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1. Introduction
Mountain glaciers on the Tibetan Plateau (TP) act as important sentinels of climate change (Maurer et al., 2019; 
Potocki et al., 2022; Vargo et al., 2020; Yao et al., 2012). As a critical component of the Asian Water Tower, glaciers 
here also serve as a vital source of fresh water supply to the surrounding population and downstream ecosystems 
(Milner et al., 2017; Pritchard, 2019). Substantial warming of the TP in recent decades (0.50–0.67°C/dec) has 
been demonstrated using a suite of observations and model projections (Kang et al., 2010; Kuang & Jiao, 2016; 
Yao et al., 2018; You, Chen, et al., 2020). It is estimated that the TP is warming at a rate twice that of the global 
average (∼0.23°C/dec) (Duan & Xiao, 2015). An increase in surface air temperature in this region can lead to a 
considerable warming of the TP's glacier surface temperature (skin or radiating temperature), which can further 
have a dramatic influence on englacial temperatures (Cuffey & Paterson, 2010; Vincent et al., 2020), flow rates 
(Hooke, 1981, 2005), and glacier collapse (Kääb et al., 2018; Zhou et al., 2021). Moreover, elevation-dependent 
warming (EDW) is substantial over the TP (Guo et al., 2019a, 2019b; Pepin et al., 2015, 2022; J. Qin et al., 2009; 
You, Chen, et al., 2020), which can lead to an imbalance in glaciers (Jakob et al., 2021; Q. Wang et al., 2020; 
Yao et al., 2022; Zhou et al., 2018) and glacier surging (Muhammad & Tian, 2020; Yasuda & Furuya, 2015). 
Ultimately, warming of the TP threatens the safety of the Asian Water Tower (Immerzeel et al., 2010, 2020; Yao 
et al., 2022).

Abstract The Tibetan Plateau (TP) has warmed at a rate twice the global average and presents unique 
warming patterns in surface temperature changes. However, key characteristics of glacier surface heatwave 
duration and intensity over the TP during the present extreme warming period are still unknown. In this study, 
we show that surface temperatures in glacial regions of the TP (0.37 ± 0.10°C per decade) have increased faster 
than those in non-glacial areas (0.29 ± 0.05°C per decade) between 2001 and 2020. Moreover, the duration 
(5.3 ± 3.2 days per decade) and cumulative intensity (24.9 ± 16.3 days °C per decade) of glacier surface 
heatwaves have increased significantly during autumn. Our results demonstrate an elevation dependence to 
these key warming characteristics, which we also suggest are associated with extreme glacier mass loss. Here, 
we highlight potential threats to the sustainability of glacier water resources and increasing risk of glacier 
related hazards at the “roof of the world.”

Plain Language Summary The Tibetan Plateau, commonly referred to as “the roof of the 
world,” has experienced substantial warming during the past 50 years, at a rate twice that of the global 
average. Previous studies in this climate sensitive environment have primarily focused on air temperature 
changes measured from a limited number of ground-based observational stations, as well as from a number 
of satellite-derived land surface temperature products. However, the spatiotemporal characteristics of glacier 
surface heatwaves—periods of extreme warm land surface temperatures—are yet to be explored. In this study, 
using satellite-derived land surface temperature data, we investigated temperature changes across the Tibetan 
Plateau, and critically explored the occurrence of thermal extreme events of glacier surface temperatures from 
2001 to 2020. We show that glacial regions have experienced faster surface warming than non-glacial regions 
since 2001. Our results also suggest higher surface temperature trends and increases in heatwave intensity and 
duration during autumn, along with a clear elevation dependence, which is likely due to decreased albedo. 
Glaciers with extreme high mass loss were highly associated with increases in glacier heatwave duration and 
intensity. We highlight the implications of glacier heatwave threats to water resources and hazard risk.
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Whilst previous studies have investigated glacier surface temperatures on the TP (X. Qin, 2016; N.-L. Wang 
et al., 2013), observations have largely been limited in terms of their quantity, duration and/or spatial extent. In 
particular, previous studies have typically focused on analyzing glacier surface temperatures using either infrared 
thermometry (N.-L. Wang et al., 2013) or thermistor data (X. Qin, 2016) which, respectively, have only lasted a 
few days or months, and were also only observing a specific region (e.g., Qiumianleiketag Glacier and Laohugou 
No.12 Glacier). Space based observations of surface temperature derived from, for example, the AVHRR (Stroeve 
& Steffen, 1998), MODIS (Hall et al., 2006; Mortimer et al., 2016) and/or Landsat (Aubry-Wake et al., 2015; Y. 
Li et al., 2019; Lo Vecchio et al., 2018) show promise of compensating for the scarcity of in-situ observations 
for investigating glacier temperatures across the TP. Recent studies have analyzed the performance of glacier 
surface temperature retrieval from satellite thermal infrared images in this region (Wu et al., 2015). Such studies 
have demonstrated the accuracy of satellite-derived temperatures when compared with in-situ data, and have 
also suggested an increase in glacier surface temperature in recent decades in response to a warming world (Liao 
et al., 2020; Qie et al., 2020; Zhao et al., 2021).

