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Abstract 

An empirical study of stream-based techniques for text categorization 

Daniel Thomas 

Due to the popularity of social networking sites such as Twitter, Facebook and biogs, the amount 

of electronic text is continuing to grow. There is a need to categorize these vast amounts of 
documents and it is no surprise that the field of text categorization is a popular one. The 

traditional approach to text categorization is a feature-based approach, normally processing 
features based on words. Stream based methods have been shown to perform well in some 
experimentations but there has been no thorough study of their performance on a number of 
major corpora and their results have not been thoroughly compared against the current state-of­

the-art feature based techniques. This is an important problem as the techniques cannot be fully 

recognized until a thorough study has been performed. 

The concept of protocols and how each affects categorization results has also not been studied 

thoroughly across a number of methods for several corpora. It is important to attempt to discover 
which stream based approaches perform best in which situations and how the choice of protocol 
affects their performance, if at all. It is hoped that it can be shown that for certain corpora or 
document lengths that certain approaches and protocols should be used. These findings could 
then drive the decision of which methods and protocols to use for future experiments. 

An existing problem within the field of text categorization is that it is often difficult to recreate 
the exact experimentation conditions of previous studies. One reason for this is that the training 

and testing splits often differ and it was important that this study did not add to this existing 
problem, that the experimentations could be accurately recreated and that others would be fairly 

compared. 

A toolkit has been developed that allows all of the methods and protocols to be compared in a 
consistent manner. The toolkit models the streams using suffix trees and all of the stream based 
methods have been implemented. In addition to the implementation of existing techniques, a 
number of new stream based methods have been detailed within the thesis and one of these new 

techniques, R-Ranges, has been shown to outperform all other methods for two of the corpora, 
including PPM (Prediction by Partial Matching) variants, state-of-the-art techniques that are 
mathematically well supported. The experimentation has also shown that the protocol (whether 
static or dynamic training models are used in addition to training documents of the same 

category being concatenated or not) does indeed affect the accuracies of each method. The 
concatenated dynamic protocol was found to outperform all others and performs consistently 

well across all methods, for all corpora. This study has now conclusively shown that the method 
used to categorize text must not be the only one, the selection of protocol is also just as 

important. 
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Chapter 1 

Overview 

1.1 Introduction 

The amount of electronic text is continuing to grow due to the overwhelming amounts of 

information and users on the Internet today. There is a need to categorize these vast amounts 

of documents and it is no surprise that the field of text categorization is a popular one. Users 

are becoming accustomed to having search engines retrieve the information they want in an 

instance with minimal effort. It is important to be able to classify information, no matter what 

the format, in order to ensure that the relevant information is returned. 

The traditional approach to text categorization is a feature-based approach, normally 

processing features based on words. Hunnisett & Teahan (2004) defined a simple frequency­

based measure for text categorization called the "C-Measure" which regardless of its 

s implicity has been proven to outperform a number of state of the art techniques. Although 

the effectiveness of the algorithm has been proven in a small study, no thorough study has 

been performed which measures the effectiveness of this approach, or indeed any other of the 

alternative stream based approaches in order to rigorously compare them against feature 

based approaches. The aim of this thesis has been to confirm that stream based approaches 

perform as well as the current leading feature based approaches and that these approaches 

should be considered in all future comparatives study within the field of text categorization. 

1.2 Background & Motivation 

It is the presence of unknowns and gaps in research that have formed the motivation behind 

this research. Small experiments have shown that stream based approaches achieve results 

that are competitive to traditional feature based approaches but there is a need for a thorough 

study to be performed. Hunnisett & Teahan (2004) discuss difficulties in processing substring 

lengths of considerable length and it is unknown if these yet to be researched lengths would 

further improve performance and surpass the already high accuracies that have been achieved 

using their technique. There is also a requirement to investigate the performance of these 

algorithms on several corpora in order to determine if their good performance is consistent. 

Part of the motivation behind the experiments in this thesis is to determine experimentally 

which measure performs better or whether different measures perform better in different 
domains. 

The emphasis of the study is on models based on streams of character sequences (hence the 

term "stream-based" text categorization which will be mentioned numerous times throughout 
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this thesis), but feature-based approaches shall also be reviewed for comparison, though in 

less detail. Compression-based approaches, usually based on the well-performed compression 

scheme PPM (Cleary and Witten 1984) have shown that models based on character streams 

are better than word models (Teahan, 1998); and we can avoid issues such as: word 

segmentation; normalisation e.g. stemming (reducing morphological variants to the root 

word); word sense disambiguation; and hapex legomena (words occurring only once within 

the text). The commonly held assumption that data compression is a "good" method for text 

categorization based on the fact that it is theoretically well founded creates a motivation to 

further investigate this assumption. 

The methodology of how the stream-based categorization is performed based on whether 

static or dynamic models are used, and whether the training documents of the same category 

are concatenated or non-concatenated shall be termed as "protocols" . The experimental 

performance of the newest protocol described in Hunnisett (2010), and of the other three 

protocols, are explained more fully by examining how these protocols are used to perform 

uni-label classification for text categorization, how both the protocols and methods can be 

implemented using suffix trees and the performance of each. 

This thesis also explores the use of suffix trees as a universal data structure for storing the 

model representations. This data structure allows multiple similarity measures to be 

calculated using a single pass through the training and test sequences. Khmelev (2000) used 

suffix arrays to estimate probabilities for Markov models in authorship ascription studies; 

Khmelev & Teahan (2003), also used suffix arrays to implement R-Measure described later; 

but these implementations can be simplified when using suffix trees as cumulative counts can 

be associated with each node of the tree (Teahan, 1998; Bratko et al., 2006). 

The number of protocols and algorithms being investigated brought with it a requirement for 

a common toolkit to be designed and implemented in order to facilitate the text categorization 

experiments. A toolkit has been developed in Java and its purpose is to handle all stages of 

the experimental process including preparation of the input data, splitting the data for cross 

validation, performing all experiments in a single pass and outputting the results for each 

experiment to allow simple comparison of each of the algorithms and procedures. 

1.3 Objectives 

The objectives of this research are as follows: 

• to further investigate and perform a comparative study of stream based approaches; 

• to discover which stream based approaches perform best in which situations. It was 

hoped to show that for certain corpora or document lengths that certain approaches 

and protocols should be used; 

• to show that a single data structure, a suffix tree can be used to implement each of the 

stream based algorithms. 
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There is a need for results to be calculated in a consistent manner and a toolkit needed to be 
designed and developed to aid this. This single toolset would allow us to prepare the data and 
compute results before comparing them against previous examinations of other techniques. It 
is hoped that future studies may implement their algorithms within the toolkit so that the 
collection of classes and algorithms may grow and make comparing results easier and also 
less misleading. 

1.4 Contributions 

Though stream based approaches have been shown to perform well in small studies, there has 

been no complete and comparative study on their performance. This thesis has compared 
PPM, C-Measure and the closely linked algorithm R-Measure (Khemelev & Teahan, 2003). 
Variants of these algorithms, new implementations and their examination across a number of 
corpora and for longer suffix lengths than bas been done in previous studies is novel work. 
The "protocols" of how stream-based categorization is performed, based on whether static or 
dynamic models perform best, and whether the training documents of categories should be 
concatenated or not, is described in detail. 

A toolkit has been designed and implemented in order to facilitate the text categorization 
experiments. The toolkit, named jSCat, has been developed in Java and its purpose is to 
handle all stages of the experimental process including preparation of the input data, splitting 
the data for cross validation and also to perform all experiments in a single pass before 
outputting the results for each process to allow a simple comparison of each algorithm and 
procedure. 

1.5 Thesis Outline 

Chapter 2 offers a background to research within the field of text categorization and also 
describes a number of its applications. The chapter discusses the different approaches and 

techniques used within the field as well as their differences. The chapter also discusses the 
performance of each technique within different application domains and lists results to 
support this. The most popular corpora used within classification experiments are listed as 
well as the most popular techniques for evaluating experimental results. 

Chapter 3 explains the new techniques which have been explored during the time of the study 
and also details all new work and improvements relating to C-Measure, R-Measure and PPM. 

Chapter 4 shows bow the different protocols for all models have been implemented using 
suffix trees. 

Chapter 5 details an overview of the toolkit that has been created to aid in the calculation and 
comparison of the many different techniques. This chapter explains the components that exist 
within the toolkit and explains how the toolkit allows the introduction of categorization 
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techniques through the extension of base classes. The implementation and also its usage are 
explained through discussion, figures and code samples. 

Chapter 6 describes the experimental setup and methodology followed by a discussion of the 

results. Results will compare all algorithms within each dataset in order to discover the best 
performing within each corpus. 

Chapter 7 summarizes all of the work included within the thesis and performs a review of the 
aims and objectives before concluding and identifying any future work. 

131 Page 



Chapter 2 

Background 

Chapter Summary 

The purpose of this chapter is to describe the background of research within the field of text 

categorization as well as describing a number of its applications. The chapter discusses the 

different approaches and techniques used within the field as well as their differences. The 

concept of Protocols, the four different variations and how each would be conducted are 

explained. The chapter also discusses the most popular corpora used within classification 

experiments as well as the most popular techniques for evaluating experimental results. 

Summary of each section 

Section 2.1 offers an introduction to the field of text categorization by describing some 

background to the research and an abstract view of the typical steps involved within the 

process. Section 2.2 describes a number of its applications and describes some well known 

research examples. Section 2.3 discusses a number of text pre-processing techniques and how 

they may improve classification results. Section 2.4 describes a number of well known 

corpora, also known as datasets, in detail by examining the number of texts, how the texts are 

divided and also the differences in the size of the documents. The section also describes some 

examples of research that have used each of the datasets. Section 2.5 lists a number of 

techniques used to evaluate the performance of the text categorization including precision, 

recall, accuracy, FI-Measure and also the distinction between macro-averaging and micro­

averaging the F-Measure. Section 2.6 offers a brief overview of feature based classification 

and details a couple of well known approaches. Section 2. 7 discusses current stream-based 

algorithms including examples of how each is performed. Section 2.8 explains the four 
protocols and how they have been used in research to date. 

2.1 Introduction 

There is an overwhelming amount of electronic text available today and there is a need to 

categorize these vast amounts of documents. It is therefore no surprise that the field of text 

categorization is a popular one. It is important to be able to classify information, no matter 

what the format, in order to ensure that the relevant information is returned. People generally 

have little difficulty in recognising document and object categories (Watt, S. 2009). However, 

the speed at which users expect results to be returned, in addition to the amount of 

information through which to search means that indexing performed by humans has not been 
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viable for many years. Although machines are achieving high rates of classification quickly, 
it could be said that human categorization will always be more accurate in some situations. 

Text categorization in the past has concentrated on static situations, however, we now live in 
a digital era where we communicate and retrieve information from digital sources. This 
means that modem classifiers must now be dynamic enough to retrieve the uncategorized text 

as a stream, possibly directly from social networking applications such as Facebook or 
Twitter, or perhaps from biogs. 

As far back as the 1960's, it seemed obvious that a growing amount of information was being 

submitted via electronic format and there was a need for these documents to be routed to the 

proper users (Maron, M. E. 1961 ). It may have been impossible to imagine back then the 
number of uses we have today for the application of text categorization and the number shall 
continue to grow so long as new technologies and ideas are developed. Due to its many 
applications, varied approaches and growing amounts of text, text categorization has indeed 
become an important research area within Information Retrieval (IR). 

More formally, text categorization, also known as text classification, document categorization 
or document classification, is the task of automatically sorting a set of documents into 
predefined categories based on their content. This is a supervised learning approach as there 
exists documents already categorized to be used as training data which effectively define the 
categories. The training data is used to build a model that can be used to classify new 
documents, known as test data. Text categorization is not to be confused with text clustering, 

an unsupervised approach of which there exists no predefined categories. There is no training 
data and the classification is learnt from the data; similar documents are simply grouped to 
form a cluster. 

Figure 2.1 Example process of text categorization. 

2.2 Applications of text categorization techniques 

A number of popular applications for text categorization are detailed within this section, 
some of which are researched within this thesis, others are not but are detailed for 
completeness. 
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2.2.1 Authorship Attribution 

Authorship attribution has a number of applications ranging from discovering the author of a 
novel to identifying the sender of an anonymous letter. Authorship attribution is more 

challenging than language/dialect identification as the differences among the authors' writing 
style is much more subtle than among different languages/dialects. Though this is the case, 

style and statistical properties may be noticeably different for different authors (Boggess et 
al. , 1991). It is fair to say that there are great differences between two authors from different 
times with different writing style, e.g. Shakespeare and J.K. Rowling. However, within the 
corpora used for most text categorization experiments, which shall be discussed later, this is 
not the case. 

A famous example of authorship attribution is the case of the Federalist Papers, of which 
twelve instances are claimed to have been written both by Alexander Hamilton and James 

Madison. Statistical analysis has been undertaken on a number of occasions to try to decide 
the authorship of the disputed documents based on word frequencies and writing styles, with 
nearly all of the statistical studies showing that all twelve disputed papers were in fact written 
by Madison (Mosteller & Wallace, 1984; Holmes & Forsyth, 1995; Fung, 2003). 

An author may write about a number of topics and this means it is unlikely that topic-based 
features will perform well at discriminating among authors, e.g. a selection of features/words 

would not be suitable. Rather, stylistic features are the most appropriate choice; for instance, 
vocabulary richness (i.e. ratio between number of distinct words and total number of words), 

average word length, average sentence length, are important, in the sense that it is these 
features that tend "to give an author away" (Sebastiani, 2005). 

This area of research has become more difficult with trends towards many shorter 

communications rather than fewer longer communications, such as the move from traditional 
multi-page handwritten letters to shorter, more focused emails. More recently, Twitter and 
other short message based web services are extremely popular and methods need to enable 
authorship to be determined for documents of 140 characters or less (Layton et al., 2010). 

2.2.2 Genre Categorization 

Genre classification is an important application in information retrieval (Biber, 1988; Kessler 
et al., 1997; Lee & Myaeng, 2004; Stamatatos et al., 2000) and more recently, Finn & 
Kushmerick (2006), as well as ongoing work by Santini (2007a and 2007b), and involves 
identifying the subject domain of a document. Examples of genres are: political, mystery and 
sport. A number of studies have investigated this problem usually by adapting methods found 
suitable for the related problem of topic categorization. 

One use of genre classification could be to enable users to sort search results according to 
their immediate interests. Whilst visiting a bookstore people are not usually simply looking 
for information about a particular topic, they can often have requirements of genre as well i.e. 
they may be looking for novels about discoveries, Italian recipes or scientific articles etc. 
Genre may therefore be seen as a subject area. 
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A growing area of research is the categorization of single tweets and Sriram et al. (2010) 

define five generic classes of tweets ( deals, events, opinions, news, and private messages) in 

order to improve information filtering. The authors represent tweets using a small set of 

language-dependent features to classify tweets written in English. The use of these features 

outperforms the BOW (bag-of-words) approach in the classification of tweets according to 

the typology. 

There appears to be no consensus of what genre is. Though everyone believes they know 

what 'genre' is, unfortunately many people have different understandings of its meaning as 

discussed by Crowston & Williams (2000), Kwasnik & Crowston (2005), and Rosso (2005). 

Researchers must be careful not to confuse genre with topic as stated by Karlgren and Cutting 

(1994) yet some researchers (Lee and Myaeng, 2004; Stamatatos et al., 2000) seem unable to 

distinguish between the two and instead interpreted genre as the style of text, to be discussed 

later. 

2.2.3 Topic Categorization 

The task of topic categorization is a heavily researched text categorization problem (Dumais 

et al., 1998; Lewis, 1992; McCallum & Nigam, 1998; Teahan & Harper, 2001 ; Yang, 1999; 

Sebastiani, 2002) and concerns the problem of assigning one or more categories to a 

document from a list of pre-defined categories where the categories reflect the topics or 

subject the document is concerned with. The categories are likely to be more fine-grained 

than the broad categories for genre classification. 

2.2.4 Other types of classification 

2.2.4.1 Language Identification 

Language identification concerns the problem of identifying the language used to produce a 

document. It is a useful pre-processing step in information retrieval, but the task is deemed 

"too easy" as there are significant differences between all of the major languages, even when 

they are based on the same character set, as shown by experiments displaying perfect 
discrimination between a number of languages i.e. (House and Neuberg, 1977). 

Though language identification is an easy and much studied task, it does still play an 

important role in a number of modem applications. Language identification is one of the most 

basic pre-processing stages of tasks such as summarization, question answering and 

translation as it is imperative to know the language of a text in order to process it. With the 

growing number of Internet users it is also becoming more useful to have texts processed 

written in a number of different languages. This is more crucial within bilingual or 

multilingual applications (news providers, question answering and information retrieval 

applications) that want to offer their services to each customer in a different language. 

Other applications include travel services, translation services, national security applications 

and also emergency situations, as people in stressed conditions will tend to speak in their 
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native tongue, even if they have some knowledge of the local language (Lamel and Gauvain, 

1994). 

2.2.4.2 Dialect Identification 

Dialect identification is a problem closely related to language identification and it would be 

reasonable to argue that every person has their own dialect and that a dialect is a language in 
itself (Nagy et al., 2005). It is a popular categorization problem that has had much research 
on its subject (Nagy et al., 2005; Huang & Hansen, 2007; Nerbonne et al., 1999; Branner, 
2000; Chiang et al., 2006). 

In Europe, linguistic differences sharpened as the language of each nation-state was 

standardized. In China, standardization of spoken dialects was weaker, and mostly due to 
cultural influences (Branner. 2000). The variance in China's provinces where dialects are 

spoken can be compared with that in the Arab World. The standard written language is the 
same throughout the Arab world: Modern Standard Arabic (MSA). MSA is not a native 
language of any Arabic speaking people, i.e., children do not learn it from their parents but in 
school. Most native speakers of Arabic are unable to produce sustained spontaneous MSA. 
Dialects vary not only along a geographical continuum but also with other sociolinguistic 
variables such as the urban/rural/Bedouin dimension (Chiang et al. 2006). 

2.2.4.3 Style Classification 

Stylistic text categorization is another useful tool with which we can categorize documents, it 

is a vital tool within on line libraries e.g. ERP AePRINTS (2009) and search engines. Style 
classification may also be known as the "type of text" or misunderstood as its genre (Lee & 

Myaeng, 2004; Kim & Ross, 2007). Examples of style are novels, poems, minutes, 
curriculum vitae and biogs etc. 

As mentioned earlier, with the presence of such large amounts of digital text available today 

it is important to sort and manage this information in the most convenient way to the user 
whilst still being manageable. The ability to search media by its style as well as its topic 
and/or genre would allow for more relevant information being returned to the users without 
any additional pruning of the returned results. An example would be a user searching for the 
term "bread" whilst looking for a recipe, of course a number of resources including the 
history of bread, recipes and stores selling the product will undoubtedly be returned as well as 
a number of others. However if the user had additionally searched for the type of text i.e. 

style of document he/she required i.e. "bread recipe", the user should then only be returned 
documents relevant to the making of bread. 

Lee and Myaeng (2004) proved that knowing the style (though they use the term genre) of a 
document helps to classify it based on its subject/topic more correctly, given that a classifier 

has been built for documents belonging to the same style. This is important and shows that 
we must ensure we build classifiers that not only represent the subject domain but also the 

style in which it was constructed. 
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2.2.4.4 Document Indexing 

A primary application of text categorization techniques is to support information retrieval 

systems by assigning subject categories to documents or to aid human indexers in assigning 
such categories (Biebricher et al., 1988; Hayes & Weinstein, 1990). Several keywords are 
taken from a controlled vocabulary such as a thesaurus and are assigned to a document in 

order to describe its subject. This transformation from a text document into a representation 
of text is known as indexing the document. 

2.2.4.5 A stage within Natural Language Processing Systems 

Text categorization components are also seeing increasing use in natural language processing 

systems for data extraction. Categorization may be used to filter out documents or parts of 
documents that are unlikely to contain extractable data, without incurring the cost of more 

expensive natural language processing (Dahlgren et al., 1991; Grishman et al., 1991; Hobbs 
&Jerry, 1991). 

2.2.4.6 Spam Filtering 

In the 1980s the term Spam was adopted to describe certain abusive users on Bulletin Board 
Systems who would repeat "SP AM" a huge number of times to scroll other users' text off the 

screen. In early Chat rooms services like PeopleLink and the early days of AOL, they 
actually flooded the screen with quotes from the Monty Python Spam sketch 1• This was used 
as a tactic by insiders of a group that wanted to drive newcomers out of the room so the usual 
conversation could continue. This act, previously called flooding or trashing, came to be 
known as spamming. The term was soon applied to a large amount of text broadcasted by 
many users. It later came to be used on Usenet to mean excessive multiple posting, the 
repeated posting of the same message. The unwanted message would appear in many if not 

all newsgroups, just as SP AM appeared in all the menu items in the Monty Python sketch 
(Wikipedia, 2009), but is now also used to refer to unsolicited e-mail messages that are 

posted a large number of times. 

In 2004, an estimated 62% of all email was attributed to spam, according to the anti-spam 
outfit Brightmail (2004). It costs money for ISPs and online services to transmit spam, and 

these costs are transmitted directly to subscribers (Scott Hazen Mueller, 2009). The European 
Union's Internal Market Commission estimated in 200 I that "junk e-mail" cost Internet users 

1 It is widely believed the term spam is derived from the 1970 SPAM sketch of the BBC 
television comedy series "Monty Python's Flying Circus". The sketch is set in a cafe where 
nearly every item on the menu includes SPAM luncheon meat. As the waiter recites the 
SPAM-filled menu, a chorus of Viking patrons "SPAM, SPAM, SPAM, SPAM ... lovely 
SPAM, wonderful SPAM", hence "SPAMming" the dialogue. The excessive amount of 
SPAM mentioned in the sketch is a reference to British rationing during World War IL SPAM 
was one of the few meat products that avoided rationing, and hence was widely available. 
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€10 billion per year worldwide (Europa press release, 2001). The California legislature also 
found that spam cost United States organizations alone more than $13 billion in 2007, 
including lost productivity and the additional equipment, software, and manpower needed to 

combat the problem (Spam Laws, 2003). 

Spammers have been documented as stealing other site's domain names via forgery, both 

Reply.Net and Concentric Networks have been hit this way. Indeed, Outernet, Inc. was 
actually attacked by one such spammer (Scott Hazen Mueller, 2009). Spam can also be used 

to spread computer viruses, Trojan horses or other malicious software and all of these factors 
have forced changes within legislation around the world. In 2003, the UK made spam a 
criminal offence to try to stop the flood of unsolicited messages. Under the new law, 

spammers could be fined £5,000 in a magistrate' s court or an unlimited penalty from a jury. 
However the British measures are not as drastic as other anti-spam laws. Italy have imposed 

tough regulations to fine spammers up to 90,000 Euros and impose a maximum prison term 
of three years and in Australia spammers may be fined up to $1 .1 million a day. On May 31 , 

2007, one of the world's most prolific spammers, Robert Alan Soloway, was arrested by U.S. 
authorities. Described as one of the top ten spammers in the world, Soloway was charged 
with 35 criminal counts, including mail fraud, wire fraud, e-mail fraud, aggravated identity 
theft and money laundering. Prosecutors allege that Soloway used millions of computers to 

distribute spam during 2003 . This is the first case in which U.S. prosecutors used identity 
theft laws to prosecute a spammer for taking over someone else's Internet domain name 
(Wikipedia 2009). 

Andrej Bratko is well known within the field of text categorization for his research on spam 
filtering whether it be for using compression models such as PPM (2005a, 2006a, 2006b, 
2006c) or character-level Markov Models (2005b). As within this thesis, Bratko (2006) 
dynamically updates the training models when processing the testing text and he has also 
found that in the case of spam detection, pre-processing steps are often exploited by 
spammers in order to evade filtering. 

2.2.4. 7 Sentiment Classification 

Sentiment classification is the process of computationally determining whether a document is 
labelled as a positive or negative evaluation of a target object. The target object may be a 
film, book, album etc as long as the author has a positive or negative view on the subject. An 

opinion may also be neutral but these are generally uncovered by this area of research. There 
is not a great deal of evidence of research within this field when compared to others such as 
topic, gender and style classification, however, this area of research has become popular in 
this decade. This is due to the rapid growth in on-line discussion groups and review sites and 
possibly also because it seems to be a challenging area of research (Pang et al., 2002) with 
studies not achieving the high accuracies that can be found within the other areas of text 

categorization. 

Important current applications of this area include data and Web mining, analysis of biogs or 
market trends and consumer opinions (Dave et al., 2003) and the automatic filtering of 

20 IP age 



abusive messages (Spertus, 1997). Other possible uses may be for politicians to track public 

opinion, reporters to track public response to current events and for stock traders to track 
financial opinions (Turney, 2002). Many review sites allow the option to include a rating as 

well as your written opinion (Amazon, Rotten Tomatoes etc), this allows researchers to easily 
generate a corpora with which to work with by for example assigning the number of stars 

given as a rating for the body of text. 

The research within this area has so far fallen into two categories, the sentiment orientation of 
the document by comparing the number of positive words or sentences against the number of 
negative ones (Turney, 2002; Kennedy & Inkpen, 2005; and more recently Miyoshi & 
Nakagami, 2007); and the second is using machine learning techniques (Mullen & Collier, 

2004; Pang et al., 2002). Gamon & Aue (2005) improved the results of a sentiment 

orientation classifier by combining it with the bootstrapping approach described by Nigam et 
al. (2000). Read (2005) demonstrated that in order to get reasonable results, the training and 
testing data must not only be relevant with regards to topic, but the time-period and domain 
are also important. He also investigated the use of emotional symbols (i.e. smilies) as they 
have the potential to be independent of domain, topic and time. 

An interested note which also demonstrates the difficulty of the task follows a statement by 
Pang et al. (2002) that it is essential to also distinguish which sentences within the document 
are relevant to the item being reviewed. As an example "I hate the leading actor in this film, I 
think he is boring. He has no talent and normally stars in boring films of which I have hated 
them all. Yet I love this film!" has a majority of negative words and sentences yet a human 
can easily tell that the review of the film is a positive one. This is because the majority of the 

text is not relevant to the movie but to the actor himself. 

2.2.4.8 Gender Classification 

Linguists have attempted to identify differences in linguistic styles between males and 
females for decades (Trudgill, 1972; Lakoff, 1975; Labov, 1990; Biber, 1995; Schiffman, 
2002). Differences were originally found within speech but researchers have since also 
investigated the possibility of applying these findings to determine differences within written 
text. This has indeed brought researchers to test these theories within the field of text 
categorization, to see if it is possible to determine whether the author of a document is male 

or female. 

Biber (1995) tem1ed females writing style as " involved", they are more likely to specify 
relationships among the people and things within their text. The writing style of males is 

termed as being "informative", they are primarily concerned with specifying the properties of 
objects as well as using a greater use of swearing (Rayson et al., 1997). These findings have 
since been supported by a number of other researchers (Mulac et al., 2001 ; Pennebaker et al., 

2003; Groom & Pennebaker, 2005). It is clear to see that there are indeed a number of 
applications of text categorization techniques and the exact techniques and successes of each 

shall be highlighted within later sections. 
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2.2.4.9 Others 

Another application of text categorization is within text understanding systems. 

