
Bangor University

DOCTOR OF PHILOSOPHY

Constituent grammatical evolution

Georgiou, Loukas

Award date:
2012

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/constituent-grammatical-evolution(9cf4334e-e0df-4463-b250-7b4a2a823ba8).html


CONSTITUENT GRAMMATICAL EVOLUTION 

By 

LOUKAS GEORGIOU 

BSc, University of Wales, Bangor 

2004 

A Dissertation 

Submitted in Partial Fulfilment of the Requirements for the 

degree of Doctor of Philosophy 

Supervised by Dr. William J. Teahan 

External Examiner: 

Dr. Michael O'Neill 

College of Physical & Applied Sciences 

School of Computer Science 

BANGOR UNIVERSITY 

Bangor, Wales 

2012 

\?.. . 

/ , ,.,__ :, . ·-

(

[(. ( \-·~ V. 
r I 1· 
_'.:i i 
..J ' 1,1.I ' 'l t 'I, 

..y 
-f);, 



Abstract 

Evolutionary algorithms are a competent nature-inspired approach for complex 

computational problem solving. One recent development is Grammatical Evolution, a 

grammar-based evolutionary algorithm which uses genotypes of variable length binary 

strings and a unique genotype-to-phenotype mapping process based on a BNF grammar 

definition describing the output language that is able to create valid individuals of an 

arbitrary structure or programming language. 

This study surveys Grammatical Evolution, identifies its most important issues, 

investigates the competence of the algorithm in a series of agent-oriented benchmark 

problems, provides experimental results which cast doubt about its effectiveness and 

efficiency on problems involving the evolution of the behaviour of an agent, and presents 

Constituent Grammatical Evolution (CGE), a new innovative evolutionary automatic 

programming algorithm. CGE extends Grammatical Evolution by incorporating the 

concepts of constituent genes and conditional behaviour-switching. It builds from 

elementary and more complex building blocks a control program which dictates the 

behaviour of an agent and it is applicable to the class of problems where the subject of 

search is the behaviour of an agent in a given environment. Experimental results show that 

the new algorithm significantly improves Grammatical Evolution in all problems it has 

been benchmarked. 

Additionally, the investigation undertaken in this work required the development of a 

series of tools which are presented and described in detail. These tools provide an 

extendable open source and publicly available framework for experimentation in the area 

of evolutionary algorithms and their application in agent-oriented environments and 

complex systems. 



Preface 

It was November of 2005 when - during the evolutionary computation literature review I 

was conducting as part of this study - my supervisor Dr. William J. Teahan introduced me 

to a new evolutionary algorithm, named Grammatical Evolution. While he was in Poland 

for a conference, he met up two researchers from Ireland - Michael O'Neill and Anthony 

Brabazon. Dr. William J. Teahan was convinced that Grammatical Evolution (pioneered 

by Ryan, Collins and Michael O 'Neill) was a promising approach meriting attention and 

further research. He pointed out the ability of this new algorithm to produce arbitrary 

valid data structures and executable programs. Furthermore, he found it very interesting 

that the programs being evolved could be constrained through the use of a BNF grammar 

definition and that domain knowledge could be more easily incorporated by choosing a 

particular grammar. 

Grammatical Evolution really appealed to me right from the beginning. There was already 

a strong research activity about this new algorithm and a series of publications, providing 

insights to the algorithm, its issues, its variations, and future research directions. All these 

helped me to understand this new approach and to appreciate its strong advantages over 

other evolutionary algorithms as well as some of its weaknesses and disadvantages. It 

was at that point where the basis for this thesis was formed which finally resulted in the 

work presented here. 

I hope that the reader enjoys this text as much I enjoyed the journey from that November 

until today, and that this work will contribute to the field by providing useful information 

and insights and stimulating further work and ideas to researchers interested in the 

application of evolutionary algorithms for the emergence of behaviours of agents. 

11 

I 
'/ 



Acknowledgements 

I would like to state how grateful I am to my wife Ero for the patience she showed during 

this work. She is the person who prompted me to start this endeavour and who supported 

me all these years both morally and indeed by taking care of providing me the necessary 

time for concentrating on this research. Ero is also the inspirer and creator of the art work 

(logos and graphics) of the presentations, posters, and web sites that resulted from this 

work. 

I would like to apologise to my two children, Dimitra and Harris, for the time I was not 

with them. Both were born during this research and I had very little time with them until 

now. Fortunately, this journey is coming to the end and I will be able to give to them and 

to my wife the time and attention they really deserve. 

I would like also to thank my parents for inspiring in me the thirst for knowledge and for 

making me the person who I am today. Unfortunately, they are no longer in life but I am 

sure their thoughts were with me all these years. 

Finally, I owe a great debt of gratitude to my supervisor Dr. William J. Teahan for his 

insightful comments and suggestions as well as his guidance and support on this work. I 

would like to thank him for his timely response to any question or issue I had and for 

being always on my side every time I needed him. Also, he is the person who guided me 

to investigate the area of evolutionary computation and in particular of Grammatical 

Evolution. I' m really grateful for this. I hope that this thesis will be not the end, but just 

the beginning of a new and more fascinating journey - the quest of understanding the 

nature of human knowledge and intelligence. 

ll1 



Declaration and Consent 

Details of the Work 

I hereby agree to deposit the following item in the digital repository maintained by Bangor 
University and/or in any other repository authorized for use by Bangor University. 

Author Name: Loukas Georgiou 

Title: Constituent Grammatical Evolution 

Supervisor /Department: Dr. William J. Teahan / School of Computer Science 

Funding body (if any): ---

Qualification/Degree obtained: PhD 

This item is a product of my own research endeavours and is covered by the agreement 

below in which the item is referred to as "the Work" . It is identical in content to that 
deposited in the Library, subject to point 4 below. 

Non-exclusive Rights 

Rights granted to the digital repository through this agreement are entirely non-exclusive. 
am free to publish the Work in its present version or future versions elsewhere. 

I agree that Bangor University may electronically store, copy or translate the Work to any 
approved medium or format for the purpose of future preservation and accessibility. Bangor 
University is not under any obligation to reproduce or display the Work in the same formats 
or resolutions in which it was originally deposited. 

Bangor University Digital Repository 

I understand that work deposited in the digital repository will be accessible to a wide 

variety of people and institutions, including automated agents and search engines via the 
World Wide Web. 

I understand that once the Work is deposited, the item and its metadata may be 
incorporated into public access catalogues or services, national databases of electronic 
theses and dissertations such as the British Library's EThOS or any service provided by the 
National Library of Wales. 

I understand that the Work may be made available via the National Library of Wales Online 
Electronic Theses Service under the declared terms and conditions of use 

(http://www.llgc.org.uk/index.php?id=4676). I agree that as part of this service the National 
Library of Wales may electronically store, copy or convert the Work to any approved 
medium or format for the purpose of future preservation and accessibility. The National 

Library of Wales is not under any obligation to reproduce or display the Work in the same 
formats or resolutions in which it was originally deposited. 

lV 



Contents 

Abstract ............................................................................................................................ i 

Preface ................................. .. ......................................................................................... ii 

Acknowledgements ................................... .. ...................................... ............................. iii 

Declaration and Consent ...................................................................................... .......... iv 

Contents ........................................................................ ................................................ vii 

List of Figures .............................................................................................................. xiv 

List of Lis tin gs .............................................................. ............................................... xvii 

List of Equations ............................................................ ............................................. xxii 

List of Tables .............................................................. .. ............................................. xxiii 

List of the Accompanying Material ................................................... ........................ xxvi 

Chapter 1 Introduction ................................................................................................... 1 

1.1 Background and Motivation ... .. .... ............. ... ....... ... .... ......... ... ...... ............ ... ... ......... 1 

1.2 Aims and Objectives ..... ............ ..... .............. .. ... ..... ...... ... ... ... .... .... .... .... ....... ...... .... . 2 

1.3 Thesis Statement .......... ....... ......... .... ......... ... .. ... ....... .. .. ............. ....... .. .. .......... .... ..... 3 

1.4 Thesis Contributions .... ...... ............. ...... ....... .......... ....... .......... ..... ....... ............ .. ...... 4 

1.5 Thesis Summary ................. .. .. .... ... .......... .. .... .......... .. .... .......... ... .......... .............. ... . 6 

Chapter 2 Background and Literature Review ................................................. .... ......... 9 

2. 1 Evolutionary Computation ..... ...... ...... .. ....... ................... ..... ..... ............ ....... ............ 9 

2.1.1 Introduction ....... ........... ....... .. ............ .... .. .. ... ........... .......... ... ....... .. ... ..... .. ..... .. . 9 

2.1.2 History and Main Approaches ............ ............. ........ .. ....... ....................... ...... 10 

2.1.3 Current Issues .......................... .......... ... ....... ... .... .... ............. .... ... ....... ....... ..... 14 

2.1.4 Research Findings and Future Directions ............ ........ .. ....... ....... .... ...... ..... .... 16 

2.2 Grammatical Evolution .... ... ............. ...... ........... .... ..... ............... .... ....... .. ............... 19 

Vll 



2.2.1 Introduction ......... ... ................ ..... ........ ...... ..... .................. .. ......................... .. 19 

2.2.2 Molecular Biology Influences ......................... .. ............................................. 21 

2.2.3 The Grammatical Evolution Algorithm ....................................... .. ............... .. 22 

2.2.4 Configuration of Grammatical Evolution .... .. ................. .. .. .. ......... .. ............... 25 

2.2.5 Outline of Past and Current Research ............................................... ...... ....... 27 

2.2.6 Applications of Grammatical Evolution ..................... .... .......... .. ............... .. .. . 29 

2.2.7 Grammatical Evolution Variations ............................ ................... .. ................ 32 

2.2.8 Issues and Future Work ........................ .... .................................................... . 37 

2.3 Modularity ....... ............... ..... .... ............. ...... .......................................................... 39 

2.3.1 Introduction ........................ ..... ................... .... ....... ..... ..... ............... ... ............ 39 

2.3.2 Modularity in Genetic Programming ................. .... ............................... .. ........ 39 

2.3.3 Modularity in Grammatical Evolution .... .. ............. .. ...................................... 42 

2.4 Grammatical Evolution Implementations .. .. ...... ................................................ ... .43 

2.4.1 libGE .. ............... ..... ................ .. .. .................... .. .................. ...... ........ .. ........... 43 

2.4.2 GEVA ..................................... .... ............................... .. ...... .. .............. ........... 45 

2.4.3 Other Implementations ..................... ... ................................. ... ................. .. ... 46 

2.5 Evaluating Evolutionary Algorithms ........................ .. ...... .. ................................... 48 

2.5.1 Introduction .. .. .. ................... ................................... ....................................... 48 

2.5.2 Symbolic Regression Problems ... .. ...................... ........................................... 48 

2.5.3 Symbolic Integration Problems .............. ........................................................ 48 

2.5.4 Artificial Ant Problems ............................. ..... ...................................... ......... 49 

2.5.5 Maze Searching Problems ............................ ................... .. ......................... .... 53 

2.6 Summary and Discussion .................. ..... ............................... ............. .. ................. 55 

Chapter 3 Java Grammatical Evolution ...................................................................... 58 

3.1 Introduction ........... .......................................... ...... ................... ................. .. ......... 58 

viii 



3.2 Overview of the jGE Library ......................... ................................ ... .................... 60 

3.3 Components of jGE .... ...... ...... .......................................................... .... .. .. .. .......... 62 

3.4 ThejGE Packages ...... ......... ................ ..... ... ................... ..................... ................ .. 65 

3.4.l Package: bangor.aiia.jge.core ... ............ ................ .. ................................... .... 65 

3.4.2 Package: bangor.aiia.jge.population ......... ... ... ......... ... ................... .. ............... 65 

3 .4.3 Package: bangor.aiia.jge.evolution .. ........ ........................ .. ........ .............. ....... 65 

3 .4.4 Package: bangor.aiia.j ge. ps ..... ....... .. ... ............................ .... .. .. ....................... 66 

3.4.5 Package: bangor.aiia.jge.bnf ....... ... .......... .......................... .. ... .. ................... .. 67 

3.4.6 Package: bangor.aiia.jge.util ....... ..... ... .................... ... ... .. ... ............. ............... 67 

3.5 Genetic Operations Component ........... ...... ...................................................... ..... 67 

3.6 jGE Demonstration Experiments ...... .................. .. .. .. .............................. ...... .... ..... 70 

3.6.1 Java Issues ... ............. .......................... ....................... .................... ................ 71 

3.6.2 Sample Java Source usingjGE ... ........ .... ......... .. ..... .... ................................. .. 73 

3.6.3 Hamming Distance Experiments ........ .. ..... ...................... .............. ..... .. .......... 74 

3 .6.4 Symbolic Regression Experiments ......... ....... .......... ...... .................. ..... ... ....... 76 

3.6.5 Trigonometric Identity Experiments ................. .... ...... ... ............... ........ ......... 78 

3. 7 Experimental Results Discussion ... .. .. ... ............................ ..... ............................. .. 79 

3 .8 Comparison of jGE with other GE Implementations .. ...... .. ................................... 80 

3.8. 1 jGE and libGE ..... ... ..... .......................... ...................... ...... .. ..... ......... ..... .. ..... 80 

3.8.2 jGE and GEVA ........... .. ....... ..... ...... .............. .... ............ ......................... .. ...... 81 

Chapter 4 Extensions to jGE ........ .. .............................................................................. 82 

4.1 Introduction ....... ............ ... ...................... .. .... .......... .. ............................ .... ............ 82 

4.2 Applying prior knowledge and population thinking in Grammatical Evolution ..... 82 

4.3 Prior Knowledge Experiments ........................................ .. ..... ... ...... ................... ... 84 

4.4 Population Thinking Experiments .... .... ......... ................. ............ ..... ......... ... ..... ..... 88 

lX 



4.5 The jGE NetLogo Extension ................................... ...... ........... .. .............. .. ...... ..... 91 

4.6 Experimental Conclusions and Discussion .............. .. ................ .. ........................ .. 93 

Chapter 5 Grammatical Evolution and the Santa Fe Trail Problem .......................... 96 

5.1 Introduction ............ ...... ...... ................... ..................................................... ..... ..... 96 

5.2 The Grammatical Evolution Issue ........................ ....... ....... .. .... ... .......................... 97 

5.3 NetLogo Models ....................... .... .. ...... .. ... ..... ....... ......................... ..... ...... ........... 98 

5 .3 .1 Santa Fe Trail Model ........ ...... ...... .......... ................................. .... .... .. ............ 98 

5.3.2 Evolutionary Runs in SFT Model ... ...... .. .. .... .... ... .. ......................... .. ........... 101 

5 .4 Experiments Setup ................ ....... .. ..... ........ ...................................... .. ... .. ........... 103 

5 .5 Results and Discussion ......................... .. .... .... ......... ...... ..................................... 106 

5.6 Further Investigation ...................................... .. .............. ...... .... .... .. ..... ................ 110 

5. 7 Conclusions .. ... .... .. .. .. ................ .................. .. ................................... .. ................ 116 

Chapter 6 Grammatical Bias Effects on the Santa Fe Trail.. .................................... 117 

6.1 Introduction ....... ..... .. ... ............................... ........................................................ 11 7 

6.2 Gram1natical Bias ................................ ... .. ..... ........... ....... .............. .. ... ............... . 117 

6.2 .1 Modularity ...... ... ... ............................. ........................ .... .... .............. ............ 119 

6.2.2 Knowledge Incorporation ..................... .. ................. ... .. ............. ............ ...... 120 

6.3 Experimental Setup ......................................................... .... ... ............. ................ 120 

6.4 Grammars with Building Blocks .............. .... ............................................. ...... .... 122 

6.4. 1 Grammar Definitions ....................... .. ...................................................... .... 122 

6.4.2 Experimental Results ............... .. .. .................. ....................................... ....... 127 

6.4.3 Discussion ........................................................... .. ...... ........................ ....... . 127 

6.5 Grammars with Conditional Statement Bias ........................................... .. ........... 130 

6.5. 1 Grammar Definitions ........................ .......... ..... ...... .. ..... .. ..... ........................ 131 

6.5.2 Experimental Results .... ...... .. ......... ................................................ .. ............ 135 

X 



6.5.3 Discussion ............................................................. ..... ............... .................. 135 

6.6 Conclusions ............................... ......... ........ .......... .. ............. .............. .. ... .......... .. 137 

Chapter 7 Constituent Grammatical Evolution ......................................................... 138 

7 .1 Introduction ........... ....... ........................ ... ............. ... ..... ........ ............. ................ . 13 8 

7 .2 Motivation and Main Concepts ......................... ....... ... ...................... ........ ...... .... 13 8 

7 .2.1 The Constituent Genes Concept.. .......... .. ... ..... .. ......................................... .. 13 9 

7 .2.2 The Behaviour-Switching Concept ... ...................................................... ..... 145 

7.2.3 Genotype Bloating Elimination ....... .. ......... ................................ .................. 148 

7.3 COE Algorithm Description ... .... .. ............ ............... .... ........ .......... ........... .. .. ....... 149 

7.4 Application of COE to the Artificial Ant Problem ... .......... ... .. ............................. 153 

7 .5 Benchmarking COE on the Santa Fe Trail Problem .. ..... ... ... ......... .... .. ... ......... ... .. 157 

7.5. 1 Experiments Setup .............. ..... .... ....... ... ... ... ..... ....... ............ ........................ 157 

7 .5 .2 Experiments Results ....... .. ............ ............................ .......... .......... .... ........... 160 

7.6 Application to more Problems ... .. .... ........ .... .. ... ...... ..... .. ... ...... ... .......................... 164 

7.6.1 The Los Altos Hills Problem ............. ...... ....... .. .. ... ..... ... ............ .. ......... ... .... 164 

7.6.2 The Hampton Court Maze Problem ........ .... ................... .... ... .. ..... ............. .... 168 

7.6.3 The Chevening House Maze Problem ............. ......... ................ ........ .... .. .... .. 173 

7.7 COE Stati stics in the Santa Fe Trail Problem ................ .... ........ ....... ........ ...... .. ... 176 

7. 7 .1 Effectiveness of COE runs .. .... .. ..... .... ..... ..... .. .............................................. 176 

7. 7 .2 Efficiency of CGE Solutions ............................ ..... .................. ...... .... .......... 177 

7.7.3 Best Solutions Phenotypes ..... .. .. ... ..... ......................................................... . 179 

7. 7.4 Processing Requirements of CGE ........................... .. ...... .. ..... .............. ........ 184 

7.8 Analysis of CGE ... .. ..... .. .......... ... ............ ........ ............ .... ...... ......... ..................... 187 

7.8.1 The Constituent Genes Feature ............................... .... ........ .... ... .. .. .. ... .. ....... 188 

7.8.2 The Behaviour-Switching Feature .................... ............ ... ............. .. ............. 191 

X l 



7.8 .3 The Genotype Maximum Size Limit Feature ....................... ..... ................... 193 

7.8.4 Discussion ... .......................................... ................................. .. ... .. .... ..... .. ... 198 

7.9 Experimental Results Conclusions ..... .... ............ .................................... .... .. ....... 201 

Chapter 8 Conclusions and Future Work .................... .............................................. 203 

8.1 Discussion ...... ..... .... ..................... ... .. .............. ................. ... ............. .................. 203 

8.2 Summary and Conclusions ...... .. .. .............. .... .. ... ... ..... .... ....................... .... ... ....... 206 

8.3 Review of Aims and Objectives ..... ...... ..... .... ... .. ... ...... .... ........... ... ... ................... 210 

8.4 Summary of Contributions ......... ..... ............................. ...................... ...... .. ......... 212 

8.5 Future Work .......... .. .................................... ....... .... ... ......................................... 213 

8.5.1 jGE Extensions ................................................. ...................................... .. ... 214 

8 .5 .2 Grammatical Evolution Benchmarking ..... .............................. .... ... ... .. ......... 215 

8.5.3 CGE Further Investigation and Improvement.. ............................ .. .. ... .......... 215 

8.5.4 Utilisation of Shared Knowledge .................................................... ... .... ...... 216 

8.5.5 Toward a new class of Evolutionary Algorithms ................. .... ..................... 217 

Appendices ....... ................................................... ........................................................ 218 

Appendix A Publications ........................ ...... ......... ................. ..... ......... ...... ........ ...... 218 

Print Publications ...... .. ..... ....... ... ............................ .... ............ .......... ...... .. ...... ...... 218 

On-line Publications ..... ... ...... ... ................................................................. ..... ... ... 219 

On-line References .. .... ............ ... ........ ... .... ........................................ .......... ......... 219 

Appendix B jGE Web Site ............................... ............ ......... .................... ........ ........ 220 

Appendix C CGE Web Site ......... ..... ....... .......................................... ................... ..... 221 

Appendix D People Interested in jGE ........... ........ .. .. .. ........................ ............ .......... 222 

Appendix E jGE Library Quick Start Guide ................ .............. ... ....... .................. .... 223 

Appendix F jGE Library Core Class Diagrams ......... .... ................... ......................... 226 

Appendix G jGE NetLogo Extension Procedures .......... ...... ...... ... ..... ..... ................... 228 

Xll 



Acronyms ................................... .............. ........................................ ............................ 230 

Glossary ..................... .................................................................................................. 231 

References ................. ................ .................................................................. ................ 237 

Xlll 



List of Figures 

Figure 2.1: Comparison between the GE system and a biological genetic system. Cited in 

O'Neill and Ryan, 2001 , p.351 . ................................. ................................................ ... ... 23 

Figure 2.2: GE mapping process. Cited in Dempsey, O'Neill and Brabazon, 2006, p.2588 

(with minor changes) ............... ... ......................... ................. .................... ....... ............... 24 

Figure 2.3: Life-Cycle of a Grammatical Evolution run. Cited in Nicolau, 2006b, p.3 .... 43 

Figure 2.4: The concept of a Mapper in libGE. Cited in Nicolau, 2006b, p.6 .................. .44 

Figure 2.5: GUI component of GEVA v2.0 ........ .... ........... .. ................................... .. .... .. .46 

Figure 2.6: The Santa Fe Trail. Cited in Koza, 1992, p.55 ................. .............................. 50 

Figure 2. 7: The Los Altos Hills trail ( only the part of the grid with the trail is displayed 

here). Cited in Koza, 1992, p.157 ................. ... .............................. .... ... ... ........................ 52 

Figure 2.8: The Hampton Court Maze. Cited in Teahan 2010a, p.79 ..................... .......... 54 

Figure 2.9: The Chevening House Maze. Cited in Teahan, 2010a, p. 83 ................ ..... ..... 55 

Figure 3.1 : ThejGE architecture . ...................... ............................................ .. .... ............ 61 

Figure 3.2: Component diagram ofthejGE Library ........................................ ............ .... 62 

Figure 3.3: Class diagram of the core components ofthejGE Library ................... .... ...... 62 

Figure 3.4: jGE Library packages .......................................................... ............ .............. 66 

Figure 3.5: Hamming distance results graph ................................ .... .... .............. .. ............ 75 

Figure 3.6: Results graph for the symbolic regression problem using GE with BNF 

grammar (A) and BNF grammar (B) . ... ................................... .......... ............... ... ............ 78 

Figure 4.1: Comparison graph for symbolic regression (using prior knowledge) . .. ..... ..... 86 

XIV 



Figure 4.2: Comparison graph for the trigonometric identity problem (using prior 

knowledge) ........... .. ............................... ..... ............................................ ... .. ................... 88 

Figure 4.3: Population thinking experiments results graph ......... ....... ........ ...................... 90 

Figure 5 .1: Interface of the Santa Fe Trail NetLogo model. ...................................... ....... 98 

Figure 5.2: Interface of the Evolutionary SFT model for GE ......................................... 101 

Figure 5.3: Cumulative frequency of success measures over 500 evolutionary runs ...... 108 

Figure 6.1 : Success rate over 100 evolutionary runs of GE using BNF-Koza with and 

without a variety number of "basic condition" blocks additions in the grammar. .......... . 129 

Figure 7.1: Constituent Grammatical Evolution inputs ..... ........ ............ ........... .. ........ .. .. 149 

Figure 7.2: The Constituent Grammatical Evolution (COE) system ............................... 155 

Figure 7.3: BNF grammar definitions used by GE and COE systems ............................. 156 

Figure 7.4: Interface of the Evolutionary SFT model for COE and GE .......................... 157 

Figure 7.5: COE vs. GE on the Santa Fe Trail problem. COE has already created the genes 

pool and modified the grammar before generation zero ....................... .... ........ .. ............ 162 

Figure 7.6: Interface of the Evolutionary Los Altos Hills model for COE and GE ......... 165 

Figure 7.7: Best individuals (ants) per evolutionary run in the Los Altos Hills problem.168 

Figure 7.8: Interface of the Evolutionary Hampton Court Maze model for COE and GE . 

..................................................... ...... .. .. ........ .. ........................................................... . 169 

Figure 7.9: Interface of the Evolutionary Chevening House Maze model for COE and GE . 

... ........ .... .............................................................................................................. ........ 173 

Figure 7 .10: Cumulative frequency of success measures over 100 evolutionary runs in the 

Chevening House Maze problem ................................................................................... 174 

Figure 7 .11: COE vs. GE - Percentages of solutions found for varying ranges of steps. 178 

xv 



Figure 7.12: CGE vs. GE - Percentages of solutions found per genotype size ranges ..... 178 

Figure 7 .13: Average genotype size in codons of individuals per generation of 

Grammatical Evolution in the Santa Fe Trail problem with and without genotype size 

restrictions (25, 50, 150 and 250 codons) . ..... ....... ............ .............. ........ .... ... ... .... ........ . 197 

XVI 



List of Listings 

Listing 2.1: Sample of using the libGE Mapper. Cited in Nicolau, 2006b, p. 7 .............. ... 44 

Listing 3 .1: Evolutionary algorithm basic strategy .......................................................... 68 

Listing 3.2: Standard genetic algorithm ................................................ .. .. .... ................... 69 

Listing 3 .3: Steady-state genetic algorithm .......... .... .. .. .................................................... 69 

Listing 3.4: Java source code for the Hamming distance problem experiment. ................ 73 

Listing 3 .5: Source code alterations to Listing 3 .4 required for the different evolutionary 

algorithms in the Hamming distance problem experiments ........ .. ................ .. ... .... ........ .. . 74 

Listing 3.6: BNF grammar used for the Hamming distance problem ............ ........ ........... 74 

Listing 3.7: BNF grammar (A) used for the symbolic regression problem . ............ .......... 76 

Listing 3.8: BNF grammar (B) used for the symbolic regression problem . ..... .... .... ......... 76 

Listing 3.9: BNF grammar used for the trigonometric identity problem ..... .. .................... 79 

Listing 4.1: BNF grammar definition for the symbolic regression experiment using prior 

knowledge . ... ............ .......................... ...... ... .. ...... ..... ...................... .................. ..... ......... 85 

Listing 4.2: BNF grammar definition for the experiments of the trigonometric identity 

problem with prior knowledge . ........ ... .. .. ..................... .... .......... .............. ........ .... .. .... ..... 87 

Listing 4.3: BNF grammar definition for the evolutionary process evaluation and 

population thinking experiments (trigonometric identity problem). Note that it is the same 

grammar with that of Listing 4.2 ........ ............. ... .... ........ .......... ....... ...... ... ...... ....... .......... 89 

Listing 4.4: Sample code of using the jGE NetLogo extension . .. .......... ...... .... .. ...... ......... 93 

Listing 4.5: Sample BNF grammar definition for a NetLogo turtle . ........ ...... .. ........ ...... .. . 93 

XVll 



Listing 5. 1: Artificial ant actions and a sample control program, in the NetLogo 

programming language ............ .. _. ...... .. ... ... ........ ........................... .. ............. .. ................... 99 

Listing 5 .2: BNF-Koza grammar definition for the artificial ant problem ... .. ................. 104 

Listing 5.3: BNF-O'Neill grammar definition for the artificial ant problem . .. ...... ......... 104 

Listing 5.4: Best SFT solution found by GE using BNF-Koza (415 steps) .......... .. ......... 109 

Listing 5.5: Another SFT solution of GE using BNF-Koza (419 steps) ........ .. ........ .... .... 109 

Listing 5.6: Best SFT solution found by fixed -length GE (steps 377) . ........................... 113 

Listing 5. 7: Best SFT solution found using BNF -0 'Neill ( 607 steps) ............................ 114 

Listing 6.1 : BNF-Koza grammar definition for the artificial ant problem ...................... 121 

Listing 6.2: BNF-Koza with Building Blocks (BB) Version #1. .. .... .. ...... ...... .. ..... ......... 123 

Listing 6.3: BNF-Koza with Building Blocks (BB) Version #2 ........ .. .. .. ... .............. .. .... 123 

Listing 6.4: BNF-Koza with Building Blocks (BB) Version #3 ..................................... 124 

Listing 6.5: BNF-Koza with Building Blocks (BB) Version #4 ....... ............. .. ............... 124 

Listing 6.6: BNF-Koza with Building Blocks (BB) Version #5 . .................................... 125 

Listing 6.7: BNF-Koza with Building Blocks (BB) Version #6 ..................................... 126 

Listing 6.8: BNF-Koza with Building Blocks (BB) Version #7 . .. .. ................................ 126 

Listing 6.9: BNF-Koza with Building Blocks (BB) Version #8 . ................. .. ........ ......... 126 

Listing 6.10: BNF-Koza with Conditional Bias (CB) Version #1. ................................. 131 

Listing 6.11 : BNF-Koza with Conditional Bias (CB) Version #2 .... .. ............... .. ........ ... 132 

Listing 6.12: BNF-Koza with Conditional Bias (CB) Version #3 ............. .. .... ... .. .. .. .. .. .. 133 

Listing 6.13: BNF-Koza with Conditional Bias (CB) Version #4 .................................. 133 

xviii 



Listing 6.14: BNF-Koza with Conditional Bias (CB) Version #5 ........ ..... ......... ............ 134 

Listing 6.15: BNF-Koza with Conditional Bias (CB) Version #6 ..... ........... .... .............. 134 

Listing 7 .1: Sample phenotypes of two constituent genes for the artificial ant problem. 142 

Listing 7.2: The updated <op> non-terminal symbol of BNF-Koza after the addition of 

the phenotypes of the constituent genes of Listing 7 .1.. ....................................... .... ...... 143 

Listing 7. 3: Example of a fixed behaviour-switching BNF grammar definition for the 

artificial ant problem (see also section 6.5 for variations of this grammar) .................. .. 146 

Listing 7.4: Behaviour-switching represented as pseudo-code with a corresponding FSM . 

........................ ...... .... .. .............. .............. ........................... ....................................... .. . 147 

Listing 7.5: CGE configuration parameters ................................ .. .......................... .. ..... 150 

Listing 7 .6: The Constituent Grammatical Evolution algorithm ................. ... ................. 151 

Listing 7.7: BNF-BS Blueprint grammar definition for the artificial ant problem . ......... 154 

Listing 7.8: BNF-BS grammar definition for the artificial ant problem. The phenotype of 

every constituent gene(*) is added as a production rule in the <op> non-terminal symbol. 

................... .............. .. .. ... .. .... .. .................................. .. .. .............. ...... ..... ...................... 154 

Listing 7.9: NetLogo code of the best solution found by CGE in the Santa Fe Trail 

problem. This solution requires 33 7 steps ... ........ ..... .. ................................................ .. . 161 

Listing 7.10: The BNF-BS grammar definition for Los Altos Hills ................. ............ .. 167 

Listing 7.11: BNF-Koza grammar definition (maze searching version) .................. ..... .. 170 

Listing 7.12: BNF-O'Neill grammar definition (maze searching version) . ............ ..... .... 170 

Listing 7.13: BNF-BS grammar definition (maze searching version) ....... ........... .. ......... 170 

Listing 7.14: Best solution found by CGE in the Hampton Court Maze problem. It requires 

3 84 steps .................... ..... ........ ....... ... ...... ....... ..... ............. ... .. .... .......... ..... ..................... 172 

XIX 



Listing 7 .15: Best solution found by CGE in the Chevening House Maze problem. It 

requires 314 steps . ...... .. ...... .... ........................................... ............ ............... .. .. ...... ... .. . 17 5 

Listing 7.16: Best solution found by GE using BNF-Koza (415 steps) ............ ........... ... 180 

Listing 7.17: Best solution found by GE using BNF-O'Neill (607 steps) ........... ......... .. . 180 

Listing 7.18: Best solution found by CGE (337 steps) .. .. .. .. ..... ....................... ... ........... . 181 

Listing 7 .19: Shortest genotype found by GE using BNF -Koza (142 bits, 617 steps) ..... 182 

Listing 7.20: Shortest genotype found by GE using BNF-O'Neill (90 bits, 615 steps) ... 182 

Listing 7.21: Shortest genotype found by CGE (73 bits, 405 steps) ........... .. .................. 183 

Listing 7.22: Shortest phenotype found by GE using BNF-Koza (9 operators, 589 steps) . 

.... ..... ................................ .. ......... ... ......... ....... ..................... ..................... ...... .. ........ .... 183 

Listing 7 .23: Shortest phenotype found by GE using BNF-O'Neill (9 operators, 611 

steps) ...... .......... ... .... .... .. ....... .... .................. .... ........ .............. ...... .. .......... .......... ......... ... 183 

Listing 7 .24: Shortest phenotype found by CGE (13 operators, 519 steps) ....... ............. 184 

Listing 7.25: Sample of a genes pool from the Santa Fe Trail experiment containing three 

constituent genes phenotypes ........ ... ... ........ .............................. ........................ .... .. .. .... 189 

Listing 7.26: Sample of a grammar definition from the Santa Fe Trail experiment after the 

addition of the phenotypes of the constituent genes of the genes pool of Listing 7 .25 

before the start of a Grammatical Evolution run . ............. ....... .... .. .... ............................. 190 

Listing 7.27: BNF-Koza grammar definition for the Santa Fe Trail problem with a 

declarative search bias toward conditional statements in the start of the program ...... .... 192 

Listing 7.28: BNF-Koza grammar definition for the Los Altos Hills problem with a 

declarative search bias toward conditional statements in the start of the program (the bias 

toward conditional statements is similar to the bias used in the CGE experiment on the 

same problem; see Listing 7.10) . ...... ... ....... ......... .... .. .. ...... ....... .. ................................... 192 

xx 



Listing 7.29: BNF-Koza maze version grammar definition for the Hampton Court Maze 

and Chevening House Maze problems with a declarative search bias toward conditional 

statements in the start of the program ..... ... ... ... ... ............................................... ... .... ..... 193 

XXI 



List of Equations 

Equation 7 .1: Final fitness value calculation .............................. .......................... .... ..... 152 

Equation 7.2: Hampton Court Formula 1 ....................................................................... 171 

Equation 7.3: Hampton Court Formula 2 ....................................... .............. .................. 172 

XXll 



List of Tables 

Table 2.1: Santa Fe Trail problem specifications . ........................... ................................. 51 

Table 3.1 : Hamming Distance GE Tableau ..... ... ....... .. ......................... .......................... .. 75 

Table 3.2 : Results for the Hamming distance problem ..................................................... 75 

Table 3 .3: Symbolic regression GE tableau .... ................................ .. ....... ... .. .. ................. 76 

Table 3.4: Results for symbolic regression using BNF grammar (A) . ... .. ......................... 77 

Table 3 .5: Results for symbolic regression using BNF grammar (B) .......... .... ................. 77 

Table 3 .6 : Trigonometric identity GE tableau ............... ... ............................................... 78 

Table 3.7: Results for the trigonometric identity problem . ............ ... ................................ 79 

Table 4.1 : Symbolic regression GE tableau . .... .. ............................................. ................. 84 

Table 4.2: Results for symbolic regression using prior knowledge . ........................ .... ..... 85 

Table 4 .3: Trigonometric identity GE tableau . ................. ............................................... 86 

Table 4.4: Results for the trigonometric identity problem using prior knowledge .......... .. 87 

Table 4.5: Evolutionary process evaluation and population thinking experimental results 

(trigonometric identity problem) ............... ............. ......................................................... 90 

Table 5.1: Comparing LISP and NetLogo solutions of the Santa Fe Trail. ... ........ ........ .. 100 

Table 5.2: Grammatical Evolution tableau for the Santa Fe Trail problem ....... ....... ... .... 105 

Table 5.3: Results of GE using the BNF-Koza grammar definition ...................... .......... I 07 

Table 5.4: Results of GE using the BNF-O'Neill grammar definition . ... ........................ 108 

XXlll 



Table 5.5: Results using the BNF-Koza grammar definition with fixed-length genomes 

and wrapping .................. ............. ..... .. ... ............ .. .... ..... ..... .. .................................... ..... 111 

Table 5.6: Results using the BNF-Koza grammar definition with fixed-length genomes 

without wrapping . .... ... ... ...... .............. ..... ....... ..... .... ... ... ... .... ... ...................... ................ 111 

Table 5. 7: Results using the BNF-O'Neill grammar definition with fixed-length genomes 

and wrapping ..... ...... ..... ... ... ... .............................. ..... .......... ... ......... .... ........ ........ .......... 111 

Table 5.8: Results using the BNF-O'Neill grammar definition with fixed-length genomes 

without wrapping ....... ... ......... ... ... ...... .. .................... .. ........................................... ..... ... 111 

Table 5.9: Results using standard GE with random search (as the search engine) and 

without wrapping ........................ .. .... ... ... ..................................... .......... .. ..................... 112 

Table 5.10: Results using the BNF-O'Neill grammar definition and maximum ant steps 

limit 606 . ... .. ...... .. .......... ............ ............................. .... ............ ... ....................... ... ......... 115 

Table 6.1: Grammatical Evolution tableau for the Santa Fe Trail problem . .. .................. 121 

Table 6.2: Results of GE using the BNF-Koza Building Blocks variations . ...... ..... ..... ... 127 

Table 6.3: Results of GE using the BNF-Koza Conditional Bias variations .............. .. ... 135 

Table 7.1: Grammatical Evolution tableau for the Santa Fe Trail. ................................. 158 

Table 7.2: CGE settings for the Santa Fe Trail. ....... ... .................. ....................... .......... 158 

Table 7.3: CGE experimental results in the Santa Fe Trail problem ............................... 161 

Table 7.4: GE using BNF-Koza experimental results in Santa Fe Trail.. ... ..................... 162 

Table 7.5: GE using BNF-O'Neill experimental results in Santa Fe Trail. ...... ............... 162 

Table 7.6: Statistics of CGE benchmarking experimental results in the Santa Fe Trail 

problem ..................... ... .... .... ......... ................................. ... .. .. .. .. ................................... 163 

Table 7. 7: Grammatical Evolution Tableau for Los Altos Hills .......... ........................... 165 

XXJV 



Table 7.8: CGE settings for Los Altos Hills ................. ............ ......... .. ..................... ..... 166 

Table 7.9: Experimental results of the Los Altos Hills problem .. ................................. .. 167 

Table 7.10: Grammatical Evolution tableau for Hampton Court Maze ........................... 171 

Table 7.11: CGE settings for the Hampton Court Maze problem ..... .............................. 171 

Table 7.12: Experimental results for the Hampton Court Maze problem ........................ 172 

Table 7.13: Experimental results for the Chevening House Maze problem .......... ..... ..... 174 

Table 7.14: CGE and GE comparison in the Santa Fe Trai l problem ................. .. .... ..... . 176 

Table 7 .15: Processing statistics of CGE and GE using BNF-Koza ................ ............... 185 

Table 7 .16: Constituent genes benchmark results on Santa Fe Trail, Los Altos Hills, 

Hampton Court Maze, and Chevening House Maze using BNF-Koza ............... ...... ...... . 189 

Table 7.17: Ten most common randomly created candidate constituent genes and their 

occurrence percentage over the total number of valid candidates ......................... .......... 190 

Table 7 .18: Ten most common constituent genes in the created gene pools and their 

occurrence percentage over the total number of genes in pools ...... ......... ...................... 191 

Table 7 .19: Behaviour-switching benchmark results on Santa Fe Trail, Los Altos Hills, 

Hampton Court Maze, and Chevening House Maze .......................................... ............. 193 

Table 7.20: Grammatical Evolution using BNF-Koza (artificial ant and maze searching 

versions) and genotype size limit 250 codons in SFT and CHM problems ............. .. ...... 194 

Table 7.21: CGE on SFT without genotype size maximum limit. ........................... .. .... . 195 

Table 7.22: Results in the Santa Fe Trail problem of Grammatical Evolution using BNF -

Koza and applying various genotype size limits (IMC) ... ...... .... ..... .... ........ .... ............... 196 

XXV 



List of the Accompanying Material 

The accompanying CD includes the following material: 

1. Dissertation. 

Electronic copies of the dissertation, in a structure and format that is exactly the 

same as the printed version. 

a. Dissertation in MS Word format. 

b. Dissertation in PDF format. 

2. Published Papers. 

a. jGE - A Java implementation of Grammatical Evolution, (2006). 

b. Implication of Prior Knowledge and Population Thinking in Grammatical 

Evolution: Toward a Knowledge Sharing Architecture, (2006). 

c. Experiments with Grammatical Evolution in Java, (2008). 

d. Grammatical Evolution and the Santa Fe Trail Problem, (2010). 

e. Constituent Grammatical Evolution, (2011). 

3. The jGE Library. 

a. Binary and Source code. 

b. Documentation. 

c. Quick Start Guide and BNF sample files. 

4. The jGE NetLogo extension. 

a. Binary and Source code. 

b. Documentation. 

5. NetLogo Models. 

a. Santa Fe Trail Simulation. 

b. GE and CGE Model for the Santa Fe Trail problem. 

c. Los Altos Hills Simulation. 

d. GE and CGE Model for the Los Altos Hills problem. 

e. Hampton Court Maze Simulation. 

f. GE and CGE Model for the Hampton Court Maze problem. 

g. Chevening House Maze Simulation. 

h. GE and CGE Model for the Chevening House Maze problem. 

6. Experiments Log files 

XXVI 



Chapter 1 

Introduction 

1.1 Background and Motivation 

Evolutionary Computation is a subfield of Artificial Intelligence, more particularly of 

Computational Intelligence. It takes inspiration from natural evolution and genetics for the 

creation of population-based meta-heuristic search and optimisation algorithms intended 

to solve complex computational problems. Evolutionary algorithms have been applied 

with success in a variety of fields and problems of a static or dynamic nature, such as 

function optimisation, machine learning and self-adaptation to name a few. Even though 

important drawbacks and issues have been identified - the lack of a formal model that 

unifies them, the computational cost of these algorithms, and the lack of an effective 

modelling of the meta-learning based progress of biological evolution - their potential 

makes them an attractive choice for application in areas that resemble features of real­

world problems like coping with the evolution and adaptation of emergent agents 

behaviours. 

One of the most important developments in evolutionary computation 1s Genetic 

Programming (Koza, 1992) which directly evolves computer programs. Grammatical 

Evolution, first published by Ryan, Collins and O'Neill (1998), is a form of Genetic 

Programming that uses variable length binary genomes which govern how a Backus Naur 

Form (BNF) grammar definition is mapped to an executable computer program written in 

an arbitrary programming language. Due to an innovative mapping formula, a genome 

wrapping mechanism, and the use of variable length genomes, this new approach provides 

a solution to the "closure" problem of Genetic Programming and grammar-based 

automatic programming algorithms, namely the issue of generation and preservation of 

valid programs (O'Neill and Ryan, 2001). According to the Grammatical Evolution 

literature, this algorithm outperforms Genetic Programming in problems such as symbolic 

regression and the Santa Fe Trail which is an instance of the artificial ant problem 

(O'Neill and Ryan, 2001), and has proved to be successful in a series of static and 

1 



dynamic real world problems (O'Neill and Ryan, 2003; Brabazon and O'Neill, 2006; 

Dempsey, O'Neill and Brabazon, 2009). 

But the success of Grammatical Evolution on the Santa Fe Trail has come into question 

with Robilliard , et al. (2006) claiming that the comparison with Genetic Programming in 

this problem, as it is conducted in the GE literature, is not a fair one. Furthermore, 

research on Grammatical Evolution has revealed important issues with the most noticeable 

of them being destructive crossovers (O'Neill, Ryan, Keijzer and Cattolico, 2003), the 

genome bloating (Harper and Blair, 2006b ), the dependency problems (Ryan, Collins and 

O'Neill , 1998), and the low locality of genotype-to-phenotype mapping (Rothlauf and 

Oetzel, 2006). 

Besides the identified issues, Grammatical Evolution seems to be a promising approach 

that deserves further research. The use of a BNF grammar definition enables the evolution 

of arbitrary structures in a very flexible way. The encoding of the genome as variable 

length binary strings simplifies the genetic operations such as crossover and mutation. The 

resolution of the "closure" problem allows the creation of valid individuals. These are 

some of the most important advantages of Grammatical Evolution making it an appealing 

approach for natural-inspired solving of complex problems. 

Consequently, one of the first questions that arose prior to the research detailed in this 

thesis was whether the claim of Robilliard, et al. (2006) was true. If yes, what is the real 

performance of Grammatical Evolution in the Santa Fe Trail? Is the method still 

outperforming Genetic Programming in this problem? Also, is it possible to achieve a 

performance improvement of this algorithm by tackling some of its reported issues, and 

how much? These questions formed the motivation for the research undertaken in this 

thesis which aims to provide answers and support them with experimental results. 

1.2 Aims and Objectives 

The aims and objectives of the research undertaken in this thesis are as follows: 

• to survey the literature of the area of evolutionary computation - with a focus on 

Grammatical Evolution - and point out research findings , open issues, and future 

directions; 

2 



• to identify important Grammatical Evolution issues and possible resolutions under 

research; 

• to investigate the claim of Robilliard, et al. (2006) that when Grammatical 

Evolution literature benchmarks this grammar-based algorithm against Genetic 

Programming in the Santa Fe Trail problem, a biased search space is used which is 

not semantically equivalent with the original as defined by Koza (1992); 

• if this claim is proved to be true, to benchmark the performance of Grammatical 

Evolution in the Santa Fe Trail problem when the original search space is used, and 

answer the question whether it still outperforms Genetic Programming; and 

• to tackle some of the most noticeable issues of Grammatical Evolution with the 

hope to improve its effectiveness and efficiency in benchmark problems where the 

subject of evolution is the behaviour of an agent in a given environment. 

When the research of this thesis was started, there was no publicly available 

implementation of Grammatical Evolution in the Java programming language that would 

enable benchmarking and experimentation with this algorithm in a platform independent 

manner. Therefore, an implementation had to be developed. The resultant toolkit, named 

jGE Library, is also intended to provide a framework for the addition of more 

evolutionary algorithms, not only Grammatical Evolution, and for the development of 

experimental implementations. 

The benchmarking of Grammatical Evolution and its proposed improvement requires also 

the development of simulations of the problems in question and of the evolutionary runs 

to be conducted. For this reason there is the need for the implementation of a series of 

models and simulations in a multi-agent programmable modelling environment such as 

NetLogo. To this end, an extension of jGE for the NetLogo modelling environment, 

named jGE NetLogo extension, has been developed and it is hoped that this will allow 

both communities of NetLogo and Grammatical Evolution to utilise the features and 

advantages of each other. 

1.3 Thesis Statement 

Grammatical Evolution is a flexible and promising approach to evolutionary computation, 

due to its unique features and advantages, which merits further investigation for 

3 



improvement besides the reported issues of this algorithm which cast doubt about its 

effectiveness and efficiency. The performance of Grammatical Evolution can be increased 

significantly - at least in problems where the subject is the emergence of the behaviour of 

an agent - by confronting the issues of: semantic changes in the original search space 

which exclude good solutions of the problem in question; destructive crossovers; and 

genotype bloating. 

The proposed improvement of the algorithm, named Constituent Grammatical Evolution, 

aims to reduce the impact of the above issues with the incorporation of the concepts of 

conditional behaviour-switching and constituent genes, and with imposing a limit to the 

genotype size. The achieved increase in effectiveness and efficiency is demonstrated with 

a series of experiments in benchmark problems which involve the evolution of the 

behaviour of simple agents in static environments. The experiments are facilitated with 

the development of a general-purpose toolkit and the appropriate models for the 

simulation of these benchmarks. 

1.4 Thesis Contributions 

Previous to this study, there had been no other detailed work investigating and confirming 

the claim of Robilliard, et al. (2006) that Grammatical Evolution literature uses a biased 

search space when its performance is compared against Genetic Programming in the Santa 

Fe Trail problem. It is proved through a series of different experiments that the imposed 

bias is very large and that good solutions of the problem are excluded. Furthermore it is 

shown that Grammatical Evolution does not outperform Genetic Programming on the 

Santa Fe Trail when it uses the original search space as defined by Koza (1992) and when 

a configuration similar to this mentioned in the GE literature (O'Neill and Ryan, 2001; 

2003, p.56) is applied. 

Also, this is the first reported publication of the following: the benchmarking of 

Grammatical Evolution to highlight the impact of using the original and a GE literature 

SFT-like biased search space, on Los Altos Hills, a more difficult version of the artificial 

ant problem than the Santa Fe Trail ; and on two particular maze searching problems, 

Hampton Court Maze and Chevening House Maze. It is shown that Grammatical 

Evolution cannot solve the Los Altos Hills problem and that it does not perform well on 

4 



Hampton Court Maze and Chevening House Maze, regardless of which of these two 

search spaces is used. These results put in question the competence of Grammatical 

Evolution on agent-oriented problems. 

This thesis proposes an improvement of Grammatical Evolution, named Constituent 

Grammatical Evolution, which copes with how to bias the search space toward useful 

areas without excluding good candidate solutions, how to reduce the impact of destructive 

crossover events, and how to resolve the genotype bloating issue. This new algorithm 

achieves a higher success rate and finds better solutions than Grammatical Evolution in 

the Santa Fe Trail problem. It is also shown that the new algorithm improves Grammatical 

Evolution in three more benchmarks: Los Altos Hills, Hampton Court Maze, and 

Chevening House Maze. 

Additionally, this work demonstrates the effects of the application of declarative 

grammatical bias , through the addition of building blocks or the encoding of knowledge, 

on the performance of Grammatical Evolution in the Santa Fe Trail problem and provides 

experimental evidence which highlights the importance of the number of the added 

building blocks. Furthermore, it demonstrates the impact of genotype bloat to the 

computational effort of the genotype-to-phenotype mapping process during a Grammatical 

Evolution run and the significant decrease that can be achieved, without affecting the 

performance in terms on finding a solution, when a genotype size limit above a problem 

specific threshold is enforced. 

Finally, for the investigation undertaken in this work, the development of a set of tools 

was required. One of them, the jGE Library, was the first published implementation of 

Grammatical Evolution in Java (Georgiou and Teahan, 2006a) and is freely available 

under the GNU general public licence from its web site (Georgiou, 2006) . Another tool is 

the jGE NetLogo extension which is the only implementation of Grammatical Evolution 

for the NetLogo modelling environment. Finally, the development of a series of NetLogo 

models was required that simulate the benchmark problems and perform the evolutionary 

runs. 

5 



1.5 Thesis Summary 

Chapter 2 provides a background to the field of evolutionary computation, with a focus on 

Grammatical Evolution, and on how evolutionary algorithms are evaluated. The chapter 

begins by pointing out the nature-inspired influences to evolutionary computation. Then it 

provides a historical review of the field and discusses its current issues, findings , and 

future directions. The chapter continues with the description of Grammatical Evolution 

and its molecular biology influences. Then, the chapter presents a study of Grammatical 

Evolution standard configuration, reviews the past and current research on this new 

evolutionary algorithm, lists its applications and variations, and discusses its main issues 

and future research opportunities. After reviewing research on modularity in Genetic 

Programming and Grammatical Evolution and the most important freely available 

implementations of Grammatical Evolution, in a variety of programming languages, the 

chapter closes with the presentation of standard benchmarking problems that were used 

for the evaluation of evolutionary algorithms, mainly in the area of Genetic Programming. 

Chapter 3 presents the jGE Library, an implementation of Grammatical Evolution in the 

Java programming language, which has been developed to provide a framework for the 

implementation and experimentation with evolutionary algorithms and to facilitate the 

experiments discussed in later chapters. This chapter explains the architecture and the 

main components of this toolkit and demonstrates how it can be used and configured 

through examples, code samples and proof-of-concept experiments in solving Hamming 

distance, symbolic regression and trigonometric identity problems. Also, some Java issues 

which were revealed during the development of the library are discussed. The chapter 

closes with a comparison of jGE with two widely known Grammatical Evolution 

implementations, libGE and GEV A. 

Chapter 4 presents some extensions to the jGE Library. The chapter discusses how jGE 

can be extended with the incorporation of natural inspired concepts, such as prior 

knowledge and population thinking, and discusses the experimental results. Finally, the 

chapter presents the jGE Library extension for the NetLogo modelling environment, and 

shows through examples how it can be used in NetLogo models. 

6 



The next chapters of the thesis deal with three of the Grammatical Evolution issues (the 

changed definition of the Santa Fe Trail benchmark which additionally excludes good 

solutions, the destructive crossovers events, and the genotype bloating) and their proposed 

confrontation. 

Chapter 5 discusses the Grammatical Evolution literature issue of the usage of a search 

space that is semantically different to the original in the Santa Fe Trail benchmark when it 

is compared to Genetic Programming. Namely, the application in the GE grammar of a 

declarative language bias which additionally excludes good solutions of the problem. 

Then the chapter describes the NetLogo models that were developed to facilitate the 

investigation of the issue through experimentation, and provides the results in a series of 

experiments conducted with jGE and the NetLogo models. The chapter closes with a 

discussion of the experimental results and the conclusions. 

Chapter 6 investigates the effects of grammatical bias in the performance of Grammatical 

Evolution in the Santa Fe Trail problem and whether a bias can be enforced that increases 

at the same time both the effectiveness (success rate) and efficiency (solution quality) 

without changing the semantics of the search space as defined in the original problem by 

Koza (namely, with using grammars stating the same language bias). The chapter opens 

with a presentation of previous work on grammatical bias, the issues that arise when 

language or search bias are used, and how modularity and knowledge encoding may bias 

the search for a solution. Then, a series of experiments using a variety of biased grammars 

in the Santa Fe Trail problem is presented, and the chapter closes with a discussion of the 

experimental results and the conclusions. 

Chapter 7 presents Constituent Grammatical Evolution, a variation of Grammatical 

Evolution that aims to reduce the risk of excluding good solutions when a biased grammar 

is used as well as to reduce the impact of destructive crossovers and to confront the 

genotype bloating issue. The chapter analyses the main concepts of this new algorithm, 

provides a detailed description of it, and shows in detail how it is implemented in a 

standard Genetic Programming benchmark, the artificial ant problem. Then the chapter 

compares it against Grammatical Evolution in four benchmark problems and discusses the 

results. Before concluding, the chapter presents a series of more experiments and 

statistical results that further investigate aspects of the proposed Grammatical Evolution 

variation. 

7 



Chapter 8 summarises the work undertaken and presented in this thesis, discusses the 

findings and provides the conclusions. Then the chapter reviews the aims and objectives, 

and summarises the contributions of the thesis before the suggested future work is 

identified. 

Appendix A contains a list of print and on-line publications which have arisen from this 

work; Appendix B overviews the j GE web site; Appendix C provides a description of the 

Constituent Grammatical Evolution web site; Appendix D lists the people who have 

shown interest in the jGE Library; Appendix E provides guide lines on how to use jGE; 

Appendix F gives detailed class diagrams of the main components of the jGE Library; and 

Appendix G provides a description of the main procedures of the jGE NetLogo extension. 

8 



Chapter 2 

Background and Literature Review 

2.1 Evolutionary Computation 

2.1.1 Introduction 

Ernst Mayr (2002, p.8) notes that everything on Earth seems to be in a continuous flux 

and mentions three types of changes: regular changes, irregular changes, and evolution. A 

regular change is for example the change from day to night and back again. The 

movement of the tectonic plates is an example of irregular change. Evolution however, is 

a particular kind of change that seems to keep going continuously and to have a 

directional component. 

Evolution as a theory was first developed in detail with the 185 9 publication of the book 

On the Origin of Species , by Charles Darwin and it is the most important concept in 

biology (Mayr 2002, p.xiii). Charles Darwin's theory of evolution through natural 

selection is based on population thinking and states that "a population or species changes 

through the continuous production of new genetic variation and through the elimination of 

most members of each generation, because they are less successful either in the process of 

the non-random elimination of individuals or in the process of sexual selection i.e., they 

have less reproductive success" (Mayr 2002, p.83). Indeed, Charles Darwin in his seminal 

work On the Origin of Species says that " It is not the strongest of the species that survive, 

nor the most intelligent, but the one most responsive to change" (Ghanea-Hercock 2003, 

p.119). 

According to Evolutionary Synthesis (Mayr 2002, p.9), evolution is change in the 

properties of populations of organisms over time. In other words, the population is the so ­

called unit of evolution. Genes, individuals, and species also play a role, but it is the 

change in populations that characterises organic evolution. Seven of the processes which 

are responsible for the genetic turnover in a population are: 1) Selection, 2) Mutation, 3) 

9 



Gene Flow, 4) Genetic Drift, 5) Biased Variation, 6) Movable Elements, and 7) Non­

random mating (Mayr 2002, pp.103-111). 

The importance of the concept of evolution goes far beyond biology and alongside with 

the developments in genetics by Gregor Mendel and the discovery of the structure of the 

DNA by James Watson and Francis Crick, inspired, amongst other things, the field of 

evolutionary computation (Ghanea-Hercock 2003, pp.19-26). 

Hirsh (2000) notes that evolutionary computation is based on the idea that basic concepts 

of biological reproduction and evolution can serve as a metaphor on which computer­

based, goal-directed problem solving can be based. The general idea is that a computer 

program can maintain a population of artefacts represented using some suitable computer­

based data structures. Elements of that population can then mate, mutate, or otherwise 

reproduce and evolve, directed by a fitness measure that assesses the quality of the 

population with respect to the goal of the task at hand. 

De Jong (2006, p. l) defines evolutionary computation as the use of evolutionary systems 

as computational processes for solving complex problems. 

According to Ghanea-Hercock (2003, p.iii), the breakthrough in understanding how to 

apply evolution in computational systems is normally credited to the group led by John 

Holland and their seminal work on the Genetic Algorithm, in 1975 at the University of 

Michigan. 

2.1.2 History and Main Approaches 

De Jong (2006, p. l) traces the roots of the evolutionary computation field as far back as 

the 1930s but as he notes it was the 1960s, when inexpensive digital computing 

technology emerged, where the whole field progressed. De Jong, identifies three 

prominent groups of scientists and engineers who saw the computer simulation of 

evolutionary systems as a means to better understand complex evolutionary systems: 

Evolutionary Biologists (development and testing of models of natural evolutionary 

systems), Computer Scientists and Engineers (harnessing the power of evolution to build 

useful new artefacts), and Artificial Life Researchers (design and experimentation with 

new and interesting artificial evolutionary worlds). 

10 



The history and foundation of evolutionary computation can be summarised m the 

following milestones: 

• Friedberg (1958), Evolutionary Algorithm approach for automatic programming; 

• Rechenberg ( 1965), Evolution Strategies; 

• Fogel, Owens and Walsh (1966), Evolutionary Programming; 

• John Holland (1967), Genetic Algorithm; 

• John Koza (1992), Genetic Programming. 

According to Ghanea-Hercock (2003, p.2), the first evolutionary algorithm in the form 

most commonly utilised today was the Genetic Algorithm (GA) created by John Holland 

and his students at the University of Michigan, and the next major development in 

Evolutionary Algorithm (EA) systems was Genetic Programming, introduced by John 

Koza in 1992. 

De Jong (2006, pp.23-31) provides a comprehensive historical perspective of the field of 

evolutionary computation. He notes that in the 1930s, the influential ideas of Sewell 

Wright ( 1932) lead quite naturally to the notion of an evolutionary system as an 

optimisation process ( even today optimisation problems are the most dominant application 

area of evolutionary computation). Friedman (1956) viewed an evolutionary system as a 

complex, adaptive system that changes its makeup and its responses over time as it 

interacts with a dynamically changing landscape. Friedberg's work (1958) is an early 

example of automating the process of writing computer programs based on evolutionary 

processes. Rechenberg (1965) used evolutionary processes to solve difficult real-valued 

parameter optimisation problems. From these ideas emerged the family of algorithms 

called "Evolution Strategies" . Fogel, Owens and Walsh (1966) saw the potential of 

achieving the goals of artificial intelligence via evolutionary techniques. Intelligent agents 

were presented as finite state machines and an evolutionary framework called 

"Evolutionary Programming" evolved better finite state machines (agents) over time. 

Holland saw evolutionary processes as a key element in the design and implementation of 

robust adaptive systems that were capable of dealing with an uncertain and changing 

environment (Holland, 1962; 1967). His work lead to an initial family of "reproductive 

plans" which formed the basis for what we call "Simple or Generational Genetic 

Algorithms" today. 

11 



De Jong (2006, pp.23-31) notes that the last three paradigms mentioned above 

(Evolutionary Programming, Evolution Strategies, and Generational Genetic Algorithms) 

have been unified (late 1980s and early 1990s) to the field known as "Evolutionary 

Computation" today. Since the 1990s, new evolutionary algorithms emerged in this new 

field such as Genitor, Genetic Programming, Messy Genetic Algorithms, Samuel, CHC, 

Genocoop, and other. He argues that today, the field of Evolutionary Computation has the 

look and feel of a mature scientific discipline and there are various groups of scientists 

and engineers who focus on a number of fundamental extensions to existing Evolutionary 

Algorithm models in order to improve and extend their problem solving capabilities. 

Furthermore, David Fogel (2006, pp.59-87) reviews some of the first attempts and 

contributions to the formal application of the evolutionary theory principles to practical 

engineering problems. He notes that such attempts appeared first in the areas of statistical 

process control, machine learning, and function optimisation. Namely, Evolutionary 

Operation or EVOP (Box, 1957), A Learning Machine: Herman (Friedberg, 1958), 

Artificial Life (Barricelli, 1957), Evolutionary Programming (Fogel, Owens and Walsh, 

1966), Evolution Strategies (Rechenberg, 1965), and Genetic Algorithms (Holland, 1975). 

According to Ghanea-Hercock (2003, pp.4 7-56), the latest significant development in the 

area of evolutionary computation is Genetic Programming (Cramer, 1985; Koza, 1992; 

1994; Koza, et al. , 1999; 2003; Langdon and Poli , 2001) named and popularised by John 

Koza (1992). This variation of Holland 's Genetic Algorithms has the main characteristic 

that it performs its search not with fixed-length binary encoded strings but in variable­

length tree-based representations of complete computer programs. Indeed, it introduces a 

new significant concept: The modular subroutine approach termed Automatically Defined 

Functions (ADFs). 

Also, O'Neill and Ryan (2003 , pp.5-21) conduct a comprehensive survey of Evolutionary 

Automatic Programming (EAP) systems, which are defined as those systems that adopt 

evolutionary computation to automatically generate computer programs (Genetic 

Programming, Binary GP, AIM GP, developmental GP), and they mention some of the 

diverse approaches that have been adopted in the field of EAP: a) Tree-based systems 

(Genetic Programming), b) Grammar-based GP systems (review in McKay, et al. , 2010) 

(cellular encoding of neural networks, bias in GP, Genetic Programming Kernel, 

combination of GP and Inductive Logic Programming, Auto-Parallelisation of GP), and c) 

12 



String-based GP (Binary GP, Machine Code GP or AIM-GP, Genetic Algorithm for 

Deriving Software or GADS, CFO/GP). 

The latest developments in evolutionary computation show a significant popularity of 

Parallel Evolutionary Algorithms, which is to be expected because evolution is an 

inherently parallel process (Fogel 2006, p.87). Alba and Tomassini (2002) and Alba 

(2005, pp.108-112) provide a unified and comprehensive survey of the area of parallel 

evolutionary algorithms (PEAs). They classify the evolutionary algorithms to the 

following broad classes: Panmictic Evolutionary Algorithms (Generational and Steady 

State) and Structured Evolutionary Algorithms (Distributed EA - dEA, Cellular EA - cEA, 

and Non-Standard Structured EAs e.g. injection island GA, gradual distributed real-code 

GA, coevolutionary approaches, and more). 

