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To limit compromising the integrity of the planet, a shift is needed towards food production

with low environmental impacts and low carbon footprint. How to put such transformative

change towards sustainable food production whilst ensuring food security into practice

remains a challenge and will require transdisciplinary approaches. Combining expertise

from natural- and social sciences as well as industry perspectives, an alternative vision

for the future in the marine realm is proposed. This vision includes moving towards

aquaculture mainly of low trophic marine (LTM) species. Such shift may enable a

blue transformation that can support a sustainable blue economy. It includes a whole

new perspective and proactive development of policy-making which considers, among

others, the context-specific nature of allocation of marine space and societal acceptance

of new developments, over and above the decarbonization of food production, vis

á vis reducing regulatory barriers for the industry for LTM whilst acknowledging the

complexities of upscaling and outscaling. This needs to be supported by transdisciplinary

research co-produced with consumers and wider public, as a blue transformation

towards accelerating LTM aquaculture opportunities in a net zero-carbon world can only

occur by considering the demands of society.

Keywords: marine aquaculture, food security, zero-carbon, transdisciplinarity, blue transformation, narrative,
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INTRODUCTION

With continued human population expansion, the production
and accessibility of healthy and nutritious food (food security) is
becoming a top priority in the global context. There is, however,
clear evidence that human exploitation of natural resources has
exceeded a range of planetary boundaries, thereby jeopardizing
the preservation and sustainment of ecosystem functions from
the biome level to global scales (Steffen et al., 2015; Newbold
et al., 2016; Willett et al., 2019). These consequences are further
enhanced by climate change, one of the most severe crises of our
time, with far reaching implications on food security worldwide
(Fanzo et al., 2018; IPCC, 2019a,b).

In general, food production has a range of impacts such as
land conversion, overuse of freshwater resources, greenhouse
gas (GHG) emissions, energy use, biodiversity loss and nutrient
imbalances (Cordell et al., 2009; Hasegawa et al., 2020;
Karstens et al., 2020; Herrero et al., 2021). Currently, food
production generates 26% of overall global greenhouse gas
emissions, underlining the need to move away from the
most environmentally-costly and damaging production systems
(Poore and Nemecek, 2018). This challenge will not diminish as
human populations are predicted to reach ∼10 billion by 2050
(UN, 2019), placing an increasing strain on natural resources
and raising the question of how to feed a populated world in a
sustainable manner (Aksnes et al., 2017; Willett et al., 2019; FAO,
2020) without exceeding 1.5 degree warming (Rockström et al.,
2017; Warszawski et al., 2021).

Thus, a transformation of food production systems is needed
to meet the challenge of simultaneously adhering to the planetary
dimensions, food security and human health requirements
(Gordon et al., 2017; Willett et al., 2019; Kaiser et al., 2021).
Transformation is hereby understood as “a fundamental, system-
wide reorganization across technological, economic and social
factors, including paradigms, goals and values” (Brondizio et al.,
2019). As this conceptualization remains rather abstract, we
follow the review by Scoones et al. (2020), which identified
three basic perspectives on transformation: structural, systemic
and enabling transformation. We here focus on the systemic
perspectives on transformation dimensions that are rooted in
socio-ecological and socio-technical systems thinking and how
these surface in marine food production. In concurrence, the
UN Sustainable Development Goals (SDG) support this much
needed change by provoking new normative reasoning (Leach
et al., 2018), raising the question to what extent farming the
oceans help provide food security in the Anthropocene and
contribute to meeting SDGs (Gentry et al., 2017; Troell et al.,
2017).

Using this description of the challenges faced as a baseline,
the following sections will describe the co-produced view
of what can be done (sections Shifting Food Production to
Aquatic Lower Trophic Levels, and The Contribution of Low-
Trophic Mariculture to Blue Food Production), and how this
can be achieved (sections Defining a Vision for a Sustainable
Blue Economy Transformation, Balancing Narratives of LTM
Aquaculture Expansion With Societal Realities, and Concerted
Implementation of the Blue Transformation), with the aim to

provide a framework for integration of LTM aquaculture into
future, sustainable, food systems in a net zero-carbon world.