Categorization may be used to filter out documents or parts of documents that are unlikely to 
contain extractable data, without incurring costs of more complex natural language 
processing, Dahlgren et al. (1991 ). Finally, the categorization itself may be of direct interest 

to a human user, as in judging whether a threatening letter against a government official 
signifies real danger, Hardt (1988). 

2.3 Text pre-processing techniques 

Pre-processing steps can reduce the storage space required, memory requirements and 
improve classification time, but at what cost? It has been shown that performing pre­

processing steps on the documents may harm classification (Yu, B. 2008 and Bratko, A. 
2006). Bratko explained that in the case of spam detection, pre-processing steps are often 
exploited by spammers in order to evade filtering. 

Often it is the case that after pre-processing steps have been applied, unless the steps were 
thoroughly explained, it can be impossible to reproduce the same experiment at a later date 

for comparison or verification. This problem is reduced in the case of stream-based methods 
as the original data is often unmodified. The pre-processing steps often used within feature­
based techniques which are omitted from stream-based and text compression techniques are 
discussed here for completeness: 

2.3.1 Tokenization 

The goal of tokenization is to separate text into individual words, i.e. "We're going to be 

late." becomes "We ' re going to be late .". The word splitter (Word Splitter, 2009) is a 
simple script that reads plain text and outputs the words with spaces between every word and 
punctuation mark, and this format is needed by tools such as POS (Part of speech) taggers. 

2.3.2 Feature Selection and Extraction 

Feature selection chooses which features should be used in classification. In text 
categorization, features are often the frequency of words appearing in a document. By 
reducing the feature space, it is not only known to increase the efficiency of the training and 
test processes, but can also reduce the risk of over fitting the model to data. Feature extraction 

computes the chosen features from an input document. In statistical classification, features 
are represented in a numerical vector, which is then used by the classifiers. Feature selection 

involves stop word removal, stemming and term selection (Toman et al. 2006). 

2.3.3 Stop word removal 

Words used in text indexing and retrieval are called terms. According to the term 
discrimination model (Salton, G. 1975), moderate frequency terms discriminate the best. 
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High frequency words, which are called stop words, have low information content, and 
therefore have weak discriminating power. Example words are as 'a' , 'the' , 'I', 'he' , ' she', 

' is ', ' are', etc. and are removed according to a list of common stop words such as the one by 
Van Rijsbergen (1979). 

2.3.4 Stemming 

Stemming reduces morphological variants to the root word. For example, "removes", 
"removed", and "removing" are all reduced to "remove" after stemming. This relates the 
same word in different morphological forms and reduces the number of distinctive words. 

The Porter stemmer (Porter, 1997) is a commonly used stemmer as used by Frakes (1992) 
and its implementation in many different programming languages can be found at Martin 

Porter (2006). 

2.3.5 Term Selection 

Even after the removal of stop words and stemming, the number of distinct words in a 

document set may still be too large, and most of them appear only occasionally. In addition to 
removing high frequency words, the term discrimination model suggests that low frequency 
words are hard to learn about and therefore do not help much. They should be removed to 
reduce the dimensions of the vector space as well. 

2.4 Data Sets 

The availability of datasets allow standard benchmarks and encourages research by providing 
a setting in which different research algorithms could be compared against each other, and in 
which the best methods and algorithms could stand out. As in other tasks, there are several 
common data sets in text categorization. In this section a number of these that shall be used 
within our later experiments are described, and though there are many more, the following 
are widely used and more suitable for comparing results. More detailed information regarding 

the distribution of classes and file sizes can be found in Chapter 6. 

2.4.1 Reuters-21578 

Reuters-21578 is the most widely used data set for text categorization. All the texts in this 
data set were collected from the Reuters newswire in 1987. The original dataset contained 
22,173 documents, however, 595 were later found to be exact duplicates and so these were 

removed. The formatted version submitted by David Lewis therefore contained 21 ,578 
documents. Although the original data set contains 21,578 texts, researchers use a data­
splitting method to extract a training set and a test set. The most popular partition (Sebastiani 
, 2002) is the ModApte split (available at The UCI KDD Archive, 1999) which contains 
12,902 documents with a fixed splitting between test and training data, 9603 training texts 
and 3299 test texts. This is the most used version as confirmed by Sebastiani (2002). 

There are a couple of variants of this version used. One set contains 115 categories, known as 
Reuters 115 (Rl 15), and according to Sebastiani (2002) are the categories with at least one 
training document (Alessandro Moschitti, 2008). The other, known as Reuters 90 (R90) (also 
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available from Alessandro Moschitti, 2008), contains 90 categories. According to Joachims 
(1997), they are the categories containing at least one training and one testing document and 

now contains 9,598 documents. The majority of excluded documents are assigned to more 
than a single category and is therefore not useful for our study as we are only concerned with 
single label classification as mentioned earlier. 

2.4.2 Reuters-10 (RlO) 

In order to obtain the Reuters 10 categories split (known as RI 0), we simply select the ten 
largest categories from the remaining documents, i.e. Earnings, Acquisition, Money-fx, 

Grain, Crude, Trade, Interest, Ship, Wheat and Corn. 

2.4.3 RCVl-Author 

RCV I texts are short and these small samples per author can offer a greater challenge. The 
RCVI corpus has already been used in author identification experiments, Hunnisett & 

Teahan (2004) selected the top 50 authors (with respect to total size of articles) and the same 
subset is used within our experiments. 

2.4.4 20-Newsgroups 

20-Newsgroups is also a common data set used for text categorization. Although 20-
newsgroup is less popular than Reuters-21578, it has been used by many researchers (e.g. 

Baker and McCallum (1998), McCallum and Nigam (1998), Joachims (1997)). This data set 
consists of Usenet articles collected by Ken Lang from 20 different newsgroups. The 
collection consists of 19974 non-empty documents evenly distributed across 20 categories. 

The version used in experiments reported in this dissertation is J. Rennie's version in which 
duplicate postings were removed. This subset contains 18828 documents. 

The articles in this data set are postings to some newsgroups, unlike Reuters-21578 are taken 

from newswire. The categories also do not have multiple category labels as with Reuters 
21578. In addition, the category set has a hierarchical structure within confusable clusters 
( e.g. "sci.crypt", "sci.electronics", "sci.med" and "sci.space" are subcategories of "sci 
(science)"). 

2.4.5 Gutenberg-10 (Gu-10) 

This dataset, used in experiments by Thaper (200 I) and Marton et al. (2005) consists of 40 
documents, 4 works of each of 10 well known authors, all of which have been taken from the 
Gutenberg Project. The works are from the following authors, Charles Dickens, Daniel 
Defoe, Emerson, Jane Austen, Kiplking, Shakespeare, Shaw, Twain, Wells and Wilde. 

2.5 Evaluation Techniques 

Evaluation is of fundamental importance to IR research. It is important to be able to measure 
the success of the research and be able to compare the results against past research. It is also 
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just as important to evaluate in a uniform way, as it is becomes difficult to compare results 

unless the research being compared is measured in the same way. The most common 

evaluation techniques are discussed in this section. 

2.5.1 Contingency Table 

Consider a system that is required to make n binary decisions, each of which has exactly one 

correct answer, namely yes or no. The result of n such decisions can be summarized by a 

contingency table, as shown in table 2.1. Each entry in the table specifies the number of 

decisions of the specified type. For instance, a is the number of times the system decided 

true, and true was in fact the correct answer. Common metrics for text categorization 

evaluation are calculated based on the following contingency table and are discussed here. 

True is Correct False is correct 

Assigned True a 

Assigned False C 

Table 2.1 Contingency Table. 

2.5.2 Precision 

b 

d 

Precision is the proportion of items assigned to a category which are true members of that 

category. It is a measure of the number of true positives and is defined as a/(a+b). 

2.5.3 Recall 

Recall is the proportion of correctly classified examples of a category. It 1s defined as 
a/(a+c). 

2.5.4 Accuracy 

This measures the proportion of all decisions that were correct decisions. It is defined as 
(a+d)/(a+b+c+d) . 

2.5.5 Fl-Measure 

It is possible to modify the classifiers to obtain either a higher recall or precision and the F 1-

measure combines both precisions. It is defined as 2rp I (r + p) where r and p are recall and 

precision respectively. 

2.5.6 Macro-averaging / Micro-averaging 

As F-measure is computed for each category, in order to evaluate its performance across all 

categories, the F-measures must be averaged. There are two conventional methods, namely 

macro-averaging and micro-averaging (Lewis, D., 1991). Macro-averaged performance 

scores are computed by first computing the scores for the per-category contingency table and 
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then averaging these per-category scores to compute the global means. Micro-averaged 

performance scores are computed by first creating a global contingency table whose cell 

values are the sums of the corresponding cells in the per-category contingency table, and then 

use this global contingency table to compute the micro-averaged performance scores. 

There is an important distinction between macro-averaging and micro-averaging. Micro­

averaging performance scores give equal weight to every document, and is therefore 

considered a per-document average. Likewise, macro-average performance scores give equal 

weight to every category, regardless of its frequency, and is therefore a per-category average. 

The number of documents in each category within the datasets used for the experimental 

results contained in this thesis varies considerably. Because of this, micro-averaging, a per­

document averaging is more suitable for the results in this thesis. 

2.5. 7 The difficulty of comparing results 

It is worth mentioning the importance of releasing accurate data as incorrect data leads to 

difficulties when attempting to compare results with that of previous experiments. The lack of 

standard data collections is a problem that has been discussed by Yang (1999) and is still a 

problem to this day as it is possible for experiments to use the same corpora but results can 

differ greatly when different training and testing splits are used. Similar problems have 

occurred with published research within the sub-field of stream-based categorization. Teahan 

and Harper (2001) used a different set of categories from 20Newsgroups based on the size of 

the training data, but this was misinterpreted by Marton (2005), who then used these 

categories as though it was a known subset. The files contained within each split of all 

experiments are listed in the attached DVD so that all experiments can be accurately 

repeated. 

It is important to note that inseparability on some Reuters categories is often due to dubious 

documents or obvious misclassifications of the human indexers. An important discovery is 

that within all 155 categories, 984 contained little more than the words "Blah blah blah". The 

same was also true for 719 of the files when tested on only the top ten categories. 

A simple experiment on this dataset showed that there are still many duplicates located within 

the Reuters dataset and supports findings by Khmelev and Teahan (2003). Within the 

collection of all 115 categories, a total of 4381 duplicates were found, over 32% of the total 

number of files . 1183 of these were testing files and 3198 were training. Duplicates can also 

be found once all but the top ten categories have been removed from the collection. In fact 

over 19% of the remaining files are still duplicates, and these are found only by comparing 

against the other categories within the top ten. 475 of these are testing files and 1447 are 

training files. 

The Newsgroups corpus is also not without problems as the files within the corpora do 

contain a significant amount of redundant data, i.e. text representations of attached files such 

as images and archives. Ideally this information should be removed, however, as no mention 

of this has been found previously it has been decided to not alter the contents of the files so 
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that the experimental setup can be as correct as possible with regards to mirroring previous 

experiments. 

If we are to effectively evaluate the performance of techniques in the future, duplicates 

should be removed, and files containing redundant data i.e. not much more than "blah blah 
blah" or file representations of attachments should also be removed. It would also be 
beneficial to have the 'cleansed' corpora available in a central location with the number of 

files and the sizes of each listed so that these values are static. This would allow for more 
effective comparison between research techniques and would remove ambiguity when 
attempting to reproduce past experiments by others. In a truly ideal situation, the results of all 
experiments would also be held in one place with a full description of any modifications or 

preprocessing that was performed as this would solve the issues raised by Yang ( 1999). 

2.6 Feature-based Categorization 

Feature based classifiers act upon the occurrence of words or character sequences. This 

approach often relies upon extracting these sequences from within the text and pre-processing 
steps such as those mentioned in 2.3 are used in order to reduce the complexity of the search 
space. Feature-based approaches, although the predominant approach in the literature, are not 

the focus of this dissertation and shall therefore be discussed in less detail than stream-based 
approaches. 

2.6.1 Naive Bayes 

Naive Bayes classifiers have long been used for text categorization tasks. A Bayes classifier 
is a simple probabilistic classifier based on applying Bayes' theorem and makes strong 
assumptions that features are independent given the class. Although more sophisticated 
models outperform Bayesian ones, these models are popular due to their low computational 
costs. The effectiveness of the models have been studied by Sahami(l 996); Lewis (1998); 

McCallum and Nigam (1998) and Yang and Liu (1999). 

2.6.2 N-Grams 

An n-gram in the context of natural language processing can refer to either a contiguous 
segment of n-words or character strings of a fixed length. A document may be categorised on 

by its n-gram frequency list, a list of n-grams ordered by the number of occurrences in the 
given document. Character n-grams have been proved to be quite effective for author 
identification problems (Kjell et al., 1994; Peng et al., 2003; Juola, 2004; Marton et al., 
2005) and as tokenization is not needed when extracting character n-grams, the approach is 
also language independent. They can, however, require much more computing power and 
time than word based approaches if attempting to calculate for multiple lengths, and n-grams 
of fixed length are often used in order to prevent this. 
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2.6.3 SVM 

Support Vector Machines (SVMs) are learning systems that analyze data and recognize 

patterns and was first introduced by Boser et al. (1992). In the area of text classification 

SVMs separates categories within a hypothesis space and any unclassified texts that are 

placed within the space are categorised as belonging to the category to which it is closest. 

This approach has been shown to outperform many other systems in a variety of Machine 

Learning applications and is popular due to its efficient performance estimation (Joachims, 

2002). 

2. 7 Stream-based categorization 

In comparison to tokenization/feature based classification methods, a stream-based approach 

is similar to text compression methods in that they operate directly on the entire text 

sequence. Stream-based text categorization, as with compression methods, considers the text 

being categorized as a stream of symbols, which differs from the traditional feature-based 

approach which relies on extracting features from the text (Thomas and Teahan, 2007). It is 

also able to omit pre-processing steps such as tokenization, stopword removal and stemming 
altogether. 

A common step between both methods is data collection. In order to objectively compare 
different text categorization methods, a standard data collection should be used in the 

evaluation experiments. However, this appears to be a serious problem. There are several 

different collections, and even when the same collection is chosen, there are many alternative 

ways that the data in the collection are used for training and testing. 

The remainder of this chapter will describe existing stream-based methods that have 

previously been described in the literature. These will be used in the experimental results 

detailed in subsequent chapters. 

2.7.1 C-Measure 

Hunnisett & Teahan (2004) defined a simple frequency-based measure for text categorization 

called the "C-Measure" that uses the sum of the number of common substrings (or 

"contexts") of a fixed length between the training and test documents represented as text 

strings. Regardless of its simplicity, the technique has been proven to outperform a number of 

state of the art techniques (Hunnisett & Teahan, 2004). The results found in Hunnisett & 
Teahan (2004) suggest that the classification performance of context-based classifiers 

increases with a higher order character context. Hunnisett & Teahan (2004) did express the 

need to investigate this claim for higher orders but were unable due to the memory 
constraints of their software. 
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Formally, let the set of symbols in the testing text T be x1 ... xN and k be the order of the 

model (i.e. the fixed context length used for the model). Let di (X) = 1 if context Xis present 

in both the training text Sand testing text T, 0 otherwise. Then the C-Measure is defined as: 

ITI 

ck(TIS) = L di(xi-k+i, ... ,xi). (2.1) 
i=k 

Here, for the definition of ck(TIS), the standard notation from probability theory is being 

used to indicate that the C-Measure for a given testing document Tis being calculated with 

respect to training document S - i.e. (TIS). 

In order to try to determine the correct class of text T among m classes represented by texts 

Si, ... , Sm, Hunnisett & Teahan (2004) suggested that the source be guessed using the 

following estimate: 

Example 1 

Consider the training string S = "abracadabra•" and testing string T = "abrabra•". The count 

C4 for substrings of length 4 is 3 as the testing substring "abra" appears twice within the 

training string and the substring "bra•" appears once. 

The ck counts are then normalized to obtain the C-Measure, with minimum and maximum 

values between 0 and 1, as follows: 

Example 2 

The normalized C-Measure for substrings of length 4 using the previous example is obtained 

as follows: 

3 
C4(TIS) = ( 

2 
) = 3/9 ~ 0.33333. 

1 -4+ 1 

2.7.2 R-Measure 

Khemelev & Teahan (2003) defined the R-Measure as a number between 0 and l 

characterising the repetitiveness of the document. The R-Measure can be found by 

normalising the sum of the lengths of all substrings that appear in both the training files and 

test files. Suppose that the collection consists of m documents, each document being a string 

Si = Si[l.. ISd], where Si[i .. ISi] is the ith suffix of document S. A squared R 2-measure of 

document T with respect to documents S1, . .. , Sm is defined as: 
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(2.3) 

where l = ITI is the length of document T, T[i ... l] is the ith suffix of document T and 
Q (TI Si, ... , Sm) is the length of the longest prefix of S , repeated in one of documents 

S1 , ... , Sm. For example, let us take T = "cat sat on" with T1 = "the cat on a mat" and T2 = "the 
cat sat". Then: 

2 
R

2 (TII'i,T,)= ( )((7+6+5+4+3)+(5+4+3+2+1)),:::0,727272 
- lOx 10+1 

with (TIT1 , T2 ) = .J R2 (TIT1 , T2 ) :::::: 0.852802 . Notice in the above formula that the sum 

consists of two parts, (7+6+5+4+3) from the repetition of "cat sat" = T[l ... 7) and 

(5+4+3+2+1) from "at on"= T[6 ... 10). 

The measure was originally designed to detect plagiarism and duplicates within a text 
collection; however, Khemelev & Teahan also used the measure to see whether or not test 
documents had been correctly categorised. 

2. 7 .3 PPM (Prediction By Partial Matching) 

The PPM algorithm was first published by Cleary and Witten (1984) and though PPM is best 
known for text compression, it is also a highly effective technique when used for text 

categorization .PPM is a well performed compression algorithm that effectively uses a 
language model to estimate the probabilities of each symbol in the text (Teahan, 1998). It 
does this by blending the probability estimates for different length contexts by a back-off 
technique known as the escape mechanism. Bratko and Filipic (2005) were able to show that 
the PPM compression model is able to outperform word-based spam filtering methods and 
did so using adaptive models as shall also be investigated. They share the common goal of 
attempting to devise a strategy which would automatically determine the order of the PPM 
model that optimizes classification performance and found that an order-6 model performed 
best typically but that there was a need to prune the model (as has been found and is 

discussed in section 4.3.3). 

Two well performed adaptive PPM models shall be used during this thesis, namely PPMC 
and PPMD (these use escape method C and D respectively (Teahan, 1998)). These models 
blend different order models by using an escape mechanism. These variants of Cleary and 
Witten's original design are based on improvements described by Moffat (1990), with PPMC 

now being the model of choice in most cases. A technique known as exclusions removes the 
counts for symbols already predicted at higher orders (i.e. context lengths). The model is 
adaptive as it dynamically updates the counts used by the language model as the text is 
processed sequentially. An alternative static variation primes the model from some training 

text, and then suspends updating of the model when processing the testing text. Formally, 
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given a document T of length n symbols and a model PL for a particular category L, then the 

cross entropy is calculated as follows: 

1.e. the average number of bits to encode the document using the model. XdX1 ... Xn-l 

denotes the probability of symbol Xi being encoded for each context. The approach taken by 

Teahan (1998) is based on this calculation - stated simply, each testing text is compressed 

against the category models, and the category is chosen from the one used to train the model 

that achieves the best compression. This has proven to be a highly effective technique often 

achieving accuracy results competitive with other text categorization techniques. 1n practice, 

PPM uses a Markov approximation i.e. assumes a fixed order context; order 5 has been found 

to be competitive on most texts: 

(2.5) 

By using frequency counts the model is able to estimate probabilities for each context and 

these counts are updated adaptively as the text is processed sequentially, with the occurring 

symbol being encoded using the prediction value of the encoding model. Should the model 

discover an unseen symbol, the model encodes that this event has occurred and then escapes 

to a lower order model and continues, attempting to encode the current symbol at a lower 

order. Should the symbol then be matched, the context length may again grow until either the 

maximum context length is reached, the end of the stream is reached or another unseen 

symbol is discovered, forcing us to again escape to a lower context length. A detailed 

example of how PPM is used to perform encoding, prediction and classification of character 

streams is provided in Chapter 4. 

2.8 Protocols 

Marton et al. (2005) provide an overview of three compression-based approaches in the 

literature to text categorization which they called SMDL (for standard minimum description 

length), AMDL (for approximate MDL) and BCN (for best-compression neighbour). They 

characterized many of the prior compression-based approaches under these three labels. We 

seek to re-characterize these approaches (which we call "protocols") in the following way, as 

shown in Table 2.2. AMDL and BCN both dynamically update the model as they employ the 

"off-the-shelf ' technique to calculate cross-entropy. The approaches adopted by Bratko et al. 

(2006) for PPM spam filtering also dynamically update the training model when processing 

the testing text. On the other hand, SMDL and AMDL concatenates all the training data for 

each class, significantly reducing the number of calculations required compared to BCN 

which produces calculations for each training document separately. 
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Static Model Dynamic Model 

Concatenation of training Protocol I Protocol II 

documents in the same class 
(SMDL) (AMDL) 

Non-concatenation of training Protocol IV 

documents in the same class Protocol Ill 
(BCN) 

Table 2.2: Protocols for stream-based text categorization and contained within brackets 
are where each approach used within Marton et al. (2005) resides. 

If we tabulate these two features - static versus dynamic models (see section 4 for examples 

of these models being implemented); and concatenation of training documents in the same 

class versus non-concatenation - it is quite clear that a fourth protocol presents itself (labelled 

as Protocol III in table 2.2). This protocol has been partially examined by Hunnisett (2010) 

with inconclusive results. 

It is not clear which of these protocols is the most appropriate for text categorization and that 

was a major motivation for discovering the results reported in Chapter 6. Although the 

dynamic protocols II and IV are well motivated from an information-theoretic perspective, 

the following reasoning highlights some problems with the dynamic approach. Consider what 

happens at the interface between the two sequences; that is, when the learning continues into 

the testing sequence after the training sequence has been completed. Consider the case when 

the languages of the testing and training documents are clearly distinct and independent, for 

example, as when the languages being tested for are the natural languages English and Welsh 

(or English and French). There will be some common English/Welsh or English/French 
sequences in both sequences, but comparatively few compared to the length of the texts, and 

usually there is no mechanism for the learning algorithm to disambiguate between the 

different languages (i.e. a combination of both languages is being learnt) . For this reason, it is 

unclear whether the co-adaptation of both the training and test sequences is desirable in these 

cases. Similarly, concatenation of training documents has merits as it maximizes training 

data, and from an information theoretic point of view, one can argue that documents in the 

same category can be considered to be from the same language source. But with non­

concatenated documents, ranking across all documents will ensure that only the best match of 

the testing document out of all training documents is used to provide the category estimate. 

Chapter Discussion 

This chapter bas reviewed important concepts within the field of text categorization. The 

amount of uncategorised data in digital format is continuing to grow and text categorization 

techniques have good success rates at categorising this data. This chapter has shown that 

there are indeed a number of applications of text categorization techniques, varying from 

indexing to filtering through to identification of language or even an author of text. The 
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details of these techniques and successes of each have also been highlighted within this 
chapter. 

The more common feature based approaches perform pre-processing techniques which 

consumes both time and resources, but it has been shown that stream based approaches do 

not. Some stream based approaches which already exist have been discussed and though the 

research has so far been limited in this area, the results have been promising and therefore 

warrant further investigation. One of the problems has been that the current implementations 

of the algorithms require additional resources and the implementation of these using suffix 

trees as an alternative method are discussed in the next chapter. 

Some concerns have also been noted. Datasets, pre processing steps and evaluation 

techniques have been discussed, and although these are all well known among the 

community, problems still arise. Lack of details concerning the experimental setup coupled 

with the proven existence of inaccurate figures leads to the inability to perform true 

comparisons between each of the many number of text categorization. 
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Chapter 3 

Extensions for stream based 
models 

Chapter Summary 

The purpose of this chapter is to explain the new techniques which have been explored during 

the time of the study. The three stream-based methods that are examined within this thesis are 
C-Measure, R-Measure and PPM. This chapter discusses all new work and improvements 
relating to these models and explains the extensions found for each of the algorithms. For C­

Measure the substring lengths that can now be calculated are detailed, for PPM it is shown 
how the calculations can be performed by using the suffix tree and for R-Measure, all new 
variants of the original algorithm are detailed. 

Summary of each section 

Section 3.1 discusses the extensions of R-Measure and its variants. Section 3.2 discusses all 
new work relating to the C-Measure and describes both static and dynamic cases. Section 3.3 
describes the modifications of two PPM variants, namely PPMC and PPMD, how they have 
been implemented and the differences when dealing with update exclusions, no exclusions as 
well as static or dynamic models. Section 3.4 details the time complexities of processing the 

stream-based models using suffix trees. 

3.1 Extensions of R-Measure 

The R-Measure was defined by Khemelev & Teahan (2003) using the lengths of the common 
substrings rather than their counts but it can also be defined based on a summation of the ck 

counts as follows: 

R(TIS) = r(TIS) 

½ ITl(ITI + 1) 

The following straightforward analysis reveals the two are equivalent. If the two substrings 

denoted by the sequence xi ... xi+k-l are common between T (testing string) and S (training 

string), they will have their first character xi also common - this corresponds to the c1 counts 

across all common substrings between T and S, and contributes + 1 to the overall sum. 

Similarly, the common prefix xi, xi+l corresponds to the c2 counts and contributes a further 
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+ 1 to the overall sum. Further common prefixes of increasing length each contribute + 1 to the 
overall sum until the length n of the sequence is reached. Essentially the contribution to the 

ck counts is exactly the same as the lengths of the common substrings, and therefore the R­

Measure can be equivalently defined either by counts or lengths. 

Example 1 

Consider the training string "abracadabra•" again. For case la below, let the test string be T = 
"abrabra•", for lb be "abracafabra•" and for le be "abradacabra•". The ck and r counts for 
these cases are as follows: 

c1 = l0,c2= 7, c3= 5, c4=3,cs= l ,c6 .. . 8= 0 la 
r = 10 + 7 + 5 + 3 + I = 26 

CI = 11 , C2 = 9, C3 = 7, C4 = 5, C 5 = 3, C6 = 1, C7 ... 12 = 0 1 b 
r = 11 + 9 + 7 + 5 + 3 + 1 = 36 

c1 = 12, c2= 11, c3= 7, c4= 3, cs= 1, c6 ... 12= 0 le 
r = 12 + 11 + 7 + 3 + 1 = 34 

Example 2 

Consider the case where the training string and test string are the same. In this case, all the ck 

counts and r count have the maximum values: 

ITI 11'1 
rmax L cl; 'ax = L (ITI- k + 1) 

k - 1 ·- I 

ITI 
ITl2 - L k + ITI 

k-1 

rmax is used to obtain the normalized R-Measure, with a minimum and maximum value 
between O and 1. 

