)

r—y Pure

Bangor University

DOCTOR OF PHILOSOPHY

An empirical study of stream-based techniques for text categorization

Thomas, Daniel

Award date:
2011

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/an-empirical-study-of-streambased-techniques-for-text-categorization(8ee76e9f-0b20-4833-bc8d-d5bfa498449c).html

An empirical study of stream-based techniques for text
categorization

Daniel Thomas

Abstract

An empirical study of stream-based techniques for text categorization

Daniel Thomas

Due to the popularity of social networking sites such as Twitter, Facebook and blogs, the amount
of electronic text is continuing to grow. There is a need to categorize these vast amounts of
documents and it is no surprise that the field of text categorization is a popular one. The
traditional approach to text categorization is a feature-based approach, normally processing
features based on words. Stream based methods have been shown to perform well in some
experimentations but there has been no thorough study of their performance on a number of
major corpora and their results have not been thoroughly compared against the current state-of-
the-art feature based techniques. This is an important problem as the techniques cannot be fully
recognized until a thorough study has been performed.

The concept of protocols and how each affects categorization results has also not been studied
thoroughly across a number of methods for several corpora. It is important to attempt to discover
which stream based approaches perform best in which situations and how the choice of protocol
affects their performance, if at all. It is hoped that it can be shown that for certain corpora or
document lengths that certain approaches and protocols should be used. These findings could
then drive the decision of which methods and protocols to use for future experiments.

An existing problem within the field of text categorization is that it is often difficult to recreate
the exact experimentation conditions of previous studies. One reason for this is that the training
and testing splits often differ and it was important that this study did not add to this existing
problem, that the experimentations could be accurately recreated and that others would be fairly
compared.

A toolkit has been developed that allows all of the methods and protocols to be compared in a
consistent manner. The toolkit models the streams using suffix trees and all of the stream based
methods have been implemented. In addition to the implementation of existing techniques, a
number of new stream based methods have been detailed within the thesis and one of these new
techniques, R-Ranges, has been shown to outperform all other methods for two of the corpora,
including PPM (Prediction by Partial Matching) variants, state-of-the-art techniques that are
mathematically well supported. The experimentation has also shown that the protocol (whether
static or dynamic training models are used in addition to training documents of the same
category being concatenated or not) does indeed affect the accuracies of each method. The
concatenated dynamic protocol was found to outperform all others and performs consistently
well across all methods, for all corpora. This study has now conclusively shown that the method
used to categorize text must not be the only one, the selection of protocol is also just as
important.

Acknowledgements

I am sitting at home rewriting this section at three in the morning having actually already written
this section within the first month of studying. I originally spoke of people who are no longer in my
life and others who I have not seen in a long time. This has made me realise what a huge part of my
life this study has become and how much my life has changed during this time.

[originally thanked my fiancée Amy Davies for giving me nothing but love and support no matter
how tired I was, and the long nights hadn’t even begun. 1 no longer have a fiancée named Amy
Davies, thankfully she agreed to marry me on the 1* August 2010 and I would like to take this
opportunity to thank her again as I see her as the greatest gift I have ever received. Amy was
pregnant with our daughter Alisha when I was given the opportunity to study for a PhD, though we
didn’t know this at the time. I now have another daughter, Olivia, and she has ensured that | have
had the opportunity of becoming the proudest father in the world, twice. There is no way I could
mention my beautiful daughters without apologising for all the times 1 had to turn down the
opportunity to play with them as 1 was working but | must also thank them for the unconditional
love I received through this time.

I would like to thank my father, Dewi Thomas and my mother Susan Thomas who have both given
me their full support throughout my life and have always encouraged me to be the best I can be. |
would like to also thank my sister Michelle and brother Stephen as they have also supported me in
various aspects.

I would like to thank all of my friends as they have been understanding of the lack of time I could
spend with them and also for helping me move home no less than eleven times during this time.
They may be thankful to hear that I am happily settled at our current home...for now at least. 1
would like to thank Leo Stammer who first captured my interest in the world of computing as from
him I gained a thirst for knowledge and this is what led me to choose Computer Science as my
course of study. I would also like to thank Dr. Robert Shepherd for helping me settle into my role as
a postgraduate student during my first year.

Finally I would like to state how grateful 1 am to both the University Of Wales, Bangor and Dr.
William J. Teahan for offering me the opportunity to study text categorization at the School Of
Informatics, Bangor. Dr. Teahan has vast experience and knowledge within the field of text
categorization and I am grateful to him for sharing his knowledge and experience with myself. Dr.
Teahan was always available for guidance and I have come to see him as both a friend and a mentor.

2|Page

Contents

Abstract

Acknowledgements

1 Overview

1.1
1.2
1.3
1.4
L3

Introduction

Background & Motivation
Objectives

Contributions

Thesis Outline

2 Background

2.1

2.2

2.3

2.4

2.5

Introduction

Applications of text categorization techniques

2.2.1
2:2:2
223
224

Authorship Attribution

Genre Categorization

Topic Categorization

Other types of classification
2.2.4.1 Language Identification
2.2.4.2 Dialect Identification
2.2.4.3 Style Classification
2.2.4.4 Document Indexing
2.2.4.5 A stage within Natural Language Processing Systems
2.2.4.6 Spam Filtering

2.2.4.7 Sentiment Classification
2.2.4.8 Gender Classification
2.2.4.9 Others

Text pre-processing techniques

231
2.3.2
233
234
235

Tokenization

Feature Selection and Extraction
Stop word removal

Stemming

Term Selection

Data Sets

24.1
242
243
2.4.4
2.4.5

Reuters-21578
Reuters-10 (R10)
RCV1-Author
20-Newsgroups
Gutenberg-10 (Gu-10)

Evaluation Techniques

2.8.1
252
253

Contingency Table
Precision
Recall

o =

10

10
10
11
12
12

14

15
16
16
17
17
17
18
18
19
19
19
20
21
22

22
22
22
22
23
23

23
23
24
24
24
24

24
25
25
20

3|I:‘2‘_f(

2.6

2.7

2.8

2.5.4 Accuracy

2.5.5 FIl-Measure

2.5.6 Macro-averaging / Micro-averaging
2.5.7 The difficulty of comparing results

Feature-based categorization
2.6.1 Naive Bayes

2.6.2 N-Grams

2.63 SVM

Stream-based Categorization

2.7.1 C-Measure

2.7.2 R-Measure

2.7.3 PPM (Prediction By Partial Matching)

Protocols

Extensions for stream based models

3d

3.2

33

34

Extensions of R-Measure
3.1.1 R-Ranges

Extensions of C-Measure
Modifications to PPM

Complexity considerations

Implementation of stream-based models using Suffix Trees

4.1

4.2

Suffix Trees

Implementation

4.2.1 Static C-Measure

4.2.2 Dynamic C-Measure

4.2.3 PPM Without Full Exclusions
4.2.4 PPM With Full Exclusions
4.2.5 Dynamic PPMC

A Java based framework for implementing stream based

models
5.1 Overview
5.2 Tools

5.2.1 Splitting the corpora

5.2.2 Concatenating categories
5.2.3 Suffix Tree representation
5.2.4 Extracting suffixes

25
25
25
26

27
27
27
28

28
28
29
30

31

34

34
37

37
38

40

42
42

45
46
48
52
53
55

7

57

58
59
60
61
61

4|“ d gc

5.2.5 Optimisation note

5.2.6 Trimming concatenated models

5.2.7 Building the tree

5.2.8 Checking the counts within the suffix tree

53 Base classes
5.3.1 Comparison class
5.3.2 Test Collection class
5.3.3 Extending Test Collection class
5.3.4 Collection class

5.4 Implementation of the algorithms

5.4.1 C-Measure

5.4.1.1 Static case

5.4.1.2 Dynamic case
5.4.2 R-Measure

5.4.2.1 pmeE

54.2.2 R

5423 R,

5.4.2.4 R-Ranges
543 PPM
5.4.4 Using the toolkit

Experimental results

6.1 Experimental setup
6.1.1 Corpora setup
6.1.1.1 Reuters-10
6.1.1.2 RCV1-Author
6.1.1.3 20Newsgroups
6.1.1.4 Gutenberg
6.1.2 Hardware details

6.2 Results
6.2.1 C-Measure
6.2.2 PPM
6.2.3 R-Measure

6.3 Execution times

Conclusions & Future Work
7.1 Discussion

7.2 Summary of chapters

7.3 Contributions

7.4 Review of aims & objectives

62
64
64
67

67
68
68
69
69

71
71
71
72
74
74
74
74
75
75
76

79

79
i
79
81
82
82
83

84
84
92
99

117

127
127
127
129

129

7.5 Future work 130

8 References 132

6|Page

List of figures

2.1
4.1
42
43
4.4
4.5
4.6

4.7

4.8
4.9

4.10
4.11

5.1
5.2
53
54
5.5
5.6
3.7
5.8
39
5.10
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

Example process of text categorization

Suffix tree representation of string ‘This is a threate’

Suffix tree representation of string ‘abrabras’

Suffix tree representation of the string “abracadabras”

Suffix trees of training file “abrabra* and test stream ““bre”

Dynamic suffix tree of training file “abrabra*” once * has been processed

Dynamic suffix tree of training file “abrabra*” once ‘b’ from within suffix bre has been
processed

Dynamic suffix tree of training file “abrabra*” once ‘br’ from within suffix bre has been
processed

Dynamic suffix tree of training file “abrabra*” once the suffix bre has been processed
Dynamic suffix tree of training file “abrabra+” once ‘r’ from within suffix re has been
processed

Dynamic suffix tree of training file “abrabras” once the suffix r* has been processed
Dynamic suffix tree of training file “abrabra*” once the testing stream xbrx+ has been
processed

High level overview of jSCat

Example output of split parent directories

Example directory listing found within each split

Output of the concatenated files parent directory

Example output of concatenated training files

Suffix tree representation classes

Original tree before adding node which matches all characters within the current node
Tree shown in 4.10 after inserted the next node

Example extension of the base classes

Example of testing string being concatenated onto training string for dynamic cases
20Newsgroups C-Measure

Gutenberg C-Measure

RCV1-Author C-Measure

RCV1-10 C-Measure

20Newsgroups PPMC

20Newsgroups PPMD

Gutenberg PPMC

Gutenberg PPMD

RCV1-Author PPMC

RCV1-Author PPMD

Reuters-10 PPMC

Reuters-10 PPMD

7|Pc

15
44
45
45
46
48
49

49

50
31

51
52

58
59
39
60
60
61
66
67
68
73
86
88
90
92
93
93
94
95
96
97
98
98

e

List of tables

2.1
2.2
3.1
4.1
4.2
4.3
4.4
5.1
32
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39

Contingency Table
Protocols for stream-based text categorization

PPMC model after processing the string abracadabra with maximum order of 2

List of pointers within context list after processing the symbols ‘ab’
Possible context list at order 1 without exclusions

Possible context list at order 1 with full exclusions

Context list example after processing the string ‘abr’

Example subset of suffix model information, from which we construct a suffix tree

Parameter information for C-Measure setCounts method

The categories of Reuters 10 (R10)

Authors within Reuters-Author (R9)

The categories of 20-Newsgroups

The categories of Gutenberg

Corpora Summary

20Newsgroups C-Measure

Gutenberg C-Measure

Reuters-Author C-Measure

Reuters-10 C-Measure

20Newsgroups PPMC

20Newsgroups PPMD

Gutenberg PPMC

Gutenberg PPMD

Reuters-Author PPMC

Reuters-Author PPMD

Reuters-10 PPMC

Reuters-10 PPMD

20Newsgroups R<q-Measure

20Newsgroups R ,-Measure

R-Range average accuracies for 20Newsgroups, Concatenated Dynamic
R-Range average accuracies for 20Newsgroups, Concatenated Static
R-Range average accuracies for 20Newsgroups, Non-concatenated Dynamic
R-Range average accuracies for 20Newsgroups, Non-concatenated Static
r’™aX ayerage accuracies for 20Newsgroups

Gutenberg R<q-Measure

Gutenberg R 4-Measure

R-Range average accuracies for Gutenberg, Concatenated Dynamic
R-Range average accuracies for Gutenberg, Concatenated Static
R-Range average accuracies for Gutenberg, Non-concatenated Static
R-Range average accuracies for Gutenberg, Non-concatenated Dynamic
™ average accuracies for Gutenberg

Reuters-Author R<-Measure

Reuters-Author R, -Measure

R-Range average accuracies for Author, Concatenated Dynamic
R-Range average accuracies for Author, Concatenated Static

r’™a average accuracies for Author

Reuters-10 R¢q-Measure

Reuters-10 R -Measure

R-Range average accuracies for Reuters-10, Concatenated Dynamic

25
32
39
51
52
52
53
61
69
80
81
82
83
83
85
87
89
91
92
93
94
95
96
96
97
98
100
101
102
102
103
103
103
105
106
107
107
108
108
108
110
111
112
112
112
113
114
115

8 | P a :__'_ (&

6.40 R-Range average accuracies for Reuters-10, Concatenated Static 115

6.41 R-Range average accuracies for Reuters-10, Non-concatenated Static 116
6.42 R-Range average accuracies for Reuters-10, Non-concatenated Dynamic 116
6.43 r™a* average accuracies for Reuters-10 116
6.44 Average timings in seconds for C-Measure 20Newsgroups 117
6.45 Average Timings in seconds for PPMC 20Newsgroups 117
6.46 Average Timings in seconds for PPMD 20Newsgroups 118
6.47 Results for each method, for each protocol against each corpus 119
6.48 Best Results from other text categorization methods 120
6.49 C-Measure results for each of the corpora for the concatenated dynamic protocol 122
6.50 R,,-Measure results for each of the corpora for the concatenated dynamic protocol 123
6.51 Rc,;-Measure results for each of the corpora for the concatenated dynamic protocol 124
6.52 r™#* results for each of the corpora for the concatenated dynamic protocol 124

6.53 PPMC and PPMD results for each of the corpora for the concatenated dynamic protocol 125

List of code samples

5.1 Inserting the next node into our tree 65
5.2 Base processing of non-concatenated comparisons 70
5.3 Base processing of concatenated comparisons 70
54 Coded Normalised R-Measure Value 74
5.5 Coded method for encoding all symbols for PPM 75
5.6 jSCat’s main entry point 77

9|l};t;_'c

Chapter 1

Overview

1.1 Introduction

The amount of electronic text is continuing to grow due to the overwhelming amounts of
information and users on the Internet today. There is a need to categorize these vast amounts
of documents and it is no surprise that the field of text categorization is a popular one. Users
are becoming accustomed to having search engines retrieve the information they want in an
instance with minimal effort. It is important to be able to classify information, no matter what
the format, in order to ensure that the relevant information is returned.

The traditional approach to text categorization is a feature-based approach, normally
processing features based on words. Hunnisett & Teahan (2004) defined a simple frequency-
based measure for text categorization called the “C-Measure” which regardless of its
simplicity has been proven to outperform a number of state of the art techniques. Although
the effectiveness of the algorithm has been proven in a small study, no thorough study has
been performed which measures the effectiveness of this approach, or indeed any other of the
alternative stream based approaches in order to rigorously compare them against feature
based approaches. The aim of this thesis has been to confirm that stream based approaches
perform as well as the current leading feature based approaches and that these approaches
should be considered in all future comparatives study within the field of text categorization.

1.2 Background & Motivation

It 1s the presence of unknowns and gaps in research that have formed the motivation behind
this research. Small experiments have shown that stream based approaches achieve results
that are competitive to traditional feature based approaches but there is a need for a thorough
study to be performed. Hunnisett & Teahan (2004) discuss difficulties in processing substring
lengths of considerable length and it is unknown if these yet to be researched lengths would
further improve performance and surpass the already high accuracies that have been achieved
using their technique. There is also a requirement to investigate the performance of these
algorithms on several corpora in order to determine if their good performance is consistent.
Part of the motivation behind the experiments in this thesis is to determine experimentally
which measure performs better or whether different measures perform better in different
domains.

The emphasis of the study is on models based on streams of character sequences (hence the
term “stream-based” text categorization which will be mentioned numerous times throughout

10“’11 gc

this thesis), but feature-based approaches shall also be reviewed for comparison, though in
less detail. Compression-based approaches, usually based on the well-performed compression
scheme PPM (Cleary and Witten 1984) have shown that models based on character streams
are better than word models (Teahan, 1998); and we can avoid issues such as: word
segmentation; normalisation e.g. stemming (reducing morphological variants to the root
word); word sense disambiguation; and hapex legomena (words occurring only once within
the text). The commonly held assumption that data compression is a “good” method for text
categorization based on the fact that it is theoretically well founded creates a motivation to
further investigate this assumption.

The methodology of how the stream-based categorization is performed based on whether
static or dynamic models are used, and whether the training documents of the same category
are concatenated or non-concatenated shall be termed as “protocols”. The experimental
performance of the newest protocol described in Hunnisett (2010), and of the other three
protocols, are explained more fully by examining how these protocols are used to perform
uni-label classification for text categorization, how both the protocols and methods can be
implemented using suffix trees and the performance of each.