While much is known about mean temperature changes on the TP's glaciers (L. Li et  al.,  2018; K. Yang 
et al., 2022), the influence of more frequent and intense extreme warm events on glacier surface temperatures has 
been relatively unexplored. Particularly, while atmospheric (Fischer & Schär, 2010), lake (Woolway, Anderson, & 
Albergel, 2021; Woolway, Jennings, et al., 2021, 2022), and marine (Frölicher et al., 2018; Laufkötter et al., 2020; 
Oliver et  al.,  2018) heatwaves have been investigated previously, the occurrence of heatwaves over glacier 
surfaces have been largely overlooked. Given the vulnerability of glaciers to temperature change (Bhattacharya 
et al., 2021; Immerzeel et al., 2010; Kraaijenbrink et al., 2017), here we explore the occurrence of glacier surface 
heatwaves across the TP. Moreover, we investigate the relationship between glacier surface heatwaves and mass 
balance throughout the region.

2. Data and Methods
2.1. Glacier Surface Temperature Estimate

Glacier surface temperatures investigated in this study were processed from the MODIS Terra night-time LST 
product, which shows lower bias than other MODIS products over the glacierized TP (H. Zhang et al., 2018). 
We note that due to frequent cloud contamination in this mountainous region (H. Zhang et  al.,  2016), daily 
surface temperature retrieval is challenging. Some daily datasets have been produced by integrating night and 
day-time data from Terra and Aqua sensors (Chen et al., 2021; T. Zhang et al., 2022). However, glacier surface 
temperatures in this region fluctuate largely at different times of the same day (W. Yang et al., 2010), which may 
introduce unquantifiable uncertainty in trend analysis (H. Zhang et al., 2016). In this study, MODIS Terra Land 
Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V061 product (MOD11A2) was used, which 
was improved by undergoing various calibration changes and polarization correction from previous versions 
(Wan et al., 2021). Only pixels with good data quality (without cloud contamination and with low emissivity and 
LST error, quality assurance flag = 64, 65, 128, 129) were used in this study. Good quality data were defined 
according to the MODIS Collection-6 MODIS Land Surface Temperature Products at https://lpdaac.usgs.gov/
documents/118/MOD11_User_Guide_V6.pdf. Furthermore, only pure pixels (i.e., of the MODIS LST gridded 
data) entirely inside the glacier boundary were selected, in order to minimize the influence of mixed pixels from 
other land cover types on the temperature retrieval. A total of 14,072 pure pixels are available for glacier surface 
temperature estimates in this study. The areal proportion of pure glacial pixels relative to the total number of 
pixels over the glaciated study region is 17% (Figure S1 in Supporting Information S1).