To date, only the "complete" R-Measure has been defined, which is of course the sum of the 
C-counts. However, further cumulative r counts can be obtained by counting only substrings 

whose lengths are~ to some minimum q, as follows: 

IT I 
r~q(T I S) = I: ck(T I S). 

k=q 

Here r = r ~1 . The series r ~1 , r~2, ... , r ~ITI decreases with r~k > r~k+l except when ck = 0 
then all of the remaining r~k+l,k+z, ... ,ITI = 0. Only when T = S does r 1r1 = 1, otherwise 

r1r1 = 0. 
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Example 3 

Consider the training string "abracadabra•" again. For case 3a below, let the test string be T= 

"abrabra•", for lb be "abracafabra•" and for le be "abradacabra•". The ck, r counts and r'?:.q 
values for these cases are as follows: 

c, = 10, c2 = 7, c3= 5, c4= 3, cs = 1, c6 ... s= 0 
r= 10 + 7 + 5 + 3 + I = 26 
r?:2 = 16, r '?.3 = 9, r :::4 = 4, r:::s = 1, r:::6,7,8 = 0 

c, = ll,c2= 9,c3 =7,c4 =5,cs= 3,c6 = l ,c1 ... 12=O 
r = 11 + 9 + 7 + 5 + 3 + I = 36 
r'?.2 = 25, r :::3 = 16, r :::4 = 9, r :::s = 4, r :::6 = I, r:::1,s,9,I0,11 ,12 = 0 

c,= 12, c2= ll , c3=7, c4=3, cs= l , c6 ... 12=O 
r = 12 + 11 + 7 + 3 + 1 = 34 
r:::2 = 22, r :::3 = 11, r :::4 = 4, r :::s = 1, r:::6,7,8,9,10,11 ,12 = 0 

3a 

3b 

3c 

Alternatively, rsq counts can be obtained by counting only substrings whose lengths are ~ to 

some maximum q, as follows: 

q 

r~q(T I 8) - I: ck(T I S). 
k=l 

In this case, r = r slTI· The series rsi, rs2, •.• , r slTI increases with rsk < rsk+l except when 
ck = 0 as all remaining counts are equal, i.e. rsk = r sk+l,k+z .... ,ITI· 

Maximum values can also be calculated to normalise the R'?:.q-Measures and Rsq-Measures as 

follows: 

R ~q(T I S) 
r~q(T I S) 

- ------------
½ (IT I - q + l)(IT I - q + 2) . 

- 1'~q(T I S) 
R~q(T I S) - q IT I - ½ (1 - q)q. 

The R-Measure takes into account all substrings that are common between T and S. However, 

in certain text categorization domains, such as text containing a large proportion of natural 

language, the shortest substrings are essentially poor for discriminating between many 
different T and S since these short substrings are common across all strings. The q threshold 

used in the R'?:.q-Measure can be used to eliminate these strings from the calculations. 
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Indeed, Hunnisett & Teahan (2004) found in authorship experiments with the Ck-Measure 
that much longer substrings performed better at categorization compared to shorter ones -

they found that k = 13 performed best but were unable to check beyond this because of 

memory constraints. It is possible that substrings of a greater length may indeed improve 
categorization performance and thanks to the toolkit discussed in the next chapter, much 
greater substring lengths can now be examined. In contrast, compression-based language 

modelling approaches using variable order Markov models base their measures only on the 
shorter substrings and eliminate the longer ones from their calculations in a manner similar to 

Rsq-Measure, most probably due to the exponentially large number of states for higher-order 

models. It is not clear which approach is preferable, or why there is a variance between the 

count-based and compression-based approaches. Part of the motivation behind the 
experiments in this thesis is to determine experimentally which measure performs better or 

whether different measures perform better in different domains. 

3.1.1 R-Ranges is Rs q 

A final R-Measure can be calculated that summates ck counts where i :::; k :::; q where i and q 
are the desired minimum and maximum substring lengths respectively. As stated above, there 
are differences in opinion as to whether shorter or longer substrings are better at 

categorization and therefore it seems useful to also investigate the summation of counts 
between ranges of values. This will allow us to investigate results where both the shortest and 

longest substrings are ignored and it would be interesting to see what ranges achieve the best 

results and if the results are better than R~q-Measure or Rsq-Measure, attempt to answer why. 

The R-Range measure is defined as follows: 

q 

ri ... q(TIS) = L ck(T IS) = rsq - rsi-1· 

k=i 

3.2 Extensions of C-Measure 

As mentioned in 2.7.1 , Hunnisett & Teahan (2004) were only able to calculate counts up to 
c13 . The new toolkit mentioned in chapter 5 is now able to surpass this point, though results 

are limited to c50 in order to calculate results within reasonable time on a relatively standard 

desktop computer with 1 GB of memory. It is possible to calculate results past this point but it 
will be shown that it is not beneficial to do so as substrings of great length are not useful for 
categorization and should only be considered for the task of duplicate document detection. 

The increase in performance has been achieved through a number of factors including the use 
of suffix tree models, pruning, and other techniques that are discussed in chapter 5. 

The number of substrings of length k that are found within both the training document S and 
testing document Tis defined as: 
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ITI 

ck(TIS) = L di(xi-k+l• ... ,xJ. (2.1) 
i=k 

where k is the order of the model and C(xi - k + 1 ... xdS) = 1 if context xi - k + 1 ... xi 
(all substrings) are present within the training text and is equal to O if all substrings are not 

present. 

Example 1 

Consider the training string S = "abracadabra•" and testing string T = "abrabra•". The count 

C4 for substrings of length 4 is 2 as the testing substring "abra" appears twice within the 

training string. 

The ck counts are then normalized to obtain the C-Measure, with minimum and maximum 

values between O and 1, as follows: 

Example 2 

The normalized C-Measure for substrings of length 4 using the previous example is obtained 

as follows: 

2 
C4 (TIS) = (l2 _ 4 + l) = 2/9 ~ 0.22222. 

3.3 Modifications to PPM 

1n order to calculate the compression ratio of a testing file a suffix tree is created that 

represents the training model, with the testing file being read as a stream one symbol at a 

time. As the symbols from the testing stream are processed, we traverse the training suffix 

tree, using the counts of existing nodes in order to calculate the probability of the symbol 

occurring at the current context length. With the use of an array of context lengths with 

pointers into positions within nodes of the tree, we are able to successfully track the position 

of each context length within the suffix tree. As we traverse the current longest context length 

and calculate the probability of the current symbol, we also update the position of each of the 

lower order pointers (see table 3.1 ). This is performed as though an unseen symbol was 

discovered, as we calculate the probability of the unseen symbol and escape to a lower 

context length, whose position is already held in our array. After the probability of each 

symbol within the stream has been calculated, the probability of each is then added to the 

current total until the entire stream has been processed. The testing file is then attributed to 

the model that offers the lowest bit rate, i.e. the highest compression ratio. Table 3 .1 shows a 

PPMC model after processing the string "abracadabra" with maximum order of 2. 
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Order k = 2 Order k = 1 Order k = 0 Order k =-1 

Predictions C p Predictions C p Predictions C p Predictions C p 

2 2 5 1 
ab - r 2 - a - b 2 - - a 5 - - A 1 lAf 3 7 16 

1 1 
b 

2 - Esc 1 - - C 1 - - 2 -
3 7 16 

I 
d 

I 
1 

I 
ac - a 1 - - 1 - - C -

2 7 16 

I 
Esc 3 

3 
d 1 

I - Esc 1 - - - - -
2 7 16 

I 2 2 
ad - a 1 - b - r 2 - - r 2 -

2 3 16 

I I 
Esc 

5 - Esc 1 - - Esc 1 - - 5 -
2 3 16 

2 I 
br - a 2 - C - a 1 -

3 2 

- Esc 1 
I 
- - Esc I 

I 
-

3 2 

d 
I 

d 
I 

ca - 1 - - a 1 -
2 2 

I I - Esc 1 - - Esc I -
2 2 

b 
I 2 

da - 1 - r - a 2 -
2 3 

I I - Esc 1 - - Esc 1 -
2 3 

I 
ra - C I -

2 

I - Esc 1 -
2 

Table 3.1: PPMC model after processing the string abracadabra with maximum order 
of 2. 
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3.4 Complexity considerations 

Consider the space and time complexities for the text categorization protocols when 

implemented using suffix trees. Assume there are K classes, M training documents, and N 

testing documents. TypicallyM » N » K. The space and time complexities are dependent on 

the size of the suffix trees which are linear with the size of the text. If the suffix trees are 

created on demand during categorization, then the space is proportional to the length of the 

training and testing text currently being processed. However, consider the case where we 

wish to create the suffix trees in advance for all training and testing texts so that these do not 

have to be re-created multiple times. The non-concatenated protocols (III and IV) 

substantially increase the complexity of the classification experiments as they require the 

creation of M + N suffix trees, plus the calculation of an M x N matrix of similarity 

judgments; this is opposed to K + N suffix trees plus K x N similarity judgments for the 

concatenated protocols (I and 11). 

Considering the time complexities, for the frequency-based methods, all C-Measures and the 

R- Measure can be calculated simultaneously in a single co-traversal of both the training and 

testing suffix trees where non-matching branches are not followed. r p .. . qrequire a further 

calculation to compute the different measures for all values of p and q. This can be done by 

filling in a ITI x ITI (where T is a testing string) matrix by iterating over p and q but the 

worst-case time complexity and space complexity for this is O (T2
) compared to O (T) to 

calculate the measures for the other formulas. However, since the series of ck counts does not 

change beyond the length of the longest common prefix between T and S (where S is the 

training string), the average case is much better, and both the time and space requirements 

can be reduced considerably by only calculating counts up to the longest common prefix 

length. 

Let us now show how c-counts may be calculated for a specific example. Consider the 

training string S = "to be or not to be•" and testing string T = " to be not•". After constructing 

a suffix tree for each of the strings we navigate through all nodes of the testing tree and 

should the character within the testing node exist within the training tree at the same depth, 

the count for that depth is incremented by the count of the training node i.e. the number of 

times that the current suffix occurs within the training string. 

After matching the EOF symbol between both trees at depth 1, C1 would then have a count of 

1 as up to this point only a single suffix of length 1 occurs in both strings and this suffix 

occurs only once within the training string. As we have reached the end of the current branch 

we would move along the nodes of the testing tree at depth 1 until a suffix is matched. The 

next suffix to be matched would be ' ' (the space character) and this would again add the 

number of times it occurs within the training string to the count C 1. The value is currently one 

and as the character appears five times within the training string, the count now becomes six. 

As the testing node has child nodes, we then attempt to match the suffixes at increasing 

depths within the training tree and for all strings that are matched, the number of times they 

occur within the training tree is added to the current total of counts for that depth. Two 

characters appear after spaces within the testing string, ' b' and 'n' . Therefore we would first 
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attempt to match the suffix" b" (space at depth 1 and 'b' at depth 2) within the training tree. 
This substring occurs twice within the training string and so C2 now becomes 2. The only 
node to appear after the 'b' in the testing node is 'e' so we then attempt to match 'e' at depth 

3 on the current branch within the training node. This process continues until we have either 
processed all of the testing suffixes and at this time we will have the counts of suffixes for all 

lengths between 1 and the length of the longest common substring. 

The longest common substring within this example is "to be ", which has a length of 6 and 
appears only once within the training text. Using equation 2.1 we can calculate the count C6 

as follows: 

1 
C6 (TIS) = ( ) = 1/14::::: 0.07143. 

19 - 6 + 1 

We may also wish to calculate the count C2in a similar manner, with the count C2 for 
substrings of length 2 being 12 as "to", "o " , " b" and "be" each appears twice within the 
training string and "e ", " n", "no" and "ot" each appears once. 

12 
C2 (TIS) = (l9 _ 2 + l) = 12/18::::: 0.66667. 

Chapter Discussion 

The chapter has shown new approaches and investigations including explanation of how the 

text categorization performance for the stream-based algorithms can be performed using 
suffix trees. The investigation of C-Measure for suffix lengths greater than 13 , R2:q-Measures, 

R5q-Measures and i :5 R :5 q and having results (see chapter 6) for these measures against 

the corpora mentioned in 2.4 is novel and collectively this allows us to compare these 
approaches against the current leading techniques. 
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Chapter 4 

Implementation of stream­
based models using Suffix 
Trees 

Chapter Summary 

This chapter offers an overview of suffix trees and how they can be used to implement stream 
based algorithms. The chapter also shows how each protocol can be modeled for each of the 

algorithms through use of discussion and examples. 

Summary of each section 

Section 4.1 discusses suffix trees and the advantages of its uses as a representation of a text 
document. Section 4.2 shows how each of the stream based algorithms are implemented 

using suffix trees and how each protocol is implemented through use of examples. 

4.1 Suffix Trees 

A suffix tree of a string ( or a document should we consider the contents of a document as a 
string) is a trie holding all the suffixes of that string. As all suffixes are contained, we can say 
that all substrings are also contained. This powerful data structure allows for quick searching 
of substrings and also allows for strings to be dynamically added or removed. Suffix trees 

have also provided one of the first linear-time solutions for the longest common substring 
problem. These speedups do come at a cost as storing a string's suffix tree typically requires 
significantly more space than storing the string itself. This approach differs from bag of word 

approaches i.e. Nai've Bayes as we allow for phrases and streams of symbols/words/sentences 
and do not ignore the order of the sequences. 

Weiner first introduced the concept as a pos1t10n tree in 1973 (Weiner, 1973). The 
construction was then simplified and the space consumption lowered by McCreight in 1976 
(McCreight, 1976), and also by Ukkonen in 1995 (Ukkonen, 1995; Giegerich & Kurtz, 1997). 

The first linear-time online construction of suffix tress was provided by Ukkonen and the 
construction method is now known as Ukkonen 's algorithm, though it has been criticized for 

the lack of space efficiency (Giegerich & Kurtz, 1997). 

42 I Page 



Suffix trees have been studied and used extensively in fundamental string problems such as 
large volumes of biological sequence data searching, i.e. DNA or protein sequences 
(Bieganski & Carlis, 1994), approximate string matches (Ehrenfeucht & Haussler, 1988) and 

text features extraction in spam email classification (Pampapathi & Levene, 2006). It is 
important to note that for most applications a lexicographic trie is unnecessary, however, a 

lexicographic trie allows us to take advantage of search techniques i.e. binary search 
algorithm, which relies on the contents being sorted to find the desired child node within a 

position of the trie. 

If the input string S of length n is terminated by a special end-of-string symbol ("•") then the 

suffix tree has n + 1 leaves, one for each nonempty suffix of S. The end-of-string symbol is 

important as it allows us to find the point at which we are processing the next text within a 
concatenated stream. Since all internal non-root nodes are branching, there can be at most 

n - 1 such nodes, and n + 1 + (n - 1) + 1 = 2n + 1 nodes in total. The most apparent use 
of the suffix tree is as an index that allows substrings of a longer string to be located 

efficiently. The suffix tree can be constructed, and the longest substring that matches a search 
string located, in asymptotically optimal time (Larsson, 1999). An edge label within the tree 
is represented by a pointer into the original string and this ensures that the storage space 
required for each node is constant. 

A sample suffix tree indexing the string S , 'This is a threat•' is shown below with the counts 

of each node displayed to its right. The string S contains 17 suffixes - "•", " a threat•", " is a 
threat•"," threat•", "This is a threat•", "a threat•", "at•", "eat•", "his is a threat•", "hreat•", "is 

a threat•", "is is a threat•", "reat•", "s a threat•", "s is a threat•", "t•" and "threat•", with the 
substrings " " (space) occurring 3 times, "a", "h", "is ", "s " and "t" twice, and the rest 
occurring only once. 
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17 

Figure 4.1: Suffix tree representation of string ' This is a threat•'.' " ' is the null string at the root of the tree and ' •' is the end of string 
symbol. The counts of each substring are shown to the right of each node. 
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4.2 Implementation 

The remainder of this chapter will show how it is possible to compute in reasonable time and 
space all the stream-based methods outlined previously (C-measure, R-measure and PPM), 
using essentially a single pass through the test data ( or its equivalent represented as a suffix 

tree). This step, of course, is necessarily an off-line process. Once the best measure is found, 
however, it can be used directly to classify unknown test strings and multiple calculations are 

no longer necessary. 

The C and R-Measure can be computed using thi s data structure in the following way. 

Assume that the training string S be the same as the string used for figure 4.3, and the test 

string T as that used for figure 4.2. By co-traversing both trees simultaneously in a single 

pass, each of the ck counts can be calculated by summing the counts of the common prefixes 

between S and T. For example, the common prefixes of length 2 in the order they appear in 
figure 4.2 is "a•" ( count is 1 ), "ab" (2), "br" (2) and "ra" (2) so the total sum of counts is 7. 

Likewise the common pre'fixes of length 4 are "abra" (2) and "bra•", so c4 = 3. It is a simple 

exercise to derive the measures based solely on the ck counts and the length of string 

T (which is the count associated with the root node). Note that this application of suffix trees 

to computing the C and R- Measures is novel. In fact, Hunnisett & Teahan (2004) were not 

able to compute values for Ck for k > 13 using their trie implementation because of memory 

constraints. 

bra• 1 

Figure 4.2: Suffix tree representation of string 'abrabra•'. '"' is the null string at the 
root of the tree and '•' is the end of string symbol. 

Figure 4.3: Suffix tree representation of the string "abracadabra•". 
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Concerning the four protocols, there is essentially no difference in the way the suffix trees are 

processed between the concatenated and non-concatenated protocols regardless of whether 
static or dynamic models are being used, apart from the size of the training text being used to 
prime the training suffix tree (i.e. the concatenation can be considered to be a simple pre­

processing step done prior to the creation of the training suffix tree). For the C-Measure 

static case, the training and testing suffix trees are co-traversed, and counts of common nodes 
are accumulated with C1 being the sum of counts of testing nodes at level 1 that match with 

training nodes, C2 being the sum at level 2 and so on, as described above. 

The dynamic protocols require dynamically updating the training suffix tree with information 
as either the testing suffix tree is being co-traversed (for frequency-based methods), or as the 

training plus testing text is processed sequentially (for entropy-based methods). For the 
frequency-based methods, the training suffix tree is dynamically updated in two ways: should 

a matching suffix be found, the counts of the nodes are incremented; and should a suffix 
contained within the testing tree not be found within the training tree, this new node is 
created and added. Unlike the static case, if during the traversal, a path within the testing tree 

is determined not to be common to the training tree, the traversal of this path will not now be 
abandoned. Instead, we continue traversing the path of the testing suffix as all uncommon 
nodes along a path are inserted into the training tree until the end of the path is reached. 

Consider the training string S = "abrabra•" and testing string T = "xbrx•". The first suffix we 

would investigate is "xbrx•" and as this substring does not exist within the training suffix 
tree, the path would be dynamically inserted. When we then come to insert the suffix "x •" 
later on, rather than it again being ignored as with the static case, it will now match the 

character "x" at depth 1 as the substring "xbrx•" was inserted prior. 

4.2.1 Static C-Measure 

Consider the training string S = "abrabra•" and testing string T = "br•" where • denotes the 

end of file character. The series c1 , c2 and c3 (see 2.7. l) are all initialised as value zero and 
the value ck will increase as matching substrings of length k are found. The following 

diagram displays both the training and testing tree once they have been created and no 

categorization has yet been performed. 

Figure 4.4: Suffix trees of training file "abrabra•" and test stream "br•". 
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The following suffixes are contained within the testing string: "br•", "r•" and "•". In order to 
determine the similarity between the two strings, we need to determine the number of 
common substrings and we do this by simultaneously traversing both trees and determining 

how similar the two trees are. 

As we are categorising the test string "br■" we shall be traversing each path within its suffix 

tree whilst simultaneously traversing the training tree to determine what nodes are common 
and at what depth. If during the traversal, a path within the training tree is determined not to 

be common to the training tree, the traversal of this path will be abandoned (not in dynamic 
case, with dynamic uncommon paths we keep traversing as all uncommon nodes along a path 
are inserted into the training tree until the end of the path is reached) and shall continue with 

the next until we have attempted to traverse each of the paths within the testing tree. 

The first node to be found within the test suffix tree is node "•" at depth 1. The node "•" is 

found to be common within the training suffix tree. As the substring of length 1 was found to 

be common, the value c1 is now increased by 1 and the ck counts are updated to the 

following: c1 = 1, c2 = 0, c3 = 0. 

The next node to be found within the test suffix tree is node "br•" and as we are now 
traversing a new node within a new path we are again at depth 1. We are therefore looking to 

find node "b" at depth 1 within the training suffix tree. We indeed find the node "bra" within 
the training suffix tree with the character "b" at depth 1 and the ck counts are updated to the 

following: c1 = 2, c2 = 0, c3 = 0. 

As we have matched the current character within the test node and have also not yet reached 
the end of this node, we shall remain within the testing node "br•" and now search for the 

character "r" which is at depth 2. Again the node is matched and so the counts are updated as 

follows: c1 = 2, c2 = 1, c3 = 0. 

Again we remain within the current testing node but we are now searching for "•" at depth 3 
of the cmTent path within the training suffix tree. As the node "•" was not found, the traversal 

along this path is abandoned and the counts remain unchanged. 

We have reached the end of the current path and we now move on to the next and final node 
within the testing tree which is the node "r•". We are first looking to find a node within the 
training tree which has the character "r" at depth 1, which we find in the form of the node 

"ra". The common node the ck counts are updated to the following: c1 = 3, c2 = 1, c3 = 0. 

As we have found a matching node and have also not yet reached the end of the current path 

within the test suffix tree, we now look for the character"•" along path "r". 

A common node cannot be found and as we have now traversed all paths within the testing 

suffix tree we have completed our traversal and the final counts remain as follows: c1 = 
3,c2 = 1,c3 = 0. 
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4.2.2 Dynamic C-Measure 

Again consider the training string S = "abrabra•" and testing string T = "br•" where • denotes 

the end of file character. The series c1 , c2 and c3 are again initialised as value zero and the 

value ck will again increase as matching substrings of length k are found. As we are 
demonstrating an adaptive model therefore the training suffix tree will be dynamically 

updated in two ways. Should a matching suffix be found, the counts of the nodes shall 
increase and should a suffix contained within the testing tree not be found within the training 

tree, this new node will be created and added. 

The suffix trees to begin with will be the same as the static case, see figure 4.4, with c1 = 
0, c2 = 0, c3 = 0 as no categorization has yet been performed. As we are now using a 

dynamic/adaptive model, if during the traversal, a path within the training tree is determined 
not to be common to the training tree, the traversal of this path will not now be abandoned. 

Instead, we continue traversing the path of the testing suffix as all uncommon nodes along a 
path are inserted into the training tree until the end of the path is reached. 

The first node to be found within the test suffix tree is node "•" at depth 1. The node "•" is 

found to be common within the training suffix tree and as we are now using a 
dynamic/adaptive model, the count of this node within the training tree is increased from 1 to 
2. Additionally, as the substring of length 1 was found to be common, the value of c1 is now 

increased by 1. 

The modified training suffix tree is shown here: 

1 

Figure 4.5: Dynamic suffix tree of training file "abrabra•" once• has been processed. 

and the ck counts are updated to the following: c1 = 1, c2 = 0, c3 = 0. 

The next node to be found within the test suffix tree is node "br•" and as we are now 
traversing a new node within a new path we are again at depth 1. We are therefore looking to 
find node "b" at depth 1 within the training suffix tree. We indeed find the node "bra" within 
the training suffix tree with the character "b" at depth 1. It may be clear that other characters 
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within this node are common between both trees and indeed we would continue until the end 
of the string before modifying the training suffix tree but for illustration purposes we shall 
break this into a number of steps so that the process remains clear. 

The modified training suffix tree is shown here: 

Figure 4.6: Dynamic suffix tree of training file "abrabra•" once 'b' from within suffix 
br• has been processed. 

and the ck counts are updated to the following: c1 = 2, c2 = 0, c3 = 0. 

As we have matched the current character within the test node and have also not yet reached 
the end of this node, we shall remain within the testing node "br•" and now search for the 
character "r" which is at depth 2. Again the node is matched and so we update the training 
tree and counts accordingly. 

The modified training suffix tree is shown here: 

Figure 4.7: Dynamic suffix tree of training file "abrabra•" once 'br' from within suffix 
br• has been processed. 
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and the ck counts are updated to the following: c1 = 2, c2 = 1, c3 = 0. 

Again we remain within the current testing node but we are now searching for " •" at depth 3 

of the current path within the training suffix tree. As the current training node "br" is non­

branching, the only possible matching character is "a". Because of this, the node "a" shall 
remain a non-compressed node as it will remain to have a different count from its parent node 
"br". 

As the node "•" was not found, this node at depth 3 shall now be inserted into the training 
suffix tree as a child of parent node "br". This is where the dynamic/adaptive model greatly 

differs from the static model as we are now dynamically altering the training tree to be more 
similar to the testing tree. 

The modified training suffix tree is shown here: 

• 1 2 
1 • 1 

.,.............,~' 

Figure 4.8: Dynamic suffix tree of training file "abrabra•" once the suffix bro has been 
processed. 

and the ck counts remain unchanged as: c1 = 2, c2 = 1, c3 = 0. 

Again, as we have reached the end of the current path we now move on to the next and final 
node within the testing tree which is the node "r•" . We are first looking to find a node within 
the training tree which has the character "r" at depth 1, which we find in the form of the node 
"ra". 
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As we find the common node we modify to the training suffix tree to be as follows: 

1 

Figure 4.9: Dynamic suffix tree of training file "abrabra•" once 'r' from within suffix r-

has been processed. 

and the ck counts are updated to the following: c1 = 3, c2 = 1, c3 = 0. 

As we have found a matching node and have also not yet reached the end of the current path 
within the test suffix tree, we now look for the character "•" along path "r". 

A common node cannot be found so we again insert this new node and the training tree is 
modified to the following: 

1 

Figure 4.10: Dynamic suffix tree of training file "abrabra•" once the suffix r• has been 
processed. 

As we have now traversed all paths within the testing suffix tree we have completed our 

traversal and the final counts are as follows: c1 = 3, c2 = 1, c3 = 0. Using the example above 

you will notice that the counts are the same for both models. However, should an uncommon 
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suffix be inserted, as it wasn't matched, and then be seen again, on all following occasions the 
substring would be matched as it was dynamically inserted. 

As an example consider the training string S = "abrabra•" and testing string T = "xbrx•". The 

first suffix we would investigate is "xbrx•" and as this substring does not exist within the 
training suffix tree, the path would be dynamically inserted. Now when we then come to 

insert the suffix "x•", rather than it again being ignored as with the static case, it would now 
match the character "x" at depth 1 as the substring "xbrx•" was inserted prior. 

The final training suffix tree once all comparisons have been made is displayed here: 

Figure 4.11: Dynamic suffix tree of training file "abrabra•" once the testing stream 
xbrx• has been processed. 

