
Bangor University

DOCTOR OF PHILOSOPHY

An empirical study of stream-based techniques for text categorization

Thomas, Daniel

Award date:
2011

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/an-empirical-study-of-streambased-techniques-for-text-categorization(8ee76e9f-0b20-4833-bc8d-d5bfa498449c).html

An empirical study of stream-based techniques for text

categorization

Daniel Thomas

I

/

- \

Abstract

An empirical study of stream-based techniques for text categorization

Daniel Thomas

Due to the popularity of social networking sites such as Twitter, Facebook and biogs, the amount

of electronic text is continuing to grow. There is a need to categorize these vast amounts of
documents and it is no surprise that the field of text categorization is a popular one. The

traditional approach to text categorization is a feature-based approach, normally processing
features based on words. Stream based methods have been shown to perform well in some
experimentations but there has been no thorough study of their performance on a number of
major corpora and their results have not been thoroughly compared against the current state-of­

the-art feature based techniques. This is an important problem as the techniques cannot be fully

recognized until a thorough study has been performed.

The concept of protocols and how each affects categorization results has also not been studied

thoroughly across a number of methods for several corpora. It is important to attempt to discover
which stream based approaches perform best in which situations and how the choice of protocol
affects their performance, if at all. It is hoped that it can be shown that for certain corpora or
document lengths that certain approaches and protocols should be used. These findings could
then drive the decision of which methods and protocols to use for future experiments.

An existing problem within the field of text categorization is that it is often difficult to recreate
the exact experimentation conditions of previous studies. One reason for this is that the training

and testing splits often differ and it was important that this study did not add to this existing
problem, that the experimentations could be accurately recreated and that others would be fairly

compared.

A toolkit has been developed that allows all of the methods and protocols to be compared in a
consistent manner. The toolkit models the streams using suffix trees and all of the stream based
methods have been implemented. In addition to the implementation of existing techniques, a
number of new stream based methods have been detailed within the thesis and one of these new

techniques, R-Ranges, has been shown to outperform all other methods for two of the corpora,
including PPM (Prediction by Partial Matching) variants, state-of-the-art techniques that are
mathematically well supported. The experimentation has also shown that the protocol (whether
static or dynamic training models are used in addition to training documents of the same

category being concatenated or not) does indeed affect the accuracies of each method. The
concatenated dynamic protocol was found to outperform all others and performs consistently

well across all methods, for all corpora. This study has now conclusively shown that the method
used to categorize text must not be the only one, the selection of protocol is also just as

important.

Acknowledgements

I am sitting at home rewriting this section at three in the morning having actually already written
this section within the first month of studying. I originally spoke of people who are no longer in my
life and others who I have not seen in a long time. This has made me realise what a huge part of my
life this study has become and how much my life has changed during this time.

I originally thanked my fiancee Amy Davies for giving me nothing but love and support no matter
how tired I was, and the long nights hadn't even begun. I no longer have a fiancee named Amy
Davies, thankfully she agreed to marry me on the l st August 2010 and I would like to take this
opportunity to thank her again as I see her as the greatest gift I have ever received. Amy was
pregnant with our daughter Alisha when I was given the opportunity to study for a PhD, though we
didn' t know this at the time. I now have another daughter, Olivia, and she has ensured that I have
had the opportunity of becoming the proudest father in the world, twice. There is no way I could
mention my beautiful daughters without apologising for all the times I had to turn down the
opportunity to play with them as I was working but I must also thank them for the unconditional
love I received through this time.

I would like to thank my father, Dewi Thomas and my mother Susan Thomas who have both given
me their full support throughout my life and have always encouraged me to be the best I can be. I
would like to also thank my sister Michelle and brother Stephen as they have also supported me in
various aspects.

I would like to thank all of my friends as they have been understanding of the lack of time I could
spend with them and also for helping me move home no less than eleven times during this time.
They may be thankful to hear that I am happily settled at our current home ... for now at least. I
would like to thank Leo Stammer who first captured my interest in the world of computing as from
him I gained a thirst for knowledge and this is what led me to choose Computer Science as my
course of study. I would also like to thank Dr. Robert Shepherd for helping me settle into my role as
a postgraduate student during my first year.

Finally I would like to state how grateful I am to both the University Of Wales, Bangor and Dr.
William J. Teahan for offering me the opportunity to study text categorization at the School Of
Informatics, Bangor. Dr. Teahan has vast experience and knowledge within the field of text
categorization and I am grateful to him for sharing his knowledge and experience with myself. Dr.
Teahan was always available for guidance and I have come to see him as both a friend and a mentor.

2 \ Page

Contents

Abstract
Acknowledgements

1 Overview

1.1
1.2
1.3
1.4
1.5

Introduction
Background & Motivation
Objectives
Contributions
Thesis Outline

2 Background

2.1

2.2

2.3

2.4

2.5

Introduction

Applications of text categorization techniques
2.2.1 Authorship Attribution
2.2.2 Genre Categorization
2.2.3 Topic Categorization
2.2.4 Other types of classification

2.2.4.1 Language Identification
2.2.4.2 Dialect Identification
2.2.4.3 Style Classification
2.2.4.4 Document Indexing
2.2.4.5 A stage within Natural Language Processing Systems
2.2.4.6 Spam Filtering
2.2.4. 7 Sentiment Classification
2.2.4.8 Gender Classification
2.2.4.9 Others

Text pre-processing techniques
2.3.1 Tokenization
2.3.2 Feature Selection and Extraction
2.3.3 Stop word removal
2.3.4 Stemming
2.3.5 Term Selection

Data Sets
2.4.1 Reuters-21578
2.4.2 Reuters-IO (RI 0)
2.4.3 RCV I-Author
2.4.4 20-Newsgroups
2.4.5 Gutenberg-IO (Gu-10)

Evaluation Techniques
2.5.1 Contingency Table
2.5.2 Precision
2.5.3 Recall

1
2

10

10
10
11
12
12

14

15
16
16
17
17
17
18
18
19
19
19
20
21
22

22
22
22
22
23
23

23
23
24
24
24
24

24
25
25
25

3I Page

3

4

5

2.5.4 Accuracy
2.5.5 Fl-Measure
2.5.6 Macro-averaging / Micro-averaging
2.5.7 The difficulty of comparing results

2.6 Feature-based categorization
2.6.1 Naive Bayes
2.6.2 N-Grams
2.6.3 SVM

2.7 Stream-based Categorization
2.7. l C-Measure
2.7.2 R-Measure
2.7.3 PPM (Prediction By Partial Matching)

2.8 Protocols

Extensions for stream based models

3.1 Extensions of R-Measure
3 .1.1 R-Ranges

3.2 Extensions of C-Measure

3.3 Modifications to PPM

3.4 Complexity considerations

25
25
25
26

27
27
27
28

28
28
29
30

31

34

34
37

37

38

40

Implementation of stream-based models using Suffix Trees 42

4.1

4.2

Suffix Trees

Implementation
4.2.1 Static C-Measure
4.2.2 Dynamic C-Measure
4.2.3 PPM Without Full Exclusions
4.2.4 PPM With Full Exclusions
4.2.5 Dynamic PPMC

A Java based framework for implementing stream based
models

5.1

5.2

Overview

Tools
5 .2.1 Splitting the corpora
5 .2.2 Concatenating categories
5.2.3 Suffix Tree representation
5 .2.4 Extracting suffixes

42

45
46
48
52
53
55

57

57

58
59
60
61
61

4J Page

6

7

5.2.5 Optimisation note
5.2.6 Trimming concatenated models
5.2.7 Building the tree
5.2.8 Checking the counts within the suffix tree

5.3 Base classes
5.3.1 Comparison class
5.3.2 Test Collection class
5.3.3 Extending Test Collection class
5.3.4 Collection class

5.4 Implementation of the algorithms
5.4.1 C-Measure

5 .4.1.1 Static case
5.4.1.2 Dynamic case

5.4.2 R-Measure
5.4.2.1 rmax

5.4.2.2 R$q

5.4.2.3 R"i!q

5.4.2.4 R-Ranges
5.4.3 PPM
5.4.4 Using the toolkit

Experimental results

6.1 Experimental setup
6.1.1 Corpora setup

6.1 .1.1 Reuters- I 0
6.1.1.2 RCVl-Author
6.1.1.3 20Newsgroups
6.1.1.4 Gutenberg

6.1.2 Hardware details

6.2 Results
6.2.1 C-Measure
6.2.2 PPM
6.2.3 R-Measure

6.3 Execution times

Conclusions & Future Work

7.1 Discussion

7.2 Summary of chapters

7.3 Contributions

7.4 Review of aims & objectives

62
64
64
67

67
68
68
69
69

71
71
71
72
74
74
74
74
75
75
76

79

79
79
79
81
82
82
83

84
84
92
99

117

127

127

127

129

129

5 IPage

7.5 Future work 130

8 References 132

61 Pag.l?

List of figures

2.1 Example process of text categorization 15
4.1 Suffix tree representation of string 'This is a threat• ' 44
4.2 Suffix tree representation of string 'abrabra•' 45
4.3 Suffix tree representation of the string "abracadabra•" 45
4.4 Suffix trees of training file "abrabra•" and test stream "br•" 46
4.5 Dynamic suffix tree of training file "abrabra•" once• has been processed 48
4.6 Dynamic suffix tree of training file "abrabra•" once 'b' from within suffix bro has been 49

processed
4.7 Dynamic suffix tree of training file "abrabra•" once 'br' from within suffix br• has been 49

processed
4.8 Dynamic suffix tree of training file "abrabra•" once the suffix br• has been processed 50
4.9 Dynamic suffix tree of training file "abrabra•" once ' r' from within suffix r• has been 51

processed
4.10 Dynamic suffix tree of training file "abrabra•" once the suffix r• has been processed 51
4.11 Dynamic suffix tree of training file "abrabra•" once the testing stream xbrx• has been 52

processed
5.1 High level overview ofjSCat 58
5.2 Example output of split parent directories 59
5.3 Example directory listing found within each split 59
5.4 Output of the concatenated files parent directory 60
5.5 Example output of concatenated training files 60
5.6 Suffix tree representation classes 61
5.7 Original tree before adding node which matches all characters within the current node 66
5.8 Tree shown in 4.10 after inserted the next node 67
5.9 Example extension of the base classes 68
5.10 Example of testing string being concatenated onto training string for dynamic cases 73
6.1 20Newsgroups C-Measure 86
6.2 Gutenberg C-Measure 88
6.3 RCV 1-Author C-Measure 90
6.4 RCVI-10 C-Measure 92
6.5 20Newsgroups PPMC 93
6.6 20Newsgroups PPMD 93
6.7 Gutenberg PPMC 94
6.8 Gutenberg PPMD 95
6.9 RCVl-Author PPMC 96
6.10 RCVl-Author PPMD 97
6.11 Reuters-IO PPMC 98
6.12 Reuters-IO PPMD 98

7J Page

List of tables

2.1
2.2
3.1
4.1
4.2
4.3
4.4
5.1
5.2
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39

Contingency Table
Protocols for stream-based text categorization
PPMC model after processing the string abracadabra with maximum order of 2
List of pointers within context list after processing the symbols 'ab'
Possible context list at order I without exclusions
Possible context list at order 1 with full exclusions
Context list example after processing the string ' abr'
Example subset of suffix model information, from which we construct a suffix tree
Parameter information for C-Measure setCounts method
The categories of Reuters 10 (RIO)
Authors within Reuters-Author (R9)
The categories of 20-Newsgroups
The categories of Gutenberg
Corpora Summary
20Newsgroups C-Measure
Gutenberg C-Measure
Reuters-Author C-Measure
Reu ters-10 C-Measure
20Newsgroups PPMC
20Newsgroups PPMD
Gutenberg PPMC
Gutenberg PPMD
Reuters-Author PPMC
Reuters-Author PPMD
Reuters-10 PPMC
Reuters-10 PPMD
20Newsgroups Rsq-Measure
20Newsgroups R2:q-Measure
R-Range average accuracies for 20Newsgroups, Concatenated Dynamic
R-Range average accuracies for 20Newsgroups, Concatenated Static
R-Range average accuracies for 20Newsgroups, Non-concatenated Dynamic
R-Range average accuracies for 20Newsgroups, Non-concatenated Static
rmax average accuracies for 20Newsgroups
Gutenberg Rsq-Measure
Gutenberg R2:q-Measure
R-Range average accuracies for Gutenberg, Concatenated Dynamic
R-Range average accuracies for Gutenberg, Concatenated Static
R-Range average accuracies for Gutenberg, Non-concatenated Static
R-Range average accuracies for Gutenberg, Non-concatenated Dynamic
rmax average accuracies for Gutenberg
Reuters-Author Rsq-Measure
Reuters-Author R2:q-Measure
R-Range average accuracies for Author, Concatenated Dynamic
R-Range average accuracies for Author, Concatenated Static
rmax average accuracies for Author
Reuters- IO Rsq-Measure
Reuters- IO R2:q-Measure
R-Range average accuracies for Reuters-I 0, Concatenated Dynamic

25
32
39
51
52
52
53
61
69
80
81
82
83
83
85
87
89
91
92
93
94
95
96
96
97
98
100
101
102
102
103
103
103
105
106
107
107
108
108
108
110
111
112
112
112
113
114
115

6.40 R-Range average accuracies for Reuters-10, Concatenated Static 115
6.41 R-Range average accuracies for Reuters-10, Non-concatenated Static 116
6.42 R-Range average accuracies for Reuters-I 0, Non-concatenated Dynamic 116
6.43 rmax average accuracies for Reuters-IO 116
6.44 Average timings in seconds for C-Measure 20Newsgroups 117
6.45 Average Timings in seconds for PPMC 20Newsgroups 117
6.46 Average Timings in seconds for PPMD 20Newsgroups 118
6.4 7 Results for each method, for each protocol against each corpus 119
6.48 Best Results from other text categorization methods 120
6.49 C-Measure results for each of the corpora for the concatenated dynamic protocol 122
6.50 R~q-Measure results for each of the corpora for the concatenated dynamic protocol 123
6.51 R:5q-Measure results for each of the corpora for the concatenated dynamic protocol 124
6.52 rmax results for each of the corpora for the concatenated dynamic protocol 124
6.53 PPMC and PPMD results for each of the corpora for the concatenated dynamic protocol 125

List of code samples

5.1
5.2
5.3
5.4
5.5
5.6

Inserting the next node into our tree
Base processing of non-concatenated comparisons
Base processing of concatenated comparisons
Coded Normalised R-Measure Value
Coded method for encoding all symbols for PPM
jSCat's main entry point

65
70
70
74
75
77

9I Pagc

Chapter 1

Overview

1.1 Introduction

The amount of electronic text is continuing to grow due to the overwhelming amounts of

information and users on the Internet today. There is a need to categorize these vast amounts

of documents and it is no surprise that the field of text categorization is a popular one. Users

are becoming accustomed to having search engines retrieve the information they want in an

instance with minimal effort. It is important to be able to classify information, no matter what

the format, in order to ensure that the relevant information is returned.

The traditional approach to text categorization is a feature-based approach, normally

processing features based on words. Hunnisett & Teahan (2004) defined a simple frequency­

based measure for text categorization called the "C-Measure" which regardless of its

s implicity has been proven to outperform a number of state of the art techniques. Although

the effectiveness of the algorithm has been proven in a small study, no thorough study has

been performed which measures the effectiveness of this approach, or indeed any other of the

alternative stream based approaches in order to rigorously compare them against feature

based approaches. The aim of this thesis has been to confirm that stream based approaches

perform as well as the current leading feature based approaches and that these approaches

should be considered in all future comparatives study within the field of text categorization.

1.2 Background & Motivation

It is the presence of unknowns and gaps in research that have formed the motivation behind

this research. Small experiments have shown that stream based approaches achieve results

that are competitive to traditional feature based approaches but there is a need for a thorough

study to be performed. Hunnisett & Teahan (2004) discuss difficulties in processing substring

lengths of considerable length and it is unknown if these yet to be researched lengths would

further improve performance and surpass the already high accuracies that have been achieved

using their technique. There is also a requirement to investigate the performance of these

algorithms on several corpora in order to determine if their good performance is consistent.

Part of the motivation behind the experiments in this thesis is to determine experimentally

which measure performs better or whether different measures perform better in different
domains.

The emphasis of the study is on models based on streams of character sequences (hence the

term "stream-based" text categorization which will be mentioned numerous times throughout

IOI Page

this thesis), but feature-based approaches shall also be reviewed for comparison, though in

less detail. Compression-based approaches, usually based on the well-performed compression

scheme PPM (Cleary and Witten 1984) have shown that models based on character streams

are better than word models (Teahan, 1998); and we can avoid issues such as: word

segmentation; normalisation e.g. stemming (reducing morphological variants to the root

word); word sense disambiguation; and hapex legomena (words occurring only once within

the text). The commonly held assumption that data compression is a "good" method for text

categorization based on the fact that it is theoretically well founded creates a motivation to

further investigate this assumption.

The methodology of how the stream-based categorization is performed based on whether

static or dynamic models are used, and whether the training documents of the same category

are concatenated or non-concatenated shall be termed as "protocols" . The experimental

performance of the newest protocol described in Hunnisett (2010), and of the other three

protocols, are explained more fully by examining how these protocols are used to perform

uni-label classification for text categorization, how both the protocols and methods can be

implemented using suffix trees and the performance of each.

This thesis also explores the use of suffix trees as a universal data structure for storing the

model representations. This data structure allows multiple similarity measures to be

calculated using a single pass through the training and test sequences. Khmelev (2000) used

suffix arrays to estimate probabilities for Markov models in authorship ascription studies;

Khmelev & Teahan (2003), also used suffix arrays to implement R-Measure described later;

but these implementations can be simplified when using suffix trees as cumulative counts can

be associated with each node of the tree (Teahan, 1998; Bratko et al., 2006).

The number of protocols and algorithms being investigated brought with it a requirement for

a common toolkit to be designed and implemented in order to facilitate the text categorization

experiments. A toolkit has been developed in Java and its purpose is to handle all stages of

the experimental process including preparation of the input data, splitting the data for cross

validation, performing all experiments in a single pass and outputting the results for each

experiment to allow simple comparison of each of the algorithms and procedures.

1.3 Objectives

The objectives of this research are as follows:

• to further investigate and perform a comparative study of stream based approaches;

• to discover which stream based approaches perform best in which situations. It was

hoped to show that for certain corpora or document lengths that certain approaches

and protocols should be used;

• to show that a single data structure, a suffix tree can be used to implement each of the

stream based algorithms.

llj Page

There is a need for results to be calculated in a consistent manner and a toolkit needed to be
designed and developed to aid this. This single toolset would allow us to prepare the data and
compute results before comparing them against previous examinations of other techniques. It
is hoped that future studies may implement their algorithms within the toolkit so that the
collection of classes and algorithms may grow and make comparing results easier and also
less misleading.

1.4 Contributions

Though stream based approaches have been shown to perform well in small studies, there has

been no complete and comparative study on their performance. This thesis has compared
PPM, C-Measure and the closely linked algorithm R-Measure (Khemelev & Teahan, 2003).
Variants of these algorithms, new implementations and their examination across a number of
corpora and for longer suffix lengths than bas been done in previous studies is novel work.
The "protocols" of how stream-based categorization is performed, based on whether static or
dynamic models perform best, and whether the training documents of categories should be
concatenated or not, is described in detail.

A toolkit has been designed and implemented in order to facilitate the text categorization
experiments. The toolkit, named jSCat, has been developed in Java and its purpose is to
handle all stages of the experimental process including preparation of the input data, splitting
the data for cross validation and also to perform all experiments in a single pass before
outputting the results for each process to allow a simple comparison of each algorithm and
procedure.

1.5 Thesis Outline

Chapter 2 offers a background to research within the field of text categorization and also
describes a number of its applications. The chapter discusses the different approaches and

techniques used within the field as well as their differences. The chapter also discusses the
performance of each technique within different application domains and lists results to
support this. The most popular corpora used within classification experiments are listed as
well as the most popular techniques for evaluating experimental results.

Chapter 3 explains the new techniques which have been explored during the time of the study
and also details all new work and improvements relating to C-Measure, R-Measure and PPM.

Chapter 4 shows bow the different protocols for all models have been implemented using
suffix trees.

Chapter 5 details an overview of the toolkit that has been created to aid in the calculation and
comparison of the many different techniques. This chapter explains the components that exist
within the toolkit and explains how the toolkit allows the introduction of categorization

12 I P age

techniques through the extension of base classes. The implementation and also its usage are
explained through discussion, figures and code samples.

Chapter 6 describes the experimental setup and methodology followed by a discussion of the

results. Results will compare all algorithms within each dataset in order to discover the best
performing within each corpus.

Chapter 7 summarizes all of the work included within the thesis and performs a review of the
aims and objectives before concluding and identifying any future work.

131 Page

Chapter 2

Background

Chapter Summary

The purpose of this chapter is to describe the background of research within the field of text

categorization as well as describing a number of its applications. The chapter discusses the

different approaches and techniques used within the field as well as their differences. The

concept of Protocols, the four different variations and how each would be conducted are

explained. The chapter also discusses the most popular corpora used within classification

experiments as well as the most popular techniques for evaluating experimental results.

Summary of each section

Section 2.1 offers an introduction to the field of text categorization by describing some

background to the research and an abstract view of the typical steps involved within the

process. Section 2.2 describes a number of its applications and describes some well known

research examples. Section 2.3 discusses a number of text pre-processing techniques and how

they may improve classification results. Section 2.4 describes a number of well known

corpora, also known as datasets, in detail by examining the number of texts, how the texts are

divided and also the differences in the size of the documents. The section also describes some

examples of research that have used each of the datasets. Section 2.5 lists a number of

techniques used to evaluate the performance of the text categorization including precision,

recall, accuracy, FI-Measure and also the distinction between macro-averaging and micro­

averaging the F-Measure. Section 2.6 offers a brief overview of feature based classification

and details a couple of well known approaches. Section 2. 7 discusses current stream-based

algorithms including examples of how each is performed. Section 2.8 explains the four
protocols and how they have been used in research to date.

2.1 Introduction

There is an overwhelming amount of electronic text available today and there is a need to

categorize these vast amounts of documents. It is therefore no surprise that the field of text

categorization is a popular one. It is important to be able to classify information, no matter

what the format, in order to ensure that the relevant information is returned. People generally

have little difficulty in recognising document and object categories (Watt, S. 2009). However,

the speed at which users expect results to be returned, in addition to the amount of

information through which to search means that indexing performed by humans has not been

14 I P age

viable for many years. Although machines are achieving high rates of classification quickly,
it could be said that human categorization will always be more accurate in some situations.

Text categorization in the past has concentrated on static situations, however, we now live in
a digital era where we communicate and retrieve information from digital sources. This
means that modem classifiers must now be dynamic enough to retrieve the uncategorized text

as a stream, possibly directly from social networking applications such as Facebook or
Twitter, or perhaps from biogs.

As far back as the 1960's, it seemed obvious that a growing amount of information was being

submitted via electronic format and there was a need for these documents to be routed to the

proper users (Maron, M. E. 1961). It may have been impossible to imagine back then the
number of uses we have today for the application of text categorization and the number shall
continue to grow so long as new technologies and ideas are developed. Due to its many
applications, varied approaches and growing amounts of text, text categorization has indeed
become an important research area within Information Retrieval (IR).

More formally, text categorization, also known as text classification, document categorization
or document classification, is the task of automatically sorting a set of documents into
predefined categories based on their content. This is a supervised learning approach as there
exists documents already categorized to be used as training data which effectively define the
categories. The training data is used to build a model that can be used to classify new
documents, known as test data. Text categorization is not to be confused with text clustering,

an unsupervised approach of which there exists no predefined categories. There is no training
data and the classification is learnt from the data; similar documents are simply grouped to
form a cluster.

Figure 2.1 Example process of text categorization.

2.2 Applications of text categorization techniques

A number of popular applications for text categorization are detailed within this section,
some of which are researched within this thesis, others are not but are detailed for
completeness.

15I Page

2.2.1 Authorship Attribution

Authorship attribution has a number of applications ranging from discovering the author of a
novel to identifying the sender of an anonymous letter. Authorship attribution is more

challenging than language/dialect identification as the differences among the authors' writing
style is much more subtle than among different languages/dialects. Though this is the case,

style and statistical properties may be noticeably different for different authors (Boggess et
al. , 1991). It is fair to say that there are great differences between two authors from different
times with different writing style, e.g. Shakespeare and J.K. Rowling. However, within the
corpora used for most text categorization experiments, which shall be discussed later, this is
not the case.

A famous example of authorship attribution is the case of the Federalist Papers, of which
twelve instances are claimed to have been written both by Alexander Hamilton and James

Madison. Statistical analysis has been undertaken on a number of occasions to try to decide
the authorship of the disputed documents based on word frequencies and writing styles, with
nearly all of the statistical studies showing that all twelve disputed papers were in fact written
by Madison (Mosteller & Wallace, 1984; Holmes & Forsyth, 1995; Fung, 2003).

An author may write about a number of topics and this means it is unlikely that topic-based
features will perform well at discriminating among authors, e.g. a selection of features/words

would not be suitable. Rather, stylistic features are the most appropriate choice; for instance,
vocabulary richness (i.e. ratio between number of distinct words and total number of words),

average word length, average sentence length, are important, in the sense that it is these
features that tend "to give an author away" (Sebastiani, 2005).

This area of research has become more difficult with trends towards many shorter

communications rather than fewer longer communications, such as the move from traditional
multi-page handwritten letters to shorter, more focused emails. More recently, Twitter and
other short message based web services are extremely popular and methods need to enable
authorship to be determined for documents of 140 characters or less (Layton et al., 2010).

2.2.2 Genre Categorization

Genre classification is an important application in information retrieval (Biber, 1988; Kessler
et al., 1997; Lee & Myaeng, 2004; Stamatatos et al., 2000) and more recently, Finn &
Kushmerick (2006), as well as ongoing work by Santini (2007a and 2007b), and involves
identifying the subject domain of a document. Examples of genres are: political, mystery and
sport. A number of studies have investigated this problem usually by adapting methods found
suitable for the related problem of topic categorization.

One use of genre classification could be to enable users to sort search results according to
their immediate interests. Whilst visiting a bookstore people are not usually simply looking
for information about a particular topic, they can often have requirements of genre as well i.e.
they may be looking for novels about discoveries, Italian recipes or scientific articles etc.
Genre may therefore be seen as a subject area.

16 jPage

A growing area of research is the categorization of single tweets and Sriram et al. (2010)

define five generic classes of tweets (deals, events, opinions, news, and private messages) in

order to improve information filtering. The authors represent tweets using a small set of

language-dependent features to classify tweets written in English. The use of these features

outperforms the BOW (bag-of-words) approach in the classification of tweets according to

the typology.

There appears to be no consensus of what genre is. Though everyone believes they know

what 'genre' is, unfortunately many people have different understandings of its meaning as

discussed by Crowston & Williams (2000), Kwasnik & Crowston (2005), and Rosso (2005).

Researchers must be careful not to confuse genre with topic as stated by Karlgren and Cutting

(1994) yet some researchers (Lee and Myaeng, 2004; Stamatatos et al., 2000) seem unable to

distinguish between the two and instead interpreted genre as the style of text, to be discussed

later.

2.2.3 Topic Categorization

The task of topic categorization is a heavily researched text categorization problem (Dumais

et al., 1998; Lewis, 1992; McCallum & Nigam, 1998; Teahan & Harper, 2001 ; Yang, 1999;

Sebastiani, 2002) and concerns the problem of assigning one or more categories to a

document from a list of pre-defined categories where the categories reflect the topics or

subject the document is concerned with. The categories are likely to be more fine-grained

than the broad categories for genre classification.

2.2.4 Other types of classification

2.2.4.1 Language Identification

Language identification concerns the problem of identifying the language used to produce a

document. It is a useful pre-processing step in information retrieval, but the task is deemed

"too easy" as there are significant differences between all of the major languages, even when

they are based on the same character set, as shown by experiments displaying perfect
discrimination between a number of languages i.e. (House and Neuberg, 1977).

Though language identification is an easy and much studied task, it does still play an

important role in a number of modem applications. Language identification is one of the most

basic pre-processing stages of tasks such as summarization, question answering and

translation as it is imperative to know the language of a text in order to process it. With the

growing number of Internet users it is also becoming more useful to have texts processed

written in a number of different languages. This is more crucial within bilingual or

multilingual applications (news providers, question answering and information retrieval

applications) that want to offer their services to each customer in a different language.

Other applications include travel services, translation services, national security applications

and also emergency situations, as people in stressed conditions will tend to speak in their

17 1Page

native tongue, even if they have some knowledge of the local language (Lamel and Gauvain,

1994).

2.2.4.2 Dialect Identification

Dialect identification is a problem closely related to language identification and it would be

reasonable to argue that every person has their own dialect and that a dialect is a language in
itself (Nagy et al., 2005). It is a popular categorization problem that has had much research
on its subject (Nagy et al., 2005; Huang & Hansen, 2007; Nerbonne et al., 1999; Branner,
2000; Chiang et al., 2006).

In Europe, linguistic differences sharpened as the language of each nation-state was

standardized. In China, standardization of spoken dialects was weaker, and mostly due to
cultural influences (Branner. 2000). The variance in China's provinces where dialects are

spoken can be compared with that in the Arab World. The standard written language is the
same throughout the Arab world: Modern Standard Arabic (MSA). MSA is not a native
language of any Arabic speaking people, i.e., children do not learn it from their parents but in
school. Most native speakers of Arabic are unable to produce sustained spontaneous MSA.
Dialects vary not only along a geographical continuum but also with other sociolinguistic
variables such as the urban/rural/Bedouin dimension (Chiang et al. 2006).

2.2.4.3 Style Classification

Stylistic text categorization is another useful tool with which we can categorize documents, it

is a vital tool within on line libraries e.g. ERP AePRINTS (2009) and search engines. Style
classification may also be known as the "type of text" or misunderstood as its genre (Lee &

Myaeng, 2004; Kim & Ross, 2007). Examples of style are novels, poems, minutes,
curriculum vitae and biogs etc.

As mentioned earlier, with the presence of such large amounts of digital text available today

it is important to sort and manage this information in the most convenient way to the user
whilst still being manageable. The ability to search media by its style as well as its topic
and/or genre would allow for more relevant information being returned to the users without
any additional pruning of the returned results. An example would be a user searching for the
term "bread" whilst looking for a recipe, of course a number of resources including the
history of bread, recipes and stores selling the product will undoubtedly be returned as well as
a number of others. However if the user had additionally searched for the type of text i.e.

style of document he/she required i.e. "bread recipe", the user should then only be returned
documents relevant to the making of bread.

Lee and Myaeng (2004) proved that knowing the style (though they use the term genre) of a
document helps to classify it based on its subject/topic more correctly, given that a classifier

has been built for documents belonging to the same style. This is important and shows that
we must ensure we build classifiers that not only represent the subject domain but also the

style in which it was constructed.

18 1Pngc

2.2.4.4 Document Indexing

A primary application of text categorization techniques is to support information retrieval

systems by assigning subject categories to documents or to aid human indexers in assigning
such categories (Biebricher et al., 1988; Hayes & Weinstein, 1990). Several keywords are
taken from a controlled vocabulary such as a thesaurus and are assigned to a document in

order to describe its subject. This transformation from a text document into a representation
of text is known as indexing the document.

2.2.4.5 A stage within Natural Language Processing Systems

Text categorization components are also seeing increasing use in natural language processing

systems for data extraction. Categorization may be used to filter out documents or parts of
documents that are unlikely to contain extractable data, without incurring the cost of more

expensive natural language processing (Dahlgren et al., 1991; Grishman et al., 1991; Hobbs
&Jerry, 1991).

2.2.4.6 Spam Filtering

In the 1980s the term Spam was adopted to describe certain abusive users on Bulletin Board
Systems who would repeat "SP AM" a huge number of times to scroll other users' text off the

screen. In early Chat rooms services like PeopleLink and the early days of AOL, they
actually flooded the screen with quotes from the Monty Python Spam sketch 1• This was used
as a tactic by insiders of a group that wanted to drive newcomers out of the room so the usual
conversation could continue. This act, previously called flooding or trashing, came to be
known as spamming. The term was soon applied to a large amount of text broadcasted by
many users. It later came to be used on Usenet to mean excessive multiple posting, the
repeated posting of the same message. The unwanted message would appear in many if not

all newsgroups, just as SP AM appeared in all the menu items in the Monty Python sketch
(Wikipedia, 2009), but is now also used to refer to unsolicited e-mail messages that are

posted a large number of times.

In 2004, an estimated 62% of all email was attributed to spam, according to the anti-spam
outfit Brightmail (2004). It costs money for ISPs and online services to transmit spam, and

these costs are transmitted directly to subscribers (Scott Hazen Mueller, 2009). The European
Union's Internal Market Commission estimated in 200 I that "junk e-mail" cost Internet users

1 It is widely believed the term spam is derived from the 1970 SPAM sketch of the BBC
television comedy series "Monty Python's Flying Circus". The sketch is set in a cafe where
nearly every item on the menu includes SPAM luncheon meat. As the waiter recites the
SPAM-filled menu, a chorus of Viking patrons "SPAM, SPAM, SPAM, SPAM ... lovely
SPAM, wonderful SPAM", hence "SPAMming" the dialogue. The excessive amount of
SPAM mentioned in the sketch is a reference to British rationing during World War IL SPAM
was one of the few meat products that avoided rationing, and hence was widely available.

19 1P age

€10 billion per year worldwide (Europa press release, 2001). The California legislature also
found that spam cost United States organizations alone more than $13 billion in 2007,
including lost productivity and the additional equipment, software, and manpower needed to

combat the problem (Spam Laws, 2003).

Spammers have been documented as stealing other site's domain names via forgery, both

Reply.Net and Concentric Networks have been hit this way. Indeed, Outernet, Inc. was
actually attacked by one such spammer (Scott Hazen Mueller, 2009). Spam can also be used

to spread computer viruses, Trojan horses or other malicious software and all of these factors
have forced changes within legislation around the world. In 2003, the UK made spam a
criminal offence to try to stop the flood of unsolicited messages. Under the new law,

spammers could be fined £5,000 in a magistrate' s court or an unlimited penalty from a jury.
However the British measures are not as drastic as other anti-spam laws. Italy have imposed

tough regulations to fine spammers up to 90,000 Euros and impose a maximum prison term
of three years and in Australia spammers may be fined up to $1 .1 million a day. On May 31 ,

2007, one of the world's most prolific spammers, Robert Alan Soloway, was arrested by U.S.
authorities. Described as one of the top ten spammers in the world, Soloway was charged
with 35 criminal counts, including mail fraud, wire fraud, e-mail fraud, aggravated identity
theft and money laundering. Prosecutors allege that Soloway used millions of computers to

distribute spam during 2003 . This is the first case in which U.S. prosecutors used identity
theft laws to prosecute a spammer for taking over someone else's Internet domain name
(Wikipedia 2009).

Andrej Bratko is well known within the field of text categorization for his research on spam
filtering whether it be for using compression models such as PPM (2005a, 2006a, 2006b,
2006c) or character-level Markov Models (2005b). As within this thesis, Bratko (2006)
dynamically updates the training models when processing the testing text and he has also
found that in the case of spam detection, pre-processing steps are often exploited by
spammers in order to evade filtering.

2.2.4. 7 Sentiment Classification

Sentiment classification is the process of computationally determining whether a document is
labelled as a positive or negative evaluation of a target object. The target object may be a
film, book, album etc as long as the author has a positive or negative view on the subject. An

opinion may also be neutral but these are generally uncovered by this area of research. There
is not a great deal of evidence of research within this field when compared to others such as
topic, gender and style classification, however, this area of research has become popular in
this decade. This is due to the rapid growth in on-line discussion groups and review sites and
possibly also because it seems to be a challenging area of research (Pang et al., 2002) with
studies not achieving the high accuracies that can be found within the other areas of text

categorization.

Important current applications of this area include data and Web mining, analysis of biogs or
market trends and consumer opinions (Dave et al., 2003) and the automatic filtering of

20 IP age

abusive messages (Spertus, 1997). Other possible uses may be for politicians to track public

opinion, reporters to track public response to current events and for stock traders to track
financial opinions (Turney, 2002). Many review sites allow the option to include a rating as

well as your written opinion (Amazon, Rotten Tomatoes etc), this allows researchers to easily
generate a corpora with which to work with by for example assigning the number of stars

given as a rating for the body of text.