To ensure that incomplete LST data did not influence our analysis, we excluded observations from pixels where 
more than 50% of the data were missing (Figure S2 in Supporting Information S1). For the remaining pixels, 
we linearly interpolated the time series within each of the three 8-day windows, that is, interpolated within 
a 24-day period. The LST time series for each pixel was subsequently smoothed with a moving average (46 
windows-length; 1-year LST record), which was used to remove the influence of the seasonal temperature signal 
on the trend estimation. The average LST in spring (March–May), summer (June–August), autumn (September–
November), and winter (December–February) was then calculated from the gap-filled data using a 3-window 
moving average. The non-parametric Mann-Kendall test was subsequently used to determine the presence of 
a trend and the Theil-Sen's slope was used to estimate the magnitude of change in each pixel (1 km × 1 km 
longitude-latitude resolution). We consider a p-value of less than 0.05 (two-tailed) as statistically significant.
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2.2. Glacier Surface Heatwave Duration and Intensity Estimates

In this study, we define a glacial surface heatwave as a period in which LSTs exceed a local and seasonally vary-
ing 90th percentile threshold, relative to a baseline climatological mean (the average temperature for the day/
month of year evaluated over the study period, 2001–2020). Following Hobday et al. (2016), the 90th percentile 
was calculated for each calendar day using daily LSTs within a 3-window size centered on the date across all 
years within the climatology period, and smoothed by applying a 5-window size (five 8-day LST records, 40-day) 
moving average. The choices of a 24 and 40-day window for the moving average were motivated to ensure suffi-
cient sample size for percentile estimation and a smooth climatology. A seasonally varying threshold allows iden-
tification of anomalously warm events at any time of the year, rather than events only during the warmest months. 
When one record from MOD11A2 exceeds the threshold, we assume that one heatwave event has started (Figure 
S3 in Supporting Information S1). A specific heatwave event ends when the LST is lower than the percentile 
threshold. The interval between the start and end dates of the heatwave event is defined as its duration. The glacier 
surface heatwave intensity is defined relative to the LST anomaly, that is, the difference between the MODIS LST 
and the local climatology. The cumulative glacier heatwave intensity is defined as the sum of all LST anomalies 
during a heatwave event. For estimating the pixel-wise trends in the duration and cumulative intensity of heat-
waves, we used a linear regression model, and a two-tailed F-test to assess the significance of the estimated trend. 
A p-value of less than 0.05 (two-tailed) is considered statistically significant.

2.3. Definition of Extreme Mass Loss

The monthly glacier surface elevation change between 2001 and 2019 based on ASTER DEM (Hugonnet 
et al., 2021) was utilized to analyze annual and seasonal glacier elevation changes. The glacier-area weighted 
elevation change rate at each mountain basin is estimated and fitted for annual and seasonal trends. For each 
glacier, the 90th percentile of annual elevation change during 2001–2019 was estimated as a threshold according 
to Vargo et al. (2020). If the annual glacier elevation change rate is below the threshold, the glacier was consid-
ered to have an extremely low mass balance in that year (extreme year) (Figure S3 in Supporting Information S1). 
For glaciers with a positive mass balance, extreme mass balance corresponds to extremely low accumulation 
relative to the other periods. Glacier mass loss are estimated by using glacier elevation change from Hugonnet 
et al. (2021), area from RGI-Consortium (2017), and an ice density of 850 ± 60 kg/m 3 (Huss, 2013). A linear 
model was used to estimate the trends and an F-test used to quantify their significance. We only estimated the 
extreme mass loss for pure glacier pixels that matched with the MODIS LST data used.

2.4. Meteorological Data and the Validation of MODIS LST

Daily near-surface air temperature from China Meteorological Administration (CMA) stations between 2001 and 
2020 was used in this study (Figure 1). The daily data was averaged to 8-day intervals to match with the temporal 
resolution of MODIS LST 8-day product (MOD11A2). The in-situ measurements of surface temperature in 2019 
for Guliya, Naimona'nyi and Dunde Glaciers were used as validation (W. Yang et al., 2021). These data are collected 
every 30 min, and only data coinciding with MODIS night view time at around 01:30 a.m. were used. The correla-
tion of the smoothed temperature series between the near-surface temperature from the CMA stations and MODIS 
LST is strong (r = 0.78) (Figure S4 in Supporting Information S1), indicating the robustness of the MODIS LST 
product for trend analysis (G. Zhang et al., 2014). The MODIS LST was compared with near-surface temperature 
from AWS only inside the pure pixels for Guliya, Naimona'nyi and Dunde Glaciers (Figure S5 in Supporting Infor-
mation S1). The bias of these two datasets ranged from 3.7 to 8.7°C (r = 0.85 to 0.97). The LST is lower than the 
near-surface temperature on three glaciers, which may be due to low incoming solar radiation and emission of long-
wave radiation from the snow surface during the night as suggested by Adolph et al. (2018). The colder offset with 
decreasing temperature was related to the solar zenith angle of the MODIS sensor (Shuman et al., 2014). In addi-
tion, the albedo derived from the Global Land Surface Satellite (GLASS) products developed by Liang et al. (2013) 
was also used for possible explanation of the calculated trends in glacier surface temperatures/heatwaves.

