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Figure S1. ENCUT convergence testing. Convergence testing for ENCUT values (the plane wave cut-off 
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energy) for a 54-atom body-centred Mo11Nb11Ta11Ti10W11 supercell. An ENCUT value (dashed vertical 

line) was chosen for which an increase of 50 eV resulted in less than 0.01 % change in total energy. 

(Left) Total energy plotted against ENCUT value. (Right) Percentage change in total energy plotted 

against ENCUT. 

 

  

Figure S2. KPOINTS convergence testing. Convergence testing for number of KPOINTS of a 54-atom 

body-centred Mo11Nb11Ta11Ti10W11 supercell. A KPOINTS set (dashed vertical line) was chosen for 

which a further increase of KPOINTS resulted in less than 0.01 % change in total energy. (Left) Total 

energy plotted against ENCUT value. (Right) Percentage change in total energy plotted against number 

of KPOINTS. 

 

Figure S3. Effect of the equiatomic approximation in calculating local element bias. R2 = 1.00.  Local 

element bias is calculated using equation 1 on a range of local vacancy environments listed in Table 

S1 for an equiatomic quinary alloy and a 54 atom supercell (comprising elements A-E; A-D: 11 atoms 

and E: 10 atoms). A dashed line indicates the function 𝑦 = 𝑥. 
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Figure S4. Atomic distances in solid solutions. Atomic distances of quinary alloys in the Hf-Mo-Nb-Ta-

Ti-W-Zr system. The rule of mixtures ignores any enthalpic contributions or lattice distortions so is 

likely to overpredict lattice parameters. Taking the mean of the second nearest neighbour distances 

is likely to underpredict the lattice parameter in some cases when its distribution overlaps with the 

first nearest neighbours. It is thought that the most representative method is to cube-root the volume 

and divide by three, although this does lose information about the spread of atomic distances in the 

actual supercell. Method A is believed to produce the most representative lattice parameter found in 

bulk materials. Method B generally results in inaccurate results in cases where the overlap between 

1NN and 2NN distances becomes significant (E.g., in TiHfZrMoW). Method C (Vegard’s law) generally 

produced larger lattice parameters due to neglecting lattice strain on structure relaxation. The lattice 

constants for fully relaxed body-centred cubic supercells of pure elements used for Method C, are Ti: 

3.25; Zr: 3.57; Nb: 3.31; Mo: 3.16; Hf: 3.54; Ta: 3.32; and W: 3.18 Å. 
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Figure S5. Product-moment correlation coefficient between nearest neighbour atoms (< 2.75 Å) and 

the calculated vacancy formation enthalpy, 𝐻𝑓
𝑣. 
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Figure S6. Enthalpy of vacancy formation, 𝐻𝑓
𝑣, versus vacancy volume. 𝑟 = +0.28. 

 

 

Figure S7. Configurational entropy in the 𝒎 + 𝟏 scheme. Where x is the mol% of an element in an 

alloy, 𝑚 is the alloying number, and 𝐾𝑏 is the Boltzmann constant; a) configurational entropy for alloys 

up to the senary alloy; b) configurational entropy of an added vacancy to an 𝑚-element alloy. 
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Figure S8. Vacancy population versus reciprocal temperature. Xv is the equilibrium vacancy 

concentration, Xv =
𝑛

𝑁
.  
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Table S1. Example calculations of local element bias. Local element biases calculated around vacancy 

defects in equiatomic quinary body-centred cubic alloys via equation 1.  

Number of each element A-E Local 
element bias A B C D E 

2 2 2 1 1 1.04 

2 2 2 2 0 1.75 

3 2 2 1 0 1.91 

3 3 1 1 0 2.37 

3 3 2 0 0 2.76 

4 3 1 0 0 2.93 

4 4 0 0 0 3.82 

5 3 0 0 0 3.46 

6 2 0 0 0 3.42 

7 1 0 0 0 3.72 

8 0 0 0 0 4.29 

 

 

Table S2. Two-tailed Kolmogorov–Smirnov test on the vacancy formation enthalpies produced by 

multiple special quasi-random structures. D indicates the test statistic. p indicates the p-value of the 

test. A-C indicates the series of SQS cells calculated and is unique between each composition. 

composition D (A-B) p (A-B) D (A-C) p (A-C) D (B-C) p (B-C) 