The research within this area has so far fallen into two categories, the sentiment orientation of
the document by comparing the number of positive words or sentences against the number of
negative ones (Turney, 2002; Kennedy & Inkpen, 2005; and more recently Miyoshi &
Nakagami, 2007); and the second is using machine learning techniques (Mullen & Collier,

2004; Pang et al., 2002). Gamon & Aue (2005) improved the results of a sentiment

orientation classifier by combining it with the bootstrapping approach described by Nigam et
al. (2000). Read (2005) demonstrated that in order to get reasonable results, the training and
testing data must not only be relevant with regards to topic, but the time-period and domain
are also important. He also investigated the use of emotional symbols (i.e. smilies) as they
have the potential to be independent of domain, topic and time.

An interested note which also demonstrates the difficulty of the task follows a statement by
Pang et al. (2002) that it is essential to also distinguish which sentences within the document
are relevant to the item being reviewed. As an example "I hate the leading actor in this film, I
think he is boring. He has no talent and normally stars in boring films of which I have hated
them all. Yet I love this film!" has a majority of negative words and sentences yet a human
can easily tell that the review of the film is a positive one. This is because the majority of the

text is not relevant to the movie but to the actor himself.

2.2.4.8 Gender Classification

Linguists have attempted to identify differences in linguistic styles between males and
females for decades (Trudgill, 1972; Lakoff, 1975; Labov, 1990; Biber, 1995; Schiffman,
2002). Differences were originally found within speech but researchers have since also
investigated the possibility of applying these findings to determine differences within written
text. This has indeed brought researchers to test these theories within the field of text
categorization, to see if it is possible to determine whether the author of a document is male

or female.

Biber (1995) tem1ed females writing style as " involved", they are more likely to specify
relationships among the people and things within their text. The writing style of males is

termed as being "informative", they are primarily concerned with specifying the properties of
objects as well as using a greater use of swearing (Rayson et al., 1997). These findings have
since been supported by a number of other researchers (Mulac et al., 2001 ; Pennebaker et al.,

2003; Groom & Pennebaker, 2005). It is clear to see that there are indeed a number of
applications of text categorization techniques and the exact techniques and successes of each

shall be highlighted within later sections.

21 I Page

2.2.4.9 Others

Another application of text categorization is within text understanding systems.

Categorization may be used to filter out documents or parts of documents that are unlikely to
contain extractable data, without incurring costs of more complex natural language
processing, Dahlgren et al. (1991). Finally, the categorization itself may be of direct interest

to a human user, as in judging whether a threatening letter against a government official
signifies real danger, Hardt (1988).

2.3 Text pre-processing techniques

Pre-processing steps can reduce the storage space required, memory requirements and
improve classification time, but at what cost? It has been shown that performing pre­

processing steps on the documents may harm classification (Yu, B. 2008 and Bratko, A.
2006). Bratko explained that in the case of spam detection, pre-processing steps are often
exploited by spammers in order to evade filtering.

Often it is the case that after pre-processing steps have been applied, unless the steps were
thoroughly explained, it can be impossible to reproduce the same experiment at a later date

for comparison or verification. This problem is reduced in the case of stream-based methods
as the original data is often unmodified. The pre-processing steps often used within feature­
based techniques which are omitted from stream-based and text compression techniques are
discussed here for completeness:

2.3.1 Tokenization

The goal of tokenization is to separate text into individual words, i.e. "We're going to be

late." becomes "We ' re going to be late .". The word splitter (Word Splitter, 2009) is a
simple script that reads plain text and outputs the words with spaces between every word and
punctuation mark, and this format is needed by tools such as POS (Part of speech) taggers.

2.3.2 Feature Selection and Extraction

Feature selection chooses which features should be used in classification. In text
categorization, features are often the frequency of words appearing in a document. By
reducing the feature space, it is not only known to increase the efficiency of the training and
test processes, but can also reduce the risk of over fitting the model to data. Feature extraction

computes the chosen features from an input document. In statistical classification, features
are represented in a numerical vector, which is then used by the classifiers. Feature selection

involves stop word removal, stemming and term selection (Toman et al. 2006).

2.3.3 Stop word removal

Words used in text indexing and retrieval are called terms. According to the term
discrimination model (Salton, G. 1975), moderate frequency terms discriminate the best.

22 I P age

High frequency words, which are called stop words, have low information content, and
therefore have weak discriminating power. Example words are as 'a' , 'the' , 'I', 'he' , ' she',

' is ', ' are', etc. and are removed according to a list of common stop words such as the one by
Van Rijsbergen (1979).

2.3.4 Stemming

Stemming reduces morphological variants to the root word. For example, "removes",
"removed", and "removing" are all reduced to "remove" after stemming. This relates the
same word in different morphological forms and reduces the number of distinctive words.

The Porter stemmer (Porter, 1997) is a commonly used stemmer as used by Frakes (1992)
and its implementation in many different programming languages can be found at Martin

Porter (2006).

2.3.5 Term Selection

Even after the removal of stop words and stemming, the number of distinct words in a

document set may still be too large, and most of them appear only occasionally. In addition to
removing high frequency words, the term discrimination model suggests that low frequency
words are hard to learn about and therefore do not help much. They should be removed to
reduce the dimensions of the vector space as well.

2.4 Data Sets

The availability of datasets allow standard benchmarks and encourages research by providing
a setting in which different research algorithms could be compared against each other, and in
which the best methods and algorithms could stand out. As in other tasks, there are several
common data sets in text categorization. In this section a number of these that shall be used
within our later experiments are described, and though there are many more, the following
are widely used and more suitable for comparing results. More detailed information regarding

the distribution of classes and file sizes can be found in Chapter 6.

2.4.1 Reuters-21578

Reuters-21578 is the most widely used data set for text categorization. All the texts in this
data set were collected from the Reuters newswire in 1987. The original dataset contained
22,173 documents, however, 595 were later found to be exact duplicates and so these were

removed. The formatted version submitted by David Lewis therefore contained 21 ,578
documents. Although the original data set contains 21,578 texts, researchers use a data­
splitting method to extract a training set and a test set. The most popular partition (Sebastiani
, 2002) is the ModApte split (available at The UCI KDD Archive, 1999) which contains
12,902 documents with a fixed splitting between test and training data, 9603 training texts
and 3299 test texts. This is the most used version as confirmed by Sebastiani (2002).

There are a couple of variants of this version used. One set contains 115 categories, known as
Reuters 115 (Rl 15), and according to Sebastiani (2002) are the categories with at least one
training document (Alessandro Moschitti, 2008). The other, known as Reuters 90 (R90) (also

23 IP age

available from Alessandro Moschitti, 2008), contains 90 categories. According to Joachims
(1997), they are the categories containing at least one training and one testing document and

now contains 9,598 documents. The majority of excluded documents are assigned to more
than a single category and is therefore not useful for our study as we are only concerned with
single label classification as mentioned earlier.

2.4.2 Reuters-10 (RlO)

In order to obtain the Reuters 10 categories split (known as RI 0), we simply select the ten
largest categories from the remaining documents, i.e. Earnings, Acquisition, Money-fx,

Grain, Crude, Trade, Interest, Ship, Wheat and Corn.

2.4.3 RCVl-Author

RCV I texts are short and these small samples per author can offer a greater challenge. The
RCVI corpus has already been used in author identification experiments, Hunnisett &

Teahan (2004) selected the top 50 authors (with respect to total size of articles) and the same
subset is used within our experiments.

2.4.4 20-Newsgroups

20-Newsgroups is also a common data set used for text categorization. Although 20-
newsgroup is less popular than Reuters-21578, it has been used by many researchers (e.g.

Baker and McCallum (1998), McCallum and Nigam (1998), Joachims (1997)). This data set
consists of Usenet articles collected by Ken Lang from 20 different newsgroups. The
collection consists of 19974 non-empty documents evenly distributed across 20 categories.

The version used in experiments reported in this dissertation is J. Rennie's version in which
duplicate postings were removed. This subset contains 18828 documents.

The articles in this data set are postings to some newsgroups, unlike Reuters-21578 are taken

from newswire. The categories also do not have multiple category labels as with Reuters
21578. In addition, the category set has a hierarchical structure within confusable clusters
(e.g. "sci.crypt", "sci.electronics", "sci.med" and "sci.space" are subcategories of "sci
(science)").

2.4.5 Gutenberg-10 (Gu-10)

This dataset, used in experiments by Thaper (200 I) and Marton et al. (2005) consists of 40
documents, 4 works of each of 10 well known authors, all of which have been taken from the
Gutenberg Project. The works are from the following authors, Charles Dickens, Daniel
Defoe, Emerson, Jane Austen, Kiplking, Shakespeare, Shaw, Twain, Wells and Wilde.

2.5 Evaluation Techniques

Evaluation is of fundamental importance to IR research. It is important to be able to measure
the success of the research and be able to compare the results against past research. It is also

24 IP age

just as important to evaluate in a uniform way, as it is becomes difficult to compare results

unless the research being compared is measured in the same way. The most common

evaluation techniques are discussed in this section.

2.5.1 Contingency Table

Consider a system that is required to make n binary decisions, each of which has exactly one

correct answer, namely yes or no. The result of n such decisions can be summarized by a

contingency table, as shown in table 2.1. Each entry in the table specifies the number of

decisions of the specified type. For instance, a is the number of times the system decided

true, and true was in fact the correct answer. Common metrics for text categorization

evaluation are calculated based on the following contingency table and are discussed here.

True is Correct False is correct

Assigned True a

Assigned False C

Table 2.1 Contingency Table.

2.5.2 Precision

b

d

Precision is the proportion of items assigned to a category which are true members of that

category. It is a measure of the number of true positives and is defined as a/(a+b).

2.5.3 Recall

Recall is the proportion of correctly classified examples of a category. It 1s defined as
a/(a+c).

2.5.4 Accuracy

This measures the proportion of all decisions that were correct decisions. It is defined as
(a+d)/(a+b+c+d) .

2.5.5 Fl-Measure

It is possible to modify the classifiers to obtain either a higher recall or precision and the F 1-

measure combines both precisions. It is defined as 2rp I (r + p) where r and p are recall and

precision respectively.

2.5.6 Macro-averaging / Micro-averaging

As F-measure is computed for each category, in order to evaluate its performance across all

categories, the F-measures must be averaged. There are two conventional methods, namely

macro-averaging and micro-averaging (Lewis, D., 1991). Macro-averaged performance

scores are computed by first computing the scores for the per-category contingency table and

25 IP age

then averaging these per-category scores to compute the global means. Micro-averaged

performance scores are computed by first creating a global contingency table whose cell

values are the sums of the corresponding cells in the per-category contingency table, and then

use this global contingency table to compute the micro-averaged performance scores.

There is an important distinction between macro-averaging and micro-averaging. Micro­

averaging performance scores give equal weight to every document, and is therefore

considered a per-document average. Likewise, macro-average performance scores give equal

weight to every category, regardless of its frequency, and is therefore a per-category average.

The number of documents in each category within the datasets used for the experimental

results contained in this thesis varies considerably. Because of this, micro-averaging, a per­

document averaging is more suitable for the results in this thesis.

2.5. 7 The difficulty of comparing results

It is worth mentioning the importance of releasing accurate data as incorrect data leads to

difficulties when attempting to compare results with that of previous experiments. The lack of

standard data collections is a problem that has been discussed by Yang (1999) and is still a

problem to this day as it is possible for experiments to use the same corpora but results can

differ greatly when different training and testing splits are used. Similar problems have

occurred with published research within the sub-field of stream-based categorization. Teahan

and Harper (2001) used a different set of categories from 20Newsgroups based on the size of

the training data, but this was misinterpreted by Marton (2005), who then used these

categories as though it was a known subset. The files contained within each split of all

experiments are listed in the attached DVD so that all experiments can be accurately

repeated.

It is important to note that inseparability on some Reuters categories is often due to dubious

documents or obvious misclassifications of the human indexers. An important discovery is

that within all 155 categories, 984 contained little more than the words "Blah blah blah". The

same was also true for 719 of the files when tested on only the top ten categories.

A simple experiment on this dataset showed that there are still many duplicates located within

the Reuters dataset and supports findings by Khmelev and Teahan (2003). Within the

collection of all 115 categories, a total of 4381 duplicates were found, over 32% of the total

number of files . 1183 of these were testing files and 3198 were training. Duplicates can also

be found once all but the top ten categories have been removed from the collection. In fact

over 19% of the remaining files are still duplicates, and these are found only by comparing

against the other categories within the top ten. 475 of these are testing files and 1447 are

training files.

The Newsgroups corpus is also not without problems as the files within the corpora do

contain a significant amount of redundant data, i.e. text representations of attached files such

as images and archives. Ideally this information should be removed, however, as no mention

of this has been found previously it has been decided to not alter the contents of the files so

26 1 Page

that the experimental setup can be as correct as possible with regards to mirroring previous

experiments.

If we are to effectively evaluate the performance of techniques in the future, duplicates

should be removed, and files containing redundant data i.e. not much more than "blah blah
blah" or file representations of attachments should also be removed. It would also be
beneficial to have the 'cleansed' corpora available in a central location with the number of

files and the sizes of each listed so that these values are static. This would allow for more
effective comparison between research techniques and would remove ambiguity when
attempting to reproduce past experiments by others. In a truly ideal situation, the results of all
experiments would also be held in one place with a full description of any modifications or

preprocessing that was performed as this would solve the issues raised by Yang (1999).

2.6 Feature-based Categorization

Feature based classifiers act upon the occurrence of words or character sequences. This

approach often relies upon extracting these sequences from within the text and pre-processing
steps such as those mentioned in 2.3 are used in order to reduce the complexity of the search
space. Feature-based approaches, although the predominant approach in the literature, are not

the focus of this dissertation and shall therefore be discussed in less detail than stream-based
approaches.

2.6.1 Naive Bayes

Naive Bayes classifiers have long been used for text categorization tasks. A Bayes classifier
is a simple probabilistic classifier based on applying Bayes' theorem and makes strong
assumptions that features are independent given the class. Although more sophisticated
models outperform Bayesian ones, these models are popular due to their low computational
costs. The effectiveness of the models have been studied by Sahami(l 996); Lewis (1998);

McCallum and Nigam (1998) and Yang and Liu (1999).

2.6.2 N-Grams

An n-gram in the context of natural language processing can refer to either a contiguous
segment of n-words or character strings of a fixed length. A document may be categorised on

by its n-gram frequency list, a list of n-grams ordered by the number of occurrences in the
given document. Character n-grams have been proved to be quite effective for author
identification problems (Kjell et al., 1994; Peng et al., 2003; Juola, 2004; Marton et al.,
2005) and as tokenization is not needed when extracting character n-grams, the approach is
also language independent. They can, however, require much more computing power and
time than word based approaches if attempting to calculate for multiple lengths, and n-grams
of fixed length are often used in order to prevent this.

271 Page

2.6.3 SVM

Support Vector Machines (SVMs) are learning systems that analyze data and recognize

patterns and was first introduced by Boser et al. (1992). In the area of text classification

SVMs separates categories within a hypothesis space and any unclassified texts that are

placed within the space are categorised as belonging to the category to which it is closest.

This approach has been shown to outperform many other systems in a variety of Machine

Learning applications and is popular due to its efficient performance estimation (Joachims,

2002).

2. 7 Stream-based categorization

In comparison to tokenization/feature based classification methods, a stream-based approach

is similar to text compression methods in that they operate directly on the entire text

sequence. Stream-based text categorization, as with compression methods, considers the text

being categorized as a stream of symbols, which differs from the traditional feature-based

approach which relies on extracting features from the text (Thomas and Teahan, 2007). It is

also able to omit pre-processing steps such as tokenization, stopword removal and stemming
altogether.

A common step between both methods is data collection. In order to objectively compare
different text categorization methods, a standard data collection should be used in the

evaluation experiments. However, this appears to be a serious problem. There are several

different collections, and even when the same collection is chosen, there are many alternative

ways that the data in the collection are used for training and testing.

The remainder of this chapter will describe existing stream-based methods that have

previously been described in the literature. These will be used in the experimental results

detailed in subsequent chapters.

2.7.1 C-Measure

Hunnisett & Teahan (2004) defined a simple frequency-based measure for text categorization

called the "C-Measure" that uses the sum of the number of common substrings (or

"contexts") of a fixed length between the training and test documents represented as text

strings. Regardless of its simplicity, the technique has been proven to outperform a number of

state of the art techniques (Hunnisett & Teahan, 2004). The results found in Hunnisett &
Teahan (2004) suggest that the classification performance of context-based classifiers

increases with a higher order character context. Hunnisett & Teahan (2004) did express the

need to investigate this claim for higher orders but were unable due to the memory
constraints of their software.

28 IP age

Formally, let the set of symbols in the testing text T be x1 ... xN and k be the order of the

model (i.e. the fixed context length used for the model). Let di (X) = 1 if context Xis present

in both the training text Sand testing text T, 0 otherwise. Then the C-Measure is defined as:

ITI

ck(TIS) = L di(xi-k+i, ... ,xi). (2.1)
i=k

Here, for the definition of ck(TIS), the standard notation from probability theory is being

used to indicate that the C-Measure for a given testing document Tis being calculated with

respect to training document S - i.e. (TIS).

In order to try to determine the correct class of text T among m classes represented by texts

Si, ... , Sm, Hunnisett & Teahan (2004) suggested that the source be guessed using the

following estimate:

Example 1

Consider the training string S = "abracadabra•" and testing string T = "abrabra•". The count

C4 for substrings of length 4 is 3 as the testing substring "abra" appears twice within the

training string and the substring "bra•" appears once.

The ck counts are then normalized to obtain the C-Measure, with minimum and maximum

values between 0 and 1, as follows:

Example 2

The normalized C-Measure for substrings of length 4 using the previous example is obtained

as follows:

3
C4(TIS) = (

2
) = 3/9 ~ 0.33333.

1 -4+ 1

2.7.2 R-Measure

Khemelev & Teahan (2003) defined the R-Measure as a number between 0 and l

characterising the repetitiveness of the document. The R-Measure can be found by

normalising the sum of the lengths of all substrings that appear in both the training files and

test files. Suppose that the collection consists of m documents, each document being a string

Si = Si[l.. ISd], where Si[i .. ISi] is the ith suffix of document S. A squared R 2-measure of

document T with respect to documents S1, . .. , Sm is defined as:

291 Page

(2.3)

where l = ITI is the length of document T, T[i ... l] is the ith suffix of document T and
Q (TI Si, ... , Sm) is the length of the longest prefix of S , repeated in one of documents

S1 , ... , Sm. For example, let us take T = "cat sat on" with T1 = "the cat on a mat" and T2 = "the
cat sat". Then:

2
R

2 (TII'i,T,)= ()((7+6+5+4+3)+(5+4+3+2+1)),:::0,727272
- lOx 10+1

with (TIT1 , T2) = .J R2 (TIT1 , T2) :::::: 0.852802 . Notice in the above formula that the sum

consists of two parts, (7+6+5+4+3) from the repetition of "cat sat" = T[l ... 7) and

(5+4+3+2+1) from "at on"= T[6 ... 10).

The measure was originally designed to detect plagiarism and duplicates within a text
collection; however, Khemelev & Teahan also used the measure to see whether or not test
documents had been correctly categorised.

2. 7 .3 PPM (Prediction By Partial Matching)

The PPM algorithm was first published by Cleary and Witten (1984) and though PPM is best
known for text compression, it is also a highly effective technique when used for text

categorization .PPM is a well performed compression algorithm that effectively uses a
language model to estimate the probabilities of each symbol in the text (Teahan, 1998). It
does this by blending the probability estimates for different length contexts by a back-off
technique known as the escape mechanism. Bratko and Filipic (2005) were able to show that
the PPM compression model is able to outperform word-based spam filtering methods and
did so using adaptive models as shall also be investigated. They share the common goal of
attempting to devise a strategy which would automatically determine the order of the PPM
model that optimizes classification performance and found that an order-6 model performed
best typically but that there was a need to prune the model (as has been found and is

discussed in section 4.3.3).

Two well performed adaptive PPM models shall be used during this thesis, namely PPMC
and PPMD (these use escape method C and D respectively (Teahan, 1998)). These models
blend different order models by using an escape mechanism. These variants of Cleary and
Witten's original design are based on improvements described by Moffat (1990), with PPMC

now being the model of choice in most cases. A technique known as exclusions removes the
counts for symbols already predicted at higher orders (i.e. context lengths). The model is
adaptive as it dynamically updates the counts used by the language model as the text is
processed sequentially. An alternative static variation primes the model from some training

text, and then suspends updating of the model when processing the testing text. Formally,

30 I r age

given a document T of length n symbols and a model PL for a particular category L, then the

cross entropy is calculated as follows:

1.e. the average number of bits to encode the document using the model. XdX1 ... Xn-l

denotes the probability of symbol Xi being encoded for each context. The approach taken by

Teahan (1998) is based on this calculation - stated simply, each testing text is compressed

against the category models, and the category is chosen from the one used to train the model

that achieves the best compression. This has proven to be a highly effective technique often

achieving accuracy results competitive with other text categorization techniques. 1n practice,

PPM uses a Markov approximation i.e. assumes a fixed order context; order 5 has been found

to be competitive on most texts:

(2.5)

By using frequency counts the model is able to estimate probabilities for each context and

these counts are updated adaptively as the text is processed sequentially, with the occurring

symbol being encoded using the prediction value of the encoding model. Should the model

discover an unseen symbol, the model encodes that this event has occurred and then escapes

to a lower order model and continues, attempting to encode the current symbol at a lower

order. Should the symbol then be matched, the context length may again grow until either the

maximum context length is reached, the end of the stream is reached or another unseen

symbol is discovered, forcing us to again escape to a lower context length. A detailed

example of how PPM is used to perform encoding, prediction and classification of character

streams is provided in Chapter 4.

2.8 Protocols

Marton et al. (2005) provide an overview of three compression-based approaches in the

literature to text categorization which they called SMDL (for standard minimum description

length), AMDL (for approximate MDL) and BCN (for best-compression neighbour). They

characterized many of the prior compression-based approaches under these three labels. We

seek to re-characterize these approaches (which we call "protocols") in the following way, as

shown in Table 2.2. AMDL and BCN both dynamically update the model as they employ the

"off-the-shelf ' technique to calculate cross-entropy. The approaches adopted by Bratko et al.

(2006) for PPM spam filtering also dynamically update the training model when processing

the testing text. On the other hand, SMDL and AMDL concatenates all the training data for

each class, significantly reducing the number of calculations required compared to BCN

which produces calculations for each training document separately.

31 I Page

Static Model Dynamic Model

Concatenation of training Protocol I Protocol II

documents in the same class
(SMDL) (AMDL)

Non-concatenation of training Protocol IV

documents in the same class Protocol Ill
(BCN)

Table 2.2: Protocols for stream-based text categorization and contained within brackets
are where each approach used within Marton et al. (2005) resides.

If we tabulate these two features - static versus dynamic models (see section 4 for examples

of these models being implemented); and concatenation of training documents in the same

class versus non-concatenation - it is quite clear that a fourth protocol presents itself (labelled

as Protocol III in table 2.2). This protocol has been partially examined by Hunnisett (2010)

with inconclusive results.

It is not clear which of these protocols is the most appropriate for text categorization and that

was a major motivation for discovering the results reported in Chapter 6. Although the

dynamic protocols II and IV are well motivated from an information-theoretic perspective,

the following reasoning highlights some problems with the dynamic approach. Consider what

happens at the interface between the two sequences; that is, when the learning continues into

the testing sequence after the training sequence has been completed. Consider the case when

the languages of the testing and training documents are clearly distinct and independent, for

example, as when the languages being tested for are the natural languages English and Welsh

(or English and French). There will be some common English/Welsh or English/French
sequences in both sequences, but comparatively few compared to the length of the texts, and

usually there is no mechanism for the learning algorithm to disambiguate between the

different languages (i.e. a combination of both languages is being learnt) . For this reason, it is

unclear whether the co-adaptation of both the training and test sequences is desirable in these

cases. Similarly, concatenation of training documents has merits as it maximizes training

data, and from an information theoretic point of view, one can argue that documents in the

same category can be considered to be from the same language source. But with non­

concatenated documents, ranking across all documents will ensure that only the best match of

the testing document out of all training documents is used to provide the category estimate.

Chapter Discussion

This chapter bas reviewed important concepts within the field of text categorization. The

amount of uncategorised data in digital format is continuing to grow and text categorization

techniques have good success rates at categorising this data. This chapter has shown that

there are indeed a number of applications of text categorization techniques, varying from

indexing to filtering through to identification of language or even an author of text. The

32 IP age

details of these techniques and successes of each have also been highlighted within this
chapter.

The more common feature based approaches perform pre-processing techniques which

consumes both time and resources, but it has been shown that stream based approaches do

not. Some stream based approaches which already exist have been discussed and though the

research has so far been limited in this area, the results have been promising and therefore

warrant further investigation. One of the problems has been that the current implementations

of the algorithms require additional resources and the implementation of these using suffix

trees as an alternative method are discussed in the next chapter.

Some concerns have also been noted. Datasets, pre processing steps and evaluation

techniques have been discussed, and although these are all well known among the

community, problems still arise. Lack of details concerning the experimental setup coupled

with the proven existence of inaccurate figures leads to the inability to perform true

comparisons between each of the many number of text categorization.

33 IP age

Chapter 3

Extensions for stream based
models

Chapter Summary

The purpose of this chapter is to explain the new techniques which have been explored during

the time of the study. The three stream-based methods that are examined within this thesis are
C-Measure, R-Measure and PPM. This chapter discusses all new work and improvements
relating to these models and explains the extensions found for each of the algorithms. For C­

Measure the substring lengths that can now be calculated are detailed, for PPM it is shown
how the calculations can be performed by using the suffix tree and for R-Measure, all new
variants of the original algorithm are detailed.

Summary of each section

Section 3.1 discusses the extensions of R-Measure and its variants. Section 3.2 discusses all
new work relating to the C-Measure and describes both static and dynamic cases. Section 3.3
describes the modifications of two PPM variants, namely PPMC and PPMD, how they have
been implemented and the differences when dealing with update exclusions, no exclusions as
well as static or dynamic models. Section 3.4 details the time complexities of processing the

stream-based models using suffix trees.

3.1 Extensions of R-Measure

The R-Measure was defined by Khemelev & Teahan (2003) using the lengths of the common
substrings rather than their counts but it can also be defined based on a summation of the ck

counts as follows:

R(TIS) = r(TIS)

½ ITl(ITI + 1)

The following straightforward analysis reveals the two are equivalent. If the two substrings

denoted by the sequence xi ... xi+k-l are common between T (testing string) and S (training

string), they will have their first character xi also common - this corresponds to the c1 counts

across all common substrings between T and S, and contributes + 1 to the overall sum.

Similarly, the common prefix xi, xi+l corresponds to the c2 counts and contributes a further

34 I Page

+ 1 to the overall sum. Further common prefixes of increasing length each contribute + 1 to the
overall sum until the length n of the sequence is reached. Essentially the contribution to the

ck counts is exactly the same as the lengths of the common substrings, and therefore the R­

Measure can be equivalently defined either by counts or lengths.

Example 1

Consider the training string "abracadabra•" again. For case la below, let the test string be T =
"abrabra•", for lb be "abracafabra•" and for le be "abradacabra•". The ck and r counts for
these cases are as follows:

c1 = l0,c2= 7, c3= 5, c4=3,cs= l ,c6 .. . 8= 0 la
r = 10 + 7 + 5 + 3 + I = 26

CI = 11 , C2 = 9, C3 = 7, C4 = 5, C 5 = 3, C6 = 1, C7 ... 12 = 0 1 b
r = 11 + 9 + 7 + 5 + 3 + 1 = 36

c1 = 12, c2= 11, c3= 7, c4= 3, cs= 1, c6 ... 12= 0 le
r = 12 + 11 + 7 + 3 + 1 = 34

Example 2

Consider the case where the training string and test string are the same. In this case, all the ck

counts and r count have the maximum values:

ITI 11'1
rmax L cl; 'ax = L (ITI- k + 1)

k - 1 ·- I

ITI
ITl2 - L k + ITI

k-1

rmax is used to obtain the normalized R-Measure, with a minimum and maximum value
between O and 1.

To date, only the "complete" R-Measure has been defined, which is of course the sum of the
C-counts. However, further cumulative r counts can be obtained by counting only substrings

whose lengths are~ to some minimum q, as follows:

IT I
r~q(T I S) = I: ck(T I S).

k=q

Here r = r ~1 . The series r ~1 , r~2, ... , r ~ITI decreases with r~k > r~k+l except when ck = 0
then all of the remaining r~k+l,k+z, ... ,ITI = 0. Only when T = S does r 1r1 = 1, otherwise

r1r1 = 0.

35 IP age

Example 3

Consider the training string "abracadabra•" again. For case 3a below, let the test string be T=

"abrabra•", for lb be "abracafabra•" and for le be "abradacabra•". The ck, r counts and r'?:.q
values for these cases are as follows:

c, = 10, c2 = 7, c3= 5, c4= 3, cs = 1, c6 ... s= 0
r= 10 + 7 + 5 + 3 + I = 26
r?:2 = 16, r '?.3 = 9, r :::4 = 4, r:::s = 1, r:::6,7,8 = 0

c, = ll,c2= 9,c3 =7,c4 =5,cs= 3,c6 = l ,c1 ... 12=O
r = 11 + 9 + 7 + 5 + 3 + I = 36
r'?.2 = 25, r :::3 = 16, r :::4 = 9, r :::s = 4, r :::6 = I, r:::1,s,9,I0,11 ,12 = 0

c,= 12, c2= ll , c3=7, c4=3, cs= l , c6 ... 12=O
r = 12 + 11 + 7 + 3 + 1 = 34
r:::2 = 22, r :::3 = 11, r :::4 = 4, r :::s = 1, r:::6,7,8,9,10,11 ,12 = 0

3a

3b

3c

Alternatively, rsq counts can be obtained by counting only substrings whose lengths are ~ to

some maximum q, as follows:

q

r~q(T I 8) - I: ck(T I S).
k=l

In this case, r = r slTI· The series rsi, rs2, •.• , r slTI increases with rsk < rsk+l except when
ck = 0 as all remaining counts are equal, i.e. rsk = r sk+l,k+z ,ITI·

Maximum values can also be calculated to normalise the R'?:.q-Measures and Rsq-Measures as

follows:

R ~q(T I S)
r~q(T I S)

- ------------
½ (IT I - q + l)(IT I - q + 2) .

- 1'~q(T I S)
R~q(T I S) - q IT I - ½ (1 - q)q.

The R-Measure takes into account all substrings that are common between T and S. However,

in certain text categorization domains, such as text containing a large proportion of natural

language, the shortest substrings are essentially poor for discriminating between many
different T and S since these short substrings are common across all strings. The q threshold

used in the R'?:.q-Measure can be used to eliminate these strings from the calculations.

361 pa g C

Indeed, Hunnisett & Teahan (2004) found in authorship experiments with the Ck-Measure
that much longer substrings performed better at categorization compared to shorter ones -

they found that k = 13 performed best but were unable to check beyond this because of

memory constraints. It is possible that substrings of a greater length may indeed improve
categorization performance and thanks to the toolkit discussed in the next chapter, much
greater substring lengths can now be examined. In contrast, compression-based language

modelling approaches using variable order Markov models base their measures only on the
shorter substrings and eliminate the longer ones from their calculations in a manner similar to

Rsq-Measure, most probably due to the exponentially large number of states for higher-order

models. It is not clear which approach is preferable, or why there is a variance between the

count-based and compression-based approaches. Part of the motivation behind the
experiments in this thesis is to determine experimentally which measure performs better or

whether different measures perform better in different domains.

3.1.1 R-Ranges is Rs q

A final R-Measure can be calculated that summates ck counts where i :::; k :::; q where i and q
are the desired minimum and maximum substring lengths respectively. As stated above, there
are differences in opinion as to whether shorter or longer substrings are better at

categorization and therefore it seems useful to also investigate the summation of counts
between ranges of values. This will allow us to investigate results where both the shortest and

longest substrings are ignored and it would be interesting to see what ranges achieve the best

results and if the results are better than R~q-Measure or Rsq-Measure, attempt to answer why.

The R-Range measure is defined as follows:

q

ri ... q(TIS) = L ck(T IS) = rsq - rsi-1·

k=i

3.2 Extensions of C-Measure

As mentioned in 2.7.1 , Hunnisett & Teahan (2004) were only able to calculate counts up to
c13 . The new toolkit mentioned in chapter 5 is now able to surpass this point, though results

are limited to c50 in order to calculate results within reasonable time on a relatively standard

desktop computer with 1 GB of memory. It is possible to calculate results past this point but it
will be shown that it is not beneficial to do so as substrings of great length are not useful for
categorization and should only be considered for the task of duplicate document detection.

The increase in performance has been achieved through a number of factors including the use
of suffix tree models, pruning, and other techniques that are discussed in chapter 5.

The number of substrings of length k that are found within both the training document S and
testing document Tis defined as:

37 I P age

ITI

ck(TIS) = L di(xi-k+l• ... ,xJ. (2.1)
i=k

where k is the order of the model and C(xi - k + 1 ... xdS) = 1 if context xi - k + 1 ... xi
(all substrings) are present within the training text and is equal to O if all substrings are not

present.

Example 1

Consider the training string S = "abracadabra•" and testing string T = "abrabra•". The count

C4 for substrings of length 4 is 2 as the testing substring "abra" appears twice within the

training string.

The ck counts are then normalized to obtain the C-Measure, with minimum and maximum

values between O and 1, as follows:

Example 2

The normalized C-Measure for substrings of length 4 using the previous example is obtained

as follows:

2
C4 (TIS) = (l2 _ 4 + l) = 2/9 ~ 0.22222.

3.3 Modifications to PPM

1n order to calculate the compression ratio of a testing file a suffix tree is created that

represents the training model, with the testing file being read as a stream one symbol at a

time. As the symbols from the testing stream are processed, we traverse the training suffix

tree, using the counts of existing nodes in order to calculate the probability of the symbol

occurring at the current context length. With the use of an array of context lengths with

pointers into positions within nodes of the tree, we are able to successfully track the position

of each context length within the suffix tree. As we traverse the current longest context length

and calculate the probability of the current symbol, we also update the position of each of the

lower order pointers (see table 3.1). This is performed as though an unseen symbol was

discovered, as we calculate the probability of the unseen symbol and escape to a lower

context length, whose position is already held in our array. After the probability of each

symbol within the stream has been calculated, the probability of each is then added to the

current total until the entire stream has been processed. The testing file is then attributed to

the model that offers the lowest bit rate, i.e. the highest compression ratio. Table 3 .1 shows a

PPMC model after processing the string "abracadabra" with maximum order of 2.

38 IP age

Order k = 2 Order k = 1 Order k = 0 Order k =-1

Predictions C p Predictions C p Predictions C p Predictions C p

2 2 5 1
ab - r 2 - a - b 2 - - a 5 - - A 1 lAf 3 7 16

1 1
b

2 - Esc 1 - - C 1 - - 2 -
3 7 16

I
d

I
1

I
ac - a 1 - - 1 - - C -

2 7 16

I
Esc 3

3
d 1

I - Esc 1 - - - - -
2 7 16

I 2 2
ad - a 1 - b - r 2 - - r 2 -

2 3 16

I I
Esc

5 - Esc 1 - - Esc 1 - - 5 -
2 3 16

2 I
br - a 2 - C - a 1 -

3 2

- Esc 1
I
- - Esc I

I
-

3 2

d
I

d
I

ca - 1 - - a 1 -
2 2

I I - Esc 1 - - Esc I -
2 2

b
I 2

da - 1 - r - a 2 -
2 3

I I - Esc 1 - - Esc 1 -
2 3

I
ra - C I -

2

I - Esc 1 -
2

Table 3.1: PPMC model after processing the string abracadabra with maximum order
of 2.

39 IP age

3.4 Complexity considerations

Consider the space and time complexities for the text categorization protocols when

implemented using suffix trees. Assume there are K classes, M training documents, and N

testing documents. TypicallyM » N » K. The space and time complexities are dependent on

the size of the suffix trees which are linear with the size of the text. If the suffix trees are

created on demand during categorization, then the space is proportional to the length of the

training and testing text currently being processed. However, consider the case where we

wish to create the suffix trees in advance for all training and testing texts so that these do not

have to be re-created multiple times. The non-concatenated protocols (III and IV)

substantially increase the complexity of the classification experiments as they require the

creation of M + N suffix trees, plus the calculation of an M x N matrix of similarity

judgments; this is opposed to K + N suffix trees plus K x N similarity judgments for the

concatenated protocols (I and 11).