This thesis also explores the use of suffix trees as a universal data structure for storing the
model representations. This data structure allows multiple similarity measures to be
calculated using a single pass through the training and test sequences. Khmelev (2000) used
suffix arrays to estimate probabilities for Markov models in authorship ascription studies;
Khmelev & Teahan (2003), also used suffix arrays to implement R-Measure described later;
but these implementations can be simplified when using suffix trees as cumulative counts can
be associated with each node of the tree (Teahan, 1998; Bratko et al., 2006).

The number of protocols and algorithms being investigated brought with it a requirement for
a common toolkit to be designed and implemented in order to facilitate the text categorization
experiments. A toolkit has been developed in Java and its purpose is to handle all stages of
the experimental process including preparation of the input data, splitting the data for cross
validation, performing all experiments in a single pass and outputting the results for each
experiment to allow simple comparison of each of the algorithms and procedures.

1.3 Objectives
The objectives of this research are as follows:

e to further investigate and perform a comparative study of stream based approaches;

e to discover which stream based approaches perform best in which situations. It was
hoped to show that for certain corpora or document lengths that certain approaches
and protocols should be used;

e to show that a single data structure, a suffix tree can be used to implement each of the
stream based algorithms.

11]Pa

¢

P&

There 1s a need for results to be calculated in a consistent manner and a toolkit needed to be
designed and developed to aid this. This single toolset would allow us to prepare the data and
compute results before comparing them against previous examinations of other techniques. It
is hoped that future studies may implement their algorithms within the toolkit so that the
collection of classes and algorithms may grow and make comparing results easier and also
less misleading.

1.4 Contributions

Though stream based approaches have been shown to perform well in small studies, there has
been no complete and comparative study on their performance. This thesis has compared
PPM, C-Measure and the closely linked algorithm R-Measure (Khemelev & Teahan, 2003).
Variants of these algorithms, new implementations and their examination across a number of
corpora and for longer suffix lengths than has been done in previous studies is novel work.
The “protocols” of how stream-based categorization is performed, based on whether static or
dynamic models perform best, and whether the training documents of categories should be
concatenated or not, i1s described in detail.

A toolkit has been designed and implemented in order to facilitate the text categorization
experiments. The toolkit, named jSCat, has been developed in Java and its purpose is to
handle all stages of the experimental process including preparation of the input data, splitting
the data for cross validation and also to perform all experiments in a single pass before
outputting the results for each process to allow a simple comparison of each algorithm and
procedure.

1.5 Thesis Outline

Chapter 2 offers a background to research within the field of text categorization and also
describes a number of its applications. The chapter discusses the different approaches and
techniques used within the field as well as their differences. The chapter also discusses the
performance of each technique within different application domains and lists results to
support this. The most popular corpora used within classification experiments are listed as
well as the most popular techniques for evaluating experimental results.

Chapter 3 explains the new techniques which have been explored during the time of the study
and also details all new work and improvements relating to C-Measure, R-Measure and PPM.

Chapter 4 shows how the different protocols for all models have been implemented using
suffix trees.

Chapter 5 details an overview of the toolkit that has been created to aid in the calculation and
comparison of the many different techniques. This chapter explains the components that exist
within the toolkit and explains how the toolkit allows the introduction of categorization

12|Page

techniques through the extension of base classes. The implementation and also its usage are
explained through discussion, figures and code samples.

Chapter 6 describes the experimental setup and methodology followed by a discussion of the
results. Results will compare all algorithms within each dataset in order to discover the best
performing within each corpus.

Chapter 7 summarizes all of the work included within the thesis and performs a review of the
aims and objectives before concluding and identifying any future work.

13|Page

Chapter 2

Background

Chapter Summary

The purpose of this chapter is to describe the background of research within the field of text
categorization as well as describing a number of its applications. The chapter discusses the
different approaches and techniques used within the field as well as their differences. The
concept of Protocols, the four different variations and how each would be conducted are
explained. The chapter also discusses the most popular corpora used within classification
experiments as well as the most popular techniques for evaluating experimental results.

Summary of each section

Section 2.1 offers an introduction to the field of text categorization by describing some
background to the research and an abstract view of the typical steps involved within the
process. Section 2.2 describes a number of its applications and describes some well known
research examples. Section 2.3 discusses a number of text pre-processing techniques and how
they may improve classification results. Section 2.4 describes a number of well known
corpora, also known as datasets, in detail by examining the number of texts, how the texts are
divided and also the differences in the size of the documents. The section also describes some
examples of research that have used each of the datasets. Section 2.5 lists a number of
techniques used to evaluate the performance of the text categorization including precision,
recall, accuracy, F1-Measure and also the distinction between macro-averaging and micro-
averaging the F-Measure. Section 2.6 offers a brief overview of feature based classification
and details a couple of well known approaches. Section 2.7 discusses current stream-based
algorithms including examples of how each is performed. Section 2.8 explains the four
protocols and how they have been used in research to date.

2.1 Introduction

There is an overwhelming amount of electronic text available today and there is a need to
categorize these vast amounts of documents. It is therefore no surprise that the field of text
categorization is a popular one. It is important to be able to classify information, no matter
what the format, in order to ensure that the relevant information is returned. People generally
have little difficulty in recognising document and object categories (Watt, S. 2009). However,
the speed at which users expect results to be returned, in addition to the amount of
mformation through which to search means that indexing performed by humans has not been

14|Page

viable for many years. Although machines are achieving high rates of classification quickly,
it could be said that human categorization will always be more accurate in some situations.

Text categorization in the past has concentrated on static situations, however, we now live in
a digital era where we communicate and retrieve information from digital sources. This
means that modern classifiers must now be dynamic enough to retrieve the uncategorized text
as a stream, possibly directly from social networking applications such as Facebook or
Twitter, or perhaps from blogs.

As far back as the 1960's, it seemed obvious that a growing amount of information was being
submitted via electronic format and there was a need for these documents to be routed to the
proper users (Maron, M. E. 1961). It may have been impossible to imagine back then the
number of uses we have today for the application of text categorization and the number shall
continue to grow so long as new technologies and ideas are developed. Due to its many
applications, varied approaches and growing amounts of text, text categorization has indeed
become an important research area within Information Retrieval (IR).

More formally, text categorization, also known as text classification, document categorization
or document classification, is the task of automatically sorting a set of documents into
predefined categories based on their content. This is a supervised learning approach as there
exists documents already categorized to be used as training data which effectively define the
categories. The training data is used to build a model that can be used to classify new
documents, known as test data. Text categorization is not to be confused with text clustering,
an unsupervised approach of which there exists no predefined categories. There is no training
data and the classification is learnt from the data; similar documents are simply grouped to
form a cluster.

Training

Training Models - Categorised |

Texts

Texts

Figure 2.1 Example process of text categorization.

2.2 Applications of text categorization techniques

A number of popular applications for text categorization are detailed within this section,
some of which are researched within this thesis, others are not but are detailed for
completeness.

15|Page

2.2.1 Authorship Attribution

Authorship attribution has a number of applications ranging from discovering the author of a
novel to identifying the sender of an anonymous letter. Authorship attribution is more
challenging than language/dialect identification as the differences among the authors’ writing
style is much more subtle than among different languages/dialects. Though this is the case,
style and statistical properties may be noticeably different for different authors (Boggess et
al., 1991). It is fair to say that there are great differences between two authors from different
times with different writing style, e.g. Shakespeare and J.K. Rowling. However, within the
corpora used for most text categorization experiments, which shall be discussed later, this is
not the case.

A famous example of authorship attribution is the case of the Federalist Papers, of which
twelve instances are claimed to have been written both by Alexander Hamilton and James
Madison. Statistical analysis has been undertaken on a number of occasions to try to decide
the authorship of the disputed documents based on word frequencies and writing styles, with
nearly all of the statistical studies showing that all twelve disputed papers were in fact written
by Madison (Mosteller & Wallace, 1984; Holmes & Forsyth, 1995; Fung, 2003).

An author may write about a number of topics and this means it is unlikely that topic-based
features will perform well at discriminating among authors, e.g. a selection of features/words
would not be suitable. Rather, stylistic features are the most appropriate choice; for instance,
vocabulary richness (i.e. ratio between number of distinct words and total number of words),
average word length, average sentence length, are important, in the sense that it is these
features that tend “to give an author away” (Sebastiani, 2005).

This area of research has become more difficult with trends towards many shorter
communications rather than fewer longer communications, such as the move from traditional
multi-page handwritten letters to shorter, more focused emails. More recently, Twitter and
other short message based web services are extremely popular and methods need to enable
authorship to be determined for documents of 140 characters or less (Layton et al., 2010).

2.2.2 Genre Categorization

Genre classification is an important application in information retrieval (Biber, 1988; Kessler
et al,, 1997, Lee & Myaeng, 2004; Stamatatos et al., 2000) and more recently, Finn &
Kushmerick (2006), as well as ongoing work by Santini (2007a and 2007b), and involves
identifying the subject domain of a document. Examples of genres are: political, mystery and
sport. A number of studies have investigated this problem usually by adapting methods found
suitable for the related problem of topic categorization.

One use of genre classification could be to enable users to sort search results according to
their immediate interests. Whilst visiting a bookstore people are not usually simply looking
for information about a particular topic, they can often have requirements of genre as well i.e.
they may be looking for novels about discoveries, Italian recipes or scientific articles etc.
Genre may therefore be seen as a subject area.

l6|Page

A growing area of research is the categorization of single tweets and Sriram et al. (2010)
define five generic classes of tweets (deals, events, opinions, news, and private messages) in
order to improve information filtering. The authors represent tweets using a small set of
language-dependent features to classify tweets written in English. The use of these features
outperforms the BOW (bag-of-words) approach in the classification of tweets according to

the typology.

There appears to be no consensus of what genre is. Though everyone believes they know
what ‘genre’ 1s, unfortunately many people have different understandings of its meaning as
discussed by Crowston & Williams (2000), Kwasnik & Crowston (2005), and Rosso (2005).
Researchers must be careful not to confuse genre with topic as stated by Karlgren and Cutting
(1994) yet some researchers (Lee and Myaeng, 2004; Stamatatos et al., 2000) seem unable to
distinguish between the two and instead interpreted genre as the style of text, to be discussed
later.

2.2.3 Topic Categorization

The task of topic categorization is a heavily researched text categorization problem (Dumais
et al., 1998; Lewis, 1992; McCallum & Nigam, 1998; Teahan & Harper, 2001; Yang, 1999;
Sebastiani, 2002) and concerns the problem of assigning one or more categories to a
document from a list of pre-defined categories where the categories reflect the topics or
subject the document is concerned with. The categories are likely to be more fine-grained
than the broad categories for genre classification.

2.2.4 Other types of classification
2.2.4.1 Language Identification

Language identification concems the problem of identifying the language used to produce a
document. It 1s a useful pre-processing step in information retrieval, but the task is deemed
“too easy” as there are significant differences between all of the major languages, even when
they are based on the same character set, as shown by experiments displaying perfect
discrimination between a number of languages i.e. (House and Neuberg, 1977).

Though language identification is an easy and much studied task, it does still play an
important role in a number of modern applications. Language identification is one of the most
basic pre-processing stages of tasks such as summarization, question answering and
translation as it is imperative to know the language of a text in order to process it. With the
growing number of Internet users it is also becoming more useful to have texts processed
written in a number of different languages. This is more crucial within bilingual or
multilingual applications (news providers, question answering and information retrieval
applications) that want to offer their services to each customer in a different language.

Other applications include travel services, translation services, national security applications
and also emergency situations, as people in stressed conditions will tend to speak in their

17“\1 g¢

native tongue, even if they have some knowledge of the local language (Lamel and Gauvain,
1994).

2.2.4.2 Dialect Identification

Dialect identification is a problem closely related to language identification and it would be
reasonable to argue that every person has their own dialect and that a dialect is a language in
itself (Nagy et al., 2005). It is a popular categorization problem that has had much research
on its subject (Nagy et al., 2005; Huang & Hansen, 2007; Nerbonne et al., 1999; Branner,
2000; Chiang et al., 2006).

In Europe, linguistic differences sharpened as the language of each nation-state was
standardized. In China, standardization of spoken dialects was weaker, and mostly due to
cultural influences (Branner. 2000). The variance in China's provinces where dialects are
spoken can be compared with that in the Arab World. The standard written language is the
same throughout the Arab world: Modern Standard Arabic (MSA). MSA is not a native
language of any Arabic speaking people, i.e., children do not learn it from their parents but in
school. Most native speakers of Arabic are unable to produce sustained spontaneous MSA.
Dialects vary not only along a geographical continuum but also with other sociolinguistic
variables such as the urban/rural/Bedouin dimension (Chiang et al. 2006).

2.2.4.3 Style Classification

Stylistic text categorization is another useful tool with which we can categorize documents, it
is a vital tool within online libraries e.g. ERPAePRINTS (2009) and search engines. Style
classification may also be known as the “type of text” or misunderstood as its genre (Lee &
Myaeng, 2004; Kim & Ross, 2007). Examples of style are novels, poems, minutes,
curriculum vitae and blogs etc.

As mentioned earlier, with the presence of such large amounts of digital text available today
it is important to sort and manage this information in the most convenient way to the user
whilst still being manageable. The ability to search media by its style as well as its topic
and/or genre would allow for more relevant information being returned to the users without
any additional pruning of the returned results. An example would be a user searching for the
term “bread” whilst looking for a recipe, of course a number of resources including the
history of bread, recipes and stores selling the product will undoubtedly be returned as well as
a number of others. However if the user had additionally searched for the type of text i.e.
style of document he/she required i.e. “bread recipe”, the user should then only be returned
documents relevant to the making of bread.

Lee and Myaeng (2004) proved that knowing the style (though they use the term genre) of a
document helps to classify it based on its subject/topic more correctly, given that a classifier
has been built for documents belonging to the same style. This is important and shows that
we must ensure we build classifiers that not only represent the subject domain but also the
style in which it was constructed.

18“’:1 g2c

2.2.4.4 Document Indexing

A primary application of text categorization techniques is to support information retrieval
systems by assigning subject categories to documents or to aid human indexers in assigning
such categories (Biebricher et al., 1988; Hayes & Weinstein, 1990). Several keywords are
taken from a controlled vocabulary such as a thesaurus and are assigned to a document in
order to describe its subject. This transformation from a text document into a representation
of text is known as indexing the document.

2.2.4.5 A stage within Natural Language Processing Systems

Text categorization components are also seeing increasing use in natural language processing
systems for data extraction. Categorization may be used to filter out documents or parts of
documents that are unlikely to contain extractable data, without incurring the cost of more
expensive natural language processing (Dahlgren et al., 1991; Grishman et al., 1991; Hobbs
& Jerry, 1991).

2.2.4.6 Spam Filtering

In the 1980s the term Spam was adopted to describe certain abusive users on Bulletin Board
Systems who would repeat “SPAM” a huge number of times to scroll other users' text off the
screen. In early Chat rooms services like PeopleLink and the early days of AOL, they
actually flooded the screen with quotes from the Monty Python Spam sketch'. This was used
as a tactic by insiders of a group that wanted to drive newcomers out of the room so the usual
conversation could continue. This act, previously called flooding or trashing, came to be
known as spamming. The term was soon applied to a large amount of text broadcasted by
many users. It later came to be used on Usenet to mean excessive multiple posting, the
repeated posting of the same message. The unwanted message would appear in many if not
all newsgroups, just as SPAM appeared in all the menu items in the Monty Python sketch
(Wikipedia, 2009), but is now also used to refer to unsolicited e-mail messages that are
posted a large number of times.

In 2004, an estimated 62% of all email was attributed to spam, according to the anti-spam
outfit Brightmail (2004). It costs money for ISPs and online services to transmit spam, and
these costs are transmitted directly to subscribers (Scott Hazen Mueller, 2009). The European
Union's Internal Market Commission estimated in 2001 that "junk e-mail" cost Internet users

' It is widely believed the term spam is derived from the 1970 SPAM sketch of the BBC
television comedy series “Monty Python's Flying Circus”. The sketch is set in a cafe where
nearly every item on the menu includes SPAM luncheon meat. As the waiter recites the
SPAM-filled menu, a chorus of Viking patrons “SPAM, SPAM, SPAM, SPAM... lovely
SPAM, wonderful SPAM”, hence “SPAMming” the dialogue. The excessive amount of
SPAM mentioned in the sketch is a reference to British rationing during World War II. SPAM
was one of the few meat products that avoided rationing, and hence was widely available.

19|Page

€10 billion per year worldwide (Europa press release, 2001). The California legislature also
found that spam cost United States organizations alone more than $13 billion in 2007,
including lost productivity and the additional equipment, software, and manpower needed to
combat the problem (Spam Laws, 2003).