3. Results
3.1. Glacial and Non-Glacial Surface Temperature Trends

The TP experienced an overall annual warming trend of 0.29 ± 0.05°C/dec between 2001 and 2020, but with clear 
seasonal differences (Figure 2a). The warming pattern is most pronounced in autumn, with surface temperatures 
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increasing at a mean rate of 0.59 ± 0.37°C/dec. High TP-wide warming rates were also found during spring 
(0.28 ± 0.47°C/dec) with the majority of the TP, except the southern plateau (such as western-central Himala-
yas), experiencing considerable warming. A spatially heterogeneous, and less pronounced, warming pattern is 
observed during summer (0.23 ± 0.35°C/dec). During winter, a larger spatial region of the TP experienced a cool-
ing trend, but with the northwestern plateau (e.g., eastern Hindu Kush and western Pamir) experiencing consid-
erable warming. An overall winter average LST trend of 0.21 ± 0.76°C/dec is estimated between 2001 and 2020.

Both glacial and non-glacial regions on the TP experienced significant warming from 2001 to 2020 at annual 
timescales, with a rate of 0.37 ± 0.10 and 0.29 ± 0.05°C/dec, respectively (Figures 2a and 2b). The highest 
statistically significant warming rates were observed in autumn with the least spatial heterogeneity (higher than 
∼0.5°C/dec). The warming rates of glacial areas were weak in spring (0.31 ± 0.59°C/dec) and even suggesting a 
slight cooling pattern (−0.08 ± 0.89°C/dec) during winter. In contrast, non-glacial areas experienced significant 
warming during these times of the year (higher than ∼0.2°C/dec). Interestingly, autumn surface temperatures in 
glacial regions are warming (1.33 ± 0.94°C/dec) twice as fast as those in non-glacial regions (0.57 ± 0.37°C/dec), 
but with large inter-annual variability.

At annual scales, the EDW of non-glacial areas appeared at altitudes up to 3,000 m a.s.l., and then somewhat 
stabilized between 3,000 and 4,000 m a.s.l. (Figure 2c). The warming rate declined with an increase in elevation 
from 4,000 to 6,000 m a.s.l. The EDW of glacial areas showed similar patterns with non-glacial areas at similar 
altitudes. The seasonal features of EDW in spring, summer, and winter for glacial and non-glacial areas showed 
similar patterns to those at annual timescales. However, the number of observations with a statistically significant 
temperature trend was very low in high-altitude regions during these seasons. In autumn, the season with the 
greatest number of statistically significant temperature trends, the EDW exhibited a continuous increase, particu-
larly in glacial areas.

Figure 1. Glacier and weather station distributions over the Tibetan Plateau (TP). The glacier distribution is shown as 50 km × 50 km square grid. The triangle 
symbols are the locations of auto weather stations (AWS) or temperature loggers (T_logger) over the glacier's surface from Yang et al. (2021), with photos for 
Naimona'nyi, Guliya, and Dunde Glaciers. The cross symbols denote the location of weather stations from China Meteorological Administration (CMA). The TP 
boundary is from G. Zhang et al. (2013) and subregion mountain boundary from Bolch et al. (2019). Mean land surface temperature of the entire TP between 2001 and 
2020 from MODIS LST data (MOD11A2) is also shown.
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3.2. Glacier Surface Heatwave Duration and Intensity