SHIFTING FOOD PRODUCTION TO
AQUATIC LOWER TROPHIC LEVELS

Global animal protein production (meat, dairy and fish) occupies
over 80% of farmland, but produces only 37% of human food
protein and 18% of calories (Poore and Nemecek, 2018). It
has been argued that the greatest gains in decarbonizing global
food production will come from a transition from animal to
plant-based foods, with benefits also from intermediate actions
in shifting animal production to those farming systems with
demonstrated lower environmental impacts and GHG emissions
(Poore and Nemecek, 2018; Gephart et al., 2021). Such a shift
would not only reduce the direct and indirect climate impacts
of animal production but could also release land for biodiversity
conservation and climate change mitigation whilst limiting
the drawbacks associated with further expansion of agriculture
(Cordell et al., 2009; Herrero et al., 2021). To date, guidelines
for changing planetary diets to eat less meat, however, remain
focused on eating less terrestrial meats in contrast to advocating
more strongly shifting meat consumption toward aquatic, low
trophic species, meats. This prevailing narrative is, for example,
illustrated in the Planetary Health Plate which still pictures a cow
as meat source instead of an alternative aquatic species.1

Aquatic food production systems, and in particular farming of
extractive (non-fed) low trophic marine (LTM) species (mainly
bivalve molluscs and macroalgae), can provide alternatives with
lower environmental impacts; i.e., lower GHG emissions and
reduced land and freshwater uses (Nijdam et al., 2012; Hilborn
et al., 2018; Gephart et al., 2021). LTM species can be grown
with lower energy requirements and zero feed or fertilizer
inputs, as they extract dissolved nutrients or planktonic/detrital
foods directly from the marine environment, and yet are
nutrient-dense food sources rich in protein, unsaturated fats
and micronutrients (Wright et al., 2018; Hallström et al., 2019;
Naylor et al., 2021). Furthermore, LTM aquaculture can also
provide a range of valuable non-food ecosystem services such
as biodiversity enhancement and eutrophication remediation
(van der Schatte Olivier et al., 2018; Gentry et al., 2019; Kotta
et al., 2020; Cabre et al., 2021; Naylor et al., 2021; Theuerkauf
et al., 2021; The Nature Conservancy, 2022) and may also
transform linear nutrient flows from land to the sea into circular
systems (Folke and Kautsky, 1992; Petersen et al., 2019; Filippelli
et al., 2020; Thomas et al., 2021). Farming of extractive LTM
species is one of the most efficient, low-input, low-carbon food
production systems, especially when compared to the farming
of terrestrial livestock (Hilborn et al., 2018; Gephart et al.,
2020). Consequently, redirecting focus from red meat toward
aquatic foods with lower environmental impacts and better
health profiles should include a larger emphasis on extractive
LTM species.

1eatforum.org (accessed April 13, 2022).
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Accordingly, a shift to LTM aquaculture has the potential
to reduce GHG emissions of food production and support
more efficient and sustainable use of available resources.
However, the linkages and repercussions between environmental
impacts and food security need to be thoroughly investigated
and communicated. Comprehensive and balanced scientific
knowledge of the impacts of different aquaculture species,
including the role of LTM species in less carbon-intensive
diets, will be needed to promote consumption and market
development of low-impact foods. New narratives need to be
developed that harness the contemporary societal debates on
how to tackle climate change and ensure food security at the
same time. As such, this may present opportunities to improve
social acceptability of blue foods as a shift to low-impact “blue
alternatives”may entail a transition tomore sustainable andmore
nutritious foods compared to other protein sources (Hallström
et al., 2019). Hence, social culture and practices, and more
specifically, the cultures where seafood consumption is not fully
integrated as in Asia, must occupy a central position alongside the
economic and social analysis of whether marine aquaculture can
contribute to the sustainable blue transformation reaching its full
potential (Simpson, 2011; Krause et al., 2015, 2020; Naylor et al.,
2021). We understand this blue transformation as being part of
the “blue economy” concept (Silver et al., 2015). Blue economy
encompasses ocean-based industries and the natural assets and
ecosystem services that the ocean provides (OECD, 2016; Rayner
et al., 2019). As such, it emphasizes the multiple economic and
social dimensions of the ocean that can be complementary or
even reinforcing under a sustainability lens.

