclidean distance t ransform (EDT) on 

a binary image B as a dist ance function D , where 

D (p ) = distance from pixel p to the nearest background pixel in B ( 4.1) 

The EDT can be viewed as a greyscale image by rescaling the distances, for example an 

8-bit image can be formed by rescaling the distances between O and 255. As an example 

we compute the EDT of the binary image shown in figure 4.2 (a) using the cityblock, 

chessboard and Euclidean distances. The results are shown in figures 4.2 (b) ,(c) and (d) 

respect ively1 . 

1T he type of EDT used within Centre Supported Segmentation (see sect ion 4.3) is irrelevant and results 
will be very similar or identical. 
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(a) (b) (c) 

Figure 4.3: ( a) Two overlapping circles. (b) Negative distance function represented by a 
surface. Watershed algorithm finds the watershed ridge line separating the two circles by 
filling the catchment basins with water. (c) Watershed ridge line is overlaid in white on top 
of the two circles to produce the final segmentation. 

Watershed method 

One can consider the EDT as a surface with the distance function D(p) being the 

height for pixel p . The surface representation of - D for the binary image in figure 4.3 ( a) 

is shown in figure 4.3 (b). Two troughs represent the two overlapping circles whereby the 

larger circle has a deeper trough. 

The watershed transform is applied to the negative of the distance function - D. 

An illustration is shown in 4.3 (b) . The inverted peaks can be thought of as catchment 

basins. Water falling onto the surface will collect within these catchment basins. As water 

begins to rise, a boundary line is formed where water from both pools meet. These lines 

are called watershed ridge lines. These lines can be overlaid on the original image in 

white to produce the final segmentation shown in figure 4.3 (c). We use an efficient 

and accurate algorithm for comput ing the watershed segmentation using the Matlab IPT 

function watershed() based on the algorithm by (Meyer, 1994) . 

The watershed algorithm works well for circular objects but is erroneous when 

separating concave objects. Also over-segmentation occurs with objects having irregular 

boundaries (especially elongated objects) and is due to many local minima forming in the 
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(a) (b) 

(c) 

Figure 4.4: (a) Binary image displaying overlapping pieces of kerogen extracted from fig
ure 4.1 (b). (b) Watershed segmentation resulted in 56 regions while we are looking for 
just three objects. (c) Visualisation of the EDT for the image in (a) depicted as a sur
face. A zoomed section shows the irregularities along the ridge of the EDT causing over
segmentation. 

EDT. This is a big problem for overlapping kerogen as its boundaries are usually not 

smooth. This effect is illustrated in figure 4.4 (a) displaying overlapping pieces of kerogen 

( an extract from figure 4.1 (b)). The number of regions the watershed method partit ions 

the foreground material into is 56 (shown in figure 4.4 (b)) while we are looking for just 

three objects. A closer look at the EDT for the image in figure 4.4 (a) can be seen in 

figure 4.4 ( c) where a zoomed section shows many irregularities along one of the ridges. 

An improvement to this approach would be to smooth the EDT prior to applying 

the watershed algorithm. Surface irregularities of the EDT could be removed while preserv

ing object contours by using isotropic filtering as a smoothing procedure. However, even 

with this slight modification , the watershed algorithm is prone to over-segment objects. 

There are two main solutions: the first is to merge regions subsequent to segmentation. It 
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was suggested by Wahlby et al. (2004) that regions separated by a weak border should be 

merged. Borders are classed as weak if the mean intensity of the pixels along the border 

within the gradient image is less than a preset threshold. The second solution is to mark the 

objects in a process known as marker controlled segmentation. When separating pistachio 

nuts Casasent et al. (1996) detected the centre of each nut and used this prior knowledge 

as markers. In semi-automatic systems markers can be chosen manually. We found that 

for our images marker controlled segmentation produced excellent results when markers 

were chosen manually i.e. at the centre of each kerogen piece. Hence we choose to study 

automatic procedures for obtaining these markers. 

4.2.3 Marker controlled watershed 

The over-segmentation of the watershed algorithm can be reduced by finding mark

ers for each object and only allowing water to fill from the markers position. This is known as 

marker-controlled watershed segmentation (Vincent, 1993; Beucher , 1992; Landini and Oth

man, 2003). Provided each object only contains one marker , the segmentation will be near 

perfect. However , too few or two many markers will result in under or over-segmentation 

respectively. One possible solution is to place the markers manually. However this defeats 

the purpose of an automatic system. An alternative to the manual approach is to ident ify 

specific features found inside individual objects (Clocksin, 2003; Lindblad et al. , 2003). For 

example, when segmenting images of overlapping cells an ideal marker would be a single 

feature that presents itself in the centre of each cell. Locating the position of a cell nucleus 

would provide us with an excellent marker system. In the case of overlapping kerogen there 

is no distinct indicator locating the centre of each object and so we seek to find the centres 

using alternative procedures. 
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Extended h-maxima transform 

Another possibility to identify markers is by using gray-scale morphology. The 

extended h-maxima t ransform (Soille, 2003) is an example of t his approach. It is widely 

used in applications for separating touching objects of similar size in gray-scale images 

(Malpica et al. , 1997; Wahlby et al. , 2004) . The transform can be applied to the EDT 

of the binary image or to the original grey-scale image itself. The method will filter out 

all local maxima whose heights are smaller than the pre-defined threshold h. A low value 

of h will result in many markers and a high value will produce only a few markers. This 

transform is dependent upon the scale of t he binary image. For example, if an image is 

rescaled, different numbers of objects may be found for a fixed value of h, even though the 

same number of objects are present in t he image. T he best value for h is usually determined 

t hrough evaluating t he segmentation on a small sample of images by eye. This value is then 

fixed when segmenting t he other images. 

While t he extended h-maxima t ransform has been very successful for separating 

touching objects of similar size in gray-scale images, t his may not be the case in images 

containing objects of various sizes and shapes. The success and failure of this method is 

demonstrated using the binary image of size 300 by 200 pixels shown in figure 4.5 (a). This 

image contains overlapping circles and long objects. The markers obtained for h = 2 are 

shown as green regions in figure 4.5 (b). Using t he green regions as markers within marker

controlled watershed segmentation correct ly segments the image into 21 objects shown in 

figure 4.5(c) . However , t he outcome of segmentation is sensitive to the value of h. To 

demonstrate we segment t he image again, this time with a slight increase in the value of 

h. The result displayed in figure 4.5 (d) shows the method (at h = 4) to have incorrectly 

segmented the smaller circles and long objects. The total possible range for h is between 0 

and 22.2. Only 11 % of this range will result in correct segmentation . 
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(a) (b) 

~~-· ~"-· 
(c) (d) 

Figure 4.5: (a) Binary image containing overlapping circles and long objects. (b) Markers 
found by the extended h-maxima transform with h = 2, shown in green. (c) Segmentation 
using marker-controlled watershed at h = 2. (d) Inaccurate segmentation using marker
controlled watershed segmentation at h = 4. 

4.3 C entre supported segmentation (CSS) 

We propose an alternative segmentation method based on an intuitive, scale

independent overlap parameter (Charles et al. , 2008a). This method will eliminate over

segmentation and successfully segment both circular and elongated objects. Cent re Sup

ported Segmentat ion (CSS) is based on automatic identification of a centre point for each 

object. CSS is applied on the black and white image where the black foreground are the 

objects to be segmented. The result from CSS is a set C of object centres. The centre of 

an object is needed for several reasons: (1) counting the number of objects, (2) viewing an 

object by moving the scanning camera to the centre and (3) cropping the object for further 

analysis and classification. 

Before we begin with the CSS algorithm method, it is first necessary to define the 
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term object center. 

Definition 3. Let D be the distance function on a binary image containing 

objects. The centre of an object is any pixel p with the largest distance D(p) 

within the object. 
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For example, the centre of a filled-in circle will be its geometrical centre. However, a 

doughnut-shaped object will have infinitely many centres, none of which will be the geo

metrical centre of the figure. 

4.3.1 Stage 1 of CSS - locating object centres 

CSS is applied to the distance function of the binary image. It first identifies the 

cent res of all possible objects and then filters out the centres which are likely to be noise. 

The first stage of the algorithm creates two lists: the list C of centres and the list V of their 

merging heights. 

Finding the list C 

The list C is essentially a set of coordinates for the local maxima found within 

the distance function of the binary image. The list V is of the same size as C and for each 

centre q E C it records the height of the saddle point between q and another neighbouring 

cent re. The neighbouring cent res are chosen by the CSS algorithm. These pairs of centres 

are said to merge. 

List C is constructed in such a way that t he merging heights can be found in the 

same process. Initially C is empty. Let D be the distance function of the binary image. 

Suppose that m1 = D(qi) = maxp D(p ) is the unique maximum of D. Pixel q1 is t aken 

to be the first centre in C. Consider as an example the image in figure 4.6 (a) . The boxes 

delineated by the grid are t he pixels in the image. Figure 4.6 (b) displays the distance 
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Figure 4.6: Example of a 9-by-9 binary image (a) and its distance function (b) 
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m = 1.41 

(d) Step 4 
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Figure 4.7: Finding the centres using CSS. Two centres will be stored in C, q 1 = (6, 2) at 
threshold m = 3 and q2 = (3, 7) at threshold m = 2. 

function for the image. All white pixels have D(p) = 0. For this example, the maximum of 

Dis 3, found at pixel q 1 = (6, 4). Then C is updated by C +-CU {(6, 4)}. 

By thresholding D at m1, we produce a binary image B1 so that all pixels p where 

D(p) 2 m1 are set to black and the rest are set to white. For m 1 = D(q1 ), there will be a 

single black dot at q1 . Figure 4. 7 ( a) shows t his first step. The black pixel is q1 . 

The next maximum height, m2 = maxp,6q
1 

D(p) is identified. The new black and 

white image B2 resulting from the thresholding with m2 will contain more black points 

than the previously thresholded image B1 , including points around pixel q1. Figure 4. 7 (b) 
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displays B2 found by thresholding the EDT D at t he next lower value m 2 = 2. 

Since the object with centre q 1 is already accounted for, we remove this connected 

component from B2. The component to be removed from B2 is coloured light grey in 

figure 4.7 (b). The remaining connected components each represent other local maxima 

within the distance function. The centres for each of these components are appended 

to C . Because the remaining pixels in B2 are all found at exactly height m2, any pixel 

within a connected component can serve as a centre, only one pixel from each connected 

component is chosen arbitrarily. In our example only one connected component remains 

and C = {(6, 4) , (3, 7)}. 

A subsequent threshold m3 < m 2 is applied to produce image B3 from D , where 

m3 is the next lower value in the distance function D after m2. All connected components 

with cent res in C are then removed from B3 in the order they were stored in C. The 

remaining connected components are used to find new centres, and so on. Figure 4. 7 ( c) 

shows the third step where B3 is obtained by thresholding at m3 = 1.41. There is one 

connected component in this image, which will be removed because it contains the first 

entry in the set of centres C , q1 . Finally, figure 4. 7 ( d) shows B4 with m4 = 1. Again, only 

one connected component is found and subsequently removed. 

Finding the list V 

To eliminate over-segmentation a parameter called m erging height is attached to 

each centre and stored in the list V. Each subsequent threshold of the original binary 

image dilates existing connected components and may produce new ones. As thresholding 

continues connected components will begin to merge with other connected components. 

The merging height of centre qi, denoted Vi , (vi :S D(qi)) , is the lowest threshold value at 

which qi defines a connected component disjoined from any connected components of q1 
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such that D(Qj) > D(qi). For any value lower than Vi, qi and another centre at a larger 

value in D will share a connected component. Figuratively speaking, the object of smaller 

size (smaller peak D(qi)) is eclipsed by an object of a bigger size (D(qj) > D(qi)) . For the 

example in figures 4.6 and 4.7, the merging height of q 1 is v1 = 0, and the merging height 

of q 2 is v2 = 2 because this is the lowest height where the component of q2 is separate from 

the component containing q 1. 

The list V is computed in parallel with finding the list C. Initially the merging 

height for a centre is set at the threshold it was discovered. At each subsequent threshold, 

connected components with cent res in C are removed in the order they were stored in C. 

Let C = ( q 1, ... , qn) . If at threshold mk we remove a connected component with centre 

qi t hen we update the merging height Vi = m . On the other hand if we find that the 

connected component has already been removed by some centre in ( q1, ... , qi_1) then it is 

known that two previous connected components (initially found at higher threshold values) 

have merged. In this case we no longer continue updating vi. At this instance qi is said 

to merge with the centre that first removed the connected component containing qi in the 

image thresholded at m. In our example q2 merges with q1 . 

Formal description for stage 1 of CSS 

We previously outlined the main steps of the CSS algorithm by walking through 

an example. This section formally clarifies the first stage of the algorithm in table 4.1. If we 

apply this process to the image in figure 4.4 (a), 56 centres will be found, each one located in 

its own separate region defined by the watershed algorithm. As with the watershed method, 

small shape irregularities on the periphery of the object will result in a jagged peak of the 

distance function with many local maxima of similar heights. Each little spike will generate 

a centre. 
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Table 4.1: The Centre Supported Segmentation (CSS) algorithm. Stage 1: obtaining centres 
C and merging heights V. 

CENTRE SUPPORTED SEGMENTATION (CSS) ALGORITHM : C AND V 

1. Given is a binary image B. Init ialise C = 0, V = 0 

2. Find the distance function D of B and sort all the distinct distance values in 
descending order: m1 > m2 > . . . > mr. 

