)

r—y Pure

Bangor University

DOCTOR OF PHILOSOPHY

An empirical study of stream-based techniques for text categorization

Thomas, Daniel

Award date:
2011

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/an-empirical-study-of-streambased-techniques-for-text-categorization(8ee76e9f-0b20-4833-bc8d-d5bfa498449c).html

An empirical study of stream-based techniques for text
categorization

Daniel Thomas

Abstract

An empirical study of stream-based techniques for text categorization

Daniel Thomas

Due to the popularity of social networking sites such as Twitter, Facebook and blogs, the amount
of electronic text is continuing to grow. There is a need to categorize these vast amounts of
documents and it is no surprise that the field of text categorization is a popular one. The
traditional approach to text categorization is a feature-based approach, normally processing
features based on words. Stream based methods have been shown to perform well in some
experimentations but there has been no thorough study of their performance on a number of
major corpora and their results have not been thoroughly compared against the current state-of-
the-art feature based techniques. This is an important problem as the techniques cannot be fully
recognized until a thorough study has been performed.

The concept of protocols and how each affects categorization results has also not been studied
thoroughly across a number of methods for several corpora. It is important to attempt to discover
which stream based approaches perform best in which situations and how the choice of protocol
affects their performance, if at all. It is hoped that it can be shown that for certain corpora or
document lengths that certain approaches and protocols should be used. These findings could
then drive the decision of which methods and protocols to use for future experiments.

An existing problem within the field of text categorization is that it is often difficult to recreate
the exact experimentation conditions of previous studies. One reason for this is that the training
and testing splits often differ and it was important that this study did not add to this existing
problem, that the experimentations could be accurately recreated and that others would be fairly
compared.

A toolkit has been developed that allows all of the methods and protocols to be compared in a
consistent manner. The toolkit models the streams using suffix trees and all of the stream based
methods have been implemented. In addition to the implementation of existing techniques, a
number of new stream based methods have been detailed within the thesis and one of these new
techniques, R-Ranges, has been shown to outperform all other methods for two of the corpora,
including PPM (Prediction by Partial Matching) variants, state-of-the-art techniques that are
mathematically well supported. The experimentation has also shown that the protocol (whether
static or dynamic training models are used in addition to training documents of the same
category being concatenated or not) does indeed affect the accuracies of each method. The
concatenated dynamic protocol was found to outperform all others and performs consistently
well across all methods, for all corpora. This study has now conclusively shown that the method
used to categorize text must not be the only one, the selection of protocol is also just as
important.

Acknowledgements

I am sitting at home rewriting this section at three in the morning having actually already written
this section within the first month of studying. I originally spoke of people who are no longer in my
life and others who I have not seen in a long time. This has made me realise what a huge part of my
life this study has become and how much my life has changed during this time.

[originally thanked my fiancée Amy Davies for giving me nothing but love and support no matter
how tired I was, and the long nights hadn’t even begun. 1 no longer have a fiancée named Amy
Davies, thankfully she agreed to marry me on the 1* August 2010 and I would like to take this
opportunity to thank her again as I see her as the greatest gift I have ever received. Amy was
pregnant with our daughter Alisha when I was given the opportunity to study for a PhD, though we
didn’t know this at the time. I now have another daughter, Olivia, and she has ensured that | have
had the opportunity of becoming the proudest father in the world, twice. There is no way I could
mention my beautiful daughters without apologising for all the times 1 had to turn down the
opportunity to play with them as 1 was working but | must also thank them for the unconditional
love I received through this time.

I would like to thank my father, Dewi Thomas and my mother Susan Thomas who have both given
me their full support throughout my life and have always encouraged me to be the best I can be. |
would like to also thank my sister Michelle and brother Stephen as they have also supported me in
various aspects.

I would like to thank all of my friends as they have been understanding of the lack of time I could
spend with them and also for helping me move home no less than eleven times during this time.
They may be thankful to hear that I am happily settled at our current home...for now at least. 1
would like to thank Leo Stammer who first captured my interest in the world of computing as from
him I gained a thirst for knowledge and this is what led me to choose Computer Science as my
course of study. I would also like to thank Dr. Robert Shepherd for helping me settle into my role as
a postgraduate student during my first year.

Finally I would like to state how grateful 1 am to both the University Of Wales, Bangor and Dr.
William J. Teahan for offering me the opportunity to study text categorization at the School Of
Informatics, Bangor. Dr. Teahan has vast experience and knowledge within the field of text
categorization and I am grateful to him for sharing his knowledge and experience with myself. Dr.
Teahan was always available for guidance and I have come to see him as both a friend and a mentor.

2|Page

Contents

Abstract

Acknowledgements

1 Overview

1.1
1.2
1.3
1.4
L3

Introduction

Background & Motivation
Objectives

Contributions

Thesis Outline

2 Background

2.1

2.2

2.3

2.4

2.5

Introduction

Applications of text categorization techniques

2.2.1
2:2:2
223
224

Authorship Attribution

Genre Categorization

Topic Categorization

Other types of classification
2.2.4.1 Language Identification
2.2.4.2 Dialect Identification
2.2.4.3 Style Classification
2.2.4.4 Document Indexing
2.2.4.5 A stage within Natural Language Processing Systems
2.2.4.6 Spam Filtering

2.2.4.7 Sentiment Classification
2.2.4.8 Gender Classification
2.2.4.9 Others

Text pre-processing techniques

231
2.3.2
233
234
235

Tokenization

Feature Selection and Extraction
Stop word removal

Stemming

Term Selection

Data Sets

24.1
242
243
2.4.4
2.4.5

Reuters-21578
Reuters-10 (R10)
RCV1-Author
20-Newsgroups
Gutenberg-10 (Gu-10)

Evaluation Techniques

2.8.1
252
253

Contingency Table
Precision
Recall

o =

10

10
10
11
12
12

14

15
16
16
17
17
17
18
18
19
19
19
20
21
22

22
22
22
22
23
23

23
23
24
24
24
24

24
25
25
20

3|I:‘2‘_f(

2.6

2.7

2.8

2.5.4 Accuracy

2.5.5 FIl-Measure

2.5.6 Macro-averaging / Micro-averaging
2.5.7 The difficulty of comparing results

Feature-based categorization
2.6.1 Naive Bayes

2.6.2 N-Grams

2.63 SVM

Stream-based Categorization

2.7.1 C-Measure

2.7.2 R-Measure

2.7.3 PPM (Prediction By Partial Matching)

Protocols

Extensions for stream based models

3d

3.2

33

34

Extensions of R-Measure
3.1.1 R-Ranges

Extensions of C-Measure
Modifications to PPM

Complexity considerations

Implementation of stream-based models using Suffix Trees

4.1

4.2

Suffix Trees

Implementation

4.2.1 Static C-Measure

4.2.2 Dynamic C-Measure

4.2.3 PPM Without Full Exclusions
4.2.4 PPM With Full Exclusions
4.2.5 Dynamic PPMC

A Java based framework for implementing stream based

models
5.1 Overview
5.2 Tools

5.2.1 Splitting the corpora

5.2.2 Concatenating categories
5.2.3 Suffix Tree representation
5.2.4 Extracting suffixes

25
25
25
26

27
27
27
28

28
28
29
30

31

34

34
37

37
38

40

42
42

45
46
48
52
53
55

7

57

58
59
60
61
61

4|“ d gc

5.2.5 Optimisation note

5.2.6 Trimming concatenated models

5.2.7 Building the tree

5.2.8 Checking the counts within the suffix tree

53 Base classes
5.3.1 Comparison class
5.3.2 Test Collection class
5.3.3 Extending Test Collection class
5.3.4 Collection class

5.4 Implementation of the algorithms

5.4.1 C-Measure

5.4.1.1 Static case

5.4.1.2 Dynamic case
5.4.2 R-Measure

5.4.2.1 pmeE

54.2.2 R

5423 R,

5.4.2.4 R-Ranges
543 PPM
5.4.4 Using the toolkit

Experimental results

6.1 Experimental setup
6.1.1 Corpora setup
6.1.1.1 Reuters-10
6.1.1.2 RCV1-Author
6.1.1.3 20Newsgroups
6.1.1.4 Gutenberg
6.1.2 Hardware details

6.2 Results
6.2.1 C-Measure
6.2.2 PPM
6.2.3 R-Measure

6.3 Execution times

Conclusions & Future Work
7.1 Discussion

7.2 Summary of chapters

7.3 Contributions

7.4 Review of aims & objectives

62
64
64
67

67
68
68
69
69

71
71
71
72
74
74
74
74
75
75
76

79

79
i
79
81
82
82
83

84
84
92
99

117

127
127
127
129

129

7.5 Future work 130

8 References 132

6|Page

List of figures

2.1
4.1
42
43
4.4
4.5
4.6

4.7

4.8
4.9

4.10
4.11

5.1
5.2
53
54
5.5
5.6
3.7
5.8
39
5.10
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

Example process of text categorization

Suffix tree representation of string ‘This is a threate’

Suffix tree representation of string ‘abrabras’

Suffix tree representation of the string “abracadabras”

Suffix trees of training file “abrabra* and test stream ““bre”

Dynamic suffix tree of training file “abrabra*” once * has been processed

Dynamic suffix tree of training file “abrabra*” once ‘b’ from within suffix bre has been
processed

Dynamic suffix tree of training file “abrabra*” once ‘br’ from within suffix bre has been
processed

Dynamic suffix tree of training file “abrabra*” once the suffix bre has been processed
Dynamic suffix tree of training file “abrabra+” once ‘r’ from within suffix re has been
processed

Dynamic suffix tree of training file “abrabras” once the suffix r* has been processed
Dynamic suffix tree of training file “abrabra*” once the testing stream xbrx+ has been
processed

High level overview of jSCat

Example output of split parent directories

Example directory listing found within each split

Output of the concatenated files parent directory

Example output of concatenated training files

Suffix tree representation classes

Original tree before adding node which matches all characters within the current node
Tree shown in 4.10 after inserted the next node

Example extension of the base classes

Example of testing string being concatenated onto training string for dynamic cases
20Newsgroups C-Measure

Gutenberg C-Measure

RCV1-Author C-Measure

RCV1-10 C-Measure

20Newsgroups PPMC

20Newsgroups PPMD

Gutenberg PPMC

Gutenberg PPMD

RCV1-Author PPMC

RCV1-Author PPMD

Reuters-10 PPMC

Reuters-10 PPMD

7|Pc

15
44
45
45
46
48
49

49

50
31

51
52

58
59
39
60
60
61
66
67
68
73
86
88
90
92
93
93
94
95
96
97
98
98

e

List of tables

2.1
2.2
3.1
4.1
4.2
4.3
4.4
5.1
32
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39

Contingency Table
Protocols for stream-based text categorization

PPMC model after processing the string abracadabra with maximum order of 2

List of pointers within context list after processing the symbols ‘ab’
Possible context list at order 1 without exclusions

Possible context list at order 1 with full exclusions

Context list example after processing the string ‘abr’

Example subset of suffix model information, from which we construct a suffix tree

Parameter information for C-Measure setCounts method

The categories of Reuters 10 (R10)

Authors within Reuters-Author (R9)

The categories of 20-Newsgroups

The categories of Gutenberg

Corpora Summary

20Newsgroups C-Measure

Gutenberg C-Measure

Reuters-Author C-Measure

Reuters-10 C-Measure

20Newsgroups PPMC

20Newsgroups PPMD

Gutenberg PPMC

Gutenberg PPMD

Reuters-Author PPMC

Reuters-Author PPMD

Reuters-10 PPMC

Reuters-10 PPMD

20Newsgroups R<q-Measure

20Newsgroups R ,-Measure

R-Range average accuracies for 20Newsgroups, Concatenated Dynamic
R-Range average accuracies for 20Newsgroups, Concatenated Static
R-Range average accuracies for 20Newsgroups, Non-concatenated Dynamic
R-Range average accuracies for 20Newsgroups, Non-concatenated Static
r’™aX ayerage accuracies for 20Newsgroups

Gutenberg R<q-Measure

Gutenberg R 4-Measure

R-Range average accuracies for Gutenberg, Concatenated Dynamic
R-Range average accuracies for Gutenberg, Concatenated Static
R-Range average accuracies for Gutenberg, Non-concatenated Static
R-Range average accuracies for Gutenberg, Non-concatenated Dynamic
™ average accuracies for Gutenberg

Reuters-Author R<-Measure

Reuters-Author R, -Measure

R-Range average accuracies for Author, Concatenated Dynamic
R-Range average accuracies for Author, Concatenated Static

r’™a average accuracies for Author

Reuters-10 R¢q-Measure

Reuters-10 R -Measure

R-Range average accuracies for Reuters-10, Concatenated Dynamic

25
32
39
51
52
52
53
61
69
80
81
82
83
83
85
87
89
91
92
93
94
95
96
96
97
98
100
101
102
102
103
103
103
105
106
107
107
108
108
108
110
111
112
112
112
113
114
115

8 | P a :__'_ (&

6.40 R-Range average accuracies for Reuters-10, Concatenated Static 115

6.41 R-Range average accuracies for Reuters-10, Non-concatenated Static 116
6.42 R-Range average accuracies for Reuters-10, Non-concatenated Dynamic 116
6.43 r™a* average accuracies for Reuters-10 116
6.44 Average timings in seconds for C-Measure 20Newsgroups 117
6.45 Average Timings in seconds for PPMC 20Newsgroups 117
6.46 Average Timings in seconds for PPMD 20Newsgroups 118
6.47 Results for each method, for each protocol against each corpus 119
6.48 Best Results from other text categorization methods 120
6.49 C-Measure results for each of the corpora for the concatenated dynamic protocol 122
6.50 R,,-Measure results for each of the corpora for the concatenated dynamic protocol 123
6.51 Rc,;-Measure results for each of the corpora for the concatenated dynamic protocol 124
6.52 r™#* results for each of the corpora for the concatenated dynamic protocol 124

6.53 PPMC and PPMD results for each of the corpora for the concatenated dynamic protocol 125

List of code samples

5.1 Inserting the next node into our tree 65
5.2 Base processing of non-concatenated comparisons 70
5.3 Base processing of concatenated comparisons 70
54 Coded Normalised R-Measure Value 74
5.5 Coded method for encoding all symbols for PPM 75
5.6 jSCat’s main entry point 77

9|l};t;_'c

Chapter 1

Overview

1.1 Introduction

The amount of electronic text is continuing to grow due to the overwhelming amounts of
information and users on the Internet today. There is a need to categorize these vast amounts
of documents and it is no surprise that the field of text categorization is a popular one. Users
are becoming accustomed to having search engines retrieve the information they want in an
instance with minimal effort. It is important to be able to classify information, no matter what
the format, in order to ensure that the relevant information is returned.

The traditional approach to text categorization is a feature-based approach, normally
processing features based on words. Hunnisett & Teahan (2004) defined a simple frequency-
based measure for text categorization called the “C-Measure” which regardless of its
simplicity has been proven to outperform a number of state of the art techniques. Although
the effectiveness of the algorithm has been proven in a small study, no thorough study has
been performed which measures the effectiveness of this approach, or indeed any other of the
alternative stream based approaches in order to rigorously compare them against feature
based approaches. The aim of this thesis has been to confirm that stream based approaches
perform as well as the current leading feature based approaches and that these approaches
should be considered in all future comparatives study within the field of text categorization.

1.2 Background & Motivation

It 1s the presence of unknowns and gaps in research that have formed the motivation behind
this research. Small experiments have shown that stream based approaches achieve results
that are competitive to traditional feature based approaches but there is a need for a thorough
study to be performed. Hunnisett & Teahan (2004) discuss difficulties in processing substring
lengths of considerable length and it is unknown if these yet to be researched lengths would
further improve performance and surpass the already high accuracies that have been achieved
using their technique. There is also a requirement to investigate the performance of these
algorithms on several corpora in order to determine if their good performance is consistent.
Part of the motivation behind the experiments in this thesis is to determine experimentally
which measure performs better or whether different measures perform better in different
domains.

The emphasis of the study is on models based on streams of character sequences (hence the
term “stream-based” text categorization which will be mentioned numerous times throughout

10“’11 gc

this thesis), but feature-based approaches shall also be reviewed for comparison, though in
less detail. Compression-based approaches, usually based on the well-performed compression
scheme PPM (Cleary and Witten 1984) have shown that models based on character streams
are better than word models (Teahan, 1998); and we can avoid issues such as: word
segmentation; normalisation e.g. stemming (reducing morphological variants to the root
word); word sense disambiguation; and hapex legomena (words occurring only once within
the text). The commonly held assumption that data compression is a “good” method for text
categorization based on the fact that it is theoretically well founded creates a motivation to
further investigate this assumption.

The methodology of how the stream-based categorization is performed based on whether
static or dynamic models are used, and whether the training documents of the same category
are concatenated or non-concatenated shall be termed as “protocols”. The experimental
performance of the newest protocol described in Hunnisett (2010), and of the other three
protocols, are explained more fully by examining how these protocols are used to perform
uni-label classification for text categorization, how both the protocols and methods can be
implemented using suffix trees and the performance of each.

This thesis also explores the use of suffix trees as a universal data structure for storing the
model representations. This data structure allows multiple similarity measures to be
calculated using a single pass through the training and test sequences. Khmelev (2000) used
suffix arrays to estimate probabilities for Markov models in authorship ascription studies;
Khmelev & Teahan (2003), also used suffix arrays to implement R-Measure described later;
but these implementations can be simplified when using suffix trees as cumulative counts can
be associated with each node of the tree (Teahan, 1998; Bratko et al., 2006).

The number of protocols and algorithms being investigated brought with it a requirement for
a common toolkit to be designed and implemented in order to facilitate the text categorization
experiments. A toolkit has been developed in Java and its purpose is to handle all stages of
the experimental process including preparation of the input data, splitting the data for cross
validation, performing all experiments in a single pass and outputting the results for each
experiment to allow simple comparison of each of the algorithms and procedures.

1.3 Objectives
The objectives of this research are as follows:

e to further investigate and perform a comparative study of stream based approaches;

e to discover which stream based approaches perform best in which situations. It was
hoped to show that for certain corpora or document lengths that certain approaches
and protocols should be used;

e to show that a single data structure, a suffix tree can be used to implement each of the
stream based algorithms.

11]Pa

¢

P&

There 1s a need for results to be calculated in a consistent manner and a toolkit needed to be
designed and developed to aid this. This single toolset would allow us to prepare the data and
compute results before comparing them against previous examinations of other techniques. It
is hoped that future studies may implement their algorithms within the toolkit so that the
collection of classes and algorithms may grow and make comparing results easier and also
less misleading.

1.4 Contributions

Though stream based approaches have been shown to perform well in small studies, there has
been no complete and comparative study on their performance. This thesis has compared
PPM, C-Measure and the closely linked algorithm R-Measure (Khemelev & Teahan, 2003).
Variants of these algorithms, new implementations and their examination across a number of
corpora and for longer suffix lengths than has been done in previous studies is novel work.
The “protocols” of how stream-based categorization is performed, based on whether static or
dynamic models perform best, and whether the training documents of categories should be
concatenated or not, i1s described in detail.

A toolkit has been designed and implemented in order to facilitate the text categorization
experiments. The toolkit, named jSCat, has been developed in Java and its purpose is to
handle all stages of the experimental process including preparation of the input data, splitting
the data for cross validation and also to perform all experiments in a single pass before
outputting the results for each process to allow a simple comparison of each algorithm and
procedure.

1.5 Thesis Outline

Chapter 2 offers a background to research within the field of text categorization and also
describes a number of its applications. The chapter discusses the different approaches and
techniques used within the field as well as their differences. The chapter also discusses the
performance of each technique within different application domains and lists results to
support this. The most popular corpora used within classification experiments are listed as
well as the most popular techniques for evaluating experimental results.

Chapter 3 explains the new techniques which have been explored during the time of the study
and also details all new work and improvements relating to C-Measure, R-Measure and PPM.

Chapter 4 shows how the different protocols for all models have been implemented using
suffix trees.

Chapter 5 details an overview of the toolkit that has been created to aid in the calculation and
comparison of the many different techniques. This chapter explains the components that exist
within the toolkit and explains how the toolkit allows the introduction of categorization

12|Page

techniques through the extension of base classes. The implementation and also its usage are
explained through discussion, figures and code samples.

Chapter 6 describes the experimental setup and methodology followed by a discussion of the
results. Results will compare all algorithms within each dataset in order to discover the best
performing within each corpus.

Chapter 7 summarizes all of the work included within the thesis and performs a review of the
aims and objectives before concluding and identifying any future work.

13|Page

Chapter 2

Background

Chapter Summary

The purpose of this chapter is to describe the background of research within the field of text
categorization as well as describing a number of its applications. The chapter discusses the
different approaches and techniques used within the field as well as their differences. The
concept of Protocols, the four different variations and how each would be conducted are
explained. The chapter also discusses the most popular corpora used within classification
experiments as well as the most popular techniques for evaluating experimental results.

Summary of each section

Section 2.1 offers an introduction to the field of text categorization by describing some
background to the research and an abstract view of the typical steps involved within the
process. Section 2.2 describes a number of its applications and describes some well known
research examples. Section 2.3 discusses a number of text pre-processing techniques and how
they may improve classification results. Section 2.4 describes a number of well known
corpora, also known as datasets, in detail by examining the number of texts, how the texts are
divided and also the differences in the size of the documents. The section also describes some
examples of research that have used each of the datasets. Section 2.5 lists a number of
techniques used to evaluate the performance of the text categorization including precision,
recall, accuracy, F1-Measure and also the distinction between macro-averaging and micro-
averaging the F-Measure. Section 2.6 offers a brief overview of feature based classification
and details a couple of well known approaches. Section 2.7 discusses current stream-based
algorithms including examples of how each is performed. Section 2.8 explains the four
protocols and how they have been used in research to date.

2.1 Introduction

There is an overwhelming amount of electronic text available today and there is a need to
categorize these vast amounts of documents. It is therefore no surprise that the field of text
categorization is a popular one. It is important to be able to classify information, no matter
what the format, in order to ensure that the relevant information is returned. People generally
have little difficulty in recognising document and object categories (Watt, S. 2009). However,
the speed at which users expect results to be returned, in addition to the amount of
mformation through which to search means that indexing performed by humans has not been

14|Page

viable for many years. Although machines are achieving high rates of classification quickly,
it could be said that human categorization will always be more accurate in some situations.

Text categorization in the past has concentrated on static situations, however, we now live in
a digital era where we communicate and retrieve information from digital sources. This
means that modern classifiers must now be dynamic enough to retrieve the uncategorized text
as a stream, possibly directly from social networking applications such as Facebook or
Twitter, or perhaps from blogs.

As far back as the 1960's, it seemed obvious that a growing amount of information was being
submitted via electronic format and there was a need for these documents to be routed to the
proper users (Maron, M. E. 1961). It may have been impossible to imagine back then the
number of uses we have today for the application of text categorization and the number shall
continue to grow so long as new technologies and ideas are developed. Due to its many
applications, varied approaches and growing amounts of text, text categorization has indeed
become an important research area within Information Retrieval (IR).

More formally, text categorization, also known as text classification, document categorization
or document classification, is the task of automatically sorting a set of documents into
predefined categories based on their content. This is a supervised learning approach as there
exists documents already categorized to be used as training data which effectively define the
categories. The training data is used to build a model that can be used to classify new
documents, known as test data. Text categorization is not to be confused with text clustering,
an unsupervised approach of which there exists no predefined categories. There is no training
data and the classification is learnt from the data; similar documents are simply grouped to
form a cluster.

Training

Training Models - Categorised |

Texts

Texts

Figure 2.1 Example process of text categorization.

2.2 Applications of text categorization techniques

A number of popular applications for text categorization are detailed within this section,
some of which are researched within this thesis, others are not but are detailed for
completeness.

15|Page

2.2.1 Authorship Attribution

Authorship attribution has a number of applications ranging from discovering the author of a
novel to identifying the sender of an anonymous letter. Authorship attribution is more
challenging than language/dialect identification as the differences among the authors’ writing
style is much more subtle than among different languages/dialects. Though this is the case,
style and statistical properties may be noticeably different for different authors (Boggess et
al., 1991). It is fair to say that there are great differences between two authors from different
times with different writing style, e.g. Shakespeare and J.K. Rowling. However, within the
corpora used for most text categorization experiments, which shall be discussed later, this is
not the case.

A famous example of authorship attribution is the case of the Federalist Papers, of which
twelve instances are claimed to have been written both by Alexander Hamilton and James
Madison. Statistical analysis has been undertaken on a number of occasions to try to decide
the authorship of the disputed documents based on word frequencies and writing styles, with
nearly all of the statistical studies showing that all twelve disputed papers were in fact written
by Madison (Mosteller & Wallace, 1984; Holmes & Forsyth, 1995; Fung, 2003).

An author may write about a number of topics and this means it is unlikely that topic-based
features will perform well at discriminating among authors, e.g. a selection of features/words
would not be suitable. Rather, stylistic features are the most appropriate choice; for instance,
vocabulary richness (i.e. ratio between number of distinct words and total number of words),
average word length, average sentence length, are important, in the sense that it is these
features that tend “to give an author away” (Sebastiani, 2005).

This area of research has become more difficult with trends towards many shorter
communications rather than fewer longer communications, such as the move from traditional
multi-page handwritten letters to shorter, more focused emails. More recently, Twitter and
other short message based web services are extremely popular and methods need to enable
authorship to be determined for documents of 140 characters or less (Layton et al., 2010).

2.2.2 Genre Categorization

Genre classification is an important application in information retrieval (Biber, 1988; Kessler
et al,, 1997, Lee & Myaeng, 2004; Stamatatos et al., 2000) and more recently, Finn &
Kushmerick (2006), as well as ongoing work by Santini (2007a and 2007b), and involves
identifying the subject domain of a document. Examples of genres are: political, mystery and
sport. A number of studies have investigated this problem usually by adapting methods found
suitable for the related problem of topic categorization.

One use of genre classification could be to enable users to sort search results according to
their immediate interests. Whilst visiting a bookstore people are not usually simply looking
for information about a particular topic, they can often have requirements of genre as well i.e.
they may be looking for novels about discoveries, Italian recipes or scientific articles etc.
Genre may therefore be seen as a subject area.

l6|Page

A growing area of research is the categorization of single tweets and Sriram et al. (2010)
define five generic classes of tweets (deals, events, opinions, news, and private messages) in
order to improve information filtering. The authors represent tweets using a small set of
language-dependent features to classify tweets written in English. The use of these features
outperforms the BOW (bag-of-words) approach in the classification of tweets according to

the typology.

There appears to be no consensus of what genre is. Though everyone believes they know
what ‘genre’ 1s, unfortunately many people have different understandings of its meaning as
discussed by Crowston & Williams (2000), Kwasnik & Crowston (2005), and Rosso (2005).
Researchers must be careful not to confuse genre with topic as stated by Karlgren and Cutting
(1994) yet some researchers (Lee and Myaeng, 2004; Stamatatos et al., 2000) seem unable to
distinguish between the two and instead interpreted genre as the style of text, to be discussed
later.

2.2.3 Topic Categorization

The task of topic categorization is a heavily researched text categorization problem (Dumais
et al., 1998; Lewis, 1992; McCallum & Nigam, 1998; Teahan & Harper, 2001; Yang, 1999;
Sebastiani, 2002) and concerns the problem of assigning one or more categories to a
document from a list of pre-defined categories where the categories reflect the topics or
subject the document is concerned with. The categories are likely to be more fine-grained
than the broad categories for genre classification.

2.2.4 Other types of classification
2.2.4.1 Language Identification

Language identification concems the problem of identifying the language used to produce a
document. It 1s a useful pre-processing step in information retrieval, but the task is deemed
“too easy” as there are significant differences between all of the major languages, even when
they are based on the same character set, as shown by experiments displaying perfect
discrimination between a number of languages i.e. (House and Neuberg, 1977).

Though language identification is an easy and much studied task, it does still play an
important role in a number of modern applications. Language identification is one of the most
basic pre-processing stages of tasks such as summarization, question answering and
translation as it is imperative to know the language of a text in order to process it. With the
growing number of Internet users it is also becoming more useful to have texts processed
written in a number of different languages. This is more crucial within bilingual or
multilingual applications (news providers, question answering and information retrieval
applications) that want to offer their services to each customer in a different language.

Other applications include travel services, translation services, national security applications
and also emergency situations, as people in stressed conditions will tend to speak in their

17“\1 g¢

native tongue, even if they have some knowledge of the local language (Lamel and Gauvain,
1994).

2.2.4.2 Dialect Identification

Dialect identification is a problem closely related to language identification and it would be
reasonable to argue that every person has their own dialect and that a dialect is a language in
itself (Nagy et al., 2005). It is a popular categorization problem that has had much research
on its subject (Nagy et al., 2005; Huang & Hansen, 2007; Nerbonne et al., 1999; Branner,
2000; Chiang et al., 2006).

In Europe, linguistic differences sharpened as the language of each nation-state was
standardized. In China, standardization of spoken dialects was weaker, and mostly due to
cultural influences (Branner. 2000). The variance in China's provinces where dialects are
spoken can be compared with that in the Arab World. The standard written language is the
same throughout the Arab world: Modern Standard Arabic (MSA). MSA is not a native
language of any Arabic speaking people, i.e., children do not learn it from their parents but in
school. Most native speakers of Arabic are unable to produce sustained spontaneous MSA.
Dialects vary not only along a geographical continuum but also with other sociolinguistic
variables such as the urban/rural/Bedouin dimension (Chiang et al. 2006).

2.2.4.3 Style Classification

Stylistic text categorization is another useful tool with which we can categorize documents, it
is a vital tool within online libraries e.g. ERPAePRINTS (2009) and search engines. Style
classification may also be known as the “type of text” or misunderstood as its genre (Lee &
Myaeng, 2004; Kim & Ross, 2007). Examples of style are novels, poems, minutes,
curriculum vitae and blogs etc.

As mentioned earlier, with the presence of such large amounts of digital text available today
it is important to sort and manage this information in the most convenient way to the user
whilst still being manageable. The ability to search media by its style as well as its topic
and/or genre would allow for more relevant information being returned to the users without
any additional pruning of the returned results. An example would be a user searching for the
term “bread” whilst looking for a recipe, of course a number of resources including the
history of bread, recipes and stores selling the product will undoubtedly be returned as well as
a number of others. However if the user had additionally searched for the type of text i.e.
style of document he/she required i.e. “bread recipe”, the user should then only be returned
documents relevant to the making of bread.

Lee and Myaeng (2004) proved that knowing the style (though they use the term genre) of a
document helps to classify it based on its subject/topic more correctly, given that a classifier
has been built for documents belonging to the same style. This is important and shows that
we must ensure we build classifiers that not only represent the subject domain but also the
style in which it was constructed.

18“’:1 g2c

2.2.4.4 Document Indexing

A primary application of text categorization techniques is to support information retrieval
systems by assigning subject categories to documents or to aid human indexers in assigning
such categories (Biebricher et al., 1988; Hayes & Weinstein, 1990). Several keywords are
taken from a controlled vocabulary such as a thesaurus and are assigned to a document in
order to describe its subject. This transformation from a text document into a representation
of text is known as indexing the document.

2.2.4.5 A stage within Natural Language Processing Systems

Text categorization components are also seeing increasing use in natural language processing
systems for data extraction. Categorization may be used to filter out documents or parts of
documents that are unlikely to contain extractable data, without incurring the cost of more
expensive natural language processing (Dahlgren et al., 1991; Grishman et al., 1991; Hobbs
& Jerry, 1991).

2.2.4.6 Spam Filtering

In the 1980s the term Spam was adopted to describe certain abusive users on Bulletin Board
Systems who would repeat “SPAM” a huge number of times to scroll other users' text off the
screen. In early Chat rooms services like PeopleLink and the early days of AOL, they
actually flooded the screen with quotes from the Monty Python Spam sketch'. This was used
as a tactic by insiders of a group that wanted to drive newcomers out of the room so the usual
conversation could continue. This act, previously called flooding or trashing, came to be
known as spamming. The term was soon applied to a large amount of text broadcasted by
many users. It later came to be used on Usenet to mean excessive multiple posting, the
repeated posting of the same message. The unwanted message would appear in many if not
all newsgroups, just as SPAM appeared in all the menu items in the Monty Python sketch
(Wikipedia, 2009), but is now also used to refer to unsolicited e-mail messages that are
posted a large number of times.

In 2004, an estimated 62% of all email was attributed to spam, according to the anti-spam
outfit Brightmail (2004). It costs money for ISPs and online services to transmit spam, and
these costs are transmitted directly to subscribers (Scott Hazen Mueller, 2009). The European
Union's Internal Market Commission estimated in 2001 that "junk e-mail" cost Internet users

' It is widely believed the term spam is derived from the 1970 SPAM sketch of the BBC
television comedy series “Monty Python's Flying Circus”. The sketch is set in a cafe where
nearly every item on the menu includes SPAM luncheon meat. As the waiter recites the
SPAM-filled menu, a chorus of Viking patrons “SPAM, SPAM, SPAM, SPAM... lovely
SPAM, wonderful SPAM”, hence “SPAMming” the dialogue. The excessive amount of
SPAM mentioned in the sketch is a reference to British rationing during World War II. SPAM
was one of the few meat products that avoided rationing, and hence was widely available.

19|Page

€10 billion per year worldwide (Europa press release, 2001). The California legislature also
found that spam cost United States organizations alone more than $13 billion in 2007,
including lost productivity and the additional equipment, software, and manpower needed to
combat the problem (Spam Laws, 2003).

Spammers have been documented as stealing other site's domain names via forgery, both
Reply.Net and Concentric Networks have been hit this way. Indeed, Outernet, Inc. was
actually attacked by one such spammer (Scott Hazen Mueller, 2009). Spam can also be used
to spread computer viruses, Trojan horses or other malicious software and all of these factors
have forced changes within legislation around the world. In 2003, the UK made spam a
criminal offence to try to stop the flood of unsolicited messages. Under the new law,
spammers could be fined £5,000 in a magistrate’s court or an unlimited penalty from a jury.
However the British measures are not as drastic as other anti-spam laws. Italy have imposed
tough regulations to fine spammers up to 90,000 Euros and impose a maximum prison term
of three years and in Australia spammers may be fined up to $1.1 million a day. On May 31,
2007, one of the world's most prolific spammers, Robert Alan Soloway, was arrested by U.S.
authorities. Described as one of the top ten spammers in the world, Soloway was charged
with 35 criminal counts, including mail fraud, wire fraud, e-mail fraud, aggravated identity
theft and money laundering. Prosecutors allege that Soloway used millions of computers to
distribute spam during 2003. This is the first case in which U.S. prosecutors used identity
theft laws to prosecute a spammer for taking over someone else’s Internet domain name
(Wikipedia 2009).

Andrej Bratko 1s well known within the field of text categorization for his research on spam
filtering whether it be for using compression models such as PPM (2005a, 2006a, 2006b,
2006c) or character-level Markov Models (2005b). As within this thesis, Bratko (2006)
dynamically updates the training models when processing the testing text and he has also
found that in the case of spam detection, pre-processing steps are often exploited by
spammers in order to evade filtering.

2.2.4.7 Sentiment Classification

Sentiment classification is the process of computationally determining whether a document is
labelled as a positive or negative evaluation of a target object. The target object may be a
film, book, album etc as long as the author has a positive or negative view on the subject. An
opinion may also be neutral but these are generally uncovered by this area of research. There
1s not a great deal of evidence of research within this field when compared to others such as
topic, gender and style classification, however, this area of research has become popular in
this decade. This 1s due to the rapid growth in on-line discussion groups and review sites and
possibly also because it seems to be a challenging area of research (Pang et al., 2002) with
studies not achieving the high accuracies that can be found within the other areas of text
categorization.

Important current applications of this area include data and Web mining, analysis of blogs or
market trends and consumer opinions (Dave et al., 2003) and the automatic filtering of

20|E’ dgc

abusive messages (Spertus, 1997). Other possible uses may be for politicians to track public
opinion, reporters to track public response to current events and for stock traders to track
financial opinions (Turney, 2002). Many review sites allow the option to include a rating as
well as your written opinion (Amazon, Rotten Tomatoes etc), this allows researchers to easily
generate a corpora with which to work with by for example assigning the number of stars
given as a rating for the body of text.