Spammers have been documented as stealing other site's domain names via forgery, both
Reply.Net and Concentric Networks have been hit this way. Indeed, Outernet, Inc. was
actually attacked by one such spammer (Scott Hazen Mueller, 2009). Spam can also be used
to spread computer viruses, Trojan horses or other malicious software and all of these factors
have forced changes within legislation around the world. In 2003, the UK made spam a
criminal offence to try to stop the flood of unsolicited messages. Under the new law,
spammers could be fined £5,000 in a magistrate’s court or an unlimited penalty from a jury.
However the British measures are not as drastic as other anti-spam laws. Italy have imposed
tough regulations to fine spammers up to 90,000 Euros and impose a maximum prison term
of three years and in Australia spammers may be fined up to $1.1 million a day. On May 31,
2007, one of the world's most prolific spammers, Robert Alan Soloway, was arrested by U.S.
authorities. Described as one of the top ten spammers in the world, Soloway was charged
with 35 criminal counts, including mail fraud, wire fraud, e-mail fraud, aggravated identity
theft and money laundering. Prosecutors allege that Soloway used millions of computers to
distribute spam during 2003. This is the first case in which U.S. prosecutors used identity
theft laws to prosecute a spammer for taking over someone else’s Internet domain name
(Wikipedia 2009).

Andrej Bratko 1s well known within the field of text categorization for his research on spam
filtering whether it be for using compression models such as PPM (2005a, 2006a, 2006b,
2006c) or character-level Markov Models (2005b). As within this thesis, Bratko (2006)
dynamically updates the training models when processing the testing text and he has also
found that in the case of spam detection, pre-processing steps are often exploited by
spammers in order to evade filtering.

2.2.4.7 Sentiment Classification

Sentiment classification is the process of computationally determining whether a document is
labelled as a positive or negative evaluation of a target object. The target object may be a
film, book, album etc as long as the author has a positive or negative view on the subject. An
opinion may also be neutral but these are generally uncovered by this area of research. There
1s not a great deal of evidence of research within this field when compared to others such as
topic, gender and style classification, however, this area of research has become popular in
this decade. This 1s due to the rapid growth in on-line discussion groups and review sites and
possibly also because it seems to be a challenging area of research (Pang et al., 2002) with
studies not achieving the high accuracies that can be found within the other areas of text
categorization.

Important current applications of this area include data and Web mining, analysis of blogs or
market trends and consumer opinions (Dave et al., 2003) and the automatic filtering of

20|E’ dgc

abusive messages (Spertus, 1997). Other possible uses may be for politicians to track public
opinion, reporters to track public response to current events and for stock traders to track
financial opinions (Turney, 2002). Many review sites allow the option to include a rating as
well as your written opinion (Amazon, Rotten Tomatoes etc), this allows researchers to easily
generate a corpora with which to work with by for example assigning the number of stars
given as a rating for the body of text.

The research within this area has so far fallen into two categories, the sentiment orientation of
the document by comparing the number of positive words or sentences against the number of
negative ones (Turney, 2002; Kennedy & Inkpen, 2005; and more recently Miyoshi &
Nakagami, 2007); and the second is using machine learning techniques (Mullen & Collier,
2004; Pang et al., 2002). Gamon & Aue (2005) improved the results of a sentiment
orientation classifier by combining it with the bootstrapping approach described by Nigam et
al. (2000). Read (2005) demonstrated that in order to get reasonable results, the training and
testing data must not only be relevant with regards to topic, but the time-period and domain
are also important. He also investigated the use of emotional symbols (i.e. smilies) as they
have the potential to be independent of domain, topic and time.

An interested note which also demonstrates the difficulty of the task follows a statement by
Pang et al. (2002) that it is essential to also distinguish which sentences within the document
are relevant to the item being reviewed. As an example “I hate the leading actor in this film, I
think he is boring. He has no talent and normally stars in boring films of which I have hated
them all. Yet I love this film!” has a majority of negative words and sentences yet a human
can easily tell that the review of the film is a positive one. This is because the majority of the
text is not relevant to the movie but to the actor himself.

2.2.4.8 Gender Classification

Linguists have attempted to identify differences in linguistic styles between males and
females for decades (Trudgill, 1972; Lakoff, 1975; Labov, 1990; Biber, 1995; Schiffman,
2002). Differences were originally found within speech but researchers have since also
investigated the possibility of applying these findings to determine differences within written
text. This has indeed brought researchers to test these theories within the field of text
categorization, to see if it is possible to determine whether the author of a document is male
or female.

Biber (1995) termed females writing style as “involved”, they are more likely to specify
relationships among the people and things within their text. The writing style of males is
termed as being “informative”, they are primarily concerned with specifying the properties of
objects as well as using a greater use of swearing (Rayson et al., 1997). These findings have
since been supported by a number of other researchers (Mulac et al., 2001; Pennebaker et al.,
2003; Groom & Pennebaker, 2005). It is clear to see that there are indeed a number of
applications of text categorization techniques and the exact techniques and successes of each
shall be highlighted within later sections.

21 |Page

2.2.4.9 Others

Another application of text categorization is within text understanding systems.
Categorization may be used to filter out documents or parts of documents that are unlikely to
contain extractable data, without incurring costs of more complex natural language
processing, Dahlgren et al. (1991). Finally, the categorization itself may be of direct interest
to a human user, as in judging whether a threatening letter against a government official
signifies real danger, Hardt (1988).

2.3 Text pre-processing techniques

Pre-processing steps can reduce the storage space required, memory requirements and
improve classification time, but at what cost? It has been shown that performing pre-
processing steps on the documents may harm classification (Yu, B. 2008 and Bratko, A.
2006). Bratko explained that in the case of spam detection, pre-processing steps are often
exploited by spammers in order to evade filtering.

Often it is the case that after pre-processing steps have been applied, unless the steps were
thoroughly explained, it can be impossible to reproduce the same experiment at a later date
for comparison or verification. This problem is reduced in the case of stream-based methods
as the original data is often unmodified. The pre-processing steps often used within feature-
based techniques which are omitted from stream-based and text compression techniques are
discussed here for completeness:

2.3.1 Tokenization

The goal of tokenization is to separate text into individual words, i.e. “We’re going to be
late.” becomes “We ‘ re going to be late .”. The word splitter (Word Splitter, 2009) is a
simple script that reads plain text and outputs the words with spaces between every word and
punctuation mark, and this format is needed by tools such as POS (Part of speech) taggers.

2.3.2 Feature Selection and Extraction

Feature selection chooses which features should be used in classification. In text
categorization, features are often the frequency of words appearing in a document. By
reducing the feature space, it is not only known to increase the efficiency of the training and
test processes, but can also reduce the risk of over fitting the model to data. Feature extraction
computes the chosen features from an input document. In statistical classification, features
are represented in a numerical vector, which is then used by the classifiers. Feature selection
involves stop word removal, stemming and term selection (Toman et al. 2006).

2.3.3 Stop word removal

Words used in text indexing and retrieval are called terms. According to the term
discrimination model (Salton, G. 1975), moderate frequency terms discriminate the best.

22|Page

High frequency words, which are called stop words, have low information content, and
therefore have weak discriminating power. Example words are as ‘a’, ‘the’, ‘I’, ‘he’, ‘she’,
‘is’, ‘are’, etc. and are removed according to a list of common stop words such as the one by
Van Rijsbergen (1979).

2.3.4 Stemming

Stemming reduces morphological variants to the root word. For example, “removes”,
“removed”, and “removing” are all reduced to “remove” after stemming. This relates the
same word in different morphological forms and reduces the number of distinctive words.
The Porter stemmer (Porter, 1997) is a commonly used stemmer as used by Frakes (1992)
and its implementation in many different programming languages can be found at Martin
Porter (2006).

2.3.5 Term Selection

Even after the removal of stop words and stemming, the number of distinct words in a
document set may still be too large, and most of them appear only occasionally. In addition to
removing high frequency words, the term discrimination model suggests that low frequency
words are hard to learn about and therefore do not help much. They should be removed to
reduce the dimensions of the vector space as well.

2.4 Data Sets

The availability of datasets allow standard benchmarks and encourages research by providing
a setting in which different research algorithms could be compared against each other, and in
which the best methods and algorithms could stand out. As in other tasks, there are several
common data sets in text categorization. In this section a number of these that shall be used
within our later experiments are described, and though there are many more, the following
are widely used and more suitable for comparing results. More detailed information regarding
the distribution of classes and file sizes can be found in Chapter 6.

2.4.1 Reuters-21578

Reuters-21578 1s the most widely used data set for text categorization. All the texts in this
data set were collected from the Reuters newswire in 1987. The original dataset contained
22,173 documents, however, 595 were later found to be exact duplicates and so these were
removed. The formatted version submitted by David Lewis therefore contained 21,578
documents. Although the original data set contains 21,578 texts, researchers use a data-
splitting method to extract a training set and a test set. The most popular partition (Sebastiani
, 2002) 1s the ModApte split (available at The UCI KDD Archive, 1999) which contains
12,902 documents with a fixed splitting between test and training data, 9603 training texts
and 3299 test texts. This is the most used version as confirmed by Sebastiani (2002).

There are a couple of variants of this version used. One set contains 115 categories, known as
Reuters 115 (R115), and according to Sebastiani (2002) are the categories with at least one
training document (Alessandro Moschitti, 2008). The other, known as Reuters 90 (R90) (also

23 |Page

available from Alessandro Moschitti, 2008), contains 90 categories. According to Joachims
(1997), they are the categories containing at least one training and one testing document and
now contains 9,598 documents. The majority of excluded documents are assigned to more
than a single category and is therefore not useful for our study as we are only concerned with
single label classification as mentioned earlier.

2.4.2 Reuters-10 (R10)

In order to obtain the Reuters 10 categories split (known as R10), we simply select the ten
largest categories from the remaining documents, i.e. Earnings, Acquisition, Money-fx,
Grain, Crude, Trade, Interest, Ship, Wheat and Corn.

2.4.3 RCVI1-Author

RCV1 texts are short and these small samples per author can offer a greater challenge. The
RCV1 corpus has already been used in author identification experiments, Hunnisett &
Teahan (2004) selected the top 50 authors (with respect to total size of articles) and the same
subset is used within our experiments.

2.4.4 20-Newsgroups

20-Newsgroups is also a common data set used for text categorization. Although 20-
newsgroup is less popular than Reuters-21578, it has been used by many researchers (e.g.
Baker and McCallum (1998), McCallum and Nigam (1998), Joachims (1997)). This data set
consists of Usenet articles collected by Ken Lang from 20 different newsgroups. The
collection consists of 19974 non-empty documents evenly distributed across 20 categories.
The version used in experiments reported in this dissertation is J. Rennie’s version in which
duplicate postings were removed. This subset contains 18828 documents.

The articles in this data set are postings to some newsgroups, unlike Reuters-21578 are taken
from newswire. The categories also do not have multiple category labels as with Reuters
21578. In addition, the category set has a hierarchical structure within confusable clusters
(e.g. “sci.crypt”, “sci.electronics”, “scimed” and ‘“‘sci.space” are subcategories of “sci
(science)”).

2.4.5 Gutenberg-10 (Gu-10)

This dataset, used in experiments by Thaper (2001) and Marton et al. (2005) consists of 40
documents, 4 works of each of 10 well known authors, all of which have been taken from the
Gutenberg Project. The works are from the following authors, Charles Dickens, Daniel
Defoe, Emerson, Jane Austen, Kiplking, Shakespeare, Shaw, Twain, Wells and Wilde.

2.5 Evaluation Techniques

Evaluation is of fundamental importance to IR research. It is important to be able to measure
the success of the research and be able to compare the results against past research. It is also
24| Page

just as important to evaluate in a uniform way, as it is becomes difficult to compare results
unless the research being compared is measured in the same way. The most common
evaluation techniques are discussed in this section.

2.5.1 Contingency Table

Consider a system that is required to make » binary decisions, each of which has exactly one
correct answer, namely yes or no. The result of » such decisions can be summarized by a
contingency table, as shown in table 2.1. Each entry in the table specifies the number of
decisions of the specified type. For instance, a is the number of times the system decided
true, and true was in fact the correct answer. Common metrics for text categorization
evaluation are calculated based on the following contingency table and are discussed here.

True is Correct | False is correct

Assigned True a b

Assigned False c d

Table 2.1 Contingency Table.
2.5.2 Precision

Precision is the proportion of items assigned to a category which are true members of that
category. It is a measure of the number of true positives and is defined as a/(a+b).

2.5.3 Reecall

Recall 1s the proportion of correctly classified examples of a category. It is defined as
a/la+c).

2.5.4 Accuracy

This measures the proportion of all decisions that were correct decisions. It is defined as
(a+d)/(a+b+c+d).

2.5.5 F1-Measure

It is possible to modify the classifiers to obtain either a higher recall or precision and the F1-
measure combines both precisions. It is defined as 2rp/(r + p) where r and p are recall and

precision respectively.
2.5.6 Macro-averaging / Micro-averaging

As F-measure is computed for each category, in order to evaluate its performance across all
categories, the F-measures must be averaged. There are two conventional methods, namely
macro-averaging and micro-averaging (Lewis, D., 1991). Macro-averaged performance
scores are computed by first computing the scores for the per-category contingency table and

25|Page

then averaging these per-category scores to compute the global means. Micro-averaged
performance scores are computed by first creating a global contingency table whose cell
values are the sums of the corresponding cells in the per-category contingency table, and then
use this global contingency table to compute the micro-averaged performance scores.

There is an important distinction between macro-averaging and micro-averaging. Micro-
averaging performance scores give equal weight to every document, and is therefore
considered a per-document average. Likewise, macro-average performance scores give equal
weight to every category, regardless of its frequency, and is therefore a per-category average.
The number of documents in each category within the datasets used for the experimental
results contained in this thesis varies considerably. Because of this, micro-averaging, a per-
document averaging is more suitable for the results in this thesis.

2.5.7 The difficulty of comparing results

It 1s worth mentioning the importance of releasing accurate data as incorrect data leads to
difficulties when attempting to compare results with that of previous experiments. The lack of
standard data collections is a problem that has been discussed by Yang (1999) and is still a
problem to this day as it is possible for experiments to use the same corpora but results can
differ greatly when different training and testing splits are used. Similar problems have
occurred with published research within the sub-field of stream-based categorization. Teahan
and Harper (2001) used a different set of categories from 20Newsgroups based on the size of
the training data, but this was misinterpreted by Marton (2005), who then used these
categories as though it was a known subset. The files contained within each split of all
experiments are listed in the attached DVD so that all experiments can be accurately
repeated.

It is important to note that inseparability on some Reuters categories is often due to dubious
documents or obvious misclassifications of the human indexers. An important discovery is
that within all 155 categories, 984 contained little more than the words “Blah blah blah”. The
same was also true for 719 of the files when tested on only the top ten categories.

A simple experiment on this dataset showed that there are still many duplicates located within
the Reuters dataset and supports findings by Khmelev and Teahan (2003). Within the
collection of all 115 categories, a total of 4381 duplicates were found, over 32% of the total
number of files. 1183 of these were testing files and 3198 were training. Duplicates can also
be found once all but the top ten categories have been removed from the collection. In fact
over 19% of the remaining files are still duplicates, and these are found only by comparing
against the other categories within the top ten. 475 of these are testing files and 1447 are
training files.

The Newsgroups corpus is also not without problems as the files within the corpora do
contain a significant amount of redundant data, i.e. text representations of attached files such
as images and archives. Ideally this information should be removed, however, as no mention
of this has been found previously it has been decided to not alter the contents of the files so

26|Page

that the experimental setup can be as correct as possible with regards to mirroring previous
experiments.

If we are to effectively evaluate the performance of techniques in the future, duplicates
should be removed, and files containing redundant data i.e. not much more than “blah blah
blah” or file representations of attachments should also be removed. It would also be
beneficial to have the ‘cleansed’ corpora available in a central location with the number of
files and the sizes of each listed so that these values are static. This would allow for more
effective comparison between research techniques and would remove ambiguity when
attempting to reproduce past experiments by others. In a truly ideal situation, the results of all
experiments would also be held in one place with a full description of any modifications or
preprocessing that was performed as this would solve the issues raised by Yang (1999).

2.6 Feature-based Categorization

Feature based classifiers act upon the occurrence of words or character sequences. This
approach often relies upon extracting these sequences from within the text and pre-processing
steps such as those mentioned in 2.3 are used in order to reduce the complexity of the search
space. Feature-based approaches, although the predominant approach in the literature, are not
the focus of this dissertation and shall therefore be discussed in less detail than stream-based
approaches.

2.6.1 Naive Bayes

Naive Bayes classifiers have long been used for text categorization tasks. A Bayes classifier
is a simple probabilistic classifier based on applying Bayes' theorem and makes strong
assumptions that features are independent given the class. Although more sophisticated
models outperform Bayesian ones, these models are popular due to their low computational
costs. The effectiveness of the models have been studied by Sahami(1996); Lewis (1998);
McCallum and Nigam (1998) and Yang and Liu (1999).

2.6.2 N-Grams

An n-gram in the context of natural language processing can refer to either a contiguous
segment of n-words or character strings of a fixed length. A document may be categorised on
by its n-gram frequency list, a list of n-grams ordered by the number of occurrences in the
given document. Character n-grams have been proved to be quite effective for author
identification problems (Kjell et al., 1994; Peng et al., 2003; Juola, 2004; Marton et al.,
2005) and as tokenization is not needed when extracting character n-grams, the approach is
also language independent. They can, however, require much more computing power and
time than word based approaches if attempting to calculate for multiple lengths, and n-grams
of fixed length are often used in order to prevent this.