3. For i = 1: T 

(a) F ind binary image B i by thresholding D at mi. 

(b) Find the set of all connected components K i {Ki,l, .. . , Ki,d within 
the image Bi. 

(c) For j = 1 : ICI (each centre in C) 

1. find the connected component Ki,j containing the l" centre in C. 

ii. if K i,j E Ki , then remove K i,j from the set K i and set Vj = mi. 

(cl) For each remaining component Ki,t E K i find the centre of this 
component• as Qi,t = argmaxpEK,.,. D(p). 

(e) Let c = !Kil• 
(f) Augment C and V 

4. Return C and V 

V <- V U {mi, . .. , mi} 
'--v-----' 

C 

* Note: After removing the connected components from the set I<i in (3.c), the remaining connected 

components will a ll contain pixels at exactly the same height m; in the distance function. This is 

because a ll possible d istances are checked. These may be s ingle points or clusters of points at the 

same height. T hus any point from I<i,t can serve as the centre of the component. 
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The merging heights of centres of large objects will be low even if they overlap 

with smaller objects. On the other hand, centres corresponding to noise at the peak will 

have high merging heights. The centres with large Vi relative to their height within the 

distance function will be candidates for elimination. 

4.3.2 Stage 2 of CSS - removing redundant centres 

In Stage 2 of the CSS algorithm redundant centres are eliminated. A threshold s 

can be applied to account for the minimum allowable size of an object. All objects with 

centres q , such that D( q) < s, are discarded. If the algorithm is run with s = 0, it will 

find all t he specs in the image as objects of interest. Another option for removing the specs 

is to apply erosion and dilation directly to the binary image but, this will again require a 

parameter to determine the size of the structuring element which implicitly sets a value for 

s . Hence such an option will not eliminate the need for an extra parameter. On the other 

hand, the value of s can be estimated by eye or can be learned from a sample of training 

images where the objects of interest have been pre-labelled by hand. Weller et al. (2005) 

propose an empirical threshold of 14 µm. 

The overlap parameter 

The image in figure 4.4 (a) looks like three touching objects, however it may also 

be a genuine set of 56 tightly packed objects. We introduce a parameter d to determine 

which centres need to be removed. The degree of overlap is defined using two intersecting 

circles as demonstrated in figure 4.8 (a), and is measured with respect to the smaller circle. 

If the two circles are of the same size, either of the two can be chosen. The overlap value is 

defined by the two intersection points A and B. Denote by ti the minimum distance from 

the mid-point of the segment AB to the edge of the smaller circle. The overlap is defined as 

the ratio of ti to the radius of the circle, D(qi) . The length ti is found using vi, t he merging 
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(a) 

• • 
O(q) = O O(q) = 0 O(q ) = 0.1 O(q) = 0.3 

O(q) = 0.5 O(q) = 0.7 O(q) = 0.9 Complete 
overlap 

(b) 
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Figure 4.8: (a) Two overlapping circles define the concept of overlap. (b) Illustration for 
various values of overlap O(q) 

height of the centre qi . The merging height is half the length of AB and is shown as Vi in 

the diagram. Since ti= D(qi) - J D(qi)2 - vf, the degree of overlap for a centre qi is 

(4.2) 

By definit ion D(qi) >Viand so O(qJ E [O, 1). A centre qi with overlap O(qi) = 0 

means that the object is isolated . As the overlap approaches 1, the object is increasingly 

covered by a larger item. The overlap of two circles is demonstrated in figure 4.8 (b). The 

small circle is increasingly covered by the larger circle. The overlap value O ( q) is also 

shown. As soon as the two circles merge so that qi = ti, the CSS algorithm will continue 

to recognise one object, in this case we have complete overlap. 

It is interesting to consider the effects this definition of overlap has on the results 

of Centre Supported Segmentation. Other possible areas of investigation could consider 

defining overlap value using other shapes, such as, overlapping ellipses. 
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No. Objects = 2 No. Objects = 3 No. Objects = 3 

h h h 
d = 0.l d = 0.3 d = 0.5 

No. Objects = 4 No. Objects = 35 No. Objects = 56 

h h h 
d= 0.7 d= 0.9 d=l 

Figure 4.9: Effect of the allowable overlap don the image segmentation. Best segmentation 
(3 centres) is obtained ford between 0.3 and 0.5 

Filtering centres using the overlap 

To remove centres from C we set a limit don the amount of overlap such that if 

O(qi) :'.S d then centre qi is kept in C and discarded otherwise. If we wish to segment an 

image to its maximum detail then the threshold is set to d = l. This would return the 

same number of segments as the watershed algorithm. At a value of d = 0 each connected 

component in the binary image is labelled as an object. By adjusting d over-segmentation 

can be prevented. The "noisy" centres occur due to small deformations in the shape and 

this will correspond to relatively large merging heights yielding large overlap values. Hence 

setting a threshold d not only specifies the connectivity of objects but also eliminates the 

"noisy" centres. 

The CSS algorithm is applied to the image of 3 overlapping kerogen objects from 

figure 4.4 (a). The effect of setting a maximum allowable overlap can be seen in figure 4.9. 

At d = 0.5 we have a "correct" segmentation into three objects and at the limiting case of 

d = l we obtain the 56 segments that are produced by the watershed algorithm. 
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4.3.3 Segmenting the objects using centres 

After filtering the centres, corresponding individual objects can be segmented. 

CSS belongs in the class of marker-controlled segmentation algorithms. Hence the marker

controlled watershed algorithm is applied to the negative of the distance function with 

centres acting as markers. To extract the objects, the watershed boundaries are overlaid in 

white on top of the black and white image. Thus the new binary image will consist of black 

connected components corresponding to objects, which can be easily extracted for further 

analysis. 

The segmentation appears to perform best when the overlap filter d = 0.5. We 

found that a human can most easily separate two overlapping objects provided that their 

overlap is no greater than 0.5. Hence a chosen value of d = 0.5 will best describe this 

behaviour. 

CSS was applied to the binary image of kerogen regions displayed in figure 4.1 (b) 

with d = 0.5 ands= 4. The centres found (shown in figure 4.10 (a)) were used as markers in 

marker-controlled watershed segmentation. To illustrate the segmentation of kerogen into 

kerogen objects, figure 4.10 (b) shows the watershed ridge lines overlaid in white on top of 

the original colour image. The 30 largest kerogen objects are illustrated in figure 4.11. Row 

1 columns 1 through to 3 and row 2 column 1, show the only four incorrect segmentations 

present in this illustration. 

To further improve on these results, perhaps a corner detector could be introduced 

to provide a confidence value in separating the objects after CSS has been applied. If a 

sharp corner is present at the separation line then we will be more confident CSS is correct 

at this point. 
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(a) (b) 

Figure 4.10: (a) Centres found by CSS are shown as yellow dots. (b) Centres used as 
markers in marker-controlled watershed segmentation. Final segmentation is overlaid in 
white on top of the original colour image . 

• -
' 

Figure 4.11: Kerogen objects extracted using marker-controlled watershed segmentation 
with centres acting as markers 
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4 .4 Segmentation evaluation 

In order for the quality of segmentation to be judged, a validation procedure needs 

to be introduced. A survey was conducted by Zhang (1996) where evaluation methods 

for image segmentation were categorised as analytical and empirical. A nalytical methods 

examine the principles and properties of the segmentation algorithms themselves. Empirical 

methods evaluate the output of the segmentation algorithms on test images. 

The quality of segmentation can be judged by goodness measures. These measures 

are usually defined by human perception of a "good" segmentation. They are calculated on 

the segmented image alone and do not require a reference segmentat ion. For instance, the 

entropy of the partitioned image, intraregion uniformity, region shape or colour uniformity, 

are all examples of goodness measures. Empirical methods that use goodness measures are 

called goodness methods. 

The most straight forward approach to validation is by comparing the automated 

segmentations wit hin a ground truth segmentation, obtained manually. The performances 

of segmentation algorithms can be evaluated based upon inconsistency or distance between 

the automated segmentation and the ground truth. These types of methods are called 

discrepancy methods. Because segmentation ground truth is based upon human perception, 

which is varied, evaluation of segmentation performance is difficult. However, it should 

be noted that even though there are inherent inconsistencies in an operator's performance 

and perception, this approach is considered to produce a truth model. The precision or 

accuracy of segmentation can be defined according to a figure of merit. The choice of 

the figure of merit is dependent on the application and can be based on four types of low 

level discrepancy approaches presented by Beauchemin and Thomson (1997): pixel, area, 

point-pair and boundary. 
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The pixel-based discrepancy approach is the most common one and consists of 

counting the number of misclassified pixels in the segmentation output relative to a ref

erence partition. Using a similar approach Cardoso and Corte-Real (2005) formulate a 

general measure, an important asset of which is that it is a metric. Area-based methods 

evaluate area of overlap between corresponding segments (Hoover et al. , 1996; Barsot ti 

et al. , 1998; Liu and Yang, 1994) while boundary-based schemes compare the perimeters 

of the segments. The point-pair discrepancy approach measures the agreement between 

two segmented images (Rand, 1971) without explicitly solving the correspondence problem 

between the regions. 

Segmentation produces a part ition of the pixels and hence can be thought of as 

a clustering technique. Thus the discrepancy between the obtained segmentation and a 

ground t ruth segmentation can be evaluated by any measure of agreement or similarity 

between two partitions. Along with the Rand index, various other measures of similarity 

have been proposed in t he literature, the most widely used being J accard index, adjusted 

Rand index, correlation, mutual information and entropy (Rand, 1971; Ben-Hur et al. , 2002; 

Hubert and Arabie, 1985). 

We propose an evaluation measure that belongs to the point-pair group within the 

discrepancy approach (Charles et al., 2006). Two sets of centres are formed, one set repre

sents the ground truth segmentation and the segmentation to be evaluated is represented 

by the other set. A figure of merit is obtained by measuring the degree of match between 

t hese two sets of centres. The proposed measure consists of t hree indices evaluating different 

aspects of the positioning of centres. 
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Figure 4.12: (a) Original image. (b) Ground truth segmentation of kerogen objects in (a) . 

4.4.1 0 btaining centres for a given segmentation 

Any object of an image can be represented by a single centre as defined in Defi

nition 3. If an item of interest in the image spans n connected components then it will be 

represented by n objects, one for each component. For example, if we were to segment a 

picture of a window then one object would represent the window frame. On the other hand, 

the item of interest representing the glass would consist of many separate objects, one for 

each pane. 

Because a kerogen piece is a single complete microfossil it should be segmented into 

a connected component of its own and is classed as one object. To obtain the ground truth 

segmentation for one of our slides, the foreground kerogen is first automatically segmented 

from the background as in section 4.1. Next a human expert manually splits the kerogen into 

kerogen objects by "cutting" through the regions with a white line. The cutting procedure 

involves drawing white lines through the binary image using suitable image editing software. 

Small black regions that are deemed not to be an object are also manually removed. An 

example ground truth segmentation for the image in figure 4.12 (a) is displayed in figure 4.12 

(b). 
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4.4.2 Centre-based measure 

The three most desirable properties of a segmented image can be expressed as 

follows: 

1. A perfectly segmented image exhibits no under- or over-segmentation. 

2. There are no centres of objects which lie outside t he objects boundaries. 

3. The cent re of each segment should coincide with the relevant object centre. 

Let C* = {qi , . .. , q~} be the ground truth centres and C = { q1 , ... , qm} be t he 

cent res of the segmentation we wish to evaluate. We propose to evaluate the quality of 

segmentation by the following three measures. 

Definition 4. Let ni be the number of cent res placed by t he automatic 

segmentation within object i (the object i is defined by t he ground t ruth 

segmentation). The measure of under- or over-segmentation of i is 

(4.3) 

If there is no centre in the object or if there are a large number of cent res 

there, ri approaches 1. The most desirable value of ri is O which is achieved if 

there is only one cent re in the object. 
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Definit ion 5. The measure of background segmentation is 

l n 
b = l - - L ni, where mis the number of centres in C. (4.4) 

m i=l 

Note that b is the proportion of automatic centres that are not contained 

within the boundaries of any objects. Thus b = 0 corresponds to the ideal 

situation where the background is free of centres placed by mistake by the 

segmentation algorithm. 
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The values r and b completely represent the under and over-segmentation of the image re

gardless of the location of the centres within the objects. Hence the third measure evaluates 

how close the approximations are to the ideal centres within the objects. 

Definition 6. Let qi be the true centre of object i and let q' E C be the 

nearest centre from t he automatic segmentation which lies within object i, i.e., 

(4.5) 

The centre discrepancy is defined as 

Ci= 1 - D(q')/ D(qt), (4.6) 

where D (q ) is the distance transform value for the pixel at position q . By 

Definition 3, D ( qt) is t he maximum distance within object i therefore D( q') :S 

D(qt), and Ci E [O, 1] 

To illustrate the rationale for introducing the centre discrepancy measure Ci , con

sider the object in figure 4.13. The true centre for this object is marked with a cross. Two 

guesses for this centre have also been marked and labelled. Clearly Guess 1 is closer to the 

true centre but, Guess 2 sits on the next highest peak of the distance function and is a 
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True centre 

Guess 1 

Guess 2 

Figure 4.13: Examples of a true and two guessed centres. 
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much better representation of the centre for this object than Guess 1. The measure e;_ will 

favour Guess 2 over Guess 1. 