Across the TP, the duration of glacier surface heatwaves showed a remarkable increase at annual timescales from 
2001 to 2020 (Table S1 in Supporting Information S1), particularly in the Western Kunlun, Tibetan interior and 
Nyainqêntanglha Mountains (Figure 3a). Glacier surface heatwaves are more intense in regions with high surface 
temperature variability (Figure S7 in Supporting Information S1). The annual glacier heatwave duration followed 
a statistically significant long-term trend of 7.4 ± 11.4 days/dec between 2001 and 2020, but with noticeable 
peaks in heatwave duration in some years (e.g., 2016) (Figure 3b). The duration of glacier surface heatwaves has 
also increased in many regions across the TP during autumn (5.3 ± 3.2 days/dec, p < 0.05), and to a lesser extent 
during summer (1.7 ± 4.0 days/dec) and winter (1.8 ± 5.2 days/dec). In contrast, a negative trend in heatwave 

Figure 2. Surface temperature trends in glacial and non-glacial areas: annual (January–December), spring (March–May), 
summer (June–August), autumn (September–November), and winter (December–February). (a) Spatial characteristics of 
surface temperature trends over the entire TP. (b) Trends of glacier surface temperature (pure pixels). The squares represent a 
50 km × 50 km longitude-latitude grid. The trend rates and their significance at the 95% confidence level are shown. (c) The 
elevation dependent warming (EDW) rate of surface temperature in glacial and non-glacial areas. The solid line and shading 
represent the median and upper/lower quartiles, respectively, of the surface temperature trend in each 200 m elevation bin. 
The dashed line denotes trends with a p-value of less than 0.05 (two-tailed). The histogram shows the frequencies of glacier 
pixels with statistically significant trends. The observation frequencies of non-glacier pixels with significant trends are shown 
in Figure S6 of Supporting Information S1. The gray square indicates that there is glacier area coverage, but no pure glacier 
observation.
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duration was calculated across the TP during spring (−0.5 ± 3.5 days/dec). The cumulative intensity of surface 
heatwaves followed similar temporal and spatial patterns to those in heatwave duration. At annual scales, cumula-
tive heatwave intensity increased over much of the TP, at an average rate of 31.0 ± 61.2 days °C/dec between 2001 
and 2020 (Figure 3c). An increase in heatwave cumulative intensity was also calculated in winter (9.7 ± 3.1 days 
°C/dec) and autumn (24.9 ± 16.3 days °C/dec), the rate of which were noticeably larger in the Western Kunlun 
and in the central and southern regions of the TP. A weaker long-term trend in cumulative intensity was observed 
during summer (5.1 ± 19.3 days °C/dec), with some regions showing a long-term decline. Finally, an overall 
decrease in cumulative intensity was observed during spring (−4.2 ± 18.9 days °C/dec).

Regarding the relationships between the studied heatwave metrics and surface elevation we find that, at annual 
timescales, trends in heatwave duration were predominantly positive at each elevation bin (Figure  3d), but 
followed a declining pattern from 3,500 to 4,500 m a.s.l., and an increase at elevations higher than 4,500 m 
a.s.l. A similar altitudinal dependence was also observed in summer. The rate of change in heatwave duration 
also increased with elevation during both spring and autumn, but experienced an overall decrease with elevation 
during winter. Generally, trends in cumulative heatwave intensity show a similar elevation dependence to those 

Figure 3. Spatial patterns of change in annual and seasonal glacier surface heatwaves between 2001 and 2020. (a) Trends of glacier surface heatwave duration. 
(b) Trends of glacier surface cumulative heatwave intensity. Stippling indicates significant trends at the 95% confidence level. (c) Time series of the duration and 
cumulative intensity of glacier surface heatwaves at annual and seasonal timescales. The solid line and shaded regions are the median and upper/lower quartiles of 
the calculated metrics, respectively. The trends in glacier surface heatwaves duration and cumulative intensity are labeled. (d) Calculated trends in the duration and 
cumulative intensity of glacier surface heatwave at different elevations on the TP. The solid line and shading represent the median and upper/lower quartiles of the 
calculated trends in each 200 m elevation bin. The dashed line denotes trends with p-value less than 0.05 (two-tailed). The dashed straight line denotes the distribution 
trends along elevation. Observation frequencies in each grid and 200 m elevation bin are shown in Figures S8 and S9 of Supporting Information S1. The gray pixels 
indicates that there is glacier area coverage, but no pure glacier observation.