The research within this area has so far fallen into two categories, the sentiment orientation of
the document by comparing the number of positive words or sentences against the number of
negative ones (Turney, 2002; Kennedy & Inkpen, 2005; and more recently Miyoshi &
Nakagami, 2007); and the second is using machine learning techniques (Mullen & Collier,
2004; Pang et al., 2002). Gamon & Aue (2005) improved the results of a sentiment
orientation classifier by combining it with the bootstrapping approach described by Nigam et
al. (2000). Read (2005) demonstrated that in order to get reasonable results, the training and
testing data must not only be relevant with regards to topic, but the time-period and domain
are also important. He also investigated the use of emotional symbols (i.e. smilies) as they
have the potential to be independent of domain, topic and time.

An interested note which also demonstrates the difficulty of the task follows a statement by
Pang et al. (2002) that it is essential to also distinguish which sentences within the document
are relevant to the item being reviewed. As an example “I hate the leading actor in this film, I
think he is boring. He has no talent and normally stars in boring films of which I have hated
them all. Yet I love this film!” has a majority of negative words and sentences yet a human
can easily tell that the review of the film is a positive one. This is because the majority of the
text is not relevant to the movie but to the actor himself.

2.2.4.8 Gender Classification

Linguists have attempted to identify differences in linguistic styles between males and
females for decades (Trudgill, 1972; Lakoff, 1975; Labov, 1990; Biber, 1995; Schiffman,
2002). Differences were originally found within speech but researchers have since also
investigated the possibility of applying these findings to determine differences within written
text. This has indeed brought researchers to test these theories within the field of text
categorization, to see if it is possible to determine whether the author of a document is male
or female.

Biber (1995) termed females writing style as “involved”, they are more likely to specify
relationships among the people and things within their text. The writing style of males is
termed as being “informative”, they are primarily concerned with specifying the properties of
objects as well as using a greater use of swearing (Rayson et al., 1997). These findings have
since been supported by a number of other researchers (Mulac et al., 2001; Pennebaker et al.,
2003; Groom & Pennebaker, 2005). It is clear to see that there are indeed a number of
applications of text categorization techniques and the exact techniques and successes of each
shall be highlighted within later sections.

21 |Page

2.2.4.9 Others

Another application of text categorization is within text understanding systems.
Categorization may be used to filter out documents or parts of documents that are unlikely to
contain extractable data, without incurring costs of more complex natural language
processing, Dahlgren et al. (1991). Finally, the categorization itself may be of direct interest
to a human user, as in judging whether a threatening letter against a government official
signifies real danger, Hardt (1988).

2.3 Text pre-processing techniques

Pre-processing steps can reduce the storage space required, memory requirements and
improve classification time, but at what cost? It has been shown that performing pre-
processing steps on the documents may harm classification (Yu, B. 2008 and Bratko, A.
2006). Bratko explained that in the case of spam detection, pre-processing steps are often
exploited by spammers in order to evade filtering.

Often it is the case that after pre-processing steps have been applied, unless the steps were
thoroughly explained, it can be impossible to reproduce the same experiment at a later date
for comparison or verification. This problem is reduced in the case of stream-based methods
as the original data is often unmodified. The pre-processing steps often used within feature-
based techniques which are omitted from stream-based and text compression techniques are
discussed here for completeness:

2.3.1 Tokenization

The goal of tokenization is to separate text into individual words, i.e. “We’re going to be
late.” becomes “We ‘ re going to be late .”. The word splitter (Word Splitter, 2009) is a
simple script that reads plain text and outputs the words with spaces between every word and
punctuation mark, and this format is needed by tools such as POS (Part of speech) taggers.

2.3.2 Feature Selection and Extraction

Feature selection chooses which features should be used in classification. In text
categorization, features are often the frequency of words appearing in a document. By
reducing the feature space, it is not only known to increase the efficiency of the training and
test processes, but can also reduce the risk of over fitting the model to data. Feature extraction
computes the chosen features from an input document. In statistical classification, features
are represented in a numerical vector, which is then used by the classifiers. Feature selection
involves stop word removal, stemming and term selection (Toman et al. 2006).

2.3.3 Stop word removal

Words used in text indexing and retrieval are called terms. According to the term
discrimination model (Salton, G. 1975), moderate frequency terms discriminate the best.

22|Page

High frequency words, which are called stop words, have low information content, and
therefore have weak discriminating power. Example words are as ‘a’, ‘the’, ‘I’, ‘he’, ‘she’,
‘is’, ‘are’, etc. and are removed according to a list of common stop words such as the one by
Van Rijsbergen (1979).

2.3.4 Stemming

Stemming reduces morphological variants to the root word. For example, “removes”,
“removed”, and “removing” are all reduced to “remove” after stemming. This relates the
same word in different morphological forms and reduces the number of distinctive words.
The Porter stemmer (Porter, 1997) is a commonly used stemmer as used by Frakes (1992)
and its implementation in many different programming languages can be found at Martin
Porter (2006).

2.3.5 Term Selection

Even after the removal of stop words and stemming, the number of distinct words in a
document set may still be too large, and most of them appear only occasionally. In addition to
removing high frequency words, the term discrimination model suggests that low frequency
words are hard to learn about and therefore do not help much. They should be removed to
reduce the dimensions of the vector space as well.

2.4 Data Sets

The availability of datasets allow standard benchmarks and encourages research by providing
a setting in which different research algorithms could be compared against each other, and in
which the best methods and algorithms could stand out. As in other tasks, there are several
common data sets in text categorization. In this section a number of these that shall be used
within our later experiments are described, and though there are many more, the following
are widely used and more suitable for comparing results. More detailed information regarding
the distribution of classes and file sizes can be found in Chapter 6.

2.4.1 Reuters-21578

Reuters-21578 1s the most widely used data set for text categorization. All the texts in this
data set were collected from the Reuters newswire in 1987. The original dataset contained
22,173 documents, however, 595 were later found to be exact duplicates and so these were
removed. The formatted version submitted by David Lewis therefore contained 21,578
documents. Although the original data set contains 21,578 texts, researchers use a data-
splitting method to extract a training set and a test set. The most popular partition (Sebastiani
, 2002) 1s the ModApte split (available at The UCI KDD Archive, 1999) which contains
12,902 documents with a fixed splitting between test and training data, 9603 training texts
and 3299 test texts. This is the most used version as confirmed by Sebastiani (2002).

There are a couple of variants of this version used. One set contains 115 categories, known as
Reuters 115 (R115), and according to Sebastiani (2002) are the categories with at least one
training document (Alessandro Moschitti, 2008). The other, known as Reuters 90 (R90) (also

23 |Page

available from Alessandro Moschitti, 2008), contains 90 categories. According to Joachims
(1997), they are the categories containing at least one training and one testing document and
now contains 9,598 documents. The majority of excluded documents are assigned to more
than a single category and is therefore not useful for our study as we are only concerned with
single label classification as mentioned earlier.

2.4.2 Reuters-10 (R10)

In order to obtain the Reuters 10 categories split (known as R10), we simply select the ten
largest categories from the remaining documents, i.e. Earnings, Acquisition, Money-fx,
Grain, Crude, Trade, Interest, Ship, Wheat and Corn.

2.4.3 RCVI1-Author

RCV1 texts are short and these small samples per author can offer a greater challenge. The
RCV1 corpus has already been used in author identification experiments, Hunnisett &
Teahan (2004) selected the top 50 authors (with respect to total size of articles) and the same
subset is used within our experiments.

2.4.4 20-Newsgroups

20-Newsgroups is also a common data set used for text categorization. Although 20-
newsgroup is less popular than Reuters-21578, it has been used by many researchers (e.g.
Baker and McCallum (1998), McCallum and Nigam (1998), Joachims (1997)). This data set
consists of Usenet articles collected by Ken Lang from 20 different newsgroups. The
collection consists of 19974 non-empty documents evenly distributed across 20 categories.
The version used in experiments reported in this dissertation is J. Rennie’s version in which
duplicate postings were removed. This subset contains 18828 documents.

The articles in this data set are postings to some newsgroups, unlike Reuters-21578 are taken
from newswire. The categories also do not have multiple category labels as with Reuters
21578. In addition, the category set has a hierarchical structure within confusable clusters
(e.g. “sci.crypt”, “sci.electronics”, “scimed” and ‘“‘sci.space” are subcategories of “sci
(science)”).

2.4.5 Gutenberg-10 (Gu-10)

This dataset, used in experiments by Thaper (2001) and Marton et al. (2005) consists of 40
documents, 4 works of each of 10 well known authors, all of which have been taken from the
Gutenberg Project. The works are from the following authors, Charles Dickens, Daniel
Defoe, Emerson, Jane Austen, Kiplking, Shakespeare, Shaw, Twain, Wells and Wilde.

2.5 Evaluation Techniques

Evaluation is of fundamental importance to IR research. It is important to be able to measure
the success of the research and be able to compare the results against past research. It is also
24| Page

just as important to evaluate in a uniform way, as it is becomes difficult to compare results
unless the research being compared is measured in the same way. The most common
evaluation techniques are discussed in this section.

2.5.1 Contingency Table

Consider a system that is required to make » binary decisions, each of which has exactly one
correct answer, namely yes or no. The result of » such decisions can be summarized by a
contingency table, as shown in table 2.1. Each entry in the table specifies the number of
decisions of the specified type. For instance, a is the number of times the system decided
true, and true was in fact the correct answer. Common metrics for text categorization
evaluation are calculated based on the following contingency table and are discussed here.

True is Correct | False is correct

Assigned True a b

Assigned False c d

Table 2.1 Contingency Table.
2.5.2 Precision

Precision is the proportion of items assigned to a category which are true members of that
category. It is a measure of the number of true positives and is defined as a/(a+b).

2.5.3 Reecall

Recall 1s the proportion of correctly classified examples of a category. It is defined as
a/la+c).

2.5.4 Accuracy

This measures the proportion of all decisions that were correct decisions. It is defined as
(a+d)/(a+b+c+d).

2.5.5 F1-Measure

It is possible to modify the classifiers to obtain either a higher recall or precision and the F1-
measure combines both precisions. It is defined as 2rp/(r + p) where r and p are recall and

precision respectively.
2.5.6 Macro-averaging / Micro-averaging

As F-measure is computed for each category, in order to evaluate its performance across all
categories, the F-measures must be averaged. There are two conventional methods, namely
macro-averaging and micro-averaging (Lewis, D., 1991). Macro-averaged performance
scores are computed by first computing the scores for the per-category contingency table and

25|Page

then averaging these per-category scores to compute the global means. Micro-averaged
performance scores are computed by first creating a global contingency table whose cell
values are the sums of the corresponding cells in the per-category contingency table, and then
use this global contingency table to compute the micro-averaged performance scores.

There is an important distinction between macro-averaging and micro-averaging. Micro-
averaging performance scores give equal weight to every document, and is therefore
considered a per-document average. Likewise, macro-average performance scores give equal
weight to every category, regardless of its frequency, and is therefore a per-category average.
The number of documents in each category within the datasets used for the experimental
results contained in this thesis varies considerably. Because of this, micro-averaging, a per-
document averaging is more suitable for the results in this thesis.

2.5.7 The difficulty of comparing results

It 1s worth mentioning the importance of releasing accurate data as incorrect data leads to
difficulties when attempting to compare results with that of previous experiments. The lack of
standard data collections is a problem that has been discussed by Yang (1999) and is still a
problem to this day as it is possible for experiments to use the same corpora but results can
differ greatly when different training and testing splits are used. Similar problems have
occurred with published research within the sub-field of stream-based categorization. Teahan
and Harper (2001) used a different set of categories from 20Newsgroups based on the size of
the training data, but this was misinterpreted by Marton (2005), who then used these
categories as though it was a known subset. The files contained within each split of all
experiments are listed in the attached DVD so that all experiments can be accurately
repeated.

It is important to note that inseparability on some Reuters categories is often due to dubious
documents or obvious misclassifications of the human indexers. An important discovery is
that within all 155 categories, 984 contained little more than the words “Blah blah blah”. The
same was also true for 719 of the files when tested on only the top ten categories.

A simple experiment on this dataset showed that there are still many duplicates located within
the Reuters dataset and supports findings by Khmelev and Teahan (2003). Within the
collection of all 115 categories, a total of 4381 duplicates were found, over 32% of the total
number of files. 1183 of these were testing files and 3198 were training. Duplicates can also
be found once all but the top ten categories have been removed from the collection. In fact
over 19% of the remaining files are still duplicates, and these are found only by comparing
against the other categories within the top ten. 475 of these are testing files and 1447 are
training files.

The Newsgroups corpus is also not without problems as the files within the corpora do
contain a significant amount of redundant data, i.e. text representations of attached files such
as images and archives. Ideally this information should be removed, however, as no mention
of this has been found previously it has been decided to not alter the contents of the files so

26|Page

that the experimental setup can be as correct as possible with regards to mirroring previous
experiments.

If we are to effectively evaluate the performance of techniques in the future, duplicates
should be removed, and files containing redundant data i.e. not much more than “blah blah
blah” or file representations of attachments should also be removed. It would also be
beneficial to have the ‘cleansed’ corpora available in a central location with the number of
files and the sizes of each listed so that these values are static. This would allow for more
effective comparison between research techniques and would remove ambiguity when
attempting to reproduce past experiments by others. In a truly ideal situation, the results of all
experiments would also be held in one place with a full description of any modifications or
preprocessing that was performed as this would solve the issues raised by Yang (1999).

2.6 Feature-based Categorization

Feature based classifiers act upon the occurrence of words or character sequences. This
approach often relies upon extracting these sequences from within the text and pre-processing
steps such as those mentioned in 2.3 are used in order to reduce the complexity of the search
space. Feature-based approaches, although the predominant approach in the literature, are not
the focus of this dissertation and shall therefore be discussed in less detail than stream-based
approaches.

2.6.1 Naive Bayes

Naive Bayes classifiers have long been used for text categorization tasks. A Bayes classifier
is a simple probabilistic classifier based on applying Bayes' theorem and makes strong
assumptions that features are independent given the class. Although more sophisticated
models outperform Bayesian ones, these models are popular due to their low computational
costs. The effectiveness of the models have been studied by Sahami(1996); Lewis (1998);
McCallum and Nigam (1998) and Yang and Liu (1999).

2.6.2 N-Grams

An n-gram in the context of natural language processing can refer to either a contiguous
segment of n-words or character strings of a fixed length. A document may be categorised on
by its n-gram frequency list, a list of n-grams ordered by the number of occurrences in the
given document. Character n-grams have been proved to be quite effective for author
identification problems (Kjell et al., 1994; Peng et al., 2003; Juola, 2004; Marton et al.,
2005) and as tokenization is not needed when extracting character n-grams, the approach is
also language independent. They can, however, require much more computing power and
time than word based approaches if attempting to calculate for multiple lengths, and n-grams
of fixed length are often used in order to prevent this.

27|Page

2.6.3 SVM

Support Vector Machines (SVMs) are learning systems that analyze data and recognize
patterns and was first introduced by Boser et al. (1992). In the area of text classification
SVMs separates categories within a hypothesis space and any unclassified texts that are
placed within the space are categorised as belonging to the category to which it is closest.
This approach has been shown to outperform many other systems in a variety of Machine
Learning applications and is popular due to its efficient performance estimation (Joachims,
2002).

2.7 Stream-based categorization

In comparison to tokenization/feature based classification methods, a stream-based approach
is similar to text compression methods in that they operate directly on the entire text
sequence. Stream-based text categorization, as with compression methods, considers the text
being categorized as a stream of symbols, which differs from the traditional feature-based
approach which relies on extracting features from the text (Thomas and Teahan, 2007). It is
also able to omit pre-processing steps such as tokenization, stopword removal and stemming
altogether.

A common step between both methods is data collection. In order to objectively compare
different text categorization methods, a standard data collection should be used in the
evaluation experiments. However, this appears to be a serious problem. There are several
different collections, and even when the same collection is chosen, there are many alternative
ways that the data in the collection are used for training and testing.

The remainder of this chapter will describe existing stream-based methods that have
previously been described in the literature. These will be used in the experimental results
detailed in subsequent chapters.

2.7.1 C-Measure

Hunnisett & Teahan (2004) defined a simple frequency-based measure for text categorization
called the “C-Measure” that uses the sum of the number of common substrings (or
“contexts”) of a fixed length between the training and test documents represented as text
strings. Regardless of its simplicity, the technique has been proven to outperform a number of
state of the art techniques (Hunnisett & Teahan, 2004). The results found in Hunnisett &
Teahan (2004) suggest that the classification performance of context-based classifiers
increases with a higher order character context. Hunnisett & Teahan (2004) did express the
need to investigate this claim for higher orders but were unable due to the memory
constraints of their software.

28|Page

Formally, let the set of symbols in the testing text T be x; ...xy and k be the order of the
model (i.e. the fixed context length used for the model). Let d;(X) = 1 if context X is present
in both the training text S and testing text 7, 0 otherwise. Then the C-Measure is defined as:

IT|

TIS) =) diGtigsy %) @1)
i=k

Here, for the definition of ¢, (T|S), the standard notation from probability theory is being
used to indicate that the C-Measure for a given testing document 7 is being calculated with
respect to training document S - i.e. (T'|S).

In order to try to determine the correct class of text T among m classes represented by texts
Si, .., Sm, Hunnisett & Teahan (2004) suggested that the source be guessed using the
following estimate:

8(T|S;) = arg max;c, (T|Sy). (2.2)
Example 1

Consider the training string S = “abracadabra=” and testing string 7 = “abrabra*”. The count
C, for substrings of length 4 is 3 as the testing substring “abra™ appears twice within the
training string and the substring “bra*” appears once.

The ¢, counts are then normalized to obtain the C-Measure, with minimum and maximum
values between 0 and 1, as follows:

Ce(TIS) = (TIS)/(T| = k + 1).
Example 2

The normalized C-Measure for substrings of length 4 using the previous example is obtained
as follows:

C.(T|S) = =3/9 ~ 0.33333.

(12 -4+1)

2.7.2 R-Measure

Khemelev & Teahan (2003) defined the R-Measure as a number between 0 and 1
characterising the repetitiveness of the document. The R-Measure can be found by
normalising the sum of the lengths of all substrings that appear in both the training files and
test files. Suppose that the collection consists of m documents, each document being a string
S; = §;[1..15;]], where S;[i..|S|] is the ith suffix of document S. A squared R*-measure of
document T with respect to documents Sy, ..., Sy, 1s defined as:

29 | Pa g€

2
I(l+1)

l
R2(T|Sy, o) Sy = Z O (Tl ISy, s). (23)
i=1

where | = |T| is the length of document T, T[i...l] is the ith suffix of document T and
Q(T|Sy, ..., Sy) 1s the length of the longest prefix of S, repeated in one of documents
S1, ..., S For example, let us take T = “cat sat on” with T; = “the cat on a mat” and T, = “the
cat sat”. Then:

R (T|1.1,) T+6+5+4+3)+(5+4+3+2+1))~0.727272

=10x(10+1)((

with (T|Ty, T,) = +/R?*(T|Ty,T,) = 0.852802 . Notice in the above formula that the sum
consists of two parts, (7+6+5+4+3) from the repetition of “cat sat” = T[1...7] and
(5+4+3+2+1) from “at on” = T[6 ... 10].

The measure was originally designed to detect plagiarism and duplicates within a text
collection; however, Khemelev & Teahan also used the measure to see whether or not test
documents had been correctly categorised.

2.7.3 PPM (Prediction By Partial Matching)

The PPM algorithm was first published by Cleary and Witten (1984) and though PPM is best
known for text compression, it is also a highly effective technique when used for text
categorization .PPM is a well performed compression algorithm that effectively uses a
language model to estimate the probabilities of each symbol in the text (Teahan, 1998). It
does this by blending the probability estimates for different length contexts by a back-off
technique known as the escape mechanism. Bratko and Filipic (2005) were able to show that
the PPM compression model is able to outperform word-based spam filtering methods and
did so using adaptive models as shall also be investigated. They share the common goal of
attempting to devise a strategy which would automatically determine the order of the PPM
model that optimizes classification performance and found that an order-6 model performed
best typically but that there was a need to prune the model (as has been found and is
discussed in section 4.3.3).

Two well performed adaptive PPM models shall be used during this thesis, namely PPMC
and PPMD (these use escape method C and D respectively (Teahan, 1998)). These models
blend different order models by using an escape mechanism. These variants of Cleary and
Witten’s original design are based on improvements described by Moffat (1990), with PPMC
now being the model of choice in most cases. A technique known as exclusions removes the
counts for symbols already predicted at higher orders (i.e. context lengths). The model is
adaptive as it dynamically updates the counts used by the language model as the text is
processed sequentially. An alternative static variation primes the model from some training
text, and then suspends updating of the model when processing the testing text. Formally,

30|Page

given a document T of length n symbols and a model p;, for a particular category L, then the
cross entropy is calculated as follows:

1
H(T|S) = “EEOQZPL(T) (2.4)

n
= lz —log,p (Xi| X1 ... Xp—1).
Nidi=y

i.e. the average number of bits to encode the document using the model. X;|X; ... X;_1
denotes the probability of symbol X;being encoded for each context. The approach taken by
Teahan (1998) is based on this calculation — stated simply, each testing text is compressed
against the category models, and the category is chosen from the one used to train the model
that achieves the best compression. This has proven to be a highly effective technique often
achieving accuracy results competitive with other text categorization techniques. In practice,
PPM uses a Markov approximation i.e. assumes a fixed order context; order 5 has been found
to be competitive on most texts:

1 n
H(TI|S) = - E ‘ 1—1092PL(XL'|X£—5 e Kug)- (2.5)
l=

By using frequency counts the model is able to estimate probabilities for each context and
these counts are updated adaptively as the text is processed sequentially, with the occurring
symbol being encoded using the prediction value of the encoding model. Should the model
discover an unseen symbol, the model encodes that this event has occurred and then escapes
to a lower order model and continues, attempting to encode the current symbol at a lower
order. Should the symbol then be matched, the context length may again grow until either the
maximum context length is reached, the end of the stream is reached or another unseen
symbol is discovered, forcing us to again escape to a lower context length. A detailed
example of how PPM is used to perform encoding, prediction and classification of character
streams is provided in Chapter 4.

2.8 Protocols

Marton et al. (2005) provide an overview of three compression-based approaches in the
literature to text categorization which they called SMDL (for standard minimum description
length), AMDL (for approximate MDL) and BCN (for best-compression neighbour). They
characterized many of the prior compression-based approaches under these three labels. We
seek to re-characterize these approaches (which we call “protocols”) in the following way, as
shown in Table 2.2. AMDL and BCN both dynamically update the model as they employ the
“off-the-shelf” technique to calculate cross-entropy. The approaches adopted by Bratko et al.
(2006) for PPM spam filtering also dynamically update the training model when processing
the testing text. On the other hand, SMDL and AMDL concatenates all the training data for
each class, significantly reducing the number of calculations required compared to BCN
which produces calculations for each training document separately.

31|f)l:JL

Static Model | Dynamic Model

Concatenation of training Protocol 1 Protocol 11
documents in the same class
(SMDL) (AMDL)
Non-concatenation of training Protocol IV
documents 1n the same class Protocol I1I
(BCN)

Table 2.2: Protocols for stream-based text categorization and contained within brackets
are where each approach used within Marton et al. (2005) resides.

If we tabulate these two features — static versus dynamic models (see section 4 for examples
of these models being implemented); and concatenation of training documents in the same
class versus non-concatenation — it is quite clear that a fourth protocol presents itself (labelled
as Protocol III in table 2.2). This protocol has been partially examined by Hunnisett (2010)
with inconclusive results.

It is not clear which of these protocols is the most appropriate for text categorization and that
was a major motivation for discovering the results reported in Chapter 6. Although the
dynamic protocols II and IV are well motivated from an information-theoretic perspective,
the following reasoning highlights some problems with the dynamic approach. Consider what
happens at the interface between the two sequences; that is, when the learning continues into
the testing sequence after the training sequence has been completed. Consider the case when
the languages of the testing and training documents are clearly distinct and independent, for
example, as when the languages being tested for are the natural languages English and Welsh
(or English and French). There will be some common English/Welsh or English/French
sequences in both sequences, but comparatively few compared to the length of the texts, and
usually there is no mechanism for the learning algorithm to disambiguate between the
different languages (i.e. a combination of both languages is being learnt). For this reason, it is
unclear whether the co-adaptation of both the training and test sequences is desirable in these
cases. Similarly, concatenation of training documents has merits as it maximizes training
data, and from an information theoretic point of view, one can argue that documents in the
same category can be considered to be from the same language source. But with non-
concatenated documents, ranking across all documents will ensure that only the best match of
the testing document out of all training documents is used to provide the category estimate.

Chapter Discussion

This chapter has reviewed important concepts within the field of text categorization. The
amount of uncategorised data in digital format is continuing to grow and text categorization
techniques have good success rates at categorising this data. This chapter has shown that
there are indeed a number of applications of text categorization techniques, varying from
indexing to filtering through to identification of language or even an author of text. The

32|Page

details of these techniques and successes of each have also been highlighted within this
chapter.

The more common feature based approaches perform pre-processing techniques which
consumes both time and resources, but it has been shown that stream based approaches do
not. Some stream based approaches which already exist have been discussed and though the
research has so far been limited in this area, the results have been promising and therefore
warrant further investigation. One of the problems has been that the current implementations
of the algorithms require additional resources and the implementation of these using suffix
trees as an alternative method are discussed in the next chapter.

Some concerns have also been noted. Datasets, pre processing steps and evaluation
techniques have been discussed, and although these are all well known among the
community, problems still arise. Lack of details concerning the experimental setup coupled
with the proven existence of inaccurate figures leads to the inability to perform true
comparisons between each of the many number of text categorization.

33|Page

Chapter 3

Extensions for stream based
models

Chapter Summary

The purpose of this chapter is to explain the new techniques which have been explored during
the time of the study. The three stream-based methods that are examined within this thesis are
C-Measure, R-Measure and PPM. This chapter discusses all new work and improvements
relating to these models and explains the extensions found for each of the algorithms. For C-
Measure the substring lengths that can now be calculated are detailed, for PPM it is shown
how the calculations can be performed by using the suffix tree and for R-Measure, all new
variants of the original algorithm are detailed.

Summary of each section

Section 3.1 discusses the extensions of R-Measure and its variants. Section 3.2 discusses all
new work relating to the C-Measure and describes both static and dynamic cases. Section 3.3
describes the modifications of two PPM variants, namely PPMC and PPMD, how they have
been implemented and the differences when dealing with update exclusions, no exclusions as
well as static or dynamic models. Section 3.4 details the time complexities of processing the
stream-based models using suffix trees.

3.1 Extensions of R-Measure

The R-Measure was defined by Khemelev & Teahan (2003) using the lengths of the common
substrings rather than their counts but it can also be defined based on a summation of the ¢
counts as follows:

r(T|S)

1

R(T|S) = 5
ZITIAT] + 1)

The following straightforward analysis reveals the two are equivalent. If the two substrings
denoted by the sequence x; ... x;1,—, are common between T (testing string) and S (training
string), they will have their first character x; also common — this corresponds to the ¢; counts
across all common substrings between T and S, and contributes +1 to the overall sum.
Similarly, the common prefix x;, x;,, corresponds to the ¢, counts and contributes a further

34 | Pa g€

+1 to the overall sum. Further common prefixes of increasing length each contribute +1 to the
overall sum until the length n of the sequence is reached. Essentially the contribution to the
¢, counts 1s exactly the same as the lengths of the common substrings, and therefore the R-
Measure can be equivalently defined either by counts or lengths.

Example 1

Consider the training string “abracadabras” again. For case 1a below, let the test string be 7'=
“abrabra*”, for 1b be “abracafabra*” and for 1c be “abradacabra*”. The cj and r counts for
these cases are as follows:

c1=10, =7, ¢3=5,c4=3,¢5=1, c6..8=0 la
r=104+7+5+34+1=26

a=11,0=9c=7,c=50c=3,c6=1,c7. 12=0 1b
r=11+9+7+5+3+1=36

a=12,0=11,c=7,¢=3,c5=1,¢5.12=0 le
r=12+11+7+3+1=34
Example 2

Consider the case where the training string and test string are the same. In this case, all the ¢,
counts and r count have the maximum values:

I 17

P = N ™ = Y (T =k + 1)
k=1 k=1
2 |<1| -
= TP = 2 k+17]
1
= ST+ 1)

r™a% js used to obtain the normalized R-Measure, with a minimum and maximum value

between 0 and 1.

To date, only the “complete” R-Measure has been defined, which is of course the sum of the
C-counts. However, further cumulative r counts can be obtained by counting only substrings
whose lengths are = to some minimum g, as follows:

Here r = 154. The series 754,75y, ..., 75 r| decreases with 15, > 15544 except when ¢, = 0
then all of the remaining 7'sx41 442, 7| = 0. Only when T = § does r|r; = 1, otherwise
T|T| =0.

35|Page

Example 3

Consider the training string “abracadabra*” again. For case 3a below, let the test string be 7'=
“abrabra+”, for 1b be “abracafabra*” and for 1c be “abradacabra”. The cj,r counts and Teq
values for these cases are as follows:

c1= 107 C2:71 C3=5, C4:3, G5= 1966...8:0 3a
r=10+7+5+3+1=26
Fs = 16, I3 = 9, Feq = 4, I>5 = 1, =678~ 0

ci=11,2=9,¢c3=7,c4=5,¢c5=3,¢c6=1,c7..12=0 3b
r=11+9+7+5+3+1=36

r0=25,r:3=16,r540 =9, 15 =4, r>6 = 1, r>789,10,11,12 = 0
61:12,6‘2311,6‘3:7, C4=3,C‘5=1,C‘6n_12=0 3c

r=12+11+7+3+1=34
=22, rs3 =11, rsa =4, rs5=1, 26789101112 = 0

Alternatively, r<, counts can be obtained by counting only substrings whose lengths are < to
some maximum ¢, as follows:

4
reg(T | 8) =), al(T | S).
k=1

In this case, v = rp|. The series 1<y, T<p, ..., T<|y| Increases with r¢, < repyq except when
¢k = 0 as all remaining counts are equal, i.e. <y = T'<gi1k42,..|7]-

Maximum values can also be calculated to normalise the R -Measures and R<,-Measures as

follows:
T=g T8
RZ’-‘Q(TIS) =5 = ,'(I) _
(T —g+ 1)(|T| — g +2)
R.,(T|S) = req(I | S)

g|T|-3(1 —q)g

The R-Measure takes into account all substrings that are common between T and S. However,
in certain text categorization domains, such as text containing a large proportion of natural
language, the shortest substrings are essentially poor for discriminating between many
different T and S since these short substrings are common across all strings. The g threshold
used in the R, ,-Measure can be used to eliminate these strings from the calculations.

36|P;’!‘ C

=)

Indeed, Hunnisett & Teahan (2004) found in authorship experiments with the C,-Measure
that much longer substrings performed better at categorization compared to shorter ones —
they found that k = 13 performed best but were unable to check beyond this because of
memory constraints. It is possible that substrings of a greater length may indeed improve
categorization performance and thanks to the toolkit discussed in the next chapter, much
greater substring lengths can now be examined. In contrast, compression-based language
modelling approaches using variable order Markov models base their measures only on the
shorter substrings and eliminate the longer ones from their calculations in a manner similar to
R_,-Measure, most probably due to the exponentially large number of states for higher-order
models. It is not clear which approach is preferable, or why there is a variance between the
count-based and compression-based approaches. Part of the motivation behind the
experiments in this thesis 1s to determine experimentally which measure performs better or
whether different measures perform better in different domains.

3.1.1 R-Ranges i<R<gq

A final R-Measure can be calculated that summates c), counts where i < k < q where i and ¢
are the desired minimum and maximum substring lengths respectively. As stated above, there
are differences in opinion as to whether shorter or longer substrings are better at
categorization and therefore it seems useful to also investigate the summation of counts
between ranges of values. This will allow us to investigate results where both the shortest and
longest substrings are ignored and it would be interesting to see what ranges achieve the best
results and if the results are better than R, ,-Measure or R¢,-Measure, attempt to answer why.
The R-Range measure is defined as follows:

q

1q(T1S) =) G(TIS) = reg = 721,

k=i

3.2 Extensions of C-Measure

As mentioned in 2.7.1, Hunnisett & Teahan (2004) were only able to calculate counts up to
C13. The new toolkit mentioned in chapter 5 is now able to surpass this point, though results
are limited to cgq in order to calculate results within reasonable time on a relatively standard
desktop computer with 1GB of memory. It is possible to calculate results past this point but it
will be shown that it is not beneficial to do so as substrings of great length are not useful for
categorization and should only be considered for the task of duplicate document detection.
The increase in performance has been achieved through a number of factors including the use
of suffix tree models, pruning, and other techniques that are discussed in chapter 5.

The number of substrings of length k& that are found within both the training document S and
testing document 7' is defined as:

}=

37|Pa

IT|

ck(T1S) = Z i (i 1y oer X)) (2.1)
ik

where k is the order of the model and C(x; —k + 1...x;|S) = 1 if context x; — k + 1...x;
(all substrings) are present within the training text and is equal to 0 if all substrings are not
present.

Example 1

Consider the training string S = “abracadabra+” and testing string 7" = “abrabra*”. The count
C, for substrings of length 4 is 2 as the testing substring “abra” appears twice within the
training string.

The ¢, counts are then normalized to obtain the C-Measure, with minimum and maximum
values between 0 and 1, as follows:

Ce(T1S) = c(T1S)/(IT| — k +1).
Example 2

The normalized C-Measure for substrings of length 4 using the previous example is obtained
as follows:

Ca(TIS) = =2/9 ~ 0.22222.

(12—4 + 1)

3.3 Modifications to PPM

In order to calculate the compression ratio of a testing file a suffix tree is created that
represents the training model, with the testing file being read as a stream one symbol at a
time. As the symbols from the testing stream are processed, we traverse the training suffix
tree, using the counts of existing nodes in order to calculate the probability of the symbol
occurring at the current context length. With the use of an array of context lengths with
pointers into positions within nodes of the tree, we are able to successfully track the position
of each context length within the suffix tree. As we traverse the current longest context length
and calculate the probability of the current symbol, we also update the position of each of the
lower order pointers (see table 3.1). This is performed as though an unseen symbol was
discovered, as we calculate the probability of the unseen symbol and escape to a lower
context length, whose position is already held in our array. After the probability of each
symbol within the stream has been calculated, the probability of each is then added to the
current total until the entire stream has been processed. The testing file is then attributed to
the model that offers the lowest bit rate, 1.e. the highest compression ratio. Table 3.1 shows a
PPMC model after processing the string “abracadabra” with maximum order of 2.

38|Page

Order k=2 Order k=1 Order k=0 Order k=-1

Predictions ¢ P | Predictions ¢ P | Predictions ¢ P | Predictions ¢ p
2 2 5 1
ab —» 1 2 —la — b 2 = — a 5 — — A 1 73
3 7 16 |A|
— Esc 1 — ¢ 1 — b 2 2
. 16
1
ac — a 1 — d 1 — C 1 T
1
— FEsc 1 — Esc 3 — d 1 5
2
ad — a 1 b — r 2 — r 2 T3
5
— Esc 1 — Esc 1 — Es¢c 5 16

— Esc 1 — Esc 1

ca — d 1

— Esc 1 — Esc 1
da — b 1 r — a 2
— Esc 1 — Esc 1

W= W = o= = = W= W[9w Q= 2]~

ra — ¢ 1

— Esc 1

W= = = N = = R = W= W R = = = =] -

Table 3.1: PPMC model after processing the string abracadabra with maximum order
of 2.

39|E\(l:

=

I

3.4 Complexity considerations

Consider the space and time complexities for the text categorization protocols when
implemented using suffix trees. Assume there are K classes, M training documents, and N
testing documents. TypicallyM > N > K. The space and time complexities are dependent on
the size of the suffix trees which are linear with the size of the text. If the suffix trees are
created on demand during categorization, then the space is proportional to the length of the
training and testing text currently being processed. However, consider the case where we
wish to create the suffix trees in advance for all training and testing texts so that these do not
have to be re-created multiple times. The non-concatenated protocols (III and IV)
substantially increase the complexity of the classification experiments as they require the
creation of M + N suffix trees, plus the calculation of an M X N matrix of similarity
judgments; this is opposed to K+ N suffix trees plus K X N similarity judgments for the
concatenated protocols (I and II).