The three measures ri, b and e;. can be combined so that the quality of the seg

mentation is measured by a single value. Each of the three measures is considered to be 

equally important and they are given the same weight ings within the combined measure. 

Here we use a summation model for combining measures but a multiplicative model could 

be used. 

Definition 7. The measure of quality of segmentation represented by the 

set of centres C with respect to a ground truth segmentation with a set of 

centres C* is 

(4.7) 

Where n = IC*I and ri, b and ci are calculated as in Definitions 4-6, respec

t ively. 

The measure S E [O, 1) accounts for the three most desirable properties of a seg

mented image. The worst possible segmentation is at S = l and the best possible segmen

tation is at S = 0. We should note that this measure is centre based and does not directly 

compare t he contours of objects. The next section applies this measure in an experiment 

to determine the quality differences between two popular segmentation methods and CSS. 
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4.4.3 When can we apply this measure? 

Any segmentation that splits an image into objects can be evaluated using the 

proposed measure. This is because any segmented object can be represented by a centre 

as defined in definition 3. However, two important factors should be noted: 1) More than 

one segmentation can produce the same set of centres. 2) Some segmentation algorithms 

will provide labels for different objects, e.g. an image segmented into regions containing 

"sky", "grass" and "mountains". The measure S will not account for errors within the labels 

of different objects. 

The measure S will be used in our case to assess the quality of a segmentation 

algorithm when splitting up foreground regions into kerogen objects. Even though the same 

two centres can be produced by splitting two touching kerogen pieces in multiple ways, these 

centres still accurately locate the objects. We are not concerned with the shape of the line 

that segments the kerogen and point 1 above is accounted for. The label of a kerogen object 

is unimportant to us at this stage, so point 2 is of no concern. Hence, the value of S will 

provide an accurate comparison between segmentations. 

4. 5 Experimental assessment 

In this section we evaluate the performances of segmentation methods applied to 

our images. 

4.5.1 Kerogen object segmentation 

Six microscopy images of size 2272 by 1704 pixels were used for evaluation pur

poses. For each image the foreground was segmented as in section 4.1. This produces six 

binary images where the kerogen is black and the background is white. The performance of 

CSS, watershed segmentation and extended h-maxima transform was assessed according to 
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Table 4.2: Segmentation results for the watershed method, Centre Supported Segmentation 
(CSS) and extended h-maxima on 6 microscope images of palynofacies 

Image no. Object quantity Watershed h-maxima css 
S(C, C*) time (s) S(C, C*) time (s) S(C, C*) time (s) 

1 73 0.43 7.37 0.33 19.10 0.14 48.87 
2 72 0.58 7.32 0.45 46.65 0.22 107.07 
3 82 0.60 7.59 0.48 44.10 0.29 94.21 
4 14 0.55 7.31 0.39 33.58 0.13 73.05 
5 77 0.53 7.39 0.41 38.89 0.22 87.61 
6 25 0.50 7.30 0.38 16.89 0.11 31.90 
Note: Small values of S(C, C*) indicate better match between the obtained (C) and the 

ideal ( C*) centres 

how they segmented these six binary images. Ground truth segmentations were obtained by 

human expert as explained in section 4.4.1 by drawing white lines through the binary image 

after foreground/background segmentation and removing unwanted foreground material. 

Ideal centres C* were found for the ground truth images by locating the centre of 

each individual object according to definition 3. The S measure was used to evaluate the 

quality of segmentation; the lower the measure S the better the segmentation. 

The parameter h for the extended h-maxima transform was determined by eye for 

a single image. This value was then fixed when segmenting other images. To decrease the 

processing time CSS was run on a sampled version of the binary images. Sampling was 

found not to adversely affect the output of CSS provided the sampled image can still be 

segmented into individual objects by human eye. We sampled the image every 3 pixels. 

Once the coordinates of centres have been found for the sampled image they were mapped 

back to the original image so that segmentation of objects can proceed. For the CSS 

algorithm, two parameters need to be set: The value of s (minimum allowed object size) 

was determined on a single image and then set at s = 4, centres are thresholded at d = 0.5. 
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The segmentation results in table 4.2 show the S measure for CSS is lower than 

the watershed algorithm and extended h-maxima transform for all images. This indicates a 

better quality of segmentation when using the CSS algorithm. As demonstrated previously 

t he watershed algorithm will segment an image equivalent to CSS with parameters s = 0 

and d = l resulting in over-segmentation. Therefore it is not surprising that the watershed 

algorithm comes in last. 

Although the quality of segmentation achieved by CSS is superior to the two other 

methods, the running time is considerably longer. CSS is written as a script in Matlab 

whereas the watershed algorithm and extended h-maxima transform are built in functions. 

It is expected that coding CSS in a different language will make its running time more 

competitive. However , due to the offiine nature of the application running time is not 

critical for the analysis. 

4 .5.2 C SS vs Ext end h-maxima transform 

The CSS algorithm outperformed the extended h-maxima transform in the exper

iment conducted previously. Here we intend to shed light on the reasons for this . Although 

the six images used in the previous experiment were exactly of the same size their resolutions 

were not ident ical. Slight changes in resolution occur due to differences in magnification 

levels of the microscope. The difference in resolution might have affected the segmentation 

results . The CSS overlap parameter d is constructed as a ratio of two lengths and is there

fore scale independent. This property benefits t he algorithm and CSS consistently segments 

objects regardless of t he variability in the image resolution. 

An image is constructed in figure 4.14 (a long wavy object and two overlapping 

circles) to demonstrate the sensitivity of the extended h-maxima transform to changes in h 

when segmenting a long object and circular object simultaneously. The extended h-maxima 
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"'Two overlapping circles 

Figure 4.14: Image showing three objects, one long wave and two overlapping circles. 

transform was applied to the distance function for 20 values of h spanning uniformly the 

whole range of possible values. Similarly the CSS algorithm was applied with the values of 

d spanning its range [O, 1]. 

The graphs in figure 4.15 depict the number of segmented objects in each case. The 

long wave should be segmented as one object and the overlapping circles should be separated 

into two objects. The highlighted region shows the range in which this segmentation occurs. 

The extend h-maxima transform will only produce the correct results for a very small range 

of h. For larger values of h the circular objects disappear as no marker is placed there. The 

CSS algorithm will yield the correct result for a much larger range of values in d. In this 

experiment the extended h-maxima transform either correctly segmented the long object 

but under-segmented the circular ones or over-segmented the long object while correctly 

segmenting the circular ones. 

A similar experiment was conducted with the binary image in figure 4.5 (a). The 

total possible range for h was between O and 22.2. Only 11 % of this range resulted in 

correct segmentation. The CSS algorithm produced correct segmentation of this image 

when 0.37 :S d :S 0.64 which amounts to 37% of the possible range for d. 
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Figure 4.15: ((a) Segmentation results of extended h-maxima. (c) Segmentation results of 
CSS. Solid lines show the segmentation of t he long object, dashed lines show the segmen
tation of the overlapping circles. The regions of correct segmentation are highlighted. 

4.6 Summary 

Foreground kerogen is segmented from the background by correcting the illumi

nation across the image and then applying a global threshold. Because kerogen is dark in 

colour no edges can be seen when two kerogen objects overlap. In order for kerogen to be 

later classified into inertinite and vitrinite it is necessary to split these overlapping pieces 

into individual kerogen objects. 

The CSS algorithm is applied to the binary image obtained after background 

removal. Centres for each kerogen object are located based upon two input parameters: 

The minimum allowed object size s and the overlap value d. The parameter s is chosen to 

comply with the physical size of the smallest particles of interest, a value for this is proposed 

by domain experts and used elsewhere. The overlap valued is scale independent and causes 

the CSS algorithm to be robust against changes in image resolution. The final segmentation 

is produced by using centres as markers in marker-controlled watershed segmentation. 

A measure of segmentation evaluation S was defined and used to compare other 
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segmentation methods against CSS. It is shown that a good segmentation can be achieved 

using a much larger range in parameter values for CSS compared to the extended h-maxima 

transform method. 

Application of CSS may be sought in various domains, e.g. segmenting cell nuclei 

and setting the initial position of active contours (Clocksin, 2003) or separating pollen 

grains for automated analysis (France et al., 2000). We will be using CSS to segment 

kerogen objects and extract each object into a sub-image of its own. The next step is to 

build a numerical representation for each kerogen object. Kerogen can then be further 

classified into two types: inertinite and vitrinite. 



Nomenclature 3 

B Binary image. 

C Set of centres. 

C* Set of ground truth centres. 

D Euclidean distance function/transform. 

Ns(P) The eight neighbourhood of a pixel p. 

0( q) The ovelap assigned to a centre q. 

S Measure of segmentation quality. 

V List of merging heights found using CSS. 

d The overlap threshold used within the CSS algorithm. 

h Sole parameter of the extended h-maxima t ransform. 

mi Threshold applied to Euclidean distance transform. 

s The minimum allowed size of an object. 
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Chapter 5 

Kerogen classification 

The visible remains of plant materials buried under high pressure and temperature 

are known as kerogen. It is formed from fossilised plant remains which are preserved through 

different redox (reduction-oxidation reaction) processes. 

Kerogen can be classified into two types: vitrinite and inertinite, either one of these 

types are formed depending upon the nature of the preserved material and the conditions 

it has undergone (see section 2.2). Because vitrinite is less carbon rich than its partner 

inertinite, under t ransmitted light microscopy vitrinite is often seen as brown flakes. The 

colour is usually homogenous but can sometimes show residual cell structure. T he term 

inertinite is used because its constituents are more iner t than vit rinite. Inertinite is black 

and homogenous in colour and under reflected light, inertinite has a higher reflectance than 

vitrinite. 

It is very difficult to distinguish between inertinite and vitrinite under transmitted 

light microscopy. Both types of maceral appear either rounded or lath shaped. Inert inite is 

usually lath-shaped, but slight rounding can occur. Vitrinite is usually more rounded than 

inertinite and cell structure can sometimes be seen, mainly towards the periphery of the 

microfossil. A consequence of t his is a sharp distinct out line in iner tinite and possibly a 

softer edging in vit rinite. Figure 2.2 in section 2.2 provides an example of both lath-shaped 
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and rounded inertinite and vitrinite pieces. 

Vitrinite and inertinite can be used to study the geological events of the past. 

For instance, by analysing the colour of vitrinite and inertinite one can determine the 

maximum temperature a sample has experienced. Another important factor to consider is 

the distance from where the sample was taken to the source of deposition. The size and 

shape of vitrinite and inertinite are significant variables in predicting such a distance. Also, 

t he main constituents of the sample site can be determined by investigating the quantitiy 

of vitrinite and inertinite found on the microscope slide. Such measurements are a vital 

component of oil and gas exploration (Tyson, 1998; Tyson and Follows, 2000). 

The differences between inertinite and vitrinite can be seen more clearly under 

reflected light and this is usually how the procedure is accomplished. For our case, one 

of the stages in an automatic system for classifying palynofacies under transmitted light 

is to isolate the kerogen material. Therefore the natural progression is to classify kerogen 

into inertinite and vitrinite under these conditions. The advantages of developing such a 

system are two fold: 1) A human expert is relieved from the task of measuring inertinite 

and vitrinite shape and quantity. 2) The distinguishing features of inertinite and vitrinite 

under transmitted light can be explored. Knowledge of the salient features will help other 

experts (both human and machine) with classification under transmitted light conditions. 

5.1 System overview 

The background of the slide is removed producing a binary image where black 

regions contain mainly kerogen material. The CSS algorithm is applied to find centres for 

each kerogen object. 

Input parameters for CSS include the overlap threshold value d and the allowable 

minimum object size s . Centres are filtered with d = 0.5 and s = 4 for our images of 
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size 2272 by 1704 pixels. The best setting for s can be found by trial and error on a single 

image and then set for subsequent images provided magnification of the microscope remains 

constant. 

The centres found are used as markers in marker-controlled watershed segmenta

tion where the foreground kerogen is segmented into individual kerogen objects. This stage 

in the system is crucial for the final automatic classification of kerogen into interinite and 

vitrinite. It has been demonstrated that if careful extraction of the individual object is 

conducted, followed by a selection of features, even simple classification models will lead to 

good results (Flesche et al. , 2000; Wang, 1995). 

5.2 Classifiers 

Let L be a set containing the possible class labels for an object. A classifier is a 

function whose inputs comprise of features and the output is an element from the set L. In 

the case of kerogen classification L = {inert inite, vi trinite, other}. The label "other" refers 

to objects that are neither inertinite nor vitrinite. These objects are possibly palynomorphs, 

amorphous material or a combination of various microfossils packed together. 

Learning methods for classifiers involve reducing some form of error associated 

with labelling objects in the training data. If the training data is hand labelled then a 

measure of dissimilarity between the classifier labels and training data labels can be used 

as an error value. This is known as supervised learning. When the training data is not 

pre-labelled , clustering algorithms are used to find natural groupings based upon measures 

of similarity or agreement. Training for these methods is known as unsupervised learning. 

Because many similarity measures and cost functions can be applied , different clustering 

algorithms will likely result in different clusters. The number of clusters can be set before 

training begins or the best number can be determined through other types of measures. A 
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clustering algorithm known as the self-organising map (SOM) (Kohonen, 1989) was used 

to group images of palynological samples by Weller et al. (2006). The contour of diatom 

was analysed using a morphological curvature scale space by J alba et al. (2005) . Features 

derived from this were implemented in a K-NN clustering algorithm to identify the objects. 