Considering the time complexities, for the frequency-based methods, all C-Measures and the

R- Measure can be calculated simultaneously in a single co-traversal of both the training and

testing suffix trees where non-matching branches are not followed. r p .. . qrequire a further

calculation to compute the different measures for all values of p and q. This can be done by

filling in a ITI x ITI (where T is a testing string) matrix by iterating over p and q but the

worst-case time complexity and space complexity for this is O (T2
) compared to O (T) to

calculate the measures for the other formulas. However, since the series of ck counts does not

change beyond the length of the longest common prefix between T and S (where S is the

training string), the average case is much better, and both the time and space requirements

can be reduced considerably by only calculating counts up to the longest common prefix

length.

Let us now show how c-counts may be calculated for a specific example. Consider the

training string S = "to be or not to be•" and testing string T = " to be not•". After constructing

a suffix tree for each of the strings we navigate through all nodes of the testing tree and

should the character within the testing node exist within the training tree at the same depth,

the count for that depth is incremented by the count of the training node i.e. the number of

times that the current suffix occurs within the training string.

After matching the EOF symbol between both trees at depth 1, C1 would then have a count of

1 as up to this point only a single suffix of length 1 occurs in both strings and this suffix

occurs only once within the training string. As we have reached the end of the current branch

we would move along the nodes of the testing tree at depth 1 until a suffix is matched. The

next suffix to be matched would be ' ' (the space character) and this would again add the

number of times it occurs within the training string to the count C 1. The value is currently one

and as the character appears five times within the training string, the count now becomes six.

As the testing node has child nodes, we then attempt to match the suffixes at increasing

depths within the training tree and for all strings that are matched, the number of times they

occur within the training tree is added to the current total of counts for that depth. Two

characters appear after spaces within the testing string, ' b' and 'n' . Therefore we would first

40 IP age

attempt to match the suffix" b" (space at depth 1 and 'b' at depth 2) within the training tree.
This substring occurs twice within the training string and so C2 now becomes 2. The only
node to appear after the 'b' in the testing node is 'e' so we then attempt to match 'e' at depth

3 on the current branch within the training node. This process continues until we have either
processed all of the testing suffixes and at this time we will have the counts of suffixes for all

lengths between 1 and the length of the longest common substring.

The longest common substring within this example is "to be ", which has a length of 6 and
appears only once within the training text. Using equation 2.1 we can calculate the count C6

as follows:

1
C6 (TIS) = () = 1/14::::: 0.07143.

19 - 6 + 1

We may also wish to calculate the count C2in a similar manner, with the count C2 for
substrings of length 2 being 12 as "to", "o " , " b" and "be" each appears twice within the
training string and "e ", " n", "no" and "ot" each appears once.

12
C2 (TIS) = (l9 _ 2 + l) = 12/18::::: 0.66667.

Chapter Discussion

The chapter has shown new approaches and investigations including explanation of how the

text categorization performance for the stream-based algorithms can be performed using
suffix trees. The investigation of C-Measure for suffix lengths greater than 13 , R2:q-Measures,

R5q-Measures and i :5 R :5 q and having results (see chapter 6) for these measures against

the corpora mentioned in 2.4 is novel and collectively this allows us to compare these
approaches against the current leading techniques.

41 1Page

Chapter 4

Implementation of stream­
based models using Suffix
Trees

Chapter Summary

This chapter offers an overview of suffix trees and how they can be used to implement stream
based algorithms. The chapter also shows how each protocol can be modeled for each of the

algorithms through use of discussion and examples.

Summary of each section

Section 4.1 discusses suffix trees and the advantages of its uses as a representation of a text
document. Section 4.2 shows how each of the stream based algorithms are implemented

using suffix trees and how each protocol is implemented through use of examples.

4.1 Suffix Trees

A suffix tree of a string (or a document should we consider the contents of a document as a
string) is a trie holding all the suffixes of that string. As all suffixes are contained, we can say
that all substrings are also contained. This powerful data structure allows for quick searching
of substrings and also allows for strings to be dynamically added or removed. Suffix trees

have also provided one of the first linear-time solutions for the longest common substring
problem. These speedups do come at a cost as storing a string's suffix tree typically requires
significantly more space than storing the string itself. This approach differs from bag of word

approaches i.e. Nai've Bayes as we allow for phrases and streams of symbols/words/sentences
and do not ignore the order of the sequences.

Weiner first introduced the concept as a pos1t10n tree in 1973 (Weiner, 1973). The
construction was then simplified and the space consumption lowered by McCreight in 1976
(McCreight, 1976), and also by Ukkonen in 1995 (Ukkonen, 1995; Giegerich & Kurtz, 1997).

The first linear-time online construction of suffix tress was provided by Ukkonen and the
construction method is now known as Ukkonen 's algorithm, though it has been criticized for

the lack of space efficiency (Giegerich & Kurtz, 1997).

42 I Page

Suffix trees have been studied and used extensively in fundamental string problems such as
large volumes of biological sequence data searching, i.e. DNA or protein sequences
(Bieganski & Carlis, 1994), approximate string matches (Ehrenfeucht & Haussler, 1988) and

text features extraction in spam email classification (Pampapathi & Levene, 2006). It is
important to note that for most applications a lexicographic trie is unnecessary, however, a

lexicographic trie allows us to take advantage of search techniques i.e. binary search
algorithm, which relies on the contents being sorted to find the desired child node within a

position of the trie.

If the input string S of length n is terminated by a special end-of-string symbol ("•") then the

suffix tree has n + 1 leaves, one for each nonempty suffix of S. The end-of-string symbol is

important as it allows us to find the point at which we are processing the next text within a
concatenated stream. Since all internal non-root nodes are branching, there can be at most

n - 1 such nodes, and n + 1 + (n - 1) + 1 = 2n + 1 nodes in total. The most apparent use
of the suffix tree is as an index that allows substrings of a longer string to be located

efficiently. The suffix tree can be constructed, and the longest substring that matches a search
string located, in asymptotically optimal time (Larsson, 1999). An edge label within the tree
is represented by a pointer into the original string and this ensures that the storage space
required for each node is constant.

A sample suffix tree indexing the string S , 'This is a threat•' is shown below with the counts

of each node displayed to its right. The string S contains 17 suffixes - "•", " a threat•", " is a
threat•"," threat•", "This is a threat•", "a threat•", "at•", "eat•", "his is a threat•", "hreat•", "is

a threat•", "is is a threat•", "reat•", "s a threat•", "s is a threat•", "t•" and "threat•", with the
substrings " " (space) occurring 3 times, "a", "h", "is ", "s " and "t" twice, and the rest
occurring only once.

43 I Page

17

Figure 4.1: Suffix tree representation of string ' This is a threat•'.' " ' is the null string at the root of the tree and ' •' is the end of string
symbol. The counts of each substring are shown to the right of each node.

44 I Page

1

4.2 Implementation

The remainder of this chapter will show how it is possible to compute in reasonable time and
space all the stream-based methods outlined previously (C-measure, R-measure and PPM),
using essentially a single pass through the test data (or its equivalent represented as a suffix

tree). This step, of course, is necessarily an off-line process. Once the best measure is found,
however, it can be used directly to classify unknown test strings and multiple calculations are

no longer necessary.

The C and R-Measure can be computed using thi s data structure in the following way.

Assume that the training string S be the same as the string used for figure 4.3, and the test

string T as that used for figure 4.2. By co-traversing both trees simultaneously in a single

pass, each of the ck counts can be calculated by summing the counts of the common prefixes

between S and T. For example, the common prefixes of length 2 in the order they appear in
figure 4.2 is "a•" (count is 1), "ab" (2), "br" (2) and "ra" (2) so the total sum of counts is 7.

Likewise the common pre'fixes of length 4 are "abra" (2) and "bra•", so c4 = 3. It is a simple

exercise to derive the measures based solely on the ck counts and the length of string

T (which is the count associated with the root node). Note that this application of suffix trees

to computing the C and R- Measures is novel. In fact, Hunnisett & Teahan (2004) were not

able to compute values for Ck for k > 13 using their trie implementation because of memory

constraints.

bra• 1

Figure 4.2: Suffix tree representation of string 'abrabra•'. '"' is the null string at the
root of the tree and '•' is the end of string symbol.

Figure 4.3: Suffix tree representation of the string "abracadabra•".

45 I Page

Concerning the four protocols, there is essentially no difference in the way the suffix trees are

processed between the concatenated and non-concatenated protocols regardless of whether
static or dynamic models are being used, apart from the size of the training text being used to
prime the training suffix tree (i.e. the concatenation can be considered to be a simple pre­

processing step done prior to the creation of the training suffix tree). For the C-Measure

static case, the training and testing suffix trees are co-traversed, and counts of common nodes
are accumulated with C1 being the sum of counts of testing nodes at level 1 that match with

training nodes, C2 being the sum at level 2 and so on, as described above.

The dynamic protocols require dynamically updating the training suffix tree with information
as either the testing suffix tree is being co-traversed (for frequency-based methods), or as the

training plus testing text is processed sequentially (for entropy-based methods). For the
frequency-based methods, the training suffix tree is dynamically updated in two ways: should

a matching suffix be found, the counts of the nodes are incremented; and should a suffix
contained within the testing tree not be found within the training tree, this new node is
created and added. Unlike the static case, if during the traversal, a path within the testing tree

is determined not to be common to the training tree, the traversal of this path will not now be
abandoned. Instead, we continue traversing the path of the testing suffix as all uncommon
nodes along a path are inserted into the training tree until the end of the path is reached.

Consider the training string S = "abrabra•" and testing string T = "xbrx•". The first suffix we

would investigate is "xbrx•" and as this substring does not exist within the training suffix
tree, the path would be dynamically inserted. When we then come to insert the suffix "x •"
later on, rather than it again being ignored as with the static case, it will now match the

character "x" at depth 1 as the substring "xbrx•" was inserted prior.

4.2.1 Static C-Measure

Consider the training string S = "abrabra•" and testing string T = "br•" where • denotes the

end of file character. The series c1 , c2 and c3 (see 2.7. l) are all initialised as value zero and
the value ck will increase as matching substrings of length k are found. The following

diagram displays both the training and testing tree once they have been created and no

categorization has yet been performed.

Figure 4.4: Suffix trees of training file "abrabra•" and test stream "br•".

46 I Page

The following suffixes are contained within the testing string: "br•", "r•" and "•". In order to
determine the similarity between the two strings, we need to determine the number of
common substrings and we do this by simultaneously traversing both trees and determining

how similar the two trees are.

As we are categorising the test string "br■" we shall be traversing each path within its suffix

tree whilst simultaneously traversing the training tree to determine what nodes are common
and at what depth. If during the traversal, a path within the training tree is determined not to

be common to the training tree, the traversal of this path will be abandoned (not in dynamic
case, with dynamic uncommon paths we keep traversing as all uncommon nodes along a path
are inserted into the training tree until the end of the path is reached) and shall continue with

the next until we have attempted to traverse each of the paths within the testing tree.

The first node to be found within the test suffix tree is node "•" at depth 1. The node "•" is

found to be common within the training suffix tree. As the substring of length 1 was found to

be common, the value c1 is now increased by 1 and the ck counts are updated to the

following: c1 = 1, c2 = 0, c3 = 0.

The next node to be found within the test suffix tree is node "br•" and as we are now
traversing a new node within a new path we are again at depth 1. We are therefore looking to

find node "b" at depth 1 within the training suffix tree. We indeed find the node "bra" within
the training suffix tree with the character "b" at depth 1 and the ck counts are updated to the

following: c1 = 2, c2 = 0, c3 = 0.

As we have matched the current character within the test node and have also not yet reached
the end of this node, we shall remain within the testing node "br•" and now search for the

character "r" which is at depth 2. Again the node is matched and so the counts are updated as

follows: c1 = 2, c2 = 1, c3 = 0.

Again we remain within the current testing node but we are now searching for "•" at depth 3
of the cmTent path within the training suffix tree. As the node "•" was not found, the traversal

along this path is abandoned and the counts remain unchanged.

We have reached the end of the current path and we now move on to the next and final node
within the testing tree which is the node "r•". We are first looking to find a node within the
training tree which has the character "r" at depth 1, which we find in the form of the node

"ra". The common node the ck counts are updated to the following: c1 = 3, c2 = 1, c3 = 0.

As we have found a matching node and have also not yet reached the end of the current path

within the test suffix tree, we now look for the character"•" along path "r".

A common node cannot be found and as we have now traversed all paths within the testing

suffix tree we have completed our traversal and the final counts remain as follows: c1 =
3,c2 = 1,c3 = 0.

471 Page

4.2.2 Dynamic C-Measure

Again consider the training string S = "abrabra•" and testing string T = "br•" where • denotes

the end of file character. The series c1 , c2 and c3 are again initialised as value zero and the

value ck will again increase as matching substrings of length k are found. As we are
demonstrating an adaptive model therefore the training suffix tree will be dynamically

updated in two ways. Should a matching suffix be found, the counts of the nodes shall
increase and should a suffix contained within the testing tree not be found within the training

tree, this new node will be created and added.

The suffix trees to begin with will be the same as the static case, see figure 4.4, with c1 =
0, c2 = 0, c3 = 0 as no categorization has yet been performed. As we are now using a

dynamic/adaptive model, if during the traversal, a path within the training tree is determined
not to be common to the training tree, the traversal of this path will not now be abandoned.

Instead, we continue traversing the path of the testing suffix as all uncommon nodes along a
path are inserted into the training tree until the end of the path is reached.

The first node to be found within the test suffix tree is node "•" at depth 1. The node "•" is

found to be common within the training suffix tree and as we are now using a
dynamic/adaptive model, the count of this node within the training tree is increased from 1 to
2. Additionally, as the substring of length 1 was found to be common, the value of c1 is now

increased by 1.

The modified training suffix tree is shown here:

1

Figure 4.5: Dynamic suffix tree of training file "abrabra•" once• has been processed.

and the ck counts are updated to the following: c1 = 1, c2 = 0, c3 = 0.

The next node to be found within the test suffix tree is node "br•" and as we are now
traversing a new node within a new path we are again at depth 1. We are therefore looking to
find node "b" at depth 1 within the training suffix tree. We indeed find the node "bra" within
the training suffix tree with the character "b" at depth 1. It may be clear that other characters

48 I Page

within this node are common between both trees and indeed we would continue until the end
of the string before modifying the training suffix tree but for illustration purposes we shall
break this into a number of steps so that the process remains clear.

The modified training suffix tree is shown here:

Figure 4.6: Dynamic suffix tree of training file "abrabra•" once 'b' from within suffix
br• has been processed.

and the ck counts are updated to the following: c1 = 2, c2 = 0, c3 = 0.

As we have matched the current character within the test node and have also not yet reached
the end of this node, we shall remain within the testing node "br•" and now search for the
character "r" which is at depth 2. Again the node is matched and so we update the training
tree and counts accordingly.

The modified training suffix tree is shown here:

Figure 4.7: Dynamic suffix tree of training file "abrabra•" once 'br' from within suffix
br• has been processed.

49 I Page

and the ck counts are updated to the following: c1 = 2, c2 = 1, c3 = 0.

Again we remain within the current testing node but we are now searching for " •" at depth 3

of the current path within the training suffix tree. As the current training node "br" is non­

branching, the only possible matching character is "a". Because of this, the node "a" shall
remain a non-compressed node as it will remain to have a different count from its parent node
"br".

As the node "•" was not found, this node at depth 3 shall now be inserted into the training
suffix tree as a child of parent node "br". This is where the dynamic/adaptive model greatly

differs from the static model as we are now dynamically altering the training tree to be more
similar to the testing tree.

The modified training suffix tree is shown here:

• 1 2
1 • 1

.,.............,~'

Figure 4.8: Dynamic suffix tree of training file "abrabra•" once the suffix bro has been
processed.

and the ck counts remain unchanged as: c1 = 2, c2 = 1, c3 = 0.

Again, as we have reached the end of the current path we now move on to the next and final
node within the testing tree which is the node "r•" . We are first looking to find a node within
the training tree which has the character "r" at depth 1, which we find in the form of the node
"ra".

50 I Page

As we find the common node we modify to the training suffix tree to be as follows:

1

Figure 4.9: Dynamic suffix tree of training file "abrabra•" once 'r' from within suffix r-

has been processed.

and the ck counts are updated to the following: c1 = 3, c2 = 1, c3 = 0.

As we have found a matching node and have also not yet reached the end of the current path
within the test suffix tree, we now look for the character "•" along path "r".

A common node cannot be found so we again insert this new node and the training tree is
modified to the following:

1

Figure 4.10: Dynamic suffix tree of training file "abrabra•" once the suffix r• has been
processed.

As we have now traversed all paths within the testing suffix tree we have completed our

traversal and the final counts are as follows: c1 = 3, c2 = 1, c3 = 0. Using the example above

you will notice that the counts are the same for both models. However, should an uncommon

51 I Page

suffix be inserted, as it wasn't matched, and then be seen again, on all following occasions the
substring would be matched as it was dynamically inserted.

As an example consider the training string S = "abrabra•" and testing string T = "xbrx•". The

first suffix we would investigate is "xbrx•" and as this substring does not exist within the
training suffix tree, the path would be dynamically inserted. Now when we then come to

insert the suffix "x•", rather than it again being ignored as with the static case, it would now
match the character "x" at depth 1 as the substring "xbrx•" was inserted prior.

The final training suffix tree once all comparisons have been made is displayed here:

Figure 4.11: Dynamic suffix tree of training file "abrabra•" once the testing stream
xbrx• has been processed.

4.2.3 PPM Without Full Exclusions

For table 3.1 the escape count is calculated as the number of known symbols at each point.
For example if we had processed the symbol 'a' followed by 'b' we would be within position
' ab' at order 2 and the escape count would be 1 as ' r ' is the only known symbol at this point.

52 I Page

Order k =2 Order k = I Order k = 0 Order k = -1

Predictions C p Predictions C p Predictions C p Predictions C p

2 2 5 1
- -ab - r 2 b - r 2 - - a 5 - A I IAf 3 3 16

1 1 2 - Esc 1 - - Esc I - - b 2 -
3 3 16

1 - C 1 -
16

1 - d 1 -
16

2 - r 2 -
16

5 - Esc 5 -
16

Table 4.1: List of pointers within context list after processing the symbols 'ab'.

Referring to table 4.1, let us say that the next symbol to encode was indeed ' r' , as the
frequency of this symbol is 2, the probability of this symbol being encoded at this point is the
frequency of the symbol divided by the sum of all frequencies (including the escape count)
and in this case the probability would be 2/3.

However, if the symbol was unseen before at this point, 1.e. the symbol ' i ', then the
probability would now be the escape count divided by the sum of all frequencies , i.e. 1/3. We
would then escape to a lower context length, i.e. the pointer '/\, b ' and search for the symbol

' i ' at this point. If the desired symbol existed at this point then the probability of finding the
symbol at this context length would then be calculated with the probability being multiplied
by 1/3, the probability that it was not found at the previous context length and then being
found at the current order.

If the symbol continued to not be found (as is the case), we would then continue to escape
down each order until either the symbol was found or we reached order -1. In the case of it

not being found and us having to escape to order -1 , the probabilities of escaping down each
order would be multiplied by 1/256 (the number of symbols within the ASCII character set).

4.2.4 PPM With Full Exclusions

The difference in using full exclusions is that the counts of symbols at lower orders are
affected if the symbol that have appeared at higher orders also appear at the current lower
order after we have escaped. This then has an effect on the probability of the symbol being

encoded. Referring to table 3.4, we were attempting to encode the symbol ' i' at order 2. The
symbol ' i' was unseen at this point and so we escaped to order 1 with probability 1/3. At
order 2 was the symbol ' r ', which has now been seen and found to not match. Should this
symbol now appear at order 1, it can be ignored as it has been seen previously at order 2.

53 I Page

As an example, let us say that we are instead presented with the contents of table 4.2. In the
case where update exclusions are not used and with the previous example we have
determined that "i" could not be encoded at order 2, having ruled out 'r', we could possibly

be presented with the following at order 1 :

Order k = I
Predictions C p

3
b - a 3 11

4 - 4
11

- r
11
3 - Esc 3 -

11

Table 4.2: Possible context list at order 1 without exclusions.

In the case without exclusions, the probability of encoding the symbol ' i' at this point would

be the frequency of the symbol 'i', which is 4, divided by the sum of all counts in addition to
the escape count. The probability would therefore be:

4
----=4/11.
3 +4+1+ 3

This probability would then be multiplied by the probability of escaping from order 2, which
was found to be 1/3. Now in the case of full exclusions, we have already ruled out the

possibility of the symbol 'r' whilst at order 2, therefore the probability of encoding 'i ' at this
point with fu ll exclusions would now be different. Symbols which have been seen at previous

orders are now ignored leaving the following:

Order k = I
Predictions C p

3
b - a 3 -

9
4 - 4 -
9

- -f- -+

2 - Esc 2 -
9

Table 4.3: Possible context list at order 1 with full exclusions.

54 I Page

Notice that there are now only two unseen symbols at this point as 'r' has been struck
through, therefore the escape count is now reduced to 2. The probability of encoding at this

point is now therefore:

4

3 + 4 + 2 = 419·

This probability would then also be multiplied by the probability of us escaping from order 2,

which was found to be 1/3.

4.2.5 Dynamic PPMC

Up to now only PPMC for static training models has been discussed. The models themselves

can also be adaptive and this will allow us to compare the performance of PPMC across all
four protocols, as we did with C-measure. As an example, let us consider the training string S

= "abrabra•" and testing string T = "abrxbrx•" where• again denotes the end of file character.

We would again create a suffix tree representation for Sas shown in figure 4.4 but now rather
than creating a suffix tree of T, we can simply treat it as a stream of symbols, processing each

at a time.

After processing the symbols "a", "b" and "r" we would be positioned at index I of the node
"bra" which is a child of node "a" and we would also currently have a context length of 3.
The next symbol to be encoded would be the symbol "x", and as the only character seen at
this point is the symbol "a", we would need to calculate the escape probability.

Shown here is the current context lists showing the positions of each pointer into the suffix

tree:

Context Length Pointer

0 fl

1 "r
2 "br

3 "abr

Table 4.4: Context list example after processing the string 'abr'.

As we are now using the adaptive protocol, we would insert the new symbol into the current
position in the tree with count of 1, as well as also inserting this new node at the position of
each pointer of lower context length. If the node already exists then the count of the node "x"

would be increased by 1.

After inserting the symbol "x" at positions, "Aabr", "Abr", "r" and "A", we now continue

searching for the symbol "x" at context length 2. If we were using the static protocol then we
know that the symbol "x" would not appear at this context length, nor at any other and we

would then have to escape to context length 1 and continue processing from that point.
However, as we have dynamically inserted the symbol "x" at position "Abr", we would now

55 I Page

be presented with a different option. The symbol "a" is now no longer the only symbol to
have been seen at this point, the node "x" now exists with frequency 1.

Chapter Discussion

After introducing suffix trees as powerful data structures that allow fast searching we have
shown that it is possible to compute the stream-based methods in reasonable time and space.

It has also been shown that results for multiple algorithms, namely C-Measure and R­
Measure can be calculated with only a single pass through the data structure. The next

chapter details a toolkit that has been implemented to aid in the processing of the techniques
detailed within this chapter.

56 I Page

Chapter 5

A Java based framework for
implementing stream based models

Chapter Summary

The purpose of this chapter is to detail an overview of the toolkit that has been created to aid in the

calculation and comparison of the many different techniques discussed earlier. The toolkit has
previously been described by Thomas and Teahan (2007), however, this chapter offers an overview
of the class structure and also offer details on how the algorithms have been implemented; this is

achieved through discussion, figures and code samples.

Summary of each section

Section 5.1 displays a basic overview of the main components within the toolkit and gives examples
of how simple the toolkit makes the process of executing experimentation. Section 5 .2 discusses the
process of preparing the corpora, including splitting the initial files and concatenating models and
how the toolkit aids these processes. Section 5 .2 also details the process of creating suffix trees
through extracting suffixes and trimming the models. Section 5.3 offers more detailed information
of the base classes and shows how they are extended through example code samples. Finally section

5.4 details the implementation of the algorithms and how their normalised values are calculated
through code. Section 5.5 details the usage of the toolkit through the use of examples.

5.1 Overview

The motivation for creating the toolkit was to have a single application able to execute a number of

different categorization algorithms at once and for us to be able to compare these results. This work
is an important contribution to the field of text categorization and is an improvement over previous
methods. Suffix trees have previously been used to implement PPM, however, they have not
previously be used to implement C-Measure and R-Measure, and certainly not all together. The

toolkit is extensible and offers common tools which are important if other algorithms are to be
added and by having all experiments ran from a common toolkit on common corpora eliminates a
number of the problems that currently exist when attempting to draw comparisons (Yang, 1999).

The toolkit was created using Java due to its platform independence and cost. Since Java is open
source, it's completely free to develop and deploy applications with Java and its most popular IDE's
are also free. In order to aid the process of adding algorithms and to keep a level of commonality a
set of base classes was required from which each implementation could extend and make use of

57 IP age

common functionality. A set of tools has also been created in order to prepare the corpora and also

to be able to load suffix tree models from streams of text to be processed by the algorithms. These
requirements are represented by the class structure in Figure 5.1 and it was from this that the toolkit
was designed. For an exhaustive list of classes please refer to the API included within the attached
DVD.

The main processes are contained within the base classes and these iterate through each testing
model and process them against each of the training models. The base classes load each of the

models and call a function to compare one against the other. The functions to compare the models
are contained within the overriding classes as each are processed in a unique way. This model

allows for extensibility as a new algorithm only requires the specified abstract functions to be
implemented in order for it to function.

Main

I • T

Tools Methods

I

• T T

PPM C-Measure R-Measure

t , ,
i

Base Classes

Figure 5.1: High level overview of jSCat.

5.2 Tools

This section describes some of the contents of the 'Tools ' object within Figure 5.1. The next section

describes how the toolkit can be used to split a corpus in order to perform cross validation. Section
5.2.2 details how the toolkit is able to concatenate files within specified training directories in order

for us to investigate concatenated protocols. Section 5.2.3 describes how a suffix tree and nodes are
represented within the toolkit and what properties are attributed to each. Section 5.2.4 explains the
process of extracting suffixes from a text stream. Section 5.2.5 discusses some optimisations that
have helped to construct and load the models in less time. Section 5.2.6 details the advantage of

pruning the suffix tree to the maximum length that is required by the current experimentation.
Section 5.2.7 discusses the toolkit's process of constructing the suffix tree and section 5.2.8
discusses how checking the counts of each node can help us to ensure that the tree has been
correctly constructed.

58 IP age

5.2.1 Splitting the corpora

There are cases, as with Reuters-IO (mentioned in 2.5.2), where the corpus has already been pre­

processed and the training data and testing data has been specified. In others cases such as

Gutenberg and 20Newsgroups, this is not the case, and this step must be performed manually. In
order to retrieve a fair result of how the algorithms have performed it is recommended to do cross

validation. This process can introduce difficulties in recreating the setup of past experiments, as it is

not often documented as to which documents were within which splits (see 2.5.7). Because of this,

a listing of all documents within each split shall be included within the attached DVD.

In order to perform cross-validation the data is first split into a number of subsets, with either the

same number of documents within each split, or as well as this, having the same number of

documents from a class within each split also. Because the second method gives an even

representation of each class within each split so this would be our preferred method. Once

completed an output directory containing a folder for each split is outputted, as shown in Figure 5.2.

splito splitl split2

split3 split4

Figure 5.2: Example output of split parent directories.

And within each of these directories would be a directory for each of the categories, shown in
Figure 5.3.

charlesdickens danieldefoe emerson

JaneAusten kipling shakespeare

shaw twain wells

wilde

Figure 5.3: Example directory listing found within each split.

Each of the directories displayed in Figure 5 .3 contain a subset of the original set of category files.

It is important to note that if we had not ensured the files of each category were spread evenly

across all splits, it is possible that as well as the category not holding an equal presence across each

59 IP age

cross-validation stage. The Gutenberg corpus has only 40 works in total, it would therefore be

possible that the category could not be present at all within some splits.

5.2.2 Concatenating categories

As stated earlier, it is not known whether or not concatenating the training data improves

categorization performance and so it shall be investigated in order to determine its effectiveness, if

any. The first thing to determine is the full location of the split directories and also the directory in

which to output the concatenated models. Once these have been determined the

concatenateAllFileslnDir method within the Concatenate class can be called. The concatenated files

are added to a folder named Training within the root directory as shown in Figure 5.4. The

concatenated files are given a unique filename equal to that of the category it represents, as shown

in Figure 5.5.

splitO splitl split2

split3 split4 Training

Figure 5.4: Output of the concatenated files parent directory.

EJ
alt.atheism

Fro111;
Subjc

comp.sys.ibm.pc .
hardware

EJ
misc .forsale

rec .sport .baseball

Tr;;;
Subjc

sci.electronics

EJ
soc .religion .christian

From:
Subjc

Inv

talk.politics .misc

Fr1:u11:
Subj ,

comp .graphics

comp.sys .mac .
hardware

EJ
rec.autos

Fro111:
Suhjt

rec .sport.hockey

~
Subj c

sci.med

Fro111:
Subjc

Inv

talk.politics.guns

FroiR:
Subjc

Herc

talk.re ligion.misc

Fr 0111:

Subjc

comp.os.ms ­
windows.misc

Frem:
Subjc

1 ha~

comp.windows .><

F,

rec.motorcycles

EJ
sci.crypt

FroM:
Subjc

sci.space

EJ
talk.politics.mideast

Figure 5.5: Example output of concatenated training files.

60 IP age

5.2.3 Suffix Tree representation

The construction of suffix trees in an efficient manner is a non-trivial problem and key to the

success of the toolkit as a whole. This section describes the design chosen for the toolkit. An

instance of the Node class (see Figure 5.6) represents a position within a suffix tree and holds

information on its count, parent, child and so on. The RootNode class represents the root of the tree

and holds additional information such as the filename of the stream it represents.

OptimisedRootNode extends RootNode and as well as representing a suffix tree it is within this

class that operations such as building the tree and trimming the depth of the tree and so on are

contained.

Node

t
Extends

I

RootNode

,.
Extends

I

OptimisedRootNode

Figure 5.6: Suffix tree representation classes.

More details can be found about the classes in the attached DVD.

5.2.4 Extracting suffixes

The first stage of the method used to create a suffix tree is of course to load the contents of the file.

The file may be a single stream of symbols or possibly a concatenated file, i.e. the output of the

stage mentioned earlier. Irrespective of whether or not the file is concatenated, the next step is to

locate the index of the eof symbols, the number of which is equal to the number of streams

contained.

As an example, a concatenated file containing two streams may look like:

The cat sat on the mat . $The dog went out to play.$

This file contains two streams, denoted by two eof symbols $ whose indexes are then stored within

a list. It is important to locate the indexes of the eof symbols, otherwise the concatenated file, a

collection of several streams, would be treated as a single stream and this is not the case. Let's say

that we have two indexes, i and j , whose values are the start index and end index respectively. i is

set to be O in the first case, and then the index of the previous eof symbol + 1 for each of the

61 IP age

following streams. j is set to be the current eof index within the list. Quite simply i and j allow us to

process each stream at a time i.e. "The cat sat on the mat.$" followed by "The dog went out to

play.$". The next step is to extract the suffixes from each of the streams and store each of these

within a list. The list of suffixes is then sorted in order to speed up the process of building the tree

from the list of suffixes.

5.2.5 Optimisation note

It is possible to create the tree without sorting the list of suffixes or without even listing the suffixes

and simply adding them on the fly from the original text. However, by profiling the operation of

building a tree, the most common task was found to be comparing two symbols, and it is required to

do this in order to determine the location to insert the current Node. By sorting the list of Nodes, we

are able to reduce the number of times this operation is executed as we know our current location

within the suffix tree, always working from left to right and never having to return.

A further step which has allowed us to greatly reduce the time of creating the suffix tree is to not

only store the location of the current Node within the tree that we are to add the next Node but also

the location within that Node. As an example, we may have two suffixes within our sorted list, 'at

on the mat.$' and 'at sat on the mat.$'. By having a sorted list of Nodes, we would not have to sort

through the entire contents of the top level of the tree attempting to find character 'a' and then

working from this point. We would simply have to check if the first character of the Node to be

added was equal to the current symbol at depth 0, which happens to be 'a' and work from there. If

the symbols were not equal then we would create a new branch at depth O and add the new Node.

What was found to take a long time even after this optimisation was that when a match was found at

depth 0, we then had to traverse the tree, comparing symbols and finding the exact location to insert

the new Node. A number of symbols would often need to be matched before we had to split and add

the new Node. The case is often worse with the worst case of adding the same suffixes twice which

is possible when adding numerous streams into a single suffix tree. This is why after sorting the list

of suffixes, we then iterate through the list determining the common prefix between a Node and its

previous. This allows us to determine the exact location within the current Node to insert the next

without having to traverse the branch.

We know that we must store N suffixes, with N being the length of the text stream. However, it is

essential to try and reduce the amount of information stored within each instance of a Node. We

created a class named Node which extends the Java class DefaultMutableTreeNode as this allows us

to store a reference to a parent Node and also to the child Nodes. It is important though to store

enough information within this class to allow us to complete operations quickly, but we must also

keep the amount of memory space used by each instance of the class, simply due to the number

created when dealing with large streams.

One method of storing the contents of each Node would be to simply store the suffix that it

represents as a String. Unfortunately due to the amount of suffixes and the sizes of each, this is not

feasible. A better approach is to store the original stream, which we shall store as an array of

62 IP age

characters within a class called RootNode which extends the Node class. Now, rather than storing

the substring of each Node, we can simply store the index within the original string as the starting

index of the substring and also the length of the substring. There is the added operation of retrieving

the substring from the original stream, however, by storing the stream as an array it is a very quick

operation and saves a massive amount of memory use.

We store the count of each Node within an int, and a reference to the RootNode which allows us to

access the original text stream. We also store the depth of the Node as an int, as this allows us to

easily set the depth of the next added Node and is also useful when computing e.g. C-measure as we

need to determine at what length we are to increase the count. The final information stored is the

number of common characters between this Node and the last to be added, as this allows for easy

insertion when constructing the tree.

We now have enough information to quickly construct the tree as we have a sorted list of suffixes,

represented as indexes into the original stream, the length of the suffix and also the number of

common symbols between the current Node and the last to be added. A snapshot of this information

would be similar to that shown within Table 5 .1.

Index Length Common

55630 24113 4

492977 618 12

1318077 1278 7

569464 318 3

Table 5.1: Example subset of suffix model information, from which we construct a suffix tree.

Loading a 1.3MB concatenated file ten times as an example takes 45 seconds yet loading a standard

file which is typically several Kb's ten times takes less than a second. This shows that loading non­

concatenated files is done within an acceptable time but the concatenated files should ideally be

improved, especially due to the fact that there will be several concatenated files to load (one for

each class) and each will be loaded thousands of times. By storing the information displayed in

Table 5.1 within a text file, each concatenated model can be loaded from the point at which we have

the sorted list of nodes and the positions at which each is to be inserted. By using this method, the

execution time required to load the above mentioned file can be nearly halved.

Another optimisation was found during the experimental stage of comparing the models to the

testing files, and it was found that by changing the order of comparison we can make further

improvements. The typical methodology would be to load a testing file and then compare this file

against each of the training models. As mentioned in 3.4, assuming there are K classes and N testing

documents, typically N » K and the time to load a single model from K is much greater than the

time taken to load a model from within N. Each large model from within K would typically be

loaded N number of times, however, this can be dramatically reduced by reordering the comparison

and instead loading a training model only once and comparing the model against all testing files

whilst it is in memory.

63 IP age

5.2.6 Trimming concatenated models

It is possible to further optimise time and space consumption by pruning the suffix trees to the

maximum size required by the algorithms. When computing PPM Measures we only investigate up

to a depth of 8 and with C-Measure we investigate up to depth 50, and we can prune the

concatenated trees (due to their sheer size compared to non-concatenated files) respectively. The

difference in lengths between the algorithms is due to the high computational overheads for high

order models of PPM. This pruning has no outcome on the results but does serve to increase loading

times of the trees and also the size of the trees when held in memory.