HfMoNbTaTi 0.148 0.598 NA NA NA NA 

HfMoNbTaW 0.148 0.598 0.13 0.76 0.148 0.598 

HfMoNbTaZr 0.278 0.031 0.241 0.087 0.204 0.214 

HfMoNbTiW 0.13 0.76 0.148 0.598 0.13 0.76 

HfMoNbTiZr 0.222 0.139 0.093 0.977 0.259 0.053 

HfMoNbWZr 0.093 0.977 0.167 0.445 0.111 0.897 

HfMoTaTiW 0.111 0.897 0.148 0.598 0.185 0.315 

HfMoTaTiZr 0.259 0.053 0.185 0.315 0.185 0.315 

HfMoTaWZr 0.241 0.087 0.185 0.315 0.13 0.76 

HfMoTiWZr 0.204 0.214 NA NA NA NA 

HfNbTaTiW 0.167 0.445 0.185 0.315 0.111 0.897 

HfNbTaTiZr 0.204 0.214 0.259 0.053 0.315 0.009 

HfNbTaWZr 0.204 0.214 0.148 0.598 0.222 0.139 

HfNbTiWZr 0.148 0.598 NA NA NA NA 

HfTaTiWZr 0.259 0.053 NA NA NA NA 

MoNbTaTiW 0.074 0.999 0.074 0.999 0.019 1 

MoNbTaTiZr 0.111 0.897 NA NA NA NA 

MoNbTaWZr 0.167 0.445 0.204 0.214 0.333 0.005 

MoNbTiWZr 0.278 0.031 0.111 0.897 0.259 0.053 

MoTaTiWZr 0.204 0.214 0.204 0.214 0.167 0.445 

NbTaTiWZr 0.185 0.315 0.167 0.445 0.111 0.897 
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Appendix S1 

Beginning from the Gibbs energy to form a vacancy: 

ΔG = ΔH − TΔS  

where ΔG is the Gibbs free energy to form a vacancy, ΔH is the associated enthalpy of formation for 

a vacancy and is assumed to be invariant with temperature, ΔS is the entropy of a vacancy, which is 

assumed to be dominated by the configurational entropy. All units of energy are in electron volts. The 

configurational entropy is given by Boltzmann’s famous equation, Sconf = kBln(Ω). Here, kB is the 

Boltzmann constant in (eVK−1) and Ω is the possible number of microstates in the system. The 

number of possible microstates for an m-element alloy with vacancies is given by  

S = kBln [
𝑁!

𝑁𝐴! 𝑁𝐵! 𝑁𝐶! 𝑁𝐷! 𝑁𝐸! …  𝑛!
]  

where N is the total number of atoms in the system, 𝑁𝐴−𝐸   is the number of atoms of element 𝐴–𝐸, 

respectively, and 𝑛 is the number of vacancies in the alloy. Assuming that the alloy is equiatomic (i.e., 

𝑁𝐴! = 𝑁𝐵! = 𝑁𝐶! = 𝑁𝐷! = 𝑁𝐸! = 𝑁𝑖!) 

S = kBln [
𝑁!

𝑚(𝑁𝑖!)𝑛!
]  

where 𝑚 is the alloying number, and 𝑁𝑖  is the number of atoms of each element in the system. 𝑁𝑖  can 

be expressed in terms of 𝑁, 𝑛, and 𝑚: 𝑁𝑖 =
𝑁−𝑛

𝑚
. Substituting into the above equation gives: 

S = kBln [
𝑁!

𝑚 (
𝑁 − 𝑛

𝑚 !) 𝑛!
]  

 and applying Stirling’s approximation, which states that ln(𝑥!) ≈ 𝑥ln(𝑥): 

S = kB [
𝑁ln(𝑁)

𝑚 (
𝑁 − 𝑛

𝑚 ) ln (
𝑁 − 𝑛

𝑚 ) 𝑛ln(𝑛)
]  

simplifies to 

S = kB [
𝑁ln(𝑁)

(𝑁 − 𝑛) ln (
𝑁 − 𝑛

𝑚 ) 𝑛ln(𝑛)
]  

Re-written using the rule of logs:  

S = kB [𝑁ln(𝑁) − (𝑁 − 𝑛) ln (
𝑁 − 𝑛

𝑚
) − 𝑛ln(𝑛)]  

The configurational entropy is given by the differential with respect to 𝑛. 

ΔS = kB [ln (
𝑁 − 𝑛

𝑚
) − ln(𝑛)]  

which reduces to 

ΔS = kB [ln (
𝑁 − 𝑛

𝑚𝑛
)]  



Alloy vacancy energetics 

Assuming that 𝑛 is small, i.e., 𝑁 − 𝑛 ≈ 𝑁, and inversing the natural log 

ΔS = −kBln (
𝑚𝑛

𝑁
)  

The Gibbs energy change with respect to 𝑛 is therefore given by 

ΔG = ΔH + kBTln (
𝑚𝑛

𝑁
)  

Rearranging for vacancy concentration, 
𝑛

𝑁
, 

𝜒𝑣 =
𝑛

𝑁
=

1

𝑚
𝑒

−ΔH
kBT  

 