Considering the time complexities, for the frequency-based methods, all C—Measures and the
R—-Measure can be calculated simultaneously in a single co-traversal of both the training and
testing suffix trees where non-matching branches are not followed. r, grequire a further

calculation to compute the different measures for all values of p and q. This can be done by
filling in a |T| X |T| (where T is a testing string) matrix by iterating over p and g but the
worst-case time complexity and space complexity for this is O(T?) compared to O(T) to
calculate the measures for the other formulas. However, since the series of ¢, counts does not
change beyond the length of the longest common prefix between T and § (where S is the
training string), the average case is much better, and both the time and space requirements
can be reduced considerably by only calculating counts up to the longest common prefix
length.

Let us now show how c-counts may be calculated for a specific example. Consider the
training string S = “to be or not to be*” and testing string 7' = “to be not*". After constructing
a suffix tree for each of the strings we navigate through all nodes of the testing tree and
should the character within the testing node exist within the training tree at the same depth,
the count for that depth is incremented by the count of the training node 1.e. the number of
times that the current suffix occurs within the training string.

After matching the EOF symbol between both trees at depth 1, C; would then have a count of
1 as up to this point only a single suffix of length 1 occurs in both strings and this suffix
occurs only once within the training string. As we have reached the end of the current branch
we would move along the nodes of the testing tree at depth 1 until a suffix is matched. The
next suffix to be matched would be * * (the space character) and this would again add the
number of times it occurs within the training string to the count C,. The value is currently one
and as the character appears five times within the training string, the count now becomes six.
As the testing node has child nodes, we then attempt to match the suffixes at increasing
depths within the training tree and for all strings that are matched, the number of times they
occur within the training tree is added to the current total of counts for that depth. Two
characters appear after spaces within the testing string, ‘b’ and ‘n’. Therefore we would first

40“’1!:_";

attempt to match the suffix “ b” (space at depth 1 and ‘b’ at depth 2) within the training tree.
This substring occurs twice within the training string and so C, now becomes 2. The only
node to appear after the ‘b’ in the testing node is ‘e’ so we then attempt to match ‘e’ at depth
3 on the current branch within the training node. This process continues until we have either
processed all of the testing suffixes and at this time we will have the counts of suffixes for all
lengths between 1 and the length of the longest common substring.

The longest common substring within this example is “to be ”, which has a length of 6 and
appears only once within the training text. Using equation 2.1 we can calculate the count Cg
as follows:

Cs(T|S) = =1/14 ~ 0.07143.

(19-6+1)

We may also wish to calculate the count C,in a similar manner, with the count C, for
substrings of length 2 being 12 as “to”, “o ”, “ b” and “be” each appears twice within the

e L T EE TS

raining string an n”, “no” an ;
t g string and “e ", , “no” and “ot” each appears once

C,(T|S) = = 12/18 ~ 0.66667.

-}
(19-2+1)

Chapter Discussion

The chapter has shown new approaches and investigations including explanation of how the
text categorization performance for the stream-based algorithms can be performed using
suffix trees. The investigation of C-Measure for suffix lengths greater than 13, R, ,-Measures,

R4-Measures and i < R < g and having results (see chapter 6) for these measures against

the corpora mentioned in 2.4 is novel and collectively this allows us to compare these
approaches against the current leading techniques.

41 | P a gc

Chapter 4

Implementation of stream-
based models using Suffix
Trees

Chapter Summary

This chapter offers an overview of suffix trees and how they can be used to implement stream
based algorithms. The chapter also shows how each protocol can be modeled for each of the
algorithms through use of discussion and examples.

Summary of each section

Section 4.1 discusses suffix trees and the advantages of its uses as a representation of a text
document. Section 4.2 shows how each of the stream based algorithms are implemented
using suffix trees and how each protocol is implemented through use of examples.

4.1 Suffix Trees

A suffix tree of a string (or a document should we consider the contents of a document as a
string) s a trie holding all the suffixes of that string. As all suffixes are contained, we can say
that all substrings are also contained. This powerful data structure allows for quick searching
of substrings and also allows for strings to be dynamically added or removed. Suffix trees
have also provided one of the first linear-time solutions for the longest common substring
problem. These speedups do come at a cost as storing a string's suffix tree typically requires
significantly more space than storing the string itself. This approach differs from bag of word
approaches i.e. Naive Bayes as we allow for phrases and streams of symbols/words/sentences
and do not ignore the order of the sequences.

Weiner first introduced the concept as a position tree in 1973 (Weiner, 1973). The
construction was then simplified and the space consumption lowered by McCreight in 1976
(McCreight, 1976), and also by Ukkonen in 1995 (Ukkonen, 1995; Giegerich & Kurtz, 1997).
The first linear-time online construction of suffix tress was provided by Ukkonen and the
construction method is now known as Ukkonen’s algorithm, though it has been criticized for
the lack of space efficiency (Giegerich & Kurtz, 1997).

42 |Page

Suffix trees have been studied and used extensively in fundamental string problems such as
large volumes of biological sequence data searching, i.e. DNA or protein sequences
(Bieganski & Carlis, 1994), approximate string matches (Ehrenfeucht & Haussler, 1988) and
text features extraction in spam email classification (Pampapathi & Levene, 2006). It is
important to note that for most applications a lexicographic trie is unnecessary, however, a
lexicographic trie allows us to take advantage of search techniques i.e. binary search
algorithm, which relies on the contents being sorted to find the desired child node within a
position of the trie.

If the input string S of length n is terminated by a special end-of-string symbol (“*”") then the
suffix tree has n + 1 leaves, one for each nonempty suffix of S. The end-of-string symbol is
important as it allows us to find the point at which we are processing the next text within a
concatenated stream. Since all internal non-root nodes are branching, there can be at most
n— 1 such nodes, and n + 1+ (n— 1) + 1 = 2n + 1 nodes in total. The most apparent use
of the suffix tree is as an index that allows substrings of a longer string to be located
efficiently. The suffix tree can be constructed, and the longest substring that matches a search
string located, in asymptotically optimal time (Larsson, 1999). An edge label within the tree
is represented by a pointer into the original string and this ensures that the storage space
required for each node is constant.

A sample suffix tree indexing the string S, ‘This is a threate’ is shown below with the counts
of each node displayed to its right. The string S contains 17 suffixes — “«”, * a threat*”, “ is a
threats”, *“ threat*”, “This is a threat”, “a threats”, “at*”, “eat*”, “his is a threate”, “hreat*”, “is
a threats”, “is is a threat*”, “reats”, “s a threat*”, “‘s is a threat*”, “t*”” and “threat*”, with the
substrings “ ™ (space) occurring 3 times, “a”, “h”, “is 7, “s 7 and “t” twice, and the rest

occurring only once.

43 |Page

=

2 I reate |1 s |2 t
E;_threat- |1 |is_a_threat-| 1 [threate 1|_threat-| 1 | te I 1 |isfisua_threat-| 1 |reat-| 1 Ia_threat-l 1 isﬁafthreat-' 1 |a7threat-| 1 is_a_threat-l 1[. I 1 |hreat- I 1

This_is_a_threate|1

%)

Figure 4.1: Suffix tree representation of string ‘This is a threat*’. ‘*” is the null string at the root of the tree and ‘*’ is the end of string
symbol. The counts of each substring are shown to the right of each node.

44 |Page

4.2 Implementation

The remainder of this chapter will show how it is possible to compute in reasonable time and
space all the stream-based methods outlined previously (C-measure, R-measure and PPM),
using essentially a single pass through the test data (or its equivalent represented as a suffix
tree). This step, of course, is necessarily an off-line process. Once the best measure is found,
however, it can be used directly to classify unknown test strings and multiple calculations are
no longer necessary.

The C and R—Measure can be computed using this data structure in the following way.
Assume that the training string S be the same as the string used for figure 4.3, and the test
string T as that used for figure 4.2. By co-traversing both trees simultaneously in a single
pass, each of the ¢, counts can be calculated by summing the counts of the common prefixes
between S and T. For example, the common prefixes of length 2 in the order they appear in
figure 4.2 is “a*” (count is 1), “ab” (2), “br” (2) and “ra” (2) so the total sum of counts is 7.
Likewise the common prefixes of length 4 are “abra” (2) and “bra*”, so ¢, = 3. It is a simple
exercise to derive the measures based solely on the ¢, counts and the length of string
T (which is the count associated with the root node). Note that this application of suffix trees
to computing the € and R—Measures is novel. In fact, Hunnisett & Teahan (2004) were not
able to compute values for Cj, for k > 13 using their trie implementation because of memory
constraints.

A |8

e |1 bra [2 | o |[1]| brae |1 | o |1]| brae |1

o (1| brae |1

Figure 4.2: Suffix tree representation of string ‘abrabrae’. “*’ is the null string at the
root of the tree and ‘*’ is the end of string symbol.

A | 12
. 1 a |3 bra |2 |[cadabrae| 1| dabrae |1 ra |2
e (1| bra |2 |cadabrae | 1| dabrae |1 e [1 |cadabrae|l e | 1 |cadabrae| 1

AN

e |1 | cadabrae |1

Figure 4.3: Suffix tree representation of the string “abracadabra«”.

45 | PAapoe

Concerning the four protocols, there is essentially no difference in the way the suffix trees are
processed between the concatenated and non-concatenated protocols regardless of whether
static or dynamic models are being used, apart from the size of the training text being used to
prime the training suffix tree (i.e. the concatenation can be considered to be a simple pre-
processing step done prior to the creation of the training suffix tree). For the C—Measure
static case, the training and testing suffix trees are co-traversed, and counts of common nodes
are accumulated with C; being the sum of counts of testing nodes at level 1 that match with
training nodes, C, being the sum at level 2 and so on, as described above.

The dynamic protocols require dynamically updating the training suffix tree with information
as either the testing suffix tree is being co-traversed (for frequency-based methods), or as the
training plus testing text is processed sequentially (for entropy-based methods). For the
frequency-based methods, the training suffix tree is dynamically updated in two ways: should
a matching suffix be found, the counts of the nodes are incremented; and should a suffix
contained within the testing tree not be found within the training tree, this new node is
created and added. Unlike the static case, if during the traversal, a path within the testing tree
is determined not to be common to the training tree, the traversal of this path will not now be
abandoned. Instead, we continue traversing the path of the testing suffix as all uncommon
nodes along a path are inserted into the training tree until the end of the path is reached.

Consider the training string S = “abrabras” and testing string T = “xbrx+”. The first suffix we
would investigate is “xbrxe” and as this substring does not exist within the training suffix
tree, the path would be dynamically inserted. When we then come to insert the suffix “xe”
later on, rather than it again being ignored as with the static case, it will now match the
character “x” at depth 1 as the substring “xbrx*” was inserted prior.

4,2.1 Static C-Measure

Consider the training string S = “abrabra*” and testing string T = “br+” where * denotes the
end of file character. The series ¢y, ¢, and c3 (see 2.7.1) are all initialised as value zero and
the value ¢, will increase as matching substrings of length k are found. The following
diagram displays both the training and testing tree once they have been created and no
categorization has yet been performed.

A8
/ A 3
El a 3 bra |2 ra |2

o1 | bre |1 re |1
e|1|bral2 El brae 1.1 brae |1

c1=0,c=0,c5=0

Figure 4.4: Suffix trees of training file “abrabra+” and test stream “br-".

46 | Page

The following suffixes are contained within the testing string: “brs”, “r+” and “+”. In order to
determine the similarity between the two strings, we need to determine the number of
common substrings and we do this by simultaneously traversing both trees and determining
how similar the two trees are.

As we are categorising the test string “bre” we shall be traversing each path within its suffix
tree whilst simultaneously traversing the training tree to determine what nodes are common
and at what depth. If during the traversal, a path within the training tree is determined not to
be common to the training tree, the traversal of this path will be abandoned (not in dynamic
case, with dynamic uncommon paths we keep traversing as all uncommon nodes along a path
are inserted into the training tree until the end of the path is reached) and shall continue with
the next until we have attempted to traverse each of the paths within the testing tree.

The first node to be found within the test suffix tree is node “*” at depth 1. The node “*” is
found to be common within the training suffix tree. As the substring of length 1 was found to
be common, the value ¢; is now increased by 1 and the ¢, counts are updated to the
following: ¢; = 1,¢;, = 0,¢c3 = 0.

The next node to be found within the test suffix tree is node “bre” and as we are now
traversing a new node within a new path we are again at depth 1. We are therefore looking to
find node “b” at depth 1 within the training suffix tree. We indeed find the node “bra” within
the training suffix tree with the character “b” at depth 1 and the ¢, counts are updated to the
following: ¢; = 2,¢c, = 0,¢c3 = 0.

As we have matched the current character within the test node and have also not yet reached
the end of this node, we shall remain within the testing node “brs” and now search for the
character “r”” which is at depth 2. Again the node is matched and so the counts are updated as
follows: c; = 2,¢c, = 1,¢c3 = 0.

Again we remain within the current testing node but we are now searching for “«” at depth 3

“.'}1

of the current path within the training suffix tree. As the node “=” was not found, the traversal

along this path is abandoned and the counts remain unchanged.

We have reached the end of the current path and we now move on to the next and final node
within the testing tree which is the node “r”. We are first looking to find a node within the
training tree which has the character “r”” at depth 1, which we find in the form of the node
“ra”. The common node the ¢, counts are updated to the following: ¢; = 3,¢c;, = 1,¢c3 = 0.

As we have found a matching node and have also not yet reached the end of the current path

within the test suffix tree, we now look for the character “»” along path *“r”.

A common node cannot be found and as we have now traversed all paths within the testing
suffix tree we have completed our traversal and the final counts remain as follows: ¢; =
3,C2 = 1,C3 = 0.

47 |Page

4.2.2 Dynamic C-Measure

Again consider the training string S = “abrabras” and testing string T = “bre” where * denotes
the end of file character. The series ¢, ¢, and c; are again initialised as value zero and the
value ¢, will again increase as matching substrings of length k are found. As we are
demonstrating an adaptive model therefore the training suffix tree will be dynamically
updated in two ways. Should a matching suffix be found, the counts of the nodes shall
increase and should a suffix contained within the testing tree not be found within the training
tree, this new node will be created and added.

The suffix trees to begin with will be the same as the static case, see figure 4.4, with ¢; =
0,c; =0,c3 = 0 as no categorization has yet been performed. As we are now using a
dynamic/adaptive model, if during the traversal, a path within the training tree is determined
not to be common to the training tree, the traversal of this path will not now be abandoned.
Instead, we continue traversing the path of the testing suffix as all uncommon nodes along a
path are inserted into the training tree until the end of the path is reached.

The first node to be found within the test suffix tree is node “*” at depth 1. The node “*” is
found to be common within the training suffix tree and as we are now using a
dynamic/adaptive model, the count of this node within the training tree is increased from 1 to
2. Additionally, as the substring of length 1 was found to be common, the value of ¢; is now
increased by 1.

The modified training suffix tree is shown here:

2 ra 2

El bra | 2 el 1 brae 1|Zl brae 1

o1 brae 1

Figure 4.5: Dynamic suffix tree of training file “abrabra*” once * has been processed.

and the ¢, counts are updated to the following: ¢; = 1,¢c;, = 0,c3 = 0.

2

The next node to be found within the test suffix tree is node “bre” and as we are now
traversing a new node within a new path we are again at depth 1. We are therefore looking to
find node “b” at depth 1 within the training suffix tree. We indeed find the node “bra” within

the training suffix tree with the character “b” at depth 1. It may be clear that other characters

48 | Page

within this node are common between both trees and indeed we would continue until the end
of the string before modifying the training suffix tree but for illustration purposes we shall
break this into a number of steps so that the process remains clear.

The modified training suffix tree is shown here:

El bra |2 ra ZlEl brae | 1
e |1 brae 1 El brae 1

Figure 4.6: Dynamic suffix tree of training file “abrabra+” once ‘b’ from within suffix
bre has been processed.

and the ¢, counts are updated to the following: ¢; = 2,¢c, = 0,¢c3 = 0.

As we have matched the current character within the test node and have also not yet reached
the end of this node, we shall remain within the testing node “bre”” and now search for the
character “r”” which is at depth 2. Again the node is matched and so we update the training
tree and counts accordingly.

The modified training suffix tree is shown here:

A |10

ra 2

/\

brae | 1

Figure 4.7: Dynamic suffix tree of training file “abrabra+” once ‘br’ from within suffix
bre has been processed.

49 |Page

and the ¢, counts are updated to the following: ¢; = 2,¢c;, = 1,¢3 = 0.

Again we remain within the current testing node but we are now searching for “»” at depth 3
of the current path within the training suffix tree. As the current training node “br” is non-
branching, the only possible matching character is “a”. Because of this, the node “a” shall
remain a non-compressed node as it will remain to have a different count from its parent node
“br”.

As the node “*” was not found, this node at depth 3 shall now be inserted into the training
suffix tree as a child of parent node “br”. This is where the dynamic/adaptive model greatly
differs from the static model as we are now dynamically altering the training tree to be more
similar to the testing tree.

The modified training suffix tree is shown here:

o2 a 3 br |3 ra |2
_ [|2 /\
e (1| bra |2 1E 1| brae |1

o1 brae 1

Figure 4.8: Dynamic suffix tree of training file “abrabra*” once the suffix bre has been
processed.

and the ¢, counts remain unchanged as: ¢; = 2,¢c, = 1,¢53 = 0.

Again, as we have reached the end of the current path we now move on to the next and final
node within the testing tree which is the node “r+”. We are first looking to find a node within
the training tree which has the character “r” at depth 1, which we find in the form of the node

13 3%

ra.

50|Page

As we find the common node we modify to the training suffix tree to be as follows:

A |11

-\
N

e (1| bra |2 1| a |[2

1| brae (1 |e|1| brae |1 1] hrao 1

Figure 4.9: Dynamic suffix tree of training file “abrabra+” once ‘r’ from within suffix re
has been processed.

and the cj, counts are updated to the following: ¢; = 3,c; = 1,¢3 = 0.

As we have found a matching node and have also not yet reached the end of the current path
within the test suffix tree, we now look for the character ““+” along path “r”.

A common node cannot be found so we again insert this new node and the training tree is
modified to the following:

T A A
T [T BB

E 1| brae |1 E 1| brae |1 1| bras |1

Figure 4.10: Dynamic suffix tree of training file “abrabra+” once the suffix re has been
processed.

As we have now traversed all paths within the testing suffix tree we have completed our
traversal and the final counts are as follows: ¢; = 3,¢; = 1,¢3 = 0. Using the example above
you will notice that the counts are the same for both models. However, should an uncommon

51|Page

suffix be inserted, as it wasn't matched, and then be seen again, on all following occasions the

substring would be matched as it was dynamically inserted.

As an example consider the training string S = “abrabrae” and testing string T = “xbrxe”. The
first suffix we would investigate is “xbrx*” and as this substring does not exist within the
training suffix tree, the path would be dynamically inserted. Now when we then come to
insert the suffix “x*”, rather than it again being ignored as with the static case, it would now
match the character “x” at depth 1 as the substring “xbrxe” was inserted prior.

The final training suffix tree once all comparisons have been made is displayed here:

A 13
o |2 a 3 br |3
o (1| bra |2 a 2 Xe

[

1 brae 1 E gl brae 1

2

Xe

brxe

brae

Figure 4.11: Dynamic suffix tree of training file “abrabra+” once the testing stream
xbrxe has been processed.

4.2.3 PPM Without Full Exclusions

For table 3.1 the escape count is calculated as the number of known symbols at each point.
For example if we had processed the symbol ‘a’ followed by ‘b’ we would be within position
‘ab’ at order 2 and the escape count would be 1 as ‘r’ is the only known symbol at this point.

52 |Page

Predictions c

Order k=2 Order k=1 Order k=0 Order k=-1

Predictions c Predictions c P Predictions c

ab

— r 2

— Esc 1 — Esc¢ 1

W= W | Ry
W= W] Ry

— Es¢ 5 16

Table 4.1: List of pointers within context list after processing the symbols ‘ab’.

Referring to table 4.1, let us say that the next symbol to encode was indeed ‘r’, as the
frequency of this symbol is 2, the probability of this symbol being encoded at this point is the
frequency of the symbol divided by the sum of all frequencies (including the escape count)
and in this case the probability would be 2/3.

However, if the symbol was unseen before at this point, i.e. the symbol ‘i’, then the
probability would now be the escape count divided by the sum of all frequencies, i.e. 1/3. We
would then escape to a lower context length, i.e. the pointer ‘*, b’ and search for the symbol
‘1" at this pomt. If the desired symbol existed at this point then the probability of finding the
symbol at this context length would then be calculated with the probability being multiplied
by 1/3, the probability that it was not found at the previous context length and then being
found at the current order.

If the symbol continued to not be found (as is the case), we would then continue to escape
down each order until either the symbol was found or we reached order -1. In the case of it
not being found and us having to escape to order -1, the probabilities of escaping down each
order would be multiplied by 1/256 (the number of symbols within the ASCII character set).

4.2.4 PPM With Full Exclusions

The difference in using full exclusions is that the counts of symbols at lower orders are
affected if the symbol that have appeared at higher orders also appear at the current lower
order after we have escaped. This then has an effect on the probability of the symbol being
encoded. Referring to table 3.4, we were attempting to encode the symbol ‘i’ at order 2. The
symbol ‘1” was unseen at this point and so we escaped to order 1 with probability 1/3. At
order 2 was the symbol ‘r’, which has now been seen and found to not match. Should this
symbol now appear at order 1, it can be ignored as it has been seen previously at order 2.

53| Page

As an example, let us say that we are instead presented with the contents of table 4.2. In the
case where update exclusions are not used and with the previous example we have
determined that “i” could not be encoded at order 2, having ruled out ‘r’, we could possibly
be presented with the following at order 1:

Order k=1
Predictions ¢ P
3
b —» a 3 11
. 4
— 1 4 11
1
— T 1 ﬁ
3
— Es¢ 3 7

e
—

Table 4.2: Possible context list at order 1 without exclusions.

In the case without exclusions, the probability of encoding the symbol ‘i’ at this point would
be the frequency of the symbol ‘i’, which is 4, divided by the sum of all counts in addition to
the escape count. The probability would therefore be:

4

=411,
3ra+1+3

This probability would then be multiplied by the probability of escaping from order 2, which
was found to be 1/3. Now in the case of full exclusions, we have already ruled out the
possibility of the symbol ‘r’ whilst at order 2, therefore the probability of encoding ‘1’ at this
point with full exclusions would now be different. Symbols which have been seen at previous
orders are now ignored leaving the following:

Order k=1
Predictions ¢ P
3
b — a 3 5
_ 4
— 1 4 9
- + -
)
— Esc 2 9

Table 4.3: Possible context list at order 1 with full exclusions.

54 |Page

Notice that there are now only two unseen symbols at this point as ‘r’ has been struck
through, therefore the escape count is now reduced to 2. The probability of encoding at this
point is now therefore:

svatz WP
This probability would then also be multiplied by the probability of us escaping from order 2,
which was found to be 1/3.

4.2.5 Dynamic PPMC

Up to now only PPMC for static training models has been discussed. The models themselves
can also be adaptive and this will allow us to compare the performance of PPMC across all
four protocols, as we did with C-measure. As an example, let us consider the training string S
= “gbrabras” and testing string T = “abrxbrx*” where * again denotes the end of file character.
We would again create a suffix tree representation for S as shown in figure 4.4 but now rather
than creating a suffix tree of T, we can simply treat it as a stream of symbols, processing each
at a time.

(L]

After processing the symbols “a”, “b” and “r”” we would be positioned at index 1 of the node
“bra” which is a child of node “a” and we would also currently have a context length of 3.
The next symbol to be encoded would be the symbol “x”, and as the only character seen at
this point is the symbol “a”, we would need to calculate the escape probability.

Shown here is the current context lists showing the positions of each pointer into the suffix
tfae:

Context Length | Pointer
0 A
1 Ar
2 Abr
3 Aabr

Table 4.4: Context list example after processing the string ‘abr’.

As we are now using the adaptive protocol, we would insert the new symbol into the current
position in the tree with count of 1, as well as also inserting this new node at the position of
each pointer of lower context length. If the node already exists then the count of the node “x™
would be increased by 1.

tkl [}

After inserting the symbol “x” at positions, “*abr”, “*br”, “r” and “*”, we now continue
searching for the symbol “x” at context length 2. If we were using the static protocol then we
know that the symbol “x” would not appear at this context length, nor at any other and we
would then have to escape to context length 1 and continue processing from that point.

Lo

However, as we have dynamically inserted the symbol “x” at position “*br”, we would now

55| Page

be presented with a different option. The symbol “a” is now no longer the only symbol to
have been seen at this point, the node “x” now exists with frequency 1.

Chapter Discussion

After introducing suffix trees as powerful data structures that allow fast searching we have
shown that it is possible to compute the stream-based methods in reasonable time and space.
It has also been shown that results for multiple algorithms, namely C-Measure and R-
Measure can be calculated with only a single pass through the data structure. The next
chapter details a toolkit that has been implemented to aid in the processing of the techniques
detailed within this chapter.

56|Page

Chapter 5

A Java based framework for
implementing stream based models

Chapter Summary

The purpose of this chapter is to detail an overview of the toolkit that has been created to aid in the
calculation and comparison of the many different techniques discussed earlier. The toolkit has
previously been described by Thomas and Teahan (2007), however, this chapter offers an overview
of the class structure and also offer details on how the algorithms have been implemented; this is
achieved through discussion, figures and code samples.

Summary of each section

Section 5.1 displays a basic overview of the main components within the toolkit and gives examples
of how simple the toolkit makes the process of executing experimentation. Section 5.2 discusses the
process of preparing the corpora, including splitting the initial files and concatenating models and
how the toolkit aids these processes. Section 5.2 also details the process of creating suffix trees
through extracting suffixes and trimming the models. Section 5.3 offers more detailed information
of the base classes and shows how they are extended through example code samples. Finally section
5.4 details the implementation of the algorithms and how their normalised values are calculated
through code. Section 5.5 details the usage of the toolkit through the use of examples.

5.1 Overview

The motivation for creating the toolkit was to have a single application able to execute a number of
different categorization algorithms at once and for us to be able to compare these results. This work
is an important contribution to the field of text categorization and is an improvement over previous
methods. Suffix trees have previously been used to implement PPM, however, they have not
previously be used to implement C-Measure and R-Measure, and certainly not all together. The
toolkit is extensible and offers common tools which are important if other algorithms are to be
added and by having all experiments ran from a common toolkit on common corpora eliminates a
number of the problems that currently exist when attempting to draw comparisons (Yang, 1999).

The toolkit was created using Java due to its platform independence and cost. Since Java is open
source, it’s completely free to develop and deploy applications with Java and its most popular IDE’s
are also free. In order to aid the process of adding algorithms and to keep a level of commonality a
set of base classes was required from which each implementation could extend and make use of

57|Page

common functionality. A set of tools has also been created in order to prepare the corpora and also
to be able to load suffix tree models from streams of text to be processed by the algorithms. These
requirements are represented by the class structure in Figure 5.1 and it was from this that the toolkit
was designed. For an exhaustive list of classes please refer to the API included within the attached
DVD.

The main processes are contained within the base classes and these iterate through each testing
model and process them against each of the training models. The base classes load each of the
models and call a function to compare one against the other. The functions to compare the models
are contained within the overriding classes as each are processed in a unique way. This model
allows for extensibility as a new algorithm only requires the specified abstract functions to be
implemented in order for it to function.

Main
|
oy I
Tools ‘ Methods
v # v
PPM C-Measure R-Measure

: \ $

A 4

Base Classes

Figure 5.1: High level overview of jSCat.
5.2 Tools

This section describes some of the contents of the ‘Tools’ object within Figure 5.1. The next section
describes how the toolkit can be used to split a corpus in order to perform cross validation. Section
5.2.2 details how the toolkit is able to concatenate files within specified training directories in order
for us to investigate concatenated protocols. Section 5.2.3 describes how a suffix tree and nodes are
represented within the toolkit and what properties are attributed to each. Section 5.2.4 explains the
process of extracting suffixes from a text stream. Section 5.2.5 discusses some optimisations that
have helped to construct and load the models in less time. Section 5.2.6 details the advantage of
pruning the suffix tree to the maximum length that is required by the current experimentation.
Section 5.2.7 discusses the toolkit’s process of constructing the suffix tree and section 5.2.8
discusses how checking the counts of each node can help us to ensure that the tree has been
correctly constructed.

58 | Pa J e

5.2.1 Splitting the corpora

There are cases, as with Reuters-10 (mentioned in 2.5.2), where the corpus has already been pre-
processed and the training data and testing data has been specified. In others cases such as
Gutenberg and 20Newsgroups, this is not the case, and this step must be performed manually. In
order to retrieve a fair result of how the algorithms have performed it is recommended to do cross
validation. This process can introduce difficulties in recreating the setup of past experiments, as it is
not often documented as to which documents were within which splits (see 2.5.7). Because of this,
a listing of all documents within each split shall be included within the attached DVD.

In order to perform cross-validation the data is first split into a number of subsets, with either the
same number of documents within each split, or as well as this, having the same number of
documents from a class within each split also. Because the second method gives an even
representation of each class within each split so this would be our preferred method. Once
completed an output directory containing a folder for each split is outputted, as shown in Figure 5.2.

splito splitl split2
o [
split3 splitd

Figure 5.2: Example output of split parent directories.

And within each of these directories would be a directory for each of the categories, shown in
Figure 5.3.

E e I i) 'E- i
charlesdickens danieldefoe emerson
JaneAusten kipling shakespeare

- = -

shaw twain wells

e

wilde

Figure 5.3: Example directory listing found within each split.

Each of the directories displayed in Figure 5.3 contain a subset of the original set of category files.
It 1s 1important to note that if we had not ensured the files of each category were spread evenly
across all splits, it is possible that as well as the category not holding an equal presence across each

59|Page

cross-validation stage. The Gutenberg corpus has only 40 works in total, it would therefore be
possible that the category could not be present at all within some splits.

5.2.2 Concatenating categories

As stated earlier, it is not known whether or not concatenating the training data improves
categorization performance and so it shall be investigated in order to determine its effectiveness, if
any. The first thing to determine is the full location of the split directories and also the directory in
which to output the concatenated models. Once these have been determined the
concatenateAllFilesInDir method within the Concatenate class can be called. The concatenated files
are added to a folder named Training within the root directory as shown in Figure 5.4. The
concatenated files are given a unique filename equal to that of the category it represents, as shown
in Figure 5.5.

=t [t
splito splitl split2
-l i) et
split3 split4 Training

Figure 5.4: Output of the concatenated files parent directory.

[Subje Fram: |From:
iFrum: Subj e | Subje
- In ar In ar |
alt.atheism comp.graphics comp.os.ms-
windows.misc
From: |Frem: From;
Subje | Subj e Subje |

laova |

comp.sys.ibm.pc,

Helle
comp.sys.mac.

11 b
comp.windows.x

hardware hardware
Frem: From: |From:
Subje Subje |Subje
|
| L ‘ {From |
misc forsale rec.autos rec,motorcycles
From: Frem: From:
Subje | Subje Subje
Iner |r!]=_\.lL |
rec.sport.baseball rec.sport.hockey scicrypt
From: | From: |From: -
Subje | Subj e |subje |
Inar | Inowr | leamat |
sci.electronics sci.med sci.space

From:
Subje |
ltn ar |

soc.religion.christian

| From:
| Subje

talk. politics.misc

From:
Subje

In o

talk.politics.guns

|Fram:
Subje

Here

talk.religion.misc

From:
Subje

talk.politics.mideast

Figure 5.5: Example output of concatenated training files.

5.2.3 Suffix Tree representation

The construction of suffix trees in an efficient manner is a non-trivial problem and key to the
success of the toolkit as a whole. This section describes the design chosen for the toolkit. An
instance of the Node class (see Figure 5.6) represents a position within a suffix tree and holds
information on its count, parent, child and so on. The RootNode class represents the root of the tree
and holds additional information such as the filename of the stream it represents.
OptimisedRootNode extends RootNode and as well as representing a suffix tree it is within this
class that operations such as building the tree and trimming the depth of the tree and so on are
contained.

Node

Extends

RootNode

Extends

OptimisedRootNode

Figure 5.6: Suffix tree representation classes.

More details can be found about the classes in the attached DVD.

5.2.4 Extracting suffixes

The first stage of the method used to create a suffix tree is of course to load the contents of the file.
The file may be a single stream of symbols or possibly a concatenated file, i.e. the output of the
stage mentioned earlier. Irrespective of whether or not the file is concatenated, the next step is to
locate the index of the eof symbols, the number of which is equal to the number of streams
contained.

As an example, a concatenated file containing two streams may look like:
The cat sat on the mat.$The dog went out to play.$

This file contains two streams, denoted by two eof symbols $§ whose indexes are then stored within
a list. It is important to locate the indexes of the eof symbols, otherwise the concatenated file, a
collection of several streams, would be treated as a single stream and this is not the case. Let’s say
that we have two indexes, i1 and j, whose values are the start index and end index respectively. 1 is
set to be 0 in the first case, and then the index of the previous eof symbol +1 for each of the

61 |Page

following streams. j is set to be the current eof index within the list. Quite simply 1 and j allow us to
process each stream at a time i.e. “The cat sat on the mat.$” followed by “The dog went out to
play.$”. The next step is to extract the suffixes from each of the streams and store each of these
within a list. The list of suffixes is then sorted in order to speed up the process of building the tree
from the list of suffixes.

5.2.5 Optimisation note

It is possible to create the tree without sorting the list of suffixes or without even listing the suffixes
and simply adding them on the fly from the original text. However, by profiling the operation of
building a tree, the most common task was found to be comparing two symbols, and it is required to
do this in order to determine the location to insert the current Node. By sorting the list of Nodes, we
are able to reduce the number of times this operation is executed as we know our current location
within the suffix tree, always working from left to right and never having to return.

A further step which has allowed us to greatly reduce the time of creating the suffix tree is to not
only store the location of the current Node within the tree that we are to add the next Node but also
the location within that Node. As an example, we may have two suffixes within our sorted list, 'at
on the mat.$' and 'at sat on the mat.§'. By having a sorted list of Nodes, we would not have to sort
through the entire contents of the top level of the tree attempting to find character 'a' and then
working from this point. We would simply have to check if the first character of the Node to be
added was equal to the current symbol at depth 0, which happens to be 'a' and work from there. If
the symbols were not equal then we would create a new branch at depth 0 and add the new Node.

What was found to take a long time even after this optimisation was that when a match was found at
depth 0, we then had to traverse the tree, comparing symbols and finding the exact location to insert
the new Node. A number of symbols would often need to be matched before we had to split and add
the new Node. The case is often worse with the worst case of adding the same suffixes twice which
is possible when adding numerous streams into a single suffix tree. This is why after sorting the list
of suffixes, we then iterate through the list determining the common prefix between a Node and its
previous. This allows us to determine the exact location within the current Node to insert the next
without having to traverse the branch.

We know that we must store N suffixes, with N being the length of the text stream. However, it is
essential to try and reduce the amount of information stored within each instance of a Node. We
created a class named Node which extends the Java class DefaultMutableTreeNode as this allows us
to store a reference to a parent Node and also to the child Nodes. It is important though to store
enough information within this class to allow us to complete operations quickly, but we must also
keep the amount of memory space used by each instance of the class, simply due to the number
created when dealing with large streams.

One method of storing the contents of each Node would be to simply store the suffix that it
represents as a String. Unfortunately due to the amount of suffixes and the sizes of each, this is not
feasible. A better approach is to store the original stream, which we shall store as an array of

62|Page

characters within a class called RootNode which extends the Node class. Now, rather than storing
the substring of each Node, we can simply store the index within the original string as the starting
index of the substring and also the length of the substring. There is the added operation of retrieving
the substring from the original stream, however, by storing the stream as an array it is a very quick
operation and saves a massive amount of memory use.

We store the count of each Node within an int, and a reference to the RootNode which allows us to
access the original text stream. We also store the depth of the Node as an int, as this allows us to
easily set the depth of the next added Node and is also useful when computing e.g. C-measure as we
need to determine at what length we are to increase the count. The final information stored is the
number of common characters between this Node and the last to be added, as this allows for easy
insertion when constructing the tree.