27|Page

2.6.3 SVM

Support Vector Machines (SVMs) are learning systems that analyze data and recognize
patterns and was first introduced by Boser et al. (1992). In the area of text classification
SVMs separates categories within a hypothesis space and any unclassified texts that are
placed within the space are categorised as belonging to the category to which it is closest.
This approach has been shown to outperform many other systems in a variety of Machine
Learning applications and is popular due to its efficient performance estimation (Joachims,
2002).

2.7 Stream-based categorization

In comparison to tokenization/feature based classification methods, a stream-based approach
is similar to text compression methods in that they operate directly on the entire text
sequence. Stream-based text categorization, as with compression methods, considers the text
being categorized as a stream of symbols, which differs from the traditional feature-based
approach which relies on extracting features from the text (Thomas and Teahan, 2007). It is
also able to omit pre-processing steps such as tokenization, stopword removal and stemming
altogether.

A common step between both methods is data collection. In order to objectively compare
different text categorization methods, a standard data collection should be used in the
evaluation experiments. However, this appears to be a serious problem. There are several
different collections, and even when the same collection is chosen, there are many alternative
ways that the data in the collection are used for training and testing.

The remainder of this chapter will describe existing stream-based methods that have
previously been described in the literature. These will be used in the experimental results
detailed in subsequent chapters.

2.7.1 C-Measure

Hunnisett & Teahan (2004) defined a simple frequency-based measure for text categorization
called the “C-Measure” that uses the sum of the number of common substrings (or
“contexts”) of a fixed length between the training and test documents represented as text
strings. Regardless of its simplicity, the technique has been proven to outperform a number of
state of the art techniques (Hunnisett & Teahan, 2004). The results found in Hunnisett &
Teahan (2004) suggest that the classification performance of context-based classifiers
increases with a higher order character context. Hunnisett & Teahan (2004) did express the
need to investigate this claim for higher orders but were unable due to the memory
constraints of their software.

28|Page

Formally, let the set of symbols in the testing text T be x; ...xy and k be the order of the
model (i.e. the fixed context length used for the model). Let d;(X) = 1 if context X is present
in both the training text S and testing text 7, 0 otherwise. Then the C-Measure is defined as:

IT|

TIS) =) diGtigsy %) @1)
i=k

Here, for the definition of ¢, (T|S), the standard notation from probability theory is being
used to indicate that the C-Measure for a given testing document 7 is being calculated with
respect to training document S - i.e. (T'|S).

In order to try to determine the correct class of text T among m classes represented by texts
Si, .., Sm, Hunnisett & Teahan (2004) suggested that the source be guessed using the
following estimate:

8(T|S;) = arg max;c, (T|Sy). (2.2)
Example 1

Consider the training string S = “abracadabra=” and testing string 7 = “abrabra*”. The count
C, for substrings of length 4 is 3 as the testing substring “abra™ appears twice within the
training string and the substring “bra*” appears once.

The ¢, counts are then normalized to obtain the C-Measure, with minimum and maximum
values between 0 and 1, as follows:

Ce(TIS) = (TIS)/(T| = k + 1).
Example 2

The normalized C-Measure for substrings of length 4 using the previous example is obtained
as follows:

C.(T|S) = =3/9 ~ 0.33333.

(12 -4+1)

2.7.2 R-Measure

Khemelev & Teahan (2003) defined the R-Measure as a number between 0 and 1
characterising the repetitiveness of the document. The R-Measure can be found by
normalising the sum of the lengths of all substrings that appear in both the training files and
test files. Suppose that the collection consists of m documents, each document being a string
S; = §;[1..15;]], where S;[i..|S|] is the ith suffix of document S. A squared R*-measure of
document T with respect to documents Sy, ..., Sy, 1s defined as:

29 | Pa g€

2
I(l+1)

l
R2(T|Sy, o) Sy = Z O (Tl ISy, s). (23)
i=1

where | = |T| is the length of document T, T[i...l] is the ith suffix of document T and
Q(T|Sy, ..., Sy) 1s the length of the longest prefix of S, repeated in one of documents
S1, ..., S For example, let us take T = “cat sat on” with T; = “the cat on a mat” and T, = “the
cat sat”. Then:

R (T|1.1,) T+6+5+4+3)+(5+4+3+2+1))~0.727272

=10x(10+1)((

with (T|Ty, T,) = +/R?*(T|Ty,T,) = 0.852802 . Notice in the above formula that the sum
consists of two parts, (7+6+5+4+3) from the repetition of “cat sat” = T[1...7] and
(5+4+3+2+1) from “at on” = T[6 ... 10].

The measure was originally designed to detect plagiarism and duplicates within a text
collection; however, Khemelev & Teahan also used the measure to see whether or not test
documents had been correctly categorised.

2.7.3 PPM (Prediction By Partial Matching)

The PPM algorithm was first published by Cleary and Witten (1984) and though PPM is best
known for text compression, it is also a highly effective technique when used for text
categorization .PPM is a well performed compression algorithm that effectively uses a
language model to estimate the probabilities of each symbol in the text (Teahan, 1998). It
does this by blending the probability estimates for different length contexts by a back-off
technique known as the escape mechanism. Bratko and Filipic (2005) were able to show that
the PPM compression model is able to outperform word-based spam filtering methods and
did so using adaptive models as shall also be investigated. They share the common goal of
attempting to devise a strategy which would automatically determine the order of the PPM
model that optimizes classification performance and found that an order-6 model performed
best typically but that there was a need to prune the model (as has been found and is
discussed in section 4.3.3).

Two well performed adaptive PPM models shall be used during this thesis, namely PPMC
and PPMD (these use escape method C and D respectively (Teahan, 1998)). These models
blend different order models by using an escape mechanism. These variants of Cleary and
Witten’s original design are based on improvements described by Moffat (1990), with PPMC
now being the model of choice in most cases. A technique known as exclusions removes the
counts for symbols already predicted at higher orders (i.e. context lengths). The model is
adaptive as it dynamically updates the counts used by the language model as the text is
processed sequentially. An alternative static variation primes the model from some training
text, and then suspends updating of the model when processing the testing text. Formally,

30|Page

given a document T of length n symbols and a model p;, for a particular category L, then the
cross entropy is calculated as follows:

1
H(T|S) = “EEOQZPL(T) (2.4)

n
= lz —log,p (Xi| X1 ... Xp—1).
Nidi=y

i.e. the average number of bits to encode the document using the model. X;|X; ... X;_1
denotes the probability of symbol X;being encoded for each context. The approach taken by
Teahan (1998) is based on this calculation — stated simply, each testing text is compressed
against the category models, and the category is chosen from the one used to train the model
that achieves the best compression. This has proven to be a highly effective technique often
achieving accuracy results competitive with other text categorization techniques. In practice,
PPM uses a Markov approximation i.e. assumes a fixed order context; order 5 has been found
to be competitive on most texts:

1 n
H(TI|S) = - E ‘ 1—1092PL(XL'|X£—5 e Kug)- (2.5)
l=

By using frequency counts the model is able to estimate probabilities for each context and
these counts are updated adaptively as the text is processed sequentially, with the occurring
symbol being encoded using the prediction value of the encoding model. Should the model
discover an unseen symbol, the model encodes that this event has occurred and then escapes
to a lower order model and continues, attempting to encode the current symbol at a lower
order. Should the symbol then be matched, the context length may again grow until either the
maximum context length is reached, the end of the stream is reached or another unseen
symbol is discovered, forcing us to again escape to a lower context length. A detailed
example of how PPM is used to perform encoding, prediction and classification of character
streams is provided in Chapter 4.

2.8 Protocols

Marton et al. (2005) provide an overview of three compression-based approaches in the
literature to text categorization which they called SMDL (for standard minimum description
length), AMDL (for approximate MDL) and BCN (for best-compression neighbour). They
characterized many of the prior compression-based approaches under these three labels. We
seek to re-characterize these approaches (which we call “protocols”) in the following way, as
shown in Table 2.2. AMDL and BCN both dynamically update the model as they employ the
“off-the-shelf” technique to calculate cross-entropy. The approaches adopted by Bratko et al.
(2006) for PPM spam filtering also dynamically update the training model when processing
the testing text. On the other hand, SMDL and AMDL concatenates all the training data for
each class, significantly reducing the number of calculations required compared to BCN
which produces calculations for each training document separately.

31|f)l:JL

Static Model | Dynamic Model

Concatenation of training Protocol 1 Protocol 11
documents in the same class
(SMDL) (AMDL)
Non-concatenation of training Protocol IV
documents 1n the same class Protocol I1I
(BCN)

Table 2.2: Protocols for stream-based text categorization and contained within brackets
are where each approach used within Marton et al. (2005) resides.

If we tabulate these two features — static versus dynamic models (see section 4 for examples
of these models being implemented); and concatenation of training documents in the same
class versus non-concatenation — it is quite clear that a fourth protocol presents itself (labelled
as Protocol III in table 2.2). This protocol has been partially examined by Hunnisett (2010)
with inconclusive results.

It is not clear which of these protocols is the most appropriate for text categorization and that
was a major motivation for discovering the results reported in Chapter 6. Although the
dynamic protocols II and IV are well motivated from an information-theoretic perspective,
the following reasoning highlights some problems with the dynamic approach. Consider what
happens at the interface between the two sequences; that is, when the learning continues into
the testing sequence after the training sequence has been completed. Consider the case when
the languages of the testing and training documents are clearly distinct and independent, for
example, as when the languages being tested for are the natural languages English and Welsh
(or English and French). There will be some common English/Welsh or English/French
sequences in both sequences, but comparatively few compared to the length of the texts, and
usually there is no mechanism for the learning algorithm to disambiguate between the
different languages (i.e. a combination of both languages is being learnt). For this reason, it is
unclear whether the co-adaptation of both the training and test sequences is desirable in these
cases. Similarly, concatenation of training documents has merits as it maximizes training
data, and from an information theoretic point of view, one can argue that documents in the
same category can be considered to be from the same language source. But with non-
concatenated documents, ranking across all documents will ensure that only the best match of
the testing document out of all training documents is used to provide the category estimate.

Chapter Discussion

This chapter has reviewed important concepts within the field of text categorization. The
amount of uncategorised data in digital format is continuing to grow and text categorization
techniques have good success rates at categorising this data. This chapter has shown that
there are indeed a number of applications of text categorization techniques, varying from
indexing to filtering through to identification of language or even an author of text. The

32|Page

details of these techniques and successes of each have also been highlighted within this
chapter.

The more common feature based approaches perform pre-processing techniques which
consumes both time and resources, but it has been shown that stream based approaches do
not. Some stream based approaches which already exist have been discussed and though the
research has so far been limited in this area, the results have been promising and therefore
warrant further investigation. One of the problems has been that the current implementations
of the algorithms require additional resources and the implementation of these using suffix
trees as an alternative method are discussed in the next chapter.

Some concerns have also been noted. Datasets, pre processing steps and evaluation
techniques have been discussed, and although these are all well known among the
community, problems still arise. Lack of details concerning the experimental setup coupled
with the proven existence of inaccurate figures leads to the inability to perform true
comparisons between each of the many number of text categorization.

33|Page

Chapter 3

Extensions for stream based
models

Chapter Summary

The purpose of this chapter is to explain the new techniques which have been explored during
the time of the study. The three stream-based methods that are examined within this thesis are
C-Measure, R-Measure and PPM. This chapter discusses all new work and improvements
relating to these models and explains the extensions found for each of the algorithms. For C-
Measure the substring lengths that can now be calculated are detailed, for PPM it is shown
how the calculations can be performed by using the suffix tree and for R-Measure, all new
variants of the original algorithm are detailed.

Summary of each section

Section 3.1 discusses the extensions of R-Measure and its variants. Section 3.2 discusses all
new work relating to the C-Measure and describes both static and dynamic cases. Section 3.3
describes the modifications of two PPM variants, namely PPMC and PPMD, how they have
been implemented and the differences when dealing with update exclusions, no exclusions as
well as static or dynamic models. Section 3.4 details the time complexities of processing the
stream-based models using suffix trees.

3.1 Extensions of R-Measure

The R-Measure was defined by Khemelev & Teahan (2003) using the lengths of the common
substrings rather than their counts but it can also be defined based on a summation of the ¢
counts as follows:

r(T|S)

1

R(T|S) = 5
ZITIAT] + 1)

The following straightforward analysis reveals the two are equivalent. If the two substrings
denoted by the sequence x; ... x;1,—, are common between T (testing string) and S (training
string), they will have their first character x; also common — this corresponds to the ¢; counts
across all common substrings between T and S, and contributes +1 to the overall sum.
Similarly, the common prefix x;, x;,, corresponds to the ¢, counts and contributes a further

34 | Pa g€

+1 to the overall sum. Further common prefixes of increasing length each contribute +1 to the
overall sum until the length n of the sequence is reached. Essentially the contribution to the
¢, counts 1s exactly the same as the lengths of the common substrings, and therefore the R-
Measure can be equivalently defined either by counts or lengths.

Example 1

Consider the training string “abracadabras” again. For case 1a below, let the test string be 7'=
“abrabra*”, for 1b be “abracafabra*” and for 1c be “abradacabra*”. The cj and r counts for
these cases are as follows:

c1=10, =7, ¢3=5,c4=3,¢5=1, c6..8=0 la
r=104+7+5+34+1=26

a=11,0=9c=7,c=50c=3,c6=1,c7. 12=0 1b
r=11+9+7+5+3+1=36

a=12,0=11,c=7,¢=3,c5=1,¢5.12=0 le
r=12+11+7+3+1=34
Example 2

Consider the case where the training string and test string are the same. In this case, all the ¢,
counts and r count have the maximum values:

I 17

P = N ™ = Y (T =k + 1)
k=1 k=1
2 |<1| -
= TP = 2 k+17]
1
= ST+ 1)

r™a% js used to obtain the normalized R-Measure, with a minimum and maximum value

between 0 and 1.

To date, only the “complete” R-Measure has been defined, which is of course the sum of the
C-counts. However, further cumulative r counts can be obtained by counting only substrings
whose lengths are = to some minimum g, as follows:

Here r = 154. The series 754,75y, ..., 75 r| decreases with 15, > 15544 except when ¢, = 0
then all of the remaining 7'sx41 442, 7| = 0. Only when T = § does r|r; = 1, otherwise
T|T| =0.

35|Page

Example 3

Consider the training string “abracadabra*” again. For case 3a below, let the test string be 7'=
“abrabra+”, for 1b be “abracafabra*” and for 1c be “abradacabra”. The cj,r counts and Teq
values for these cases are as follows:

c1= 107 C2:71 C3=5, C4:3, G5= 1966...8:0 3a
r=10+7+5+3+1=26
Fs = 16, I3 = 9, Feq = 4, I>5 = 1, =678~ 0

ci=11,2=9,¢c3=7,c4=5,¢c5=3,¢c6=1,c7..12=0 3b
r=11+9+7+5+3+1=36

r0=25,r:3=16,r540 =9, 15 =4, r>6 = 1, r>789,10,11,12 = 0
61:12,6‘2311,6‘3:7, C4=3,C‘5=1,C‘6n_12=0 3c

r=12+11+7+3+1=34
=22, rs3 =11, rsa =4, rs5=1, 26789101112 = 0

Alternatively, r<, counts can be obtained by counting only substrings whose lengths are < to
some maximum ¢, as follows:

4
reg(T | 8) =), al(T | S).
k=1

In this case, v = rp|. The series 1<y, T<p, ..., T<|y| Increases with r¢, < repyq except when
¢k = 0 as all remaining counts are equal, i.e. <y = T'<gi1k42,..|7]-

Maximum values can also be calculated to normalise the R -Measures and R<,-Measures as

follows:
T=g T8
RZ’-‘Q(TIS) =5 = ,'(I) _
(T —g+ 1)(|T| — g +2)
R.,(T|S) = req(I | S)

g|T|-3(1 —q)g

The R-Measure takes into account all substrings that are common between T and S. However,
in certain text categorization domains, such as text containing a large proportion of natural
language, the shortest substrings are essentially poor for discriminating between many
different T and S since these short substrings are common across all strings. The g threshold
used in the R, ,-Measure can be used to eliminate these strings from the calculations.

36|P;’!‘ C

=)

Indeed, Hunnisett & Teahan (2004) found in authorship experiments with the C,-Measure
that much longer substrings performed better at categorization compared to shorter ones —
they found that k = 13 performed best but were unable to check beyond this because of
memory constraints. It is possible that substrings of a greater length may indeed improve
categorization performance and thanks to the toolkit discussed in the next chapter, much
greater substring lengths can now be examined. In contrast, compression-based language
modelling approaches using variable order Markov models base their measures only on the
shorter substrings and eliminate the longer ones from their calculations in a manner similar to
R_,-Measure, most probably due to the exponentially large number of states for higher-order
models. It is not clear which approach is preferable, or why there is a variance between the
count-based and compression-based approaches. Part of the motivation behind the
experiments in this thesis 1s to determine experimentally which measure performs better or
whether different measures perform better in different domains.