As a test experiment we executed the same experiment of loading a tree ten times, but in this case

we used a very large 10MB file. It took 219 seconds to load the un-pruned tree ten times, 168

seconds when the tree was pruned to a depth of 50, and 81 seconds when the tree was pruned to a

depth of 8.

5.2.7 Building the tree

Code sample 5.1 was particularly difficult and is used to insert a new node into the tree using

common character substring lengths mentioned in 5.2.5. The method is not static and is therefore

called upon a current instance of the Node class, which will always be the last Node added to the

tree i.e. lastnode.place(newnode, number of common characters). We therefore have the location of

the last node to be added, the information pertaining to the new node and also the number of

common symbols between each of the suffixes.

64 IP age

:n
:,0 publ 1c H-0(1.ei • 1.•c" t NO<&e next.'40"4. &nt ~n >
2JI y f
2)2 lf { COIMOn • • 0

z» 1

:,s
ZH
2Jl
2)t

m
240

: •1
2U
:Cl
U 4
20
24'

t4'1
24f
24'

llO

w
1$2
:ss
u ,
us
ZSf

"' 2~
zs,
:'°
:41
:.z
:n
:c,
:4S
26'
:fl

NI
u,

• t 70 -- ..

l"ll

m
17l
274
ns
21,

Z77
:n
27'
:14
211

tU
:tl
n ,
! -U

2N
:e,
:11
2H
:,0

:ti

zu ., ..
:ts
Hf
m
291
Ht
,00

,01

,OJ

,Ol

'°' ~ -,07 -

c:l•c:

DU(tHode. .•

nextU.odc. l ._ .. :

t.tu •. oe. t hot.Node U • a.dd t ne:nHOCSe) :
tbU.o,el P'.OOt.Hodc l),

&fC C'CIIQIIOn >• Uus. ":tt·
I

lt f ccaaoD •• this, • ~h 1 tbls • •

elae
I

tbJ.•• t'i'" +-t>t

1oncre~ e'Cot.1nt 1 th,.) 1

rtt.u.rn t.bu:.

btUt.tlode . i.

MJCtNodic. , ~r - -- COlaODJ

h • I I

oe-,u.t1ooe,,,...1 t • thsa. , ct,, • t1ua, l•,4't:11 :

neMt.tlodol. ••:

tbu. I-' .,.,

tDC're•.scC:ount, tbl:r) ;

rtl\UI) MXtH'o<leJ

I ,
el_ae:

lat n\ak.atc:bOnNOCM • con.on - (t.bU, •1 • la - 1) ;

UOOI: t~P40<k • oe• J;odet u,... ,,~ ~. t..bU, ... • nlalKatCbOD.."iode- >;
ta,pNOde:, 1" • u,u. ~r, · n'8"6tc~;
1.c,,;,1~04•- 1-1 " • th1,a. , , nun:ltu.cbOnnodc:

fllll• f u1iu.oe;tCb1 JdCou.nt(t > 0 J

t.~OOe.edd (INode)thua."tCbllCIAt (0) t;

t.aarNod,e.~ - t.bt..s. Wl• :

tbu.err.:Sdl tu,itUOdc);

thu ...
lhU. ~ ... ,

1DC'r ta6eC0\lnt. (tblo:) 1

hf'>tl:tlOda.

MXl:.Uoeh • • .- - h • • ~n!

n~xu,oele. 1-~, • tru■• ~r• ,, • nunBatcbOnHode:
ne:xt.Hooe. • • :
tbu.•MC nc-,cuiocs.);

rl•c

,,oa;e l~P • I tNode)ttlU,QetP .. reDt(I) .pJ.ce1 Detet.Node, con,on 1:

Code Sample 5.1 : Inserting the next node into our tree.

The first thing checked is whether or not the common value is set to O (line 232), if so then the first

symbol of the next suffix does not match the previous and so the new branch/node is added as a

child to the root of the tree. The count is set to be 1, its depth is set to be 1 and in order to balance

65 IP a ge

the counts within the tree correctly, the count of the root node of the tree is also increased by 1 (see

lines 234-237). If, however, the common value is greater than 1, we have to add the new suffix into
the last branch added to the tree. We do not know where within the branch though as so we check as
to whether or not the common value is greater than or equal to the depth of the current Node within

the branch (line 243). If not then we call the place method again but this time we call it on the
parent node and not the current one (line 303). We are basically traversing up towards the root of
the branch until the insertion location is found.

If the common value is greater than or equal to the depth of the current node then we must make

further checks. If the length of the node to be added is equal to its number of common characters
then it is a direct duplicate of the current node (24 7), we therefore increase the count of the current
node and each of its parent's nodes until the root node is reached. To do this we use an iterative
method which continues to increase the count of the current nodes parent node until the current
node becomes the root node of our tree.

Within lines 255-269, if the length of the new node is greater than the number of common symbols

then the next suffix does match the last to be added but there are more symbols i.e. it is longer.
What we therefore have to do is effectively create a new node to be placed as a child of the last to
be added. We change its length to be its current suffix length minus the length of the last added
suffix, we set its depth to be the suffix length of the last node to be added i.e. the depth of the last
node plus its length. Its index is also incremented by the number of common symbols and its count

is set to be 1. The count of the last node to be added and all of its parent nodes are incremented by 1
and then the new node is placed as a child node.

In the case that the number of common symbols is less than the depth of the last added node in
addition to its length then we must break up the last added node and create two children, one will be
the part of the suffix following the break, and the other will be to represent the newly added suffix
(lines 271-299).

Figure 5.7: Original tree before adding node which matches all characters within the current
node.

Say that we are currently located at the highlighted node "ra$" as displayed in Figure 5.7. If we
were to then insert the stream "rabra$" then "ra" would be common to both suffixes, however, we
would split the "ra$" node so that its suffix becomes common i.e. "ra" and its previous remainder

66 [P n g e

"$" is added as a child node with the same count but its length, depth and index updated

accordingly. We are then able to add what was not common between the two suffixes as a new child

node, which in this case is "bra$". All counts of parent nodes are then updated and the insertion is

complete, see Figure 5.8.

bra•

Figure 5.8: Tree shown in 4.10 after inserted the next node.

5.2.8 Checking the counts within the suffix tree

Once the tree has been built it is possible to check that the counts are correct by iterating through

every non-leaf node (node which has children) and ensuring that the count of the parent node is

equal to the sum of the counts of its children. If at any time this is not true, then the tree has not

been constructed correctly. This is because the count at the root of the tree is equal to the number of

suffixes and this number should equal the total number of leaf nodes within the tree.

5.3 Base classes

The relationship between the base classes and the other components within the toolkit is shown in

Figure 5.1 and was introduced in section 5.1 as allowing extensibility as a new algorithm only

requires the specified abstract functions to be implemented in order for it to function.

Results are stored within a combination of comparisons and collections. Comparison is an abstract

class that is used to store information regarding a single comparison between a testing file and a

training file. We say an instance of the TestCollection class holds all comparative values relating to

a single testing file. Figure 5.9 shows that for each algorithm we extend TestCollection to all
comparative values relating to its own technique. Further information regarding TestCollection and

extending the class can be found in 5.3.2. Collection as a base class is used to hold an array of

TestCollections, a list of training files , testing files and also the current protocol. Further

information regarding the Collection class and how it is further extended for each algorithm can be

found in 5.3.4.

671 Page

Comparison Test Collection

t t
Extends Extends

I

PPM Comparison Has Many- PPMCTestCollection

Figure 5.9: Example extension of the base classes.

5.3.1 Comparison class

Comparison.java is an abstract class that is used to store information regarding a single comparison

between a testing file and a training file/model. As each testing file is compared against a number of

training files we would say that each instance of a testing file would have a number of comparisons

i.e. a one to many relationship. Comparison.java stores the training file used for the instance of a

comparison and returns basic information such as the location of the training file and the category

to which the training file belongs. The class also contains an abstract method named

getNum ValuesPerResult and this is needed as the algorithms may have differing amount of results

per comparison. The method therefore returns the number of values outputted from a single

comparison i.e. C-Measure outputs C-Counts for each matching substring length, however, PPM

outputs only a single comparative value.

This class can now be extended by each instance of an algorithm to store results pertaining to a

comparison. C-Measure will generate a number of counts, and a result is outputted for each length

of substring compared. In this case an array of integers is used to store the results and methods are

included to fill the contents of this array as well as retrieving them to a calling method.

Because the base class Comparison.java is extended, the information which is common to all

comparisons, i.e. information regarding the training file used can be passed to the base class by

making use of Java's keyword ' super' (used to call the constructor of the superclass in the base

class). As mentioned earlier, each class which extends Comparison.java must also implement the

method getNum ValuesPerResult and in this case the size of the array cCounts would be returned.

5.3.2 Test Collection class

We say a TestCollection holds all comparative values relating to a single testing file. The

TestCollection class is therefore used to hold information regarding the testing file and also all

comparisons (instances of Comparison.java) which have been created by comparing each training

model against this testing stream. The Boolean isConcatenated is needed in order to determine the

category of the training model as a concatenated training models category would be set as its file

name but a non-concatenated training model would be held in a folder with the name of the

category to which it belongs. The testing file is stored within a variable of the class instance and

with the information contained within this class and each comparison we now know the training file

and testing file involved in each comparison. The length of the testing file is required a number of

times when calculating measures and as it takes time to compute it is more efficient to have this

68 I P age

value stored within a variable also.

TestCollection is also an abstract class containing a number of abstract methods and each algorithm

must extend this class as each algorithm will have its own method of creating new comparisons and

also retrieving them. Many functions will be common to all algorithms and that is why this abstract

class has been created. When an instance of the TestCollection class is created, all algorithms will

need to specify the testing file and whether or not the testing file will be compared to a concatenated

training model or not and that is why the methods relating to the setting of this information is

contained within this class. The retrieval of this information as well as the category to which the

testing file belongs will also be common and is again contained within this class.

As the constructor for this class specifies that an array containing all training files must be supplied,

and though the type of comparisons and the array type each will be held in are of different class

types, each will be done in much the same way and that is why the ordering of the calls to the

abstract methods is also held within this class file. We say that the closest matching training model

is the one that outputs the highest comparative value when compared against a testing file.

5.3.3 Extending TestCollection class

Take PPM and Figure 5.9 as an example of how each algorithm would extend the base class. The

constructors are very simple and this is the intention of using inheritance within the code. The call

to 'super' is made which calls the constructor of the base class, which as we saw will handle the

setting of the testing file and then call abstract methods which are contained within the classes that

extend it. Two of the abstract methods contained were createComparisonArray and

createNewComparison, which handled the creation of the type of comparisons to be instantiated, in

this case PPMComparison. Each algorithm will implement these methods in similar ways except

they shall substitute PPMComparison for its own type, possibly CComparison for C-Measure. The

array of comparison types are now stored within this class so that all comparisons for a

TestCollection are easily accessible. The comparative values will also be set from methods within

this class as it is from this class that we are able to access all of the comparisons but each algorithm

may have its own way in which it sets the values and also what the methods are called.

5.3.4 Collection class

The Collection class as a base class is used to hold an array of TestCollections as well as the set up

information such as a list of all training files, testing files and also the current protocol. The most

important method within the class is setMeasures as this is the method which starts the experimental

process once all of the initial setup has been completed. The method will determine whether the

current protocol is concatenated or not and call the relevant method in each case.

Once called, each functions in much the same way. Both are able to print out useful debugging

information such as information on each of the files being processed and the current progress of the

comparisons. In the case of non-concatenated, each testing file is accessed in turn and passed to the

method setMeasuresNonConcatenated which requires a testing file as a parameter, and these

methods are located within the classes that extend this one, of which each algorithm must have.

Within this class the methods are abstract and the implementation of these methods shall be

69 JP age

discussed later. As mentioned earlier, it is more efficient in the case of concatenated training models
to load them a minimum number of times and that is why is the case of setMeasuresConcatenated
each trianing model is processed individually rather than each testing file. These differences can be

seen within lines 382 and 392 in Code sample 5.2, 415 and 425 in Code sample 5.3. The algorithm
specific implementation for non-concatenated protocols is called by line 384 in Code sample 5.2,

and line 417 for concatenated protocols .

...
JO!

-,,. ,. -~ _...__..~.._
"1
'J'M 'RA-Ml , ,C...-:~1,.a,.__. f.

J'!t 1~ HlW'f~ l - 111,.._.

... ... -••
1111 t n , .. 1 • ,u. . ..-.~ t , • 1-u.a ~--• .. ---Jn

"' -..,
~ .-.~ ~ ttu

u -

fl • • _.. ,, .. ,.._ .,l.,1'< 1:lh , ..

I • I

Code Sample 5.2: Base processing of non-concatenated comparisons .

..

-

,..,-
•• f ,,..., • ,...,u ,.. ... ,.'" ,_,.

♦-- •- I • I t • u a .., •

... ..

. .. .

Code Sample 5.3: Base processing of concatenated comparisons.

The general purpose of the methods contained within the Collection class is to fill a multidirectional
array of results. After each testing file has been compared against all of the training models, the

results of the comparisons are outputted to a text file so that the results can be stored for repeated
viewing without having to re-run the experiments.

70 IP a g c

5.4 Implementation of the algorithms

5.4.1 C-Measure

5.4.1.1 Static case

The method setCounts was particularly difficult and so shall be explained in depth within this
section. It is a recursive method that tests whether the current symbol we are processing within the

testing suffix tree matches the current symbol within the training suffix tree. If so, then the C­
Counts are updated for the current depth of the substring, if not then we move on to the next

symbol. Both the training tree and testing tree are traversed simultaneously and shall continue until
we have checked all paths within the testing tree or the end of the training suffix tree is reached.

The setCounts method was built after identifying all possible cases when simultaneously traversing

two trees. The first condition within the method tests whether this is the first call i.e. we are at the
root of the tree. The route of the tree holds no characters and is not to be compared against the route

of the training tree, this condition allows us to gather each of the testing trees children of the root
node and iterate through them sequentially. Both trees are sorted and so when we are searching for

an insertion position for the current testing node, if this value is equal to the number of children
then this tells us that none of the remainder will match and so we return. Until this condition is met,

we recursively call the setCounts method but replace the root node with the current child of the root
node. We are not yet concerned with whether or not the first characters match as this will be dealt
with at the next stage.

When the method is recursively called, we have five essential parameters as displayed in table 5.2.

Name Type Description

test Node Current Node within testing tree

testOffset int Position within current testing node i.e. current testing character

train Node Current Node within testing tree

trainOffset int Position within current training node i.e. current training character

currentlength int Length of substring and position within array in which we increase count

Table 5.2: Parameter information for C-Measure setCounts method.

What we are essentially doing is keeping track of our positions within each of the trees and
comparing the characters, continuing to traverse whilst they are matching and returning when they

do not, and then moving onto the next testing branch. There are six possible cases when you are
asked to compare the next characters within the current nodes:

Case 1: We have reached the end of the current testing node and the current testing node has no
children. In this case we have no need to continue as we have matched the entire current match and
so we return.

711 Page

Case 2: We have reached the end of the training node and the current training node has no children.

In this case, although we would like to continue, the training branch has no further paths i.e. this

part of the current suffix is unseen within the training text and so we return.

Case 3: We have reached the end of the testing node but not the current training node, however, the

testing node does have child nodes. In this case we remain at the same position within the training

tree but we now iterate through the children of the testing node to see if the following symbol

within the training node exists. There is no need to iterate through all of the testing children and

attempting to compare these with the training tree as we are within a node and there is only one

possibility so it is quicker to attempt to find this within the list of testing children. If a matching

character is found, we then continue by making the matching testing node the current test node. If
no match is found we return to the calling method.

Case 4: We have reached the end of the training node but not the current testing node, however, the

training node does have child nodes. In this case we remain at the same position within the testing

tree but we now iterate through the children of the training node to see if the following symbol

within the testing node exists. If a matching character is found, we then continue by making the

matching training node the current node. If no match is found we return to the calling method.

Case 5: We have reached the end of both the current testing and training node, and both of these

nodes have child nodes. This case involves more processing than the other cases as we now need to

iterate through each of the child nodes and recursively process each against each of the training
nodes and their children.

Case 6: If none of the above conditions are satisfied then we continue to shift positions along both

the current nodes, updating the counts array as we progress. This loop will then continue until we

reach the end of either of the nodes or we find a symbol which does not match.

5.4.1.2 Dynamic case

The dynamic case is processed differently as we do not build a suffix tree. We do create every node

which would be contained within the tree but these nodes are kept within a list and not added to a

tree. The reason stems from the fact that the symbols are not actually stored within nodes, we

instead have a reference to the original input string. With the dynamic case it is very likely that we

will be inserting suffixes that are not contained within this input string and so it must change. Also

when a node is added or modified, it is also very likely that indexes would change and we would

need to know which input string the index refers to. To tackle this, it works well to concatenate the

testing string onto the end of the training string (see 5.2.4) and treat the index of the first symbol of

the testing string as N , with N being the length of the training string and us beginning at value 0.

This would now ensure that there is no confusion between the reference location of a suffix.

721 Page

Traini ng String : The cat sat on the mat .

Testing String : The dog went out to play .

The cat sat on the ma t . $The dog went out to play . $

I ndex of first tes t ing character is 24.

Figure 5.10: Example of testing string being concatenated onto training string for dynamic
cases.

We would then begin extracting suffixes from the testing string and compare these to the training

tree. Using the above example we would begin with the suffix found between index 24 and 49

which is effectively the entire testing stream and then shift right one position each time until we

reach the end of the testing stream. The suffixes are extracted and created as Nodes through use of

the method insertSuffixes which passes each node to a dynamiclnsert function within the same

class. The method dynamiclnsert is built logically in much the same way as setcCounts. If the

current training node has no children and is the RootN ode of the tree then we increase the count at

the root and also the count of the new node to be inserted and then insert the node as a child of the

RootNode. If the current training node has no children but is not the root there is no need to split the

node or add as a child, we simply increase the length of the node by one and alter the index so that

is refers to the position within the testing stream rather than the training stream.

If the current training node does have children then we must find where within the current depth to

insert the new testing suffix. We do a binary search of the children and the insertion position is

returned as an integer. If this value is equal to the number of children at this depth then the ASCll

value of the first symbol is greater than any of the children within this depth. The new node is

therefore inserted as the last child due to the ordered nature of the suffix tree. The counts are

adjusted accordingly and the depth is calculated as the depth of the current node in addition to its

length.

If the value returned from the binary search is not equal to the number of children we must then

treat the value as the desired insertion position. The next step is to determine whether the node that

is currently situated at this position needs to be shifted to the right (as the tree is ordered) or at least

some of the current node is matched and so we must insert the new node into the current node and

possibly split it at some point.

In the case where the first symbol of the node that exists at the insertion point is equal to that of the

new node to be inserted, this is the time that we would now increase the counts within the C-Counts

array as a match has been found. We would then loop, moving along both nodes and increasing the

C-Counts at the relevant depth until we reach the end of either node or the next symbols are found

to not match. If all characters within the new node are matched then we simply increase the count of

the current node and return to the calling method. If there exists more symbols on the new node

then the new node must be dynamically inserted as a child to the current node and so the

dynamiclnsert method is called with the current training node which we have reached the end of as

the node at which we want to insert and the new node's index and length are altered to support the

fact that some of the symbols have already been matched before the remainder is passed as the new

node parameter. If the current node within the training tree was a leaf node then it is this case that

73 IP age

makes the suffix tree lose its balance of counts, i.e. counts of the parent node being equal to the sum

of the counts of its children. This is an example of where the eof symbol is important, it ensures that
there is no case where all symbols of a lead node can be matched with the testing node still having

more characters.

If we have not reached the end of either the current training or testing node then we must split the
current training node. The description of dynamic C-Measure in 3.3.2 shows an example where we
must split the node "bra" within the training tree as "br$" is inserted. You will see that the node

"bra" is modified to become "br" and the removed "a" is created as a child node with all previous
children of the "bra" node now becoming children of the node "a". This function was again

particularly difficult to implement and can be seen within the source code on the attached DVD.

5.4.2 R-Measure

All R-Measure results can be calculated using C-Measure results and this is the approach used
within the toolkit. Rather than calculating R-Measure results independently or simultaneously with

C-Measure, the toolkit loads the values of C-Measure comparisons and places them within
RTestCollection's, which are extensions of TestCollection class. The base class Accuracy calls the
method findResults and when this is overridden within the Raccuracy class, any R-Measure
variances can then be calculated by adding calls to find accuracies for each variant in which we are

interested.

5.4.2.1 rmax

rmax is an alternative name for the standard R-Measure and is defined as the sum of the C-Counts

and so we gather the value from getrCount. The value is normalised by adhering to the formula
displayed in 3.1 and its coded equivalent is displayed in Code sample 5.4 .

.. -• .
Code Sample 5.4: Coded Normalised R-Measure Value.

5.4.2.2 Rsq

Rsq is easily obtained by summing all C-Counts found between 1 and the set limit and we explore

all maximum values between 1 and a given maximum in order to determine which maximum value
achieves the greatest results. It is the responsibility of getRMeasureLessThanEqualTo to summate

the C-Counts between 1 and the upper limit and getNormalisedMeasure shall then normalise this

value by implementing the formula displayed in 3 .1.

5.4.2.3 R'2q

The R'2q-Measure is very similar to Rsq except that we decrease towards 1 as an upper limit rather

than increasing from 1 as a lower limit and in this case it is the upper limit which changes and the
lower limit 1 remains static. Again a total is determined by an alternative method, namely

getRMeasureGreaterThanEqualTo but this figure is then normalised as discussed in 3.1.

741 rage

5.4.2.4 R-Ranges

The function findRRangesAccuracy makes use of two loops in order to accumulate C-Counts

within the ranges. There is no need to normalise the total and so we determine the comparison that
returns the highest total between the set ranges to contain the correct author, topic or type and so on
depending on the current situation.

5.4.3 PPM (Prediction By Partial Matching)

As with the dynamic case of C-Measure we concatenate the testing stream to the training stream as
this allows us to work with unique indexes/positions within the stream. We then create two arrays,

one of which acts as a temporary store which holds pointers that are updated, the other acts as the
context list once all pointers have finished updating. Once all updates have finished the contents of
the updating pointers are transferred to the second array.

The method processNextChar (see Code sample 5.5) holds the outer loop operation and its purpose
is to attempt to encode all symbols within the testing stream until all have been processed and this is

done in three steps. Whilst there are still unprocessed testing symbols we first fetch the next symbol
to be encoded, we then calculate the probability for this current symbol and we then swap the

contents of the arrays i.e. pointers before processing the next symbol.

...
a • .., ••• ..,. .,._,.._u., '" .. -..
m • M.1.--1'1',...._ •
a, . -­... -... ___

Code Sample 5.5: Coded method for encoding all symbols for PPM.

There is a great amount of work involved in calculating the probability of the current symbol being
encoded. It is the method findNextChar which attempts to encode the next symbol at the furthest
point in the context list, and drops down this list should it be unsuccessful at the current depth. As
we escape down through context lengths we have to combine probabilities and so we store all of the
probabilities to be combined within a list and this list is first of all reset along with the list of

exclusions (should there be any) when we process a new symbol.

As symbols are found we simply update pointers within the suffix tree and update the contents of

the probability list and this process continues until we reach the end of the testing stream or the
current symbol cannot be encoded. If the symbol cannot be encoded we decrease the context length
and continue but as well as this, with the dynamic case, should there be an unseen symbol then the
symbol must be inserted at all current positions within the tree and this is made easy due to us
having stored each of the insertion locations within our array.

75 IP a g c

5.5 Using the toolkit

The object named 'Main ' in Figure 5.1 is the main entry point of the application and allows a level

of abstraction between the user and the underlying methodology. It is from here that user commands

are executed and these commands perfom1 underlying operations. A user must first state the

operation they wish to perform, such as "cone" for concatenating files within a location by also

passing parameters indicating folder names within a base location, see Example 1.

Example 1

Main. main (new String [] { " cone IP , " / honie/ localadmin/ 2 □news/ c ross 1/ IP ,

"split□" , "splitl" , "split2 " , "split3 " });

Example 2 shows that in order to then trim these models for optimisation again only a single call is

required no matter what algorithm(s) are to be used.

Example 2

Main. main (new String [] { "tr 1ro" , " / home / localadrnin/ 2 Onews/ c ross 1/ " }) ;

Example 3 shows how little code is needed in order to process the models and then perform a C­

Measure calculation on them. First of all the parameter "c" is passed that indicated it is C-Measure

we wish to be performed. We then pass the base location of the corpora from which we can find the
training and testing documents. The next two parameters ("true" "true" in Example 3) indicate the

protocol to be investigated, with the first parameter being a Boolean value, true indicating

concatenated and the static for static or dynamic with true indicating static. Following this is the

index of the testing files to be investigated, "0" indicates that we must start with the first file at

index zero but "-1 " is used to indicate all files, if say "99" were passed then only the first 100

testing documents would be categorized, from index 0 to 99. The following parameters indicate the

names of the training directories and then the testing directory.

Example 3

M,oin.main(new String[J { "c" , "ho1oe/loc,oladln1n/ :Onew:,,cro,i:,1/" ,
"c.ru~" , "true", "0" , "-1" , ",:.rain,.. , irspl1t0" , "~pl1tl" , n:,pl1c:-"' , "~pl1t3° , "Ce!St" , "~pl1t4"});

Example 4 shows how similar it is to process the existing models but on a different algorithm. This

algorithm takes "6" as parameter and this indicated the PPM order in which we are interested. Each

algorithm can take whichever parameters are required and loops can be used to perform

experiments on all orders, all combinations of folders for cross validation and so on. These

commands can also be bundled in order to further simplify the process or alternatively this

information could be retrieved through a GUI if desired. A common entry point such as this is

powerful in that it is possible to modify the parameters and perform experimentation of any

algorithm, vary the training and testing data and also the order or substring length.

76 JP n g e

Example 4

Main.mdin(new String[] { "ppm" , " / home/locala~oin/20news/crossl/" , "6" , "0" , "-1" ,

"train" , "split□" , "splitl" , "::;plit2 " , "::;pl it3" , "test", "::;plit4"});

Code sample 5 .6 shows the main function and how the parameters are redirected depending on

which operation the user asks to perform. Any new implementations that extend the base classes
can add its case to this code and then be ran. from the same common location as the other operators.

n

20 E] -· rr'='aT:i':'.! a 11en 1nstanc-e of U!l111 'f':/

21 public stacic void aain (String(J args

22 - (
23 String corrmand = args[0];
24
25

26

27

28

29
30

31

32

33
34

35
36

37

38

39
40

41

42
43

44
45

46
47

48

49
50

51

52

53

54

55

56
57
SA

Chapter Discussion

String(J newArgs = new String[args , l ength - 1 J;

for (int i• l ; i < a rgs. length; i++)

<
newArgs(i - 1 J • args [i J;

if (corranand . equals (.,cone"))

(

new Training . Testing(newArgs);

else if (command. equal s ("tr 1tu")

TrimConcatenatedModel~.Te~ tinq.main(newArQ~);

el:,e if (corrmand . equal:, ("pp11o''))

<
j~cat . PPMMain.main(nevArg~);

el:,e if (con-anand.equals("c"))
(

CMeasure .Tescing.CTestingCollection.main(newArgs);

else if (command . equals I "T")
(

TTestingCollection .mdin(newArgs);

Sy~tem. o ut .println("Invalid Cc,mrw!1.nd") ;

System.exit (0) ;

Code Sample 5.6: jSCat's main entry point.

Data preparation can be common among a number of algorithms and fits well within a common

toolkit, allowing classes implementing different algorithms have been ran sequentially on a single
data source within a single toolkit. This chapter has shown that optimisations can be found that

drastically affect processing times and we have now been able to analyse stream based substring
lengths that are much longer than previous research.

771 P age

The use of base classes within the toolkit has made it possible for each algorithm to be introduced
using very little code. The experimentation process has been simplified and experimentation can be

started from a single location and can be varied by simply changing the input parameters.

There were a number of functions that were difficult to implement and a number of these have been
explained in detail within this chapter, there was unfortunately too much code for each to be
included within the chapter but they can be viewed within the source code on the attached DVD.
The toolkit is available for download from http://aiia.cs.bangor.ac.uk.

781 P age

Chapter 6

Experimental results

Chapter Summary

The purpose of this chapter is to describe the experimental results for text categorization

using stream-based methods. The methods have been implemented using suffix trees as
described in the previous chapters. Results compare all algorithms within each dataset in

order to discover the best performing within each corpus.

Summary of each section

Section 6.1 details the experimental setup including how the datasets have been split to assist
in experimentation Section 6.2 details all results collected from the experiments Section 6.3

lists timings received from experiments on 20newsgroups and allows us to compare the
processing of each algorithm. Section 6.4 discusses results and notes all observations made
from the comparisons.

6.1 Experimental setup

6.1.1 Corpora setup

The following corpora were used in the experiments. Note that the file names within each
split for each corpus are detailed within the attached DVD.

6.1.1.1 Reuters-to

The frequency of documents per category varies greatly; earnings, for example, contains

2877 training documents whilst the other nine, apart from acq (containing 1650) all contain
less than 600, and this is also consistent across the testing documents . Table 6.1 shows the 10
most frequent categories and the number of documents within each.

The resulting corpus has 7193 training documents (5.9MB), and 2787 testing documents
(2.1MB). The document sizes range from 47 bytes to 13.8 Kbytes. The training data per class
varies from 213.7 Kbytes to 1.4MB.

791 Page

Cate1:wrv No. Trainin2 Docs No. Testin2 Docs
earn 2877 1087
acq 1650 719
money-fx 538 179
~rain 433 149
crude 389 189
trade 369 117
interest 347 131
ship 197 89
wheat 212 71
corn 181 56

Total 7193 2787

Table 6.1: The number of testing and training documents for each category of Reuters
10 (RlO).

80 IP age

6.1.1.2 RCVl-Author

Here we select the top 50 authors (with respect to total size of articles). The authors and
documents per set are detailed in Table 6.2.

Author No. Testing Docs Training Document Size (KB)
Alan Baldwin 26 785
Alan Crosbv 26 705
Alan Wheatlev 23 695
Alastair Macdonald 26 848
Alexander Smith 30 962
Alistair Lvon 29 918
Amelia Torres 23 653
Andrew Browne 20 655
Andrew Cawthorne 22 759
Andrew Hill 28 848
Anthonv Goodman 26 694
Arshad Mohammed 23 696
Beniamin Kan!! Lim 27 768
Carol Giacomo 34 1134
Charles Aldin!!er 34 942
Christian Jennins:,s 21 667
David Crossland 22 677
David Lawder 32 940
Dou!!las Busvine 23 719
Ell en Freilich 31 855
Erik Kirschbaum 24 735
Evelvn Leonold 45 1246
Gene Gibbons 25 756
Glenn Somerville 24 766
Jane Macartnev 24 754
John Gilardi 26 768
Laurence McOuillan 23 684
Leonard Santorelli 25 892
Linda Sieg 19 657
Ma!!!!ie Fox 23 665
Marcel Michelson 27 804
Martin Cowlev 36 969
Mike Collett 27 805
Mure Dickie 28 805
Nelson Graves 23 704
Ole!! Shchedrov 24 690
Paul Holmes 21 666
Paul Maiendie 29 729
Paul Mvlrea 25 730
Paul Tavlor 23 811
Peter Blackbum 24 625
Philinna Fletcher 21 668
Richard Melville 38 1067
Robert Evans 26 774
Robin Side! 24 646
Steve Holland 28 843
Timothv Herita!!e 27 864
Todd Nissen 27 732
William Boston 25 815
William Wallis 29 826

Total 1316

Table 6.2: The number of testing documents and size of category for each author within
RCVl-Author.

811 Page

6.1.1.3 20Newsgroups

Table 6.3 shows the categories in 20-Newsgroups and their numbers of texts. There is no
fixed way to split 20-newsgroup into a training set and a test set. This table also shows that

the sizes of categories are relatively uniform compared with those of Reuters-21578. Five
random splits of 80/20 training/testing were used as in Marton et al. (2005).

Cate2orv No. Docs Cate2ory Size (Mbvtes)
alt.atheism 799 1.6
comp.graphics 973 1.6
comp. os. ms-windows.misc 985 2.3
comp.sys.ibm.pc.hardware 982 I.I
comp.sys.mac.hardware 961 1.0
comp. windows.x 980 1.8
misc. forsale 972 0.9
rec.autos 990 1.2
rec.motorcycles 994 1.1
rec.sport. baseball 994 1.3
rec.sport.hockey 999 1.7
sci.crypt 991 2.0
sci.electronics 981 1.2
sci.med 990 1.8
sci.space 987 1.7
soc.religion.christian 997 2.2
talk.politics.guns 910 1.8
talk. poli tics.mideast 940 2.8
talk. politics.misc 775 2.0
talk.religion.misc 628 1.3

Total 18828

Table 6.3: The number of documents and size of each category of 20-Newsgroups.

6.1.1.4 Gutenberg

Table 6.4 lists the authors contained within the Gutenberg corpus, the number of documents

from each author and also the total size of the documents. Some of the documents are as short
as 98.4 Kbytes, and some as long as 1.1MB (many are novels). The training data per class
ranges from 559.8 Kbytes to 3.1MB.

82 IP age

Category No. Docs Category Size (Mbytes)
Charles Dickens 4 2.8
Daniel Defoe 4 1.7
Emerson 4 1.4
Jane Austen 4 3.1
l(jpling 4 1.4
Shakespeare 4 0.6
Shaw 4 1.2
Twain 4 3.0
Wells 4 2.0
Wilde 4 1.1

Total 40

Table 6.4: The number of documents and size of category for each author of Gutenberg.

Note that the text inserted by Gutenberg was removed i.e. the disclaimer text was removed

from each of the documents before processing.

4-fold cross-validation was used, with 3 training and 1 test document per class in each fold.

Some works are as short as 98.4 Kbytes, and some as long as 1.1MB (many are novels). The
training data per class ranges from 559.8 Kbytes to 3.1MB.

Table 6.5 allows us to easily compare the corpora 's and shows that the four corpora are quite

different and will allow for conclusions to be drawn from their differences.

Dataset Name No. Test Docs No. Train Docs No. Categories Cross-Validation

20-Newsgroups 3792* 15036* 20

Reuters 10 2237 5677 10

RCVl-Author 1316 50 50

GutenBerg 10 30 10

Table 6.5: Summary of data sets used.

* approximately as cross validation is performed and final split will have less

6.1.2 Hardware details

Yes

No

No

Yes

In order to obtain the results, 8 Dual Core PC's with 2GB RAM were used separately with no
distributed computing, each is used to process a single algorithm at a time.

83 IP age

6.2 Results

This section describes the experimental results for the stream-based methods and protocols
when used for text categorization on all of the data sets. Accuracy has been quoted since the
experimentation was performed with data sets variants that have only singly labelled
documents. In this setting, Bekkerman, R. (2001) states that the accepted performance

measure is accuracy, and this was the evaluation measure that was specified the most in
previously published experiments for each of the studied singly labelled variants of the data
sets, and therefore provides a broader comparison than the alternative evaluation measures,

recall and precision, and the breakeven point, as used by Yang (1999) for multiply labelled
documents, for example.

6.2.1 C-Measure

This section displays C-Measure results for each of the corpora through use of tables and
graphs. The highest accuracy achieved for each protocol are highlighted in bold font.