We now have enough information to quickly construct the tree as we have a sorted list of suffixes,
represented as indexes into the original stream, the length of the suffix and also the number of
common symbols between the current Node and the last to be added. A snapshot of this information
would be similar to that shown within Table 5.1.

Index |Length|Common
55630 | 24113 4

492977 | 618 12
1318077| 1278 7
569464 | 318 3

Table 5.1: Example subset of suffix model information, from which we construct a suffix tree.

Loading a 1.3MB concatenated file ten times as an example takes 45 seconds yet loading a standard
file which is typically several Kb's ten times takes less than a second. This shows that loading non-
concatenated files is done within an acceptable time but the concatenated files should ideally be
improved, especially due to the fact that there will be several concatenated files to load (one for
each class) and each will be loaded thousands of times. By storing the information displayed in
Table 5.1 within a text file, each concatenated model can be loaded from the point at which we have
the sorted list of nodes and the positions at which each is to be inserted. By using this method, the
execution time required to load the above mentioned file can be nearly halved.

Another optimisation was found during the experimental stage of comparing the models to the
testing files, and it was found that by changing the order of comparison we can make further
improvements. The typical methodology would be to load a testing file and then compare this file
against each of the training models. As mentioned in 3.4, assuming there are K classes and N testing
documents, typically N > K and the time to load a single model from K is much greater than the
time taken to load a model from within N. Each large model from within K would typically be
loaded N number of times, however, this can be dramatically reduced by reordering the comparison
and instead loading a training model only once and comparing the model against all testing files
whilst it is in memory.

63|Page

5.2.6 Trimming concatenated models

It is possible to further optimise time and space consumption by pruning the suffix trees to the
maximum size required by the algorithms. When computing PPM Measures we only investigate up
to a depth of 8 and with C-Measure we investigate up to depth 50, and we can prune the
concatenated trees (due to their sheer size compared to non-concatenated files) respectively. The
difference in lengths between the algorithms is due to the high computational overheads for high
order models of PPM. This pruning has no outcome on the results but does serve to increase loading
times of the trees and also the size of the trees when held in memory.

As a test experiment we executed the same experiment of loading a tree ten times, but in this case
we used a very large 10MB file. It took 219 seconds to load the un-pruned tree ten times, 168
seconds when the tree was pruned to a depth of 50, and 81 seconds when the tree was pruned to a
depth of &.

5.2.7 Building the tree

Code sample 5.1 was particularly difficult and is used to insert a new node into the tree using
common character substring lengths mentioned in 5.2.5. The method is not static and is therefore
called upon a current instance of the Node class, which will always be the last Node added to the
tree i.e. lastnode.place(newnode, number of common characters). We therefore have the location of
the last node to be added, the information pertaining to the new node and also the number of
common symbols between each of the suffixes.

i<

64| Page

: e i) pubilic Node place(Node nextMNode, int cosmon)

- 18O i

i m 12| common == O)

v 23 t

Lo pextiode , count +4;

P - | raxtiode . depthes

23 this.getPootNode (| .add| nextNode):

P this.getRootNode () ,count ++;

P2

)] retucre nextNode;

| 2a0)

o241 else

i H t

L =43 12| common >= thiz.depth |

Loz i

- 1f(common == chis.depth + this.length - 1)

246 1

un 1 (nextNode. length == cosmon |

i o2e0 I

. 249

i o280 this.count++7

281 increaseCount | this);

T

289 rerurs this!

. o284)

i oass elise

] L

P

258 nextNode. indas o= CcoMnOn!

. 259 nextNode, length -= cosmon;

i 260 nextNode.deptt = this,depth + this, lergth;

261 nextNode . count s}

v 262

i 269 this.countes;

L6 increaseCount | thix);

. 245

y 266 this.add| mextMode):

-

Lo260 return nextiode;

T S
20 1
2u else

. an t

P int numiatchOnNode = common - [this.depth - 1)3
74

298 .

1] liode templode = new Node! this,.mybootNode, this.index + numNatchOnNode |

Lo templode . length = this, lengtl - masNatchOmBode:
7 tempNode.dapth = this.depth « nuslatchOmNode:
2w

1 280 while| this.getChildCounc() > 0)

Loam t

i 202 cempNode .add((Nodelthis.getChildAt(O) §5

Lo [}

T4

-] tempNode.count = this,count?

208 this.add(tempNode)

L

. 208 this. length = numMatchimNode:

i 29 this,countes;
90 increaseCount | thia)2
1
292 nextMode. index &% CommOn:

9 nexthode. WTh == COESeOn!
294 nextNode.depth = this.depth + nunBatchOnNode;
208 nextNode count 4+
296 thia.add(nextNode);
-
- return nexctHode:
FR]]
300]
301 eise
2 I
03 Node temp = | (Node)this.gecParent (]).plece| nextNode, commwon |:
304
Jos ceturn temp;
306 1
W7)
00]

Code Sample 5.1: Inserting the next node into our tree.

The first thing checked is whether or not the common value is set to 0 (line 232), if so then the first
symbol of the next suffix does not match the previous and so the new branch/node is added as a
child to the root of the tree. The count is set to be 1, its depth is set to be 1 and in order to balance

65|Page

the counts within the tree correctly, the count of the root node of the tree is also increased by 1 (see
lines 234-237). If, however, the common value is greater than 1, we have to add the new suffix into
the last branch added to the tree. We do not know where within the branch though as so we check as
to whether or not the common value is greater than or equal to the depth of the current Node within
the branch (line 243). If not then we call the place method again but this time we call it on the
parent node and not the current one (line 303). We are basically traversing up towards the root of
the branch until the insertion location is found.

If the common value is greater than or equal to the depth of the current node then we must make
further checks. If the length of the node to be added is equal to its number of common characters
then it is a direct duplicate of the current node (247), we therefore increase the count of the current
node and each of its parent’s nodes until the root node is reached. To do this we use an iterative
method which continues to increase the count of the current nodes parent node until the current
node becomes the root node of our tree.

Within lines 255-269, if the length of the new node is greater than the number of common symbols
then the next suffix does match the last to be added but there are more symbols i.e. it is longer.
What we therefore have to do is effectively create a new node to be placed as a child of the last to
be added. We change its length to be its current suffix length minus the length of the last added
suffix, we set its depth to be the suffix length of the last node to be added i.e. the depth of the last
node plus its length. Its index is also incremented by the number of common symbols and its count
is set to be 1. The count of the last node to be added and all of its parent nodes are incremented by 1
and then the new node is placed as a child node.

In the case that the number of common symbols is less than the depth of the last added node in
addition to its length then we must break up the last added node and create two children, one will be
the part of the suffix following the break, and the other will be to represent the newly added suffix
(lines 271-299).

3 bra |2 ras |1

—

1
1

—_

N

ras | 1

a
bra |2 « |1 | brae
1| b

Figure 5.7: Original tree before adding node which matches all characters within the current
node.

Say that we are currently located at the highlighted node “ra$” as displayed in Figure 5.7. If we
were to then insert the stream “rabra$” then “ra” would be common to both suffixes, however, we

[13 2

would split the “ra$” node so that its suffix becomes common i.e. “ra” and its previous remainder

66\%’::-:’;-

“$” is added as a child node with the same count but its length, depth and index updated
accordingly. We are then able to add what was not common between the two suffixes as a new child
node, which in this case is “bra$”. All counts of parent nodes are then updated and the insertion is
complete, see Figure 5.8.

« |11 | a (3 bra |2 ra |2

| LN N

« |1 bra |2 o (1| bra= |1 | « |1]| bras |1

Figure 5.8: Tree shown in 4.10 after inserted the next node.
5.2.8 Checking the counts within the suffix tree

Once the tree has been built it 1s possible to check that the counts are correct by iterating through
every non-leaf node (node which has children) and ensuring that the count of the parent node is
equal to the sum of the counts of its children. If at any time this is not true, then the tree has not
been constructed correctly. This is because the count at the root of the tree is equal to the number of
suffixes and this number should equal the total number of leaf nodes within the tree.

5.3 Base classes

The relationship between the base classes and the other components within the toolkit is shown in
Figure 5.1 and was introduced in section 5.1 as allowing extensibility as a new algorithm only
requires the specified abstract functions to be implemented in order for it to function.

Results are stored within a combination of comparisons and collections. Comparison is an abstract
class that is used to store information regarding a single comparison between a testing file and a
training file. We say an instance of the TestCollection class holds all comparative values relating to
a single testing file. Figure 5.9 shows that for each algorithm we extend TestCollection to all
comparative values relating to its own technique. Further information regarding TestCollection and
extending the class can be found in 5.3.2. Collection as a base class is used to hold an array of
TestCollections, a list of training files, testing files and also the current protocol. Further
information regarding the Collection class and how it is further extended for each algorithm can be
found in 5.3.4.

67 |Page

Comparison Test Collection

Extends Extends

PPMComparison <€—Has Many—— PPMCTestCollection

Figure 5.9: Example extension of the base classes.
5.3.1 Comparison class

Comparison.java is an abstract class that is used to store information regarding a single comparison
between a testing file and a training file/model. As each testing file is compared against a number of
training files we would say that each instance of a testing file would have a number of comparisons
i.e. a one to many relationship. Comparison.java stores the training file used for the instance of a
comparison and returns basic information such as the location of the training file and the category
to which the training file belongs. The class also contains an abstract method named
getNumValuesPerResult and this 1s needed as the algorithms may have differing amount of results
per comparison. The method therefore returns the number of values outputted from a single
comparison i.e. C-Measure outputs C-Counts for each matching substring length, however, PPM
outputs only a single comparative value.

This class can now be extended by each instance of an algorithm to store results pertaining to a
comparison. C-Measure will generate a number of counts, and a result is outputted for each length
of substring compared. In this case an array of integers is used to store the results and methods are
included to fill the contents of this array as well as retrieving them to a calling method.

Because the base class Comparison.java is extended, the information which is common to all
comparisons, i.e. information regarding the training file used can be passed to the base class by
making use of Java’s keyword ‘super’ (used to call the constructor of the superclass in the base
class). As mentioned earlier, each class which extends Comparison.java must also implement the
method getNumValuesPerResult and in this case the size of the array cCounts would be returned.

5.3.2 Test Collection class

We say a TestCollection holds all comparative values relating to a single testing file. The
TestCollection class is therefore used to hold information regarding the testing file and also all
comparisons (instances of Comparison.java) which have been created by comparing each training
model against this testing stream. The Boolean isConcatenated is needed in order to determine the
category of the training model as a concatenated training models category would be set as its file
name but a non-concatenated training model would be held in a folder with the name of the
category to which it belongs. The testing file is stored within a variable of the class instance and
with the information contained within this class and each comparison we now know the training file
and testing file involved in each comparison. The length of the testing file is required a number of
times when calculating measures and as it takes time to compute it is more efficient to have this

68| Page

value stored within a variable also.

TestCollection is also an abstract class containing a number of abstract methods and each algorithm
must extend this class as each algorithm will have its own method of creating new comparisons and
also retrieving them. Many functions will be common to all algorithms and that is why this abstract
class has been created. When an instance of the TestCollection class is created, all algorithms will
need to specify the testing file and whether or not the testing file will be compared to a concatenated
training model or not and that is why the methods relating to the setting of this information is
contained within this class. The retrieval of this information as well as the category to which the
testing file belongs will also be common and is again contained within this class.

As the constructor for this class specifies that an array containing all training files must be supplied,
and though the type of comparisons and the array type each will be held in are of different class
types, each will be done in much the same way and that is why the ordering of the calls to the
abstract methods is also held within this class file. We say that the closest matching training model
1s the one that outputs the highest comparative value when compared against a testing file.

5.3.3 Extending TestCollection class

Take PPM and Figure 5.9 as an example of how each algorithm would extend the base class. The
constructors are very simple and this is the intention of using inheritance within the code. The call
to ‘super’ is made which calls the constructor of the base class, which as we saw will handle the
setting of the testing file and then call abstract methods which are contained within the classes that
extend it. Two of the abstract methods contained were createComparisonArray and
createNewComparison, which handled the creation of the type of comparisons to be instantiated, in
this case PPMComparison. Each algorithm will implement these methods in similar ways except
they shall substitute PPMComparison for its own type, possibly CComparison for C-Measure. The
array of comparison types are now stored within this class so that all comparisons for a
TestCollection are easily accessible. The comparative values will also be set from methods within
this class as it is from this class that we are able to access all of the comparisons but each algorithm
may have its own way in which it sets the values and also what the methods are called.

5.3.4 Collection class

The Collection class as a base class is used to hold an array of TestCollections as well as the set up
information such as a list of all training files, testing files and also the current protocol. The most
important method within the class is setMeasures as this is the method which starts the experimental
process once all of the initial setup has been completed. The method will determine whether the
current protocol is concatenated or not and call the relevant method in each case.

Once called, each functions in much the same way. Both are able to print out useful debugging
information such as information on each of the files being processed and the current progress of the
comparisons. In the case of non-concatenated, each testing file is accessed in turn and passed to the
method setMeasuresNonConcatenated which requires a testing file as a parameter, and these
methods are located within the classes that extend this one, of which each algorithm must have.
Within this class the methods are abstract and the implementation of these methods shall be

69|Page

discussed later. As mentioned earlier, it is more efficient in the case of concatenated training models
to load them a minimum number of times and that is why is the case of setMeasuresConcatenated
each trianing model is processed individually rather than each testing file. These differences can be
seen within lines 382 and 392 in Code sample 5.2, 415 and 425 in Code sample 5.3. The algorithm
specific implementation for non-concatenated protocols is called by line 384 in Code sample 5.2,
and line 417 for concatenated protocols.

i EX ENRX

r s asms v alin st 4t snat 3

Code Sample 5.2: Base processing of non-concatenated comparisons.

- . e e s e el e A b st o d

Code Sample 5.3: Base processing of concatenated comparisons.

The general purpose of the methods contained within the Collection class is to fill a multidirectional
array of results. After each testing file has been compared against all of the training models, the
results of the comparisons are outputted to a text file so that the results can be stored for repeated
viewing without having to re-run the experiments.

70| P a

e

=

5.4 Implementation of the algorithms
5.4.1 C-Measure
5.4.1.1 Static case

The method setCounts was particularly difficult and so shall be explained in depth within this
section. It 1s a recursive method that tests whether the current symbol we are processing within the
testing suffix tree matches the current symbol within the training suffix tree. If so, then the C-
Counts are updated for the current depth of the substring, if not then we move on to the next
symbol. Both the training tree and testing tree are traversed simultaneously and shall continue until
we have checked all paths within the testing tree or the end of the training suffix tree is reached.

The setCounts method was built after identifying all possible cases when simultaneously traversing
two trees. The first condition within the method tests whether this is the first call i.e. we are at the
root of the tree. The route of the tree holds no characters and is not to be compared against the route
of the training tree, this condition allows us to gather each of the testing trees children of the root
node and iterate through them sequentially. Both trees are sorted and so when we are searching for
an insertion position for the current testing node, if this value is equal to the number of children
then this tells us that none of the remainder will match and so we return. Until this condition is met,
we recursively call the setCounts method but replace the root node with the current child of the root
node. We are not yet concerned with whether or not the first characters match as this will be dealt
with at the next stage.

When the method 1s recursively called, we have five essential parameters as displayed in table 5.2.

Name Type Description
test Node | Current Node within testing tree
testOffset int | Position within current testing node i.e. current testing character
train Node | Current Node within testing tree
trainOffset int | Position within current training node i.e. current training character
currentLength | int | Length of substring and position within array in which we increase count

Table 5.2: Parameter information for C-Measure setCounts method.

What we are essentially doing is keeping track of our positions within each of the trees and
comparing the characters, continuing to traverse whilst they are matching and returning when they
do not, and then moving onto the next testing branch. There are six possible cases when you are
asked to compare the next characters within the current nodes:

Case 1: We have reached the end of the current testing node and the current testing node has no
children. In this case we have no need to continue as we have matched the entire current match and
$O we return.

71|Page

Case 2: We have reached the end of the training node and the current training node has no children.
In this case, although we would like to continue, the training branch has no further paths i.e. this
part of the current suffix 1s unseen within the training text and so we return.

Case 3: We have reached the end of the testing node but not the current training node, however, the
testing node does have child nodes. In this case we remain at the same position within the training
tree but we now iterate through the children of the testing node to see if the following symbol
within the training node exists. There is no need to iterate through all of the testing children and
attempting to compare these with the training tree as we are within a node and there is only one
possibility so it is quicker to attempt to find this within the list of testing children. If a matching
character is found, we then continue by making the matching testing node the current test node. If
no match is found we return to the calling method.

Case 4: We have reached the end of the training node but not the current testing node, however, the
training node does have child nodes. In this case we remain at the same position within the testing
tree but we now iterate through the children of the training node to see if the following symbol
within the testing node exists. If a matching character is found, we then continue by making the
matching training node the current node. If no match is found we return to the calling method.

Case 5: We have reached the end of both the current testing and training node, and both of these
nodes have child nodes. This case involves more processing than the other cases as we now need to
iterate through each of the child nodes and recursively process each against each of the training
nodes and their children.

Case 6: If none of the above conditions are satisfied then we continue to shift positions along both
the current nodes, updating the counts array as we progress. This loop will then continue until we
reach the end of either of the nodes or we find a symbol which does not match.

5.4.1.2 Dynamic case

The dynamic case is processed differently as we do not build a suffix tree. We do create every node
which would be contained within the tree but these nodes are kept within a list and not added to a
tree. The reason stems from the fact that the symbols are not actually stored within nodes, we
instead have a reference to the original input string. With the dynamic case it is very likely that we
will be inserting suffixes that are not contained within this input string and so it must change. Also
when a node is added or modified, it is also very likely that indexes would change and we would
need to know which input string the index refers to. To tackle this, it works well to concatenate the
testing string onto the end of the training string (see 5.2.4) and treat the index of the first symbol of
the testing string as N, with N being the length of the training string and us beginning at value 0.
This would now ensure that there 1s no confusion between the reference location of a suffix.

72

P
i

da e

Training String: The cat sat on the mat.
Testing String: The dog went out to play.
The cat sat on the mat.$The dog went out to play.$

Index of first testing character is 24.

Figure 5.10: Example of testing string being concatenated onto training string for dynamic
cases.

We would then begin extracting suffixes from the testing string and compare these to the training
tree. Using the above example we would begin with the suffix found between index 24 and 49
which is effectively the entire testing stream and then shift right one position each time until we
reach the end of the testing stream. The suffixes are extracted and created as Nodes through use of
the method insertSuffixes which passes each node to a dynamiclnsert function within the same
class. The method dynamiclnsert is built logically in much the same way as setcCounts. If the
current training node has no children and is the RootNode of the tree then we increase the count at
the root and also the count of the new node to be inserted and then insert the node as a child of the
RootNode. If the current training node has no children but is not the root there 1s no need to split the
node or add as a child, we simply increase the length of the node by one and alter the index so that
is refers to the position within the testing stream rather than the training stream.

If the current training node does have children then we must find where within the current depth to
insert the new testing suffix. We do a binary search of the children and the insertion position is
returned as an integer. If this value is equal to the number of children at this depth then the ASCII
value of the first symbol is greater than any of the children within this depth. The new node is
therefore inserted as the last child due to the ordered nature of the suffix tree. The counts are
adjusted accordingly and the depth is calculated as the depth of the current node in addition to its
length.

If the value returned from the binary search is not equal to the number of children we must then
treat the value as the desired insertion position. The next step is to determine whether the node that
is currently situated at this position needs to be shifted to the right (as the tree is ordered) or at least
some of the current node is matched and so we must insert the new node into the current node and
possibly split it at some point.

In the case where the first symbol of the node that exists at the insertion point is equal to that of the
new node to be inserted, this is the time that we would now increase the counts within the C-Counts
array as a match has been found. We would then loop, moving along both nodes and increasing the
C-Counts at the relevant depth until we reach the end of either node or the next symbols are found
to not match. If all characters within the new node are matched then we simply increase the count of
the current node and return to the calling method. If there exists more symbols on the new node
then the new node must be dynamically inserted as a child to the current node and so the
dynamiclnsert method is called with the current training node which we have reached the end of as
the node at which we want to insert and the new node's index and length are altered to support the
fact that some of the symbols have already been matched before the remainder is passed as the new
node parameter. If the current node within the training tree was a leaf node then it is this case that

73'5’:1; (5

makes the suffix tree lose its balance of counts, i.e. counts of the parent node being equal to the sum
of the counts of its children. This is an example of where the eof symbol is important, it ensures that
there is no case where all symbols of a lead node can be matched with the testing node still having
more characters.

If we have not reached the end of either the current training or testing node then we must split the
current training node. The description of dynamic C-Measure in 3.3.2 shows an example where we
must split the node “bra” within the training tree as “br$” is inserted. You will see that the node
“bra” is modified to become “br” and the removed “a” is created as a child node with all previous
children of the “bra” node now becoming children of the node “a”. This function was again
particularly difficult to implement and can be seen within the source code on the attached DVD.

5.4.2 R-Measure

All R-Measure results can be calculated using C-Measure results and this is the approach used
within the toolkit. Rather than calculating R-Measure results independently or simultaneously with
C-Measure, the toolkit loads the values of C-Measure comparisons and places them within
RTestCollection's, which are extensions of TestCollection class. The base class Accuracy calls the
method findResults and when this is overridden within the Raccuracy class, any R-Measure
variances can then be calculated by adding calls to find accuracies for each variant in which we are
interested.

5.4.2.1 r™maex

r™%* is an alternative name for the standard R-Measure and is defined as the sum of the C-Counts
and so we gather the value from getrCount. The value is normalised by adhering to the formula
displayed in 3.1 and its coded equivalent is displayed in Code sample 5.4.

. e

Code Sample 5.4: Coded Normalised R-Measure Value.

5.4.2.2 R,

R<q is easily obtained by summing all C-Counts found between 1 and the set limit and we explore
all maximum values between 1 and a given maximum in order to determine which maximum value
achieves the greatest results. It is the responsibility of getRMeasureLessThanEqualTo to summate
the C-Counts between 1 and the upper limit and getNormalisedMeasure shall then normalise this
value by implementing the formula displayed in 3.1.

5.4.2.3 R,

The R, 4-Measure is very similar to R<, except that we decrease towards 1 as an upper limit rather
than increasing from 1 as a lower limit and in this case it is the upper limit which changes and the
lower limit 1 remains static. Again a total is determined by an alternative method, namely
getRMeasureGreaterThanEqualTo but this figure is then normalised as discussed in 3.1.

74 |Page

5.4.2.4 R-Ranges

The function findRRangesAccuracy makes use of two loops in order to accumulate C-Counts
within the ranges. There is no need to normalise the total and so we determine the comparison that
returns the highest total between the set ranges to contain the correct author, topic or type and so on
depending on the current situation.

5.4.3 PPM (Prediction By Partial Matching)

As with the dynamic case of C-Measure we concatenate the testing stream to the training stream as
this allows us to work with unique indexes/positions within the stream. We then create two arrays,
one of which acts as a temporary store which holds pointers that are updated, the other acts as the
context list once all pointers have finished updating. Once all updates have finished the contents of
the updating pointers are transferred to the second array.

The method processNextChar (see Code sample 5.5) holds the outer loop operation and its purpose
1s to attempt to encode all symbols within the testing stream until all have been processed and this is
done in three steps. Whilst there are still unprocessed testing symbols we first fetch the next symbol
to be encoded, we then calculate the probability for this current symbol and we then swap the
contents of the arrays i.e. pointers before processing the next symbol.

Code Sample 5.5: Coded method for encoding all symbols for PPM.

There is a great amount of work involved in calculating the probability of the current symbol being
encoded. It 1s the method findNextChar which attempts to encode the next symbol at the furthest
point in the context list, and drops down this list should it be unsuccessful at the current depth. As
we escape down through context lengths we have to combine probabilities and so we store all of the
probabilities to be combined within a list and this list is first of all reset along with the list of
exclusions (should there be any) when we process a new symbol.

As symbols are found we simply update pointers within the suffix tree and update the contents of
the probability list and this process continues until we reach the end of the testing stream or the
current symbol cannot be encoded. If the symbol cannot be encoded we decrease the context length
and continue but as well as this, with the dynamic case, should there be an unseen symbol then the
symbol must be inserted at all current positions within the tree and this is made easy due to us
having stored each of the insertion locations within our array.

75|Page

55 Using the toolkit

The object named ‘Main’ in Figure 5.1 is the main entry point of the application and allows a level
of abstraction between the user and the underlying methodology. It is from here that user commands
are executed and these commands perform underlying operations. A user must first state the
operation they wish to perform, such as “conc” for concatenating files within a location by also
passing parameters indicating folder names within a base location, see Example 1.

Example 1

Main.maiznnew String[]{ "conc®, "/home/localadmin/Z0inevs/crossis",

BEPLIE0", TSR ITelr, "sHlied¥, TAHTTEINIE

Example 2 shows that in order to then trim these models for optimisation again only a single call is
required no matter what algorithm(s) are to be used.

Example 2

Main.maizn(new String[]{"trim", "/home/localadmin/Z0news/cross1/"});

Example 3 shows how little code is needed in order to process the models and then perform a C-
Measure calculation on them. First of all the parameter “c” is passed that indicated it is C-Measure
we wish to be performed. We then pass the base location of the corpora from which we can find the
training and testing documents. The next two parameters (“true” “true” in Example 3) indicate the
protocol to be investigated, with the first parameter being a Boolean value, true indicating
concatenated and the static for static or dynamic with true indicating static. Following this is the
index of the testing files to be investigated, “0” indicates that we must start with the first file at
index zero but “-1” is used to indicate all files, if say “99” were passed then only the first 100
testing documents would be categorized, from index 0 to 99. The following parameters indicate the
names of the training directories and then the testing directory.

Example 3

Main.main({new String[1 ¢ "c”, "/home/localadmin

ors ity fopeint,]

Example 4 shows how similar it is to process the existing models but on a different algorithm. This
algorithm takes “6” as parameter and this indicated the PPM order in which we are interested. Each
algorithm can take whichever parameters are required and loops can be used to perform
experiments on all orders, all combinations of folders for cross validation and so on. These
commands can also be bundled in order to further simplify the process or alternatively this
information could be retrieved through a GUI if desired. A common entry point such as this is
powerful in that it is possible to modify the parameters and perform experimentation of any
algorithm, vary the training and testing data and also the order or substring length.

76|Page

Example 4

Main.main(new String[1 { "ppw”, "/howe/localadmin/Z0inews/cros

=t el r_qrr
) By o,

]

Ferain®; Taplitdt, "aplaiti "splita®, "split3",; "test", "split4"}):;

Code sample 5.6 shows the main function and how the parameters are redirected depending on
which operation the user asks to perform. Any new implementations that extend the base classes
can add its case to this code and then be ran from the same common location as the other operators.

| 1=

[20 = * Creates & HEf 1nstance f 4
| zZ1 public static void main(String[] args)
22 {
23 String command = args[0]
| 24
25 String[] newlArgs = new String[args.length - 1];
26
27 for(int i = 1; i < args.length; i++)
28 {
29 nevirgs[i - 1] = args[1]:
30 }
31
32 1f(command.egquals("conc”))
33 {
34 new Training.Testing(newlArgs);
35)
36 else 1f(command.equals("trin”))
37 {
38 TrimConcatenatedtodels. Testing.main{ newlrgs):
39 }
| 40 else if(command.ecuals("ppn'))
41 {
4z jscat.PPMMain.mazn(newlhrgs);
43)
a4 else if(command.eguals(”c'))
45 {
46 CHeasure.Testing.CTestingCollection.main| nevldrgs):
47 }
48 else if({ command.equals("7T"))
49 {
50 TTestingCollection.main| newhrgs)
51 }
52 A K7
53 {
54 System.out.println("Inval mmmand®)
55 System.exit({ 0);
56 }
57|+ H
5R

Code Sample 5.6: jSCat’s main entry point.

Chapter Discussion

Data preparation can be common among a number of algorithms and fits well within a common
toolkit, allowing classes implementing different algorithms have been ran sequentially on a single
data source within a single toolkit. This chapter has shown that optimisations can be found that
drastically affect processing times and we have now been able to analyse stream based substring
lengths that are much longer than previous research.

77|Page

The use of base classes within the toolkit has made it possible for each algorithm to be introduced
using very little code. The experimentation process has been simplified and experimentation can be
started from a single location and can be varied by simply changing the input parameters.

There were a number of functions that were difficult to implement and a number of these have been
explained in detail within this chapter, there was unfortunately too much code for each to be
included within the chapter but they can be viewed within the source code on the attached DVD.
The toolkit is available for download from http://aiia.cs.bangor.ac.uk.

78 |Page

[§]

Chapter 6

Experimental results

Chapter Summary

The purpose of this chapter is to describe the experimental results for text categorization
using stream-based methods. The methods have been implemented using suffix trees as
described in the previous chapters. Results compare all algorithms within each dataset in
order to discover the best performing within each corpus.

Summary of each section

Section 6.1 details the experimental setup including how the datasets have been split to assist
in experimentation Section 6.2 details all results collected from the experiments Section 6.3
lists timings received from experiments on 20newsgroups and allows us to compare the
processing of each algorithm. Section 6.4 discusses results and notes all observations made
from the comparisons.

6.1 Experimental setup

6.1.1 Corpora setup

The following corpora were used in the experiments. Note that the file names within each
split for each corpus are detailed within the attached DVD.

6.1.1.1 Reuters-10

The frequency of documents per category varies greatly; earnings, for example, contains
2877 training documents whilst the other nine, apart from acg (containing 1650) all contain
less than 600, and this is also consistent across the testing documents. Table 6.1 shows the 10
most frequent categories and the number of documents within each.

The resulting corpus has 7193 training documents (5.9MB), and 2787 testing documents
(2.1MB). The document sizes range from 47 bytes to 13.8 Kbytes. The training data per class
varies from 213.7 Kbytes to 1.4MB.

79|Page

Category | No. Training Docs | No. Testing Docs
earn 2877 1087
acq 1650 719
money-fx 538 179
grain 433 149
crude 389 189
trade 369 117
interest 347 131
ship 197 89
wheat 212 71
corn 181 56
Total 7193 2787

Table 6.1: The number of testing and training documents for each category of Reuters
10 (R10).

P

Faggt

80

6.1.1.2 RCV1-Author

Here we select the top 50 authors (with respect to total size of articles). The authors and
documents per set are detailed in Table 6.2.

Author No. Testing Docs | Training Document Size (KB)
Alan Baldwin 26 785
Alan Crosby 26 705
Alan Wheatley 23 695
Alastair Macdonald 26 848
Alexander Smith 30 962
Alistair Lvon 29 918
Amelia Torres 23 653
Andrew Browne 20 655
Andrew Cawthorne 29 759
Andrew Hill 28 848
Anthony Goodman 26 694
Arshad Mohammed 23 696
Benjamin Kang Lim 27 768
Carol Giacomo 34 1134
Charles Aldinger 34 942
Christian Jennings 21 667
David Crossland 22 677
David Lawder 32 940
Douglas Busvine 23 719
Ellen Freilich 31 855
Erik Kirschbaum 24 735
Evelyn Leopold 45 1246
Gene Gibbons 25 756
Glenn Somerville 24 766
Jane Macartney 24 754
John Gilardi 26 768
Laurence McQuillan 23 684
Leonard Santorelli 25 892
Linda Sieg 19 657
Maggie Fox 23 665
Marcel Michelson 27 804
Martin Cowley 36 969
Mike Collett 217 805
Mure Dickie 28 805
Nelson Graves 23 704
Oleg_Shchedrov 24 690
Paul Holmes 21 666
Paul Majendie 29 729
Paul Myvlrea 25 730
Paul Tavlor 23 811
Peter Blackburn 24 625
Philippa Fletcher 21 668
Richard Melville 38 1067
Robert Evans 26 774
Robin Sidel 24 646
Steve Holland 28 843
Timothy Heritage 27 864
Todd Nissen 27 732
William Boston 25 815
William Wallis 29 826
Total 1316

RCV1-Author.

Table 6.2: The number of testing documents and size of category for each author within

8l |Page

6.1.1.3 20Newsgroups

Table 6.3 shows the categories in 20-Newsgroups and their numbers of texts. There is no
fixed way to split 20-newsgroup into a training set and a test set. This table also shows that
the sizes of categories are relatively uniform compared with those of Reuters-21578. Five
random splits of 80/20 training/testing were used as in Marton et al. (2005).

Category No. Docs | Category Size (Mbytes)
alt.atheism 799 1.6
comp.graphics 973 1.6
comp.os.ms-windows.misc 985 2
comp.sys.ibm.pc.hardware 982 L.1
comp.sys.mac.hardware 961 1.0
comp.windows.x 980 1.8
misc.forsale 972 0.9
rec.autos 990 1.2
rec.motorcycles 994 1.1
rec.sport.baseball 994 1.3
rec.sport.hockey 999 1.7
sci.crypt 991 2.0
sci.electronics 981 1.2
sci.med 990 1.8
scl.space 987 1.7
soc.religion.christian 997 2.2
talk.politics.guns 910 1.8
talk.politics.mideast 940 2.8
talk.politics.misc Tis 2.0
talk.religion.misc 628 1.3

Total | 18828

Table 6.3: The number of documents and size of each category of 20-Newsgroups.
6.1.1.4 Gutenberg

Table 6.4 lists the authors contained within the Gutenberg corpus, the number of documents
from each author and also the total size of the documents. Some of the documents are as short
as 98.4 Kbytes, and some as long as 1.IMB (many are novels). The training data per class
ranges from 559.8 Kbytes to 3.1MB.

82|Page

Category No. Docs | Category Size (Mbytes)
Charles Dickens 4 2.8
Daniel Defoe 4 1.7
Emerson 4 1.4
Jane Austen 4 3.1
Kipling 4 1.4
Shakespeare -+ 0.6
Shaw 4 1.2
Twain 4 3.0
Wells - 2.0
Wilde 4 1.1

Total 40

Table 6.4: The number of documents and size of category for each author of Gutenberg.

Note that the text inserted by Gutenberg was removed i.e. the disclaimer text was removed
from each of the documents before processing.

4-fold cross-validation was used, with 3 training and 1 test document per class in each fold.
Some works are as short as 98.4 Kbytes, and some as long as 1.1MB (many are novels). The
training data per class ranges from 559.8 Kbytes to 3.1MB.

Table 6.5 allows us to easily compare the corpora’s and shows that the four corpora are quite
different and will allow for conclusions to be drawn from their differences.

DataSet Name No. Test Docs | No. Train Docs | No. Categories | Cross-Validation
20-Newsgroups 3792 15036* 20 Yes
Reuters 10 2237 5677 10 No
RCV1-Author 1316 50 50 No
GutenBerg 10 30 10 Yes

Table 6.5: Summary of data sets used.
* approximately as cross validation is performed and final split will have less
6.1.2 Hardware details

In order to obtain the results, 8 Dual Core PC's with 2GB RAM were used separately with no
distributed computing, each is used to process a single algorithm at a time.

83|Page

6.2 Results

This section describes the experimental results for the stream-based methods and protocols
when used for text categorization on all of the data sets. Accuracy has been quoted since the
experimentation was performed with data sets variants that have only singly labelled
documents. In this setting, Bekkerman, R. (2001) states that the accepted performance
measure is accuracy, and this was the evaluation measure that was specified the most in
previously published experiments for each of the studied singly labelled variants of the data
sets, and therefore provides a broader comparison than the alternative evaluation measures,
recall and precision, and the breakeven point, as used by Yang (1999) for multiply labelled
documents, for example.

6.2.1 C-Measure

This section displays C-Measure results for each of the corpora through use of tables and
graphs. The highest accuracy achieved for each protocol are highlighted in bold font.