Cantu-Paz (2001 , pp.6-11) suggests the following categorization of the techniques used to 

parallelise GAs: 1) single-population master-slave GAs, 2) multiple-population GAs, 3) 

fine-grained GAs, and 4) hierarchical hybrids. He notes in Cantu-Paz (1998) that parallel 

GAs are capable of combining speed and efficacy and he argues that the only way to 

achieve a greater understanding of parallel GAs is to study individual facets independently 

noting that the most influential publications in parallel GAs concentrate on only one 

aspect (migration rates, communication topology, or deme size) either ignoring or making 

simplifying assumptions on the others. 

Indeed, research has been conducted on implementations of genetic algorithms on parallel 

hardware using standard parallel approach (master - slave) and decomposition approach 

(Adamidis, 1994 ). The models of the last approach are: the coarse-grained parallel 

algorithm / migration model (island model , stepping-stone model, and other coarse­

grained models) and the fine-grained parallel genetic algorithm/ diffusion or isolation-by­

distance or neighbourhood model. 

Today, some of the most common applications of evolutionary algorithms according to De 

Jong (2006, pp.71-113) are a) Optimisation (Parameter optimisation, constrained 

optimisation, data structure optimisation, multi-objective optimisation), b) Searching, c) 

Machine Learning, d) Automated Programming, and e) Adaptation of agent behaviour. 

13 



2.1.3 Current Issues 

Baum (2004, pp.124-125) argues that the problem with evolutionary algorithms using 

sexual recombination is that they usually abandon credit assignment. Namely, when half 

the genotype is changed due to crossover, the fitness is largely randomised. This kind of 

change does not slowly adjust segments of the genotype so that they work well in the 

context of all other segments, and consequently this approach abandons credit assignment. 

Instead, biological evolution makes progress using a meta-learning process. It discovers 

semantically meaningful genes and can swap them around in a way so that these changes 

correspond to real modular structure in the world. Baum claims that evolutionary 

algorithms have not yet achieved an effective modelling of this progress. 

Ghanea-Hercock (2003, pp.101-114), claims that three of the fundamental problems of the 

Evolutionary Algorithms which have to be addressed are: a) the computational cost in 

terms of processing power and memory requirements, b) the optimal selection of the 

operators and their parameters, and c) the complex nature of the evolutionary algorithms 

search space. Indeed, the mapping of concepts of Darwinian Evolution onto computers 

results in the creation of analogously complex and diverse computational artefacts (Hirsh, 

2000). 

De Jong (2006, pp.71-113) focuses on computer science and engineering issues relating to 

how evolutionary algorithms can be used to solve difficult computational problems, using 

at the same time the biological and dynamical system perspectives as a source of ideas for 

better and more effective algorithms. He argues that a solid conceptual starting point for 

EA-based problem solving is to conceive of a simple EA as a heuristic search procedure 

that uses objective fitness feedback to explore complex solution spaces effectively. He 

notes that in order for this procedure to be effective for a specific class of problems, some 

key design decisions have to be made involving: a) Deciding what an individual in the 

population represents ; b) providing a means of computing the fitness of an individual; c) 

deciding how children (new search points) are generated from parents (current search 

points); d) specifying population sizes and dynamics; e) defining a termination criterion 

for stopping the evolutionary process; and f) returning an answer. 

Dempsey, O'Neill and Brabazon (2009, p.30) mention the following main issues of 

evolutionary algorithms when they are applied in dynamic environments: 

14 



• EAs have a tendency to eventually converge to an optimum and thereby lose their 

diversity necessary for efficiently exploring the search space and consequently 

their ability to adapt to a change in the environment when such change occurs. 

• Researchers often over fit (their) algorithms to various classes of static 

optimisation problems with the focus on getting the representation and operators to 

produce rapid convergence to near optimal points. 

Dempsey, O'Neill and Brabazon (2009, p.30) state that populations in GAs exhibit a 

tendency to converge to an optimum with a resulting loss in diversity. This impedes the 

algorithm from efficiently exploring new areas in the solution space when the optimum 

shifts. Five approaches researchers have adopted in overcoming this issue are the 

foJlowing (Dempsey, O'Nei11 and Brabazon 2009, pp.30-31): 

1. equipping algorithms with a memory mechanism (explicit or implicit) to recall 

effective solutions found in previous generations; 

2. preserving diversity in the population in order to prevent the noted problem of 

convergence in a population; 

3. achieving a balance between exploration and exploitation by ass1gnmg sub­

populations to specific areas of the search space; 

4. breaking the problem to its fundamental pieces (problem decomposition); and 

5. achieving evolvability by providing a representation that aids the production of 

fitter offspring than their parents. 

De Jong (2006, pp.23-31) argues that some of the issues being continuously explored are: 

a) the positive and negative aspects of various phenotype and genotype representations; b) 

the inclusion of Lamarckian properties to allow the inheritance of acquired traits ; c) non­

random parents selection for mating and speciation of a population allowing mating only 

within species; d) decentralised, highly parallel models which exploit the natural 

parallelism of evolutionary algorithms; e) self-adapting systems which adapt the EA 

parameters during an EA run; f) cooperative and competitive co-evolutionary systems, 

inspired by the symbiotic relationships and the arms race met in nature between 

populations, respectively; and g) agent-oriented models with individuals reacting with 

their environment. 

15 



Finally, O'Neill , Vanneschi, Gustafson and Banzhaf (2010) outline some of the challenges 

and open issues in the field of Genetic Programming and in some cases suggest ways to 

overcome them. They discuss the following issues: identifying appropriate 

representations; identifying how hard a particular problem will be for some GP systems; 

how GP performs in dynamic problems; how much detail is necessary to adopt from the 

biological paradigm of natural evolution; design of an evolutionary system capable of 

continuously adapting and searching; generalisation; benchmarks; scalability and 

modularity; complexity; the halting problem; how much domain knowledge should be 

injected in GP algorithms; GP usefulness for Biology; constants; GP theory; distributed 

models; and usability of GP. 

2.1.4 Research Findings and Future Directions 

According to Fogel (2006, pp.167-170), the theoretical and empirical analysis of 

evolutionary computation found that the most fundamental property of an optimisation 

algorithm is its convergence in the limit. Obtaining practical convergence rate information 

is difficult and this has resulted in past years in exhaustive empirical research on specific 

problems. But the no free lunch theorem of Wolpert and Macready (1997) proves that 

improved performance of any algorithm indicates a match between the structure of the 

algorithm and the structure of the problem. Therefore, as Fogel claims, the empirical 

analysis alone is not reliable. It must be accompanied and supported by relevant theory, 

and as he notes, many of the early efforts of explaining how evolutionary algorithms work 

were flawed. 

Indeed, Fogel (2006, pp.170-171) argues that studies and research during the last decade 

showed that the k-armed bandit analysis as it was offered in the mid-1970s was not well 

formed, proportional selection does not generate an "optimal allocation of trials," binary 

representations are not optimal for function optimisation, no specific cardinality of 

representation is generally superior, evolutionary algorithms are not uniformly improved 

when recombination is employed, the schema theorem (Holland, 197 5) may not apply 

when fitness is a random variable, and self-adaptation does not require recombination to 

be successful. 

Fogel (2006, p.171) claims that since there is no best evolutionary algorithm (single 

choice of mutation, recombination, selection, population size, etc.), the Fitness 

16 



Distribution offers a tool for the assessmg and trading-off of the different parameter 

choices in specific circumstances. But "determining the appropriate design choices by 

classes of function, initialisation, representation, and so forth, remains an open question -

one that cannot be answered by examining any of these facets in isolation." 

De Jong (2006, p.69), unifies with his work the canonical evolutionary algorithms 

(Evolutionary Programming, Evolution Strategies, and Genetic Algorithms) identifying 

the following basic elements of an evolutionary algorithm: 

• A parent population of size m. 

• An offspring population of size n. 

• A parent selection method. 

• A survival selection method. 

• A set of reproductive operators (mutation and recombination). 

• An internal method of representing individuals. 

De Jong (2006, p.69) states that adopting this unified view and understanding the role 

each of these elements is playing, leads to the understanding of the limitations of the 

canonical algorithms and encourages the design of new and more effective algorithms. 

Also, he argues (De Jong 2006, p.49) that experimental and theoretical work that has been 

undertaken until now makes clear that there are no universally optimal methods (there is 

not a unique configuration of the above basic elements which effectively solves any class 

of problems). Indeed, he states (De Jong 2006, pp.66-67) that achieving a proper balance 

between the elements that increase variation ( exploration) and those that decrease 

variation ( exploitation) is one of the most important factors in designing evolutionary 

algorithms. The exploration' s level can be controlled by the reproductive mechanisms 

(mutation, recombination) and the exploitation' s level can be controlled by the selection 

mechanisms (parents selection for reproduction and offspring selection for survival). 

Ghanea-Hercock (2003, pp.101-114), argues that one of the most exciting developments is 

the development of evolvable hardware, namely hardware that directly supports evolution­

based search algorithms. Such an example is the work of Adrian Thompson (Sussex 

University) in Field Programmable Gate Array chips which allow real-time configuration 

of logic circuits that can evaluate a specified function. Also, he notes that regarding the 

17 



processing power limitations and the problem of suboptimal solutions, several distributed 

parallel processing techniques are investigated such as Tagging, Island Models, Parallel 

Implementation of GP systems, and the use of mobile agents as a low-cost method of 

performing the distribution of the genetic code across some parallel architecture. 

Furthermore, some advanced EA techniques under research are multi-objective 

optimisation (weighted sum approach and min-max methods), Parameter Control, Diploid 

Chromosomes, and Self-Adaptation. 

Also, according to Ghanea-Hercock (2003, pp.115-116), there is an increasingly interest 

of companies in commercial applications based on evolutionary methods in order to solve 

engineering, scientific, and business problems in areas such as aerospace, business 

planning and operations research, biology and chemistry, telecommunications, 

entertainment and media, finance, manufacturing, medicine, and electronics and evolvable 

hardware. O'Neill and Brabazon (2009) provide an overview of recent patents relating to 

Genetic Programming which show that GP has a significant impact on real-world 

applications and a clear commercial potential. Patent applications that adopt GP 

encompass areas such as classification, signal processing, prediction, control, neural 

networks and spectral data, design, simulation, programming, medicine, bioinformatics, 

molecular biology, commerce and finance, games, and patents. 

Regarding the future of Evolutionary Computation, Ghanea-Hercock (2003, pp.116-119) 

notes that some of the future directions in evolutionary computing are: Artificial Life and 

Co-evolution, Biological Inspiration of the EA systems, Developmental Biology, Adaptive 

Encoding and Hierarchy, Representation and Selection schemes, Mating Choice, and 

Parallelism. Furthermore, De Jong (2006, pp.211-230) provides a comprehensive list of 

current development directions where much work needs to be done to begin to include 

them in a more systematic fashion, such as self-adapting EAs, dynamic landscapes, 

parallelism exploitation, multi-objective EAs, hybrid EAs, biological inspired extensions, 

and evolving executable objects for the purpose of representing agent behaviours in agent­

oriented domains where agents learn and/or modify their behaviours with little human 

intervention. About the later, Pfeifer and Scheier (2001 , pp.227-229) argue that artificial 

evolution can be utilised for the emergence of agents behaviour, morphology, and 

furthermore of autonomous agent design, an approach also called evolutionary robotics. 

Indeed, Pfeifer and Scheier (2001 , p.275) claim that evolutionary methods overcome, in 

18 



part, the biases imposed in agent designs by human designers. These biases are imposed 

due to the fact that implicit knowledge constrains designers ' thinking. 

De Jong (2006, pp.231-232) argues that a few broad themes that he thinks represent 

important future directions are the following: Modelling General Evolutionary Systems 

and More Unification of the Evolutionary Computation field. Regarding the first, De Jong 

states that even though biological fidelity and computational effectiveness pose 

conflicting EA design objectives, it is the dynamical systems perspective that evolutionary 

systems modellers and evolutionary computation community share and in which the later 

has much to contribute. In addition, EA models also have the potential for providing 

significant insights into complex adaptive systems. Also, De Jong argues that is hard to 

imagine how intelligent decisions can be made without the kind of insights the 

evolutionary computation community can provide. 

Regarding the work toward the development of an overarching framework of the 

evolutionary computation field (unification of the field), De Jong (2006, p.232) states four 

main reasons why such a framework is critical: a) It provides a means by which 

"outsiders" can obtain a high-level understanding of evolutionary computation; b) it 

provides a means for comparing and contrasting various evolutionary computation 

techniques; c) it provides for a more principled way to apply evolutionary computation to 

new application areas; and d) a unified view of evolutionary computation serves to clarify 

where the gaps in our understanding lie and what the open research issues are. 

Finally, O'Neill, Vanneschi, Gustafson and Banzhaf (2010) suggest ways to overcome 

some of the open issues of Genetic Programming in order to realise this field its full 

potential and to become a trusted mainstream member of the computational problem 

solving toolkit. 

2.2 Grammatical Evolution 

2.2.1 Introduction 

Ryan, Collins and O 'Neill (1998) introduce a new evolutionary algorithm that evolves 

complete computer programs, named Grammatical Evolution. This new approach uses a 

variable length linear genome which governs how a Backus Naur Form grammar 

19 



definition is mapped to an executable program. The result is that expressions and 

programs of arbitrary complexity may be evolved. Ryan, Collins and O'Neill (1998) 

applied their proposed system to a symbolic regression problem and the successful results 

lead them to the belief that the specific approach will be a huge boost for evolutionary 

algorithms. 

Grammatical Evolution is based on the principles of three diverse fields: Evolutionary 

Automatic Programming, Molecular Biology, and Grammars (O'Neill and Ryan 2003, 

pp.1-4 ). Even though Grammatical Evolution is a form of Genetic Programming, it differs 

from the traditional Genetic Programming (Koza, 1992) in three ways (O'Neill and Ryan 

2003, p. l ) : a) it employs linear genomes; b) it performs an ontogenetic mapping from 

genotype to phenotype; and c) it uses a grammar to dictate legal structures in the 

phenotypic space. Furthermore, O'Neill and Ryan (1999b; l 999f) argue that Grammatical 

Evolution is closer to natural DNA based evolutionary processes than Genetic 

Programming. 

Regarding the grammars, O'Neill and Ryan (2003 , p.2) note that their beauty is that they 

provide a simple mechanism that can be used for the description of any complex structure 

such as languages, graphs, neural networks, mathematical express ions, molecules 

compounds, and more. It is this feature of Grammatical Evolution which makes it a 

powerful tool for the evolution of any arbitrary structure as long this structure can be 

defined by a context free grammar. 

The first application of a genotype-to-phenotype mapping in Genetic Programming is the 

Binary Genetic Programming invented by Banzhaf (1994). Also, the approach that a 

genotype is mapped to a phenotype using a BNF grammar definition has been taken 

already by other former evolutionary algorithms - Genetic Algorithm for Developing 

Software (Paterson and Livesey, 1997) - but the innovation with Grammatical Evolution 

is that it does not use a one-to-one mapping, and moreover it evolves individuals that 

contain no introns due to the mapping mechanism which does not skip codons, and the 

prune operator which removes genome segments not used in the genotype-to-phenotype 

mapping (Ryan, Collins and O'Neill, 1998). Also, Grammatical Evolution, due to its 

innovative mapping formula, in conjunction with a genome wrapping mechanism and the 

use of variable length genomes, provides a solution to the "closure" problem of Genetic 

Programming and grammar-based automatic programming algorithms, namely the issue of 

20 



generation and preservation of valid programs (O'Neill and Ryan, 2001). In Grammatical 

Evolution, any completely mapped individual (individual without non-terminal in its 

phenotype) is always valid. 

2.2.2 Molecular Biology Influences 

O'Neill (1999) notes that the aim of his work is the development of an automatic 

programming system drawing inspiration from biological genetic systems. That is, using 

techniques which simulate and reproduce evolution of genotype, many to one mapping 

between genotype and phenotype, degeneration, neutral mutations, and survival of the 

fittest. 

O'Neill and Ryan (2003, pp.1-4) mention that inspiration from nature can be taken to 

employ not only its products but its tools as well. In this way, the field of evolutionary 

computation has taken stock of the power of evolution. In addition, Grammatical 

Evolution delves further into nature ' s processes at a molecular level, embraces the 

developmental approach and draws upon principles that allow an abstract representation 

of a program to be evolved. This abstraction enables GE to accomplish the following 

things: 

• Separation of the search (genotype) and solution (phenotype) spaces. 

• Evolution of programs in an arbitrary language which is described by a BNF 

grammar definition. 

• Enabling the existence of degenerate genetic code which facilitates the occurrence 

of neutral mutations (many-to-one mapping, namely various genotypes can 

represent the same phenotype). 

• Adoption of a wrapping operation during the genotype-to-phenotype mapping 

process that allows the reuse of the same genetic material for the production of 

different phenotypes. 

Fundamental principles from Molecular Biology provide inspiration for Grammatical 

Evolution (O'Neill and Ryan 2003 , pp.23-32). The most important of them is the already 

mentioned distinction of genotype and phenotype. Other principles that inspired GE are 

the genetic code and the gene expression models (Central Dogma of Molecular Biology), 

the Wobble Hypothesis by Crick, the Silent or Neutral mutations, the Genetic Code 

21 



Degeneracy, the Operon Model by Jacob and Monod, the Neutral Theory of Evolution, the 

maintenance of the Genetic Code Diversity, and the notion of actual and effective genome 

length (O'Neill and Ryan, 1999£). 

The next section describes in detail the Grammatical Evolution algorithm and shows the 

correspondence of the GE system with a biological genetic system. 

2.2.3 The Grammatical Evolution Algorithm 

Grammatical Evolution (O 'Neill and Ryan, 2001) is an evolutionary algorithm that can 

evolve complete programs in an arbitrary language using populations of variable-length 

binary strings. Namely, a chosen evolutionary algorithm (typically a variable-length 

genetic algorithm) creates and evolves a population of individuals and the binary string 

(genome) of each individual determines which production rules in a Backus Naur Form 

(BNF) grammar definition are used in a genotype-to-phenotype mapping process to 

generate a program. 

In natural biology, there is no direct mapping between the genetic code and its physical 

expression. Instead, genes guide the creation of proteins which affect the physical traits 

either independently or in conjunction with other proteins (Ryan, Collins and O'Neill 

1998). Grammatical Evolution treats each genotype to phenotype transition as a "protein" 

which cannot generate a physical trait on its own. Instead, each one protein can result in a 

different physical trait depending on its position in the genotype and consequently, the 

previous proteins that have been generated. 

Figure 2.1 shows the comparison between the GE system and a biological genetic system 

(O'Neill and Ryan, 2001). The binary string of the genotype of an individual in GE is 

equivalent to the double helix of DNA of a living organism, each guiding the formation of 

the phenotype. In the case of GE, this occurs via the application of production rules to 

generate the terminals of the resulted program (phenotype) and in the biological case, 

directing the formation of the phenotypic protein by determining the order and type of 

protein subcomponents (amino acids) that are joined together. 

22 



Grammatical Evolution Biological System 

Binary String 

l 
Integer String 

l 

Program I 
Function 

l 
Executed Program 

TRANSCRIPTION l 
TRANSLATION l 

Amino Acids 

l 

l 
Phenotypic Effect 

DNA 

RNA 

Figure 2.1: Comparison between the GE system and a biological genetic system. 
Cited in O'Neill and Ryan, 2001, p.351. 

Before the evaluation of each individual, the following steps take place in Grammatical 

Evolution: 

1. The genotype (a variable-length binary string) is used to map the start symbol of 

the BNF grammar definition into terminals. The grammar is used to specify the 

legal phenotypes. 

11. The GE algorithm reads "codons" of typically 8 bits (integer codons are also 

widely adopted) and the integer corresponding to the codon bit sequence is used to 

determine which form of a rule is chosen each time a non-terminal to be translated 

has alternative forms. If while reading "codons", the algorithm reaches the end of 

the genotype, it starts reading again from the beginning of the genotype 

(wrapping). 

111. The form of the production rule is calculated using the formula form = codon 

mod forms where codon is the codon integer value, and forms is the number of 

alternative forms for the current non-terminal. 

23 



An example of the mappmg process employed by Grammatical Evolution is shown in 

Figure 2.2. 

Binary string 

I oooornoo" I 00000110 I 00000100 j 00000101 100001001 j .:.· 

Integer string ti 
1 a I a 1 4 1 s 1 9 1 4 1 s 112 1 1 1 23 1 o 1 ... 

ti 
BNF grammar definition 

<E> : : " ( + <E> <E> ) 
I ( • <E> <E> ) 
I ( - < E> < E > ) 
I ( / <E> <E> ) 
I X 

(0) 
(1) 
(2) 
(3) 
(4) 
(5) I y 

~ <E> 

( - <E > < E > ) 

i e 
( • ( + < E> <E> ) <E > ) 

c.. ( - ( + X < E > ) <E> ) 
CIII 
C: 

ci. ( - ( + X y ) < E> ) c.. 
IOI 
E 

(. ( + X y ) ( / <E> <E> ) ) w 
(!) 

( · ( + X y ) ( / X < E> ) ) 

( • (-txy ) (/xy ) ) 

:J a~.4 6 .. 2 

:::J6%6•0 
:J4 ~.4 6 - 4 

:::J 5°,4 6 m5 

:::J 9%6=3 
:::J 4 ~.4 6=4 

:J 5°.4 6 = 5 

Figure 2.2: GE mapping process. Cited in Dempsey, O'Neill and Brabazon, 2006, 
p.2588 (with minor changes). 

In this example, the first codon of the genotype of the individual is the binary string 

00001000 which is the binary form of the integer 8. The start symbol <E> has six 

alternative forms, therefore the form to be applied is this with label 2 (8 % 6) which 

results in the expression ( - <E> <E> ). The next codon is then read in order to replace 

the first non-terminal symbol <E> of the new expression, and this goes on until the 

expression contains only the terminal symbols x and y and any of the arithmetic operators. 

Namely, until all of the non-terminal symbols have been replaced. 

After the mapping process (i.e. the creation of the phenotype), the fitness score is 

calculated and assigned to each individual (phenotype) according to the given problem 

specification. These fitness scores are sent back to the evolutionary algorithm which uses 

them to evolve a new population of individuals. 

24 



2.2.4 Configuration of Grammatical Evolution 

This section describes a general-purpose configuration of what could be called the 

classical Grammatical Evolution algorithm, and is based mainly on the early period from 

the invention of the algorithm. Since then, many variations have been applied which are 

mentioned in this and the subsequent sections. 

In the beginning, Grammatical Evolution used a Genetic Algorithm as the search engine 

(O'Neill and Ryan, 2001; 2003, p.44), applying a steady-state replacement mechanism 

when individuals are passed from generation to generation, such that when two parents 

produce two children, the best of these children replaces the worst individual in the 

population only if it has a greater fitness than the individual to be replaced (O'Neill, 

Ryan, Keijzer and Cattolica, 2001). Since then many variations of the search engine have 

been applied (O'Sullivan and Ryan, 2002; O'Neill and Brabazon, 2006a; 2006b) with 

most dominant being variations of the standard Genetic Algorithm (O 'Neill and Brabazon, 

2005a; UCD, 2008). 

The standard reproductive mechanisms of Genetic Algorithms are used in GE. A point 

mutation operation which acts by testing each bit locus of a genome and mutating each 

with a pre-specified probability, typically of value 0.01 (O'Neill and Ryan, 2001 ; 2003), 

and for recombination, a standard one-point crossover with typical probability 0.9 

(O'Neill and Ryan, 2001 ; 2003). Namely, two crossover points are selected at random, 

one on each individual. Then the segments on the right hand side of each individual are 

swapped. O'Neill and Ryan (2000a) show that the standard one-point crossover operator 

is the most consistent and in general produces more successful runs than other types of 

crossover. O'Neill, Ryan, Keijzer and Cattolica (2001) discovered some interesting 

properties (e.g. ripple crossover and intrinsic polymorphism of codons) that could yield an 

insight into the success of the standard one-point crossover operator. 

Except for the above operators, Grammatical Evolution introduces two new ones: 

Duplicate and Prune (Ryan, Collins and O'Neill , 1998). The gene duplication is analogous 

to the production of more copies of a gene or genes, in order to increase the presence of a 

protein or proteins in the cell of a biological organism. Duplication involves random 

selection of a) the number of codons to be duplicated and b) the starting position of the 

first codon in this set. The position of the new duplicated codons is the penultimate codon 

25 



position at the end of the chromosome. A typical probability value is 0.01 (O'Neill and 

Ryan, 2001; 2003 ). 

The gene pruning discards genes not used in the genotype to phenotype process and 

reduces the number of introns in the genotype. According to Ryan, Collins and O'Neill 

( 1998), pruning results in dramatically faster and better crossovers. Later research 

questions the usefulness of this operator because of the important role of introns (O'Neill 

and Ryan, 1999d; O'Neill and Ryan, 2001). For this reason, if this operator is used at all it 

is suggested that it be applied with a very small probability, typically 0.01 (O'Neill and 

Ryan, 1999d; 2001; 2003). 

Regarding the codon size, the 8-bit codon is the typical size but it is not expected to be 

optimal across all problems (O'Neill, Ryan and Nicolau, 2001 ; O'Neill and Ryan, 2001; 

2003, p.72). O'Neill and Ryan (2003, p.72) suggest that an investigation into more 

appropriate codon sizes for each problem may be beneficial. Another type of genotype 

representation is the integer form where each codon is represented as an integer number. 

Hugosson, Hemberg, Brabazon and O'Neill (2010) analyse these two representations 

suggesting the use of the integer variant. 

For the reuse of the genetic material , a typical wrapping threshold is 10 (O'Neill, Ryan, 

Keijzer and Cattolico, 2001 ). 

The typical method for the generation of the initial population is random generation of 

variable-length binary strings within a pre-specified range of codons, usually 1 to 10 

(O'Neill and Ryan 2003, p.45). In the libGE implementation, the size of the initial random 

genotypes is between 15 and 25 codons (Nicolau, 2005). As an alternative initial 

population generation, O'Neill and Ryan (2003, pp.125-127) suggest that a sensible 

initialisation (analogous to GP ramped half-and-half) should be investigated. They say 

that this can be achieved through the grammar with recursive production rules. Initial 

results (O'Neill and Ryan 2003, p.127) show an improvement in the performance of GE 

by providing a far greater diversity than random initialisation. Harper (2010) explores 

three initialisation schemes (random bit, ramped half-and-half, and Sean Luke's 

probabilistic tree-creation version two) highlighting the importance of initialisation for the 

performance of an evolutionary run. 

26 



The search can be biased in Grammatical Evolution by configuring the codon length (size) 

and using grammar defined intrans (O'Neill, Ryan and Nicolau, 2001). With grammar 

defined intrans, the incorporation of intrans into the genome is implemented through the 

grammar. This is achieved by allowing codons to be skipped during the mapping process, 

with using intrans as choice for non terminals (O 'Neill and Ryan 2003 , p. l 02). 

Finally, Grammatical Evolution can incorporate GP Automatically Defined Functions 

(ADFs) and other approaches to automatic function definition by using a grammar-based 

function definition (O'Neill and Ryan, 2000b). Swafford, O'Neill and Nicolau (2011) 

investigate modularity and extend the ADF approach in GE with the introduction of 

"modules" which are not modified by genetic operators and are stored in the universal 

grammar available to all individuals. 

2.2.5 Outline of Past and Current Research 

Ryan, O'Neill, and Collins (1998) introduce Grammatical Evolution and evaluate the 

algorithm using a trigonometric identity problem. The experimental results show that GE, 

like GP, is able to create its own constants. Ryan and O 'Neill (1998) apply GE in three 

problems (symbolic regression, trigonometric identity, symbolic integration) showing that 

using a steady state approach regarding the applied Genetic Algorithm, improves 

dramatically the performance. O'Neill and Ryan (1999d) benchmark Grammatical 

Evolution using the Santa Fe Ant Trail problem, showing that GE outperforms GP when 

the later is used without the solution length fitness measure. 

O'Neill and Ryan (1999e) analyse the feature of genetic code degeneracy and investigate 

its effects on the genotypic diversity of the population, concluding that the degeneracy of 

the genetic code results in improvement of the genetic diversity and in the preservation of 

valid individuals during runs of Grammatical Evolution. Modularity in GE is investigated 

by O 'Neill and Ryan (2000b) with the application of grammar-based automatic function 

definition (ADF). The experiments demonstrate that the presence of grammar-based 

function definitions results in better solutions, faster than in their absence, and the finally 

produced code is in a more readable format. Further research on modularity in 

Grammatical Evolution is presented in section 2.3.3. 

27 



O 'Neill and Ryan (2000c) argue that the advantages gained from the incorporation of 

biological inspired principles, such as genes expression, in the implementation of 

evolutionary automatic programming systems are the separation of search and solution 

spaces, the maintenance of genetic diversity, the preservation of functionality, the 

generalised encoding, the degenerate encoding, the compression of representation, the 

alternative implementations of functions, and the positional independence. 

The usefulness of the crossover operator in Grammatical Evolution is investigated 111 

O'Neill and Ryan (2000a) showing that the standard one point crossover is not as 

destructive as it might originally appear and that performs better than other types of 

crossover operators like homologous crossover and two point crossover. O'Neill, Ryan, 

Keijzer and Cattolica (2001) demonstrate that it outperforms also the headless chicken­

like crossover. O'Neill, Ryan, Keijzer and Cattolica (2003) further analyse crossover in 

Grammatical Evolution, which is termed ripple crossover due to its defining 

characteristics. The role in Grammatical Evolution of the other genetic operator, the one­

point mutation, is investigated in Rothlauf and Oetzel (2006) and Byrne, O'Neill, 

McDermott and Brabazon (2009). 

The use of intrans and their role in affecting the bias of the genetic algorithm search is 

investigated by O'Neill, Ryan and Nicolau (2001). The change of the codon length and the 

number & position of intrans result in biases toward certain production rules of the 

grammar of the Grammatical Evolution algorithm. Also, with the performed experiments, 

the beneficial effect of intrans for the Grammatical Evolution system is proved. 

Hugosson, Hemberg, Brabazon and O'Neill (2010) analyse and compare the binary and 

integer representations of genotype in Grammatical Evolution to determine if one has a 

performance advantage over the other and they conclude that the results provide support 

for the use of the integer form of the genotypic representation as the binary representation 

do not exhibit better performance, and the integer representation provides a stati stically 

significant advantage on one of the three benchmarks. Regarding the binary 

representation, McGee, O'Neill and Brabazon (2010) use a fixed-length genotype instead 

of the standard variable-length. 

Dempsey, O'Neill and Brabazon (2005) examine the utility of meta-grammar constant 

creation and evolution applying Grammatical Evolution to evolve the BNP Grammar of a 

28 



Grammatical Evolution run. White, Reif, Gilbert and Moore (2005) compare Grammatical 

Evolution, Grammatical Swarm, and Random Search. Dempsey, O'Neill and Brabazon 

(2009, p.165) conduct experiments in dynamic problems and highlight GE' s ability to 

maintain diversity within the population as a function of the potential fitness in the search 

space. The main issues to be solved regarding the dynamic problems are adaptability, 

memory, and robustness, because as they note (2009, pp.2-7), for dynamic environments 

the focus shifts to that of survival in a changing environment from that of attaining an 

optimal or perfect solution in a static environment. 

Keijzer, Babovic, Ryan, O'Neill and Cattolica (2001) combine Grammatical Evolution 

with logic grammar in their Adaptive Logic programming System. More different 

grammar types have been explored with Grammatical Evolution including attribute 

grammars (Cleary, R. , 2005), Christiansen grammars (Ortega, Cruz and Alfonseca, 2007), 

shape grammars (O'Neill, et al. , 2009), and tree-adjunct grammars (Murphy, O'Neill, 

Galvan-Lopez and Brabazon, 2010). 

Finally, Grammatical Evolution has been applied, smce its invention, to a variety of 

problems and fields (see section 2.2.6) and has been used with alternative 

implementations of the search engine, the mapping mechanism, the genetic operators, the 

population initialisation, and the grammar (see section 2.2. 7). 

2.2.6 Applications of Grammatical Evolution 

O'Neill and Ryan (1999a; 1999c) apply Grammatical Evolution in a real world problem, 

evolution of a caching algorithm. Genetic Programming creates algorithms that do not 

perform as well as those designed by humans. 0 'Neill and Ryan (1999a; 1999c) 

demonstrate the creation of a Caching Algorithm in the C programming language which is 

general enough so that when applied to a large cache size, a huge increase in performance 

is observed. The results show that Grammatical Evolution is powerful enough to extract 

elegant solutions. 

O'Neill, Brabazon, Ryan and Collins (2001a) examme the potential of Grammatical 

Evolution to a real world financial problem. The goal of their experiment is the 

uncovering of a series of useful technical trading rules for the UK FTSE 100 stock index. 

The Moving Average indicator is used and the results show that Grammatical Evolution 

29 



successfully evolves trading rules with a performance superior to the benchmark buy and 

hold strategy. The preliminary methodology used in this experiment includes a number of 

simplifications because the goal is to investigate if there is any potential usefulness of 

using Grammatical Evolution in such problems. They argue that the results are 

encouraging and trigger further investigation of such applications of GE. 

O'Neill, Brabazon, Ryan and Collins (2001b) further investigate the application of the 

Grammatical Evolution algorithm in financial problems. In their experiment, the data set 

is taken from the ISEQ, the official equity index of the Irish Stock Exchange. The 

preliminary findings of this experiment indicate that their approach has much potential. 

Even though the results show that the adopted model suffers from over-fitting to the 

training data set, however the risk involved with the adoption of the evolved trading rules 

is less than the benchmark buy and hold strategy. 

O'Neill, Cleary and Nikolov (2004) and Cleary and O'Neill (2005) apply GE on a 0/1 

Multi-Dimensional Knapsack problem (or Multi-Constrained Knapsack problem) using an 

attribute grammar which allows the encoding of context-sensitive and semantic 

information. The results demonstrate that GE in conjunction with alternative grammar 

representations can provide an improvement over the standard context-free grammar for 

problems in this domain. A detailed study is provided in Cleary (2005). 

Amarteifio and O'Neill (2004) demonstrate evolutionary pattern-forming swarms using 

Grammatical Evolution and evolve systems that form consistent patterns through the 

interaction of constituent agents or particles. Namely, Grammatical Evolution is applied in 

a multi-agent model where information processing ants cooperate to solve an abstract 

clustering problem. The model considers artificial ants as walking sensors in an 

information-rich environment and Grammatical Evolution is combined with this swarming 

model as an ant' s response to information is evolved. The experimental results show that 

the ant colony successfully evolves templates that exhibit clustering behaviour based on a 

spatial entropy measure. 

Amarteifio and O'Neill (2005) present a novel XML implementation of GE named 

XMLGE with a number of features such as a rich representation approach which considers 

tagging information and exploiting the genotype-phenotype map; use of XSLT for genetic 

30 



operators; and the use of reflection for tree object building based on an XML expression 

tree (Amarteifio, 2005). 

Gavrilis, Tsoulos, Georgoulas, and Glavas (2005) propose a method based on 

Grammatical Evolution for feature extraction and efficient classification of the 

Cardiotocogram (CTG) which is the most widely used Electronic Foetal Monitoring 

(EFM) method worldwide. The proposed method extracts new features from existing ones 

using nonlinear transformations and is tested on a data set of intrapartum cases with an 

accuracy of 92.5%. 

Tsoulos, Gavrilis and Glavas (2005) present a method based on Grammatical Evolution 

for the construction of artificial neural networks (ANN). The method is capable of 

constructing both neural networks with an arbitrary number of hidden layers and recurrent 

neural networks. The performance of the proposed method is tested on a series of 

classification and regression problems and is compared against a traditional Multilevel 

Perceptron trained with the Tolmin optimisation method giving better results. 

Brabazon and O'Neill (2006) apply Grammatical Evolution to computational finance 

which presents significant real-world challenges to machine learning arising from 

complexity, noise, and constant change. In particular, they apply GE to develop rules for 

trading systems and in traditional classification problems such as bond rating and 

predicting corporate failure. 

O 'Neill and Brabazon (2008) apply Grammatical Evolution to evolve a logo design for the 

UCD Natural Computing Research & Applications group. A Lindenmayer system (L­

System) is evolved which is expressed in the postscript language and a human is acting as 

the fitness function of the generated L-Systems. 

Dempsey, O'Neill and Brabazon (2009, pp.141-161) demonstrate the application of 

Grammatical Evolution to financial trading. They simulate live trading over historical 

financial time series and produce rules that outperform a benchmark buy-and-hold 

strategy in 23% of runs conducted on the Nikkei 225 data. Competitive results are also 

produced for the S&P 500 Index. 

31 



Some of the recent applications of Grammatical Evolution involve interactive generative 

music synthesis (Shao, McDermott, O'Neill and Brabazon, 2010), quadrupedal animal 

animation (Murphy, O'Neill and Carr, 2009; Murphy, Carr and O'Neill, 2010; Murphy, 

2011), the evolution of robocode tanks (Harper, 2011), the evolution of a Ms. PacMan 

controller (Galvan-Lopez, Swafford, O'Neill and Brabazon, 2010), the generation of 3D 

images (Nicolau and Costelloe, 2011), evolutionary architectural design (Byrne, et al., 

2011), the evolution of controllers for the Mario AI Benchmark (Perez, Nicolau, O'Neill 

and Brabazon, 2011), the evolution of dynamic trade execution strategies (Cui, Brabazon 

and O'Neill, 2010), and the femtocell coverage of telecommunication networks (Hemberg, 

Ho, O'Neill and Claussen, 2011). 

2.2.7 Grammatical Evolution Variations 

Nicolau and Ryan (2003) describe GAuGE (Genetic Algorithms usmg Grammatical 

Evolution). GAuGE is based on the principles of Grammatical Evolution and encodes both 

the value and the position on each gene, in order to become a position-independent genetic 

algorithm. Specifying the position and the value of each gene may result in grouping 

together important data in the genotype string. In this way the breaking and disruption 

during the evolution process is prevented. The experiments show that GAuGE is moving 

the more salient genes to the start of the genotype string, creating in this way robust 

individuals that are built in a progressive fashion from the left to the right side of the 

genotype. 

Nicolau and Ryan (2002) introduce LINKGAUGE which is an extension of the GAuGE 

algorithm. The LINKGAUGE tackles the class of deceptive linkage problems by using a 

simple and extremely effective algorithm in terms of required computer memory. The 

results of the experiments show that LINKGAUGE has a very interesting scale-up 

property that it is much less demanding than the original messy Genetic Algorithm in 

hardware resources (memory and over-head processing power). 

O'Neill and Ryan (2003; pp. 99-128) present and discuss some variations and extensions 

of Grammatical Evolution, like the implementation of an alternative translation function 

(the Bucket Rule), the incorporation of grammar defined intrans, a sensible initialisation 

using recursive production rules in the grammar, and the Chorus algorithm which is a 

position independent algorithm based on the principles of the cells metabolism. 

32 



Chorus (Ryan, O'Neill and Azad, 2001; Ryan, Azad, Sheahan and O'Neill, 2002; Azad, 

2003) uses a chromosome of eight bit numbers (termed genes instead of codons) to dictate 

which rules from the BNF grammar to apply. However, unlike the intrinsically 

polymorphic codons of GE, each gene in Chorus corresponds to a particular production 

rule. The modulo is taken with the total number of production rules in the grammar, 

consequently a gene always represents a particular rule regardless of its position in the 

chromosome (the meaning of a gene is determined by those that precede it). 

O'Neill, Brabazon and Adley (2004) examine the application of Grammatical Swarm to 

classification problems. Grammatical Swarm adopts a Particle Swarm learning algorithm 

coupled to a Grammatical Evolution genotype-to-phenotype mapping to generate 

computer programs. Each particle (or real-valued vector) represents choices of program 

construction rules specified as production rules of a Backus-Naur Form grammar. This 

variation is tested in a mushroom classification problem and a bioinformatics problem 

(detection of eukaryotic DNA promoter sequences). For the first problem the generated 

solutions take the form of conditional statements in a C-like language subset and for the 

second problem the solutions take the form of simple regular expressions. The results of 

these experiments show that it is possible to create computer programs using the 

Grammatical Swarm technique and that the performance of this technique is similar to the 

performance of the Grammatical Evolution approach. The key finding is that Grammatical 

Swarm is able to generate solutions to problems of interest even though the Swarm 

algorithm is relatively simple, the sizes of the involved populations are small, the length 

of the vector representation is fixed, no crossover operator is used, there is no concept of 

selection or replacement, and the parameters of the algorithm had not been optimised. 

O'Neill and Ryan (2004) introduce Grammatical Evolution by Grammatical Evolution 

((GE)2
) , a novel algorithm which evolves not only the genotype of the individual but the 

BNF grammar definition as well. (GE)2 uses a diploid chromosomal structure. The one 

chromosome describes the solution and the other chromosome is the individual ' s own 

grammar (solution grammar) which is used to map the solution chromosome. A meta­

Grammar (universal grammar) is used to map the grammar chromosome of each 

individual. 

33 



O'Neill and Brabazon (2005b) also present meta-Grammar GA (mGGA). Meta-grammars 

are used in the development of the mGGA that encourages the evolution of building 

blocks which can be reused to construct solutions more efficiently. 

Harper and Blair (2005) discuss a new type of crossover for Grammatical Evolution, the 

LHS Replacement Crossover. It uses information automatically extracted from the 

grammar to minimise any destructive impact from the crossover. The information is 

extracted the same time the genotype is initially decoded and allows the swapping 

between entities of complete expansions of non-terminals in the grammar without 

disrupting useful blocks of code on either side of the two point crossover. The 

experimental results demonstrate that the LHS Replacement Crossover provides 

substantial benefits over all other examined crossover types at least in the examined 

domains (it is the most successful in exploring the search space). Indeed, the results 

confirm that in the explored domains, the proposed crossover operation is more productive 

than hill-climbing, it enables populations to continue to evolve over considerable numbers 

of generations without intron bloat, and it allows populations to reach higher fitness levels 

quicker. 

Continuing their work on Grammatical Evolution crossover operator, Harper and Blair 

(2006a) propose a self-selecting crossover operator (variable crossover) and compare its 

efficacy in a typical numeric regression problem and a typical data classification problem. 

They propose a mechanism which allows the evolutionary algorithm to self-select the type 

of crossover utilised and which is shown to improve the rate of generating 100% 

successful solutions. They compare their proposals against a one-point crossover, a LHS 

(Left Hand Side) crossover, and a random crossover (which selects the crossover type 

randomly). Their motivation is to attempt to find a crossover operator that represents a 

"good choice" in the absence of any empirical evidence as to the best crossover operator 

to use. The experiments show that the variable crossover operator performs substantially 

better than either the one-point or LHS on their own, and at least as well as, and in some 

cases significantly better than, the alternative strategy of randomly selecting a crossover 

operator to apply. They conclude that given that the variable crossover operator did not 

perform significantly better than the random crossover operator in one of the domains 

examined, further work needs to be done in relation to verifying that the variable 

34 



crossover operator generalises and in particular with respect to problem domains which 

favour either the one-point crossover or LHS crossover. 

Harper and Blair (2006b) introduce a meta-grammar into Grammatical Evolution allowing 

the grammar to dynamically define functions, self-adaptively at the individual level 

without the need for special purpose operators or constraints. The user does not need to 

determine the architecture of the dynamically defined functions (which is the case in 

automatically defined functions). As the search proceeds through genotype/phenotype 

space, the number and use of the functions can vary. Harper and Blair argue that the 

ability of the grammar to dynamically define such functions allows regularities in the 

problem space to be exploited even where such regularities were not apparent when the 

problem was set up. 

Osmera, Popelka and Pivonka (2006) describe a variation of the Grammatical Evolution 

algorithm, named Parallel Grammatical Evolution (PGE), which maps genotype to 

phenotype with backward processing (the processing of the production rules is done 

backwards, from the end of the rule to the beginning) and uses a novel variation of a 

Hierarchical Parallel GA as the search engine. Namely, the population is divided into 

several sub-populations that are arranged in the hierarchical structure. Every sub­

population has two separate parts: a "male" group and a "female" group. Every group uses 

quite a different type of selection (the first group uses a classical type of GA selection). 

Indeed in the second group only different individuals can be added. They argue that PGE 

has proved successful for creating trigonometric identities, and that PGE with hierarchical 

structure can increase the efficiency and robustness of systems, and thus they can track 

better optimal parameters in a changing environment. From the experimental session they 

conclude that modified standard GE with only two sub-populations can create PGE much 

better than classical versions of GE. 

Nicolau and Dempsey (2006) introduce two grammar-based extensions for Grammatical 

Evolution. The first of them is <GECo d o nValue [ -x l ] [+x2 ] > which allows the direct 

phenotypic use of genotypic values. The second extension is < GEXOMa r ke r> which uses 

information from the mapping process to setup a list of crossover locations in the 

genotype string. These extensions attempt to "blur" somehow the genotype/phenotype 

35 



separation allowing some information to be shared between the search and the solution 

spaces. 

Ortega, Cruz and Alfonseca (2007) describe Christiansen Grammar Evolution, an 

extension of Grammatical Evolution that improves the expressiveness power of the later. 

This new automatic programming algorithm uses for the description of legal phenotypes a 

Christiansen grammar instead of a context-free grammar. While Grammatical Evolution 

uses a context-free grammar, expressed in the BNF notation, to avoid syntactic mistakes 

of the generated phenotype, the Christiansen Grammar Evolution algorithm uses an 

adaptive extension of attribute grammars in order to create not only syntactically but also 

semantically correct phenotypes according to some predefined semantic conditions. 

TAGE (Murphy, O'Neill, Galvan-Lopez and Brabazon, 2010; Murphy, 2011) 1s a 

Grammatical Evolution variation which uses a tree-adjunct grammar (TAG) instead of a 

context free (CFG). TA Gs are more powerful than CFGs (Joshi and Schabes, 1997), 

which are currently used in standard GE, since the set of languages produced by TAGs is 

a super-set of those produced by CFGs. Unlike CFGs, TAGs can also generate some 

context-sensitive languages. In addition to this, it has been shown that for every CFG 

there is a TAG that is both weakly and strongly equivalent to it (Joshi, 1985). Because of 

the use of TA Gs, derivation in T AGE is different from derivation in GE in that it is a two 

step process, first a derivation tree is formed, and from that the derived tree is produced. 

Finally, Dempsey, O'Neill and Brabazon (2009, pp.9-24), mention two more GE 

variations: Position Independent GE (nGE) and Grammatical Differential Evolution 

(GDE). The first variation (nGE), removes the positional dependency of standard GE 

where the mapping process moves from left to right in consuming the non-terminals. 

Codons in nGE have two values: nont which contains the encoding to select which non­

terminal is to be consumed by the mapper, and rule which contains the encoding to select 

the production rule for the selected non-terminal. The other variation (ODE) adopts a 

Differential Evolution learning algorithm coupled to Grammatical Evolution genotype-to­

phenotype mapping to generate programs in an arbitrary language. 

36 



2.2.8 Issues and Future Work 

Grammatical Evolution has been shown to be an effective and efficient evolutionary 

algorithm in a series of both static and dynamic problems (Dempsey, O'Neill and 

Brabazon, 2009). However, there are known issues that still need to be tackled such as: 

1. Destructive crossovers (O 'Neill, Ryan, Keijzer and Cattolica, 2003). 

2. Genotype bloating (Harper and Blair, 2006b). 

3. Dependency Problems (Ryan, Collins and O'Neill, 1998). 

4. Low locality of genotype-to-phenotype mapping (Rothlauf and Oetzel , 2006). 

Destructive crossover events and bloating are generally regarded to be GP and GE issues 

(O'Neill, Ryan, Keijzer and Cattolica, 2001; 2003 ; Hem berg, 2010). But suggestions have 

been made (O'Neill, Ryan, Keijzer and Cattolica, 2003) that these two issues are 

interrelated in the way that destructive crossover events could be responsible for bloat, 

arising as a mechanism to prevent destructive crossover events occurring by acting as 

buffering regions in which crossover can occur without harming functionality. 

Indeed, Grammatical Evolution is, like Genetic Programming, subject to problems of 

dependencies (Ryan, Collins and O'Neill, 1998). For example, the further a gene is from 

the root of the genome, the more likely it will be affected by the previous genes. Ryan, 

Collins and O'Neill (1998) suggest the biasing of individuals to a shorter length and the 

progressive generation of longer genomes. 

Rothlauf and Oetzel (2006), show that the representation used in Grammatical Evolution 

has problems with locality because in some cases (less than ten percent of the time) 

neighbouring genotypes do not correspond to neighbouring phenotypes. Experiments with 

a simple local search strategy reveal that the GE representation leads to lower 

performance for mutation based search approaches in comparison to standard GP 

representations. The results suggest that locality issues should be considered for further 

development of the representation used in GE. Byrne, O'Neill, McDermott and Brabazon 

(2009) analyse further the behaviour of mutation in GE investigating three different types 

of mutation operators (nodal, structural, and integer mutation) and found that nodal 

mutation would be beneficial in fine tuning a solution and that structural mutation acts as 

a technique for a more global exploration of the search space. 

37 



Besides the above known issues of Grammatical Evolution, Robilliard, et al. (2006) 

mention and investigate methodological problems associated with the Santa Fe Trail 

(SFT) problem. They discuss the difficulty to ensure fair comparison especially with new 

genotype representations as found in works on grammar-based automatic programming, 

such as Grammatical Evolution (GE), and Bayesian Automatic Programming (BAP). They 

show that the setups of the published SFT experiments with GE and BAP, include small 

changes in the benchmark definition, having great consequences in solving the problem, 

up to the point that comparison with GP is called into question. Indeed, they mention that 

the search space defined by the grammar used in GE is not semantically equivalent with 

the search space of the original Santa Fe Trail problem definition (namely, the grammar 

used by GE in the benchmark states a declarative language bias). They argue that when 

tackling Santa Fe Trail , from a problem-oriented point of view, it is enough to preserve 

the semantics of programs (same language bias), whatever the biases introduced by the 

representation (search bias) . 

O'Neill , Vanneschi, Gustafson and Banzhaf (2010) outline some of the open issues in the 

wider field of Genetic Programming - which must be addressed for GP to realise its full 

potential and to become a trusted mainstream member of the computational problem 

solving toolkit - and in some cases they suggest ways to overcome them. 

Regarding possible lines of research that could be profitable to GE, O'Neill and Ryan 

(2003, pp.129-132) provide the following areas as the suggestions. 

a) The Grammar ( e.g. investigation of context sensitive, attribute, and logic 

grammars, adoption of dynamic grammars that are open to the process of 

evolution). 

b) The Transcription Model ( e.g. different reading frames after a wrap event). 

c) The Translation Model (e.g. bucket rule, etc.). 

d) The Evolutionary Algorithm Engine (e.g. inclusion of concepts such as diploidy 

and polygenic inheritance etc.). 

e) The Initialisation Strategy ( e.g. sensitive initialisations). 

f) Neutral Evolution (investigation of the benefit of neutral evolution in GE). 

g) Application Areas (e.g. investigation for what classes of problems the GE 1s 

useful). 

38 



Furthermore, Dempsey, O'Neill and Brabazon (2009, pp.163-169), mention three 

opportunities for future research about Grammatical Evolution in dynamic environments: 

a) exploration of the existence of memory within meta-Grammars and (GE)2; b) 

examination of the potential of the solution-grammar chromosomes to evolve useful 

building blocks; and c) examination of the application of nGE to dynamic problems. 

Dempsey, O'Neill and Brabazon (2009, p.169) note the need for further application of GE 

to dynamic real-world problems because this may focus research on issues in those 

domains, rather than on limitations of catch-all benchmark problems. 

2.3 Modularity 

2.3.1 Introduction 

O'Neill , Vanneschi, Gustafson and Banzhaf (2010) note that individuals in classical GP 

are usually constructed from a primitive set of functions and terminals and that an 

extension to this approach is the ability to define modules which is a very important 

means of improving GP expressiveness, code reusability and performance. These modules 

are tree-based representations defined in terms of the primitives and past research show 

that the use of modularity in GP has helped overcome some problems that classical GP 

could not in a fixed number of runs or has helped solve them more efficiently (O'Neill, 

Vanneschi , Gustafson and Banzhaf, 2010). Furthermore, there has been a large number of 

studies focusing on modularity in Evolutionary Algorithms of which a brief overview can 

be found in Hemberg (2010, pp.67-76). 

2.3.2 Modularity in Genetic Programming 

The most well known of the modularity methods rn Genetic Programming is Koza' s 

Automatically Defined Functions or ADFs (Koza, I 992). This is an extension to standard 

GP which copes with the automatic decomposition of a solution function. Each individual 

has a fixed number of components (functions) to be automatically evolved, having a fixed 

number of parameters, and which result in producing branches. These components 

(functions) represent fragments of code playing a role of reusable subroutines which are 

subject to genetic operations but are not shared between individual programs. Koza (1994) 

proves in many examples that the main advantages of this approach are generality, 

39 



flexibility, and performance. GP with ADFs automatically discovers how to decompose a 

problem into subproblems, how to solve the subproblems (ADFs), and how to combine the 

solutions to subproblems in higher level ADFs and program body. Rosca and Ballard 

(1994) note that theoretically, GP extended with ADFs is not more powerful than standard 

GP but it is more efficient due to two main differences which are that GP with ADFs 

develops much more complex programs and that it is able to make larger jumps in the 

search space. Furthermore they argue that ADFs may have no clear meaning from the 

point of view of the problem solved and that they are not explicitly associated to problem 

subgoals even in the case when it is known what a problem subgoal is. 

Another approach to modularity is the Module Acquisition of Angeline and Pollack (1993) 

which is based on the creation and administration of a library of modules which extend the 

problem representation. This approach uses two new genetic operators, compress and 

expand (Angeline and Pollack, 1994) that control the modification of the individuals. A 

module is a function with a unique name created by selecting and chopping off branches 

of a subtree selected randomly from an individual. Namely, the compress operator 

randomly chooses a node in a program tree and extracts a module from it. Compression 

freezes possibly useful genetic material, by protecting it from the destructive effect of 

other genetic operators. The expand operator implements the inverse function of 

compress. Unlike ADFs, this approach cannot reuse arguments in the modules. 

Rosca and Ballard (1994) propose a bottom-up approach to modularity introducing 

Adaptive Representations and show that in GP, useful genetic material can be discovered 

and used globally to extend the problem representation in a hierarchical way in order to 

improve performance. They use the term building blocks to define entire subtrees of a 

given maximum height from population individuals and the process of discovery is based 

on the analysis and tracking of building blocks over generations of evolution. These 

blocks can be evaluated with several methods and the fittest dynamically extend the 

function set. When at least such a building block is discovered in a generation, the 

population undergoes substantial changes (epoch). Namely, the most fit individuals are 

retained and the other are replaced by new individuals randomly generated using the 

extended function set. 

Whigham (1995a; I 995b; 1996) uses a context free grammar to define the structure of the 

initial language and modifies the grammar as the evolution proceeds by discovering and 

40 



adding new productions as an example of learnt bias. Individuals are represented as 

derivation trees from the grammar and a form of encapsulation builds new terms into the 

initial language. Productions are discovered with propagation of a terminal up the program 

tree to the next level of non-terminals and they are assigned with a merit value which 

represents the probability of selection from some non-terminal. In the case where all 

siblings of a propagated terminal are also terminal symbols, the terminals are encapsulated 

as one functional symbol. Individuals based on the modified grammar are introduced into 

the population with an epoch replacement (Rosca and Ballard, 1994) approach. 

Two more recent approaches to modularity are Run Transferable Libraries (Keijzer, Ryan 

and Cattolico, 2004; Ryan, Keijzer and Cattolico, 2004) and DEVTAG (McKay, Hoang, 

Essam and Nguyen, 2006). Run Transferable Libraries is a mechanism to pass knowledge 

acquired in one GP run to another using libraries of useful functions. A system using RTL 

accumulates information from run to run, learning more about the problem each time it 

gets applied and updating the library over time based on past experience (after each 

individual run, the library is updated using statistics about the use of the library elements). 

DEVTAG applies developmental evaluation using Tree Adjoining Grammar Guided 

Genetic Programming (TAG3P) for evaluating an individual on multiple problems at 

different stages of development in order for the modular structure to provide an adaptive 

advantage to that particular individual and hence being selected by the natural selection 

process of evolution. DEVT AG uses fitness ordering of individuals which is generated 

with a special multi-stage comparison. Corresponding to the insight that later-stage fitness 

is only important if the individual survives earlier stages, DEVT AG compares individuals 

on simpler problems and only if they are roughly equivalent evaluates them on more 

complex problems. 

Another approach to modularity is this of Majeed and Ryan (2007) who investigate the 

problem of identification and subsequent reuse of useful modules in GP by applying 

context sensitive evaluation of subtrees (contribution of the subtree in the container tree) 

and context-aware genetic operators (crossover and mutation). Context-aware crossover 

places a randomly selected subtree from one parent, in its best possible context in the 

other parent. Context-aware mutation operates by replacing existing subtrees with 

modules from a previously constructed repository of probably useful subtrees. 

41 



2.3.3 Modularity in Grammatical Evolution 

The first application of modularity in Grammatical Evolution is presented in O'Neill and 

Ryan (2000b) where functions are defined in the grammar by predetermining their number 

and their parameters similarly to ADFs. Harper and Blair (2006b) extend this work and 

introduce a dynamic grammar approach into Grammatical Evolution allowing the 

grammar to dynamically define functions (DDFs), self adaptively at the individual level 

without the need for special purpose operators or constraints. This allows the specification 

of multiple functions and a variable number of parameters for each function. These 

functions (DDFs) are dynamically appended to the core grammar in order to be invoked 

by the main function. 

A meta-grammar approach to modularity has also been studied. Grammatical Evolution by 

Grammatical Evolution or (GE)2 evolves the grammar that Grammatical Evolution uses to 

specify the construction of a syntactically correct solution (O' Neill and Ryan, 2004). In 

mGGA (O'Neill and Brabazon, 2005b), the meta-grammar approach is shown to be an 

effective method as an alternative binary string Genetic Algorithm through the provision 

of a mechanism to achieve modularity. Hemberg, O'Neill and Brabazon (2009) apply 

(GE)2 and ADFs for the dynamic definition of modules with fixed module signatures. 

Swafford and O'Neill (2010) define module as "any sub-derivation tree or group of sub­

derivation trees in an individual" and investigate Grammatical Evolution modularity in 

evolutionary design problems ( evolution of floor plan designs) by analysing how different 

grammars of varying levels of modularity may be capable of producing the same 

phenotypes but displaying differences in performance on the same problems. They show 

that increase in modularity, brought about by simple modifications in the grammar, results 

in the increase of the quality of solutions as well. 

Swafford, O'Neill and Nicolau (2011) examine a grammar-based approach to modularity 

by modifying the GE grammar over the course of an evolutionary run with the addition of 

modules as productions and using context-sensitive crossover and mutation which operate 

on derivation trees created by the GE genotype-to-phenotype mapping process. Swafford, 

et al. (2011) extend this work with modifying each individual's genotype (genotype 

repair) to prevent the disturbance in fitness that can come with modifying GE' s grammar 

definition during an evolutionary run with previously discovered modules. 

42 



Another approach to modularity in Grammatical Evolution can be found in McDermott, et 

al. (2010) with the application of higher-order functions in aesthetic EC encodings. Also, 

the application of tree-adjunct grammars to Grammatical Evolution (Murphy, O 'Neill, 

Galvan-Lopez and Brabazon, 2010) show that since the building blocks in TAGE 

(elementary trees) are larger than those employed by GE individual symbols, this allows 

access to new kinds of tree transformations that are not readily available with standard 

Grammatical Evolution. 

2.4 Grammatical Evolution Implementations 

2.4.1 libGE 

The libGE library (Nicolau, 2005) is the first publicly available and open source 

implementation of the Grammatical Evolution system. It is written in the C++ language 

and has been developed under GNU/Linux. The latest stable version is the 0.26, released 

at 14 September 2006. The characteristics of libGE are presented in Nicolau (2006a) and 

O'Neill and Ryan (2001). 

libGE implements the Grammatical Evolution mapping process. The library can be used 

by any compatible implementation of an evolutionary algorithm in order to map the 

genotype (the result of the search algorithm) to the phenotype (the program to be 

evaluated). As Nicolau (2006b) says in the documentation of libGE "On its default 

implementation, it maps a string provided by a variable-length genetic algorithm onto a 

syntactically-correct program, whose language is specified by a BNF (Backus-Naur Form) 

context-free grammar." 

Search Engine +-+ 

Language 
Speciflcalion 

Problem 
Specification 

+-+ GE ----. 

......... 

Solution in 
specified 
1,mguage 

Figure 2.3: Life-Cycle of a Grammatical Evolution run. Cited in Nicolau, 2006b, p.3. 

43 



Search Engine 

Mapping 
Process 

System 
Boundary 

Evaluator 

Figure 2.4: The concept of a Mapper in libGE. Cited in Nicolau, 2006b, p.6. 

Figure 2.3 and Figure 2.4 illustrate the life-cycle of a Grammatical Evolution run and the 

concept of a Mapper in libGE. 

Namely, the chosen Search Engine provides to libGE, binary strings of individuals. The 

strings are then mapped into programs with the use of the language specification 

(typically a BNF grammar). Then, the resulting programs are evaluated by the Evaluator 

which implements a problem specification (e.g. an interpreter or compiler). Finally, the 

result of the evaluation (the fitness score) is returned to the Search Engine in order to 

create the offspring and to feed again libGE with new individuals (binary strings). 

The pseudo-code in Listing 2.1 illustrates the use of the libGE Mapper. With asterisk (*) 

are notated the steps where libGE is involved. 

Create global mapper; * 
Initialise mapper;* 
Do evolut ionary run 

Generate populat i on of individual s ; 
Evaluate each indi vidual 

Done 
Done 

Transform individual to Genotype structure ; 
Call Mapper.setGenotype(individual); * 
Call Mapper.getPhenotype(); * 
Pass Phenotype structure to evaluator; 
Collect fitness score from evaluator ; 
Pass fitness back t o search engine ; 

Listing 2.1: Sample of using the libGE Mapper. Cited in Nicolau, 2006b, p.7. 

The System Boundary is where the various data structures of libGE are interfaced. Also, 

libGE provides various methods which make easier the transformation of the data 

44 



structures of any search engine into libGE genotype structures. In addition, native support 

for data structures of some search engines like MIT GALib is implemented and included 

in the libGE library. 

libGE was initially designed to work with Context-Free Grammars (CFG) which means 

that a specific codon value will always result in a specific production for a non-terminal 

symbol, regardless of the context in which it appears (Nicolau, 2005). Consequently, 

Context-Sensitive Grammars and Attribute Grammars are not supported by libGE 

(Nicolau, 2005). 

Finally, beyond the standard Grammatical Evolution mapping process, the libGE library 

introduces a set of commands that can be incorporated into grammars m order to be 

improved the control over the mapping process. Such an example 1s the use of 

<GECo d onValue> symbol which allows the user to insert codon values directly from the 

genotype into the resulting phenotype (Nicolau, 2005). 

2.4.2 GEVA 

GEV A (Grammatical Evolution in Java) is a publicly available and open source 

implementation of Grammatical Evolution in the Java programming language, developed 

at UCD' s Natural Computing Research & Applications group (UCD, 2008). It was first 

released at September 2008 and the current version is the 2.0, released at June 2011. 

GEV A, in contrast to libGE, is a complete implementation of the Grammatical Evolution 

system. Namely, it implements the Grammatical Evolution genotype-to-phenotype 

mapping process, a variable-length integer encoding evolutionary algorithm search 

engine, and a graphical user interface (GUI). Furthermore, it provides implementations of 

demonstration problems such as artificial ant (Santa Fe Trail, Los Altos, San Mateo), 

symbolic regression, L-systems, even-5-parity, royal tree, and max problem. 

The software comes in two main components: GUI and GEVA. The GUI component 

provides a simple user interface to assist a new user to use it for simple tasks, like the 

configuration and execution of the provided demonstration problems (see Figure 2.5). The 

GEV A component is the core library and provides a command line interface to allow for 

scripting. 

45 



11 1,II• 't"'ll•r. ... , r 1•fl•1 '5< 

--c....... I'll • 

- ~t==============r:, ,._.., 
.. 

................ _ .. 

..... l-w.r,~-------r .... w-~ ..... , __ ...... ~_._..,,,,,._.,.. ... 

..... E~.,,.,,_ .. .. 