 19448007, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
101115 by B

angor U
niversity M

ain L
ibrary, W

iley O
nline L

ibrary on [21/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

CHEN ET AL.

10.1029/2022GL101115

7 of 12

in heatwave duration. The trends of annual heatwave intensity indicated an overall non-significant decrease with 
increasing elevation, with similar tendencies calculated in summer and winter. In contrast, our observations 
suggested marginally increasing trends of heatwave intensity with elevation in spring, summer, and autumn.

3.3. Relationship Between Glacier Heatwave Duration/Intensity and Extreme Mass Loss

The calculated glacier mass loss demonstrated a considerable acceleration during the observational period, espe-
cially in the Himalayas and the Nyainqêntanglha Mountains (Figure S10 and Table S2 in Supporting Informa-
tion S1). The Karakoram and East Kunlun region show a slight negative balance. Although the average mass 
balance is slightly positive for West Kunlun and East Pamir, the acceleration exhibits high negative values. In this 
context, the extreme mass loss increased largely during the study period (2000–2019) (Figure 4a). The trends of 
extreme mass loss were greatest (and statistically significant) in summer and autumn. Our results demonstrate a 
significant increase in extreme mass loss in three seasons (spring, summer, and autumn).

The annual glacier surface heatwave duration and cumulative intensity showed a negative and statistically signif-
icant relationship with annual extreme mass loss and their variations (Figures  4b and  4d). Both annual and 
summer glacier surface heatwave duration/intensity showed a strong relationship with the calculated extreme 
mass loss. Regarding the seasonal patterns observed, the duration and intensity of glacier surface heatwaves in 
summer and autumn could trigger more extreme mass loss and even continue to influence the subsequent mass 
balance. However, for other seasons the relationship shows a weak relationship. The most extreme heatwaves 
correspond to the maximum variation of extreme mass loss (Figure 4c). This correlation is strong and statistically 
significant at annual timescales.

4. Discussion
4.1. Pure Glacier Pixels and the Observation Period

In this study, we analyzed data only from pure glacier pixels (i.e., those that are entirely inside the defined glacier 
boundary) over the TP that matched with the location of the satellite derived LST from MODIS. By focusing 

Figure 4. Time series and variation of extreme glacier mass loss and their relationship with the duration/intensity of glacier surface heatwaves between 2001 and 2019. 
(a) Time series of annual and seasonal glacier extreme mass loss and trends. (b) Correlation between extreme glacier mass loss and heatwave duration/intensity. (c) 
Variations of annual and seasonal extreme glacier mass loss. The relative variation of extreme mass loss was used here, which is the difference of extreme mass loss in 
current year relative to prior year. (d) Correlation between variations of extreme glacier mass loss and heatwave duration/intensity. The symbol * indicates significance 
at the 95% confidence level.
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only on pure pixels, the amount of available data over the glaciated TP was considerably lower than had we used 
all available observations. Critically, this criterion had a substantial impact on data availability within valley 
glaciers, such as the Himalaya region, the width of which is less than the 1 km resolution of the MODIS LST. 
Given this choice of criteria, only 17% of the total glaciated area of the TP was considered in this study. Granted 
that the inclusion of mixed pixels (i.e., of different land cover types) could introduce a considerable source of 
uncertainty in our observations, we also performed a sensitivity analysis to quantify the magnitude of change 
in LST had mixed pixels been considered. By including mixed pixels, the ratio of available data increased to 
93%, and we estimate a noticeable increase in mean temperature over the study region (Figure S11 in Support-
ing Information S1). Moreover, the calculated glacier surface temperature warming rate for all glacier pixels 
(0.32 ± 0.19°C/dec) was also different to that calculated using only the pure pixels (0.37 ± 0.07°C/dec, p < 0.01). 
While we think that it is important to highlight these differences, we also believe that using only pure pixels, as 
we have done in this study, is most appropriate to obtain robust estimates of glacier surface temperature changes. 
The use of higher resolution satellite data in the future could allow an increase in the spatial coverage of LST and 
should be considered in order to provide a more detailed analysis of the study region.