841 Page

1
2
3
4
5
6
7
8
9
10

11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

6.2.1.1 20Newsgroups

Concatenated Dynamic Concatenated Static NonConcatenated Dynamic NonConcatenated Static
0.0427 0.0427 0.0644 0.0676
0.2379 0.2443 0.1424 0.1737
0.7875 0.7913 0.2789 0.3067
0.8792 0.8789 0.4534 0.4807
0.8979 0.8985 0.571 6 0.5963
0.9045 0.9048 0.6626 0.6767
0.9041 0.9053 0.7303 0.7375
0.9053 0.9063 0.7762 0.7790
0.9063 0.9066 0.8087 0.8067
0.9070 0.9066 0.8309 0.8244
0.9057 0.9046 0.8440 0.8346
0.9038 0.9032 0.8504 0.8395
0.9017 0.90 10 0.85 13 0.8399
0.8979 0.8964 0.85 15 0.8393
0.8923 0.8912 0.8520 0.8400
0.8885 0.8869 0.8508 0.8386
0.8847 0.8830 0.8501 0.8378
0.8788 0.8782 0.8488 0.8367
0.8749 0.8741 0.8477 0.8359
0.871 2 0.8700 0.8469 0.8343
0.8675 0.8667 0.8455 0.8330
0.8636 0.8630 0.8442 0.83 15
0.8607 0.8598 0.8427 0.8299
0.8569 0.8561 0.8407 0.8273
0.8549 0.8537 0.8391 0.8258
0.85 19 0.8504 0.8377 0.8239
0.8478 0.8466 0.8360 0.8213
0.8450 0.8441 0.8355 0.8200
0.8417 0.8403 0.8332 0.8 177
0.8386 0.8376 0.83 13 0.8162
0.8350 0.834 1 0.8299 0.8142
0.8320 0.83 11 0.8275 0.8118
0.8299 0.8292 0.8262 0.8 100
0.8266 0.8259 0.8238 0.8071
0.8242 0.8236 0.8216 0.8050
0.8214 0.8207 0.8 197 0.8033
0.8 192 0.8 183 0.8 173 0.8004
0.8 167 0.8157 0.8 153 0.7983
0.8142 0.8131 0.8 132 0.7962
0.8126 0.8116 0.8 119 0.7950

Table 6.6: Accuracies achieved by applying C-Measure (up to length 40 due to page
restriction) to 20Newsgroups for each protocol.

85 IP age

1.0
0.9
0.8 - -
0.7

~ 0.6
RI

5 0.5
u
~ 0.4

- • • Concatenated Dynamic

• • • • • • Concatenated Static

0.3 - NonConcatenated Dynamic

0.2 - - - NonConcatenated Static
0.1

0.0
1 6 11 16 21 26 31 36 41 46

Substring Length

Figure 6.1: Accuracies achieved by applying C-Measure to 20Newsgroups for each
protocol.

The results for the experiment are shown in Table 6.6 and graphed in Figure 6.1. For Table
6.6, the leftmost column indicates the substring length (shown as x axis in Figure 6.1) and for

each protocol an average accuracy is shown (shown as y axis in Figure 6.1). The results show
that concatenated models clearly outperform non-concatenated ones and that dynamic models
marginally outperform static models. The results also indicate that shorter substring lengths
perform better for concatenated cases than for their non-concatenated counterparts. The

optimal substring length is shorter than that of for Gutenberg but is similar to RCVl-Author
which is a more similar corpus in relation to the number of files per class and size of each
file . It is also noticeable from the graph that even short substring lengths are good at

categorizing which is important in situations where the available processing time is limited.

86 I P age

6.2.1.2 Gutenberg

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static

l 0.08 0.08 0.18 0.13

2 0.18 0.20 0.13 0.23

3 0.18 0.23 0.15 0.18

4 0.23 0.23 0.18 0.18

5 0.30 0.40 0.15 0.25

6 0.30 0.40 0.25 0.25

7 0.30 0.40 0.28 0.38

8 0.35 0.48 0.30 0.45

9 0.40 0.48 0.38 0.45

IO 0.45 0.55 0.43 0.48

11 0.48 0.58 0.40 0.48

12 0.55 0.58 0.50 0.50

13 0.55 0.60 0.53 0.55

14 0.58 0.60 0.55 0.60

15 0.60 0.63 0.60 0.63

16 0.63 0.63 0.63 0.63

17 0.63 0.63 0.63 0.65

18 0.63 0.70 0.70 0.68

19 0.70 0.73 0.68 0.68

20 0.70 0.73 0.68 0.68

21 0.75 0.78 0.75 0.73

22 0.75 0.75 0.78 0.73

23 0.75 0.75 0.78 0.78
24 0.78 0.75 0.78 0.75

25 0.78 0.75 0.78 0.75

26 0.75 0.75 0.78 0.75

27 0.75 0.75 0.78 0.73

28 0.75 0.73 0.75 0.70

29 0.73 0.73 0.73 0.63

30 0.68 0.65 0.70 0.60

31 0.63 0.63 0.58 0.55

32 0.58 0.60 0.55 0.53

33 0.50 0.53 0.48 0.45

34 0.45 0.48 0.48 0.45

35 0.43 0.43 0.43 0.38

36 0.43 0.40 0.48 0.43

37 0.45 0.43 0.48 0.45

38 0.45 0.43 0.53 0.50

39 0.40 0.40 0.50 0.48

40 0.38 0.38 0.50 0.48

Table 6.7: Accuracies achieved by applying C-Measure (up to length 40 due to page
restriction) to Gutenberg for each protocol.

87 \ P age

0.9

0.8

0.7

0.6
> u
~ 0.5
::I
l:l 0.4
<(

0.3

0.2

0.1

0.0
1 6 11 16 21 26 31 36 41 46

Substring Length

- • • Concatenated Dynamic

• • • • • • Concatenated Static

- NonConcatenated Dynamic

- - NonConcatenated Static

Figure 6.2: Accuracies achieved by applying C-Measure to Gutenberg for each protocol.

The results for the experiment are shown in Table 6. 7 and graphed in Figure 6.2. For Table
6. 7, the leftmost column indicates the substring length (shown as x axis in Figure 6.2) and for
each protocol an average accuracy is shown (shown as y axis in Figure 6.2). Figure 6.2 shows
that the optimal substring length is much larger for this corpus, typically between 21 and 28.
Accuracy at lower lengths are not as effective as they were with 20Newsgroups and also trail

off very quickly for substring lengths greater than around 30. Interestingly it is hard to
distinguish between any of the protocols for this corpora, possibly the differences are because
the texts are much larger, possibly because there are so few documents. Either way it appears

to show that the effectiveness of each protocol differs between corpora and this is an
important finding.

88 IP age

6.2.1.3 RCVl-Author

Concatenated Dynamic Concatenated Static

1 0.0182 0.0182

2 0.4871 0.4894

3 0.7933 0.7971

4 0.8343 0.8381

5 0.8556 0.8564

6 0.8609 0.8609

7 0.8663 0.8655

8 0.8716 0.8731

9 0.8754 0.8754

10 0.8754 0.8769

11 0.8777 0.8799
12 0.8815 0.8837
13 0.8815 0.8815
14 0.8815 0.8830
15 0.8792 0.8822

16 0.8830 0.8807
17 0.8815 0.8815

18 0.8784 0.8761
19 0.8761 0.8754
20 0.8777 0.8761

21 0.8746 0.8731
22 0.8746 0.8739
23 0.8693 0.8701
24 0.8701 0.8701
25 0.87 16 0.8716

26 0.8731 0.8731
27 0.8701 0.8701
28 0.8640 0.8647

29 0.8609 0.8625
30 0.8602 0.8617

31 0.8556 0.8564
32 0.85 11 0.8518
33 0.8488 0.8488
34 0.8465 0.84650
35 0.8419 0.8419

36 0.8389 0.8389
37 0.8336 0.8336

38 0.8267 0.8267

39 0.8222 0.8214
40 0.8146 0.8 138

Table 6.8: Accuracies achieved by applying C-Measure (up to length 40 due to page
restriction) to RCVl-Author for each protocol.

89 IP age

1.0
0.9

0.8
0.7

~ 0.6
IO

5 0.5 ...
~ 0.4

0.3
0.2

0.1
0.0

,,,-

'
1 6 11 16 21 26 31 36 41 46

Substring Length

-

- Concatenated Dynamic

• • • • • • Concatenated Static

Figure 6.3: Accuracies achieved by applying C-Measure to RCVl-Author for each
protocol.

The results for the experiment are shown in Table 6.8 and graphed in Figure 6.3. For Table

6.8, the leftmost column indicates the substring length (shown as x axis in Figure 6.3) and for

each protocol an average accuracy is shown (shown as y axis in Figure 6.3). For this corpus it

is very difficult to identify differences in the performance of each protocol for any of the

substring lengths. The results are more similar to those obtained from 20newsgroups than

from Gutenberg, possibly this is due to the number of files and their sizes being more similar

to those within the 20 Newsgroups corpora than Gutenberg.

90 IP age

6.2.1.4 Reuters-10

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static

I 0.3 I 11 0.311 1 0.4198 0.4184
2 0.6553 0.6553 0.6021 0.6442
3 0.7470 0.7501 0.6527 0.7050
4 0.7792 0.7921 0.7819 0.8114
5 0.8342 0.8386 0.8426 0.8713
6 0.8623 0.8659 0.8695 0.8838
7 0.8784 0.8820 0.8860 0.8909
8 0.8936 0.8967 0.8918 0.8949
9 0.8994 0.9008 0.8927 0.8954
10 0.9021 0.9048 0.8918 0.8923
11 0.9061 0.9080 0.8873 0.8860
12 0.9119 0.9137 0.8824 0.8811
13 0.9146 0.9169 0.8806 0.8757
14 0.9169 0.9173 0.8730 0.8730
15 0.9177 0.9169 0.8704 0.8681
16 0.9173 0.9169 0.8646 0.8650
17 0.9151 0.9137 0.8592 0.8610
18 0.9128 0.9133 0.8578 0.8614
19 0.9066 0.9079 0.8538 0.8543
20 0.9025 0.9025 0.8529 0.8552
21 0.8949 0.8945 0.8494 0.8502
22 0.8909 0.8914 0.8476 0.8480
23 0.8838 0.8838 0.8435 0.8444
24 0.8775 0.8771 0.8435 0.8453
25 0.8717 0.8708 0.8364 0.8368
26 0.8610 0.8596 0.83 I 5 0.8310
27 0.8444 0.8435 0.8221 0.8220
28 0.8270 0.8266 0.8105 0.8105
29 0.7997 0.7997 0.7890 0.7890
30 0.7805 0.7805 0.7698 0.7698
31 0.7599 0.7599 0.7501 0.7501
32 0.7278 0.7278 0.7202 0.7202
33 0.6987 0.6987 0.6911 0.6911
34 0.6665 0.6665 0.6585 0.6585
35 0.6446 0.6446 0.6370 0.6370
36 0.6187 0.6187 0.6129 0.6129
37 0.5834 0.5834 0.5780 0.5780
38 0.5579 0.5579 0.5530 0.5530
39 0.5248 0.5248 0.5217 0.5217
40 0.4989 0.4989 0.4962 0.4962

Table 6.9: Accuracies achieved by applying C-Measure (up to length 40 due to page
restriction) to Reuters-10 for each protocol.

911 Page

1.0

0.9

0.8

0.7

~ 0.6
"' ::i 0.5
u

~ 0.4

0.3 I
0.2

0.1

0.0
1 6

- ·-·

11 16 21 26 31

Substring Length

36 41 46

- - Concatenated Dynamic

• • • • • • Concatenated Static

- • • NonConcatenated Dynamic

- NonConcatenated Static

Figure 6.4: Accuracies achieved by applying C-Measure to Reuters-IO for each protocol.

The results for the experiment are shown in Table 6.9 and graphed in Figure 6.4. For Table

6.9, the leftmost column indicates the substring length (shown as x axis in Figure 6.4) and for
each protocol an average accuracy is shown (shown as y axis in Figure 6.4). The results show
that concatenated models outperfom1 non-concatenated ones as was the case for
20newsgroups (see 6.2.1.1), but not as clearly. The results differ from 6.2.1.1 in that for Rl 0
concatenated models achieve their highest accuracy at a longer substring length, typically
between 14 and 15. The optimal substring lengths for non-concatenated models also differ to

6.2.1.1 in that the optimal substring length is shorter at a length of 9.

6.2.2 PPM

This section displays PPMC and PPMD accuracies achieved for each of the corpora, both

with and without update exclusions. The results are again presented in both tabulated and
graphical format and the best results for each protocol are highlighted in bold font for easy
comparison. Although it would have been desirable to have attained results up to order 6 for

all corpora, in reality the resources were not available to have computed these results because
of the high computational overheads (both memory and execution time) for these high order
models.

6.2.2.1 20 Newsgroups

Concatenated Dynamic Concatenated Static
NonConcatenated

NonConcatenated Static
Dynamic

With Without With Without With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

2 0.8886 0.8930 0.8851 0.8903 0.7828 0.7659 0.7529 0.7412

Table 6.10: Accuracies achieved by applying PPMC to 20Newsgroups for each protocol.

92 1 Page

1.0 ~--------------------------------
0.9
0.8

> 0.7
~ 0.6
3 0.5
l:l 0.4
c:i: 0.3

0.2
0.1
0.0

With Without With Without With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

Concatenated Dynamic Concatenated Static NonConcatenated
Dynamic

Protocol

NonConcatenated
Static

Figure 6.5: Accuracies achieved by applying PPMC order 2 to 20Newsgroups for each
protocol.

Concatenated Dynamic Concatenated Static NonConcatenated Dynamic NonConcatenated Static
With Without With Without With Without With Without

Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

2 0.8920 0.8955 0.8877 0.8910 0.7812 0.7629 0.7537 0.7372

Table 6.11: Accuracies achieved by applying PPMD to 20Newsgroups for each protocol.

1.0
0.9
0.8

> 0.7
~ 0.6
3 0.5
l:l 0.4

c:i: 0.3
0.2
0.1
0.0

With Without With Without With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

Concatenated Dynamic Concatenated Static NonConcatenated
Dynamic

Protocol

NonConcatenated
Static

Figure 6.6: Accuracies achieved by applying PPMD order 2 to 20Newsgroups for each
protocol.

The results for the PPMC experiments are shown in Table 6.10 and graphed in Figure 6.5 and

the results for PPMD are shown in Table 6.11 and Figure 6.6. For Table 6.10 and 6.11 , the

leftmost column indicates the substring length (shown as x axis in Figure 6.5 and 6.6) and for

each protocol an average accuracy is shown (shown as y axis in Figure 6.5 and 6.6).

93 I P age

It is clear that for PPMC concatenated models performed better than non-concatenated and

dynamic models performed better than static models, a finding that was unclear for C­

Measure results. The results also show that without exclusions achieved best results for

concatenated models, but the opposite is true for non-concatenated models.

For PPMD, concatenated models again performed better than non-concatenated and dynamic

models performed better than static ones. Without exclusions achieved best results for

concatenated models, but the opposite is true for non-concatenated models.

6.2.2.2 Gutenberg

2

3

4

5

6

7

Concatenated Concatenated NonConcatenated NonConcatenated
Dvnamic Static Dynamic Static

With Without With Without With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

0.8 0.8 0.75 0.7 0.625 0.65 0.55 0.55
0.925 0.95 0.725 0.675 0.925 0.9 0.575 0.55
0.875 0.875 0.725 0.65 0.9 0.8 0.575 0.5

0.875 0.875 0.7 0.6 0.875 0.875 0.575 0.525

0.85 0.875 0.7 0.625 0.55 0.5 0.6 0.525
0.4 0.375 0.7 0.65 0.25 0.225 0.6 0.55

Table 6.12: Accuracies achieved by applying PPMC to Gutenberg for each protocol.

1 ~----------------------------
0.9 +--a-::=----ta-::::=-----------ta-.::::-------=--------
0.8

> 0.7
l;l 0.6
5 0.5
8 0.4
~ 0.3

0.2
0.1

0

With Without With Without With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

Concatenated
Dynamic

Concatenated Static NonConcatenated NonConcatenated
Dynamic Static

Protocol

■ Order 2

■ Order 3

■ Order 4

■ Order 5

■ Order 6

■ Order 7

Figure 6.7: Accuracies achieved by applying PPMC to Gutenberg for each protocol.

94 IP age

2

3

4

5

6
7

Concatenated Concatenated Non Concatenated NonConcatenated
Dynamic Static Dvnamic Static

With Without With Without With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

0.75 0.775 0.75 0.7 0.6 0.575 0.55 0.525

0.95 0.95 0.75 0.675 0.875 0.875 0.55 0.55

0.925 0.9 0.75 0.65 0.9 0.825 0.575 0.5

0.9 0.875 0.7 0.575 0.925 0.875 0.55 0.525

0.875 0.9 0.7 0.625 0.575 0.45 0.6 0.525

0.425 0.35 0.7 0.65 0.275 0.225 0.6 0.525

Table 6.13: Accuracies achieved by applying PPMD to Gutenberg for each protocol.

1
0.9
0.8

> 0.7
:;: 0.6
5 0.5
~ 0.4

0.3
0.2
0.1

0

With Without With Without With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

Concatenated
Dynamic

Concatenated Static NonConcatenated NonConcatenated
Dynamic Static

Protocol

■ Order 2

■ Order 3

■ Order 4

■ Order 5

■ Order 6

■ Order 7

Figure 6.8: Accuracies achieved by applying PPMD to Gutenberg for each protocol.

The results for the PPMC experiments are shown in Table 6.12 and graphed in Figure 6.7 and
the results for PPMD are shown in Table 6.13 and Figure 6.8. For Table 6.12 and 6.13, the
leftmost column indicates the substring length (shown as x axis in Figure 6.7 and 6.8) and for

each protocol an average accuracy is shown (shown as y axis in Figure 6.7 and 6.8).

For PPMC, in all cases, with exclusions outperforms without, dynamic models perform much

better than static ones and concatenated models easily outperform its non-concatenated
counterpart. It appears that shorter context lengths provide the best categorization for this
corpus in concatenated cases, but it is less clear as to which is best for non-concatenated.
With the number of testing documents within the corpus being so few we see a large
difference in results, with one file accounting for 10% accuracy in each cross validation

performed.

Notice that for this corpus there is little difference between PPMC and PPMD. For PPMD,
with exclusions outperformed without exclusions as was the case with its PPMC results.

Dynamic models again performed much better than static ones in all cases, as did
concatenated, again better than non-concatenated in all cases. It would be fair to say that

95 IP age

context lengths of 2 provided the highest categorization as on more occasions than any other

it achieved the highest accuracy.

6.2.2.3 RCVl-Author

Concatenated Dynamic Concatenated Static

With Exclusions Without Exclusions With Exclusions Without Exclusions

2 0.7994 0.8055 0.8002 0.8123

3 0.8480 0.8503 0.8495 0.8511

Table 6.14: Accuracies achieved by applying PPMC to RCVl-Author for each protocol.

1.0 ~-------------------
0.9
0.8
0.7

~ 0.6
ra
:i 0.5
u

;J_ 0.4

0.3

0.2

0.1
0.0

With

Exclusions

Without

Exclusions

With

Exclusions

Without

Exclusions

Concatenated Dynamic

Protocol

Concatenated Static

■ Order 2

■ Order 3

Figure 6.9: Accuracies achieved by applying PPMC to RCVl-Author for each protocol.

Concatenated Dynamic Concatenated Static

With Exclusions Without Exclusions With Exclusions Without Exclusions

2 0.8062 0.8 146 0.8047 0.8123

3 0.8503 0.8533 0.8488 0.8518

Table 6.15: Accuracies achieved by applying PPMD to RCVl-Author for each protocol.

96 IP age

1.0 ~------------------

0.9 -1--------------------
0.8
0.7

~ 0.6
ra
; 0.5
u

;j_ 0.4
0.3
0.2
0.1
0.0

With
Exclusions

Without
Exclusions

With
Exclusions

Without

Exclusions

Concatenated Dynamic Concatenated Static

Protocol

■ Order 2

■ Order 3

Figure 6.10: Accuracies achieved by applying PPMD to RCVl-Author for each
protocol.

The results for the PPMC experiments are shown in Table 6.14 and graphed in Figure 6.9 and

the results for PPMD are shown in Table 6.15 and Figure 6.10. For Table 6.14 and 6. 15, the

leftmost column indicates the substring length (shown as x axis in Figure 6.9 and 6.10) and

for each protocol an average accuracy is shown (shown as y axis in Figure 6.9 and 6.10).

In all cases without exclusions performed better than with and interestingly dynamic models

performed better for PPMD but the opposite is true for PPMC. The results also show that

order 3 greatly improved the accuracies compared to those received for order 2 as is the case

with Gutenberg (see 6.2.2.2) and Reuters-IO (see 6.2.2.4).

6.2.2.4 Reuters-10

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dvnamic Static

With Without With Without With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

2 0.9477 0.9437 0.9450 0.9392 0.8556 0.8489 0.8990 0.8972

3 0.9531 0.9513 0.9455 0.9410 0.4962 0.4864 0.8990 0.9021

4 0.9227 0.9253 0.9405 0.9343 0.4680 0.4193 0.8963 0.9080

Table 6.16: Accuracies achieved by applying PPMC to Reuters-10 for each protocol.

97 Ir age

2

3

4

1.0
0.9
0.8

> 0.7
~ 0.6
5 0.5
8 0.4
c:t 0.3

0.2
0 .1
0.0

With Without With Without With Without With Without

Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

Concatenated
Dynamic

Concatenated Static NonConcatenated NonConcatenated
Dynamic Static

Protocol

■ Order 2

■ Order 3

■ Order 4

Figure 6.11: Accuracies achieved by applying PPMC to Reuters-10 for each protocol.

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static

With Without With Without With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

0.9455 0.9450 0.9441 0.9392 0.8538 0.8476 0.9003 0.8976

0.9517 0.9490 0.9450 0.9374 0.4975 0.4949 0.8976 0.9034

0.9298 0.9280 0.9397 0.9338 0.5069 0.4662 0.8990 0.9052

Table 6.17: Accuracies achieved by applying PPMD to Reuters-10 for each protocol.

1.0 ~-----------------------------
0.9
0.8

> 0.7
~ 0.6
; 0.5
I.I

:;}_ 0.4
0.3
0.2
0.1
0.0

With Without With With Without With Without
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

Concatenated

Dynamic

Concatenated Static NonConcatenated
Dynamic

Protocol

NonConcatenated
Static

■ Order 2

■ Order 3

■ Order 4

Figure 6.12: Accuracies achieved by applying PPMD to Reuters-10 for each protocol.

The results for the PPMC experiments are shown in Table 6.16 and graphed in Figure 6.11
and the results for PPMD are shown in Table 6.17 and Figure 6.12. For Table 6.16 and 6.17,
the leftmost column indicates the substring length (shown as x axis in Figure 6.11 and 6.12)

and for each protocol an average accuracy is shown (shown as y axis in Graph 6.11 and 6.12).

98 IP age

The most inconsistent result was found within RIO as there is a noticeable drop in accuracy
for an order of 2 and 3 for non-concatenated models for both PPMC and PPMD. The highest

accuracies for concatenated models were achieved for order 3 for both PPMC and PPMD. It
is difficult to determine the best order for non-concatenated static though it would appear that

lower orders perform better when update exclusions are performed, and longer ones for when
they are not. As with 20newsgroups and Gutenberg, concatenated models outperformed non­
concatenated, in this case quite significantly for both PPMC and PPMD.

6.2.3 R-Measure

This section displays accuracies achieved for each of the corpora using each of the R­
Measure algorithms discussed in 3.1. For R-Ranges, the substring lengths investigated have a

minimum from 1 up to 29 and a maximum from 2 up to 30. Substring lengths of up to length

30 are investigated for both R,!'.q-Measure and R:Sq-Measure.

6.2.3.1 20Newsgroups

The results for the R:Sq-Measure experiments are shown in Table 6.18, R,!'.q-Measure in Table

6.1 9 and Tables 6.20-6.23 show results for R-Ranges. Tables 6.18 and 6.19 display
accuracies for all four protocols with the leftmost column indicating the lower substring limit
for each algorithm. Tables 6.20-6.23 show the accuracy for each range with a single table
displaying results for a single protocol. The highest accuracies are again highlighted in bold

font.

99 IP age

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static

I 0.0427 0.0427 0.0644 0.0676

2 0.2379 0.2443 0.1403 0.1687

3 0.7805 0.7831 0.2324 0.2620

4 0.8727 0.8719 0.3598 0.3789

5 0.8939 0.8946 0.4513 0.4647

6 0.9032 0.9027 0.5183 0.5270

7 0.9056 0.9064 0.5735 0.5795

8 0.9084 0.9084 0.6171 0.6193

9 0.9094 0.9098 0.6543 0.6517

10 0.9107 0.9111 0.6828 0.6772

11 0.9113 0.9110 0.7043 0.6970

12 0.9130 0.9117 0.7202 0.7128

13 0.9133 0.9122 0.7319 0.7253

14 0.9141 0.9130 0.7423 0.7352

15 0.9145 0.9131 0.7508 0.7429

16 0.9140 0.9133 0.7582 0.7511

17 0.91 35 0.9125 0.7643 0.7559

18 0.9126 0.9117 0.7701 0.7615

19 0.9119 0.9110 0.7757 0.7684

20 0.9099 0.9084 0.7841 0.7758

21 0.9072 0.9046 0.7907 0.7822

22 0.9047 0.9005 0.7970 0.7897

23 0.9008 0.8956 0.8031 0.7968

24 0.8949 0.8903 0.8085 0.8016

25 0.8904 0.8853 0.8108 0.8052

26 0.8853 0.8809 0.8142 0.8088

27 0.8806 0.8764 0.8178 0.8102

28 0.8766 0.8729 0.8211 0.8120

29 0.8726 0.8691 0.8213 0.8129

30 0.8697 0.8656 0.8229 0.8144

Table 6.18: Accuracies achieved by applying R:Sq-Measure to 20Newsgroups for each

protocol.

100 IP age

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dvnamic Static

1 0.9070 0.9086 0.8033 0.7951

2 0.9070 0.9086 0.8030 0.7953

3 0.9070 0.9086 0.8045 0.7981

4 0.9066 0.9084 0.8127 0.8054

5 0.9063 0.9078 0.8218 0.8152

6 0.9048 0.9058 0.8295 0.8224

7 0.9023 0.9032 0.8330 0.8265

8 0.8994 0.9005 0.8378 0.8292

9 0.8969 0.8976 0.8383 0.8290

10 0.8932 0.8948 0.8377 0.8282

11 0.8896 0.8911 0.8372 0.8274

12 0.8858 0.8868 0.8357 0.8264

13 0.8807 0.8816 0.8344 0.8257

14 0.8761 0.8776 0.8336 0.8247

15 0.8721 0.8738 0.8332 0.8246

16 0.8684 0.8701 0.8323 0.8236

17 0.8649 0.8663 0.8314 0.8233

18 0.8627 0.8641 0.8306 0.8222

19 0.8595 0.8611 0.8298 0.8219

20 0.8569 0.8581 0.8288 0.8210

21 0.8548 0.8564 0.8281 0.8205

22 0.8521 0.8537 0.8274 0.8195

23 0.8495 0.8511 0.8263 0.8179

24 0.8460 0.8474 0.8247 0.8 I 51

25 0.8432 0.8447 0.8235 0.8135

26 0.8407 0.8421 0.8221 0.8116

27 0.8378 0.8393 0.8206 0.8092

28 0.8358 0.8376 0.8196 0.8076

29 0.8331 0.8350 0.8181 0.8056

30 0.8303 0.8325 0.8162 0.8038

Table 6.19: Accuracies achieved by applying R;,:q-Measure to 20Newsgroups for each

protocol.

101 IP age

10 11 11 I) U U 11 17 11 II l.O 11 2' tJ 2' 11 H rl 2t 21
I

2 one
3 0 711' 0 71\0
• oan un oe1•
1 oaru 0111< o.., 0111>-
• 0901 Olllll 0~ OOlll OICl
1 0911' OiM OUC4! Off.>; 0900 Of<lS
I ~90t Ql,)I OIIOO 090! 09111 01»7 0...,
I OO<D O\,l'; ot,o o~•O Otot 0509 0t)7 O!i!l'

10 ot11 01,11 0911 oe,o ot1~ OliOO oo"ll 011111 ow1
11 0911 Otll 0911 O~H Qtll 09•0 Olf>l OIOII OtOe 01'JI!
11 001 091) 0911 091) O ♦I) o•., 0111 0~ Otoe Olm 09-"tl
U Otll u.i, 011) 091) ot•l Olt1 0911 Osot Otoe 01»7 0~ UtOI
,. Otl◄ 0'1• o~ .. 091◄ Otl< H•3 0911 0~ o,oe OIi.le (1111)1 080) OWi!
11 OJI• OtU t.tll otlt otu Ot1, OAII IJQ OtOe 01,16 0901 0901 0 ''()() 0
11 otu o,,. 09U 091◄ Otl) ot•2 0811 U(Jw 0907 011)1 OIi():) OtoO OW.1 08f,4 Obi
11 091) ot1) O~•• 0811 Otll ot11 0~:.9 Ot,07 Otoe 01<)4 090:! OM 0118c, 08t0 0911) 0•1
,, Otll ot,13 0911 OA11 ot•2 o,,, 0~)9 Otol ow.. OIi~ 090• Ot91 ows oe., OM o•s OIIS2
,, ot•l 0'12 ot12 0Yl2 0911 0~ 011311 01(1) 01'04 0~ Otl> Otlll O J oego otlt-. o•• o• om
10 ot,o 0910 o,,o 0810 OIOII Ollll Ot:18 0~ 0902 0 1 OM 0~ 0192 OM Offl 0•2 Otlt UIS o,n
n O'Jll7 Oto1 0&01 01)01 Oto' ow.. OIIIXI Pto:2 0♦00 Olllll 011! otDl o•~ OMO 0811) ONO 0118 OIM 0871 OIIIU
n o~o~o~o~o~owo~o~oMo*omo~o~o~owo~o~omomo~o~
n Oto• oto, OV,I Oto• 0900 0'911 OM 0886 OW• 09':! o• 0111 o•• o,-, 0111 oar. 0012 0870 0181 Oteo 01!!53 011112
ta ot86 Oto~ OM!I 0~ OICH D .. , om ute, 0119 01118 Olli! OM) o•• 08/t OIi◄ Utz Olllt O~I OM~ OIU O~• OIW 0161
H OmO~OMumoM0"110-0WO~omomoMOWO~UfflOMOUO~Ullll20~0~D~O~O~
a o~o~o~o~o~o~o~owu~offiowomoruo~o•o•o~o~o*o~o~o~o~o~o~
l1 01111 01111 01111 oe.: OM 01110 01111 0,11 Utt Olio Ol7J 0111 OIIIY 011!!1 0~ 0182 011,0 01'1 Otflll Off>~ Ole,] 08!>? 0'52 iue1 08~• OM
n owowomowomomomomomomomonoMo~o~o~o~o~o~offlo~omo~o~o~owoM
a OIIJ 011> Ot/J 01n 01n 0112 0112 01n oi,:& ODl:I ow 01&< 01112 08':0 01:.a Off>/ 0'60 oa~1 u•~• olf>G 011Y ot,Q o.,, 011G o .. , oau OIUJ
JO 0110 OIIO 0110 0170 Otcl9 Oltl Oltll otlll 08117 OICO OIIIJ;J oee, Oa!-0 011:.t o,~ Ol&A 0'1l Qt!,I OM o .. , 0111 01111 0~ 014◄ 08') 010 Ol'AI 0810 OIAO

Table 6.20: R-Range average accuracies for 20Newsgroups, Concatenated Dynamic.
The lower range value is shown across the columns and the upper range value shown

across the rows.

10 11 12 U 1' 16 11 t7 ti 1' 10 21 22 U 1' 2t 21 21 111 11
I
2 0 24'
1 om om
• om osn osn
I 0~ 0~ O&q5 0897
I OICD Dtlll O!IOJ OIOJ OIIO<
7 0000 0901': 0906 0901 0907 0~
I OIIIIS Olllll O!IC1! 09Clll 0909 0007 01107
I 0810 0910 0910 OIIOII 0909 0- O!IOI Otoo

,o 0811 0911 0911 0811 0810 OG 0~ 0800 0907
11 Dtll 0911 0?11 0111 0911011(90!100 090fl 011117 DIIOG
IJ 01,1 0912 Ot12 0112 0911 0910 0910 0801l QIMJI D90; 090!.
IJ 091? 0012 0012 0812 0812 0911 0~11 0809 0~1 Ouo& 011)4 OIO'l
U 0913 011110911 0111 DIil 01111 0911 0908 Olltli D90', 01103 O!lCY.I 08119
,o 0913 09U 0912 O.tu 0913 0912 091, 0909 0901 O!!O!, 0903 0901 0891 089!>
,t 091) 091] Ottl 081) OOU 0912 OOU 0809 D~J 0!1:)l O<;Ql 0189 08 Olle) 01!!10
17 0911 011,1 0917 0117 0117 0911 011011 OIOT OBO!i D901 0901 OIDII 0111!, 0111 o• 01811
11 ovn 0912 09,2 011, 09,1 0910 090t oeo1 0905 ollOl 0900 08911 oa9l ovs1 0•1 o .. 0&111
11 0111 0911 01111 0111 oe,o oo O!IIP 0908 0901 oao2 OM 0995 oeo, o• oees 0882 0919 01re
20 D908 0906 0900 OIIUII D!IOII 0110/ Ollll!, OIO,,I 0801 D100 0•1 o•l 08110 DIii& 0- 0110 0171 OUl 0111'
tt O~O~O~O~O~OfflO~O~OMO~O*OffiOfflO~o~omomomomo~
22 OIIOO Oll00 0901 09111 D000 0~ OIN 011117 089!> 0~ 08111 0868 0895 0812 0'79 0575 017) 0871 06 01167 01165
2> Dl!ll'J otoo 01911 01M om 051 0194 on, on, o• o• o•• 01a1 oa,9 011~ 0112 ouo 01188 oaoo 01111,1 0187 01!11
u o•o~o~o~o~o•o•owo~o~oco~omomomoao~offio~o~owo~offl
2t OIIS o-, Ote5 088S oees 088◄ 0 .. 0'92 08'1 D1110 0871 Of7ij 0814 0871 oa Ollfre 0;;11• OB!il 0~ 0~ 0857 OllS6 D~ 0'5<'-
u OWi 0•1 on, 0811 0119() oaao oen 01/8 0817 0870 otl• 0872 0110 0801 Oei:16 0111:l Otol OIIY.I Dl!ol 011611 OU~ on) 01!,3 0~ 01161
v omo~omomomomomo~omomomo~o~o~o~otio~o~o~o~o~o~,o~o~owow
21 omomomomomomomop1o~o~on0~0~0~080~0mo~o~o~o~o~o~o~o~o™o~
:tt 0111!19 Oflt,8 01168 0149 Olw.r OD Otl!a OII07 08811 0~ Oeel Otw!I 0880 011'..8 O&M o'" oei2 01~1 U<I o..a 0147 0848 Otib O&u 0 080 Ollt2 0111
,o oeeio osre oaae onee 0990 011&5 o• 0116-t OMl olll!:2 oeoo Ol6i 0951 o~ oe;z oas, 095() 01.-. 0 .. 1 o&<~ 01• s oe ... 01, 3 0&12 o..,, OU4• DtlO on oa:ie

Table 6.21 : R-Range average accuracies for 20Newsgroups, Concatenated Static. The
lower range value is shown across the columns and the upper range value shown across

the rows.