THE CONTRIBUTION OF LOW-TROPHIC
MARICULTURE TO BLUE FOOD
PRODUCTION

The prospect of aquaculture contributing significantly to feeding
a growing world population has been a vision since the mid 20th
century, with its emergence as a new food production sector
in the 1950s (Costello et al., 2019). Worldwide, governments,
non-governmental (e.g., WWF, TNC, EDF) and international
organizations (e.g., UN-FAO, EU, ICES) are responding to
this challenge by promoting the “Blue Revolution”, “Blue
Growth” and, more recently, a “sustainable Blue Economy”
that emphasizes zero pollution, zero-carbon, circular economies
and biodiversity protection (European Commission, 2021).
Development of more sustainable and equitable food production
systems is emphasized although how to achieve this vision
varies among organizations and institutions (Caswell et al., 2020;
Wittmer et al., 2021). It includes, among other aims, the rapid
spread and full utilization of aquaculture (Krause et al., 2015;
Stevens et al., 2018).

However, despite over 70 years of aspirational policy and
pioneering investments, outside China most of the world is
still a long way from achieving a transformation in farming
the oceans (Caswell et al., 2020; Naylor et al., 2021). Ocean
aquatic foods production are estimated to comprise only 4–
6% of all human foods today (Costa-Pierce, 2016; FAO, 2020).

The global distribution of aquaculture production also remains
uneven. Whilst being traditionally conducted in Asia throughout
centuries, the rest of the world is yet in nascent stages of
aquaculture development (Costa-Pierce and Chopin, 2021).
This skewed distribution is currently reflected by 92% of all
aquaculture (∼110 million tons annually) being performed in
Asia, with the rest of the world combined producing∼10 million
tons (FAO, 2021). Also, much of aquaculture (40%) within Asia
is land-based production of freshwater fish. Similarly, the total
aquaculture production elsewhere is dominated by diadromous
(34%) and freshwater (32%) fish (Naylor et al., 2021). In fact, 73%
of the total edible production from global aquaculture originates
from freshwater.

Hence, considering aquaculture as a homogenous food
production system overlooks the large differences between sub-
sectors in terms of potential environmental benefits. Even though
the efficiency of fed aquaculture of finfish has improved over
time, lowering food conversion ratios and reducing fish meal
and fish oil use (Cottrell et al., 2021; Naylor et al., 2021),
the production of plant-based feed ingredients may compete
with land and water use for human food production (Troell
et al., 2014; Gephart et al., 2017). Feeds remain a major
contributor of GHG emissions attributed to production of fed
aquaculture species (Robb et al., 2017). Emissions from pond
farming of catfish, tilapia and shrimp can be higher than
pork and chicken and equivalent to that of beef production,
while salmon farming has lower impact. However, it is only
extractive LTM species that offer the opportunity for substantive
reductions in GHG emissions (Hilborn et al., 2018). Hence the
greatest transformative potential of aquaculture lies in increasing
production and consumption of LTM species as an alternative to
continuing to increase red meat consumption.

Despite these potential benefits, aquaculture of extractive LTM
species remains in its infancy in most areas outside of Asia, and
uptake on a global scale is geographically uneven. Increasing
consumption of LTM species as a source of dietary proteins
could make a valuable contribution to the transition to a low-
carbon food economy. Achieving a significant impact will require
a stepwise, transformative change toward farming of LTM species
such as bivalve, shellfish and seaweeds. Presently, the combined
annual production of these species is only 52 million tons (FAO,
2021), or even less (Porse and Rudolph, 2017), of which less
than half may be converted to consumable food (Edwards et al.,
2019). This compares to global meat production of 328 million
tons in 2020, which is projected to rise to over 374 million
tons in the coming decade (FAO, 2021; OECD FAO, 2021).
Nevertheless, anticipation of several-fold increase in global LTM
production as an alternative to continued expansion of red meat
production represents an achievable goal over timeframe that
aligns with the urgency of the pathway towards net zero-carbon
emissions. One reason for this current imbalance in terrestrial
and marine food production is rooted in the terrestrial bias of
the human mind that affects human behavior, decision-making
and problem-solving (Fuchs et al., (under review); Steinberg
and Peters, 2015; Armbrecht and Skallerud, 2019). Although the
ocean has long been a food source for humans (especially for
coastal communities), it has always been a less accessible and
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predictable environment for cultivation compared to land. It
is from this stance that the oceans on our planet have never
been completely included in the thoughts and perception of the
majority of humans (Gee, 2019).