3.1.1 R-Ranges i<R<gq

A final R-Measure can be calculated that summates c), counts where i < k < q where i and ¢
are the desired minimum and maximum substring lengths respectively. As stated above, there
are differences in opinion as to whether shorter or longer substrings are better at
categorization and therefore it seems useful to also investigate the summation of counts
between ranges of values. This will allow us to investigate results where both the shortest and
longest substrings are ignored and it would be interesting to see what ranges achieve the best
results and if the results are better than R, ,-Measure or R¢,-Measure, attempt to answer why.
The R-Range measure is defined as follows:

q

1q(T1S) =) G(TIS) = reg = 721,

k=i

3.2 Extensions of C-Measure

As mentioned in 2.7.1, Hunnisett & Teahan (2004) were only able to calculate counts up to
C13. The new toolkit mentioned in chapter 5 is now able to surpass this point, though results
are limited to cgq in order to calculate results within reasonable time on a relatively standard
desktop computer with 1GB of memory. It is possible to calculate results past this point but it
will be shown that it is not beneficial to do so as substrings of great length are not useful for
categorization and should only be considered for the task of duplicate document detection.
The increase in performance has been achieved through a number of factors including the use
of suffix tree models, pruning, and other techniques that are discussed in chapter 5.

The number of substrings of length k& that are found within both the training document S and
testing document 7' is defined as:

}=

37|Pa

IT|

ck(T1S) = Z i (i 1y oer X)) (2.1)
ik

where k is the order of the model and C(x; —k + 1...x;|S) = 1 if context x; — k + 1...x;
(all substrings) are present within the training text and is equal to 0 if all substrings are not
present.

Example 1

Consider the training string S = “abracadabra+” and testing string 7" = “abrabra*”. The count
C, for substrings of length 4 is 2 as the testing substring “abra” appears twice within the
training string.

The ¢, counts are then normalized to obtain the C-Measure, with minimum and maximum
values between 0 and 1, as follows:

Ce(T1S) = c(T1S)/(IT| — k +1).
Example 2

The normalized C-Measure for substrings of length 4 using the previous example is obtained
as follows:

Ca(TIS) = =2/9 ~ 0.22222.

(12—4 + 1)

3.3 Modifications to PPM

In order to calculate the compression ratio of a testing file a suffix tree is created that
represents the training model, with the testing file being read as a stream one symbol at a
time. As the symbols from the testing stream are processed, we traverse the training suffix
tree, using the counts of existing nodes in order to calculate the probability of the symbol
occurring at the current context length. With the use of an array of context lengths with
pointers into positions within nodes of the tree, we are able to successfully track the position
of each context length within the suffix tree. As we traverse the current longest context length
and calculate the probability of the current symbol, we also update the position of each of the
lower order pointers (see table 3.1). This is performed as though an unseen symbol was
discovered, as we calculate the probability of the unseen symbol and escape to a lower
context length, whose position is already held in our array. After the probability of each
symbol within the stream has been calculated, the probability of each is then added to the
current total until the entire stream has been processed. The testing file is then attributed to
the model that offers the lowest bit rate, 1.e. the highest compression ratio. Table 3.1 shows a
PPMC model after processing the string “abracadabra” with maximum order of 2.

38|Page

Order k=2 Order k=1 Order k=0 Order k=-1

Predictions ¢ P | Predictions ¢ P | Predictions ¢ P | Predictions ¢ p
2 2 5 1
ab —» 1 2 —la — b 2 = — a 5 — — A 1 73
3 7 16 |A|
— Esc 1 — ¢ 1 — b 2 2
. 16
1
ac — a 1 — d 1 — C 1 T
1
— FEsc 1 — Esc 3 — d 1 5
2
ad — a 1 b — r 2 — r 2 T3
5
— Esc 1 — Esc 1 — Es¢c 5 16

— Esc 1 — Esc 1

ca — d 1

— Esc 1 — Esc 1
da — b 1 r — a 2
— Esc 1 — Esc 1

W= W = o= = = W= W[9w Q= 2]~

ra — ¢ 1

— Esc 1

W= = = N = = R = W= W R = = = =] -

Table 3.1: PPMC model after processing the string abracadabra with maximum order
of 2.

39|E\(l:

=

I

3.4 Complexity considerations

Consider the space and time complexities for the text categorization protocols when
implemented using suffix trees. Assume there are K classes, M training documents, and N
testing documents. TypicallyM > N > K. The space and time complexities are dependent on
the size of the suffix trees which are linear with the size of the text. If the suffix trees are
created on demand during categorization, then the space is proportional to the length of the
training and testing text currently being processed. However, consider the case where we
wish to create the suffix trees in advance for all training and testing texts so that these do not
have to be re-created multiple times. The non-concatenated protocols (III and IV)
substantially increase the complexity of the classification experiments as they require the
creation of M + N suffix trees, plus the calculation of an M X N matrix of similarity
judgments; this is opposed to K+ N suffix trees plus K X N similarity judgments for the
concatenated protocols (I and II).

Considering the time complexities, for the frequency-based methods, all C—Measures and the
R—-Measure can be calculated simultaneously in a single co-traversal of both the training and
testing suffix trees where non-matching branches are not followed. r, grequire a further

calculation to compute the different measures for all values of p and q. This can be done by
filling in a |T| X |T| (where T is a testing string) matrix by iterating over p and g but the
worst-case time complexity and space complexity for this is O(T?) compared to O(T) to
calculate the measures for the other formulas. However, since the series of ¢, counts does not
change beyond the length of the longest common prefix between T and § (where S is the
training string), the average case is much better, and both the time and space requirements
can be reduced considerably by only calculating counts up to the longest common prefix
length.

Let us now show how c-counts may be calculated for a specific example. Consider the
training string S = “to be or not to be*” and testing string 7' = “to be not*". After constructing
a suffix tree for each of the strings we navigate through all nodes of the testing tree and
should the character within the testing node exist within the training tree at the same depth,
the count for that depth is incremented by the count of the training node 1.e. the number of
times that the current suffix occurs within the training string.

After matching the EOF symbol between both trees at depth 1, C; would then have a count of
1 as up to this point only a single suffix of length 1 occurs in both strings and this suffix
occurs only once within the training string. As we have reached the end of the current branch
we would move along the nodes of the testing tree at depth 1 until a suffix is matched. The
next suffix to be matched would be * * (the space character) and this would again add the
number of times it occurs within the training string to the count C,. The value is currently one
and as the character appears five times within the training string, the count now becomes six.
As the testing node has child nodes, we then attempt to match the suffixes at increasing
depths within the training tree and for all strings that are matched, the number of times they
occur within the training tree is added to the current total of counts for that depth. Two
characters appear after spaces within the testing string, ‘b’ and ‘n’. Therefore we would first

40“’1!:_";

attempt to match the suffix “ b” (space at depth 1 and ‘b’ at depth 2) within the training tree.
This substring occurs twice within the training string and so C, now becomes 2. The only
node to appear after the ‘b’ in the testing node is ‘e’ so we then attempt to match ‘e’ at depth
3 on the current branch within the training node. This process continues until we have either
processed all of the testing suffixes and at this time we will have the counts of suffixes for all
lengths between 1 and the length of the longest common substring.

The longest common substring within this example is “to be ”, which has a length of 6 and
appears only once within the training text. Using equation 2.1 we can calculate the count Cg
as follows:

Cs(T|S) = =1/14 ~ 0.07143.

(19-6+1)

We may also wish to calculate the count C,in a similar manner, with the count C, for
substrings of length 2 being 12 as “to”, “o ”, “ b” and “be” each appears twice within the

e L T EE TS

raining string an n”, “no” an ;
t g string and “e ", , “no” and “ot” each appears once

C,(T|S) = = 12/18 ~ 0.66667.

-}
(19-2+1)

Chapter Discussion

The chapter has shown new approaches and investigations including explanation of how the
text categorization performance for the stream-based algorithms can be performed using
suffix trees. The investigation of C-Measure for suffix lengths greater than 13, R, ,-Measures,

R4-Measures and i < R < g and having results (see chapter 6) for these measures against

the corpora mentioned in 2.4 is novel and collectively this allows us to compare these
approaches against the current leading techniques.

41 | P a gc

Chapter 4

Implementation of stream-
based models using Suffix
Trees

Chapter Summary

This chapter offers an overview of suffix trees and how they can be used to implement stream
based algorithms. The chapter also shows how each protocol can be modeled for each of the
algorithms through use of discussion and examples.

Summary of each section

Section 4.1 discusses suffix trees and the advantages of its uses as a representation of a text
document. Section 4.2 shows how each of the stream based algorithms are implemented
using suffix trees and how each protocol is implemented through use of examples.

4.1 Suffix Trees

A suffix tree of a string (or a document should we consider the contents of a document as a
string) s a trie holding all the suffixes of that string. As all suffixes are contained, we can say
that all substrings are also contained. This powerful data structure allows for quick searching
of substrings and also allows for strings to be dynamically added or removed. Suffix trees
have also provided one of the first linear-time solutions for the longest common substring
problem. These speedups do come at a cost as storing a string's suffix tree typically requires
significantly more space than storing the string itself. This approach differs from bag of word
approaches i.e. Naive Bayes as we allow for phrases and streams of symbols/words/sentences
and do not ignore the order of the sequences.

Weiner first introduced the concept as a position tree in 1973 (Weiner, 1973). The
construction was then simplified and the space consumption lowered by McCreight in 1976
(McCreight, 1976), and also by Ukkonen in 1995 (Ukkonen, 1995; Giegerich & Kurtz, 1997).
The first linear-time online construction of suffix tress was provided by Ukkonen and the
construction method is now known as Ukkonen’s algorithm, though it has been criticized for
the lack of space efficiency (Giegerich & Kurtz, 1997).

42 |Page

Suffix trees have been studied and used extensively in fundamental string problems such as
large volumes of biological sequence data searching, i.e. DNA or protein sequences
(Bieganski & Carlis, 1994), approximate string matches (Ehrenfeucht & Haussler, 1988) and
text features extraction in spam email classification (Pampapathi & Levene, 2006). It is
important to note that for most applications a lexicographic trie is unnecessary, however, a
lexicographic trie allows us to take advantage of search techniques i.e. binary search
algorithm, which relies on the contents being sorted to find the desired child node within a
position of the trie.

If the input string S of length n is terminated by a special end-of-string symbol (“*”") then the
suffix tree has n + 1 leaves, one for each nonempty suffix of S. The end-of-string symbol is
important as it allows us to find the point at which we are processing the next text within a
concatenated stream. Since all internal non-root nodes are branching, there can be at most
n— 1 such nodes, and n + 1+ (n— 1) + 1 = 2n + 1 nodes in total. The most apparent use
of the suffix tree is as an index that allows substrings of a longer string to be located
efficiently. The suffix tree can be constructed, and the longest substring that matches a search
string located, in asymptotically optimal time (Larsson, 1999). An edge label within the tree
is represented by a pointer into the original string and this ensures that the storage space
required for each node is constant.

A sample suffix tree indexing the string S, ‘This is a threate’ is shown below with the counts
of each node displayed to its right. The string S contains 17 suffixes — “«”, * a threat*”, “ is a
threats”, *“ threat*”, “This is a threat”, “a threats”, “at*”, “eat*”, “his is a threate”, “hreat*”, “is
a threats”, “is is a threat*”, “reats”, “s a threat*”, “‘s is a threat*”, “t*”” and “threat*”, with the
substrings “ ™ (space) occurring 3 times, “a”, “h”, “is 7, “s 7 and “t” twice, and the rest

occurring only once.

43 |Page

=

2 I reate |1 s |2 t
E;_threat- |1 |is_a_threat-| 1 [threate 1|_threat-| 1 | te I 1 |isfisua_threat-| 1 |reat-| 1 Ia_threat-l 1 isﬁafthreat-' 1 |a7threat-| 1 is_a_threat-l 1[. I 1 |hreat- I 1

This_is_a_threate|1

%)

Figure 4.1: Suffix tree representation of string ‘This is a threat*’. ‘*” is the null string at the root of the tree and ‘*’ is the end of string
symbol. The counts of each substring are shown to the right of each node.

44 |Page

4.2 Implementation

The remainder of this chapter will show how it is possible to compute in reasonable time and
space all the stream-based methods outlined previously (C-measure, R-measure and PPM),
using essentially a single pass through the test data (or its equivalent represented as a suffix
tree). This step, of course, is necessarily an off-line process. Once the best measure is found,
however, it can be used directly to classify unknown test strings and multiple calculations are
no longer necessary.

The C and R—Measure can be computed using this data structure in the following way.
Assume that the training string S be the same as the string used for figure 4.3, and the test
string T as that used for figure 4.2. By co-traversing both trees simultaneously in a single
pass, each of the ¢, counts can be calculated by summing the counts of the common prefixes
between S and T. For example, the common prefixes of length 2 in the order they appear in
figure 4.2 is “a*” (count is 1), “ab” (2), “br” (2) and “ra” (2) so the total sum of counts is 7.
Likewise the common prefixes of length 4 are “abra” (2) and “bra*”, so ¢, = 3. It is a simple
exercise to derive the measures based solely on the ¢, counts and the length of string
T (which is the count associated with the root node). Note that this application of suffix trees
to computing the € and R—Measures is novel. In fact, Hunnisett & Teahan (2004) were not
able to compute values for Cj, for k > 13 using their trie implementation because of memory
constraints.

A |8

e |1 bra [2 | o |[1]| brae |1 | o |1]| brae |1

o (1| brae |1

Figure 4.2: Suffix tree representation of string ‘abrabrae’. “*’ is the null string at the
root of the tree and ‘*’ is the end of string symbol.

A | 12
. 1 a |3 bra |2 |[cadabrae| 1| dabrae |1 ra |2
e (1| bra |2 |cadabrae | 1| dabrae |1 e [1 |cadabrae|l e | 1 |cadabrae| 1

AN

e |1 | cadabrae |1

Figure 4.3: Suffix tree representation of the string “abracadabra«”.

45 | PAapoe

Concerning the four protocols, there is essentially no difference in the way the suffix trees are
processed between the concatenated and non-concatenated protocols regardless of whether
static or dynamic models are being used, apart from the size of the training text being used to
prime the training suffix tree (i.e. the concatenation can be considered to be a simple pre-
processing step done prior to the creation of the training suffix tree). For the C—Measure
static case, the training and testing suffix trees are co-traversed, and counts of common nodes
are accumulated with C; being the sum of counts of testing nodes at level 1 that match with
training nodes, C, being the sum at level 2 and so on, as described above.

The dynamic protocols require dynamically updating the training suffix tree with information
as either the testing suffix tree is being co-traversed (for frequency-based methods), or as the
training plus testing text is processed sequentially (for entropy-based methods). For the
frequency-based methods, the training suffix tree is dynamically updated in two ways: should
a matching suffix be found, the counts of the nodes are incremented; and should a suffix
contained within the testing tree not be found within the training tree, this new node is
created and added. Unlike the static case, if during the traversal, a path within the testing tree
is determined not to be common to the training tree, the traversal of this path will not now be
abandoned. Instead, we continue traversing the path of the testing suffix as all uncommon
nodes along a path are inserted into the training tree until the end of the path is reached.

Consider the training string S = “abrabras” and testing string T = “xbrx+”. The first suffix we
would investigate is “xbrxe” and as this substring does not exist within the training suffix
tree, the path would be dynamically inserted. When we then come to insert the suffix “xe”
later on, rather than it again being ignored as with the static case, it will now match the
character “x” at depth 1 as the substring “xbrx*” was inserted prior.

4,2.1 Static C-Measure

Consider the training string S = “abrabra*” and testing string T = “br+” where * denotes the
end of file character. The series ¢y, ¢, and c3 (see 2.7.1) are all initialised as value zero and
the value ¢, will increase as matching substrings of length k are found. The following
diagram displays both the training and testing tree once they have been created and no
categorization has yet been performed.

A8
/ A 3
El a 3 bra |2 ra |2

o1 | bre |1 re |1
e|1|bral2 El brae 1.1 brae |1

c1=0,c=0,c5=0

Figure 4.4: Suffix trees of training file “abrabra+” and test stream “br-".

46 | Page

The following suffixes are contained within the testing string: “brs”, “r+” and “+”. In order to
determine the similarity between the two strings, we need to determine the number of
common substrings and we do this by simultaneously traversing both trees and determining
how similar the two trees are.

As we are categorising the test string “bre” we shall be traversing each path within its suffix
tree whilst simultaneously traversing the training tree to determine what nodes are common
and at what depth. If during the traversal, a path within the training tree is determined not to
be common to the training tree, the traversal of this path will be abandoned (not in dynamic
case, with dynamic uncommon paths we keep traversing as all uncommon nodes along a path
are inserted into the training tree until the end of the path is reached) and shall continue with
the next until we have attempted to traverse each of the paths within the testing tree.

The first node to be found within the test suffix tree is node “*” at depth 1. The node “*” is
found to be common within the training suffix tree. As the substring of length 1 was found to
be common, the value ¢; is now increased by 1 and the ¢, counts are updated to the
following: ¢; = 1,¢;, = 0,¢c3 = 0.