84| I) agc

6.2.1.1 20Newsgroups

Concatenated Dynamic | Concatenated Static | NonConcatenated Dynamic | NonConcatenated Static
1 0.0427 0.0427 0.0644 0.0676
2 0.2379 0.2443 0.1424 0.1737
3 0.7875 0.7913 0.2789 0.3067
4 0.8792 0.8789 0.4534 0.4807
5 0.8979 0.8985 0.5716 0.5963
6 0.9045 0.9048 0.6626 0.6767
7 0.9041 0.9053 0.7303 0.7375
8 0.9053 0.9063 0.7762 0.7790
9 0.9063 0.9066 0.8087 0.8067
10 0.9070 0.9066 0.8309 0.8244
11 0.9057 0.9046 0.8440 0.8346
12 0.9038 0.9032 0.8504 0.8395
13 0.9017 0.9010 0.8513 0.8399
14 0.8979 0.8964 0.8515 0.8393
15 0.8923 0.8912 0.8520 0.8400
16 0.8885 0.8869 0.8508 0.8386
17 0.8847 0.8830 0.8501 0.8378
18 0.8788 0.8782 0.8488 0.8367
19 0.8749 0.8741 0.8477 0.8359
20 0.8712 0.8700 0.8469 0.8343
21 0.8675 0.8667 0.8455 0.8330
22 0.8636 0.8630 0.8442 0.8315
23 0.8607 0.8598 0.8427 0.8299
24 0.8569 0.8561 0.8407 0.8273
25 0.8549 0.8537 0.8391 0.8258
26 0.8519 0.8504 0.8377 0.8239
27 0.8478 0.8466 0.8360 0.8213
28 0.8450 0.8441 0.8355 0.8200
29 0.8417 0.8403 0.8332 0.8177
30 0.8386 0.8376 0.8313 0.8162
31 0.8350 0.8341 0.8299 0.8142
32 0.8320 0.8311 0.8275 0.8118
33 0.8299 0.8292 0.8262 0.8100
34 0.8266 0.8259 0.8238 0.8071
35 0.8242 0.8236 0.8216 0.8050
36 0.8214 0.8207 0.8197 0.8033
37 0.8192 0.8183 0.8173 0.8004
38 0.8167 0.8157 0.8153 0.7983
39 0.8142 0.8131 0.8132 0.7962
40 0.8126 0.8116 0.8119 0.7950

Table 6.6: Accuracies achieved by applying C-Measure (up to length 40 due to page

restriction) to 20Newsgroups for each protocol.

85|Page

= « =(Concatenated Dynamic

------ Concatenated Static

o N - ~—— NonConcatenated Dynamic

- == NonConcatenated Static

21 26 31 36 41 46 |
Substring Length

Figure 6.1: Accuracies achieved by applying C-Measure to 20Newsgroups for each
protocol.

The results for the experiment are shown in Table 6.6 and graphed in Figure 6.1. For Table
6.6, the leftmost column indicates the substring length (shown as x axis in Figure 6.1) and for
each protocol an average accuracy is shown (shown as y axis in Figure 6.1). The results show
that concatenated models clearly outperform non-concatenated ones and that dynamic models
marginally outperform static models. The results also indicate that shorter substring lengths
perform better for concatenated cases than for their non-concatenated counterparts. The
optimal substring length is shorter than that of for Gutenberg but is similar to RCV1-Author
which is a more similar corpus in relation to the number of files per class and size of each
file. It is also noticeable from the graph that even short substring lengths are good at
categorizing which is important in situations where the available processing time is limited.

86|Page

6.2.1.2 Gutenberg

Concatenated Concatenated NonConcatenated NonConcatenated

Dynamic Static Dynamic Static
1 0.08 0.08 0.18 0.13
2 0.18 0.20 0.13 0.23
3 0.18 0.23 0.15 0.18
4 0.23 0.23 0.18 0.18
5 0.30 0.40 0.15 0.25
6 0.30 0.40 0.25 0.25
7 0.30 0.40 0.28 0.38
8 0.35 0.48 0.30 0.45
9 0.40 0.48 0.38 0.45
10 0.45 0.55 0.43 0.48
11 0.48 0.58 0.40 0.48
12 0.55 0.58 0.50 0.50
13 0.55 0.60 0.53 0.55
14 0.58 0.60 0.55 0.60
15 0.60 0.63 0.60 0.63
16 0.63 0.63 0.63 0.63
17 0.63 0.63 0.63 0.65
18 0.63 0.70 0.70 0.68
19 0.70 0.73 0.68 0.68
20 0.70 0.73 0.68 0.68
21 0.75 0.78 0.75 0.73
22 0.75 0.75 0.78 0.73
23 0.75 0.75 0.78 0.78
24 0.78 0.75 0.78 0.75
25 0.78 0.75 0.78 0.75
26 0.75 0.75 0.78 0.75
27 0.75 0.75 0.78 0.73
28 0.75 0.73 0.75 0.70
29 0.73 0.73 0.73 0.63
30 0.68 0.65 0.70 0.60
3 0.63 0.63 0.58 0.55
32 0.58 0.60 0.55 0.53
33 0.50 0.53 0.48 0.45
34 0.45 0.48 0.48 0.45
35 0.43 0.43 0.43 0.38
36 0.43 0.40 0.48 0.43
37 0.45 0.43 0.48 0.45
38 0.45 0.43 0.53 0.50
39 0.40 0.40 0.50 0.48
40 0.38 0.38 0.50 0.48

Table 6.7: Accuracies achieved by applying C-Measure (up to length 40 due to page

restriction) to Gutenberg for each protocol.

87|Page

i =
{0, s R

= - =Concatenated Dynamic

o
»

------ Concatenated Static

Accuracy

03 -

NonConcatenated Dynamic

- == NonConcatenated Static |

Figure 6.2: Accuracies achieved by applying C-Measure to Gutenberg for each protocol.

The results for the experiment are shown in Table 6.7 and graphed in Figure 6.2. For Table
6.7, the leftmost column indicates the substring length (shown as x axis in Figure 6.2) and for
each protocol an average accuracy is shown (shown as y axis in Figure 6.2). Figure 6.2 shows
that the optimal substring length is much larger for this corpus, typically between 21 and 28.
Accuracy at lower lengths are not as effective as they were with 20Newsgroups and also trail
off very quickly for substring lengths greater than around 30. Interestingly it is hard to
distinguish between any of the protocols for this corpora, possibly the differences are because
the texts are much larger, possibly because there are so few documents. Either way it appears
to show that the effectiveness of each protocol differs between corpora and this is an
important finding.

88|Page

6.2.1.3 RCV1-Author

Concatenated Dynamic Concatenated Static
1 0.0182 0.0182
2 0.4871 0.4894
3 0.7933 0.7971
4 0.8343 0.8381
5 0.8556 0.8564
6 0.8609 0.8609
7 0.8663 0.8655
8 0.8716 0.8731
9 0.8754 0.8754
10 0.8754 0.8769
11 0.8777 0.8799
12 0.8815 0.8837
13 0.8815 0.8815
14 0.8815 0.8830
15 0.8792 0.8822
16 0.8830 0.8807
17 0.8815 0.8815
18 0.8784 0.8761
19 0.8761 0.8754
20 0.8777 0.8761
21 0.8746 0.8731
22 0.8746 0.8739
23 0.8693 0.8701
24 0.8701 0.8701
25 0.8716 0.8716
26 0.8731 0.8731
27 0.8701 0.8701
28 0.8640 0.8647
29 0.8609 0.8625
30 0.8602 0.8617
31 0.8556 0.8564
32 0.8511 0.8518
33 0.8488 0.8488
34 0.8465 0.84650
35 0.8419 0.8419
36 0.8389 0.8389
37 0.8336 0.8336
38 0.8267 0.8267
39 0.8222 0.8214
40 0.8146 0.8138

Table 6.8: Accuracies achieved by applying C-Measure (up to length 40 due to page

restriction) to RCV1-Author for each protocol.

89|IIS|LL

Concatenated Dynamic

————————————————————————— seeses Concatenated Static

21 26 31 36 41 46
Substring Length

Figure 6.3: Accuracies achieved by applying C-Measure to RCV1-Author for each
protocol.

The results for the experiment are shown in Table 6.8 and graphed in Figure 6.3. For Table
6.8, the leftmost column indicates the substring length (shown as x axis in Figure 6.3) and for
each protocol an average accuracy is shown (shown as y axis in Figure 6.3). For this corpus it
is very difficult to identify differences in the performance of each protocol for any of the
substring lengths. The results are more similar to those obtained from 20newsgroups than
from Gutenberg, possibly this is due to the number of files and their sizes being more similar
to those within the 20 Newsgroups corpora than Gutenberg.

9 |Pa

1

T

6.2.1.4 Reuters-10

Concatenated Concatenated NonConcatenated NonConcatenated

Dynamic Static Dynamic Static
1 0.3111 0.3111 0.4198 0.4184
2 0.6553 0.6553 0.6021 0.6442
3 0.7470 0.7501 0.6527 0.7050
4 0.7792 0.7921 0.7819 0.8114
5 0.8342 0.8386 0.8426 0.8713
6 0.8623 0.8659 0.8695 0.8838
7 0.8784 0.8820 0.8860 0.8909
8 0.8936 0.8967 0.8918 0.8949
9 0.8994 0.9008 0.8927 0.8954
10 0.9021 0.9048 0.8918 0.8923
11 0.9061 0.9080 0.8873 0.8860
12 09119 0.9137 0.8824 0.8811
13 0.9146 0.9169 0.8806 0.8757
14 0.9169 0.9173 0.8730 0.8730
15 0.9177 0.9169 0.8704 0.8681
16 0.9173 0.9169 0.8646 0.8650
17 09151 0.9137 0.8592 0.8610
18 0.9128 0.9133 0.8578 0.8614
19 0.9066 0.9079 0.8538 0.8543
20 0.9025 0.9025 0.8529 0.8552
21 0.8949 0.8945 0.8494 0.8502
22 0.8909 0.8914 0.8476 0.8480
23 0.8838 (0.8838 0.8435 0.8444
24 0.8775 0.8771 0.8435 0.8453
25 0.8717 0.8708 0.8364 0.8368
26 0.8610 0.8596 0.8315 0.8310
27 0.8444 0.8435 0.8221 0.8220
28 0.8270 0.8266 0.8105 0.8105
29 0.7997 0.7997 0.7890 0.7890
30 0.7805 0.7805 0.7698 0.7698
31 0.7599 0.7599 0.7501 0.7501
32 0.7278 0.7278 0.7202 0.7202
33 0.6987 0.6987 0.6911 0.6911
34 0.6665 0.6665 0.6585 0.6585
35 0.6446 0.6446 0.6370 0.6370
36 0.6187 0.6187 0.6129 0.6129
37 0.5834 0.5834 0.5780 0.5780
38 0.5579 0.5579 0.5530 0.5530
39 0.5248 0.5248 0.5217 0.5217
40 0.4989 0.4989 0.4962 0.4962

Table 6.9: Accuracies achieved by applying C-Measure (up to length 40 due to page

restriction) to Reuters-10 for each protocol.

91|Page

= == Concatenated Dynamic

Concatenated Static

«- « = NonConcatenated Dynamic

NonConcatenated Static [

Substring Length

Figure 6.4: Accuracies achieved by applying C-Measure to Reuters-10 for each protocol.

The results for the experiment are shown in Table 6.9 and graphed in Figure 6.4. For Table
6.9, the leftmost column indicates the substring length (shown as x axis in Figure 6.4) and for
each protocol an average accuracy is shown (shown as y axis in Figure 6.4). The results show
that concatenated models outperform non-concatenated ones as was the case for
20newsgroups (see 6.2.1.1), but not as clearly. The results differ from 6.2.1.1 in that for R10
concatenated models achieve their highest accuracy at a longer substring length, typically
between 14 and 15. The optimal substring lengths for non-concatenated models also differ to
6.2.1.1 in that the optimal substring length is shorter at a length of 9.

6.2.2 PPM

This section displays PPMC and PPMD accuracies achieved for each of the corpora, both
with and without update exclusions. The results are again presented in both tabulated and
graphical format and the best results for each protocol are highlighted in bold font for easy
comparison. Although it would have been desirable to have attained results up to order 6 for
all corpora, in reality the resources were not available to have computed these results because
of the high computational overheads (both memory and execution time) for these high order
models.

6.2.2.1 20 Newsgroups

Concatenated Dynamic Concatenated Static NonConcatt?nated NonConcatenated Static
Dynamic
With Without With Without With Without With Without
Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions
2 0.8886 0.8930 0.8851 0.8903 0.7828 0.7659 0.7529 0.7412

Table 6.10: Accuracies achieved by applying PPMC to 20Newsgroups for each protocol.

92 |Page

1.0 ‘
0.9
0.8 ——
> 0.7 ,
g 06 ([I |
3 0.5 + — '
S 04 - BN e ——
<03 -
0.2 g
0.1 - Emm—
0.0 : - e — | — |
With Without With Without | With Without With | Without |
Exclusions | Exclusions ‘ Exclusions | Exclusions | Exclusions | Exclusions ' Exclusions | Exclusions |
Concatenated Dynamic| Concatenated Static NonConcatenated NonConcatenated |
\ ‘ , Dynamic Static o
Protocol l
\

Figure 6.5: Accuracies achieved by applying PPMC order 2 to 20Newsgroups for each

protocol.
Concatenated Dynamic Concatenated Static NonConcatenated Dynamic | NonConcatenated Static
With Without With Without With Without With Without
Exclusions | Exclusions | Exclusions | Exclusions | Exclusions Exclusions | Exclusions | Exclusions
2(0.8920 0.8955 0.8877 0.8910 0.7812 0.7629 0.7537 0.7372

Table 6.11: Accuracies achieved by applying PPMD to 20Newsgroups for each protocol.

Accuracy
o
w

| Without |

Exclusions | Exclusions | Exclusions

With Without | With Without | With

Exclusions | Exclusions | Exclusions

Without | With
Exclusions | Exclusions

NonConcatenated |
Static ‘

NonConcatenated
Dynamic

Concatenated Dynamic| Concatenated Static

Protocol

Figure 6.6: Accuracies achieved by applying PPMD order 2 to 20Newsgroups for each
protocol.

The results for the PPMC experiments are shown in Table 6.10 and graphed in Figure 6.5 and
the results for PPMD are shown in Table 6.11 and Figure 6.6. For Table 6.10 and 6.11, the
leftmost column indicates the substring length (shown as x axis in Figure 6.5 and 6.6) and for
each protocol an average accuracy is shown (shown as y axis in Figure 6.5 and 6.6).

93 |Page

It 1s clear that for PPMC concatenated models performed better than non-concatenated and
dynamic models performed better than static models, a finding that was unclear for C-
Measure results. The results also show that without exclusions achieved best results for
concatenated models, but the opposite is true for non-concatenated models.

For PPMD, concatenated models again performed better than non-concatenated and dynamic
models performed better than static ones. Without exclusions achieved best results for
concatenated models, but the opposite is true for non-concatenated models.

6.2.2.2 Gutenberg

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static
With Without With Without With Without With Without
Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions
2 0.8 0.8 0.75 0.7 0.625 0.65 0.55 0.55
3 0.925 0.95 0.725 0.675 0.925 0.9 0.575 0.55
4 0.875 0.875 0.725 0.65 0.9 0.8 0.575 0.5
5 0.875 0.875 0.7 0.6 0.875 0.875 0.575 0.525
6 0.85 0.875 0.7 0.625 0.55 0.5 0.6 0.525
7 0.4 0.375 0.7 0.65 0.25 0.225 0.6 0.55

Table 6.12: Accuracies achieved by applying PPMC to Gutenberg for each protocol.

With | Without

Concatenated

Dynamic

|
| Concatenated Static

\ ‘ ; I
With | Without | With | Without
| |
Exclusions Exclusions|Exclusions Exclusions|

1 NonConcatenated |
‘ Dynamic

Protocol

R
With | Without
Exclusions | Exclusions Exclusions Exclusions

NonConcatenated
Static

B Order 2
m Order 3
® Order 4
® Order 5
® Order 6
® Order 7

Figure 6.7: Accuracies achieved by applying PPMC to Gutenberg for each protocol.

94| P a

[=

i}

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static
With Without With Without With Without With Without
Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions
2 0.75 0.775 0.75 0.7 0.6 0.575 0.55 0.525
3 0.95 0.95 0.75 0.675 0.875 0.875 0.55 0.55
4 0.925 0.9 0.75 0.65 0.9 0.825 0.575 0.5
5 0.9 0.875 0.7 0.575 0.925 0.875 0.55 0.525
6 0.875 0.9 0.7 0.625 0.575 0.45 0.6 0.525
7 0.425 0.35 0.7 0.65 0.275 0.225 0.6 0.525

Table 6.13: Accuracies achieved by applying PPMD to Gutenberg for each protocol.

0. — - R

0.8 - . =
07 4
| O 06 -
o M Order 2
3 0.5 + ‘
C 04 W Order3
< \
0.3 +
0.2 + ® Order 4
D'é ® Order 5
| ! ' - : L 1l
 With | Without| With | Without . With | Without ~ With | Without | mOrder6
Exclusions|Exclusions Exclusions|Exclusions|Exclusions|Exclusions Exclusions Exclusionsl @ Order 7
| ! | rder7 |
Concatenated | Concatenated Static| NonConcatenated = NonConcatenated | l
Dynamic l Dynamic Static

|
‘ Protocol |
i

Figure 6.8: Accuracies achieved by applying PPMD to Gutenberg for each protocol.

The results for the PPMC experiments are shown in Table 6.12 and graphed in Figure 6.7 and
the results for PPMD are shown in Table 6.13 and Figure 6.8. For Table 6.12 and 6.13, the
leftmost column indicates the substring length (shown as x axis in Figure 6.7 and 6.8) and for
each protocol an average accuracy is shown (shown as y axis in Figure 6.7 and 6.8).

For PPMC, in all cases, with exclusions outperforms without, dynamic models perform much
better than static ones and concatenated models easily outperform its non-concatenated
counterpart. It appears that shorter context lengths provide the best categorization for this
corpus in concatenated cases, but it is less clear as to which is best for non-concatenated.
With the number of testing documents within the corpus being so few we see a large
difference in results, with one file accounting for 10% accuracy in each cross validation
performed.

Notice that for this corpus there is little difference between PPMC and PPMD. For PPMD,
with exclusions outperformed without exclusions as was the case with its PPMC results.
Dynamic models again performed much better than static ones in all cases, as did
concatenated, again better than non-concatenated in all cases. It would be fair to say that

95|Page

context lengths of 2 provided the highest categorization as on more occasions than any other
it achieved the highest accuracy.

6.2.2.3 RCV1-Author

Concatenated Dynamic

Concatenated Static

With Exclusions

Without Exclusions

With Exclusions

Without Exclusions

2 0.7994 0.8055 0.8002 0.8123
3 0.8480 0.8503 0.8495 0.8511
Table 6.14: Accuracies achieved by applying PPMC to RCV1-Author for each protocol.
1.0
0.9 -
0.8 +—

0.7
0.6

1
|
|

Accuracy

1
|
|
|
|

0.1 1—

With

Without

.
|
| Exclusions

Exclusions

With ‘

Without

| 05 +—
04 +— |
0.3 - mOrder2 |
0.2 — = Order 3

i Exclusions

Exclusions

i Concatenated Dynamic | Concatenated Static \

Protocol

Figure 6.9: Accuracies achieved by applying PPMC to RCV1-Author for each protocol.

Concatenated Dynamic

Concatenated Static

With Exclusions

Without Exclusions

With Exclusions

Without Exclusions

2 0.8062

0.8146

0.8047

0.8123

3 0.8503

0.8533

0.8488

0.8518

Table 6.15: Accuracies achieved by applying PPMD to RCV1-Author for each protocol.

9 |[Page

B Order 2

® Order 3

Without
Exclusions

With
Exclusions |

Without
Exclusions

With
Exclusions

Concatenated Dynamic Concatenated Static

Protocol

Figure 6.10: Accuracies achieved by applying PPMD to RCV1-Author for each
protocol.

The results for the PPMC experiments are shown in Table 6.14 and graphed in Figure 6.9 and
the results for PPMD are shown in Table 6.15 and Figure 6.10. For Table 6.14 and 6.15, the
leftmost column indicates the substring length (shown as x axis in Figure 6.9 and 6.10) and
for each protocol an average accuracy is shown (shown as y axis in Figure 6.9 and 6.10).

In all cases without exclusions performed better than with and interestingly dynamic models
performed better for PPMD but the opposite is true for PPMC. The results also show that
order 3 greatly improved the accuracies compared to those received for order 2 as is the case
with Gutenberg (see 6.2.2.2) and Reuters-10 (see 6.2.2.4).

6.2.2.4 Reuters-10

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static
With Without With Without With Without With Without
Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions
2 0.9477 0.9437 0.9450 0.9392 0.8556 0.8489 0.8990 0.8972
3 0.9531 0.9513 0.9455 0.9410 0.4962 0.4864 0.8990 0.9021
4] 0.9227 0.9253 0.9405 0.9343 0.4680 0.4193 0.8963 0.9080

Table 6.16: Accuracies achieved by applying PPMC to Reuters-10 for each protocol.

97 |Page

Accuracy

With

Concatenated
Dynamic

Without

With

Concatenated Static‘ NonConcatenated = NonConcatenated |

[T
‘ Without |

Protocol

With

Dynamic

‘ Without
Exclusions Exclusions|Exclusions Exclusions Exclusions|Exclusions|Exclusions

With

Without ‘
Exclusions|
|

Static

® Order 2
® Order 3
M Order 4

Figure 6.11: Accuracies achieved by applying PPMC to Reuters-10 for each protocol.

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static
With Without With Without With Without With Without
Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions
2 0.9455 0.9450 0.9441 0.9392 0.8538 0.8476 0.9003 0.8976
3 0.9517 0.9490 0.9450 0.9374 0.4975 0.4949 0.8976 0.9034
4 0.9298 0.9280 0.9397 0.9338 0.5069 0.4662 0.8990 0.9052

Table 6.17: Accuracies achieved by applying PPMD to Reuters-10 for each protocol.

1 1.0

0.9 -
0.8 +—
0.7 +—

Accuracy
oo
o

oo
wohr
}

2 ooy
(=S

Exclusions
|

With

Concatenated
Dynamic

Without
Exclusions

With

- ;
Exclusions| Exclusions

Concatenated Static |

Without

With Without With

NonConcatenated

Dynamic

Protocol

Non

;
Without |
Exclusions | Exclusions|Exclusions|Exclusions

Concatenated
Static

® Order 2
® Order 3
® Order 4

Figure 6.12: Accuracies achieved by applying PPMD to Reuters-10 for each protocol.

The results for the PPMC experiments are shown in Table 6.16 and graphed in Figure 6.11
and the results for PPMD are shown in Table 6.17 and Figure 6.12. For Table 6.16 and 6.17,
the leftmost column indicates the substring length (shown as x axis in Figure 6.11 and 6.12)
and for each protocol an average accuracy is shown (shown as y axis in Graph 6.11 and 6.12).

98 |Page

The most inconsistent result was found within R10 as there 1s a noticeable drop n accuracy
for an order of 2 and 3 for non-concatenated models for both PPMC and PPMD. The highest
accuracies for concatenated models were achieved for order 3 for both PPMC and PPMD. It
is difficult to determine the best order for non-concatenated static though it would appear that
lower orders perform better when update exclusions are performed, and longer ones for when
they are not. As with 20newsgroups and Gutenberg, concatenated models outperformed non-
concatenated, in this case quite significantly for both PPMC and PPMD.

6.2.3 R-Measure

This section displays accuracies achieved for each of the corpora using each of the R-
Measure algorithms discussed in 3.1. For R-Ranges, the substring lengths investigated have a
minimum from 1 up to 29 and a maximum from 2 up to 30. Substring lengths of up to length
30 are investigated for both R ,-Measure and R.,-Measure.

6.2.3.1 20Newsgroups

The results for the R.,-Measure experiments are shown in Table 6.18, R, ,-Measure in Table
6.19 and Tables 6.20-6.23 show results for R-Ranges. Tables 6.18 and 6.19 display
accuracies for all four protocols with the leftmost column indicating the lower substring limit
for each algorithm. Tables 6.20-6.23 show the accuracy for each range with a single table
displaying results for a single protocol. The highest accuracies are again highlighted in bold
font.

9|Page

Concatenated Concatenated NonConcatenated NonConcatenated

Dynamic Static Dynamic Static

1 0.0427 0.0427 0.0644 0.0676
2 0.2379 0.2443 0.1403 0.1687
3 0.7805 0.7831 0.2324 0.2620
4 0.8727 0.8719 0.3598 0.3789
5 0.8939 0.8946 0.4513 0.4647
6 0.9032 0.9027 0.5183 0.5270
7 0.9056 0.9064 0.5735 0.5795
8 0.9084 0.9084 0.6171 0.6193
9 0.9094 0.9098 0.6543 0.6517
10 0.9107 09111 0.6828 0.6772
11 09113 09110 0.7043 0.6970
12 0.9130 0.9117 0.7202 0.7128
13 0.9133 0.9122 0.7319 0.7253
14 0.9141 0.9130 0.7423 0.7352
15 0.9145 0.9131 0.7508 0.7429
16 0.9140 0.9133 0.7582 0.7511
17 0.9135 0.9125 0.7643 0.7559
18 0.9126 0.9117 0.7701 0.7615
19 09119 0.9110 0.7757 0.7684
20 0.9099 0.9084 0.7841 0.7758
21 0.9072 0.9046 0.7907 0.7822
22 0.9047 0.9005 0.7970 0.7897
23 0.9008 0.8956 0.8031 0.7968
24 0.8949 0.8903 0.8085 0.8016
25 0.8904 0.8853 0.8108 0.8052
26 0.8853 0.8809 0.8142 0.8088
27 0.8806 0.8764 0.8178 0.8102
28 0.8766 0.8729 0.8211 0.8120
29 0.8726 0.8691 0.8213 0.8129
30 0.8697 0.8656 0.8229 0.8144

Table 6.18: Accuracies achieved by applying R,-Measure to 20Newsgroups for each

protocol.

100 |Page

Concatenated Concatenated NonConcatenated NonConcatenated

Dynamic Static Dynamic Static

1 0.9070 0.9086 0.8033 0.7951
2 0.9070 0.9086 0.8030 0.7953
3 0.9070 0.9086 0.8045 0.7981
4 0.9066 0.9084 0.8127 0.8054
5 0.9063 0.9078 0.8218 0.8152
6 0.9048 0.9058 0.8295 0.8224
7 0.9023 0.9032 0.8330 0.8265
8 0.8994 0.9005 0.8378 0.8292
9 0.8969 0.8976 0.8383 0.8290
10 0.8932 0.8948 0.8377 0.8282
11 0.8896 0.8911 0.8372 0.8274
12 0.8858 0.8868 0.8357 0.8264
13 0.8807 0.8816 0.8344 0.8257
14 0.8761 0.8776 0.8336 0.8247
15 0.8721 0.8738 0.8332 0.8246
16 0.8684 0.8701 0.8323 0.8236
17 0.8649 0.8663 0.8314 0.8233
18 0.8627 0.8641 0.8306 0.8222
19 0.8595 0.8611 0.8298 0.8219
20 0.8569 0.8581 0.8288 0.8210
21 0.8548 0.8564 0.8281 0.8205
22 0.8521 0.8537 0.8274 0.8195
23 0.8495 0.8511 0.8263 0.8179
24 0.8460 0.8474 0.8247 0.8151
25 0.8432 0.8447 0.8235 0.8135
26 0.8407 0.8421 0.8221 0.8116
27 0.8378 0.8393 0.8206 0.8092
28 0.8358 0.8376 0.8196 0.8076
29 0.8331 0.8350 0.8181 0.8056
30 0.8303 0.8325 0.8162 0.8038

Table 6.19: Accuracies achieved by applying R,-Measure to 20Newsgroups for each

protocol.

101 |Page

t 2 w 1" N 12 B M B N N N DB
1
202%
3 07H0 Q780
4 DATY O&TS O HY
& 0AB 0204 ORM (AW
€ 0903 0903 0804 DM
T 0405 0506 0008 0905
8 0908 0908 06 098
9 0002 0805 080 DU
10 0§11 0éry OR1 DE0
1M 081y 0% 00 0o
12 091) 0913 003 09
19 0913 0913 001) 061)
14 0914 0814 Gh1a 0014
18 091 0915 08 08
18 0944 0914 A DE4
1T 091 081D 0% 001
10613 0913 03 0612
19 0912 092 D2 0m2
20 0910 0810 CN0 0910
0907 0907 00T 0607
72 0805 0805 0RO OO
23 0801 0501 0B 000
D008 0E95 DERS 00
28 0B8N0 0590 00 B0
MW OGBS 08NS ORSS O MK
I O8EY 088 0831 0B
am 0ary 087 ourt oen
W 0873 0/ 0B QBN
30 0870 08N CBO 0BT

00

0508 0 W5
0908 0 W07 W6
008 0400 O8OV
1910 ¢ W6 000
0917 Q910 OB
013 0ft o0
0§13 092 0
0914 023 0ot
0814 00) AN
0913 0f2 GOt
0®Z 001 OB
0812 0 et Qb
0911 06 RN
0808 0 e 008
0902 005 06K
D904 0wz 080
G200 0@ 0
0864 088 008
0860 0 Wb O b
0E8Y 0 me OBD)
DEGO 0 80 OB

060

087 0%07

0908 0806 O s
0908 0608 OWT (%
090% DR O W7 0605
090% 0506 00 0004
000% 0508 O WS 0R0
090 0807 0w OB
0H07 0806 O W O BQ
0807 0805 OB 0RO
0903 %04 O W02 080
0905 0802 O W O b
082 000 O e 008
0000 D ABE OG0 PR
UOBE 089 0852 06
0Re 0806 0w OER
086/ 0885 0883 0BR2

903

0803 0500

0601 0 @00 O i

0600 0867 OB 088

U806 0886 00 000 0807

0867 0895 0% QBlE 0805 O BR
0§67 086 00 0B8R 0864 O MO ODTT
0865 02 G0 0085 D862 OKTE 075
0863 048R0 O0M OOB) 0880 OF'E 0BT
0867 0887 OBB4 0BT 0877 GBM4 0B
0867 068 OBE! OBTE O&NL 0022 OB
&8 0BT OB DATL OETZ 0BG OBLY
DAO0 CEIT QUM UBTY 08R G 80 0B5H
0862 USY1 OBIY OB! DETL OETY ORMD QBGE 0806 O B3 OBOY
0878 087 QWL 0872 &7 D EGE OBST OBed USGZ O WO OBl
08P DEIG OUTE DO QBT 0012 ORVD N8GE 0BS6 OBNA DB8Y 0250 OPY QB
0872 0812 ON'Z DB 000 OB DD (804 OBOZ OBGD DA 0857 OB 0053
0868 Q400 OBZE UBOE 0807 OBXO 085 N80 080 OB DB% 054 CBIZ 0BS

ngr

0871 Q&0

0870 086 O e

US67 000 OBl 0B

0865 0885 005 0860 0356

D862 0800 0B5H D05 0854 O8N0

0800 0E50 OB DULS D8OS4 G4 OB

085 0SS 0B GENZ 0862 QB OPYT DAeR

UBS4 08 GBS DO5Y 0850 CBID 0BG ODAT N84

G851 0850 OR9 DBa8 OBME OBAT 0BG DB DB OB
D849 OB4p OB4T D) UM OB44 OB4D 0342 DBI OBI0 OB

Table 6.20: R-Range average accuracies for 20Newsgroups, Concatenated Dynamic.
The lower range value is shown across the columns and the upper range value shown
across the rows.

1 2 9 W 18 18 T 18 1% X 1 22 23 M 28 28 N W B
1

20244
anres 0rEs
40872 0872
§ 0895 0895
& U903 0900
T 0905 D
20008 08
9 0910 oo
100811 08N
11 0911 Dent
12 0912 D9Y2
13 0912 D912
40813 0913

18 0913 0913

08N
0895
0503
0 908
0908
a9
oen
09
aen2
092
0913
oo

o897
coul
G907
0 508
=300]
o8
o9
o082
0812
oel
0.914

U 504

0007 0808
0008 0907 Q907
0908 088 0%
00810 0802 08
DH1Y 000G 0900
0 e 0910 o910
0012 0811 O8N
o9t3 081y O8N
0813 0812 09Nt

0906
0808
0508
0808
0808
o500
0808

0 607
0 bor
0 808
0 go7
o pOE
0 80r

0 w0s

08605 0 S0%

0 GOS0 904 0603
nens 0903 05902 OAM

0805 0903 0501 068 0895

W 0PIl 091 G91)
17 0913 0912 a#12
100012 092 082
19 0011 DOIT QBN

0913
o0z
aon
o

el
oz
oen
0810

0812 0911 0600
0911 0%08 ORaT
0910 0908 0607
080% 0907 0908

0 o7
0 B05
0905
0603

00 08002 0660 0008
0903 090! ORSA O A%S
0603 Q900 (0898 0092
0802 0856 0805 0881

089y 0890

0BR? 0888 0888
0691 D887 Oeda O8M
0888 085 0662 OB7H

0 B78

0838 0384 0880 QAT
0B85 0887 O8TH OB7E
0 RS2 0679 0675 087T)
2are 087 0872 0BT0
0875 0872 0688 0087
G871 D868 G#6E Oh6e
0Bs7 08 OBl OBat
0954 0881 0850 0057

DEr4 0812

0822 0870 D0

0671 030 0867 0865
0868 0855 0804 OBE2 OBAY
0B85 0823 Q861 DGS9 0058
0B62 0880 D86 0BST DBSS
0B85 O&%e 08 OBSH 0BS3
0055 0855 0851 0852 0051
0851 DRSS 0858 0855 005 D852 0851 G850 0 B4
GB58 085 0853 0862 DA% LB 0B D847 D Db
0855 0B52 OBS! 0BS5S0 0540 0B47 0545 0845 D b4

20 1D08 0908 0900
21 0905 0905 095
22 0900 D900 09
23 0895 0966 0896
24 0850 0820 0860
26 0 B&S D885 0885
26 UBs1 Deet OsEl
27 OR76 0876 0878 DETE
28 0Q73 D872 O8TI OBTI D§T3 D@TZ 0872 OBT! 0BT
29 (980 (950 OS00 0BOY 0BES 0808 0SCR OBUT OBES
30 005 0866 0868 OBGS 0BGE 0865 085S OBB4 086

O R
0805
o8
0 Bgs
0800
O8RS
oent

0 808
0804
0800
0 Bah
0980
0 8as
0 880
0@

080! Q@0% 0504
08031 0602 0680
D@ 0596 D897
0854 0B%4 DEYY
@S 0889 0807
084 0884 D52
0880 088 OWTE
0876 0875 0674

o 80
]
0 Bits
oam
0 @08
0Bt
ourr
0873y

0900 0897 0891 0BB0
0687 08 0801 000
08 089t 085D 0885
0859 0S¢ 0884 OERY
0864 0882 0880 0878
D880 GBTE OFTH OBTL
DEYe 0874 OBT2 OUYD
0872 0870 0668 0868
0P 0856 0865 0063
0955 0881 0861 0H6U
032 0800 0858 0857

0 857

0D BsS 0858

0853 0852 g8t

0850 084G OB4l OBa7

D848 DB4E OB46 0BS5S 0BLS

0B 0844 0844 OBa3 082 OBO
0843 DB42 OB4t 0B8N 0RX 0E0 083G

Table 6.21: R-Range average accuracies for 20Newsgroups, Concatenated Static. The

lower range value is shown across the columns and the upper range value shown across
the rows.

agc

o

102 | P

1 2 3 4 & 8 T 8 9 W M2 13 WM % T W Y N N N NOB N U B D
1
2 0140
3020 022
4 030 0361 0308
§ 04y 0452 0473 057
6 0316 0520 0535 0575 0620
70473 0475 0568 0621 0081 0H9D
80817 0810 0821 0880 OBES 0727 0753
90654 D6ESE DBAS 0650 0710 D748 D772 OTH
10 062 O0BS 0852 0714 O30 (164 (P OB0C DRIE
MO OTO5 OT12 07T 0753 0778 D798 086 D B20 DB
120770 OTH 077 D743 0765 O TBR 0608 0824 DAM 0843 0849
13072070 QT3 0753 0774 0796 0E 0829 DB3S D847 0850 08N
14 0742 0743 0748 0763 G783 DAO3 DRZ0 0BI) DA43 DB46 0651 0.082 0852
AB07TAY OTH! QY5 0760 0700 OBOD D224 OBME 0BSS 0845 085! 0.852 (851 0862
16 0756 0768 0782 0776 0765 0E13 0820 0840 0BeR 0851 0851 0.882 0852 0.842 0.082
170764 O785 OTHR DTEX OBD0 OF16 083 0642 084D DBSY 085! 0852 0.B52 882 051 D a5
W00 O QT 088 OB04 CR1O 082 OB43 (848 085 0882 0.802 0882 G651 LUSY 085 OB4dN
WO7TE 07?8 O7THY 0760 0800 0B22 08X OB45 DBSY 0851 0882 0.882 0831 065t 0050 O8RSO DB46 Op4D
200734 OTAS 0TRE 0795 0813 DR 0837 0844 DRSO 0882 0882 0 BS1 0BS5S O8S0 OB50 D849 OB40 OB4B DB4Y
210791 079t QU3 080 OBY5 CE28 0535 0847 DEaY 085 0851 CBAY 0850 0860 088D D84S OBdE DB38 D&Y OB
20797 OB 070D 0BG OB20 0BX2 D&Y 0847 DBSD D851 OS50 0BST D840 OB48 0048 DB4E O848 D047 DB4E OB4E 0 BAS
23 090G DBOY 0805 0814 0824 0834 0342 0847 0B N@%0 0560 0AS0 DB4E 0648 OR4P 0BT 064G 0B DRS 0B4S DBIL DB
24 0800 0008 0610 088 OB26 (B35 0842 0B47 DA DB4S O848 0BaR 0847 0847 0063 0848 OBAS OBES D844 OB4) CRAZ D B4Z OB
25 0811 Ot DB13 0RO OB20 DB 0842 0040 DBS D845 O848 0047 DB4S 0846 0845 D84S OB44 0043 D843 0B42 0B84 DB OR40 D840
M 08N 0514 0B1D 0B OBEIY OB 0842 0844 0BAY 0S47 OBAG DHAY DB GS44 DBAC 0843 OBAT DB42 D841 OB40 O B40 0 B4O 0S8 OE3N QB3
27 0818 06t 0B2D 082S OBI1 0837 DE4Y 0842 0045 (1845 0845 0064 0542 0842 OP8Y (842 OB 0040 DO OB 0039 0838 0838 0017 0R37 0817
28 0821 OFZY ORZ3 OBZ7 0837 DB3 D47 084) 0H4S D345 0844 0547 DB42 0547 0H4Z D41 0540 0H4D DA O8I0 DAIR 0B 0BIT OBIT 0HI 08B 08M
20 062 0821 0823 0827 0832 0BIT D841 0842 DBSY U843 0840 0BE2 0541 0S40 DBAD LEXS QB3N DE3S L EW 0BT 0BY 0B 08 OBIL 063 DEM 0B34 OB
30 082 062) 0B 0B29 0832 ORI 0840 OB41 DDA DBA2 OB OB40 0EY 08 0638 0837 OKIT CRI7T ORM O&M DBIS 0825 OBM OA34 D&Y DEXI 083 0BX2 O

Table 6.22: R-Range average accuracies for 20Newsgroups, Non-concatenated
Dynamic. . The lower range value is shown across the columns and the upper range
value shown across the rows.