DEFINING A VISION FOR A SUSTAINABLE
BLUE ECONOMY TRANSFORMATION

The planetary boundaries framework (Steffen et al., 2011) and
the call for societal transformation has spurred discourses
on a stronger recognition of intersections between natural
and social/cultural dimensions, leading to more inter- and
transdisciplinary conversations (Castree, 2014; Blythe et al.,
2018; Brondizio et al., 2019; Scoones et al., 2020). This raises
an opportunity to reconsider how the oceans are viewed and
integrated in socio-economic concepts (Österblom et al., 2017).

Common across competing scenarios of transformative ocean
futures (i.e., Gentry et al., 2017; Belton et al., 2020; Costa-Pierce
et al., 2021) is the tendency to focus on quantifiable effects of
activities, such as the prospects of economic gain or the risk of
environmental degradation (Oyinlola et al., 2018). While these
are clearly important, responsible ocean development should also
consider how the activities affect our ideas about the common
good. Indeed, a sustainable blue transformation requires us
to reconsider the relationships between the private and public
(Steinberg and Peters, 2015; Brugere et al., 2021). This is a crucial
question, as the understanding of public-private interactions in
marine aquaculture is still blurred. These opposing views surface
especially when considering open ocean aquaculture, as this
entails investment and operational costs at scale that involves
fewer and larger businesses. However, it can be argued that
LTM aquaculture systems benefits humanity by offering low-
carbon healthy foods, nutrient recapture and clearer water in
eutrophic areas, in addition to providing economic profits to
a few actors. We recognize that LTM systems will have some
environmental costs, the level of which will depend on the
geographical context such as oligotrophic vs. eutrophic areas,
scale of production, water movements, etc. (Theuerkauf et al.,
2021). However, these are substantially less than other forms of
food production (including fed aquaculture) and are offset by the
benefits (Gephart et al., 2021; Naylor et al., 2021) and are in large
reversible within a few years after ceasing the activity.

Thus, the central question is how to put transformative change
toward sustainability into practice? It is not only important to
develop a vision on what future ocean we want, but also to
investigate what needs to be known to change the prevailing
and entrenched food systems toward this sustainability vision,
how to navigate, nudge and nurture system change, and how
to create space for deliberating just transformation (Wittmer
et al., 2021). To date, much of the scientific attention has been
placed on the technical, engineering and natural sciences, yet as
each of the planetary boundary challenges are contested, these
cannot be addressed based on only one type of knowledge base.
The doughnut economy framework by Raworth (2017) is one
noteworthy effort to bridge some of these conceptual islands of
knowledge. Indeed, to achieve transformation, different types of

knowledge must come together. For example, the global rapid
development of marine fed aquaculture over recent decades
has been a success story for the triple helix interaction of
government, research and industry (Leydesdorff, 2000), since the
development of aquaculture is often industry- and technology-
led, hand-in-hand with research, and facilitated (or not) by
governance arrangements.

Moreover, to achieve transformation the meaning of the term
must first be described. The notion of “transformation” is used
differently in politics and in science (Blythe et al., 2018). In
politics, it is a wake-up call for bolder, multilateral action. In
science, different schools of thought elaborate on the conceptual
underpinnings for what transformation to sustainability actually
entails: What needs to be transformed? Into what? How fast?
Who should do it and how? Yet, ambiguities in the definition
and pursuit of transformative change are widespread (O’Brien,
2012; Feola, 2015; Costa-Pierce, 2016, 2021; Blythe et al.,
2018). Also, transformation requires proactive (rather than
responsive) investments and it should aim for a lasting positive
change in dominant power relations by favoring equity, fairness,
and justice (Chaffin et al., 2016; Cisneros-Montemayor et al.,
2021). Transformation is interpreted as relating to a social-
ecological change that addresses the underlying idea that “more
of the same” will not solve the growing tensions and socio-
economic impacts that result from over-using and degrading
ecosystems and resource systems and putting further strain
on planetary boundaries (Cisneros-Montemayor et al., 2021;
Wittmer et al., 2021). Consequently, transformation is considered
as a fundamental change-of-path. However, such large-scale
fundamental changes cannot be planned and implemented in
one piece but will rather involve a number of steps and iterative
evaluation to achieve change that in retrospect can be considered
as fundamental.