Furthermore, as new satellite data become available, future studies will also be able to increase the time period 
for which the LST climatology is calculated. In this study, the length of the satellite-derived temperature record 
was 20 years, which is less than the number of years recommended (30 years) by the World Meteorological 
Organization (WMO, 2011), to estimate a climatology. Thirty years is often considered a requirement to provide a 
robust baseline to define an extreme event and thus the occurrence of heatwaves. In turn, this could be considered 
a limitation of our investigation. However, we note that previous heatwave studies have also relied on the use of 
satellite Earth Observation data lasting less than 30 years (Schlegel et al., 2019; Woolway, Kraemer, et al., 2021). 
These studies have suggested that a 20-year period is sufficient for defining heatwave intensity (in both lake and 
marine environments) and duration with average differences of less than 5% when compared to those defined 
using a 30-year climatological period (Schlegel et al., 2019).

4.2. Seasonal and Spatial Differences in Glacier Surface Warming

The seasonal and spatial differences in glacier surface temperature trends are influenced by a combination of local 
driving factors as well as numerous feedback mechanisms that influence the sensitivity of the TP to climate change 
(Pepin et al., 2018; You, Chen, et al., 2020). For example, while the seasonal warming of glacier surfaces is signifi-
cantly related to air temperature anomalies (Figure S12 in Supporting Information S1), a positive feedback could also 
emerge with warmer temperatures leading to an increase in glacial melt and a subsequent decrease in albedo. In turn, 
this would lead to a higher absorption of short-wave radiation and thus an increase in glacier surface temperature 
(Cuffey & Paterson, 2010; Fujita & Ageta, 2000; Kang et al., 2020). Indeed, in this study, we demonstrated that the 
glacier surface warming rate is highest in autumn, mainly in 2016 and 2020 (Figure S12 in Supporting Information S1), 
which could be explained by the decrease in albedo, as observed from the GLASS products (Figure S13 in Support-
ing Information S1). A decrease in albedo was also observed in summer (Figure S13 in Supporting Information S1). 
However, at this time, enhanced ice/snow melt simultaneously absorbed more heat (Cuffey & Paterson, 2010), which 
likely suppressed summer surface warming to some extent. There is an exception to this feedback in winter when the 
relationship between the change in glacier surface temperature and albedo is reversed. Also, other factors including 
cloud cover, water vapor feedback and radiative fluxes,  aerosol feedback as well as their interactions likely play a role 
in winter temperature change on the TP (Pepin et al., 2015, 2018, 2022; You, Chen, et al., 2020).

Spatially, the cooling phenomenon that appears in the southwest TP in spring, corresponds to greater snowfall in 
this region, which likewise increases the albedo of the glacier surface, ultimately leading to lower temperatures 
(Guo et al., 2019b). Moreover, owing to the atmospheric circulation patterns and the orography of the Karakoram 
regions, glaciers here received more solid precipitation (e.g., snow, hail, etc.) (Farinotti et al., 2020; Kapnick 
et al., 2014). The reduction in glacier surface albedo in the Karakorum region is smaller, and there even exists an 
increase for some glaciers (Y. Zhang et al., 2021), corresponding to less warming or cooling (Figure 3a). On the 
contrary, annual glacier surface albedo is decreasing in other regions of the TP, especially in the Tibetan interior 
and Nyainqêntanglha (Y. Zhang et al., 2021), corresponding to the largest warming trends (Figure 3a).