The next node to be found within the test suffix tree is node “bre” and as we are now
traversing a new node within a new path we are again at depth 1. We are therefore looking to
find node “b” at depth 1 within the training suffix tree. We indeed find the node “bra” within
the training suffix tree with the character “b” at depth 1 and the ¢, counts are updated to the
following: ¢; = 2,¢c, = 0,¢c3 = 0.

As we have matched the current character within the test node and have also not yet reached
the end of this node, we shall remain within the testing node “brs” and now search for the
character “r”” which is at depth 2. Again the node is matched and so the counts are updated as
follows: c; = 2,¢c, = 1,¢c3 = 0.

Again we remain within the current testing node but we are now searching for “«” at depth 3

“.'}1

of the current path within the training suffix tree. As the node “=” was not found, the traversal

along this path is abandoned and the counts remain unchanged.

We have reached the end of the current path and we now move on to the next and final node
within the testing tree which is the node “r”. We are first looking to find a node within the
training tree which has the character “r”” at depth 1, which we find in the form of the node
“ra”. The common node the ¢, counts are updated to the following: ¢; = 3,¢c;, = 1,¢c3 = 0.

As we have found a matching node and have also not yet reached the end of the current path

within the test suffix tree, we now look for the character “»” along path *“r”.

A common node cannot be found and as we have now traversed all paths within the testing
suffix tree we have completed our traversal and the final counts remain as follows: ¢; =
3,C2 = 1,C3 = 0.

47 |Page

4.2.2 Dynamic C-Measure

Again consider the training string S = “abrabras” and testing string T = “bre” where * denotes
the end of file character. The series ¢, ¢, and c; are again initialised as value zero and the
value ¢, will again increase as matching substrings of length k are found. As we are
demonstrating an adaptive model therefore the training suffix tree will be dynamically
updated in two ways. Should a matching suffix be found, the counts of the nodes shall
increase and should a suffix contained within the testing tree not be found within the training
tree, this new node will be created and added.

The suffix trees to begin with will be the same as the static case, see figure 4.4, with ¢; =
0,c; =0,c3 = 0 as no categorization has yet been performed. As we are now using a
dynamic/adaptive model, if during the traversal, a path within the training tree is determined
not to be common to the training tree, the traversal of this path will not now be abandoned.
Instead, we continue traversing the path of the testing suffix as all uncommon nodes along a
path are inserted into the training tree until the end of the path is reached.

The first node to be found within the test suffix tree is node “*” at depth 1. The node “*” is
found to be common within the training suffix tree and as we are now using a
dynamic/adaptive model, the count of this node within the training tree is increased from 1 to
2. Additionally, as the substring of length 1 was found to be common, the value of ¢; is now
increased by 1.

The modified training suffix tree is shown here:

2 ra 2

El bra | 2 el 1 brae 1|Zl brae 1

o1 brae 1

Figure 4.5: Dynamic suffix tree of training file “abrabra*” once * has been processed.

and the ¢, counts are updated to the following: ¢; = 1,¢c;, = 0,c3 = 0.

2

The next node to be found within the test suffix tree is node “bre” and as we are now
traversing a new node within a new path we are again at depth 1. We are therefore looking to
find node “b” at depth 1 within the training suffix tree. We indeed find the node “bra” within

the training suffix tree with the character “b” at depth 1. It may be clear that other characters

48 | Page

within this node are common between both trees and indeed we would continue until the end
of the string before modifying the training suffix tree but for illustration purposes we shall
break this into a number of steps so that the process remains clear.

The modified training suffix tree is shown here:

El bra |2 ra ZlEl brae | 1
e |1 brae 1 El brae 1

Figure 4.6: Dynamic suffix tree of training file “abrabra+” once ‘b’ from within suffix
bre has been processed.

and the ¢, counts are updated to the following: ¢; = 2,¢c, = 0,¢c3 = 0.

As we have matched the current character within the test node and have also not yet reached
the end of this node, we shall remain within the testing node “bre”” and now search for the
character “r”” which is at depth 2. Again the node is matched and so we update the training
tree and counts accordingly.

The modified training suffix tree is shown here:

A |10

ra 2

/\

brae | 1

Figure 4.7: Dynamic suffix tree of training file “abrabra+” once ‘br’ from within suffix
bre has been processed.

49 |Page

and the ¢, counts are updated to the following: ¢; = 2,¢c;, = 1,¢3 = 0.

Again we remain within the current testing node but we are now searching for “»” at depth 3
of the current path within the training suffix tree. As the current training node “br” is non-
branching, the only possible matching character is “a”. Because of this, the node “a” shall
remain a non-compressed node as it will remain to have a different count from its parent node
“br”.

As the node “*” was not found, this node at depth 3 shall now be inserted into the training
suffix tree as a child of parent node “br”. This is where the dynamic/adaptive model greatly
differs from the static model as we are now dynamically altering the training tree to be more
similar to the testing tree.

The modified training suffix tree is shown here:

o2 a 3 br |3 ra |2
_ [|2 /\
e (1| bra |2 1E 1| brae |1

o1 brae 1

Figure 4.8: Dynamic suffix tree of training file “abrabra*” once the suffix bre has been
processed.

and the ¢, counts remain unchanged as: ¢; = 2,¢c, = 1,¢53 = 0.

Again, as we have reached the end of the current path we now move on to the next and final
node within the testing tree which is the node “r+”. We are first looking to find a node within
the training tree which has the character “r” at depth 1, which we find in the form of the node

13 3%

ra.

50|Page

As we find the common node we modify to the training suffix tree to be as follows:

A |11

-\
N

e (1| bra |2 1| a |[2

1| brae (1 |e|1| brae |1 1] hrao 1

Figure 4.9: Dynamic suffix tree of training file “abrabra+” once ‘r’ from within suffix re
has been processed.

and the cj, counts are updated to the following: ¢; = 3,c; = 1,¢3 = 0.

As we have found a matching node and have also not yet reached the end of the current path
within the test suffix tree, we now look for the character ““+” along path “r”.

A common node cannot be found so we again insert this new node and the training tree is
modified to the following:

T A A
T [T BB

E 1| brae |1 E 1| brae |1 1| bras |1

Figure 4.10: Dynamic suffix tree of training file “abrabra+” once the suffix re has been
processed.

As we have now traversed all paths within the testing suffix tree we have completed our
traversal and the final counts are as follows: ¢; = 3,¢; = 1,¢3 = 0. Using the example above
you will notice that the counts are the same for both models. However, should an uncommon

51|Page

suffix be inserted, as it wasn't matched, and then be seen again, on all following occasions the

substring would be matched as it was dynamically inserted.

As an example consider the training string S = “abrabrae” and testing string T = “xbrxe”. The
first suffix we would investigate is “xbrx*” and as this substring does not exist within the
training suffix tree, the path would be dynamically inserted. Now when we then come to
insert the suffix “x*”, rather than it again being ignored as with the static case, it would now
match the character “x” at depth 1 as the substring “xbrxe” was inserted prior.

The final training suffix tree once all comparisons have been made is displayed here:

A 13
o |2 a 3 br |3
o (1| bra |2 a 2 Xe

[

1 brae 1 E gl brae 1

2

Xe

brxe

brae

Figure 4.11: Dynamic suffix tree of training file “abrabra+” once the testing stream
xbrxe has been processed.

4.2.3 PPM Without Full Exclusions

For table 3.1 the escape count is calculated as the number of known symbols at each point.
For example if we had processed the symbol ‘a’ followed by ‘b’ we would be within position
‘ab’ at order 2 and the escape count would be 1 as ‘r’ is the only known symbol at this point.

52 |Page

Predictions c

Order k=2 Order k=1 Order k=0 Order k=-1

Predictions c Predictions c P Predictions c

ab

— r 2

— Esc 1 — Esc¢ 1

W= W | Ry
W= W] Ry

— Es¢ 5 16

Table 4.1: List of pointers within context list after processing the symbols ‘ab’.

Referring to table 4.1, let us say that the next symbol to encode was indeed ‘r’, as the
frequency of this symbol is 2, the probability of this symbol being encoded at this point is the
frequency of the symbol divided by the sum of all frequencies (including the escape count)
and in this case the probability would be 2/3.

However, if the symbol was unseen before at this point, i.e. the symbol ‘i’, then the
probability would now be the escape count divided by the sum of all frequencies, i.e. 1/3. We
would then escape to a lower context length, i.e. the pointer ‘*, b’ and search for the symbol
‘1" at this pomt. If the desired symbol existed at this point then the probability of finding the
symbol at this context length would then be calculated with the probability being multiplied
by 1/3, the probability that it was not found at the previous context length and then being
found at the current order.

If the symbol continued to not be found (as is the case), we would then continue to escape
down each order until either the symbol was found or we reached order -1. In the case of it
not being found and us having to escape to order -1, the probabilities of escaping down each
order would be multiplied by 1/256 (the number of symbols within the ASCII character set).

4.2.4 PPM With Full Exclusions

The difference in using full exclusions is that the counts of symbols at lower orders are
affected if the symbol that have appeared at higher orders also appear at the current lower
order after we have escaped. This then has an effect on the probability of the symbol being
encoded. Referring to table 3.4, we were attempting to encode the symbol ‘i’ at order 2. The
symbol ‘1” was unseen at this point and so we escaped to order 1 with probability 1/3. At
order 2 was the symbol ‘r’, which has now been seen and found to not match. Should this
symbol now appear at order 1, it can be ignored as it has been seen previously at order 2.

53| Page

As an example, let us say that we are instead presented with the contents of table 4.2. In the
case where update exclusions are not used and with the previous example we have
determined that “i” could not be encoded at order 2, having ruled out ‘r’, we could possibly
be presented with the following at order 1:

Order k=1
Predictions ¢ P
3
b —» a 3 11
. 4
— 1 4 11
1
— T 1 ﬁ
3
— Es¢ 3 7

e
—

Table 4.2: Possible context list at order 1 without exclusions.

In the case without exclusions, the probability of encoding the symbol ‘i’ at this point would
be the frequency of the symbol ‘i’, which is 4, divided by the sum of all counts in addition to
the escape count. The probability would therefore be:

4

=411,
3ra+1+3

This probability would then be multiplied by the probability of escaping from order 2, which
was found to be 1/3. Now in the case of full exclusions, we have already ruled out the
possibility of the symbol ‘r’ whilst at order 2, therefore the probability of encoding ‘1’ at this
point with full exclusions would now be different. Symbols which have been seen at previous
orders are now ignored leaving the following:

Order k=1
Predictions ¢ P
3
b — a 3 5
_ 4
— 1 4 9
- + -
)
— Esc 2 9

Table 4.3: Possible context list at order 1 with full exclusions.

54 |Page

Notice that there are now only two unseen symbols at this point as ‘r’ has been struck
through, therefore the escape count is now reduced to 2. The probability of encoding at this
point is now therefore:

svatz WP
This probability would then also be multiplied by the probability of us escaping from order 2,
which was found to be 1/3.

4.2.5 Dynamic PPMC

Up to now only PPMC for static training models has been discussed. The models themselves
can also be adaptive and this will allow us to compare the performance of PPMC across all
four protocols, as we did with C-measure. As an example, let us consider the training string S
= “gbrabras” and testing string T = “abrxbrx*” where * again denotes the end of file character.
We would again create a suffix tree representation for S as shown in figure 4.4 but now rather
than creating a suffix tree of T, we can simply treat it as a stream of symbols, processing each
at a time.

(L]

After processing the symbols “a”, “b” and “r”” we would be positioned at index 1 of the node
“bra” which is a child of node “a” and we would also currently have a context length of 3.
The next symbol to be encoded would be the symbol “x”, and as the only character seen at
this point is the symbol “a”, we would need to calculate the escape probability.

Shown here is the current context lists showing the positions of each pointer into the suffix
tfae:

Context Length | Pointer
0 A
1 Ar
2 Abr
3 Aabr

Table 4.4: Context list example after processing the string ‘abr’.

As we are now using the adaptive protocol, we would insert the new symbol into the current
position in the tree with count of 1, as well as also inserting this new node at the position of
each pointer of lower context length. If the node already exists then the count of the node “x™
would be increased by 1.

tkl [}

After inserting the symbol “x” at positions, “*abr”, “*br”, “r” and “*”, we now continue
searching for the symbol “x” at context length 2. If we were using the static protocol then we
know that the symbol “x” would not appear at this context length, nor at any other and we
would then have to escape to context length 1 and continue processing from that point.

Lo

However, as we have dynamically inserted the symbol “x” at position “*br”, we would now

55| Page

be presented with a different option. The symbol “a” is now no longer the only symbol to
have been seen at this point, the node “x” now exists with frequency 1.

Chapter Discussion

After introducing suffix trees as powerful data structures that allow fast searching we have
shown that it is possible to compute the stream-based methods in reasonable time and space.
It has also been shown that results for multiple algorithms, namely C-Measure and R-
Measure can be calculated with only a single pass through the data structure. The next
chapter details a toolkit that has been implemented to aid in the processing of the techniques
detailed within this chapter.

56|Page

Chapter 5

A Java based framework for
implementing stream based models

Chapter Summary

The purpose of this chapter is to detail an overview of the toolkit that has been created to aid in the
calculation and comparison of the many different techniques discussed earlier. The toolkit has
previously been described by Thomas and Teahan (2007), however, this chapter offers an overview
of the class structure and also offer details on how the algorithms have been implemented; this is
achieved through discussion, figures and code samples.

Summary of each section

Section 5.1 displays a basic overview of the main components within the toolkit and gives examples
of how simple the toolkit makes the process of executing experimentation. Section 5.2 discusses the
process of preparing the corpora, including splitting the initial files and concatenating models and
how the toolkit aids these processes. Section 5.2 also details the process of creating suffix trees
through extracting suffixes and trimming the models. Section 5.3 offers more detailed information
of the base classes and shows how they are extended through example code samples. Finally section
5.4 details the implementation of the algorithms and how their normalised values are calculated
through code. Section 5.5 details the usage of the toolkit through the use of examples.

5.1 Overview

The motivation for creating the toolkit was to have a single application able to execute a number of
different categorization algorithms at once and for us to be able to compare these results. This work
is an important contribution to the field of text categorization and is an improvement over previous
methods. Suffix trees have previously been used to implement PPM, however, they have not
previously be used to implement C-Measure and R-Measure, and certainly not all together. The
toolkit is extensible and offers common tools which are important if other algorithms are to be
added and by having all experiments ran from a common toolkit on common corpora eliminates a
number of the problems that currently exist when attempting to draw comparisons (Yang, 1999).

The toolkit was created using Java due to its platform independence and cost. Since Java is open
source, it’s completely free to develop and deploy applications with Java and its most popular IDE’s
are also free. In order to aid the process of adding algorithms and to keep a level of commonality a
set of base classes was required from which each implementation could extend and make use of

57|Page

common functionality. A set of tools has also been created in order to prepare the corpora and also
to be able to load suffix tree models from streams of text to be processed by the algorithms. These
requirements are represented by the class structure in Figure 5.1 and it was from this that the toolkit
was designed. For an exhaustive list of classes please refer to the API included within the attached
DVD.

The main processes are contained within the base classes and these iterate through each testing
model and process them against each of the training models. The base classes load each of the
models and call a function to compare one against the other. The functions to compare the models
are contained within the overriding classes as each are processed in a unique way. This model
allows for extensibility as a new algorithm only requires the specified abstract functions to be
implemented in order for it to function.

Main
|
oy I
Tools ‘ Methods
v # v
PPM C-Measure R-Measure

: \ $

A 4

Base Classes

Figure 5.1: High level overview of jSCat.
5.2 Tools

This section describes some of the contents of the ‘Tools’ object within Figure 5.1. The next section
describes how the toolkit can be used to split a corpus in order to perform cross validation. Section
5.2.2 details how the toolkit is able to concatenate files within specified training directories in order
for us to investigate concatenated protocols. Section 5.2.3 describes how a suffix tree and nodes are
represented within the toolkit and what properties are attributed to each. Section 5.2.4 explains the
process of extracting suffixes from a text stream. Section 5.2.5 discusses some optimisations that
have helped to construct and load the models in less time. Section 5.2.6 details the advantage of
pruning the suffix tree to the maximum length that is required by the current experimentation.
Section 5.2.7 discusses the toolkit’s process of constructing the suffix tree and section 5.2.8
discusses how checking the counts of each node can help us to ensure that the tree has been
correctly constructed.

58 | Pa J e

5.2.1 Splitting the corpora

There are cases, as with Reuters-10 (mentioned in 2.5.2), where the corpus has already been pre-
processed and the training data and testing data has been specified. In others cases such as
Gutenberg and 20Newsgroups, this is not the case, and this step must be performed manually. In
order to retrieve a fair result of how the algorithms have performed it is recommended to do cross
validation. This process can introduce difficulties in recreating the setup of past experiments, as it is
not often documented as to which documents were within which splits (see 2.5.7). Because of this,
a listing of all documents within each split shall be included within the attached DVD.