... ~ .. t.-• .. __ .---_------ ~ -----1'c====~ . - ,_ 
.,...,. _.. llmmn .._. ..._.., ••:tw acm 

Dal _. Jt.$e1 --«• 4119411 11.ISi 12,J?l • ,.. 

.... _ o,.11 -'O~H - Sl.ol4 >µIMS ll,1111 

¥um 1'17:& l,lf3 Jlll>◄U le.,JSJ IIUIII 111,lll 

Figure 2.5: GUI component of GEV A v2.0. 

It is worth noting that GEY A was not the first implementation of GE for Java - this was in 

fact jGE, which will be described in Chapter 3. Also, in comparative experiments to 

validate jGE against GEY A, the author found that the first version of GEY A (vl .0) had 

two bugs in the implementation of the Santa Fe Trail problem. Namely, the ant was 

initially facing south instead of east and the ant turned left when commanded to turn right 

and vice versa. These bugs were fixed in vl .2, released at July 2010 and this was credited 

in the change log of the program. 

2.4.3 Other Implementations 

Except libGE and GEY A, more implementations of Grammatical Evolution have been 

developed in a variety of programming languages and for various purposes. A brief 

description of some of them is following. 

PonyGE (code.google.com/p/ponyge) 

It is a small (just one source file) but functional implementation of GE in the Python 

language. According to its creator, it is intended as an advertisement and a starting-point 

for those new to GE, a reference for implementers and researchers, a rapid-prototyping 

medium for the creator' s own experiments, and a Python workout. 

46 



PyNeurGen ( pyneurgen.sourceforge.net) 

Python Neural Genetic Hybrids (PyNeurGen) is a collection of libraries for use in Python 

programs to build hybrids of neural networks and genetic algorithms and/or genetic 

programming. The particular flavour of genetic algorithms/programming used is 

Grammatical Evolution. 

DRP (drp.rubyforge.org ) 

Directed Programming (DRP) is a new generative programming technique in Ruby which 

is a generalisation of Grammatical Evolution allowing one not only to do GE, but also to 

do Genetic Programming in pure Ruby without explicitly generating a program string as 

output. 

GERET (github.com/bver/geret) 

Grammatical Evolution Ruby Exploratory Toolkit (GERET) is a Ruby toolkit and library 

designed to explore the potential of Grammatical Evolution. It provides various GE 

mapping implementations (bucket rule, positional independence, several node expansion 

strategies, wrapping), various genetic operators (ripple & LHS crossover, nodal/structural 

mutations), various search algorithms (SPEA2, NSGA2, ALPS), and supports attribute 

grammars (mapping with semantics of context-free grammars). 

GEM (ncra.ucd.ie/GEM/GEM-v0.2.tgz) 

Grammatical Evolution in MATLAB (GEM) 1s an implementation of Grammatical 

Evolution for the MATLAB environment. It has been developed at UCD' s Natural 

Computing Research & Applications group by Erik Hemberg (UCO, 2008). OEM's 

current version is v0.2 which is distributed under the terms of the GNU General Public 

License. 

The above implementations (except GEM) are mentioned in the Grammatical Evolution 

official web site (www.grammatical-evolution.org). 

47 



2.5 Evaluating Evolutionary Algorithms 

2.5.1 Introduction 

The performance of evolutionary algorithms and specifically of Genetic Programming and 

Grammatical Evolution is measured in a series of standard benchmarking problem 

domains such as symbolic regression (Koza, 1992; O'Neill and Ryan, 2003), symbolic 

integration (Koza, 1992; O'Neill and Ryan, 2003), trigonometric identity (Koza, 1992; 

Ryan and O'Neill , 1998) caching algorithms (Paterson and Livesey, 1997; O 'Neill and 

Ryan, 2003), artificial ant (Koza, 1992; Koza, 1994; O'Neill and Ryan 2001; O'Neill and 

Ryan, 2003), and maze searching (Sandahl, 2005; Georgiou and Teahan, 2011). 

These problem domains , amongst others, serve as a medium for the evaluation and 

comparison of various evolutionary algorithms and the investigation of different aspects 

and characteristics of them. 

2.5.2 Symbolic Regression Problems 

Symbolic regression problems involve finding a mathematical expression m symbolic 

form that represents a given set of input and output pairs of data. The aim of the problem 

is to determine the function that maps the input values onto the output values (Koza 1992, 

p . 11 ; O'Neill and Ryan 2003, p.49). 

Koza ( 1992, p.11) notes that the mathematical express10n to be found in symbolic 

function identification can be viewed as a computer program that takes the values of the 

independent variable x as input and produces the values of the dependent variable f(x) as 

output. 

A standard target function sought in the regression problem is the quadratic polynomial x4 

+ x3 + x2 + x when Genetic Programming and Grammatical Evolution are being evaluated, 

(Koza 1992, p.164; O 'Neill and Ryan 2003, p.49). 

2.5.3 Symbolic Integration Problems 

Symbolic integration involves finding the mathematical expression that is the integral, in 

symbolic form, of a given curve (Koza 1992, p.13 ; O'Neill and Ryan 2003, p. 52). 

48 



Similarly to symbolic regression, a set of input and output pairs is given and the function 

must be found that maps one value of the pair onto the other value of the pair. 

The symbolic integration problem can be reduced to symbolic regression by integrating 

the function examined and performing symbolic regression on the target integral curve 

(O'Neill and Ryan 2003, p.52). Koza (1992, p.13) notes that the mathematical expression 

being sought can be viewed as a computer program that takes each of the random values 

of the independent variable as input and produces the value of the numerical integral of 

the unknown curve as its output. 

A standard curve being evaluated is Cos(x) + 2x + 1 for the integration problem in 

Genetic Programming (Koza 1992, p.259) and Grammatical Evolution (O'Neill and Ryan 

2003, p.52) The integral in symbolic form of this curve is the mathematical expression 

Sin(x) + x + x2 (Koza 1992, p.259; O'Neill and Ryan 2003, p.52). 

2.5.4 Artificial Ant Problems 

The Artificial Ant problem was devised by Jefferson, et al. (1992) with the 

Genesys/Tracker System. The Genesys/Tracker system was built by the UCLA Artificial 

Life group in a study to test the feasibility of using evolution to design programs with 

complex behaviour. The trail used in the original system was the John Muir Trail 

(Jefferson, et al. , 1992). 

The objective of the Artificial Ant problem (Koza 1992, p.54) is to find a computer 

program to control an artificial ant, so that it can find , within a reasonable amount of time, 

all pieces of food lying along an irregular trail located on a plane grid. The artificial ant 

can perform three primitive actions: move, turn right, and turn left. The first action moves 

the ant forward one square in the direction it is currently facing. When the ant moves into 

a square, it eats the food, if there is any. The other two actions turn the ant right or left 

respectively by 90 degrees, without moving the ant. Each of these actions takes one time 

unit. In addition, the artificial can use a sensing operation food ahead, which comes 

without cost in time units. This function looks into the square the ant is facing and returns 

true or false depending upon whether the square ahead contains food or is empty, 

respectively. 

49 



The detailed description of two instances of the Artificial Ant problem, the Santa Fe Trail 

and the Los Altos Hills, is following. 

Santa Fe Trail 

The Santa Fe Trail (Figure 2.6) is a standard problem which is used for benchmarking in 

Genetic Programming (Koza, 1992; Koza, 1994) and Grammatical Evolution (O'Neill and 

Ryan, 2001; O'Neill and Ryan, 2003). 

8111111 _,_ ,_ --- - ---·-~ ---- - --·-- ,_ ·-•- _,_ I .... ,_ 
I - -t:11 

,_ 
-- ,-

- -------
-8: 

,_ ,_ 
- I- ,_ - - ,_ ._ --- - -- - ,_ ,_ - ----- -,_ ,_ ,_ - - ·-_,_ _,_ -- ,_ - - ---- ,_ -I - - I- ,_ 

IC I --- I- ,_ -=----=- ,_ 
I----- I 

I I - I---- ,_ --- ->- -- I---
I------ I -- ,_ ,_ 

=- ~ -- ---I I I -

--
' I -- - - _,_ 

- I - - - - -I 

~ I I - -- I 

Figure 2.6: The Santa Fe Trail. Cited in Koza, 1992, p.55. 

The objective of this problem is to find a computer program to control an artificial ant, so 

that it can find all 89 pieces of food located on the grid (green squares). The artificial ant 

operates in a square 32 by 32 toroidal grid in the plane and starts in the upper left cell of 

the grid (0, 0) facing east. The trail consists of 144 squares with 21 turns, and the 89 units 

of food (green squares) are distributed non-uniformly along it. It has the following 

irregularities (Koza 1992, p.54): single gaps, double gaps, single gaps at corners, double 

gaps at corners (short knight moves), and triple gaps at corners (long knight moves). The 

specifications of the problem are shown in Table 2.1. 

50 



a e . : an a e ra1 pro T bl 2 1 S t F T ·1 bl T f em spec1 1ca 100s. 

Objective Find a computer program to control an artificial ant, so that it 
can find all 89 pieces of food located on the Santa Fe Trai I. 

Termination Ant found all food un its or maximum allowed steps reached . 

Grid 32x32 Toroidal. 

Trail Consists of 89 Food Units, 55 Gaps, and 21 Turns . 

Ant Start Position Upper Left cell (0,0) Facing East. 

Operations move: 
Moves the ant forward in the direction it is currently facing. 
When the ant moves in a square, it eats the food, if there is 
any, in that square (thereby e liminating food from that square 
and erasing the trai l). 

turn right: 
Turns the ant right by 90° (without moving the ant). 

turn left: 
Turns the ant left by 90° (without moving the ant). 

food ahead: 
Senses if there is food ahead. If yes, then returns true, 
otherwise it returns fa lse. 

T ime (steps) I step for move, turn right, turn left, 0 steps for food ahead. 

Maximum Steps 600 

The Santa Fe Trail was designed by Christopher Langton (Koza 1992, p.54), and is a 

somewhat more difficult trail than the "John Muir Trail" originally used in the Artificial 

Ant problem by Jefferson, et al. ( 1992). Although there are more difficult trails than the 

Santa Fe Trail, such as the "Los Altos Hills" (Koza 1992, p.156), it is acknowledged as a 

challenging problem for evolutionary algorithms to tackle. 

The problem has become quite popular as a benchmark in the Genetic Programming field 

and is still repeatedly used (Robilliard, et al. , 2006) because of its interesting features. It 

has been shown by Langdon and Poli (1998a; 1998b) that Genetic Programming does not 

improve much on pure random search in the Santa Fe Trail because it contains multiple 

levels of deception. Langdon and Poli (1998a) argue that this problem may be indicative 

of real problem spaces. 

51 



Hugosson, Hemberg, Brabazon and O'Neill (2010) argue that the Santa Fe Trail problem 

can be considered a deceptive planning problem with many local optima. They mention 

that the Santa Fe Trail has the features often suggested in real program spaces - it is full 

of local optima and has many plateaus. Furthermore, they note that a limited GP schema 

analysis shows that it is deceptive at all levels and that there are no beneficial building 

blocks, leading genetic algorithms to choose between them randomly. These reasons make 

the Santa Fe Trail a challenging problem for evolutionary algorithms. 

Los Altos Hills 

The Los Altos Hills problem (Figure 2.7) was introduced by Koza (1992, p. 156). The 

objective of this problem is to find a computer program to control an artificial ant, so that 

it can find all 157 pieces of food (green squares) located on a 1OOx100 toroidal grid. The 

ant starts in the upper left cell of the grid (0, 0) facing east. The trail consists of 221 

squares with 29 turns, and the 157 units of food (green squares) are distributed non­

uniformly along it. 

116 

136 

Figure 2.7: The Los Altos Hills trail (only the part of the grid with the trail is 
displayed here). Cited in Koza, 1992, p.157. 

This problem has a larger grid and a larger and more difficult trail than the Santa Fe Trail 

problem. The Los Altos Hills trail begins with the same irregularities and in the same 

52 



order as the Santa Fe Trail. Namely, single gaps, double gaps, single gaps at corners, 

double gaps at corners, and triple gaps at corners. Then, it introduces two new kinds of 

irregularity which appear toward the end of the trail. The first and simpler requires a 

search of locations two steps to the left or two steps to the right of an existing piece of 

food. It appears for the first time at food pellet 116 (see Figure 2.7) of the trail. The 

second and more difficult irregularity requires moving one step ahead and then searching 

locations two steps to the left or two steps to the right of an existing piece of food. It 

appears for the first time at food pellet 136 (see Figure 2.7) of the trail. 

2.5.5 Maze Searching Problems 

A maze is a puzzle problem where the solver must find a route around a two-dimensional 

board from one point (start / entry) to another ( end / exit) choosing between a series of 

complex and confusing pathways. The maze consists of fixed pathways and walls. The 

agent (traveller) can walk on a pathway but cannot cross or see behind a wall. The oldest 

known maze is the Cretan labyrinth. 

Trying to develop a strategy for finding the goal state of a maze is a classic problem in 

Artificial Intelligence, for which there are various strategies, depending on the type of the 

maze, like for example the "hand on the wall" solution (Teahan 201 0a, p.140). Blum and 

Kozen (1978) investigated the problem of visiting all path squares of a maze and they 

gave bounds on the power of systems of automata capable of mapping a maze, that is 

capable of deciding whether a path between two given squares in the maze exists, and 

they show that maze problems are easier to explore than graphs because of the availability 

of the orientation information. 

The objective of the maze searching problem is to find a computer program to control an 

artificial traveller (agent), so that it can find the exit of the maze. The agent starts in the 

entry point of the maze facing the entry. The artificial traveller uses, like in the Artificial 

Ant problem, three primitive actions: move, turn right, and turn left. Each of these takes 

one time unit. In addition, the artificial traveller can use three sensing functions: wall 

ahead, wall left, and wall right (Sondahl, 2005), each of them requiring no time unit. 

These sensing functions look into the front, left or right square respectively, and return 

true if that square contains a wall or false if it is a path. 

53 



Maze searching problems are challenging for evolutionary algorithms because they 

contain local optima, obstacles often block the way toward the target and the walls present 

a series of obstacles parallel to each other that are very wide and difficult to find a way 

around. These characteristics of mazes increase the difficulty of finding an adequate 

evaluation function for an evolutionary algorithm. 

Hampton Court Maze 

The Hampton Court Maze is a simple connected maze of grid size 39 by 23 (Figure 2.8) 

which is a schematic representation of the Hampton Court Palace maze in the United 

Kingdom (Teahan 2010a, p.79). The entrance is at the middle bottom of the maze, and the 

exit is in the centre of the maze. 

Figure 2.8: The Hampton Court Maze. Cited in Teahan 2010a, p.79. 

As the Hampton Court maze is a simply connected maze, a human agent who adopts the 

behaviour of keeping the right or the left hand on the wall, will always be able to get to 

the centre of the maze which is the goal. Even though the maze can be solved with this 

simple strategy, Teahan (2010b, p. 128) states that the Hampton Court Maze is a 

challenging maze problem for search algorithms due to the presence of many local optima. 

For example, the square at the front of the entry point constitutes such a local optima. 

54 



Chevening House Maze 

The Chevening House Maze (Figure 2.9) is a schematic representation of the Chevening 

House Maze in England (Teahan 2010a, p.82). It is a multiple-connected maze of grid size 

47 by 47. 

Figure 2.9: The Chevening House Maze. Cited in Teahan, 2010a, p. 83. 

According to Teahan (201 0a, p. 82), the Chevening House, built in the 1820s, was one of 

the first mazes that was multiple-connected. Namely, a maze that contains one or more 

"islands" that are isolated from each other, totally disconnected from the outer wall. An 

important difference between the Chevening House maze and the Hampton Court maze is 

that the former has been designed to thwart the "hand on the wall" behaviour for solving 

the maze (Teahan 201 0a, p. 142). 

2.6 Summary and Discussion 

Natural evolution and genetics inspired the development of a new paradigm of problem 

solving, a family of population-based meta-heuristic search algorithms utilising the 

concepts of biological reproduction and evolution. The general idea behind this paradigm 

is to maintain a population of artefacts represented using a computer-based data structure, 

55 



reproduce these artefacts and evolve them directed by a fitness measure toward the goal of 

the task in hand in order to emerge a solution for the problem in question. The first most 

noticeable approaches were Evolutionary Programming, Evolution Strategies, and Genetic 

Algorithms, which have been unified under the umbrella term evolutionary algorithms and 

formed the foundation of the resultant field of evolutionary computation. A significant 

approach is Genetic Programming which directly evolves computer programs. 

Research findings of the field revealed that there is not a unique configuration of an 

evolutionary algorithm which effectively solves any class of problems and that achieving 

a proper balance between exploration and exploitation is one of the most important factors 

in designing and configuring an evolutionary algorithm. Indeed, in order to achieve 

performance improvement, a match must exist between the structure of the algorithm and 

the structure of the problem. Another important aspect of an evolutionary algorithm, 

which affects its performance, is whether it is able to preserve diversity in the population 

in order to prevent the problem of premature convergence. 

Even though, evolutionary algorithms have achieved remarkable results, research is 

underway trying to improve them, apply them to new areas (for example the emergence of 

autonomous agents behaviour, morphology, and design), and solve their issues. The most 

important of these issues are the lack of an effective modelling of the meta-learning based 

progress of biological evolution, the computational cost of these algorithms, and the lack 

of a unified view that would result in a common model and a minimum core and solid 

theoretical and practical background, where each approach would be expressed as a 

parameter or specialization. 

A rather new development, a form of Genetic Programming named Grammatical 

Evolution, is a type of automatic programming that resolves the Genetic Programming and 

grammar-based algorithms issue of generation and preservation of valid programs (knows 

as the "closure" problem), due to the use of variable length binary string genomes, a 

unique genotype-to-phenotype mapping formula, and a genotype wrapping mechanism. 

The ability of this algorithm to create from binary strings valid programs in any 

programming language, which can be expressed with a BNF grammar definition, lead to 

its application on a variety of benchmark and real word problem as well as to further 

research and investigation. Variations of the original algorithm have been already 

implemented which try to tackle its issues such as destructive crossovers, genotype 

56 



bloating, dependency problems, and low locality of genotype-to-phenotype mapping. A 

promising research direction is the utilisation of modularity for which the past research in 

the area of Genetic Programming shows that increases the effectiveness and efficiency of 

an evolutionary run. 

Grammatical Evolution has started to gain popularity as evidence by an increasing number 

of publications and with the appearance of publicly available implementations in various 

programming languages such as C++, Java, Python, and Ruby. 

Finally, evolutionary algorithms are benchmarked in a variety of standard problems. Most 

of them could be considered as toy-problems such as symbolic regression and symbolic 

integration. But there are also problems of interest in such areas as evolutionary robotics 

which involve the evolution of the behaviour of agents in a given environment such as the 

artificial ant problem and the maze searching problem. Even though these problems could 

be also considered as toy-problems, they reveal some interesting attributes of real world 

problems, such as many deceptive local optima and large search spaces, which makes 

them challenging and difficult for evolutionary algorithms to solve. An interesting 

conclusion that is revealed from the survey that is conducted in this chapter is that 

previous Grammatical Evolution literature has not investigated applications to maze 

searching problems and to the Los Altos Hills problem, an instance of the artificial ant 

problem which is more challenging than Santa Fe Trail. 

57 



Chapter 3 

Java Grammatical Evolution 

3.1 Introduction 

The purpose of this chapter is to describe the Java Grammatical Evolution UGE) Library, 

to demonstrate its use in proof-of-concept experiments, and to compare it with other 

widely known GE implementations. The main idea behind jGE, besides the development 

of a Grammatical Evolution implementation, is the creation of a generic framework for 

evolutionary algorithms which can be extended with the incorporation of standard or new 

evolutionary algorithms (sequential and parallel) , and the addition of standard or new 

benchmarking problems. Part of the work in this chapter has been published as an 

extended abstract in Georgiou and Teahan (2006a; 2006b; 2008). However, the work here 

provides greater detail , and includes a full description of the experimental results. 

The jGE Library was the first publicly available (Georgiou, 2006) and published 

(Georgiou and Teahan, 2006a) implementation of Grammatical Evolution for the Java 

programming language (Java SE versions 5 and 6), and was developed for the facilitation 

of the work described in this text. Today, it is the core component of the jGE Project at 

the School of Computer Science of Bangor University (Artificial Intelligence and 

Intelligent Agents Research Group). The goal of this project is the implementation of an 

open Evolutionary Algorithms (EA) framework which will facilitate further research into 

evolutionary algorithms (and especially Grammatical Evolution). Grammatical Evolution 

was chosen as the main evolutionary algorithm of the jGE Project mainly because it 

facilitates, due the use of a BNF Grammar, the evolution of arbitrary structures and 

programming languages (Georgiou and Teahan, 2006b). 

The main objectives of the jGE Project are as follows: 

• to provide an open and extendable framework for the experimentation with 

evolutionary algorithms; 

• to create an agent-oriented evolutionary system (using an agent-based framework); 

58 



• to bootstrap further research on the application of natural and molecular biology 

principles like for example population thinking (Mayr 2002, p.81); and 

• to facilitate experimentation in the evolution of populations of agents of third-party 

open source and free Java projects. For example, evolving competent Robocode 

(Nelson, 2001) robots capable to beat human designed robots. 

Java was chosen as the implementation language for the jGE Library, mainly to fit in with 

other artificial intelligence projects being developed at Bangor. However, Ghanea­

Hercock (2003 , p.15) also lists several advantages of using Java for the development of 

Evolutionary Algorithms applications , like automatic memory management, pure object­

oriented design, high-level data constructs (e.g. dynamically resizable arrays); platform 

independent code; and the availability of several complete EA libraries for EA systems. 

On the other hand, Ghanea-Hercock (2003, pp.15-16) mentions that the main price we 

have to pay in using Java is the significant increase in execution time of interpreted Java 

programs compared with compiled languages like C and C++. But he adds that the recent 

work of Sun Microsystems Inc. and other companies has resulted in "Just in Time" 

compilers which significantly improve the execution speed of the Java programs. Also, he 

mentions that future developments in computer languages may lead to better alternatives 

to Java with for example improved speed. Such an example is the release of C# from 

Microsoft (Ghanea-Hercock 2003, p.17). Of course, in spite of the last argument of 

Ghanea-Hercock, there is a huge dispute of whether Java is slower or faster than C# (or 

even than C and C++ ). And to put it in the correct context: whether a particular 

implementation of the JVM (Java Virtual Machine) is slower or faster than one of the 

CLR (Common Language Runtime) of Microsoft. 

Another advantage of using Java, a purely object-oriented programming (OOP) language, 

against languages of other programming paradigms like procedural or functional ( e.g. C, 

Cobol, Basic, Common Lisp, Scheme), are according to Alba and Troya (2001) the 

following: a) Quick prototyping of the evolutionary algorithm with quick redefinition of 

the classes involved and consequently easier identification of the best algorithm; b) 

object-oriented programming facilitates a high level approach of experimentation; c) 

software reuse; and d) the development of a common architecture of classes for an 

evolutionary system. 

59 



Furthermore, the intention for the incorporation of parallel evolutionary algorithms in a 

future version of the jGE Library, gives to Java another one advantage. Alba and Troya 

(2001) argue that Java multi-platform parallelism and heterogeneity at virtually "zero 

cost" is a very appealing feature for future research with parallel algorithms, and they 

provide results which show the efficiency and flexibility of the utilization of object­

oriented programming in the domain of Parallel Evolutionary Algorithms (PEA). Namely, 

they give some hints for designing PEAs with OOP regarding the stochastic decisions 

(ensuring a single seed), the population implementation (using dynamic lists), the 

computer memory saving (reducing the memory spent in the basic classes), and the 

communication via sockets (the explicit closing of useless sockets). They conclude that 

OOP allows quick PEA prototyping, integration of new techniques within the PEA and 

easy cooperation with other techniques in parallel (all of them without reducing the 

efficiency of the resulting PEA). 

3.2 Overview of the jGE Library 

This and the three next sections describe the overall architecture of jGE, overview its 

components & how they are organised in to packages, and provide further detail of one of 

its prominent components, the Genetic Operations. The complete API documentation of 

the jGE Library can be found in Georgiou (2006) and in the accompanying CD. The API 

documentation provides a detailed description of all the classes of the library and their 

methods. 

The main idea behind the development of the jGE Library - it can be downloaded at 

Georgiou (2006) - is to create a framework for evolutionary algorithms which can be 

extended to any specific implementation such as Genetic Algorithms, Genetic 

Programming, Grammatical Evolution. This means that instead of using a mapper-centric 

approach like libGE (Nicolau, 2005), jGE uses an EA-oriented approach. Namely, instead 

of being just the implementation of the mapping mechanism between the Search Engine 

and the Evaluation Engine as for libGE, it provides libraries for both of these components. 

Consequently, someone using jGE is able to specify the core strategy of the evolutionary 

process by selecting and/or setting the following (see Figure 3 .1 ): 

60 



• the desired implementations of the genetic operators ( crossover, mutation, 

duplication, pruning, parents selection mechanism, offspring selection mechanism, 

standard evolutionary algorithms templates, etc.); 

• the genotype to phenotype mapping mechanism; 

• the evaluation mechanism; 

• the initial population; and 

• the initial environment (although currently not yet implemented). 

World 

( Population J 
( Environment) 

EA Strategy 

G e n e tic 
Ope ratio n s 

( Mapper J 
( Evalua tor J 

Evolutionary Algorithm Core (Evolution) 

Final State 

Evolved 
Population 

Evolved 
Environment 

Solution 

Figure 3.1: The jGE architecture. 

Even though j GE is focused on the implementation of the Grammatical Evolution system, 

it contains all the necessary functionality for the execution and/or construction of other 

evolutionary algorithms as well - currently, as well as GE, two other EC algorithms are 

implemented in the library: Standard GA (Generational) and Steady-State GA. Namely, 

jGE decomposes and implements services which are required by evolutionary algorithms 

and provides functionalities for the ad-hoc implementation of evolutionary based systems. 

In the current version, the library is concentrated on Grammatical Evolution, but it can 

also be used by any other Java system or program for the creation of evolutionary 

algorithms as well as for other functionalities such as the parsing and representation of 

BNF Grammar definitions, the compilation and execution of Java programs, and the 

generation of random numbers in specific ranges. 

61 



3.3 Components of jGE 

The diagram in Figure 3.2 shows the mam components of the jGE Library and the 

diagram in Figure 3.3 shows the classes of its core components. 

g EALoggor ~-- -----: G 
I _____ _____ ___ J 

I I 2:3 I I EA Coro o::1----1 : ____ : --------~ Q=:Jle I I 
: EAStrategy _________ l ~ 
L ~ g Genetic Operations r---------' 

Figure 3.2: Component diagram of the jGE Library. 

Environment 

E"1ema1Envlrooment 

GlobolKnowledge 

lntomalEnvtronmont 

Population 

lndlvldualKnowledge RelatJon Group 

EACon, 

Genotype Phenotype 

Configurable Elements 
......... 

•interlace• 
-------- EASlrale!IY -------

•UMS• 
'----,----,----,--' 

Socloty 

•ir1artaoe» 
Evaluator 

- - - - - - - - «usas111- - - - - - - ------1 
I I I 
I I 1 
I I I 

I I ~ 

c=:j 

Figure 3.3: Class diagram of the core components of the jGE Library. 

62 



EA Core 

This component is the main entry to the platform and loads the necessary files and classes. 

Namely, it loads the Population component, the Environment component, and the EA 

Strategy to be executed. Also, it is responsible for checking the supported features and 

configuration possibilities of the EA Strategy component. 

EA Strategy 

The EA Strategy component defines the evolutionary process to be executed and the 

specification of the problem in question. It is responsible for selecting the appropriate 

implementations of each one of the configurable elements: Genetic Operations, Mapper, 

Evaluator, and Logger. The evolutionary strategy and the problem are currently specified 

with Java code but in a future version they could be determined by a configurable external 

XML file which will be loaded by the core mechanism of the jGE framework (EA Core). 

The core mechanism will be then responsible for allocating and executing the appropriate 

actions and directives, and to produce the final results. 

Population 

It contains a collection of classes which abstract a real world population. Namely, it 

provides classes for the representation of the individuals (their genotypes and 

phenotypes). Also it can be extended in future versions of the library with classes 

representing relations between the individuals, groups of individuals, and more advanced 

concepts such as individual's knowledge. 

Environment 

This component contains classes which abstract a real world environment. Its purpose is 

to allow the researcher to specify an environment in which the population is situated, and 

to influence the creation of new generations as well as the phenotype of the individuals, 

their growth process, and finally their own genotypes before they reproduce new 

offspring. This component is not yet completed in the current version of the jGE Library. 

63 



Genetic Operations 

It contains an extendable collection of implementations of variations of the genetic 

operations. Namely, it provides templates and various implementations of evolutionary 

algorithms (generational GA, steady-stage GA), reproductive operators (crossover, 

mutation, duplication, pruning), selection mechanisms (parents selection, offspring 

selection), and more. This component is described in detail in section 3.5. 

Mapper 

The Mapper component is responsible for the genotype-to-phenotype mappmg of an 

individual. It provides an interface which accepts as an argument an individual's genotype 

and returns its corresponding phenotype. An implementation of any mapping process can 

be added and used in jGE as long as it satisfies the required interface. Currently, two 

mapping processes are implemented and supported: No-Mapping (e.g. Genetic Algorithm) 

and BNF-Based Mapping (Grammatical Evolution). Any specific implementation of the 

mapping process will be executed by the EA Strategy component. 

Evaluator 

The Evaluator is used by the EA Strategy to assign a fitness value to the phenotype of an 

individual. It defines a standard interface and any implementation of a problem 

specification must implement this interface. In the current version of jGE, two problem 

specifications (and their corresponding evaluators) are available: Hamming distance and 

symbolic regression. The Evaluator implementation is the only component of the system 

that has to be created for any new category of problems which will be tackled by the jGE 

Library. 

EA Logger 

This keeps track of the evolutionary process and stores the data for monitoring of the 

evolution of the individuals and for later use; that is, the creation of statistical results. 

Regarding the communication between the different components, the first thought was 

that the Mapper , Evaluator, Genetic Operations, and Logger components should not use 

directly the Population and Environment components. They would get and send back data 

64 



from and to the EA Strategy component using the String data type. This would increase 

the modularity and flexibility of the system but at the same time would decrease 

opportunities for future extensions. For example, in a future extension the genetic 

operations could need to take into account the environment and global/individual 

knowledge or the relations between the individuals. For this reason, the design decision 

has been taken that the Population and Environment components should be used directly 

by every other component of the system. 

3.4 The jGE Packages 

The components and classes of the jGE Library (see Figure 3.2 and Figure 3.3) are 

organised in the packages described below. A diagram depicting the main classes of each 

package is shown in Figure 3.4. As already noted, the detailed description of each class 

and its methods can be found in the API Documentation of the library (Georgiou, 2006). 

3.4.1 Package: bangor.aiia.jge.core 

The package core contains the main classes of the jGE library. These classes implement 

the EA Core component, the EA Strategy component, the Grammatical Evolution 

algorithm, and some proof of concept experiments. Also, the interfaces of this package 

define the required functionality which must be provided by specific implementations of 

the Evaluator and Mapper components of the system. Indeed, it provides two 

implementations of the later (no mapping and GE mapping). See Appendix F for the class 

diagram of the Mapper component of this package. 

3.4.2 Package: bangor.aiia.jge.population 

This package contains the classes which represent the population of an evolutionary 

algorithm. A Population is a collection of Individuals and each Individual has a Genotype 

and a Phenotype. See Appendix F for the class diagram of this package. 

3.4.3 Package: bangor.aiia.jge.evolution 

The package evolution contains implementations of evolutionary algorithms (e.g. GA) and 

classes which decompose the main operations of such algorithms (e.g. crossover, 

65 



mutation, selection, etc.). These operations are implemented as static methods and each 

class provides a collection of different variations. The classes include: crossover; 

duplication; genesis; mutation; pruning; selection. For example, the class Crossover 

currently provides a standard one-point crossover operator for both fixed and variable 

length genomes, and the class Selection provides two standard selection mechanisms: rank 

selection and roulette wheel selection. Alternative implementations of the provided 

operations, such as two-point and uniform crossover variations, can be added as static 

methods to the corresponding Java classes. 

hngor.1111.Jge.utll 

G Ji,vaCompiler 

G Jlke11Cfltt1pller I G MathUlil I 
I G CapluredOulputStream I 
I G F-I1cCIHs4.o&dcr I 
l G Conn91.1rallon·Senlngs I 

bangor .aiia.jge,p& 

I G SymbolicR.egression l 
I G Hamrni ngDistance J 

Ell b.angouiia.Jge.bnl 

I G BNFGnimmar t i ·G BftFPtoduction I, 

I G BJtFRule 11 G lnV11Ud8NFExceptlon J -- I G BNFSymbol I 0 BNFSymbollype 

'VT~ 
V' - Ter"ltl j G CNFParwr I 

b ango1 .ail a.Jge .evolulion 

G: EvolutioniuyAlgorithm <T,S> 

I G SteadyStateGA I 
I G Cro&IIOV&r I I G Selecilon I ! B Gene11ls ! 
I G Duplication I I G Ptunlng I I G ,.utatlon I 

II bangor,11ila,jge.popul11lion I 
I G Population <T,S> I I G lndlvldual <T,S> I 
I G Phenotype <T> I I G Genotype <l> I 
I G lnvalldPhenotypeEKceptlon I 
I G lnvalldXML Fragn1entEx cepOon I 

I G Gramm111icalEvolution 11 G GEi.tappe r i 
clrl.ef1at:6 

I 
0 Mapper cT,S> 

.cinhirtace~ 
0 Evaluator <T,S> 

I G Defaultt.tapper <T> 11 G EAExperimcnts I 

Figure 3.4: jGE Library packages. 

3.4.4 Package: bangor.aiia.jge.ps 

The ps (problem specification) package contains specific implementations of the 

Evaluator component, namely problem specifications which can be used for the 

66 



evaluation of the individuals during an EA run. Each time a new problem is examined, a 

new problem specification class has to be created which assigns a fitness value to an 

Individual of the Population. The classes HammingDistance and SymbolicRegression 

implement Hamming distance and symbolic regression problems respectively. See 

Appendix F for the class diagram of this package. 

3.4.5 Package: bangor.aiia.jge.bnf 

This package contains all the necessary classes for the loading and validation of a BNF 

grammar definition and its representation as Java objects. Currently, only the classical 

BNF dialect is supported which conforms to the following rules: the terminal symbols are 

written naturally; the non-terminals symbols are enclosed in angle brackets, i.e. <symbol >; 

the definition symbol in rules is " : : ="; there is no rule statement terminator (this means 

that each rule terminates when the next one begins). Further details and samples can be 

found in the jGE API documentation (class bangor.aiia.jge.bnfBNFParser). Also, see 

Appendix F for the class diagram of this package. 

3.4.6 Package: bangor.aiia.jge.util 

The package util contains the EA Logger component and some helper classes (utilities). 

The classes of this package implement common services used by other components and 

classes of the jGE Library, like logging, compilation and execution of Java code, 

stochastic functions, and more. 

3.5 Genetic Operations Component 

One of the most useful and important components of the jGE Library is the Genetic 

Operations component. Its classes implement standard evolutionary algorithms such as 

GA, and various types and variations of standard genetic operators as static methods. In 

this way, ad-hoc implementations of evolutionary algorithms can easily access the various 

genetic operations and use them in different combinations. Currently the following 

operators are implemented: 

• Genesis: random creation of an initial pool of binary string genotypes; and random 

creation of an initial population of individuals. 

67 



• Selection: roulette wheel selection; rank selection; N best and M worst selection. 

• Crossover: standard one-point crossover for fixed-length genotypes; standard one­

point crossover for variable-length genotypes. 

• Mutation: standard one-point mutation. 

• Duplication: standard Grammatical Evolution duplication. 

• Pruning: standard Grammatical Evolution pruning. 

The abstract class EvolutionaryAlgorithm defines common properties and behaviours for 

evolutionary algorithms like Genetic Algorithms, Genetic Programming, and Grammatical 

Evolution. An evolutionary algorithm simulates the biological process of evolution. The 

evolution unit of this process is the population as Darwinism argues (Mayr 2002, p.9). 

The basic strategy of an Evolutionary Algorithm is listed in Listing 3 .1. 

Set c urrent popul ation P = N individuals 
For Generation = 1 to MaxGenerat i ons 

Competition : Eval uate the individuals of P 
Selection: Sel ect from P t he individuals to mate 
Variation : Apply Crossover , Mutation , etc . to the selected 

indivi duals 
Reproduc tion : Create t he new population P ' and set P = P ' 

End For 

Listing 3.1: Evolutionary algorithm basic strategy. 

The subclasses of the EvolutionaryAlgorithm class must implement the concrete steps of 

the above strategy in order to provide specific versions of evolutionary algorithms. 

Further, two evolutionary algorithms have been implemented: the Standard Genetic 

Algorithm (Generational GA) and a version of a Steady-State Genetic Algorithm. For the 

former, the following process as shown in Listing 3.2. 

Set current populat ion P = N ind ividuals 
Perform fitness evaluation of the indi viduals in P 

While (sol ution not found and MaxGenerations not exceeded) 
Create a new empt y population, P ' 
Repeat until P ' i s f u ll 

Select two indi vidu a l s from P to mate usin g Roul ette Whee l 
Sel ect ion 

Pr oduce two offsprin g us inq stand ard one- poin t crossover 

68 



wi th probability Pc 
Perform Point Mutation with p robabil i ty Pm on t h e two 

offspring 
Perform Duplication wit h probability Pd on the two offspring 
Perform Pruning with probability Pp on the two off spring 
Add the two offspring i nto P ' 

End Repeat 
Replace P with P ' 
Perform fitness evaluation of individuals in P 

End While 
Return the best indi v i dual , S (the solution) in current 

population , P 

Listing 3.2: Standard genetic algorithm. 

For the Steady-State Genetic Algorithm (SSGA), the main idea is that a portion of the 

population P survives in the new population P' and that only the worst individuals are 

replaced. Namely, a few good individuals will mate and their offspring will replace the 

worst individuals. The rest of the population will survive. The SSGA process implemented 

injGE is shown in Listing 3.3. 

Set current population P = N individual s 
Set G = the generation gap 
Perform f i tness evaluation of the individuals in P 

While (solution not found and max generations not exceeded) 
Create a new empty population, P ' 
Repeat until (new offspring= G x N) 

Select two individuals from P to mate using Roulette Wheel 
Selection 

Produce two offspring using standard one- point crossover 
with probability Pc 

Perform Point Mutation with probability Pm on the two 
offspring 

Perform Duplication with probability Pd on the two offspring 
Perform Pruning with probability Pp on the two offspring 
Add the two offspring i nto P ' 

End Repeat 
Add the best (N - G x N) individuals of Pinto P '. 
Replace P with P' 
Perform fitness evaluat ion of i ndivi duals in P 

End While 
Return the best individual , S (t he solut i on) in current 

population, P 

Listing 3.3: Steady-state genetic algorithm. 

The portion of the population P that will be replaced in P' is known as the generation gap 

and is a fraction in the interval (0 , 1). The default implementation of SSGA uses a 

fraction, G = 2/N (where N the size of the population). Namely, two individuals will mate 

and their offspring will replace the two worst individuals. In general, the number of the 

69 



individuals which will be replaced in each generation is G x N. In case where (G x NJ is 

not an even integer, then the larger even integer less than ( G x N) and larger than O will be 

used. 

The Grammatica/Evolution class of the EA Core component uses the previously 

mentioned classes of the Genetic Operators component to implement the default version 

of the Grammatical Evolution algorithm, with a minor exception regarding the steady state 

replacement mechanism as mentioned. The default implementation, as described by 

O 'Neill, Ryan, Keijzer and Cattolico (2001), uses a Steady-State replacement mechanism 

such that two parents produce two children, the best of which replace the worst individual 

in the population only if the child has a greater fitness than the individual to be replaced. 

The jGE implementation uses a slightly different replacement mechanism which is 

described above in the SSGA process (Listing 3.3). Also, there is the option to use a 

Generational replacement mechanism like in standard GA. 

Regarding the configuration of a Grammatical Evolution run, O'Neill and Ryan (2001; 

2003) use the following: a typical wrapping threshold is 1 O; the size of the codon is 8-bits; 

and typical probabilities are: crossover- 0.9; mutation-0.01 ; duplication-0.01 ; pruning-

0.0 1. This configuration is the default of the GrammaticalEvolution class. Further, this 

implementation uses the following default values: max. generations: 10; searching 

mechanism: Steady-State GA; Generational Gap of the Steady-State GA 2/N (N is the 

population size). 

The next section describes some proof-of-concept experiments performed with the jGE 

Library. 

3.6 jGE Demonstration Experiments 

Three different demonstration experiments with jGE were performed - Hamming 

distance, symbolic regression and trigonometric identity (see forthcoming subsections). 

These are proof-of-concept experiments of the Grammatical Evolution implementation in 

the jGE Library. For the first problem, two further evolutionary algorithms were tried for 

comparison - Standard (Generational) GA, and Steady State GA. The second and third 

problems are based on the experiments which have been performed by O'Neill and Ryan 

(1998; 2001; 2003 , pp.49-52). The objective of these experiments is to demonstrate the 

70 



applicability and effectiveness of the jGE Library for the execution of evolutionary 

computation experiments. 

Before the results are described, however, the next subsection provides a brief discussion 

on some of the Java issues encountered during the experiments, and this is followed by a 

subsection providing some sample Java source code to illustrate the ease with which these 

experiments were set up using the jGE Library. 

3.6.1 Java Issues 

The first version of the Evaluator component used the JavaCompiler class to evaluate the 

Java programs (phenotypes). This compiles (using the Sun's javac.exe compiler), and 

executes (using the Sun' s java.exe runtime), once in each generation of a run, the 

dynamically created Java source code which are the phenotypes of all the individuals of 

the population. This is an extremely time consuming task and for problems such as 

symbolic regression, this is the most important factor which affects the execution speed. 

In each symbolic regression experiment, the compilation-execution takes place once when 

a new run starts (for the creation of the initial population) and once in each generation 

( during the evaluation of the individuals of the population). 

Although the time complexity with respect to the compilation-execution of Java code is 

linear ( O(N) where N is the number of generations of a run), it is a time consuming task 

which can significantly degrade overall performance. Moreover, other problems will have 

a higher rate of growth of execution time if they need to frequently use the source code 

compilation and Java bytecode execution tasks. 

For the above reasons, alternative methods for the compilation and execution of Java code 

were investigated. The experimental evidence (see Georgiou, 2006) leads to the 

conclusion that a much better solution than usingjavac.exe andjava.exe is the following 

setup: a) Use of the Jikes compiler for the compilation of the Java source code (IBM 

Corporation, 2004); b) Utilization of the Dynamic Class Loading and Introspection 

features of the Java Virtual Machine (ClassLoader class, and the Reflection API). 

Jikes is an open source Java compiler written in the C++ language and translates Java 

source files into the bytecode instructions set and binary format defined in the Java 

71 



Virtual Machine Specification. Jikes has the following advantages as noted in the Jikes 

official web site: open source; strictly Java compatible; high performance; dependency 

analysis; constructive assistance (IBM Corporation, 2004). 

The Java ClassLoader is an important component of the Java Virtual Machine which is 

responsible for finding and loading classes at runtime. It loads classes on demand into 

memory during the execution of a Java program. Furthermore, it is written in the Java 

language and can be extended in order to load Java classes from every possible source 

(local or network file system, network resources, etc.). Using both the ClassLoader and 

the Reflection API, it is possible to perform the loading of Java bytecode and its execution 

from inside of any Java program using the same instance (process) of the JVM. In the 

current version, the jGE Library provides the option of using either the Sun's JVM or the 

IBM's Jikes compiler in conjunction with Dynamic Class Loading and Introspection for 

the compilation and execution of Java code. 

The experiments described below are the first experiments with jGE using real data based 

on the suggested configurations provided by O'Neill and Ryan (2003 , p.50). Because this 

was the first time a large amount of data was used by jGE (e.g. populations of 500 

individuals, sample of 50 data points etc.) , an unexpected problem arose. During the 

evaluation of a Grammatical Evolution run on a symbolic regression problem, the Java 

compilers (both Sun JDK 1.5 and IBM Jikes) threw an error during the compilation of the 

produced Java class which was responsible for calculating the raw fitness of all the 

individuals of a population. The error message in Sun JDK 1.5 was the following: "Code 

too large" . The reason for this error was tracked down to an undocumented limitation of 

the Java compiler which cannot compile a method with bytecode size larger than 64Kb. 

This problem forced the re-factoring of the SymbolicRegression class in order for the 

compilation of the class which runs and evaluates the Java code (phenotype) of the 

individuals to be possible. The whole code which was placed in the main method of a 

temporary created class, had been broken into many smaller methods instead ( one for each 

individual of the population). 

72 



3.6.2 Sample Java Source using jGE 

This section provides a sample of the Java source code used for these experiments. The 

source code used for all three problems is essentially the same - except for a small amount 

of variation to specify the problem itself and the evolutionary algorithm used. Listing 3 .4 

shows the Java source code for the Hamming distance problem experiment. The line 

labelled by (1) in the listing provides the problem specification (this will vary for the three 

types of problems). Lines labelled by (3) set the parameters to be used by the evolutionary 

algorithm. The line labelled by (4) executes the algorithm and returns the solution found. 

// This method shows the use of jGE in a Hamming Distance problem. 
// @return The solution of the Hamming Distance experiment . 

public static Individual<String, String> hdExperiment() 
Individual<String, String> solution = null ; 
String target= '' 11 1000111000101010101010101010"; 
LogFile l og = null ; 

(1) HammingDistance hd = new HammingDistance(target) ; 
(2) II Insert EA specification here (see Listing 3.5) 
( 3) ea. setCrossoverRate ( 0 . 9) ; 
(3) ea . setMutationRate(0 . 01) ; 
(3) ea . setDuplicationRate(0 . 01) ; 
(3) ea . setPruningRate (0 . 01) ; 
(3) ea . setMaxGenerations(lOO); 
(3) ea . setLogger(log) ; 
(4) solution = ea . run() ; 

II Also the following information can be retrieved : 
II Number of Generations created = ea.lastRunGenerations() ; 
II Solution ' s Fitness Value= solution . rawFitness() ; 
II Solution ' s phenotype= solution.getPhenotype() . value() . 

return solution ; 

Listing 3.4: Java source code for the Hamming distance problem experiment. 

Listing 3. 5 shows the alterations needed to the source code in Listing 3 .4 to configure for 

different evolutionary algorithms. That is, line (2) should be replaced by the code shown 

in Listing 3.5 depending on the algorithm that is chosen. Additionally, an extra line needs 

to be inserted before (3) but only for the Steady State Genetic Algorithm. Any of the 

variations of the method shown in Listing 3 .4 performs a simple run of the corresponding 

experiment. An external application is needed to call the method using a loop in order to 

execute a full experiment with many evolutionary runs. 

73 



Standard GA : 
Replace l i ne (2 ) in Listing 3 . 4 with : 
StandardGA ea= new StandardGA(S0 , 1 , 30 , 30 , h d ) ; 

Steady-State GA: 
Replace line (2 ) Listing 3 . 4 with : 
SteadyStateGA ea= new SteadyStateGA(S0 , 1 , 30 , 30 , hd) ; 
Insert before line (3) above : 
ea . setFixedSizeGenome(true) ; 

Grammatical Evolution: 
Replace line (2 ) Listing 3 . 4 with : 
BNFGrammar bnf = new BNFGrammar( " BinaryGrammar . bnf " ) ; 
Grammat i calEvol ut i on ea= new GrammaticalEvoluti on( 

bnf , hd , 50 , 8 , 20 , 40) ; 

Listing 3.5: Source code alterations to Listing 3.4 required for the different 
evolutionary algorithms in the Hamming distance problem experiments. 

The next subsections describe the experimental results for the three problems investigated. 

Each subsection provides a description of the problem, the configuration of the 

experiment, the BNF grammar used by the Grammatical Evolution system, and the 

experimental results. 

3.6.3 Hamming Distance Experiments 

The Hamming distance problem involves the finding of a given binary string. The target 

string was: 111000111000101010101010101010. For this problem, Grammatical 

Evolution, Standard GA, and Steady-State GA were compared. Listing 3.6 shows the BNF 

grammar definition used in this experiment. The tableau of Table 3 .1 - with a style similar 

to O'Neill and Ryan (2001; 2003) of summarising information - shows the configuration 

of the experiment. 

<phenotype> 

<binary> 

<bi nary><binary><binary><binary> 
<binary><binary><binary><binary> 
<binary><binary><binary><binary> 
<binary><binary><binary><binary> 
<binary><binary><binary><binary> 
<binary><binary><binary><binary> 
<binary><binary><binary><binary> 
<binary><b inary> 
011 

Listing 3.6: BNF grammar used for the Hamming distance problem. 

74 



a e : T bl 3 1 H ammmg n· 1stance GET bl a eau. 

Objective: Find the target binary string. 

Terminal Operands: 0 and I. 

Terminal Operators: None. 

Fitness cases: The target string. 

Raw Fitness: Target String Length - Hamming Distance. 

Standardised Fitness: Target String Length - Raw Fitness. 

Wrapper: None. 

Parameters: Population Size (M) = 50, 
Maximum Generations (G) = 100, 
Prob. Mutation (P,,,) = 0 .01 , 
Prob. Crossover (Pc)= 0.9, 
Prob. Duplication (Pd)= 0.01 , 
Prob. Pruning (Pp)= 0.01 , 
Steady State GA with Generation Gap (G) = 0.9, 
Roulette-Wheel Selection, Codon Size= 8. 

In each experiment, 100 evolutionary runs were performed. Table 3 .2 depicts the success 

rates of these experiments (percentages of solutions found in each experiment). The 

cumulative frequency measure of success over 100 runs for the three algorithms can be 

seen in Figure 3. 5. 

Runs 

Success Rate 

100 

90 

80 

10 

0 

a e : T bl 3 2 R esu ts h H or t e ammmg d" 1stance pro bl em. 

Standard GA Steady-State GA Grammatical Evolution 

100 100 100 

10% 100% 44% 

f - . - GA - - SSGA ----· GE 

r 
I 

I 
I --

I --· __ ,._,,,,,_. 

I -------; ,-

I , , , 

) _, -
-- ~,,,. ~ 

, - ·- ·- ·- -- · __ , ___ ., - . - . - . - . - . - · - - ' --i------~ · - · - · T C 

0 10 20 30 40 50 Ci0 
Generation 

70 80 90 100 

Figure 3.5: Hamming distance results graph. 

75 



The figures show that Grammatical Evolution (or more precisely, the jGE implementation 

of it) outperforms the Standard Genetic Algorithm (generational) achieving a higher 

success rate ( 44% against 10%) but a lower compared to the Steady-State Genetic 

Algorithm which achieved the absolute success rate (100%). 

3.6.4 Symbolic Regression Experiments 

Symbolic regression problems involve finding some mathematical expression in symbolic 

form that matches a given set of input and output pairs. The particular function 

experimented with was the following: f(x) = x 4 + x3 + x2 + x. Two different BNF grammars 

were tried (Listing 3.7 and Listing 3.8) using the configuration shown in Table 3.3. 

<expr> 

<op > 
<pre- op> 
<v ar> 

<expr> <op> <expr> I 
( <expr> <op > <expr>) 
<pre- op > ( <expr> ) I 
<var > 
+ I - I / I * 
Mat h . sin I Math . cos I Math . log 
x I 1.0 

Listing 3.7: BNF grammar (A) used for the symbolic regression problem. 

<expr> <expr> <op > <expr> 
<var> 

<op> · · = + I - I / I * 
<var> · · = x 

Listing 3.8: BNF grammar (B) used for the symbolic regression problem. 

a e : ►YID 0 IC regresswn T bl 3 3 S b I' GE t bl a eau. 
Objective: F ind a function of one independent variable and one dependent 

variable, in symbol ic form that fits a given sample of 20 (x;, y,) 
data points, where the target function is the quadratic 

I . I ./ 3 2 po ynom,a x + x + x + x . 

Terminal x (the independent variable), the constant 1.0. 
Operands: 

Terminal The binary operators +, -,/, and *. 
Operators: The unary operators Math. sin, Math.cos, and Math.log. 

Fitness cases: The given sample of the pairs (x,, y ,) of 20 data points in the 
interval [ - I , + I ]. 
The input data points (xi) are randomly created and their 
corresponding output points (yi) are automatically created by 
h . -1 1 2 t e expression x + x + x + x . 

Raw Fitness: The sum of the absolute values of errors taken over the fitness 

76 



cases (x,, y,). A lower raw fitness value indicates better 
indiv idual s. 

Standardised Same as raw fitness. 
Fitness: 

Adjusted I / (I + Fs(i)) where Fs is the Standard ised Fitness of i. 
Fitness: The fitness value varies from Oto 1. Invalid individuals are 

assigned a zero (0) adjusted fitness value. 

Hits: The number of fitness cases for which the Adjusted F itness is 
greater than or equal to 0.999. 

Wrapper: Standard productions to generate a Java c lass with a main() 
method which prints the fitness values in the standard output. 

Parameters: Population Size (M) = 500, 
Max imum Generations (G) = 50, 
Prob. Mutation (P111 ) = 0.01 , 
Prob. Crossover (Pc)= 0.9, 
Prob. Duplication (Pd)= 0.01, 
Prob. Pruning (Pp)= 0.01 , 
Steady State GA with Generation Gap (G) = 0.9, 
Roulette-Wheel Selection, Codon Size = 8. 

The experimental results, over a sen es of 100 evolutionary runs, show that the BNF 

grammar (B) is a much better grammar to use for tackling this problem as evidenced by 

the success rate in Table 3 .5 being 68% as compared to 5% in Table 3 .4 when the BNF 

grammar (A) is used. 

T able 3.4: Results for symbolic re2ression usin2 BNF 2rammar (A ). 
GE using grammar (A) 

Evolutionary Runs 100 

Highest Fitness Value 1.0 

Success Rate 5% 

T bl 3 5 R It f a e : esu s or sym b r o 1c reeressaon usme BNF erammar (B). 

GE using grammar (B) 

Evolutionary Runs 100 

Highest Fitness Value 1.0 

Success Rate 68% 

The Figure 3 .6 shows the cumulative frequency measure of success over 100 runs for 

Grammatical Evolution using grammar (A) and grammar (B). 

77 



100 -r----------------------------
- GE Grammar A - GE Grammar B 

90 +----------------------------

80 -+----------------------------
70 +----------------------------
~ 
~60 +--------------------------;; .. F--­
::, 
o-
~50 +-----------------------------

LL 

-~40 +------------------~-----------...., 
ro 
:i30 +------------------,..------------
E 
B20 +---------------F--------------

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 
Generation 

Figure 3.6: Results graph for the symbolic regression problem using GE with BNF 
grammar (A) and BNF grammar (B). 

3.6.5 Trigonometric Identity Experiments 

The particular function experimented with was cos(x), and the desired trigonometric 

identity 1 - 2sin2x (for this reason the Java unary operator Math.cosO was not included in 

the BNF grammar of this problem). The objective of these experiments was to find a 

mathematical expression identical to the function. The configuration and the BNF 

grammar definition used in these experiments are shown in Table 3.6 and in Listing 3.9. 

Table 3. 6 : Trigonometric identity GE tableau. 
Objective: Find a new mathematical expression, in symbolic form that 

equals a given mathematical expression, for all values of its 
independent variables. 
Examined Function: Math.cos(2 * x) . 
Desired Trigonometric Identity: l-2Sin2x. 

Terminal x , the constant 1.0. 
Operands: 

Terminal The binary operators +, -, /, and *. 
Operators: The unary operator Math.sin. 

Fitness cases: The given sample of the pairs (x;, y;) of 20 data points in the 
interval [0, 21r]. 
The input data points (x,) are randomly created and their 
corresponding output points (y,) are automatically created by 
the expression Math.cos(2 * x) . 

78 



Raw Fitness: 

Standardised 
Fitness: 

Adjusted 
Fitness: 

Hits: 

Wrapper: 

Parameters: 

<expr> 

<op> 
<pre- op> . · = 
<var> -

The sum of the absolute values of errors taken over the fitness 
cases (x,, y ,). A lower raw fitness value indicates better 
individuals. 

Same as raw fitness. 

1 I ( 1 + Fs(i)) where Fs is the Standardised Fitness of i. 
The fitness value varies from Oto 1. Invalid individuals are 
assigned a zero (0) adjusted fitness value. 

The number of fitness cases for wh ich the Adjusted Fitness is 
greater than or equal to 0.999. 

Standard productions to generate a Java class with a main() 
method which prints the fitness values in the standard output. 

Popu lation Size (M) = 500, 
Maximum Generations (G) = 50, 
Prob. Mutation (P111 ) = 0.01 , 
Prob. Crossover (Pc)= 0.9, 
Prob. Duplication (Pd)= 0.01 , 
Prob. Pruning (Pp)= 0.01, 
Steady State GA with Generation Gap (G) = 0.9, 
Roulette-Wheel Selection, Codon Size= 8. 

<expr> <op> <expr> I 
( <expr> <op> <expr> ) 
<pre- op> ( <expr> ) I 
<var> 
+ I - I I I * 
Math . s i n 
X I 1.0 

Listing 3 .9: BNF grammar used for the trigonometric identity problem. 

The results in Table 3.7 show that in a series of 100 evolutionary runs , GE was able to 

solve the problem. 

Table 3. 7: Results for the trigonometric identity problem. 

Grammatical Evolution 

Evolutionary Runs 100 

Highest Fitness Value 1.0 

Success Rate 2% 

3. 7 Experimental Results Discussion 

The results of the successful proof-of-concept experiments with jGE confirmed two 

expected findings. First, that jGE using Grammatical Evolution is able to produce 

79 



successful results although not always with a very high success rate. Secondly, that 

different set-ups and configurations of the searching mechanism and the grammar have a 

significant impact on the performance (success rate). 

The above findings will guide the design and development of future versions of the jGE 

Library. Namely, the next version of jGE could provide implementations of more genetic 

operators which will facilitate experiments in a larger range of possible configurations. 

Also, the need for more than a standard PC' s processing power is prominent in order to 

improve the execution speed of new experiments with jGE. It is well known (Ghanea­

Hercock 2003 , p.101) that evolutionary algorithms are processing-power demanding 

algorithms and that they can take advantage of parallel processing architectures. This need 

for more processing power, in order to reduce the execution speed of the new 

experiments, could be tackled by incorporating into jGE a parallel distributed processing 

framework making it possible to execute the problems in question transparently on many 

machines. Namely, if there are m machines and n individuals, then each one machine will 

execute genotype-to-phenotype mapping and assign fitness values to n/m individuals. 

3.8 Comparison of jGE with other GE Implementations 

3.8.1 jGE and libGE 

The jGE Library is written in the Java programming language. In contrast, libGE was 

written in the C++ programming language under GNU/Linux. Therefore jGE can be used 

in any operating system that provides a Java 5 virtual machine or later which is not the 

case for libGE. The main architectural and functional difference between jGE and libGE 

(Nicolau, 2005) is that jGE incorporates the functionality of libGE (grammatical evolution 

mapping process) as a component and provides its own internal implementation of the 

libGE' s Search Engine as well as the Evaluator. Namely, jGE is a more general 

framework for the execution of evolutionary algorithms. Indeed, it still provides, like 

libGE, the feature of using any other search engine and evaluator beyond that already 

provided by default in jGE. Also, individual components of the jGE, such as the GE 

Mapping Mechanism , the BNF Parser, and the Mathematical Functions classes, may also 

be used separately for special purpose projects. 

80 



Another main difference between jGE and libGE is the goal of each project. libGE 

provides an implementation of the Grammatical Evolution mapping process, whereas the 

goal of the jGE Library is the development of a general evolutionary algorithms 

framework which facilitates the incorporation and evaluation of evolutionary techniques; 

and the incorporation of agent-oriented principles as an extension to develop 

implementations for parallel distributed systems in forthcoming implementations. 

3.8.2 jGE and GEV A 

Both j GE and GEV A are implemented with the Java programming language and share a 

similar architecture which allows the development and addition of modules which specify 

the search engine to be used , the genetic operators, the evaluation function, the 

replacement strategy, and other parameters of an evolutionary algorithm. Indeed, GEVA 

provides a Graphical User Interface (GUI), a Command Line Interface, and many 

demonstration problems which are not the case for the current version of jGE which 

provides only an Application Programming Interface (API) and just two out-of-the-box 

demonstration problems. 

The main design and implementation difference between GEV A and jGE is that the 

former focuses on the implementation of the Grammatical Evolution system. Instead, jGE 

has been designed as a more general evolutionary algorithms framework of which 

Grammatical Evolution is just one of the evolutionary algorithms implementations that are 

currently incorporated. Furthermore, jGE provides a blueprint which supports the future 

incorporation of aspects like knowledge sharing and environmental factors influences. 

81 



Chapter 4 

Extensions to jGE 

4.1 Introduction 

The purpose of this chapter is to describe some extensions to jGE and discuss their 

experimental results and applicability. Part of the work has been published in Georgiou 

and Teahan (2006b; 2010). 

First, the application of two different approaches of evolving a population of individuals 

in Grammatical Evolution are investigated, the one using prior knowledge of the domain 

of the problem in question and the other, using the Darwinian population thinking 

concept. Both approaches are inspired from nature and are implemented via modification 

of the BNF grammar definition and the Grammatical Evolution algorithm parameters 

during the setup of the experiments. These applications demonstrate also the easiness of 

applying in Grammatical Evolution and jGE, different nature-inspired concepts without 

necessarily modifying the GE algorithm or the jGE Library code. 

Finally, the jGE extension for the NetLogo modelling environment is presented, which 

enables the use of Grammatical Evolution directly in a NetLogo model. Namely, this 

extension allows the designer to use the Grammatical Evolution algorithm in NetLogo 

models for the evolution of the behaviour and/or morphology of agents in a static or 

dynamic environment. 

4.2 Applying prior knowledge and population thinking 

in Grammatical Evolution 

The successful proof-of-concept experiments with jGE (see Chapter 3) have led to further 

experiments in order to investigate the following : 

• The role of prior knowledge in evolutionary runs and its effect on the effectiveness 

and efficiency of Grammatical Evolution. The expected result in these experiments 

82 



is that a restriction of the BNF grammar (implying the use of prior knowledge) 

should produce better results. 

• Demonstration of the usefulness of the evolutionary process for the creation of 

better solutions. The expected result is that the application of evolutionary 

mechanisms should produce better results than a random process. 

• Initial application of the population thinking principle in evolutionary runs. 

Promising results on these experiments would lead toward the investigation of the 

role of the maintenance of the genetic I phenotypic diversity, the creation of 

different populations (with local optima), and then the combination of individuals 

from different populations. 

Population thinking (Mayr 2002, p.81) was Darwin ' s radical break with the typological 

tradition of essentialism of his period. Until then it was believed that seemingly variable 

phenomena of nature could be sorted into classes. Each class was characterised by its 

definition (essence). Some people believed that these classes are constant (this school of 

thought was founded by the Pythagoreans and Plato) and some pre-Darwinian 

evolutionists (including Lamarck) allowed a gradual change (transformation) of the type 

(class) over time. 

Darwin said (Mayr 2002, p.81) that what we find among living organisms are not constant 

classes but variable populations. Every species is composed of numerous local 

populations and the unit of evolution is the population (not species). Darwin' s new way of 

thinking, being based on the study of populations, is now referred to as "population 

thinking". 

Population thinking favours the acceptance of gradualism and is one of the most important 

concepts in biology. It is the foundation of modern evolutionary theory and one of the 

basic constituents of the philosophy of biology (Mayr 2002, p.81 ) . Consequently, the 

incorporation of population thinking in Grammatical Evolution ( or any other evolutionary 

algorithm) could possibly lead towards extremely interesting results and conclusions and 

therefore it is believed by Georgiou and Teahan (2006b) that such an investigation is 

worthy. The results of some first initial experiments toward this approach are very 

promising. These are described and discussed (alongside with other ideas) in the 

following sections. 

83 



4.3 Prior Knowledge Experiments 

In the experimental setups of this section, the BNF grammars of the previous chapter for 

the symbolic regression (Listing 3.7 and Listing 3.8) and trigonometric identity (Listing 

3.9) problems have been modified, thereby restricting in this way the possible phenotypes 

that are produced and guiding the evolutionary algorithm. The development and creation 

of a more suitable BNF grammar implies the use of prior knowledge (at least in a 

rudimentary sense) with the aim to restrict the search space of the problem in question. 