To date, most of the observable contemporary developments
in aquaculture are locked in the 20th century technology-fit
pathways. This points out to a fundamental dilemma, as already
observed by Collingridge (1980). At an early stage of research and
development of a new idea, such as low carbon blue food systems,
it is impossible to know what the most important impacts
(positive and/or negative) on the sustainability dimensions will
be (see e.g., Gephart et al., 2020). However, if attempts are not
made to identify, predict and mitigate negative impacts, it will
often be too late to handle or control them (Collingridge, 1980).
An example of this, is the current situation where climate change
impacts of terrestrial food systems were not sufficiently predicted.
In this sense, narratives and visions provide an important role
as a compass for what a transformed system and a desirable
future would look like. Consequently, there needs to be some
forward view of the potential outcomes of competing visions of
a blue transformation under the umbrella of the blue economy
concept. In comparison to terrestrial food production systems,
aquaculture has many benefits, however there is a risk of
similar path-dependencies. In this article, in expansion to earlier
propositions (Gentry et al., 2017; Troell et al., 2017; Belton et al.,
2020), and in order to avoid a Collingridge dilemma, we propose
an alternative vision for the future. This vision includes moving
towards a future development of aquaculture that is focused
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mainly on LTM systems. By this shift, we predict that a significant
contribution towards net zero-carbon food systems may evolve.

BALANCING NARRATIVES OF LTM
AQUACULTURE EXPANSION WITH
SOCIETAL REALITIES

In accordance with this vision there is, at least from a theoretical
perspective, scope for coastal waters to support a significant
increase in LTMproduction (Buck and Langan, 2017; Theuerkauf
et al., 2019; Thomas et al., 2019; Heasman et al., 2020). This
potential is apparent even in disparities among those nations
that already have some coastal marine aquaculture; for which
production ranges from <1 MT km−1 to more than 500 MT
km−1 of shoreline (Kapetsky et al., 2013). However, access to
this space is by no means pre-emptive (Troell et al., 2017). The
barriers to increasing aquaculture in nearshore areas can include,
e.g., the availability of suitable sheltered coastal sites that allow
cost-effective production, competition for densely-used coastal
marine space (Debnath, 2020; Kluger and Filgueira, 2021; St.
Gelais et al., 2022), water quality (Cheney et al., 2010; Hassard
et al., 2017; Lee et al., 2018; Rodil et al., 2019; Song and Duan,
2019; Xie et al., 2020) and significant regulatory and legislative
complexities (Lester et al., 2018). These limitations have led to a
focus on marine environments where there may be greater scope
for a step change in production through expansion into more
exposed coastal sites and more distant open ocean waters.

A narrative has emerged in which optimistic scenarios portray
the future of open ocean aquaculture as “the new frontier” for
food security (Marra, 2005; Costello et al., 2020). For example,
recent analyses have proposed that the suitable ocean space for
aquaculture vastly exceeds the requirements for any currently
required increase in production—with theoretically more than
sufficient space to exceed terrestrial meat production needs many
times over (Gentry et al., 2017; Oyinlola et al., 2018). However,
such projections are likely over-optimistic as not all this space
will be accessible or suitable (Troell et al., 2017, 2022; Theuerkauf
et al., 2019). Froehlich et al. (2019) projected 48 million km2

for seaweeds for blue growth to mitigate climate change. Thus,
to avoid ending up in a Collingridge dilemma, it is important
to recognize the specific requirements, constraints and impacts
of LTM aquaculture development. Otherwise, the manner in
which LTM aquaculture expansion of both, coastal and offshore
exposed areas is moved, puts us at risk of making incorrect
assumptions that may undermine meaningful and sustainable
expansion, especially when pioneering developments on a very
large scale are required to drive a fundamental shift in food
supply. Engineering such systems for economic sustainability,
within the confines of regulatory and social acceptance, and
importance for nutrition and food security (globally), remains a
challenge for open ocean LTM aquaculture.

From a technical perspective, the tools and engineering
capabilities required to design and de-risk LTM systems for
exposed and open-ocean conditions exist (e.g., Dewhurst, 2016;
Pribadi et al., 2019; Fredriksson et al., 2020; Heasman et al., 2021;
Landmann et al., 2021; Moscicki et al., 2021). This, however,