1 2 3 4 5 6 T L} ® Ww n 7 13 WM Y % 7w 1" W N A N M N B I BDD

1
20178

1 D268 0272

40384 G397 DA

$50400 0472 0438 054

€ D336 0530 0552 0390 06BN

TOSIE 05T 055 0629 Q0667 0702

B 0613 061E OR3Y 0GE3 OGB! DJ2E 0751

9063 0646 0660 0690 0715 D745 OV 0 TR

10 D670 Q&T4 OGRS O7OY Q73T DTEY 77T Q7SS DEGS

11069 0082 D76 0725 0750 D768 & 7BT 0001 DS Q818

120706 G708 OT18 O7IY QT8 DYVT O V96 0BOS D@V 0423 O EM

130719 G720 0728 0747 Q76 0736 801 0610 DE20 08285 0629 033

MOT9 07N OTIS OS5 QT74 DTS Q604 0814 DE22 CH2E OEX DEX OB

150716 Q737 0746 D762 Q7TO) 0795 GH06 0618 082D 0826 063 082 0831 OB

16 D744 G745 0754 O76E QTES D739 GEY QB2 DEXT 0829 OBM 08X C0EX OEM OB

170745 G761 0757 0769 0768 080t 0812 0827 DET ¢ 829 0831 032 0931 0530 5430 V82

MWLM 0756 G762 DT Q791 0807 0813 OEXY DE25 Q2% QEX2 D812 QU3 OEJC G830 Q6 DEN

190763 Q763 OTES 0752 OTM DOIT ©E6 0829 0BT QA 0B 0831 0831 D60 083D 0828 028 0427

20768 ¢T63 OFY5 070 0795 D609 Q81 OB24 DE29 QEIY OEXY DI 0@3) DEN 0300 QM 07 CcU2r DEN

20776 OTTE OTTO OTHY G802 OB S8th 0625 DEAT O8I 0B 0830 C8X 020 0828 0825 DET 0826 082 0D

ZOTEO OTEY OFES OY9E 0B0L OBYY 0621 QMN OE2T €A% QBN 0829 QA28 00T 0826 08X 0N Q423 0N D2 0O

20787 G763 07 0301 08D DEVG 0822 0826 DEIT QH2E DB OE28 0227 DRX6 04825 0025 DE2Y $A22 0B21 DE20 CRX 0RO

MOTeI 0MM 0 006 0812 0BT ORZ2 QBX 0826 G026 00U D26 OB OEDs 0420 QRZ DEXY 0820 Q019 OB Q818 OO O RV

0796 Q7T OB 007 OA1I 0BID 9821 0B ORM OB 0624 DFAU 0822 0B ©821 0915 DEYD OAE 0B17 D317 CAIE 0BG DASE ORI

26 0799 080D 0503 G208 0@ 0817 G20 QRN ODE22 0822 0EX) 02t OEX QN0 08 ORIG OV Q896 Q015 DBV QA4 0BY2 DRW Q814 DB

27T 0802 G302 OB 0808 0012 DRIG S8 0819 DE20 0820 OB13 D&Y 0817 0BG 0836 0815 D84 2933 0812 0812 GB1Z 0B1Y D&YY OBIZ OB DAV

20804 0004 080 0800 Q812 DBY L8 0010 DR GEE OBYE DBYT QEIE G BY5 0@ 081) DEI2 OB OB10 D&Y G810 0B10 D80 UM OBID 280 06X

2 0802 G802 ODOS ©B06 G810 DB12 0613 OB16 OF16 G315 DB15S O8W 0017 GB12 €811 0810 DBQY OB06 0BYE 0808 G508 00G7 R80T 0607 OBIT 0307 0MOT O W6
30 0803 0804 OB S806 OBDE 0851 Q2 0014 D8Y) 012 0812 DB Q010 009 G800 CODY D8AT G806 0BG 0506 CBDL 000G OR0L 0B0S OBOS Q80L 0BME D804 CHIM

Table 6.23: R-Range average accuracies for 20Newsgroups, Non-concatenated Static.
The lower range value is shown across the columns and the upper range value shown
across the rows.

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static
0.907 0.909 0.803 0.795

Table 6.24: ¥™%* average accuracies for 20Newsgroups.

As with the results for C-Measure in 6.2.1.1 the results for concatenated protocols are similar
no matter whether the models are static or dynamic and the same is true for non-concatenated

103|Page

=
&

protocols also. The R-Range results also resemble the C-Measure result in that lower ranges
again offer better performance for concatenated protocols than for their counterpart. A
noticeable difference is that much smaller ranges (difference between minimum range and
maximum range) proving better for non-concatenated protocols, the best performing for static
models being just a difference of one with 12-13. The best results achieved for concatenated
protocols have a range of around ten. The best results for concatenated dynamic models are
achieved between ranges 1-15 up to 5-15 having the highest accuracy of 0.915. The best
results for concatenated static models are achieved between ranges 1-14 up to 5-16 with 4-15
again providing the highest accuracy, this time 0.914. The best results for non-concatenated
dynamic models are achieved between ranges 10-14 up to 15-20 with the highest accuracy of
0.852. The best results for non-concatenated static models are achieved between ranges 11-12
up to 15-16 with 12-13 achieving the highest accuracy, in this case 0.8325. It is also worth
noting that in all but one case that R-Ranges outperformed C-Measure.

Table 6.18 shows that for R.,-Measure, concatenated models performed better than non-
concatenated and dynamic models outperform static ones, as was the case with C-Measure
for this corpus. The results suggest that a value of between 15 and 16 for q is optimal for
concatenated models but a much larger value for non-concatenated, with g = 30 achieving
the highest accuracy.

Table 6.19 shows that for R,,-Measure, concatenated models again achieve the highest
accuracies, though not as high as for concatenated in 6.18. There is a difference in the
optimal value for g, which for 6.19 represents the minimum substring length to be included.
6.19 shows that 1 < g < 3 is optimal for concatenated models and that a low length of
between 8 and 9 is optimal for the non-concatenated models. Table 6.24 also further supports
the finding that for 20Newsgroups, concatenated models achieve the highest accuracies. It is
however unclear from the r™%* results whether dynamic or static models performed best, as
was the case for R,,.

6.2.3.2 Gutenberg

The results for the R.,-Measure experiments are shown in Table 6.25, R ,-Measure in Table
6.26, r™% in 6.31 and Tables 6.27-6.30 show results for R-Ranges. Tables 6.25 and 6.26
display accuracies for all four protocols with the leftmost column indicating the lower
substring limit for each algorithm. Tables 6.27-6.30 show the accuracy for each range with a
single table displaying results for a single protocol. The highest accuracies are again
highlighted in bold font.

104 |Page

Concatenated Concatenated NonConcatenated NonConcatenated

Dynamic Static Dynamic Static

1 0.075 0.075 0.175 0.125
2 0.175 0.150 0.125 0.250
3 0.150 0.175 0.150 0.200
4 0.200 0.225 0.175 0.175
5 0.300 0.325 0.150 0.250
6 0.275 0.375 0.225 0.275
7 0.300 0.400 0.250 0.275
8 0.300 0.425 0.275 0.325
9 0.300 0.425 0.300 0.375
10 0.350 0475 0.300 0.375
11 0.350 0.500 0.300 0.400
12 0.400 0.500 0.350 0.400
13 0.450 0.500 0.375 0.475
14 0.450 0.525 0.375 0.475
15 0.450 0.525 0.375 0.475
16 0.450 0.525 0.425 0.475
17 0.450 0.525 0.425 0.475
18 0.450 0.525 0.425 0.475
19 0.450 0.525 0.425 0.475
20 0.450 0.525 0.425 0.475
21 0.450 0.525 0.425 0.475
22 0.475 0.525 0.425 0.475
23 0.475 0.525 0.425 0.475
24 0.475 0.525 0.425 0.475
25 0.475 0.525 0.425 0.475
26 0.475 0.525 0.425 0.475
27 0.475 0.525 0.425 0.500
28 0.475 0.525 0.425 0.500
29 0.475 0.525 0.425 0.500
30 0.475 0.525 0.425 0.525

Table 6.25: Accuracies achieved by applying R.,-Measure to Gutenberg for each

protocol.

105|Page

Concatenated Concatenated NonConcatenated NonConcatenated

Dynamic Static Dynamic Static

1 0.475 0.525 0.475 0.475
2 0.475 0.525 0.475 0.475
3 0.475 0.525 0.475 0.475
4 0.475 0.500 0.475 0.475
5 0.475 0.525 0.475 0.475
6 0.475 0.550 0.475 0.475
7 0.475 0.600 0.475 0.500
8 0.500 0.575 0.500 0.500
9 0.525 0.575 0.475 0.500
10 0.525 0.575 0.500 0.550
11 0.550 0.600 0.500 0.550
12 0.525 0.600 0.525 0.550
13 0.525 0.600 0.550 0.600
14 0.550 0.600 0.600 0.600
15 0.550 0.625 0.625 0.625
16 0.600 0.650 0.650 0.625
17 0.675 0.700 0.675 0.650
18 0.700 0.700 0.700 0.675
19 0.725 0.750 0.725 0.700
20 0.725 0.750 0.775 0.750
21 0.725 0.725 0.775 0.750
22 0.725 0.725 0.775 0.750
23 0.750 0.725 0.775 0.725
24 0.725 0.725 0.775 0.725
25 0.725 0.725 0.750 0.700
26 0.725 0.700 0.675 0.625
27 0.675 0.675 0.625 0.550
28 0.625 0.650 0.600 0.525
29 0.575 0.600 0.550 0.500
30 0.525 0.525 0.500 0.475

Table 6.26: Accuracies achieved by applying R ,-Measure to Gutenberg for each

protocol.

106|Page

1 7 3 W 1w XN N N a5 nom

@

1

70175
1080 0120
40200 0200
50300 00
A 0275 0275
7 0300 00
¥ 0W0 0%

0255

0300 0 300

0275 0 M0 © 30

0300 0300 0300 03
0303 0300 00 020 (300

#0300 020
10080 05%0
110350 03%
12 0 @0 0o
13 0430 0450
14 0450 O 4%
15 0450 0850
10 0450 0%
17 0450 0450
18 0480 6 8%
19 0450 0450
20 0830 0 &%

0300 0300 0300 0330 0150 0350
0350 030 0550
0350 0 360 0375
040 0400 O w0
D450 0450 0 &0
0450 0450 00
D450 0450 &0
DabD 0450 0 &0
D450 0450 0850
0480 0450 © &0
0450 0450 0478
0480 0450 O 4t
210450 0450 D45 0475 0475
220475 0478 D47E D4TE O &7
23 0475 0ATS 0475 0475 0476
240410 OATE DAYS D 4TS O &8
25 04TH 0475 0475 0475 0415
20475 0475 0475 0475 0475
27 DATE 0475 0475 0475 0475
20 0475 0475 GAYS 0475 0476
290475 Q4TS D4TS 0475 0405
30 0475 0475 0475 0475 0475

0%
0300
Az
Oag
o 40
Das
04
o4ars
ban
o415
Oanm
04T
o4
0ars
oars
0 4%
043
pars
0475
0475
0475

0I5 0400 © a2
0400 0 450 O 450
0450 0450 o 475
0450 0450 O &S
0450 0475 o als
0475 0475 O &5
0475 0475 0 M0
0475 0475 QRIS
0ATS 0475 0425
D475 0475 0825
0475 0475 D820
0475 0475 0825
04Ty 0475 082S
DATS 0476 OR2S
0475 0475 CH2
0475 0300 0625
0475 0 500 0525
0475 0500 082S
0475 0500 0525
0475 0 50 0525

04rs

0475 0525

0500 0350 0550

0525 0560 1550 0850

0550 0350 0550 0575 D575

055 0460 0550 0678 0800 060

0550 M550 0575 0675 NEOD 0825 OQs
0550 0460 GATY OB0 ODO0 UGS 0&2Y 0628
0550 0460 0575 OB00 DA00 0E25 C&N 0K
DBLO 0400 DAML OBOO D025 DE2Y 0800 D B0
0550 0350 0575 0600 0423 0625 0&D5 DAKS
0360 0450 G 57h 0000 0425 0800 060U DETE
0550 0550 0576 060 DES N800 080N 0675
0350 0450 0575 0000 0625 DEDD CE26 OGS
055 0575 08X 060 0800 D475 626 0875
0560 0575 0800 OB DBOO 0576 ORS 0675
0553 0575 600 O B0 DAD) OSTS OIS O T0

nas

0700 0w

0700 0700 O 0

Q700 0700 O OO

0700 0700 O750 0750 0TS0

0700 0725 GTM OTW 0750 0750

G703 0750 0750 0750 0750 0.778 o778

D700 0750 GOS0 070 0750 0.778 OT78 07RO
G700 0750 0TS0 OTH0 DTS0 0778 T8 O 7R 0750

0550 0575 0@0 0RO 0HO0 0575 025 OTC D700 0750 0TS0 0TS 0750 G.778 O.T78 0750 0750 0 T30

055 0575 0800 060 D573 0575 D&2S OTW

D700 QTS0 0TS0 OTHO D750 .0V8 OTS0 DTHD D750 0750 O7H)

D475 0500 0525 0550 N5TH 0&00 G600 D572 0575 OGS OT0 G700 0750 OT30 0740 N7SO QTS QTS0 0TS0 0750 0 F30 0725 D700

Table 6.27: R-Range average accuracies for Gutenberg, Concatenated Dynamic. The
lower range value is shown across the columns and the upper range value shown across

1 2 3
1
2 0100
10167 07
{03 0N
50333 03133
€ 0400 0400
70433 0432
B 0467 0407
¥ 0407 0457
10 533 0533
11 0587 0487

023
0333
040
043
0467
0 467
[Ex]
LELY

0387
043
0ax
0467
0487
0533
0567

04x
D43
0467
D ag?
nsx
o567

12 0567 0567
13 D567 0567
14 0487 0500
1% 0 567 0567
18 0567 0587
17 0567 0567
& 0567 0487
19 0 567 0207
20 0567 0467
21 56T 0567

0567
nsar
nser
0567
0567
0567
0567
usar
0587
0567

0567
0 587
Lk
ase
0567
0567
0se
L1
56?7
o567

0 557
n567
oser
n&s7
0567
0s6T
0567
0 set
0587
0567

0587
us6?
0567
LEH
0567

0567
LE T
o056
0567
o5&
o5&
0567
0567
LE7

2 0387 05
23 0567 04
24 058 0407
25058 0587
0387 05
aT 05T 05 0ser
28 058 0567 0567
2% 0307 0507 0367
0 0487 0567 0587

0602
500
08
0800
L
nEM
060
nooo
0600

04x
0457
0300
0567
0567
0667
0567
06t
07
0567
oem
(LU
oo
000
oom
onm
0600
0 om
08m
0 Ao
0800
660
5000
00

0500
Dast
nser
0587

osar
aser
0567

Q56T

the rows.

1630 0 B0

2 B B 7 ®»

n 567
0 567
0 o0
600
080
0800
L
(L)
0 8m
080

0557
0 filo
000
0 Boa
(]
0630
R0
T o0
o0
0620

0600 0000 QB0

R0 ORX OR0 ORL

0000 0820 0000 06X QBI3
0D00 D800 D831 013 0&1Y OEY
0D 0600 ODEX O 06N 0K
0800 0B 0B33 0633 0513 GEI
OBn 0& 0&X 0&N 061 C&ID D&
0800 050 06X 051 06N 0533 B8N
0600 OBL) QEX O&I 08N 0613 0
0600 063 063 0613 041 0613 0813

o0&
0833

o813

GE13 03N

Q&3 U700 o.er
C@m7 AT 47 0T

0407 0700 0733 0723 0733

080
08500
L]
0¥
0 Al
[]
080
0800
L

0800 0B 08X OBM O&Y 0613 0E1I3 CAYY
0800 0B00 DEXY DE33 DRI O3] ORI 0RI3
0800 D800 D65 063 061 06X A1 BED
0630 B0 0B 0K 0&N DES 0K 0K
0al0 0R00 06X ORLY OEXS 0613 003 O&6T
0600 08 0633 083) 061 0&3) 0633 0813
0600 OB 0N 08X OKX OB GK)) 0I5 0700 0733 07X 07Y
0600 0P00 0633 05633 CAX 0533 613 0513 Q70O 07353 0733 Q73
Of0 0N0 08X ORM OKLY O&YS O&IS O 0700 0733 4733 073

O8AT 0738
oT00 0723
200 0 I3
o700 0713
0700 0738
00 733

a7r3s 073y
G733 0F33 0733 0733
0733 orer
073% o787
4733 0767 0733 0738
073 0723

arer 07

(i<

oMo

07X} 07X OTY)
DI OTXYOTHY
073 T DT
01 07X 07T
DI O ATY
0TxY 075 OTR

0 oo
0713 0%
0T

bTx o

0T 07 00

G733 0733 0700 OT0O

073 07O OO0 O N0 Q63

a3 e
075y 075
0735 0733
6733 073

Table 6.28: R-Range average accuracies for Gutenberg, Concatenated Static. The lower
range value is shown across the columns and the upper range value shown across the

rows.

o
&

107 |Pa

¢

LIEE L

) 450 © 450

, 0 AS0 D45 0 4TS

] 047% O4Th 047 O NG

0425 D4T: D4TE 0476 0475 0500 0500 D478

3475 0475 0475 0475 Q475 0500 0475 D475 050
} DATS 04T O47S O47L OLOD 0400 DATS DAY €

§ 0475 O 7 S 5 { 500 Q500 DATS 0550
& (1425 045 D475 % 0 0500 0475 055 5 0RES

U=] osto A0 GE0 DE24 DS DO
0500 0550 0550 0800 0625 0625 DBSD €
S 0800 ¢500 0400 0550 0550 0400 0625 DRSS 065D
D500 Q500 0200 v D550 0530 OM5 062 DO DE2N
5 0600 00 0 0550 b O£25 0E% D60 DEYS O
=]
0
DA
S DA 06
082
0625 0
[1]F.]
0862 nas0
083 D6%0

082S @

0750 0778 0 7%
0500 OTs0 6750 07
0500
L0582
0525
0535 ¢

0360 01875

rS0 0 M0 D M0 ¢

Z N8N 1 G750 D75 N7

Table 6.29: R-Range average accuracies for Gutenberg, Non-concatenated Static. The
lower range value is shown across the columns and the upper range value shown across
the rows.

2010
1013 0175
40200 0200 0 X0
5050 0150 0150 O
80200 0200 0200 02
7 02% 0250 0240 0
& 0300 0308 05X
0324 0329 0
10 0325 0325 0

5

K

5 R
>

1035 038 03 o 00 015 (1R by
12 0325 0325 D125 Q375 0 378 0375 D40
178

1 0360 025 03%)
140263 030 020 02
120350 D3] 030 05
10 0378 0378 DITE O3
17 0375 0378 0376 {

WMoITs 0955 0905
120378 D35 DA O
J0 0375 D375 03T 0
2V 02 03K 078
220375 036 0378
D 03I’ DITE
20178 D3N
20375 03I (
M 019 0TS
270378 0ars 0
M 8375 037 03
M 03T 0378
300378 0I76 DM DI OIN

DATS 0275 D400 D450 0500
037S DITE D480 D500 OGS O
5 0375 0400 D45 D500 D52 O
5 0375 D400 D4k) D500 08X ¢
0375 0400 0500 052S
0375 0400 0500 0825 05
0402 D428 0500 V4TS
0400 D425 DS D5¥S O
5 0400 0450 0500 DA
0400 D450 0500 DEIS
0400 0450 0500 052
D402 0 4% 0500 DER
G400 DatO D500 0523 180 O
DA 0450 (500
4400 045D 0500
G375 0400 0450 0500 =
ITH 0425 DA 0500 D525 055
h G 3TS D420 D450 D500 DE2S DBM0 O

0678
YBTE (674
0&rs 0ETS 0
QETS A2 0
0
o

03

20 0rz

25 0735 OTTE OTVS

T 072 0778 0778 4778

t Q778 Q778 O.778 @770 @0TR

OFT78 OTTE Q778 ATTS G778 Q7T

5 0TTE OTM QY78 OTTH GYTH 07T AFTH

S OTTS OT7S OT7S 778 4775 A.778 077TH 0778
0778 0778 0776 6776 4.775 0778 Q.7TS 0775 Q774
0778 0778 0776 8776 9.776 0778 0.778 070
Y072 0TTS GT7E Q77O O.TTE &.770 0778 0778 07TE

Qars 0 2
0660 QETS
Q550 0&TS
o850 DArs
oers

055 055

L

o B

Y ErS

Table 6.30: R-Range average accuracies for Gutenberg, Non-concatenated Dynamic.
The lower range value is shown across the columns and the upper range value shown
across the rows.

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static
0.475 0.525 0.475 0.475

Table 6.31: ¥™* average accuracies for Gutenberg.

The R-Range result within Table 6.27-6.30 all indicate that for Gutenberg higher substring
lengths improve the categorization of its documents. This suggests that no matter what
protocol is used, when categorizing corpora of this type using R-Ranges, ranges typically
over 20 achieve the best results. The finding that longer suffixes are more successful for

108 |Page

categorizing this corpus than for others are consistent with the results reported for C-Measure
against the same corpus.

Table 6.25 shows that for R.;-Measure, concatenated models performed better than non-
concatenated but unlike with 6.2.3.1, static models outperform. The results suggest that
longer substrings improve accuracy or possibly that shorter ones hinder for R.,-Measure as
the accuracies continue to improve as we increase minimum substring length. A value of
between 15 and 16 for q is optimal for concatenated models but a much larger value for non-
concatenated, with ¢ = 30 achieving the highest accuracy.

Table 6.26 shows that for R,,-Measure it is difficult to clearly state that one model
consistently performs better than another but the highest accuracy is achieved by non-
concatenated dynamic with a value of 0.775. Unlike 20Newsgroups (Table 6.20) the optimal
minimum substring lengths are similar across all four protocols at around 21.

Table 6.31 indicates that for r™“*there is little difference between the accuracies achieved by

each protocol, concatenated static did however achieve the highest for r™** with an accuracy
of 0.525.

6.2.3.3 RCV1-Author

The results for the R.,-Measure experiments are shown in Table 6.32, R,,-Measure in Table
6.33, r™%* in 6.36 and Tables 6.34 and 6.35 show results for R-Ranges. Tables 6.32 and 6.33
display accuracies for both protocols with the leftmost column indicating the lower substring
limit for each algorithm. Tables 6.34-6.35 show the accuracy for each range with a single
table displaying results for a single protocol. The highest accuracies are again highlighted in
bold font.

109|Page

Concatenated Dynamic | Concatenated Static
| 0.025 0.025
2 0.470 0.481
3 0.787 0.792
4 0.830 0.834
5 0.850 0.853
6 0.862 0.858
7 0.863 0.862
8 0.864 0.863
9 0.871 0.871
10 0.872 0.875
11 0.875 0.877
12 0.875 0.877
13 0.877 0.879
14 0.878 0.880
15 0.879 0.881
16 0.879 0.885
17 0.880 0.885
18 0.880 0.885
19 0.880 (0.885
20 0.881 0.885
21 0.882 0.882
22 0.883 0.884
23 0.882 0.884
24 0.883 0.884
25 0.884 0.884
26 0.884 0.887
27 0.886 0.886
28 0.887 0.886
29 0.885 0.884
30 0.882 0.881

Table 6.32: Accuracies achieved by applying R.,-Measure to RCV1-Author for each

protocol.

110|Page

Concatenated Dynamic | Concatenated Static
1 0.879 0.879
2 0.879 0.879
3 0.879 0.879
4 0.880 0.879
5 0.880 0.879
6 0.879 0.879
7 0.880 0.879
8 0.880 0.881
9 0.879 0.882
10 0.881 0.883
11 0.880 0.881
12 0.881 0.882
13 0.882 0.883
14 0.884 0.883
15 0.881 0.878
16 0.877 0.878
17 0.875 0.875
18 0.875 0.872
19 0.872 0.872
20 0.869 0.870
21 0.867 0.867
22 0.868 0.869
23 0.865 0.865
24 0.862 0.862
25 0.859 0.859
26 0.856 0.856
27 0.853 0.853
28 0.851 0.851
29 0.847 0.847
30 0.845 0.845

Table 6.33: Accuracies achieved by applying R.,-Measure to RCV1-Author for each

protocol.

¥

e

111 |Pa

] 2 b} 4 § L] 7 L} * w0 " 12 L] e 1% W 7 1] W 2w n 2 133 M M 8 n w0
'
2 Case
30780 0 TER
4 GE28 0EZE 0”28
8 0860 0850 0851 0883
8 0651 0851 088t 0850 0B
7 0RO? 0957 OSEQ OB52 0ROY 082
80861 0053 086 00862 0633 OBSE OBBE
90871 0BTt 087! OBTO 0BTO Q&) OGTY 0674
10 0872 0872 0822 0872 UAFZ 08I OBYS OU'B Q8VE
11 0875 0675 Q8T8 OBT4 DET4 0878 OBTT 0675 0875 0TS
12 O8Y5 OR7S 0876 0875 ORYS 0876 OBTS OATS Q&S OATR 0 AR
108 OETY QETT OATT N6TE O&FT QETT OHTS Q&7 CRE0 0083 DB
%4 DB7H 08TB 0878 OBTT 0878 0878 0676 0B76 0878 0082 0BE2 08482 0B62
98 OBTY OH® OSTH OBTO 0 EYS OSTE OBTE 0678 G881 OBA! OBEZ Q887 ORH) OBMY
16 0878 0672 0878 0800 0879 0E8C OA76 088y U882 (083 0PEX 08l OR0Y 08B0 D862
17 0800 0880 O&E0 DBH1 DBE1 0681 0BE1 DBAZ 0O8GZ 004 0BAZ 0&8T OBBY 0 BR1 DEET 08I
18 GBI 0880 088C OBE1 081 0882 0BHY 0 BE3 0884 OBAJ 0 BEZ 088! OBE! 0BR) 0884 DHBI 0 BB
190880 0BB) 0880 0001 DBE2 0882 (681 DBB4 0684 0884 0B 0682 0800 0082 Q864 OBB1 0078 0878
20 OBAY §BH1 08B OAA? ORB3 0861 OBA1 0BR3 0834 OB NBE3 0557 OB 0BS4 DBST GBAD GRTT 0BTR OBTT
21 O0B2 DBE2 082 OUB2 D88 US30 OBHY 0B&2 0882 0BE3 062 08X QB2 U B3 088! OBTH OHTE 09T OBTY LAY
22 0883 0683 088 0607 DRA3 0881 OHH2 0082 0633 OHEY 0 BAZ DES4 ORI (BB1 OGS0 OBTT OHTE 0675 OBT6 OAT3 0E78
23 0BB2 0BEZ OS82 ORE? DBEZ 0857 OBHI DAS4 0883 BRI (883 0884 OBA) (BB) OB7TB OBTH 0 BTS 0876 OBTE O PIT O8I GBTI
24 0809 0083 088) 0003 0B84 0884 0BG 0BA3 0883 0L8I GBI 0884 0881 (8BS 067 OU77 0878 0878 OB7S 678 D&TI QBT 0BT
26 0684 UBB4 0684 0004 0084 0884 0804 DBSY 053) 0863 0S4 08T 081 0BBD 06TS OFTA D ATS OATE OBTE 0BTS 0872 0AT1 0BT 0870
26 OUAS D BSL DEES (BYS DBRS OS85 OBHS DBS4 0684 OBS4 0BE2 0881 OB8! 0881 0SS0 OBED 0BBO 0878 OBM 0BF3 0872 OETD OBFD 087 OHTS
27 0006 (1805 0686 QUR5 0687 0885 0065 0 B4 0884 0082 008 0831 Q880 0BEY 088t 089 OATE D678 0874 ONT2 0672 OOT1 O6T1 D&73 OBTY AT
28 0BT 08E7 0888 0888 0 6FS 0585 (BRS NBI5 0887 0661 0881 0680 0BT DRBO N&R' OBSY OAR78 DATE OBTI 0872 DD OBTI 0B7Y OBTI 072 GHTY 0HS
28 088% U895 0SS 0866 (B84 UBS4 OBEI 0 HE2 0837 OBAY U9 0817 OBIT DBFE O8SC OETE OBIS 0874 Q812 QRIZ 0272 OBT2 OAYE UBFA O8N U B9 0805 0802
30 OBB2 UBRZ DEE2 QABY D BRI 088 0801 OBST 0SB0 OBH0 0BTE OBYS OB75 0BT GETR OBPE 0BY4 D872 OGTZ 0BTO 0870 0872 00TY OBTI OB70 068 0864 0562 0861

Table 6.34: R-Range average accuracies for RCV1-Author, Concatenated Dynamic. The
lower range value is shown across the columns and the upper range value shown across
the rows.

12 3 4 8 & 7T B % W W 12 13 W W W v m % W M n N M BN N N N
1
00
3ovee oTE?
4 083 D33 07
5 OBSY DAY 0854 OBSE
& 0856 DASE 0956 O DA 0057
T OB ORAZ 0867 CBS1 0BED 0882
S 0BE) 008 0884 ODES D850 0883 OATD
S OB DATY 0ST7 OB2 0869 0870 ORT4 OATS
W OS5 0ATS D875 QTS DAT4 DETY 0075 DBT6 0875
11 0670 DATH 0878 OB76 OAT? 0§76 OGTH UATE DATE OBTY
12 ORTT GAT? DETB QR7H DOTR OF76 067 0877 O8TH OB7D 085
30670 0479 087D OB70 0876 O8N CBTT O6TH 086D OO70 08B 08
4 O8I0 08B 0SB0 OFT0 OB6) 03T 0670 D87% 0&B0 OBE) GOMY 083 O B2
1§ OBF 008y 0601 OBR2 O0EZ 0@ QB0 DBBO 0865 OBE) DRE) 0BG OB 0B
1 OBES 0065 0306 OIS 00K 0802 OBK) 0004 0883 0B OGB4 0802 OB 0BT 081
17 GBES 006h DSOS 0SS 0BG 0&S¢ O DB 0883 OBS VUK 080) OB OBHY 0870 0K
19 085 0085 0885 OB DBBd 0 6B OBRA DBE) 0 BH3 OMED DBEY 088) OB ODHBO USE1 OBE OBTS
1P OES 008 0S6% OBSH DEBd 0890 OB NEBL 0583 OB 08K 0691 CBS O8E1 0801 OBSY DETG DETH
20 0695 DBAY (284 OB OBEY 0864 OS] DB 0882 OB 0O 05EZ ONE2 OOE! DEE! OBTR 08T OSTL QTN
21 GBE2 DBIZ 0387 OBSZ DOHZ 0882 0B DHBY USH) OB 068Y 0883 OBS2 0861 0STH OUE DBTL GETYL OBMG DET4
27 0B94 0SB4 0283 0BSI D84 0263 OB DBEY 0581 OBSY DOEZ 088¢ O BE? 0PSO 0870 OB/ DTG OST6 OBM 08T D&M
23 0834 D8A4 UB84 007 (1884 083 OBSZ DEPY 0861 OB DSE) 0384 OBEI DETS 0378 0BT DATC Q@T4 0BT DATL O&T4 OBN2
24 OB4 D8P4 0380 OBS4 DOEI 0267 0B DO USA2 OB DSG4 DAL OB DBEC 0STE OFXG DAT? OFTE OBT2 DETS USTI OBID D@70
25 O34 DBB4 0DSGE OBS4 0084 USG) OBS4 UBKC 0832 ODS) (B84 DEB1 OBE2 DOBG OE7H OB7E 0677 0874 OBIS DATL 072 OEI? DEFO 0670
26 0.8507 0887 0887 0887 0HEE 0865 OBSS (BB 0284 OBS4 GSB4 DES1 ORI2 0978 OETH OBVE DATT OSTT OBMS DRTZ 0&T2 CEM DEFO D&M OB74
27 oReE DBRS 0§95 OBSE DABE 0585 ORE4 NAR4 D8RS ORS4 DBRY 088 OB DETE 0879 ORYO OAT? 0875 CB?3 DAT? OET7 OEVY O&YY DET3 ORTI Q7Y
28 CRE DBES D8RS 0686 DR NSA5 ORES (AB4 0864 ORE? ORBO NSAD OBTR DITH NSTD OB DATY O&MS ON?2 GAT? 0&T1 OBT DETY 0&73 072 D71 D88k
20 OB DBEM DEBs 04 DO DSRY ORI NBEY DAR? ORS OAEYS 0677 Q876 0878 0ETY OBTR NAT) 0877 OBTY DA7Z 0&T2 OBT7 0BT 074 007! D56S 0868 O M2
80 CHET OABT 08F1 OB OB 0470 ORTR NAYE OE7R OHN GATS ORT5 OBTT OATS 0ET5 OK7) DATY 06SH OREG DATO N8B0 OBT DAT2 0877 ORES NAEG 036 OB DBRI

Table 6.35: R-Range average accuracies for RCV1-Author, Concatenated Static. The
lower range value is shown across the columns and the upper range value shown across

the rows.
Concatenated Concatenated
Dynamic Static
0.879 0.879

Table 6.36: r™** average accuracies for RCV1-Author.