This is directly related to the "I" part of what Koza (2003) names AI ratio (the "artificial­

to-intelligence" ratio) of a problem-solving method. He defines the AI ratio in Koza 

(2003) as "the ratio of that which is delivered by the automated operation of the artificial 

method to the amount of intelligence that is supplied by the human applying the method to 

a particular problem". 

For the symbolic regression using prior knowledge experiment, 100 evolutionary runs 

have been performed. Table 4.1 shows the setup and configuration of the experiment and 

Listing 4.1 shows the BNF grammar which has been modified in order to restrict the 

search space. Comparing to the grammar of Listing 3. 7 (grammar A), the <pre-op> and 

its productions have been removed and further reductions have been made in the 

productions of the <expr> and <op> non-terminal symbols. Against the grammar of 

Listing 3.8 (grammar B), the only change is the removal of the subtraction (-) and division 

(/) terminal symbols from the non-terminal symbol <op>. 

a e . : ,ym o 1c regression T bl 4 1 S b I' GE t bl a eau. 

Objective: Find a function of one independent variab le and one dependent 
variable, in symbolic form that fits a given sample of 20 (x,, y ;) 
data points, where the target function is the quadratic 

I . 1 ./ 3 2 po ynom ta x + x + x + x. 

Terminal x (the independent variable), the constant 1.0. 
Operands: 

Terminal The binary operators + and *. 
Operators: 

Fitness cases: The given sample of the pairs (x,, y, ) of 20 data points in the 
interval [-1 , + I]. 
The input data points (xi) are randomly created and their 
corresponding output points (y;) are automatically created by 
the expression x-1 + x3 + x2 + x. 

Raw Fitness: The sum of the absolute values of errors taken over the fitness 

84 



Standardised 
Fitness: 

Adjusted 
Fitness: 

Hits: 

Wrapper: 

Parameters: 

<expr> 

<op> 

cases (x,, y;). A lower raw fitness value indicates better 
individuals. 

Same as raw fitness. 

I / (1 + Fs(i) ) where Fs is the Standardised Fitness of i. 
The fitness value varies from Oto I. Invalid individuals are 
assigned a zero (0) adjusted fitness value. 

The number of fitness cases for which the Adjusted Fitness is 
greater than or equal to 0.999. 

Standard productions to generate a Java class with a main() 
method which prints the fitness values in the standard output. 

Population Size (M) = 500, 
Maximum Generations (G) = 50, 
Prob. Mutation (P 111 ) = 0.01 , 
Prob. Crossover (Pc)= 0.9, 
Prob. Duplication (Pc1) = 0.01 , 
Prob. Pruning (Pp) = 0.01 , 
Steady State GA with Generation Gap (G) = 0.9, 
Roulette-Whee l Selection, Codon Size= 8. 

<expr> <op> <expr> I 
<var> 
+ I * 

<var> · · = x 

Listing 4.1: BNF grammar definition for the symbolic regression experiment using 
prior knowledge. 

Table 4.2 shows the results of the experiment and Figure 4.1 depicts the cumulative 

frequency measure of success over 100 runs of GE using prior knowledge against the 

symbolic regression setups of Chapter 3 which use the grammars of Listing 3. 7 (grammar 

A) and Listing 3. 8 (grammar B). The results show a dramatic improvement of the success 

rate. Namely, using prior knowledge GE achieves the absolute success rate (100%) against 

5% (grammar A). Note also that the grammar of Listing 3.8 (grammar B), with which GE 

achieves success rate 68%, implies also the use of prior knowledge but less than in the 

case of the grammar which is used in the setup of this section (Listing 4.1 ). 

Tabl 4 2 R e : esu ts f or sym b r o 1c regression usmg pnor owe kn I dge. 

GE using Prior Knowledge 

Evolutionary Runs 100 

Highest Fitness Value 1.0 

Success Rate 100% 

85 



100 ,--------===::::=:::::::::::::;;;==----
- - - Grammar A ----· Grammar B --Prior-Know 

70 -+------ ----------------------
~ ; ___ ,~ 
~60 _____ ,__ _________________ ----.-___ , __ _ 

~ ,~ 
~ ?' wso -1----- ----------------- ------
t!: ,,,,' 
-~40 ---+------------------ ,----------- ,-111 , 

:,30 -+---+--------------,~ -----------
E ~--' 
320 --.,, , _., 

10 -++----------- ----------------.,..-4'"' ,- , - - -
0 +-,...,...,...,.....,...,...."'l""'!'--,,..',_.,........,."T"'"O'--.-,....-,,..,...::',-.,..- ,--.,.....--.-.-~- r--rr-,....,...- ,--..,,_,.--,-,-- -..,..,...,-,-,-,-.-, 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 
Generation 

Figure 4.1: Comparison graph for symbolic regression (using prior knowledge). 

The configuration of the trigonometric identity experiment can been seen in Table 4.3. In 

this experiment, I 00 evolutionary runs were performed using the grammar of Listing 4.2. 

The only change in the BNF grammar compared to the grammar of Listing 3.9 is the 

replacement of the production <pre-op> (<expr>) with <pre-op> (<var>) thereby not 

allowing the recursive call of the Java method Math.sinQ or any other expression to be 

passed as arguments in Math.sinQ except the constant 1. 0 or the variable x. 

a le Tb 4 .3: Trigonometric identity GE tableau. 
Objective: Find a new mathematical expression, in symbolic form that 

equals a given mathematical expression, for all values of its 
independent variables. 
Examined Function: Math.cos(2 * x) 
Desired Trigonometric Identity: l-2Si,lx. 

Terminal x, the constant 1.0. 
Operands: 

Terminal The binary operators +, -, / , and *. 
Operators: The unary operator Math.sin. 

Fitness cases: The given sample of the pa irs (x,, y,) of 20 data points in the 
interva l [O, 211:]. 
The input data points (x,) are randomly created and their 
corresponding output points (y,) are automatically created by 
the expression Math. cos(2 * x) . 

Raw Fitness: The sum, of the absolute values of errors taken over the fitness 
cases (x,, y ;). A lower raw fitness value indicates better 

86 



Standardised 
Fitness: 

Adjusted 
Fitness: 

Hits: 

Wrapper: 

Parameters: 

<expr> 

<op> 
<pre-op> 
<var> 

individuals. 

Same as raw fitness. 

I / ( I + Fs(i)) where Fs is the Standardised Fitness of i. 
The fitness value varies from Oto 1. Invalid individua ls are 
assigned a zero (0) adjusted fitness value. 

The number of fitness cases for which the Adjusted Fitness is 
greater than or equal to 0.999. 

Standard productions to generate a Java class with a main() 
method which prints the fitness values in the standard output. 

Population Size (M) = 500, 
Maximum Generations (G) = 50, 
Prob. Mutation (P111 ) = 0.01 , 
Prob. Crossover (Pc) = 0.9, 
Prob. Duplication (Pd) = 0.0 I , 
Prob. Pruning (Pp)= 0.01 , 
Steady State GA with Generation Gap (G) = 0.9, 
Roulette-Wheel Selection, Codon Size= 8. 

<expr> <op> <expr> I 
( <expr> <op> <expr> ) I 
<pre- op> (<var>) I 
<var> 
+ I - I / I * 
Math . sin 
x I 1. 0 

Listing 4.2: BNF grammar definition for the experiments of the trigonometric 
identity problem with prior knowledge. 

A dramatic improvement of the success rate has been achieved in the trigonometric 

identity problem as well. Namely, the success rate rose from the 2% of the setup of the 

previous chapter (see Table 3.7) to 47% (see Table 4.4). Figure 4.2 depicts the cumulative 

frequency measure of success over 100 runs of Grammatical Evolution using prior 

knowledge against the trigonometric identity setup of Chapter 3. 

Table 4. 4: Results for the trigonometric identity problem using prior kn ow ledge. 
Trigonometric Identity with Prior 

Knowledge 

Evolutionary Runs 100 

Highest Fitness Value 1.0 

Success Rate 47% 

87 



100 

90 

80 

70 
G' 
~60 
::::, 
C'" 
~50 

LL 

-~40 .., 
ro 
:i30 
E 
820 

10 

0 

----· Standard Grammar --Prior Knowledge 

~ 
~ 

/ 
/ 

-------' 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 

Generation 

Figure 4.2: Comparison graph for the trigonometric identity problem (using prior 
knowledge). 

The results of the above experimental setups demonstrate that the incorporation of prior 

knowledge (namely increasing the "I" of the Al ratio) and consequently restricting the 

search space, can be achieved with success in j GE very easily and quickly through just the 

modification of the BNF grammar. In this way, domain knowledge of the problem in 

question can be incorporated and utilised very easily - in order to improve the 

performance of the evolutionary algorithm - which is one of the strongest characteristics 

and advantages of the Grammatical Evolution algorithm. 

4.4 Population Thinking Experiments 

According to Darwin (1859), what we find among living organisms in nature are not 

constant classes but variable populations. Indeed, every species is composed of numerous 

local populations and the unit of evolution is the population, not the species (Darwin, 

1859; Mayr 2002, p.81). Consequently, closer in a sense to the Darwin's population 

thinking concept than the standard Genetic Algorithm seems to be the island parallel GA 

which considers relatively isolated demes (Cantu-Paz, 1998). A deme in the island parallel 

GA model could be thought that represents a variable population and the population of 

the standard GA that represents a species. 

88 



The setups of the trigonometric identity experiments of this section simulate a random 

search (setup 1) and - in a rudimentary sense - the island parallel GA model (setup 2 and 

setup 3). The configuration and the BNF grammar of these setups are the same with those 

of the trigonometric identity problem of the previous section (see Table 4.3 and Listing 

4.2) except the Maximum Generations (G) and Population Size (M) parameters which are 

listed below for each setup. The BNF grammar is depicted also in Listing 4.3 for clarity. 

Note that in all setups (including the "Standard" setup of the previous section), the 

product of total number of evolutionary runs, maximum generations, and population size 

is the same in order to make the results comparable: 

• Setup I (Random Search): 5000 runs with Max Generations (G) set at 1 and 

Population Size (M) at 500. The best individual is selected from each run. 

• Setup 2 (Many Populations with Few Generations): 100 runs of 10 sub-runs with 

Max Generations (G) set at 5 and Population Size (M) at 500. For each of the 100 

runs, the best individual is selected from the 10 best individuals from each sub-run. 

• Setup 3 (Many Small Populations - Population thinking): I 00 runs of 10 sub-runs 

with Max Generations (G) set at 50 and Population Size (M) at 50. For each of the 

100 runs, the best individual is selected from the 10 best individuals from each 

sub-run. 

<expr> 

<op> 
<pre- op> 
<var> 

<expr> <op> <expr> I 
( <expr> <op> <expr> ) I 
<pre - op> ( <var> ) I 
<var> 
+ I - I / I * 
Math . sin 
x I 1. 0 

Listing 4.3: BNF grammar definition for the evolutionary process evaluation and 
population thinking experiments (trigonometric identity problem). Note that it is the 
same grammar with that of Listing 4.2. 

Table 4.5 shows the results of the experiments using the mentioned setups (setup 1, setup 

2, and setup 3) and Figure 4.3 depicts the cumulative frequency measure of success over 

100 runs of the "Few Generations" (setup 2) and "Many Small Populations" (setup 3) 

Grammatical Evolution setups against the "Standard" Grammatical Evolution setup of the 

previous section (see configuration of Table 4.3 and results in Table 4.4). 

89 



Table 4.5: Evolutionary process evaluation and population thinking experimental 
r esults (trigonometric identity problem). 

Random Search Few Generations Many Small Populations 

Runs 5000 100 JOO 

Highest Fitness I.O 1.0 1.0 

Success Rate 0.18% 7% 30% 

100 

90 

80 

70 
~ 
~60 
::, 
CT 
~so 

u_ 

-~40 .., 
Ill 

:i30 
E 
::, 
U20 

10 

0 

----· Standard GE - - - Few Generations - Small Populations 

.-.---· 
---, 

__ , .... ,--------
, 

/ ,., , , , 
~ , , _, 

, - - - - - - - - - - - - - - -., - - - ---- - -
- ✓ ,----- ----

' ' 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 

Generation 

Figure 4.3: Population thinking experiments results graph. 

The low success rates of random search (0.18%) and "Few Generations" setup (7%) 

compared to the success rate of the "Standard" Grammatical Evolution setup of the 

previous section (47%) demonstrate the usefulness of the evolutionary process and its 

superiority over a random process which is based on the probability of the creation of a 

"more suitable" initial population. This is also supported by the superiority of the "Many 

Small Populations" (population thinking) setup (30%) over the "Few Generations" (7%). 

It is shown that a long evolution period (50 generations) of small populations (50 

individuals) produces better results than a short evolution period (5 generations) of large 

populations (500 individuals). But the most promising result of these experiments is that 

the population thinking approach ("Many Small Populations") displayed a success rate 

(30%) closer to the "Standard" setup of one population (47%) than the other two setups 

even though the former uses a much smaller evolvable genetic pool because of the 

90 



complete isolation of small populations (demes). This encourages the further investigation 

of the population thinking approach and its combination with other evolutionary 

principles. 

4.5 The jGE NetLogo Extension 

NetLogo (Wilensky, 1999) is a multi-agent programmable modelling environment, written 

in the Java programming language, for simulating natural and social phenomena. 

Modellers can give instructions to as many "agents" (turtles, patches, and links) they 

want, using a variation of the Logo modelling language. The agents are operating 

independently in a simulation and the modeller can observe the collective results of all 

agents' behaviour. 

One of the many features of NetLogo is the provisioning of an extensions API which 

allows the addition of new commands and reporters to the NetLogo language. The 

extensions can be developed in Java and other programming languages such as Scala. The 

jGE NetLogo extension is an implementation of the Grammatical Evolution mapping 

process for the NetLogo modelling environment (NetLogo 4.1.x), written in Java, and has 

been developed as part of the work described in this text. 

The jGE NetLogo extension lets users of NetLogo incorporate within their models a small 

part of the functionality and features of the jGE Library (Georgiou and Teahan, 2006a; 

2006b; 2008). Namely, it provides primitives which allow the users to take advantage of 

the Grammatical Evolution algorithm and utilise it for the evolution of the morphology 

and/or the behaviour of NetLogo agents (turtles). This extension includes reporters and 

commands which provide the functionality of Grammatical Evolution plus some 

supporting/ helper primitives mentioned below. 

The goal of this extension is to allow both NetLogo users to get familiar with and use 

Grammatical Evolution within their models, and users interested in Evolutionary 

Computation to use evolutionary algorithms (like Grammatical Evolution) directly within 

a simulation environment for the evolution of the morphology and behaviour of agents. 

Furthermore, another goal of this extension is to facilitate the evolution of the behaviour 

of NetLogo agents. The key factor in most of the Evolution models of NetLogo is how the 

91 



agent-environment interaction affects the simulation. There are two components to this 

(fairly obviously) - the agents, and the environment. What the existing NetLogo agents do 

is interact with (possibly) a dynamic environment. Usually the agents themselves are not 

dynamic themselves - i.e. their behaviour does not usually alter based on the changing 

environment. What the jGE NetLogo extension provides is the ability for the human 

modeller to alter the behaviour of the agents. The agents themselves can also alter the 

environment, and with the jGE NetLogo extension, it is now possible to have the 

environment affect the resultant behaviour of the agents as they determine what is best to 

interact successfully ( or even survive) within it. 

The main procedures (commands and reporters) provided by the jGE NetLogo extension 

are listed in Appendix G. The complete documentation can be downloaded from Georgiou 

(2006) or can be found in the accompanying CD. 

The main usage pattern of jGE in NetLogo models is as follows: The user creates a model 

for the problem in question and defines the agents (breeds), and their initial morphology 

and/or behaviour. The domains of these are defined in external text files as BNF 

grammar/s which will be used for the mapping of the genotype of the agents (binary 

string) to the phenotype (NetLogo agent's attributes or actions). In the case of the 

evolution of the morphology of an agent, the modeller has to assign the evolved attributes 

to the agent by decoding the resultant phenotype and using the NetLogo programming 

language features. In the case of the evolution of the behaviour of an agent, the modeller 

has to execute the resultant behaviour (phenotype) using the "run" NetLogo native 

primitive. 

Also, regarding the selection mechanism, and the replacement strategy, these are 

responsibilities of the NetLogo model, so consequently they have to be implemented in 

the model using the NetLogo programming language. In this way the modellers gain the 

maximum flexibility (limited only by the NetLogo features) plus the advantage of using 

the Grammatical Evolution algorithm in a straight and simple manner for the evolution of 

their agents. 

Listing 4.4 shows a NetLogo code sample of using the jGE NetLogo extension. 

92 



(1) jge : load-bnf " BNFDemo . b n f " " bnf_d emo " 
( 2) 

(3) let genotype jge : individual 4 5 1 0 
(4) ; A r andom genotyp e : 001000001110 1 11 1100001 1 0111 1 01 11010 1 
(5) 

(6) let action jge : phenotype genotype "bnf_demo " 4 10 
(7) The corresponding p henotype : r t 90 fd 1 fd 1 lt 90 
( 8) 

(9) create a t u rtle and give it commands 
( 10) c r t 1 
(11) ask turt l e O [set headin g OJ 
(12) ask turt l e O [run action) 

Listing 4.4: Sample code of using the jGE NetLogo extension. 

In line (1), the BNF grammar definition bnf_demo shown in Listing 4.5 is loaded. This 

grammar definition dictates legal NetLogo code which defines the actions of a turtle (an 

agent that move around in the world). Line (3) sets to the variable genotype a randomly 

created binary string of codon size 4. The size of the genotype will be between 5 and J 0 

codons. In line (6), the genotype is mapped to the corresponding phenotype using the 

bnf_demo grammar, and specifying that the codon size is 4 and the GE wrapping limit is 

10. The resulted phenotype is stored in the variable action. Lines (10) and (11) create a 

turtle facing north. Line (12) commands the turtle to execute the phenotype (actions). 

<action> - <act ion> <move> 
<move> 

<move> <forward> I 
<turn-left> 
<turn-right> 

<forward> fd 1 
<turn-left> - lt 90 
<turn- right> rt 90 

Listing 4.5: Sample BNF grammar definition for a NetLogo turtle. 

Finally, it is worth noting that the jGE NetLogo extension is the only Grammatical 

Evolution extension for NetLogo and the only application of Grammatical Evolution in 

the NetLogo modelling environment. It is freely available from both the jGE web site (see 

Georgiou, 2006) and the NetLogo web site (see Wilensky, 1999). 

4.6 Experimental Conclusions and Discussion 

The promising results from the initial investigation of usmg pnor knowledge and 

population thinking reveal an additional potential area of investigation. Taking into 

93 



account that evolution on Earth is guided by chance and determination (Mayr 2002, 

p.132), it would be interesting to find out if the application of Evolutionary Synthesis 

(Ridley 2004, pp.14-18) principles (such as population thinking, microevolution, 

macroevolution, elimination pressure, common ancestor, species, and more) could result 

in a self-emerged evolutionary system instead of an explicitly pre-determined one (as is 

the case in Genetic Algorithms where the reproduction and diversity mechanisms of 

nature such as crossover and mutation are given in advance). Namely, is it possible for a 

computer, based on chance (pseudo-randomness) and determination (application of 

evolutionary and genetics principles in machines), to emerge an evolutionary system 

which is able to evolve useful programs, solutions, and agents? 

Another example of the application of evolution principles, apart from population 

thinking, is the species concept (Mayr 2002, pp.180-182). It is widely accepted today that 

the isolation mechanisms of species are devices to protect the integrity of well-balanced, 

harmonious genotypes, and the integrity of species is maintained by natural selection 

(Mayr 2002, p.186). In light of this theory, the use of mechanisms where species of 

individuals emerge for the maintenance of good solutions and their gradual improvement 

without the danger of destroying them, could be tested. 

One more idea of further investigation is the utilisation of knowledge as a fitness value 

factor. Because, according to Neo-Darwinism, there are no heritable acquired 

characteristics (Mayr 2002, p.95-96), it could be assumed that the Shared Knowledge is a 

factor which affects the Natural Selection process and allows existing or new 

genetic/phenotypic characteristics to posses different importance and value (fitness). 

Namely, that the evolving Shared Knowledge will favour different phenotypes (as 

happens in nature with the changes in the environment). 

Furthermore, the population thinking principle can be extended in a Family Based 

approach (Teahan, Al-dmour and Tuff, 2005) by incorporating Knowledge Sharing and 

simulating in this way social phenomena of living organisms and especially humans (e.g. 

families). These experiments will show in which degree phenotypic variation and 

evolution/sharing of knowledge could lead to better and faster solutions in the area of 

evolutionary algorithms. 

94 



Finally, the incorporation of a subset of the jGE functionality in the NetLogo modelling 

environment - with the implementation of the jGE NetLogo Extension - facilitates the 

evolution of the behaviour of NetLogo agents using the Grammatical Evolution algorithm. 

Also, jGE in contrast to libGE and GEV A, provides a more general framework for the 

implementation and extension of evolutionary algorithms which means that it can be used 

as a tool for further experimentation in evolutionary algorithms, besides Grammatical 

Evolution, using additionally a programmable modelling environment such as NetLogo. 

The next chapter introduces the application of Grammatical Evolution in the Santa Fe 

Trail problem using the jGE library and the NetLogo modelling environment, and then 

presents and discusses the experimental results. 

95 



Chapter 5 

Grammatical Evolution and the Santa Fe 

Trail Problem 

5.1 Introduction 

In this chapter, the results of a series of experiments that explore the effectiveness of 

Grammatical Evolution for the Santa Fe Trail problem are presented. The experiments and 

their results have been published in Georgiou and Teahan (2010) and support the claim of 

Robilliard, et al. (2006) that the comparison mentioned in the Grammatical Evolution 

literature (O'Neill and Ryan 2001 ; 2003, pp.55-58) between Grammatical Evolution and 

Genetic Programming regarding the Santa Fe Trail problem is not a fair one. 

Namely, even though GE literature claims that Grammatical Evolution outperforms 

Genetic Programming in the Santa Fe Trail problem, it is experimentally proved in the 

following sections that this happens only because the experiments described in the GE 

literature use a different and narrower search space. Also, it is shown in this chapter that 

Grammatical Evolution is capable of finding solutions in the Santa Fe Trail problem that 

require fewer steps than the solutions mentioned in the Genetic Programming or 

Grammatical Evolution literature (Koza, 1992; O'Neill and Ryan, 2003) if a wider search 

space is used than that defined in the GE literature. 

For the execution of the experiments, a series of tools and models have been used: a) jGE, 

a Java implementation of the Grammatical Evolution system (see Chapter 3); b) jGE 

NetLogo, an extension of jGE for the NetLogo modelling environment (see Chapter 4); c) 

the Santa Fe Trail model, a simulation of the problem in NetLogo; and d) a NetLogo 

model for the simulation of Grammatical Evolution evolutionary runs in the Santa Fe Trail 

problem. Both NetLogo models have been developed to facilitate the execution of these 

experiments and are described in detail in this chapter. 

96 



5.2 The Grammatical Evolution Issue 

Robilliard, et al. (2006) say that in order to evaluate Genetic Programming algorithms 

using the Santa Fe Trail problem as a benchmark "the search space of programs must be 

semantically equivalent to the set of programs possible within the original Santa Fe Trail 

definition." However, it has been argued by Ro billiard, et al. (2006) that in GE literature, 

Genetic Programming (Koza, 1992) and Grammatical Evolution (O'Neill and Ryan, 2003) 

have not been compared in the Santa Fe Trail problem using semantically equivalent 

search spaces. Namely, that Grammatical Evolution is benchmarked against GP using a 

grammar that states a declarative language bias which restricts the original search space 

and moreover (as noted below) excludes good solutions in terms of required steps. 

Furthermore, Ro billiard, et al. (2006) note about the upper limit of the time steps allowed 

for an ant to execute, that Koza arbitrarily fixed to 400 but Langdon and Poli assumed a 

possible mistake in the original Koza's work, so the later set the maximum time limit to 

600 steps. Also, Robilliard, et al. (2006) argue that they found no solution in the Santa Fe 

Trail problem using Grammatical Evolution, up to and including 600 time steps in their 

experiments, and they note that almost all Grammatical Evolution publications mention a 

maximum of 615 time steps allowed which is different from both Koza and Langdon' s 

settings. Only in O 'Neill and Ryan (2001) with Grammatical Evolution is the limit 

reported as 600 steps, which Robilliard , et al. (2006) claim is a mistype. 

The above claims about the mistypes regarding the maximum allowed steps mentioned in 

Koza (1992) and O'Neill and Ryan (2001) are also supported by the experimental results 

of this chapter where it is observed through simulations that the best Genetic 

Programming solution mentioned in Koza (1992, p.154) needs 545 steps, and the best 

Grammatical Evolution solution mentioned in O'Neill and Ryan (2001; 2003, p.56) needs 

615 steps to complete, which exceed the 400 and 600 maximum steps limits respectively. 

97 



5.3 N etLogo Models 

5.3.1 Santa Fe Trail Model 

This model (see Figure 5.1) is a simulation of the Santa Fe Trail problem. It has been 

developed - as a subproject of the jGE project - in order to enable the modeller to do the 

following things: 

• Write a set of commands in the NetLogo programming language which control the 

actions of an artificial ant, and run them to observe its behaviour. 

• Simulate, verify, and investigate the Santa Fe Ant Trail solutions given by relevant 

publications or found by other related programs (for example, some Genetic 

Programming and Grammatical Evolution software packages). 

........ 
If else foocl-4hcad 
[rno¥c) 
l 

I 

t<mlelt 
ifel~ food·llhebd 
[mow,] 
[l:u'r>-r1cfi J 

tl.l'TH!gi"t 
11.m-lelt 
tlm-<lgi"t 
teke food-ahead 
[move] 
[tu-r>-ieft] 
move 

-

Figure 5.1: Interface of the Santa Fe Trail NetLogo model. 

This NetLogo simulation is - to the author' s knowledge - the only Santa Fe Trail 

implementation publicly available, that allows the user to run and investigate a given 

solution through a GUI. It is freely available from both the jGE (Georgiou, 2006) and the 

NetLogo (Wilensky, 1999) web sites. A variation of the same model is available at 

fi les. bookboon.com/ai . 

98 



The following guidelines of how to use the model demonstrate the easiness of executing a 

simulation of an ant ' s control program to the Santa Fe Trail problem. 

How to use the model 

First, the model's speed must be set to normal (by adjusting the speed slider in the 

toolbar). This will let the setup procedure redraw the path very quickly. Then, the "Setup" 

button is pressed to initialise the model's world. After that, the Santa Fe Trail will appear 

in the 2D view of the NetLogo interface. Indeed, the multi-line input box "Ant-Actions" is 

initialised with one of the Koza's solutions (1992 , p.154) in the Santa Fe Trail problem, 

written in the NetLogo programming language. The code of the "Ant-Actions" box is 

editable in order to be able the modeller to write and enter for execution in the model 

custom ant control programs. Listing 5 .1 shows the valid actions of an ant (NetLogo 

commands and reporter), and a sample ant control program which dictates the ant to move 

forward one square if there is food ahead otherwise to turn right. 

NetLogo ant commands: move turn- right turn- left 
NetLogo ant reporter : food- ahead 

Sample Control Program: 
ifelse food- ahead 

[move] 
[turn- right] 

Listing 5.1: Artificial ant actions and a sample control program, in the NetLogo 
programming language. 

The commands of the "Ant-Actions" box will be executed by the ant when the "Go" 

button is pressed. Before the simulation starts, the "Max-Steps" slider must be set to the 

maximum number of steps (time units) that are allowed to be executed by the ant during 

the simulation. These steps should not be confused with the NetLogo ' s discrete steps 

called "ticks" . Also, by turning-on the switch "Trail" the path followed by the artificial 

ant during the simulation will be coloured. It is advised that the model ' s speed be turned 

to very slow (with adjusting the speed slider in the tool bar) in order for the ant's 

movements to be observable by the modeller. Otherwise the ant will run so fast that the 

modeller will actually see only the end results of the simulation. After the required 

configuration, the simulation can start with pressing the "Go" button. During the 

99 



simulation, the monitors "Steps" and "Food Eaten" display the current number of the 

executed actions and the pieces of food eaten by the ant so far, respectively. 

Model validation 

In order that the NetLogo implementation of the Santa Fe Trail problem be tested and 

validated, the results of some of the programs mentioned by Koza ( 1992) were compared 

with the corresponding results of the NetLogo model. 

The following programs found in Koza (1992, p.151) were executed in the model and 

compared with the raw fitness reported by Koza: The "move" program; the "qui lter" 

program; and the "avoider" program. The LISP code of these programs, the corresponding 

NetLogo code, and the Koza' s & NetLogo results are depicted in Table 5.1. The last two 

columns of the table indicate that the NetLogo simulation gave the same results with these 

reported by Koza. 

T bl S 1 C a e . : omparmg an e LISP d N tL ogo so utlons o t e f h S anta e ra1. F T 'I 
Program LISP code NetLogo Code Koza NetLogo 

Raw Raw 
Fitness Fitness 

Move (PROGN2 (MOVE) (MOVE)) move 3 3 
move 

Quilter (PROGN3 (RIGHT) t urn-right Finds 4 Finds 4 
(PROGN3 (MOVE) (MOVE ) move pieces o f pieces of 

(MOVE)) move food in food in 
(PROGN2 (LEFT) (MOVE) move 

the first the first ) ) turn-left 
move vertical vert ical 

cross of cross of 
the grid . the grid. 

Avoider ( I F-FOOD- AHEAD (RI GHT ) i f else food -ahead 0 0 
( IF-FOOD-AHEAD [turn-right ) 

(RIGHT) [ 

(PROGN2 (MOVE ) ifelse food- a head 
(LEFT ) ) ) ) [tu r n-right) 

[move turn- left) 
l 

Additionally, the NetLogo implementation was tested with more solutions which are 

either provided by the GE literature or were generated by GEV A (UCD, 2008). The 

comparison of the results of the execution of these solutions in the NetLogo simulation 

with those already reported, verified again the correctness of the NetLogo implementation 

of the Santa Fe Trail simulation. 

100 



5.3.2 Evolutionary Runs in SFT Model 

Model overview 

This NetLogo model simulates a senes of evolutionary runs for the Santa Fe Trail 

problem using the Grammatical Evolution genotype-to-phenotype mapping process, a 

genetic algorithm as the search engine, roulette wheel as the selection mechanism of the 

parents, and a steady state replacement strategy for the creation of the offspring 

population. The model uses the jGE NetLogo extension for the Grammatical Evolution 

mapping; all other parts have been implemented with the NetLogo programming language 

in the model. 

0 
0 Gef'l9tldcn 50 

rrrm 
0 Ri.n 100 .......... " 50 

Figure 5.2: Interface of the Evolutionary SFT model for GE. 

A screenshot of this model is shown in Figure 5.2. It depicts the Santa Fe Trail drawn in 

NetLogo's environment on the right top of the Interface, there are buttons and sliders for 

configuring the Grammatical Evolution algorithm and setting up the experiment, 

executing and defining the simulation on the top left, and graphs for tracking the state of 

the simulation are shown in the middle left and at the bottom. 

This model is the only published and widely available NetLogo model that uses an 

evolutionary algorithm (Grammatical Evolution in this case) to evolve solutions of the 

Santa Fe Trail problem. It provides a useful tool for studying aspects of evolutionary 

algorithms, Grammatical Evolution, artificial ant problem and NetLogo modelling. 

101 



How the model works 

The button "Setup" initialises the environment. When the button "Go" is pressed, the 

specified number of runs (evolutionary runs) is executed. Each run is independent from 

the others. Namely, a new random population of ants is created when a run starts which 

consist the generation zero of this run. The range of the sizes of the genomes of the ants of 

the initial population is determined by the size of the codon in bits and by the allowed 

range of codons for the genotype of an individual. Note here that this limit does not apply 

to the genomes of the offspring. During a run, the population of ants is evolved for the 

specified number of generations and the size of the population (number of ants) remains 

constant. 

For the evolution of the population of the ants, the search engine used by Grammatical 

Evolution in this model is a steady state Genetic Algorithm. The main idea of a steady 

state Genetic Algorithm is that a portion of the population P survives in the new 

population P' and that only the worst individuals are replaced. Namely, a few good 

individuals, selected using the roulette wheel selection mechanism, will mate through 

crossover and their offspring which are subject to mutation, will replace the worst 

individuals. The rest of the population will survive. The "Generation Gap" determines the 

portion of the population that will be replaced. A detailed description of the steady state 

Genetic Algorithm can be found in Chapter 3 as well as in Georgiou (2006) and in 

Georgiou and Teahan (2008). 

The evaluation of the evolved ants is performed sequentially. Namely, for each ant of the 

population, the Grammatical Evolution genotype-to-phenotype mapping process is applied 

to the genotype using the given BNF grammar definition and wrapping the genome if 

required, up to the specified maximum allowed number of wraps. Then, for each valid 

individual (an individual with phenotype that does not contain non-terminals), a Santa Fe 

Trail simulation takes place in order to calculate for this ant the fitness value. The visual 

depiction of this simulation appears to the right part of the screen (2D View). 

Consequently, the evaluation of a generation will require as many independent Santa Fe 

Trail simulations as the size of the population. The raw fitness value of an ant is the 

number of food found and eaten by this ant during the simulation until the maximum 

number of allowed moves (ant steps) is reached. 

102 



During the evolutionary runs, useful statistics appear in the plots of the Interface Tab of 

the model. The "Best per Generation" plot shows the fitness value of the best ant per 

generation of the current run. The "Best per Run" plot shows the fitness value of the best 

ant per run. The "Fitness Frequency Distribution" plot shows the distribution of the fitness 

values of all ants created so far. The "Cumulative Frequency of Success Measures" plot 

shows the cumulative frequency of success measures of all runs of the current experiment. 

A cumulative frequency plot is a way to display cumulative information graphically, 

namely it shows the number, percentage, or proportion of observations in a data set that 

are less than or equal to particular values. For example, the cumulative frequency for a 

value x is the total number of scores that are less than or equal to x. In this particular 

model, it shows the number of evolutionary runs in which a solution has been found 

before or at a number of population generations. 

The monitor fields of the model interface show the number of the current run, the number 

of the current generation of this particular run, and the fitness of the best ant found so far 

in the current run. 

When the model finishes the execution (namely the specified number of evolutionary runs 

is performed), the best solution of all runs appears in the "Output" control in the middle of 

the left part of the screen. In addition, the fitness value (pieces of food eaten) and the 

required moves (steps) appear in the corresponding monitor controls. The control program 

of this ant (solution) can be executed again for study by pressing in sequence the "Setup 

Trail" and the "Run Solution" buttons. The program can be executed as many times as 

needed by the modeller, as long as these buttons are pressed in the same order as 

mentioned and the button "Setup" is not pressed, because the later will initialise the 

experiment. In order to watch and study the behaviour of the ant during a simulation, the 

speed slider must be moved to the left so that the simulation is slowed down. 

5.4 Experiments Setup 

A series of experiments has been conducted using two different BNF grammar definitions. 

The first, named here BNF-Koza (Listing 5.2), is a translation to the NetLogo 

programming language of the SFT-BAP grammar cited in Robilliard, et al. (2006). This 

grammar defines a search space semantically equivalent to Koza' s original 

103 



implementation search space (Robilliard, et al., 2006). The second grammar definition, 

named here BNF-O'Neill (Listing 5.3), is the translation to the NetLogo programming 

language of the BNF grammar definition mentioned in the Grammatical Evolution 

literature (O'Neill and Ryan, 2001 ; 2003, p.55) regarding the Santa Fe Trail problem. 

When the Grammatical Evolution algorithm uses the BNF-O'Neill grammar, it will be 

referred as "GE using BNF-O'Neill". In the same way, when it uses the BNF-Koza 

grammar, it will be referred as "GE using BNF-Koza". 

The tuples {N, T, P, S} of the BNF-Koza and the BNF-O'Neill grammar definitions are 

depicted in Listing 5.2, and in Listing 5.3 respectively, where N is the set of non-terminal 

symbols, T the set of terminal symbols, Pa set of production rules that maps the elements 

of N to T, and Sis a start symbol that is a member of N. 

N {expr, line, op} 
T {turn- left , turn-right , move , ifelse , food- ahead , [ , ) } 
S expr 

P: 
<expr> ·· = <line> 

<line> 

<op> 

<expr> <line> 
i f else food- ahead [ <expr> ) [ <expr> ) I 
<op> 
turn- left I 
turn- righ t I 
move 

Listing 5.2: BNF-Koza grammar definition for the artificial ant problem. 

N {code , line , condition , op} 
T {turn-left , turn- right , move , ifelse , food- ahead , [ , ] } 
S cod e 

P : 
<code> 

<line> 

<condition> 
<op> 

· · = <line> I 
<code> <line> 
<condition> I 
<op> 
ifelse food - ahead [<line>) [<line> ) 
turn-left I 
turn-right I 
move 

Listing 5.3: BNF-O'Neill grammar definition for the artificial ant problem. 

The goals of the experiments were to compare the results given by these two grammars in 

order to confirm or refute the conclusions of Robilliard, et al. (2006), and highlight the 

104 



impact of these grammars on the performance of the Grammatical Evolution algorithm 

(the success rate over a number of evolutionary runs) and the quality of the solutions it 

produces (the number of moves required for each solution). 

The difference between these grammars, as noted by Robilliard, et al. (2006), is that the 

BNF-O'Neill grammar does not allow multiple <op> statements or sequences of <op> 

and <condition> statements in the branches of the <condition> production rule as the 

BNF-Koza grammar allows in the corresponding rule (first production rule of <line> non 

terminal). The BNF-O'Neill grammar just allows either one condition statement or one 

operator in each branch of the ifelse condition statement. 

A tableau - with a style similar to O'Neill and Ryan (2001 ; 2003) of summarising 

information - that describes the problem and the experiments configuration can be seen in 

Table 5.2. Ten experiments were conducted (5 using BNF-Koza and 5 using BNF­

O'Neill). Each experiment performed 100 evolutionary runs. 

a e . : T bl 5 2 G ramma 1ca VO U IOU a f IE I f t bl eau or e an a e ra1 pro f th S t F T ·1 bl em. 

Objective Find a computer program in the NetLogo programming language to 
control an artificial ant so that it can find all 89 pieces of food located 
on the Santa Fe Trail. 

Terminal Operators turn-left, turn-right, move, food-ahead. 

Terminal Operands None. 

Fitness Cases One fitness case. 

Raw Fitness Number of pieces of food eaten before the ant times out with 650 
operations. 

Wrapper None. 

BNF Grammar Two different BNF grammar definitions are used (one for each set of 
experiments): BNF-Koza and BNF-O' Neill. 

Evolutionary Steady-State Genetic Algorithm, Generation Gap = 0.9 , 
Algorithm Selection Mechani sm: Roulette-Wheel Selection. 

Initial Population Randomly created with the following restrictions during the 
generation: Minimum Codons = 15 and Maximum Codons = 25 

Parameters Population Size = 500, 
Maximum Generations= 50 (without counting generation 0), 
Probability Mutation = 0.01 , Probability Crossover = 0.9, 
Probability Duplication = 0.0, Probability Pruning = 0.0, 
Codon Size = 8, Wraps Limit = I 0. 

105 



The configuration for all of the conducted experiments was exactly the same. Standard 

and widely used values from Evolutionary Computation (De Jong, 2006; Fogel, 2006; 

Ghanea-Hercock, 2003) and Grammatical Evolution (O 'Neill and Ryan, 2001; 2003, 

pp.55-56) literatures were used without any attempt of optimising the configuration in 

advance for one BNF grammar definition or another. That is, the main objective of these 

experiments was to compare the two BNF grammar definitions in question, and to reveal 

an indicative performance of Grammatical Evolution using these grammars with a 

configuration that is similar to that used in the GE literature. 

Note that the two operators introduced by Grammatical Evolution, pruning and 

duplication, are not used because either their usefulness is questioned or not justified. The 

first has been already discarded (O'Neill and Ryan, I 999d; 2001 ; 2003) and the second 

seems to be no longer used in the recent GE literature (O'Neill and Brabazon, 2008; 

Hemberg, O'Neill and Brabazon, 2008; Dempsey, O'Neill and Brabazon 2009, p.132; 

p.145; Hugosson, Hemberg, Brabazon and O 'Neill, 2010). Note also, that the maximum 

allowable steps for the ant are set to 650 , instead of 600 as in the GP literature or 615 as in 

the GE literature. The reason for this increase was to give Grammatical Evolution the 

chance to find more solutions using the investigated BNF grammars in order that the 

sample of the solutions found and the comparison of the effects of these grammars on the 

performance of Grammatical Evolution being more encompassing. 

5.5 Results and Discussion 

In a series of 100 evolutionary runs, which is conducted in each experiment, it is expected 

that some or many of these runs will be successful. Namely, they will terminate because 

they found a solution (an ant with raw fitness 89). In order to identify the best of all the 

solutions found in a series of 100 independent runs (namely of each experiment), a 

lexicographic ordering is applied. A lexicographic ordering can also be used to drive 

selection during an evolutionary run (Luke and Wiegand, 2002; Gagne, Schoenauer, 

Parizeau and Tomassini , 2006). It is clarified here that it is not the case in the experiments 

conducted and presented in this work (this approach is used here only to identify the best 

of the solutions found in a series of independent runs and not to drive selection during an 

evolutionary run) . 

106 



Therefore, in the conducted experiments, the best solution of each experiment 1s 

calculated according to the following criteria: a) Raw Fitness (a higher value is considered 

better); b) Steps (a lower value is considered better); c) Phenotype length (a lower value is 

considered better); and d) Genotype length (a lower value is considered better). 

If two or more solutions have the same value in one criterion then the next is checked and 

so on. Namely, comparing two solutions (therefore, with the same raw fitness 89), the 

solution requiring fewer steps is considered as the best. If they have the same number of 

required steps, then the solution with the smallest phenotype is considered as the best. If 

they have same values in both the steps and the phenotype length, then the solution with 

the smallest genotype is considered as the best. If all four criteria are exactly the same, 

then the best solution is identified randomly. 

Table 5.3 and the Table 5.4 show the results of the experiments for each BNF grammar 

definition. The explanation of the fields in the tables is as follows: 

a. Steps: This is the required steps (ant moves) of the best solution found in the 

particular experiment (over a series of 100 evolutionary runs). 

b. Phenotype Length: The length in characters (including empty spaces) of the 

phenotype of the best solution found in the particular experiment. 

c. Genotype Length: The length in bits of the genotype of the best solution found in 

the particular experiment. 

d. Success Rate: This is how many evolutionary runs (percentage) found a solution 

(raw fitness 89). 

e. Best: This is the best of the values in the table. 

f. Avg.: This is the average of the values in the table. 

a e : T bl 5 3 R esu ts o fGE USID ~ t e -h BNF K oza grammar d fi 'f e IOI IOD. 

Exp #1 Exp #2 Exp #3 Exp #4 Exp #5 Best Avg. 

Steps 419 507 415 541 479 415 472 

Phenotype Length 171 692 286 317 205 171 334 

Genotype Length 1194 374 1066 1778 315 315 945 

Success Rate 8% 11% 10% 6% 13% 13% 10% 

107 



a e . : esu so T bl 5 4 R It f GE usmg e - e1 2rammar th BNF O'N ·11 e IOI 100. 

Exp #6 Exp #7 Exp#8 Exp #9 Exp#lO Best Avg. 

Steps 609 609 607 609 607 607 608 

Phenotype Length 195 372 725 379 534 195 441 

Genotype Length 427 355 1058 1209 391 355 688 

Success Rate 80% 76% 75% 81% 74% 81% 78% 

Figure 5.3 depicts the cumulative frequency of success measures over 500 evolutionary 

runs of the BNF-Koza grammar definition versus the BNF-O'Neill grammar definition. 

Santa Fe Trail: BNF-O'Neill vs. BNF-Koza 

500 ~--------------------------
-- BNF-O'Neill ·--··-· BNF·Koza 

450 +---------------------------

~ 350 
C: 

~ 300 -l--------------....-:::=--------------­
C" ., 
0::: 250 +---------=-=------------------
-~ 
~ 200 -,--------tl''---------------------
E a 150 +----- -.,,::-_____________ _______ _ 

100 +---~,,,___ _____________________ _ 

50 +----=ca"''------------------ ... - .- ... - ... - • . -:-.,_-:: .... ~.=~,,._ 
... . ...... -...................... ..--.-.. -0 .,.......,......., ___ .,.,.,..=ia,~~~;,....;,..~~..:;......--r,-,-.-,-.,....,-.,.......-.-,--,-,--,--,~-,-r-r, 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 4 2 44 46 4 8 50 

Generation 

Figure 5.3: Cumulative frequency of success measures over 500 evolutionary runs. 

Some obvious observations from the results are the following. The BNP-O'Neill grammar 

definition has a better success rate, approximately 80%. However, it produces the worst 

solutions in terms of efficiency (required steps), requiring each ant to perform 

approximately 610 moves. The BNF-Koza has a lower success rate, approximately 10%. 

In contrast, it produced the most efficient solutions within a range of 415 and 541 moves. 

The best solution in terms of steps is given by the BNF-Koza grammar, requiring only 415 

moves (Listing 5.4). 

ifelse food- ahead 
[move] 
[i felse food - ahead 

108 



[turn- right ] 
[turn-left 

l l 

ifelse f ood- ahead 
[move move 
turn - left 
turn- right] 

[tu rn- right] 
turn-right 
ifelse food- ahead 

[move] 
[ifelse food- ahead 

[turn- right ] 
[turn- left] 

move 

Listing 5.4: Best SFT solution found by GE using BNF-Koza (415 steps). 

Another excellent solution, also found again by the BNF -Koza grammar, requires only 

419 moves. This is the solution with the shortest phenotype, found in all ten experiments 

conducted with the two grammars (Listing 5.5). 

ifelse food-ahead 
[move] 
[turn-right 
ifelse food- ahead 

[turn-left] 
[turn- left turn- left] 

ifelse food- ahead 
[move] 
[tum- right ] 

move 

Listing 5.5: Another SFT solution of GE using BNF-Koza (419 steps). 

Generally, the BNF-Koza grammar gives solutions with smaller phenotype size. In 

contrast, the solutions found with the BNF-O'Neill grammar have usually a very large and 

complex phenotype. 

The above experimental results support the claim of Robilliard , et al. (2006) that the 

original Grammatical Evolution and Genetic Programming search spaces are not 

semantically equivalent, and therefore the comparison made by O'Neill and Ryan (2001; 

2003, pp.55-58) is called into question. These experimental results cast doubt on the 

fairness of the comparison of Grammatical Evolution and Genetic Programming in 

O'Neill and Ryan (2001) and furthermore, whether Grammatical Evolution is a better 

approach than Genetic Programming in terms at least of the quality of the solutions. (The 

109 



BNP-O'Neill grammar produces solutions requiring many more steps than the solutions 

found with the BNF-Koza grammar). The BNF-Koza grammar has a larger search space 

than the BNP-O'Neill grammar. For this reason, it has a lower success rate but it gives 

better solutions (with fewer steps). 

Also, it is observed that the success rates, as shown in the above results, of Grammatical 

Evolution using the BNF-O'Neill and the BNF-Koza grammars are close, as expected, to 

the success rates given in O' Neill and Ryan (2001; 2003, pp.57-58), for Grammatical 

Evolution and Genetic Programming (without using the solution length constrain) 

respectively, even though slightly different experimental setups and configurations were 

used. Namely, it appears in the corresponding figures of O'Neill and Ryan (2001; 2003, 

pp.57-58) that the first has a success rate of approximately 90% and the second of 

approximately 15%. This strengthens the validity of the experimental results presented 

here, in terms of reliability of the particular Grammatical Evolution and Santa Fe Trail 

implementations in Java and NetLogo (jGE, jGE NetLogo extension, and NetLogo 

models). 

5.6 Further Investigation 

Based on the insights gained from the results of the previous section, a series of new 

experiments have been conducted with the same configuration (see Table 5.2), but with or 

without wrapping, and using fixed length instead of variable length genomes as the 

standard GA does (Holland, 1975). The purpose of these experiments was firstly to 

investigate further the bias enforced by the BNF-O'Neill grammar definition, and 

secondly, to investigate the performance of Grammatical Evolution reconfigured with the 

absence of two of its key features: variable-length genomes and wrapping. Table 5.5, 

Table 5.6, Table 5.7, and Table 5.8 list the results. 

The rows in these tables are explained as follows. "Runs" is the number of evolutionary 

runs performed in each experiment. "Codons" is the fixed-length size of the genome of the 

individuals (ants), measured in codons (8 bits strings). "Length (bits)" is the fixed-length 

size of the genome of the individuals (ants), measured in bits. "Steps" is the required steps 

(ant moves) of the best solution found in the particular experiment. And "Success Rate" is 

how many evolutionary runs (percentage) found a solution (ants with raw fitness 89). 

110 



Table 5.5: Results using the BNF-Koza grammar definition with fixed-length 
genom d es an wrap pmg. 

Exp # 1 Exp #2 Exp #3 Exp #4 Exp #5 Exp #6 Exp #7 Exp #8 

Runs 100 100 100 100 100 100 100 100 

Codons 15 25 50 75 100 150 300 500 

Length (bits) 120 200 400 600 800 1200 2400 4000 

Ste ps 650 547 385 405 44 1 377 425 47 1 

Success Rate 0% 7% 13% 13 % 12% 14% 11 % 15% 

Table 5.6: Results using the BNF-Koza grammar definition with fixed-length 
genom 'th t es w1 OU wrappm g. 

Exp#9 Exp#IO Exp#! I Exp#l2 Exp#l3 Exp#l4 Exp#15 Exp#l6 

Runs 100 100 100 100 100 100 100 100 

Codons 15 25 50 75 100 150 300 500 

Length (bits) 120 200 400 600 800 1200 2400 4000 

Steps 650 650 405 547 395 385 405 447 

Success Rate 0 % 0% 11 % 6% 15% 16% 17% 10% 

Table 5. 7: Results using the BNF-O'Neill grammar definition with fixed-length 
genom d es an wra Jpmg. 

Exp#l7 Exp#l8 Exp#l 9 Exp#20 Exp#21 Exp#22 Exp#23 Exp#24 

Runs 100 100 100 100 100 100 100 100 

Codons 15 25 50 75 100 150 300 500 

Length (bits) 120 200 400 600 800 1200 2400 4000 

Steps 613 609 609 607 607 607 6 11 607 

Success Rate 57% 43% 74 % 59% 67% 60% 60% 59% 

Table 5.8: Results using the BNF-O' Neill grammar definition with fixed-length 
genom ' th t es w1 OU wrappmg. 

Exp#25 Exp#26 Exp#27 Exp#28 Exp#29 Exp#30 Exp#31 Exp#32 

Runs 100 100 100 100 100 100 100 100 

Codons 15 25 50 75 100 150 300 500 

Length (bits) 120 200 400 600 800 1200 2400 4000 

Steps 650 609 607 607 607 607 607 607 

Success Rate 0% 21 % 42% 41 % 51 % 51 % 65 % 67% 

111 



The results confirm again that GE using BNF-O'Neill outperforms GE using BNF-Koza 

regarding the success rate, due to the fact that their grammars define different search 

spaces. Also, the results show that with fixed-length genomes the wrapping operator has a 

negative effect on the performance of Grammatical Evolution when the codon size range 

is between 100 and 300 for BNF-Koza, and above 300 for BNF-O'Neill. This is just an 

initial observation and further investigation is required before any conclusion is possible. 

Another observation is that GE using BNF-Koza gives generally better results when fixed­

length genomes are used instead of variable length. 

Both BNF grammar definitions have been furthermore compared using the same 

configuration as with the previous experiments, but with random search instead of the 

steady-state GA as the search engine component of GE, without wrapping, and with fixed­

length genomes of 500 codons, in order to get stronger evidence that the BNF-O'Neill 

grammar defines a different and much smaller search space than the BNF-Koza grammar. 

This is confirmed with the results listed in Table 5.9. Also, the results show that GE using 

BNF-O'Neill does not perform much better than GE with random search using the same 

grammar definition. This is not the case with GE using BNF-Koza which outperforms GE 

with random search and using the same grammar definition. 

It is recalled here that Grammatical Evolution using fixed-length genomes of 500 codons 

without wrapping has a success rate 10% with BNF-Koza and 67% with BNF-O'Neill. 

Table 5.9: Results using standard GE with random search (as the search engine) and 
without wrapping. 

BNF-Koza (Exp #33) BNF-O'Neill (Exp #34) 

Runs 1000 1000 

Codons 500 500 

Length (bits) 4000 4000 

Steps 527 607 

Success Rate 1.4% 50.2% 

Note that a pure random search was implemented and used as the search engine of GE in 

these experiments. Namely, during the GE evolutionary run, a new generation was created 

randomly replacing the parent population, instead of using parents selection, 

recombination, mutation, and replacement as happens in standard GE. For the creation of 

112 



the random offspring populations, no special methods were used and no constraints were 

enforced except the fixed-length genotype size. 

One more reason for conducting the experiments described in this section - except the 

investigation of the two grammars - was to investigate whether there are better solutions 

for the Santa Fe Trail Problem than those found in the experiments described in the 

previous section and those mentioned in the Genetic Programming and Grammatical 

Evolution literature. Koza's best solution (1992, p.154) requires 545 steps. O' Neill and 

Ryan' s (2003 , p.56) best mentioned solution requires 615 steps. In these new experiments, 

a total of 5200 evolutionary runs (2600 for each grammar definition) with various search 

engines (fixed-length GE with/without wrapping, and Random Search) have been 

executed. 

What was found is that there are better solutions (found using Grammatical Evolution 

with the BNF-Koza grammar) and that no solution has been produced with the BNF­

O'Neill grammar with fewer than 607 steps. The best solution found with the BNF-Koza 

grammar requires only 377 steps (Listing 5.6). Grammatical Evolution found this solution 

using fixed-length genomes. 

ifelse food - ahead 
[move) 
[ifelse food- ahead 

[turn - right ) 
[ifelse food- ahead 

[turn- left turn-right] 
[turn- right ] 

ifelse food-ahead 
[move) 
[ifelse food- ahead 

[tur n-left move move turn- right ) 
[turn-left turn- left 
ifelse food- ahead 

[move move) 
[turn-righ t ] 

move 

Listing 5.6: Best SFT solution found by fixed-length GE (steps 377). 

113 



The best solution found using the BNF-O'Neill grammar definition requires 607 moves 

(Listing 5. 7). 

i f els e food- ahead 
[move ] 
[turn-left] 

ifel se f ood- ahead 
[move ] 
[ t urn- l e ft] 

move 
t u rn- l e f t 
ife l se f ood-a head 

[ i felse food- ahead 
[turn- right] 
[turn- left] 

[turn- left] 

Listing 5.7: Best SFT solution found using BNF-O'Neill (607 steps). 

The experimental results have confirmed that the BNF-O'Neill grammar definition (the 

standard grammar definition used in the GE literature) biases the search space in such a 

way that it selects a portion of the search space where no better solutions (with fewer 

steps than 607) could be, easily at least, found. The reduction of the search space may also 

explain the much better success rate (solutions found) of Grammatical Evolution against 

Genetic Programming. Consequently, by focusing the search in a narrower area of the 

search space, Grammatical Evolution (using the BNF-O'Neill grammar definition) 

performs better than Genetic Programming (using a search space semantically equivalent 

with that of the BNF-Koza grammar definition). This is in terms of effectiveness 

(solutions found), but worse than Genetic Programming in terms of efficiency (solution 

quality - required steps). 

By comparing the success rates for random search using BNF-Koza and BNF-O'Neill 

grammar definitions as shown in Table 5.9, it is obvious from their huge difference (1.4% 

and 50.2% respectively) that the bias enforced by the BNF-O'Neill grammar is very 

significant when compared with that of BNF-Koza. This gives an unfair advantage to 

Grammatical Evolution usmg BNF-O'Neill when comparing it with Genetic 

Programming. 

Finally, the observation that Grammatical Evolution usmg the BNF-O'Neill grammar 

definition did not find in the experiments that were conducted any solution with less than 

114 



607 steps, raised the obvious question whether Grammatical Evolution using the search 

space defined by BNP-O'Neill is not able to find solutions requiring less than 607 steps or 

just it was easier for Grammatical Evolution to find solutions requiring more than 606 

steps and consequently the search was just stopped in that point, due to termination of the 

evolutionary run because a solution has been found. 

For this reason, a new series of experiments was conducted using the same parameters as 

in the experiments described in the previous section (see Table 5.2) except the "Ant Max 

Steps" limit which from 650 has been set to 606. In particular, 5 experiments were 

conducted of I 00 evolutionary runs each (a total of 500 evolutionary runs). The results of 

these experiments are shown in Table 5.10. 

Table 5.10: Results using the BNF-O'Neill grammar definition and maximum ant 
steps limit 606. 

Exp#35 Exp#36 Exp#37 Exp#38 Exp#39 Best 

Runs 100 100 100 100 100 100 

Fitness 88 88 88 88 88 88 

Steps 606 606 606 606 606 606 

Success Rate 0% 0% 0% 0% 0% 0% 

Avg. Success Rate 0% 

The rows in this table are explained as follows. "Runs" is the number of evolutionary runs 

performed in the experiment. "Fitness" is the raw fitness of the best ant found in the 

particular experiment. "Steps" is the required steps (ant moves) of the best ant found in 

the particular experiment. "Success Rate" is how many evolutionary runs (percentage) 

found a solution. And "Avg. Success Rate" is the average success rate of the five 

experiments. 

These results confirm that Grammatical Evolution using BNP-O'Neill and the parameter 

settings of Table 5.2 is not able to find solutions requiring 606 steps or less. 

Consequently, it is not able to solve the original Santa Fe Trail problem where a 600 steps 

limit is imposed (Koza 1992, p.150; Langdon and Poli, 1998a; 1998b; Robilliard , et al. , 

2006). 

115 



5. 7 Conclusions 

Grammatical Evolution literature (O'Neill and Ryan, 200 I ; O'Neill and Ryan 2003 , p.55) 

uses in its benchmark against Genetic Programming in the Santa Fe Trail problem, a BNF 

grammar named here BNF-O'Neill, which restricts the original search space and excludes 

good solutions. The experiments of this chapter confirm the experimental results of 

Robilliard, et al. (2006) by showing that Grammatical Evolution gives less competitive 

results (in terms of success rate) on the Santa Fe Trail problem when the original search 

space defined by Koza (1992) is used, namely the BNF-Koza grammar definition. This 

casts doubt on the claim that Grammatical Evolution outperforms Genetic Programming in 

this problem (O'Neill and Ryan, 2001). 

Furthermore, it has been shown that Grammatical Evolution is not capable of finding 

solutions with less than 607 steps when the biased search space defined by BNF-O'Neill 

grammar is used. Consequently it is not able to solve the Santa Fe Trail problem using this 

grammar when the maximum steps limit is set to 600 as in the original problem defined by 

Koza (1992). 

The above findings raise the question whether Grammatical Evolution can be improved, 

using some form of language and/or search bias, so that it will be able to find efficient 

solutions (namely, requiring fewer steps) displaying at the same time a high success rate. 

Utilising generally applicable knowledge of a problem domain (not just of a problem 

instance) to bias the search, will this lead to a performance increase reducing at the same 

time the risk of excluding good solutions? 

Additionally, further performance improvement could be achieved by reducing the impact 

of destructive crossover events (O'Neill, Ryan, Keijzer and Cattolico, 2003 ; Harper and 

Blair, 2005; 2006a; Hemberg, 2010) and bloating (Harper and Blair, 2006b) which are 

generally regarded to be GP and GE issues (O'Neill, Ryan, Keijzer and Cattolico, 2003) 

as discussed in section 2.2.8. 

116 



Chapter 6 

Grammatical Bias Effects on the Santa Fe 

Trail 

6.1 Introduction 

The experimental results of the prev10us chapter demonstrate that the BNF-O 'Neill 

grammar definition (Listing 5.3) states a declarative language bias that narrows the 

possible representations that the system can consider, increasing in this way the 

effectiveness in terms of success rate (percentage of solutions found) with the side effect 

of decreasing the efficiency in terms of the solution quality (the required steps by the 

artificial ant control program to solve the problem) because of the exclusion of areas of 

the search space where better solutions exist. 

These results stimulated further research and investigation on the effects of bias - which 

is enforced through the grammar - in the performance of Grammatical Evolution on the 

Santa Fe Trail problem and on whether a bias can be enforced that increases at the same 

time both the effectiveness (success rate) and efficiency (solution quality) with or without 

changing the semantics of the original search space defined by BNF-Koza (Listing 5.2). 

Namely, by using a search bias with or without enforcing a language bias. The next 

section provides a background in grammatical bias and is followed by the presentation of 

the experiments that are conducted using Grammatical Evolution with a variety of biased 

grammars on the Santa Fe Trail problem. The experimental results provide useful insights 

about the effects in the performance of Grammatical Evolution of various forms of 

grammatical bias which are implemented through the incorporation of building blocks and 

knowledge encoding (about the structure of possible solutions) in the grammar. 

6.2 Grammatical Bias 

Whigham (1996) defines bias as "the factors that influence a learning system to favour 

certain hypotheses or strategies" and highlights the issues of typing, program structure and 

117 



inductive bias in Genetic Programming to show the need for declarative biasing with 

evolutionary learning techniques, namely representing knowledge about the problem in 

question explicitly given by the user of the system. He claims that "for GP to be truly 

applicable over a wide variety of problems, explicit language and search bias is necessary 

to restrict the search space and make the discovery of a suitable computer program 

tractable". Whigham (1995a; 1995b) was one of the first to propose a grammar-based GP 

system (McKay, et al., 2010) by using a context-free grammar to specify structures in the 

hypothesis language. 

There are three major kinds of bias (Whigham, 1996), based on the description language 

and the learning algorithm: selective bias, language bias, and search bias. Selective bias 

enables two or more equivalent hypotheses (in terms of performance) to be distinguished, 

language bias restricts the possible hypotheses that can be constructed, and search bias 

refers to the factors that control the transformation of one hypothesis into another. 

Regarding the search bias, it is possible to change the search space structure - its 

connectivity and overall fitness landscape - without changing the space itself. Thus it is 

possible to use a change of grammar to alter the search bias, not only the language bias 

(McKay, et al., 2010). Ro billiard, et al. (2006) use the term representation bias for search 

bias and they characterise two search spaces as semantically equivalent when every 

program that can be found in one search space can also be found in the other and vice 

versa. According to their definition, semantically equivalent spaces can be defined by 

grammars which state the same language bias regardless if they state the same or different 

search bias. 

An important component of bias is correctness (Whigham, 1995b) which describes how 

well a bias is suited to a problem. Namely, if a bias is not correct, the solution to the 

problem cannot be expressed. Hence there is a trade-off between limiting the search space 

and discounting meaningful solutions. In the extreme case of designing a grammar to 

restrict the search space and speed up the search, the search space can be too heavily 

constrained excluding the solution from the language and making the problem impossible 

to solve (Murphy, 2011). Also, Banzhaf (1994) notes in a different context (constrained 

optimisation problems) that hard constraint might lead to solutions that are not optimized. 

McKay, et al. (2010) mentions that the declarative search space restriction is perhaps the 

most obvious benefit of using grammars in GP in order to reduce the search cost to find a 

118 



solution but with the concomitant risk that the solution may not be within the defined 

search space or perhaps more insidious that the solution may be isolated by the grammar 

constraints and may be difficult to search. If the grammar is wrongly designed and chosen, 

except that the solution may not lie within the defined search space, the constrained nature 

of the search space can render search more difficult. Namely, the grammar space is 

generally sparser than the corresponding expression-tree space, thus neighbourhoods may 

be sparser, and they may be less connected making it probable that the solution is difficult 

to reach (McKay, et al. , 2010). 

6.2.1 Modularity 

Modularity in a BNF-based GP system enforces a bias in the learning system which, 

depending on the way modularity is implemented, can result in a type of language bias 

(e.g. replacing or removing existing productions) or in a type of search bias (e.g. addition 

of new productions or changing the selection probability of a production). Rosca and 

Ballard (1994) show that Adaptive Representations can discover hierarchical 

representations while learning to solve a problem demonstrating performance 

improvement over standard GP approaches because the reusable nature of the discovered 

functions changes the search space of the problem, resulting in a modified language and 

search bias. 