4.2.3 PPM Without Full Exclusions 

For table 3.1 the escape count is calculated as the number of known symbols at each point. 
For example if we had processed the symbol 'a' followed by 'b' we would be within position 
' ab' at order 2 and the escape count would be 1 as ' r ' is the only known symbol at this point. 
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Order k =2 Order k = I Order k = 0 Order k = -1 

Predictions C p Predictions C p Predictions C p Predictions C p 

2 2 5 1 
- -ab - r 2 b - r 2 - - a 5 - A I IAf 3 3 16 

1 1 2 - Esc 1 - - Esc I - - b 2 -
3 3 16 

1 - C 1 -
16 

1 - d 1 -
16 

2 - r 2 -
16 

5 - Esc 5 -
16 

Table 4.1: List of pointers within context list after processing the symbols 'ab'. 

Referring to table 4.1, let us say that the next symbol to encode was indeed ' r' , as the 
frequency of this symbol is 2, the probability of this symbol being encoded at this point is the 
frequency of the symbol divided by the sum of all frequencies (including the escape count) 
and in this case the probability would be 2/3. 

However, if the symbol was unseen before at this point, 1.e. the symbol ' i ', then the 
probability would now be the escape count divided by the sum of all frequencies , i.e. 1/3. We 
would then escape to a lower context length, i.e. the pointer '/\, b ' and search for the symbol 

' i ' at this point. If the desired symbol existed at this point then the probability of finding the 
symbol at this context length would then be calculated with the probability being multiplied 
by 1/3, the probability that it was not found at the previous context length and then being 
found at the current order. 

If the symbol continued to not be found (as is the case), we would then continue to escape 
down each order until either the symbol was found or we reached order -1. In the case of it 

not being found and us having to escape to order -1 , the probabilities of escaping down each 
order would be multiplied by 1/256 (the number of symbols within the ASCII character set). 

4.2.4 PPM With Full Exclusions 

The difference in using full exclusions is that the counts of symbols at lower orders are 
affected if the symbol that have appeared at higher orders also appear at the current lower 
order after we have escaped. This then has an effect on the probability of the symbol being 

encoded. Referring to table 3.4, we were attempting to encode the symbol ' i' at order 2. The 
symbol ' i' was unseen at this point and so we escaped to order 1 with probability 1/3. At 
order 2 was the symbol ' r ', which has now been seen and found to not match. Should this 
symbol now appear at order 1, it can be ignored as it has been seen previously at order 2. 
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As an example, let us say that we are instead presented with the contents of table 4.2. In the 
case where update exclusions are not used and with the previous example we have 
determined that "i" could not be encoded at order 2, having ruled out 'r', we could possibly 

be presented with the following at order 1 : 

Order k = I 
Predictions C p 

3 
b - a 3 11 

4 - 4 
11 

- r 
11 
3 - Esc 3 -

11 

Table 4.2: Possible context list at order 1 without exclusions. 

In the case without exclusions, the probability of encoding the symbol ' i' at this point would 

be the frequency of the symbol 'i', which is 4, divided by the sum of all counts in addition to 
the escape count. The probability would therefore be: 

4 
----=4/11. 
3 +4+1+ 3 

This probability would then be multiplied by the probability of escaping from order 2, which 
was found to be 1/3. Now in the case of full exclusions, we have already ruled out the 

possibility of the symbol 'r' whilst at order 2, therefore the probability of encoding 'i ' at this 
point with fu ll exclusions would now be different. Symbols which have been seen at previous 

orders are now ignored leaving the following: 

Order k = I 
Predictions C p 

3 
b - a 3 -

9 
4 - 4 -
9 

- -f- -+ 

2 - Esc 2 -
9 

Table 4.3: Possible context list at order 1 with full exclusions. 
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Notice that there are now only two unseen symbols at this point as 'r' has been struck 
through, therefore the escape count is now reduced to 2. The probability of encoding at this 

point is now therefore: 

4 

3 + 4 + 2 = 419· 

This probability would then also be multiplied by the probability of us escaping from order 2, 

which was found to be 1/3. 

4.2.5 Dynamic PPMC 

Up to now only PPMC for static training models has been discussed. The models themselves 

can also be adaptive and this will allow us to compare the performance of PPMC across all 
four protocols, as we did with C-measure. As an example, let us consider the training string S 

= "abrabra•" and testing string T = "abrxbrx•" where• again denotes the end of file character. 

We would again create a suffix tree representation for Sas shown in figure 4.4 but now rather 
than creating a suffix tree of T, we can simply treat it as a stream of symbols, processing each 

at a time. 

After processing the symbols "a", "b" and "r" we would be positioned at index I of the node 
"bra" which is a child of node "a" and we would also currently have a context length of 3. 
The next symbol to be encoded would be the symbol "x", and as the only character seen at 
this point is the symbol "a", we would need to calculate the escape probability. 

Shown here is the current context lists showing the positions of each pointer into the suffix 

tree: 

Context Length Pointer 

0 fl 

1 "r 
2 "br 

3 "abr 

Table 4.4: Context list example after processing the string 'abr'. 

As we are now using the adaptive protocol, we would insert the new symbol into the current 
position in the tree with count of 1, as well as also inserting this new node at the position of 
each pointer of lower context length. If the node already exists then the count of the node "x" 

would be increased by 1. 

After inserting the symbol "x" at positions, "Aabr", "Abr", "r" and "A", we now continue 

searching for the symbol "x" at context length 2. If we were using the static protocol then we 
know that the symbol "x" would not appear at this context length, nor at any other and we 

would then have to escape to context length 1 and continue processing from that point. 
However, as we have dynamically inserted the symbol "x" at position "Abr", we would now 
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be presented with a different option. The symbol "a" is now no longer the only symbol to 
have been seen at this point, the node "x" now exists with frequency 1. 

Chapter Discussion 

After introducing suffix trees as powerful data structures that allow fast searching we have 
shown that it is possible to compute the stream-based methods in reasonable time and space. 

It has also been shown that results for multiple algorithms, namely C-Measure and R­
Measure can be calculated with only a single pass through the data structure. The next 

chapter details a toolkit that has been implemented to aid in the processing of the techniques 
detailed within this chapter. 
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Chapter 5 

A Java based framework for 
implementing stream based models 

Chapter Summary 

The purpose of this chapter is to detail an overview of the toolkit that has been created to aid in the 

calculation and comparison of the many different techniques discussed earlier. The toolkit has 
previously been described by Thomas and Teahan (2007), however, this chapter offers an overview 
of the class structure and also offer details on how the algorithms have been implemented; this is 

achieved through discussion, figures and code samples. 

Summary of each section 

Section 5.1 displays a basic overview of the main components within the toolkit and gives examples 
of how simple the toolkit makes the process of executing experimentation. Section 5 .2 discusses the 
process of preparing the corpora, including splitting the initial files and concatenating models and 
how the toolkit aids these processes. Section 5 .2 also details the process of creating suffix trees 
through extracting suffixes and trimming the models. Section 5.3 offers more detailed information 
of the base classes and shows how they are extended through example code samples. Finally section 

5.4 details the implementation of the algorithms and how their normalised values are calculated 
through code. Section 5.5 details the usage of the toolkit through the use of examples. 

5.1 Overview 

The motivation for creating the toolkit was to have a single application able to execute a number of 

different categorization algorithms at once and for us to be able to compare these results. This work 
is an important contribution to the field of text categorization and is an improvement over previous 
methods. Suffix trees have previously been used to implement PPM, however, they have not 
previously be used to implement C-Measure and R-Measure, and certainly not all together. The 

toolkit is extensible and offers common tools which are important if other algorithms are to be 
added and by having all experiments ran from a common toolkit on common corpora eliminates a 
number of the problems that currently exist when attempting to draw comparisons (Yang, 1999). 

The toolkit was created using Java due to its platform independence and cost. Since Java is open 
source, it's completely free to develop and deploy applications with Java and its most popular IDE's 
are also free. In order to aid the process of adding algorithms and to keep a level of commonality a 
set of base classes was required from which each implementation could extend and make use of 
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common functionality. A set of tools has also been created in order to prepare the corpora and also 

to be able to load suffix tree models from streams of text to be processed by the algorithms. These 
requirements are represented by the class structure in Figure 5.1 and it was from this that the toolkit 
was designed. For an exhaustive list of classes please refer to the API included within the attached 
DVD. 

The main processes are contained within the base classes and these iterate through each testing 
model and process them against each of the training models. The base classes load each of the 

models and call a function to compare one against the other. The functions to compare the models 
are contained within the overriding classes as each are processed in a unique way. This model 

allows for extensibility as a new algorithm only requires the specified abstract functions to be 
implemented in order for it to function. 

Main 

I • T 

Tools Methods 

I 

• T T 

PPM C-Measure R-Measure 

t , , 
i 

Base Classes 

Figure 5.1: High level overview of jSCat. 

5.2 Tools 

This section describes some of the contents of the 'Tools ' object within Figure 5.1. The next section 

describes how the toolkit can be used to split a corpus in order to perform cross validation. Section 
5.2.2 details how the toolkit is able to concatenate files within specified training directories in order 

for us to investigate concatenated protocols. Section 5.2.3 describes how a suffix tree and nodes are 
represented within the toolkit and what properties are attributed to each. Section 5.2.4 explains the 
process of extracting suffixes from a text stream. Section 5.2.5 discusses some optimisations that 
have helped to construct and load the models in less time. Section 5.2.6 details the advantage of 

pruning the suffix tree to the maximum length that is required by the current experimentation. 
Section 5.2.7 discusses the toolkit's process of constructing the suffix tree and section 5.2.8 
discusses how checking the counts of each node can help us to ensure that the tree has been 
correctly constructed. 
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5.2.1 Splitting the corpora 

There are cases, as with Reuters-IO (mentioned in 2.5.2), where the corpus has already been pre­

processed and the training data and testing data has been specified. In others cases such as 

Gutenberg and 20Newsgroups, this is not the case, and this step must be performed manually. In 
order to retrieve a fair result of how the algorithms have performed it is recommended to do cross 

validation. This process can introduce difficulties in recreating the setup of past experiments, as it is 

not often documented as to which documents were within which splits (see 2.5.7). Because of this, 

a listing of all documents within each split shall be included within the attached DVD. 

In order to perform cross-validation the data is first split into a number of subsets, with either the 

same number of documents within each split, or as well as this, having the same number of 

documents from a class within each split also. Because the second method gives an even 

representation of each class within each split so this would be our preferred method. Once 

completed an output directory containing a folder for each split is outputted, as shown in Figure 5.2. 

splito splitl split2 

split3 split4 

Figure 5.2: Example output of split parent directories. 

And within each of these directories would be a directory for each of the categories, shown in 
Figure 5.3. 

charlesdickens danieldefoe emerson 

JaneAusten kipling shakespeare 

shaw twain wells 

wilde 

Figure 5.3: Example directory listing found within each split. 

Each of the directories displayed in Figure 5 .3 contain a subset of the original set of category files. 

It is important to note that if we had not ensured the files of each category were spread evenly 

across all splits, it is possible that as well as the category not holding an equal presence across each 
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cross-validation stage. The Gutenberg corpus has only 40 works in total, it would therefore be 

possible that the category could not be present at all within some splits. 

5.2.2 Concatenating categories 

As stated earlier, it is not known whether or not concatenating the training data improves 

categorization performance and so it shall be investigated in order to determine its effectiveness, if 

any. The first thing to determine is the full location of the split directories and also the directory in 

which to output the concatenated models. Once these have been determined the 

concatenateAllFileslnDir method within the Concatenate class can be called. The concatenated files 

are added to a folder named Training within the root directory as shown in Figure 5.4. The 

concatenated files are given a unique filename equal to that of the category it represents, as shown 

in Figure 5.5. 

splitO splitl split2 

split3 split4 Training 

Figure 5.4: Output of the concatenated files parent directory. 

EJ 
alt.atheism 

Fro111; 
Subjc 

comp.sys.ibm.pc . 
hardware 

EJ 
misc .forsale 

rec .sport .baseball 

Tr;;; 
Subjc 

sci.electronics 

EJ 
soc .religion .christian 

From: 
Subjc 

Inv 

talk.politics .misc 

Fr1:u11: 
Subj , 

comp .graphics 

comp.sys .mac . 
hardware 

EJ 
rec.autos 

Fro111: 
Suhjt 

rec .sport.hockey 

~ 
Subj c 

sci.med 

Fro111: 
Subjc 

Inv 

talk.politics.guns 

FroiR: 
Subjc 

Herc 

talk.re ligion.misc 

Fr 0111: 

Subjc 

comp.os.ms ­
windows.misc 

Frem: 
Subjc 

1 ha~ 

comp.windows .>< 

F, 

rec.motorcycles 

EJ 
sci.crypt 

FroM: 
Subjc 

sci.space 

EJ 
talk.politics.mideast 

Figure 5.5: Example output of concatenated training files. 
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5.2.3 Suffix Tree representation 

The construction of suffix trees in an efficient manner is a non-trivial problem and key to the 

success of the toolkit as a whole. This section describes the design chosen for the toolkit. An 

instance of the Node class (see Figure 5.6) represents a position within a suffix tree and holds 

information on its count, parent, child and so on. The RootNode class represents the root of the tree 

and holds additional information such as the filename of the stream it represents. 

OptimisedRootNode extends RootNode and as well as representing a suffix tree it is within this 

class that operations such as building the tree and trimming the depth of the tree and so on are 

contained. 

Node 

t 
Extends 

I 

RootNode 

,. 
Extends 

I 

OptimisedRootNode 

Figure 5.6: Suffix tree representation classes. 

More details can be found about the classes in the attached DVD. 

5.2.4 Extracting suffixes 

The first stage of the method used to create a suffix tree is of course to load the contents of the file. 

The file may be a single stream of symbols or possibly a concatenated file, i.e. the output of the 

stage mentioned earlier. Irrespective of whether or not the file is concatenated, the next step is to 

locate the index of the eof symbols, the number of which is equal to the number of streams 

contained. 

As an example, a concatenated file containing two streams may look like: 

The cat sat on the mat . $The dog went out to play.$ 

This file contains two streams, denoted by two eof symbols $ whose indexes are then stored within 

a list. It is important to locate the indexes of the eof symbols, otherwise the concatenated file, a 

collection of several streams, would be treated as a single stream and this is not the case. Let's say 

that we have two indexes, i and j , whose values are the start index and end index respectively. i is 

set to be O in the first case, and then the index of the previous eof symbol + 1 for each of the 
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following streams. j is set to be the current eof index within the list. Quite simply i and j allow us to 

process each stream at a time i.e. "The cat sat on the mat.$" followed by "The dog went out to 

play.$". The next step is to extract the suffixes from each of the streams and store each of these 

within a list. The list of suffixes is then sorted in order to speed up the process of building the tree 

from the list of suffixes. 

5.2.5 Optimisation note 

It is possible to create the tree without sorting the list of suffixes or without even listing the suffixes 

and simply adding them on the fly from the original text. However, by profiling the operation of 

building a tree, the most common task was found to be comparing two symbols, and it is required to 

do this in order to determine the location to insert the current Node. By sorting the list of Nodes, we 

are able to reduce the number of times this operation is executed as we know our current location 

within the suffix tree, always working from left to right and never having to return. 

A further step which has allowed us to greatly reduce the time of creating the suffix tree is to not 

only store the location of the current Node within the tree that we are to add the next Node but also 

the location within that Node. As an example, we may have two suffixes within our sorted list, 'at 

on the mat.$' and 'at sat on the mat.$'. By having a sorted list of Nodes, we would not have to sort 

through the entire contents of the top level of the tree attempting to find character 'a' and then 

working from this point. We would simply have to check if the first character of the Node to be 

added was equal to the current symbol at depth 0, which happens to be 'a' and work from there. If 

the symbols were not equal then we would create a new branch at depth O and add the new Node. 

What was found to take a long time even after this optimisation was that when a match was found at 

depth 0, we then had to traverse the tree, comparing symbols and finding the exact location to insert 

the new Node. A number of symbols would often need to be matched before we had to split and add 

the new Node. The case is often worse with the worst case of adding the same suffixes twice which 

is possible when adding numerous streams into a single suffix tree. This is why after sorting the list 

of suffixes, we then iterate through the list determining the common prefix between a Node and its 

previous. This allows us to determine the exact location within the current Node to insert the next 

without having to traverse the branch. 

We know that we must store N suffixes, with N being the length of the text stream. However, it is 

essential to try and reduce the amount of information stored within each instance of a Node. We 

created a class named Node which extends the Java class DefaultMutableTreeNode as this allows us 

to store a reference to a parent Node and also to the child Nodes. It is important though to store 

enough information within this class to allow us to complete operations quickly, but we must also 

keep the amount of memory space used by each instance of the class, simply due to the number 

created when dealing with large streams. 

One method of storing the contents of each Node would be to simply store the suffix that it 

represents as a String. Unfortunately due to the amount of suffixes and the sizes of each, this is not 

feasible. A better approach is to store the original stream, which we shall store as an array of 
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characters within a class called RootNode which extends the Node class. Now, rather than storing 

the substring of each Node, we can simply store the index within the original string as the starting 

index of the substring and also the length of the substring. There is the added operation of retrieving 

the substring from the original stream, however, by storing the stream as an array it is a very quick 

operation and saves a massive amount of memory use. 

We store the count of each Node within an int, and a reference to the RootNode which allows us to 

access the original text stream. We also store the depth of the Node as an int, as this allows us to 

easily set the depth of the next added Node and is also useful when computing e.g. C-measure as we 

need to determine at what length we are to increase the count. The final information stored is the 

number of common characters between this Node and the last to be added, as this allows for easy 

insertion when constructing the tree. 

We now have enough information to quickly construct the tree as we have a sorted list of suffixes, 

represented as indexes into the original stream, the length of the suffix and also the number of 

common symbols between the current Node and the last to be added. A snapshot of this information 

would be similar to that shown within Table 5 .1. 

Index Length Common 

55630 24113 4 

492977 618 12 

1318077 1278 7 

569464 318 3 

Table 5.1: Example subset of suffix model information, from which we construct a suffix tree. 

Loading a 1.3MB concatenated file ten times as an example takes 45 seconds yet loading a standard 

file which is typically several Kb's ten times takes less than a second. This shows that loading non­

concatenated files is done within an acceptable time but the concatenated files should ideally be 

improved, especially due to the fact that there will be several concatenated files to load ( one for 

each class) and each will be loaded thousands of times. By storing the information displayed in 

Table 5.1 within a text file, each concatenated model can be loaded from the point at which we have 

the sorted list of nodes and the positions at which each is to be inserted. By using this method, the 

execution time required to load the above mentioned file can be nearly halved. 

Another optimisation was found during the experimental stage of comparing the models to the 

testing files, and it was found that by changing the order of comparison we can make further 

improvements. The typical methodology would be to load a testing file and then compare this file 

against each of the training models. As mentioned in 3.4, assuming there are K classes and N testing 

documents, typically N » K and the time to load a single model from K is much greater than the 

time taken to load a model from within N. Each large model from within K would typically be 

loaded N number of times, however, this can be dramatically reduced by reordering the comparison 

and instead loading a training model only once and comparing the model against all testing files 

whilst it is in memory. 
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5.2.6 Trimming concatenated models 

It is possible to further optimise time and space consumption by pruning the suffix trees to the 

maximum size required by the algorithms. When computing PPM Measures we only investigate up 

to a depth of 8 and with C-Measure we investigate up to depth 50, and we can prune the 

concatenated trees (due to their sheer size compared to non-concatenated files) respectively. The 

difference in lengths between the algorithms is due to the high computational overheads for high 

order models of PPM. This pruning has no outcome on the results but does serve to increase loading 

times of the trees and also the size of the trees when held in memory. 

As a test experiment we executed the same experiment of loading a tree ten times, but in this case 

we used a very large 10MB file. It took 219 seconds to load the un-pruned tree ten times, 168 

seconds when the tree was pruned to a depth of 50, and 81 seconds when the tree was pruned to a 

depth of 8. 

5.2.7 Building the tree 

Code sample 5.1 was particularly difficult and is used to insert a new node into the tree using 

common character substring lengths mentioned in 5.2.5. The method is not static and is therefore 

called upon a current instance of the Node class, which will always be the last Node added to the 

tree i.e. lastnode.place(newnode, number of common characters). We therefore have the location of 

the last node to be added, the information pertaining to the new node and also the number of 

common symbols between each of the suffixes. 
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Code Sample 5.1 : Inserting the next node into our tree. 

The first thing checked is whether or not the common value is set to O (line 232), if so then the first 

symbol of the next suffix does not match the previous and so the new branch/node is added as a 

child to the root of the tree. The count is set to be 1, its depth is set to be 1 and in order to balance 
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the counts within the tree correctly, the count of the root node of the tree is also increased by 1 (see 

lines 234-237). If, however, the common value is greater than 1, we have to add the new suffix into 
the last branch added to the tree. We do not know where within the branch though as so we check as 
to whether or not the common value is greater than or equal to the depth of the current Node within 

the branch (line 243). If not then we call the place method again but this time we call it on the 
parent node and not the current one (line 303). We are basically traversing up towards the root of 
the branch until the insertion location is found. 

If the common value is greater than or equal to the depth of the current node then we must make 

further checks. If the length of the node to be added is equal to its number of common characters 
then it is a direct duplicate of the current node (24 7), we therefore increase the count of the current 
node and each of its parent's nodes until the root node is reached. To do this we use an iterative 
method which continues to increase the count of the current nodes parent node until the current 
node becomes the root node of our tree. 

Within lines 255-269, if the length of the new node is greater than the number of common symbols 

then the next suffix does match the last to be added but there are more symbols i.e. it is longer. 
What we therefore have to do is effectively create a new node to be placed as a child of the last to 
be added. We change its length to be its current suffix length minus the length of the last added 
suffix, we set its depth to be the suffix length of the last node to be added i.e. the depth of the last 
node plus its length. Its index is also incremented by the number of common symbols and its count 

is set to be 1. The count of the last node to be added and all of its parent nodes are incremented by 1 
and then the new node is placed as a child node. 

In the case that the number of common symbols is less than the depth of the last added node in 
addition to its length then we must break up the last added node and create two children, one will be 
the part of the suffix following the break, and the other will be to represent the newly added suffix 
(lines 271-299). 

Figure 5.7: Original tree before adding node which matches all characters within the current 
node. 

Say that we are currently located at the highlighted node "ra$" as displayed in Figure 5.7. If we 
were to then insert the stream "rabra$" then "ra" would be common to both suffixes, however, we 
would split the "ra$" node so that its suffix becomes common i.e. "ra" and its previous remainder 
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"$" is added as a child node with the same count but its length, depth and index updated 

accordingly. We are then able to add what was not common between the two suffixes as a new child 

node, which in this case is "bra$". All counts of parent nodes are then updated and the insertion is 

complete, see Figure 5.8. 

bra• 

Figure 5.8: Tree shown in 4.10 after inserted the next node. 

5.2.8 Checking the counts within the suffix tree 

Once the tree has been built it is possible to check that the counts are correct by iterating through 

every non-leaf node (node which has children) and ensuring that the count of the parent node is 

equal to the sum of the counts of its children. If at any time this is not true, then the tree has not 

been constructed correctly. This is because the count at the root of the tree is equal to the number of 

suffixes and this number should equal the total number of leaf nodes within the tree. 

5.3 Base classes 

The relationship between the base classes and the other components within the toolkit is shown in 

Figure 5.1 and was introduced in section 5.1 as allowing extensibility as a new algorithm only 

requires the specified abstract functions to be implemented in order for it to function. 

Results are stored within a combination of comparisons and collections. Comparison is an abstract 

class that is used to store information regarding a single comparison between a testing file and a 

training file. We say an instance of the TestCollection class holds all comparative values relating to 

a single testing file. Figure 5.9 shows that for each algorithm we extend TestCollection to all 
comparative values relating to its own technique. Further information regarding TestCollection and 

extending the class can be found in 5.3.2. Collection as a base class is used to hold an array of 

TestCollections, a list of training files , testing files and also the current protocol. Further 

information regarding the Collection class and how it is further extended for each algorithm can be 

found in 5.3.4. 
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Comparison Test Collection 

t t 
Extends Extends 

I 

PPM Comparison Has Many- PPMCTestCollection 

Figure 5.9: Example extension of the base classes. 

5.3.1 Comparison class 

Comparison.java is an abstract class that is used to store information regarding a single comparison 

between a testing file and a training file/model. As each testing file is compared against a number of 

training files we would say that each instance of a testing file would have a number of comparisons 

i.e. a one to many relationship. Comparison.java stores the training file used for the instance of a 

comparison and returns basic information such as the location of the training file and the category 

to which the training file belongs. The class also contains an abstract method named 

getNum ValuesPerResult and this is needed as the algorithms may have differing amount of results 

per comparison. The method therefore returns the number of values outputted from a single 

comparison i.e. C-Measure outputs C-Counts for each matching substring length, however, PPM 

outputs only a single comparative value. 

This class can now be extended by each instance of an algorithm to store results pertaining to a 

comparison. C-Measure will generate a number of counts, and a result is outputted for each length 

of substring compared. In this case an array of integers is used to store the results and methods are 

included to fill the contents of this array as well as retrieving them to a calling method. 

Because the base class Comparison.java is extended, the information which is common to all 

comparisons, i.e. information regarding the training file used can be passed to the base class by 

making use of Java's keyword ' super' (used to call the constructor of the superclass in the base 

class). As mentioned earlier, each class which extends Comparison.java must also implement the 

method getNum ValuesPerResult and in this case the size of the array cCounts would be returned. 

5.3.2 Test Collection class 

We say a TestCollection holds all comparative values relating to a single testing file. The 

TestCollection class is therefore used to hold information regarding the testing file and also all 

comparisons (instances of Comparison.java) which have been created by comparing each training 

model against this testing stream. The Boolean isConcatenated is needed in order to determine the 

category of the training model as a concatenated training models category would be set as its file 

name but a non-concatenated training model would be held in a folder with the name of the 

category to which it belongs. The testing file is stored within a variable of the class instance and 

with the information contained within this class and each comparison we now know the training file 

and testing file involved in each comparison. The length of the testing file is required a number of 

times when calculating measures and as it takes time to compute it is more efficient to have this 

68 I P age 



value stored within a variable also. 

TestCollection is also an abstract class containing a number of abstract methods and each algorithm 

must extend this class as each algorithm will have its own method of creating new comparisons and 

also retrieving them. Many functions will be common to all algorithms and that is why this abstract 

class has been created. When an instance of the TestCollection class is created, all algorithms will 

need to specify the testing file and whether or not the testing file will be compared to a concatenated 

training model or not and that is why the methods relating to the setting of this information is 

contained within this class. The retrieval of this information as well as the category to which the 

testing file belongs will also be common and is again contained within this class. 

As the constructor for this class specifies that an array containing all training files must be supplied, 

and though the type of comparisons and the array type each will be held in are of different class 

types, each will be done in much the same way and that is why the ordering of the calls to the 

abstract methods is also held within this class file. We say that the closest matching training model 

is the one that outputs the highest comparative value when compared against a testing file. 