As with 20Newsgroups there does not appear to be a great difference between static or
dynamic models. The best performing range is this time achieved between 1-26 and 4-26, an

112 |Page

extremely high range as with that of the concatenated 20Newsgroups models. R-Ranges
outperformed the C-Measure results as seen in 6.3.1.3 with accuracies of up to 0.888 and
0.887 for the dynamic and static models respectively.

6.2.3.3.4 Reuters-10

The results for the R<,-Measure experiments are shown in Table 6.37, R,;-Measure in Table
6.38, r™* in 6.43 and Tables 6.39-6.42 show results for R-Ranges. Tables 6.37 and 6.38
display accuracies for all protocols with the leftmost column indicating the lower substring
limit for each algorithm. Tables 6.39-6.42 show the accuracy for each range with a single
table displaying results for a single protocol. The highest accuracies are again highlighted in

bold font.
Concatenated Concatenated NonConcatenated NonConcatenated

Dynamic Static Dynamic Static
1 0.311 0.311 0.420 0.418
2 0.655 0.655 0.588 0.623
3 0.745 0.746 0.644 0.686
4 0.778 0.783 0.727 0.760
5 0.811 0.819 0.776 0.808
6 0.839 0.841 0.814 0.837
7 0.858 0.861 0.833 0.854
8 0.870 0.872 0.847 0.858
9 0.878 0.882 0.852 0.865
10 0.884 0.887 0.859 0.867
11 0.890 0.893 0.862 0.872
12 0.895 0.897 0.867 0.873
13 0.896 0.899 0.870 0.879
14 0.898 0.900 0.873 0.879
15 0.899 0.899 0.874 0.882
16 0.899 0.902 0.876 0.886
17 0.898 0.900 0.876 0.886
18 0.899 0.901 0.874 0.881
19 0.900 0.903 0.874 0.879
20 0.901 0.904 0.873 0.878
21 0.901 0.903 0.873 0.875
22 0.901 0.905 0.876 0.878
23 0.899 0.905 0.872 0.873
24 0.901 0.903 0.872 0.869
25 0.896 0.898 0.866 0.865
26 0.888 0.890 0.857 0.855
27 0.878 0.879 0.849 0.848
28 0.863 0.864 0.836 0.834
29 0.842 0.840 0.812 0.809
30 0.816 0.813 0.789 0.787

Table 6.37: Accuracies achieved by applying R.,-Measure to Reuters-10 for each

protocol.

113 |Page

Concatenated Concatenated NonConcatenated NonConcatenated

Dynamic Static Dynamic Static
1 0.908 0.910 0.879 0.886
2 0.908 0.910 0.878 0.885
3 0.908 0911 0.881 0.886
4 0.909 0911 0.883 0.887
5 0.911 0914 0.887 0.890
6 0.914 0.915 0.889 0.887
7 0.916 0.918 0.882 0.883
8 0.918 0.919 0.878 0.879
9 0.920 0.920 0.875 0.873
10 0919 0918 0.869 0.869
11 0.920 0.920 0.865 0.867
12 0.919 0.919 0.864 0.863
13 0916 0.916 0.860 0.861
14 0.913 0.915 0.857 0.857
15 0.909 0.910 0.856 0.857
16 0.907 0.907 0.851 0.852
17 0.903 0.903 0.851 0.851
18 0.893 0.893 0.849 0.848
19 0.891 0.891 0.848 0.847
20 0.886 0.886 0.847 0.847
21 0.880 0.881 0.846 0.846
22 0.875 0.875 0.846 0.846
23 0.871 0.871 0.842 0.842
24 0.865 0.865 0.842 0.842
25 0.857 0.857 0.837 0.837
26 0.848 0.848 0.831 0.831
27 0.834 0.834 0.821 0.821
28 0.819 0.819 0.810 0.810
29 0.797 0.797 0.789 0.789
30 0.777 0.777 0.770 0.770

Table 6.38: Accuracies achieved by applying R ,-Measure to Reuters-10 for each

protocol.

114 ! Pa ge

1 2 3 4 & 8 7] 1] 10 11 L} 13 L 1% 16 17 w 1% M M F2) 23 A 2 T B M

1

2 D855

10745 045

407078 OTR

5 D§11 081 OBt 0817

0 083 0818 ODI0 DBAL CISh

T 0858 CBSE 0R%E 0361 0BG 0NT2

8 DETO QB0 OUYO DAYY 0B DBTE OBET

9 0B7H OR7D OATE NATE 0082 ORES 0805 O N0

10 0884 O #G4 OBES 0885 0 B3O DBYT 0200 O B0 DOOO

11 0080 0890 0BEO 0401 0BT Ofe (801 OWO 080 0505

12 0895 0805 OBGS 0805 ORGR OO0 0901 OBOT 0006 0907 O80T

13 0886 0930 00N 0887 C#S6 000 0501 OB 08907 USO2 OBIZ DB

14 0408 0098 OME DGBD OMGE 08I 0505 O DANT 0#1 OBV 0911 DRie

1% DSDD 0890 OB9S DEUR CHOO 0DDY 0505 O5CE D609 0913 0913 D914 D10 0017

W 086E 00 00 1800 OM0Y DD 0908 OWE 0012 D4 0PI 0815 DFE 0N DM

17 OHGE 0806 OUW D8ER OO OB0L (507 GRG 0811 0912 0TI OUIE UIE DRI D91e 0047

16 080% 0800 0D 0000 ORO1 G005 0605 ODID 0N7 0T 091 ORIE CH1D OMMT DW7 09T QHIS

15 0800 0400 0096 0500 O3 0900 0BO0F OBYT OU1) 0L OBV OB1E 0#18 OBIT D817 0918 OBI4 D910

0 0901 0f0t 000t 0907 GBO4 DOME 0500 GO DOIY 05 OPIB 0916 AT 0018 0916 D5 001 0H)7 0004

21 0901 0BOY 0BOY NSOY 0905 0509 0910 0017 0912 0917 OIS 0917 0915 0810 DEIS 0913 0BG DHO4 D50 O@Pe

20801 001 000 0962 0WS 0007 0910 OB 0912 0WE OM5 0917 816 006 DS DRt QBOT 0004 0890 QBT 0865

210809 CESH OBSE D900 OBOZ OO0 0407 ODOR 0010 0913 0912 0914 053 02 D511 0207 QOIS DOOO 08ST OFDS 089) 0887

24 0801 0RC1 QB0 0907 QW 0B (505 CWT 0810 BN B0 0812 090 0608 0807 0403 OB DRY7 0896 OB9) 020E OBEI OBE

5 0695 0696 DR 0805 0RO OREE D500 OW1 000) 0505 GO 00 09G5 QNG DO0O DT OBl 0BUZ 0 E8A ORES 0387 CETE 0874 NATY

20 N86S 0 SEP O3 OEBE OB36 OB 020) OBS? 0BRSS 0E8H OHSG DESL 0S8 OB DEDD OBSr OBSS DEB4 C8E) QBT 0SSN 0BT2 0BOR UG CBE2

2T DATE 0BTE Q876 O8TH OETH OBEY 0800 OBH OB} 0009 OB OBEZ 082 OB 08B0 0BT OOTE 0ATZ Q&0 0057 0664 OB O8O0 0BS5S DES) LBE

20 D963 0B6) ODI] 092 OBS4 0PRSS 0995 OBSE DBST 0S6R OBST 0857 08GO ODSG DBE) 0861 OBSC DEST OBSE DR52 064R OBMT OBL D841 OBIT DA 022D
20 00€2 DB42 OB42 DAY OB43 005 (54 OB DB D845 OBIS DU D646 OB4A DBEY OB OB4Y 0836 06 OU3Y 0820 OKES OHZ2 081D 08 001D O 80R O e
M 0FtS 6BV OMIE DE16 0BT 0016 D17 ORY7 0819 0&10 OB19 DE1S 0816 OMG DA1E OR1T 0618 DE13 OB OBDG GAN5 OBG DBOT 0708 0795 0791 0789 O 787 D7E2

Table 6.39: R-Range average accuracies for Reuters-10, Concatenated Dynamic. The
lower range value is shown across the columns and the upper range value shown across
the rows.

1 N Hn 2 N nun ¥ X "M N N

-
w
-
=
>
-
=
-
=
o
e
=
B
&
=
-
-
H

|
200

30748 0748

40N 0TE O T4

5 081D OP 020 0ERL

BODAT OB O B4 08D 0854

TOB 08B OMZ 082 050 D&M

B OM2 OR2 OBTZ 0277 0ETE 0664 DRES

GOB2 OM2 OB 084 OB 0BW DB 02

10 ORST CRET OEGH CESE (1893 0900 09T 090 OB

11 OB DB OBAX 08NS 0900 NG 00X 000} OB OWE

12 0B8T OIS P90 GEGE (502 0503 DOE OB 08 OWH O

19 0080 OB CP9H 001 0S03 0501 N900 0006 OECE GUIN OB QM6

140000 OO0 0D GR01 0% 08N 090 P07 HBOG G172 ORE O WIS 0017

15 090 0BG OBRB Q5G9 0903 DB04 NSO 0BOE OH1L DUV GEM QBIA 081) 08N

15 000 0000 O0Q7 OBAE 0604 0907 HOUT 0010 D014 ODI5 O D¥1S OF7 096 0917

AT 060 00 G0 2G04 HH0F 0807 DK DS GBYA O OME 097 0917 01T amT

18 050 0831 OB01 0S07 0S4 D207 DSOT BH13 0B15 CBNA VLG GNP 0912 097 D9IG DBI0 DH

1H Q80 0807 0807 G0 USO8 BOO! DB DOYA OEVE ORVE OSIE ORIT 0SS DM 0S8 DBI0 0BIE QR

20 0904 D04 0503 GE05 0507 D908 D91t 0015 0016 CDIE OT OWT Q7 OW7 0315 0016 D11 Q030 QN4

200G ORI OM3 G5 008 0911 0992 0016 DM GEIT OBt 0T 04 01D 0HI5 0912 O 004 O OM0e

22 0004 OBOS GHOL 0800 0507 0S10 D912 D614 DHIA OUN0 CEG 0810 0SS 0915 D514 0010 DBIT DHOD 0696 0896 0892

73096 0WS 0305 0501 0008 0008 1T 0011 D3 Gbta GBS OB 0914 0912 091 DOUT 003 OO0 K06 0ESe 0802 0367

24080 005 D) DROX OG04 OM0 DB DBM DB GBI BT OB 0911 080F DOO! DAX) OISO 0BT CEM DBEZ 080% UEBL UATY

25 0056 CFS0 CI98 0509 0500 0501 UODI OO0 OO 0BG 0PG4 0905 0905 0502 DESS 006 0PI OE9G OBET 0845 08A2 0677 0A7) DB

26 00 ORS0 OR90 OBO0 0801 08N DBK) DAB4 DRSS ORIS O M4 CIO4 084S 0ALD DAKT ONBE DORA M2 ORTH DATE 0875 DATY DAET 0BG OREQ

20 0810 OETR OFTH Q&7 0&TE U8PD DBB) DBET DB ORI OBB0 QTG QTR OATF DET DBTA QETI OWE O WM D EOL 003 0A0D 08 NI OBY DB

20 0P OBES OBGL 0884 D864 0655 NBG4 DBES 0BSE OBS4 OBE3 CBE3 0542 0860 DASS 0057 DBAT OBS4 OBS2 GESD (842 0343 0841 DB38 0B ORIS DEXB

0 00 GH40 S840 0880 DAY 0A8Y DBAZ D043 VB4 OB40 OB4D G B4 G DA ORM 00N ORIT ORY) ORIZ O EG 0E D822 08 0815 OF1Y DR OMT 008
30 OR1E OBYI OBYS QB OF13 0811 0914 0014 ORIS OFYE OBte OB14 041 D314 DRI DRTZ ORT2 OGP OBOR CEOL 0FOZ D800 (766 DTHY 0791 DTHE 0786 0785 07N

Table 6.40: R-Range average accuracies for Reuters-10, Concatenated Static. The lower
range value is shown across the columns and the upper range value shown across the
rows.

115|Page

1
1

7081
3 0088
4 0760
b one
& ORI
Foma
& ORsA
8088
10 oy
11 0872
12 0873
13068
14 ORTY
1% oBe2
18 0 636
17 O s
th & Bst
19 O BIY
20 GBYR
21 0878
27 ORTR
23080
24 080
25 ¢ bon
2% ORss
2ropee
76 ORM
29 0 8
30 o ™8T

~

oL
oTa
obm
0%
Dabt
aasa
bbs)
068
o8m2
DAT4
oarm
o8™
ase
0 pee
0 b
0 st
oan
o8
oara
oar
Qen2
onea
Ll ol
o5
oBer
R
omEm
o e

wrm

nary o
D840 0867
nao> 0@ry
Da&s 0ETS
DBGE 0880
par ogn
087y &
NET™4 nase
pEre paEsd
0879 0887
0EE2 0880
N8B 0890
DEEy 08w
DBRZ 0880
oesy oger
0880 0
0ars oeed
0am 0487
D8NG 0&MS
nar: 0@
asog 0§72
0R% 0850
DB D699
nass a8y

[12
o§rr
(3]
o7
0 me
om0
U3]
o ml
oM
0 gz
o
(123
08
LT
0 &g

OB

0 B0 090
0o 08w
o8 ouel
O 0858
oM 08
oS oBM
Oms 08M
OB Oaed
O S DB
oS OBn
Cme 0867
0B% 0880
O RST OHER

omT OBE) D88
0By 080 0880

DEE
-3 v
Do
o #sT
(13 20
nEY

amv oune
GET1 OBTO
oma 0
0BT 085
OB 0843
OHY) AW

0805 0802 0800 OBIG 0B
0787 0785 GTES OTe4 OTRZ

08%s

0est 08

Naey 0867 086
0890 0&ab O B85S OEED
D8R D805 02 OB
(201 0&68 088 ORED
LB D862 088 O8N
GFA7 DEET 0882 OETS
uees 0%E2 O WO OBT2
088y 0361 CAT5 OPea
088 0870 QW O
0882 D875 08O OB
Oers OBM4 O P08 DBST
DA77 0877 O W8 OS5
087Y 0508 ¢ 82 OBY
N866 0883 0850 0858
0861 06NF OB OB%2
DA 0848 0348 Of44
084 0E37 O8I 083
N33 0824 O K27 O
U8d D01 OO0 DB
D762 D780 O 7MY OTS4

1]

DATT 0&TE
DBrs 0872
0AaT? 0869
baoy 080s
06T (884
o887 0805
D85 A6
DBt DBes
nas4 0H6L
095 088
DAST Nass
Dat pesz
0her 088
peIr D8N
0825 0822
pelz o200
o0 07

om’
0365
(132
0 865
0803
0842
0962
085
gear
0853
0850
0542
(1] 2+
ngzn
aree
0780

0BT

oWy 0B

O B2 ORSH 0 oed

0B8R 0B 0BLS DAY

OBB0 ORED DA5? 0853 082

OBt OBST 0853 0862 0834 OB

CBSA ORST 0854 0855 0#67 ORS1 QR
OB 05 DALY 088 O B30 OB4T DT
ORS2 OR5N NDASI 0ES1 Q84T 046 O
QBT OB4S DHAE 0S8 0541 OBMD OBR
DB4a OB42 D847 DEIP OIS OB DA
GB3) DB3Y DEZE 0827 0524 ORM OEXe
ORM GAW DT D@ 04 OH1) OF4
0797 QTS0 0TS 0783 0793 OTH2 0T
OTM AT OTTE N7 G776 OTIR GTTY

naas

NEes 0B

083% 084D CEI6

0835 06 OR13 ORR

082¢ 0€2) CA2] QEZ2 DEZ2

N§12 0811 Gk OB DRI0 DRLO
e o7eY 0TS0 QTR0 OTHO 0780 0790

AMTYQTTA G2 QT2 QTT2 QA2 AYTR QTN

Table 6.41: R-Range average accuracies for Reuters-10, Non-concatenated Static. The
lower range value is shown across the columns and the upper range value shown across
the rows.

1
1

2 DEEE
I 0044
107
50770
6 0813
7 0R%Y
B oeer
0 0AS2
10 0850
1 o2
12 D @867
11080
14 08N
150874
18 bare
17 T
18 pEY4
100674
o oerna
087
2 oenm
noen
HMon
S 0heS
U R
T DY
FUR R
29 0012

e
ore
0TS
LETE
A%y
o8ar
0EsY
08h
o085y
o
oare
nen2
087
[0 b
08rs
pan
087y
oan
0ery
Ger
D™
oo
0864
8%
oo
04¥
oais

MOoTe 07

u7ar

076z 0820
&8 0638
0a% 06852
1847 D85
&% 0877
nass nar
088 pars
nass 08TS
08%2 08M
DETZ 08TE
087) 0861
GETd D&
0674 0862
0Eer) oear
DATS 086
UET4 086t
087 0&TE
D& oz
0874 0ETE
0ars AT
UR67 088%
0860 0961
n8s! ces2
DM 0840
DE15 D814
070 00

"

nass
i) o
uETe
LETE
[E]
L
0saz
0
1585
1) 8
oaas
00
T
0@
gs0
) &8
o
nErE
0ers
0E™
UE 3
0850
[} <
aan
0788

0875

o#a) ¢ear
0887 O MK
o485 087
00 0
0888 C#00
o’ o=
0eaY caar
0§04 07
06as csas
n@e 0o
066z 083
0847 083
08z Csa2
0&a3 0880
nsez aEry
08 08T
aEr ostt
0889 O BET
085k 050
08§60 0 B4
08N 08
om3 0813
a7k 0700

H] 9 10 Al
o3
oM OB

O B0 0B O8s0
0800 063 OB86 0B
O mh Ofa OBES 0BE)
0B8e OBSE OB OB
O WS G4 O OBE)
OBS4 DEB4 OBE) ORTY
02 02 OB 00N
0882 0882 OBE OB
B O ORTH OAT2
CE 0NN OB/ OBen
CETT DETS OBEO 0056
DEIT GBI OB 068D
CEHTS DR OBES LB
OBl OBMS OM DR
0865 0 BS0 0B 0852
D86 O Bab OB4S OB42
OB4E OB41 0BG OB
QRS DR O K28 DS
CBt1 080T 0BG 0BG
QT O7HS 0TS DTS

08

oB8 DETT
OB7TR 0874
DBIT DBEA
0FM 05
088 080
0857 0065
0B 0B84
08 0062
owet 088t
DEE0 085
ST
0852 OBl
044 (1042
OBM QA
08 082
0806 0802
070 O TR

]
6887
(0
L]
0w
nest
(3 1]
oast
0851
ngwR
badr
s
08x
na
68t
0T

nass

0884 0661

098t D57 0SL7

0R90 0855 0857 0885

08LF 0B% 05% 054 oW

D@4 085 0857 1852 0353 O RS0

0R% 0851 D853 0854 08652 081 D BaM
085 0848 0852 0857 (848 O848 O bea
D845 0848 0852 0850 BB O B0 OB
0844 084} 0847 0844 D842 0840 OB
Ghe> NS0 08447 0K 0EX 08 0K
0833 0831 0820 083D GE77 O 8FS DS
0622 0@1% 0K O F17 O@re Q614 G0V
0762 0T 0709 077 QTRS 0795 OTSE
0780 0700 DTTR OITD QTR QTR OTTY

n B M X M ¥ W

O B4s

G843 0B

ORIE ORI0 DEE

O3 OBM DB 08X

0825 OIS DB 0823 082

OBYA ORI 0014 0812 OE1r DD
0782 OTSE OTH4 DTEG DTH] DTH2 OTHR2
QTR OTIR QTIT OTHE Q778 G775 Q775

22

[

Table 6.42: R-Range average accuracies for Reuters-10, Non-concatenated Dynamic.
The lower range value is shown across the columns and the upper range value shown
across the rows.

Concatenated Concatenated NonConcatenated NonConcatenated
Dynamic Static Dynamic Static
0.908 0.910 0.879 0.886

Table 6.43: r™%* average accuracies for Reuters-10.

116 | P a

6}

€

6.3 Execution times

The time taken to compute results varies substantially depending on a number of factors
including the number of comparisons (i.e. number of testing and training documents), the size
of these texts in addition to the algorithms and protocol used. As 20Newsgroups had the
greatest number of training and testing files, the computations took a significantly greater
amount of time compared to the other corpora and so it is the timing for this corpus which
shall be investigated.

6.3.1 C-Measure

NonConc Dyn

NonConc Stat

Conc Dyn

Conc Stat

398529

204591

79697

402

Table 6.44: Average timings in seconds to calculate C-Measure on 20Newsgroups for
each split.

Table 6.44 shows the average number of seconds taken to compute accuracies for a single
cross for each protocol. It is clear that we have great variance for the timings across each of
the protocols, the minimum being for concatenated static with timings typically under seven
minutes and the longest being for non-concatenated dynamic with timings of over six days.
Concatented models are of course much larger than their counterparts and take longer to load
into memory but the number of comparisons is drastically reduced to 20 x 3759 = 75,180 in
most cases compared to 15036 x 3792 = 57,016,512. It is also worth noting that this means
even with our longest case, a training document was compared against a testing stream, with
results written to disk on average 0.009 seconds each. Even though each comparison can be
executed quickly, unfortunately it still takes a long time due to the overwhelming number to
be computed.

The reason static models are much quicker than the dynamic ones is that because the training
model is dynamically modified, we are forced to reload the model again when we are to
compare against the next testing stream. Speed ups for the concatenated case relating to the
order of comparisons was discussed in 5.3.5 and though what is discussed there is true for the
concatenated static case, with dynamic we must still reload the original training model. The
time taken to do this was drastically reduced by holding the original model in memory and
modifying a copy of the object rather than the original.

6.3.2 PPM
NonConc Dyn NonConc Stat Conc Dyn Conc Stat
With Without With Without With Without With Without
Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions
2 442797 330100 614554 230035 2417 1915 2498 1858
3 512327 461451 790613 280094 5817 5835 6234 4897

Table 6.45: Average timings in seconds to calculate PPMC on 20Newsgroups for each

split.

117|Page

NonConc Dyn NonConc Stat Conc Dyn Conc Stat
With Without With Without With Without With Without
Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions | Exclusions
2 514562 337758 983581 252895 2891 3758 4073 2792
3 595362 472157 1265359 307929 8912 8195 9248 8095

Table 6.46: Average timings in seconds to calculate PPMD on 20Newsgroups for each
split.

Results for PPM took much longer to collate than for C-Measure due to the fact that for every
protocol, two computations were required for with update exclusions and without. It is clear
that again concatenated results were much quicker, as previously mentioned this is because of
the very few number of training documents to be compared against each testing document. As
expected with update exclusions take longer to process than without and the length of the
order dramatically increases execution time.

6.4 Chapter Discussion

The best results from each method and protocol for each corpus is listed in Table 6.47 and the
best results for each corpus is marked in bold font. The table shows that for Gutenberg and
Reuters-10, PPM achieves the highest accuracies and each of these corpora has been shown
to be quite different in the number of files and the sizes of each. R-Ranges also achieved
extremely high accuracies and outperformed PPM for both 20Newsgroups and RCV1-Author
and the results suggest that R-Ranges is the best performing variant of R-Measure.

PPMC has been shown to outperform PPMD overall and also with exclusions achieved
higher accuracies on more occasions than without. As mentioned in 6.2.2 the computational
overheads involved with investigating high order PPM models for large corpora meant that
high orders could not be investigated in all cases, however, interestingly Table 6.47 indicates
that in some cases low order models can outperform higher ones. Table 6.19 shows that as
with low order models performing well, in some cases substring lengths as low as 1 are
important in categorizing texts, especially when concatenated models are being used.

With regards to the performance of each protocol, Table 6.47 shows that the concatenated
dynamic protocol achieved the highest accuracies for each of the corpora and concatenated
models outperformed non-concatenated in nearly every experiment of all methods for all
corpora.

Section 6.3 shows that the amount of time required to gather results for each protocol vary
considerably. Dynamic models take slightly longer than static ones due to the need to reload
the models or undo changes after each comparison. Non-concatenated models take
considerably longer to compute results for due to the large amounts of comparisons required,
making it seem very convenient that concatenated models performed best.

].18 ‘ Pa gc

Corpus Protocol Method Accuracy
20Newsgroups Conc, Dyn C-Measure 10 0.9070
20Newsgroups Conc, Stat C-Measure 9,10 0.9066
20Newsgroups | NonConc, Dyn | C-Measure 15 0.8520
20Newsgroups | NonConc, Stat | C-Measure 15 0.8400
20Newsgroups | Conc, Dyn | R-Ranges, 4-15 0.9147
20Newsgroups Conc, Stat R-Ranges, 4-15 0.9136
20Newsgroups | NonCone, Dyn | R-Ranges, 11-19 0.8523
20Newsgroups | NonConc, Stat | R-Ranges, 12-13 0.8325
20Newsgroups Conc, Dyn | PPMD, Order 2, no exclusions 0.8955
20Newsgroups Conc, Stat PPMD, Order 2, no exclusions 0.8910
20Newsgroups | NonConc, Dyn | PPMC, Order 2, with exclusions 0.7828
20Newsgroups | NonConc, Stat | PPMD, Order 2, with exclusions 0.7537

Gutenberg Conc, Dyn C-Measure, 24,25 0.78
Gutenberg Conc, Stat C-Measure, 21 0.78
Gutenberg NonConc, Dyn | C-Measure, 22-27 0.78
Gutenberg NonConc, Stat | C-Measure, 23 0.78
Gutenberg Conc, Dyn | R-Ranges, numerous 0.775
Gutenberg Conc, Stat R-Ranges, numerous 0.767
Gutenberg NonConc, Dyn | R, 20-24, R-Ranges 19-24,27-29 0.775
Gutenberg NonConc, Stat | R-Ranges, numerous 0.775
Gutenberg Conc, Dyn | PPMC 3 no excl, PPMD 3 with/no excl 0.95
Gutenberg Conc, Stat PPMC 2 with excl, PPMD 2/3/4 with excl 0.75
Gutenberg | NonConc, Dyn | PPMC 3 with excl, PPMD 5 with excl 0.925
Gutenberg NonConc, Stat | PPMC 6/7 with excl, PPMD 6/7 with excl 0.6
RCV1-Author Conc Dyn C-Measure, 16 0.8830
RCV1-Author Conc Stat C-Measure, 12 0.8837
RCV1-Author Conc Dyn R-Ranges, 3-28, 4-28 0.888
RCV1-Author Conc Stat R-, 11,12,26, R-Ranges numerous 0.887
RCV1-Author Conc Dyn PPMD, 3 no exclusions 0.8533
RCV1-Author Conc Stat PPMD, 3 no exclusions 0.8518
R-10 Conc, Dyn C-Measure, 15 0.9177
R-10 Conc, Stat C-Measure, 14 0.9173
R-10 NonConc, Dyn | C-Measure, 9 0.8927
R-10 NonConc, Stat | C-Measure, 9 0.8954
R-10 Conc, Dyn R>g, 9,11 0.920
R-10 Conc, Stat R>4.9,11 0.920
R-10 NonConc, Dyn | R-Ranges, 8-9 0.893
R-10 NonConc, Stat | R-Ranges, 7-11, 8-9 0.898
R-10 Conc, Dyn | PPMC, 3, with exclusions 0.9531
R-10 Conc, Stat PPMC, 3, with exclusions 0.9455
R-10 NonConc, Dyn | PPMC, 2, with exclusions 0.8556
R-10 NonCongc, Stat | PPMC, 4, no exclusions 0.9080

Table 6.47: Highest achieved accuracies for each method, for each protocol against each

corpus.

119|Pag

e

Corpus Method Acc. R P BEP Citation Number
Gutenberg Markov chains 0.7472 Khmelev, D. 2001
Gutenberg RAR 0.82 Marton. et al. 2005
Gutenberg LZW 0.83 Marton. et al. 2005
Gutenberg GZIP 0.67 Marton. et al.2005
R-10 Word 0.32 | Yang. 1999
R-10 kNN 0.85 | Yang. 1999
R-10 LLSF 0.85 | Yang. 1999
R-10 CLASSI 0.80 | Yang. 1999
R-10 RIPPER 0.80 | Yang. 1999
R-10 SWAP-1 0.79 | Yang. 1999
R-10 DTree C4.5 0.79 | Yang. 1999
R-10 CHARADE 0.78 | Yang. 1999
R-10 EXPERTS (n-gram) 0.76 | Yang. 1999
R-10 Rocchio 0.75 | Yang. 1999
R-10 NaiveBayes 0.71 | Yang. 1999
R-10 Action algorithm 0.8691 | 0.8949 | 0.895 | D’Alessio. 1998
R-10 SVM 0.8120 | 0.9137 Jimin, L. et al. 2001
R-10 KNN 0.8339 | 0.8807 Jimin, L. et al. 2001
R-10 LSF 0.8507 | 0.8489 Jimin, L. et al. 2001
R-10 NNet 0.7842 | 0.8785 Jimin, L. et al. 2001
R-10 Naive Bayes 0.7688 | 0.8245 Jimin, L. et al. 2001
R-10 Naive Bayes 0.848 Teahan, et al. 2001
R-10 LSVM 0.919 Teahan, et al. 2001
R-10 PPMC Order 2 0.863 Teahan, et al. 2001
R-10 PPMD Order 3 with excl 0.910 Teahan, et al. 2001
R-10 PPMD Order 3, no excl 0.902 Teahan, et al. 2001
R-10 Findsim 0.646 Dumais, S. et al. 1998
R-10 Naive Bayes 0.815 Dumais, S. et al. 1998
R-10 BayesNets 0.85 Dumais, S. et al. 1998
R-10 Decision Trees 0.884 Dumais, S. et al. 1998
R-10 LinearSVM 0.92 Dumais, S. et al. 1998
R-10 RAR 0.87 Marton et al. 2005
R-10 LZW 0.84 Marton et al. 2005
R-10 GZIP 0.83 Marton et al. 2005
R-10 SVM + IB (information 0.916 Bekkerman, R. 2001

bottleneck) clustering
20News Naive Bayes 0.85 MecCallum, A. et al. 1998
20News PPMD 0.821 Teahan, et al. 2001
20News Multivariate Bernoulli event 0.74 Teahan, et al. 2001

model
20News Multinomial model 0.85 Teahan, et al. 2001
20News PrTFIDF 0918 Joachims, T. 1997
20News Naiev Bayes 0.896 Joachims, T. 1997
20News TFIDF 0.863 Joachims, T. 1997
20News SVM + IB (information 0.895 Bekkerman, R. 2001

bottleneck) clustering
20News RAR 0.90 Marton et al. 2005
20News LZW 0.66 Marton et al. 2005
20News GZIP 0.47 Marton et al. 2005
RCV1-Author | PPMD Order 8 with excl 0.8876 Hunnisett, D. Et al. 2004
RCV1-Author | PPMD Order 7,8 no excl 0.8978 Hunnisett, D. Et al. 2004
RCV1-Author | C-Measure Order 13 0.9038 Hunnisett, D. Et al. 2004
RCV1-Author | SVM 0.85 Hunnisett, D. Et al. 2004
RCV1-Author | R-Measure 0.89 Hunnisett, D. Et al. 2004
RCV1-Author | RAR 0.894 Hunnisett, D. Et al. 2004
RCVI1-Author | Multi-SVM 0.85 Khmelev, D. Et al. 2003
RCVI1-Author | Bxip2 0.482 Khmelev, D. Et al. 2003

120 | P a ge

RCV1-Author | Gzip 0.594 Khmelev, D. Etal. 2003
RCV1-Author | Markov chains order | 0.661 Khmelev, D. Etal. 2003
RCV1-Author | Markov chains order 2 0.645 Khmelev, D. Et al. 2003
RCV1-Author | Markov chains order 3 0.633 Khmelev, D. Et al. 2003
RCV1-Author | PPMD Order 2 0.813 Khmelev, D. Et al. 2003
RCV1-Author | PPMD Order 3 0.864 Khmelev, D. Et al. 2003
RCV1-Author | PPMD Order 4 0.884 Khmelev, D. Et al. 2003
RCV1-Author | PPMD Order 5 0.892 Khmelev, D. Et al. 2003
RCV1-Author | RAR 0.78 Marton et al. 2005

RCVI1-Author | LZW 0.66 Marton et al. 2005

RCV1-Author | GZIP 0.79 Marton et al. 2005

Table 6.48: Best Results from other text categorization methods.

Table 6.48 lists results from past experiments for each of the studied corpora. The evaluation
techniques of some are different and so columns are provided for accuracy (Acc.), recall (R),
precision (P) and also breakeven point (BEP). The citation number pointing to the reference
is included in the rightmost column. By comparing the results for stream-based methods
against those in Table 6.48 we can see that for 20Newsgroups, R-Ranges outperforms all
other methods apart from one. Other methods exist that outperform C-Measure and R-
Measure for Gutenberg, however, PPM has clearly outperformed any other method with an
accuracy of 0.95.

None of the new results were able to reach the performance achieved of past results for
RCV1-Author but the best performing was found to be C-Measure by Hunnisett & Teahan
(2004). Table 6.48 shows that there has been substantial experimentation performed against
Reuters-21578 and our experimentation of PPM was found to achieve the best results, having
accuracy of 0.9531.

For each corpus in turn, Table 6.47 allows us to easily evaluate the performance of each
algorithm but it is more difficult to evaluate the performance of each measure in turn against
each of the corpora and this is the reasoning for Tables 6.49 — 6.53. It has been shown that the
concatenated dynamic protocol performs better than any other overall therefore the following
results have been tabulated for this protocol only.

121 |Page

Order | 20-Newsgroups | Gutenberg | RCV1-Author | Reuters-10
1 0.043 0.080 0.018 0.311
2 0.238 0.180 0.487 0.655
3 0.788 0.180 0.793 0.747
4 0.879 0.230 0.834 0.779
5 0.898 0.300 0.856 0.834
6 0.905 0.300 0.861 0.862
7 0.904 0.300 0.866 0.878
8 0.905 0.350 0.872 0.894
9 0.906 0.400 0.875 0.899
10 0.907 0.450 0.875 0.902
11 0.906 0.480 0.878 0.906
12 0.904 0.550 0.882 0.912
13 0.902 0.550 0.882 0.915
14 0.898 0.580 0.882 0.917
15 0.892 0.600 0.879 0.918
16 0.889 0.630 0.883 0917
17 0.885 0.630 0.882 0.915
18 0.879 0.630 0.878 0.913
19 0.875 0.700 0.876 0.907

20 0.871 0.700 0.878 0.903
21 0.868 0.750 0.875 0.895
22 0.864 0.750 0.875 0.891
23 0.861 0.750 0.869 0.884
24 0.857 0.780 0.870 0.878
25 0.855 0.780 0.872 0.872
26 0.852 0.750 0.873 0.861
27 0.848 0.750 0.870 0.844
28 0.845 0.750 0.864 0.827
29 0.842 0.730 0.861 0.800
30 0.839 0.680 0.860 0.781
31 0.835 0.630 0.856 0.760
32 0.832 0.580 0.851 0.728
33 0.830 0.500 0.849 0.699
34 0.827 0.450 0.847 0.667
35 0.824 0.430 0.842 0.645
36 0.821 0.430 0.839 0.619
37 0.819 0.450 0.834 0.583
38 0.817 0.450 0.827 0.558
39 0.814 0.400 0.822 0.525
40 0.813 0.380 0.815 0.499

Table 6.49: C-Measure results for each of the corpora for the concatenated dynamic

protocol.

122|Page

Order | 20-Newsgroups | Gutenberg | RCV1-Author | Reuters-10
1 0.907 0.475 0.879 0.908
2 0.907 0.475 0.879 0.908
3 0.907 0.475 0.879 0.908
g 0.9066 0.475 0.88 0.909
5 0.9063 0.475 0.88 0911
6 0.90438 0.475 0.879 0914
7 0.9023 0.475 0.88 0.916
8 0.8994 0.5 0.88 0918
9 0.8969 0.525 0.879 0.92
10 0.8932 0.525 0.881 0.919
11 0.8896 0.55 0.88 0.92
12 0.8858 0.525 0.881 0.919
13 0.8807 0.525 0.882 0.916
14 0.8761 0.55 0.884 0.913
15 0.8721 0.55 0.881 0.909
16 0.8684 0.6 0.877 0.907
17 0.8649 0.675 0.875 0.903
18 0.8627 0.7 0.875 0.893
19 0.8595 0.725 0.872 0.891
20 0.8569 0.725 0.869 0.886
21 0.8548 0.725 0.867 0.88
22 0.8521 0.725 0.868 0.875
23 0.8495 0.75 0.865 0.871
24 0.846 0.725 0.862 0.865
25 0.8432 0.725 0.859 0.857
26 0.8407 0.725 0.856 0.848
27 0.8378 0.675 0.853 0.834
28 0.8358 0.625 0.851 0.819
29 0.8331 0.575 0.847 0.797
30 0.8303 0.525 0.845 0.777

Table 6.50: R ,-Measure results for each of the corpora for the concatenated dynamic
protocol.