Hem berg (2010) explores the grammar in Grammatical Evolution and studies several 

different constructions of grammars and operators for manipulating the grammars and the 

evolutionary algorithm demonstrating that representations have a strong impact on the 

efficiency of search. Indeed, he verifies the benefits in the solution of the artificial ant 

problem by Grammatical Evolution from a representation which states a grammatical bias 

towards modules (e.g. ADFs or building block structures). 

On the other side, Gariday (2008) investigates the effect of modularity on search and 

shows that even though modularity improves in general the performance of evolutionary 

algorithms it may crowd and complicate, if left without guidance, the space structure 

resulting in a harder space. Also, he shows that creating high value modules or low value 

modules has a direct and decisive impact on performance. 

119 



The experiments of section 6.4 provide insights about the use of building blocks in the 

Santa Fe Trail problem that are implemented in the grammar as additions of productions 

consisting only of terminal symbols. 

6.2.2 Knowledge Incorporation 

McKay, et al. (2010) note that the ability to encode knowledge about the problem is one 

of the strongest justifications for the use of grammar-based GP and that it is enough to 

encode meta-knowledge about the solution space using context-free grammar languages. 

The commonest mode of operation to incorporate knowledge and narrow the search space 

is controlling the language bias imposed by the grammar (McKay, et al., 2010). Another 

way of knowledge encoding in the grammar is with changing the search space structure 

without restricting the search space (McKay, et al., 2010). 

Furthermore, it is noted by Whigham (1996) that the No Free Lunch Theorem can be 

viewed as another argument for the use of bias with a general learning system. Namely, 

for a generic learning system to perform well over a broad range of problems , it must be 

able to incorporate knowledge about the problem domain. 

Whigham (1995a; 1995b; 1996) examines the effect of applying bias in the grammar and 

shows in the 6-Multiplexer problem that using the if function as the first function in the 

program with the first argument being an address line - a form of language bias that 

represent the underlying form of the problem - results in a significant improvement over 

using an unbiased grammar. A similar approach is followed in the experiments of section 

6.5. 

6.3 Experimental Setup 

A tableau - with a style similar to O'Neill and Ryan (200 I; 2003) of summarising 

information - that describes the problem and the experimental configuration can be seen 

in Table 6.1. The settings are the same ( except the grammar) with these used in the 

experiments of section 5.4 (Table 5.2) for the benchmarking of Grammatical Evolution 

using BNF-Koza on the Santa Fe Trail problem. 

120 



a e . : T bl 6 1 G ramma 1ca VO U 100 a f I E I f t bl eau or e an a e ra1 pro f th S t F T ·1 bl em. 

Objective Find a computer program in the NetLogo programming language to 
control an artificial ant so that it can find all 89 pieces of food located 
on the Santa Fe Trai l. 

Terminal Operators turn-left, turn-right, move, food-ahead. 

Terminal Operands None. 

Fitness Cases One fitness case. 

Raw Fitness Number of pieces of food eaten before the ant times out with 650 
operations. 

Wrapper None. 

BNF Grammar Biased variations of the BNF-Koza grammar definition . 

Evolutionary Steady-State Genetic Algorithm, Generation Gap= 0.9 , 
Algorithm Selection Mechanism: Rou lette-Wheel Selection. 

Initial Population Randomly created with the fo llowing restrictions during the 
generation: Minimum Codons= 15 and Maximum Codons= 25. 

Parameters Population Size = 500, 
Maximum Generations= 50 (without counting generation 0), 
Probabi lity Mutation = 0.01 , Probabi lity Crossover= 0.9, 
Probabi lity Duplication = 0.0, Probability Pruning = 0.0, 
Codon Size = 8, Wraps Limit= I 0. 

The BNF-Koza grammar definition is shown in Listing 6.1. This is the grammar definition 

on which the biased grammar variations of the experiments conducted in this chapter are 

based. 

N {expr , line , op} 
T {turn-left , turn- right , move , ifelse , food-ahead , [, ] } 
S expr 

P: 
<expr> <line> 

<expr> <l ine> 
<line> · · = ifelse food-ahead [ <expr> ] [ <expr> ] I 

<op> 
<op> turn- left I 

turn- right I 
move 

Listing 6.1: BNF-Koza grammar definition for the artificia l ant problem. 

In the following sections, the grammars which are used by Grammatical Evolution in the 

experiments are presented and described alongside with the experimental results for each 

of these grammars. 

121 



The objective of these experiments is to highlight the effect of each grammar in the 

performance of Grammatical Evolution in terms of problem solving effectiveness (success 

rate) and efficiency of solutions found (actions performed to complete). A primary 

purpose is to extract useful indications of whether the addition of particular building 

blocks (reusable code) as productions in the BNF grammar definition or the application of 

general applicable problem domain knowledge through the use of a bias toward 

conditional statements in the start non-terminal symbol of the grammar are approaches 

that merits further attention and utilisation. 

6.4 Grammars with Building Blocks 

The grammar definitions of the experiments conducted in this section augment the BNF­

Koza grammar definition (Listing 6.1) by adding productions, consisting only of 

terminals, in the <op> non-terminal symbol. These productions can be considered as 

candidate building blocks, namely useful and reusable segments of code, which have been 

added in the grammar definition as indivisible terminals extending the set of the existing 

primitive action terminals turn-left, turn-right, and move. 

The selection of the particular building blocks has been done by taking into account the 

specific characteristics of the Santa Fe Trail, namely the irregularities of the trail which in 

short are: straight, corner, single gap, double gap, single gap at corner, double gap at 

corner (short knight move), and triple gap at corner (long knight move). Therefore, these 

building blocks could be considered as high value modules. 

6.4.1 Grammar Definitions 

The presentation and description of the grammars is following. The grammar of Listing 

6.2 (BB #1) adds in line (1) a conditional statement (building block) as a production rule 

in the non-terminal symbol <op>. This conditional statement solves the straight and 

corner parts of the trail. The chance that the <op> non-terminal is expanded to this 

conditional statement during the genotype-to-phenotype mapping is 25%. 

N {expr , line , op} 
T {turn- left , turn-right, move , ifelse , food- a head, [ , ] } 
S expr 

122 



P : 
<expr> <line> 

<expr> <l ine> 
<l i ne> · · = ifelse food- ahead [ <expr>] [ <expr>] I 

<op> 
<op> turn-left I 

t urn - right I 
move I 
ifelse food-ahead [move] [turn-right] 

Listing 6.2: BNF-Koza with Building Blocks (BB) Version #1. 

( 1) 

The grammar definition of Listing 6.3 (BB #2) adds two more conditional statements of 

the same type in lines (2) and (3) increasing the chance that the <op> non-terminal is 

expanded to this statement to 50%. Namely, it has been adjusted what Whigham (1996) 

calls merit weighting of a production (the probability of a production being selected). 

N {expr , line , op} 
T {turn- left , turn- right , move , ifelse, food-ahead , [, ] } 
S expr 

P: 
<expr> 

<line> 

<op> 

<line> 
<expr> <line> 
ifelse food- ahead [ <expr> ] [ <expr> ] I 
<op> 
turn- left I 
turn- right I 
move I 
ifelse food-ahead [move] [turn-right] 
ifelse food-ahead [move] [turn-right] 
ifelse food-ahead [move] [turn-right] 

Listing 6.3: BNF-Koza with Building Blocks (BB) Version #2. 

( 1) 

( 2) 

(3) 

The bias toward the conditional statement, which has been added in the previous 

grammars, is stronger in the grammar definition of Listing 6.4 (BB #3) where it appears in 

total six times in lines (I) until (6) with the chance now approximately 65% that the <op> 

non-terminal is expanded to this building block. 

N {expr, line, op} 
T {turn-left , turn- right , move , ifelse , food- ahead, [ , ] ) 
S expr 

P: 
<expr > 

<line> 

<line> 
<expr> <line> 
ifelse food- ahead [ <expr>] [ <expr> ] I 
<op> 

123 



<op> : : = turn- left I 
turn- right I 
move I 
ifelse food-ahead [move] [turn-right] ( 1) 
ifelse food-ahead [move] [turn-right] (2) 

ifelse food-ahead [move] [turn-right] (3) 

ifelse food-ahead [move] [turn-right] ( 4) 

ifelse food-ahead [move] [turn-right] (5) 

ifelse food-ahead [move] [turn-right] (6) 

Listing 6.4: BNF-Koza with Building Blocks (BB) Version #3. 

The grammar definition of Listing 6.5 (BB #4) enforces an even stronger bias toward the 

conditional statement, which appears in total nine times in lines (I ) until (9) with the 

chance 75% that the <op> non-terminal is expanded to this type of production. 

N {expr, l i ne , op} 
T {turn- left , turn- right , move , ifelse , food- ahead, [ , ] ) 
S expr 

P : 

<expr> · ·= <line> 
<expr> <line> 

<line> · · = if else food-ahead [ <expr> ] [ <expr> ] I 
<op> 

<op> tur n - left I 
turn-right I 
move I 
ifelse food- ahead [mov e] [turn-right] 
ifelse food-ahead [move] [turn-right] 
ifelse food-ahead [move] [turn-right] 
ifelse f ood-ahead [move] [turn-right] 
ifelse f ood-ahead [move] [turn-right] 
ifelse food-ahead [move] [turn-right] 
ifelse f ood-ahead [move] [turn-right] 
ifelse f ood-ahead [move] [turn-right] 
ifelse f ood-ahead [move] [turn- right] 

Listing 6.5: BNF-Koza with Building Blocks (BB) Version #4. 

( 1) 

(2) 

(3) 

( 4) 

( 5) 

( 6) 

(7) 

( 8) 

( 9) 

The grammar definition of Listing 6.6 (BB #5) adds, to the primitive actions (turn-left, 

turn-right, and move) of the non-terminal symbol <op >, building blocks of code which 

solve all the irregularities of the trail. The production in line (1) solves the straight and 

single gap parts of the trail, the production in line (2) the double gap, the productions in 

lines (3) and ( 4) the corner and the single gap at corner , the productions in lines ( 5) and 

(6) the double gap at corner, and the productions in lines (7) and (8) the triple gap at 

corner. 

124 



N {expr , line , op} 
T {turn- left , turn- right , move , ifelse , food- ahead, [ , ] } 
S expr 

P: 
<expr> 

<line> 

<op> 

<line> 
<expr> <line> 
ifelse food - ahead [ <expr>] [ <expr>] I 
<op> 
t urn - left I 
turn- right I 
move I 
move I 
move move 
move turn-right 
move turn-left I 
move move turn-right 
move move turn-left I 
move move move turn-right 
move move move turn-left 

Listing 6.6: BNF-Koza with Building Blocks (BB) Version #5. 

( l } 

(2) 

(3) 

( 4) 

(5) 

( 6) 

( 7) 

(8) 

The BNF grammar definition of Listing 6.7 (BB #6) extends the previous grammar in two 

ways. First, it wraps all the building blocks of Listing 6.6 (BB #5) in a conditional 

statement, see lines (5) - (12). Second, it adds four conditional statements which solve 

both the straight and corner parts more effectively. Namely, the productions in lines (1) 

and (3) solve effectively the right corners and the productions in lines (2) and (4) the left 

corners. They are added twice in order to double their chance to be selected against the 

other productions. 

N {expr, line , op} 
T {turn-left , turn- right , move , ifelse , food- ahead , [ , ] } 
S expr 

P : 
<expr> 

<line> 

<op> 

<line> 
<expr> <line> 
ifelse food- ahead [ <expr>] [ <expr>] I 
<op> 
turn-left I 
t u r n - right I 
move I 
ifelse food-ahead [move] [turn-right] I 
ifelse food-ahead [move] [turn-left] I 
ifelse food-ahead [move] [turn-right] I 
ifelse food-ahead [move] [turn- left] I 
ifelse food-ahead [move] [move] I 
ifelse food-ahead [move] [move move] 
ifelse food-ahead [move] [move turn-left] 

125 

(1) 

(2) 

(3) 

( 4) 

(5) 

( 6) 

(7) 



ifelse food-ahead [move] [move turn-right] I (8) 

ifelse food-ahead [move] [move move turn-left] (9) 

ifelse food-ahead [move] [move move turn-right] I (10) 

ifelse food-ahead [move] [move move move turn-left] (11 ) 

ifelse food-ahead [move] [move move move turn-right] (12) 

Listing 6.7: BNF-Koza with Building Blocks (BB) Version #6. 

Listing 6.8 (BB #7) adds to the grammar definition of Listing 6.6 (BB #5) a conditional 

statement in line (1) for providing a more general production than the productions of lines 

(2), (4) and (5), to solve both the straight and corner parts of the trail. 

N {expr , line , op} 
T {turn- left , turn- right , move , ifelse, food-ahead , [ , ] } 
S expr 

P: 
<expr> : : = <line> 

<expr> <l ine> 
<line> ifelse food- ahead [ <expr> ] [ <expr> ] I 

<op> 
<op> turn- left I 

turn- right I 
move I 
ifelse food-ahead [move] [turn-right] 
move 
move move I 
move turn-right 
move turn-left I 
move move turn-right 
move move turn-left I 
move move move turn-right 
move move move turn-left 

Listing 6.8: BNF-Koza with Building Blocks (BB) Version #7. 

( 1) 

(2) 

(3) 

( 4) 

(5) 

( 6) 

(7) 

( 8) 

( 9) 

Finally, the grammar definition of Listing 6.9 (BB #8) removes from the original 

definition (BNF-Koza) the turn-left and turn-right terminals and replaces them with a 

conditional statement which solves the straight and corner parts of the trail. 

N {expr, line , op} 
T {turn- right , move , ifelse , food - ahead , [ , ] } 
S expr 

P : 
<expr> 

<line> 

<l ine> 
<expr> <line> 
ifelse food-ahead [ <expr> ] [ <expr> ] I 
<op> 

<op> move I (1) 
ifelse food-ahead [move] [turn-right] (2) 

Listing 6.9: BNF-Koza with Building Blocks (BB) Version #8. 

126 



6.4.2 Experimental Results 

For each of the above grammar definitions an experiment of 100 evolutionary runs is 

conducted. The Table 6.2 compares some properties of the setups and displays the 

experimental results. "Runs" is the number of evolutionary runs performed in each 

experiment, "Language Bias" is whether the grammar restricts the space of possible 

hypotheses, "Search Bias" is whether the grammar biases the search, "Building Blocks" is 

the number of the building blocks (code segments) added to the grammar, "IF-ELSE 

Blocks" is the number of conditional statement building blocks, "Steps" is the required 

steps of the best solution found in the particular experiment, "Genotype Size" is the size 

of the genotype in bits of the best solution found, and "Success Rate" is the percentage of 

successful runs (that found a solution). 

a e . : esu so T bl 6 2 R It f GE usmg e -th BNF K oza UI mg oc s vana 10ns. B ·1d· Bl k 'f 

BB#l BB#2 BB#3 BB#4 BB#5 BB#6 BB #7 B8#8 

Runs 100 100 100 100 100 100 100 100 

Language Bias No No No No No No No Yes 

Search Bias Yes Yes Yes Yes Yes Yes Yes Yes 

Building Blocks I 3 6 9 8 12 9 I 

IF -ELSE Blocks I 3 6 9 0 12 I I 

Steps 447 407 397 397 -- -- 541 385 

Genotype Size 1458 2468 460 11629 -- -- 1060 6700 

Success Rate 19% 30% 30% 32% 0% 0% 3% 1% 

6.4.3 Discussion 

All the grammars, except the last of Listing 6.9 (BB #8), define a search space 

semantically equivalent (same language bias) to that defined by the BNF-Koza grammar 

definition (Listing 6.1) but they state different search biases. 

The BNF grammars BB #1 ( 19%), BB #2 (30%), BB #3 (30%), and BB #4 (32%) result in 

a higher success rate than BNF-Koza ( 10%, see Table 5 .3 ). Instead, Grammatical 

Evolution using the other BNF grammars either could not find a solution (BB #5 and BB 

#6) or performed very poorly (BB #7 and BB #8). 

127 



The grammars that enabled Grammatical Evolution to perform well have all of them the 

building block ifelse food-ahead [move] [turn-right} which will be called for shortness 

"basic condition". It is noted here that the "basic condition" solves the straight and corner 

parts which are the dominant parts of the trail. Instead, the grammars that have specialised 

building blocks that solve particular irregularities of the trail could not find a solution (BB 

#5 and BB #6) or had a very low success rate (BB #7) probably because they define a 

more difficult and complex search space due to the fact that the irregularities their 

building blocks solve are few in the trail in contrast to the relative high chance of these 

building blocks being selected from the <op> non-terminal against the primitive actions. 

The BB #7 grammar definition has additionally one "basic condition" building block and 

was able to find a solution, although with a very low success rate (3%). 

Also, the absence of the terminals turn-left and turn-right in BB #8 resulted in a 1 % 

success rate even though the "basic condition" substitutes the turn-right action with the 

same number of required steps and can substitute the turn-left action using three steps 

instead of one (by performing a 270° rotation). Consequently, the absence of the turn-left 

terminal operator affects the economy of the required moves to find all pieces of food in 

the trail. This economy factor is the main reason for the ineffectiveness of this grammar in 

conjunction with the fact that the search space becomes more complex (rotations are 

required instead of a single turn). 

An interesting observation from the experimental results is that BB #2 (30%), BB #3 

(30%) and BB #4 (32%), which have building blocks only of the "basic condition" type, 

achieved similar success rates even though BB #3 has double and BB #4 triple number of 

useful "basic condition" blocks than BB #2. It seems that there is some kind of 

"equilibrium" regarding the impact of the number of these building blocks in the success 

rate, with three blocks to be the lower bound (the same number with the primitive actions 

in the grammar). This lower bound could be called here arbitrarily the "50% rule" (for the 

specific grammar, building blocks and problem) because the added building blocks are 

half of all action terminal symbols of the <op> non-terminal. 

In order to investigate the above assumption, new experiments are required usmg 

grammars with more "basic condition" blocks. Also, if this observed "equilibrium" is true, 

the question that arises is whether it has an upper bound after which the performance 

decreases, and if yes, what is its value. For this reason, seven new experiments have been 

128 



conducted using the same GE experimental configuration with the grammars BB # 1 until 

BB #4 with the only difference being the number of the added "basic condition" building 

blocks in the grammar. Figure 6.1 shows the experimental results (success rates) of the 

new setups where 12, 15, 18, 27, 36, 72, and 144 "basic condition" building blocks were 

added, and compares them with the results of the previous setups (BB #I - BB #4) and the 

original BNF-Koza grammar (zero number of added blocks). 

50% 
-.-GE using BNF-Koza with Building Blocks 

45% 
(II 

§ 40% ... 
8 35% ..... 
. £ 30% -
~ 25% 
..... 
ro 20% a:: 
(II 
(II 

15% Q) 
u 
u 
::J 10% (/) 

5% 

0% 

0 1 3 6 9 12 15 18 27 36 72 144 

Number of "basic condition" building blocks 

Figure 6.1: Success rate over 100 evolutionary runs of GE using BNF-Koza with and 
without a variety number of "basic condition" blocks additions in the grammar. 

The graph shows that when adding one "basic condition" the success rate increases from 

10% (GE using original BNF-Koza without building blocks) to 19%. The addition of three 

or more "basic condition" blocks results in a success rate approximately 30% until the 

point of the addition of fifteen blocks (24%). After that, a decrease in performance occurs 

continuing down to a success rate of 10% with 72 blocks, and finally of 4%, when the 

blocks are 144, which is lower than the success rate of BNF-Koza without using building 

blocks (10%). 

The experimental results confirm the previously stated hypothesis that in this specific 

setup (problem, grammar and type of added building blocks) there is an "equilibrium" 

regarding the impact of the number of the added building blocks in the success rate , with 

lower and upper bounds three and twelve building blocks approximately. 

129 



Probably the reason of an upper bound, after which the success rate decreases and reaches 

finally a point of lower performance than without using building blocks, is the decrease of 

the probability the turn-left terminal being selected which proved to be important as 

shown in the results of BB #7. Therefore, as each terminal symbol, primitive ( original) or 

complex (building block) has a merit ( contribution) in the search for a solution, if the 

addition of more building blocks actually "precludes" a useful terminal ( of which the 

merit cannot be substituted by an equivalent terminal or building block) by substantially 

reducing its probability of being selected, this has a negative impact in the performance. 

Also, there is some point after which the benefit of adding more useful building blocks 

will be lost due to the negative impact of lowering the probability of utilising the merit to 

the solution of some original (primitive) terminal symbol or other useful building block. 

This does not happen if the merit of the "precluded" terminal symbol is substituted by 

some added building blocks. For example, if the merit (contribution) of the turn-left 

terminal symbol is substituted with the addition of a new "basic condition" which makes 

the ant turn left instead of right, this would probably benefit the performance. This reveals 

the impact on the performance of the number of the added building blocks, especially if 

their usefulness and diversity is not known in advance or is not at least controllable. 

Gariday (2008) provides a theoretical framework for studying the impact of modularity in 

the search space of evolutionary algorithms and an experimental study using Modular GA. 

Further investigation about the impact of the number and the type of the added building 

blocks in the performance of Grammatical Evolution could be beneficial to future research 

of GE applications of modularity. 

6.5 Grammars with Conditional Statement Bias 

The grammar definitions of the experiments conducted in this section declaratively bias 

the search space defined by the BNF-Koza grammar definition (Listing 6.1) by enforcing 

the creation of control programs which start with if-else conditional statements. Namely, 

the resulting ant control programs are forced to perform a check ( condition) whether there 

is food ahead and if yes to take the appropriate action (behaviour). When no food is found 

ahead, the control program is forced to take some other action and/or perform a new check 

(alternative behaviour) and so on. This could be considered as an attempt to encode in the 

130 



grammar a form of domain knowledge for agent-oriented problems, which is generally 

applicable to such problems and not only to a specific problem instance. 

The experiments test the hypothesis whether a bias toward ((-else conditional statements 

in the start of the ant's control program will increase the performance of Grammatical 

Evolution in the Santa Fe Trail problem. The presentation and description of the 

grammars is following. 

6.5.1 Grammar Definitions 

In the grammar of Listing 6.10 (CB #1), a language bias has been applied resulting in a 

grammar which defines a different and restricted search space than that defined by BNF­

Koza (Listing 6.1 ). It biases the language to constructs in which the control program 

performs successive checks whether there is food ahead. Note that the production of line 

( 1) constructs consecutively nested checks of the form: check, if food found take some 

action else take some action and check again. The bias toward constructs with a 

conditional statement in the start of the program is I 00% (therefore 0% toward a primitive 

action turn-left, turn-right, or move). Instead, the bias toward a conditional statement or a 

primitive action in BNF-Koza is 50%. Also, the IF branch of a conditional statement in 

grammar CB #1 is always (100%) a single primitive action. 

N {behaviour, op) 
T {turn-left , turn-right , move , ifelse , food - a head, [ , J } 

S behaviou r 

P : 
<behaviour> : : = ifelse food-ahead <op>] [ <op> <behaviour> J I 

ifelse food-ahead <op>] [<op>] 
<op> : : = turn- left I 

tur n-right I 
move 

Listing 6.10: BNF-Koza with Conditional Bias (CB) Version #1. 

(1) 

(2) 

The grammar of Listing 6.11 (CB #2) adds to the previous grammar the production rule 

<op> to the non-terminal symbol <behaviour> in line (1). This allows a <behaviour> 

non-terminal to be expanded to a primitive action (turn-left, turn-right, move) with 33% 

chance of being selected (against 0% in CB #1) and to a conditional statement with 67% 

chance of being selected ( against 100% in CB # 1) weakening in this way the language 

131 



bias. The <op> non-terminal symbol is always (100%) expanded to a single primitive 

action (turn-left, turn-right, move) as in the previous grammar. 

N {behaviour , op} 
T {turn- left , turn- right , move , i felse , food- ahead, [ , ] } 
S behaviour 

P: 
<behaviour> : : = ifelse food-ahead <op>] [ <op> <behaviour> ] I 

ifelse food- ahead <op>] [<op>] I 
<op> (1) 

<op> : : = turn-left I 
turn- right I 
move 

Listing 6.11: BNF-Koza with Conditional Bias (CB) Version #2. 

Both grammars which are defined in Listing 6.10 (CB # 1) and Listing 6.11 (CB #2) state a 

language bias. The remaining grammars in this section state only a search bias. Namely, 

they define a search space semantically equivalent to that defined by BNF-Koza (same 

language bias) but they aim to bias the search toward those areas of the search space 

which are defined by the previous grammars CB #1 and CB #2. This search bias is 

implemented in the grammar definition of Listing 6.12 (CB #3) with the "wrapping" of 

the BNF-Koza grammar definition (Listing 6.1) by the grammar of Listing 6.11 (CB #2). 

Namely, the non-terminal symbol <op> in line (I) of Listing 6.11 (CB #2) has been 

replaced by the non-terminal symbol <expr> of the BNF-Koza definition of Listing 6.1. 

In the grammar CB #3, the <expr> non-terminal symbol (equivalent to the <op> non­

terminal symbol of the next grammars presented in this section) expands to conditional 

statements or primitive actions with chance of 50%. Therefore, the bias toward 

conditional statements in the start of the program in this grammar is approximately 83% 

(67% from the start symbol and half of the 33% from the <expr> non-terminal). The 

<op> non-terminal symbol of this grammar always expands (100%), as in the previous 

grammars, to a single primitive action. 

N {behaviour, op , expr , line} 
T {turn-left , turn-right , move , ifelse , food- ahead, [, ] } 
S behaviour 

P: 
<behaviour> : : = ifelse food-ahead <op> ] [ <op> <behaviour>] I 

ifel se food-ahead <op> l [ <op> l I 
<expr> (1) 

132 



<expr> 

<line> 

<op > 

: := <line> I 
<expr> <line> 

: := ifelse food-ahead [ <expr> J [ <expr> J I 
<op> 

: : = t u rn- l e f t I 
turn-right I 
move 

Listing 6.12: BNF-Koza with Conditional Bias (CB) Version #3. 

( 2 ) 

( 3) 

( 4 ) 

(5) 

The grammar definition of Listing 6.13 (CB #4) is semantically equivalent (defines the 

same space of possible hypotheses) with BNF-Koza (Listing 6.1) and CB #3 (Listing 

6.12) grammars but biases the search in a different way. Namely, it promotes the selection 

of primitive actions (turn-left, turn-right, move) when the non-terminal symbol of the 

third production <op> of the <behaviour> non-terminal symbol has to be expanded. This 

is done with the replacement of <expr> with the <op> non-terminal symbol in CB #4 

which is expanded with a chance 3/8 (approximately 3 7%) directly to a single primitive 

action. Consequently, the bias toward conditional statements in the start of the program in 

this grammar is approximately 77%. Also, in this grammar the IF branch of the 

conditional statements of the start symbol does not expand anymore only to a single 

primitive action. The chance now of primitive actions being selected in these IF branches 

is approximately 70% (from 100% in the previous grammars). 

N {behaviour, op , complex- op , single- op , line} 
T {turn- left , t urn- right , move , ifelse , food- a head, [ , ] } 
S behaviour 

P : 
<b ehaviour> :: = ifelse food-ahead <op> J [ <op> <behaviour> J I 

ifelse food-ahead <op> J [ <op> J I 

<op> 
<op> 

: : = <single-op> 
<single-op> 
<single-op> 
<complex-op> 
<complex-op> 
<complex-op> 
<complex-op> 
<complex-op> 

<complex-op>::= <line> I 
<complex-op> <line> 

<line> : := ifelse food-ahead [ <complex-op> J [ <complex-op> J I 
<single-op> 

<single-op> : := turn-left I 
turn-right 

move 

Listing 6.13: BNF-Koza with Conditional Bias (CB) Version #4. 

133 

(1) 

(2) 

(3) 

( 4 ) 

(5) 

( 6) 

(7) 

(8) 

( 9) 

(10) 

{11) 

(12) 

(13) 

(14 ) 

(15) 
(16) 



In the grammar definition of Listing 6.14 (CB #5), the bias of the <op> non-terminal 

symbol toward primitive actions is increased to 75%. Therefore, the bias toward 

conditional statements in the start of the program in this grammar is approximately 74%. 

N {behaviour , op , complex-op , single- op , line} 
T {turn- left , turn- right , move , ifelse, food- ahead , [, ] } 
S behaviour 

P: 
<behaviour> 

<op> 

ifelse food - ahead <op> ] [ <op> <behaviour> ] I 
ifelse food-ahead <op>] [<op>] I 
<op> 
<single- op> 
<single-op> 
<single- op> 
<complex-op> 
<complex-op> 

(1) 

(2) 

<complex-op> { 3) 

<complex-op> 

<line> 

<single-op> 

<line> I 
<complex-op> <line> 
ifelse food-ahead <complex-op>] [ <complex-op>] I 
<single- op> 
turn-left I 
turn- right I 
move 

Listing 6.14: BNF-Koza with Conditional Bias (CB) Version #5. 

Finally, in the grammar of Listing 6.15 (CB #6), the bias of the <op> non-terminal 

symbol toward primitive actions is increased to 88%. Consequently, the bias toward 

conditional statements in the start of the program in this grammar is further decreased to 

approximately 70%. 

N {behaviour , op , complex- op , single- op , line} 
T {turn- left , turn- right , move , if else , food- ahead , [ , ] } 
S behaviour 

P: 
<behaviour> 

<op> 

<complex- op> 

<line> 

<single- op> 

ifelse food- ahead <op>] [ <op> <behaviou r>] I 
ifelse food-ahead <op> J [ <op> J I 
<op> 
<single-op> 
<single- op> 
<single-op> 
<complex-op> ( 1) 

<line> I 
<complex- op> <line> 
ifelse food-ahead <complex- op> ] [<complex- op> ] I 
<s i ngl e - op> 
turn-left I 
turn-ri gh t I 
move 

Listing 6.15: BNF-Koza with Conditional Bias (CB) Version #6. 

134 



6.5.2 Experimental Results 

Table 6.3 displays properties of the setups and the experimental results. The description of 

the fields of the results table is following: "Runs" is the number of evolutionary runs 

performed in each experiment, "Language Bias" is whether the grammar restricts the 

space of possible hypotheses, "Search Bias" is whether the grammar biases the search, 

"IF Statement %" is the chance of a conditional statement in the start of the program, 

"Action%" is the probability of a primitive action (turn-right, turn-left, move) in the start 

of the program, "Action % in IF Branch" is the bias toward primitive actions in the IF 

branch of a conditional statement of the start symbol, "Steps" is the required steps of the 

best solution found, "Genotype Size" is the size of the genotype in bits of the best solution 

found, and "Success Rate" is the percentage of successful runs. 

a e . : CSU S 0 T bl 6 3 R It f GE USID!?: t C -h BNF K oza C d .. on 1taona aas vana aons. I B. ·r 
CB#l CB#2 CB#3 CB#4 CB#S CB #6 

Runs 100 100 100 100 100 100 

Language Bias Yes Yes No No No No 

Search Bias Yes Yes Yes Yes Yes Yes 

IF Statement % 100% 67% 83% 77% 74% 70% 

Action% 0% 33% 17% 23% 26% 30% 

Action % in IF Branch 100% 100% 100% 70% 75% 88% 

Steps 405 405 405 397 395 395 

Genotype Size 111 128 1028 2138 1223 472 

Success Rate 99% 93% 82% 19% 35% 74% 

6.5.3 Discussion 

Grammatical Evolution using the grammars CB #1 and CB #2, which state a strong 

declarative language bias, achieves high success rates 99% and 93% respectively, higher 

than these with BNF-Koza (10%) or BNP-O'Neill (78%). This demonstrates the 

potentiality of this type of enforced bias, namely, toward conditional checks in the start of 

the control program of the type in Listing 6.10 and Listing 6.11. 

The grammars CB #3, CB #4, CB #5, and CB #6 define search spaces semantically 

equivalent with this defined by BNF-Koza but they state different search biases. All these 

135 



grammars outperform BNF-Koza in terms of success rate. The grammar CB #3, which 

achieves a success rate of 82%, and the grammar CB #6, which achieves a success rate of 

74%, define search spaces which are closer to these of CB #1 and CB #2 than these of CB 

#4 and CB #5, due to the high "Action % in IF Branch" rate. 

An interesting observation is that even though CB # 1, CB #2, and CB #3 result in 

significant high success rates , they found solutions requiring at least 405 steps, when it is 

known from the experiments conducted in Chapter 5 that better solutions exist (requiring 

less steps). This could be thought as a result of the strong declarative language bias which 

may exclude areas where better solutions exist (e.g. the solution of Listing 5.6 cannot be 

constructed by the grammars CB #1 and CB #2) or makes these solutions practically 

unreachable even though they exist in the biased search space (such a case could be CB #3 

which defines a search space semantically equivalent to the original). It seems that the 

main reason for this performance regarding the solution quality is that the first branch of 

the conditional statements of the <behaviour> non-terminal symbol allows the expansion 

to only one primitive action (turn-leji, turn-right, or move) in these grammars. 

Instead, the grammars CB #4, CB #5, and CB #6 allow the expansion to all possible 

structures of both branches of the conditional statements of the <behaviour> non-terminal 

symbol. This results in lower success rates but in also finding better solutions (requiring 

for example 395 or 397 steps). It is also noticed that CB #6 has a strong search bias 

toward primitive actions in the first branch of the conditional statements of the 

<behaviour> non-terminal, which could explain its significantly higher success rate than 

those of the CB #4 and CB #5 grammars. 

Another observation is that the grammars CB #4 (19%), CB #5 (35%), and CB #6 (74%) 

show an increase in performance which is inverse to the selection chance of the 

<complex-op> production rule of the <op> non-terminal symbol. It is noted that even 

though CB #6 achieves the higher success rate between these grammars, its bias seems to 

be similar to that enforced in CB #3 due to the high "Action % in IF Branch" value, which 

questions whether better solutions than this found in the conducted experiment are 

practically reachable using this grammar. 

136 



6.6 Conclusions 

According to Whigham (1996), for Genetic Programming to be truly applicable over a 

wide variety of problems, explicit language and search bias is necessary to restrict the 

search space and make the discovery of a suitable computer program tractable. An 

important component of bias is correctness (Whigham, 1995b) which describes how well 

a bias is suited to a problem. Namely, if a bias is not correct, the solution to the problem 

cannot be expressed (Banzhaf, 1994; Whigham, 1996; Murphy 2011 ), or the constrained 

nature of the search space may render the search more difficult (McKay, et al. , 2010). 

The experiments of this chapter highlight the effects and demonstrate the effectiveness of 

two general forms of grammatical bias in the Santa Fe Trail problem. The first is an 

application of modularity using building blocks consisting of useful code segments 

implemented as additions of productions in the grammar. The second form of grammatical 

bias encodes in the grammar a generally applicable domain knowledge of the class of 

agent-oriented problems which is implemented as checks (conditional statements) in the 

start of the ant' s control program. 

It is shown that utilising these forms of grammatical bias a performance increase of 

Grammatical Evolution in the Santa Fe Trail problem in terms of both effectiveness 

(success rate) and efficiency (solution quality) can be achieved. Additionally, it is shown 

that a strong declarative language or search bias may result in a higher success rate but 

there is the risk that this may be achieved against the solution quality. 

137 



Chapter 7 

Constituent Grammatical Evolution 

7.1 Introduction 

In this chapter, Constituent Grammatical Evolution (CGE) is presented, a new 

evolutionary automatic programming algorithm that extends the standard Grammatical 

Evolution algorithm by incorporating the concepts of constituent genes and conditional 

behaviour-switching. CGE builds from elementary and more complex building blocks a 

control program, which dictates the behaviour of an agent, and it is applicable to the class 

of problems where the subject of search is the behaviour of an agent in a given 

environment. It takes advantage of the powerful Grammatical Evolution feature of using a 

BNF grammar definition as a plug-in component to describe the output language to be 

produced by the system. 

The main benchmark problem in which CGE is evaluated is the Santa Fe Trail problem. 

Furthermore, CGE is evaluated on three additional problems, the Los Altos Hills, the 

Hampton Court Maze, and the Chevening House Maze (these problems are presented in 

detail in sections 2.5.4 and 2.5.5). The experimental results demonstrate that Constituent 

Grammatical Evolution improves the standard Grammatical Evolution algorithm in all of 

these problems, in terms of both problem solving effectiveness (success rate) and 

efficiency of solutions found ( actions performed to complete). 

Constituent Grammatical Evolution, as well as part of the work presented in this chapter, 

has been first published in Georgiou and Teahan (2011). 

7.2 Motivation and Main Concepts 

The goal of Constituent Grammatical Evolution is to improve Grammatical Evolution in 

terms of effectiveness (percentage of solutions found in a total of evolutionary runs) and 

efficiency (solution quality in terms of the characteristics of the problem in question) in 

agent-oriented problems like the artificial ant. The main benchmark problem in which 

138 



CGE is first evaluated is the Santa Fe Trail problem. Therefore, the specific goals are: 

first, to improve the success rate of evolutionary runs in the Santa Fe Trail problem 

against standard Grammatical Evolution; and second, to find solutions which will require 

fewer steps than the solutions the Grammatical Evolution algorithm is usually able to find. 

Constituent Grammatical Evolution tries to tackle three of the Grammatical Evolution 

issues discussed in section 2.2.8 and Chapter 5 of this text, in the following ways: 

• restricting the search space using generally applicable domain knowledge of the 

problem in question without excluding good solutions; 

• reducing the impact of destructive crossover events; and 

• resolving the genotype bloating. 

The above are achieved by augmenting and improving the standard Grammatical 

Evolution algorithm, with the incorporation of three unique features of the Constituent 

Grammatical Evolution algorithm: 

• the conditional behaviour-switching approach, which biases the search space 

toward useful areas applying generally applicable knowledge of the agent-oriented 

problems domain (conditional checks); 

• the incorporation of the notion of genes, which provides useful and reusable 

building blocks and reduces the impact of destructive crossover events through 

modularity; and 

• the restriction of the genotype maximum size, which resolves the genotype bloat 

phenomenon. 

The BNF based genotype-to-phenotype feature of Grammatical Evolution enables the 

implementation of two of the CGE' s unique features (genes and behaviour-switching) in a 

straightforward and very flexible way through the modification and adaptation of the BNF 

grammar definition as is shown in the forthcoming sections. 

7.2.1 The Constituent Genes Concept 

The cost of exploration via crossover in Genetic Programming, therefore in Grammatical 

Evolution as well, is the possible destruction of building blocks, namely the disruption of 

139 



functional parts of the individual (O'Neill, Ryan, Keijzer and Cattolica, 2001). The impact 

of destructive crossover events in Grammatical Evolution can be reduced with a 

mechanism which indicates and preserves useful blocks of genetic material. 

Angeline and Pollack (1993) note that modularity freezes possible useful genetic material, 

by protecting it from the destructive effect of genetic operators. Also, modularity helps in 

decreasing the average size of individuals (Rosca and Ballard, 1994). Furthermore, 

Hemberg (2010) examines disruptions in the phenotype caused by a change in genotype 

(e.g. crossover and mutation) in Grammatical Evolution. He shows that the fewer non­

terminals there are in the grammar, the less susceptible it will be to disruption when the 

genotype changes. Also, he shows that probability for the phenotype to change increases 

with the position of the codon in the chromosome and that a longer chromosome makes 

disruptions more probable. 

Therefore, indicating and preserving useful blocks of genetic material (namely useful 

functional parts) will benefit Grammatical Evolution regarding the impact of destructive 

crossover events in two ways. First, these building blocks will be protected from 

crossover because they wi ll correspond to undivided segments of useful functional parts, 

and second they will shorten the chromosome of the individual (making disruptions less 

probable) because they will compress more information into a single choice of a 

production with fewer codon readings required to get to larger phenotypes. Additionally, 

if the building blocks are incorporated in the grammar in a way that does not increase the 

number of the non-terminal symbols, the resulted grammar will not become more 

susceptible to disruption during crossover than before the addition. 

CGE implements modularity by taking inspiration from nature, in particular from genes. 

In biology, a gene is a sequence of nucleic acid base pairs that encodes a program with a 

specific function and controls characteristics of an organism (Mayr 2002, p.102). Genes 

are the basic unit of heredity and the set of the genes found in a population constitute the 

gene pool of this population (Mayr 2002, pp.100-103 ; p.116). 

The concept of genes in CGE is implemented using constituent genes which are so named 

because they form basic elements for the construction of segments (building blocks) of the 

phenotype of an individual. The first step of the algorithm is the evaluation of randomly 

created candidate constituent genes and the selection of the fittest of them to form the 

140 



genes pool. Then the phenotypes of the constituent genes of the pool are added in the 

grammar definition of the problem in question as productions, and finally a Grammatical 

Evolution run starts using the modified grammar. 

Namely, genotypes of candidate constituent genes are created randomly. They are mapped 

to their phenotypes using the original (unbiased) grammar of the problem in question, and 

then they are evaluated in randomly selected smaller parts of the problem. The best of 

them are selected for the genes pool according to their fitness value. The phenotypes of 

the constituent genes of the pool are added in the grammar definition as productions in a 

non-terminal symbol which expands to terminals semantically equivalent with the added 

phenotypes in order to not violate the syntax of the grammar. Therefore, the set of the 

primitive terminal symbols of the BNF grammar definition is enriched with the 

phenotypes of the constituent genes (in this context, as primitive terminals are defined as 

the smallest units that can form a valid construct of the language). The modified grammar 

is then used by Grammatical Evolution to perform an evolutionary run. 

The exact implementation of the evaluation and selection of the constituent genes depends 

on the kind of the problem. For example, in the case of the artificial ant and maze search 

problems, the candidate constituent genes are evaluated by randomly "throwing" them in 

the environment and executing their control programs for a specified number of iterations 

to evaluate the degree they contribute toward the objective of the problem. A detailed 

description of the algorithm and a specific implementation in the artificial ant problem are 

provided in the following sections 7.3 and 7.4 respectively. 

It is worthwhile to note here that randomness is intentionally chosen as the creation 

mechanism of the constituent genes of the CGE algorithm, in order to evaluate the 

usefulness of this concept without being interfered and affected by the positive and/or 

negative aspects of a probably more useful and well suited genes creation mechanism. 

One could think also about this random process as an analogy to the hypothesis of the 

accidental creation of the genetic material of the first living organisms ( single-cell 

prokaryotes) which formed the basis for the evolution to the eukaryotes and more complex 

organisms (plants and animals) . 

Constituent genes have the following characteristics: 

141 



• They constitute segments of terminal symbols (executable code) and not 

parameterized functions. 

• They have been already evaluated with respect to their usefulness at solving 

smaller parts of the problem in question during the genes pool creation process. 

• They are not divided during the crossover operation. 

• They are not partially affected by the mutation operator. 

• They are of variable length with predefined minimum and maximum length. 

The aim of the constituent genes is to augment the set of the primitive terminal symbols of 

the grammar with more complex terminals. In the artificial ant problem for example, they 

enrich the set of the primitive ant's actions (turn-left, turn-right, and move) with more 

complex behaviours. Where exactly the phenotypes of the constituent genes are added as 

productions is usually a design decision before a CGE run, especially in cases where that 

is not obvious. In any situation, the following rules must be satisfied regarding their 

addition in the grammar: 

1. Constituent genes are added as productions in a non-terminal that expands only to 

terminal symbols or at least to one terminal symbol. 

2. The selected non-terminal expands to terminals which are semantically equivalent 

with the gene's phenotype in order to not violate the correctness of the syntax of 

the programs which are created with the modified grammar. 

3. The number of the non-terminal symbols that expand to more than one production 

( codon read required) is not increased in order to not make the modified grammar 

more susceptible than the original grammar to disruption when the genotype 

changes. 

An example of how the phenotypes of the constituent genes are added in the grammar 

definition is shown in Listing 7.1 and Listing 7.2. Listing 7.1 shows two sample 

phenotypes of two constituent genes for the artificial ant problem and Listing 7 .2 shows 

the updated version of the <op> non-terminal symbol of the BNF-Koza grammar 

definition (Listing 5 .2) after the addition of these phenotypes as production rules. 

Constituen t gene A: ifelse food-ahead [move] [turn-right] (1 ) 
Const i tuen t gene B: move move turn-left (2) 

Listing 7.1: Sample phenotypes of two constituent genes for the artificial ant 
problem. 

142 



<op> turn- left I 
t urn- r i ght I 
move I 
ifelse food-ahead [move] [turn-right] I 
move move turn-left 

( 1) 

(2 ) 

( 3) 

( 4) 

(5) 

Listing 7.2: The updated <op> non-terminal symbol of BNF-Koza after the addition 
of the phenotypes of the constituent genes of Listing 7 .1. 

As can be shown in Listing 7 .2, the phenotypes of the constituent genes of the Listing 7 .1 

can be neither divided by crossovers or partially affected by mutations because they 

constitute undividable phenotype segments expressed as terminal symbols in the 

production rules (4) and (5) of the <op> non-terminal symbol. Section 7.8.1 provides a 

real sample of a genes pool (Listing 7 .25) and the modified grammar definition after the 

addition of the phenotypes of the constituent genes (Listing 7 .26). 

In the case of the BNF-Koza grammar it is obvious where constituent genes should be 

added. A different case is the grammar of Listing 3. 7 for the symbolic regression problem. 

Here there are three candidate non-terminals expanding only to terminal symbols (<op>, 

<pre-op> and <var>) but only <var> is suitable because the constituent genes terminals 

(valid arithmetic expressions) are semantically equivalent with the productions of only 

this non-terminal (primitive valid arithmetic expressions). Another similar example is the 

3 Multiplexer grammar used in O'Neill and Brabazon (2006a). In this grammar, the 

constituent genes should be added as productions of the non-terminal <input>. 

Constituent genes act as an emergent search bias mechanism - the possible hypotheses 

that can be constructed are not restricted - because they are created randomly based on the 

original grammar and they are added in the grammar as additional blocks of terminal 

symbols alongside with the original terminal symbols without removing or replacing 

productions. The probability that any of the constituent genes will be selected during the 

genotype-to-phenotype process depends on their number and the number of the 

productions of the non-terminal in which they are added. For example, in the experiments 

conducted in this chapter, the pool size parameter is set to 3 and the <op> non-terminal 

symbol of the grammars of the benchmark problems, where the constituent genes are 

added, have originally already three terminal symbols: move, turn-left, and turn-right. 

143 



Therefore, any constituent gene has the same probability that it will be selected with any 

of the single primitive actions of the original grammar. 

Whigham (1995a; 1995b; 1996) was the first to modify a context free grammar as the 

evolution proceeds by discovering and adding new productions as an example of learnt 

bias. The grammar is modified in two ways: replacing non-terminals with other non­

terminals and terminals in existing productions and adding them as new productions in a 

non-terminal symbol (without modifying the original productions) or creating new 

productions that represent underlying structure. In his work, the context-free grammar 

defines the structure of the initial language in a grammar-based GP system which does not 

apply a genotype-to-phenotype mapping process. Individuals are represented as derivation 

trees from the grammar and in order to introduce the new grammar into the population, he 

uses an operator called replacement where a portion of the population is recreated in every 

generation using the modified grammar. 

Another relevant body of work in the area of Genetic Programming , but not in 

Grammatical Evolution, is that conducted by Ryan, Keijzer and Cattolica (2004) with Run 

Transferable Libraries (RTLs) and McKay, Hoang, Essam and Nguyen (2006) with 

Developmental Evaluation (DEVTAG). RTLs are libraries of modules discovered and 

updated over a number of independent runs transferring knowledge acquired in the past to 

future evolutionary runs. The main differences with the genes pool used by CGE is that 

the RTLs contain parameterised functions instead of sets of terminals and that they are 

trained on "simple" problem instances, in order to tackle more difficult problems later on. 

Instead, genes pools are recreated in each evolutionary run in CGE. DEVTAG evaluates 

and compares individuals progressively from simpler instances of the same problem to 

more difficult instances during their development using tree-adjunct grammar in order to 

represent the individuals. Instead, CGE applies a random sampling of the problem space 

to evaluate candidate constituent genes in random parts of the problem without 

considering the developmental process of the individual. 

A similar approach to the concept of constituent genes and their addition in the grammar 

can be found in Swafford, O'Neill and Nicolau (2011) and Swafford, et al. (2011) where 

the building blocks are called modules. These modules are segments of potential useful 

phenotype and they are added in the BNF grammar during a Grammatical Evolution run as 

new productions of the start symbol (S) of the grammar either directly or indirectly 

144 



through a special non-terminal called mod_lib which acts as a library of modules. In CGE, 

the constituent genes are added always directly as productions in a non-terminal symbol 

that is expanded to terminals semantically equivalent with the added constituent genes and 

their probability of being selected is directly related with the semantically equivalent 

primitive terminals. Instead, the mod_lib is a more general approach for adding 

productions without requiring design decision. Also, the probability of a module to be 

selected depends on the number of productions of the start symbol (S) of the grammar. 

7.2.2 The Behaviour-Switching Concept 

The second unique feature of Constituent Grammatical Evolution is the incorporation of 

the notion of behaviour-switching utilising general problem domain knowledge applicable 

to agent-oriented systems. Namely, this is the enforcement of a switching of behaviours, 

through the use of a special BNF grammar definition, which is applicable to agent 

problems like the Santa Fe Trail. 

The motivation behind the enforcement of a behaviour-switching based approach was the 

intuition that the kind of problems involving agents are not solved efficiently enough with 

classical evolutionary algorithms because in their very nature these problems are about 

finding agents which should show a competent behaviour that is comprised of repetitive 

sequences of actions with re-occurring patterns and not just a meaningless combination of 

operations. For this reason, a different approach based on evolution of behaviour­

switching between constituents made up of basic actions should be more suitable for these 

kinds of problems. 

Specifically for the Santa Fe Trail, a series of experiments was conducted (see section 6.5) 

in order to investigate whether a conditional behaviour-switching approach, implemented 

in the BNF grammar definition (see Listing 7.3 , Listing 6.13 , Listing 6.14, and Listing 

6.15), could result in an improvement of the effectiveness and/or efficiency of the 

standard GE algorithm. The experimental results confirmed the correctness of the initial 

intuition and show a significant improvement on both effectiveness and efficiency. For 

example, using a conditional behaviour-switching approach - that is the BNF grammar 

definition shown in Listing 7.3 which defines a search space semantically equivalent with 

that of the original problem but enforces a search bias toward conditional statements - the 

success rate (percentage of experiments found a solution) of Grammatical Evolution 

145 



increased to 35% with the best solution found requiring only 395 steps (see section 6.5.2 

for detailed results of this grammar and its variations), against 10% and 415 steps 

respectively as shown with the GE using BNF-Koza experiments of section 5.5. 

N {behaviour, op , complex-op, s i ngle - op , line} 
T {turn - left , t urn - right, move , ifel se , food- ahead , [ , J } 
S beh avi our 

P: 
<behaviour> : := ifelse food-ahead <op>] [ <op> <behaviour>] I (1) 

<op> 

<complex -op> 

<line> 

<single- op> 

ifelse food-ahead <op>] [<op>] I (2) 

<op> (3) 
<single-op> 
<single- op> 
<single-op> 
<complex-op> 
<complex-op> 
<compl ex- op> 
<line> I 
<complex -op> <line> 

ifelse food-ahead <complex- op> ] [<complex- op>] I 
<single- op> 
turn-left I 
turn- right I 
move 

Listing 7.3: Example of a fixed behaviour-switching BNF grammar definition for the 
artificial ant problem (see also section 6.5 for variations of this grammar). 

With this approach, the resultant ant control programs are enforced, via the behaviour­

switching BNF grammar definition, to perform a check (condition) whether there is food 

ahead and if yes to perform the appropriate constituent behaviour. When no food is found 

ahead, the control program is forced to take some other alternative constituent behaviour 

and/or perform a new check, and so on. 

As constituent behaviour, any single or complex action of the agent is defined in this 

context. In the BNF grammar definition of Listing 7.3, it is represented with the non­

terminal symbol <op>. As can be seen, the <op> non-terminal in thi s grammar can be 

translated either directly to a single action (<single-op>) or to a set of multiple actions 

(<complex-op>) with the same probability (50%). 

The production rules (1) and (2), of the non-terminal symbol <behaviour>, are the 

important points where the behaviour-switching approach is imposed in this grammar 

definition. Namely, when <behaviour> is translated to one of these production rules, the 

146 



agent is enforced to perform the previously mentioned check ( condition) of whether there 

is food ahead or not. Depending on the selected production rule , the agent will be 

imposed to proceed with subsequent checks (production rule number one) or not 

(production rule number two). In this way, a kind of memory is incorporated indirectly in 

the ant' s behaviour, because the resultant control program can be expressed as a simple 

finite-state machine of the form shown in Listing 7.4. 

If food ahead 
e xecute cons t ituen t behaviour 1 

Else 
execut e constituen t behaviour 2 
If food ahead 

e xecute constituent behaviour 3 
Else 

execute const ituent behav iour 4 
If food ahead 

e xecute const i tuen t behav iou r 5 
Else 

End If 
End If 

End If 

(State 1) 

(State 2) 

(State 3) 

(St a te N) 

Listing 7.4: Behaviour-switching represented as pseudo-code with a corresponding 
FSM. 

The grammar definition example of Listing 7.3 for the artificial ant problem defines a 

search space which is semantically equivalent with the search space of the original 

problem as defined by Koza (1992) due to the fact that this grammar is the BNF-Koza 

grammar definition of Listing 5.2 wrapped by the conditions of the production rules (1) 

and (2) of the <behaviour> non-terminal symbol in order for a declarative search bias to 

be stated. The production rule (3) of the <behaviour> non-terminal symbol exists to allow 

the bypassing of the condition checking enforcement. 

The behaviour-switching BNF grammar definition used by COE in the benchmark 

problems of this work is of the form of the BNF grammar definition shown in Listing 7 .3 

with the following modifications in the productions of the <op > non-terminal symbol: the 

three <single-op > productions are replaced by the three terminals turn-left, turn-right, 

move and the <complex-op> non-terminal symbols with the phenotypes of the constituent 

genes. If the constituent genes are more than three , they are added as additional 

productions of the <op> non-terminal. This modified grammar states a declarative 

language bias which can be expanded to areas of the excluded search space - where good 

147 



solutions may exist - with the addition of the constituent genes before a Grammatical 

Evolution run. 

Whigham ( 1996) was the first to investigate the impact and the potential benefits of 

grammatical bias in a grammar-based GP system where a context-free grammar is used to 

define the structure of the individuals. He demonstrates the use of declarative bias to 

modify the search space by adjusting the grammar so that it represents more closely the 

believed solution and he shows the importance of this as it gives a clear statement of bias 

which is external to the learning system. 

7.2.3 Genotype Bloating Elimination 

A third feature which differentiates Constituent Grammatical Evolution from the standard 

Grammatical Evolution algorithm is the incorporation of a limit to the genotype size of the 

individuals. After each crossover operation, the length of the offspring is checked against 

this limit. If the limit is exceeded, the genotype of the offspring is pruned, starting from 

the end, until it is reduced to the maximum allowed size. 

With the enforcement of this limit, the genotype bloating phenomenon is tackled even 

though GE literature mentions that this phenomenon could be beneficial because it 

reduces the effect of the destructive crossovers (O'Neill, Ryan, Keijzer and Cattolica, 

2003). In Constituent Grammatical Evolution, as discussed in section 7.2.1 , the impact of 

destructive crossover events is reduced through the utilisation of modularity / building 

blocks (Angeline and Pollack, 1993; Rosca and Ballard, 1994; Hemberg, 2010). 

The elimination of the genotype bloat increases the performance of the evolutionary 

algorithm in terms of required processing power because the decrease of the size of the 

genotype of the individuals leads to fewer non-terminal expansion-to-production 

operations during the genotype-to-phenotype mapping process of an individual and 

consequently to less average mapping time. This is demonstrated in section 7.7.4 and 

further investigated and discussed in section 7.8.3 where this feature is benchmarked 

using different limits on the Santa Fe Trail with Grammatical Evolution using BNF-Koza. 

148 



7.3 CGE Algorithm Description 

The Constituent Grammatical Evolution algorithm uses four inputs as depicted in Figure 

7.1: a problem specification, a language specification, a behaviour-switching 

specification, and the grammatical evolution algorithm. 

Problem 
Specification 

Language 
Specification Solution 

Grammatica! 
Evolution 

Figure 7.1: Constituent Grammatical Evolution inputs. 

• Problem Specification (PS) is the program which simulates the problem in question 

and assigns to each individual and constituent gene a fitness value. 

• Language Specification (BNF-LS) is the original unbiased BNF grammar definition of 

the problem in question which dictates the grammar of the output programs of the 

individuals which are executed by the problem specification simulator. It is used for 

the genotype-to-phenotype mapping of the constituent genes. 

• Behaviour-Switching Specification (BNF-BS) is the BNF grammar definition which 

modifies the Language Specification (BNF-LS) by incorporating in the original 

specification (BNF-LS) the switching behaviour approach - one of the unique features 

of COE. Namely, the BNF-BS specification is a BNF grammar definition which 

enforces a conditional check before each agent's action and states a declarative 

language bias in order to restrict the search space to potentially more useful areas. 

• Grammatical Evolution Algorithm ( GE) is the evolutionary algorithm which is used 

for the evolution of the population of the individuals. 

In addition with these inputs, Constituent Grammatical Evolutions is configured with the 

parameters described in Listing 7.5. 

149 



• Individual Max Codons (IMC): 

The maximum allowed number of codons of an individual during a GE evolutionary 

run. If the value of IMC is zero (0), then no size limit is enforced on the genotype. 

• Genes Pool Size (S): 

The size of the pool of the constituent genes (namely, the number of constituent genes 

used for the construction of the phenotype of an individual). This size must be less than 

the number of all possible decimal values of a codon 's bit string, e.g. if the codon size 

is 8, then the pool size S must be less or equal to 256 - y , where y is the number of the 

basic/elementary terminal symbols of the BNF-LS grammar. 

• Gene Generations (G): 

How many times populations of genes are randomly created. Dictates the total number 

(M) of randomly created genes. This number (all candidate genes created) is M = S * G. 

• Gene Evaluation Iterations (L): 

The iterations of the execution of the program of a candidate constituent gene in order 

to determine the interim (temporary) fitness value of this gene. 

• Gene Evaluations (£): 

The number of times a candidate constituent gene is evaluated (interim fitness values). 

• Gene Codons Min (CMin): 

The minimum allowed size in codons of a randomly created candidate constituent gene. 

• Gene Codons Max (CMax): 

The maximum a llowed size in codons of a randomly created candidate constituent 

gene. 

• Gene Max Wraps (W): 

The maximum number of wraps a llowed during the genotype-to-phenotype mapping of 

a constituent gene. 

Listing 7.5: CGE configuration parameters. 

The overall description of the Constituent Grammatical Evolution algorithm is depicted in 

Listing 7.6. Namely, using the previously described inputs and the COE specific 

parameters (IMC, S, G, L, E, CMin, CMax, and W) as defined in Listing 7.5, a pool P of 

constituent genes is created and filled in the following way. S genes are randomly created 

which are represented as binary strings. These genes will be candidates for the pool of the 

constituent genes. The minimum length of each string is CMin codons and the maximum 

length is CMax codons (the size in bits of each codon is specified by the Grammatical 

Evolution algorithm; usually its value in the Grammatical Evolution literature is eight). 

150 



II Creation of the constituent genes pool 
Set c u rrent constituent genes pool P of size S 
Repeat G times 

Create a new empty pool P' 
Repeat until P' is full 

Create gene N with genotype size C codons (CMin ~ C ~ CMax) 
Map genotype of N to phenotype using BNF-LS and W max wraps 
Seti 0 
While i < E 

Put Nin a random environment l ocation of PS 
Set direction of N randomly 
Repeat L times 

Execute phenotype (program) of N 
End Repeat 
Calculate and set interim fitness value Vi of gene N 
Seti= i + 1 

End While 
Calculate and set final fitness value F of gene N 
Add N to P' 

End Repeat 
Create a pool T of size 2*5 
Add to T the genes of P and P' 
Sort T according the fitness values F of genes 
Create an empty P' ' 
Add t o P'' the best S genes of T 
Replace P with P' ' 

End Repeat 

II Addition of the constituent genes in the original grammar 
For each gene Nin P 

Add phenotype of Nin BNF-BS grammar definition as a 
production to a non- terminal which expands to semantically_ 
equivalent terminal symbols . 

End For 

II Grammatical Evolution run 
Create population R of individuals 
While solution not found and max generations limit not exceeded 

Evolve population R with Grammatical Evolution using BNF-BS_ 
grammar and enforcing IMC Limit to individuals ' genotypes 

End While 
Retrieve solution K 

Listing 7.6: The Constituent Grammatical Evolution algorithm. 

The fitness function for the evaluation of the candidate constituent genes depends on the 

problem specification and is similar to the fitness function used for the individuals in the 

problem in question. The general concept behind the creation and evaluation of the 

constituent genes is to find reusable modules from which the genotype of the individual 

will be constructed. For demonstration purposes, the way constituent genes are evaluated 

(described next) is based on the implementation in the Santa Fe Trail problem. 

The fitness value F of each gene 1s calculated as follows. First, the gene' s genotype is 

mapped to its phenotype using the language specification BNF-LS (BNF grammar 

151 



definition) and the Grammatical Evolution mapping formula with W genotype wraps limit. 

Then, the gene is placed in a random location of the environment with a random heading. 

The gene's code (the phenotype as for an individual) is executed for L times and evaluated 

to produce an interim fitness value. In this way, the control program runs for a while 

before the fitness value is calculated (in case of the Santa Fe Trail problem, number of 

pieces of food found during the run). Therefore, the gene has the chance to be tested in a 

larger part of the trail if randomly placed on or near the trail , and consequently the fitness 

value is much more indicative about the effectiveness and efficiency of the control 

program (gene) than if it were allowed to run its code (control program) only once. 

Because the genes are placed randomly in the environment before each interim evaluation, 

in order to get a representative fitness value of the gene, the above interim evaluation 

( calculation of the interim fitness value) takes place for a number of times. Consequently, 

the interim fitness value is calculated E times. Then, the final fitness value of the 

candidate constituent gene is calculated with the formula shown in Equation 7 .1 

E uation 7.1: Final fitness value calculation 

F = (CV1 + •·· + VN)/N) X CVmaxfS) 

where: F is the final fitness value of the constituent gene used for comparison with other 

genes and for deciding whether it will placed in the genes pool or not; N (N :S E) is the 

number or interim evaluations with fitness value > 0; Vn is the Interim fitness value of the 

interim evaluation n (0 :S n :S N); Vmax is the maximum interim fitness value found; and S 

is the number of steps performed during this interim evaluation. 

The reason for evaluating the gene for a number of times Eis that it is placed randomly in 

the environment and consequently there is the chance of a potential "good" gene being 

assigned a low fitness value; for example in case of the Santa Fe Trail problem, a "good" 

gene placed away from the trail probably will be assigned with a very poor interim fitness 

value. The average interim value (Vi + ... + VN)IN is calculated by taking into account 

only the evaluations (interim fitness values) with value greater than 0. In this way, all 

cases where the gene was randomly placed away from useful areas, and for this reason had 

no chance to get a positive fitness value, are ignored. Namely, in case of the Santa Fe 

Trail problem, if the gene was placed away from the trail and had no chance of finding 

food, then the gene would be actually biased negatively due to its zero fitness value even 

152 



though the gene could be useful and able to find pieces of food if it were placed near or on 

the trail. Consequently, by taking into account the calculation of the average fitness value 

only evaluations greater than zero, this is much more indicative of the general 

performance of the gene. Indeed, the addition in the formula of the ( Vmax I S) calculation, 

promotes genes which are more efficient (for example, found more food with fewer steps). 

For this calculation, the highest interim fitness value of the gene found by all interim 

evaluations and the corresponding steps required by the gene during this evaluation are 

taken into account. 

The genes of each generation are compared with the genes of the previous generation 

according to their fitness value and the best S genes of these two generations are placed in 

the pool P replacing the existing genes. This will be repeated for G generations. Finally, 

the pool P will be filled with the best S genes ( and their corresponding phenotypes) 

created during the G generations. 