The classification of fossilised material has been of interest for decades. The earlier 

systems used rule based classifiers (Athersuch et al. , 1994; Liu and Yang, 1994) but recently 

artificial neural networks (ANN) have become increasingly popular (Ballmann et al. , 2004; 

Weller et al. , 2005, 2006). A combination of two ANN's were used to increase the accuracy 

of a single ANN when identifying sedimentary organic matter in palynological preparations 

(Weller et al., 2007). Neural networks have also been used in other microscopy image 

domains, e.g. , classification of pollen spores (Ftance et al., 2000) and polyplankton species 

(Jonker et al., 2000; F. et al. , 1999) . A combination of statistical and knowledge-based 

approach to classification of pollen types has also been suggested by Bonton et al. (2002). 

An ANN can be very sensitive to the parameters that define its construction, e.g., 

t he number of layers and nodes in a multilayer perceptron or the type of activation functions 

used. Initially Weller et al. (2005) used a single ANN with sigmoidal activation function to 

label all microfossil on a palynological slide. Later Weller et al. (2007) found an increased 

accuracy could be achieved using a radial basis function ANN applied to a subset of the 

microfossils. 

We ran experiments with 10 well known classifiers including ANN's. All 10 clas

sifiers have been shown to achieve a good standard on a diverse range of datasets. The 

classifiers are as follows: Naive Bayes (Hand and Yu, 2001), Decision tree (Breiman, 1984), 

Logistic (Hastie et al. , 2001) and Nearest Neighbour (Duda et al., 2001), these are standard 

(simple) classifiers. Next we use neural network classifiers: Multilayer Perceptron (MLP) 

(Bishop, 1995) and Support Vector Machine (SVM) (Cristianini and Shawe-Taylor , 2000). 



Chapter 5: Kerogen classification 107 

The third group of classifiers used, known as classifier ensembles are: Adaboost (Freund and 

Schapire, 1997), Bagging (Breiman, 1996), LogitBoost (Friedman et al., 2000) and Random 

Forest (Breiman, 2001). 

5.3 Training data 

Kerogen objects were extracted automatically using the CSS algorithm, as de

scribed previously, from seven images of slides containing palynofacies. Each kerogen object 

was exported into a sub-image of its own ready for feature extraction. In total 609 kerogen 

objects were found. A total of 32 features were used, as specified in chapter 2, table 5.3. 

All features correspond to numerical values which can be used to represent an object in 

the form of a vector. Let x = (x1, x2, ... , Xn), be a vector representing an object, where 

x1 , x2, ... , Xn are the values of features. In our case x will be of length n = 32. A training 

dataset in the form of a table is created by cataloguing more objects in this manner. Each 

row of the training data corresponds to an object and the columns correspond to feature 

values. In this format the dataset is suitable for t raining an unsupervised classifier. If the 

objects are already labelled i.e. into vitrinite and inertinite then a supervised classifier can 

be trained. 

The majority of the features used are standard features included in the image 

processing package Halcon (MVTec Software GmbH, 2008). These have been used in other 

palynological studies (Weller et al. , 2005) as well as object recognit ion in general (Wang, 

1995; Boucher et al. , 2002). Although some features are derived from other features in 

the group, e.g., compactness is a scaled ratio of area against t he square of the perimeter, 

we include them because a derived feature maybe more important than the features it is 

com posed of. 

Two features that are assumed to be important for distinguishing between the 
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two classes are also included: equant/lath ratio (see section 2.6.4) and rim-variability (see 

section 2.6.3). Inertinite is more prone to fragment into longer, thinner strips than vitrinite 

and the equant/lath ratio is a shape feature that measures this. In some cases the internal 

structure of vitrinite can be seen, mainly towards the periphery of the object. It is hoped 

that the feature rim-variability will detect this. 

A human expert was asked to manually label each of these objects as either iner

tinite, vitrinite or other. Only 8 of these objects were labelled as other and the dataset is 

termed imbalanced. Therefore, we remove the objects labelled as other from our training 

data leaving 601 objects separated into two classes containing 236 inertinite pieces and 365 

vitrinite pieces. 

The final dataset is formed by standardising so that each feature has mean O and 

standard deviation l. 

5.4 Cross-validation 

To determine the accuracy of a trained classifier we will use cross validation. The 

dataset is split into two sections called the training and testing set. We train the classifiers 

on the training set and then calculate its accuracy on the testing set by measuring the 

proportion of correctly classified samples. k-fold cross-validation partitions the dataset into 

k subsamples. One subsample is used for testing and the other k - l are used for training. 

This process is carried out k times where each of the k subsamples/folds are used exactly 

once for testing. The partitioning can be constructed so that each fold is stratified and 

contains approximately the same proportion of classes as in the whole dataset. At this 

point the k accuracies can then be averaged. However, to remove a bias towards the initial 

partitioning of the dataset the whole process is repeated n times each time using a different 

partitioning. The final accuracy obtained is found by averaging the nxk results. In this 
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study we choose to use 10-fold cross-validation 10 times. 

5.5 Comparing classifiers 

To compare classifiers we test the significance of the difference between their mean 

accuracies against one another. Let (xi, ... ,xN) and (Yi, ... ,YN) be the mean accuracies 

from the N = nk experiments for classifier X and Y, respectively. A new distribution 

is formed (di, ... , dN) by calculating the difference between the means of classifier X and 

Y for each experiment i.e. di = Xi - Yi · If we have enough experiments/samples then 

(di, . .. ,dN) has a normal distribution with mean equal to 

(5.1) 

An estimate of the true variance of the differences is found by dividing the variance of the 

set (di, ... , d N), a-~ by N. This estimate is used within the paired t-test to determine if the 

two classifiers are equivalent. If this is true then the true mean of the differences will be 

zero, we test this null hypothesis using the t statistic 

(5.2) 

The null hypothesis is rejected if µd falls outside the 95% confidence interval for the dis

tribution of the differences. T he limits of the interval are transformed to limits within the 

t-distribution (Venables et al., 1999). Hence, if t falls above or below these limits we reject 

the null hypothesis. This is known as the paired t-test(Demsar, 2006) and can easily be 

conducted in Weka,1. In a similar way we can also test to see if the mean of classifier X is 

greater than classifier Y and vice versa. 

However , there is criticism that traditional estimates of the true variance does 

1 Weka .is a free so~ware environment for machine learning and data mining. http ://www. cs . waikato . 
ac.nz/ml/weka/ 
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not account for variability in the choice of training data. Traditional estimates can lead to 

underestimation of the variance and an incorrect conclusion that one classifier is statist ically 

better when it is not, e.g., increasing the number of folds will ultimately produce a significant 

difference because the value oft is only bound by the size of the training data. To answer 

this, a corrected est imate of the true variance is proposed by Nadeau and Bengio (2003) 

and used in Weka for performing a paired t-test. The corrected estimate of the variance is 

as follows: 

, 2 _ ( 1 + Ntesting ) 2 crd - - crd , 
N N training 

(5.3) 

where N testing and Ntraining are the number of testing and training samples respectively. 

Hence, the t statistic becomes 

5 .6 Logistic classifier 

µd 
t = ---;:==c:====--

1._ + Ntesting er 
N Ntraining d 

(5.4) 

Let x be the object to be classified , where x = (x1, ... , Xn) E Rn. Let w1, ... , We be 

the class labels, P( wi ) be the prior probabilities and P( Wi Ix) be the posterior probabilities 

for the classes, i = 1, ... , c. The logistic classifier relies on the assumption that the log-odds 

of the posterior probabilities for any two classes can be approximated as a linear function. 

Without loss of generality, we can pick class We and fix its discriminant function to be 

ge(x) = 0 for any x. The remaining c - 1 discriminant functions are calculated as 

n 

f3iO + L /3ijXj, i= l , .. . ,c - 1, 
j=l 

where f3ij, are the coefficients obtained through training the classifier. The training is 

done by the Iterative R eweighted Least Squares {IRLS) method using the N ewton-Raphson 
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updates (Bishop, 2006). 

For a two class classification problem let g2(x) = 0, without loss of generality. The 

only disciminant function required is g1(x) and this forms a hyperplane which splits the 

space of features into two areas, one above and below the hyperplane. Each area corresponds 

to a class label. An estimate of the posterior probability P( w1 Ix) for labelling an object 

as class w1 is l+exp(~gi(:i:)). Hence the posterior probability for labelling the same object 

as class w2 is P(w2lx) = 1 - P(w1lx) and is estimated as 1~:~~(~~~(~)). These posterior 

probabilities can be used as certainties of classification. For example, a higher degree of 

certainty can be given to the classification of x into class w1 if the posterior probability 

P( w1 Ix) is near 1 rather than just above 0.5. 

5. 7 Classification experiment using all features 

We used the Weka (Witten and Frank, 2005) implementation of the 10 classifiers 

in table 5.1 using their default parameter settings. The dataset for kerogen objects obtained 

in section 5.3 was used and the accuracy for each classifier was assessed using 10-fold cross

validation (Kuncheva et al. , 2008). Each fold contains approximately 60 objects that are 

used for determining the accuracy. This was repeated 10 times, therefore the accuracy is 

found as an average of 100 results. The average classification accuracies for each classifier 

are shown in table 5.1 along with their standard deviation. 

The logistic classifier has the highest accuracy and the lowest standard deviation 

and appears to perform best among the other classifiers. All classifiers are tested against 

the logistic classifier using the paired t-test. The classifiers which were significantly worse 

than the Logistic classifier according to the paired t-test are marked by a bullet in Table 

5.1.2 

2
We note that the significance cannot be re-confirmed from the accuracies and the standard deviations 
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Table 5 .1: Accuracy of the ten classifiers for the kerogen data set ( 10 times 10-fold cross
validation) . 

Type Classifier 

Naive Bayes (Hand and Yu, 2001) 
Standard Decision tree (Breiman, 1984) 
classifiers Logistic* (Hastie et al., 2001) 

Nearest Neighbour (Duda et al., 2001) 

Neural MLP (Bishop, 1995) 
networks SVM (Cristianini and Shawe-Taylor, 2000) 

AdaBoost (Freund and Schapire, 1997) 
Classifier Bagging (Breiman, 1996) 
ensembles LogitBoost (Friedman et al., 2000) 

Random Forest (Breiman, 2001) 

*Chosen as the base for comparison 

• The classifier is significantly worse than the chosen classifier 

Accuracy[%] ± std 
All features Top 6 features 

81.38± 5.36 • 85.11± 4.36 • 
84.01± 4.53 • 86.94± 4.20 • 
89.07± 3.44 90.62± 3.87 
82.58± 4.41 • 85.84± 4.38 • 

87.95± 4.07 89.29± 3.66 
88.17± 4.26 90.07± 3.95 

84.51± 4.59 • 85.09± 4.44 • 
87.32± 4.47 88.06± 4.29 
85.96± 4.38 • 87.14± 4.21 • 
86.71± 4.57 88.07± 4.15 • 

To reinforce the finding that the Logistic classifier is the best for our data, we 

counted the Win/Draw /Loss score for each classifier. For a given classifier X , Win is the 

number of classifiers significant ly worse than X in the paired t-tests, Loss is the number 

of classifiers significantly better than X, and Draw is the remaining number of classifiers 

where no significant difference has been detected. A measure of total performance of X 

is therefore Total = Win- Loss. Table 5.2 shows the results for the ten classifiers in this 

study sorted by the Total measure. The Logistic classifier is again the best one among the 

selected 10 classifiers. 

5 .8 Feature selection 

It is commonly known that an improved performance for a classifier can be ob

tained using a subset of the original features by removing the "noisy" ones. Not only 

shown in the table because the t -tests were paired across the 100 testing resul ts. 
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Table 5.2: Number of statistically significant Wins, Losses and Wins-Losses for the 10 
classifiers on the kerogen data 

Classifier Total score Win Loss 
Win- Loss 

Logistic 5 5 0 
Bagging 4 4 0 
SVM 4 4 0 
MLP 4 4 0 
Random Forest 2 2 0 
LogitBoost 1 2 1 
AdaBoost - 3 1 4 
Decision tree - 4 0 4 
Nearest neighbour - 6 0 6 
Naive Bayes -7 0 7 

does this lower the dimensionality of the data and speed up the learning process of some 

classifiers, but it can also result in better classification accuracy. 

The accuracy of a classifier trained using a subset of features is used to assess the 

importance of this subset. Any classifier can be used but, we have chosen to use the logistic 

classifier. 

A greedy stepwise approach to feature selection can be implemented directly in 

Weka. A single feature producing the best accuracy score is selected first. This feature is 

ranked 1. Out of the remaining features the one that produces the highest accuracy when 

paired with the first feature is selected second and given a rank 2. It should be noted that 

a negative increase in accuracy can occur when another feature is added ; in this case the 

feature with the smallest decrease in accul'acy is chosen. This process continues until there 

are no remaining features. The last feature chosen in our experiments will be ranked 32. 

Feature selection in this manner is repeated 10 times, one run for each fold of the 10-fold 

cross-validation. By averaging the 10 ranks for each feature, obtained from the 10 folds, we 

have a measure of "importance" for that feature. 
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Figure 5.1: Classification accuracy versus size of the selected feature subset. The bars 
indicate the 95% confidence intervals. 