123 |Page

Order | 20-Newsgroups | Gutenberg | RCV1-Author | Reuters-10
1 0.0427 0.075 0.025 0.311
2 0.2379 0.175 0.47 0.655
3 0.7805 0.15 0.787 0.745
4 0.8727 0.2 0.83 0.778
5 0.8939 0.3 0.85 0.811
6 0.9032 0.275 0.862 0.839
7 0.9056 0.3 0.863 0.858
8 0.9084 0.3 0.864 0.87
9 0.9094 0.3 0.871 0.878
10 0.9107 0.35 0.872 0.884
11 0.9113 0.35 0.875 0.89
12 0.913 0.4 0.875 0.895
13 0.9133 0.45 0.877 0.896
14 0.9141 0.45 0.878 0.898
15 0.9145 0.45 0.879 0.899
16 0.914 0.45 0.879 0.899
17 0.9135 0.45 0.88 0.898
18 0.9126 0.45 0.88 0.899
19 0.9119 0.45 0.88 0.9

20 0.9099 0.45 0.881 0.901
21 0.9072 0.45 0.882 0.901
22 0.9047 0.475 0.883 0.901
23 0.9008 0.475 0.882 0.899
24 0.8949 0.475 0.883 0.901
25 0.8904 0.475 0.884 0.896
26 0.8853 0.475 0.884 0.888
27 0.8806 0.475 0.886 0.878
28 0.8766 0.475 0.887 0.863
29 0.8726 0.475 0.885 0.842
30 0.8697 0.475 0.882 0.816
Table 6.51: R.,-Measure results for each of the corpora for the concatenated dynamic
protocol.
20-Newsgroups | Gutenberg | RCV1-Author | Reuters-10
0.907 0.475 0.879 0.908

Table 6.52: r™2* results for each of the corpora for the concatenated dynamic protocol.

124 |Page

PPMC PPMD
With exclusions | Without exclusions | With exclusions | Without exclusions
20-Newsgroups 0.8886 0.893 0.892 0.8955
Gutenberg 0.8 0.8 0.75 0.775
RCV1-Author 0.7994 0.8055 0.8062 0.8146
Reuters-10 0.9477 0.9437 0.9455 0.945

Table 6.53: PPMC and PPMD results for each of the corpora for the concatenated
dynamic protocol.

7™ and the new R.,-Measure is always outperformed by either the R.,-Measure or the
R, q-Measure. Overall, the new R, and R, , measures compare favourably with the

normalised C-Measure and PPM results and with the best results previously published,
including feature-based results.

Interestingly, neither PPMC nor PPMD dominates, unlike compression experiments where
PPMD usually leads to better compression. The remarkable aspect of the PPM results is that
no one order is clearly better across the protocols; and interestingly, models that do not use
exclusions in some cases are better than those that do. This is counter-intuitive from an
information theoretic perspective where one would expect that the model that performs better
at compression (usually PPMD order 5 with exclusions) would also dominate for text
categorization. An explanation might be that the categorization process requires optimizing
for the best class decision, not best compression. That is, the information concerning the class
is not being encoded, so is not being factored into the optimization. Also, performing no
exclusions penalizes the classifier by adding an avoidable coding cost, but this only occurs
when an escape has occurred to a lower context, strong evidence that the class may be
invalid; so the extra coding cost is aiding the classification decision.

Table 6.49 illustrates that the results vary markedly between Gutenberg and the other three
corpora. For 20 Newsgroups, RCV1-Author and Reuters-10 C-Measures using lower values
of k perform better, with peaks occurring for C lengths between 10 <k = 16. For
Gutenberg, in contrast, peaks occur for 24 < k > 25 and this may be due to the substantially
larger documents found in that collection providing much greater training data for relatively
few authors.

It was conjectured in section 3.1 that with natural language text, the shortest substrings would
be poor discriminants since these short substrings are common across all strings. This has
been borne out in the results, with the lowest R measure ranges not featuring in the best
performing methods — for example, for 20 Newsgroups, the best performing method is Ry 15
(where the substrings less than length 4 are ignored), for Reuters-10 the best performing
methods are R.q and Rs,; (wWhere the substrings less than length 9 or 11 are ignored) and for
RCV1-Author the best performing methods are Rs 55 and R4 ;g. It has been shown that for
Gutenberg peaks occurred for much longer substring lengths. It is not yet known if this is due

125|Page

to the style of text (the included Gutenberg texts are novels) or the large amounts of training
data for only a few authors. From these results it must be recommended that anyone
attempting to categorise new streams exclude shorter substrings and to use a longer minimum
shortest substring length for streams similar to the Gutenberg corpus.

126 |Page

Chapter 7

Conclusions & future work

7.1 Discussion

There were two problems that motivated the work within this thesis. The first was that
although stream based methods for text categorization have been shown to perform well in
some experiments, no thorough study of their performance has ever been performed on a
number of major corpora and their results have not been thoroughly compared against the
current state-of-the-art feature based techniques. This is an important problem as the merit of
the techniques cannot be fully established until a thorough study has been performed. A
number of new stream based methods have been detailed within the thesis and one of these
new techniques, R-Ranges, has been shown to outperform all other methods for two of the
corpora.

The concept of protocols and how each affects categorization results has also not been
studied thoroughly across a number of methods for several corpora. The experimentation
performed within chapter 6 showed that the protocol does indeed affect the accuracies of each
method and the concatenated dynamic protocol was found to outperform all others on most
occasions and performs consistently well across all methods, for all corpora. This study has
now conclusively shown that the method used to categorise text must not be the only one, the
selection of protocol is also just as important.

From the experimentation, a third problem was identified. It has been highlighted by Yang
(1999) that it is often difficult to recreate the exact experimentation conditions of previous
studies. One reason for this is that the training and testing splits often differ. To ensure that
all methods and protocols were fairly compared, a toolkit was developed to offer a single
location from which all methods could be ran, for all protocols, on the same data. This is
important as all experiments can now be accurately recreated and any new techniques can
then fairly compare its results against all found from within this study.

7.2 Summary of chapters

Chapter 2 reviewed important concepts within the field of text categorization and difficulties
in comparing results among techniques were mentioned. Several applications of text
categorization were discussed as were the most common feature based approaches to
categorization. The more common feature based approaches perform pre-processing
techniques which consumes both time and resources, but it has been shown that stream based

127 |Page

approaches do not. Previous stream based methods were discussed and the fact that their
research was sparse was noted.

Chapter 3 introduced new stream based categorization techniques. Improved performance to
the C-Measure has meant that longer substring lengths have been examined and several new
variants of the R-Measure have been introduced. The chapter also showed how these new
variants of R-Measure, C-Measure and PPM could be calculated through the use of the suffix
tree data structure which has not been previously performed.

After introducing suffix trees as powerful data structures that allow fast searching, chapter 4
showed that it is possible to compute the stream-based methods in reasonable time and space
and detailed the implementation of the stream based techniques.

Chapter 5 details jSCat, a toolkit created to facilitate the text categorization experiments and
to allow the calculation of several techniques all at once. As well as making it simple to run
experiments for a number of techniques, the toolkit has been shown to be extensible in order
to allow the introduction of new techniques and also handles tasks common to categorization.
Chapter 5 has also shown that optimisations can be found that drastically affect processing
times and we have now been able to analyse stream based substring lengths that are much
longer than previous research. One problem with comparing the performance of previous
studies in Table 6.48 to that of the results found within this study, shown in Table 6.47 is the
inconsistency. The same subsets will not be often used and the evaluation techniques will
also differ between experiments. This problem was highlighted by Yang (1999) but the use of
the toolkit to perform the experiments for all methods meant that all were performed in a
consistent manner, on the same subsets of corpora and evaluated in the same way and this is
what is needed for all future research.

Chapter 6 described the experimental results for text categorization using stream-based
methods and compared these against a number of feature based techniques. Results obtained
for C-Measure, PPMC, PPMD and all R-Measure variants showed that stream-based methods
are able to match the performance of state-of-the-art techniques. PPMC has been shown to
outperform PPMD overall and also with exclusions achieved higher accuracies on more
occasions than without. The computational overheads involved with investigating high order
PPM models for large corpora meant that high orders could not be investigated in all cases.
However, interestingly Table 6.47 indicates that in some cases low order models can
outperform higher ones. Table 6.19 shows that as with low order models performing well, in
some cases substring lengths as low as 1 are important in categorizing texts, especially when
concatenated models are being used. Concatenated models were found to achieve better
accuracies than non-concatenated and concatenated dynamic was the best performing
protocol overall. The best performing substring length for C-Measure varies between corpora
with lengths of 21-27 achieving high accuracies for Gutenberg; however, lengths of between
9 and 16 achieved the best results for the other three corpora. For R-Ranges it is difficult
from the results to say which ranges perform best, however, it is clear that although the best
ranges vary greatly for each corpora, for each protocol of each corpus the best ranges are very
close.

128 |Page

7.3 Contributions

Previous to this study there had been no complete and comparative study on the stream based
approaches to text categorization. Within chapter 2 it was shown that in the limited study that
had been performed, the methods performed well and so there was a need for these methods
to be investigated thoroughly against some well known corpora. Chapter 2 discussed
protocols and how their variants have previously been used within the study of text
categorization but again the investigation has been limited and provided a further motivation
for gathering the results within chapter 6.

New stream based methods have been developed within the study, namely variants of the R-
Measure algorithm. The study has shown how these new methods and also existing ones
could be implemented using suffix trees, a data structure allowing for very faster searching of
substrings between models. It was shown how PPMC, PPMD both with and without update
exclusions can be implemented using suffix trees and a C-Measure implementation was
developed that allowed us to investigate longer substring lengths than was possible
previously.

The results that have been found further support the fact that stream based classifiers can
perform as well as current leading techniques, beating them in some cases. In chapter 6, a
new method R-Ranges was found to achieve the highest results on a number of occasions,
beating well supported methods such as PPM for 20Newsgroups and RCVI1-Author.
20Newsgroups is known to be a robust measure used for comparing standard text
categorization and RCV1-Author is good for authorship ascription. The fact that this new
technique has been found to outperform other state-of-the-art techniques such as PPM
justifies the work that has been done.

The results also showed that the choice of protocol does in fact have a major bearing on the
successfulness of the results, with concatenated dynamic found to outperform all others on
most occasions across all corpora. Interestingly the highest results of all methods for each
corpus were all found to have concatenated dynamic as its protocol.

Chapter 6 also showed that there are major differences between the computational times of
cach protocol with static models taking less time to construct than dynamic ones.
Concatenated models were shown to take longer to construct than non-concatenated ones but
it was noted that for many comparisons the models could be stored in memory and compared
against each testing model yet be loaded only once, this coupled with the fact that generally
the number of categories is much smaller than the number of training documents means that
using concatenated models for experimentation if often the quickest method.

7.4 Review of aims & objectives

The first objective was to further investigate and perform a comparative study of stream
based approaches. The results shown in chapter 6 has shown that stream based methods are

129 I Pa B e

able to outperform current leading techniques and that they should be considered in any
future text categorization study.

The second objective was to discover which stream based approaches perform best in which
situations. It was hoped to show that for certain corpora or document lengths that certain
approaches and protocols should be used. The results in chapter 6 were able to show that the
effectiveness of the techniques varied with each corpus but similarities of corpora usually
related to similarity in effectiveness of each technique. One interesting discovery was that the
concatenated dynamic protocol was shown to outperform the other protocols on almost all
occasions across all the data sets. It would have been desirable to have computed many more
results, in particular higher order models for the PPM variants but the computation overheads
meant that this was not possible. An attempt was made to compute the results at an early
stage but after difficulties in gathering the required subsets of each corpus, much time was
lost and ideally the experimentation for each would have been performed much earlier in the
study.

The final objective was to show that the suffix tree data structure could be used to implement
each of the stream based algorithms. The complexities of processing each of the techniques
using suffix trees showed that it is indeed a suitable data structure. However, some of the
timings shown in chapter 6 highlight the fact that although an individual comparison may be
quick, some corpora require vast amounts of calculations to be performed and this can in
some cases take a long time. It was shown in chapter 5 that there are a number of techniques
available to further improve the time required to load the models and also to limit the amount
of memory required, such techniques are pruning the tree and storing representations of the
loaded model within text files so that a node may be added to another quicker after analyzing
how one node relates to another.

7.5 Future work

As mentioned in 7.2 it was felt that the result for the PPM variants against some of the
corpora was limited and although it has been shown that higher order models do not always
guarantee improved classification, the results that have been attained perform well and
warrant further investigation. One of the biggest problems found during the stages of
collecting the results was the amount of time it took to compute all of the results. The current
implementation within the toolkit is for all models and results to be stored within text files
and loaded as required. In order to greatly increase the flexibility for anyone wishing to take
forward this work, it would be suggested to instead use a database to store the models and
results so that the required data could be found without having to load entire files.

It was hoped that by running experiments of all variants of each algorithm against each
corpora that it would be possible to state that a particular algorithm performs better on certain
corpora than others, and to state that this is somehow linked to the sizes and/or type of files
contained within. It has been shown that for any dataset, short substring lengths should be
omitted when using C-Measure or R-Measure variants. The desired length of the shortest

substring to be included does appear to differ between the types of text. For texts similar to
those within the Gutenberg dataset, which are novels, this study has found that longer
substrings of length 21-27 achieving the highest accuracies. However, lengths of between
roughly 4 and 28 achieving the highest accuracies for the others. In addition to the findings of
the best performing substring lengths, and that concatenated dynamic models are likely to
achieve the highest accuracies it has also been found that for some experimentation some
cleanup of the input stream is likely to be required. It is beneficial to retrieve as much training
data as possible, however, corpora have been shown to include duplicate files and also
disclaimer text, both of which should be searched for and removed. These findings serve as
recommendations for any new study. However, there are types of text not covered within this
study as it focused on well known corpora i.e. it would be interesting to investigate whether
our recommendations achieve the highest accuracies for categorizing tweets (twitter updates),
Facebook status updates or blogs.

The process of doing background research on the current implementations of stream based
methods brought with it a number of questions to mind. There was always a concern that a
training document containing the same word repeatedly would achieve high counts if the
word existing within the testing stream. It was this thought that brought about the idea that
the counts of each node could be reduced once they have been matched, essentially the
opposite process to constructing dynamic models. This reduction could continue until the
count reaches zero, at which point the node is removed. This would allow similarities to be
matched whilst removing the possibility that a single word could have such a weighting,
essentially ensuring that a broader range of nodes are matched for documents to achieve high
counts.

Another process that was performed was cleansing of the datasets, for instance Gutenberg
had lots of disclaimer text that was not part of the original document and does nothing to
improve the categorization of it. During this process of studying the contents of the corpora it
was found on a number of occasions that there exists a lot of white space in order to break up
sections or separate emails and so on. It is possible this could possibly stop substrings of high
lengths being matched (unless the substring itself was whitespace of course). A class was
therefore written that removes any extra whitespace from within each document before it is
categorized but unfortunately due to the overwhelming number of computations to be
performed for the existing experiments, this experimentation was never performed and could
well improve the categorization results of each.

131 |Page

8 References

Argamon, S., Whitelaw, C., Chase, P., Hota, S. R., Dhawle, S., Garg, N., Levitan, S. Stylistic Text
Classification using Functional Lexical Features. Journal of the American Society for
Information Science and Technology (JASIST), pp. 802-822, 2005.

Baker, L. D. and McCallum, A. (1998). Distributional clustering of words for text classification.
In Proceedings of the Twenty-first ACM International Conference on Research and
Development in Information Retrieval (SIGIR98), pp. 96-103, 1998.

Bekkerman, R. On feature distributional clustering for text categorization. 2001.
Biber, D. Variation across speech and writing. Cambridge: Cambridge University Press. 1988.

Biber, D. Dimensions of Register Variation: A Cross-linguistic Comparison. Cambridge
University Press, Cambridge. 1995.

Biebricher, Peter, Fuhr, Norbert, Lustig, Gerhard, Schwantner, Michael and Knorz, Gerhard: The
Automatic Indexing System AIR/PHYS - From Research to Application. In: Proceedings of the
Eleventh Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. pp. 333-342, 1988.

Bieganski, J. R. P. and Carlis, J. V. “Generalized suffix trees for biological sequence data:
Application and implantation”. In Proceedings of 27th Annual Hawaii International Conference
on System Sciences, pp. 35-44, 1994.

Boggess, L., Argawal, R. and Davies, R. Disambiguation of prepositional phrases in
automatically labelled technical text. AAAI’91, 155-159, 1991.

Boser, B. E., Guyon, 1. M. and Vapnik, V. N. 4 training algorithm for optimal margin classifiers.
In D. Haussler, editor, 5" Annual ACM Workshop on COLT, pp. 144-152, Pittsburgh, PA, 1992.

Branner, David Prager. Problems in Comparative Chinese Dialectology: The Classification of
Miin and Hakka. Berlin and New York: Mouton de Gruyter. 2000.

Bratko, A., G. V. Cormack, B. Filipic, T. R. Lynam, and B. Zupan. Spam filtering using
statistical data compression models. Journal of Machine Learning Research 7 Dec, pp. 2673-
2698. 2006.

Bratko, A., Filipic, B. and Zupan, B. Towards Practical PPM Spam Filtering: Experiments for
the TREC 2006 Spam Track. In Proc. 15th Text REtrieval Conference, TREC 2006, NIST,
Gaithersburg, MD, November 2006.

Bratko, A. Fighting Spam With Data Compression Models. Virus Bulletin, March 2006, pp S2-
S4.

132|PL:L

Bratko, A. and Filipic, B. Spam Filtering Using Compression Models. Technical Report 1JS-DP-
9227, Department of Intelligent Systems, Jozef Stefan Institute, November 2005.

Bratko, A. and Filipic, B. Spam Filtering using Character-level Markov Models: Experiments for
the TREC 2005 Spam Track. In Proc. 14th Text REtrieval Conference, TREC 2005, NIST,
Gaithersburg, MD, November 2005.

Cameron, Deborah. Language: Person, number, gender. Critical Quarterly, Volume 46, Number
4, December 2004, pp. 131-135. 2004.

Chiang, D., Diab, M., Habash, N., Rambow, O. and Sharif, S. Parsing Arabic dialects. In
Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics, 2006.

Colley, A. and Todd, Z. Gender-linked differences in the style and content of e-mails to friends.
Journal of Language and Social Psychology, pp. 380-392. 2002.

Corney, M., De Val, O., Anderson, A. and Mohay, G. Gender-Preferential Text Mining of E-mail
Discourse. In 18th Annual Computer Security Applications Conference. 2002. San Diego
California. 2002.

Crowston, K. and Williams, M. Reproduced and emergent genres of communication on the
World Wide Web. The Information Society, 16, pp. 201-215. 2000.

David Chang et al, Parsing Arabic Dialects

Creecy, H., Masand, M., Smith, J., and Waltz, D. Trading Mips and Memory for Knowledge
Engineering. Communications of the ACM, 35(8):48-63, 1992.

D’Alessio, S. Hierarchical Text Categorization. 1998.

Dahlgren, K., Lord, C., Wada, H., McDowell, J., and Stabler, E. P. [TP. Description of the
Interpretext System as used for MUC-3. Proceedings of the 3" Conference on Message
Understanding, San Diego, CA, Association for Computational Linguistics, 163-170, 1991.

Dave, K., Lawrence, S., and Pennock, D. M. Mining the Peanut Gallery: Opinion Extraction and
Semantic Classification of Product Reviews. In Proceedings of the International World Wide Web
Conference, Budapest, Hungary. 2003.

de Vel, O., Corney, M., Anderson, A. and Mohay, G. Language and Gender Author Cohort
Analysis of E-mail for Computer Forensics. Digital Forensic Research Workshop, August 7 — 9,
2002, Syracuse, NY. 2002.

Drucker, H. D., Wu, D., and V., V. Support Vector Machines for spam categorization. IEEE
Transactions On Neural Networks 10, 5, 1048-1054, 1999.

133 | Pa gL

Dumais, S., Platt, J., Heckerman, D. and Sahami, M. Inductive Learning Algorithms And
Representations For Text Categorization. In Proceedings of ACM Conference on Information
and Knowledge Management (CIKM98), Nov. 1998, pp. 148-155, 1998.

Ehrenfeucht, A. and Haussler, D. “A new distance metric on strings computable in linear time”.
Discrete Applied Math, 40, 1988.

Finn, A. and Kushmerick, N. Learning to classify documents according to genre. JASIST,
Special Issue on Computational Analysis of Style, Vol. 57, N. 11, September 2006.

Francis, W. N. and Kucera, H. Frequency analysis of English usage: lexicon and grammar.
Boston: Houghton Mifflin. 1982.

Fung, G. (2003). The disputed federalist papers: SVM feature selection via concave
minimization. New York City, ACM Press, 2003.

Gamon, M. and Aue, A. Automatic identification of sentiment vocabulary: Exploiting low
association with known sentiment terms. In Proceedings of the ACL Workshop on Feature
Engineering for Machine Learning in Natural Language Processing, Ann Arbor, Michigan. 2005.

Giegerich, R. and S. Kurtz, S. “From Ukkonen to McCreight and Weiner: A Unifying View of
Linear-Time Suffix Tree Construction”. Algorithmica 19 (3): pp. 331-353. 1997.

Grishman, R., Sterling, J. and Macleod, C. New York University description of the PROTEUS
system as used for MUC-3. In Proceedings of the Third Message Understanding Evaluation and
Conference, Los Altos, CA: Morgan Kaufmann, May 1991.

Groom, C. J. and Pennebaker, J. W. The language of love: sex, sexual orientation, and language
use in online personal advertisements. Sex Roles: A Journal of Research, 52 (7-8), pp. 447-461.
2005.

Hardt, S. On recognizing planned deception. AAAI-88 Workshop on Plan Recognition, 1988.

Hayes, Philip J. and Weinstein, Steven P. CONSTRUE/TIS: a system for content-based indexing
of a database of news stories. In Second Annual Conference on Innovative Applications of
Artificial Intelligence, 1990.

Hidalgo, J. G. and Lopez, M. M. Combining text and heuristics for cost-sensitive spam filtering.
In Proceedings of the 4th Computational Natural Language Learning Workshop. Lisbon,
Portugal, 99-102, 2000.

Hobbs, Jerry R. SRI International: Description of the TACITUS system as used for MUC-3. In

Proceedings of the Third Message Understanding Evaluation and Conference , Los Altos, CA:
Morgan Kaufmann, May 1991.

134|Page

Holmes and Forsyth. The Federalist Revisited: New Directions in Authorship Attribution. Lit
Linguist Computing.1995; 10: 111-127. 1995.

House, A. S., and Neuberg, E. P. (1977). Toward automatic identification of the language of an
utterance. Preliminary methodological considerations. Journal of the Acoustical Society of
America, 62(3):708--713, 1977.

Huang, R. and Hansen, J.H.L. Dialect Classification on Printed Text using Perplexity Measure
and Conditional Random Fields. Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on, Volume: 4, On page(s): IV-993-1V-996. 2007.

Hunnisett, D. 2010. Categorizing Human Computer Interaction. PhD thesis. Bangor University

Hunnisett, D. and Teahan. Context-based methods for text categorization. In Proceedings of the
SIGIR Conference on Information Retrieval (SIGIR 2004), Sheffield, UK, July 25-29, pp. 578-
579. 2004.

Jimin, L. and Chua, T. Building Semantic Perceptron Net for Topic Spotting. 2001.

Joachims, T. Learning to classify Text Using Support Vector Machines: Methods, Theory, and
Algorithms. Kluwer, 2002.

Joachims, T. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF jfor Text
Categorization. Proc. of the 14th International Conference on Machine Learning ICML97, pp.
143---151, 1997.

Johansson, S., Atwell, E., Garside, R. and Leech, G. The ftagged LOB Corpus. Bergen:
Norwegian Computing Centre for the Humanities. 1986

Karlgren, J. and Cutting, D. Recognizing text Genres with Simple Metrics Using Discriminant
Analysis. In Proc. of the 15w International Conference on Computational Linguistics (COLING
’94), pp. 1071-1075. 1994.

Kennedy, A. and Inkpen, D. Sentiment Classification of Movie and Product Reviews Using
Contextual Valence Shifters, Proceedings of Workshop on the Analysis of Informal and Formal

Information Exchange during Negotiations, Ottawa, CA, 2005.

Kessler, B., Numberg, G. and Schutze, H. Automatic Detection of Text Genre. Proceedings of the
35" Annual Meeting of the ACL and 8" Conference of the EACL. 1997.

Khmelev, D. Using Markov Chains for Identification of Writers. 2001
Khmelev, D. and Teahan. 4 repetition based measure for verification of text collections and for

text categorization. In Proceedings of the SIGIR Conference on Information Retrieval (SIGIR
2003), Toronto, pp. 104-110. 2003.

135|Page

Kim, Y. and Ross, S. Variations of word frequencies in Genre classification tasks. In Proceedings
DELOS conference on Digital Libraries, Tirrenia, Italy. 2007.

Koppel, M., Argamon, S. and Shimoni, A. R. Automatically determining the gender of a text§
author. Bar-Ilan University Technical Report BIU-TR-01-32. 2001.

Kwasnik, B. H. and Crowston, K. Introduction to the special issue: Genres of digital documents.
Information Technology & People. 18(2), pp. 76-88. 2005.

Labov, W. The intersection of sex and social class in the course of linguistic change. Language
Variation and Change 2. 1990.

Lakoff, R. T. Language and Women's Place. Harper Colophon Books, New York. 1975.

Lamel, L. F. and Gauvain, J-L. S. Language identification using phone-based acoustic
likelihoods, In Proceedings IEEE International Conference on Acoustics, Speech, and Signal
Processing 94, pp. 293-296, Adelaide, Australia, April 1994.

Larsson, N. J. “Structures of string matching and data compression”. Ph.D. thesis, Dept. of
Computer Science, Lund University. 1999.

Layton, R., Watters, P., Dazeley, R. Authorship attribution for twitter in 1 40 characters or less.
In Workshop Cybercrime and Trustworthy Computing, pp. 1-8. 2010

Lee, Y. and Myaeng, S. (2004). Automatic Identification of Text Genres and Their Roles in
Subject-Based Categorization. Proceedings of the 37" Hawaii International Conference on
System Sciences.

Lewis, D. Evaluating Text Categorization. Proceedings of the Speech and Natural Language
Workshop, Asilomar, February pp. 312-318. 1991.

Lewis, D. Representation and Learning in Information Retrieval. Phd thesis, Computer Science
Department, Univ. of Massachusetts. 1992.

Maron, M. E. (1961). Automatic indexing: An experimental inguiry. Journal of the Association
for Computing Machinery, 8, 404-417.

Marton, Y., Wu, N. and Hellerstein, L. On compression-based text classification. In Proceedings
of the 27th European Conference on IR Research (ECIR), pp. 300--314, Santiago de
Compostela, Spain, 2005.

McCallum, A. and Nigam, K. 4 comparison of event models for naive bayes text classification.
In Proceedings of AAAI-98 Workshop on Learning for Text Categorization, pp. 41-48. 1998.

McCreight, E. M. “4 Space-Economical Suffix Tree Construction Algorithm”. Journal of the
ACM 23 (2): pp. 262-272. 1976.

136|Page

Miyoshi, T. and Nakagami, Y. Sentiment classification of customer reviews on electric products.
Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on, pp. 2028-2033.
2007.

Mosteller, F. and Wallace, D. L. (1984). Applied Bayesian and Classical Inference: The Case of
the Federalist Papers, Springer Series in Statistics.
Mulac, A., Bradac, J. J., and Gibbons, P. Empirical support for the gender-as-culture hypothesis.

An intercultural analysis of male/female language differences. Human Communication Research,
27, pp. 121-152. 2001.

Mullen, T. and Collier, N. Sentiment analysis using support vector machines with diverse
information sources. In Dekang Lin and Dekai Wu, editors, Proceedings of EMNLP-2004, pp.
412-418, Barcelona, Spain, July 2004. Association for Computational Linguistics. 2004.

Nagy, N., Zhang, X., Nagy, G. and Schneider, E. 4 quantitative categorization of phonemic
dialect features in context. In A. Dey (Ed.), CONTEXT 2005 lecture notes in artificial
intelligence 3554, 326-338. Berlin Heidelberg: Springer-Verlag. 2005.

Nerbonne, J., Heeringa, W., and Kleiweg, P. Comparison and Classification of Dialects. In
Proceedings of the 9th Meeting of the European Chapter of the Association for Computational
Linguistics, Bergen, pp. 281-282, 1999.

Nigam, K., McCallum, A., Thrun, S. and Mitchell, T. Text Classification from Labeled and
Unlabeled Documents using EM. In: Machine Learning 39 (2/3), pp. 103-134. 2000.

Pampapathi, B. M. R. and Levene, M. “4 suffix tree approach to anti-spam email filtering”.
Machine Learning, 65, 2006.

Pang, B., Lee, L., and Vaithyanathan, S. Thumbs up? Sentiment Classification using Machine
Learning Technigues. Proceedings of EMNLP 2002, pp. 79-86. 2002.

Pantel, P. and Lin, D. SpamCop: a spam classification and organization program. In Learning
for Text Categorization - Papers from the AAAI Workshop. Madison, Wisconsin, 95-98, 1998.

Pennebaker, J. W., Mehl, M. R. and Niederhoffer, K. G. Psychological aspects of natural
language use: Our words, our selves. Annual Review of Psychology, 2003. 54: pp. 547-577.
2003.

Rayson, P., Leech, G. and Hodges, M. Social differentiation in the use of English vocabulary:
Some analyses of the conversational component of the British National Corpus. International
Journal of Corpus Linguistics 2 (1), pp. 133-152. 1997.

Read, . Using emoticons to reduce dependency in machine learning techniques for sentiment

classification. In Proceedings of ACL-05, 43nd Meeting of the Association for Computational
Linguistics, Ann Arbor, US, 2005. Association for Computational Linguistics. 2005.

137|Page

Rosso, M. Using Genre to Improve Web Search, Thesis submitted for the degree of PhD,
University of North Carolina at Chapel Hill, USA. 2005.

Sahami, M., Dumais, S., Heckerman, D., and Horvitz, E. 4 Bayesian Approach to Filtering Junk
EMail. In Learning for Text Categorization — Papers from the AAAI Workshop, pp. 55-62,
Madison Wisconsin. AAAI Technical Report WS-98-05, 1998.

Salton, G., Yang, C. S. and Yu, C. T. 4 theory of term importance in automatic text analysis.
Journal of the American Society for Information Science, pp. 33-44, 1975.

Santini, M. Automatic Genre Identification: Towards a Flexible Classification Scheme. BCS
IRSG Symposium: Future Directions in Information Access 2007 (FDIA 2007). Held in
conjunction with the European Summer School on IR (ESSIR 2007). 2007.

Santini, M. Characterizing Genres of Web Pages: Genre Hybridism and Individualization. 40"
Annual Hawaii International Conference on System Sciences (HICSS’07). 2007.

Schiffman, H. Bibliography of Gender and Language.
http://ccat.sas.upenn.edu/~haroldfs/popcult/bibliogs/gender/gendbibs.html. 2002.

Sebastiani, F. Machine Learning in Automated Text Categorization. ACM Computing Surveys,
34(1):1-47. 2002.

Sebastiani, F. Text Categorization. In Alessandro Zanasi, editor, Text Mining and its
Applications to Intelligence, CRM and Knowledge Management, pp. 109-129. WIT Press,
Southampton, UK, 2005.

Spertus, E. Smokey: Automatic Recognition of Hostile Messages. In Proceedings of the
Innovative Applications of Artificial Intelligence. 1997.

Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H. and Demirbas, M. Short text classification
in twitter to improve information filtering. In SIGIR, pp. 841-842. 2010.

Stamatatos, E., Fakotakis, N. and Kokkinakis, G. Text Genre Detection Using Common Word
Frequencies. Proceedings of COLING 2000, Saarbrucken, Germany. 2000.

Teahan. Modelling English text. D.Phil. thesis, University of Waikato, New Zealand. 1998.

Teahan and Harper, D. 1. Using compression-based language models for text categorization.
Proc. Of the Workshop on Language Modeling and Information Retrieval. 2001.

Thaper, N. Using Compression For Source Based Classification of Text. Master’s Thesis,
Massachusetts Institute of Technology. 2001.

138 |Page

Thomas, D. L. and Teahan. Text categorization for streams. Annual ACM Conference on
Research and Development in Information Retrieval Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval, Demonstration
Session, pp. 907 —907. 2007.

Toman, M., Tesar, R. and Jezek, K. Influence of Word Normalization on Text Classification. In
Proceedings of InSciT 2006, pp. 354-358, Merida, Spain, 2006. ISBN 84-611-3105-3.

Trudgill, P. Sex, covert prestige and linguistic change in the urban British English of Norwich.
Language in Society 1, pp. 179-96, 1969.

Turney, P. D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised
classification reviews. In Proceedings of the 40"™ Annual Meeting of the Association for
Computational Linguistics (ACL *02), pp. 417-424. 2002.

Ukkonen, E. “On-line construction of suffix trees”. Algorithmica 14 (3): 249-260. 1995.

Van Rijsbergen. Information retrieval (second edition), in London: Butterworths. 1979.

Watt, S. Text categorisation and genre in information retrieval. In A Goker & J Davies (eds), Information
retrieval: Searching in the 21st Century, John Wiley & Sons. 2009.

Weiner, P. “Linear pattern matching algorithm”. 14th Annual IEEE Symposium on Switching
and Automata Theory: 1-11. 1973.

Yang, Y. An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval,
1(1/2), pp. 67-88. 1999.

Yu, B. An Evaluation of Text Classification Methods for Literary Study. 2008

Frakes, W. B. Stemming Algorithms. In William B. Frakes and Ricardo Baeza-Yates, editors,
Information Retrieval Data Structures and Algorithms, pp. 131-160. 1992.

Porter, M. F. An algorithm for suffix stripping. Program, Vol. 14, No. 3. pp. 313-316, 1997.

139|Page

Web References

Alessandro Moschitti, Information Engineering and Computer Science Department, University
of Trento, 01/07/2008. http://dit.unitn.it/~moschitt/corpora.htm

Corpus Linguistics.
http://www.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/list/index2.ht
ml

ERPAePRINTS, The Electronic Resource Preservation and Access Network (ERPANET) and the
Digital Curation Centre (DCC), 03/03/2009. http://eprints.erpanet.org/

Europa press release, Data protection: "Junk" e-mail costs internet users €10 billion a year
worldwide - Commission study, 02/02/2001.
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/01/154

Martin Porter, The Porter Stemming Algorithm, Jan 2006.
http://tartarus.org/~martin/PorterStemmer/

Scott Hazen Mueller, spam.abuse.net, 03/03/2009. http://spam.abuse.net/

Spam Laws, California business and professions code, division 7, part 3, chapter 1. Article 1.8.
Restrictions On Unsolicited Commercial E-mail Advertisers, 2003.
http://www.spamlaws.com/state/ca.shtml

Symantec, Case Study: Symantec Brightmail AntiSpam™ Gives TelstraClear The Advantage In
The War Against Spam, 2004.
http://www.symantec.com/region/reg_ap/promo/es/docs/TelstraClear_Final.pdf

The Gender Genie. http://bookblog.net/gender/genie.php

The UCI KDD Archive, University of California, Irvine, Feb 1999.
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

Wikipedia, Spam (electronic), 03/03/2009. http://en.wikipedia.org/wiki/Spam_(electronic)

Word Splitter, Cognitive Computation Group, University of Illinois at Urbana, 11/03/2009.
http://12r.cs.uiuc.edu/~cogcomp/atool.php?tkey=WS

140 |Page