When the genes pool is finally created and filled , the phenotypes of the constituent genes 

are added as terminal operators in the behaviour-switching BNF grammar definition 

(BNF-BS). Then an initial population of individuals is created randomly where each 

individual consists of a "control gene" which dictates which original terminal operators 

and which added terminal operators (phenotypes of the constituent genes) of the BNF-BS 

grammar definition are used and in what order. 

Finally, the population of individuals is evolved - until a solution is found or a maximum 

limit of generations is reached - using the standard Grammatical Evolution algorithm with 

the BNF-BS grammar definition (augmented by the constituent genes phenotypes) and 

enforcing the individual's genotype size maximum limit IMC after each crossover. 

7 .4 Application of CGE to the Artificial Ant Problem 

As noted, the Constituent Grammatical Evolution algorithm, unlike Grammatical 

Evolution, uses two distinct BNF grammar definitions: the first, for the genotype-to­

phenotype mapping of the candidate constituent genes; and the second for the individuals. 

The BNF-Koza grammar definition (see Listing 5.2), which is used by Grammatical 

Evolution in the Santa Fe Trail problem for the genotype-to-phenotype mapping of the 

artificial ants, is used by Constituent Grammatical Evolution for the genotype-to-

153 



phenotype mapping of the constituent genes. Instead, for the mapping of the artificial ants, 

the conditional behaviour-switching BNF grammar definition (BNF-BS) is used, which 

results from a template (BNF-BS Blueprint) with the addition of the phenotypes of the 

constituent genes. 

The tuples {N, T, P , S} of the BNF-Koza, BNF-BS Blueprint, and BNF-BS grammar 

definitions are depicted in Listing 5.2, Listing 7.7, and Listing 7.8 respectively, where N is 

the set of non-terminal symbols, T the set of terminal symbols, Pa set of production rules 

that maps the elements of N to T, and Sis a start symbol that is a member of N. 

N {behaviour , op } 
T {turn- left , turn- right , move , i felse , food- ahead, [, J} 
S behaviour 
P: 
<behavi our> :: = ifelse food- ahead 

ifelse f ood- ahead 
<op> 

<op> turn- left I 
turn -right I 
move 

<op> J [ <op> <behaviour>] I 
<op> l [ <op> l I 

Listing 7.7: BNF-BS Blueprint grammar definition for the artificial ant problem. 

N {behaviour , op} 
T {turn- left , turn- right , move , ifelse , food- ahead, [ , ] } 
S behaviour 
P : 
<behaviour> : := ifelse food- ahead 

ifelse food-ahead 
<op> 

<op> turn-left I 
turn- right I 
move I 

<op> ] [ <op> <behaviour> ] I 
<op> l [ <op> l I 

... {constituent genes phenotypes} (*} 

Listing 7.8: BNF-BS grammar definition for the artificial ant problem. The 
phenotype of every constituent gene (*) is added as a production rule in the <op> 
non-terminal symbol. 

The BNF-BS grammar definition (Listing 7.8) is constructed dynamically at the beginning 

of an evolutionary run, from a template (BNF-BS Blueprint of Listing 7.7) where the 

phenotypes of the selected randomly created constituent genes are added as production 

rules in the <op> non-terminal symbol, in the same way as in the examples of Listing 7.1 

and Listing 7.2. 

154 



The search space defined by this dynamically created BNF-BS grammar definition is 

always a subset of the original search space which is defined, as shown, by the BNF-Koza 

grammar (Listing 5.2). This subset depends on the added phenotypes of the constituent 

genes and differs from these of other dynamically created BNF-BS grammars if the added 

constituent genes are different as well. Because the mapping process of the constituent 

genes uses the BNF-Koza grammar definition, every possible program created by BNF­

Koza can be created with some dynamically created instance of the BNF-BS grammar and 

vice versa. Consequently, the search space defined by all possible BNF-BS grammar 

instances is semantically equivalent with that of the original problem (BNF-Koza) but 

declaring a different search bias. Instead, each instance of the BNF-BS grammar states 

additionally a specific language bias which depends on the added phenotypes of the 

constituent genes. 

Figure 7 .2 depicts the overall architecture of the implementation of Constituent 

Grammatical Evolution in the artificial ant problem and how it relates with the standard 

Grammatical Evolution algorithm. 

BNF-Koza 

Grammar Definilion 

C onstituent Genes 
Genotypes 

Iii BNF-8S \ 

genotype-to-phenotype <op> production rules 
mapping 

add rules 

1 

BNF-8S BNF-8S 
insteoceof 

Blueprint Grammar Definition 

t 

fclvtdual Max Input 

~sllmlt Grammatical Evolution 
j 

Figure 7.2: The Constituent Grammatical Evolution (CGE) system. 

155 



Figure 7 .3 shows the BNF grammar definitions used by the Constituent Grammatical 

Evolution and the Grammatical Evolution algorithm (both GE using BNF-Koza and GE 

using BNF-O'Neill) as well as their relations and how they are used in each case. 

Grammatical Evolution 

BNF-O'Neill using BN F-O'Neill 

Individual's 
Grammar Definition Creates 

- Phenotype 

-~ -n Grammatical Evolution 

BNF-Koza 
using BN F-Koza 

Individual's 
Grammar Definition CrE 1:1tes Phenotype 

I 
Creates 

( Gene's 
Phenotype 

Individual's II\ 

Phenotype I 
I 

J 1Uses 

Creates I 
I 

BNF-BS BNF-BS 

Grammar Definition Inst, 1n1e Of Blueprint 

Constituent Grammatical 
Evolution 

Figure 7.3: BNF grammar definitions used by GE and CGE systems. 

Finally, for the execution of the COE benchmarking experiments described in the next 

sections, the NetLogo model used in the evolutionary experiments of Chapter 5 and 

presented in section 5.3 .2, has been extended. Namely, the Constituent Grammatical 

Evolution algorithm has been implemented with the NetLogo programming language and 

controls have been added to the interface of the model for setting the parameters of the 

156 



Constituent Grammatical Evolution algorithm. A screenshot of this model for the Santa Fe 

Trail problem can be shown in Figure 7.4. 

,. ,. -r-. :r.. 1• ... 
tm,r«e- •-tOOl'Nlilll!IJ"'4icN..I• 

.. 
l 
: 
• . 
.. 
l 
! 

• 6 

...._,_c...,.._ 

..... ---

J ...... _ 

-------

Figure 7.4: Interface of the Evolutionary SFT model for CGE and GE. 

This extended model provides the option of using Grammatical Evolution or Constituent 

Grammatical Evolution for the evolution of the population of ants in the Santa Fe Trail 

problem, by switching "Off' or "On" respectively the "COE-Activated" switch. The BNF 

grammar definition for the genotype-to-phenotype mapping of the constituent genes is 

defined in the "BNF-Genes-Grammar-Definition-Path" text box. Using the interface of 

the model, the modeller can also set the COE parameters with the "Individual-Max­

Codons", "Gene-Pool-Size", "Gene-Generations", "Gene-Evaluations", "Gene-Codons­

Min", "Gene-Codons-Max", and "Gene-Max-Wraps" sliders. 

7 .5 Benchmarking CGE on the Santa Fe Trail Problem 

7.5.1 Experiments Setup 

The performance of the Constituent Grammatical Evolution algorithm has been compared 

against Grammatical Evolution in the Santa Fe Trail problem in order to discover whether 

157 



this new algorithm improves the later in a standard Genetic Programming benchmark. 

Because of the Grammatical Evolution literature issue of benchmarking against GP with 

the use of a grammar which states a declarative language bias and excludes good solutions 

(BNF-O'Neill), as demonstrated and discussed in Chapter 5, Constituent Grammatical 

Evolution effectiveness and efficiency have been benchmarked against both GE using 

BNF-Koza and GE using BNF-O'Neill. 

For these benchmarks, three series of experiments were used to evaluate CGE, GE using 

BNF-Koza, and GE using BNF-O'Neill. In each series of experiments, five distinct 

experiments were conducted consisting of one hundred evolutionary runs each. Namely, a 

total of five hundred evolutionary runs were performed for each algorithm. Note here that 

the GE using BNF-Koza experiments and the GE using BNF-O'Neill experiments are 

these described in the section 5.4 of the previous chapter. The tableau in Table 7.1 shows 

the Grammatical Evolution settings and parameters of each evolutionary run and the Table 

7.2 shows the CGE specific parameters. 

Table 7.1: Grammatical Evolution tableau for the Santa Fe Trail. 

Objective Find a computer program in the NetLogo programming 
language to control an artificial ant so that it can find all 89 
pieces of food located on the Santa Fe Trail. 

Terminal turn-left, turn-right, move, food-ahead, plus constituent genes 
Operators phenotypes when the CGE algorithm is used instead of the 

standard GE algorithm. 

Raw Fitness Number of pieces of food picked up before the ant times out 
with 650 operations . 

BNF CGE: BNF-Koza (orig inal) for Genes and BNF-BS (behaviour-
Grammar switching) for Ants. 

GE us ing BNF-Koza: BNF-Koza. 
GE using BNF-O'Neill: BNF-O' Neill. 

Evolutionary Steady-State Genetic Algorithm, Generation Gap= 0.9 , 
Algorithm Selection Mechanism: Roulette-Wheel Selection. 

Initial Randomly created with the following restrictions: 
Population Minimum Codons= 15 and Maximum Codons= 25. 

Parameters Population Size = 500, Maximum Generations= 50, 
Mutation Prob. = 0.01 , Crossover Prob.= 0.9 , 
Codon Size= 8, Wraps Limit = I 0. 

a e . : se m2s T bl 7 2 CGE tf or e an a e ra1 . f th S t F T ·1 
Parameter Value Parameter Value 

Codons Limit, IMC 250 Gene Evaluations, E 50 

158 



Gene Pool Size, S 3 Gene Codons Min, CMin 10 

Gene Generations, G 850 Gene Codons Max, CMax 20 

Gene Code Iterations, L 10 Gene Max Wraps, W 5 

The BNF grammars used in these experiments are BNF-Koza (Listing 5.2), BNF-O'Neill 

(Listing 5.3), and BNF-BS (Listing 7.8). The fitness value of the candidate constituent 

genes is calculated using the formula in Equation 7.1. 

Note that because CGE uses the standard Grammatical Evolution algorithm for the 

evolution of the individuals, most GE settings used in all experiments are the same with 

these used to benchmark GE using BNF-Koza in Chapter 5 (see Table 5.2) except: a) the 

BNF grammar definition, because CGE uses two BNF grammar definitions as described in 

the previous section and because the standard Grammatical Evolution algorithm is 

evaluated using two different BNF Grammars (BNF-Koza and BNF-O'Neill); and b) the 

terminal operators , because CGE introduces the concept of constituent genes which are 

expressed as compositions of the initial terminal operators, which are added to the 

terminal operators of the original problem specification (grammar definition). 

Regarding the eight new parameters introduced by CGE, the Gene Pool Size Sand Codons 

Limit IMC affect directly the Grammatical Evolution algorithm because they modify the 

grammar used by GE and restrict the genotype size of the individuals created during the 

GE run respectively, as described in detail in section 7.3. The other six parameters 

concern the creation of the genes pool and can be thought as an independent mechanism 

for the initial identification of useful building blocks in order to modify the grammar 

before a GE run starts. 

The values of the CGE parameters have been decided as follows: For Gene Pool Size S, 

the experimental results of the section 6.4, show that using three building blocks is a 

reasonable choice which can potentially result in an improvement in success rate. 

Additionally, these experiments show that the use of more than three building blocks does 

not result in a proportional performance improvement in terms of success rate and solution 

quality (future investigation and experimentation is required to explore in more detail). 

Instead, more computational effort would be required for the creation and evaluation of 

the candidate constituent genes before each run in order to increase the chance that all of 

the genes of the pool be useful building blocks. The Codons Limit IMC has been set to 

159 



250 codons in order to eliminate the genotype bloat phenomenon without risking an 

impact on the success rate. The experiments of GE using fixed-length genomes in Chapter 

5 allow the assumption that restricting the maximum size to 250 codons can be considered 

as a safe limit. Further work is required for this parameter as well to find more suitable 

values. 

The values of Gene Codons Min CMin, Gene Codons Max CMax and Gene Max Wraps 

W, specify the size of the genomes of the candidate constitute genes and the number of the 

allowed wraps during their genotype-to-phenotype mapping process using the original 

grammar. These are decided in respect to the values of the corresponding parameters of 

the GE run setup, assuming that slightly smaller values would be appropriate taking into 

account that constituent genes aim to produce smaller phenotypes than the individuals 

(partial solutions). It is also noted that the codon size of the constituent genes is defined 

by the GE setup (and the same with the individuals), and has the value eight in the 

experiments of this work. The last three parameters Gene Generations G, Gene 

Evaluations E, and Gene Code Iterations L are decided using arbitrary large values in 

order to increase the chance useful constituent genes (building blocks) to be found for the 

genes pool. 

Finally, it is noted that besides the mentioned criteria for the selection of the values of the 

CGE parameters, no further attempt was made to optimise them because the aim of this 

work is to investigate whether this algorithm has the potential for improving the 

Grammatical Evolution algorithm. Promising results indicate the usefulness of this 

approach and further investigation and optimisation of parameters is warranted. 

7.5.2 Experiments Results 

Constituent Grammatical Evolution was successful at finding a solution in the Santa Fe 

Trail problem with very high success rates, ranging from 85% to 94% with an average 

success rate of 90%. The best solution found by CGE, requires only 337 steps and there is 

no Genetic Programming or Grammatical Evolution publication in the knowledge of the 

author presenting a solution requiring less steps. The NetLogo code for this solution is 

shown in Listing 7. 9. 

160 



a e : T bl 7 3 CGE expenmenta h S resu ts mt e anta e ra1 pro F T ' I bl em. 
Exp #1 Exp#2 Exp#3 Exp#4 Exp#S Best 

Runs 100 100 100 100 100 100 

Steps 393 375 393 377 337 337 

Success 85% 93% 89% 94% 87% 94% 

Avg. Success 90% 

The Table 7.3 shows the detailed results of the CGE experiments. The column "Best" 

shows the best value of all five experiments. "Runs" is the number of evolutionary runs 

performed in the experiment, "Steps", the required steps of the best solution found in the 

particular experiment, "Success", how many evolutionary runs (percentage) found a 

solution, and "Avg. Success", the average success rate of all five experiments. 

ifelse food- ahead 
[move] 
[turn-right 
ife l se food- ahead 

[ifelse food- ahead 
[ifelse food- ahead 

[move move] 
[move] 

ifelse food-ahead 
[move move] 
[move] 

[turn- left] 
move 

[ifelse food- ahead 
[move] 
[turn- right ] 

ifelse food-ahead 
[turn- left] 
[turn- right 
ifelse food-ahead 

[move] 
[ifelse food- ahead 

[move] 
[ turn- right] 

move 

Listing 7.9: NetLogo code of the best solution found by CGE in the Santa Fe Trail 
problem. This solution requires 337 steps. 

161 



The results of the experiments using the standard GE with BNF-Koza and BNF-O'Neill 

can be seen in Table 7.4 and in Table 7.5. These are the experimental results presented in 

section 5 .5 and are reprinted here for the convenience of the reader. A cumulative 

frequency measure of success over 500 runs of CGE and GE can be seen in Figure 7.5. 

a e : T bl 7 4 GE usm2 BNF K - oza expenmen a resu s m an a e ra1. t I It . S t F T ·1 

Exp #I Exp#2 Exp#3 Exp#4 Exp #5 Best 

Runs 100 100 100 100 100 100 

Steps 419 507 415 541 479 415 

Success 8% 11 % 10% 6% 13% 13% 

Avg. Success 10% 

T bl 7 5 GE a e : usm2 - e1 BNF O'N 'II t 1 expenmen a resu SID an a e ra1 . It . S t F T ·1 

Exp #6 Exp#7 Exp #8 Exp#9 Exp # 10 Best 

Runs 100 100 100 100 100 100 

Steps 609 609 607 609 607 607 

Success 80% 76% 75% 81% 74% 81% 

Avg. Success 78% 

soo -
-.-cGE -+- GE uslns 6NF•O'Nelll -+-GE usln1 6NF-Koza 

450 

400 

350 
~ 
C 
QI 
::, 300 
r;, 
QI ... 

LL 
250 QI 

~ 
ta 
3 
E 

200 

a 
150 

100 

so 

0 2 4 6 8 10 1 2 14 16 18 20 22 24 26 28 30 32 34 36 38 40 ~2 44 46 48 50 

GeneratiOn 

Figure 7.5: CGE vs. GE on the Santa Fe Trail problem. CGE has already created the 
genes pool and modified the grammar before generation zero. 

162 



The experimental results show that Constituent Grammatical Evolution improves 

Grammatical Evolution in terms of success rate whether the later uses a BNF grammar 

definition (BNF-Koza) which defines a search space semantically equivalent with that 

used in the original problem (Koza, 1992), or whether it uses a BNF grammar definition 

(BNF-O'Nei ll) which defines a restricted search space. Additionally, Constituent 

Grammatical Evolution is able to find much better solutions in terms of the required steps. 

It is noted here in respect to the performance of CGE displayed in the diagram of Figure 

7.5 that CGE creates and evaluates constituent genes before each evolutionary run. 

Additionally, the statistics (Table 7.6) of the experimental results of all three series of 

experiments show that Constituent Grammatical Evolution improves the standard 

Grammatical Evolution in one more aspect, the genotype size (smaller genomes). 

Table 7.6: Statistics of CGE benchmarking experimental results in the Santa Fe Trail 
problem. 

Description GE using GE using CGE 
BNF-Koza BNF-O'Neill 

Success rate of finding a solution 10% 78% 90% 

Best solution found in terms of ant's 4 15 steps 607 steps 337 steps 
steps 

Average ant's steps of al l solutions 584 steps 615 steps 448 steps 
found 

Best solution found m terms of 142 bits 90 bits 73 bits 
genotype size (bits) 

Average genotype s ize of solutions 1,568 bits 423 bits 419 bits 
found (bits) 

Average genotype size of best 2,923 bits 8 I 6 bits 492 bits 
individual per run (bits) 

Percentage of solutions with 27.08% 2.33% 0% 
genotype s ize > 2000 bits 

Percentage of best individuals per 58.80% 11.20% 0% 
run with genotype > 2000 bits 

Best solution found m terms of 9 op. 9 op. 13 op. 
phenotype s ize ( operators) 

Average phenotype size of solutions 15 op. 24 op. 28 op. 
found (operators) 

Average number of ants programs 24,644 ants 12, I 30 ants 9,487ants 

163 



created and validated in a run 

Average duration of an evolutionary 347sec 109 sec 12 I sec 
run (secs) 

Average duration of a generation 7.10 sec 4.46 sec 7.01 sec 
creation and evaluation (secs) 

One aspect where the standard Grammatical Evolution outperforms COE is the phenotype 

size. Solutions created by the standard Grammatical Evolution algorithm are of smaller 

phenotype size than these found by COE. The smallest solutions found by Grammatical 

Evolution and COE consist of 9 and 13 terminal operators respectively. 

The observed large difference in the "Average number of ants programs created and 

validated in a run" between COE, GE using BNF-Koza, and GE using BNF-O'Neill, is 

related to the differences in the success rates of these setups. Namely, higher success rates 

result in runs with fewer generations (the run ends because a solution found) and 

consequently the average cumulative size of the populations of all generations in a run 

decreases accordingly. Also, it is noted that the additional execution time required before 

each GE run by COE for the creation of the genes pool is taken into account in the 

displayed duration figures. The computational effort of COE is analysed in section 7.7.4. 

The promising results of COE benchmarking on the Santa Fe Trail problem raised the 

question whether it can improve Grammatical Evolution in other problems as well. For 

this reason, COE was applied and benchmarked on three additional problems. The first is 

a more difficult version of the Santa Fe Trail problem and the two other are typical maze 

searching problems. 

7 .6 Application to more Problems 

7.6.1 The Los Altos Hills Problem 

The performance of the Constituent Grammatical Evolution algorithm has been 

benchmarked against the Grammatical Evolution algorithm again, this time in the Los 

Altos Hills problem which is described in detail in section 2.5.4. For the performance of 

the experiments, a modified NetLogo model of this presented in section 7.4 (Figure 7.4) 

was used. Namely, the Santa Fe Trail has been replaced by the Los Altos Hills trail. The 

interface of this model is shown in Figure 7.6. 

164 



,.., tdtlMnic,nT .... 

:w:.T- 1,hr~ ""11ad ... 

--... ] ..... '" 

l__ -· 
, .. 

• . -
:,,:am 

i 
'I 

j 

......~~ 

-- a 
• • 

Figure 7.6: Interface of the Evolutionary Los Altos Hills model for CGE and GE. 

In order to evaluate CGE against GE, a series of three experiments was conducted (CGE, 

GE using BNF-Koza, and GE using BNF-O'Neill), consisting of 100 evolutionary runs 

each using the configuration shown in Table 7.7 and in Table 7.8. The constituent genes 

evaluation formula used in this problem was the same as that used on the Santa Fe Trail 

(Equation 7.1). 

Table 7. 7: Grammatical Evolution Tableau for Los Altos Hills. 
Objective Find a computer program in the NetLogo programming 

language to control an artificial ant so that it can find all 157 
pieces of food located on the Los A ltos Hills trail. 

Terminal turn-left, turn-right, move, food-ahead, plus constituent genes 
Operators phenotypes when the CGE algorithm is used instead of the 

standard GE algorithm. 

Raw Fitness Number of pieces of food picked up before the ant times out 
with 3000 operations. 

BNF CGE: BNF-Koza (original) for Genes and BNF-BS (behaviour-
Grammar switching) for Ants. 

GE using BNF-Koza: BNF-Koza. 
GE using BNF-O'Neill: BNF-O 'Neill. 

Evolutionary Steady-State Genetic Algorithm, Generation Gap = 0.9 , 
Algorithm Selection Mechanism: Roulette-Wheel Selection. 

Initial Randomly created with the following restrictions: 

165 



Population M inimum Codons= 50 and Maximum Codons= 100. 

Parameters Population Size = 2000, Maximum Generations = 50, 
Mutation Prob. = 0.01, Crossover Prob. = 0.9, 
Codon Size= 8, Wraps Limit= I 0. 

a e : se ID~S T bl 7 8 CGE tf or OS OS I S. f L Alt H"ll 
Parameter Value Parameter Value 

Codons Limit, IMC 750 Gene Evaluations, E 100 

Gene Poo l Size, S 3 Gene Codons Min, CMin 40 

Gene Generations, G 1000 Gene Codons Max, CMax 100 

Gene Code Iterations, L 10 Gene Max Wraps, W 10 

The CGE parameters concerning the creation and evaluation of the candidate constituent 

genes (except Gene Code Iterations L) and the genotype size limit have been assigned 

with larger values in this problem than in the setup of the Santa Fe Trail problem because 

of the higher difficulty of Los Altos Hill. The other two parameter, Gene Pool Size S and 

Gene Code Iterations L , are used with the same values as in the Santa Fe Trail. 

The BNF-BS grammar definition used in this problem is shown in Listing 7.1 0. Note that 

a slightly different BNF-BS grammar definition is used than used for the Santa Fe Trail 

problem. Namely, in the <behaviour> non-terminal symbol a new production rule is 

added (the first production rule which appears twice) which increases the search space 

allowing a sequence of <behaviour> non-terminals. Indeed, both the first and the second 

conditional production rules appear twice each in order to bias the search toward a 

conditional behaviour. These modifications in the BNF-BS grammar definition were 

performed because the specifications of the Los Altos Hills require individuals with a 

larger number of time steps performed per piece of food. Namely, the Los Altos Hills 

problem in order to be solved (according to its specifications) requires less efficient 

individuals in terms of the fraction of steps and food pieces. The fractions of available 

time steps and total amount of food are 7.3 (650/89) and 19.2 (3000/156) for the Santa Fe 

Trail and the Los Altos Hills problems respectively. 

N {b ehaviou r , op} 
T {turn-left, turn- right , move , ifelse , 

f ood- ahead, [, ] } 
S beh aviour 
P : 
<b ehaviour> : : = 

<b ehaviour> ifelse food-ahead [<op>] [<op> <behaviour> ] I 

166 



<behaviour> i f els e food- ahea d [<op> ) [<op> <behaviour>) 
i f e l se foo d - ahea d [<op>) [ <op> <b e haviour>) I 
i f e l se food-ahead [<op > ) [ <op> <b ehaviour>) I 
ifel se foo d - a head [ <op> ) [ <op> ) I 
<op> 

<op> - turn- left I 
turn- right I 
move I 
. .. {constituent genes phenotypes} 

Listing 7.10: The BNF-BS grammar definition for Los Altos Hills. 

The experimental results are shown in Table 7.9. "Runs" is the number of evolutionary 

runs performed in the experiment; "Best Solution' s Steps", the required steps (ant moves) 

of the best solution found in terms of efficiency (required steps) in the particular 

experiment; and "Success Rate", how many evolutionary runs (percentage) found a 

solution. 

a e : T bl 7 9 E t I xpenmen a resu so e OS OS 1 s pro It f th L Alt H.11 bl em. 
CGE GE BNF-Koza GE BNF-O'Neill 

Runs 100 100 JOO 

Best Solution's Steps 1093 No solution No solution 

Success Rate 9% 0% 0% 

Even though the Los Altos Hill is a much more challenging problem than the Santa Fe 

Trail, CGE managed to find a solution in contrast to GE which was not able to find one. 

Figure 7. 7 shows a graph which depicts the fitness value of the best individual, in terms of 

pieces of food found, for each evolutionary run. In this graph it is observed that most of 

the best individuals found by GE using BNF-O'Neill and some of the best individuals 

found by GE using BNF-Koza were able to find 116 pieces of food, which means that 

some of the best individuals found in these cases were probably able to solve only the 

SFT-like part of the trail ( or at least most of it) but could not tackle the new irregularities 

introduced in the Los Altos Hills trail. Also, in the runs where CGE did not find a solution 

for the Los Altos Hills trail, the best individuals were able to find at least 116 piece s of 

food. Namely, these individuals were probably able to solve the SFT-like part of the trail 

or at least most of it. 

167 



CG[ GE 111in&8Nr-o 'Nelll - -- Geusl111BNF•KOU 
160 

150 

1'0 

130 

120 

] .. 
> ::: .. 
. ~ 
~ .. 
7i 70 ,, ,, 

60 ~ ,, 
.!: 
Ill 
Cl 40 ., 

30 

20 

10 , 

Evoluuonary Run 

Figure 7.7: Best individuals (ants) per evolutionary run in the Los Altos Hills 
problem. 

The main reasons why Los Altos Hills proved to be so difficult for GE are: first, the two 

new irregularities introduced which require a more complex behaviour by the ant; and 

second, because these irregularities first appear at the end of the trai 1, with the 

consequence that the evolved population converges to programs tackling only the first part 

of the trail which is identical to the Santa Fe Trail. In addition, the environment of the Los 

Altos Hills (1OOx100) is much larger than this of the Santa Fe Trail (32x32). 

Even though the Los Altos Hills is such a difficult and challenging problem, Constituent 

Grammatical Evolution (CGE) managed to find solutions when standard GE did not. CGE 

clearly improves the standard Grammatical Evolution algorithm in this problem. Indeed, 

the best solution in terms of efficiency (number of required steps) found by CGE solves 

the problem in just 1093 steps. Namely, CGE found a solution much more efficient than 

the solution mentioned in Koza (1992, p.157) which requires 1,808 steps. 

7.6.2 The Hampton Court Maze Problem 

The third problem where CGE was benchmarked against GE is the Hampton Court Maze 

searching problem. The Hampton Court Maze is a simple connected maze of grid size 39 

by 23. The objective is to find a computer program to control an artificial traveller 

(agent), so that it can find the exit at the centre of the maze. The agent starts in the entry 

point of the maze at the middle bottom facing north . The artificial traveller uses, like in 

168 



the Artificial Ant problem, three primitive actions: move, turn right, and turn left. Each of 

these takes one time unit. In addition, the artificial traveller can use three sensing 

functions: wall ahead, wall left, and wall right (Sondahl, 2005), each of them requiring no 

time unit. These sensing functions look into the front, left or right square respectively, and 

return true if that square contains a wall or false if it is a path. 

The interface of the model which was used for the performance of the benchmarking is 

shown in Figure 7.8. The green square is the entry of the maze and the red square the exit. 

At 14 To,:6; :W. lb Hllll> 

tr(efia 1rlt:lffl,aar f'irOc.tct,..,-tt: 

J 
I 
• • 

l 
I 
• ,. . 

... 
J 
3 

100 •,--

Figure 7.8: Interface of the Evolutionary Hampton Court Maze model for CGE and 
GE. 

As with the Los Altos Hills, three experiments were conducted of one hundred 

evolutionary runs each in order to compare the performance of CGE, GE using a maze 

version of BNF-Koza (Listing 7.11), and GE using a maze version of BNF-O'Neill 

(Listing 7 .12). The BNF grammar definitions used in these experiments are variations of 

those used in the Santa Fe Trail and Los Altos Hills problems with the following 

differences: the replacement of the food-ahead sensing operator with the wall-ahead? 

operator, the addition of two sensing operators, wall-left? and wall-right?; and the 

addition of a non-terminal symbol for choosing any one of these sensing operators when a 

condition statement is to be selected. The sensing operators were inspired by the work of 

169 



Sondahl (2005). The behaviour-switching grammar definition (BNF-BS) used by CGE is 

shown in Listing 7.13. The experimental configuration is shown in Table 7.10 and Table 

7.11. 

N = {expr , line , condition , op) 
T = {turn-left , turn-right , move , ifelse , wall - ahead? , wall­
l eft? , wall - right? , [ , ) ) 
S = expr 
P : 
<expr> <line> 

<expr> <line> 
<line> - ifelse <condition> [ <expr> ] [ <expr> ] 

<op> 
<condition> wall - ahead? I 

wall - left ? I 
wall - right? 

<op> turn- left I 
turn-ri g h t I 
move 

Listing 7.11: BNF-Koza grammar definition (maze searching version). 

N = {code , line , condition , <condition-op> , op) 
T = {turn- left , turn- right , move , ifelse , wall - ahead? , wall ­
left? , wall-right? , [ , ) } 
S = code 
P : 
<code> 

<line> 

<line> I 
<code> <line> 
<condition> I 
<op> 

<condition> ifelse <condition- op> [ <line> ) [ <line> ) 
<condition-op> · · = wall - ahead? I 

<op> 

wall - left? I 
wall - right? 
turn- left I 
turn- right I 
move 

Listing 7.12: BNF-O'Neill grammar definition (maze searching version). 

N = {behaviour , condition , op} 
T = {turn- left , turn-right , move , 
left? , wall - right? , [ , ) } 
S = behaviour 
P : 
<behaviour> : : = ifelse <condition> 

ifelse <condition> 

<condition> 

<op> 

<op> 
wall-ahead? I 
wall-left? I 
wall - right? 
t u rn - left I 
turn- right I 
move I 

ifelse , wall-ahead? , wall -

<op>] [<op> <behaviour>) I 
<op> l [ <op> l I 

.. . { c onstituent genes phenotypes} 

Listing 7.13: BNF-BS grammar definition (maze searching version). 

170 



T bl 7 10 G a e : ramma 1ca VO U 100 a f IE I f t bl eau f H or t C amp on our tM aze. 

Objective Find a computer program in the NetLogo programming language 
to control an artificial traveller agent so that it can find the centre 
of the maze. 

Terminal turn-left, turn-right, move, wall-ahead?, wall-left?, wall-right?, 
Operators plus constituent genes phenotypes when the CGE a lgorithm is 

used instead of the standard GE a lgorithm. 

Raw Fitness The geometric distance between the agent' s position and the 
entrance to the centre of the maze before the agent times out with 
500 operations, divided by the number of new squares of the path 
visited . Promotes agents approaching the exit by covering greater 
unexplored distance (traveller). 

Standardised Same as the raw fitness. 
Fitness 

Adjusted 1 / ( I + Standardised F itness). 
Fitness 

BNF CGE: BNF-Koza (maze version) for Genes and BNF-BS 
Grammar (behaviour-switching maze version) for travellers (agents). 

GE using BNF-Koza: BNF-Koza (maze version). 
GE using BNF-O'Neill : BNF-O'Neill (maze version). 

Evolutionary Steady-State Genetic Algorithm, Generation Gap = 0.9 , 
Algorithm Selection Mechanism: Roulette-Wheel Selection. 

Initial Randomly created with the fo llowing restrictions: 
Population Minimum Codons = 15 and Maximum Codons = 25. 

Parameters Populat ion Size= I 00, Maximum Generations= 25, 
Mutation Probability= 0.0 1, Crossover Probability= 0.9, 
Codon Size= 8, Wraps Limit= 10. 

a e : se m~s T bl 7 11 CGE tf or e f th H t C amp on tM our aze pro bl em. 

Parameter Value Parameter Value 

Codons Limit, IMC 250 Gene Evaluations, E 50 

Gene Pool Size, S 3 Gene Codons Min, CMin 10 

Gene Generations, G 500 Gene Codons Max, CMax 20 

Gene Code Iterations, L 10 Gene Max Wraps, W 5 

The fitness value of the candidate constituent genes is calculated with the formula shown 

in Equation 7 .2 

E uation 7.2: Ham ton Court Formula 1 

where: Fis the fitness value of the constituent gene used for comparison with other genes 

and for deciding whether it will be placed in the genes pool or not; E is the number of 

171 



performed gene ' s interim evaluations; Vn is the Interim fitness value of the interim 

evaluation n (0 :S n :S E); V111ax is the maximum interim fitness value found; and S is the 

number of operations (time steps) performed during the interim evaluation of the gene 

with the maximum interim fitness. Each interim fitness value of the candidate constituent 

genes is calculated with the formula shown in Equation 7.3 

Equation 7.3: Hampton Court Formula 2 

V = D5 - (Dp/P) 

where: V is the interim fitness value; Ds is the geometric distance between the gene and 

the exit of the maze before the gene executes its code; Dp is the geometric distance 

between the gene and the exit of the maze after the execution of the gene' s code for L 

times (Gene Code Iterations); and P is the number of new path squares visited during the 

gene's code execution. This formula promotes genes approaching the exit covering greater 

unexplored distance. 

The results of these experiments are shown in Table 7 .12. "Evolutionary Runs" is the 

number of evolutionary runs performed in the experiment; "Best Solution' s Steps", the 

required steps (agent moves) of the best solution found in terms of efficiency (required 

steps) in the particular experiment; and "Success Rate" , how many evolutionary runs 

(percentage) found a solution. 

T bl 7 12 E a e . : t I xperimen a resu s or e It f th H t C amp on our tM aze pro bl em. 

CGE GEBNF-Koza GE BNF-O'Neill 

Evolutionary Runs 100 100 100 

Best Solution's Steps 384 439 494 

Success Rate 82% 1% 1% 

The best solution found by CGE for the Hampton Court Maze problem (most effective 

solution in terms ofrequired steps) can be seen in Listing 7 .14. It requires just 384 steps 

to solve the problem from the 500 maximum allowed steps limit. 

ifelse wall - left? 
[ifelse wall-a h ead? 

[tu rn-right) 
[move ] 

[turn- left move) 

Listing 7.14: Best solution found by CGE in the Hampton Court Maze problem. It 
requires 384 steps. 

172 



The Hampton Court Maze problem proved to be difficult for Grammatical Evolution, 

mainly because the first square the agent visits when it enters the maze is assigned a high 

fitness value due its small geometric distance from the exit. This leads to convergence of 

the population to this local optimum. Namely it advances individuals which just execute 

the move operator. In contrast, CGE proved to be very effective for this problem because 

it was able to easily overcome this local optimum due to the constituent genes. Indeed, the 

best solution it found requires much fewer steps than those found by Grammatical 

Evolution. 

7.6.3 The Chevening House Maze Problem 

The second maze searching problem where Constituent Grammatical Evolution was 

benchmarked against Grammatical Evolution was the Chevening House Maze (see section 

2.5.5). The Chevening House Maze is a multiple-connected maze of grid size 47 by 47. 

Figure 7.9 shows the interface of the NetLogo model used for the benchmarking. The 

green square is the entry of the maze and the red square the exit. 

r1a t• •• 1- r• ,.._. 
ttc.,-..w.~n,ue..,,.,. 

J --

I 
~~,~----~ 

1111 

f 
j 

• . -
Figure 7.9: Interface of the Evolutionary Chevening House Maze model for CGE and 
GE. 

173 



The same benchmarks as with the Hampton Court Maze were performed with the same 

experiments setup and configuration of COE and Grammatical Evolution. 

The Table 7 .13 shows the results of the experiments. "Evolutionary Runs" is the number 

of evolutionary runs performed in the experiment; "Best Solution's Steps", the required 

steps ( agent moves) of the best solution found in terms of efficiency (required steps) in the 

particular experiment; and "Success Rate", how many evolutionary runs (percentage) 

found a solution. Also, the cumulative frequency measure of success over 100 runs of 

Constituent Grammatical Evolution and Grammatical Evolution (using BNF-Koza and 

BNF-O'Neill) can be seen in Figure 7.10. 

T bl 7 13 E a e : xpenmenta resu ts or t e f h Ch evenmg H ouse M aze pro bl em. 

CGE GE BNF-Koza GE BNF-O'Neill 

Evolutionary Runs 100 100 100 

Best Solution's Steps 314 414 330 

Success Rate 74% 6% 62% 

100 
-+-GE usingBNF-O'Nelll --- GE using BNF-Koza 

90 

80 

70 
~ 
C 
QI 
:::, 60 
0" 
QI ... 
u. so QI 
2 

"' :i 40 
f 
a 

30 

20 

10 . . . . ---
0 ·--· ........... ·----·----· ____ ,.. ...... =:Ja=a:• =--~,~ ,~ !t=!I =,:, :::::::-=-:=-,.. _____ ~-r---,---.----,--~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1e 15 16 17 18 19 20 21 22 23 24 25 

GeneratlOn 

Figure 7.10: Cumulative frequency of success measures over 100 evolutionary runs in 
the Chevening House Maze problem. 

Even though the Chevening House Maze can be considered as a challenging problem 

compared to other simper types of mazes, Constituent Grammatical Evolution (COE) has 

found solutions within 25 generations with a high success rate. Based on the experimental 

174 



results, COE clearly improves the standard Grammatical Evolution algorithm m this 

problem. 

The best solution found by COE (Listing 7.15) in terms of efficiency (number of required 

steps), solves the problem in just 314 steps. Namely, COE found a solution that was much 

more efficient than the best solutions found by GE using BNF-Koza and GE using BNF­

O'Neill which require 414 and 330 steps respectively. 

ifelse wall - right? 
[ifelse wall-left? 

[move ] 
[ turn- left move ] 

[i f else wal l - ahead? 
[tu rn- right move] 
[move] 

Listing 7.15: Best solution found by CGE in the Chevening House Maze problem. It 
requires 314 steps. 

It is worthwhile to note here that the best solutions found by COE and GE in the 

Chevening House maze require much fewer steps than those found for the Hampton Court 

maze. The best solutions found by COE, GE using BNF-O'Neill , and GE using BNF-Koza 

require 314, 330, and 414 steps respectively. Instead, the best solutions found for the 

Hampton Court Maze problem by COE, GE using BNF-O'Neill, and GE using BNF-Koza 

require 384, 494, and 43 9 steps respectively. Namely, even though the Chevening House 

maze is larger than the Hampton Court maze, is a multiply-connected maze rather than a 

singly-connected maze, and the former contains a larger route from the entry to the exit of 

the maze than the later, the Chevening House maze seems to be simpler, requiring a 

strategy of fewer steps to be solved. 

Finally, even though, the Chevening House Maze problem seems at a first look to be a 

more difficult maze to solve than the Hampton Court Maze, mainly because it is larger 

and apparently more complex, COE and Grammatical Evolution proved to be able to find 

solutions with a very high success rate. In the case of Grammatical Evolution, the success 

rate is much higher in this maze than in the Hampton Court Maze. Namely, GE using 

BNF-Koza and GE using BNF-O'Neill solve the Chevening House Maze with success rate 

6% and 62% respectively, when their success rate in the Hampton Court Maze was just 

1 %. On the other hand, COE has a slightly lower success rate in Chevening House maze 

175 



against the Hampton Court maze (74% against 82%) which can be explained with the fact 

that because even though the former maze is larger than the later (a larger environment to 

be explored), the same maximum limit of 500 steps was used in the experiments. The 

main reason of the higher success rate of Grammatical Evolution in Chevening House is 

that it has less deceptive local optima than the Hampton Court maze. 

7. 7 CGE Statistics in the Santa Fe Trail Problem 

7.7.1 Effectiveness of CGE runs 

Even though CGE has an overhead of creating and evaluating constituent genes, the 

statistical results of the experiments conducted with CGE and GE using BNF-Koza on the 

Santa Fe Trail problem (Table 7.14) reveal that the total number of genes and ants 

evaluated by CGE is lower than the number of ants evaluated by GE using BNF-Koza. 

a e : an T bl 7 14 CGE d GE b S comoanson m t e anta e ra1 pro F T 'I bl em. 
CGE and GE(BNF-Koza) Comparison 

Inquiry Result 

Total numbers of Grammatical Evolution (GE) experiments 5 Experiments 
and evolutionary runs using 
defin ition. 

the BNF-Koza grammar 500 Evolutionary Runs 

Total numbers of Constituent Grammatical Evolution (CGE) 5 Experiments 
experiments, evolutionary runs and candidate constituent 500 Evolutionary Runs 
genes (CGE experiments using Gene-Pool-Size 3 and Gene- 1,275,000 Genes (total) 
Generations 850). 

Amount of CGE candidate constituent genes with a valid 532,949 Genes (valid) 
phenotype. 

Amount of CGE candidate constituent genes with an invalid 
phenotype. 

742,05 I Genes (invalid) 

Amount of CGE constituent genes (genes used in CGE runs). 1,500 Genes 

Success Rate of GE (percentage of evolutionary runs found a 10% 
solution) . 

Success Rate of CGE (percentage of evolutionary runs 90% 
fo und a solution). 

Total number of ants over 500 evolutionary runs us ing GE. 12,322,000 ants (total) 

Total number of valid ants over 500 evolutionary runs using 
GE. 

9,646,553 ants (valid) 

176 



Total number of invalid ants over 500 evolutionary runs using 2,675,447 ants (invalid) 
GE. 

Total number of ants over 500 evolutionary runs using 4,743,500 ants (total) 
CGE. 

Total number of valid ants over 500 evolutionary runs 4,716,243 ants (valid) 
using CGE. 

Total number of invalid ants over 500 evolutionary runs 27,257 ants (invalid) 
using CGE. 

In a total of 500 evolutionary runs, CGE created 1,275,000 candidate constituent genes 

and 4,743,500 ants, a total of 6,018,500 genes and ants. Note that 4,716,243 ants and only 

532,949 genes had a valid phenotype and were evaluated (because genes are created 

randomly). Therefore, a total of 5,249,192 valid genes and ants were evaluated by CGE. 

In contrast, GE using BNP-Koza created more than double the number of ants, namely 

12,322,000 of which 9,646,553 were valid and were evaluated. It is readily apparent that 

CGE requires much less processing power to execute 500 evolutionary runs in the Santa 

Fe Trail problem than GE using BNP-Koza because the most demanding tasks in these 

runs is the evaluation of valid genes and ants in the Santa Fe Trail problem which requires 

initialization and simulation for every gene and ant. It is noted that invalid genes and 

invalid ants are not evaluated because they are invalid programs due to the incomplete 

mapping process, therefore they count only in the computational effort regarding the 

genotype-to-phenotype mapping process which is analysed in section 7.7.4. 

The above finding can be easily explained by the fact that even though CGE and GE using 

BNP-Koza perform the same number of evolutionary runs, the very high effectiveness of 

CGE (90% against 10%) implies that the generations of populations created is far less 

than these created by GE using BNP-Koza. That is because when a solution is found, the 

evolutionary run terminates and does not reach the maximum number of generations as is 

the case when no solution is found. Also, with CGE the invalid ants are far less than 

those of standard GE because it requires smaller genotypes to complete the phenotype of 

an individual due to the BNF-BS bias and the constituent genes. 

7.7.2 Efficiency of CGE Solutions 

Regarding the efficiency of the solutions found by CGE and Grammatical Evolution in the 

Santa Fe Trail problem, CGE seems to improve Grammatical Evolution not only on the 

very best solution found in all experiments, but in the whole set of solutions found by 

177 



these algorithms in all evolutionary runs of the experiments. Namely, the overall quality 

of the solutions found by CGE is higher than these found by Grammatical Evolution. 

The graph in Figure 7.11 shows for each algorithm (CGE and GE using BNF-Koza) the 

distribution of the solutions found, with regards to the required steps performed by the 

ant. The graph depicts that 68% of the solutions found by CGE perform moves in a range 

of 401-450 steps in order to find all 89 pieces of food in the trail. Instead, the 52% of the 

solutions found by GE using BNF-Koza requires moves in a range of 601-650 steps. 

80 -r----------------------------
■CGE 

70 +----------------------
"'C ■ GE using BNF-Koz_a 
360 +-----------
0 
u. ~so +-----------c 
0 

'540 -------
0 

~30 +-----------
l20 +----------­c 
~10 +-----------

0·300 301-350 351-400 401-450 451-500 501-550 551-600 601-650 

Ranges of Steps 

Figure 7.11: CGE vs. GE - Percentages of solutions found for varying ranges of 
steps. 

The graph in Figure 7 .12 shows for each algorithm the distribution of the solutions found, 

with regards to the size of the genotype in bits. 

80 ~--------------------------

.i 70 
C 

5 60 
u. 
"' .§ 50 

240 
.5l 
030 

~20 
c; 
~ 10 
(IJ 

0.. 0 

■ CGE 

■ GE using BNF-Koza 

0-500 501-1000 1001-1500 1501·2000 2001-2500 2501-3000 3001-3500 3501-4000 >4000 

Ranges of Genotype Length in Bits 

Figure 7.12: CGE vs. GE - Percentages of solutions found per genotype size ranges. 

178 



What is interesting in this graph is the observation that the solutions found by CGE 

require smaller genotypes than these found by GE using BNF-Koza. Namely, the 76% of 

the solutions found by CGE are created with genotypes of size less than 500 bits and no 

solution had a genotype larger than 2000 bits. Additionally to the genotype size maximum 

limit, this is because constituent genes compress more information into a single choice of 

a production and the language bias toward conditional statements of the BNF -BS grammar 

definition biases toward formation of larger structures, consequently there are less codon 

reads during the mapping process and smaller genotypes are required. 

Also, it is observed here that imposing a limit of 250 codons (2,000 bits) to the genotype 

of an individual, as is the case with the CGE experiments conducted so far (except in Los 

Altos Hills where the limit was 750 codons), actually does not negatively affect the 

success rate of the CGE algorithm. That is because almost all solutions found in the 

conducted experiments require far less genotype size than this limit and consequently it 

does not seem probable that a solution of larger genotype would be found by CGE during 

a run which would be rejected because its size exceeded the max codons limit (at least not 

in a magnitude that could affect in practice the success rate). 

7.7.3 Best Solutions Phenotypes 

This section provides a listing of the phenotypes of the best solutions found by GE using 

BNF-Koza, GE using BNP-O'Neill, and CGE respectively in the experiments conducted 

in the Santa Fe Trail problem. The best solutions have been chosen according to three 

different criteria: the number of steps, the size of the genotype, and the size of the 

phenotype. 

Number of Steps 

The phenotypes (in NetLogo) of the best solutions found in terms of ant's steps in the 

conducted experiments are shown in Listing 7.16, Listing 7.17, and Listing 7.18. 

ifelse food- ahead 
[move] 
[ifelse food - ahead 

[turn- r ight] 
[turn- left 
ifelse food-ahead 

179 



[move move turn- left turn- right ] 
[tu rn - r i ght] 

turn- right 
ifelse food- a head 

[move] 
[ifelse food- ahead 

[turn- righ t] 
[turn- left ] 

move 

Listing 7.16: Best solution found by GE using BNF-Koza (415 steps). 

ifelse food- ahead 
[move] 
[turn- r i ght] 

i f e l se food - a head 
[move] 
[turn- right ] 

move 
turn- right 
ifelse food- ahead 

[turn-left ] 
[i felse food- ahead 

[turn- right] 
[ifelse food- ahead 

[ifelse food- ahead 
[move] 
[turn- left ] 

[ifelse food- ahead 
[move] 
[ifelse food- ahead 

[turn- right] 
[ifelse food- ahead 

[turn- right] 
[ifelse food-ahead 

[turn- left ] 
[ifelse food-ahead 

[move] 
[ifelse food- ahead 

[ifelse food- ahead 
[move] 
[turn- right] 

[turn- right] 

Listing 7.17: Best solution found by GE using BNF-O'Neill (607 steps). 

180 



ifel se f ood - ahead 
[move ] 
[turn- righ t 
ifelse food- ahead 

[ife l se f ood- a head 
[ifelse food- ahead 

[move move ] 
[move ] 

ife lse food- a head 
[move move) 
[move] 

[turn - l eft ] 
move 

[ifelse food - a head 
[move ] 
[turn- right ] 

ifelse food- ahead 
[turn - left) 
[turn - righ t 
ifelse food - ahead 

[move ] 
[ifelse food- ahead 

[move ) 
[turn-right) 

move 

Listing 7.18: Best solution found by CGE (337 steps). 

Genotype Size 

The genotypes and the phenotypes (in NetLogo) of the best solutions found in terms of 

genotype size (bits) in the conducted experiments are shown in Listing 7.1 9, Listing 7.20, 

and Listing 7.21. 

Genotype: 
01 1 0000111001011000001010000110110100000 1101010011001 1 0001000101 
11010101011101000000001110010111 111 00100010100 1 01 11 11011 11100110 
11111100101011 

Phenotype : 
ifelse food- ahead 

[turn - l eft] 
[turn- right) 

ifelse food- ahead 
[move ] 
[ turn- right) 

Move 

181 



turn- r i ght 
i f e l se food- ahead 

[turn- left ] 
[ turn- right] 

Listing 7.19: Shortest genotype found by GE using BNF-Koza (142 bits, 617 steps). 

Genotype: 
1 0111 1 0100010011100111111000 1 0110001100010100101100011000111101 
100100010000010101111111100 

Phenotype: 
move 
turn- r igh t 
ifelse food- ahead 

[turn- left ] 
[ turn- r i ght] 

turn- right 
ifel se food- ahead 

[move] 
[tum- r ight] 

Listing 7.20: Shortest genotype found by GE using BNF-O'Neill (90 bits, 615 steps). 

Genotype: 
000010010000010000111010111011010100010011100111010001010000001 
1 011001000 

Phenotype: 
ifelse food- a head 

[ ifelse food-ahead 
[mov e ] 
[turn- right ] 

[ifelse food - ahead 
[move] 
[turn- right] 

ifelse food - ahead 
[move] 
[ifelse food- ahead 

[move] 
[turn- right] 

ifelse food- ahead 
[ifelse food - ahead 

[move] 
[turn-righ t] 

[ifelse food-ahead 
[move] 
[turn- right ] 

i felse food- a head 
[ i felse f ood- ahead 

[move] 
[ t urn - r ight ] 

182 



[ ife l se food-ahead 
[move] 
[turn - right ] 

i felse food - ahead 
[ifelse food- ahea d 

[move ] 
[turn- right ] 

[move ] 

Listing 7.21: Shortest genotype found by CGE (73 bits, 405 steps). 

Phenotype Size 

The phenotypes of the best solutions found in terms of phenotype size (operators) in the 

conducted experiments are shown in Listing 7.22, Listing 7.23 , and Listing 7.24. 

i felse food- ahead 
[move] 
[turn- left 
turn- left 
ifelse food-ahead 

[move] 
[turn- right] 

move 
turn- right 

Listing 7.22 : Shortest phenotype found by GE using BNF-Koza (9 operators, 589 
steps). 

ifelse food- ahead 
[move ] 
[turn-right ] 

move 
turn-right 
ifel se food- ahead 

[turn-right] 
[turn- left] 

turn- left 

Listing 7.23: Shortest phenotype found by GE using BNF-O'Neill (9 operators, 611 
steps). 

ifelse food - ahead 
[turn- left] 
[turn- right 
ifel se food- a h ead 

183 



[move] 
[turn-right 
i f e l se food- ahead 

[turn- right] 
[turn- right 
ifelse food- ahead 

[move ] 
[turn- right ] 

move 

Listing 7.24: Shortest phenotype found by CGE (13 operators, 519 steps). 

As can be observed in these solutions, CGE was able to find , as already mentioned, not 

only the solution with the fewer steps and the solution with the smallest genotype, but also 

the steps required by the solution with the smallest genotype are less than these of the 

corresponding solutions found by GE using BNF-Koza and GE using BNF-O'Neill. 

7.7.4 Processing Requirements of CGE 

In order to evaluate the performance (in terms of required processing and execution time -

duration) of the CGE algorithm in comparison with the standard Grammatical Evolution 

algorithm in the Santa Fe Trail problem, the NetLogo model used in these experiments 

logs additional information about the elements of interest. 

The retrieval of time information has been implemented with the native NetLogo reporter 

"timer". According to the Dictionary of the NetLogo Manual (Wilensky, 1999), the 

"timer" procedure reports how many seconds have passed since the command reset-timer 

was last run ( or since NetLogo started). The potential resolution of the clock is 

milliseconds. Whether, the resolution is that high in practice may vary from system to 

system, depending on the capabilities of the underlying Java Virtual Machine. 

The following information are retrieved and logged during the execution of an experiment 

in the Santa Fe Trail problem: 

• Total number of genotype-to-phenotype mappings during an experiment (each 

experiment performs 100 evolutionary runs). 

• Number of mappings, during an experiment of 100 evolutionary runs, with execution 

time greater than or equal to 1 millisecond. 

184 



• Total execution time (in seconds) of mappings with execution time greater than or 

equal to 1 millisecond, during an experiment of 100 evolutionary runs. The resolution 

of the clock in NetLogo is in milliseconds but most mappings require less time. 

Consequently, the total execution time of mappings takes in account only the 

mappings with duration greater than or equal to 1 millisecond. For all other mappings, 

NetLogo (reporter "time") returns execution time zero. 

• Number of generations created in each evolutionary run (the initial generation 0 is also 

counted). 

• Time (in seconds) required for the creation of the constituent genes pool of each 

evolutionary run. 

• Execution time (in seconds) of each GE evolutionary run. This time plus the time right 

above for the pool creation, results in the execution time of the CGE evolutionary run 

(Tee£= Tc£+ Tccp). 

For the collection and analysis of the above information, two experiments have been 

conducted of 100 evolutionary runs each one: CGE and GE using BNF -Koza, both using 

the setup and configuration mentioned in section 7.5 .1. All experiments were performed in 

a personal desktop computer with Windows XP (SP3), Java SE 6, and NetLogo 4.1.1 with 

the following hardware configuration: Intel Core 2 Duo CPU, E8400 @ 3.00GHz, 3.00 

GHz, 3.25GB of RAM. 

The statistical results which have been calculated from the logged time information of the 

experiments performed are shown in Table 7.15. 

a e : T bl 7 15 P t f f rocessm2 s a 1s 1cs o f CGE d GE an usm2 BNF K - oza. 

Statistic / Metric GE using BNF-Koza CGE 

Mappings Total 2,441 ,000 861,500 

Mappings with ET>0 175,004 1,268 

Percentage of Mappings with ET>0 7.17% 0.15% 

Mappings Execution Time (sec) 18,293.05 20.44 

Mappings Time Percentage 52.75% 0.17% 

Average Mapping Duration (sec) 0.10453 0.01612 

Normali sed Average Mapping Duration (sec) 0.00796 0.00052 

Generations Total 4,882 1,723 

Generations per Run 49 17 

185 



Experiment Duration (sec) 34,676 12,075 

Pools Creation Duration (sec) 0 2,939 

Pools Creation Percentage 0% 24% 

Average Run Duration (sec) 347 121 

Average Pool Creation Duration (sec) 0 29 

Average Pool Creation Percentage 0% 24% 

Average Generation Duration (sec) 7.10 7.01 

"Mappings Total" is the total number of genotype-to-phenotype mappings performed in 

the experiment; "Mappings with ET>0" is the number of mappings with execution time 

equal to or greater than I millisecond; "Percentage of Mappings with ET>0" is the 

percentage of mappings with execution time equal to or greater than 1 millisecond over 

the total mappings performed in the experiment; "Mappings Execution Time (sec)" is the 

execution time (duration) in seconds of all mappings with execution time equal to or 

greater than 1 millisecond; "Mappings Time Percentage" is the percentage of the 

measured mappings execution time over the execution time of whole the evolutionary run; 

"Average Mapping Duration (sec)" is the average duration in seconds of a genotype-to­

phenotype mapping ( only mappings with duration equal to or greater than 1 millisecond 

are taken in account) ; In "Normalised Average Mapping Duration (sec)" al l mappings are 

taken in account by making the assumption that mappings with execution time less than 1 

millisecond have an average duration of 0.5 milliseconds; "Generations Total" is the 

number of all generations created during the experiment ( 100 evolutionary runs); 

"Generations per Run" 1s the average number of generations created during an 

evolutionary run of the experiment; "Experiment Duration (sec)" is the duration in 

seconds of the experiment; "Pools Creation Duration (sec)" is the execution time 

( duration) in seconds of the creation of the constituent genes pools; "Pool Creation 

Percentage" is the percentage of the pools creation duration over the duration of whole the 

evolutionary run; "Average Run Duration (sec)" is the average duration in seconds of an 

evolutionary run of the experiment (includes constitute genes pool creation execution time 

and standard grammatical evolution execution time); "Average Pool Creation Duration 

(sec)" is the average duration in seconds of the constituent genes pool of an evolutionary 

run of the experiment; "Average Pool Creation Percentage" is the percentage of the 

average duration of the creation of the constituent genes pool over the average execution 

time of whole an evolutionary run of the experiment; and "Average Generation Duration 

186 



(sec)" is the average execution time ( duration) in seconds of a generation creation and 

evaluation. The last is calculated as follows: Average Generation Duration = Experiment 

Duration I Generations Total. 

The results in Table 7.15 show that Constituent Grammatical Evolution performs faster 

than GE using BNF-Koza in the Santa Fe Trail problem. The difference in the total 

duration of an experiment is mainly the result of the difference in the number of mappings 

("Mappings Total") because in CGE fewer generations of ants are required due to its 

higher success rate (as discussed in section 7.7.1). But this is not a fair metric, so the 

average duration time of the creation and evaluation of a population generation has been 

calculated where, as can be seen in the results, CGE is faster than GE using BNF-Koza as 

well. Namely, the average duration for the creation and evaluation of a generation is 7.01 

seconds in CGE, against 7.10 seconds in GE using BNF-Koza. 

Even though CGE requires substantial additional processing power before each 

Grammatical Evolution run, because of the creation and evaluation of the candidate 

constituent genes (its duration is the 24% of the total duration of an evolutionary run), it 

achieves a lower execution time per generation than GE using BNF-Koza in the specific 

setup, because CGE results to much smaller genotypes than GE, consequently faster 

genotype-to-phenotype mappings of an individual (namely less processing) are required as 

shown in Table 7.15. Section 7.8.3 demonstrates the impact of the genotype-to-phenotype 

mapping process in the computation effort required by Grammatical Evolutions and shows 

the dramatic improvement that can be achieved when the genotype size is decreased. 

7.8 Analysis of CGE 

The promising results of the experiments naturally raises the question what is the reason 

of the high performance of CGE compared to standard Grammatical Evolution and to 

what extent each of the three unique features of CGE - constituent genes, behaviour­

switching approach, and genotype size max limit - affect the effectiveness and efficiency 

of the algorithm. A series of experiments are conducted and statistical results are provided 

in this section in order to highlight the contribution of each of these features in the 

performance of CGE, to reveal the nature of the constituent genes, and finally to discuss 

the reasons of the observed performance of Constituent Grammatical Evolution. 

187 



7.8.1 The Constituent Genes Feature 

In order to evaluate the constituent genes feature in isolation, the BNF-BS grammar is 

replaced by the original (unbiased) grammars which are used by Grammatical Evolution 

when it is benchmarked on the Santa Fe Trail, Los Altos Hills, Hampton Court Maze and 

Chevening House Maze problems in the experiments of the previous sections. Therefore, 

CGE is configured in the setups of this section to use one grammar definition for both the 

constituent genes and the individuals and without forcing a genotype size limit. 

In particular, for the Santa Fe Trail problem, the setup of the experiment is the same with 

these conducted to benchmark CGE against Grammatical Evolution in section 7.5 (see 

Table 7.1 and Table 7.2) with the following variation: CGE uses the BNF-Koza grammar 

definition (Listing 5.2) for the individuals instead of the BNF-BS (Listing 7.8) in order to 

rule-out the bias imposed by this grammar, and also it does not enforce a limit to the size 

of the genotype of the individuals. The constituent genes are added to the BNF-Koza 

grammar definition in the same way as in the BNF-BS (namely, as productions in the 

<op> non-terminal symbol). 

The same approach for the benchmarking of the constituent genes feature is followed for 

the other problems as well. Namely, in the Los Altos Hills, the setup of Table 7.7 and 

Table 7.8 is used with the replacement of the BNF-BS grammar of Listing 7.10 with the 

BNF-Koza grammar (Listing 5.2). In the maze searching problems, the maze version of 

the BNF-Koza grammar definition (Listing 7 .11) is used for both the agents and the genes 

using the configuration of Table 7.10 and Table 7.11. Namely, the bias imposed in CGE 

by the grammar BNF-BS of Listing 7.13 and the genome max limit are ruled out in these 

experiments as well. 

In each experiment, 100 evolutionary runs were performed and the experimental results 

are shown in Table 7.16. "Evolutionary Runs" is the number of evolutionary runs 

performed in the experiment; "Best Solution' s Steps", the required steps ( ant moves) of 

the best solution found in terms of efficiency (required steps) in the particular experiment; 

and " Success Rate", how many evolutionary runs (percentage) found a solution. 

188 



Table 7.16: Constituent genes benchmark results on Santa Fe Trail, Los Altos Hills, 
Ham C t M d Ch H M . BNF K pton our aze,an evenmg ouse aze usme - oza. 

Santa Fe Los Altos Hampton Chevening 
Trail Hills Court Maze House Maze 

Evolutionary Runs 100 JOO 100 100 

Best Solution's Steps 493 -- 384 330 

Success Rate 37% 0% 15% 26% 

The experimental results show that the constituent genes feature improves the success rate 

of Grammatical Evolution and this is due to the advantages of modularity (reusable 

building blocks of code). Namely, from 10% success rate to 37% in the Santa Fe Trail 

problem, from 1 % to 15% in the Hampton Court Maze, and from 6% to 26% in the 

Chevening House Maze problem. Instead, in the Loss Altos Hills problem, neither 

approach managed to find a solution which makes this problem a challenging case for 

future investigation and experimentation. 

Listing 7.25 shows a sample genes pool which was created for an evolutionary run of the 

Santa Fe Trail experiment of this section (see Table 7.16) and Listing 7.26 shows the 

grammar definition - after the addition of the constituent genes of the pool as productions 

(see lines 1, 2 and 3) - which was used by Grammatical Evolution in this run. 

Constituent gene (1) 
ifelse food- ahead [move] [ turn- right ] 

Constituent gene (2) 
ifelse food-ahead 

[ move 
[ turn-right ifelse food-ahead 

[move] 
[ turn-right l l I 

Constituent gene (3) 
move ife lse food- ahead [ move ] [ t urn - right ] 

Listing 7.25: Sample of a genes pool from the Santa Fe Trail experiment containing 
three constituent genes phenotypes. 

<expr> : : = <line> 
<expr> <line> 

<line> - ifelse food-ahead [ <expr> ] [ <expr> ] I 
<op> 

<op> turn- left I 
turn- right I 

189 



move I 
ifelse food-ahead [move] [turn-right] I (1) 
ifelse food-ahead (2) 

move] 
[ turn-right ifelse food-ahead 

[move] 
[ turn-right ] ] I 

move ifelse food-ahead [move] [ turn-right (3) 

Listing 7.26: Sample of a grammar definition from the Santa Fe Trail experiment 
after the addition of the phenotypes of the constituent genes of the genes pool of 
Listing 7.25 before the start of a Grammatical Evolution run. 