102 IP age

I
2 a 1.&0
i 0232 orn
, 0 i.,o a l6l O l!l!I
$ 0"61 0453 04t3 0511
t 051& 0520 0535 05~ Of':20
1 0~1' 0615 Or.II O!lll OC.CI OC!ill
• 0011 oeu o 831 oeec> 0685 om o 1~
, OS',1 olilis 01185 oe,;o 0110 01-v nm 01,,

10 om Olla4 0892 0114 01311 0/6' D n., OllllCI 0819
ti 0704 0105 11112 0710 0753 0119 OTal 0118 01211 Oll7
11 ano on, om orn 01,~ OTRI 01101 0124 ou• 0343 os-ie
II 0732 orn Q7)11 Ol!J 011• 07 OIi~ 0"9 0133 DIAi 0'5G 085 1
14 0mo~o~o~o~omomomo~o~o~ ornom
15 0 TS! 0 ,~, 0 7!,IJ O ~ 0 100 08:19 0111• 01:>1 OU!I Dalli oat IUH 0&!,1 0.1&2
11 015i 01u 01a2 om 0195 ouu 012t o .. o oaa 0851 oas, uu om ou2 uu
17 076-4 07&5 0768 om OIOO 0116 on, 08-42 0~ Ol!,I 0161 0152 0151 O.U2 08S1 OIISI
11 OTfO 011D OfJ• 0/811 o- 0819 om 01-1) 08411 Dll!D o.&a2 0.1112 0.1."2 Oli!II 08b1 Qt'..I) 0£.IY
11 0 nc one O 181 0 7W oece 0822 Ot>& 01-15 0150 0151 O.Jt2 UH oa;, OISI 0850 Ol60 0148 0849
20 01'&' 078~ 07Ri O,W 0'13 ORl't 01137 OJ.19 0M!,O 0151 o.&a2 0851 0&!,1 O&',O 0850 D .. 9 01-10 094 0 .. 7
21 01'91 0191 0?113 Oll04 0116 01121 Ol'lt 01-11 08411 01!>1 0861 0851 Oil!,() 0860 0849 DIU9 0'-'Y 084 DIA/ o&ie
n 0191 01a1 0111P oeoe 0920 on2 oM, 0"'1 0850 oa;, ORO oes, OM9 OM& oe<IS oN o .. a 00◄1 o~ OM o .. s
U Oec,J 0803 011()!, U IA 012• 0114 oa,2 0tAI 08'8 01'...0 Olf,O 08!,0 om 01,18 08◄8 oa,1 0846 DUI oa,5 011-15 OIU OIi')
u oa oeoe 0810 0,,1 012e ous oa.1 0141 oa• 0119 or•a out 0,11 oa.,1 oet4 oaie 06'S oaas oe« o .. , oae2 oaQ o .. ,
n 0111 os11 o eu 0920 082& 08'8 06'l o .. s onq Offl o .. e oeu oa,~ OM oe•s o~ ow 01• 3 oa,, 0 .. 2 oe•1 o&<, o .. o o~o
ll o,,, 0114 0819 0112:l 0128 ODIi oao OIi'• OUT 08'1 oa.,o Oil!> ow 01-14 OYU OllAl Otr.12 01t2 08'1 0a,o o .. o D'40 0131 0131 DI•
17 0111 OttA OB~ om OIJI 0837 oa., 01◄3 09◄5 0146 0545 080 OM, 0&42 0843 Off? 0"41 0840 OMO oe:ie one oa• 01311 0837 Dall 08l7
u o~owornowo~ogo~o~o~o~owo~o~oroowo~,o~o~oQo~o™DQO~owowoQo~
ti O!Qi Ot2I 0 821 Dall OSJ2 0837 0811 08-12 OICl UM-1 0843 a 8t2 08-11 0840 08-0 um 0'31 0931 oe• 01131 013101160831! 083!, 0~ OS>J oa:u 01114
,0 0121 0123 OB~ 012t 0«12 0837 Ol<O Ot4I 09l1 0942 o .. , 0840 OU, om 0831 08l7 08l7 0137 0136 0831! 01)5 013S 0134 013• 0'33 0833 00) 0132 0'32

Table 6.22: R-Range average accuracies for 20Newsgroups, Non-concatenated
Dynamic .. T he lower range value is shown across the columns and the upper range

value shown across the rows.

, 10 11 12 I) 14 1' Ii 17 ,, 1, 10 11 1) 13 2, 1S 1' 11]I 2'
1
1 D Ht
J 02H02n
4 0)84 0]!12 0"1•
~ o,., o•n O•M OS&l
, o ~, a s;io o !oSl o -,o o no
1 US7S OS1' H'-1 0129 Ot.67 O?Q2
I 0613 O(li Oli)1 Olli) Dill Onti G 151

tOS.U O~i OMO OUO 071t OTJS 07&6 0712
10 o~o G li7• 0 Iii'; 0 IUJ Om D ,., 0 ITT O 71:1 0 ID'
11 0'89 OU? D 101 D 725 0 7!0 0 Ill O 787 0 801 Dt11 Olt!
U O 1116 0 1111 0 711 0 ll7 0 Jit Om O 1M O ~ 0116 0173 0 Ill
u om 01N 0121 oro OTfit om oeo, 0010 oa10 0125 om u:u
1◄ om 0130 0 n, DISS O 114 01't1 OIGI OIU D112 Clll 01)1 OIJI 0131
tS 07)6 0737 0746 0762 0 7., 0195 0806 0011 D12) U2t 0811 Oll2 001 Olli
, , 014' 07AS 071,.1 OIU OTIIS 01'! ~11 1 om D117 01'1 OllO OIJI 0131 on, OIJI
17 074' 0751 0151 t1'1 0781 o,o, 01•2 0121 D127 Of19 OHi 0132 0831 DtlO 01:,0 0112?
11 DT~ 07!>' 07':I 011, 0•91 OIQJ OIi) 0171 ODS om om 01:]2 OIJI OllO ODO 012' om
1t 0713 OIU 01" 0112 O'l/J 0807 tfl6 012J 0127 000 UJ2 UJ1 001 Of)Q 0830 082t 0121 0827
10 0161010 OTIS 0711 01!15 OIC1 ,Ill 012• om OUI 01)1 DIJI DUI OllO OIJD 01121 011' 0121 01.'T;
21 on& on• om om Gall> 0,10 01•• ous orv ou1 °'" uJo om om 1121 082'1 0121 o~ 0024 0121
D 0710 0711 0~ ,IM OIOS 0112 Cl21 om Ot::11 co, DUO om 0121 om 8121, 012'6 0126 '82) Ott.I 0122 0111
n omo~omowomomowo~o~omomomowo~•mofflo~owo~o~omo~
1, OT!l 011M or,e oao, 0112 0111 ow om om cu, om 012~ ow 0112• cw om ott, em 011s os11 0111 ottr 0111
1j 07'6 07t7 OI01 0807 011) Dill 821 0024 O«lt Oll,I 0124 Ol:1' 0111 Qt:71 U21 011, Ult Utt 0811 0117 Oflf 0816 tl16 Ofl6
X 01!9 OIi>, or.J 01111 DIU 0111 ~mom om Cl22 DIIZ) 012! 0121 Oll?O 01'9 0111 Ull Cl16 Olli otu ow 0114 otu OIIJ OIU
ll OI02 OIOl OOQII UOI 0112 0115 ot1t OIi' 0120 Ol20 011, Ot19 0111 011& 01'6 0015 Otl• OIi) ott2 Ot12 0111 0911 tf11 OIU OIi\ 0111
:11 OIOA 001),l 0801 OIOI 0112 DIU 61•6 0118 0111 Cite DIii 0117 °''' OIU OIU Dttl u,2 0111 0110 0111 8110 0810 OllO DIIO OIIO ot•o Offl
1' Ot01 010) Olli:'I 0806 0110 0912 011) 0116 0516 UI' Ol15 0'1• 010 0112 0811 0110 oao, Otot 0..,. 01111 OIOI 0~ 1101 0801 Ot07 OIOI o~r 01116
JO Oto3 DIO,l 0~ OIOf Otot Ol11 01,, OIIJ 0113 etu 0111 u,o 0110 Or.J uo, DOOi oaor °'°' OtM uo~ 018' 0801 Oto~ 081)! OIJIM 0~ OIM OICU OIOI

Table 6.23: R-Range average accuracies for 20Newsgroups, Non-concatenated Static.

The lower range value is shown across the columns and the upper range value shown
across the rows.

Concatenated Concatenated Non Concatenated NonConcatenated
Dynamic Static Dynamic Static

0.907 0.909 0.803 0.795

Table 6.24: rmax average accuracies for 20Newsgroups.

As with the results for C-Measure in 6.2.1.1 the results for concatenated protocols are similar
no matter whether the models are static or dynamic and the same is true for non-concatenated

103 IP age

protocols also. The R-Range results also resemble the C-Measure result in that lower ranges
again offer better performance for concatenated protocols than for their counterpart. A

noticeable difference is that much smaller ranges (difference between minimum range and
maximum range) proving better for non-concatenated protocols, the best performing for static

models being just a difference of one with 12-13. The best results achieved for concatenated
protocols have a range of around ten. The best results for concatenated dynamic models are
achieved between ranges 1-15 up to 5-15 having the highest accuracy of 0.915. The best

results for concatenated static models are achieved between ranges 1-14 up to 5-16 with 4-15
again providing the highest accuracy, this time 0.914. The best results for non-concatenated

dynamic models are achieved between ranges 10-14 up to 15-20 with the highest accuracy of
0.852. The best results for non-concatenated static models are achieved between ranges 11-12

up to 15-16 with 12-13 achieving the highest accuracy, in this case 0.8325. It is also worth
noting that in all but one case that R-Ranges outperformed C-Measure.

Table 6.18 shows that for Rsq-Measure, concatenated models performed better than non­

concatenated and dynamic models outperform static ones, as was the case with C-Measure
for this corpus. The results suggest that a value of between 15 and 16 for q is optimal for

concatenated models but a much larger value for non-concatenated, with q = 30 achieving

the highest accuracy.

Table 6.19 shows that for R:?q-Measure, concatenated models again achieve the highest

accuracies, though not as high as for concatenated in 6.18. There is a difference in the
optimal value for q, which for 6.19 represents the minimum substring length to be included.

6.19 shows that 1 ::::; q :s; 3 is optimal for concatenated models and that a low length of

between 8 and 9 is optimal for the non-concatenated models. Table 6.24 also further supports
the finding that for 20Newsgroups, concatenated models achieve the highest accuracies. It is
however unclear from the rmax results whether dynamic or static models performed best, as

was the case for R:?q.

6.2.3.2 Gutenberg

The results for the Rsq-Measure experiments are shown in Table 6.25, R:?q-Measure in Table

6.26, rmax in 6.31 and Tables 6.27-6.30 show results for R-Ranges. Tables 6.25 and 6.26

display accuracies for all four protocols with the leftmost column indicating the lower
substring limit for each algorithm. Tables 6.27-6.30 show the accuracy for each range with a
single table displaying results for a single protocol. The highest accuracies are again

highlighted in bold font.

104 IP age

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dvnamic Static

0.075 0.075 0.175 0.125

0.175 0.150 0.125 0.250

0.150 0.175 0.150 0.200
0.200 0.225 0.175 0.175
0.300 0.325 0.150 0.250

0.275 0.375 0.225 0.275
0.300 0.400 0.250 0.275

0.300 0.425 0.275 0.325

0.300 0.425 0.300 0.375
0.350 0.475 0.300 0.375

0.350 0.500 0.300 0.400

0.400 0.500 0.350 0.400
0.450 0.500 0.375 0.475
0.450 0.525 0.375 0.475

0.450 0.525 0.375 0.475

0.450 0.525 0.425 0.475

0.450 0.525 0.425 0.475

0.450 0.525 0.425 0.475
0.450 0.525 0.425 0.475

0.450 0.525 0.425 0.475

0.450 0.525 0.425 0.475
0.475 0.525 0.425 0.475

0.475 0.525 0.425 0.475
0.475 0.525 0.425 0.475
0.475 0.525 0.425 0.475
0.475 0.525 0.425 0.475
0.475 0.525 0.425 0.500

0.475 0.525 0.425 0.500
0.475 0.525 0.425 0.500
0.475 0.525 0.425 0.525

Table 6.25: Accuracies achieved by applying Rsq-Measure to Gutenberg for each

protocol.

105 IP age

Concatenated Concatenated Non Concatenated Non Concatenated
Dynamic Static Dynamic Static

1 0.475 0.525 0.475 0.475

2 0.475 0.525 0.475 0.475

3 0.475 0.525 0.475 0.475

4 0.475 0.500 0.475 0.475

5 0.475 0.525 0.475 0.475

6 0.475 0.550 0.475 0.475

7 0.475 0.600 0.475 0.500

8 0.500 0.575 0.500 0.500

9 0.525 0.575 0.475 0.500
10 0.525 0.575 0.500 0.550

11 0.550 0.600 0.500 0.550

12 0.525 0.600 0.525 0.550
13 0.525 0.600 0.550 0.600

14 0.550 0.600 0.600 0.600

15 0.550 0.625 0.625 0.625

16 0.600 0.650 0.650 0.625
17 0.675 0.700 0.675 0.650

18 0.700 0.700 0.700 0.675

19 0.725 0.750 0.725 0.700

20 0.725 0.750 0.775 0.750

21 0.725 0.725 0.775 0.750
22 0.725 0.725 0.775 0.750

23 0.750 0.725 0.775 0.725

24 0.725 0.725 0.775 0.725

25 0.725 0.725 0.750 0.700

26 0.725 0.700 0.675 0.625
27 0.675 0.675 0.625 0.550

28 0.625 0.650 0.600 0.525

29 0.575 0.600 0.550 0.500

30 0.525 0.525 0.500 0.475

Table 6.26: Accuracies achieved by applying R~q-Measure to Gutenberg for each

protocol.

1061 Page

, • ,o 11 u 11 u 1'i 11: ,, ia 11 ,-o n n n ,.., 1s. .'6 ,1 n 10 ,
1 o ,rs
) Q. l ~tl O 1:0
◄ Oi'lll!OX001;>;
~O;oo OXll 0300 OJOO
~ 011~ om 021< oJOO o~lO
IC 'Oil 0)00 OlOO O JOO OJCO 0]00
Jr,~ OlOO 0'\00 Qll)O 0))(1 o,..-. 0100
tOJOO O)ll) 0100 OlOO OlOO 0>00 Ol!lO OJSO
~o~o~o~o~o~o~omo~•~
110~ 0)-!n Dl!.O Ol&O OlT!J 0400 o.aoo O f.SO oeso 0416
120'40 0.00 O•ro O•OO 041'1() 042!1 O<tlO O•~ 0<1$ O◄~ 0~
1 l O 4511 0 ◄50 D A!I) 0 1511 0 ~ 0 •!,Cl O AIO O 1$0 0 <75 0 S(l0 Q S60 0 560
1< 0 1,U 0<'4 O•!.O D<SO 04'!4 114\0 O<!,O OIIS 0<1~ 062! OSt.0 OMO 0~
,;oA51J o•so o,r.o o,,o o"-4 o•<D o.rs om, on, os!>I> o'xiO 0!60 osrs u•;
~o~o~o•o~o~o~omomo~o~o~o~o~ooooocoo
11 o•~o 0~ 0<50 0•50 o..;o 0415 D•7S OHS Oli15 05!,0 O•',o) 0~75 0515 0600 06'5 Ot:15
II CU.l,O O<lO 0 ◄!1) U ◄bCJ UlO O•I& U7~ O ◄ lb 0!12!> O&!,O OWi 051b Oll00 oeo., OQ!, oe2s 011211
~o~o~o~o~omomomomo~o~o™omo1100o~o=oao~o=
20D tl,O o•lO D•!.O O• !IO o,,~ o.,, o , r.. 0'7& Ot.21) 0~14 0-.«IO 0',lb 0900 De:P' 002b oeoo 0000 0700 0/UO
~o~o~o®omomomomomo~oNo~omoeooo~o~o~o~o~o~o~
210.,, om o•~ 0115 O<lb 041\ 0475 OHb Oba Qa!i) Q~ 051b O«IO 01121 ocoo O«IQ 091& 0700 011111 ono 07!.0
nomomo~omofflomo~omo~o~o~omoeooo~n~o~omo~o~o~o~o~
i • D" ~ 0,11 o ◄,~ 0'1s om 0•1S o,r~ ona or.n D5tc osao os1~ oaoo 0.1a ocoo om om 0100 on~ or:.o oric 01r.o OTIO
~OfflOfflOfflOfflOffl~~OfflO~O~O~O~O~O~OWO~O~O~O~OMO~O~o~ om,m
~omomo~omomo~nfflo~o~o™offlo~o~o~omo~o~n~o~o~o™o~ om ~m oN
VOfflOfflOfflOfflOmo~OfflOSOOO~O~O~O~O~O~OIBO~o~o•o~ONOND~ orn ~m oMo~
2t 0 • 1s 0-475 o ◄>$ o , 1s 0•1; 0'1' 0 ◄7'- o '-40 0525 o~'-4 o•~ oaio o~ OIIO) om O/lil5 0100 0100 o 1so o~ o 7'<> o P,;O o n1 u 1• o 7'-4 01!i0 o r!,O
~omofflomomomofflomo~o~o•omo~o~o~omo~o1000~0•0~0No~ orn o~o~0Mo•o~
,00475 0 , 1~ 0 ◄1' 0 , 1s 0•7S 0 ◄75 0 ◄75 0500 0~ O~IO OST, 0(,00 OIJOO OH, 0~5 Oii1S (1700 0700 Ol'iO 07~ 07'-4 07'",0 on, 0150 01',0 Dl'iO ORO 01;,s 0700

Table 6.27: R-Range average accuracies for Gutenberg, Concatenated Dynamic. The
lower range value is shown across the columns and the upper range value shown across

the rows.

10 11 ll 1l , _. 16 16 17 II 19 :0 41):! 1l Jf 7S JI ,1 71 ,t ,
10100
10187011"1
1 oru on1 om
~O)UOll.lDlllOJE
• O ◄i.) U ◄()) 0411) U ◄» O ◄ J.l
1 001 o•n 001 o • D o,n o,x,
t 0467 0'411 0 ◄67 0 I OMII 0"'61 05(0

0 ◄07 O ◄BI o,v;/ 04111 0<117 0,00 0!,07 0:.61
~omomomornomo~o~o~a~
11 D!'JI 0567 Ol<Jl 05cll 0561 0567 OW 0~1 Oti<ll OIIOO
~0~0~0~051170WOWO~O~Oll0000000000
ll 0!117 05117 O~I O"lil 0~7 OW 0<Ji7 OIIOO DQ OflQQ OalO OllU
14 O~I 0~ n~, o~, 011111 o~, 0000 OIJOO O&)O 00:0 OIJ'lO OOJ) om
ISDMi7 0567 DY1 OSGI OKl DW7 OIQl 0800 0000 OIOD Olll OW O&ll O&U
~o•owo~o~o~o~o~o~o~o~omomo~omom
II O 'Al 06'11 0151 05117 D117 Dlllll OOlll 0000 lll!l:O 0000 0613 0613 Or;;JJ 0611 06}) 06JJ
11nwo~n~o~o~o~n~ooooo~Huomo~omomofflo~om
~o•o~uwowo~olKllUIKll0~01100Qmomomomomomomo100 om
200~1 0~1 o~f.l u~, 0~1 OOCll OIYO Oll:IO 0000 om Ot;.)3 om om, 0$1) o~, 0~1 on> o~ on
11 0!,1;7 0~ 0!167 06'17 0!151 011(1) O&lll 01101) 0000 om OIJJ Olil306JJ 061106]) 0001 0100 on. Gill Oil}
no~, 0"61 U~I OWi DIO OIUl OIW O ·o Of),)) 08.U oau o~u 00.ll 08.U Dftll 0~7 013) 01n Oil om 011'
nowo~owowa~olKllo1Wooooo~owowowowowowo100ornomomo~oruorn
~ O!A!I 014!1 O~I a~, Dfl/1) OOUl Ol!Cll 0000 Oll00 om O~JJ om ot;JJ 0$1) 0(;;1) 0100 0/ll 01:J) 0111 om Olll Oil! orn
'50~ 0~1 0"31 0~1 oeo. aero Ol(o oeoo owo ~•» of\33 o•u OIOJ o•u o~is 0100 on, on, om om 01~1 01i1 a111 uu:,
~owowowowo~o&lllo~ooooo~owowowowcmowo100ornow ow omornornornornoru
nowo~o=owomo1WD1Wooooouomo~owomowomo11111omomornomoruoruornornoruoru
21tU5el 0~1 0~1 05e1 a OO(I) OlltWI Ot,.,11 Oll(Wl ow 08'13 Oe::>3 om 0$1) Ol'll) 0100 on101n om 01)) 07l) Ol)l 01'.t) 01)) 0111 ore:, (tl\''1
~o~o~a~o~o~o1100o1100o1100o1100omomomomowomo100amomomomomarnarnornoruorno~o~
~owo•o•n~o •o~o~o~o~oruo~omomowomo100omomomomomornomoruomo~oqo~o~

Table 6.28: R-Range average accuracies for Gutenberg, Concatenated Static. The lower
range value is shown across the columns and the upper range value shown across the

rows.

107 I Page

' 1 02~
l 020) 0175
.a 0175 017~ one
e 02!,1 02-!D OZ1!, o i-.,o
6. 0.1n om 021r. 021!1 OPA
I 0215 077'\ 011~ 021\ 0'1?', DI~
tom Q:U:, OJ00 0 Ill~ 0 JI! OJ~ 0~
t ov¼ om, o,rs 01n ol7s o•a o"50 000
~ornomomorno•o~o~o~orn
II O IN 0600 OtOO o•uo 0 ◄1$ 114:AI o•h Otfb O · ~ 0~
11 o•oo 0<>)0 0<00 C! •U 0'7, 041'1 0'76 0415 0!,00 BOJ 0 475
ll Qd~ 0◄75 O•IS O 11, O• P.o 0•rs 0 ,1, OHS 0~ O◄l'5 0 ◄ I~ Of,',(!
"o•~ o,'1) 011~ t>H~ o •~ o•~ om, 0!.00 o·oo 1<1& o~ o:.:c o~
tt0momomomomomomo~o-0mo~o~om0~
~omnmo~omo~n~OfflO~O~OfflORO~O~O~D~
,, O "' OClb O&I~ O " ~ U "~ O "' OIi~ 0:00 O!Oll 0~ OWi Ob'O O'<ll> om 0112'l Ob!O
~omomomom0m0momo~0-0~0~0~0-0=0mo~am
~omomomomo~offlo~o~o~offlo•o~o~o~o~o~«7'\0W
2004>, 001, 041• Olt' O◄~ 0411 Mit~ 0!.00 0!00 0~ U!G Ob.)() OQ~ 012' 00!.0 0~ 00!0 Ottio OGll:
nomomomomomomo~o!.000-omo~omo=o~o~omo~o~omo~
nomo~omomornn~o~o~•~o~o~omo~omo~o~o~omorno~o~
no•r& OC/D o.,. OH:, 0 "~ U4)') 0(00 O•OCJ 0:00 o,•.o O~!O Oblb Ol'l' Oe:z! 0112'l OQll 00)0OfJ~010) 0 ~ 011!, o.n,
~offlomomomomoilio~o~o~o~o~oIBo~omomo~o~oqo~omo~ •m o~
~OfflOfflOmoruomofflO~O~O-O~O~OillO~O~OffiO~O~OffiD~Omo~o~o~o~
~ 0•1'. o•~ 011b OH· · · ~ U• '$ OIJOI) 0!.00 0!00 0~ 0~ Oblb 0~ 01!2' 0112:1 OQ) omo 0100 010) or-6 0160 0160 01(,0 01!>0 Ull(J
vo~o~o~o~o~o~o~o~o~o~o~orno~o~omo~o•o~omo~o~o~0Mo~o~o~
~o~o~o~o~o~o~o~o~omo~o~omo~o-o~o~o~o~omo~o~o~o~o™o~o~ora
~o~o~o~omo~o~o~o~o~o~o~omo0o~omo~o~o~u~ •m o~@~o~u~0Mo~omo~
~omo~o~o•o~nm,~o~o~n~omo~o~o•o~o~omo~oNo~o~o~oNo™ ~m orno~oNo~

Table 6.29: R-Range average accuracies for Gutenberg, Non-concatenated Static. The
lower range value is shown across the columns and the upper range value shown across

the rows.

1D II 12' 11 I.. 16 18 11 ,. •& ,0 n 7.1 "1 N 2S '9 J1 :, 2J

' l 0100
) o,x o,x
• 0100 0200 02"0
SOl!.C 0111101111 OHO
~ 0200 OM 02:1) 021:1> o~
I D2'A 02!.0 0250 0::-IO 0.2SO OlOO
I OlO O)IX) 0 100 O'IOO 0,00 0'!00 Q'Q',
• oz oll'I om Oll') ow, 011~ ol:l!> oz
wo~omomo~o~o~o~o~om
11 Dffl OU:. O'll:> 0~ 012'.:> OJ!b 0!00 011' n,1~ 01"'
gomomomomomo~omomomomo=
I) 03!<> 0~ 0.j<j) 0)!,0 011'11 O'IO 0)7S O)7~ Olli 0 ◄00 n•~ oseo
uo~o~•~o~o~omomomo~0ao~0~0~
HoNo~o~omomomomomo®o~o~o~o~o~
~umo•omo•omomomowoao~o~u~o~oilio~
II 0376 0JTS Oll'S o,rs 0315 OJI~ 0 l1S O)JS o•oo 0!,0) OSIS OS!,O or.;o 0921, 0~ 0615
•• 0375 oi•~ o:vs o,,, 0,15 0)1~ o"~ Ol>!- o• o~ 01,1,; o~ o~ 062', 0112~ o~rs ot,•
~omomomomomomo~o~o~o5roomo~~~omo~omo=arn
~omomomomomomomo®o•osroo~o~o~o~o110omo~a~om
~omomomomomomoma@oao!,O)o~o~o~o~o*o~omo~o~om
u 011• Olli om 011& o,rs o,r~ ons o , oo 04!.0 osc.o om 02.0 om oe;o of60 061!> 073 01::-s 01is 0.111 o.n,
n 0l,. am orre 0111 o,re 01r& o;n o,oo 0, so 05ro 0525 o~ om oaoo o- un. on~ on,: 0125 D.T7I o.n1 o.ne
Nomamomomowomomo®o~o~omo~omoaooo~o~arnom omom,m o.mtm
no~omomomomomomoao•o~o~owo~o~o~o~omom omomomo.m,mom
~omo~omomomomomu•o~o~o~owo~oMo~omo~om omuno.mo.rn~m•mom
no~omomomomomomo~a-owo525o~owo~o~omomo~ omomo.mo.mtm1momom
Ill OJI"; OllS OJI"; 03IS 0]1& 0)76 OJJ!, o,oo O• SO 050> 0525 Oi!,11 >!,SO Olill> 0(60 061!, orx 07:.-S Ult U71 UII o.n, o.nt o.ns 0.715 017-J U71
:.-, om, om 0111 01n 011s 011~ 011s 0'15 o•so O'IIXI 0!.25 olo!.11 or.so omc, 0110 061s om ons 0.111 OJ7' 0.11, o.n, o.nt o.n, 0.1n OTT.() o.na 011s
J001r. 01111 Oll~ 01,r. 011~ 0•1• on) om 0450 D!IW o~ OG:AJ o,~ o«.0 0-0111~ on- om 01710.17111.n, o.n, e.n, , .n, o.n• on1 D7:'l om oeis

Table 6.30: R-Range average accuracies for Gutenberg, Non-concatenated Dynamic.
The lower range value is shown across the columns and the upper range value shown

across the rows.

Concatenated Concatenated NonConcatenated Non Concatenated
Dynamic Static Dvnamic Static

0.475 0.525 0.475 0.475

Table 6.31: rmax average accuracies for Gutenberg.

The R-Range result within Table 6.27-6.30 all indicate that for Gutenberg higher substring
lengths improve the categorization of its documents. This suggests that no matter what
protocol is used, when categorizing corpora of this type using R-Ranges, ranges typically
over 20 achieve the best results. The finding that longer suffixes are more successful for

108 [Page

categorizing this corpus than for others are consistent with the results reported for C-Measure
against the same corpus.

Table 6.25 shows that for Rsq-Measure, concatenated models performed better than non­

concatenated but unlike with 6.2.3 .1, static models outperform. The results suggest that

longer substrings improve accuracy or possibly that shorter ones hinder for Rsq-Measure as

the accuracies continue to improve as we increase minimum substring length. A value of
between 15 and 16 for q is optimal for concatenated models but a much larger value for non­

concatenated, with q = 30 achieving the highest accuracy.

Table 6.26 shows that for R~q-Measure it is difficult to clearly state that one model

consistently performs better than another but the highest accuracy is achieved by non­
concatenated dynamic with a value of 0.775. Unlike 20Newsgroups (Table 6.20) the optimal
minimum substring lengths are similar across all four protocols at around 21.

Table 6.31 indicates that for rmaxthere is little difference between the accuracies achieved by
each protocol, concatenated static did however achieve the highest for rmax with an accuracy

of 0.525.

6.2.3.3 RCVl-Author

The results for the Rsq-Measure experiments are shown in Table 6.32, R~q-Measure in Table

6.33, rmax in 6.36 and Tables 6.34 and 6.35 show results for R-Ranges. Tables 6.32 and 6.33

display accuracies for both protocols with the leftmost column indicating the lower substring
limit for each algorithm. Tables 6.34-6.35 show the accuracy for each range with a single
table displaying results for a single protocol. The highest accuracies are again highlighted in
bold font.

109 IP age

Concatenated Dynamic Concatenated Static
I 0.025 0.025
2 0.470 0.481

3 0.787 0.792
4 0.830 0.834
5 0.850 0.853
6 0.862 0.858
7 0.863 0.862
8 0.864 0.863
9 0.871 0.87 1
10 0.872 0.875
11 0.875 0.877
12 0.875 0.877
13 0.877 0.879
14 0.878 0.880
15 0.879 0.881
16 0.879 0.885
17 0.880 0.885
18 0.880 0.885
19 0.880 0.885
20 0.88] 0.885
21 0.882 0.882
22 0.883 0.884
23 0.882 0.884
24 0.883 0.884
25 0.884 0.884
26 0.884 0.887
27 0.886 0.886
28 0.887 0.886
29 0.885 0.884
30 0.882 0.881

Table 6.32: Accuracies achieved by applying Rsq-Measure to RCVl-Author for each

protocol.

110 IP age

Concatenated Dvnamic Concatenated Static
1 0.879 0.879

2 0.879 0.879

3 0.879 0.879

4 0.880 0.879

5 0.880 0.879

6 0.879 0.879

7 0.880 0.879

8 0.880 0.881

9 0.879 0.882

JO 0.881 0.883
11 0.880 0.88 1

12 0.881 0.882

13 0.882 0.883
14 0.884 0.883
15 0.881 0.878

16 0.877 0.878

17 0.875 0.875

18 0.875 0.872

19 0.872 0.872

20 0.869 0.870

21 0.867 0.867

22 0.868 0.869

23 0.865 0.865

24 0.862 0.862

25 0.859 0.859

26 0.856 0.856

27 0.853 0.853

28 0.85 1 0.851

29 0.847 0.847

30 0.845 0.845

Table 6.33: Accuracies achieved by applying R~q-Measure to RCVl-Author for each

protocol.

llll Page

t 10 11 12 U I& 16 11 17 It 1t 20)1 22 U 1, 20 2t 17 2t 2t

' 2 0 4118
) 0 791 0 1'89
, om o!Q9 oc;,e
4 0150 01150 0851 0853
I 0161 0161 08111 08511 OIIEO
7 011112 0151 01112 OIIG2 011111 OIS
I 0163 0 81n 0163 0142 0 80) Oll!tl oeee
I 0171 0111 0111 OBTO 0170 0'71> 0171 017◄

u oruomomomomomomomom
11 ous om 011e 01,, 011◄ om 0111 o,~ 0175 oa1s
tt oruomomoruornomo-omo~omo~
~ omomomomomomomomomo~o~oe12
1& omomomomomomomo~omomomoe120~
11 0 11V 01111 08Tt OIID 0118 0911 OITI 0118 oa, 0111 om o-.i 0181 OIXI
If 0118 0879 ot78 0890 0879 Oa) 0871 ON! 0812 01113 081) OKI 0881 0111,J ON2
11 081'0 ONO oeen oea, 0881 o., oee, 0112 oae2 088• om o•• on, on1 08'2 oee,
11 01110 0118:) Oll!O OIVI 01111 OIIJl 0 181 o•) 0 .. 0111.l 0112 oa• 0881 Olllll o .. 018] 011110
ti 01811 0.:1 ONO 0881 0112 0812 0181 0114 0 .. 0884 0•1 0812 OlltO 0812 Q .. 0881 0811 ot71
20 0811 08'1 Of!Jl O ■Ai 0119.3 0861 OJAI o•l 0 ... 01111 Ollll 0~ 01111 0911' 088:J 0880 01117 om 0 877
21 0182 01182 0812 0HU2 0111, 08110 01111 0182 0812 088] om 01113 088l Ob} Oil81 0119 one 0811 0117 OBM
22 omo~oN::1omo~o.,omo8120~0~0mo•omo~o•owomo~omomom
u omomomomomomomowo-o~o~o .. omolllllomornornomornomo~om
1, 01n om 0883 oee, 08111 oeac 0884 om o88l oui o~ Olal oaa, oaa, oan 0111 oen om 0175 oa,e orrl 0111 0111
tt ow o~o~o~ o~o~owo~o~omo~o~o881o~o~omornomomomo~o~omoSTO
2t 0 185 0- oeer. OIi~ OIi!> 0- 0186 Diet Oal one 01112 oa, Oetl DUI a• 0110 oaao Ollt 0111 OIITl 091'2 OtlU OBIO DIii OIi•
11 0811& 011116 o• 0115 0111 oees 0115 09&4 oa.i oeu oea, oat, ono 0•1 oa, oae1 oa11 0111 oau 01n oen 0171 0171 0173 oan 0111
21 091 r 0111 a.ua 0111 oe.,e oees ou s o- oN:J onJ 0111 o• orrs ONO oa1 on1 om un; os13 0911 OSTO orr, 09n orr, or,1 0911 oee,e
2t oaa~ 0186 o• 01116 oaa. a .. otel om oa, oaa, 0819 oe11 0111 oe,e o• o,u a.1t1 oa,, 0111 01n oan os12 oar, 011• 0111 01111e uo 01112
~ omo~o~omo~o~offio~o•o~omowo~omo~omo~o~omomomomornomo~o~o~omo~

Table 6.34: R-Range average accuracies for RCVl-Author, Concatenated Dynamic. The
lower range value is shown across the columns and the upper range value shown across

the rows.

t It ti 12 I~ •• If 11 11 II 1' 10 1' 21 ll 24 21 lt t1 24 fl
I

l O "'°
1 01llll 0711
, OW OID OIJr
I Ol!trl 01!.l OM• OISE
l 011'.AI Dl!>a ON 0168 0151
7 Olm Olfo1 01111 01&1 OH:1 01&:
I Oil,) Oltl 0 .. 01163 01!0 OIIU Oll'll
• 0111 oar, °'" om o• oe,o ou• Ol"S

1t omo~omomo~omomo~om
11 OIJTI 01111 0111 Olli Oln 0911 01111 0171 079 0111
~ omnmomomo~omomomomomow
u om at>t oen 0119 01>e o•o om ut71 oaeg ot1a Off4 n•1
µ o•omo~OfflO*OfflOfflOAO*O~OWON 0~
, ~ Oetl 08ft UGI 01112 om Uilt o• 0180 Olli) 081:) om ON) 0812 Ott•
lt 01116 OM OIM Olltll OHS OI02 09') Ot .. oth 01193 0~ Ote2 ONI Dlf1 ONI
11 01116 Offl 0~ 0816 o ... o•• Olt< 01&< 0.111 08'-I 01112 ONI ow, Otlil Uflt O I
ta o• ot o•~ 011111 011'4 o•• Oit< 0 ..) 0111) 0111:1 0111 O■I 0112 0811) 0•1 ONI Oll't
1' 011111 Ollr-. o•~ ove. OUI OtlO o .. p ... 0 ■) 0112 0181 o•• ONI 0111 Otel ONIJ 01~ OIi~
20 0• om oa• o-.. om o•• Olll 0111 OllllZ ONI 0111 0■2 om 0911 UNI 0811 017' 0,1~ OW/1
21 om 011112 Ollll om 0117 ON) 0&' 0111 UNI O■I 0111 O■) OKI OHi osr, Ot/1 Dir~ 09/b 011& 911'
U O_, GISI ONJ 011:J 0 1ft ON) 0-2 0111 DEi QNI D11111 o,a, OKI 0111) 0911 0111 01111 Of1t 0111 0112 0116
U o .. 011, ON& Olll Offi ON) ON/I DIii 0'81 om OIIJ o•• 0111:1 Dirt 0111 0117 Ollf. 011, Olrl OIi~ aa, , 0111
2& oa, °'" o•• OSI DIil 0111 Olll DHi 092 om DUI a•• ONI on, 0911 0119 0117 091• o,n 017~ 011) Ollll 0110
25 o .. DOI o•• o .. OBIU ONJ o .. 0112 Oa2 om on, ONI 0112 D- 0111 0171 0117 oa,, OIIS 011, 0172 01n 0110 oaro
261.117 D.111 0.117 eJl7 OIIE ONS OB5S DUI 0 .. 0 .. °'" ONI om 0171 OSII 0111 OITI 0117 0175 Dl11 0977 0111 0110 OSI! 011,
27 OMii 08► o• 011111 Olli, ONS 0 .. OIIIM o .. o .. 0111 ONI ONIJ 011'11 D171 01711 0117 o,7' Olrl 0177 Dtl1 0111 0111 ofl, 0112 ou,
2t o•owo•o•o•aEo.,owo.,01120*a~omoAomoN1Jomomomomoffio11,owomomo~o-
2t 0 .. aw o•• O!Jt.4 019◄ OM\ 0111'1 0117 01111 ONI 0171 0917 0111 0171 D117 Ollll Ol7) 0'71 0811 0171 07' oen ot1' Ot1' Ofll aee• 0166 0~
ae 08'1 au, 0,01 0•1 ou, ove om ne71 o.-r, oa11 017~ 091~ oen o,,., u,,, 017l 001 011;1 o~o 0110 nM oe1, 01r:1 oe11 o~ olff' ur., o.,,, oMQ

Table 6.35: R-Range average accuracies for RCVl-Author, Concatenated Static. The
lower range value is shown across the columns and the upper range value shown across

the rows.