To evaluate the contribution of each feature, we split the data randomly into 90% 

for training and 10% for testing and repeated the experiment 100 times. Figure 5.1 displays 

the averaged ( testing) classification accuracy of the logistic classifier as a function of the 

number of selected features, chosen in order of their ranks ( smallest rank first). A horizontal 

line is placed at 6 features to show that beyond that point the accuracy levels off and then 

declines, which signifies overtraining of the classifier. Therefore we propose to proceed with 

t he top 6 features: mean red, mean blue, entropy, inner radius, rectangulari ty and diameter. 

Table 5.3 display these features according to their ranks . Surprisingly the features thought 

to improve accuracy of classification, equant/lath ratio and rim variability, were often picked 

towards the end of the feature selection procedure, bestowing upon them a poor ranking. 

The discriminant function g(x) = /3o + I:1=l /3jXj for an iner tinite object is found 

by training the logistic classifier on all 601 objects using t he top 6 features, where x1 , .. . , X6 

are the features and /31, ... , /36 are the weights associated with each feature. A positive 

weight implies that t he associated feature increases the posterior probability of an inertinite 

object. A negative weight decreases the posterior probability of an inertinite object. We 

can use this to form a descript ive discrimination between an inertinite object and vitrinite 
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Table 5.3: Features ranked by the greedy stepwise selection procedure with the logistic 
classifier (average of 10-fold cross-validation). 

Feature Accuracy±std Rank±std 

1 mean red 0.816 ± 0.055 1.20 ± 0.60 
2 mean blue 0.875 ± 0.044 2.00 ± 0.00 
3 entropy 0.888 ± 0.040 2.80 ± 0.60 
4 inner radius 0.897 ± 0.038 4.80 ± 1.60 
5 rectangulari ty 0.900 ± 0.036 9.60 ± 4.22 
6 diameter 0.902 ± 0.036 10.30 ± 4.75 

object under transmitted light microscopy. 

Using the weights shown in table 5.4, we can firstly deduce that an inertinite ob

ject is more blue than a vitrinite object, which should appear more red in colour. Secondly 

the size features of an inertinite object both have negative weights, indicating that larger 

objects are more likely to be vitrinite; a conclusion which follows with our original un

derstanding that inertinite is more easily fragmented than vitrinite. Thirdly an inertinite 

object should appear less rectangular than a vitrinite object; this is surprising because as 

inertinite becomes more fragmented its appearance becomes more lath shaped with strong 

angular edges. Finally, the feature entropy characterises the texture of the object, the more 

entropy the more rough the object will appear. This feature has a negative weight and we 

can conclude that as entropy for an object increases the chances of it being inertinite de

creases. Therefore, inertinite is smoother in appearance to vitrinite; a fact we have already 

discussed in a previous chapter where it was stated that the internal structure of vitrinite 

can be seen , mainly towards the periphery of the object. Two prototypes from each class 

are displayed in table 5.5. These objects were selected as the closest to the respective class 

means using the top 6 (standardised) features. 

Classification accuracy using the top 6 features for each classifier is shown in table 

5.1. Again t he logistic classifier gains the highest average accuracy above all other classifiers 
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Table 5.4: Weights associated with features for the discriminant function of an inertinite 
object found using logistic regression. 

------------
Feature 

Mean red 
Mean blue 
Entropy 
Inner radius 
Diameter 
Rectangulari ty 

Weights (Jj 

-3.0330 
1.9050 

-2.0160 
-0.5118 
-0.3873 
-0.3388 

Table 5.5: Inertinite and vitrinite prototypes including their top 6 feature values (standard
ised across all 601 objects). 

----'------------------
Inertinite Vitrinite 

Mean red: -1.0869 Mean red: -0.2482 
Mean blue: 0.4287 Mean blue: -0.4274 
Entropy: -0.6890 Entropy: 0.4284 
Inner radius: 0.7438 Inner radius: -0.2319 
Diameter: 0.4179 Diameter: 0.0101 
Rectangularity: 0.1626 Rectangulari ty: -0.4043 
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Figure 5.2: A plot showing the results of the logistic classifier when visualised using the top 
2 features. Miss-classifications are highlighted with red circles and squares. 

after 10 times 10-fold cross-validation. The paired t-test shows that is it significantly better 

than the majority of the other classifiers. We have chosen to use the logistic classifier in our 

system for labelling kerogen objects due to its high accuracy and simplicity. It is interesting 

to note that the resubstit ution error of the logistic classifier trained on the top 6 features 

is 91.01 %. This is not much different to the estimated accuracy using 10 times 10-fold 

cross-validation. 

The results of the logistic classifier trained and tested on all 601 kerogen objects 

using the top 6 features is illustrated in figure 5.2. Each object is plotted as a point 

projected onto the 'mean red', 'mean blue' axes. If the logistic classifier has identified an 

object as inertinite then it is plotted as a blue dot, otherwise it is classified as vitrinite and 

plotted as a black cross. Miss-classifications of inertinite are highlighted by red circles and 

miss-classifications of vitrinite are highlighted by red squares. 
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Figure 5.3: (a) Historgram displaying the posterior probabilities of a kerogen object being 
labelled as inertinite. (b) Histogram displaying the posterior probability of labelling a 
miss-classified object. 

5. 9 Further analysis 

The posterior probabilities for labelling an object as inter tinite using the logistic 

classifier are shown as a histogram in figure 5.3(a). T he shape of the histogram indicates 

that the majority of objects are classified with a high certainty. 

Allowing the classifier to opt out of making a decision if the posterior probability 

for an assigned class is lower than a certainty threshold may help decrease the number of 

miss-classifications. The posterior probabilit ies of the 54 miss-classified objects is shown as . 

a histogram in figure 5.3(b ). Not ice that t he probabilit ies span t he whole interval between 

0.5 and 1. This indicates t hat a certainty threshold is unlikely to improve the system's 

accuracy. 

Out of the 54 miss-classified objects, 28 were miss-classified as inertinite. A second 

expert confirmed that 9 objects out of this 28 were correctly labelled by our classifier. The 

second expert also agreed that 13 of the 26 objects miss-classified as vitr inite were in fact 

correctly labelled, but an addit ional 7 objects should be labelled as class "other" . In total 
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Table 5.6: Table showing classifier accuracy on objects where both experts agreed on labels. 

Agreed label Vitrinite Inertinite 

Classifier Accuracy 91.1 % 95.2% 

the second expert agreed with the classifiers supposedly wrong decision 22 times out of 54 

(41 %). 

From this we can conclude that the ground truth obtained is expert-specific. It was 

highlighted by Athersuch et al. (1994) that fossil ident ification is often a personal science. 

A classifier trained from the opinion of one expert can only ever be as good as that expert. 

Therefore, when designing a system for fossil identification a consensus between experts 

should be considered to form a ground truth . For our system, the fact that the two experts 

disagree means that the definition between vitrinite and intertinte is not clear-cut (under 

transmitted light microscopy) and the classifier should not be penalised for making decisions 

between borderline cases. 

The accuracy of the trained classifier against objects where both experts agreed 

on labels is listed in table 5.6. The high accuracies give us confidence that classification 

with the logistic classifier will be agreed upon by more than one expert. 

5.10 Classification stability 

The classification label automatically assigned to a kerogen object does not depend 

solely upon the classification stage of the system. It is also important to assess the sensitivity 

of classification accuracy to changes in previous stages. In this part of the chapter we intend 

to analyse the accuracy of the logistic classifier when alterations are made within the kerogen 

segmentation stage ( Charles et al., 2009). 

The CSS algorithm (see chapter 4) depends upon two parameters, sand d. Objects 



Chapter 5: K erogen classification 120 

below a certain size are removed from the system before entering the classification stage by 

using the threshold parameter s . If we wish to allow changes in the microscope resolution 

t hen s is scaled accordingly, otherwise s remains constant. Hence, s is assumed to be a 

fixed "component" of the system. The only remaining variable is the overlap value d, which 

is used to split objects based upon their degree of overlap. 

Before we begin to assess the stability of classification accuracy with regard to 

alterations in d, it is necessary for us to first investigate the mechanics behind segment ing 

kerogen objects using CSS. This requires a deeper understanding of the formation of centres. 

5.10.1 Hierarchical structure of centres 

CSS outputs a list C containing all possible centres of objects and a list V contain

ing their corresponding merging heights. After some objects have been removed according 

to the value of s another filter is applied which removes centres that have a degree of over

lap greater than d. The formation of centres with respect to their overlap value is best 

visualised in the form of a hierarchical tree. 

M erging centres 

During the CSS algorithm a decreasing sequence of thresholds mi are applied to 

the distance function D. Threshold mi generates a black and white image Bi. Let Ki be 

the set of connected components in Bi . Lowering the threshold causes new connected com

ponents to form i.e. centres, and other connected components to merge. A new definit ion 

describes the behaviour of centres as their corresponding connected components begin to 

touch/merge: 
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D efinition 8 . Two centres p and q merge if there exists a pair of consecutive 

thresholds m i - l and mi such that 

1). At threshold mi-l, p and q are contained within two different connected 

components in K i-1 · 

2). D(p) is the largest distance function value within the connected component 

in K i-1 containing p. 

3). D(q ) is the largest distance funct ion value within the connected component 

in K i-1 containing q. 

4). At threshold mi, p and q appear in the same connected component of K i. 
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To illustrate the concept of merging centres, consider the binary image in figure 5.4 

(a). The CSS algorithm will first store centre 1, the corresponding connected component 

will grow until centre 2 appears. Next centres 3 and 4 will appear as the third and fourth 

connected components. As the threshold on the distance function mi is lowered, t he con

nected components with centres 2 and 3 join into a single connected component. This means 

that centres 2 and 3 merge ( definition 8). At this instant centre 3 will receive its degree 

of overlap, d3 = 0.4453. Finally, t he connected component containing centres 2 and 3 will 

join that of centre 1, making centres 1 and 2 merge and giving cent re 2 a degree of overlap 

d2 = 0.1150. Note that centre 3 does not merge with centre 1 because it violates one of 

conditions 2 or 3 of the definition. For centres 1 and 4, d1 = 0 and d4 = 0. To summarise: 

centres 2 and 3 merge then centres 1 and 2 merge. 

Hierarchical tree of centres 

A hierarchical tree for each centre with zero overlap can be formed that describes 

the behaviour of merging centres with respect to their overlap value. Each layer of the tree 

represents a degree of overlap, where higher layers mean larger overlap values. First , we 
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Figure 5.4: ( a) An artificial image with 4 overlapping circular objects. (b) Two hierarchical 
trees of centres for the two connected components in (a). Nodes have been annotated with 
the number of each centre 

take K + 1 samples of the overlap range [0, 1) which must include the value 0. Let the 

sequence of sorted sample values be denoted by do = 0, d1, ... , dn. The centres with do = 0 

are taken to be root nodes of trees. All trees will be built to the same height, dn. A layer 

at height di contains all centres, that also act as nodes, from the set Ci, where 

Ci = {p E CJ overlap value of p , O(p) :s:; di}. (5.5) 

We note that Ci ~ Ci+l ~ C, where C is the set of all cent res (found before applying the 

overlap threshold). A branch between two nodes p E Ci- 1 and q E Ci is drawn if p is a 

parent of q. This leads us to define the term parent: 

Definition 9. Node p E Ci-1 is a parent of node q E Ci if either 

1.) p = q , or 

2.) p and q merge and q €/: Ci-1· 

Some layers will contain exactly the same centres as in other layers. This depends 

upon the sampled values do = 0, d1 , .. . , dn,· Including repeated layers in the tree will add 

no new relevant information. A tree where every layer contains a different set of centres can 

be formed when do = 0, d1, ... , dn corresponds to the exact overlap of centres in C, with 
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no repetitions. A tree produced in this way will guarantee no loss of information about the 

formation of centres. 

The construction of such a tree is illustrated using our example image in figure 

5.4 and is formed using 3 samples from the overlap range [0, 1): do = 0, d1 = 0.1150, 

d2 = 0.4453. These values are chosen because they correspond to the exact overlap value 

of the centres in C for our image. Branches between nodes in the t ree are drawn according 

to definition 9. 

The final tree is displayed in 5.4 and can be used to visualise the result of filtering 

centres at certain overlap values. The centres found as a result of thresholding overlap at d 

are all located in the layer at a height equal to d or the nearest layer below d. For example, 

if the overlap threshold d is set at 0.3, our image will be segmented into three objects, so 

that objects 2 and 3 will be taken as one. For overlap threshold 0.4453 ~ d ~ l four distinct 

objects will be detected. 

5.10.2 Label inheritance trees 

Varying the overlap value of d alters t he number of centres produces by CSS and 

hence the corresponding segmentation. Thresholding overlap at d = 0 will result in a centre 

for each connected component of the original binary image. These connected components 

will be split into an increasing number of objects as the value of d is raised. Similarly, 

connected components merge with one another as the value of d decreases. 

To assess the accuracy of a classifier for different segmentations using CSS, all 

objects found for various values of d must have labels that are considered to be ground 

truth . In practice the task of labelling each of the objects is laborious and t ime consuming. 

This is especially so in the case of kerogen classification where the spare time of a human 

expert is limited, and the number of segmented objects at high values of d for a single 



Chapter 5: I< erogen classification 124 

image can exceed 250. We propose estimating the ground truth label of objects extracted 

at various values of d using the hierarchical tree of centres. 