5.3.3 Extending TestCollection class 

Take PPM and Figure 5.9 as an example of how each algorithm would extend the base class. The 

constructors are very simple and this is the intention of using inheritance within the code. The call 

to 'super' is made which calls the constructor of the base class, which as we saw will handle the 

setting of the testing file and then call abstract methods which are contained within the classes that 

extend it. Two of the abstract methods contained were createComparisonArray and 

createNewComparison, which handled the creation of the type of comparisons to be instantiated, in 

this case PPMComparison. Each algorithm will implement these methods in similar ways except 

they shall substitute PPMComparison for its own type, possibly CComparison for C-Measure. The 

array of comparison types are now stored within this class so that all comparisons for a 

TestCollection are easily accessible. The comparative values will also be set from methods within 

this class as it is from this class that we are able to access all of the comparisons but each algorithm 

may have its own way in which it sets the values and also what the methods are called. 

5.3.4 Collection class 

The Collection class as a base class is used to hold an array of TestCollections as well as the set up 

information such as a list of all training files, testing files and also the current protocol. The most 

important method within the class is setMeasures as this is the method which starts the experimental 

process once all of the initial setup has been completed. The method will determine whether the 

current protocol is concatenated or not and call the relevant method in each case. 

Once called, each functions in much the same way. Both are able to print out useful debugging 

information such as information on each of the files being processed and the current progress of the 

comparisons. In the case of non-concatenated, each testing file is accessed in turn and passed to the 

method setMeasuresNonConcatenated which requires a testing file as a parameter, and these 

methods are located within the classes that extend this one, of which each algorithm must have. 

Within this class the methods are abstract and the implementation of these methods shall be 
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discussed later. As mentioned earlier, it is more efficient in the case of concatenated training models 
to load them a minimum number of times and that is why is the case of setMeasuresConcatenated 
each trianing model is processed individually rather than each testing file. These differences can be 

seen within lines 382 and 392 in Code sample 5.2, 415 and 425 in Code sample 5.3. The algorithm 
specific implementation for non-concatenated protocols is called by line 384 in Code sample 5.2, 

and line 417 for concatenated protocols . 
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Code Sample 5.2: Base processing of non-concatenated comparisons . 
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Code Sample 5.3: Base processing of concatenated comparisons. 

The general purpose of the methods contained within the Collection class is to fill a multidirectional 
array of results. After each testing file has been compared against all of the training models, the 

results of the comparisons are outputted to a text file so that the results can be stored for repeated 
viewing without having to re-run the experiments. 
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5.4 Implementation of the algorithms 

5.4.1 C-Measure 

5.4.1.1 Static case 

The method setCounts was particularly difficult and so shall be explained in depth within this 
section. It is a recursive method that tests whether the current symbol we are processing within the 

testing suffix tree matches the current symbol within the training suffix tree. If so, then the C­
Counts are updated for the current depth of the substring, if not then we move on to the next 

symbol. Both the training tree and testing tree are traversed simultaneously and shall continue until 
we have checked all paths within the testing tree or the end of the training suffix tree is reached. 

The setCounts method was built after identifying all possible cases when simultaneously traversing 

two trees. The first condition within the method tests whether this is the first call i.e. we are at the 
root of the tree. The route of the tree holds no characters and is not to be compared against the route 

of the training tree, this condition allows us to gather each of the testing trees children of the root 
node and iterate through them sequentially. Both trees are sorted and so when we are searching for 

an insertion position for the current testing node, if this value is equal to the number of children 
then this tells us that none of the remainder will match and so we return. Until this condition is met, 

we recursively call the setCounts method but replace the root node with the current child of the root 
node. We are not yet concerned with whether or not the first characters match as this will be dealt 
with at the next stage. 

When the method is recursively called, we have five essential parameters as displayed in table 5.2. 

Name Type Description 

test Node Current Node within testing tree 

testOffset int Position within current testing node i.e. current testing character 

train Node Current Node within testing tree 

trainOffset int Position within current training node i.e. current training character 

currentlength int Length of substring and position within array in which we increase count 

Table 5.2: Parameter information for C-Measure setCounts method. 

What we are essentially doing is keeping track of our positions within each of the trees and 
comparing the characters, continuing to traverse whilst they are matching and returning when they 

do not, and then moving onto the next testing branch. There are six possible cases when you are 
asked to compare the next characters within the current nodes: 

Case 1: We have reached the end of the current testing node and the current testing node has no 
children. In this case we have no need to continue as we have matched the entire current match and 
so we return. 
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Case 2: We have reached the end of the training node and the current training node has no children. 

In this case, although we would like to continue, the training branch has no further paths i.e. this 

part of the current suffix is unseen within the training text and so we return. 

Case 3: We have reached the end of the testing node but not the current training node, however, the 

testing node does have child nodes. In this case we remain at the same position within the training 

tree but we now iterate through the children of the testing node to see if the following symbol 

within the training node exists. There is no need to iterate through all of the testing children and 

attempting to compare these with the training tree as we are within a node and there is only one 

possibility so it is quicker to attempt to find this within the list of testing children. If a matching 

character is found, we then continue by making the matching testing node the current test node. If 
no match is found we return to the calling method. 

Case 4: We have reached the end of the training node but not the current testing node, however, the 

training node does have child nodes. In this case we remain at the same position within the testing 

tree but we now iterate through the children of the training node to see if the following symbol 

within the testing node exists. If a matching character is found, we then continue by making the 

matching training node the current node. If no match is found we return to the calling method. 

Case 5: We have reached the end of both the current testing and training node, and both of these 

nodes have child nodes. This case involves more processing than the other cases as we now need to 

iterate through each of the child nodes and recursively process each against each of the training 
nodes and their children. 

Case 6: If none of the above conditions are satisfied then we continue to shift positions along both 

the current nodes, updating the counts array as we progress. This loop will then continue until we 

reach the end of either of the nodes or we find a symbol which does not match. 

5.4.1.2 Dynamic case 

The dynamic case is processed differently as we do not build a suffix tree. We do create every node 

which would be contained within the tree but these nodes are kept within a list and not added to a 

tree. The reason stems from the fact that the symbols are not actually stored within nodes, we 

instead have a reference to the original input string. With the dynamic case it is very likely that we 

will be inserting suffixes that are not contained within this input string and so it must change. Also 

when a node is added or modified, it is also very likely that indexes would change and we would 

need to know which input string the index refers to. To tackle this, it works well to concatenate the 

testing string onto the end of the training string (see 5.2.4) and treat the index of the first symbol of 

the testing string as N , with N being the length of the training string and us beginning at value 0. 

This would now ensure that there is no confusion between the reference location of a suffix. 
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Traini ng String : The cat sat on the mat . 

Testing String : The dog went out to play . 

The cat sat on the ma t . $The dog went out to play . $ 

I ndex of first tes t ing character is 24. 

Figure 5.10: Example of testing string being concatenated onto training string for dynamic 
cases. 

We would then begin extracting suffixes from the testing string and compare these to the training 

tree. Using the above example we would begin with the suffix found between index 24 and 49 

which is effectively the entire testing stream and then shift right one position each time until we 

reach the end of the testing stream. The suffixes are extracted and created as Nodes through use of 

the method insertSuffixes which passes each node to a dynamiclnsert function within the same 

class. The method dynamiclnsert is built logically in much the same way as setcCounts. If the 

current training node has no children and is the RootN ode of the tree then we increase the count at 

the root and also the count of the new node to be inserted and then insert the node as a child of the 

RootNode. If the current training node has no children but is not the root there is no need to split the 

node or add as a child, we simply increase the length of the node by one and alter the index so that 

is refers to the position within the testing stream rather than the training stream. 

If the current training node does have children then we must find where within the current depth to 

insert the new testing suffix. We do a binary search of the children and the insertion position is 

returned as an integer. If this value is equal to the number of children at this depth then the ASCll 

value of the first symbol is greater than any of the children within this depth. The new node is 

therefore inserted as the last child due to the ordered nature of the suffix tree. The counts are 

adjusted accordingly and the depth is calculated as the depth of the current node in addition to its 

length. 

If the value returned from the binary search is not equal to the number of children we must then 

treat the value as the desired insertion position. The next step is to determine whether the node that 

is currently situated at this position needs to be shifted to the right (as the tree is ordered) or at least 

some of the current node is matched and so we must insert the new node into the current node and 

possibly split it at some point. 

In the case where the first symbol of the node that exists at the insertion point is equal to that of the 

new node to be inserted, this is the time that we would now increase the counts within the C-Counts 

array as a match has been found. We would then loop, moving along both nodes and increasing the 

C-Counts at the relevant depth until we reach the end of either node or the next symbols are found 

to not match. If all characters within the new node are matched then we simply increase the count of 

the current node and return to the calling method. If there exists more symbols on the new node 

then the new node must be dynamically inserted as a child to the current node and so the 

dynamiclnsert method is called with the current training node which we have reached the end of as 

the node at which we want to insert and the new node's index and length are altered to support the 

fact that some of the symbols have already been matched before the remainder is passed as the new 

node parameter. If the current node within the training tree was a leaf node then it is this case that 
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makes the suffix tree lose its balance of counts, i.e. counts of the parent node being equal to the sum 

of the counts of its children. This is an example of where the eof symbol is important, it ensures that 
there is no case where all symbols of a lead node can be matched with the testing node still having 

more characters. 

If we have not reached the end of either the current training or testing node then we must split the 
current training node. The description of dynamic C-Measure in 3.3.2 shows an example where we 
must split the node "bra" within the training tree as "br$" is inserted. You will see that the node 

"bra" is modified to become "br" and the removed "a" is created as a child node with all previous 
children of the "bra" node now becoming children of the node "a". This function was again 

particularly difficult to implement and can be seen within the source code on the attached DVD. 

5.4.2 R-Measure 

All R-Measure results can be calculated using C-Measure results and this is the approach used 
within the toolkit. Rather than calculating R-Measure results independently or simultaneously with 

C-Measure, the toolkit loads the values of C-Measure comparisons and places them within 
RTestCollection's, which are extensions of TestCollection class. The base class Accuracy calls the 
method findResults and when this is overridden within the Raccuracy class, any R-Measure 
variances can then be calculated by adding calls to find accuracies for each variant in which we are 

interested. 

5.4.2.1 rmax 

rmax is an alternative name for the standard R-Measure and is defined as the sum of the C-Counts 

and so we gather the value from getrCount. The value is normalised by adhering to the formula 
displayed in 3.1 and its coded equivalent is displayed in Code sample 5.4 . 

.. -• . 
Code Sample 5.4: Coded Normalised R-Measure Value. 

5.4.2.2 Rsq 

Rsq is easily obtained by summing all C-Counts found between 1 and the set limit and we explore 

all maximum values between 1 and a given maximum in order to determine which maximum value 
achieves the greatest results. It is the responsibility of getRMeasureLessThanEqualTo to summate 

the C-Counts between 1 and the upper limit and getNormalisedMeasure shall then normalise this 

value by implementing the formula displayed in 3 .1. 

5.4.2.3 R'2q 

The R'2q-Measure is very similar to Rsq except that we decrease towards 1 as an upper limit rather 

than increasing from 1 as a lower limit and in this case it is the upper limit which changes and the 
lower limit 1 remains static. Again a total is determined by an alternative method, namely 

getRMeasureGreaterThanEqualTo but this figure is then normalised as discussed in 3.1. 
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5.4.2.4 R-Ranges 

The function findRRangesAccuracy makes use of two loops in order to accumulate C-Counts 

within the ranges. There is no need to normalise the total and so we determine the comparison that 
returns the highest total between the set ranges to contain the correct author, topic or type and so on 
depending on the current situation. 

5.4.3 PPM (Prediction By Partial Matching) 

As with the dynamic case of C-Measure we concatenate the testing stream to the training stream as 
this allows us to work with unique indexes/positions within the stream. We then create two arrays, 

one of which acts as a temporary store which holds pointers that are updated, the other acts as the 
context list once all pointers have finished updating. Once all updates have finished the contents of 
the updating pointers are transferred to the second array. 

The method processNextChar (see Code sample 5.5) holds the outer loop operation and its purpose 
is to attempt to encode all symbols within the testing stream until all have been processed and this is 

done in three steps. Whilst there are still unprocessed testing symbols we first fetch the next symbol 
to be encoded, we then calculate the probability for this current symbol and we then swap the 

contents of the arrays i.e. pointers before processing the next symbol. 

... .. .. 
a • .., ••• ..,. .,._,.._u., .. ... .. '" .. -.. .. ... 
m • M.1.--1'1',...._ • 
a, . -­... -... ___ ....... .. 

Code Sample 5.5: Coded method for encoding all symbols for PPM. 

There is a great amount of work involved in calculating the probability of the current symbol being 
encoded. It is the method findNextChar which attempts to encode the next symbol at the furthest 
point in the context list, and drops down this list should it be unsuccessful at the current depth. As 
we escape down through context lengths we have to combine probabilities and so we store all of the 
probabilities to be combined within a list and this list is first of all reset along with the list of 

exclusions (should there be any) when we process a new symbol. 

As symbols are found we simply update pointers within the suffix tree and update the contents of 

the probability list and this process continues until we reach the end of the testing stream or the 
current symbol cannot be encoded. If the symbol cannot be encoded we decrease the context length 
and continue but as well as this, with the dynamic case, should there be an unseen symbol then the 
symbol must be inserted at all current positions within the tree and this is made easy due to us 
having stored each of the insertion locations within our array. 
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5.5 Using the toolkit 

The object named 'Main ' in Figure 5.1 is the main entry point of the application and allows a level 

of abstraction between the user and the underlying methodology. It is from here that user commands 

are executed and these commands perfom1 underlying operations. A user must first state the 

operation they wish to perform, such as "cone" for concatenating files within a location by also 

passing parameters indicating folder names within a base location, see Example 1. 

Example 1 

Main. main ( new String [] { " cone IP , " / honie/ localadmin/ 2 □news/ c ross 1/ IP , 

"split□" , "splitl" , "split2 " , "split3 " }); 

Example 2 shows that in order to then trim these models for optimisation again only a single call is 

required no matter what algorithm(s) are to be used. 

Example 2 

Main. main ( new String [] { "tr 1ro" , " / home / localadrnin/ 2 Onews/ c ross 1/ " } ) ; 

Example 3 shows how little code is needed in order to process the models and then perform a C­

Measure calculation on them. First of all the parameter "c" is passed that indicated it is C-Measure 

we wish to be performed. We then pass the base location of the corpora from which we can find the 
training and testing documents. The next two parameters ("true" "true" in Example 3) indicate the 

protocol to be investigated, with the first parameter being a Boolean value, true indicating 

concatenated and the static for static or dynamic with true indicating static. Following this is the 

index of the testing files to be investigated, "0" indicates that we must start with the first file at 

index zero but "-1 " is used to indicate all files, if say "99" were passed then only the first 100 

testing documents would be categorized, from index 0 to 99. The following parameters indicate the 

names of the training directories and then the testing directory. 

Example 3 

M,oin.main(new String[ J { "c" , "ho1oe/loc,oladln1n/ :Onew:,,cro,i:,1/" , 
"c.ru~" , "true", "0" , "-1" , ",:.rain,.. , irspl1t0" , "~pl1tl" , n:,pl1c:-"' , "~pl1t3° , "Ce!St" , "~pl1t4"}); 

Example 4 shows how similar it is to process the existing models but on a different algorithm. This 

algorithm takes "6" as parameter and this indicated the PPM order in which we are interested. Each 

algorithm can take whichever parameters are required and loops can be used to perform 

experiments on all orders, all combinations of folders for cross validation and so on. These 

commands can also be bundled in order to further simplify the process or alternatively this 

information could be retrieved through a GUI if desired. A common entry point such as this is 

powerful in that it is possible to modify the parameters and perform experimentation of any 

algorithm, vary the training and testing data and also the order or substring length. 
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Example 4 

Main.mdin( new String[] { "ppm" , " / home/locala~oin/20news/crossl/" , "6" , "0" , "-1" , 

"train" , "split□" , "splitl" , "::;plit2 " , "::;pl it3" , "test", "::;plit4"} ); 

Code sample 5 .6 shows the main function and how the parameters are redirected depending on 

which operation the user asks to perform. Any new implementations that extend the base classes 
can add its case to this code and then be ran. from the same common location as the other operators. 

n 

20 E] -· rr'='aT:i':'.! a 11en 1nstanc-e of U!l111 'f':/ 

21 public stacic void aain ( String( J args 

22 - ( 
23 String corrmand = args[ 0 ]; 
24 
25 

26 

27 

28 

29 
30 

31 

32 

33 
34 

35 
36 

37 

38 

39 
40 

41 

42 
43 

44 
45 

46 
47 

48 

49 
50 

51 

52 

53 

54 

55 

56 
57 
SA 

Chapter Discussion 

String( J newArgs = new String[ args , l ength - 1 J; 

for ( int i• l ; i < a rgs. length; i++) 

< 
newArgs( i - 1 J • args [ i J; 

if ( corranand . equals ( .,cone" ) ) 

( 

new Training . Testing( newArgs); 

else if ( command. equal s ( "tr 1tu" ) 

TrimConcatenatedModel~.Te~ tinq.main( newArQ~ ); 

el:,e if ( corrmand . equal:, ( "pp11o'' ) ) 

< 
j~cat . PPMMain.main( nevArg~ ); 

el:,e if ( con-anand.equals( "c") ) 
( 

CMeasure .Tescing.CTestingCollection.main( newArgs ); 

else if ( command . equals I "T" ) 
( 

TTestingCollection .mdin( newArgs ); 

Sy~tem. o ut .println( "Invalid Cc,mrw!1.nd" ) ; 

System.exit ( 0 ) ; 

Code Sample 5.6: jSCat's main entry point. 

Data preparation can be common among a number of algorithms and fits well within a common 

toolkit, allowing classes implementing different algorithms have been ran sequentially on a single 
data source within a single toolkit. This chapter has shown that optimisations can be found that 

drastically affect processing times and we have now been able to analyse stream based substring 
lengths that are much longer than previous research. 
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The use of base classes within the toolkit has made it possible for each algorithm to be introduced 
using very little code. The experimentation process has been simplified and experimentation can be 

started from a single location and can be varied by simply changing the input parameters. 

There were a number of functions that were difficult to implement and a number of these have been 
explained in detail within this chapter, there was unfortunately too much code for each to be 
included within the chapter but they can be viewed within the source code on the attached DVD. 
The toolkit is available for download from http://aiia.cs.bangor.ac.uk. 
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Chapter 6 

Experimental results 

Chapter Summary 

The purpose of this chapter is to describe the experimental results for text categorization 

using stream-based methods. The methods have been implemented using suffix trees as 
described in the previous chapters. Results compare all algorithms within each dataset in 

order to discover the best performing within each corpus. 

Summary of each section 

Section 6.1 details the experimental setup including how the datasets have been split to assist 
in experimentation Section 6.2 details all results collected from the experiments Section 6.3 

lists timings received from experiments on 20newsgroups and allows us to compare the 
processing of each algorithm. Section 6.4 discusses results and notes all observations made 
from the comparisons. 

6.1 Experimental setup 

6.1.1 Corpora setup 

The following corpora were used in the experiments. Note that the file names within each 
split for each corpus are detailed within the attached DVD. 

6.1.1.1 Reuters-to 

The frequency of documents per category varies greatly; earnings, for example, contains 

2877 training documents whilst the other nine, apart from acq ( containing 1650) all contain 
less than 600, and this is also consistent across the testing documents . Table 6.1 shows the 10 
most frequent categories and the number of documents within each. 

The resulting corpus has 7193 training documents (5.9MB), and 2787 testing documents 
(2.1MB). The document sizes range from 47 bytes to 13.8 Kbytes. The training data per class 
varies from 213.7 Kbytes to 1.4MB. 
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Cate1:wrv No. Trainin2 Docs No. Testin2 Docs 
earn 2877 1087 
acq 1650 719 
money-fx 538 179 
~rain 433 149 
crude 389 189 
trade 369 117 
interest 347 131 
ship 197 89 
wheat 212 71 
corn 181 56 

Total 7193 2787 

Table 6.1: The number of testing and training documents for each category of Reuters 
10 (RlO). 
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6.1.1.2 RCVl-Author 

Here we select the top 50 authors (with respect to total size of articles). The authors and 
documents per set are detailed in Table 6.2. 

Author No. Testing Docs Training Document Size (KB) 
Alan Baldwin 26 785 
Alan Crosbv 26 705 
Alan Wheatlev 23 695 
Alastair Macdonald 26 848 
Alexander Smith 30 962 
Alistair Lvon 29 918 
Amelia Torres 23 653 
Andrew Browne 20 655 
Andrew Cawthorne 22 759 
Andrew Hill 28 848 
Anthonv Goodman 26 694 
Arshad Mohammed 23 696 
Beniamin Kan!! Lim 27 768 
Carol Giacomo 34 1134 
Charles Aldin!!er 34 942 
Christian Jennins:,s 21 667 
David Crossland 22 677 
David Lawder 32 940 
Dou!!las Busvine 23 719 
Ell en Freilich 31 855 
Erik Kirschbaum 24 735 
Evelvn Leonold 45 1246 
Gene Gibbons 25 756 
Glenn Somerville 24 766 
Jane Macartnev 24 754 
John Gilardi 26 768 
Laurence McOuillan 23 684 
Leonard Santorelli 25 892 
Linda Sieg 19 657 
Ma!!!!ie Fox 23 665 
Marcel Michelson 27 804 
Martin Cowlev 36 969 
Mike Collett 27 805 
Mure Dickie 28 805 
Nelson Graves 23 704 
Ole!! Shchedrov 24 690 
Paul Holmes 21 666 
Paul Maiendie 29 729 
Paul Mvlrea 25 730 
Paul Tavlor 23 811 
Peter Blackbum 24 625 
Philinna Fletcher 21 668 
Richard Melville 38 1067 
Robert Evans 26 774 
Robin Side! 24 646 
Steve Holland 28 843 
Timothv Herita!!e 27 864 
Todd Nissen 27 732 
William Boston 25 815 
William Wallis 29 826 

Total 1316 

Table 6.2: The number of testing documents and size of category for each author within 
RCVl-Author. 
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6.1.1.3 20Newsgroups 

Table 6.3 shows the categories in 20-Newsgroups and their numbers of texts. There is no 
fixed way to split 20-newsgroup into a training set and a test set. This table also shows that 

the sizes of categories are relatively uniform compared with those of Reuters-21578. Five 
random splits of 80/20 training/testing were used as in Marton et al. (2005). 

Cate2orv No. Docs Cate2ory Size (Mbvtes) 
alt.atheism 799 1.6 
comp.graphics 973 1.6 
comp. os. ms-windows.misc 985 2.3 
comp.sys.ibm.pc.hardware 982 I.I 
comp.sys.mac.hardware 961 1.0 
comp. windows.x 980 1.8 
misc. forsale 972 0.9 
rec.autos 990 1.2 
rec.motorcycles 994 1.1 
rec.sport. baseball 994 1.3 
rec.sport.hockey 999 1.7 
sci.crypt 991 2.0 
sci.electronics 981 1.2 
sci.med 990 1.8 
sci.space 987 1.7 
soc.religion.christian 997 2.2 
talk.politics.guns 910 1.8 
talk. poli tics.mideast 940 2.8 
talk. politics.misc 775 2.0 
talk.religion.misc 628 1.3 

Total 18828 

Table 6.3: The number of documents and size of each category of 20-Newsgroups. 

6.1.1.4 Gutenberg 

Table 6.4 lists the authors contained within the Gutenberg corpus, the number of documents 

from each author and also the total size of the documents. Some of the documents are as short 
as 98.4 Kbytes, and some as long as 1.1MB (many are novels). The training data per class 
ranges from 559.8 Kbytes to 3.1MB. 
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Category No. Docs Category Size (Mbytes) 
Charles Dickens 4 2.8 
Daniel Defoe 4 1.7 
Emerson 4 1.4 
Jane Austen 4 3.1 
l(jpling 4 1.4 
Shakespeare 4 0.6 
Shaw 4 1.2 
Twain 4 3.0 
Wells 4 2.0 
Wilde 4 1.1 

Total 40 

Table 6.4: The number of documents and size of category for each author of Gutenberg. 

Note that the text inserted by Gutenberg was removed i.e. the disclaimer text was removed 

from each of the documents before processing. 

4-fold cross-validation was used, with 3 training and 1 test document per class in each fold. 

Some works are as short as 98.4 Kbytes, and some as long as 1.1MB (many are novels). The 
training data per class ranges from 559.8 Kbytes to 3.1MB. 

Table 6.5 allows us to easily compare the corpora 's and shows that the four corpora are quite 

different and will allow for conclusions to be drawn from their differences. 

Dataset Name No. Test Docs No. Train Docs No. Categories Cross-Validation 

20-Newsgroups 3792* 15036* 20 

Reuters 10 2237 5677 10 

RCVl-Author 1316 50 50 

GutenBerg 10 30 10 

Table 6.5: Summary of data sets used. 

* approximately as cross validation is performed and final split will have less 

6.1.2 Hardware details 

Yes 

No 

No 

Yes 

In order to obtain the results, 8 Dual Core PC's with 2GB RAM were used separately with no 
distributed computing, each is used to process a single algorithm at a time. 

83 IP age 



6.2 Results 

This section describes the experimental results for the stream-based methods and protocols 
when used for text categorization on all of the data sets. Accuracy has been quoted since the 
experimentation was performed with data sets variants that have only singly labelled 
documents. In this setting, Bekkerman, R. (2001) states that the accepted performance 

measure is accuracy, and this was the evaluation measure that was specified the most in 
previously published experiments for each of the studied singly labelled variants of the data 
sets, and therefore provides a broader comparison than the alternative evaluation measures, 

recall and precision, and the breakeven point, as used by Yang (1999) for multiply labelled 
documents, for example. 

6.2.1 C-Measure 

This section displays C-Measure results for each of the corpora through use of tables and 
graphs. The highest accuracy achieved for each protocol are highlighted in bold font. 

841 Page 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

6.2.1.1 20Newsgroups 

Concatenated Dynamic Concatenated Static NonConcatenated Dynamic NonConcatenated Static 
0.0427 0.0427 0.0644 0.0676 
0.2379 0.2443 0.1424 0.1737 
0.7875 0.7913 0.2789 0.3067 
0.8792 0.8789 0.4534 0.4807 
0.8979 0.8985 0.571 6 0.5963 
0.9045 0.9048 0.6626 0.6767 
0.9041 0.9053 0.7303 0.7375 
0.9053 0.9063 0.7762 0.7790 
0.9063 0.9066 0.8087 0.8067 
0.9070 0.9066 0.8309 0.8244 
0.9057 0.9046 0.8440 0.8346 
0.9038 0.9032 0.8504 0.8395 
0.9017 0.90 10 0.85 13 0.8399 
0.8979 0.8964 0.85 15 0.8393 
0.8923 0.8912 0.8520 0.8400 
0.8885 0.8869 0.8508 0.8386 
0.8847 0.8830 0.8501 0.8378 
0.8788 0.8782 0.8488 0.8367 
0.8749 0.8741 0.8477 0.8359 
0.871 2 0.8700 0.8469 0.8343 
0.8675 0.8667 0.8455 0.8330 
0.8636 0.8630 0.8442 0.83 15 
0.8607 0.8598 0.8427 0.8299 
0.8569 0.8561 0.8407 0.8273 
0.8549 0.8537 0.8391 0.8258 
0.85 19 0.8504 0.8377 0.8239 
0.8478 0.8466 0.8360 0.8213 
0.8450 0.8441 0.8355 0.8200 
0.8417 0.8403 0.8332 0.8 177 
0.8386 0.8376 0.83 13 0.8162 
0.8350 0.834 1 0.8299 0.8142 
0.8320 0.83 11 0.8275 0.8118 
0.8299 0.8292 0.8262 0.8 100 
0.8266 0.8259 0.8238 0.8071 
0.8242 0.8236 0.8216 0.8050 
0.8214 0.8207 0.8 197 0.8033 
0.8 192 0.8 183 0.8 173 0.8004 
0.8 167 0.8157 0.8 153 0.7983 
0.8142 0.8131 0.8 132 0.7962 
0.8126 0.8116 0.8 119 0.7950 

Table 6.6: Accuracies achieved by applying C-Measure (up to length 40 due to page 
restriction) to 20Newsgroups for each protocol. 
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Figure 6.1: Accuracies achieved by applying C-Measure to 20Newsgroups for each 
protocol. 