Regarding the form of the candidate constituent genes (which are created randomly) and 

the form of the constituent genes of the pools (which are evaluated and selected based on 

the fitness function of Equation 7 .1 ), the most common of them are provided below. The 

statistics are based on a sample of 1000 evolutionary runs on the Santa Fe Trail problem. 

Each pool of constituent genes is created with the parameters of Table 7.2. A sample of 

1000 runs is chosen in order to provide reliable figures because the candidate constituent 

genes are created randomly. 

Table 7.17 displays the 10 most common randomly created candidate constituent genes 

and their occurrence percentage over the total number of created candidates with a valid 

phenotype ( complete genotype-to-phenotype mapping). Table 7 .18 shows the 10 most 

common constituent genes in the created gene pools and their occurrence percentage over 

the total number of genes in pools, namely, the most common phenotypes (building 

blocks) which were added to the original grammar definition as productions. 

Table 7.17: Ten most common randomly created candidate constituent genes and 
th . t h t I b f 1 · d d. d t e1r occurrence percen age over t e to a num er o va 1 can I a es. 

Rank Candidate Constituent Genes Occurrence 

1 turn-left 20.06% 

2 move 19.88% 

3 turn-right 19.84% 

4 turn-left turn-left 1.71 % 

5 turn-right turn-left 1.67% 

6 move turn-left 1.67% 

7 turn-left move 1.66% 

190 



8 turn-left turn-right 1.66% 

9 turn-right turn-right 1.66% 

10 move move 1.65% 

Table 7.18: Ten most common constituent genes in the created gene pools and their 
t h I bf . I occurrence percen age over t e tota num er o genes m poo s. 

Rank Constituent Genes in Pool Occurrence 

I ifelse food-ahead [move][ turn-right] 36.53% 

2 ife lse food-ahead [ move ][turn-left] 32.37% 

3 move 7.03% 

4 move move 3.90% 

5 move ifelse food -ahead [ move ][turn-right] 0.93% 

6 ifelse food-ahead [ ifelse food-ahead [ move ][ turn-right ] ] [ turn-right ] 0.90% 

7 ifelse food-ahead [ ifelse food-ahead [ move][ turn-left] ][turn-right] 0.80% 

8 ifelse food-ahead [ ifelse food-ahead [ move][ turn -left] ][turn-left] 0.80% 

9 ifelse food-ahead [ ifelse food-ahead [move][ move]][ turn-right] 0.77% 

10 ife lse food -ahead [ move ][ ifelse food-ahead [turn-left][ turn -right] ] 0.70% 

7.8.2 The Behaviour-Switching Feature 

For the evaluation of the behaviour-switching approach in isolation, a senes of 

experiments is conducted where COE is configured to rule-out the constituent genes and 

genotype size max limit features and to use a grammar which bias the search toward 

conditional statements in the start of the control program (as BNF-BS does) and defines a 

search space semantically equivalent with this defined by the original grammars (BNF­

Koza artificial and maze versions). Therefore COE becomes a standard Grammatical 

Evolution algorithm which uses a particular declarative search bias (behaviour-switching 

approach) stated by a modified version of the original grammar definitions. 

In particular, the standard Grammatical Evolution algorithm is configured with the setup 

of Table 7.1 using the BNF grammar definition shown in Listing 7.27 for the Santa Fe 

Trail and the setup of Table 7. 7 and grammar definition in Listing 7 .28 f for the Los Altos 

Hills. The productions of the non-terminal <op> with the phenotypes of the constituent 

191 



genes m BNF-BS are replaced here by the non-terminal <complex-op> with the same 

probability to be selected (50%) as a constituent gene in the configuration of the CGE 

experiments with genes pool size 3. 

<behaviour> - ifelse food-ahead [<op>] [<op> <behaviour>] 
ifelse food-ahead [<op>] [<op>] I 
<op> 

<op> - <single-op> 
<complex-op> 

<complex- op> ·· =<line> I 
<complex-op> <line> 

<l ine> : : = ifelse food- ahead [<complex- op>] [ <complex- op> ] I 
<single- op> 

<single- op> - turn- left I 
turn- right I 
move 

Listing 7.27: BNF-Koza grammar definition for the Santa Fe Trail problem with a 
declarative search bias toward conditional statements in the start of the program. 

<behaviour> : : = 
<behaviour> ifelse food-ahead [<op>] [<op> <behaviour>] 
<behaviour> ifelse food-ahead [<op>] [<op> <behaviour>] 
ifelse food-ahead [<op>] [ <op> <behaviour>] I 
ifelse food-ahead [<op>] [ <op> <behaviour>] I 
ifelse food-ahead [<op>] [<op>] I 
<op> 

<op> · ·= <single-op> 
<complex-op> 

<complex- op> <line> I 
<complex- op> <line> 

<line> : : = ifelse food - ahead [ <complex- op> J [ <complex- op>] I 
<single- op> 

<single- op> ·· =turn -left I 
turn- right I 
move 

Listing 7.28: BNF-Koza grammar definition for the Los Altos Hills problem with a 
declarative search bias toward conditional statements in the start of the program 
(the bias toward conditional statements is similar to the bias used in the CGE 
experiment on the same problem; see Listing 7.10). 

In the same way, Grammatical Evolution algorithm is configured for the maze searching 

problems with the setup of Table 7.10 and using the grammar definition of Listing 7.29. 

<behaviour> · ·= ifelse <condition> [<op>] [<op> <behaviour>] 
ifelse <condition> [<op>] [<op>] I 
<op> 

<op> - <single-op> 

192 



<complex-op> 
<comp lex-op> : : = <line> I 

<complex-op> <line> 
<line> : : = ifel se <condi t ion> [<complex- op> ] [<compl ex- op>] 

<s i ngle - op> 
<condition> - wall - ahead? I 

<single - op> 

wall - left ? I 
wall - right ? 
turn- left I 
t u rn- right 
move 

Listing 7.29: BNF-Koza maze version grammar definition for the Hampton Court 
Maze and Chevening House Maze problems with a declarative search bias toward 
conditional statements in the start of the program. 

In each experiment, 100 evolutionary runs were performed and the experimental results 

are shown in Table 7.19. "Evolutionary Runs" is the number of evolutionary runs 

performed in the experiment; "Best Solution's Steps", the required steps (ant moves) of 

the best solution found in terms of efficiency (required steps) in the particular experiment; 

and "Success Rate", how many evolutionary runs (percentage) found a solution. 

Table 7.19: Behaviour-switching benchmark results on Santa Fe Trail, Los Altos 
Hills H C M d Ch H M ' 

ampton ourt aze, an evenmf ouse aze. 
Santa Fe Los Altos Hampton Ch evening 

Trail Hills Court Maze House Maze 

Evolutionary Runs 100 100 100 100 

Best Solution's Steps 377 -- -- 414 

Success Rate 37% 0% 0% 5% 

As shown by the results, when Grammatical Evolution uses the feature of the conditional 

behaviour-switching, a success rate improvement is achieved in the Santa Fe Trail 

problem from 10% to 37%. Instead, in the other problems there is neither an increase or 

decrease in performance where Grammatical Evolution using BNF-Koza displayed 0% 

success rate on the Los Altos Hills, 1 % on Hampton Court Maze, and 6% on the 

Chevening House Maze. 

7.8.3 The Genotype Maximum Size Limit Feature 

The genotype maximum size limit feature of CGE using the value of the setups in Table 

7 .2 and Table 7 .11 (IMC value 250 codons) is isolated and evaluated in the artificial ant 

and maze searching problems using the standard Grammatical Evolution algorithm m 

193 



Santa Fe Trail and Chevening House Maze respectively while enforcing a limit in the 

genotype size of the same value. 

Namely, two experiments have been conducted with Grammatical Evolution using BNF­

Koza (Listing 5.2) for the Santa Fe Trail problem and BNF-Koza maze version (Listing 

7 .11) for the Chevening House Maze problem. GE is configured with the setups of Table 

7.1 and Table 7.10 respectively (same setups where GE has been benchmarked on these 

problems in previous sections) in addition with the enforcement of a genotype size 

maximum limit (IMC) of value 250 codons. 

In each experiment, 100 evolutionary runs were performed and the results are shown in 

Table 7.20. "Evolutionary Runs" is the number of evolutionary runs performed in the 

experiment; "Best Solution's Steps", the required steps (ant moves) of the best solution 

found in terms of efficiency (required steps) in the particular experiment; and "Success 

Rate", how many evolutionary runs (percentage) found a solution. 

Table 7.20: Grammatical Evolution using BNF-Koza (artificial ant and maze 
searc ) . SF d CHM bl ms. bing versions and genotype size hmit 250 codons m Tan pro e 

Santa Fe Trail Chevening House Maze 

Evolutionary Runs 100 100 

Best Solution's Steps 387 369 

Success Rate 11% 5% 

The results show that the size limit value of 250 codons which is used in these and the 

CGE experiments has no practical effect on the success rate of Grammatical Evolution 

using BNF-Koza (artificial ant and maze search versions) on the Santa Fe Trail and 

Chevening House Maze problems where it displays 10% (Table 7.4) and 6% (Table 7.13) 

success rate respectively. 

In order to confirm that using the limit of 250 codons there is no practical effect in the 

success rate of the examined problems, another series of experiments is conducted on the 

Santa Fe Trail problem, this time using CGE with the setup of Table 7.1 and Table 7.2 

with the only difference being that the genome size limit (IMC) is discarded. Table 7 .21 

shows the results of these experiments. The column "Best" shows the best value of all five 

experiments. "Runs" is the number of evolutionary runs performed in each experiment, 

"Steps", the required steps of the best solution found in the particular experiment, 

194 



" Success", how many evolutionary runs (percentage) found a solution, and "Avg. 

Success", the average success rate of all five experiments. 

Table 7.21: CGE on SFT without eenotype size maximum limit. 

Exp #1 Exp #2 Exp #3 Exp #4 Exp#S Best 

Runs 100 100 100 100 100 100 

Steps 387 397 373 385 399 373 

Success 93% 93% 89% 84% 85% 93% 

Avg. Success 89% 

The results confirm the previous observation that using a genotype limit with value 250 

codons has no practical effect on the success rate on problems of a magnitude (required 

effective genome) similar to that of the problems examined in this work. This is probably 

because a much smaller genotype size than the limit is required by Grammatical Evolution 

to be effective. Indeed, in CGE it seems that the genotype limit has no practical effect 

neither in the solution quality (see Table 7.3). Consequently, the questions that arise from 

the above results are whether there is a lower threshold in the genome size limit that 

affects the performance of Grammatical Evolution (therefore of CGE as well , but taking 

in account a necessary adjustment of the limit because the later requires genomes of 

smaller size due to behaviour-switching and constituent genes) and what is the impact of 

this feature in the computational effort of Grammatical Evolution. 

To answer these questions, a series of Grammatical Evolution usmg BNF-Koza 

experiments in the Santa Fe Trail problem were conducted with and without genome size 

limits of various sizes and measuring the impact of these limits on the volume (non­

terminal symbols expansions) and total execution time of the genotype-to-phenotype 

mappings. The experimental results are compared with the previously experiment 

conducted on Santa Fe Trail using Grammatical Evolution with limit value 250 codons. 

All experiments were performed in a laptop computer with Windows 7 Home Premium 

64-bit (SPl), Java SE 6, and NetLogo 4.1.3 with the following hardware configuration: 

Intel Core i5-2430M (dual core) CPU @ 2.4GHz, 2.4GHz, 6 GB of RAM. 

The results are shown in Table 7.22. "Evolutionary Runs" is the number of evolutionary 

runs performed in each experiment; "Best Solution Steps", the required steps (ant moves) 

of the best solution found in terms of efficiency (required steps) in the particular 

195 



experiment; "Best Solution Length (bits)", the size of the genotype in bits of this solution; 

"Total Ants", the total number of ants of all generations of the particular experiment; 

"Invalid Ants", how many ants of the total ants had an invalid phenotype (incomplete 

genotype-to-phenotype mapping); "Non-Terminal Expansions", the total number of non­

terminal symbols that expanded to one of its productions during all the genotype-to­

phenotype mappings in the experiment (namely, how many times a codon was read to 

expand a non-terminal during the creation of the derivation trees of the individuals); 

"Mappings Total Time (sec)", the required total execution time in seconds for the 

performance of these non-terminal expansions and therefore of the genotype-to-phenotype 

mappings (both complete and incomplete); and "Success Rate", how many evolutionary 

runs (percentage) found a solution. 

Table 7.22: Results in the Santa Fe Trail problem of Grammatical Evolution using 
BNF-Koza and applying various fenotype size limits (IMC). 

Limit 25 Limit 50 Limit 150 Limit 250 No Limit 

Evolutionary Runs 100 100 100 100 100 

Best Solution Steps 631 507 387 387 497 

Best Solution Length (bits) 200 330 1200 2000 748 

Total Ants 2,540,000 2,467,000 2,468,500 2,461 ,000 2,459,500 

Invalid Ants 1,055,615 824,246 597,067 547,791 578,660 

Non-Terminal Expansions 247,239,675 306,436,366 436,637,071 529,792,679 673,426,2 I 3 

Mappings Total Time (sec) 207.00 403.00 2,092.00 4,505.00 16,014.00 

Success Rate 1% 11% 13% 11% 12% 

The results show that with genotype size limit 25 codons, the success rate of Grammatical 

Evolution drops dramatically. From the limit of 50 codons and above, there is no practical 

effect in the success rate and solution quality. Regarding the later, no safe conclusions can 

be made due to the small sample of solutions found. Instead, an impact is observed on the 

volume of the genotype-to-phenotype mappings (number of expansions of non-terminal 

symbols to their productions) and the computational effort (time) they require. Enforcing 

the genotype size limit, a significant reduction is displayed in the volume (non-terminal 

expansions) of the performed mappings and their total execution time. Also, it is observed 

that the increase of the number of non-terminal expansions is not linear with the increase 

of the required execution time. This can be explained because the computational effort 

196 



which is required for the expansion of a non-terminal to one of its productions depends 

also on the size of the derivation tree (phenotype) that is created and the position of the 

non-terminal to be expanded in this deviation tree (these are dependent on the specific 

implementation of the mapping algorithm in a computer program). 

v, 
C 
0 

"Cl 
0 u 
~ 

QJ 
N 
vi 
QJ 
tlO 
ro .._ 
QJ 
> 

<l: 
QJ 
a. 
> ...., 
0 
C 
QJ 
(.'.) 

400 

--No Limit ----· Limit 250 - - - Limit 150 - · - Limit SO - - Limit 25 

350 

300 

250 

200 

150 --------------

100 ---
50 

0 -+--r--.--r-r-.-,---.--,---.--r,-.--,---.--,--.--...-,--.--,---.--,--.--...-,--.--,---.--.---.--...-,--.--,----,-,--.--...-,--.--,---,-y--.--...-,--..-,--,-, 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 
Generation 

Figure 7.13: Average genotype size in codons of individuals per generation of 
Grammatical Evolution in the Santa Fe Trail problem with and without genotype 
size restrictions (25, 50, 150 and 250 codons). 

Regarding the impact of the enforcement of the maximum genotype size limit on the 

genome size of individuals in population level , Figure 7.13 displays the average size 

(codons) of the genotypes of the individuals per generation during the evolutionary runs 

of the conducted experiments. The graph shows that the enforcement of the limit resolves 

the genotype bloat issue and furthermore that it does not result into fixed-length genotypes 

in a population. Namely, genotypes in the population are still of variable-length during the 

evolutionary run (the average sizes are smaller than the enforced limits) even though it 

seems that their average sizes are stabilizing gradually with time as the evolution 

progresses, especially when this limit has smaller values. 

197 



7.8.4 Discussion 

This section discusses the unique feature of CGE, their synergy, and their contribution to 

the performance displayed by the algorithm on the benchmarking problems conducted in 

this work. 

Constituent Genes 

Constituent genes state with their addition in the grammar an emergent search bias toward 

the use of potentially larger and more useful segments of code without restricting the 

search space defined by the original grammar (existing non-terminals and productions are 

not replaced or removed). Instead, if the grammar which dictates the form of the 

constituent genes allows the creation of structures that cannot be constructed by the 

grammar where they are added, then they will increase the space of possible hypotheses 

that can be constructed. 

In the case of CGE, the original grammar used by the algorithm in this work is the BNS­

BS Blueprint (Listing 7.7) which states a declarative language bias. Constituent genes are 

constructed using an unbiased grammar (BNF-Koza artificial and maze versions) 

therefore, when they are added as productions in the BNF-BS grammar, they increase the 

possible programs that can be constructed by expanding the search space to areas which 

were excluded. For example, the addition of a constituent gene with phenotype "move 

move" or any conditional statement (which results in nested conditions in the ifbranch of 

the conditions of the <behaviour> non-terminal) will allow the creation of individual 

phenotypes that otherwise could not be constructed by the BNF-BS grammar definition. 

Regarding the random process by which the candidate constituent genes are created, the 

statistical results in Table 7.14, Table 7.15, Table 7.17, and Table 7.18 reveal that even 

though it seems to be able to find segments of useful code (but mostly of a small size), it 

requires substantial additional computational effort before each GE run and furthermore it 

is computational ineffective (only approximately 42% of randomly created genes have a 

valid phenotype). The use of a more competent creation mechanism (e.g. evolution or 

knowledge encoding) that results in better and more diverse candidate constituent genes in 

a computationally more efficient way, would increase the performance of the CGE in 

terms of success rate, solution quality, and computational effectiveness. 

198 



Behaviour-Switching Approach 

This feature is inspired by the obvious usefulness and applicability of "condition 

checking" and "memory" competences in domains where decisions and states play a 

significant role such as in agent-oriented decision-related problems. The BNF-BS 

grammar definition enforces the programs to start with a conditional statement and 

incorporates a kind of memory due to the structure of the nested statements it defines 

which is of the form shown in Listing 7.4. The aim of the behaviour-switching approach is 

the encoding and utilisation of knowledge that is generally applicable not only in a single 

problem instance but in a problem domain. It could be thought as something similar to 

stating declaratively in a grammar definition the correct syntax of flow control structures 

of a programming language instead of making them subject of search as well, in order to 

not increase unnecessarily the search space when a computer program is to be evolved. 

In this work, the behaviour-switching approach has been applied successfully, displaying 

similar or better performance than when the original grammar is used , either in isolation 

by extending the BNF-Koza grammar and stating a declarative search bias, or in 

conjunction with constituent genes where it enforces a declarative language bias. The 

problems it has been applied (artificial ant and maze searching) are similar, therefore 

application in more diverse and difficult problems is required in order to conclude 

whether this approach is actually general and can be applied successfully in the domain of 

other agent-oriented problems. 

Synergy of Behaviour-Switching and Constituent Genes 

The benchmarking of the unique features of CGE revealed that none of them can achieve 

in isolation, or at least to approximate, the performance that CGE displayed on all the 

problems it has been applied in this work. When only constituent genes or only behaviour­

switching is used, the defined search space is substantially larger than the search space 

which is defined by the BNF-BS grammar definition after its modification with the 

addition of the constituent genes just before a CGE evolutionary run. 

The BNF-BS Blueprint grammar definition of Listing 7.7 states the same language bias 

with the grammar CB #2 of Listing 6.11 in section 6.5. Therefore, it is the main 

contributor in the high success rate of CGE but restricts the search space with the risk of 

199 



excluding good solutions for a problem. It is recalled that the CB #2 grammar achieves an 

almost absolute success rate (93%) on the Santa Fe Trail problem with the drawback that 

it could not find a solution requiring less than 405 steps. For example, this grammar 

cannot construct, due to the declarative language bias it states, the solution in Listing 7.9 

which was found by CGE on the Santa Fe Trail and which requires only 33 7 steps. 

When the behaviour-switching approach is used without restricting the original search 

space, it states the same search bias with the grammar CB #5 of Listing 6.14 which 

resulted in a success rate 35% on the Santa Fe Trail (they are actually the same 

grammars). The constituent genes feature in isolation results in grammar definitions 

similar to the grammar definitions of section 6.4, which declare a search bias, and 

especially with the grammar BB #2 of Listing 6.3 (displaying 30% success rate in Santa 

Fe Trail) when a genes pool of size 3 is used by CGE. The substantial difference is that 

the search bias imposed by constituent genes is emergent and not declarative as in BB #2. 

With the addition of the constituent genes to the language biased grammar BNF-BS, the 

defined search space increases alongside with the possible hypotheses that can be 

constructed due to the addition of useful building blocks like in the sample grammar of 

Listing 7.26. Therefore, because of the variety of the added constituent genes during a 

series of evolutionary runs, the possible hypotheses that can be constructed increase and 

with it the possibility of finding good solutions (requiring fewer steps) increases as well. 

Genotype Max Size Limit 

The contribution of this feature in CGE is the prevention of genotype bloating without 

resulting in fixed-length genotypes in a population and in the economy of the required 

computational effort. It is shown that it decreases in Grammatical Evolution the volume of 

the genotype-to-phenotype mappings (number of expansions of a non-terminal to one of 

its productions) and the execution time they require. The smaller this limit is, the larger is 

the gain in computational effort. This feature results alongside with the other two features 

of CGE to smaller genotypes and consequently to less computational effort regarding the 

mapping process. This computational effort saving could probably counterbalance the 

additional computational effort required for the creation of the genes pool. 

200 



But there is the risk of the selection of a limit value below a problem and grammar 

dependent threshold that will affect negatively the success rate of evolutionary runs. 

Therefore, further work regarding this feature is required to fully investigate its impact on 

Grammatical Evolution and COE. Some of the questions that could be investigated in 

future work are as follows. What is the critical threshold that affects performance in 

Grammatical Evolution and COE taking into account the grammar and the problem in 

question? What is the impact on other aspects such as phenotype size and bias of the 

evolutionary search? What is the relation with wrapping, namely how the max limit 

affects performance in a problem taking into consideration the effective genome size? 

How limiting the genome size affects genotypic diversity? Research toward this area 

could probably result in a theoretical scheme that highlights the trade-off between the 

impact on finding a solution and the expected gain in computational effort, and which 

could inform the suggested values this limit should take in specific cases ( for different 

problems and grammars). 

7.9 Experimental Results Conclusions 

Constituent Grammatical Evolution has been benchmarked against Grammatical Evolution 

in four problems - Santa Fe Trail, Los Altos Hills, Hampton Court Maze, and Chevening 

House Maze - and the results show that it improves the later in all of them. Consequently, 

it seems to be an effective and efficient algorithm for the class of problems where the 

subject of search is the conditional behaviour of an agent in a given environment. 

Due to its unique features, COE achieved some impressive experimental results. 

Particularly, it improves the standard Grammatical Evolution algorithm in the Santa Fe 

Trail problem, whether the later uses the BNF-Koza or the BNP-O'Neill grammar 

definition. COE achieves a success rate of 90% against 10% and 78% respectively for GE. 

These are the averaged values over 5 experiments of 100 runs for each. The best success 

rate achieved by COE in an experiment of 100 runs is 94%. Using standard GE with BNF­

Koza and BNP-O'Neill, the best success rates achieved were 13% and 81 % respectively. 

Furthermore, the most efficient solution found by COE in the Santa Fe Trail problem 

requires only 337 steps. This solution is much better than then best solutions mentioned 

by Koza (1992, p.154) and O'Neill and Ryan (2003 , p.56) which require 545 and 615 

201 



steps, respectively. Instead, the most efficient solutions found experimentally by 

Grammatical Evolution using BNF-Koza and BNP-O'Neill, require 415 and 607 steps 

respectively. 

Besides the required steps, CGE generally finds solutions of smaller genotype size than 

Grammatical Evolution. The size of the smallest solution found by CGE is just 73 bits. 

Instead, the smallest solutions found by GE using BNF-Koza and GE using BNP-O'Neill, 

have size 142 bits and 90 bits respectively. Regarding the size of the phenotype, GE was 

better than CGE. The solution with the smallest phenotype found by CGE uses 13 

operators and solves the problem in 519 steps. Instead, GE using BNF-Koza and GE using 

BNP-O'Neill found solutions of 9 operators which solve the problem in 589 and 611 steps 

respectively. 

Another important finding from the conducted experiments is that Grammatical Evolution 

did not find a solution in the Los Altos Hills problem while CGE was able to find a 

solution with a 9% success rate. Also, CGE proved to be very effective in the Hampton 

Court Maze because of its ability to overcome the deceptive local optimum of the problem 

due to its constituent genes. 

Performance measures in the Santa Fe Trail show that CGE reqmres less time and 

consequently less processing power than GE using BNF-Koza, for the creation and 

evaluation of the population of individuals of a generation during an evolutionary run. 

Finally, the benchmark of two of the unique features of CGE - constituent genes and 

behaviour-switching approach - show that, even though both improve Grammatical 

Evolution, none of them in isolation achieves the high success rates of CGE. It is the 

synergy of these features which allows the restriction and biasing of the original search 

space of the problem in question without excluding good solutions, that makes CGE so 

successful in the problems it has been benchmarked. Regarding the third unique feature of 

CGE - genotype size maximum limit - it is shown that it decreases significantly the 

computational effort of the genotype-to-phenotype mappings. 

202 



Chapter 8 

Conclusions and Future Work 

8.1 Discussion 

Grammatical Evolution is a flexible and promising grammar-based evolutionary algorithm 

with unique features inspired from molecular biology such as genetic code degeneracy, 

due to its genotype-to-phenotype mapping mechanism; and genetic material reuse , due to 

the genome wrapping it applies. Even though Grammatical Evolution shows competence 

on a series of problems where it has been applied, the experiments conducted in this study 

cast doubt about its effectiveness and efficiency on problems where the subject of 

evolution is the behaviour of an agent, something that was first demonstrated by 

Robilliard, et al. (2006) in the Santa Fe Trail problem. Problems of this type have some 

characteristics of real world problems, such as many local optima and large search spaces, 

making them challenging and difficult for evolutionary algorithms to efficiently solve 

them (Langdon and Poli, 1998a; Hugosson, Hemberg, Brabazon and O'Neill, 2010). 

The experimental results show that Grammatical Evolution does not outperform Genetic 

Programming in the Santa Fe Trail problem as GE literature claims, and that it is not able 

to solve the Los Altos Hills - a more difficult problem than the Santa Fe Trail. In addition, 

it is shown that Grammatical Evolution does not achieve competent results in two maze 

searching problems: the Hampton Court Maze, and the Chevening House Maze. 

Furthermore, Grammatical Evolution when it uses the biased search space mentioned in 

the GE literature (O 'Neill and Ryan 2001 ; 2003, pp.55-58) is not able to find solutions of 

similar or better quality than those found when it uses the original search space of the 

problem in question. It is readily apparent from the results that the Grammatical Evolution 

feature of defining the search space of a problem with a BNF grammar definition is a 

subject of implicit bias by the designer with the drawback of the possibility that good 

solutions of the problem in question may be excluded. Additionally, there are many 

important issues that still require resolution as has already been reported in the 

Grammatical Evolution literature. 

203 



Constituent Grammatical Evolution (CGE) has been developed during this work as an 

improvement of Grammatical Evolution which copes with how to apply grammatical bias 

without excluding good candidate solutions, how to reduce the impact of destructive 

crossover events through modularity , and how to resolve the genotype bloating issue 

through the enforcement of a genotype size limit - the last two are known issues of 

Genetic Programming as well. CGE introduces three unique features - constituent genes, 

conditional behaviour switching and genotype maximum size limit - and it is shown that 

it significantly improves Grammatical Evolution on all the problems it has been 

benchmarked on. Also, it is able to find solutions requiring fewer steps than those found 

by Grammatical Evolution in the experiments conducted in this study - regardless if the 

later uses the original or the GE literature biased search space - and those mentioned by 

Koza (1992, p.154) and O'Neill and Ryan (2001 ; 2003, p.56). 

Particularly, Constituent Grammatical Evolution aims to restrict and shape the search 

space and reduce at the same time the risk of excluding good solutions for the problem in 

question. It encodes general problem domain knowledge to state a declarative language 

bias (behaviour-switching) in order to increase the chance of finding a solution; it applies 

modularity (constituent genes) to bias the search toward useful areas; and aims to reduce 

the risk of excluding good solutions by extending the restricted search space with the 

addition of initially excluded areas where probably good solutions exist. 

Additionally, constituent genes state an emergent search bias toward larger and probably 

more useful constructs and reduce the impact of destructive crossover due to modularity. 

Namely, by protecting useful building blocks from being disrupted during crossover and 

reducing the genotype size making disruptions less probable. Furthermore, the addition of 

the constituent genes in the grammar does not require more non-terminals. CGE 

eliminates also the genotype bloat phenomenon through the enforcement of a genotype 

size maximum limit which decreases dramatically the computational effort of the 

genotype-to-phenotype mappings, retains variable length genomes in the population, and 

does not affect the performance in terms of success rate and solution quality when an 

appropriate limit value (above a threshold) is used. 

The CGE approach to explore the search space is similar to Whigham' s (1995a; 1995b; 

1996). He uses declarative language bias to restrict the search space and learnt bias to 

shape it (search bias) by identifying useful building blocks and encapsulating them as new 

204 



productions during the evolutionary run of a grammar-based GP system which does not 

employ the genotype-to-phenotype mapping process (the grammar is used to dictate legal 

derivation trees of individuals). The most crucial difference with this approach is that 

CGE does not aim just to shape the search space through an emergent modularity 

mechanism, the constituent genes. Instead, CGE aims to extend the search space adding 

probable useful areas. Because constituent genes are created with the unbiased grammar 

of the problem in question, their addition in the biased grammar allows, depending on the 

form of the added constituent genes, the construction of possible hypotheses that could not 

be constructed before, and furthermore allows during a series of CGE consecutive runs the 

potential construction of any possible hypotheses of the original unbiased grammar. 

The current mechanism for the creation of the constituent genes (which is based on 

randomness) provides, as has been shown, a limited possibility of including new and 

useful areas in the initially restricted search space. Therefore, future research is required 

targeting a more competent genes pool creation mechanism and the development of a 

framework for the assessment of the coverage and quality of the areas where the search 

space is expanded. 

Furthermore, CGE demonstrates how easily powerful concepts like restriction and shaping 

of the search space and modularity can be implemented in Grammatical Evolution 

targeting impressive performance improvement. The research undertaken in this work and 

the promising results support the belief that Grammatical Evolution can incorporate in a 

similar easy and flexible way due to its unique features, more concepts inspired from 

biology and computer science in order to confront issues either intrinsic or inherited from 

Genetic Programming and to constitute a competent member of the evolutionary 

algorithms family for solving even problems that today seem to be intractable in the 

evolutionary computation field. 

Finally, the investigation undertaken in this study required the development of a series of 

tools: The jGE Library; the jGE NetLogo extension; NetLogo models for the simulation of 

the problems in question; and NetLogo models for the simulation of evolutionary runs 

with GE and CGE on those problems. The jGE Library was the first published 

implementation of Grammatical Evolution in the Java programming language. The jGE 

NetLogo is the only implementation of Grammatical Evolution for the NetLogo modelling 

environment. The Santa Fe Trail and the Los Altos Hills models in NetLogo are the only 

205 



published and widely available simulations (to the author's knowledge) which allow the 

user to execute and investigate, through a GUI, a specific (designed in priori) ant's control 

program. 

The above tools are freely available under the GNU general public licence from the jGE 

and NetLogo web sites. It is hoped they will bring together two different communities, 

namely to allow NetLogo modellers to become familiar with and use Grammatical 

Evolution within their models, and researchers interested in evolutionary computation to 

use Grammatical Evolution directly within a multi-agent programmable environment such 

as NetLogo, for the evolution of the behaviour or morphology of agents. 

8.2 Summary and Conclusions 

Natural evolution and genetics inspired the development of a new paradigm of 

computational problem solving, named evolutionary algorithms, which formed the 

foundation of the field of evolutionary computation. Chapter 2 provided a survey of the 

field focusing on its history, the main approaches, the current issues , the research findings 

and the future directions. The survey revealed that even though evolutionary algorithms 

did not yet mode] effectively the meta-learning based progress of biological evolution 

they are promising candidates for tackling problems involving the evolution and 

emergence of agents ' behaviour, morphology, and design. A recent development of the 

field is Grammatical Evolution, a form of Genetic Programming, which already displays 

popularity and a variety of applications and variations. Even though, as has been shown in 

Chapter 2, a number of unsolved issues exist, its ability to create arbitrary structures and 

valid executable code in any programming language - due to the use of a BNF grammar 

definition and its unique genotype-to-phenotype mapping mechanism - makes it an 

appealing approach for problems where the subject is the emergence of a program that 

controls the behaviour of an agent. 

Chapter 3 described the architecture and mam components of the Java Grammatical 

Evolution (jGE) Library which provided the basic toolkit for the experiments conducted in 

this study. The chapter demonstrated the use of jGE in three proof-of-concept experiments 

for solving a Hamming distance, a symbolic regression, and a trigonometric identity 

problem. Also, a comparison of jGE with two other Grammatical Evolution 

206 



implementations, libGE and GEY A, was performed and presented. The main difference 

between jGE and these implementations is that jGE is designed not only to provide an 

implementation of Grammatical Evolution but to constitute an extendable framework for 

experimentation in the area of evolutionary computation. jGE's open architecture and 

extendibility facilitate the implementation of various evolutionary algorithms and 

genotype-to-phenotype mapping mechanisms, the incorporation of natural-inspired 

concepts, the interaction with the environment, and the incorporation of agent-oriented 

principles. 

Also, during the development of jGE, two Java issues revealed. The first was the 

compiling and execution time of the Java code for fitness assignment to an individual. 

These tasks proved to be extremely time consuming when the Java 2 Standard Edition 

compiler and interpreter provided by Sun Microsystems Inc. (now by Oracle Corporation) 

were used. The issue was tackled with using the Dynamic Class Loading and Introspection 

features of the Java Virtual Machine, and the likes compiler provided by IBM 

Corporation. The second issue was that the Java compiler cannot compile a method with 

bytecode size larger than 64Kb. This was tackled with the refactoring of the fitness 

assignment class so that no method exceeds this limit. 

Chapter 4 described and discussed three extensions of the jGE Library. The first 

implements and investigates the role of prior knowledge in evolutionary runs which has 

been shown in the chapter to improve the effectiveness and efficiency of jGE in symbolic 

regression and trigonometric identity problems. The second extension of jGE investigates 

the effect of the natural-inspired concept of population thinking in a trigonometric identity 

problem revealing that it is a promising approach meriting further investigation and 

experimentation. The last extension described in Chapter 4 is the jGE NetLogo extension. 

This extension enables the utilisation of a subset of the features and methods of the jGE 

Library in NetLogo models. The extensions and the experimental results presented in 

Chapter 4 demonstrated the easiness of extending jGE and set the targets of future 

versions of the jGE Library such as incorporation of more natural -inspired principles and 

concepts (species, families, and shared knowledge to name a few) , and experimentation 

with jGE in NetLogo models. 

Chapter 5 confirmed the claim of Robilliard, et al. (2006) that the comparison of 

Grammatical Evolution and Genetic Programming in the Santa Fe Trail problem, as it is 

207 



conducted in the GE literature, is not a fair one because Grammatical Evolution uses a 

BNF grammar definition (BNF-O'Neill) that defines a search space which is not 

semantically equivalent with the original as defined by Koza (BNF-Koza). Namely, that it 

states a declarative language bias which restricts the original search space used by GP in 

these benchmarks. Also, it has been shown that GE using BNF-O'Neill and a 

configuration similar to this used in the GE literature (O'Neill and Ryan, 2001; 2003, 

p.56) is not able to find solutions requiring less than 607 steps. Consequently good 

solutions requiring fewer steps are excluded due to the restriction of the search space. 

Additionally, the experimental results showed that GE using BNF-O'Neill does not 

perform much better than random search, when fixed-length genomes of 500 codons are 

used, displaying a success rate approximately 67% against 50%. Also, the experimental 

results revealed that GE using BNF-Koza (the original search space), displays a success 

rate of approximately 10%, therefore Grammatical Evolution does not outperform Genetic 

Programming in this benchmark as claimed in the GE literature (O'Neill and Ryan, 2001; 

2003, pp.57-58) where Genetic Programming appears to achieve a success rate of 

approximately 65% and 15%, when the later uses or does not use the solution length 

constraint, respectively. Furthermore, it has been proved experimentally that GE using 

BNF-Koza is capable of finding better solutions that those mentioned in Koza (1992, 

p.154) and O'Neill and Ryan (200 l; 2003 , p.56). The best solution found in the conducted 

experiments requires 415 steps when the standard configuration is used and 3 77 steps 

when a fixed-size genomes configuration is used instead of variable length as in standard 

Grammatical Evolution. 

Chapter 6 investigated the effects of grammatical bias in the performance of Grammatical 

Evolution on the Santa Fe Trail problem through a series of experiments where a variety 

of biased grammars were used. These experiments were stimulated from the results of the 

previous chapter and demonstrated the effects of grammatical bias on the effectiveness 

(success rate) and efficiency (solution quality) of Grammatical Evolution when 

declarative language or search bias is applied. Namely, the results showed that a strong 

declarative language bias may result in a high success rate but with the risk that this may 

be achieved at the expense of the solution quality. Instead, promising results were 

achieved in both success rate and solution quality with the application of a search bias 

which was applied in the grammar in two ways. First, with the utilisation of modularity 

using building blocks consisting of useful code segments implemented as additions of 

208 



production rules in the grammar, and second with the encoding in the grammar of a 

generally applicable domain knowledge of the class of agent-oriented problems 

implemented as checks (conditional statements) in the start of the ant control program. 

Additionally, the experimental results revealed the important role that the number of the 

added building blocks plays in performance when modularity is applied in Grammatical 

Evolution. 

The findings of the two prev10us chapters inspired and directed the development of a 

variation of Grammatical Evolution, named Constituent Grammatical Evolution (COE) 

which was described and benchmarked in Chapter 7. The experimental results showed that 

COE achieves a success rate of approximately 90% on the Santa Fe Trail problem with the 

best solution found requiring only 33 7 steps. Without restricting the search space through 

the behaviour switching feature , namely using only constituent genes and the unrestricted 

original search space, it has been shown that COE achieves a success rate of 37% 

improving GE using BNF-Koza (10%) as well. COE and GE benchmarked in three 

additional problems (Los Altos Hills, Hampton Court Maze, and Chevening House Maze) 

and has been shown that the proposed approach improves Grammatical Evolution in all of 

them as well regardless of whether GE uses the original or the biased search space. 

Finally, the chapter investigated various aspects of Constituent Grammatical Evolution 

such as the length of the genotypes and phenotypes of the solutions, the processing 

requirements, and the effectiveness of each of its unique features in isolation. The results 

displayed that Constituent Grammatical Evolution produces, in general, solutions of 

smaller genotype size but of larger phenotypes than Grammatical Evolution. Also, the 

comparison of COE with GE using BNF-Koza showed that the former is more efficient in 

terms of the required processing power per generation of a population during an 

evolutionary run. 

Regarding two of the umque features of COE, constituent genes and conditional 

behaviour-switching, it has been shown in Chapter 7 that none of them in isolation 

achieves in the conducted benchmarks the success rate of COE, but both of them, 

especially constituent genes, achieve in general better performance than Grammatical 

Evolution when the original (unrestricted) search space is used. Also, regarding the third 

feature, the genotype maximum size limit, it has been shown that it does not affect the 

success rate of COE or GE when an appropriate value is used and that it reduces 

209 



significantly the total computational effort of the genotype-to-phenotype mapping process 

during an evolutionary run. 

8.3 Review of Aims and Objectives 

The first objective of the research undertaken in this thesis was to perform a literature 

survey on the area of evolutionary computation, and Grammatical Evolution in particular. 

This revealed that there is not a unique configuration of an evolutionary algorithm which 

effectively solves any class of problems. Also, achieving a proper balance between 

exploration (reproductive mechanisms) and exploitation (selection mechanisms) is one of 

the most important factors in designing and configuring an evolutionary algorithm. 

Another important aspect is the ability of an evolutionary algorithm to preserve diversity 

of the population in order the premature convergence of the population to be avoided. The 

survey revealed also that evolutionary algorithms are a promising approach for tackling 

complex computational problems such as search, optimization, machine learning, self­

adaption, emergence of agent behaviour or morphology, and more. Two standard 

benchmarking problems of evolutionary algorithms are , artificial ant and maze searching, 

which appear in a variety of instances: John Muir Trail, Santa Fe Trail, Los Altos Hills, 

Hampton Court Maze, Chevening House Maze, and more. The survey of the Grammatical 

Evolution literature showed that this grammar-based algorithm outperforms Genetic 

Programming in one of these problems, the Santa Fe Trail, but this came later in question. 

The second objective was to identify important Grammatical Evolution issues and survey 

possible resolutions under research. The following issues were highlighted: change of a 

benchmark definition due to the implicit bias of the search space through the BNF 

grammar definition and exclusion of good solution of the problem in question ; destructive 

crossovers; genotype bloating; dependency problems; and low locality of genotype-to­

phenotype mapping. A variety of Grammatical Evolution variations have been developed 

over the last years, each of them trying to improve Grammatical Evolution and/or to 

resolve some of its issues, with the most noticeable of them to be GAuGE, LINKGAUGE, 

Grammatical Swarm (GS), (GE)2, mGGA, PGE, 1tGE, GDE, and TAGE. It has been 

discovered during the survey conducted in this work that none of them (except TAGE 

which uses a tree-adjunct grammar) is reported in the GE literature to have demonstrated 

resolution of these issues displaying significant high performance in agent oriented 

210 



problems. For example, some of them were applied in the Santa Fe Trail problem using a 

variety of different setups and parameters showing the following success rates against 

standard Grammatical Evolution: 12% for TAGE against 3% for GE (Murphy, O'Neill, 

Galvan-Lopez and Brabazon, 2010), 3% for nGE against 13% for GE (O'Neill, Brabazon, 

Nicolau, Garraghy and Keenan, 2004), 43% for GS against 58% for GE (O'Neill and 

Brabazon, 2006a), and 17% for GDE against 28% for GE (O'Neill and Brabazon, 2006b). 

The investigation of the claim of Robilliard , et al. (2006) was the third objective of the 

thesis. Therefore, a series of experiments was conducted using standard Grammatical 

Evolution, a fixed-length genome variation of Grammatical Evolution with and without 

wrapping, and random search, to discover the effect of the search spaces in question on 

the performance of Grammatical Evolution and random search. The results confirmed the 

claim and revealed that the language bias imposed in the original search space is very 

strong and excludes good solutions to the problem. 

The experimental results of the previous objective answered also the next objective of the 

thesis which was to benchmark the performance of Grammatical Evolution on the Santa 

Fe Trail when the original search space is used and find out whether it still outperforms 

Genetic Programming. The results showed that Grammatical Evolution using the original 

search space and a configuration similar to that mentioned in the GE literature does not 

outperform Genetic Programming and furthermore that when the biased search space is 

used it does not perform much better than random search. 

The last objective of the thesis was to tackle some of the most noticeable issues of 

Grammatical Evolution with the hope to improve its effectiveness and efficiency m 

benchmark problems where the subject of evolution is the behaviour of an agent in a given 

environment. The proposed variation of Grammatical Evolution, named Constituent 

Grammatical Evolution, aims to tackle and/or reduce the impact of three Grammatical 

Evolution issues - implicit bias of the original search space during design and exclusion 

of good solutions; destructive crossover events; and genotype bloating - introducing three 

features: conditional behaviour-switching, constituent genes concept, and genotype size 

limitation. It has been shown that CGE improves Grammatical Evolution in all problems it 

was benchmarked. 

211 



Finally, when the research of this thesis started, there was no publicly available 

implementation of Grammatical Evolution in the Java programming language that would 

enable benchmarking and experimentation with this algorithm in any Java enabled 

platform in order to take advantage of some of the features of this language such as pure 

object-oriented design, high-level data constructs, and platform independent code. For this 

reason the jGE Library has been developed, which is intended to provide an open and 

extendable framework for experimentation with evolutionary algorithms, beyond 

Grammatical Evolution. 

Also, the benchmarking of Grammatical Evolution and its proposed improvement required 

the development of simulations of the problems in question: Santa Fe Trail, Los Altos 

Hills, Hampton Court Maze, and Chevening House Maze. These were implemented in the 

NetLogo modelling environment. Furthermore, an extension of jGE for the NetLogo 

modelling environment was developed as well as a series of NetLogo models that simulate 

Grammatical Evolution and Constituent Grammatical Evolution evolutionary runs in the 

benchmark problems conducted in this work. 

8.4 Summary of Contributions 

A summary of the contributions of this work is listed below. 

• the development of the jGE Library; 

• the development of the jGE NetLogo extension; 

• the development of NetLogo models simulating instances of the artificial ant 

problem - Santa Fe Trail and Los Altos Hills - which allow the design and 

benchmark of candidate solutions using a GUI; 

• experimental evidence to support the claim of Robilliard, et al. (2006) regarding 

the restricted search space being used in the Grammatical Evolution literature; 

• experimental evidence that shows that Grammatical Evolution does not outperform 

Genetic Programming in the Santa Fe Trail ; 

• the demonstration of the effects of declarative grammatical bias through building 

blocks and knowledge encoding in the performance of Grammatical Evolution on 

the Santa Fe Trail problem; 

212 



• experimental evidence highlighting the importance of the number of the added 

building blocks in the grammar when Grammatical Evolution is utilising 

modularity; 

• the development of a new algorithm, Constituent Grammatical Evolution (CGE), 

which utilises modularity and grammatical bias to significantly improve 

Grammatical Evolution on agent-oriented problems in terms of success rate and 

solution quality (benchmarked on Santa Fe Trail, Los Altos Hills, Hampton Court 

Maze, and Chevening House Maze); 

• the benchmarking of Grammatical Evolution on artificial ant and maze searching 

problems, highlighting the effects of language bias on its effectiveness and 

efficiency; and 

• demonstration of the impact of genotype bloat on the computational effort of the 

genotype-to-phenotype mapping process in Grammatical evolution and the 

dramatic decrease of this effort, without affecting the performance in terms of 

finding a solution, when a genotype size limit above a problem specific threshold 

is enforced. 

Finally, the work of this thesis has resulted to the publication of five papers (see Appendix 

A) which demonstrated the progress of the work and which comprised the milestones of 

this study. Also, the jGE Library 1s publicly available on its web site 

(aiia.bangor.ac.uk/ jge) and it is still under continuous development at the School of 

Computer Science of Bangor University (Artificial Intelligence and Intelligent Agents 

Research Group). Researchers and students from around the world have shown an interest 

in the jGE Library (see Appendix D). The interest in jGE is also indicated by the links to 

the jGE web site which can be found in the official site of GE (www.grammatical­

evolution.org, section: other implementations), in the wikipage of the Grammatical 

Evolution algorithm (en.wikipedia.org/wiki/Grammatical evolution), in the wikipage of 

Genetic Programming ( en. wikipedia.org/wiki/Genetic programming), and in the EJC 

Project web site (www.cs.gmu.edu/~eclab/projects/ec j). 

8.5 Future Work 

The results and conclusions of the investigation undertaken during this work as well as the 

promising benchmarking results of the Constituent Grammatical Evolution algorithm raise 

213 



new questions requiring answers and indicate directions of possible further research. The 

future directions of study that are suggested are as follows: development of additions and 

extensions for the jGE Library; an exhaustive study of Grammatical Evolution 

performance in agent-oriented problems; thorough investigation of Constituent 

Grammatical Evolution, benchmarking in more problems, and research for possible 

further improvements; evolution of complex agents that utilise shared knowledge; and 

investigation of possible applications of the concepts of constituent genes and conditional 

behaviour-switching in, other than Grammatical Evolution, evolutionary algorithms. 

8.5.1 jGE Extensions 

The jGE Library needs to be extended in order to fulfil the remaining goals of the jGE 

Project of Bangor University (School of Computer Science - Artificial Intelligence and 

Intelligent Agents Research Group) as stated in Chapter 3, namely to constitute a general 

framework for experimentation with evolutionary algorithms, to provide the basis for the 

creation of an agent-oriented evolutionary system, and to bootstrap further research on the 

application of natural and molecular biology principles. Consequently, the development 

and incorporation of more evolutionary algorithms, genetic operators, and evolutionary 

mechanisms (beyond these described in Chapter 3 and in Chapter 4) is necessary as well 

as the development of classes for representing environment features, relations between 

individuals, groups of individuals, and individual 's knowledge. Also, it would be 

interesting to implement in jGE to find out if the application of natural-inspired principles 

such as population thinking, microevolution, macroevolution, elimination pressure, 

common ancestor, species, and more, could result in performance improvement of 

evolutionary algorithms on agent-oriented problems where the problem in question is to 

find adequate agent behaviours. 

Furthermore, other suggested improvements and extensions for the jGE Library are as 

follows: jGE performance improvement utilising distributed parallel processing; 

experiments with data logging in a relational database instead of text files; development of 

experimental data statistics module for gathering information about population 

convergence and diversity in both genotype and phenotype level , and other quality and 

quantitative metrics; implementation of more benchmarking problems; development of a 

214 



GUI; and implementation of more jGE features and methods m the jGE NetLogo 

extension. 

8.5.2 Grammatical Evolution Benchmarking 

Chapter 5 showed that Grammatical Evolution does not outperform Genetic Programming 

on the Santa Fe Trail when the original search space and a similar to the standard GE 

literature configuration are used. Indeed, the GE literature review in Chapter 2 revealed 

that there is no detailed study of the performance of Grammatical Evolution in agent­

oriented problems. Therefore, a thorough study and benchmarking is required of the 

application of Grammatical Evolution and its variations - Constituent Grammatical 

Evolution, TAGE, (GE)2, POE, nGE, GAuGE, and Chorus to name a few - using a variety 

of GE configurations and search engines, in problems where the subject of evolution is the 

behaviour of agents in static or dynamic environments. Also, the work of this thesis 

concentrated on the tackling of only three of the Grammatical Evolution issues (see 

Chapter 7) but there are more issues to be further investigated and confronted such as 

dependency problems and low locality of the genotype-to-phenotype mapping. 

8.5.3 CGE Further Investigation and Improvement 

Constituent Grammatical Evolution is a new evolutionary algorithm that improves 

Grammatical Evolution in the problems it benchmarked in Chapter 7. Consequently, there 

are still many aspects to be investigated as well as possibilities for further improvements. 

Namely, different configurations of the COE parameters need to be tested with different 

BNF grammar definitions in the same and other benchmark problems. For example, the 

impact of mutation and crossover rates in CGE' s performance using different BNF 

grammars, how the increase or decrease of the maximum genotype size limit or of the 

constituent genes pool size affects the results, what are the suggested values of these 

parameters for specific grammars and problems, and how well COE performs on other 

agent-oriented problems of a static or dynamic nature. 

Regarding the application to dynamic agent-oriented problems, the current genes pool 

creation mechanism of COE (performed once before an evolutionary run) cannot address 

them effectively. In such problems, the genes pool needs to be dynamic, namely to change 

during the evolutionary run in order to adapt to the new challenges imposed by the 

215 



problem in question. In such a case, there is the issue mentioned by Swafford, O 'Neill and 

Nicolau (2011) of disrupting the fitness of the existing individuals due to the change of 

the grammar. Further investigation is required toward this area in order to allow the 

change of the grammar in CGE during the evolutionary run without causing disturbance in 

fitness. Research on this area using Grammatical Evolution has already been carried out 

by Swafford, et al. (2011) with promising results using a new operator called repair that 

modifies the genotype of the individual in order that the productions picked during the 

mapping with the new grammar are the same as the productions picked before the 

grammar was changed. 

Furthermore, research is required toward the development of a sophisticated constituent 

genes creation mechanism instead of using random search. The utilisation for example of 

an evolutionary algorithm is expected to produce more competent constituent genes 

(useful building blocks). This could also be extended with the application of mosaic 

evolution (Mayr 2002, p.243), namely evolving both constituent genes and individuals at 

the same time but with an uneven rate. Also, alternative evaluation and selection 

mechanisms of the constituent genes need to be examined than those already used and 

described in Chapter 7. It is expected that improving these, and probably other, 

mechanisms of CGE will result in performance improvement of the algorithm in the 

problems it has been benchmarked. Additionally, the development of a framework for the 

assessment of the coverage and quality of the areas where the search space is expanded 

when constituent genes are utilised to expand a restricted search space will facilitate the 

creation and selection of more competent and useful constituent genes. 

Finally, it would be interesting to investigate the performance of GE and CGE in problems 

requiring larger grammars than these already used in the literature. For example, to try to 

evolve whole executable programs for a target real programming language rather than 

having to use an intermediate representation as GE and GP do. An important question is 

how far GE and CGE can go if a much larger grammar is used. 

8.5.4 Utilisation of Shared Knowledge 

Experimental results of Chapter 4 showed as expected that prior knowledge increases the 

performance of Grammatical Evolution. Therefore, a candidate direction of investigation 

is the utilisation of knowledge, represented with conceptual spaces (Gardenfors, 2004), as 

216 



a fitness value factor. Because it is a fact today that there are no heritable acquired 

characteristics (Mayr 2002, p.100), it could be assumed that the shared knowledge is a 

factor which affects the natural selection process and allows existing or new genetic and 

phenotypic characteristics to possess different importance and value (fitness). Namely, 

that the evolving shared knowledge will favour different phenotypes as happens in nature 

with the changes in the environment. 

The population thinking principle implementation of Chapter 4 could be extended in the 

family based approach suggested by Teahan, Al-dmour and Tuff (2005). This can be 

achieved by incorporating knowledge sharing and consequently simulating in this way 

social phenomena of living organisms and especially humans (e.g. families). The 

suggested investigation is hoped to show in which degree phenotypic variation and 

evolution/sharing of knowledge could lead to better and faster solutions in the area of 

evolutionary computation. 

8.5.5 Toward a new class of Evolutionary Algorithms 

The performance increase that is achieved by Constituent Grammatical Evolution, as 

shown in Chapter 7, due to the incorporation of the concepts of constituent genes, 

conditional behaviour-switching and genotype size maximum limit, raises the question 

whether these concepts, especially constituent genes, can be utilised by evolutionary 

algorithms other than Grammatical Evolution or grammar-based approaches. Therefore, 

an investigation is required of how these concepts can be applied to other evolutionary 

algorithms, such as Genetic Algorithm, Genetic Programming, and Parallel Evolutionary 

Algorithms, and what will be the effect on their performance. 

If the application of these concepts to more evolutionary algorithms is proved to be 

promising, then they should be modelled in a more general way in order to fit the general 

model of an evolutionary algorithm and be easily applicable to any of them. If such 

research leads to successful results, it is hoped that a new approach in evolutionary 

computation could be introduced with the creation of a new class of evolutionary 

algorithm which incorporates the constituent genes concepts and /or the conditional 

behaviour-switching concept for agent-oriented problems where the subject of evolution is 

the behaviour, the morphology, or the design of an agent in a static or dynamic 

environment. 

217 



Appendices 

Appendix A Publications 

Print Publications 

This study has lead to the publications listed below. All of them form a substantial part of 

the indicated chapters with the major contribution being from the primary author in each 

case. 

Chapter 3 Georgiou, L. and Teahan, W. J. (2006a) "jGE - A Java implementation of 

Grammatical Evolution". 10th WSEAS International Conference on Systems, 

Athens, Greece, July 10-15, 2006. 

Chapter 4 Georgiou, L. and Teahan, W. J. (2006b) "Implication of Prior Knowledge and 

Population Thinking in Grammatical Evolution: Toward a Knowledge Sharing 

Architecture". WSEAS Transactions on Systems 5 (10), 2338-2345. 

Chapter 3 Georgiou, L. and Teahan, W. J. (2008) "Experiments with Grammatical 

Evolution in Java". Knowledge-Driven Computing: Knowledge Engineering and 

Intelligent Computations, Studies in Computational Intelligence (vol. 102), 45-62. 

Berlin, Germany: Springer Berlin I Heidelberg. 

Chapter 5 Georgiou, L. and Teahan, W. J. (2010) "Grammatical Evolution and the Santa 

Fe Trail Problem". In Proceedings of the International Conference on Evolutionary 

Computation (ICEC 2010), October 24-26, 2010, Valencia, Spain, 10-19. 

Chapter 7 Georgiou, L. and Teahan, W. J. (2011) "Constituent Grammatical Evolution". 

In Proceedings of the Twenty-Second International Joint Conference on Artificial 

Intelligence (IJCAI 2011), July 16-22, 2011 , Barcelona, Catalonia (Spain), 1261-

1268. 

218 



On-line Publications 

This study has lead to the on-line publications listed below. 

• jGE Library Web Site 

aiia.bangor.ac. uk/j ge 

• jGE Library Wiki Page 

en. wikipedia.org/wiki/Java Grammatical Evolution 

• Constituent Grammatical Evolution Web Site 

aiia. bangor.ac. uk/cge 

On-line References 

This study has lead to the development of tools and models which are referenced from a 

variety of relevant web sites. Below, some of the most important and popular are listed 

along with their corresponding sections and what exactly are referenced in each of them. 

• NetLogo web site, ccl.northwestern.edu/netlogo 

o User Community Models (Santa Fe Ant Trail model) 

o NetLogo Community Extensions for NetLogo 4.1 (jGE NetLogo extension) 

• Grammatical Evolution web site, www.grammatical-evolution.org 

o People Working on GE 

o Other implementations (jGE Library) 

• GE wiki page, en.wikipedia.org/wiki/Grammatical evolution 

o Resources (jGE Library) 

• GP wiki page, en.wikipedia.org/wiki/Genetic programming 

o Implementations (jGE Library) 

• ECJ web site, cs.gmu.edu/~eclab/projects/ec j 

o Alternative GP Representations (jGE Library) 

219 



Appendix B jGE Web Site 

Web Site Address (URL): aiia.bangor.ac.uk/ jge 

The web site presents the jGE Library and provides useful information as well as links for 

downloading the binary and source code of the jGE Library, the jGE NetLogo extension, 

and the Santa Fe Trail NetLogo models. 

The web site has the following sections: 

• jGE Home Page 

• Experiments 

• Documentation 

• Download 

• Resources 

Regarding the jGE NetLogo extension, the downloadable archive file includes: 

1. The binary file . 

2. The Documentation and Manual of the extension. 

3. The source code of the extension. 

4. A Demonstration model of how to use the jGE NetLogo extension. 

5. The jGE Library binary archive. 

6. Examples of BNF grammars. 

The jGE web site is under continuous update and it is expected to be improved in the 

future with more sections, experimental results, and downloadable material. It is hoped 

that this web site will make the jGE Library available to a greater audience and that 

researchers from around the world will show an interest in using it and/or contribute to its 

improvement and extensions. 

220 



Appendix C CGE Web Site 

Web Site Address (URL): aiia.bangor.ac.uk/cge 

The Constituent Grammatical Evolution (CGE) web site presents the proposed 

Grammatical Evolution variation and contains links of its implementation in artificial ant 

and maze searching problems written in the NetLogo programming language. 

The web site contains the following sections: 

• CGE Home Page 

• Algorithm Description 

• Benchmarking Results 

• Statistics in the Santa Fe Trail problem 

• Downloads 

• Resources 

This web site is still under development and it is expected to be updated and improved 

with more sections, experiments, findings, and downloadable material based on current 

and future research. 

It is hoped that, the up-to-date publication on the web site of future research findings on 

Constituent Grammatical Evolution will help the distribution of knowledge and the 

provisioning of feedback from other researchers showing an interest in the modelling and 

evolution of agents ' behaviour and or morphology. 

221 



Appendix D People Interested in jGE 

This table lists the people who have shown interest with the jGE Library and who have 

contacted the author to request more information and/or usage guidelines: 

Name School Date Email 

Michael Phelan University College l 0/01 /2007 m ichael. phe lan@ucd.ie 
Dublin 

Yow Tzu University of York 14/08/2007 yowtzu@cs.york.ac.uk 

David R White University of York 12/09/2007 drw@cs.york.ac.uk 

Marta Stanska University of l 8/1 l /2007 martastanska@gma i I .com 
Wroclaw 

Konrad Drukala University of 18/1 1/2007 heglion@gmail.com 
Wroclaw 

Ron Kin g --- 24/11/2007 roncking@cox.net 

Elkin Urrea Graduate Center of 10/04/2008 eurrea@gc.cuny.edu 
NY 

Bruno Federal University 07/10/2008 brunofs@dcc.ufmg. br 
Fagundes of Minas Gerais 
Saldanha 

Matt Hyde Nottingham 25/ 11 /2009 mvh@cs.nott.ac.uk 
University 

Gerard Utrecht University 14/05/20 I 0 gv@cs.uu.nl 
Yreeswijk (Netherlands) 

Fabian Andres National Un iversity 09/08/20 I 0 fagiraldo@unal.edu.co 
Giraldo of Colombia 

Marc van Zee Utrecht University 12/09/20 10 m.vanzee@students.uu.nl 
(Netherlands) 

222 



Appendix E jGE Library Quick Start Guide 

Technical Requirements 

In order to use jGE v l .0, you will need Java 5 or later. 

Examples 

In the source code, you will find a lot of usage examples. Alongside with the jGE API 

documentation it will help you to start using jGE. Both of them are freely available from 

the jGE web site (aiia.bangor.ac.uk/ jge). 

Namely, the source file bangor I ai i alj gel corelEAExperiments . j ava contains some 

examples of using the jGE classes. Indeed, the source folder bangorlaiialjgeljunit 

contains all the JU nit (JUnit.org, 2006) tests of jGE. These JU nit TestCases can serve as a 

rich resource of how to use the various classes of the library. 

Just keep in mind that anywhere in the source code you see methods like 

" configurationSettings . get Instance () . getXXX", replace them with a String 

containing the actual path of the corresponding file or folder in your system. For your 

convenience, it 1s suggested that you change the settings of the class 

bangor . aiia . j ge . util . ConfigurationSettings to the default values of your system 

and recompile the class. 

Sample Code using Standard GA in a Hamming Distance Problem 

II The binary string we are looking to find (the solution) 
String target= '' 111000111000101010101 010101010 "; 

II The Problem Speci fication (implementation of Evaluator) 
HarnrningDistance hd = new HarnrningDistance(target) ; 

II Instantiation of the Evolut ionary Algori thm (SGA) 
StandardGA ga = new St andardGA(S0 , 1, 30 , 30 , hd) ; 

II Configure the Standard Genetic Algorithm 
ga . setFixedSizeGenome(true) ; 
ga . setCrossoverRate(0 . 9) ; 
ga . setMutationRate(0 . 01) ; 
ga . setDuplicationRate(0 . 01 ); 
ga . setPruningRate(0.01) ; 
ga . setMaxGen erations(l00) ; 

223 



II Execute the Evolutionary Algorithm (SGA) 
II and get the solution 
I n dividual<String , String> solution= ga . run() ; 

Sample Code using Grammatical Evolution in a Hamming Distance Problem 

II The binary string we are looking to find (the solution) 
String target= '' 111000111000101010101010101010"; 

II The Problem Specification (implementation of Evaluator) 
Harnrni n gDistance hd = new HarnrningDistance(target) ; 

II Instantiate the BNF Grammar (use for this example 
II the file BinaryGrarnrnarFixedLength . bnf) 
BNFGrarnrnar bnf = null ; 
try { 

bnf new BNFGrammar( 
new File( " [THE PATH_ OF THE_ BNF_ GRAMMAR_ FILE] " ) 

) ; 

catch ( IOException ioe) { 
System . out . println( " IOException : " + ioe . getMessage() ); 

II Instantiation of the Evolutionary Algorithm (SGA) 
GrarnrnaticalEvolution ge = new GrarnrnaticalEvolution( 

bnf , hd , 50 , 8 , 20, 40 
) ; 

II Configure the Grammatical Evolution Algorithm 
ge . setCrossoverRate(0.9) ; 
ge . setMutationRate(0 . 01); 
ge . setDuplicationRate(0 . 01) ; 
ge . setPruningRate(0 . 01) ; 
ge . setGenerationGap(0 . 9); 
ge . setMaxGenerations(l00) ; 

II Execute the Evolutionary Algorithm (GE) and get the solution 
Individual<String , String> solution= ge.run() ; 

Evaluator 

In order to use jGE for ad-hoc problems, you have just to implement a class which will 

evaluate the individuals of the population (assign a fitness value). This evaluator must 

implement the bangor. aiia . j ge . core . Evaluator interface and actually will 

"encapsulate" the Problem Specification. 