To carry out a classification experiment for different values of d one requires a 

mapping f i : Ci _, L, where L is t he set of possible class labels. Provided there exists one 

single layer of the tree at height dk that has been labelled by a human expert, then the 

mapping f k is known. We estimate the mapping Jj for all nodes on layer Cj as follows: 

if j > k 

if j < k 

Let q E Ck be a node connected top E Cj . Then Jj(p) = f k(q). 

We form a set Q = { q E Ck I q is connected to p E Cj}. The nodes in Q represent 

objects. We calculate the areas of these objects and attach them to the corre

sponding nodes in Q. Then Jj(P) = weighted vote of set {fk(q) I q E Q}, where 

the areas of the objects are used as weights. 

For example, suppose that an object labelled as vit rinite at an overlap threshold 

d = 0.5 is split up into smaller pieces by increasing t he overlap threshold. According to the 

adopted procedure, each small piece will be also labelled as vitrinite. On the other hand, 

consider two objects - a large piece of inert inite and a small piece of vitrinite with a high 

overlap degree. At some value of the overlap parameter d < 0.5 these two objects will be 

merged into one. Since the inertinite piece occupies more area than the vit rinite piece, the 

weighted vote will label the combined object as inertinite. 

To illust rate the use of a label inheritance tree we utilise the binary image in 

figure 5.5(a), displaying three overlapping pieces of kerogen. These three pieces can be 

segmented successfully using CSS with the overlap threshold set at d = 0.5. Next, a human 

expert manually labels them as either vit rinite or inertinite. For illustration purposes we 
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(a) (b) 

Figure 5.5: (a) Binary image displaying three overlapping pieces of kerogen. (b) Kerogen 
successfully segmented using CSS at d = 0.5 and then labelled by human expert. Red and 
blue represents a vitrinite and inertinite object, respectively. 

have shown the segmentation and labelling in figure 5.5(b) where the object labelled as 

vitrinite is in red and the two inertinite objects are blue (this is the ground truth labelling) . 

A hierarchical tree of centres is constructed for the binary image in figure 5.5(a) 

with a sampling of do = 0, d1 = 0.1 , d2 = 0.2, ... , d10 = 0.9, d11 = 1. For clarity we reduce 

the number of nodes in the t ree by obtaining centres on a scaled down version of this image. 

These centres are then mapped back to the original image. The tree is shown in figure 5.6. 

The layer of the t ree at height d6 = 0.5 has been expertly labelled and highlighted in a 

yellow box, we call this the known layer. The nodes have been coloured red if vitrinite and 

blue if inert inite. The labels for objects in other layers of the tree have been inferred from 

the known layer as explained previously. Figure 5.7 shows the segmentations associated 

with layers do = 0, d1 = 0.1 , d4 = 0.3 and d10 = 0.9. Each segmentation has been coloured 

according to the inherited label. 

Various trees can be constructed by altering the samplings do = 0, d1 , ... , dn, Sup

pose each one of these trees has an identical known layer , containing the same set of centres 

and labels. It is interesting to note that any non-labelled object, common in each tree, will 

inherit exactly the same label regardless of what tree is used. 
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Figure 5.6: Label inheritance tree for binary image in figure 5.5(a). Red nodes represent 
vitrinite and blue nodes represent inertinite. 

do = O 

-
d10 = 0.9 

Figure 5.7: Segmentation of overlapping pieces of kerogen corresponding to layers do, d1 , d4 

and d10 of the label inheri tance tree in figure 5.6. The colour of the objects corresponds to 
the label inherited from a segmentation at d6 = 0.5. Red denotes vitrinite and blue denotes 
inertinite. 
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5.11 Stability experiment 

Before measuring classification stability, let us recap on the previous classification 

experiment. Kerogen was automatically segmented from seven microscopy slides of size 

2272 by 1704 pixels using CSS with parameters s = 4 and d = 0.5. The 609 kerogen objects 

obtained were hand labelled by human expert as discussed in section 5.3. F\·om these objects 

8 were classified as "other" and removed from the dataset. A logisitic classifier was trained, 

tested and found to achieve accuracy of 89.07% when using all features. 

The stability experiment measures the sensitivity in the accuracy of the logisitic 

classifier for various segmentations produced using CSS with different values of overlap d. 

To train the classifier for each segmentation, ground truth labels are required. These labels 

were estimated from the expertly labelled objects, segmented at d = 0.5, using the label 

inheritance tree (see section 5.10.2). 

A label inheritance tree was formed using 11 layers by sampling the overlap range 

at do = 0, d1 = 0.1 , d2 = 0.2, ... , d10 = 0.9, du = 1. The known layer at d5 = 0.5 consists 

of 609 centres included the objects labelled as "other" . T he 10 other layers were given 

estimated labels according to the procedure of label inheritance. A dataset for each overlap 

value d = di, corresponding to each layer of the tree, was formed consisting of inertinite, 

vitrinite and other objects. Each object is represented using all 32 features. 

The logistic classifier was trained on the 601 kerogen objects extracted using CSS 

at d = 0.5 (excluding the objects expertly labelled as "other" ). Accuracy of the classifier 

for each of the 11 new datasets, produced at different overlap values d = di is obtained 

through 10-fold cross-validation and repeated 10 times. Objects labelled as "other" in the 

label inheritance tree were counted as an error in the classification. The desired result 

would be a high accuracy across all overlap values d = di . A classifier exhibiting this type 
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Figure 5.8: ( a) Stability of the logistic classifier on various feature sets. (b) Dataset sizes 
at different levels of the overlap threshold d. 

of behaviour would be deemed robust against the output of the CSS algorithm. 

Figure 5.8(a) shows the accuracy of the logistic classifier using all features as a 

function of the overlap threshold. We also ran experiments for other groups of features: 

colour, size, texture and shape. The accuracy-overlap graphs for these groups are plotted 

in figure 5.8(a). The means and standard deviations across the values of d are shown in 

table 5.7. The standard deviation is used as a measure of stability, the lower this value the 

more stable the classifier is to changes in d. Here we notice that all sets of features behave 

fairly similarly, indicating high stability of the system across the overlap threshold. 

When using all features, t he observed average accuracy is 86.5%. This is slight ly 

lower than the accuracy (89.07%) obtained when using only a single dataset of kerogen 

objects, extracted with overlap threshold d = 0.5. However , this is still acceptable for the 

purposes of kerogen classification. 

The consistently high accuracy of the classifier is a reflection of the fact that some 

objects are "stable", i.e. these objects will be present in the majority of datasets for each 

value of d. Stable objects will therefore acquire the same labels as in the training set (known 
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Table 5.7: Mean and standard deviation of the classification accuracy 

Feature set Mean Standard deviation 

All 86.50% 3.33% 
Colour 83.20% 2.22% 
Texture 79.20% 1.85% 
Size 73.00% 4.75% 
Shape 75.13% 3.37% 

layer). In other words, the testing sets contain a large proportion of the training objects. 

The recognition rate does not suffer a significant drop even for large changes in the overlap 

threshold d, signifying good quality of the CSS algorithm and that of the whole system. 

Figure 5.8(b) shows the number of objects in each of the 11 data sets. Viewed 

together with figure 5.8(a), indicates that the recognition rate deteriorates for larger number 

of objects but is levelled as the objects are aggregated into bigger ones (smaller d). 

Table 5. 7 shows that colour features strike the best balance between accuracy and 

stability compared to the other three groups (texture, size and shape) . There are two 

reasons for this. Firstly, it was the colour features mean red and mean blue that ranked 

the highest in our feature selection experiment (see section 5.8). So we can expect that 

their overall performance will be better than that of the other feature groups. Secondly, 

colour features are robust against an object being broken into smaller pieces, whereas shape 

and size features would not be. This explains the decline of accuracy for the shape and 

size features toward the end of the graph in figure 5.8(a) and the relatively unchanged 

accuracy of colour and texture features. In fact, texture features exhibit the best stability 

across different values of d. However it is illustrated in figure 5.8(a) that regardless of d, 

using all the features ensures better accuracy than any of the feature groups alone. One 

possible avenue for improvement would be to use feature selection methods to increase 

overall accuracy and improve stability. For example, perhaps the combination of colour and 
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texture features will produce a higher and more stable accuracy t han using all features. 

Furthermore, reducing the set of features will result in a decrease in execution time. 

5.12 Summary 

Ten well known classifiers were trained and tested on a dataset of kerogen objects 

obtained using CSS with overlap threshold d = 0.5. The classifiers were compared using a 

paired t-test and it was discovered that the logistic classifier faired best. 

Using all 32 features the logistic classifier has accuracy of 89.07% for labelling kero

gen objects as either inertinite or vit rinite. An improved accuracy was obtained through 

a greedy stepwise feature selection procedure, where six of the best features were chosen. 

This increased the accuracy of the classifier to 90.62%. Through analysing the weights as

signed to each feature by the trained logistic classifier, a descriptive discrimination between 

inert inite and vitrinite was formed under transmitted light microscopy. 

It is important to assess the stability of the logistic classifier to alterations made 

within the segmentation stage when one applies CSS. This was accomplished by further 

analysis of the CSS algorithm, through means of a hierarchical tree of centres. Provided a 

single expertly labelled segmentation is obtained , these trees can be used to estimate the 

labels of objects at various values of overlap threshold d. We call such trees label inheritance 

trees. 

Label inheritance trees were used to label kerogen objects for 11 different values of d 

forming 11 different datasets . A trained logistic classifier tested on each one of these datasets 

was found to be stable with respect to the overlap threshold d. This is an encouraging finding 

and gives us ground and confidence to develop the system into a commercial product. 



Nomenclature 4 

C Set of centres. 

Ci Set of centres at height di within the hierarchical tree of centres. 

D Euclidean distance function/transform. 

L Set of possible class labels. 

O(q) The ovelap assigned to a centre q. 

V List of merging heights found using CSS. 

d The overlap t hreshold used within the CSS algorithm. 

di A sampled overlap value from the range [O, 1). 

Ji A mapping from the set Ci to the set L. 

9i Discriminant function. 

s The minimum allowed size of an object. 
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Chapter 6 

Complete palynomorph recognition 

Having developed a system for automatic kerogen classification, attention now 

focuses on the recognition of palynomorphs. Our ultimate goal is to individually segment 

these types of organic microfossil from the image and label them into their respective classes. 

The first step in accomplishing this is to isolate palynomorphs t hat are suitable for input 

into a classification system (Charles, 2009) . 

Palynomorphs are a pale to brown organic microfossil exhibiting a sharp distinct 

outline with maybe some internal structure. They are noticeably different to amorphous 

material which does not possess a specific shape, structure or obvious outline. Various types 

of palynomorph can be seen in section 2.1, figure 2.1. 

The varieties of palynomorph we are particularly interested in are those which 

present an elliptic/spherical morphology. These types of pa.lynomorph can come from a 

number of different classes but particularly spores, pollen and acritarchs, a term first intro

duced by Evitt (1963) . There are a large amount of these types of pa.lynomorph preserved in 

the geological record, proving extremely useful for quantitative biostratigraphic and palaeo

biological studies. Figure 6.1 shows example palynomorphs with elliptic shape. 

Some of the numerous difficulties associated with detecting and segmenting paly

nomorphs automatically have been highlighted in figure 6.2(a). Firstly, the process used to 

132 
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Figure 6.1: Examples of complete elliptic/ spherical palynomorphs 

arrange the palynomorphs on the microscope slide is haphazard. This causes clumping and 

overlapping of the organic material which increases the complexity of distinguishing between 

single palynomorphs, even by human eye. Secondly, their structure is deformable and pa

lynomorphs can be found torn, squashed and folded around one another (see figure 6.2(d)). 

T hirdly, some palynomorphs are semi-ttansparent . When semi-t ransparent palynomorphs 

overlap , the outer edges of each overlapping palynomorph can be seen, even if t hey are 

underneath other palynomorphs (see figure 6.2(b-c)). T his can cause problems when t rying 

to extract individual palynomorphs by fitt ing ellipses to edge information. For example, 

a Randomized Hough Transform as proposed by McLaughlin (1998) can be applied to the 

edge data in order to detect ellipses. However, it was found that this type of approach was 

extremely slow and inaccurate for our images. Furthermore, due to semi-transparency, the 

colour of the overlapping palynomorphs is non-homogeneous. Alterations to the colour will 

occur at the areas of overlap, increasing the intr icacy in locat ing a complete palynomorph 

(see figure 6.2(b) ). 

Current automatic classification systems work well on complete, isolated microfos

sils. Microfossils t hat are physically or visually distorted will be very difficult to classify by 
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(b) (c) (d) 

Figure 6.2: (a) Typical example of microscopy image containing palynofacies.(b) Colour 
changes occur due to overlapping of the palynomorphs. (c)The semi-transparent nature of 
palynomorphs causes edges of palynomorphs occluded by other palynomorphs to be seen. 
(d) P alynomorphs squashed , torn and folded 
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such systems. In our case palynomorphs are heavily overlapping and have folded over each 

other or occluded one another. An expert system for recognising microfossils under these 

types of conditions does not yet exist. Therefore, ideally a segmentation procedure will 

isolate non-folded , non-torn and non-squashed palynomorphs. Unfortunately the problems 

associated with palynomorph segmentation listed above, hinder an unsupervised segmenta

tion procedure to such an extent t hat improper segmentation is inevitable. 

Therefore, we propose a method subsequent to microfossil segmentation which will 

automatically detect segmented regions that contain a single, complete, elliptic/ spherical 

palynomorph. 