The results for the experiment are shown in Table 6.6 and graphed in Figure 6.1. For Table 
6.6, the leftmost column indicates the substring length (shown as x axis in Figure 6.1) and for 

each protocol an average accuracy is shown (shown as y axis in Figure 6.1). The results show 
that concatenated models clearly outperform non-concatenated ones and that dynamic models 
marginally outperform static models. The results also indicate that shorter substring lengths 
perform better for concatenated cases than for their non-concatenated counterparts. The 

optimal substring length is shorter than that of for Gutenberg but is similar to RCVl-Author 
which is a more similar corpus in relation to the number of files per class and size of each 
file . It is also noticeable from the graph that even short substring lengths are good at 

categorizing which is important in situations where the available processing time is limited. 
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6.2.1.2 Gutenberg 

Concatenated Concatenated NonConcatenated NonConcatenated 
Dynamic Static Dynamic Static 

l 0.08 0.08 0.18 0.13 

2 0.18 0.20 0.13 0.23 

3 0.18 0.23 0.15 0.18 

4 0.23 0.23 0.18 0.18 

5 0.30 0.40 0.15 0.25 

6 0.30 0.40 0.25 0.25 

7 0.30 0.40 0.28 0.38 

8 0.35 0.48 0.30 0.45 

9 0.40 0.48 0.38 0.45 

IO 0.45 0.55 0.43 0.48 

11 0.48 0.58 0.40 0.48 

12 0.55 0.58 0.50 0.50 

13 0.55 0.60 0.53 0.55 

14 0.58 0.60 0.55 0.60 

15 0.60 0.63 0.60 0.63 

16 0.63 0.63 0.63 0.63 

17 0.63 0.63 0.63 0.65 

18 0.63 0.70 0.70 0.68 

19 0.70 0.73 0.68 0.68 

20 0.70 0.73 0.68 0.68 

21 0.75 0.78 0.75 0.73 

22 0.75 0.75 0.78 0.73 

23 0.75 0.75 0.78 0.78 
24 0.78 0.75 0.78 0.75 

25 0.78 0.75 0.78 0.75 

26 0.75 0.75 0.78 0.75 

27 0.75 0.75 0.78 0.73 

28 0.75 0.73 0.75 0.70 

29 0.73 0.73 0.73 0.63 

30 0.68 0.65 0.70 0.60 

31 0.63 0.63 0.58 0.55 

32 0.58 0.60 0.55 0.53 

33 0.50 0.53 0.48 0.45 

34 0.45 0.48 0.48 0.45 

35 0.43 0.43 0.43 0.38 

36 0.43 0.40 0.48 0.43 

37 0.45 0.43 0.48 0.45 

38 0.45 0.43 0.53 0.50 

39 0.40 0.40 0.50 0.48 

40 0.38 0.38 0.50 0.48 

Table 6.7: Accuracies achieved by applying C-Measure (up to length 40 due to page 
restriction) to Gutenberg for each protocol. 
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Figure 6.2: Accuracies achieved by applying C-Measure to Gutenberg for each protocol. 

The results for the experiment are shown in Table 6. 7 and graphed in Figure 6.2. For Table 
6. 7, the leftmost column indicates the substring length (shown as x axis in Figure 6.2) and for 
each protocol an average accuracy is shown (shown as y axis in Figure 6.2). Figure 6.2 shows 
that the optimal substring length is much larger for this corpus, typically between 21 and 28. 
Accuracy at lower lengths are not as effective as they were with 20Newsgroups and also trail 

off very quickly for substring lengths greater than around 30. Interestingly it is hard to 
distinguish between any of the protocols for this corpora, possibly the differences are because 
the texts are much larger, possibly because there are so few documents. Either way it appears 

to show that the effectiveness of each protocol differs between corpora and this is an 
important finding. 
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6.2.1.3 RCVl-Author 

Concatenated Dynamic Concatenated Static 

1 0.0182 0.0182 

2 0.4871 0.4894 

3 0.7933 0.7971 

4 0.8343 0.8381 

5 0.8556 0.8564 

6 0.8609 0.8609 

7 0.8663 0.8655 

8 0.8716 0.8731 

9 0.8754 0.8754 

10 0.8754 0.8769 

11 0.8777 0.8799 
12 0.8815 0.8837 
13 0.8815 0.8815 
14 0.8815 0.8830 
15 0.8792 0.8822 

16 0.8830 0.8807 
17 0.8815 0.8815 

18 0.8784 0.8761 
19 0.8761 0.8754 
20 0.8777 0.8761 

21 0.8746 0.8731 
22 0.8746 0.8739 
23 0.8693 0.8701 
24 0.8701 0.8701 
25 0.87 16 0.8716 

26 0.8731 0.8731 
27 0.8701 0.8701 
28 0.8640 0.8647 

29 0.8609 0.8625 
30 0.8602 0.8617 

31 0.8556 0.8564 
32 0.85 11 0.8518 
33 0.8488 0.8488 
34 0.8465 0.84650 
35 0.8419 0.8419 

36 0.8389 0.8389 
37 0.8336 0.8336 

38 0.8267 0.8267 

39 0.8222 0.8214 
40 0.8146 0.8 138 

Table 6.8: Accuracies achieved by applying C-Measure (up to length 40 due to page 
restriction) to RCVl-Author for each protocol. 
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Figure 6.3: Accuracies achieved by applying C-Measure to RCVl-Author for each 
protocol. 

The results for the experiment are shown in Table 6.8 and graphed in Figure 6.3. For Table 

6.8, the leftmost column indicates the substring length (shown as x axis in Figure 6.3) and for 

each protocol an average accuracy is shown (shown as y axis in Figure 6.3). For this corpus it 

is very difficult to identify differences in the performance of each protocol for any of the 

substring lengths. The results are more similar to those obtained from 20newsgroups than 

from Gutenberg, possibly this is due to the number of files and their sizes being more similar 

to those within the 20 Newsgroups corpora than Gutenberg. 
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6.2.1.4 Reuters-10 

Concatenated Concatenated NonConcatenated NonConcatenated 
Dynamic Static Dynamic Static 

I 0.3 I 11 0.311 1 0.4198 0.4184 
2 0.6553 0.6553 0.6021 0.6442 
3 0.7470 0.7501 0.6527 0.7050 
4 0.7792 0.7921 0.7819 0.8114 
5 0.8342 0.8386 0.8426 0.8713 
6 0.8623 0.8659 0.8695 0.8838 
7 0.8784 0.8820 0.8860 0.8909 
8 0.8936 0.8967 0.8918 0.8949 
9 0.8994 0.9008 0.8927 0.8954 
10 0.9021 0.9048 0.8918 0.8923 
11 0.9061 0.9080 0.8873 0.8860 
12 0.9119 0.9137 0.8824 0.8811 
13 0.9146 0.9169 0.8806 0.8757 
14 0.9169 0.9173 0.8730 0.8730 
15 0.9177 0.9169 0.8704 0.8681 
16 0.9173 0.9169 0.8646 0.8650 
17 0.9151 0.9137 0.8592 0.8610 
18 0.9128 0.9133 0.8578 0.8614 
19 0.9066 0.9079 0.8538 0.8543 
20 0.9025 0.9025 0.8529 0.8552 
21 0.8949 0.8945 0.8494 0.8502 
22 0.8909 0.8914 0.8476 0.8480 
23 0.8838 0.8838 0.8435 0.8444 
24 0.8775 0.8771 0.8435 0.8453 
25 0.8717 0.8708 0.8364 0.8368 
26 0.8610 0.8596 0.83 I 5 0.8310 
27 0.8444 0.8435 0.8221 0.8220 
28 0.8270 0.8266 0.8105 0.8105 
29 0.7997 0.7997 0.7890 0.7890 
30 0.7805 0.7805 0.7698 0.7698 
31 0.7599 0.7599 0.7501 0.7501 
32 0.7278 0.7278 0.7202 0.7202 
33 0.6987 0.6987 0.6911 0.6911 
34 0.6665 0.6665 0.6585 0.6585 
35 0.6446 0.6446 0.6370 0.6370 
36 0.6187 0.6187 0.6129 0.6129 
37 0.5834 0.5834 0.5780 0.5780 
38 0.5579 0.5579 0.5530 0.5530 
39 0.5248 0.5248 0.5217 0.5217 
40 0.4989 0.4989 0.4962 0.4962 

Table 6.9: Accuracies achieved by applying C-Measure (up to length 40 due to page 
restriction) to Reuters-10 for each protocol. 
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Figure 6.4: Accuracies achieved by applying C-Measure to Reuters-IO for each protocol. 

The results for the experiment are shown in Table 6.9 and graphed in Figure 6.4. For Table 

6.9, the leftmost column indicates the substring length (shown as x axis in Figure 6.4) and for 
each protocol an average accuracy is shown (shown as y axis in Figure 6.4). The results show 
that concatenated models outperfom1 non-concatenated ones as was the case for 
20newsgroups (see 6.2.1.1 ), but not as clearly. The results differ from 6.2.1.1 in that for Rl 0 
concatenated models achieve their highest accuracy at a longer substring length, typically 
between 14 and 15. The optimal substring lengths for non-concatenated models also differ to 

6.2.1.1 in that the optimal substring length is shorter at a length of 9. 

6.2.2 PPM 

This section displays PPMC and PPMD accuracies achieved for each of the corpora, both 

with and without update exclusions. The results are again presented in both tabulated and 
graphical format and the best results for each protocol are highlighted in bold font for easy 
comparison. Although it would have been desirable to have attained results up to order 6 for 

all corpora, in reality the resources were not available to have computed these results because 
of the high computational overheads (both memory and execution time) for these high order 
models. 

6.2.2.1 20 Newsgroups 

Concatenated Dynamic Concatenated Static 
NonConcatenated 

NonConcatenated Static 
Dynamic 

With Without With Without With Without With Without 
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions 

2 0.8886 0.8930 0.8851 0.8903 0.7828 0.7659 0.7529 0.7412 

Table 6.10: Accuracies achieved by applying PPMC to 20Newsgroups for each protocol. 
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Figure 6.5: Accuracies achieved by applying PPMC order 2 to 20Newsgroups for each 
protocol. 

Concatenated Dynamic Concatenated Static NonConcatenated Dynamic NonConcatenated Static 
With Without With Without With Without With Without 

Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions 

2 0.8920 0.8955 0.8877 0.8910 0.7812 0.7629 0.7537 0.7372 

Table 6.11: Accuracies achieved by applying PPMD to 20Newsgroups for each protocol. 

1.0 
0.9 
0.8 

> 0.7 
~ 0.6 
3 0.5 
l:l 0.4 

c:i: 0.3 
0.2 
0.1 
0.0 

With Without With Without With Without With Without 
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions 

Concatenated Dynamic Concatenated Static NonConcatenated 
Dynamic 

Protocol 

NonConcatenated 
Static 

Figure 6.6: Accuracies achieved by applying PPMD order 2 to 20Newsgroups for each 
protocol. 

The results for the PPMC experiments are shown in Table 6.10 and graphed in Figure 6.5 and 

the results for PPMD are shown in Table 6.11 and Figure 6.6. For Table 6.10 and 6.11 , the 

leftmost column indicates the substring length (shown as x axis in Figure 6.5 and 6.6) and for 

each protocol an average accuracy is shown (shown as y axis in Figure 6.5 and 6.6). 
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It is clear that for PPMC concatenated models performed better than non-concatenated and 

dynamic models performed better than static models, a finding that was unclear for C­

Measure results. The results also show that without exclusions achieved best results for 

concatenated models, but the opposite is true for non-concatenated models. 

For PPMD, concatenated models again performed better than non-concatenated and dynamic 

models performed better than static ones. Without exclusions achieved best results for 

concatenated models, but the opposite is true for non-concatenated models. 

6.2.2.2 Gutenberg 

2 

3 

4 

5 

6 

7 

Concatenated Concatenated NonConcatenated NonConcatenated 
Dvnamic Static Dynamic Static 

With Without With Without With Without With Without 
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions 

0.8 0.8 0.75 0.7 0.625 0.65 0.55 0.55 
0.925 0.95 0.725 0.675 0.925 0.9 0.575 0.55 
0.875 0.875 0.725 0.65 0.9 0.8 0.575 0.5 

0.875 0.875 0.7 0.6 0.875 0.875 0.575 0.525 

0.85 0.875 0.7 0.625 0.55 0.5 0.6 0.525 
0.4 0.375 0.7 0.65 0.25 0.225 0.6 0.55 

Table 6.12: Accuracies achieved by applying PPMC to Gutenberg for each protocol. 
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Figure 6.7: Accuracies achieved by applying PPMC to Gutenberg for each protocol. 
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2 

3 

4 

5 

6 
7 

Concatenated Concatenated Non Concatenated NonConcatenated 
Dynamic Static Dvnamic Static 

With Without With Without With Without With Without 
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions 

0.75 0.775 0.75 0.7 0.6 0.575 0.55 0.525 

0.95 0.95 0.75 0.675 0.875 0.875 0.55 0.55 

0.925 0.9 0.75 0.65 0.9 0.825 0.575 0.5 

0.9 0.875 0.7 0.575 0.925 0.875 0.55 0.525 

0.875 0.9 0.7 0.625 0.575 0.45 0.6 0.525 

0.425 0.35 0.7 0.65 0.275 0.225 0.6 0.525 

Table 6.13: Accuracies achieved by applying PPMD to Gutenberg for each protocol. 
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Figure 6.8: Accuracies achieved by applying PPMD to Gutenberg for each protocol. 

The results for the PPMC experiments are shown in Table 6.12 and graphed in Figure 6.7 and 
the results for PPMD are shown in Table 6.13 and Figure 6.8. For Table 6.12 and 6.13, the 
leftmost column indicates the substring length (shown as x axis in Figure 6.7 and 6.8) and for 

each protocol an average accuracy is shown (shown as y axis in Figure 6.7 and 6.8). 

For PPMC, in all cases, with exclusions outperforms without, dynamic models perform much 

better than static ones and concatenated models easily outperform its non-concatenated 
counterpart. It appears that shorter context lengths provide the best categorization for this 
corpus in concatenated cases, but it is less clear as to which is best for non-concatenated. 
With the number of testing documents within the corpus being so few we see a large 
difference in results, with one file accounting for 10% accuracy in each cross validation 

performed. 

Notice that for this corpus there is little difference between PPMC and PPMD. For PPMD, 
with exclusions outperformed without exclusions as was the case with its PPMC results. 

Dynamic models again performed much better than static ones in all cases, as did 
concatenated, again better than non-concatenated in all cases. It would be fair to say that 
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context lengths of 2 provided the highest categorization as on more occasions than any other 

it achieved the highest accuracy. 

6.2.2.3 RCVl-Author 

Concatenated Dynamic Concatenated Static 

With Exclusions Without Exclusions With Exclusions Without Exclusions 

2 0.7994 0.8055 0.8002 0.8123 

3 0.8480 0.8503 0.8495 0.8511 

Table 6.14: Accuracies achieved by applying PPMC to RCVl-Author for each protocol. 
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Figure 6.9: Accuracies achieved by applying PPMC to RCVl-Author for each protocol. 

Concatenated Dynamic Concatenated Static 

With Exclusions Without Exclusions With Exclusions Without Exclusions 

2 0.8062 0.8 146 0.8047 0.8123 

3 0.8503 0.8533 0.8488 0.8518 

Table 6.15: Accuracies achieved by applying PPMD to RCVl-Author for each protocol. 
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Figure 6.10: Accuracies achieved by applying PPMD to RCVl-Author for each 
protocol. 

The results for the PPMC experiments are shown in Table 6.14 and graphed in Figure 6.9 and 

the results for PPMD are shown in Table 6.15 and Figure 6.10. For Table 6.14 and 6. 15, the 

leftmost column indicates the substring length (shown as x axis in Figure 6.9 and 6.10) and 

for each protocol an average accuracy is shown (shown as y axis in Figure 6.9 and 6.10). 

In all cases without exclusions performed better than with and interestingly dynamic models 

performed better for PPMD but the opposite is true for PPMC. The results also show that 

order 3 greatly improved the accuracies compared to those received for order 2 as is the case 

with Gutenberg (see 6.2.2.2) and Reuters-IO (see 6.2.2.4). 

6.2.2.4 Reuters-10 

Concatenated Concatenated NonConcatenated NonConcatenated 
Dynamic Static Dvnamic Static 

With Without With Without With Without With Without 
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions 

2 0.9477 0.9437 0.9450 0.9392 0.8556 0.8489 0.8990 0.8972 

3 0.9531 0.9513 0.9455 0.9410 0.4962 0.4864 0.8990 0.9021 

4 0.9227 0.9253 0.9405 0.9343 0.4680 0.4193 0.8963 0.9080 

Table 6.16: Accuracies achieved by applying PPMC to Reuters-10 for each protocol. 
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Figure 6.11: Accuracies achieved by applying PPMC to Reuters-10 for each protocol. 

Concatenated Concatenated NonConcatenated NonConcatenated 
Dynamic Static Dynamic Static 

With Without With Without With Without With Without 
Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions 

0.9455 0.9450 0.9441 0.9392 0.8538 0.8476 0.9003 0.8976 

0.9517 0.9490 0.9450 0.9374 0.4975 0.4949 0.8976 0.9034 

0.9298 0.9280 0.9397 0.9338 0.5069 0.4662 0.8990 0.9052 

Table 6.17: Accuracies achieved by applying PPMD to Reuters-10 for each protocol. 
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Figure 6.12: Accuracies achieved by applying PPMD to Reuters-10 for each protocol. 

The results for the PPMC experiments are shown in Table 6.16 and graphed in Figure 6.11 
and the results for PPMD are shown in Table 6.17 and Figure 6.12. For Table 6.16 and 6.17, 
the leftmost column indicates the substring length (shown as x axis in Figure 6.11 and 6.12) 

and for each protocol an average accuracy is shown (shown as y axis in Graph 6.11 and 6.12). 
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The most inconsistent result was found within RIO as there is a noticeable drop in accuracy 
for an order of 2 and 3 for non-concatenated models for both PPMC and PPMD. The highest 

accuracies for concatenated models were achieved for order 3 for both PPMC and PPMD. It 
is difficult to determine the best order for non-concatenated static though it would appear that 

lower orders perform better when update exclusions are performed, and longer ones for when 
they are not. As with 20newsgroups and Gutenberg, concatenated models outperformed non­
concatenated, in this case quite significantly for both PPMC and PPMD. 

6.2.3 R-Measure 

This section displays accuracies achieved for each of the corpora using each of the R­
Measure algorithms discussed in 3.1. For R-Ranges, the substring lengths investigated have a 

minimum from 1 up to 29 and a maximum from 2 up to 30. Substring lengths of up to length 

30 are investigated for both R,!'.q-Measure and R:Sq-Measure. 

6.2.3.1 20Newsgroups 

The results for the R:Sq-Measure experiments are shown in Table 6.18, R,!'.q-Measure in Table 

6.1 9 and Tables 6.20-6.23 show results for R-Ranges. Tables 6.18 and 6.19 display 
accuracies for all four protocols with the leftmost column indicating the lower substring limit 
for each algorithm. Tables 6.20-6.23 show the accuracy for each range with a single table 
displaying results for a single protocol. The highest accuracies are again highlighted in bold 

font. 
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Concatenated Concatenated NonConcatenated NonConcatenated 
Dynamic Static Dynamic Static 

I 0.0427 0.0427 0.0644 0.0676 

2 0.2379 0.2443 0.1403 0.1687 

3 0.7805 0.7831 0.2324 0.2620 

4 0.8727 0.8719 0.3598 0.3789 

5 0.8939 0.8946 0.4513 0.4647 

6 0.9032 0.9027 0.5183 0.5270 

7 0.9056 0.9064 0.5735 0.5795 

8 0.9084 0.9084 0.6171 0.6193 

9 0.9094 0.9098 0.6543 0.6517 

10 0.9107 0.9111 0.6828 0.6772 

11 0.9113 0.9110 0.7043 0.6970 

12 0.9130 0.9117 0.7202 0.7128 

13 0.9133 0.9122 0.7319 0.7253 

14 0.9141 0.9130 0.7423 0.7352 

15 0.9145 0.9131 0.7508 0.7429 

16 0.9140 0.9133 0.7582 0.7511 

17 0.91 35 0.9125 0.7643 0.7559 

18 0.9126 0.9117 0.7701 0.7615 

19 0.9119 0.9110 0.7757 0.7684 

20 0.9099 0.9084 0.7841 0.7758 

21 0.9072 0.9046 0.7907 0.7822 

22 0.9047 0.9005 0.7970 0.7897 

23 0.9008 0.8956 0.8031 0.7968 

24 0.8949 0.8903 0.8085 0.8016 

25 0.8904 0.8853 0.8108 0.8052 

26 0.8853 0.8809 0.8142 0.8088 

27 0.8806 0.8764 0.8178 0.8102 

28 0.8766 0.8729 0.8211 0.8120 

29 0.8726 0.8691 0.8213 0.8129 

30 0.8697 0.8656 0.8229 0.8144 

Table 6.18: Accuracies achieved by applying R:Sq-Measure to 20Newsgroups for each 

protocol. 
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Concatenated Concatenated NonConcatenated NonConcatenated 
Dynamic Static Dvnamic Static 

1 0.9070 0.9086 0.8033 0.7951 

2 0.9070 0.9086 0.8030 0.7953 

3 0.9070 0.9086 0.8045 0.7981 

4 0.9066 0.9084 0.8127 0.8054 

5 0.9063 0.9078 0.8218 0.8152 

6 0.9048 0.9058 0.8295 0.8224 

7 0.9023 0.9032 0.8330 0.8265 

8 0.8994 0.9005 0.8378 0.8292 

9 0.8969 0.8976 0.8383 0.8290 

10 0.8932 0.8948 0.8377 0.8282 

11 0.8896 0.8911 0.8372 0.8274 

12 0.8858 0.8868 0.8357 0.8264 

13 0.8807 0.8816 0.8344 0.8257 

14 0.8761 0.8776 0.8336 0.8247 

15 0.8721 0.8738 0.8332 0.8246 

16 0.8684 0.8701 0.8323 0.8236 

17 0.8649 0.8663 0.8314 0.8233 

18 0.8627 0.8641 0.8306 0.8222 

19 0.8595 0.8611 0.8298 0.8219 

20 0.8569 0.8581 0.8288 0.8210 

21 0.8548 0.8564 0.8281 0.8205 

22 0.8521 0.8537 0.8274 0.8195 

23 0.8495 0.8511 0.8263 0.8179 

24 0.8460 0.8474 0.8247 0.8 I 51 

25 0.8432 0.8447 0.8235 0.8135 

26 0.8407 0.8421 0.8221 0.8116 

27 0.8378 0.8393 0.8206 0.8092 

28 0.8358 0.8376 0.8196 0.8076 

29 0.8331 0.8350 0.8181 0.8056 

30 0.8303 0.8325 0.8162 0.8038 

Table 6.19: Accuracies achieved by applying R;,:q-Measure to 20Newsgroups for each 

protocol. 

101 IP age 



10 11 11 I) U U 11 17 11 II l.O 11 2' tJ 2' 11 H rl 2t 21 
I 

2 one 
3 0 711' 0 71\0 
• oan un oe1• 
1 oaru 0111< o.., 0111>-
• 0901 Olllll 0~ OOlll OICl 
1 0911' OiM OUC4! Off.>; 0900 Of<lS 
I ~90t Ql,)I OIIOO 090! 09111 01»7 0..., 
I OO<D O\,l'; ot,o o~•O Otot 0509 0t)7 O!i!l' 

10 ot11 01,11 0911 oe,o ot1~ OliOO oo"ll 011111 ow1 
11 0911 Otll 0911 O~H Qtll 09•0 Olf>l OIOII OtOe 01'JI! 
11 001 091) 0911 091) O ♦I) o•., 0111 0~ Otoe Olm 09-"tl 
U Otll u.i, 011) 091) ot•l Olt1 0911 Osot Otoe 01»7 0~ UtOI 
,. Otl◄ 0'1• o~ .. 091◄ Otl< H•3 0911 0~ o,oe OIi.le (1111)1 080) OWi! 
11 OJI• OtU t.tll otlt otu Ot1, OAII IJQ OtOe 01,16 0901 0901 0 ''()() 0 
11 otu o,,. 09U 091◄ Otl) ot•2 0811 U(Jw 0907 011)1 OIi():) OtoO OW.1 08f,4 Obi 
11 091) ot1) O~•• 0811 Otll ot11 0~:.9 Ot,07 Otoe 01<)4 090:! OM 0118c, 08t0 0911) 0•1 
,, Otll ot,13 0911 OA11 ot•2 o,,, 0~)9 Otol ow.. OIi~ 090• Ot91 ows oe., OM o•s OIIS2 
,, ot•l 0'12 ot12 0Yl2 0911 0~ 011311 01(1) 01'04 0~ Otl> Otlll O J oego otlt-. o•• o• om 
10 ot,o 0910 o,,o 0810 OIOII Ollll Ot:18 0~ 0902 0 1 OM 0~ 0192 OM Offl 0•2 Otlt UIS o,n 
n O'Jll7 Oto1 0&01 01)01 Oto' ow.. OIIIXI Pto:2 0♦00 Olllll 011! otDl o•~ OMO 0811) ONO 0118 OIM 0871 OIIIU 
n o~o~o~o~o~owo~o~oMo*omo~o~o~owo~o~omomo~o~ 
n Oto• oto, OV,I Oto• 0900 0'911 OM 0886 OW• 09':! o• 0111 o•• o,-, 0111 oar. 0012 0870 0181 Oteo 01!!53 011112 
ta ot86 Oto~ OM!I 0~ OICH D .. , om ute, 0119 01118 Olli! OM) o•• 08/t OIi◄ Utz Olllt O~I OM~ OIU O~• OIW 0161 
H OmO~OMumoM0"110-0WO~omomoMOWO~UfflOMOUO~Ullll20~0~D~O~O~ 
a o~o~o~o~o~o~o~owu~offiowomoruo~o•o•o~o~o*o~o~o~o~o~o~ 
l1 01111 01111 01111 oe.: OM 01110 01111 0,11 Utt Olio Ol7J 0111 OIIIY 011!!1 0~ 0182 011,0 01'1 Otflll Off>~ Ole,] 08!>? 0'52 iue1 08~• OM 
n owowomowomomomomomomomonoMo~o~o~o~o~o~offlo~omo~o~o~owoM 
a OIIJ 011> Ot/J 01n 01n 0112 0112 01n oi,:& ODl:I ow 01&< 01112 08':0 01:.a Off>/ 0'60 oa~1 u•~• olf>G 011Y .... ot,Q o.,, 011G o .. , oau OIUJ 
JO 0110 OIIO 0110 0170 Otcl9 Oltl Oltll otlll 08117 OICO OIIIJ;J oee, Oa!-0 011:.t o,~ Ol&A 0'1l Qt!,I OM o .. , 0111 01111 0~ 014◄ 08') 010 Ol'AI 0810 OIAO 

Table 6.20: R-Range average accuracies for 20Newsgroups, Concatenated Dynamic. 
The lower range value is shown across the columns and the upper range value shown 

across the rows. 
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Table 6.21 : R-Range average accuracies for 20Newsgroups, Concatenated Static. The 
lower range value is shown across the columns and the upper range value shown across 

the rows. 
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Table 6.22: R-Range average accuracies for 20Newsgroups, Non-concatenated 
Dynamic .. T he lower range value is shown across the columns and the upper range 

value shown across the rows. 
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Table 6.23: R-Range average accuracies for 20Newsgroups, Non-concatenated Static. 