infers significant investments in infrastructure and increases
in operational costs compared to nearshore, sheltered areas,
representing barriers to entry into the sector for prospective
producers of relatively low value commodities such as seaweeds
and shellfish. To cope with these increased costs either the value
of the end-products must increase and/or the production costs
must decrease. To address the latter pushes the sector toward
large scale production, which will have to go hand in hand with
major shifts in consumer attitudes towards new products and
markets in order to achieve large scale incorporation of LTM
species into the human food chain and ensure stable markets for
the newly produced foods. Whereas in China, early expansion
of marine aquaculture focused on LTM species for food security,
led by government policy within a socialist market economy (Yu
and Han, 2020), elsewhere the evolution of industrial marine
aquaculture has tended to focus initially on high value fed
species (mostly finfish and shrimp) with potential for high initial
returns on investment (Llorente et al., 2020). Consequently, from
a societal perspective, if net zero-carbon is a central goal, a
fundamental change in the narrative of food system production
and re-aligning the contemporary market drivers and incentives
will be required.

So far, a contextual approach particularly in terms of what type
of aquaculture (nearshore vs. open ocean), and what type of effect
at different scales (individual, community, national, regional
and international) has been neglected. That said, occupation
of large areas of marine space by LTM aquaculture, even
in the “distant offshore”, may mobilize objections, especially
as the scale of farms is likely to reflect the investment and
infrastructure required to achieve economies of scale in open
ocean conditions and to make a meaningful impact on global
food systems. Moreover, moving LTM aquaculture offshore
may cause significant ecological and societal trade-offs. For
example, roughly 50–60% of coastal waters suffer from nutrient
pollution, causing severe ecosystem degradation and loss of
important ecosystem services (Howarth et al., 2000; Grizzetti
et al., 2021). The effects are most pronounced in nearshore
areas, although the severity vary between regions. Extractive
LTM aquaculture has been proposed as a tool to remediate
this challenge (Petersen et al., 2016; Kotta et al., 2020; Naylor
et al., 2021; Theuerkauf et al., 2021). The latter is reflected in
the global movement in aquaculture toward developing financial
instruments to recognize the roles of (restoration) aquaculture to
enhance ecosystem goods and services (TheNature Conservancy,
2021; Barrett et al., 2022). LTM aquaculture may also contribute
to circular economies by recovering finite resources from marine
coastal environments (Thomas et al., 2021). For instance, 80% of
all phosphorous is used by agriculture, and provided business-
as-usual scenario, our phosphorous resources are predicted
to be depleted in 50–100 years due to the linear flow of
phosphorous from land-based agriculture systems into the sea
(Sverdrup et al., 2013; Achary et al., 2017). Such ecosystem
service benefits by LTM aquaculture species are additional to
the reduction in food-related GHG emissions from replacing
terrestrial animal source foods (e.g., Naylor et al., 2021). By
increasing the societal understanding of how different types of
aquaculture impact and benefit different marine environments,
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increased acceptance may be achieved on a range of scales.
Public social acceptance is needed to embrace the value of the
blue transformation toward a sustainable blue economy. Social
license, as an outcome of a successful, non-formal, institutional
exchange between a company and its public, is needed to enable
the development of LTM aquaculture (Shindler et al., 2002;
Krause et al., 2020).

CONCERTED IMPLEMENTATION OF THE
BLUE TRANSFORMATION

Even though the prospect of open ocean production is often
raised as a promising direction, to date the economics,
governance and technology of ocean aquaculture favor nearshore
environments. Consequently, when matching academic visions
with industry and societal realities, the positive vision of open
ocean LTM expansion becomes complex. It is not obvious that
the predominant scientific perspective on how to move forward
is the optimal pathway from either an industry or socio-economic
perspective (Figure 1).

While new technologies for utilizing natural resources such as
farming in open ocean areas are often perceived as a degradation
of nature, they can also bring new ways of valuing and relating
of societies to marine species and spaces (Cabre et al., 2021).
Therefore, we need to identify and consider LTM systems that
take advantage of the individual merits found in nearshore and
open oceans. For example, open ocean sites will have many
of the same social and regulatory challenges of nearshore sites
in addition to increased capital costs. Nevertheless, considering

FIGURE 1 | Reflexive co-development toward societal decision-making and

consensus via inclusive narratives. ((C) Y. Nowak/AWI).

the shortcomings of sprawling developments of aquaculture and
environmental problems in coastal waters, and the increase in
demand for safe seafood, development of aquaculture in the open
sea has high validity in many regions of the world.