Concatenated Concatenated
Dvnamic Static

0.879 0.879

Table 6.36: rmax average accuracies for RCVl-Author.

As with 20Newsgroups there does not appear to be a great difference between static or

dynamic models. The best performing range is this time achieved between 1-26 and 4-26, an

112 I p a g C

extremely high range as with that of the concatenated 20Newsgroups models. R-Ranges
outperformed the C-Measure results as seen in 6.3. 1.3 with accuracies of up to 0.888 and

0.887 for the dynamic and static models respectively.

6.2.3.3.4 Reuters-to

The results for the R$q-Measure experiments are shown in Table 6.37, R~q-Measure in Table

6.38, rmax in 6.43 and Tables 6.39-6.42 show results for R-Ranges. Tables 6.37 and 6.38

display accuracies for all protocols with the leftmost column indicating the lower substring
limit for each algorithm. Tables 6.39-6.42 show the accuracy for each range with a single

table displaying results for a single protocol. The highest accuracies are again highlighted in

bold font.

Concatenated Concatenated NonConcatenated Non Concatenated
Dynamic Static Dynamic Static

1 0.311 0.3 11 0.420 0.418

2 0.655 0.655 0.588 0.623

3 0.745 0.746 0.644 0.686

4 0.778 0.783 0.727 0.760

5 0.81 1 0.8 19 0.776 0.808

6 0.839 0.841 0.814 0.837

7 0.858 0.861 0.833 0.854

8 0.870 0.872 0.847 0.858

9 0.878 0.882 0.852 0.865

10 0.884 0.887 0.859 0.867

11 0.890 0.893 0.862 0.872

12 0.895 0.897 0.867 0.873

13 0.896 0.899 0.870 0.879

14 0.898 0.900 0.873 0.879

15 0.899 0.899 0.874 0.882

16 0.899 0.902 0.876 0.886

17 0.898 0.900 0.876 0.886

18 0.899 0.901 0.874 0.881

19 0.900 0.903 0.874 0.879

20 0.901 0.904 0.873 0.878

21 0.901 0.903 0.873 0.875

22 0.901 0.905 0.876 0.878

23 0.899 0.905 0.872 0.873

24 0.901 0.903 0.872 0.869

25 0.896 0.898 0.866 0.865

26 0.888 0.890 0.857 0.855

27 0.878 0.879 0.849 0.848

28 0.863 0.864 0.836 0.834

29 0.842 0.840 0.812 0.809

30 0.816 0.8 13 0.789 0.787

Table 6.37: Accuracies achieved by applying R$q-Measure to Reuters-to for each

protocol.

113 1Page

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static

1 0.908 0.910 0.879 0.886
2 0.908 0.910 0.878 0.885
3 0.908 0.911 0.881 0.886
4 0.909 0.911 0.883 0.887
5 0.9 11 0.914 0.887 0.890
6 0.914 0.915 0.889 0.887
7 0.916 0.918 0.882 0.883
8 0.918 0.919 0.878 0.879
9 0.920 0.920 0.875 0.873
10 0.919 0.918 0.869 0.869
11 0.920 0.920 0.865 0.867
12 0.919 0.919 0.864 0.865
13 0.916 0.916 0.860 0.861
14 0.913 0.915 0.857 0.857
15 0.909 0.910 0.856 0.857
16 0.907 0.907 0.851 0.852
17 0.903 0.903 0.85 1 0.851
18 0.893 0.893 0.849 0.848
19 0.891 0.891 0.848 0.847
20 0.886 0.886 0.847 0.847
21 0.880 0.881 0.846 0.846
22 0.875 0.875 0.846 0.846
23 0.871 0.871 0.842 0.842
24 0.865 0.865 0.842 0.842
25 0.857 0.857 0.837 0.837
26 0.848 0.848 0.831 0.831
27 0.834 0.834 0.821 0.821
28 0.819 0.819 0.810 0.810
29 0.797 0.797 0.789 0.789
30 0.777 0.777 0.770 0.770

Table 6.38: Accuracies achieved by applying R;?:q-Measure to Reuters-10 for each

protocol.

114 IP age

I
2 Ok!;~
l D 1•~ 0 I'S
◄ 011' 0711 •11'
5 Of11 0 Sil Olt• 0&11
0 on, Otll 08IO o .. ~ 011:b
7 01!4 OISI o-. o..i1 0.,8 U71
I DIT!I osro 0170 0811 OSI• 0171 ON7
9 Of'lt o,1t 0871 Ot7t 0112 08'0 Ot{i:, OM
~owo~o•o-o•owo•o•o-
11 0'90 OIIIO OIIOO 01111 ottr OIM OtOI OlolO 0901 0,0b
~OffiO~O~O.OM0-0~0~0~0~0~
ll 0186 OlllC! 0119) 0181 011ft Of!» 0,01 Ol!OO 0901 0909 011, 0911
,. OM OM one 0~ OM 011()1 OtO) o•)EI 0907 Dtll 0813 0911 0 '"
ti 0199 OM Ol'!il 01!11 OIOO O!IOI Otoe 0!1C41 010, 091J 081l 091' 0911 0917
18 OM O{IQCI 08113 11 011)1 Oll<ll Otof OM 0812 OfU 0811 09 I~ Ottl oe,, "''
,, Ont 01191 Olll<II U OIOI ()l,04 0901 0~ 0111 ot.12 Olll u,e U,11 01,w Otll Qt♦ I

11 Ollt Oltll Olm 0800 OIOI OIIOS Oto!'o 0110 0911 0911 081◄ DOif OtTII ODIi Otll OtTI 01115
,, OIOO OIOIJ Otllll OIOO OkXI Ollre OtOI OVII 011) OIU 0810 DIie o,,. 0117 O!II DtlO 091' 0910
;~ 09(11 OflOt 011()1 OW OIQO 011(11 DQ 0911 OAll OtT~ 0816 091, 01"7 081" ODlt Oll•S 0811 09'1I 0110,1
:>t OtOI OIIOI 090\ 0901 O!IOI Of!lt 0910 01\1 09tl 0911 0115 UH ottl 0110 OIi~ Dtll OID O!IOl 090) Ont
Z2 Oto1 OWi Otl• 0802 0~ U07 OtlO Ot11 01'1l U to 0815 OVtl Ofort 0818 Ot1l O Mrt 0907 Oto◄ OM 01117 0~
7.1 0199 OM Ol!D 0900 011(112 OIOS DICII 01101 0010 0913 011, OIU 0913 0112 0111 0!)07 QDQI OIIOO o•r 0195 0191 0 ■7
14 Oto! Oie1 O~• OIOI 01>.1> 0903 OIO~ O!IOI 0910 0911 0810 0912 Ot•O 0800 DIOI OICl Ol'l> OU/ OMo OIBl 0181 0"3 Ollt
~o~o~o~o~o•offlo~o~o~a~o~o~o~o~o~o~a~omo•o~nwomo~nm
ftD181omoao-o•owo~o~omo-o•omo~o~o-0~0•0~0•1omo-oruono•o~
noAo~omoAomowo*o~owo~o~omowo~omomomomomo~o~o~o~o~c~oM
21 01113 o•l 011!'&1 DIil) OE<I O■r6 011)!; OIE!i OHi 0- 0~ 01&7 OIOI OU Dllfl 0■1 Oll!IO 01£1 0156 011.7 oa.oa OIH7 01 .. o .. , OIW 0116 Of:211
29 Utcl 0 .. 2 0t-U u ..) O .. J 08<., a .. , otu OI~ U◄5 0&<> Cite OM OIH◄ UC1 01>4I 0t<I Ot>e O.i5 OVl• 0829 0125 om o,,. o,1e OU 0,011 OM
JO 0116 01\6 0 118 0'16 0111 0111 0117 0117 Ol!t OilO 0119 011t Ot!P 0119 0111 QJTT 0118 Ol1S 0111 011111 0- On! 080101'10~ 01~1 01111 Otll Olll

Table 6.39: R-Range average accuracies for Reuters-to, Concatenated Dynamic. The
lower range value is shown across the columns and the upper range value shown across

the rows.

10 u 12 11 ,. ,& Hi 11 1t it ro 11 n n ,.a ~ a n ?I 11
1

20=
l 07◄1 07◄1
•0"30"3011•
i 0810 ~BU Ot20 om~
10.,, o,., o.,, 01o◄•o~
'O~I oec, OIIIZ OIIIZ 0$10 Of~
I om 0171 01'17 011, 0171 OIIH D ■-
9 01112 0~ ONl 0 .. D 01111 011'1 0~
~o~o~omo•o~o-o~o~offl
11 OMO Olm own 019', 091X) Otm OIKU OIIOl nu Oli)li
12 OWi 011111 OI')■ 1>191 0902 OWJ DIIOJ 0110◄ on ~Al OIIOI'
uo•oaOMO~OIIOJOfflOIIOJD~OIDO~Omo-
,. 0"1 OIIJO OIQCI OIOt 0901 Otfll at(DD07 0~ Ot1, (lt•O o,i 017
,., 0"'9 01119 0- O!!li otOI oem DIOI O'JOI 0911 o,,,, o,,. ot•~ 0911 Dtl'
1i Otca 0,:0 Of41 OliOl Oto, 0001 0001 0010 OOIA ODIS OtU 091£ UII Dtltl QQII
,1 OlllO OlllO OIIOO Ofi01 Oto◄ ntre 01(17 DIKO 0915 oou o•• 01,e otll 0911 09,1 091'
110901 09'I OIOI O!IQ1 D~ 090'! DIO! DIil 091' Ollt 0111 UIJ otlt 0,11 Dtlt 0118 011t
19 0110) om OIO} 0,0) Qt()I' 09111 UIOI 011,a 091e H•I or■ 011 09lf ot!I OtlC OVlft 011' 0111
10 0- OK,& Oto) 0£0!, 0107 O&Ot 0911 D01~ Olli 0118 Otlf 0917 Dtl7 0917 Olli Olli 0511 owe OIG4
JI 0~ 01<» Olio)) ows OIICll 0,11 0912 091~ oo,t 0,11 01•0 0 ♦1l 0114 091• 0 1\ 0812 O«.$ OP)C OIi)) ow.
l2 Oe.111 0!10fi O!O!I 0!!00 Q,01 DSIO 0,17 08,. O!lt 0110 Ot•~ Otll 0!11 011~ 0114 0910 OIIJT OIIOl Olef Ol!M OW.
7) 011'.6 0~ OI05 UO\ GIOE Otot DIii 0911 011] o~u 0 .. 1 Olli Olli otH o,,, OD07 00(,I O!Qt o,oe O~• Oe81 0117
24 0~ Oto:! OfiOJ O ,0) 090< ate• OM O"'IJ 0111 0111 0111 0,t l 0,11 otot otOI hJJ 011'~ 01111 ON◄ Ollt OM 0 ... ot1'1
~O-OMClefO_D_O~O~O~O~OQO~OI05DI050WOfflO~O~O-O~O-O~Omornom
~o-~~Q~O~o~omnmo~o•o~o~o~o~o~owo~~~o~omo~n~o~owo~Q~
21 0811! 081' Ollt Otlt °'" OIIO 01111 o .. , ON! O■t 0110 Girt°'"' Ofll Ul1' 0811 ovn OICY 01"1 011!~ 0111) OIOJ Olte 011!>) O~I 08'0
no~o~o~o~o~o~n~o•ouo~o~o-0~0~0Nowowo~o~G~0Mo~ot◄10Qo~owom
n 01140 C•l◄O Ot◄o o .. , ot◄, Ot◄• 0 .. 1 Ot◄ I o .. , 0 .. 0 OIMO ot◄, O!MI Ont 08'11 01\7 O~ll om 0•12 OIQ!o 0~ 0'22 o,,, 01,s Olll u,o O!l)J OQI
100811 OIIJ Otll OIi) OIIJ 0111 011• 011• OI•• 011& o, .. Gall°'" 0111 0111 0811 0111 ono OIOI oa 01111 OIO) 0111! om 0191 D'11 O'H o,w•, 0111

Table 6.40: R-Range average accuracies for Reuters-to, Concatenated Static. The lower
range value is shown across the columns and the upper range value shown across the

rows.

115 1Page

t II) 11 t!t 11 1-t t~ 19 ,r 11 19 ,0 -, , 1' 11 N ,-S. HJ 11 ?I '9

I
10tl1l

OIMOM
• 07\.~ Oft,• D 17'
~ OHCI 0~ Gitt 09,1~
o Oil? oa¥s 01.tO Ot67 Of!•
, o~ oe~1 Ol(I) 0111 ottr o•
I 011!11 011'<1 DIie!, o.-r, o .. OIIIG Ohl
I or.; 01151 OIIN OIIO o•r OIIO on1 UM

10 o~r 011:1 01n °'" o .. om 011111 01. 01111
11 om 017' 0171 °''' OIIO OIIM ... 0111\ 0•1 o•
11 0111J u,, oau o., 011111 o~ 011111 us,, o• oas om
I) OWIB 0111 0119 o• oa2 o"" om OM D* 0.-2 0111 DUO
u 01,a 0111 0179 0111 011)4 0115 OS!M DIRI OltNI 0113 01113 oan Offl
I~ 01112 08'2 0882 OW., OWl2 01»:l Offl Dlllt 0112 0913 OIIIO 011! 011? DIil'
•• Ollfi 011116 ow 011» 0191 ow; 0~ 0117 OM1 0., 0115 Oil? 0- Otl!!> o~,
1101111 011111 011) UM a., 0~ o .. , ow. 0,12 Of/G Olli not DIM Off)4 0111!11 OII02
11 Olltl DUI 0~ 018t o•, OR' 0817 Dlftl UII OllS Olfil 09'1 OIIM Oll!S 0~ Oft'ill 080)
~omomomo~o~o~offlornomomo~o~o•owo~oNomoM
~omomomo~o~o~o•o~omo~oQo~o~o~o~o~oruo~o~
21 Ofl~ 081• oart o•~ 0111 0111:1 0111 011, 01r, oa Oll!II 011&1 OIIO< 011112 ot:8 01~, 01~1 01112 o~ or,,
n 01171 oen °'" QIU 0~ 0819 OBftO 0171 0"1 0111'8 Qli<lj DIii'< 016l 0'58 OIISII Oas:! 01~ Ot.<;S ll«i' 0 ... 1 OR<I
2) Olr.J °'" Olte 0819 Dtll Otll 01111 0111 0- ll!ICol 01151 Olltfl orA o•• 011111, o,~, 01!,3 016) OalO OIIH OIH 01~
, . Oll<G 0~ 01n Oll't OV• 0171 Ol7CI OM 0111) OIISt Ot"i Oft~7 De!<! o-., 0~ Oll'A u~ QI.Iii uo 0 .. ij 0~ n nw
2~ 0"-0 01!1) 080' Ul7 Ol!lt Ollll 011!11 Ole1 GIGI OICA o,~ DI~ ow 011111 o ... , o ... ~ GI .. o .. , OSII 0 .. 0 0131 013! o .. o OlOII
~o~o~nwo~o~o~n~n~owowo~n~1o~n~o~a~0Mo~offio~owo~omomo~
2r OIM8 OIU ua• 0.,, 01'5 O!Ul! OUl 0141 0131 om OD! DUI om 0132 om Olll 0121 0121 012• 012• 0~ OIZI 082) 0111 01122 om
211011,\.0 Olll-l nw DSY.> o~ OIU3 Olll· nm 0«1• om 0112, 01115 om ne:r., 01111 oe11 0111 otH otu o,,i oe1a 0112 a.11 e•11 01,0 OR10 01,0
29 Olll!! 0110 OI09 oa OIOO 01101! Ollll'l 01111 OIOI OIOO Olm OIICll OICIO 0198 0797 01';11 D ·~ 0 IBl 07') 07')2 01112 U 191 0 '91 Ol'IO 0"10 0/1!0 0 l!!C) am
'.lOOl'tf Ol'tl 01,1 01~ o,ws 01'4 0111 01112 0110 0111 on. a1e, 01&1 0780 orig orn 0111: nm one 0115 0173 0111 011• en, on2 om 0111on10111

Table 6.41: R-Range average accuracies for Reuters-to, Non-concatenated Static. The
lower range value is shown across the columns and the upper range value shown across

the rows.

1
2 0511
J Oo+I Oki
,on1 01.!I 0111
5 07111 011~ Ullll 0121
0 0114 DIil Dall Offi 0-
7 UU OS,, Ollt 0461 Dll6t ot7S
, oau 0141 o .. , 011,1 01r, o- oa,
Q 01\51 0151 Oil'<' Oil? 01711 011!? 01118 tllS

10 011!/1 01',11 015' Oil? ONI ON> 01117 0191 OIW
ti 01182 oee1 OIO' o•~ DMII OIIIO 01111 OIIO ONI Olle
uo~o~o-oruomoao-0110o•a•o~
t) 0111) 0,11) 011'2 0111 0 o•• Ottll ONt 0 .. 0116 ON:l o.i
14omomo=omo-o~o-oaomomo~offlom
1s Del◄ 0113 U•~ 01111 OMII OM OI07 0~ 0 .. 0 .. Olla) 0811 011• 0"9
~omo-o~o-o_o_o_o~o~o~omomoeo~o•
11omomo~omo~o~o~o~o~o~omomo"o~o~o~
dornomomoma~omomomomomomoao_o..,.o~omo­
dO~omomn~o~o~o~e>~omomomowo~owo•o~o~o~
20 Oln Olfl u.-r• OIi! 0111 Ofl? OIIZ 0•1 0'71 0112 Olllll on o Ot!lt or.., 01:J: on, 0~ Dl'll
11 OITI 017) 0171> 0111 DIii OCIII Ollll 0177 011ft ON 011611 0~ 0""1 DIii 01!,o Or-.\ 0162 0161 01111 0~
12 OITG Oil~ Dll'O 01111 DIii o•l Ott• Ofl6 DIil Ow:.I 01116 011!>4 Ole! 01~1 01:.! Olll OJ',3 Qfl>j 0«12 0«11 0141
n Ol11 °'" 0114 UIW Din Olli 081~ om 0171 Ofi QIIIQ OIIO 0151 QI!,) DIS1 Ol4 0152 0157 a ... 01'1 0"'41 0
1-4 0172 OIIO DIP!- 011, Of~ atl~ 0,11 01/1 OIOII 01<:I oe,i 09~1 Ol'A Ol'il OM OM 01-'12 OM 0 ... 0'40 014• OIMl aun
~OEO~D~O-OfflOM0~0~0~050~0~0ffl0ffiOWO~DWDWO-O~Omomom~o
~~wo~n~o~o~o~o~o~o~ ~o~o~owo~o~o~owo~offio~o~•~o~orno~
no~oRo™o~o•o~o~o~o~ooonooooo~amowo-o~owomomomomowomom
21 01;1 on~ nn• OM> nn Of'.11< o,>11 ot:>5 08)(1 0'2S om om om na2, nm ot,, 01,1 01,1 °'" o,,. ot" otu o~n oe,• 0112 0~11 nt,o
2' 0112 QIU Oil~ nu u120,nca1J 0111 OIOTOK'!, OIIOfi 01015 OIOl 0101 on• om 01n 01111 D111~ 079!>019~ O"tC Ol'MI 0.,,. 01'1".l 019) DIil 01112
~o~o~o~n~o~omomo~o~o~o~o~o~o•o~o~n~o~omcm~mornomomomomo~omom

Table 6.42: R-Range average accuracies for Reuters-to, Non-concatenated Dynamic.
The lower range value is shown across the columns and the upper range value shown

across the rows.

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static

0.908 0.910 0.879 0.886

Table 6.43: rmax average accuracies for Reuters-to.

116 I Page

6.3 Execution times

The time taken to compute results varies substantially depending on a number of factors
including the number of comparisons (i.e. number of testing and training documents), the size

of these texts in addition to the algorithms and protocol used. As 20Newsgroups had the
greatest number of training and testing files, the computations took a significantly greater

amount of time compared to the other corpora and so it is the timing for this corpus which

shall be investigated.

6.3.1 C-Measure

NonConeD n NonCone Stat Cone D n Cone Stat
398529 204591 79697 402

Table 6.44: Average timings in seconds to calculate C-Measure on 20Newsgroups for
each split.

Table 6.44 shows the average number of seconds taken to compute accuracies for a single

cross for each protocol. It is clear that we have great variance for the timings across each of
the protocols, the minimum being for concatenated static with timings typically under seven
minutes and the longest being for non-concatenated dynamic with timings of over six days.

Concatented models are of course much larger than their counterparts and take longer to load
into memory but the number of comparisons is drastically reduced to 20 x 3759 = 75,180 in
most cases compared to 15036 x 3 792 = 57,016,512. It is also worth noting that this means
even with our longest case, a training document was compared against a testing stream, with

results written to disk on average 0.009 seconds each. Even though each comparison can be
executed quickly, unfortunately it still takes a long time due to the overwhelming number to

be computed.

The reason static models are much quicker than the dynamic ones is that because the training
model is dynamically modified, we are forced to reload the model again when we are to

compare against the next testing stream. Speed ups for the concatenated case relating to the
order of comparisons was discussed in 5.3.5 and though what is discussed there is true for the
concatenated static case, with dynamic we must still reload the original training model. The

time taken to do this was drastically reduced by holding the original model in memory and

modifying a copy of the object rather than the original.

6.3.2 PPM

2
3

NonConeDyn NonCone Stat Cone Dvn Cone Stat
With Without With Without With Without With Without

Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions

442797 330100 614554 230035 2417 1915 2498 1858
512327 461451 790613 280094 5817 5835 6234 4897

Table 6.45: Average timings in seconds to calculate PPMC on 20Newsgroups for each
split.

1171 Page

NonCone Dvn NonCone Stat Cone Dyn Cone Stat
With Without With Without With Without With Without

Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions
2 514562 337758 983581 252895 2891 3758 4073 2792
3 595362 472157 1265359 307929 8912 8195 9248 8095

Table 6.46: Average timings in seconds to calculate PPMD on 20Newsgroups for each
split.

Results for PPM took much longer to collate than for C-Measure due to the fact that for every
protocol, two computations were required for with update exclusions and without. It is clear

that again concatenated results were much quicker, as previously mentioned this is because of
the very few number of training documents to be compared against each testing document. As

expected with update exclusions take longer to process than without and the length of the

order dramatically increases execution time.

6.4 Chapter Discussion

The best results from each method and protocol for each corpus is listed in Table 6.4 7 and the

best results for each corpus is marked in bold font. The table shows that for Gutenberg and
Reuters- I 0, PPM achieves the highest accuracies and each of these corpora has been shown
to be quite different in the number of files and the sizes of each. R-Ranges also achieved

extremely high accuracies and outperformed PPM for both 20Newsgroups and RCVl-Author
and the results suggest that R-Ranges is the best performing variant of R-Measure.

PPMC has been shown to outperform PPMD overall and also with exclusions achieved
higher accuracies on more occasions than without. As mentioned in 6.2.2 the computational
overheads involved with investigating high order PPM models for large corpora meant that
high orders could not be investigated in all cases, however, interestingly Table 6.47 indicates
that in some cases low order models can outperform higher ones. Table 6.19 shows that as

with low order models performing well, in some cases substring lengths as low as 1 are
important in categorizing texts, especially when concatenated models are being used.

With regards to the performance of each protocol, Table 6.47 shows that the concatenated

dynamic protocol achieved the highest accuracies for each of the corpora and concatenated
models outperformed non-concatenated in nearly every experiment of all methods for all

corpora.

Section 6.3 shows that the amount of time required to gather results for each protocol vary
considerably. Dynamic models take slightly longer than static ones due to the need to reload
the models or undo changes after each comparison. Non-concatenated models take
considerably longer to compute results for due to the large amounts of comparisons required,

making it seem very convenient that concatenated models performed best.

1181 Page

Corpus Protocol Method Accuracy
20Newsgroups Cone, Dyn C-Measure 10 0.9070
20Newsirroups Cone, Stat C-Measure 9,10 0.9066
20Newsgroups NonConc, Dyn C-Measure 15 0.8520
20News1rroups NonConc, Stat C-Measure 15 0.8400
20News2roups Cone, Dvn R-Ran2es, 4-15 0.9147
20Newsgroups Cone, Stat R-Ranges, 4-15 0.9136
20Newsgroups NonConc, Dyn R-Ranges, 11-19 0.8523
20Newsirroups NonConc, Stat R-Ranges, 12-13 0.8325
20Newsgroups Cone, Dyn PPMD, Order 2, no exclusions 0.8955
20Newsgroups Cone, Stat PPMD, Order 2, no exclusions 0.8910
20Newsgroups NonConc, Dvn PPMC, Order 2, with exclusions 0.7828
2 ON ews groups NonConc, Stat PPMD, Order 2, with exclusions 0.7537

Gutenberg Cone, Dvn C-Measure, 24,25 0.78
Gutenberg Cone, Stat C-Measure, 21 0.78
Gutenberg NonConc, Dvn C-Measure, 22-27 0.78
Gutenberg NonConc, Stat C-Measure, 23 0.78
Gutenberg Cone, Dvn R-Ranges, numerous 0.775
Gutenberg Cone, Stat R-Ranges, numerous 0.767
Gutenberg NonConc, Dyn R>.a 20-24, R-Ranges 19-24,27-29 0.775

Gutenberg NonConc, Stat R-Ranges, numerous 0.775
Gutenber2 Cone, Dvn PPMC 3 no excl, PPMD 3 with/no excl 0.95
Gutenberg Cone, Stat PPMC 2 with excl, PPMD 2/3/4 with excl 0.75
Gutenberg NonConc, Dvn PPMC 3 with excl, PPMD 5 with excl 0.925
Gutenberg NonConc, Stat PPMC 6/7 with excl, PPMD 6/7 with excl 0.6

RCVl-Author Cone Dvn C-Measure, 16 0.8830
RCVl-Author Cone Stat C-Measure, 12 0.8837
RCVl-Author Cone Dvn R-Ran2:es, 3-28, 4-28 0.888
RCVl -Author Cone Stat R'?.a 11,12,26, R-Ranges numerous 0.887

RCVl-Author Cone Dvn PPMD, 3 no exclusions 0.8533
RCVl-Author Cone Stat PPMD, 3 no exclusions 0.8518

R-10 Cone, Dvn C-Measure, 15 0.9177
R-10 Cone, Stat C-Measure, 14 0.9173
R-10 NonConc, Dvn C-Measure, 9 0.8927
R-10 NonConc, Stat C-Measure, 9 0.8954
R-10 Cone, Dyn R>.a , 9,11 0.920

R-10 Cone, Stat R>.a , 9,11 0.920

R-10 NonConc, Dyn R-Ranges, 8-9 0.893
R-10 NonConc, Stat R-Ranges, 7-11, 8-9 0.898
R-10 Cone, Dvn PPMC, 3, with exclusions 0.9531
R-10 Cone, Stat PPMC, 3, with exclusions 0.9455
R-10 NonConc, Dyn PPMC, 2, with exclusions 0.8556
R-10 NonConc, Stat PPMC, 4, no exclusions 0.9080

Table 6.47: Highest achieved accuracies for each method, for each protocol against each
corpus.

119 1Page

Corpus Method Acc. R p BEP Citation Number
Gutenberg Markov chains 0.7472 Khmelev, D. 2001

Gutenberg RAR 0.82 Marton. et al. 2005

Gutenberg LZW 0.83 Marton. et al. 2005
Gutenberg GZIP 0.67 Marton. et al.2005
R-10 Word 0.32 Yang. 1999

R-10 kNN 0.85 Yang. 1999

R-10 LLSF 0.85 Yang. 1999

R-10 CLASSI 0.80 Yang. 1999
R-10 RIPPER 0.80 Yang. 1999

R-10 SWAP-I 0.79 Yang. 1999

R-10 DTree C4.5 0.79 Yang. 1999
R-10 CHARADE 0.78 Yang. 1999
R-10 EXPERTS (n-gram) 0.76 Yang. 1999

R-10 Rocchio 0.75 Yang. 1999

R-10 NaiveBayes 0.71 Yang. 1999
R-10 Action algorithm 0.8691 0.8949 0.895 D' Alessio. 1998

R-10 SVM 0.8120 0.9137 Jimin, L. et al. 2001
R-10 KNN 0.8339 0.8807 J imin, L. et al. 200 I

R-10 LSF 0.8507 0.8489 Jimin, L. et al. 2001

R-10 NNet 0.7842 0.8785 Jimin, L. et al. 2001

R-10 Naive Baves 0.7688 0.8245 Jimin, L. et al. 200 I

R-10 Naive Baves 0.848 Teahan, et al. 2001

R-10 LSVM 0.919 Teahan, et al. 2001

R-10 PPMC Order2 0.863 Teahan, et al. 2001

R-10 PPMD Order 3 with excl 0.910 Teahan, et al. 2001
R-10 PPMD Order 3, no excl 0.902 Teahan, et al. 2001

R-10 Findsim 0.646 Dumais, S. et al. 1998

R-10 Naive Baves 0.8 15 Dumais, S. et al. 1998

R-10 BavesNets 0.85 Dumais, S. et al. 1998
R-10 Decision Trees 0.884 Dumais, S. et al. 1998

R-10 LinearSVM 0.92 Dumais, S. et al. 1998
R-10 RAR 0.87 Marton et al. 2005

R-10 LZW 0.84 Marton et al. 2005

R-10 GZIP 0.83 Marton et al. 2005

R-10 SVM + 1B (information 0.916 Bekkerman, R. 2001
bottleneck) clustering

20News Naive Bayes 0.85 McCallum, A. et al. 1998

20News PPMD 0.821 Teahan, et al. 2001

20News Multivariate Bernoulli event 0.74 Teahan, et al. 2001
model

20News Multinomial model 0.85 Teahan, et al. 200 I

20News PrTFIDF 0.91 8 Joachims, T. 1997
20News Naiev Baves 0.896 Joachims, T. 1997

20News TFIDF 0.863 Joachims, T. I 997
20News SVM + 1B (information 0.895 Bekkerman, R. 200 I

bottleneck) clustering
20News RAR 0.90 Marton et al. 2005

20News LZW 0.66 Marton et al. 2005
20News GZfP 0.47 Marton et al. 2005
RCV I -Author PPMD Order 8 with excl 0.8876 Hunnisett, D. Et al. 2004

RCV I-Author PPMD Order 7 ,8 no excl 0.8978 Hunnisett, D. Et al. 2004
RCV I-Author C-Measure Order 13 0.9038 Hunnisett, D. Et al. 2004

RCV I-Author SVM 0.85 Hunnisett, D. Et al. 2004
RCV I-Author R-Measure 0.89 Hunnisett, D. Et al. 2004
RCV I -Author RAR 0.894 Hunnisett, D. Et al. 2004
RCVI-Author Multi-SVM 0.85 Khmelev, D. Et al. 2003

RCVl -Author Bxip2 0.482 Khmelev, D. Et al. 2003

1201 Page

RCVI-Author Gzip 0.594 Khmelev, D. Et al. 2003

RCV I -Author Markov chains order 1 0.661 Khmelev, D. Et al. 2003

RCVI-Author Markov chains order 2 0.645 K.hmelev, D. Et al. 2003

RCVI-Author Markov chains order 3 0.633 Khmelev, D. Et al. 2003

RCVI-Author PPMD Order 2 0.813 Khmelev, D. Et al. 2003

RCVl-Author PPMD Order 3 0.864 K.hmelev, D. Et al. 2003

RCV I-Author PPMD Order4 0.884 Khmelev, D. Et al. 2003

RCVJ-Author PPMD Order 5 0.892 Khmelev, D. Et al. 2003

RCV I -Author RAR 0.78 Marton et al. 2005

RCV I-Author LZW 0.66 Marton et al. 2005

RCV I-Author GZIP 0.79 Marton et al. 2005

Table 6.48: Best Results from other text categorization methods.

Table 6.48 lists results from past experiments for each of the studied corpora. The evaluation
techniques of some are different and so columns are provided for accuracy (Acc.), recall (R),
precision (P) and also breakeven point (BEP). The citation number pointing to the reference
is included in the rightmost column. By comparing the results for stream-based methods

against those in Table 6.48 we can see that for 20Newsgroups, R-Ranges outperforms all
other methods apart from one. Other methods exist that outperform C-Measure and R­
Measure for Gutenberg, however, PPM has clearly outperformed any other method with an

accuracy of 0.95.

None of the new results were able to reach the performance achieved of past results for
RCVl-Author but the best performing was found to be C-Measure by Hunnisett & Teahan
(2004). Table 6.48 shows that there has been substantial experimentation performed against
Reuters-21578 and our experimentation of PPM was found to achieve the best results, having

accuracy of 0.9531.

For each corpus in tum, Table 6.47 allows us to easily evaluate the performance of each

algorithm but it is more difficult to evaluate the performance of each measure in tum against
each of the corpora and this is the reasoning for Tables 6.49 - 6.53. It has been shown that the
concatenated dynamic protocol performs better than any other overall therefore the following

results have been tabulated for this protocol only.

121 IP age

Order 20-Newsgroups Gutenberg RCVl-Author Reuters-IO

1 0.043 0.080 0.018 0.311

2 0.238 0.180 0.487 0.655

3 0.788 0.180 0.793 0.747

4 0.879 0.230 0.834 0.779

5 0.898 0.300 0.856 0.834

6 0.905 0.300 0.861 0.862

7 0.904 0.300 0.866 0.878

8 0.905 0.350 0.872 0.894

9 0.906 0.400 0.875 0.899

10 0.907 0.450 0.875 0.902

11 0.906 0.480 0.878 0.906

12 0.904 0.550 0.882 0.912

13 0.902 0.550 0.882 0.915

14 0.898 0.580 0.882 0.917

15 0.892 0.600 0.879 0.918

16 0.889 0.630 0.883 0.917

17 0.885 0.630 0.882 0.915

18 0.879 0.630 0.878 0.913

19 0.875 0.700 0.876 0.907

20 0.871 0.700 0.878 0.903

21 0.868 0.750 0.875 0.895

22 0.864 0.750 0.875 0.891

23 0.861 0.750 0.869 0.884

24 0.857 0.780 0.870 0.878

25 0.855 0.780 0.872 0.872

26 0.852 0.750 0.873 0.861

27 0.848 0.750 0.870 0.844

28 0.845 0.750 0.864 0.827

29 0.842 0.730 0.861 0.800

30 0.839 0.680 0.860 0.781

31 0.835 0.630 0.856 0.760

32 0.832 0.580 0.851 0.728

33 0.830 0.500 0.849 0.699

34 0.827 0.450 0.847 0.667

35 0.824 0.430 0.842 0.645

36 0.821 0.430 0.839 0.619

37 0.819 0.450 0.834 0.583

38 0.817 0.450 0.827 0.558

39 0.814 0.400 0.822 0.525

40 0.813 0.380 0.815 0.499

Table 6.49: C-Measure results for each of the corpora for the concatenated dynamic
protocol.

122 IP age

Order 20-News2rouos Gutenberg RCVl-Author Reuters-IO
1 0.907 0.475 0.879 0.908

2 0.907 0.475 0.879 0.908

3 0.907 0.475 0.879 0.908

4 0.9066 0.475 0.88 0.909

5 0.9063 0.475 0.88 0.911

6 0.9048 0.475 0.879 0.914

7 0.9023 0.475 0.88 0.916

8 0.8994 0.5 0.88 0.918

9 0.8969 0.525 0.879 0.92

10 0.8932 0.525 0.881 0.919

11 0.8896 0.55 0.88 0.92

12 0.8858 0.525 0.881 0.919

13 0.8807 0.525 0.882 0.916

14 0.8761 0.55 0.884 0.913

15 0.8721 0.55 0.881 0.909

16 0.8684 0.6 0.877 0.907

17 0.8649 0.675 0.875 0.903

18 0.8627 0.7 0.875 0.893

19 0.8595 0.725 0.872 0.891

20 0.8569 0.725 0.869 0.886

21 0.8548 0.725 0.867 0.88

22 0.8521 0.725 0.868 0.875

23 0.8495 0.75 0.865 0.871

24 0.846 0.725 0.862 0.865

25 0.8432 0.725 0.859 0.857

26 0.8407 0.725 0.856 0.848

27 0.8378 0.675 0.853 0.834

28 0.8358 0.625 0.851 0.819

29 0.833 1 0.575 0.847 0.797

30 0.8303 0.525 0.845 0.777

Table 6.50: R~q-Measure results for each of the corpora for the concatenated dynamic

protocol.