The lower range value is shown across the columns and the upper range value shown 
across the rows. 

Concatenated Concatenated Non Concatenated NonConcatenated 
Dynamic Static Dynamic Static 

0.907 0.909 0.803 0.795 

Table 6.24: rmax average accuracies for 20Newsgroups. 

As with the results for C-Measure in 6.2.1.1 the results for concatenated protocols are similar 
no matter whether the models are static or dynamic and the same is true for non-concatenated 
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protocols also. The R-Range results also resemble the C-Measure result in that lower ranges 
again offer better performance for concatenated protocols than for their counterpart. A 

noticeable difference is that much smaller ranges ( difference between minimum range and 
maximum range) proving better for non-concatenated protocols, the best performing for static 

models being just a difference of one with 12-13. The best results achieved for concatenated 
protocols have a range of around ten. The best results for concatenated dynamic models are 
achieved between ranges 1-15 up to 5-15 having the highest accuracy of 0.915. The best 

results for concatenated static models are achieved between ranges 1-14 up to 5-16 with 4-15 
again providing the highest accuracy, this time 0.914. The best results for non-concatenated 

dynamic models are achieved between ranges 10-14 up to 15-20 with the highest accuracy of 
0.852. The best results for non-concatenated static models are achieved between ranges 11-12 

up to 15-16 with 12-13 achieving the highest accuracy, in this case 0.8325. It is also worth 
noting that in all but one case that R-Ranges outperformed C-Measure. 

Table 6.18 shows that for Rsq-Measure, concatenated models performed better than non­

concatenated and dynamic models outperform static ones, as was the case with C-Measure 
for this corpus. The results suggest that a value of between 15 and 16 for q is optimal for 

concatenated models but a much larger value for non-concatenated, with q = 30 achieving 

the highest accuracy. 

Table 6.19 shows that for R:?q-Measure, concatenated models again achieve the highest 

accuracies, though not as high as for concatenated in 6.18. There is a difference in the 
optimal value for q, which for 6.19 represents the minimum substring length to be included. 

6.19 shows that 1 ::::; q :s; 3 is optimal for concatenated models and that a low length of 

between 8 and 9 is optimal for the non-concatenated models. Table 6.24 also further supports 
the finding that for 20Newsgroups, concatenated models achieve the highest accuracies. It is 
however unclear from the rmax results whether dynamic or static models performed best, as 

was the case for R:?q. 

6.2.3.2 Gutenberg 

The results for the Rsq-Measure experiments are shown in Table 6.25, R:?q-Measure in Table 

6.26, rmax in 6.31 and Tables 6.27-6.30 show results for R-Ranges. Tables 6.25 and 6.26 

display accuracies for all four protocols with the leftmost column indicating the lower 
substring limit for each algorithm. Tables 6.27-6.30 show the accuracy for each range with a 
single table displaying results for a single protocol. The highest accuracies are again 

highlighted in bold font. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Concatenated Concatenated NonConcatenated NonConcatenated 
Dynamic Static Dvnamic Static 

0.075 0.075 0.175 0.125 

0.175 0.150 0.125 0.250 

0.150 0.175 0.150 0.200 
0.200 0.225 0.175 0.175 
0.300 0.325 0.150 0.250 

0.275 0.375 0.225 0.275 
0.300 0.400 0.250 0.275 

0.300 0.425 0.275 0.325 

0.300 0.425 0.300 0.375 
0.350 0.475 0.300 0.375 

0.350 0.500 0.300 0.400 

0.400 0.500 0.350 0.400 
0.450 0.500 0.375 0.475 
0.450 0.525 0.375 0.475 

0.450 0.525 0.375 0.475 

0.450 0.525 0.425 0.475 

0.450 0.525 0.425 0.475 

0.450 0.525 0.425 0.475 
0.450 0.525 0.425 0.475 

0.450 0.525 0.425 0.475 

0.450 0.525 0.425 0.475 
0.475 0.525 0.425 0.475 

0.475 0.525 0.425 0.475 
0.475 0.525 0.425 0.475 
0.475 0.525 0.425 0.475 
0.475 0.525 0.425 0.475 
0.475 0.525 0.425 0.500 

0.475 0.525 0.425 0.500 
0.475 0.525 0.425 0.500 
0.475 0.525 0.425 0.525 

Table 6.25: Accuracies achieved by applying Rsq-Measure to Gutenberg for each 

protocol. 
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Concatenated Concatenated Non Concatenated Non Concatenated 
Dynamic Static Dynamic Static 

1 0.475 0.525 0.475 0.475 

2 0.475 0.525 0.475 0.475 

3 0.475 0.525 0.475 0.475 

4 0.475 0.500 0.475 0.475 

5 0.475 0.525 0.475 0.475 

6 0.475 0.550 0.475 0.475 

7 0.475 0.600 0.475 0.500 

8 0.500 0.575 0.500 0.500 

9 0.525 0.575 0.475 0.500 
10 0.525 0.575 0.500 0.550 

11 0.550 0.600 0.500 0.550 

12 0.525 0.600 0.525 0.550 
13 0.525 0.600 0.550 0.600 

14 0.550 0.600 0.600 0.600 

15 0.550 0.625 0.625 0.625 

16 0.600 0.650 0.650 0.625 
17 0.675 0.700 0.675 0.650 

18 0.700 0.700 0.700 0.675 

19 0.725 0.750 0.725 0.700 

20 0.725 0.750 0.775 0.750 

21 0.725 0.725 0.775 0.750 
22 0.725 0.725 0.775 0.750 

23 0.750 0.725 0.775 0.725 

24 0.725 0.725 0.775 0.725 

25 0.725 0.725 0.750 0.700 

26 0.725 0.700 0.675 0.625 
27 0.675 0.675 0.625 0.550 

28 0.625 0.650 0.600 0.525 

29 0.575 0.600 0.550 0.500 

30 0.525 0.525 0.500 0.475 

Table 6.26: Accuracies achieved by applying R~q-Measure to Gutenberg for each 

protocol. 
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Table 6.27: R-Range average accuracies for Gutenberg, Concatenated Dynamic. The 
lower range value is shown across the columns and the upper range value shown across 

the rows. 
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Table 6.28: R-Range average accuracies for Gutenberg, Concatenated Static. The lower 
range value is shown across the columns and the upper range value shown across the 

rows. 
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Table 6.29: R-Range average accuracies for Gutenberg, Non-concatenated Static. The 
lower range value is shown across the columns and the upper range value shown across 

the rows. 
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Table 6.30: R-Range average accuracies for Gutenberg, Non-concatenated Dynamic. 
The lower range value is shown across the columns and the upper range value shown 

across the rows. 

Concatenated Concatenated NonConcatenated Non Concatenated 
Dynamic Static Dvnamic Static 

0.475 0.525 0.475 0.475 

Table 6.31: rmax average accuracies for Gutenberg. 

The R-Range result within Table 6.27-6.30 all indicate that for Gutenberg higher substring 
lengths improve the categorization of its documents. This suggests that no matter what 
protocol is used, when categorizing corpora of this type using R-Ranges, ranges typically 
over 20 achieve the best results. The finding that longer suffixes are more successful for 
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categorizing this corpus than for others are consistent with the results reported for C-Measure 
against the same corpus. 

Table 6.25 shows that for Rsq-Measure, concatenated models performed better than non­

concatenated but unlike with 6.2.3 .1, static models outperform. The results suggest that 

longer substrings improve accuracy or possibly that shorter ones hinder for Rsq-Measure as 

the accuracies continue to improve as we increase minimum substring length. A value of 
between 15 and 16 for q is optimal for concatenated models but a much larger value for non­

concatenated, with q = 30 achieving the highest accuracy. 

Table 6.26 shows that for R~q-Measure it is difficult to clearly state that one model 

consistently performs better than another but the highest accuracy is achieved by non­
concatenated dynamic with a value of 0.775. Unlike 20Newsgroups (Table 6.20) the optimal 
minimum substring lengths are similar across all four protocols at around 21. 

Table 6.31 indicates that for rmaxthere is little difference between the accuracies achieved by 
each protocol, concatenated static did however achieve the highest for rmax with an accuracy 

of 0.525. 

6.2.3.3 RCVl-Author 

The results for the Rsq-Measure experiments are shown in Table 6.32, R~q-Measure in Table 

6.33, rmax in 6.36 and Tables 6.34 and 6.35 show results for R-Ranges. Tables 6.32 and 6.33 

display accuracies for both protocols with the leftmost column indicating the lower substring 
limit for each algorithm. Tables 6.34-6.35 show the accuracy for each range with a single 
table displaying results for a single protocol. The highest accuracies are again highlighted in 
bold font. 
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Concatenated Dynamic Concatenated Static 
I 0.025 0.025 
2 0.470 0.481 

3 0.787 0.792 
4 0.830 0.834 
5 0.850 0.853 
6 0.862 0.858 
7 0.863 0.862 
8 0.864 0.863 
9 0.871 0.87 1 
10 0.872 0.875 
11 0.875 0.877 
12 0.875 0.877 
13 0.877 0.879 
14 0.878 0.880 
15 0.879 0.881 
16 0.879 0.885 
17 0.880 0.885 
18 0.880 0.885 
19 0.880 0.885 
20 0.88] 0.885 
21 0.882 0.882 
22 0.883 0.884 
23 0.882 0.884 
24 0.883 0.884 
25 0.884 0.884 
26 0.884 0.887 
27 0.886 0.886 
28 0.887 0.886 
29 0.885 0.884 
30 0.882 0.881 

Table 6.32: Accuracies achieved by applying Rsq-Measure to RCVl-Author for each 

protocol. 
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Concatenated Dvnamic Concatenated Static 
1 0.879 0.879 

2 0.879 0.879 

3 0.879 0.879 

4 0.880 0.879 

5 0.880 0.879 

6 0.879 0.879 

7 0.880 0.879 

8 0.880 0.881 

9 0.879 0.882 

JO 0.881 0.883 
11 0.880 0.88 1 

12 0.881 0.882 

13 0.882 0.883 
14 0.884 0.883 
15 0.881 0.878 

16 0.877 0.878 

17 0.875 0.875 

18 0.875 0.872 

19 0.872 0.872 

20 0.869 0.870 

21 0.867 0.867 

22 0.868 0.869 

23 0.865 0.865 

24 0.862 0.862 

25 0.859 0.859 

26 0.856 0.856 

27 0.853 0.853 

28 0.85 1 0.851 

29 0.847 0.847 

30 0.845 0.845 

Table 6.33: Accuracies achieved by applying R~q-Measure to RCVl-Author for each 

protocol. 
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Table 6.34: R-Range average accuracies for RCVl-Author, Concatenated Dynamic. The 
lower range value is shown across the columns and the upper range value shown across 

the rows. 
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Table 6.35: R-Range average accuracies for RCVl-Author, Concatenated Static. The 
lower range value is shown across the columns and the upper range value shown across 

the rows. 

Concatenated Concatenated 
Dvnamic Static 

0.879 0.879 

Table 6.36: rmax average accuracies for RCVl-Author. 

As with 20Newsgroups there does not appear to be a great difference between static or 

dynamic models. The best performing range is this time achieved between 1-26 and 4-26, an 
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extremely high range as with that of the concatenated 20Newsgroups models. R-Ranges 
outperformed the C-Measure results as seen in 6.3. 1.3 with accuracies of up to 0.888 and 

0.887 for the dynamic and static models respectively. 

6.2.3.3.4 Reuters-to 

The results for the R$q-Measure experiments are shown in Table 6.37, R~q-Measure in Table 

6.38, rmax in 6.43 and Tables 6.39-6.42 show results for R-Ranges. Tables 6.37 and 6.38 

display accuracies for all protocols with the leftmost column indicating the lower substring 
limit for each algorithm. Tables 6.39-6.42 show the accuracy for each range with a single 

table displaying results for a single protocol. The highest accuracies are again highlighted in 

bold font. 

Concatenated Concatenated NonConcatenated Non Concatenated 
Dynamic Static Dynamic Static 

1 0.311 0.3 11 0.420 0.418 

2 0.655 0.655 0.588 0.623 

3 0.745 0.746 0.644 0.686 

4 0.778 0.783 0.727 0.760 

5 0.81 1 0.8 19 0.776 0.808 

6 0.839 0.841 0.814 0.837 

7 0.858 0.861 0.833 0.854 

8 0.870 0.872 0.847 0.858 

9 0.878 0.882 0.852 0.865 

10 0.884 0.887 0.859 0.867 

11 0.890 0.893 0.862 0.872 

12 0.895 0.897 0.867 0.873 

13 0.896 0.899 0.870 0.879 

14 0.898 0.900 0.873 0.879 

15 0.899 0.899 0.874 0.882 

16 0.899 0.902 0.876 0.886 

17 0.898 0.900 0.876 0.886 

18 0.899 0.901 0.874 0.881 

19 0.900 0.903 0.874 0.879 

20 0.901 0.904 0.873 0.878 

21 0.901 0.903 0.873 0.875 

22 0.901 0.905 0.876 0.878 

23 0.899 0.905 0.872 0.873 

24 0.901 0.903 0.872 0.869 

25 0.896 0.898 0.866 0.865 

26 0.888 0.890 0.857 0.855 

27 0.878 0.879 0.849 0.848 

28 0.863 0.864 0.836 0.834 

29 0.842 0.840 0.812 0.809 

30 0.816 0.8 13 0.789 0.787 

Table 6.37: Accuracies achieved by applying R$q-Measure to Reuters-to for each 

protocol. 
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Concatenated Concatenated NonConcatenated NonConcatenated 
Dynamic Static Dynamic Static 

1 0.908 0.910 0.879 0.886 
2 0.908 0.910 0.878 0.885 
3 0.908 0.911 0.881 0.886 
4 0.909 0.911 0.883 0.887 
5 0.9 11 0.914 0.887 0.890 
6 0.914 0.915 0.889 0.887 
7 0.916 0.918 0.882 0.883 
8 0.918 0.919 0.878 0.879 
9 0.920 0.920 0.875 0.873 
10 0.919 0.918 0.869 0.869 
11 0.920 0.920 0.865 0.867 
12 0.919 0.919 0.864 0.865 
13 0.916 0.916 0.860 0.861 
14 0.913 0.915 0.857 0.857 
15 0.909 0.910 0.856 0.857 
16 0.907 0.907 0.851 0.852 
17 0.903 0.903 0.85 1 0.851 
18 0.893 0.893 0.849 0.848 
19 0.891 0.891 0.848 0.847 
20 0.886 0.886 0.847 0.847 
21 0.880 0.881 0.846 0.846 
22 0.875 0.875 0.846 0.846 
23 0.871 0.871 0.842 0.842 
24 0.865 0.865 0.842 0.842 
25 0.857 0.857 0.837 0.837 
26 0.848 0.848 0.831 0.831 
27 0.834 0.834 0.821 0.821 
28 0.819 0.819 0.810 0.810 
29 0.797 0.797 0.789 0.789 
30 0.777 0.777 0.770 0.770 

Table 6.38: Accuracies achieved by applying R;?:q-Measure to Reuters-10 for each 

protocol. 
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Table 6.39: R-Range average accuracies for Reuters-to, Concatenated Dynamic. The 
lower range value is shown across the columns and the upper range value shown across 

the rows. 
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Table 6.40: R-Range average accuracies for Reuters-to, Concatenated Static. The lower 
range value is shown across the columns and the upper range value shown across the 

rows. 

115 1Page 



t II) 11 t!t 11 1-t t~ 19 ,r 11 19 ,0 -, , 1' 11 N ,-S. HJ 11 ?I '9 

I 
10tl1l 

OIMOM 
• 07\.~ Oft,• D 17' 
~ OHCI 0~ Gitt 09,1~ 
o Oil? oa¥s 01.tO Ot67 Of!• 
, o~ oe~1 Ol(I) 0111 ottr o• 
I 011!11 011'<1 DIie!, o.-r, o .. OIIIG Ohl 
I or.; 01151 OIIN OIIO o•r OIIO on1 UM 

10 o~r 011:1 01n °'" o .. om 011111 01. 01111 
11 om 017' 0171 °''' OIIO OIIM ... 0111\ 0•1 o• 
11 0111J u,, oau o., 011111 o~ 011111 us,, o• oas om 
I) OWIB 0111 0119 o• oa2 o"" om OM D* 0.-2 0111 DUO 
u 01,a 0111 0179 0111 011)4 0115 OS!M DIRI OltNI 0113 01113 oan Offl 
I~ 01112 08'2 0882 OW., OWl2 01»:l Offl Dlllt 0112 0913 OIIIO 011! 011? DIil' 
•• Ollfi 011116 ow 011» 0191 ow; 0~ 0117 OM1 0., 0115 Oil? 0- Otl!!> o~, 
1101111 011111 011) UM a., 0~ o .. , ow. 0,12 Of/G Olli not DIM Off)4 0111!11 OII02 
11 Olltl DUI 0~ 018t o•, OR' 0817 Dlftl UII OllS Olfil 09'1 OIIM Oll!S 0~ Oft'ill 080) 
~omomomo~o~o~offlornomomo~o~o•owo~oNomoM 
~omomomo~o~o~o•o~omo~oQo~o~o~o~o~oruo~o~ 
21 Ofl~ 081• oart o•~ 0111 0111:1 0111 011, 01r, oa Oll!II 011&1 OIIO< 011112 ot:8 01~, 01~1 01112 o~ or,, 
n 01171 oen °'" QIU 0~ 0819 OBftO 0171 0"1 0111'8 Qli<lj DIii'< 016l 0'58 OIISII Oas:! 01~ Ot.<;S ll«i' 0 ... 1 OR<I 
2) Olr.J °'" Olte 0819 Dtll Otll 01111 0111 0- ll!ICol 01151 Olltfl orA o•• 011111, o,~, 01!,3 016) OalO OIIH OIH 01~ 
, . Oll<G 0~ 01n Oll't OV• 0171 Ol7CI OM 0111) OIISt Ot"i Oft~7 De!<! o-., 0~ Oll'A u~ QI.Iii uo 0 .. ij 0~ n .... nw 
2~ 0"-0 01!1) 080' Ul7 Ol!lt Ollll 011!11 Ole1 GIGI OICA o,~ DI~ ow 011111 o ... , o ... ~ GI .. o .. , OSII 0 .. 0 0131 013! o .. o OlOII 
~o~o~nwo~o~o~n~n~owowo~n~1o~n~o~a~0Mo~offio~owo~omomo~ 
2r OIM8 OIU ua• 0.,, 01'5 O!Ul! OUl 0141 0131 om OD! DUI om 0132 om Olll 0121 0121 012• 012• 0~ OIZI 082) 0111 01122 om 
211011,\.0 Olll-l nw DSY.> o~ OIU3 Olll· nm 0«1• om 0112, 01115 om ne:r., 01111 oe11 0111 otH otu o,,i oe1a 0112 a.11 e•11 01,0 OR10 01,0 
29 Olll!! 0110 OI09 oa OIOO 01101! Ollll'l 01111 OIOI OIOO Olm OIICll OICIO 0198 0797 01';11 D ·~ 0 IBl 07') 07')2 01112 U 191 0 '91 Ol'IO 0"10 0/1!0 0 l!!C) am 
'.lOOl'tf Ol'tl 01,1 01~ o,ws 01'4 0111 01112 0110 0111 on. a1e, 01&1 0780 orig orn 0111: nm one 0115 0173 0111 011• en, on2 om 0111on10111 

Table 6.41: R-Range average accuracies for Reuters-to, Non-concatenated Static. The 
lower range value is shown across the columns and the upper range value shown across 

the rows. 
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Table 6.42: R-Range average accuracies for Reuters-to, Non-concatenated Dynamic. 
The lower range value is shown across the columns and the upper range value shown 

across the rows. 

Concatenated Concatenated NonConcatenated NonConcatenated 
Dynamic Static Dynamic Static 

0.908 0.910 0.879 0.886 

Table 6.43: rmax average accuracies for Reuters-to. 
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6.3 Execution times 

The time taken to compute results varies substantially depending on a number of factors 
including the number of comparisons (i.e. number of testing and training documents), the size 

of these texts in addition to the algorithms and protocol used. As 20Newsgroups had the 
greatest number of training and testing files, the computations took a significantly greater 

amount of time compared to the other corpora and so it is the timing for this corpus which 

shall be investigated. 

6.3.1 C-Measure 

NonConeD n NonCone Stat Cone D n Cone Stat 
398529 204591 79697 402 

Table 6.44: Average timings in seconds to calculate C-Measure on 20Newsgroups for 
each split. 

Table 6.44 shows the average number of seconds taken to compute accuracies for a single 

cross for each protocol. It is clear that we have great variance for the timings across each of 
the protocols, the minimum being for concatenated static with timings typically under seven 
minutes and the longest being for non-concatenated dynamic with timings of over six days. 

Concatented models are of course much larger than their counterparts and take longer to load 
into memory but the number of comparisons is drastically reduced to 20 x 3759 = 75,180 in 
most cases compared to 15036 x 3 792 = 57,016,512. It is also worth noting that this means 
even with our longest case, a training document was compared against a testing stream, with 

results written to disk on average 0.009 seconds each. Even though each comparison can be 
executed quickly, unfortunately it still takes a long time due to the overwhelming number to 

be computed. 

The reason static models are much quicker than the dynamic ones is that because the training 
model is dynamically modified, we are forced to reload the model again when we are to 

compare against the next testing stream. Speed ups for the concatenated case relating to the 
order of comparisons was discussed in 5.3.5 and though what is discussed there is true for the 
concatenated static case, with dynamic we must still reload the original training model. The 

time taken to do this was drastically reduced by holding the original model in memory and 

modifying a copy of the object rather than the original. 

6.3.2 PPM 

2 
3 

NonConeDyn NonCone Stat Cone Dvn Cone Stat 
With Without With Without With Without With Without 

Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions 

442797 330100 614554 230035 2417 1915 2498 1858 
512327 461451 790613 280094 5817 5835 6234 4897 

Table 6.45: Average timings in seconds to calculate PPMC on 20Newsgroups for each 
split. 
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NonCone Dvn NonCone Stat Cone Dyn Cone Stat 
With Without With Without With Without With Without 

Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions Exclusions 
2 514562 337758 983581 252895 2891 3758 4073 2792 
3 595362 472157 1265359 307929 8912 8195 9248 8095 

Table 6.46: Average timings in seconds to calculate PPMD on 20Newsgroups for each 
split. 

Results for PPM took much longer to collate than for C-Measure due to the fact that for every 
protocol, two computations were required for with update exclusions and without. It is clear 

that again concatenated results were much quicker, as previously mentioned this is because of 
the very few number of training documents to be compared against each testing document. As 

expected with update exclusions take longer to process than without and the length of the 

order dramatically increases execution time. 

6.4 Chapter Discussion 

The best results from each method and protocol for each corpus is listed in Table 6.4 7 and the 

best results for each corpus is marked in bold font. The table shows that for Gutenberg and 
Reuters- I 0, PPM achieves the highest accuracies and each of these corpora has been shown 
to be quite different in the number of files and the sizes of each. R-Ranges also achieved 

extremely high accuracies and outperformed PPM for both 20Newsgroups and RCVl-Author 
and the results suggest that R-Ranges is the best performing variant of R-Measure. 

PPMC has been shown to outperform PPMD overall and also with exclusions achieved 
higher accuracies on more occasions than without. As mentioned in 6.2.2 the computational 
overheads involved with investigating high order PPM models for large corpora meant that 
high orders could not be investigated in all cases, however, interestingly Table 6.47 indicates 
that in some cases low order models can outperform higher ones. Table 6.19 shows that as 

with low order models performing well, in some cases substring lengths as low as 1 are 
important in categorizing texts, especially when concatenated models are being used. 

With regards to the performance of each protocol, Table 6.47 shows that the concatenated 

dynamic protocol achieved the highest accuracies for each of the corpora and concatenated 
models outperformed non-concatenated in nearly every experiment of all methods for all 

corpora. 