In order to perform cross-validation the data is first split into a number of subsets, with either the
same number of documents within each split, or as well as this, having the same number of
documents from a class within each split also. Because the second method gives an even
representation of each class within each split so this would be our preferred method. Once
completed an output directory containing a folder for each split is outputted, as shown in Figure 5.2.

splito splitl split2
o [
split3 splitd

Figure 5.2: Example output of split parent directories.

And within each of these directories would be a directory for each of the categories, shown in
Figure 5.3.

E e I i) 'E- i
charlesdickens danieldefoe emerson
JaneAusten kipling shakespeare

- = -

shaw twain wells

e

wilde

Figure 5.3: Example directory listing found within each split.

Each of the directories displayed in Figure 5.3 contain a subset of the original set of category files.
It 1s 1important to note that if we had not ensured the files of each category were spread evenly
across all splits, it is possible that as well as the category not holding an equal presence across each

59|Page

cross-validation stage. The Gutenberg corpus has only 40 works in total, it would therefore be
possible that the category could not be present at all within some splits.

5.2.2 Concatenating categories

As stated earlier, it is not known whether or not concatenating the training data improves
categorization performance and so it shall be investigated in order to determine its effectiveness, if
any. The first thing to determine is the full location of the split directories and also the directory in
which to output the concatenated models. Once these have been determined the
concatenateAllFilesInDir method within the Concatenate class can be called. The concatenated files
are added to a folder named Training within the root directory as shown in Figure 5.4. The
concatenated files are given a unique filename equal to that of the category it represents, as shown
in Figure 5.5.

=t [t
splito splitl split2
-l i) et
split3 split4 Training

Figure 5.4: Output of the concatenated files parent directory.

[Subje Fram: |From:
iFrum: Subj e | Subje
- In ar In ar |
alt.atheism comp.graphics comp.os.ms-
windows.misc
From: |Frem: From;
Subje | Subj e Subje |

laova |

comp.sys.ibm.pc,

Helle
comp.sys.mac.

11 b
comp.windows.x

hardware hardware
Frem: From: |From:
Subje Subje |Subje
|
| L ‘ {From |
misc forsale rec.autos rec,motorcycles
From: Frem: From:
Subje | Subje Subje
Iner |r!]=_\.lL |
rec.sport.baseball rec.sport.hockey scicrypt
From: | From: |From: -
Subje | Subj e |subje |
Inar | Inowr | leamat |
sci.electronics sci.med sci.space

From:
Subje |
ltn ar |

soc.religion.christian

| From:
| Subje

talk. politics.misc

From:
Subje

In o

talk.politics.guns

|Fram:
Subje

Here

talk.religion.misc

From:
Subje

talk.politics.mideast

Figure 5.5: Example output of concatenated training files.

5.2.3 Suffix Tree representation

The construction of suffix trees in an efficient manner is a non-trivial problem and key to the
success of the toolkit as a whole. This section describes the design chosen for the toolkit. An
instance of the Node class (see Figure 5.6) represents a position within a suffix tree and holds
information on its count, parent, child and so on. The RootNode class represents the root of the tree
and holds additional information such as the filename of the stream it represents.
OptimisedRootNode extends RootNode and as well as representing a suffix tree it is within this
class that operations such as building the tree and trimming the depth of the tree and so on are
contained.

Node

Extends

RootNode

Extends

OptimisedRootNode

Figure 5.6: Suffix tree representation classes.

More details can be found about the classes in the attached DVD.

5.2.4 Extracting suffixes

The first stage of the method used to create a suffix tree is of course to load the contents of the file.
The file may be a single stream of symbols or possibly a concatenated file, i.e. the output of the
stage mentioned earlier. Irrespective of whether or not the file is concatenated, the next step is to
locate the index of the eof symbols, the number of which is equal to the number of streams
contained.

As an example, a concatenated file containing two streams may look like:
The cat sat on the mat.$The dog went out to play.$

This file contains two streams, denoted by two eof symbols $§ whose indexes are then stored within
a list. It is important to locate the indexes of the eof symbols, otherwise the concatenated file, a
collection of several streams, would be treated as a single stream and this is not the case. Let’s say
that we have two indexes, i1 and j, whose values are the start index and end index respectively. 1 is
set to be 0 in the first case, and then the index of the previous eof symbol +1 for each of the

61 |Page

following streams. j is set to be the current eof index within the list. Quite simply 1 and j allow us to
process each stream at a time i.e. “The cat sat on the mat.$” followed by “The dog went out to
play.$”. The next step is to extract the suffixes from each of the streams and store each of these
within a list. The list of suffixes is then sorted in order to speed up the process of building the tree
from the list of suffixes.

5.2.5 Optimisation note

It is possible to create the tree without sorting the list of suffixes or without even listing the suffixes
and simply adding them on the fly from the original text. However, by profiling the operation of
building a tree, the most common task was found to be comparing two symbols, and it is required to
do this in order to determine the location to insert the current Node. By sorting the list of Nodes, we
are able to reduce the number of times this operation is executed as we know our current location
within the suffix tree, always working from left to right and never having to return.

A further step which has allowed us to greatly reduce the time of creating the suffix tree is to not
only store the location of the current Node within the tree that we are to add the next Node but also
the location within that Node. As an example, we may have two suffixes within our sorted list, 'at
on the mat.$' and 'at sat on the mat.§'. By having a sorted list of Nodes, we would not have to sort
through the entire contents of the top level of the tree attempting to find character 'a' and then
working from this point. We would simply have to check if the first character of the Node to be
added was equal to the current symbol at depth 0, which happens to be 'a' and work from there. If
the symbols were not equal then we would create a new branch at depth 0 and add the new Node.

What was found to take a long time even after this optimisation was that when a match was found at
depth 0, we then had to traverse the tree, comparing symbols and finding the exact location to insert
the new Node. A number of symbols would often need to be matched before we had to split and add
the new Node. The case is often worse with the worst case of adding the same suffixes twice which
is possible when adding numerous streams into a single suffix tree. This is why after sorting the list
of suffixes, we then iterate through the list determining the common prefix between a Node and its
previous. This allows us to determine the exact location within the current Node to insert the next
without having to traverse the branch.

We know that we must store N suffixes, with N being the length of the text stream. However, it is
essential to try and reduce the amount of information stored within each instance of a Node. We
created a class named Node which extends the Java class DefaultMutableTreeNode as this allows us
to store a reference to a parent Node and also to the child Nodes. It is important though to store
enough information within this class to allow us to complete operations quickly, but we must also
keep the amount of memory space used by each instance of the class, simply due to the number
created when dealing with large streams.

One method of storing the contents of each Node would be to simply store the suffix that it
represents as a String. Unfortunately due to the amount of suffixes and the sizes of each, this is not
feasible. A better approach is to store the original stream, which we shall store as an array of

62|Page

characters within a class called RootNode which extends the Node class. Now, rather than storing
the substring of each Node, we can simply store the index within the original string as the starting
index of the substring and also the length of the substring. There is the added operation of retrieving
the substring from the original stream, however, by storing the stream as an array it is a very quick
operation and saves a massive amount of memory use.

We store the count of each Node within an int, and a reference to the RootNode which allows us to
access the original text stream. We also store the depth of the Node as an int, as this allows us to
easily set the depth of the next added Node and is also useful when computing e.g. C-measure as we
need to determine at what length we are to increase the count. The final information stored is the
number of common characters between this Node and the last to be added, as this allows for easy
insertion when constructing the tree.

We now have enough information to quickly construct the tree as we have a sorted list of suffixes,
represented as indexes into the original stream, the length of the suffix and also the number of
common symbols between the current Node and the last to be added. A snapshot of this information
would be similar to that shown within Table 5.1.

Index |Length|Common
55630 | 24113 4

492977 | 618 12
1318077| 1278 7
569464 | 318 3

Table 5.1: Example subset of suffix model information, from which we construct a suffix tree.

Loading a 1.3MB concatenated file ten times as an example takes 45 seconds yet loading a standard
file which is typically several Kb's ten times takes less than a second. This shows that loading non-
concatenated files is done within an acceptable time but the concatenated files should ideally be
improved, especially due to the fact that there will be several concatenated files to load (one for
each class) and each will be loaded thousands of times. By storing the information displayed in
Table 5.1 within a text file, each concatenated model can be loaded from the point at which we have
the sorted list of nodes and the positions at which each is to be inserted. By using this method, the
execution time required to load the above mentioned file can be nearly halved.

Another optimisation was found during the experimental stage of comparing the models to the
testing files, and it was found that by changing the order of comparison we can make further
improvements. The typical methodology would be to load a testing file and then compare this file
against each of the training models. As mentioned in 3.4, assuming there are K classes and N testing
documents, typically N > K and the time to load a single model from K is much greater than the
time taken to load a model from within N. Each large model from within K would typically be
loaded N number of times, however, this can be dramatically reduced by reordering the comparison
and instead loading a training model only once and comparing the model against all testing files
whilst it is in memory.

63|Page

5.2.6 Trimming concatenated models

It is possible to further optimise time and space consumption by pruning the suffix trees to the
maximum size required by the algorithms. When computing PPM Measures we only investigate up
to a depth of 8 and with C-Measure we investigate up to depth 50, and we can prune the
concatenated trees (due to their sheer size compared to non-concatenated files) respectively. The
difference in lengths between the algorithms is due to the high computational overheads for high
order models of PPM. This pruning has no outcome on the results but does serve to increase loading
times of the trees and also the size of the trees when held in memory.

As a test experiment we executed the same experiment of loading a tree ten times, but in this case
we used a very large 10MB file. It took 219 seconds to load the un-pruned tree ten times, 168
seconds when the tree was pruned to a depth of 50, and 81 seconds when the tree was pruned to a
depth of &.

5.2.7 Building the tree

Code sample 5.1 was particularly difficult and is used to insert a new node into the tree using
common character substring lengths mentioned in 5.2.5. The method is not static and is therefore
called upon a current instance of the Node class, which will always be the last Node added to the
tree i.e. lastnode.place(newnode, number of common characters). We therefore have the location of
the last node to be added, the information pertaining to the new node and also the number of
common symbols between each of the suffixes.

i<

64| Page

: e i) pubilic Node place(Node nextMNode, int cosmon)

- 18O i

i m 12| common == O)

v 23 t

Lo pextiode , count +4;

P - | raxtiode . depthes

23 this.getPootNode (| .add| nextNode):

P this.getRootNode () ,count ++;

P2

)] retucre nextNode;

| 2a0)

o241 else

i H t

L =43 12| common >= thiz.depth |

Loz i

- 1f(common == chis.depth + this.length - 1)

246 1

un 1 (nextNode. length == cosmon |

i o2e0 I

. 249

i o280 this.count++7

281 increaseCount | this);

T

289 rerurs this!

. o284)

i oass elise

] L

P

258 nextNode. indas o= CcoMnOn!

. 259 nextNode, length -= cosmon;

i 260 nextNode.deptt = this,depth + this, lergth;

261 nextNode . count s}

v 262

i 269 this.countes;

L6 increaseCount | thix);

. 245

y 266 this.add| mextMode):

-

Lo260 return nextiode;

T S
20 1
2u else

. an t

P int numiatchOnNode = common - [this.depth - 1)3
74

298 .

1] liode templode = new Node! this,.mybootNode, this.index + numNatchOnNode |

Lo templode . length = this, lengtl - masNatchOmBode:
7 tempNode.dapth = this.depth « nuslatchOmNode:
2w

1 280 while| this.getChildCounc() > 0)

Loam t

i 202 cempNode .add((Nodelthis.getChildAt(O) §5

Lo [}

T4

-] tempNode.count = this,count?

208 this.add(tempNode)

L

. 208 this. length = numMatchimNode:

i 29 this,countes;
90 increaseCount | thia)2
1
292 nextMode. index &% CommOn:

9 nexthode. WTh == COESeOn!
294 nextNode.depth = this.depth + nunBatchOnNode;
208 nextNode count 4+
296 thia.add(nextNode);
-
- return nexctHode:
FR]]
300]
301 eise
2 I
03 Node temp = | (Node)this.gecParent (]).plece| nextNode, commwon |:
304
Jos ceturn temp;
306 1
W7)
00]

Code Sample 5.1: Inserting the next node into our tree.

The first thing checked is whether or not the common value is set to 0 (line 232), if so then the first
symbol of the next suffix does not match the previous and so the new branch/node is added as a
child to the root of the tree. The count is set to be 1, its depth is set to be 1 and in order to balance

65|Page

the counts within the tree correctly, the count of the root node of the tree is also increased by 1 (see
lines 234-237). If, however, the common value is greater than 1, we have to add the new suffix into
the last branch added to the tree. We do not know where within the branch though as so we check as
to whether or not the common value is greater than or equal to the depth of the current Node within
the branch (line 243). If not then we call the place method again but this time we call it on the
parent node and not the current one (line 303). We are basically traversing up towards the root of
the branch until the insertion location is found.

If the common value is greater than or equal to the depth of the current node then we must make
further checks. If the length of the node to be added is equal to its number of common characters
then it is a direct duplicate of the current node (247), we therefore increase the count of the current
node and each of its parent’s nodes until the root node is reached. To do this we use an iterative
method which continues to increase the count of the current nodes parent node until the current
node becomes the root node of our tree.

Within lines 255-269, if the length of the new node is greater than the number of common symbols
then the next suffix does match the last to be added but there are more symbols i.e. it is longer.
What we therefore have to do is effectively create a new node to be placed as a child of the last to
be added. We change its length to be its current suffix length minus the length of the last added
suffix, we set its depth to be the suffix length of the last node to be added i.e. the depth of the last
node plus its length. Its index is also incremented by the number of common symbols and its count
is set to be 1. The count of the last node to be added and all of its parent nodes are incremented by 1
and then the new node is placed as a child node.

In the case that the number of common symbols is less than the depth of the last added node in
addition to its length then we must break up the last added node and create two children, one will be
the part of the suffix following the break, and the other will be to represent the newly added suffix
(lines 271-299).

3 bra |2 ras |1

—

1
1

—_

N

ras | 1

a
bra |2 « |1 | brae
1| b

Figure 5.7: Original tree before adding node which matches all characters within the current
node.

Say that we are currently located at the highlighted node “ra$” as displayed in Figure 5.7. If we
were to then insert the stream “rabra$” then “ra” would be common to both suffixes, however, we

[13 2

would split the “ra$” node so that its suffix becomes common i.e. “ra” and its previous remainder

66\%’::-:’;-

“$” is added as a child node with the same count but its length, depth and index updated
accordingly. We are then able to add what was not common between the two suffixes as a new child
node, which in this case is “bra$”. All counts of parent nodes are then updated and the insertion is
complete, see Figure 5.8.

« |11 | a (3 bra |2 ra |2

| LN N

« |1 bra |2 o (1| bra= |1 | « |1]| bras |1

Figure 5.8: Tree shown in 4.10 after inserted the next node.
5.2.8 Checking the counts within the suffix tree

Once the tree has been built it 1s possible to check that the counts are correct by iterating through
every non-leaf node (node which has children) and ensuring that the count of the parent node is
equal to the sum of the counts of its children. If at any time this is not true, then the tree has not
been constructed correctly. This is because the count at the root of the tree is equal to the number of
suffixes and this number should equal the total number of leaf nodes within the tree.

5.3 Base classes

The relationship between the base classes and the other components within the toolkit is shown in
Figure 5.1 and was introduced in section 5.1 as allowing extensibility as a new algorithm only
requires the specified abstract functions to be implemented in order for it to function.

Results are stored within a combination of comparisons and collections. Comparison is an abstract
class that is used to store information regarding a single comparison between a testing file and a
training file. We say an instance of the TestCollection class holds all comparative values relating to
a single testing file. Figure 5.9 shows that for each algorithm we extend TestCollection to all
comparative values relating to its own technique. Further information regarding TestCollection and
extending the class can be found in 5.3.2. Collection as a base class is used to hold an array of
TestCollections, a list of training files, testing files and also the current protocol. Further
information regarding the Collection class and how it is further extended for each algorithm can be
found in 5.3.4.

67 |Page

Comparison Test Collection

Extends Extends

PPMComparison <€—Has Many—— PPMCTestCollection

Figure 5.9: Example extension of the base classes.
5.3.1 Comparison class

Comparison.java is an abstract class that is used to store information regarding a single comparison
between a testing file and a training file/model. As each testing file is compared against a number of
training files we would say that each instance of a testing file would have a number of comparisons
i.e. a one to many relationship. Comparison.java stores the training file used for the instance of a
comparison and returns basic information such as the location of the training file and the category
to which the training file belongs. The class also contains an abstract method named
getNumValuesPerResult and this 1s needed as the algorithms may have differing amount of results
per comparison. The method therefore returns the number of values outputted from a single
comparison i.e. C-Measure outputs C-Counts for each matching substring length, however, PPM
outputs only a single comparative value.

This class can now be extended by each instance of an algorithm to store results pertaining to a
comparison. C-Measure will generate a number of counts, and a result is outputted for each length
of substring compared. In this case an array of integers is used to store the results and methods are
included to fill the contents of this array as well as retrieving them to a calling method.