While food cannot be produced without changing the
environment, whether on land, nearshore or in the open ocean,
LTM without feed or fertilizer inputs can generate wider benefits
beyond the core activity of food production, including a range
of ecosystem services (van der Schatte Olivier et al., 2018;
Cabre et al., 2021; Naylor et al., 2021; Theuerkauf et al., 2021).
These benefits provide powerful policy drivers for allocation
of marine space and societal acceptance of new developments,
over and above the decarbonization of food production. If the
realization of the potential of LTM aquaculture is a priority,
the prerequisites for a sustainable expansion of the LTM sector
must be addressed by the establishment of enabling conditions
for long-term investment and growth of the private sector. This
must be enforced by policy and governance in a careful way
that supports industry development of LTM aquaculture, as
well as optimizing its socio-economic benefits. This could be
achieved through a progressive expansion first into traditionally
used sheltered and exposed, highly energetic nearshore areas (St.
Gelais et al., 2022), and then, successively, into open ocean sites,
if required. Such change cannot be planned and implemented
in one piece, but will rather involve a number of steps that,
in retrospect, can be considered as fundamental. This entails a
“strategy of incremental change with a transformative agenda,
where a normative focus on sustainability transformations
helps to orient incremental efforts (such as policy change)
within a broader narrative of transformative change” (Patterson
et al., 2017). This thinking is captured in the notions of
“progressive incremental” change (Levin et al., 2012), “directed
incrementalism” (Grunwald, 2007), or “radical incrementalism”
(Göpel, 2016).

In this sense, narratives and visions provide an important role
as a compass for what a transformed food production system,
and thus what a desirable future for LTM aquaculture would look
like, and how these are embedded in a sustainable blue economy
setting. At the same time, the exact outcomes of fundamental
change cannot be anticipated and there will be many different
options to achieve the desired (i.e., more sustainable) outcomes.
This highlights the importance of ensuring that transformations
are democratically negotiated and debated broadly within
society. To this end, with the help of co-developed ocean
narratives that match different knowledge realms, new pathways
for a blue transformation toward a blue economy are fostered.
Embracing low-trophic extractive species, even large-scale open
ocean or exposed nearshore aquaculture enterprises can still
represent ethical investments, with an opportunity to reframe the
public dialogue about aquaculture, emphasizing climate change
mitigation, sustainable resource use and ecosystem services
(Hoegh-Guldberg et al., 2019). This may help achieve societal
acceptance of a blue transformation on a range of scales from
coastal communities to broader societies at large (Froehlich et al.,
2017; Mather and Fanning, 2019). Gaining social license will
require fostering a paradigm shift in public perceptions informed
by interdisciplinary and transdisciplinary research approaches
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in order to avoid any reinforcement of dystopian narratives of
industrialized oceans (Merrie et al., 2018).

CONCLUSIONS

It needs to be acknowledged that every type of food production
does change the environment. Therefore, transformation of
contemporary food systems toward net zero-carbon systems will
require a pathway that focusses on environmental impacts being
better than the alternative rather than elusively aiming for zero
environmental impact. This calls for a whole new perspective in
policy-making. Under this umbrella, despite overall aquaculture
increasing globally, LTM aquaculture remains an underutilized
resource with great sustainability potential. So far, blue protein
from LTM species is an important, although often forgotten,
resource when developing policy and recommendations for a
societal transformation of food production and consumption
from red meat to green plant-based proteins towards net zero-
carbon food systems. Indeed, as pointed out, LTM aquaculture
may provide a sustainable food production option to a growing
world population, as well as providing both ecological, health
and climate benefits. As such, LTM products need to be
compared side by side with other marine and terrestrial protein
sources in regards to “land” use, ecological and emission
impacts in order to support decision making of both, policy
makers and consumers. Technical solutions for open-ocean
LTM aquaculture exist but a step-wise transformation including
expansion in nearshore and open ocean, increased market
demand, upscaling, and reduced regulatory barriers for the
industry is required for LTM aquaculture to realize this potential
and achieve impactful sustainable growth. Overall, to increase
the cultivation and consumption of LTM products in society,
a transformative change toward a sustainable blue economy is
needed of how we perceive, relate to and prioritize the use of
coastal and open ocean areas. To this end, a net zero-carbon blue
transformation narrative is warranted that includes proactive
development and investments by the government, authorities
and aquaculture industry that is supported by transdisciplinary

research co-produced with consumers and wider public. Indeed,

there will be no blue transformation without people—LTM
aquaculture opportunities can only be harnessed in tandem with
demands of society.
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