Section 6.3 shows that the amount of time required to gather results for each protocol vary 
considerably. Dynamic models take slightly longer than static ones due to the need to reload 
the models or undo changes after each comparison. Non-concatenated models take 
considerably longer to compute results for due to the large amounts of comparisons required, 

making it seem very convenient that concatenated models performed best. 
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Corpus Protocol Method Accuracy 
20Newsgroups Cone, Dyn C-Measure 10 0.9070 
20Newsirroups Cone, Stat C-Measure 9,10 0.9066 
20Newsgroups NonConc, Dyn C-Measure 15 0.8520 
20News1rroups NonConc, Stat C-Measure 15 0.8400 
20News2roups Cone, Dvn R-Ran2es, 4-15 0.9147 
20Newsgroups Cone, Stat R-Ranges, 4-15 0.9136 
20Newsgroups NonConc, Dyn R-Ranges, 11-19 0.8523 
20Newsirroups NonConc, Stat R-Ranges, 12-13 0.8325 
20Newsgroups Cone, Dyn PPMD, Order 2, no exclusions 0.8955 
20Newsgroups Cone, Stat PPMD, Order 2, no exclusions 0.8910 
20Newsgroups NonConc, Dvn PPMC, Order 2, with exclusions 0.7828 
2 ON ews groups NonConc, Stat PPMD, Order 2, with exclusions 0.7537 

Gutenberg Cone, Dvn C-Measure, 24,25 0.78 
Gutenberg Cone, Stat C-Measure, 21 0.78 
Gutenberg NonConc, Dvn C-Measure, 22-27 0.78 
Gutenberg NonConc, Stat C-Measure, 23 0.78 
Gutenberg Cone, Dvn R-Ranges, numerous 0.775 
Gutenberg Cone, Stat R-Ranges, numerous 0.767 
Gutenberg NonConc, Dyn R>.a 20-24, R-Ranges 19-24,27-29 0.775 

Gutenberg NonConc, Stat R-Ranges, numerous 0.775 
Gutenber2 Cone, Dvn PPMC 3 no excl, PPMD 3 with/no excl 0.95 
Gutenberg Cone, Stat PPMC 2 with excl, PPMD 2/3/4 with excl 0.75 
Gutenberg NonConc, Dvn PPMC 3 with excl, PPMD 5 with excl 0.925 
Gutenberg NonConc, Stat PPMC 6/7 with excl, PPMD 6/7 with excl 0.6 

RCVl-Author Cone Dvn C-Measure, 16 0.8830 
RCVl-Author Cone Stat C-Measure, 12 0.8837 
RCVl-Author Cone Dvn R-Ran2:es, 3-28, 4-28 0.888 
RCVl -Author Cone Stat R'?.a 11,12,26, R-Ranges numerous 0.887 

RCVl-Author Cone Dvn PPMD, 3 no exclusions 0.8533 
RCVl-Author Cone Stat PPMD, 3 no exclusions 0.8518 

R-10 Cone, Dvn C-Measure, 15 0.9177 
R-10 Cone, Stat C-Measure, 14 0.9173 
R-10 NonConc, Dvn C-Measure, 9 0.8927 
R-10 NonConc, Stat C-Measure, 9 0.8954 
R-10 Cone, Dyn R>.a , 9,11 0.920 

R-10 Cone, Stat R>.a , 9,11 0.920 

R-10 NonConc, Dyn R-Ranges, 8-9 0.893 
R-10 NonConc, Stat R-Ranges, 7-11, 8-9 0.898 
R-10 Cone, Dvn PPMC, 3, with exclusions 0.9531 
R-10 Cone, Stat PPMC, 3, with exclusions 0.9455 
R-10 NonConc, Dyn PPMC, 2, with exclusions 0.8556 
R-10 NonConc, Stat PPMC, 4, no exclusions 0.9080 

Table 6.47: Highest achieved accuracies for each method, for each protocol against each 
corpus. 
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Corpus Method Acc. R p BEP Citation Number 
Gutenberg Markov chains 0.7472 Khmelev, D. 2001 

Gutenberg RAR 0.82 Marton. et al. 2005 

Gutenberg LZW 0.83 Marton. et al. 2005 
Gutenberg GZIP 0.67 Marton. et al.2005 
R-10 Word 0.32 Yang. 1999 

R-10 kNN 0.85 Yang. 1999 

R-10 LLSF 0.85 Yang. 1999 

R-10 CLASSI 0.80 Yang. 1999 
R-10 RIPPER 0.80 Yang. 1999 

R-10 SWAP-I 0.79 Yang. 1999 

R-10 DTree C4.5 0.79 Yang. 1999 
R-10 CHARADE 0.78 Yang. 1999 
R-10 EXPERTS (n-gram) 0.76 Yang. 1999 

R-10 Rocchio 0.75 Yang. 1999 

R-10 NaiveBayes 0.71 Yang. 1999 
R-10 Action algorithm 0.8691 0.8949 0.895 D' Alessio. 1998 

R-10 SVM 0.8120 0.9137 Jimin, L. et al. 2001 
R-10 KNN 0.8339 0.8807 J imin, L. et al. 200 I 

R-10 LSF 0.8507 0.8489 Jimin, L. et al. 2001 

R-10 NNet 0.7842 0.8785 Jimin, L. et al. 2001 

R-10 Naive Baves 0.7688 0.8245 Jimin, L. et al. 200 I 

R-10 Naive Baves 0.848 Teahan, et al. 2001 

R-10 LSVM 0.919 Teahan, et al. 2001 

R-10 PPMC Order2 0.863 Teahan, et al. 2001 

R-10 PPMD Order 3 with excl 0.910 Teahan, et al. 2001 
R-10 PPMD Order 3, no excl 0.902 Teahan, et al. 2001 

R-10 Findsim 0.646 Dumais, S. et al. 1998 

R-10 Naive Baves 0.8 15 Dumais, S. et al. 1998 

R-10 BavesNets 0.85 Dumais, S. et al. 1998 
R-10 Decision Trees 0.884 Dumais, S. et al. 1998 

R-10 LinearSVM 0.92 Dumais, S. et al. 1998 
R-10 RAR 0.87 Marton et al. 2005 

R-10 LZW 0.84 Marton et al. 2005 

R-10 GZIP 0.83 Marton et al. 2005 

R-10 SVM + 1B (information 0.916 Bekkerman, R. 2001 
bottleneck) clustering 

20News Naive Bayes 0.85 McCallum, A. et al. 1998 

20News PPMD 0.821 Teahan, et al. 2001 

20News Multivariate Bernoulli event 0.74 Teahan, et al. 2001 
model 

20News Multinomial model 0.85 Teahan, et al. 200 I 

20News PrTFIDF 0.91 8 Joachims, T. 1997 
20News Naiev Baves 0.896 Joachims, T. 1997 

20News TFIDF 0.863 Joachims, T. I 997 
20News SVM + 1B (information 0.895 Bekkerman, R. 200 I 

bottleneck) clustering 
20News RAR 0.90 Marton et al. 2005 

20News LZW 0.66 Marton et al. 2005 
20News GZfP 0.47 Marton et al. 2005 
RCV I -Author PPMD Order 8 with excl 0.8876 Hunnisett, D. Et al. 2004 

RCV I-Author PPMD Order 7 ,8 no excl 0.8978 Hunnisett, D. Et al. 2004 
RCV I-Author C-Measure Order 13 0.9038 Hunnisett, D. Et al. 2004 

RCV I-Author SVM 0.85 Hunnisett, D. Et al. 2004 
RCV I-Author R-Measure 0.89 Hunnisett, D. Et al. 2004 
RCV I -Author RAR 0.894 Hunnisett, D. Et al. 2004 
RCVI-Author Multi-SVM 0.85 Khmelev, D. Et al. 2003 

RCVl -Author Bxip2 0.482 Khmelev, D. Et al. 2003 
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RCVI-Author Gzip 0.594 Khmelev, D. Et al. 2003 

RCV I -Author Markov chains order 1 0.661 Khmelev, D. Et al. 2003 

RCVI-Author Markov chains order 2 0.645 K.hmelev, D. Et al. 2003 

RCVI-Author Markov chains order 3 0.633 Khmelev, D. Et al. 2003 

RCVI-Author PPMD Order 2 0.813 Khmelev, D. Et al. 2003 

RCVl-Author PPMD Order 3 0.864 K.hmelev, D. Et al. 2003 

RCV I-Author PPMD Order4 0.884 Khmelev, D. Et al. 2003 

RCVJ-Author PPMD Order 5 0.892 Khmelev, D. Et al. 2003 

RCV I -Author RAR 0.78 Marton et al. 2005 

RCV I-Author LZW 0.66 Marton et al. 2005 

RCV I-Author GZIP 0.79 Marton et al. 2005 

Table 6.48: Best Results from other text categorization methods. 

Table 6.48 lists results from past experiments for each of the studied corpora. The evaluation 
techniques of some are different and so columns are provided for accuracy (Acc.), recall (R), 
precision (P) and also breakeven point (BEP). The citation number pointing to the reference 
is included in the rightmost column. By comparing the results for stream-based methods 

against those in Table 6.48 we can see that for 20Newsgroups, R-Ranges outperforms all 
other methods apart from one. Other methods exist that outperform C-Measure and R­
Measure for Gutenberg, however, PPM has clearly outperformed any other method with an 

accuracy of 0.95. 

None of the new results were able to reach the performance achieved of past results for 
RCVl-Author but the best performing was found to be C-Measure by Hunnisett & Teahan 
(2004). Table 6.48 shows that there has been substantial experimentation performed against 
Reuters-21578 and our experimentation of PPM was found to achieve the best results, having 

accuracy of 0.9531. 

For each corpus in tum, Table 6.47 allows us to easily evaluate the performance of each 

algorithm but it is more difficult to evaluate the performance of each measure in tum against 
each of the corpora and this is the reasoning for Tables 6.49 - 6.53. It has been shown that the 
concatenated dynamic protocol performs better than any other overall therefore the following 

results have been tabulated for this protocol only. 
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Order 20-Newsgroups Gutenberg RCVl-Author Reuters-IO 

1 0.043 0.080 0.018 0.311 

2 0.238 0.180 0.487 0.655 

3 0.788 0.180 0.793 0.747 

4 0.879 0.230 0.834 0.779 

5 0.898 0.300 0.856 0.834 

6 0.905 0.300 0.861 0.862 

7 0.904 0.300 0.866 0.878 

8 0.905 0.350 0.872 0.894 

9 0.906 0.400 0.875 0.899 

10 0.907 0.450 0.875 0.902 

11 0.906 0.480 0.878 0.906 

12 0.904 0.550 0.882 0.912 

13 0.902 0.550 0.882 0.915 

14 0.898 0.580 0.882 0.917 

15 0.892 0.600 0.879 0.918 

16 0.889 0.630 0.883 0.917 

17 0.885 0.630 0.882 0.915 

18 0.879 0.630 0.878 0.913 

19 0.875 0.700 0.876 0.907 

20 0.871 0.700 0.878 0.903 

21 0.868 0.750 0.875 0.895 

22 0.864 0.750 0.875 0.891 

23 0.861 0.750 0.869 0.884 

24 0.857 0.780 0.870 0.878 

25 0.855 0.780 0.872 0.872 

26 0.852 0.750 0.873 0.861 

27 0.848 0.750 0.870 0.844 

28 0.845 0.750 0.864 0.827 

29 0.842 0.730 0.861 0.800 

30 0.839 0.680 0.860 0.781 

31 0.835 0.630 0.856 0.760 

32 0.832 0.580 0.851 0.728 

33 0.830 0.500 0.849 0.699 

34 0.827 0.450 0.847 0.667 

35 0.824 0.430 0.842 0.645 

36 0.821 0.430 0.839 0.619 

37 0.819 0.450 0.834 0.583 

38 0.817 0.450 0.827 0.558 

39 0.814 0.400 0.822 0.525 

40 0.813 0.380 0.815 0.499 

Table 6.49: C-Measure results for each of the corpora for the concatenated dynamic 
protocol. 
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Order 20-News2rouos Gutenberg RCVl-Author Reuters-IO 
1 0.907 0.475 0.879 0.908 

2 0.907 0.475 0.879 0.908 

3 0.907 0.475 0.879 0.908 

4 0.9066 0.475 0.88 0.909 

5 0.9063 0.475 0.88 0.911 

6 0.9048 0.475 0.879 0.914 

7 0.9023 0.475 0.88 0.916 

8 0.8994 0.5 0.88 0.918 

9 0.8969 0.525 0.879 0.92 

10 0.8932 0.525 0.881 0.919 

11 0.8896 0.55 0.88 0.92 

12 0.8858 0.525 0.881 0.919 

13 0.8807 0.525 0.882 0.916 

14 0.8761 0.55 0.884 0.913 

15 0.8721 0.55 0.881 0.909 

16 0.8684 0.6 0.877 0.907 

17 0.8649 0.675 0.875 0.903 

18 0.8627 0.7 0.875 0.893 

19 0.8595 0.725 0.872 0.891 

20 0.8569 0.725 0.869 0.886 

21 0.8548 0.725 0.867 0.88 

22 0.8521 0.725 0.868 0.875 

23 0.8495 0.75 0.865 0.871 

24 0.846 0.725 0.862 0.865 

25 0.8432 0.725 0.859 0.857 

26 0.8407 0.725 0.856 0.848 

27 0.8378 0.675 0.853 0.834 

28 0.8358 0.625 0.851 0.819 

29 0.833 1 0.575 0.847 0.797 

30 0.8303 0.525 0.845 0.777 

Table 6.50: R~q-Measure results for each of the corpora for the concatenated dynamic 

protocol. 
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Order 20-Newseroups Gutenber2 RCVl-Author Reuters-10 
1 0.0427 0.075 0.025 0.311 

2 0.2379 0.175 0.47 0.655 

3 0.7805 0.15 0.787 0.745 

4 0.8727 0.2 0.83 0.778 

5 0.8939 0.3 0.85 0.811 

6 0.9032 0.275 0.862 0.839 

7 0.9056 0.3 0.863 0.858 

8 0.9084 0.3 0.864 0.87 

9 0.9094 0.3 0.871 0.878 

10 0.9107 0.35 0.872 0.884 

11 0.9113 0.35 0.875 0.89 

12 0.913 0.4 0.875 0.895 

13 0.9133 0.45 0.877 0.896 

14 0.9141 0.45 0.878 0.898 

15 0.9145 0.45 0.879 0.899 

16 0.914 0.45 0.879 0.899 

17 0.9135 0.45 0.88 0.898 

18 0.9126 0.45 0.88 0.899 

19 0.9119 0.45 0.88 0.9 

20 0.9099 0.45 0.881 0.901 

21 0.9072 0.45 0.882 0.901 

22 0.9047 0.475 0.883 0.901 

23 0.9008 0.475 0.882 0.899 

24 0.8949 0.475 0.883 0.901 

25 0.8904 0.475 0.884 0.896 

26 0.8853 0.475 0.884 0.888 

27 0.8806 0.475 0.886 0.878 

28 0.8766 0.475 0.887 0.863 

29 0.8726 0.475 0.885 0.842 

30 0.8697 0.475 0.882 0.816 

Table 6.51: R5 q-Measure results for each of the corpora for the concatenated dynamic 

protocol. 

20-Newsgroups Gutenberg RCVl-Author Reuters-10 

0.907 0.475 0.879 0.908 

Table 6.52: rmax results for each of the corpora for the concatenated dynamic protocol. 
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PPMC PPMD 

With exclusions Without exclusions W ith exclusions Wit hout exclusions 

20-Newsgroups 0.8886 0.893 0.892 0.8955 

Gutenberg 0.8 0.8 0.75 0.775 

RCVl-Author 0.7994 0.8055 0.8062 0.8146 

Reuters-10 0.9477 0.9437 0.9455 0.945 

Table 6.53: PPMC and PPMD results for each of the corpora for the concatenated 
dynamic protocol. 

rmax and the new R!>q-Measure is always outperformed by either the R~q-Measure or the 

Rp .. q-Measure. Overall, the new R~q and Rp .. q measures compare favourably with the 

normalised C-Measure and PPM results and with the best results previously published, 

including feature-based results. 

Interestingly, neither PPMC nor PPMD dominates, unlike compression experiments where 

PPMD usually leads to better compression. The remarkable aspect of the PPM results is that 
no one order is clearly better across the protocols; and interestingly, models that do not use 
exclusions in some cases are better than those that do. This is counter-intuitive from an 
information theoretic perspective where one would expect that the model that performs better 
at compression (usually PPMD order 5 with exclusions) would also dominate for text 
categorization. An explanation might be that the categorization process requires optimizing 
for the best class decision, not best compression. That is, the information concerning the class 
is not being encoded, so is not being factored into the optimization. Also, performing no 

exclusions penalizes the classifier by adding an avoidable coding cost, but this only occurs 
when an escape has occurred to a lower context, strong evidence that the class may be 

invalid; so the extra coding cost is aiding the classification decision. 

Table 6.49 illustrates that the results vary markedly between Gutenberg and the other three 

corpora. For 20 Newsgroups, RCVl-Author and Reuters-I O Ck-Measures using lower values 

of k perform better, with peaks occurring for C lengths between 10 :::; k ~ 16. For 

Gutenberg, in contrast, peaks occur for 24:::; k ~ 25 and this may be due to the substantially 

larger documents found in that collection providing much greater training data for relatively 

few authors. 

It was conjectured in section 3.1 that with natural language text, the shortest substrings would 
be poor discriminants since these short substrings are common across all strings. This has 

been borne out in the results, with the lowest R measure ranges not featuring in the best 

performing methods - for example, for 20 Newsgroups, the best performing method is R4 __ 15 

(where the substrings less than length 4 are ignored), for Reuters- IO the best performing 

methods are R~9 and R~11 (where the substrings less than length 9 or 11 are ignored) and for 
RCV l -Author the best performing methods are R3 __ 28 and R4 __ 28 . It has been shown that for 

Gutenberg peaks occurred for much longer substring lengths. It is not yet known if this is due 

125 IP age 



to the style of text (the included Gutenberg texts are novels) or the large amounts of training 
data for only a few authors. From these results it must be recommended that anyone 

attempting to categorise new streams exclude shorter substrings and to use a longer minimum 

shortest substring length for streams similar to the Gutenberg corpus. 
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Chapter 7 

Conclusions & future work 

7.1 Discussion 

There were two problems that motivated the work within this thesis. The first was that 

although stream based methods for text categorization have been shown to perform well in 
some experiments, no thorough study of their performance has ever been performed on a 
number of major corpora and their results have not been thoroughly compared against the 

current state-of-the-art feature based techniques. This is an important problem as the merit of 
the techniques cannot be fully established until a thorough study has been performed. A 
number of new stream based methods have been detailed within the thesis and one of these 
new techniques, R-Ranges, bas been shown to outperform all other methods for two of the 

corpora. 

The concept of protocols and how each affects categorization results has also not been 

studied thoroughly across a number of methods for several corpora. The experimentation 
performed within chapter 6 showed that the protocol does indeed affect the accuracies of each 
method and the concatenated dynamic protocol was found to outperform all others on most 
occasions and performs consistently well across all methods, for all corpora. This study has 
now conclusively shown that the method used to categorise text must not be the only one, the 

selection of protocol is also just as important. 

From the experimentation, a third problem was identified. It has been highlighted by Yang 
(1999) that it is often difficult to recreate the exact experimentation conditions of previous 

studies. One reason for this is that the training and testing splits often differ. To ensure that 
all methods and protocols were fairly compared, a toolkit was developed to offer a single 
location from which all methods could be ran, for all protocols, on the same data. This is 

important as all experiments can now be accurately recreated and any new techniques can 
then fairly compare its results against all found from within this study. 

7.2 Summary of chapters 

Chapter 2 reviewed important concepts within the field of text categorization and difficulties 
in comparing results among techniques were mentioned. Several applications of text 

categorization were discussed as were the most common feature based approaches to 
categorization. The more common feature based approaches perform pre-processing 
techniques which consumes both time and resources, but it has been shown that stream based 
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approaches do not. Previous stream based methods were discussed and the fact that their 

research was sparse was noted. 

Chapter 3 introduced new stream based categorization techniques. Improved performance to 
the C-Measure has meant that longer substring lengths have been examined and several new 
variants of the R-Measure have been introduced. The chapter also showed how these new 

variants of R-Measure, C-Measure and PPM could be calculated through the use of the suffix 

tree data structure which has not been previously performed. 

After introducing suffix trees as powerful data structures that allow fast searching, chapter 4 

showed that it is possible to compute the stream-based methods in reasonable time and space 

and detailed the implementation of the stream based techniques. 

Chapter 5 details jSCat, a toolkit created to facilitate the text categorization experiments and 
to allow the calculation of several techniques all at once. As well as making it simple to run 
experiments for a number of techniques, the toolkit has been shown to be extensible in order 
to allow the introduction of new techniques and also handles tasks common to categorization. 
Chapter 5 has also shown that optimisations can be found that drastically affect processing 

times and we have now been able to analyse stream based substring lengths that are much 
longer than previous research. One problem with comparing the performance of previous 

studies in Table 6.48 to that of the results found within this study, shown in Table 6.47 is the 
inconsistency. The same subsets will not be often used and the evaluation techniques will 
also differ between experiments. This problem was highlighted by Yang (1999) but the use of 
the toolkit to perform the experiments for all methods meant that all were performed in a 
consistent manner, on the same subsets of corpora and evaluated in the same way and this is 

what is needed for all future research. 

Chapter 6 described the experimental results for text categorization using stream-based 
methods and compared these against a number of feature based techniques. Results obtained 
for C-Measure, PPMC, PPMD and all R-Measure variants showed that stream-based methods 

are able to match the performance of state-of-the-art techniques. PPMC has been shown to 
outperform PPMD overall and also with exclusions achieved higher accuracies on more 
occasions than without. The computational overheads involved with investigating high order 
PPM models for large corpora meant that high orders could not be investigated in all cases. 

However, interestingly Table 6.47 indicates that in some cases low order models can 
outperform higher ones. Table 6.19 shows that as with low order models performing well, in 

some cases substring lengths as low as 1 are important in categorizing texts, especially when 
concatenated models are being used. Concatenated models were found to achieve better 
accuracies than non-concatenated and concatenated dynamic was the best performing 

protocol overall. The best performing substring length for C-Measure varies between corpora 
with lengths of 21-27 achieving high accuracies for Gutenberg; however, lengths of between 
9 and 16 achieved the best results for the other three corpora. For R-Ranges it is difficult 
from the results to say which ranges perform best, however, it is clear that although the best 

ranges vary greatly for each corpora, for each protocol of each corpus the best ranges are very 

close. 

128 I Page 



7 .3 Contributions 

Previous to this study there had been no complete and comparative study on the stream based 

approaches to text categorization. Within chapter 2 it was shown that in the limited study that 
had been performed, the methods performed well and so there was a need for these methods 
to be investigated thoroughly against some well known corpora. Chapter 2 discussed 

protocols and how their variants have previously been used within the study of text 
categorization but again the investigation has been limited and provided a further motivation 

for gathering the results within chapter 6. 

New stream based methods have been developed within the study, namely variants of the R­

Measure algorithm. The study has shown how these new methods and also existing ones 
could be implemented using suffix trees, a data structure allowing for very faster searching of 
substrings between models. It was shown how PPMC, PPMD both with and without update 
exclusions can be implemented using suffix trees and a C-Measure implementation was 

developed that allowed us to investigate longer substring lengths than was possible 

previously. 

The results that have been found further support the fact that stream based classifiers can 
perform as well as current leading techniques, beating them in some cases. In chapter 6, a 
new method R-Ranges was found to achieve the highest results on a number of occasions, 
beating well supported methods such as PPM for 20Newsgroups and RCVl-Author. 
20Newsgroups is known to be a robust measure used for comparing standard text 

categorization and RCV I-Author is good for authorship ascription. The fact that this new 
technique has been found to outperform other state-of-the-art techniques such as PPM 

justifies the work that has been done. 

The results also showed that the choice of protocol does in fact have a major bearing on the 
successfulness of the results, with concatenated dynamic found to outperform all others on 
most occasions across all corpora. Interestingly the highest results of all methods for each 

corpus were all found to have concatenated dynamic as its protocol. 

Chapter 6 also showed that there are major differences between the computational times of 
each protocol with static models taking less time to construct than dynamic ones. 
Concatenated models were shown to take longer to construct than non-concatenated ones but 
it was noted that for many comparisons the models could be stored in memory and compared 

against each testing model yet be loaded only once, this coupled with the fact that generally 
the number of categories is much smaller than the number of training documents means that 

using concatenated models for experimentation if often the quickest method. 

7.4 Review of aims & objectives 

The first objective was to further investigate and perform a comparative study of stream 
based approaches. The results shown in chapter 6 has shown that stream based methods are 
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able to outperform current leading techniques and that they should be considered in any 

future text categorization study. 

The second objective was to discover which stream based approaches perform best in which 
situations. It was hoped to show that for certain corpora or document lengths that certain 
approaches and protocols should be used. The results in chapter 6 were able to show that the 

effectiveness of the techniques varied with each corpus but similarities of corpora usually 
related to similarity in effectiveness of each technique. One interesting discovery was that the 

concatenated dynamic protocol was shown to outperform the other protocols on almost all 
occasions across all the data sets. It would have been desirable to have computed many more 
results, in particular higher order models for the PPM variants but the computation overheads 

meant that this was not possible. An attempt was made to compute the results at an early 
stage but after difficulties in gathering the required subsets of each corpus, much time was 
lost and ideally the experimentation for each would have been performed much earlier in the 

study. 

The final objective was to show that the suffix tree data structure could be used to implement 
each of the stream based algorithms. The complexities of processing each of the techniques 
using suffix trees showed that it is indeed a suitable data structure. However, some of the 

timings shown in chapter 6 highlight the fact that although an individual comparison may be 
quick, some corpora require vast amounts of calculations to be performed and this can in 
some cases take a long time. It was shown in chapter 5 that there are a number of techniques 

available to further improve the time required to load the models and also to limit the amount 
of memory required, such techniques are pruning the tree and storing representations of the 

loaded model within text files so that a node may be added to another quicker after analyzing 

how one node relates to another. 

7 .5 Future work 

As mentioned in 7.2 it was felt that the result for the PPM variants against some of the 
corpora was limited and although it has been shown that higher order models do not always 
guarantee improved classification, the results that have been attained perform well and 

warrant further investigation. One of the biggest problems found during the stages of 
collecting the results was the amount of time it took to compute all of the results. The current 

implementation within the toolkit is for all models and results to be stored within text files 
and loaded as required. In order to greatly increase the flexibility for anyone wishing to take 
forward this work, it would be suggested to instead use a database to store the models and 

results so that the required data could be found without having to load entire files. 

It was hoped that by running experiments of all variants of each algorithm against each 
corpora that it would be possible to state that a particular algorithm performs better on certain 

corpora than others, and to state that this is somehow linked to the sizes and/or type of files 
contained within. It has been shown that for any dataset, short substring lengths should be 
omitted when using C-Measure or R-Measure variants. The desired length of the shortest 
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substring to be included does appear to differ between the types of text. For texts similar to 
those within the Gutenberg dataset, which are novels, this study has found that longer 
substrings of length 21-27 achieving the highest accuracies. However, lengths of between 

roughly 4 and 28 achieving the highest accuracies for the others. In addition to the findings of 
the best performing substring lengths, and that concatenated dynamic models are likely to 
achieve the highest accuracies it has also been found that for some experimentation some 
cleanup of the input stream is likely to be required. It is beneficial to retrieve as much training 

data as possible, however, corpora have been shown to include duplicate files and also 
disclaimer text, both of which should be searched for and removed. These findings serve as 
recommendations for any new study. However, there are types of text not covered within this 

study as it focused on well known corpora i.e. it would be interesting to investigate whether 
our recommendations achieve the highest accuracies for categorizing tweets (twitter updates), 

Facebook status updates or biogs. 

The process of doing background research on the current implementations of stream based 
methods brought with it a number of questions to mind. There was always a concern that a 

training document containing the same word repeatedly would achieve high counts if the 
word existing within the testing stream. It was this thought that brought about the idea that 
the counts of each node could be reduced once they have been matched, essentially the 
opposite process to constructing dynamic models. This reduction could continue until the 
count reaches zero, at which point the node is removed. This would allow similarities to be 
matched whilst removing the possibility that a single word could have such a weighting, 
essentially ensuring that a broader range of nodes are matched for documents to achieve high 

counts. 

Another process that was performed was cleansing of the datasets, for instance Gutenberg 
had lots of disclaimer text that was not part of the original document and does nothing to 

improve the categorization of it. During this process of studying the contents of the corpora it 
was found on a number of occasions that there exists a lot of white space in order to break up 

sections or separate emails and so on. It is possible this could possibly stop substrings of high 
lengths being matched (unless the substring itself was whitespace of course). A class was 
therefore written that removes any extra whitespace from within each document before it is 
categorized but unfortunately due to the overwhelming number of computations to be 
performed for the existing experiments, this experimentation was never performed and could 

well improve the categorization results of each. 
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