Because the base class Comparison.java is extended, the information which is common to all
comparisons, i.e. information regarding the training file used can be passed to the base class by
making use of Java’s keyword ‘super’ (used to call the constructor of the superclass in the base
class). As mentioned earlier, each class which extends Comparison.java must also implement the
method getNumValuesPerResult and in this case the size of the array cCounts would be returned.

5.3.2 Test Collection class

We say a TestCollection holds all comparative values relating to a single testing file. The
TestCollection class is therefore used to hold information regarding the testing file and also all
comparisons (instances of Comparison.java) which have been created by comparing each training
model against this testing stream. The Boolean isConcatenated is needed in order to determine the
category of the training model as a concatenated training models category would be set as its file
name but a non-concatenated training model would be held in a folder with the name of the
category to which it belongs. The testing file is stored within a variable of the class instance and
with the information contained within this class and each comparison we now know the training file
and testing file involved in each comparison. The length of the testing file is required a number of
times when calculating measures and as it takes time to compute it is more efficient to have this

68| Page

value stored within a variable also.

TestCollection is also an abstract class containing a number of abstract methods and each algorithm
must extend this class as each algorithm will have its own method of creating new comparisons and
also retrieving them. Many functions will be common to all algorithms and that is why this abstract
class has been created. When an instance of the TestCollection class is created, all algorithms will
need to specify the testing file and whether or not the testing file will be compared to a concatenated
training model or not and that is why the methods relating to the setting of this information is
contained within this class. The retrieval of this information as well as the category to which the
testing file belongs will also be common and is again contained within this class.

As the constructor for this class specifies that an array containing all training files must be supplied,
and though the type of comparisons and the array type each will be held in are of different class
types, each will be done in much the same way and that is why the ordering of the calls to the
abstract methods is also held within this class file. We say that the closest matching training model
1s the one that outputs the highest comparative value when compared against a testing file.

5.3.3 Extending TestCollection class

Take PPM and Figure 5.9 as an example of how each algorithm would extend the base class. The
constructors are very simple and this is the intention of using inheritance within the code. The call
to ‘super’ is made which calls the constructor of the base class, which as we saw will handle the
setting of the testing file and then call abstract methods which are contained within the classes that
extend it. Two of the abstract methods contained were createComparisonArray and
createNewComparison, which handled the creation of the type of comparisons to be instantiated, in
this case PPMComparison. Each algorithm will implement these methods in similar ways except
they shall substitute PPMComparison for its own type, possibly CComparison for C-Measure. The
array of comparison types are now stored within this class so that all comparisons for a
TestCollection are easily accessible. The comparative values will also be set from methods within
this class as it is from this class that we are able to access all of the comparisons but each algorithm
may have its own way in which it sets the values and also what the methods are called.

5.3.4 Collection class

The Collection class as a base class is used to hold an array of TestCollections as well as the set up
information such as a list of all training files, testing files and also the current protocol. The most
important method within the class is setMeasures as this is the method which starts the experimental
process once all of the initial setup has been completed. The method will determine whether the
current protocol is concatenated or not and call the relevant method in each case.

Once called, each functions in much the same way. Both are able to print out useful debugging
information such as information on each of the files being processed and the current progress of the
comparisons. In the case of non-concatenated, each testing file is accessed in turn and passed to the
method setMeasuresNonConcatenated which requires a testing file as a parameter, and these
methods are located within the classes that extend this one, of which each algorithm must have.
Within this class the methods are abstract and the implementation of these methods shall be

69|Page

discussed later. As mentioned earlier, it is more efficient in the case of concatenated training models
to load them a minimum number of times and that is why is the case of setMeasuresConcatenated
each trianing model is processed individually rather than each testing file. These differences can be
seen within lines 382 and 392 in Code sample 5.2, 415 and 425 in Code sample 5.3. The algorithm
specific implementation for non-concatenated protocols is called by line 384 in Code sample 5.2,
and line 417 for concatenated protocols.

i EX ENRX

r s asms v alin st 4t snat 3

Code Sample 5.2: Base processing of non-concatenated comparisons.

- . e e s e el e A b st o d

Code Sample 5.3: Base processing of concatenated comparisons.

The general purpose of the methods contained within the Collection class is to fill a multidirectional
array of results. After each testing file has been compared against all of the training models, the
results of the comparisons are outputted to a text file so that the results can be stored for repeated
viewing without having to re-run the experiments.

70| P a

e

=

5.4 Implementation of the algorithms
5.4.1 C-Measure
5.4.1.1 Static case

The method setCounts was particularly difficult and so shall be explained in depth within this
section. It 1s a recursive method that tests whether the current symbol we are processing within the
testing suffix tree matches the current symbol within the training suffix tree. If so, then the C-
Counts are updated for the current depth of the substring, if not then we move on to the next
symbol. Both the training tree and testing tree are traversed simultaneously and shall continue until
we have checked all paths within the testing tree or the end of the training suffix tree is reached.

The setCounts method was built after identifying all possible cases when simultaneously traversing
two trees. The first condition within the method tests whether this is the first call i.e. we are at the
root of the tree. The route of the tree holds no characters and is not to be compared against the route
of the training tree, this condition allows us to gather each of the testing trees children of the root
node and iterate through them sequentially. Both trees are sorted and so when we are searching for
an insertion position for the current testing node, if this value is equal to the number of children
then this tells us that none of the remainder will match and so we return. Until this condition is met,
we recursively call the setCounts method but replace the root node with the current child of the root
node. We are not yet concerned with whether or not the first characters match as this will be dealt
with at the next stage.

When the method 1s recursively called, we have five essential parameters as displayed in table 5.2.

Name Type Description
test Node | Current Node within testing tree
testOffset int | Position within current testing node i.e. current testing character
train Node | Current Node within testing tree
trainOffset int | Position within current training node i.e. current training character
currentLength | int | Length of substring and position within array in which we increase count

Table 5.2: Parameter information for C-Measure setCounts method.

What we are essentially doing is keeping track of our positions within each of the trees and
comparing the characters, continuing to traverse whilst they are matching and returning when they
do not, and then moving onto the next testing branch. There are six possible cases when you are
asked to compare the next characters within the current nodes:

Case 1: We have reached the end of the current testing node and the current testing node has no
children. In this case we have no need to continue as we have matched the entire current match and
$O we return.

71|Page

Case 2: We have reached the end of the training node and the current training node has no children.
In this case, although we would like to continue, the training branch has no further paths i.e. this
part of the current suffix 1s unseen within the training text and so we return.

Case 3: We have reached the end of the testing node but not the current training node, however, the
testing node does have child nodes. In this case we remain at the same position within the training
tree but we now iterate through the children of the testing node to see if the following symbol
within the training node exists. There is no need to iterate through all of the testing children and
attempting to compare these with the training tree as we are within a node and there is only one
possibility so it is quicker to attempt to find this within the list of testing children. If a matching
character is found, we then continue by making the matching testing node the current test node. If
no match is found we return to the calling method.

Case 4: We have reached the end of the training node but not the current testing node, however, the
training node does have child nodes. In this case we remain at the same position within the testing
tree but we now iterate through the children of the training node to see if the following symbol
within the testing node exists. If a matching character is found, we then continue by making the
matching training node the current node. If no match is found we return to the calling method.

Case 5: We have reached the end of both the current testing and training node, and both of these
nodes have child nodes. This case involves more processing than the other cases as we now need to
iterate through each of the child nodes and recursively process each against each of the training
nodes and their children.

Case 6: If none of the above conditions are satisfied then we continue to shift positions along both
the current nodes, updating the counts array as we progress. This loop will then continue until we
reach the end of either of the nodes or we find a symbol which does not match.

5.4.1.2 Dynamic case

The dynamic case is processed differently as we do not build a suffix tree. We do create every node
which would be contained within the tree but these nodes are kept within a list and not added to a
tree. The reason stems from the fact that the symbols are not actually stored within nodes, we
instead have a reference to the original input string. With the dynamic case it is very likely that we
will be inserting suffixes that are not contained within this input string and so it must change. Also
when a node is added or modified, it is also very likely that indexes would change and we would
need to know which input string the index refers to. To tackle this, it works well to concatenate the
testing string onto the end of the training string (see 5.2.4) and treat the index of the first symbol of
the testing string as N, with N being the length of the training string and us beginning at value 0.
This would now ensure that there 1s no confusion between the reference location of a suffix.

72

P
i

da e

Training String: The cat sat on the mat.
Testing String: The dog went out to play.
The cat sat on the mat.$The dog went out to play.$

Index of first testing character is 24.

Figure 5.10: Example of testing string being concatenated onto training string for dynamic
cases.

We would then begin extracting suffixes from the testing string and compare these to the training
tree. Using the above example we would begin with the suffix found between index 24 and 49
which is effectively the entire testing stream and then shift right one position each time until we
reach the end of the testing stream. The suffixes are extracted and created as Nodes through use of
the method insertSuffixes which passes each node to a dynamiclnsert function within the same
class. The method dynamiclnsert is built logically in much the same way as setcCounts. If the
current training node has no children and is the RootNode of the tree then we increase the count at
the root and also the count of the new node to be inserted and then insert the node as a child of the
RootNode. If the current training node has no children but is not the root there 1s no need to split the
node or add as a child, we simply increase the length of the node by one and alter the index so that
is refers to the position within the testing stream rather than the training stream.

If the current training node does have children then we must find where within the current depth to
insert the new testing suffix. We do a binary search of the children and the insertion position is
returned as an integer. If this value is equal to the number of children at this depth then the ASCII
value of the first symbol is greater than any of the children within this depth. The new node is
therefore inserted as the last child due to the ordered nature of the suffix tree. The counts are
adjusted accordingly and the depth is calculated as the depth of the current node in addition to its
length.

If the value returned from the binary search is not equal to the number of children we must then
treat the value as the desired insertion position. The next step is to determine whether the node that
is currently situated at this position needs to be shifted to the right (as the tree is ordered) or at least
some of the current node is matched and so we must insert the new node into the current node and
possibly split it at some point.

In the case where the first symbol of the node that exists at the insertion point is equal to that of the
new node to be inserted, this is the time that we would now increase the counts within the C-Counts
array as a match has been found. We would then loop, moving along both nodes and increasing the
C-Counts at the relevant depth until we reach the end of either node or the next symbols are found
to not match. If all characters within the new node are matched then we simply increase the count of
the current node and return to the calling method. If there exists more symbols on the new node
then the new node must be dynamically inserted as a child to the current node and so the
dynamiclnsert method is called with the current training node which we have reached the end of as
the node at which we want to insert and the new node's index and length are altered to support the
fact that some of the symbols have already been matched before the remainder is passed as the new
node parameter. If the current node within the training tree was a leaf node then it is this case that

73'5’:1; (5

makes the suffix tree lose its balance of counts, i.e. counts of the parent node being equal to the sum
of the counts of its children. This is an example of where the eof symbol is important, it ensures that
there is no case where all symbols of a lead node can be matched with the testing node still having
more characters.

If we have not reached the end of either the current training or testing node then we must split the
current training node. The description of dynamic C-Measure in 3.3.2 shows an example where we
must split the node “bra” within the training tree as “br$” is inserted. You will see that the node
“bra” is modified to become “br” and the removed “a” is created as a child node with all previous
children of the “bra” node now becoming children of the node “a”. This function was again
particularly difficult to implement and can be seen within the source code on the attached DVD.

5.4.2 R-Measure

All R-Measure results can be calculated using C-Measure results and this is the approach used
within the toolkit. Rather than calculating R-Measure results independently or simultaneously with
C-Measure, the toolkit loads the values of C-Measure comparisons and places them within
RTestCollection's, which are extensions of TestCollection class. The base class Accuracy calls the
method findResults and when this is overridden within the Raccuracy class, any R-Measure
variances can then be calculated by adding calls to find accuracies for each variant in which we are
interested.

5.4.2.1 r™maex

r™%* is an alternative name for the standard R-Measure and is defined as the sum of the C-Counts
and so we gather the value from getrCount. The value is normalised by adhering to the formula
displayed in 3.1 and its coded equivalent is displayed in Code sample 5.4.

. e

Code Sample 5.4: Coded Normalised R-Measure Value.

5.4.2.2 R,

R<q is easily obtained by summing all C-Counts found between 1 and the set limit and we explore
all maximum values between 1 and a given maximum in order to determine which maximum value
achieves the greatest results. It is the responsibility of getRMeasureLessThanEqualTo to summate
the C-Counts between 1 and the upper limit and getNormalisedMeasure shall then normalise this
value by implementing the formula displayed in 3.1.

5.4.2.3 R,

The R, 4-Measure is very similar to R<, except that we decrease towards 1 as an upper limit rather
than increasing from 1 as a lower limit and in this case it is the upper limit which changes and the
lower limit 1 remains static. Again a total is determined by an alternative method, namely
getRMeasureGreaterThanEqualTo but this figure is then normalised as discussed in 3.1.

74 |Page

5.4.2.4 R-Ranges

The function findRRangesAccuracy makes use of two loops in order to accumulate C-Counts
within the ranges. There is no need to normalise the total and so we determine the comparison that
returns the highest total between the set ranges to contain the correct author, topic or type and so on
depending on the current situation.

5.4.3 PPM (Prediction By Partial Matching)

As with the dynamic case of C-Measure we concatenate the testing stream to the training stream as
this allows us to work with unique indexes/positions within the stream. We then create two arrays,
one of which acts as a temporary store which holds pointers that are updated, the other acts as the
context list once all pointers have finished updating. Once all updates have finished the contents of
the updating pointers are transferred to the second array.

The method processNextChar (see Code sample 5.5) holds the outer loop operation and its purpose
1s to attempt to encode all symbols within the testing stream until all have been processed and this is
done in three steps. Whilst there are still unprocessed testing symbols we first fetch the next symbol
to be encoded, we then calculate the probability for this current symbol and we then swap the
contents of the arrays i.e. pointers before processing the next symbol.

Code Sample 5.5: Coded method for encoding all symbols for PPM.

There is a great amount of work involved in calculating the probability of the current symbol being
encoded. It 1s the method findNextChar which attempts to encode the next symbol at the furthest
point in the context list, and drops down this list should it be unsuccessful at the current depth. As
we escape down through context lengths we have to combine probabilities and so we store all of the
probabilities to be combined within a list and this list is first of all reset along with the list of
exclusions (should there be any) when we process a new symbol.

As symbols are found we simply update pointers within the suffix tree and update the contents of
the probability list and this process continues until we reach the end of the testing stream or the
current symbol cannot be encoded. If the symbol cannot be encoded we decrease the context length
and continue but as well as this, with the dynamic case, should there be an unseen symbol then the
symbol must be inserted at all current positions within the tree and this is made easy due to us
having stored each of the insertion locations within our array.

75|Page

55 Using the toolkit

The object named ‘Main’ in Figure 5.1 is the main entry point of the application and allows a level
of abstraction between the user and the underlying methodology. It is from here that user commands
are executed and these commands perform underlying operations. A user must first state the
operation they wish to perform, such as “conc” for concatenating files within a location by also
passing parameters indicating folder names within a base location, see Example 1.

Example 1

Main.maiznnew String[]{ "conc®, "/home/localadmin/Z0inevs/crossis",

BEPLIE0", TSR ITelr, "sHlied¥, TAHTTEINIE

Example 2 shows that in order to then trim these models for optimisation again only a single call is
required no matter what algorithm(s) are to be used.

Example 2

Main.maizn(new String[]{"trim", "/home/localadmin/Z0news/cross1/"});

Example 3 shows how little code is needed in order to process the models and then perform a C-
Measure calculation on them. First of all the parameter “c” is passed that indicated it is C-Measure
we wish to be performed. We then pass the base location of the corpora from which we can find the
training and testing documents. The next two parameters (“true” “true” in Example 3) indicate the
protocol to be investigated, with the first parameter being a Boolean value, true indicating
concatenated and the static for static or dynamic with true indicating static. Following this is the
index of the testing files to be investigated, “0” indicates that we must start with the first file at
index zero but “-1” is used to indicate all files, if say “99” were passed then only the first 100
testing documents would be categorized, from index 0 to 99. The following parameters indicate the
names of the training directories and then the testing directory.

Example 3

Main.main({new String[1 ¢ "c”, "/home/localadmin

ors ity fopeint,]

Example 4 shows how similar it is to process the existing models but on a different algorithm. This
algorithm takes “6” as parameter and this indicated the PPM order in which we are interested. Each
algorithm can take whichever parameters are required and loops can be used to perform
experiments on all orders, all combinations of folders for cross validation and so on. These
commands can also be bundled in order to further simplify the process or alternatively this
information could be retrieved through a GUI if desired. A common entry point such as this is
powerful in that it is possible to modify the parameters and perform experimentation of any
algorithm, vary the training and testing data and also the order or substring length.

76|Page

Example 4

Main.main(new String[1 { "ppw”, "/howe/localadmin/Z0inews/cros

=t el r_qrr
) By o,

]

Ferain®; Taplitdt, "aplaiti "splita®, "split3",; "test", "split4"}):;

Code sample 5.6 shows the main function and how the parameters are redirected depending on
which operation the user asks to perform. Any new implementations that extend the base classes
can add its case to this code and then be ran from the same common l