123 IP age

Order 20-Newseroups Gutenber2 RCVl-Author Reuters-10
1 0.0427 0.075 0.025 0.311

2 0.2379 0.175 0.47 0.655

3 0.7805 0.15 0.787 0.745

4 0.8727 0.2 0.83 0.778

5 0.8939 0.3 0.85 0.811

6 0.9032 0.275 0.862 0.839

7 0.9056 0.3 0.863 0.858

8 0.9084 0.3 0.864 0.87

9 0.9094 0.3 0.871 0.878

10 0.9107 0.35 0.872 0.884

11 0.9113 0.35 0.875 0.89

12 0.913 0.4 0.875 0.895

13 0.9133 0.45 0.877 0.896

14 0.9141 0.45 0.878 0.898

15 0.9145 0.45 0.879 0.899

16 0.914 0.45 0.879 0.899

17 0.9135 0.45 0.88 0.898

18 0.9126 0.45 0.88 0.899

19 0.9119 0.45 0.88 0.9

20 0.9099 0.45 0.881 0.901

21 0.9072 0.45 0.882 0.901

22 0.9047 0.475 0.883 0.901

23 0.9008 0.475 0.882 0.899

24 0.8949 0.475 0.883 0.901

25 0.8904 0.475 0.884 0.896

26 0.8853 0.475 0.884 0.888

27 0.8806 0.475 0.886 0.878

28 0.8766 0.475 0.887 0.863

29 0.8726 0.475 0.885 0.842

30 0.8697 0.475 0.882 0.816

Table 6.51: R5 q-Measure results for each of the corpora for the concatenated dynamic

protocol.

20-Newsgroups Gutenberg RCVl-Author Reuters-10

0.907 0.475 0.879 0.908

Table 6.52: rmax results for each of the corpora for the concatenated dynamic protocol.

124 IP age

PPMC PPMD

With exclusions Without exclusions W ith exclusions Wit hout exclusions

20-Newsgroups 0.8886 0.893 0.892 0.8955

Gutenberg 0.8 0.8 0.75 0.775

RCVl-Author 0.7994 0.8055 0.8062 0.8146

Reuters-10 0.9477 0.9437 0.9455 0.945

Table 6.53: PPMC and PPMD results for each of the corpora for the concatenated
dynamic protocol.

rmax and the new R!>q-Measure is always outperformed by either the R~q-Measure or the

Rp .. q-Measure. Overall, the new R~q and Rp .. q measures compare favourably with the

normalised C-Measure and PPM results and with the best results previously published,

including feature-based results.

Interestingly, neither PPMC nor PPMD dominates, unlike compression experiments where

PPMD usually leads to better compression. The remarkable aspect of the PPM results is that
no one order is clearly better across the protocols; and interestingly, models that do not use
exclusions in some cases are better than those that do. This is counter-intuitive from an
information theoretic perspective where one would expect that the model that performs better
at compression (usually PPMD order 5 with exclusions) would also dominate for text
categorization. An explanation might be that the categorization process requires optimizing
for the best class decision, not best compression. That is, the information concerning the class
is not being encoded, so is not being factored into the optimization. Also, performing no

exclusions penalizes the classifier by adding an avoidable coding cost, but this only occurs
when an escape has occurred to a lower context, strong evidence that the class may be

invalid; so the extra coding cost is aiding the classification decision.

Table 6.49 illustrates that the results vary markedly between Gutenberg and the other three

corpora. For 20 Newsgroups, RCVl-Author and Reuters-I O Ck-Measures using lower values

of k perform better, with peaks occurring for C lengths between 10 :::; k ~ 16. For

Gutenberg, in contrast, peaks occur for 24:::; k ~ 25 and this may be due to the substantially

larger documents found in that collection providing much greater training data for relatively

few authors.

It was conjectured in section 3.1 that with natural language text, the shortest substrings would
be poor discriminants since these short substrings are common across all strings. This has

been borne out in the results, with the lowest R measure ranges not featuring in the best

performing methods - for example, for 20 Newsgroups, the best performing method is R4 __ 15

(where the substrings less than length 4 are ignored), for Reuters- IO the best performing

methods are R~9 and R~11 (where the substrings less than length 9 or 11 are ignored) and for
RCV l -Author the best performing methods are R3 __ 28 and R4 __ 28 . It has been shown that for

Gutenberg peaks occurred for much longer substring lengths. It is not yet known if this is due

125 IP age

to the style of text (the included Gutenberg texts are novels) or the large amounts of training
data for only a few authors. From these results it must be recommended that anyone

attempting to categorise new streams exclude shorter substrings and to use a longer minimum

shortest substring length for streams similar to the Gutenberg corpus.

126 IP age

Chapter 7

Conclusions & future work

7.1 Discussion

There were two problems that motivated the work within this thesis. The first was that

although stream based methods for text categorization have been shown to perform well in
some experiments, no thorough study of their performance has ever been performed on a
number of major corpora and their results have not been thoroughly compared against the

current state-of-the-art feature based techniques. This is an important problem as the merit of
the techniques cannot be fully established until a thorough study has been performed. A
number of new stream based methods have been detailed within the thesis and one of these
new techniques, R-Ranges, bas been shown to outperform all other methods for two of the

corpora.

The concept of protocols and how each affects categorization results has also not been

studied thoroughly across a number of methods for several corpora. The experimentation
performed within chapter 6 showed that the protocol does indeed affect the accuracies of each
method and the concatenated dynamic protocol was found to outperform all others on most
occasions and performs consistently well across all methods, for all corpora. This study has
now conclusively shown that the method used to categorise text must not be the only one, the

selection of protocol is also just as important.

From the experimentation, a third problem was identified. It has been highlighted by Yang
(1999) that it is often difficult to recreate the exact experimentation conditions of previous

studies. One reason for this is that the training and testing splits often differ. To ensure that
all methods and protocols were fairly compared, a toolkit was developed to offer a single
location from which all methods could be ran, for all protocols, on the same data. This is

important as all experiments can now be accurately recreated and any new techniques can
then fairly compare its results against all found from within this study.

7.2 Summary of chapters

Chapter 2 reviewed important concepts within the field of text categorization and difficulties
in comparing results among techniques were mentioned. Several applications of text

categorization were discussed as were the most common feature based approaches to
categorization. The more common feature based approaches perform pre-processing
techniques which consumes both time and resources, but it has been shown that stream based

127 I Page

approaches do not. Previous stream based methods were discussed and the fact that their

research was sparse was noted.

Chapter 3 introduced new stream based categorization techniques. Improved performance to
the C-Measure has meant that longer substring lengths have been examined and several new
variants of the R-Measure have been introduced. The chapter also showed how these new

variants of R-Measure, C-Measure and PPM could be calculated through the use of the suffix

tree data structure which has not been previously performed.

After introducing suffix trees as powerful data structures that allow fast searching, chapter 4

showed that it is possible to compute the stream-based methods in reasonable time and space

and detailed the implementation of the stream based techniques.

Chapter 5 details jSCat, a toolkit created to facilitate the text categorization experiments and
to allow the calculation of several techniques all at once. As well as making it simple to run
experiments for a number of techniques, the toolkit has been shown to be extensible in order
to allow the introduction of new techniques and also handles tasks common to categorization.
Chapter 5 has also shown that optimisations can be found that drastically affect processing

times and we have now been able to analyse stream based substring lengths that are much
longer than previous research. One problem with comparing the performance of previous

studies in Table 6.48 to that of the results found within this study, shown in Table 6.47 is the
inconsistency. The same subsets will not be often used and the evaluation techniques will
also differ between experiments. This problem was highlighted by Yang (1999) but the use of
the toolkit to perform the experiments for all methods meant that all were performed in a
consistent manner, on the same subsets of corpora and evaluated in the same way and this is

what is needed for all future research.

Chapter 6 described the experimental results for text categorization using stream-based
methods and compared these against a number of feature based techniques. Results obtained
for C-Measure, PPMC, PPMD and all R-Measure variants showed that stream-based methods

are able to match the performance of state-of-the-art techniques. PPMC has been shown to
outperform PPMD overall and also with exclusions achieved higher accuracies on more
occasions than without. The computational overheads involved with investigating high order
PPM models for large corpora meant that high orders could not be investigated in all cases.

However, interestingly Table 6.47 indicates that in some cases low order models can
outperform higher ones. Table 6.19 shows that as with low order models performing well, in

some cases substring lengths as low as 1 are important in categorizing texts, especially when
concatenated models are being used. Concatenated models were found to achieve better
accuracies than non-concatenated and concatenated dynamic was the best performing

protocol overall. The best performing substring length for C-Measure varies between corpora
with lengths of 21-27 achieving high accuracies for Gutenberg; however, lengths of between
9 and 16 achieved the best results for the other three corpora. For R-Ranges it is difficult
from the results to say which ranges perform best, however, it is clear that although the best

ranges vary greatly for each corpora, for each protocol of each corpus the best ranges are very

close.

128 I Page

7 .3 Contributions

Previous to this study there had been no complete and comparative study on the stream based

approaches to text categorization. Within chapter 2 it was shown that in the limited study that
had been performed, the methods performed well and so there was a need for these methods
to be investigated thoroughly against some well known corpora. Chapter 2 discussed

protocols and how their variants have previously been used within the study of text
categorization but again the investigation has been limited and provided a further motivation

for gathering the results within chapter 6.

New stream based methods have been developed within the study, namely variants of the R­

Measure algorithm. The study has shown how these new methods and also existing ones
could be implemented using suffix trees, a data structure allowing for very faster searching of
substrings between models. It was shown how PPMC, PPMD both with and without update
exclusions can be implemented using suffix trees and a C-Measure implementation was

developed that allowed us to investigate longer substring lengths than was possible

previously.

The results that have been found further support the fact that stream based classifiers can
perform as well as current leading techniques, beating them in some cases. In chapter 6, a
new method R-Ranges was found to achieve the highest results on a number of occasions,
beating well supported methods such as PPM for 20Newsgroups and RCVl-Author.
20Newsgroups is known to be a robust measure used for comparing standard text

categorization and RCV I-Author is good for authorship ascription. The fact that this new
technique has been found to outperform other state-of-the-art techniques such as PPM

justifies the work that has been done.

The results also showed that the choice of protocol does in fact have a major bearing on the
successfulness of the results, with concatenated dynamic found to outperform all others on
most occasions across all corpora. Interestingly the highest results of all methods for each

corpus were all found to have concatenated dynamic as its protocol.

Chapter 6 also showed that there are major differences between the computational times of
each protocol with static models taking less time to construct than dynamic ones.
Concatenated models were shown to take longer to construct than non-concatenated ones but
it was noted that for many comparisons the models could be stored in memory and compared

against each testing model yet be loaded only once, this coupled with the fact that generally
the number of categories is much smaller than the number of training documents means that

using concatenated models for experimentation if often the quickest method.

7.4 Review of aims & objectives

The first objective was to further investigate and perform a comparative study of stream
based approaches. The results shown in chapter 6 has shown that stream based methods are

129 I Page

able to outperform current leading techniques and that they should be considered in any

future text categorization study.

The second objective was to discover which stream based approaches perform best in which
situations. It was hoped to show that for certain corpora or document lengths that certain
approaches and protocols should be used. The results in chapter 6 were able to show that the

effectiveness of the techniques varied with each corpus but similarities of corpora usually
related to similarity in effectiveness of each technique. One interesting discovery was that the

concatenated dynamic protocol was shown to outperform the other protocols on almost all
occasions across all the data sets. It would have been desirable to have computed many more
results, in particular higher order models for the PPM variants but the computation overheads

meant that this was not possible. An attempt was made to compute the results at an early
stage but after difficulties in gathering the required subsets of each corpus, much time was
lost and ideally the experimentation for each would have been performed much earlier in the

study.

The final objective was to show that the suffix tree data structure could be used to implement
each of the stream based algorithms. The complexities of processing each of the techniques
using suffix trees showed that it is indeed a suitable data structure. However, some of the

timings shown in chapter 6 highlight the fact that although an individual comparison may be
quick, some corpora require vast amounts of calculations to be performed and this can in
some cases take a long time. It was shown in chapter 5 that there are a number of techniques

available to further improve the time required to load the models and also to limit the amount
of memory required, such techniques are pruning the tree and storing representations of the

loaded model within text files so that a node may be added to another quicker after analyzing

how one node relates to another.

7 .5 Future work

As mentioned in 7.2 it was felt that the result for the PPM variants against some of the
corpora was limited and although it has been shown that higher order models do not always
guarantee improved classification, the results that have been attained perform well and

warrant further investigation. One of the biggest problems found during the stages of
collecting the results was the amount of time it took to compute all of the results. The current

implementation within the toolkit is for all models and results to be stored within text files
and loaded as required. In order to greatly increase the flexibility for anyone wishing to take
forward this work, it would be suggested to instead use a database to store the models and

results so that the required data could be found without having to load entire files.

It was hoped that by running experiments of all variants of each algorithm against each
corpora that it would be possible to state that a particular algorithm performs better on certain

corpora than others, and to state that this is somehow linked to the sizes and/or type of files
contained within. It has been shown that for any dataset, short substring lengths should be
omitted when using C-Measure or R-Measure variants. The desired length of the shortest

130 I P age

substring to be included does appear to differ between the types of text. For texts similar to
those within the Gutenberg dataset, which are novels, this study has found that longer
substrings of length 21-27 achieving the highest accuracies. However, lengths of between

roughly 4 and 28 achieving the highest accuracies for the others. In addition to the findings of
the best performing substring lengths, and that concatenated dynamic models are likely to
achieve the highest accuracies it has also been found that for some experimentation some
cleanup of the input stream is likely to be required. It is beneficial to retrieve as much training

data as possible, however, corpora have been shown to include duplicate files and also
disclaimer text, both of which should be searched for and removed. These findings serve as
recommendations for any new study. However, there are types of text not covered within this

study as it focused on well known corpora i.e. it would be interesting to investigate whether
our recommendations achieve the highest accuracies for categorizing tweets (twitter updates),

Facebook status updates or biogs.

The process of doing background research on the current implementations of stream based
methods brought with it a number of questions to mind. There was always a concern that a

training document containing the same word repeatedly would achieve high counts if the
word existing within the testing stream. It was this thought that brought about the idea that
the counts of each node could be reduced once they have been matched, essentially the
opposite process to constructing dynamic models. This reduction could continue until the
count reaches zero, at which point the node is removed. This would allow similarities to be
matched whilst removing the possibility that a single word could have such a weighting,
essentially ensuring that a broader range of nodes are matched for documents to achieve high

counts.

Another process that was performed was cleansing of the datasets, for instance Gutenberg
had lots of disclaimer text that was not part of the original document and does nothing to

improve the categorization of it. During this process of studying the contents of the corpora it
was found on a number of occasions that there exists a lot of white space in order to break up

sections or separate emails and so on. It is possible this could possibly stop substrings of high
lengths being matched (unless the substring itself was whitespace of course). A class was
therefore written that removes any extra whitespace from within each document before it is
categorized but unfortunately due to the overwhelming number of computations to be
performed for the existing experiments, this experimentation was never performed and could

well improve the categorization results of each.

1311 Page

8 References

Argamon, S., Whitelaw, C., Chase, P., Hota, S. R., Dhawle, S., Garg, N., Levitan, S. Stylistic Text
Classification using Functional Lexical Features. Journal of the American Society for
Information Science and Technology (JASIST), pp. 802-822, 2005.

Baker, L. D. and McCallum, A. (1998). Distributional clustering of words for text classification.
In Proceedings of the Twenty-first ACM International Conference on Research and
Development in Information Retrieval (SIGIR98), pp. 96-103, 1998.

Bekkerman, R. On feature distributional clustering/or text categorization. 2001.

Biber, D. Variation across speech and writing. Cambridge: Cambridge University Press. 1988.

Biber, D. Dimensions of Register Variation: A Cross-linguistic Comparison. Cambridge
University Press, Cambridge. 1995.

Biebricher, Peter, Fuhr, Norbert, Lustig, Gerhard, Schwantner, Michael and Knorz, Gerhard: The
Automatic Indexing System AIR/PHYS - From Research to Application. In: Proceedings of the
Eleventh Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. pp. 333-342, 1988.

Bieganski, J. R. P. and Carlis, J. V. "Generalized suffix trees for biological sequence data:
Application and implantation". In Proceedings of 27th Annual Hawaii International Conference
on System Sciences, pp. 35-44, 1994.

Boggess, L., Argawal, R. and Davies, R. Disambiguation of prepositional phrases in
automatically labelled technical text. AAAI'91, 155-159, 1991.

Boser, B. E., Guyon, I. M. and Vapnik, V. N. A training algorithm for optimal margin classifiers.
In D. Haussler, editor, 5th Annual ACM Workshop on COLT, pp. 144-152, Pittsburgh, PA, 1992.

Branner, David Prager. Problems in Comparative Chinese Dialectology: The Classification of
Miin and Hakka. Berlin and New York: Mouton de Gruyter. 2000.

Bratko, A., G. V. Cormack, B. Filipic, T. R. Lynam, and B. Zupan. Spam filtering using
statistical data compression models. Journal of Machine Leaming Research 7 Dec, pp. 2673-
2698. 2006.

Bratko, A. , Filipic, B. and Zupan, B. Towards Practical PPM Spam Filtering: Experiments for
the TREC 2006 Spam Track. In Proc. 15th Text REtrieval Conference, TREC 2006, NIST,
Gaithersburg, MD, November 2006.

Bratko, A. Fighting Spam With Data Compression Models. Virus Bulletin, March 2006, pp S2-
S4.

132\ Pnge

Bratko, A. and Filipic, B. Spam Filtering Using Compression Models. Technical Report IJS-DP-
9227, Department of Intelligent Systems, Jozef Stefan Institute, November 2005.

Bratko, A. and Filipic, B. Spam Filtering using Character-level Markov Models: Experiments for
the TREC 2005 Spam Track. In Proc. 14th Text REtrieval Conference, TREC 2005, NIST,
Gaithersburg, MD, November 2005.

Cameron, Deborah. Language: Person, number, gender. Critical Quarterly, Volume 46, Number
4, December 2004, pp. 131-135. 2004.

Chiang, D., Diab, M., Habash, N., Rambow, 0 . and Sharif, S. Parsing Arabic dialects. In
Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics, 2006.

Colley, A. and Todd, Z. Gender-linked differences in the style and content of e-mails to friends.
Journal of Language and Social Psychology, pp. 380-392. 2002.

Corney, M., De Val, 0., Anderson, A. and Mohay, G. Gender-Preferential Text Mining of E-mail
Discourse. In 18th Annual Computer Security Applications Conference. 2002. San Diego
California. 2002.

Crowston, K. and Williams, M. Reproduced and emergent genres of communication on the
World Wide Web. The Information Society, 16, pp. 201-215. 2000.

David Chang et al, Parsing Arabic Dialects

Creecy, H., Masand, M., Smith, J., and Waltz, D. Trading Mips and Memo,y for Knowledge
Engineering. Communications of the ACM, 35(8):48-63, 1992.

D 'Alessio, S. Hierarchical Text Categorization. 1998.

Dahlgren, K. , Lord, C., Wada, H. , McDowell, J. , and Stabler, E. P. JTP: Description of the
Inte,pretext System as used for MUC-3. Proceedings of the 3rd Conference on Message
Understanding, San Diego, CA, Association for Computational Linguistics, 163-170, 1991.

Dave, K., Lawrence, S., and Pennock, D. M. Mining the Peanut Gallery: Opinion Extraction and
Semantic Classification of Product Reviews. In Proceedings of the International World Wide Web
Conference, Budapest, Hungary. 2003.

de Vel, 0., Corney, M., Anderson, A. and Mohay, G. Language and Gender Author Cohort
Analysis of E-mail for Computer Forensics. Digital Forensic Research Workshop, August 7 - 9,
2002, Syracuse, NY. 2002.

Drucker, H. D., Wu, D., and V., V. Support Vector Machines for spam categorization. IEEE
Transactions On Neural Networks 10, 5, 1048-1054, 1999.

133 IP age

Dumais, S., Platt, J., Heckerman, D. and Sahami, M. Inductive Learning Algorithms And
Representations For Text Categorization. In Proceedings of ACM Conference on Information
and Knowledge Management (CIKM98), Nov. 1998, pp. 148-155, 1998.

Ehrenfeucht, A. and Haussler, D. "A new distance metric on strings computable in linear time".
Discrete Applied Math, 40, 1988.

Finn, A. and Kushmerick, N. Learning to classify documents according to genre. JASIST,
Special Issue on Computational Analysis of Style, Vol. 57, N. 11 , September 2006.

Francis, W. N. and Kucera, H. Frequency analysis of English usage: lexicon and grammar.
Boston: Houghton Mifflin. 1982.

Fung, G. (2003). The disputed federalist papers: SVM feature selection via concave
minimization. New York City, ACM Press, 2003.

Gamon, M. and Aue, A. Automatic identification of sentiment vocabulary: Exploiting low
association with known sentiment terms. In Proceedings of the ACL Workshop on Feature
Engineering for Machine Leaming in Natural Language Processing, Ann Arbor, Michigan. 2005 .

Giegerich, R. and S. Kurtz, S. "From Ukkonen to McCreight and Weiner: A Unifying View of
Linear-Time Suffix Tree Construction". Algorithmica 19 (3): pp. 331-353. 1997.

Grishman, R. , Sterling, J. and Macleod, C. New York University description of the PROTEUS
system as used for MUC-3. In Proceedings of the Third Message Understanding Evaluation and
Conference, Los Altos, CA: Morgan Kaufmann, May 1991.

Groom, C. J. and Pennebaker, J. W. The language of love: sex, sexual orientation, and language
use in online personal advertisements. Sex Roles: A Journal of Research, 52 (7-8), pp. 447-461 .
2005 .

Hardt, S. On recognizing planned deception. AAAI-88 Workshop on Plan Recognition, 1988.

Hayes, Philip J. and Weinstein, Steven P. CONSTRUE/TIS: a system for content-based indexing
of a database of news stories. In Second Annual Conference on Innovative Applications of
Artificial Intelligence, 1990.

Hidalgo, J. G. and Lopez, M. M. Combining text and heuristics for cost-sensitive spam filtering.
In Proceedings of the 4th Computational Natural Language Leaming Workshop. Lisbon,
Portugal, 99-102, 2000.

Hobbs, Jerry R. SRI International: Description of the TACITUS system as used for MUC-3. In
Proceedings of the Third Message Understanding Evaluation and Conference , Los Altos, CA:
Morgan Kaufmann, May 1991.

134 IP age

Holmes and Forsyth. The Federalist Revisited: New Directions in Authorship Attribution. Lit
Linguist Computing.1995; 10: 111-127. 1995.

House, A. S., and Neuberg, E. P. (1977). Toward automatic identification of the language of an
utterance. Preliminary methodological considerations. Journal of the Acoustical Society of
America, 62(3):708--713, 1977.

Huang, R. and Hansen, J.H.L. Dialect Classification on Printed Text using Perplexity Measure
and Conditional Random Fields. Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on, Volume: 4, On page(s): IV-993-IV-996. 2007.

Hunnisett, D. 2010. Categorizing Human Computer Interaction. PhD thesis. Bangor University

Hunnisett, D. and Teahan. Context-based methods for text categorization. In Proceedings of the
SIGIR Conference on Information Retrieval (SIGIR 2004), Sheffield, UK, July 25-29, pp. 578-
579. 2004.

Jimin, L. and Chua, T. Building Semantic Perceptron Net for Topic Spotting. 2001.

Joachims, T. Learning to classify Text Using Support Vector Machines: Methods, Theory, and
Algorithms. Kluwer, 2002.

Joachims, T. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text
Categorization. Proc. of the 14th International Conference on Machine Leaming ICML97, pp.
143---151, 1997.

Johansson, S., Atwell, E., Garside, R. and Leech, G. The tagged LOB Corpus. Bergen:
Norwegian Computing Centre for the Humanities. 1986

Karlgren, J. and Cutting, D. Recognizing text Genres with Simple Metrics Using Discriminant
Analysis. In Proc. of the 15111 International Conference on Computational Linguistics (COLING
'94), pp. 1071-1075. 1994.

Kennedy, A. and Ink.pen, D. Sentiment Classification of Movie and Product Reviews Using
Contextual Valence Sh(fters, Proceedings of Workshop on the Analysis of Informal and Formal
Information Exchange during Negotiations, Ottawa, CA, 2005.

Kessler, B., Numberg, G. and Schutze, H. Automatic Detection of Text Genre. Proceedings of the
35th Annual Meeting oftheACL and 8th Conference of the EACL. 1997.

Khmelev, D. Using Markov Chains for Identification of Writers. 2001

Khrnelev, D. and Teahan. A repetition based measure for verification of text collections and for
text categorization. In Proceedings of the SIGIR Conference on Information Retrieval (SIGIR
2003), Toronto, pp. 104-110. 2003.

135I Page

Kim, Y. and Ross, S. Variations of word frequencies in Genre classification tasks. In Proceedings
DELOS conference on Digital Libraries, Tirrenia, Italy. 2007.

Koppel, M., Argamon, S. and Shimoni, A. R. Automatically determining the gender of a text's
author. Bar-llan University Technical Report BIU-TR-01-32. 2001.

Kwasnik, B. H. and Crowston, K. Introduction to the special issue: Genres of digital documents.
Information Technology & People. 18(2), pp. 76-88. 2005.

Labov, W. The intersection of sex and social class in the course of linguistic change. Language
Variation and Change 2. 1990.

Lakoff, R. T. Language and Women's Place. Harper Colophon Books, New York. 1975.

Lamel, L. F. and Gauvain, J-L. S. Language identification using phone-based acoustic
likelihoods, In Proceedings IEEE International Conference on Acoustics, Speech, and Signal
Processing 94, pp. 293-296, Adelaide, Australia, April 1994.

Larsson, N. J. "Structures of string matching and data compression". Ph.D. thesis, Dept. of
Computer Science, Lund University. 1999.

Layton, R., Watters, P., Dazeley, R. Authorship attribution/or twitter in 140 characters or less.
In Workshop Cybercrime and Trustworthy Computing, pp. 1-8.2010

Lee, Y. and Myaeng, S. (2004). Automatic Identification of Text Genres and Their Roles in
Subject-Based Categorization. Proceedings of the 3ih Hawaii International Conference on
System Sciences.

Lewis, D. Evaluating Text Categorization. Proceedings of the Speech and Natural Language
Workshop, Asilomar, February pp. 312-318. 1991.

Lewis, D. Representation and Learning in Information Retrieval. Phd thesis, Computer Science
Department, Univ. of Massachusetts. 1992.

Maron, M. E. (1961). Automatic indexing: An experimental inquiry. Journal of the Association
for Computing Machinery, 8, 404-417.

Marton, Y., Wu, N. and Hellerstein, L. On compression-based text classification. In Proceedings
of the 27th European Conference on IR Research (ECIR), pp. 300--314, Santiago de
Compostela, Spain, 2005.

McCallum, A. and Nigam, K. A comparison of event models for nai've bayes text classification.
In Proceedings of AAAI-98 Workshop on Learning for Text Categorization, pp. 41-48. 1998.

McCreight, E. M. "A Space-Economical Suffix Tree Construction Algorithm ". Journal of the
ACM 23 (2): pp. 262-272. 1976.

136 IP age

Miyoshi, T. and Nakagami, Y. Sentiment classification of customer reviews on electric products.
Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on, pp. 2028-2033.
2007.

Mosteller, F. and Wallace, D. L. (1984). Applied Bayesian and Classical Inference: The Case of
the Federalist Papers, Springer Series in Statistics.
Mulac, A. , Bradac, J. J., and Gibbons, P. Empirical support for the gender-as-culture hypothesis.
An intercultural analysis of male(female language differences. Human Communication Research,
27, pp. 121-152. 2001.

Mullen, T. and Collier, N. Sentiment analysis using support vector machines with diverse
information sources. In Dekang Lin and Dekai Wu, editors, Proceedings of EMNLP-2004, pp.
412-418, Barcelona, Spain, July 2004. Association for Computational Linguistics. 2004.

Nagy, N., Zhang, X., Nagy, G. and Schneider, E. A quantitative categorization of phonemic
dialect features in context. In A. Dey (Ed.), CONTEXT 2005 lecture notes in artificial
intelligence 3554, 326-338. Berlin Heidelberg: Springer-Verlag. 2005.

Nerbonne, J., Heeringa, W., and Kleiweg, P. Comparison and Classification of Dialects. In
Proceedings of the 9th Meeting of the European Chapter of the Association for Computational
Linguistics, Bergen, pp. 281-282, 1999.

Nigam, K., McCallum, A., Thrun, S. and Mitchell, T. Text Classification from Labeled and
Unlabeled Documents using EM. ln: Machine Learning 39 (2/3), pp. 103-134. 2000.

Pampapathi, B. M. R. and Levene, M. "A suffix tree approach to anti-spam email filtering".
Machine Learning, 65, 2006.

Pang, B., Lee, L., and Vaithyanathan, S. Thumbs up? Sentiment Classification using Machine
Learning Techniques. Proceedings of EMNLP 2002, pp. 79-86. 2002.

Pante!, P. and Lin, D. SpamCop: a spam classification and organization program. 1n Learning
for Text Categorization - Papers from the AAAI Workshop. Madison, Wisconsin, 95-98, 1998.

Pennebaker, J. W. , Mehl, M. R. and Niederhoffer, K. G. Psychological aspects of natural
language use: Our words, our selves. Annual Review of Psychology, 2003. 54: pp. 547-577.
2003.

Rayson, P., Leech, G. and Hodges, M. Social differentiation in the use of English vocabulary:
Some analyses of the conversational component of the British National Corpus. International
Journal of Corpus Linguistics 2 (1), pp. 133-152. 1997.

Read, J. Using emoticons to reduce dependency in machine learning techniques for sentiment
classification. 1n Proceedings of ACL-05, 43nd Meeting of the Association for Computational
Linguistics, Ann Arbor, US, 2005. Association for Computational Linguistics. 2005.

137 \ Page

Rosso, M. Using Genre to Improve Web Search, Thesis submitted for the degree of PhD,
University of North Carolina at Chapel Hill, USA. 2005.

Sahami, M., Dumais, S., Heckerman, D., and Horvitz, E. A Bayesian Approach to Filtering Junk
EMail. In Leaming for Text Categorization - Papers from the AAAI Workshop, pp. 55- 62,
Madison Wisconsin. AAAI Technical Report WS-98-05, 1998.
Salton, G., Yang, C. S. and Yu, C. T. A theory of term importance in automatic text analysis.
Journal of the American Society for Information Science, pp. 33-44, 1975.

Santini, M. Automatic Genre Identification: Towards a Flexible Classification Scheme. BCS
IRSG Symposium: Future Directions in Information Access 2007 (FDIA 2007). Held in
conjunction with the European Summer School on IR (ESSIR 2007). 2007.

Santini, M. Characterizing Genres of Web Pages: Genre Hybridism and Individualization. 40
th

Annual Hawaii International Conference on System Sciences (HICSS'07). 2007.

Schiffman, H. Bibliography of Gender and Language.
http://ccat.sas.upenn.edu/~haroldfs/popcult/bibliogs/gender/gendbibs.html. 2002.

Sebastiani, F. Machine Learning in Automated Text Categorization. ACM Computing Surveys,
34(1): 1-47. 2002.

Sebastiani, F. Text Categorization. In Alessandro Zanasi, editor, Text Mining and its
Applications to Intelligence, CRM and Knowledge Management, pp. 109-129. WIT Press,
Southampton, UK, 2005.

Spertus, E. Smokey: Automatic Recognition of Hostile Messages. In Proceedings of the
Innovative Applications of Artificial Intelligence. 1997.

Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H. and Demirbas, M. Short text classification
in twitter to improve information.filtering. In SIGIR, pp. 841- 842. 2010.

Stamatatos, E., Fakotakis, N. and Kokkinakis, G. Text Genre Detection Using Common Word
Frequencies. Proceedings of CO LING 2000, Saarbrucken, Germany. 2000.

Teahan. Modelling English text. D.Phil. thesis, University of Waikato, New Zealand. 1998.

Teahan and Harper, D . J . Using compression-based language models f or text categorization.
Proc. Of the Workshop on Language Modeling and Information Retrieval. 2001.

Thaper, N. Using Compression For Source Based Classification of Text. Master's Thesis,
Massachusetts Institute of Technology. 2001.

138 JPage

Thomas, D. L. and Teahan. Text categorization for streams. Annual ACM Conference on
Research and Development in Information Retrieval Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval, Demonstration
Session, pp. 907 - 907. 2007.

Toman, M., Tesar, R. and Jezek, K. Influence of Word Normalization on Text Classification. In
Proceedings of InSciT 2006, pp. 354-358, Merida, Spain, 2006. ISBN 84-611-3105-3.

Trudgill, P. Sex, covert prestige and linguistic change in the urban British English of Norwich.
Language in Society 1, pp. 179-96, 1969.

Tumey, P. D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised
classification reviews. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL '02), pp. 417-424. 2002.
Ukkonen, E. "On-line construction of suffix trees". Algorithmica 14 (3): 249-260. 1995.

Van Rijsbergen. Information retrieval (second edition) , in London: Butterworths. 1979.

Watt, S. Text categorisation and genre in information retrieval. In A Goker & J Davies (eds), Information
retrieval: Searching in the 21st Century, John Wiley & Sons. 2009.

Weiner, P. "Linear pattern matching algorithm". 14th Annual IEEE Symposium on Switching
and Automata Theory: 1-11. 1973.

Yang, Y. An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval,
1(1/2), pp. 67-88. 1999.

Yu, B. An Evaluation of Text Classification Methods for Literary Study. 2008

Frakes, W. B. Stemming Algorithms. In William B. Frakes and Ricardo Baeza-Yates, editors,
Information Retrieval Data Structures and Algorithms, pp. 131-160. 1992.

Porter, M. F. An algorithm for suffix stripping. Program, Vol. 14, No. 3. pp. 313-316, 1997.

139 IP age

Web References

Alessandro Moschitti, Information Engineering and Computer Science Department, University
of Trento, 01/07/2008. http://dit.unitn.it/~moschitt/corpora.htm

Corpus Linguistics.
http://www.essex.ac.uk/linguistics/external/c1mt/w3c/corpus_ling/content/corpora/list/index2.ht
ml

ERPAePRINTS, The Electronic Resource Preservation and Access Network (ERPANET) and the
Digital Curation Centre (DCC), 03/03/2009. http://eprints.erpanet.org/

Europa press release, Data protection: "Junk" e-mail costs internet users €10 billion a year
worldwide - Commission study, 02/02/2001.
http:// europa. eu/rapid/pressReleasesAction.do ?reference= IP /01 / 154

Martin Porter, The Porter Stemming Algorithm, Jan 2006.
http://tartarus.org/~martin/PorterStemmer/

Scott Hazen Mueller, spam.abuse.net, 03/03/2009. http://spam.abuse.net/

Spam Laws, California business and professions code, division 7, part 3, chapter 1. Article 1.8.
Restrictions On Unsolicited Commercial E-mail Advertisers, 2003.
http://www.sparnlaws.com/state/ca.shtml

Symantec, Case Study: Symantec Brightmail AntiSparn™ Gives TelstraClear The Advantage ln
The War Against Spam, 2004.
http:/ /www. symantec.corn/region/reg_ ap/promo/ es/ docs/TelstraClear _Final. pdf

The Gender Genie. http://bookblog.net/gender/genie.php

The UCI KDD Archive, University of California, Irvine, Feb 1999.
http://kdd.ics.uci .edu/databases/reuters2 l 578/reuters21578.html

Wikipedia, Spam (electronic), 03/03/2009. http://en.wikipedia.org/wiki/Spam _(electronic)

Word Splitter, Cognitive Computation Group, University of Illinois at Urbana, 11/03/2009.
http://l2r.cs.uiuc.edu/~cogcomp/atool.php?tkey=WS

140 IP age