6.1 Microfossil segmentation 

Microfossils found on a slide containing palynofacies can be broadly classified into 

3 groups: Kerogen, palynomorphs and amorphous material. It has been shown that images 

of single particles can be recognised automatically with an accuracy of 87% (Weller et al. , 

2005). However for a slide containing many particles it is necessary to first locate and 

extract them individually. 

The background of the slide is removed using the Crossing Stripe Parabolas method 

(Charles et al. , 2008b ), detailed in section 3.4. This time the threshold was set so that the 

black regions in the resultant binary image represent the kerogen, palynomorph and amor

phous material and white regions are classed as background. An example of background 

segmentation for the image in figure 6.2(a) is shown in figure 6.3(a) . The next step is to 

split up the black regions using a suitable segmentation algorithm in an attempt to isolate 

palynomorphs. 

We have chosen to use the Centre Supported Segmentation (CSS) (Charles et al. , 

2008a) as our method of segmentation. This technique works well when segmenting kerogen 
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pieces and can be applied to any binary image separated into foreground and background. 

In previous chapters we have shown this method to be insensit ive to small changes in its 

parameters, simple to implement and relatively quick to execute. 

Although ellipse detection could be applied to an edge image of the slide, it was 

found to be slow and inaccurate. This was due to a) most of the palynomorphs on a slide are 

not perfect ellipses and b) noise in the edge image. On the other hand CSS is robust against 

noise and changes in object boundaries and can be controlled to only segment regions which 

overlap up to a certain limit. Heavily overlapping regions will not be segmented and this 

reduces t he number of segmented regions containing visually distorted microfossils. 

To illust rate the results of CSS used in this manner, we applied CSS to the binary 

image in figure 6.3(a) containing all microfossils. CSS was used with settings s = 4 and 

d = 0.5. Separation lines are found through marker controlled watershed segmentation, with 

centres acting as markers. Figure 6.3(b) shows the final segmentation of the microfossils 

by overlaying these lines in white on top of the binary image. In order to visualise this 

segmentation in context of the original microfossils colour information from the original 

image can be added back to t he black regions of the binary image. The results of this can 

be seen in figure 6.4. T he types of segmented objects fall into three categories: complete 

palynomorphs, non-palynomorphs or clumps of heavily overlapping microfossils. 

6.2 Detecting complete palynomorphs 

Once the foreground particles in the image have been segmented using CSS, regions 

containing a single complete elliptic playnomorph need to be identified. We propose using 

a trained classifier to distinguish between a region containing a single palynomorph and 

one containing kerogen, amorphous material or heavily overlapping microfossils clumped 

together (see figure 6.4) . The novelty here is in automatically removing from the image 
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(a) (b) 

Figure 6.3: Demonstrating the pre-processing steps before complete palynomorph classifi
cation . (a) Foreground/background segmentation using Crossing Stripe Parabolas method. 
(b) Segmentation of microfossils using CSS. 

I 
Figure 6.4: Final segmentation in context of the colour microfossils. The image has been 
annotated to show the types of segmented regions 
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complete palynomorphs which can be further classified by machine, leaving recognition of 

more complex regions to a human expert. 

6.2.1 C lassifiers 

We have chosen to test the same 10 well known classifiers used in chapter 5 which 

have been shown to achieve a good standard across a diverse range of datasets: Logisitc 

(Hastie et al. , 2001) , bagging (Breiman, 1996), support vector machines (SVM) (Cristianini 

and Shawe-Taylor, 2000), multilayer perceptron (Bishop, 1995), random forest (Breiman, 

2001), logit boost (Friedman et al. , 2000) , adaboost (Freund and Schapire, 1997) , decision 

tree (Breiman, 1984) , nearest neighbour (Duda et al. , 2001) and naive bayes (Hand and Yu, 

2001). We used the Weka 1 (Witten and Frank, 2005) implementation of the 10 classifiers 

using their default parameter sett ings. 

6 .2.2 Feature extraction and selection 

Initially the 32 features used for kerogen classification found in section 5.3 are also 

applied here to represent an object. However , by using a subset of the 32 features one may 

improve classification accuracy and guard against possible overtraining. For that reason, 

we apply a greedy stepwise approach to feature selection within a 10-fold cross-validation. 

Rather than adding features at each stage in the selection process, as in section 5.8, 

we begin by using the full set of 32 features and removing a feature if it reduces classification 

accuracy. Each feature is then ranked according to when it was removed . For example, if 

feature A is removed first then it will be ranked 1 and if feature B is removed last it will be 

ranked 32. An average of the 10 ranks for each feature, obtained from the 10 folds, is used 

as a measure of feature impor tance. 

1 Weka is a free software environment for machine learning and data mining. htt p:// www . cs. waikat o. 
ac.nz/ml/weka/ 
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6.2.3 '!raining data 

Training data is obtained through the procedure of microfossil segmentation ( de

tailed in section 6.1) and applied to several images containing palynofacies. Segmented 

objects are represented by the 32 features from table 5.3 in chapter 2. A ground truth label 

for each segmented object can then be constructed. An object is labelled as "palynomorph" 

if it consists of a single palynomorph with an elliptic shape, otherwise it is labelled as 

"other". To label microfossils in this way a human expert sits in front of a monitor and 

manually selects the objects segmented by CSS which they deem to be complete ellipt ic 

palynomorphs. 

6.2.4 Class imbalance 

In some cases the dataset contains many more samples of one class than the other. 

The trivial (largest prior) classifier labels all samples according to the most popular class 

in the training set. Although reasonable accuracies can be achieved, such a classifier would 

be useless. Problems like t his are termed imbalanced. Three main approaches have been 

employed to solve imbalanced problems (Barandela et al. , 2003): a) one can assign a cost 

to classification errors. b) the discrimination process can be internally biased to account for 

the class imbalance. c) one can sample from the training set to balance the class distribution 

by either over-sampling from the minor class or under sampling from the major class. We 

chose to use an alternative approach of sampling from both classes with-replacement while 

maintaining a balanced class distribution. 

6.2.5 Receiver-Operator characteristics (ROC) analysis 

The concepts of sensit ivity and specificity are used in medical tests as measures of 

performance but can equally be used for any binary classification. Suppose a classifier was 

to test an object, then there are four possible outcomes: 
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1. The object is a palynomorph and the classifier labels it as "palynomorph" - a true 

positive (TP ). 

2. The object is a palynomorph and the classifier labels it as "other" - a false negative 

(FN). 

3. The object is "other" and the classifier labels it as "palynomorph" - a false positive 

(FP). 

4. The object is "other" and the classifier labels it as "other" - a true negative (TN). 

Sensitivity is the proportion of regions classified as "palynomorph" over all paly

nomorph objects (Tl:FN). Thus a high sensitivity means very few palynomorph objects 

are undetected . Specificity is the proportion of objects classified as "other" over all "other" 

objects (FP~N) . Thus a high specificity means very few "other" objects are labelled as 

palynomorph. 

Sometimes it is possible to estimate the posterior probability of an object being 

labelled as "palynomorph" from the output of a trained classifier. If this can be done then a 

certainty threshold ( CT) may be applied to the estimated posterior probability to increase 

or lower the certainty of classifying an object as "palynomorph". A ROC space is used to 

opt imise the specificity and sensitivity of a classifier by adjusting the CT. 

A ROC space is formed by two axes. T he x axis is (1-specificity) and they axis is 

the sensit ivity. A perfect classifier will be at point (0, 1) in t his space. Random classification 

lies on the diagonal line running from the point (0, 0) to the point (1, 1). Points above this 

line are better than a random guess. For each CT we can calculate the sensitivity and 

specificity of the results and plot a point in this space. In this way a curve is formed known 

as a ROC curve (Fawcett, 2004). The best CT is found by locating the point on the ROC 

curve closest to (0, 1). Additionally, classifier performance can be measured as the total 
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area under this curve (AUC) , the closer this measure is to 1 the better the classifier. 

6.2.6 Classification using top 10 classifiers 

141 

Our dataset was formed by segmenting seven images containing palynofacies as 

detailed in section 6.1 using CSS with parameters s = 4 and d = 0.5. This resulted in 1139 

objects, consisting of 142 objects with a ground truth label of "palynomorph" and 997 with 

a ground truth label of "other" . 

Accuracy is calculated by performing a 10-fold cross validation 10 times. Due 

to class imbalance, rather than training the classifier directly on each fold, a bootstrap 

sample of 90% is drawn so that the classes have approximately 50/ 50 representation. By 

repeating the bootstrap sampling 10 t imes a bias towards the training sample is reduced . 

Classification accuracy and AUC is therefore an average of 1000 testing sets of size 113 

objects each. A 95% confidence interval (CI) is retrieved by finding the 26th and 975th 

largest accuracy. 

The accuracies of each classifier together with their Cl's are shown in table 6.1, 

AUC's are displayed in ta ble 6.2. The Cl's are heavily overlapping indicating no clear winner 

between the various classifiers, but AUC values indicate the logistic classifier out-performs 

the rest. For clarification, ROC curves for each classifier are illustrated in figure 6.5 and 

figure 6.6. The curves a.re shown in order of AUC. 

When detecting complete elliptic pa.lynomorphs we recommend the logistic clas

sifier due to its simplicity, high classification accuracy, high AUC and speed of train

ing/testing. 

6.3 Classification using the logistic classifier 

An increase in performance was found when a greedy stepwise feature selection 

method was conducted (as in section 6.2.2). The top 10 ranked features were selected and 
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Table 6.1: Accuracy and 95% Cl's of the ten classifiers using a 10 times 10-fold cross
validation. 

Classifier Accuracy (%) 95% CI(%) 

Logisitic 88.31 (82.45, 92.11) 
Bagging 90.77 (85.09, 94. 7 4) 
SVM 85.33 (78.94, 92.11) 
MLP 88.24 (81.58, 93.86) 
Random Forest 92.89 (88.59, 93.86) 
LogitBoost 88.04 (81.58, 93.86) 
AdaBoost 85.29 (77.19, 92.98) 
Decision Tree 88.24 (81.58, 92.11) 
Nearest Neighbour 88.49 (83.33, 92.11) 
Naive Bayes 75.74 (67.54, 84.96) 

Table 6.2: AUC's of the ten classifiers using a 10 times 10-fold cross-validation. 

Classifier AUC 

Logisitic 0.946 
Bagging 0.934 
SVM 0.938 
MLP 0.931 
Random Forest 0.933 
LogitBoost 0.937 
AdaBoost 0.926 
Decision Tree 0.822 
Nearest Neighbour 0.845 
Naive Bayes 0.928 
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Figure 6.5: ROC curves for first 6 classifiers in order of AUC value 
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Table 6.3: Top 10 features ranked by the greedy stepwise selection procedure using the 
logistic classifier (average of 10-fold cross-validation). 

Feature Rank ± std 

distance 
covariance 
eccentricity 
outter radius 
mean red 
mean blue 
mean green 
rectangularity 
anisotropy 
variance y 

30.20 ± 0.87 
24.70 ± 6.34 
24.40 ± 5.62 
24.20 ± 7.59 
24.00 ± 6.28 
23.60 ± 4.72 
22.00 ± 7.60 
21.60 ± 6.55 
21.50 ± 8.64 

21.40 ± 10.50 

can be found listed in table 6.3 along with their average ranks. 

The logistic classifier was assessed using 10-fold cross-validation 10 times on our 

dataset of 1139 objects. Class imbalance was accounted for by bootstrapping the training 

folds at 90% of their original size while maintaining a balanced class distribution. The 

bootstrapping was also repeated 10 t imes. The logistic classifier was trained using the top 

10 ranked features and the accuracy, specificity and sensit ivity were calculated as an average 

of 1000 results. The CT was increased from O to 1 in steps of 0.001, yielding 1001 points 

in ROC space. Joining the points forms a ROC curve shown in Figure 6.7. The best CT 

was found at 0.54 with a specificity of 88%, sensitivity of 87%, accuracy of 88% and an 

AUC of 0.944. Although the feature selection procedure has had no effect on the accuracy 

of classification or AUC value, it has reduced computation time and limited the possibility 

of overtraining. 

6.4 Logistic classification examples 

For demonstration purposes we will train the classifier on six of our images. The 

seventh image will be used to test the classifier and display the objects labelled as a pa

lynomorph. The training set is re-sampled to attain a balanced class distribution. The 
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Figure 6. 7: ROC curve of logisitic classifier with respect to changes in the CT 

logistic classifier is trained and then tested on the segmented image shown in Figure 6.4 us

ing the 10 features listed in table 6.3. The ROC analysis is performed and the best CT was 

found to be 0.53. The accuracy is 91.1% with sensitivity 93.8% and specificity 90.4%. The 

regions correctly labelled as palynomorph by the logistic classifier are shown in figure 6.8 

highlighted with a white border. False positives are highlighted with a green border and 

false negatives are highlighted with a blue border. For clarity, all other regions of the image 

have been faded. 

In the same way we trained the logistic classifier three different times on various 

subsets of the original 7 images. Using a subset size of 6 meant that the remaining image 

in each case could be used to test the classifier. Segmentation results for each of the three 

test images along with accuracy, sensitivity and specificity can be seen in figures 6.9, 6.10 

and 6.11. 