Such "out of the box" classes (available injGE) are the following: 

• bangor . aiia . jge . ps . HammingDistance 

224 



• bangor . a i ia . jge . ps . Symbol icRegress i o n 

For other classes of problems, just create your own implementation of the Evaluator 

interface and use it with the evolutionary algorithm of your choice (Standard GA, Steady­

State GA, or GE). 

Mapper 

Regarding the mapping, in case of Standard Genetic Algorithms there is no distinction 

between genotype and phenotype. Consequently, if you do not set a specific 

implementation of bangor . ai i a . j ge . core . Mapper interface (you can create your own) 

the default "no-mapping" implementation will be used 

(bangor . a i ia . j ge . core . Defaul tMapper). Then, you have to "decode" the semantics of 

the binary string of the genotype in your implementation of the Evaluator. 

Grammatical Evolution 

In order to use Grammatical Evolution with jGE in your project , you have to create an 

instance of the bang or . aiia . j ge . core . GrammaticalEvolution class and pass to it both 

the file with the BNF Grammar you will use and your own implementation of the 

bangor . aiia . jge . core . Evaluator interface (which will evaluate the fitness of an 

Individual of the Population). 

Namely, you have to implement a BNF Grammar (which dictates the valid phenotypes of 

the individuals) and the Evaluator (which assigns a fitness value to each individual). 

In the accompanying CD, you will find some sample BNF Grammars. You can use them 

to play around with jGE until you become more familiar and start to create your own. 

225 



Appendix F jGE Library Core Class Diagrams 

Class diagram of the jGE Mapper component of the bangor.aiia.jge.core package . 

.-tlle,tl(.$• 
0 Mapper <T,S> 

• --,_,,.- Oenol'll)e•T>) ,.,._,,,. 
e i)CIOencl\'l)<(phcnOl'1)C ~) V0<10< - .!!"W!.. -~ G Ge1101yJ1e <T> I 

I I 
I I 
I L ___ _ 
I 
I 

G Deraul!Mapper <T> 

,/ 0.,....,.,-0 
e ~~ Gcnoo,,,.•T•} Pt.<n:llv"° 
• oetOf!oOl'fl)9(J)heo:IIVl)ll. Pt-,,noc~ <T~). V6C1t, 

-

! G BNFGremmar It-_ '!!!fO.!l? -

I G BNFSymbol l+-- - '!!I'!!!!_,_ -

G GEMapper 

• ticKOvts: Sb1n(il 

• COOD«itze--lot 
o muV\topJ rw 
• " "M.ffl•f BtWOratmW' 

,/ GfM-0 

,f GEM~ EI\FQfommo<, C-IZ• .. , m..Wop1 ") 

e oc<P-'ll'0(9ffllll'll" °""""",$11ng,) Po,er,:typc 

e "°'Qondv.,(-WC ~i Vo<10< 

• !JOOCooo,SizeO In 

• '41C0001S<lo(oodcn~c rt) 

e g,el\b ~IP=() wi 

. ...... ,,,.tp!("""""""• Ir<) 
• gooon,-.1110,() BHfo,.,.,,... 
• -MIIOrounat(g, tmtncW" EN'Orcw.tmo,) 

• lsOr,aw,,(S)'"DDI !l>¥Symbol) bod, on 

Class diagram of the jGE bangor.a iia.jge.population package. 

C3 Individual 

• --Oonol'IJ)0<7• 
D i,henct'f1)e. PhMo(~c'?» 

D ftntHVIIA ctoi.tt. 

• vekt bodean ·~ ,I ~9<1"«)'11<' O•nctype<l>J 

,i hdiaO.,!i(Ofrdyp<. G~•. Pl-•~ Pt!lMty-7•) 
ti hdt~x1rl'r ogrncn · SlrngJ 

• r;p!IG<Mvp!(): o,.....,,,. 
• .-..olyll'l(go<IOl)PO Oonoe~i,o•?>) 

• ~)'ll<() l'honot.,,. 
e --...-.:itl'1)e(i:n,noll1)0 Pt•-1p&<l>) 

• gcd'tneuVoi.lo() -

• ..cftnottVOl,;,J(IWsaV..,., (l:>ubl,) 

• !J0(\(1¥1<():-

e ..tY•b:(,,.;.t bod .. n) 

e 11n1H()-

• 1sVtldJ. l::IOoloan 

• i)!00,11.Fr~~ 

• sd><M.frogmeno(lofll'rogmerrl Slrng) 

e LOSlrino() Slr,1g 

I I 
I 
I •ffllJ0'1• I 

I •ffllJ0'1• 
J, J, 

C3 Phenotype cT> C3 Geno1ype <T> 

• -T o Y.fl)!J T 

•--o " OenolVJ)C() 
,/ Fl'rOMl'rl)e(v •l.>e T) ,i G<noli~ T) 

e 9'1Volue() T e gctVol.Jo()' 1 

• :.t"'"ue<..iue: n • , etVou,(v~ue. T) 

• """°° r • vot.,o(); T 
• loSl,,nll()5'mg • t-oS:t~ Slrng 

C3 Populati on 

• ...--1nctvw,u 
• -91i.1!!:lnt 

D O"'IYt "Ol"'fflCf't Erwtn:wvnenl 

,/ Popt.lo!ron() 

,I Po!><,IICl:n(..,e: rrt) 

,I Popt.l>i,or(llm'W!llr lndYW oO) 

,/ ~ lltt'(indYW9lt: Mv,);90, ..... Etwt """1<t) 

~ ~ 
I Popt.11110"(lor6rag,r,ar, S,1 ng) 

• gdhdMduel,0 lrdvlCIJllfl 

e Nl,_a(«t..,.,tlr l"dVl:IUo(U 

• mo():rt 
e oetEnwo,vnenm Err.it-
e :e,Err,vOMICllt(c""'°"'"""' &,v,cm".crt) 
• '"'~ l'i,ih:hlCIJtl lrd•ICIJ~ _,,, 

• gc,hc1Mduo1(1ndc:, rt) lndl'WII 

e gdX•Vr~f1111'!'11() Slrrv 
• NIX>U'tO!lffiel\l(<rn'Fr..,..,-C SlrV'9) 

• 110S1m9:t S1rn;i 

I I 
tJHrlCb r- --7 

226 

I 
I 
I 
I ... 

I .,on<1. 
I 
I 
.L 

G Environrno111 

,i E'nv, cnncrl() 

8 l11valldXMLFragrne11tExcepUon 

tf ae<le/Ve<tio<VO 1M) 

,I lrweld)(MI.Fragr.en!xccp,«() 

,/ -dl<lALF1-,nEx<e,:tie,(111!- S,tn;I) 

I 

I 

I 

i 

I 



Class diagram of the jGE bangor.aiia.jge.ps package. 

0 bangor. 
merrace, e bangor.alla.jge.utllAbs11ae1Compller 

a iia.jga.cora .Evaluator <T,S> 
o compllet File 

on i'C1>JllllJOn<T,S>) 
o nnkne ne 

.; Ab.trac!Complet{) 

,I Al><trodCompler(compler Fie, runtime Fie) 

ff- co,rple(source· FIie, 1a,get file~ bocleen 

ff- C011'1lie(source: file) Fie 

ff- executc(fiic. fie, ouput. rie} --"" 

ff- oxocutc(filo Flo} Slmg 

8 bangor.alla.Jge.utll.JavaCompllar 
I 

I JoveiCornf>le<O 

• compllc(source. Fie, INl)OI Fie) boolean 

• • • 

I 

compllc(1ourc:e- Fie) Fie 

execue(rle file. outpu· FIio) boOlean 

exeo..ce(l le' FIie~ SIJng 

t 
lanpo,1, 
I 

8 bangor.aiia.jge.ps.SymbollcRegression 

a expre:.lon: String 

• dolol'olrto· n 
a dOla: douol<(I) 

a w()11(1"qJireaory fie 

j Symbol<:Reg'OO:ion() 

,I Symbolo:Re!,'osslon(e,rpreulon Slmg, delopoints: re, workingl)roctory· Fie) 

• evol\llll.e(l)Ol)UOl,an: P<l\><MIIOn<Slmg extends Object.Strng extends Ol)ject>) 

Class diagram of the jGE bangor.aiia .jge.bnf package. 

G lnvalidONFE>cception 
(3 BNFP11nr 

,...__v_..,_.,.,_.,_•""1.JO __ l:><'O _____ ..._ _ ....!.~~ _ V NCUE. irt 

,f ""-"""""'° 11 ~oe: wt 
,f .., __ br("'°- S11"9) V SHCN\60U'()NfES lnl 

,I BNFP,,.,.() 

G BNFGr1mmar ,/ gfffiun(bnf Sblng~ Vodol 

D l'\M BNf~) 
ti IJCIRu<Ho_, ... Sim.,) Stu,. 

,/ Q«9roduc11oo&(>Y« Sb""') Vocto, 
• stMSyri)OI 8'.f"Sytnbcll -~~'.!....-• ,I 9«S,,_t(p,-OC>J<1>M S11<>9) voacr 

,I lff0,,-0 
., _.,0,-_(por __ ,.,.,, 

/ Dt4'0,.omm«(filo F .. ) ,/ IOl<HlfOt-(U« FIio) SW!) 

tf 1Jt4'0,,""""'{0<.....,... Sbr9) J pfh1Veetcw6crntnls(vector Veclc»c.Slrln,;p, fcrinet lnl) 

• ...,,<(g ....... "'"9) 
• ,..s,,.,Syn<,c,1()- E!NrSymb(O 

• gel:RIJ,e(t 'f'U)OI EtFs-.,mt,d): fHRutll 

• toSuhg(): sa,r,,g .... (3 BHFRult 
• pr.-«)irornm•O - """"""""'-"'""""""!! I . ,/ runOrAoclJc:U«ls; lf'III ,·-· ""'""-u 

(3 BHFSymbol j BNF"""() 

J typo ll!ll'SymbcOl ypo I°"'-"" w s-,,r,,a,,. .. ,......,. --
,1 ..,..,,.. 9,ng ~·~ . ·-~ --■ gelProdu:llons() """"""'-'dlOnO 
,f llt#S,n;,o() • •""'10 .. 

I llt.f'S-YP< --· ...... Sl1"9) ··--e •T6'1'hnt() bocff#I 1:-• ,..,\'PO() BN'S)mbdTY'"' 

■ o,IVefue() Sblng 

■ toSl,"90 Slrhg ·- (3 BNFProductlon 

I J,,,..,.,..,s_, 
1,ooce.., J ~ ,.; 

.I. 
' lllf'Pfodu:lo,() 

41tnur•all«U I llNFPr°"""""....,,., 8'rFSymoo(J) 
0 BHFSymboIT)11e 

■ 9'(S,m,cl,0 !ffS,-(1 

V llk!nlenrird • cc:ui() ._ 

v, .. - • tc$1:o;O: si, ng 

227 



Appendix G jGE NetLogo Extension Procedures 

The main procedures (commands and reporters) provided by the jGE NetLogo extension 

are listed below. The complete documentation can be downloaded from Georgiou (2006) 

or can be found in the accompanying CD. 

jge:load-bnf path reference 

This command loads, parses, and keeps in-memory (for later use in the model by 

mentioning the reference value) the BNF grammar definition which is stored in a file with 

the given path. The argument path is a string with the value of the absolute path of the 

BNF file ( or the relative path to the model which calls this command). Indeed, it can be an 

absolute URL which is necessary in case the NetLogo model runs as Java Applet inside a 

web browser. The argument reference is a string with the name that will be used in the 

model for referencing the loaded BNF grammar definition (in that way it is possible to 

load and use more than one BNF grammar definitions in the same model). 

jge:bnf-grammar reference 

It reports the BNF grammar which is referenced by reference. 

jge:phenotype genotype grammar codonsize maxwraps 

This report executes the genotype-to-phenotype Grammatical Evolution mappmg 

algorithm and reports a string with the corresponding phenotype to the given binary 

genotype. The mapping process uses the BNF grammar definition referenced by grammar, 

size for each codon by the given codonsize, and maximum number of genotype wraps by 

maxwraps. If the resultant phenotype is invalid (contains non-terminal symbols) then an 

empty string is returned. 

jge:crossover parentA parentB probability 

It reports a NetLogo List with the results (two binary strings of variable length) of the 

application of the standard one-point crossover operation with probability probability to 

the variable-length binary strings parentA and parentB. Note that the crossover point can 

be different for each parent resulting in offspring of different genotype sizes. 

228 



jge:crossover-fixed-length parentA parentB probability 

This primitive reports a NetLogo List with the results (two binary strings of the same 

length) of the application of the standard one-point crossover operation with probability 

probability to the fixed-length binary strings parentA and parentB. Note that the crossover 

point is the same for both parents resulting in offspring of the same genotype size with the 

parents. 

jge:mutation offspring probability 

It reports a string with the result of the application of the point mutation operation with 

probability probability in the binary string offspring. 

ge:individual codonsize min max 

It reports a randomly generated genotype (binary string) of size between the specified 

limits (size of codon in bits, minimum length in codons, and maximum length in codons). 

The binary string will have a random number of codons (each one of codonsize bits) in the 

range between min and max. 

jge:population size codonsize min max 

This primitive reports a NetLogo List of length size with randomly generated genotypes 

(binary strings). Each genotype (binary string) contains a random number of codons (each 

one of codonsize bits) in the range between min and max. 

229 



Acronyms 

Acronym Full Phrase 

ADF Automatically Defined Function 

BNF Backus-Naur Form 

CFG Context-Free Grammar 

CGE Constituent Grammatical Evolution 

CHM Cheven ing House Maze 

EA Evolutionary Algorithm 

EAP Evolutionary Automatic Programming 

EC Evolutionary Computation 

EP Evolutionary Programming 

ES Evolution Strategies 

FSA Finite-State Automaton 

GA Genetic Algorithm 

GE Grammatica l Evolution 

GP Genetic Programming 

HCM Hampton Court Maze 

JVM Java Virtual Machine 

LAH Los A ltos Hills 

OOP Object-Oriented Programming 

PEA Parallel Evolutionary Algorithm 

PGA Parallel Genetic A lgorithm 

SGA Standard Genetic A lgorithm (Generational) 

SFT Santa Fe Trail 

SSGA Steady State Genetic Algorithm 

230 



Glossary 

Adaptation An internal change in a system that mirrors an external event in the system' s 

environment (Flake 1998, p.443). 

Allele Alternative expression of one and the same gene. For instance, a gene for eye 

colour has the alleles "brown," "blue," "black," etc. (Pfeifer and Scheier 2001 , 

p.645). 

Artificial Life The study of life processes within the confines of a computer (Flake 1998, 

p.444). 

Backus-Naur Form A formalism to write grammars. There are four components to a 

BNF grammar: A set of terminal symbols, a set of non-terminal symbols, a start 

symbol, and a set ofrewrite rules (Russell and Norvig 2003 , p.984). 

Baldwin Effect The selection of genes that strengthen the genetic basis of a variant of the 

phenotype (Mayr 2002, p.311 ). 

Behaviour Control Set of mechanisms that determine the behaviour in which an agent 

will engage (Pfeifer and Scheier 2001 , p.646). 

Behaviour What an autonomous agent is observed doing. Always the result of an 

interaction of an agent with its environment (Pfeifer and Scheier 2001 , p.646). 

Chomsky Hierarchy Four classes of language (or computing machines) that have 

increasingly complexity: regular (finite-state automata), context-free (push-down 

automata), context-sensitive (linear bounded automata), and recursive (Turing 

machines) (Flake 1998, p.446). 

Chromosome A structure contained in every cell of the organism that holds strings of 

DNA, a macromolecule that serves as a "blueprint" for the build-up and 

functioning of an organism. A chromosome can be conceptually divided into genes 

(Pfeifer and Scheier 2001 , p.647). 

231 



Codon A triplet of bases (or nucleotides) in the DNA coding for one amino acid. The 

relation between codons and amino acids is given by the genetic code (Ridley 

2004, p.683). 

Coevolution Two or more entities experience evolution in response to one another. Due to 

feedback mechanisms, this often results in a biological arms race (Flake 1998, 

p.446). 

Context-Free Grammar In context-free grammars, the left-hand side consists of a single 

non-terminal symbol. Thus, each rule licenses rewriting the non-terminal as the 

right-hand side in any context. (Russell and Norvig 2003, p.793). 

Context-Sensitive Grammar Context-sensitive grammars are restricted only in that the 

right-hand side must contain at least as many symbols as the left-hand side 

(Russell and Norvig 2003, p. 793). 

Convergence For searches (e.g. genetic algorithms), finding a location that cannot be 

improved upon (Flake 1998, p.44 7). 

Crossover (Biology) The process during meiosis in which the chromosomes of a diploid 

pair exchange genetic material. It is visible in the light of microscope. At a genetic 

level, it produces recombination (Ridley 2004, p.683). 

Crossover (Genetic Algorithm) Holland ' s is the most straight forward form of 

Crossover: Crossover is applied to two chromosomes (parents) and creates two 

new chromosomes ( offspring) by selecting a random position along the coding and 

splicing the section that appears before the selected position in the first string with 

the section that appears after the selected position in the second string, and vice 

versa (Fogel 2006, p. 77). 

Darwinism Darwin's theory, that species originated by evolution from other species and 

that evolution is mainly driven by natural selection. Differs from neo-Darwinism 

mainly in that Darwin did not know about Mendelian inheritance (Ridley 2004, 

p.683). 

232 



Dynamical System A system that changes over time according to a set of fixed rules that 

determine how one state of the system moves to another state (Flake 1998, p.449). 

Evolution According to Evolutionary Synthesis, evolution is change in the properties of 

populations of organisms over time (Mayr 2002, p.9). Darwin defined it as 

"descent with modification." It is the change in a lineage of populations between 

generations (Ridley 2004, p.684). 

Evolution Strategies A species of evolutionary algorithms. The focus of the evolution 

strategy paradigm was on real-valued function optimisation. Hence, individuals 

were naturally represented as vectors of real numbers (De Jong 2006, p.25). 

Evolutionary Algorithm An umbrella term that includes various types of algorithms that 

are, in one way or another, inspired by natural evolution. It includes genetic 

algorithms, evolution strategies, and evolutionary programming (Pfeifer and 

Scheier 2001, p.649). 

Evolutionary Computation The use of evolutionary systems as computational processes 

for solving complex problems (De Jong 2006, p.1 ). The field emerged during the 

1990s from the adoption of a unified view of the evolutionary problem solvers (De 

Jong 2006, p.29). 

Evolutionary Programming A species of evolutionary algorithms. The evolutionary 

programming paradigm concentrated on models involving a fixed-size population 

of N parents, each of which produced a single offspring. The individuals being 

evolved were finite state machines (De Jong 2006, p.25). 

Finite-State Automaton The simplest computing device. Although it is not nearly 

powerful enough to perform universal computation, it can recognise regular 

expressions. FSAs are defined by a state transition table that specifies how the FSA 

moves from one state to another when presented with a particular input. FSAs can 

be drawn as graphs (Flake 1998, p.451). 

Fitness A measure of an object's ability to reproduce viable offspring (Flake 1998, 

p.451). In biology: (a) The probability that the organism will live to reproduce 

(viability); (b) a function of the number of offspring the organism has (fertility). In 

233 



artificial evolution: The value of a fitness function for a particular individual 

(Pfeifer and Schei er 2001, p.650). 

Fitness Function In artificial evolution, a function that evaluates the performance of a 

phenotype. Used as an optimisation criterion. Individuals with high fitness have a 

high probability of being selected for reproduction (Pfeifer and Schei er 2001 , 

p.650). 

Fitness Landscape A representation of how mutations can change the fitness of one or 

more organisms. If high fitness corresponds to high locations in the landscape, and 

if changes in genetic material are mapped to movements in the landscape, then 

evolution will tend to make populations move in an uphill direction on the fitness 

landscape (Flake 1998, p. 451). 

Foraging Behaviour associated with the harvesting of food. It includes searching, 

recognising, handling, and consuming (Pfeifer and Scheier 2001 , p.650). 

Gene Pool All the genes in a population at a particular time (Ridley 2004, p.684). 

Gene Sequence of nucleotides coding for a protein or, in some cases, part of a protein 

(Ridley 2004, p.684). A unit of heredity located on a chromosome and composed 

of DNA. The code necessary to promote the synthesis of one polypeptide chain 

(Fogel 2006, p.264). 

Genetic Algorithm A method simulating the action of evolution within a computer. A 

population of fixed-length strings is evolved with a GA by employing crossover 

and mutation operators along with a fitness function that determines how likely 

individuals are to reproduce. GAs perform a type of search in a fitness landscape 

(Flake 1998, p. 452). 

Genetic Drift Random changes in gene frequencies in a population (Ridley 2004, p.684). 

Genetic Programming A method of applying simulated evolution on programs or 

program fragments. Modified forms of mutation and crossover are used along with 

a fitness function (Flake 1998, p.452). 

234 



Genome The entire collection of genetic materials; the totality of the genes possessed by 

an organism. The genome consists of one or more chromosomes that contain the 

individual genes (Pfeifer and Scheier 2001 , p.650). 

Genotype The set of two genes at a locus possessed by an individual (Ridley 2004, 

p.685). The set of genes of an individual (Mayr 2002, p.314). Refers to the 

particular set of genes contained in a genome, that is, an individual's genetic 

constitution (Pfeifer and Schei er 2001 , p.651 ). 

Grammar A formal language is defined as a set of strings where each string is a sequence 

of symbols. All the languages we are interested in consist of an infinite set of 

strings, so we need a concise way to characterise the set. We do that with a 

grammar (Russell and Norvig 2003, p.984). 

Inheritable Refers to a trait that can be genetically passed from parent to offspring (Flake 

1998, p.455). 

Intron The nucleotide sequences of some genes consist of parts that code for amino acids, 

and other parts interspersed among them that do not code for amino acids. The 

interspersed non-coding parts, which are not translated, are called introns; the 

coding parts are called exons (Ridley 2004, p.685). 

Kin Selection Selective advantage due to the altruistic interaction of individuals sharing 

part of the same genotype, such as siblings (Mayr 2002, p.315). 

Lamarckism Evolutionary hypothesis that proposes the inheritance of acquired traits 

(Pfeifer and Scheier 2001 , p.652). 

Locus The location in the DNA occupied by a particular gene (Ridley 2004, p.686). 

Mutation (Biology) When parental DNA is copied to form a new DNA molecule, it is 

normally copied exactly. A mutation is any change in the new DNA molecule from 

the parental DNA molecule. Mutations may alter single bases, or nucleotides, short 

stretches of bases, or parts of or whole chromosomes. Mutations can be detected 

both at the DNA level o the phenotypic level (Ridley 2004, p.686). 

235 



Mutation (Genetic Algorithm) Mutation takes the form of a "bit flip" with a fixed 

probability (De Jong 2006, p.26). 

Natural Selection The process by which the forms of organisms in a population that are 

best adapted to the environment increase in frequency relative to less well adapted 

forms over a number of generations (Ridley 2004, p.686). 

Neo-Darwinism Darwin's theory of natural selection plus Mendelian inheritance. The 

larger body of evolutionary thought that was inspired by the unification of natural 

selection and Mendelim. A synonym of modern synthesis (Ridley 2004, p.686). 

NetLogo NetLogo is a programmable modelling environment for simulating natural and 

social phenomena. It was authored by Uri Wilensky in 1999 and has been in 

continuous development ever since at the Center for Connected Learning and 

Computer-Based Modeling (Wilensky, 1999). 

Neutral Mutation Mutation with the same fitness as the other allele (or alleles) at its 

locus (Ridley 2004, p.686). 

Phenotype The characters of an organism, whether due to the genotype or environment 

(Ridley 2004, p.687). 

Population A group of organisms, usually a group of sexual organisms that interbreed and 

share a gene pool (Ridley 2004, p.687). 

Protein A molecule made up of a sequence of amino acids. Many of the important 

molecules in a living thing are proteins; all enzymes, for example, are proteins 

(Ridley 2004, p.687). 

Search Space A characterisation of every possible solution to a problem instance. For a 

genetic algorithm, it is every conceivable value assignment to the string in the 

population (Flake 1998, p.463). 

Variation Genetic differences among individuals in a population (Flake 1998, p. 467). 

236 



References 

Adamidis P. (1994) "Review of Parallel Genetic Algorithms Bibliography". Internal 

Technical Report, Faculty of Engineering, Aristotle University of Thessaloniki, 

November 1994. 

Alba, E. ed. (2005) Parallel Metaheuristics: A New Class of Algorithms. USA: Wiley­

Interscience. 

Alba, E. and Tomassini , M. (2002) "Parallelism and Evolutionary Algorithms". IEEE 

Transactions on Evolutionary Computation 6(5), 443-462. 

Alba, E. and Troya, J. M. (2001) "Gaining New Fields of Application for OOP: the 

Parallel Evolutionary Algorithm Case". Journal Of Object Oriented Programming. 

Dec 2001. 

Amarteifio, S. (2005) Interpreting a Genotype-Phenotype Map with Rich Representations 

in XMLGE. MSc thesis, Department of Computer Science and Information 

Systems, University of Limerick, Ireland. 

Amarteifio, S. and O 'Neill , M. (2004) "An Evolutionary Approach to Complex System 

Regulation Using Grammatical Evolution" . In Proceedings of the Ninth 

International Conference on the Simulation and Synthesis of Living Systems 

(Artificial Life IX). pp.551-556, Boston, USA, 12-15 September 2004. MIT Press. 

Amarteifio, S. and O 'Neill, M. (2005) "Coevolving Antibodies with a Rich 

Representation of Grammatical Evolution" . In Proceedings of the IEEE Congress 

on Evolutionary Computation 2005 (CEC ' 05), vol.l , pp.904-911 , Edinburgh, UK, 

2-5 September 2005. IEEE Press. 

Angeline, P. J. and Pollack, J. B. (1993) "Evolutionary Module Acquisition". In 

Proceedings of the Second Annual Conference on Evolutionary Programming. pp. 

154-163. San Diego, CA: Evolutionary Programming Society. 

Angeline, P. J . and Pollack, J. B. ( 1994 ). "Coevolving High-Level Representations" . In 

Proceedings of Artificial Life III , pp. 55-71. Reading, MA: Addison-Wesley. 

237 



Azad, A. (2003) A Position Independent Representation for Evolutionary Automatic 

Programming Algorithms - The Chorus System. PhD thesis, University of 

Limerick, Ireland. 

Banzhaf, W. (1994) "Genotype-Phenotype-Mapping and Neutral Variation - A case study 

in Genetic Programming" . In Proceedings of the International Conference on 

Evolutionary Computation, The Third Conference on Parallel Problem Solving 

from Nature (PPSN III), pp.322-332. London, UK: Springer-Verlag. 

Barricelli, N. A. ( 1957) "Symbiogenetic Evolution Processes Realized by Artificial 

Methods". Methodos 9(35-36), 143-182. 

Baum, E. B. (2004) What is Thought?. Cambridge, MA: MIT Press. 

Blum, M. and Kozen, D. (1978) "On the power of the compass (or, why mazes are easier 

to search than graphs)". In Proceedings of the 19th Annual IEEE Symposium on 

Foundations of Computer Science (FOCS 1978), Ann Arbor, USA, 132-142. 

Box, G. E. P. (1957) "Evolutionary Operation: A Method for Increasing Industrial 

Productivity". Applied Statistics, vol. 6, 81-101. 

Brabazon, A. and O'Neill, M. (2006) Biologically Inspired Algorithms for Financial 

Modelling. Springer. 

Byrne, J., Fenton, M., Hemberg, E., McDermott, J. , O'Neill , M., Shotton, E. and Nally, C. 

(2011) "Combining Structural Analysis and Multi-Objective Criteria for 

Evolutionary Architectural Design". In Proceedings of the 9th European Event on 

Evolutionary and Biologically Inspired Music, Sound, Art and Design 

(EvoMUSART 2011), Lecture Notes in Computer Science, vol. 6625, pp.204-213, 

Torino, Italy, 27-29 Apri l 2011. Berlin, Germany: Springer. 

Byrne, J. , O'Neill, M., McDermott, J. and Brabazon, A. (2009) "Structural and Nodal 

Mutation in Grammatical Evolution". In Proceedings of the Genetic and 

Evolutionary Computation Conference 2009 (GECCO ' 09). pp.1881-1882, 

Montreal, Quebec, Canada, 8-12 July 2009. New York, NY, USA: ACM. 

Cantu-Paz, E. (1998) "A Survey of Parallel Genetic Algorithms". Calculateurs Paralleles, 

Reseaux et Systemes Repartis 10 (2), 141-171. 

238 



Cantu-Paz, E. (2001) Efficient and Accurate Parallel Genetic Algorithms. Massachusetts, 

USA: Kluwer Academic Publishers. 

Cleary, R. (2005) Extending Grammatical Evolution with Attribute Grammars: An 

Application to Knapsack Problems. MSc thesis, University of Limerick, Ireland. 

Cleary, R. and O 'Neill, M. (2005) "An Attribute Grammar Decoder for the 01 

Multiconstrained Knapsack Problem" . In Proceedings of the European Conference 

on Evolutionary Combinatorial Optimisation 2005 (EvoCOP ' 05), Lecture Notes in 

Computer Science, vol. 3448, pp.34-45, Lausanne, Switzerland, 30 March - 1 

April 2005. Berlin, Germany: Springer. 

Cramer, N. L. , (1985). "A Representation for the Adaptive Generation of Simple 

Sequential Programs" . In Proceedings of the First International Conference on 

Genetic Algorithms and Their Applications, pp.183-187, Carnegie-Mellon 

University, Pittsburgh, USA, 24-26 July 1985. Hillsdale, NJ: Lawrence Erlbaum 

Associates. 

Cui, W. , Brabazon, A. and O 'Neill, M. (2010) "Evolving Dynamic Trade Execution 

Strategies using Grammatical Evolution" . In Proceedings of the 4th European 

Event on Evolutionary and Natural Computation in Finance and Economics 

(EvoFin 2010), Applications of Evolutionary Computation, Lecture Notes in 

Computer Science, vol. 6025, pp.192-201 , Istanbul, Turkey, 7-9 April 2010. 

Berlin, Germany: Springer. 

Darwin, C. (1859) On the Origin of Species by Means of Natural Selection or the 

Preservations of Favored Races in the Struggle for Life. London, Great Britain: 

John Murray. 

De Jong, K. A . (2006) Evolutionary Computation: A Unified Approach. Cambridge, MA: 

MIT Press. 

Dempsey, I. , O 'Neill , M. and Brabazon, A. (2005) "meta-Grammar Constant Creation 

with Grammatical Evolution by Grammatical Evolution" . In Proceedings of the 

2005 Conference on Genetic and Evolutionary Computation (GECCO ' 05), pp. 

1665-1671. New York, USA: ACM Press. 

239 



Dempsey, I. , O'Neill, M. and Brabazon, A. (2006) "Adaptive Trading with Grammatical 

Evolution". In Proceedings of the 2006 IEEE Congress on Evolutionary 

Computation, pp. 2587-2592. 

Dempsey, I., O'Neill, M. and Brabazon, A. (2009) Foundations in Grammatical Evolution 

for Dynamic Environments. Berlin, Germany: Springer. 

Flake, G. W. (1998) The Computational Beauty of Nature: Computer Explorations of 

Fractals, Chaos, Complex Systems, and Adaptation. Cambridge, USA: MIT Press. 

Fogel, D . B. (2006) Evolutionary Computation: Toward a New Philosophy of Machine 

Intelligence, 3rd ed. New Jersey, USA: IEEE Press. 

Fogel, L., Owens, A. and Walsh, M. (1966) Artificial Intelligence through Simulated 

Evolution. New York: John Wiley & Sons. 

Friedberg, R. M. (1958) "A Learning Machine: Part I" . IBM Journal of Research and 

Development, vol. 2, 2-13. 

Friedman, G. (1956) Select feedback computers for engineering synthesis and nervous 

system analogy. Master' s thesis, UCLA. 

Gagne, C., Schoenauer, M., Parizeau, M. and Tomassini, M. (2006) "Genetic 

Programming, Validation Sets, and Parsimony Pressure". In Proceedings of the 9th 

European Conference on Genetic Programming (EuroGP '06), Lecture Notes in 

Computer Science, vol. 3905, pp.109-120, Budapest, Hungary, 10-12 April 2006. 

Berlin, Germany: Springer. 

Galvan-Lopez , E., Swafford, J . M. , O'Neill, M. and Brabazon, A. (2010) "Evolving a Ms. 

PacMan Controller using Grammatical Evolution". In Proceedings of Applications 

of Evolutionary Computation, EvoApplicatons 2010: EvoGAMES, Lecture Notes 

in Computer Science, vol. 6024, pp.161-170, Istanbul, Turkey, 7-9 April 20 10. 

Berlin, Germany: Springer. 

Gardenfors, P. (2004) Conceptual Spaces: The Geometry of Thought. Cambridge, MA: 

MIT Press. 

240 



Garibay, b. b. (2008) Analyzing the Effects of Modularity on Search Spaces. PhD thesis, 

School of Electrical Engineering and Computer Science, University of Central 

Florida, Orlando, Florida. 

Gavrilis, D. , Tsoulos, I. G. , Georgoulas, G. and Glavas, E. (2005) "Classification of fetal 

heart rate using grammatical evolution". In Proceedings of the 2005 IEEE 

Workshop on Signal Processing Systems Design and Implementation, 425-429. 

Georgiou, L. (2006) Java GE (jGE) Official Web Site. Artificial Intelligence and 

Intelligent Agents Research Group, School of Computer Science, Bangor 

University, Available from http://aiia.bangor.ac.uk/jge. 

Georgiou, L. and Teahan, W. J. (2006a) "jGE - A Java implementation of Grammatical 

Evolution" . 10th WSEAS International Conference on Systems, Athens, Greece, 

July 10-15, 2006. 

Georgiou, L. and Teahan, W. J. (2006b) "Implication of Prior Knowledge and Population 

Thinking in Grammatical Evolution: Toward a Knowledge Sharing Architecture". 

WSEAS Transactions on Systems 5 (10), 2338-2345. 

Georgiou, L. and Teahan, W. J. (2008) "Experiments with Grammatical Evolution in 

Java" . Knowledge-Driven Computing: Knowledge Engineering and Intelligent 

Computations, Studies in Computational Intelligence (vol. 102), 45-62. Berlin, 

Germany: Springer Berlin / Heidelberg. 

Georgiou, L. and Teahan, W. J. (2010) "Grammatical Evolution and the Santa Fe Trail 

Problem". In Proceedings of the International Conference on Evolutionary 

Computation OCEC 2010), October 24-26, 2010, Valencia, Spain, 10-19. 

Georgiou, L. and Teahan, W. J. (2011) "Constituent Grammatical Evolution". In 

Proceedings of the Twenty-Second International Joint Conference on Artificial 

Intelligence (IJCAI 2011), July 16-22, 2011 , Barcelona, Catalonia (Spain), 1261-

1268. 

Ghanea-Hercock, R. (2003) Applied Evolutionary Algorithms in Java. New York, NY: 

Springer. 

241 



Harper, R. (2010) "GE, Explosive Grammars and the Lasting Legacy of Bad 

Initialisation" . In Proceedings of the IEEE Congress on Evolutionary Computation 

2010 (CEC ' 10), pp.1 -8, Barcelona, Spain, 18-23 July 2010. IEEE Press. 

Harper, R. (2011) "Co-evolving robocode tanks". In Proceedings of the Genetic and 

Evolutionary Computation Conference 2011 (GECCO 'ill, pp. 1443-1450, 

Dublin, Ireland, 12-16 July 2011. New York, NY, USA: ACM. 

Harper, R. and Blair, A. (2005) "A Structure Preserving Crossover m Grammatical 

Evolution". In Proceedings of the 2005 IEEE Congress on Evolutionary 

Computation, vol. 3, 2537-2544. 

Harper, R. and Blair, A. (2006a) "A Self-Selecting Crossover Operator" . In Proceedings 

of the 2006 IEEE Congress on Evolutionary Computation (IEEE CEC 2006) , pp. 

1420-1427. 

Harper, R. and Blair, A. (2006b) "Dynamically Defined Functions In Grammatical 

Evolution" . In Proceedings of the 2006 IEEE Congress on Evolutionary 

Computation (IEEE CEC 2006). pp. 2638-2645 . 

Hemberg, E. (2010) An Exploration of Grammars in Grammatical Evolution. PhD thesis, 

School of Computer Science Department and Informatics, University College 

Dublin, Ireland. 

Hemberg, E. , Ho, L. , O 'Neill, M. and Claussen, H. (2011) "A Symbolic Regression 

Approach To Manage Femtocell Coverage using Grammatical Genetic 

Programming" . In Companion Material Proceedings of the Genetic and 

Evolutionary Computation Conference 2011 (GECCO 'ill, pp.639-646, Dublin, 

Ireland, 12-16 July 20 11. New York, NY, USA: ACM. 

Hemberg, E. , O'Neill, M. and Brabazon, A. (2008) "Grammatical Bias and Building 

Blocks in Meta-Grammar Grammatical Evolution" . In Proceedings of the IEEE 

Congress on Evolutionary Computation, CEC 2008, 3775-3782. 

Hemberg, E., O'Neill, M. and Brabazon, A. (2009) "An investigation into automatically 

defined function representations in Grammatical Evolution" . In Proceedings of the 

15th International Conference on Soft Computing, Mendel ' 09, Brno, Czech 

Republic, 24-26 June 2009. 

242 



Hirsh, H. (2000) "Trends & Controversies: Genetic programming". IEEE Intelligent 

Systems 15(3), 74-84. 

Holland, J. (1962) " Outline for a Logical Theory of Adaptive Systems". JACM 9, 297-

134. 

Holland, J. (1967) "Nonlinear environments permitting efficient adaptation". In Computer 

and Information Sciences II . Academic Press. 

Holland, J. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor, MI: 

University of Michigan Press. 

Hugosson, J. , Hem berg, E., Brabazon, A. and O'Neill, M. (2010) "Genotype 

Representations in Grammatical Evolution" . Applied Soft Computing 10(1), 36-43. 

IBM Corporation (2004), Jikes 1.22 (online). United States: NY. Available from: 

http://jikes.sourceforge.net (Accessed 27 March 2006). 

Jefferson, D., Collins, R. , Cooper, C., Dyer, M, Flowers, M. , Korf, R. , Taylor, C. and 

Wang, A. (1992) "Evolution as a Theme in Artificial Life: The Genesys/Tracker 

System". In Langton, Christopher, et al. (editors), Artificial Life II. Addison­

Wesley. 

Joshi, A. (1985) "Tree adjoining grammars: How much context-sensitivity is required to 

provide reasonable structural descriptions?". Natural Language Parsing. pp.205-

250. New York: Cambridge University Press. 

Joshi, A. and Schabes, Y. (1997) Tree-Adjoining Grammars. Handbook of Formal 

Languages, Beyond Words , vol.3 , pp.69- 123. 

JUnit.org (2006) JUnit - Testing Resources for Extreme Programming (online). Available 

from : http://www.junit.org (Accessed 11 February 2006). 

Keijzer, M. , Babovic, V. , Ryan, C., O'Neill, M. and Cattolica, M. (2001) "Adaptive Logic 

Programming" . In Proceedings of the Genetic and Evolutionary Computation 

Conference 2001 (GECCO 'QU, pp.42-49, San Francisco, California, USA, 7-11 

July 2001. Morgan Kaufmann. 

243 



Keijzer, M. , Ryan, C. and Cattolico, M. (2004) "Run Transferable Libraries - Learning 

Functional Bias in Problem Domains". In Proceedings of the Genetic and 

Evolutionary Computation Conference 2004 (GECCO '04), Part II, Lecture Notes 

in Computer Science (vol. 3103), pp.531-542, Seattle, Washington, USA, 26-30 

June 2004. Springer. 

Koza, J. R. (1992) Genetic Programming: On the Programming of Computers by the 

Means of Natural Selection. Cambridge, MA: MIT Press. 

Koza, J. R. (1994) Genetic Programming II: Automatic Discovery of Reusable Programs. 

Cambridge, MA: MIT Press. 

Koza, J. R., Bennet III, F. H., Andre, D. and Keane M. A. (1999) Genetic Programming 

III: Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers. 

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J. and Lanza, G. (2003) 

Genetic Programming IV: Routine Human-Competitive Machine Intelligence. 

Kluwer Academic Publishers. 

Langdon, W. B. and Poli, R. (1998a) "Why Ants are Hard" . In Koza et al. (editors), 

Genetic Programming 1998: Proceedings of the Third Annual Conference , pp.193-

201. San Francisco, California: Morgan Kaufmann. 

Langdon, W. B. and Poli, R. (1998b) Better Trained Ants for Genetic Programming. 

Technical report, University of Birmingham, School of Computer Science (CSRP-

98-12), April 1998. 

Langdon, W. B. and Poli, R. (2001) Foundations of Genetic Programming. Berlin: 

Springer. 

Luke, S. and Wiegand, R. P. (2002) "When Coevolutionary Algorithms Exhibit 

Evolutionary Dynamics" . In Proceedings of the Bird of a Feather Workshops, 

Genetic and Evolutionary Computation Conference 2002 (GECCO ' 02), pp.236-

241 , New York, USA, 8 July 2002. New York, NY, USA:AAAI Press. 

Majeed, H. and Ryan, C. (2007) "Context-Aware Mutation: A Modular, Context Aware 

Mutation Operator for Genetic Programming". In Proceedings of the Genetic and 

244 



Evolutionary Computation Conference 2007 (GECCO '07), pp.1651-1658, 

London, England, 7-11 July 2007. New York, NY, USA: ACM. 

Mayr, E. (2002) What Evolution Is. London, Great Britain: Phoenix. 

McDermott, J. , Byrne, J ., Swafford, J. M., O ' Neill, M. and Brabazon, A. (2010) "Higher­

Order Functions in Aesthetic EC Encodings". In Proceedings of the IEEE Congress 

on Evolutionary Computation 2010 (CEC '10) , pp.1-8, Barcelona, Spain, 18-23 

July 2010. IEEE Press. 

McGee, R., O'Neill, M. and Brabazon, A. (2010) "The Syntax of Stock Selection: 

Grammatical Evolution of a Stock Picking Model". In Proceedings of the IEEE 

Congress on Evolutionary Computation 2010 (CEC ' 10) . pp.1-8, Barcelona, Spain, 

18-23 July 2010. IEEE Press. 

McKay, R. I., Hoai, N. X. , Whigham, P. A., Shan, Y. and O 'Neill M. (2010) "Grammar­

based Genetic Programming: a survey" . Genetic Programming and Evolvable 

Machines 11 (3-4) , 365-396. 

McKay, R. I. , Hoang, T. H., Essam, D. , and Nguyen, X. H. (2006) "Developmental 

Evaluation in Genetic Programming: the Preliminary Results". In Proceedings of 

the 9th European Conference on Genetic Programming (EuroGP ' 06), Lecture 

Notes in Computer Science, vol. 3905, pp.280-289, Budapest, Hungary, 10-12 

April 2006. Berlin, Germany: Springer. 

Murphy, E. (2011) "Examining Grammars and Grammatical Evolution in Dynamic 

Environments" . In Proceedings of the Genetic and Evolutionary Computation 

Conference 2011 (GECCO 'ill, pp.779-782, Dublin, Ireland, 12-16 July 2011. 

New York, NY, USA: ACM. 

Murphy, J. E. (2011) Applications of Evolutionary Computation to Quadrupedal Animal 

Animation. PhD thesis, School of Computer Science and Informatics, University 

College Dublin, Ireland. 

Murphy, J.E., Carr, H. and O'Neill M. (20 10) "Animating Horse Gaits and Transitions". 

EG UK Theory and Practice of Computer Graphics 2010, University of Sheffield, 

UK, 6-8 September 2010. Euro graphic Digital Library. 

245 



Murphy, J. E., O'Neill, M. and Carr, H. (2009) "Exploring Grammatical Evolution for 

Horse Gait Optimisation". In Proceedings of the 12th European Conference on 

Genetic Programming (EuroGP 2009), Lecture Notes in Computer Science, vol. 

5481, pp.183-194, Tubingen, Germany, 15-17 April, 2009. Springer. 

Murphy, E. , O'Neill, M. , Galvan-Lopez, E. and Brabazon, A. (2010) "Tree-Adjunct 

Grammatical Evolution". In IEEE Congress on Evolutionary Computation 2010 

(IEEE CEC ' 10), pp.4449- 4456, Barcelona, Spain, 18-23 July 2010. IEEE Press. 

Nelson, M. (2001) Robocode. Available fromhttp: //robocode.sourceforge.net. 

Nicolau, M. (2005), libGE: Grammatical Evolution Library for version 0.24, 20 October 

2005. Available from http://waldo.csisdmz.ul.ie/ libGE/libGE.pdf (Accessed 30 

November 2005). 

Nicolau, M. (2006a), libGE: Grammatical Evolution Library for version 0.26beta 1, 3 

March 2006. Available from http://waldo.csisdmz.ul.ie/ libGE/libGE.pdf 

(Accessed 11 March 2006). 

Nicolau, M. (2006b), libGE: Grammatical Evolution Library for version 0.27alphal, 14 

September 2006. Available from: http://bds.ul.ie/ libGE/libGE.pdf (Accessed 20 

October 2008). 

Nicolau, M. and Costelloe, D. (2011) "Using Grammatical Evolution to Parameterise 

Interactive 3D Image Generation". In Proceedings of the 2011 International 

Conference on Applications of Evolutionary Computation (EvoApplications 2011), 

Lecture Notes in Computer Science, vol. 6625, pp. 374-383, Torino, Italy, 27-29 

April 2011. Berlin, Germany: Springer. 

Nicolau, M. and Dempsey, I. (2006) "Introducing Grammar Based Extensions for 

Grammatical Evolution". In Proceedings of the 2006 IEEE Congress on 

Evolutionary Computation (IEEE CEC 2006), pp. 648-655. 

Nicolau, M. and Ryan, C. (2002) LINKGAUGE: Tackling hard deceptive problems with a 

new linkage learning genetic algorithm. Available from http://www.grammatical­

evolution.org/papers/ nicolau02linkgauge.ps (Accessed 14 December 2005). 

246 



Nicolau, M. and Ryan, C. (2003) "How functional dependency adapts to salience 

hierarchy in the GAuGE system". In Proceedings of EuroGP 2003 . Available from 

http://www.grammatical-evolution.org/papers/ nicolau03salience.ps (Accessed 14 

December 2005). 

O'Neill, M. (1999) "Automatic Programming with Grammatical Evolution". In 

Proceedings of the Genetic and Evolutionary Computation Conference Workshop 

Program held in Orlando, Florida USA 13-17 July 1999, San Francisco, CA: 

Morgan Kaufmann. Available from http://www.grammatical­

evolution.org/papers/gradworkshop99.ps (Accessed 30 November 2005). 

O'Neill, M. and Brabazon, A. (2005a) "Recent Adventures in Grammatical Evolution" . In 

Proceedings of Computer Methods and Systems Conference (CMS ' 05), vol. 1, 

pp.245-253, Krakow, Poland, 14-16 November 2006. Poland: Oprogramowanie 

N aukowo-Techniczne Tadeusiewicz. 

O'Neill , M. and Brabazon, A. (2005b) "mGGA: The meta-Grammar Genetic Algorithm". 

Genetic Programming, Lecture Notes in Computer Science, vol. 3447, pp.311-320. 

Berlin, Germany: Springer Berlin/ Heidelberg. 

O'Neill M. and Brabazon, A. (2006a) "Grammatical Swarm: The generation of programs 

by social programming". Natural Computing 5(4), 443-462. 

O'Neill, M. and Brabazon, A. (2006b) "Grammatical Differential Evolution" . In 

Proceedings of the 2006 International Conference on Artificial Intelligence (ICAI 

'06), vol. 1, pp. 231-236, Las Vegas, Nevada, USA, 26-29 June 2006. CSEA 

Press. 

O'Neill , M. and Brabazon, A. (2008) "Evolving a Logo Design Using Lindenmayer 

Systems, Postscript and Grammatical Evolution" . 2008 IEEE World Congress on 

Computational Intelligence, 3788-3794. Hong Kong: IEEE Press. 

O'Neill, M. and Brabazon, A. (2009) "Recent Patents on Genetic Programming". Recent 

Patents on Computer Science 2(1), 43-49. 

O'Neill, M., Brabazon, A. and Adley, C. (2004) "The Automatic Generation of Programs 

for Classification Problems with Grammatical Swarm". In Proceedings of the 2004 

Congress on Evolutionary Computation, vol. 1, 104 - 110. 

247 



O'Neill, M., Brabazon, A., Nicolau, M., Garraghy, S. M. and Keenan P. (2004) 

"1tGrammatical Evolution". In Proceedings of the Genetic and Evolutionary 

Computation Conference 2004 (GECCO ' 04), Part II, Lecture Notes in Computer 

Science, vol. 3103 , pp.617-629, Seattle, Washington, USA, 26-30 June 2004. 

Springer. 

O'Neill, M., Brabazon, A., Ryan, C. and Collins, J. J. (2001a) "Evolving Market Index 

Trading Rules using Grammatical Evolution". In Proceedings of EvoIASP 2001. 

Available from http:// www.grammatical-evolution.org/papers/evoiasp2001.ps.gz 

(Accessed 14 December 2005). 

O'Neill, M., Brabazon, A., Ryan, C. and Collins, J . J. (2001b) "Developing a Market 

Timing System using Grammatical Evolution". In Proceedings of GECCO 2001. 

Available from http://www.grammatical­

evolution.org/papers/gecco_iseq200l .ps.gz (Accessed 14 December 2005). 

O'Neill, M. , Cleary, R. and Nikolov, N. (2004) "Solving Knapsack Problems with 

Attribute Grammars". In Proceedings of the Third Grammatical Evolution 

Workshop 2004 (GEWS ' 04), Seattle, Washington, USA, 26-30 June 2004. 

O'Neill, M. and Ryan, C. (1999a) "Automatic Generation of Caching Algorithms". In 

Proceedings of EUROGEN 1999, Short Course on Evolutionary Algorithms in 

Engineering and Computer Science held in JyvaskyliL Finland 30 May - 3 June 

1999, pages 127-134. Available from http://www.grammatical­

evolution.org/papers/eurogen99.ps.gz (Accessed 30 November 2005). 

O 'Neill, M. and Ryan, C. (1999b) "Automatic Generation of High Level Functions using 

Evolutionary Algorithms" . In Proceedings of SCASE 1999, Soft Computing and 

Software Engineering Workshop held in University of Limerick, Ireland 1999 . 

Available from http://www.grammatical-evolution.org/papers/scase99.ps.gz 

(Accessed 30 November 2005). 

O 'Neill, M. and Ryan, C. (1999c) "Automatic Generation of Programs with Grammatical 

Evolution" . In Proceedings of AICS 1999, pp. 72-78. Available from 

http://www.grammatical-evolution.org/papers/ aics99.ps.gz (Accessed 30 

November 2005). 

248 



O'Neill, M. and Ryan, C. (1999d) "Evolving Multi-line Compilable C Programs". In 

Proceedings of the Second European Workshop on Genetic Programming, 1999, 

pp. 83-92. Available from http:// www.grammatical­

evolution.org/papers/eurogp99.ps.gz (Accessed 30 November 2005). 

O'Neill, M. and Ryan, C. (1999e) "Genetic Code Degeneracy: Implications for 

Grammatical Evolution and Beyond". In Proceedings of the European Conference 

on Artificial Life 1999. Available from http://www.grammatical­

evolution.org/papers/ecal99.ps.gz (Accessed 30 November 2005). 

O'Neill, M. and Ryan, C. (1999f) "Under the Hood of Grammatical Evolution". In 

GECCO-99: Proceedings of the Genetic and Evolutionary Computation 

Conference held in Orlando, Florida, USA 13-17 July 1999, edited by W. Banzhaf, 

J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, 

1999. San Francisco, CA: Morgan Kaufmann. Available from 

http://www.grammatical-evolution.org/papers/GP-434.ps.gz (Accessed 30 

November 2005). 

O 'Neill, M. and Ryan, C. (2000a) "Crossover in Grammatical Evolution: A Smooth 

Operator?". In Proceedings of the Third European Workshop on Genetic 

Programming 2000, pp. 149-162. Available from http://www.grammatical­

evolution.org/papers/eurogp2000.ps.gz (Accessed 14 December 2005). 

O 'Neill , M. and Ryan, C. (2000b) "Grammar based function definition in Grammatical 

Evolution". In Proceedings of GECCO 2000, the Genetic and Evolutionary 

Computation Conference, pp. 485-490. Available from http://www.grammatical­

evolution.org/papers/gecco2000.ps.gz (Accessed 14 December 2005). 

O'Neill, M. and Ryan, C. (2000c) "Incorporating Gene Expression Models into 

Evolutionary Algorithms". In Proceedings of the 2000 Genetic and Evolutionary 

Computation Conference Workshop Program, pp. 167-172. Available from 

http://www.grammatical-evolution.org/papers/gecco2000_gemworkshop.ps.gz 

(Accessed 14 December 2005). 

O'Neill , M. and Ryan, C. (2001) "Grammatical Evolution" . IEEE Transactions on 

Evolutionary Computation 5(4), 349-358. 

249 



O'Neill, M. and Ryan, C. (2003) Grammatical Evolution: Evolutionary Automatic 

Programming in an Arbitrary Language. USA: Kluwer Academic Publishers. 

O 'Neill, M. and Ryan, C. (2004) "Grammatical Evolution by Grammatical Evolution: The 

Evolution of Grammar and Genetic Code". In Proceedings of the 7th European 

Conference (Euro GP 2004 ), pp. 13 8-149. Berlin, Germany: Springer Berlin / 

Heidelberg. 

O 'Neill, M., Ryan, C., Keijzer, M. and Cattolico, M. (2001) "Crossover in Grammatical 

Evolution: The Search Continues" . In Proceedings of EuroGP 2001. Available 

from http:// www.grammatical-evolution.org/papers/eurogp2001.ps.gz (Accessed 

14 December 2005). 

O'Neill, M., Ryan, C. , Keijzer, M. and Cattolico, M. (2003) "Crossover in Grammatical 

Evolution". Genetic Programming and Evolvable Machines 4(1), 67-93 . 

O'Neill, M., Ryan, C. and Nicolau, M . (2001) "Grammar Defined Introns: An 

Investigation into Grammars, Introns, and Bias in Grammatical Evolution" . In 

Proceedings of GECCO 2001. Available from http://www.grammatical­

evolution.org/papers/gecco2001.ps.gz (Accessed 14 December 2005). 

O'Neill , M., Swafford, J. , McDermott, J. , Byrne, J. , Brabazon, A., Shotton, E. , McNally, 

C. and Hemberg, M. (2009) "Shape grammars and grammatical evolution for 

evolutionary design" . In Proceedings of Genetic and Evolutionary Computation 

Conference. 

O 'Neill, M., Vam1eschi, L. , Gustafson, S. and Banzhaf, W. (2010) "Open issues in genetic 

programming" . Genetic Programming and Evolvable Machines 11(3-4), 339-363. 

O' Sullivan, J. and Ryan, C. (2002) "An investigation into the use of different search 

strategies with grammatical evolution". In Proceedings of the 5th European 

Conference on Genetic Programming (EuroGP ' 02). Lecture Notes in Computer 

Science, vol. 2278, pp.268-277, Kinsale, Ireland, 3-5 April 2002. Berlin, Germany: 

Springer. 

Ortega, A. , Cruz, M. and Alfonseca, M. (2007) "Christiansen Grammar Evolution: 

Grammatical Evolution with Semantics". IEEE Transactions on Evolutionary 

Computation 11(1), 77-90. 

250 



Osmera, P., Popelka, 0. and Pivoiika, P. (2006) "Parallel Grammatical Evolution with 

Backward Processing". In Proceedings of the 9th International Conference on 

Control, Automation, Robotics and Vision (ICARCV 2006) , pp. 1-6. 

Paterson, N. and Livesey, M. (1997) "Evolving caching algorithms in C by GP". In 

Genetic Programming 1997, pages 262-267. MIT Press. 

Perez, D. , Nicolau, M., O'Neill, M. and Brabazon, A. (2011) "Evolving Behaviour Trees 

for the Mario AI Competition Using Grammatical Evolution" . In Proceedings of 

EvoGAMES 2011 the 3rd European Event on Bio-inspired Algorithms in Games, 

Lecture Notes in Computer Science, vol. 6624, pp.123-132, Torino, Italy, 27-29 

April 2011. Berlin, Germany: Springer. 

Pfeifer, R. and Schei er, C. (2001) Understanding Intelligence. Cambridge, MA: MIT 

Press. 

Rechenberg, I. (1965) "Cybernatic Solution Path of an Experimental Problem" . In Library 

Translation 1122. Farnborough: Royal Aircraft Establishment. 

Ridley, M. (2004) Evolution, 3rd ed. Great Britain: Blackwell Publishing. 

Robilliard, D., Mahler, S. , Verhaghe, D. and Fonlupt, C. (2006) " Santa Fe Trail Hazards". 

In Proceedings of the 7th International Conference on Artificial Evolution (EA 

'05), Lecture Notes in Computer Science, vol. 3871 , pp.1-12, Lille, France, 26-28 

October 2005. Berlin, Germany: Springer, 2006. 

Rosca, J. P. and Ballard, D. H. (1994) "Genetic Programming with Adaptive 

Representations". Technical Report 489, University of Rochester, Rochester, NY, 

USA, 1994. 

Rothlauf, F. and Oetzel, M. (2006) "On the Locality of Grammatical Evolution". In 

Proceedings of the 9th European Conference on Genetic Programming, Lecture 

Notes in Computer Science, vol. 3905 , pp.320-330, Budapest, Hungary. Berlin, 

Germany: Springer. 

Russell S. and Norvig P. (2003) Artificial Intelligence: A Modern Approach, 2nd ed. 

USA: Prentice Hall. 

251 



Ryan, C., Azad, A., Sheahan, A. and O'Neill, M. (2002) "No Coercion and No 

Prohibition, A Position Independent Encoding Scheme for Evolutionary 

Algorithms - The Chorus System". In Proceedings of the 5th European Conference 

on Genetic Programming (EuroGP ' 02), Lecture Notes in Computer Science, vol. 

2278, pp.131 - 141, Kinsale, Ireland, 3-5 April 2002. Berlin, Germany: Springer. 

Ryan, C., Collins, J. J. and O'Neill, M. (1998) "Grammatical Evolution: Evolving 

Programs for an Arbitrary Language". Lecture Notes in Computer Science, vol. 

1391. First European Workshop on Genetic Programming 1998. Available from 

http://www.grammatical-evolution.org/papers/eurogp98.ps (Accessed 30 

November 2005). 

Ryan, C., Keijzer, M. and Cattolico, M. (2004) "Favourable Biasing of Function Sets 

Using Run Transferable Libraries" . In O'Reilly, M., Yu, T. and Riolo, R. (Eds) 

Genetic Programming. Theory and Practice II, R. Riolo et al (eds.), vol. 8, pp.103-

120. Michigan, USA: University of Michigan Press. 

Ryan, C. and O'Neill, M. (1998) "Grammatical Evolution: A Steady State Approach". In 

Proceedings of the Second International Workshop on Frontiers in Evolutionary 

Algorithms, 1998, pp. 419-423. Available from http://www.grammatical­

evolution.org/papers/fea98 .ps (Accessed 30 November 2005). 

Ryan, C., O'Neill, M. and Azad A. (2001) "No Coercion and No Prohibition - A Position 

Independent Encoding Scheme for Evolutionary Algorithms". In Proceedings of 

the Genetic and Evolutionary Computation Conference 2001 (GECCO 'Qll, p.187, 

San Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann. 

Ryan, C., O'Neill, M. and Collins, J. J. (1998) "Grammatical Evolution: Solving 

Trigonometric Identities" . In Proceedings of Mendel 1998: 4th International 

Mendel Conference on Genetic Algorithms, Optimisation Problems, Fuzzy Logic. 

Neural Networks, Rough Sets held in Brno, Czech Republic June 24-26 1998, pp. 

111-119. Available from http://www.grammatical -evolution.org/papers/ 

mendel98.ps (Accessed 30 November 2005). 

Shao, J. , McDermott, J. , O'Neill, M. and Brabazon, A. (2010) "Jive: A Generative, 

Interactive, Virtual, Evolutionary Music System". Applications of Evolutionary 

Computation, Lecture Notes in Computer Science, vol. 6025, pp.341-350. Berlin, 

Germany: Springer Berlin/ Heidelberg. 

252 



Sondahl, F. (2005) Genetic Programming Library for NetLogo project, Northwestern 

University. Available from http://cs.northwestern.edu/ ~fjs750/netlogo/final. 

Swafford, J.M., Hemberg, E., O'Neill, M., Nicolau, M. and Brabazon, A. (2011) "A Non­

Destructive Grammar Modification Approach to Modularity in Grammatical 

Evolution" . In Proceedings of the Genetic and Evolutionary Computation 

Conference 201 1 (GECCO 'ill, pp.1411-1418, Dublin, Ireland, 12-16 July 2011. 

New York, NY, USA: ACM. 

Swafford, J. M. and O'Neill , M. (2010) "An examination on the modularity of grammars 

in grammatical evolutionary design". In Proceedings of the IEEE Congress on 

Evolutionary Computation 2010 (CEC '10), pp.1-8, Barcelona, Spain, 18-23 July 

2010. IEEE Press. 

Swafford, J. M., O 'Neill, M. and Nicolau, M. (2011) "Exploring Grammatical 

Modification with Modules in Grammatical Evolution". In Proceedings of the 14th 

European Conference (EuroGP '11), pp.310-321, Torino, Italy, 27-29 April 2011. 

Berlin, Germany: Springer. 

Teahan, W. J. (2010a) Artificial Intelligence - Agents and Environments. Ventus 

Publishing ApS. 

Teahan, W. J. (2010b) Artificial Intelligence - Agent Behaviour I. Ventus Publishing 

ApS. 

Teahan, W. J., Al-Dmour, N. and Tuff, P. G. (2005) "On thought, knowledge, evolution 

and search" . In Proceedings of Computer Methods and Systems CMS ' 05 

Conference held in Krakow, Poland 14-16 November 2005. 

Tsoulos, J. G., Gavrilis, D. and Glavas, E. (2005) "Neural network construction using 

grammatical evolution". In Proceedings of the Fifth IEEE International 

Symposium on Signal Processing and Information Technology 2005 , 827-831. 

UCD Natural Computing Research & Application Group (2008) Grammatical Evolution 

in Java (GEY A) Official Web Site. Ireland, Dublin. Available from 

http://ncra.ucd.ie/ geva. 

253 



UCD Natural Computing Research & Application Group (2010) Grammatical Evolution 

m MATLAB (GEM) v0.2. Ireland, Dublin. Available from 

http://ncra.ucd.ie/GEM/GEM-v0.2.tgz. 

Whigham, P. A. (1995a) "Grammatically-based Genetic Programming" . In Proceedings of 

the 1995 Workshop on Genetic Programming: From Theory to Real-World 

Applications, pp. 33-41 , Tahoe City, California, USA, 9 July 1995. 

Whigham, P. A. (1995b) "Inductive Bias and Genetic Programming" . In Proceedings of 

the First International Conference on Genetic Algorithms in Engineering Systems: 

Innovations and Applications, pp. 461-466, Sheffield, UK, 12-14 September 1995 . 

Whigham, P.A. (1996) Grammatical Bias for Evolutionary Learning. PhD thesis, School 

of Computer Science, University College, University of New South Wales, 

Australian Defence Force Academy, Canberra, Australia. 

White, B. C. , Reif, D. M. , Gilbert, J. C. and Moore, J. H. (2005) "A Statistical 

Comparison of Grammatical Evolution Strategies in the Domain of Human 

Genetics". In Proceedings of the 2005 IEEE Congress on Evolutionary 

Computation, vol. 1, 491 - 497. 

Wilensky, U. (1999) NetLogo. Evanston, IL: Center for Connected Learning and 

Computer-Based Modeling, Northwestern University. Available from 

http://eel .northwestern.edu/netlogo. 

Wolpert, D. H. and Macready, W. G (1997) "No Free Lunch Theorems for Optimization" . 

IEEE Transactions on Evolutionary Computation 1 (1 ), 67-82. 

Wright, S. (1932) "The roles of mutation, inbreeding, crossbreeding, and selection in 

evolution". In Proceedings of the 6th International Congress on Genetics , vol. 1, 

356-366. 

254 