4.3. Implications of Glacier Surface Heatwaves

Our study suggests that high elevation areas have experienced, in recent years, a greater increase in heatwave 
duration both annually and seasonally between spring and autumn (Figure  3). Under scenarios of continued 
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global warming, climate model projections not only suggest an acceleration of increasing temperatures in the TP 
(You, Wu, et al., 2020), but also that EDW will climb to higher elevation (Guo et al., 2016). This means that the 
TP will not only experience accelerated warming this century, relative to historic trends, but that high elevation 
regions will warm at an even faster rate. As a result, longer lasting and more intense glacier surface heatwaves are 
likely to occur with higher mean temperature (Figure S14 in Supporting Information S1). This has also recently 
been suggested in both marine (Oliver, 2019) and lake environments (Woolway, Jennings, et al., 2021). Future 
climate predictions suggest an emergence of longer lasting extreme temperature this century (L. Li et al., 2019; 
Yin et al., 2019; Y. Zhang et al., 2006). Our study also suggests that peaks in heatwave duration coincided with 
anomalous El Niño years (and thus a high El Niño index (Trenberth, 2020)) during the study period (e.g., 2016). 
El Niño events are expected to become more frequent this century (Ying et al., 2022) which could, in turn, further 
increase the duration of glacier surface heatwaves in this climate-change-sensitive region.

An increase in temperature across the TP will likely lead to spatial shifts in the distribution of heatwave intensity, 
particularly across elevation gradients. Our study also suggests that, during the historic period, the intensity of 
summer and annual heatwaves is greatest at high elevation (i.e., the coldest regions) (Figure S15 in Supporting 
Information S1). In the West Kunlun, Qilian Mountains, and some other areas with extremely low glacier surface 
temperatures (Figure 1), the duration and intensity of glacier heatwaves will likely continue to increase. In the 
Nyainqêntanglha Mountains, the intensity of glacier surface heatwaves may only increase at high altitudes where 
surface temperature is climatologically colder.

Our study identified a strong correlation between glacier surface heatwaves and extreme mass loss, suggesting 
that an increase in the occurrence, intensity, and duration of heatwaves will lead to higher mass loss. However, it 
is important to consider that this relationship may be influenced solely by an increase in mean air temperature, 
which are causing glaciers to thin and, at the same time, resulting in an increase in glacial surface heatwave dura-
tion and intensity. Interannual variability of precipitation may also contribute to extreme mass change, especially 
for glaciers with positive mass balance in Karakoram (Q. Wang et al., 2017; Yao et al., 2012), the magnitude of 
which may change differently to air temperature in the future. Indeed, how these interactions change in the future 
will have important consequences for the region.

5. Conclusions
In this study, we investigated glacier surface warming trends, the duration and intensity of glacier surface heat-
waves, and their elevation dependence on the TP during 2001–2020. Our study demonstrated that glacial areas of 
the TP have experienced higher warming rates in recent decades. We also highlighted key seasonal differences in 
warming trends between glacial and non-glacial areas. Glacial areas showed a relatively weak warming trend in 
summer, whereas non-glacial areas experienced high warming rates. Our analysis also suggested that the warm-
ing trend in autumn was two times higher in glacial versus non-glacial areas as well as experiencing the least 
spatial heterogeneity.

The duration and cumulative intensity of glacier surface heatwaves increased between 2001 and 2020, coinciding 
with an increase in extreme glacier mass loss. In brief, our analysis suggests that longer lasting and more intense 
heatwaves are strongly correlated with extreme glacier mass loss. The duration and intensity of glacier surface 
heatwaves have increased considerably toward the northern TP as well as at higher elevations, which might 
threaten the sustainability of glacier water resources and increase the risk of glacier related hazards. We urge that 
additional in-situ observations and high spatial resolution satellite data of glacier surface dynamics are needed to 
improve our understanding of glacier responses to a rapidly warming world.
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Data Availability Statement
Glacier surface heatwave during 2001–2020 over the Tibetan Plateau produced by this study is available at https://
doi.org/10.5281/zenodo.7039699. Validation of MODIS11A2 LST using AWS temperature measurements on the 
glacier surface and CMA stations are available at https://doi.org/10.5281/zenodo.7039699. Total 8799 MOD11A2 
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tile files covering the Tibetan Plateau during 2001–2020 are downloaded from https://search.earthdata.nasa.gov. 
In-situ measurements of glacier surface temperature in 2019 are available at https://zenodo.org/record/7693871. 
Glacier mass balance data are acquired from https://doi.org/10.6096/13. An improved MODIS Terra–Aqua snow 
cover product is available at https://doi.org/10.1594/PANGAEA.901821.
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