This result is promising and shows that a relatively simple classifier can be used to 

detect complete elliptic pa.lynomorphs with high accuracy. Most errors occurred in labelling 
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amorphous material as "palynomorph" . Because the amorphous material has a rough ap

pearance, the number of false positives could be reduced by adding more specific texture 

features. Further improvements to the classification system could be to train statistical 

shape models of true complete elliptic palynomorphs (Coates et al. , 1992). These models 

can produce a feasible space of shapes which could in turn be used to provide another 

confidence level in labelling an unknown object. 
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Figure 6.9: Regions highlight with a white border have been correctly classified by the logistic classifier as complete elliptic 
palynomorphs. Regions highlighted with a green and blue border are false positives and false negatives respectively. 
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Accuracy= 89.1%, Sensitivity= 95.2%, Specificity= 88.0% 
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Figure 6.10: Regions highlight with a white border have been correctly classified by the logistic classifier as complete elliptic 
palynomorphs. Regions highlighted with a green and blue border are false posit ives and false negatives respectively. 
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Accuracy = 92.6%, Sensitivity = 42.1 %, Specificity = 98.3% 
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Figure 6.11: Regions highlight with a white border have been correctly classified by the logistic classifier as complete elliptic 
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6.5 Summary 

In this chapter we detail a method for extracting, complete elliptically-shaped pa

lynomorphs from images of slides containing palynofacies. The background is automatically 

segmented and then individual objects are located using the CSS method (see chapter 4.3). 

Most of the foreground material is heavily overlapping or physically distorted. 

Therefore, segmented regions may contain clumps of microfossils, squashed folded or torn 

palynomorphs or single complete elliptic palynomorphs. We propose to use the logistic 

classifier to distinguish between single complete ellipt ic palynomorphs and "other" types of 

segmented objects. To select the classifier we carried out 10 times 10-fold cross-validation 

with 10 further splits in each fold. The logistic classifiers showed specificity of 88%, sensi

tivity of 87%, accuracy of 88% and an AUC of 0.944. 



Nomenclature 5 

d The overlap threshold used within the CSS algorithm. 

s The minimum allowed size of an object. 
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Conclusion 

The petroleum industry has keen interest in microfossils found buried deep under

ground. Such microfossils are utilised when forming detailed surveys regarding the deposi

tional environment and consequently the likelihood of oil or gas prone sites. 

Microfossils are retrieved in the form of rock cuttings produced when drilling deep 

into the earth. These cuttings are brought back up the drill-string with the aid of an oil 

lubricant and then washed and sieved. Organic microfossils can be seen when the processed 

cutt ings are observed under a microscope. This type of sample will contain an assemblage 

of organic microfossils known as palynofacies which can be broadly classified into three 

groups: kerogen , palynomorph and amorphous. By analysing the propert ies of microfossil 

from each of these groups a detailed interpretation of t he environment can be formed. 

7 .1 Overview 

Currently, samples containing palynofacies are painst akingly analysed by human 

experts . The properties from a sample of microfossils found on a microscope slide are 

recorded in order to build a representation of its contents. Our aim was to partly automate 

and improve on t his method of data retrieval by automatically analysing all microfossils of 

interest on a single slide. 

To accomplish this goal we first concentrated on automatically identifying kerogen 

material and further classifying t his type of organic microfossil into vitrinite and inertinite. 
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The system for automatic kerogen classification was built consisting of 5 steps: Image acqui

sition, background removal, microfossil segmentation, feature extraction and classification. 

T he background removal stage addressed the issue of correcting for non-uniform 

lighting across the image of a microscope slide using the Crossing Stripes Parabola (CSP) 

method. Subsequently, microfossil segmentation was conducted on the resultant binary 

image using the Centre Supported Segmentation (CSS) method. 

Having split the kerogen into individual objects, a numerical representation of the 

kerogen pieces was constructed through feature extraction. Ten well known classifiers were 

tested against one another and the logistic classifier proved best, with accuracy 89.07%. An 

improved accuracy of 90.62% was found when a reduced feature set was used. 

Classification stability was analysed between the classification stage and kerogen 

segmentation stage. The logistic classifier was found to be stable with respect to the CSS 

algorithm, giving us ground and confidence to continue developing the system into a com

mercial product. 

Current microfossil recognition systems cannot easily recognise distorted, folded 

or torn palynomorphs. Hence, our proposed method was designed to automatically segment 

palynomorphs suitable for further classification. Again this procedure utilised CSP, CSS 

and a logistic classifier for recognising complete elliptic palynomorphs with a specificity of 

88%, sensitivity of 87%, accuracy of 88%. 

The hypothesis states that a robust system for accurate and fast fossil identification 

is possible. Results shown here support this hypothesis and demonstrate that automatic 

detection of individual microfossils is achievable with high accuracy while also being robust 

against varying conditions. In addition, t he high accuracy of classification and insensitivity 

to parameter choices has led the system to be deployed as a module within commercial 
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petrography software known as PETROG1 . Furthermore, our intentions were to develop 

new image analysis techniques that could be used within other domains. We successfully 

developed new algorithms lmown as CSS and CSP. The next section on future work discusses 

the plausibility of implementing such algorithms into other systems. 

7.2 Future work 

An image with uneven illumination caused by vignetting or strong central light 

source can be corrected by CSP provided background intensities vary smoothly across the 

image. These types of distort ions occur within microscopy and astrophotography images. 

Although the CSP algorithm assumes a lighter background compared to the foreground, 

input images with darker background can be easily accounted for with only minor modifi

cation to the algorithm. The algorithm can therefore be enhanced by adding a method to 

detect relative background intensity with respect to the foreground. One such method is 

proposed by Lindblad and Bengtsson (2001). By utilising this type of detection the CSP 

algorithm could be applied automatically to most microscopy images, albeit a dark fore

ground on a light background or vice versa. Astrophotography images of the night sky show 

a very similar distort ion to the background illumination found within microscopy images. 

We hypothesise that a relatively dark uneven background against the light of t he stars could 

be corrected by applying this modified CSP algorithm. 

Extending CSP to allow for 3D images, e.g., magnetic resonance images (MRI), 

opens the doorway to a whole range of other domains where CSP could be applied . As an 

example, the method of background fitting in CSP could be used to remove background 

noise in MRI. A study on possible applications for CSP could lead to the development of 

an even more general algorithm in correcting uneven background data from other sources. 

1http : //wY1J . petrog .com 
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The separation of microfossils was conducted solely using CSS. Would an improve

ment in segmentation accuracy be achievable by combining other segmentation algorithms 

with CSS? For example, a corner detection algorithm could provide a confidence level when 

split ting two overlapping objects found using CSS. Improvement of classification accuracy 

has been achieved through classifier ensembles. It can be expected that an ensemble of 

segmentation algorithms may produce better segmentation than any individual algorithm. 

Complete elliptic palynomorphs are ext racted with an application of CSS followed 

by classificat ion using a logistic classifier. Advancement to this technique could be to provide 

the segmentation algorithm with feedback from the classifier. Using classifier knowledge, 

t he segmentation algorithm could be automatically adjusted to result in an improved seg

mentation , i.e., more complete elliptic palynomorphs are found. This iterative approach to 

segment ation could then be repeated until certain conditions are met. 

Not only could the CSS algorithm be applied in other areas of microscopy, such as 

cell count ing, but it also lends itself to any image containing convex overlapping/touching 

objects. Extending the algorithm to incorporate 3D or even 4D data permits CSS to be 

functional wit hin 3D microscopy or MRI. For example, a 3D version of CSS could be applied 

to segment touching pollen spores taken through a 3D microscopy or used within MRI to 

segment tumours from healthy tissue. 

In the case of microfossil classification , labels from experts can vary from one 

expert to another. T herefore, before deploying a commercial product, further experts could 

be consulted to obtain their opinions for the kerogen labels. The concordance between them 

can then be evaluated to produce a more robust (consensus-based) system. 

It is also necessary for further research to be conducted in order to successfully 

extract highly overlapping and occluded palynomorphs and amorphous material. Later, 

classification systems can be built for recognising these types of visually distorted microfos-
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sils . 
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7.3 Publications related to the thesis 

Charles, J. , Kuncheva, L. , Wells, B., Lim, I. , September 2006. An evaluation measure of 
image segmentation based on object centres. LNCS Image analysis and recognition 4141, 
283-294. 

Charles, J .-, Kuncheva, L. , Wells, B., Lim, I. , June 2008a. Object segmentation within 
microscope images of palynofacies. Computers & Geosciences 34 (6), 688-698. 

Charles, J., Kuncheva, L., Wells, B., Lim, I. , 2008b. Background segmentation in micro
scope images. In Proc 3rd International Conference on Computer Vision Theory and 
Applications VISAPP08, Madeira, Portugal. 

Kuncheva, L., Charles, J., Miles, N. , Collins, A., Wells, B., Lim, I. , 2008. Automated kero
gen classification in microscope images of dispersed kerogen preparation. Mathematical 
Geology 40 (6), 639-652. 

Charles, J. , Kuncheva, L., Wells, B., Lim, I. , 2009. Stability of kerogen classification with 
regard to image segmentation. Mathematical Geology 41 (4), 475, DOI:10.1007 /s11004-
009-9219-3. 

Charles, J. , 2009. Automatic recognition of complete palynomorphs in digital images. 
Machine Vision and Applications,. DOI: 10.1007 /s00138-009-0200-4. 



Glossary 

amorphous 
Organic microfossils that do not possess a specific shape, structure or obvious outline. 

clustering 
Unsupervised learning method of grouping objects of a similar kind. 

feature 
A measurable property of an object. 

inertinite 
Maceral derived from the tissues of higher plants and gelified amorphous material.. 

kerogen 
An organic chemical compound found in sedimentary rock that releases oil or gas 
upon heating. 

m aceral 
A component of coal; analogous to the term mineral. 

micro fossil 
A fossil generally no larger than 4mm and commonly smaller than 1mm. 

palynofacies 
The acid-resistant organic microfossils found in sediments and sedimentary rocks. 

palynomorph 
The preserved cell, tissue or organ component of sedimentary organic microfossils 
derived from an organism. 

segmentation 
The process of split ting up an image into meaningful regions. 

thresholding 
A simple form of image segmentation where pixels are labelled as object pixels if their 
value is lower than a predefined threshold. 
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vitrinite 
Maceral derived from woody tissues of roots, stems, barks and leaves composed of 
cellulose and lignin. 
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Appendix A 

Logistic Classifier 
implementation 

A Matab 

function [w posterior_prob] = logistic_regression(T,D,w) 
%WEIGHTS= L0GISTIC_REGRESSI0N(T,D,w) 
%T The target matrix, each row corresponds to each data point in D. 
% It is a binary vector with 
% all elements zero except for the element k which equals 1 (i.e. if 
% the row is in class k). 
%D The training dataset (should have all ones in the last column, this 
% acts as a bias) 
%w - Initial weights (one set of weights has to be all zero, this 
% represents the reference class) 
%This function will return the updated weights for the approximation to 
%the posterior probabilities given by exp/sum(exp). 

[n,m]= size(D); 
K = size(T,2)-1; 
epsilon= ie-10; %converged if difference between consecutive error is 

%less than epsilon 
error= 1; 
maxiteration 2000; 
ridge= ie-8; %add this onto the diagonal of the ddE so that a 

%singularity does not occur 

%if weights not entered as input parameter then initialise them 
%automatically 
if nargin < 3 

t = rand(K+1,m)>0.5; 
w = 0.00001*rand(K+1,m); 
w(t) = -w(t); 
w(K+1, :) = 0; 
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end 

count= O; %initalise variable to count the number of iterations 
Eold = inf; %initialise starting cross-entropy error; 

while count< maxiteration & error> epsilon 
%Update counter 
count= count+ 1; 
%Matrix containing posterior probabilites. Element (n,k) will 
%represent the posterior probabilites for data point n 
%belonging in class k. 
posterior_prob = exp(D*w')./repmat(sum(exp(D*w')')',1,K+1); 

%Likelihood function is defined as p(T I w) where Tis an N x K 
%built from t, where k is the total number of classes. 
%Make sure we do not take a log of zero 
likelihood= prod(diag(T*posterior_prob')); 

%The cross-entropy error is defined as the negative natural log of 
%the likelihood. 

Enew = -log(likelihood); 
error= abs(Eold- Enew); %calculate change in cross- entropy error 

%It is this error that we wish to minimize, to do this we use the 
%Newton-Raphson method to find a minimum. Before this we must 
%calculate the gradient vector of the error function with respect 
%to each set of weights . This results in a matrix dE each row k 
%corresponding to the gradient vector with respect to the set of 
% weights k i.e. row kin w 
diff = posterior_prob - T; 
dE = zeros(K,m); 
for k = 1 :K 

nextrow = zeros(1,m); 
for i = 1 :n 

nextrow = diff(i,k)'*D(i,:) + nextrow; 
end 
dE(k,:) = nextrow; 

end 

%A Hessian matrix (ddE) is formed for each set of weights that 
%we wish to update 
for k = 1 :K 

ddE = zeros(m,m); 
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end 

for i = 1: n 
ddE = (posterior_prob(i,k) . * ... 

(1 - posterior_prob(i,k))*D(i,:))'*D(i,:) + ddE; 
end 
ddE ridge*eye(m) + ddE; %The r i dge is added so that we my 

%approximate the inverse of ddE 
w(k,:) = w(k,:) - (inv(ddE)*dE(k,:)')'; %The weights are updated 

end 
Eold = Enew; 

173 




